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Abstrac t 

The attenuation of electromagnetic (EM) waves in many geological materials is strongly 

dependent upon frequency in the ground penetrating radar (GPR) range; high frequencies 

are attenuated much more quickly than lower ones during propagation. For this reason, 

the GPR wavelet often undergoes a significant change in shape as it travels through the 

subsurface, and reflections received at later times contain less high frequency information 

than those received at earlier times. This phenomenon is known as wavelet dispersion. 

In the GPR image, it is displayed as a characteristic "blurriness" that increases with depth. 

Correcting for wavelet dispersion in GPR data is an important signal processing step that 

should be performed before either qualitative interpretation or quantitative determination 

of subsurface electrical properties are attempted. 

Previous work by other researchers has shown that the EM wave attenuation parameter 

for many geological materials is approximately linear with frequency over the bandwidth of 

a GPR wavelet. Thus, the change in shape of a GPR pulse as it propagates can often be 

well described using one parameter, Q*, which is related to the slope of the linear region. 

In this thesis, we confirm and build on these results. Assuming that all subsurface materials 

can be characterized by some Q* value, the problem of estimating and correcting for wavelet 

dispersion in GPR data becomes one of determining Q* in the subsurface and deconvolving 

its effects through the use of an inverse Q filter. 

A method for the estimation of subsurface Q* from GPR data based on a technique 

developed for seismic attenuation tomography is presented. Essentially, Q* is determined 

from the downshift in the dominant frequency of the GPR wavelet with time down a trace. 

Once Q* has been obtained, an inverse Q filtering technique based on a causal, linear, model 

for constant Q wave propagation is proposed as a means of removing wavelet dispersion. 

Tests on field data collected near Langley, British Columbia indicate that these methods are 

very effective at enhancing the resolution of the GPR image. 



iii 

Table of Contents 

Abstract ii 

List of Tables v 

List of Figures vi 

Acknowledgements viii 

1 Introduction 1 

1.1 The GPR Method 1 

1.2 The Motivating Problem 2 

1.3 Thesis Overview 4 

2 Electromagnetic Theory 5 

2.1 Maxwell's Equations 5 

2.2 Constitutive Relationships 7 

2.3 Conduction and Displacement Currents 10 

2.4 EM Wave Propagation 11 

2.5 Reflection and Transmission Coefficients 15 

2.6 Complex and Effective Parameters 17 

3 Rock Physics 22 

3.1 Reasons for Dielectric Dispersion at GPR Frequencies 22 

3.2 Models for Fitting e(u) 25 

3.3 Laboratory Measurements 29 

3.4 Q and Q* Parameters 34 

4 Estimation of Q* from GPR Data 3 7 

4.1 Geometrical Assumptions 37 



TABLE OF CONTENTS iv 

4.2 Scattering Attenuation 38 

4.3 Reflection and Transmission Effects 42 

4.4 The Convolution Model 47 

4.5 The Frequency Shift Method 51 

4.6 The Wavelet Transform 57 

4.7 Synthetic Tests 61 

5 Inverse Q F i l t e r i n g 73 

5.1 Constant Q Wave Propagation 73 

5.2 Inverse Q Filter Design 77 

5.3 Practical Implementation 80 

5.4 Synthetic Examples : 83 

6 A p p l i c a t i o n to F i e l d D a t a 90 

6.1 The Langley Data Set 90 

6.2 Estimation of Q* 92 

6.3 Inverse Q Filtering 96 

7 Conclusions 103 

7.1 Summary 103 

7.2 Future Work and Recommendations 104 

References 105 



V 

List of Tables 

6.1 Determination of Q* from various traces in Figure 6.1 ; . . 99 



VI 

List of Figures 

3.1 Dipolar relaxation of pure water at 10 °C 24 

3.2 Attenuation vs. frequency for a variety of sands 30 

3.3 Attenuation vs. frequency for a variety of rocks 30 

3.4 Attenuation and velocity vs. frequency for a variety of geological materials fitted 

using the Cole-Cole formula 32 

3.5 Attenuation and velocity vs. frequency for a variety of rocks fitted using the 

Jonscher parameterization 33 

4.1 Reflection coefficient modulus and phase vs. frequency for a number of subsurface 

interfaces 45 

4.2 Two-way transmission coefficient modulus and phase vs. frequency for a number 

of subsurface interfaces 46 

4.3 Synthetic GPR data used to test the frequency shift method 63 

4.4 Wavelets used to create and analyze the synthetic trace in Figure 4.3c 64 

4.5 Wavelet transform representation of the synthetic trace in Figure 4.3c 66 

4.6 Centroid frequency versus time curve for the synthetic trace in Figure 4.3c . . . 68 

4.7 Standard deviation versus time curve for the synthetic trace in Figure 4.3c . . . 69 

4.8 Centroid frequency versus time curves for the synthetic trace in Figure 4.3c after 

inverse Q filtering to remove wavelet dispersion 71 

5.1 Attenuation and velocity vs. frequency for various values of Q 76 

5.2 Inverse Q filter applied to a noise-free, attenuated, reflectivity series 85 

5.3 Inverse Q filter applied to the attenuated reflectivity series in Figure 5.2b with 

added Gaussian random noise 87 

5.4 Inverse Q filter applied to the noisy, attenuated, reflectivity series in Figure 5.3b 

using incorrect values for Q 89 



LIST OF FIGURES vii 

6.1 Langley 100 MHz GPR data before correcting for wavelet dispersion 93 

6.2 Centroid frequency versus time curve for trace number 300 in Figure 6.1 . . . . 97 

6.3 Standard deviation versus time curve for trace number 300 in Figure 6.1 . . . . 98 

6.4 Langley 100 MHz GPR data after correcting for wavelet dispersion by inverse Q 

filtering 101 

6.5 Centroid frequency versus time curve for trace number 300 in Figure 6.4 . . . . 102 



Acknowledgements 

Vlll 

Foremost, I would like to thank my supervisor, Dr. Rosemary Knight, for her tremendous 

guidance, generosity, encouragement, and confidence in my abilities over the past three years. 

Her helpful insight and constant enthusiasm for research have made my time at UBC both 

enjoyable and academically fruitful. I would also like to sincerely thank professor Tad Ulrych 

for introducing me to, and greatly inspiring me in, the areas of signal processing and time 

series analysis. I admire very much his philosophy of both science and life, which he has 

generously shared in many interesting discussions. Many thanks should also be extended 

to professors Rosemary Knight, Tad Ulrych, and Matt Yedlin for critically reviewing my 

thesis at such a busy time in their schedules. Finally, I would like to thank my family, and 

especially my wife, Melita, for their love, support, and encouragement during the preparation 

of this thesis. With very few complaints, Melita has spent many hours reading parts of this 

document when I was too tired to think, and has done just about everything around the 

apartment for the past six months. I owe you. 

This research was funded in part by an NSERC PGS-A scholarship, and by the U.S. 

Department of Energy (grant number DE-FG07-96ER14711). 



1 

1 In troduct ion 

1.1 The G P R Method 

Ground penetrating radar (GPR) is a geophysical technique that employs radio waves, 

typically in the 10 to 1000 MHz frequency range, to map structure and features in the 

subsurface (Annan, 1992). Although the basic idea of using radio waves to investigate 

the subsurface is by no means a new one, the successful application of this idea to a 

wide range of geological and engineering problems is still in its infancy. In the 1960's, 

work with GPR began in the form of radio echo soundings (RES) to map the thickness 

of alpine glaciers and continental ice sheets in the Arctic and Antarctic (e.g., Waite, 1966; 

Rinker et al., 1966). The early 1970's saw the introduction of the technique into non-glacial 

environments. Initially, this work focused on applications in easily penetrated geological 

materials such as permafrost soil (Annan, 1976), dry rock salt (Unterberger, 1978), and 

coal (Coon et al., 1981). However, as the strengths and weaknesses of the method became 

better understood and as technology improved, GPR gained increasing popularity as an 

effective tool for high resolution imaging of the shallow subsurface in ordinary rock and soil. 

Today, GPR has a wide range of uses in many different disciplines including archaeology, 

civil engineering, Quaternary geology, hydrogeology, and glaciology. New applications for 

the technique are arising all the time. 

In its most common mode of operation, GPR is very similar in principle to seismic 

reflection profiling. First, a short electromagnetic (EM) pulse (referred to as a wavelet) 

is radiated vertically into the ground by a transmitter antenna. This wavelet propagates 

through the ground and is partially reflected back towards the surface at interfaces across 

which electrical properties change. The reflected wavelets are then picked up by a receiver 

antenna (usually oriented parallel to the transmitter, and separated by a minimal distance) 
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and recorded as voltages in time by a central processing module. This process is repeated 

many times over as the transmitter and receiver antennas are moved along a survey line. 

The result is a collection of traces containing recorded voltages which can be put together 

and viewed just like a seismic reflection section. In contrast to seismic reflection profiling, 

however, GPR provides us with an image of the subsurface based on changes in its electrical, 

not its elastic, properties. 

1.2 The Motivat ing Problem 

In the GPR frequency range, the attenuation of EM waves in many geological materials 

is strongly dependent upon frequency; that is, high frequency waves are attenuated much 

more quickly than lower frequency ones during propagation. To a much lesser extent, the 

velocity of EM waves is also slightly frequency-dependent in the GPR range. As a result, 

the GPR wavelet (which can be expressed as a linear combination of sinusoidal waves of 

various frequencies) often undergoes a significant change in shape as it propagates through 

the subsurface, and reflections received at later times contain noticeably less high frequency 

information than those received at earlier times. This phenomenon is known as wavelet 

dispersion. In the GPR image, it is displayed as a characteristic "blurriness" or lack of 

resolution that increases with depth. 

Correcting for wavelet dispersion in GPR data is important for a number of reasons. 

Qualitatively, it is desirable to have a high resolution, well-focused GPR image for the 

purpose of data interpretation. Quantitatively, the removal of wavelet dispersion is a 

necessary step before signal processing methods based on the assumption of a stationary 

GPR wavelet (i.e., a wavelet whose shape does not change with time down a GPR trace) 

can be successfully applied. Such methods include migration, whose purpose is to reposition 

reflection events in the GPR image to their true locations in space, and wavelet or "spiking" 
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deconvolution, designed to remove the effects of the finite width of the GPR pulse. Indeed, 

past attempts at applying such techniques to GPR data without first correcting for wavelet 

dispersion have proven largely unsuccessful (e.g., Payan & Kunt, 1982; LaFleche et al., 1991; 

Powers, 1995). Further, since these signal processing methods lead to the recovery of the 

earth's reflectivity, it can be seen that correcting for wavelet dispersion is a necessary step 

before GPR data can be used for the quantitative determination of subsurface electrical 

properties. These issues will become even more important in the future as GPR systems 

possessing higher dynamic ranges and broader bandwidth antennas are introduced. 

Surprisingly, relatively little work has been done on the problem of correcting for wavelet 

dispersion in GPR data. The only paper devoted to this topic appears to be that of 

Turner (1994), who presents an algorithm for subsurface radar "propagation deconvolution" 

to remove the effects of frequency-dependent attenuation and velocity in the GPR range. 

There are three significant limitations to Turner's approach that we will attempt to overcome 

in this thesis. First, to correct for wavelet dispersion, Turner's algorithm requires detailed 

knowledge of the behaviour of the EM wave attenuation parameter with frequency in the 

earth. However, Turner provides little insight into what this behaviour should be and, 

more importantly, how it can be obtained in typical field situations. Secondly, the phase 

used in Turner's propagation deconvolution filter to correct for velocity dispersion is a digital 

minimum phase calculated from the discrete Hilbert transform of the logarithm of the filter's 

amplitude spectrum (given by the attenuation behaviour). Although the earth filter satisfies 

the minimum phase condition for continuous time, it is well known that significant differences 

can exist between a filter's true minimum phase spectrum and this digital minimum phase, 

which depends on the sampling interval of the data (Calvert et al., 1987; Varela et al., 1993). 

Finally, Turner's algorithm assumes that the behaviour of attenuation with frequency is 

constant with depth in the subsurface. It is more than likely, however, that different earth 

materials will possess significantly different attenuation-frequency relationships. 
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1.3 Thesis Overview 

It is evident from the above discussion that wavelet dispersion is a common and significant 

problem in GPR data. The objective of this thesis is to (i) investigate in more detail 

the specific causes of wavelet dispersion in GPR data, (ii) develop a possible means of 

quantitatively estimating wavelet dispersion in GPR data, and (iii) introduce a method for 

removing the estimated wavelet dispersion. Chapter 2 of this thesis reviews some basic 

concepts in electromagnetic theory relevant to GPR and, specifically, the wavelet dispersion 

problem. Chapter 3 then examines some of the specific reasons for wavelet dispersion in GPR 

data from a rock physics perspective. Building on the results of other researchers, we will also 

see in this chapter that the change in shape that occurs in a GPR wavelet as it propagates 

through a homogeneous material can often be well described using a single parameter, Q*. 

Assuming that all subsurface materials can be characterized by some Q* value, Chapter 4 

presents a technique for the estimation of wavelet dispersion in GPR data based on a method 

developed for seismic attenuation tomography. Chapter 5 then introduces a technique for 

removing the estimated wavelet dispersion known as inverse Q filtering. Finally, in Chapter 6 

of this thesis, we present the application of these methods to a field GPR data set collected 

near Langley, British Columbia. 
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2 Electromagnetic Theory 

In order for us to understand and correct for wavelet dispersion in GPR data, it is first 

necessary to review some basic concepts in electromagnetic theory. This chapter begins 

by deriving the EM wave equations from Maxwell's equations and three constitutive 

relationships. From the plane wave solutions to the wave equations, we will then develop 

expressions for the propagation parameters that control wavelet dispersion: attenuation and 

velocity. Reflection and transmission coefficients will also be discussed. Finally, we will 

consider the complex and frequency-dependent nature of material properties, and introduce 

some effective parameters. 

2.1 Maxwell 's Equations 

We begin our review of the necessary EM theory with Maxwell's equations, which describe 

the macroscopic behaviour of the electric and magnetic fields in terms of their sources. For 

an excellent treatment of classical electrodynamics leading to the derivation and study of 

Maxwell's equations, see Griffiths (1981). The four equations are: 

V - E = - (2.1) 

V B = 0 (2.2) 

V x E = - f (2.3) 

V x B = / i 0 J + Moe0-^ (2.4) 

where E and B are the electric and magnetic field vectors, respectively, p is the volume charge 

density, J is the current density vector, and e0 and /J0 are the dielectric permittivity and 

magnetic permeability of free space, respectively. The first equation (2.1) is the differential 

form of Gauss's law, which states that the total flux of the electric field through any closed 
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surface is equal to the charge enclosed within that surface divided by CQ. Maxwell's second 

equation (2.2) states that the divergence of the magnetic field is always zero, or equivalently, 

that the total flux of the magnetic field through any closed surface must always be zero. This 

implies that, unlike with electric fields, there exist no stationary sources of magnetic fields; 

that is, "magnetic charges" do not exist. Maxwell's third equation (2.3) is the differential 

form of Faraday's law, which asserts that the electromotive force induced in a closed loop 

is equal to the negative time rate of change of magnetic flux through the loop. Finally, the 

fourth equation (2.4) is Ampere's law with a correction term added by Maxwell. It states that 

the magnetic field around a closed loop is dependent on both the current passing through 

the loop and the time rate of change of electric flux through the loop. It is important 

to note that, whereas (2.1) and (2.2) discuss the electric and magnetic fields separately, 

(2.3) and (2.4) show how they are fundamentally interdependent; a changing magnetic field 

induces an electric field, and vice versa. 

Since GPR involves the passage of EM waves through materials that are subject to charge 

separation in the presence of an electric field and slight magnetization in a magnetic field 

(induced electric and magnetic polarization, respectively), it is more convenient for us to 

work with the following versions of Maxwell's equations: 

V • D = P f 

V - B = 0 
dB 

V x E 

V x H = J c + 

dt 
dB 
dt 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

where D and H are the electric displacement and magnetic auxiliary fields, respectively, 

pf is the volume free charge density, and J c is the conduction or free current density. 
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D and H are defined as follows: 

D = e 0 E + P 

H = — B - M (2.10) 

(2.9) 

where P is the electric polarization of the material or its electric dipole moment per unit 

volume, and M is the magnetic polarization of the material or its magnetic dipole moment 

per unit volume. 

Although equations (2.5) through (2.8) are just as general as (2.1) through (2.4), they are 

better suited to our purposes because they deal only with free charge and current densities. 

Materials that undergo electric and magnetic polarization also contain bound charge and 

current densities, the contributions from which are implicitly contained within the p and J 

terms in (2.1) and (2.4). Generally, it is much easier to know about and control the free 

charge and current density terms p/ and J C than it is to deal with the free and bound 

quantities together. 

2.2 Constitutive Relationships 

In examining Maxwell's equations, note that they say nothing about material properties 

such as the electrical conductivity a, dielectric permittivity e, and magnetic permeability JJL. 

These parameters only take on meaning after three constitutive relationships have been 

introduced. Before this is done, however, we will make an assumption about linearity. 

In many materials, the amount of charge separation that occurs in the presence of an 

electric field is actually proportional to the field, provided that E is not too strong. Similarly, 

the amount of induced magnetization that occurs is often proportional to the magnetic field 

within a certain range. Materials that satisfy these relationships are called linear media. 
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Following convention, the relationships are given by: 

P = eoXeE (2.11) 

M = — . Xm • B (2.12) 
A«o (Xm + 1) 

where Xe and Xm are constants called the electric susceptibility and magnetic susceptibility, 
respectively. In GPR, it is generally assumed that we deal with weak enough electric and 
magnetic fields to allow us to be within the range of linear behaviour for most geological 
materials (Powers, 1995; Knoll, 1996; Olhoeft, 1998). 

We can now introduce the three constitutive relationships as follows: 

J C = CTE (2.13) 

D = eE (2.14) 

B = pH (2.15) 

where 

e = e 0(l + Xe) (2.16) 

fi = fio(l + Xm) (2.17) 

The first relationship is Ohm's law, which asserts that the conduction or free current density 
is proportional to the electric field through the conductivity. From this we see that the 
conductivity measures the ease with which free charges flow through a material. The second 
relationship above was obtained by substituting (2.11) into (2.9). It states that the displace­
ment field is proportional to the electric field through the dielectric permittivity, which is 
defined as the measure of a material's ability to support charge separation. Similarly, the 
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third constitutive relationship was obtained by substituting (2.12) into (2.10). It states that 

the magnetic field is proportional to the auxiliary field through the magnetic permeability, 

which measures a material's ability to support induced magnetization. The three parameters 

cr, e, and fj, are called the constitutive parameters. We will see shortly that they control the 

nature of EM wave propagation within materials. 

Note that when the electric and magnetic susceptibilities of a material are zero, its 

dielectric permittivity and magnetic permeability parameters become those of free space. It 

should also be noted that the dielectric permittivity and magnetic permeability of a material 

are usually expressed relative to their free space values as follows: 

e r = - (2.18) 

lir = ± (2-19) 

where er and \xT are the relative parameters. The relative permittivity er is also commonly 

referred to as the dielectric constant, denoted by K. 

In general, the constitutive parameters a, e, and /J, are not real, constant values. They 

are complex, tensor quantities that vary with frequency and position within a medium. To 

simplify things, however, we will make two assumptions in this study. The first is that, in 

GPR, we are dealing with subsurface materials that are homogeneous at the measurement 

scale. In other words, we will assume that the wavelengths we are using to probe the 

ground are big enough to effectively "see" subsurface geological materials as homogeneous. 

This means that our constitutive parameters within a medium no longer vary with position. 

The second assumption that we will make is that the subsurface materials we deal with in 

GPR are isotropic; that is, that their electromagnetic properties do not vary with direction. 

When this is the case, the tensor nature of the quantities disappears. We are thus left with 
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a, e, and [i being complex and frequency-dependent values. For the moment, however, we 

will ignore this and treat the constitutive parameters as real and constant. The lossy and 

dispersive nature of these quantities will be introduced and discussed in Section 2.6. 

2.3 Conduction and Displacement Currents 

Looking at Maxwell's fourth equation (2.8), note that the curl of the auxiliary field H is 

determined by the conduction current density J C and the time derivative of the electrical 

displacement dD/dt. Since the latter term has the same units as JC, it is also known as the 

displacement current density 3d. We thus have: 

V x H = J C + Jd (2.20) 

where, using constitutive relationships (2.13) and (2.14), we get: 

J C = crE (2.21) 

<9E 
J D = e— (2.22) 

The above shows that, whereas the conduction current density is proportional to the electric 

field through the conductivity, the displacement current density is proportional to the time 

derivative of the electric field through the dielectric permittivity. 

Physically, conduction currents are those that exist in the presence of an electric field 

due to the movement of free charges such as ions and electrons. These currents are energy 

dissipation mechanisms. In moving through a material, free charges generate heat as they 

collide with other molecules; this results in an irrecoverable loss of energy. Displacement 

currents, on the other hand, only exist in the presence of a changing electric field and have 

no true physical significance. Part of the term in (2.20) accounts for contributions to 
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the magnetic field that are generated directly by changes in the electric field. The rest 

accounts for contributions that are caused by the movement or adjustment of bound charges 

in response to a changing electric field (polarization currents). In contrast to conduction 

currents, displacement currents are energy storage mechanisms. Although work is done to 

move bound charges and to change the electric field, it is recoverable; the energy is stored 

in the material and in the field. 

The fundamental principle behind the use of GPR for high-resolution subsurface imaging 

is that the term must dominate the J C term in Maxwell's fourth equation. When this is 

the case, energy storage mechanisms dominate over energy loss mechanisms, and EM wave 

propagation can occur. When the J C term is dominant in (2.20), on the other hand, energy 

loss mechanisms prevail and the result is wave diffusion. 

2.4 E M Wave Propagation 

As discussed previously, Maxwell's third and fourth equations tell us that time-varying 

magnetic fields produce electric fields, and that time-varying electric fields generate magnetic 

fields. This physical coupling between E and B has very far-reaching conclusions; in fact, it 

predicts the existence of electromagnetic waves. When we change the electric field at some 

point, for example, this produces a change in the magnetic field through the displacement 

current term in Maxwell's fourth equation. This change in the magnetic field then in turn 

generates a change in the electric field through Faraday's law, and the process repeats. In 

this way, energy can move through a material (or free space) as an EM wave by repeatedly 

changing form between the electric and magnetic fields. We will now show mathematically, 

from Maxwell's equations, that the electric and magnetic fields behave as waves. 

Substituting constitutive relations (2.13) to (2.15) into Maxwell's equations (2.5) to (2.8), 

and assuming that there is no net free charge density in our medium, we obtain the 
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following: 

V - E = 0 (2.23) 

V • B = 0 (2.24) 

(9B 

V x E = - — (2.25) 

dE 
V x B = iioE + pe— (2.26) 

C/ V 

Taking the curl of the last two equations above, and making use of the identity 

V x V x A = V(V • A) - V 2 A (2.27) 

yields 

V(V • E) - V 2 E = -ix jt [oE + e^j (2.28) 

V(V • B) - V 2 B = (aB + e ^ ) (2.29) 

Equations (2.23) and (2.24) can now be used to simplify (2.28) and (2.29). We get: 

These are the vector wave equations for the electric and magnetic fields. 

There are an infinite number of solutions for E and B that satisfy (2.30) and (2.31) above. 

One solution, of course, is the rather complicated waveform that propagates through the 

subsurface in GPR. Fortunately, Fourier theory allows us to decompose any waveform that 

satisfies these equations into a linear combination of sinusoidal waves of various frequencies. 
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Therefore, by studying the propagation of simple sinusoidal waves, we can learn about the 

propagation of more complicated waveforms, such as the GPR wavelet, in terms of their 

frequency components. We will thus begin by studying the propagation of monochromatic, 

EM plane waves. In complex notation, the solutions to (2.30) and (2.31) for linearly polarized 

plane waves traveling in the z-direction are: 

where E and B are the complex electric and magnetic field vectors as a function of position 

and time, E 0 and B 0 are the complex amplitudes containing the wave polarization and phase, 

u> is the angular frequency, and k is the wavenumber. The physical electric and magnetic 

fields E and B can be found simply by taking the real parts of (2.32) and (2.33). 

Substituting the solutions above into their respective wave equations, we arrive at: 

E(z, t) = E0ei{ut-kz) 

B(z,t) = B 0 e i { u t - k z ) 

(2.32) 

(2.33) 

k2 = ixeuJ1 — ifiau (2.34) 

Taking the square root of this yields the following expression for k: 

k — ft — ia (2.35) 

where 

(2.36) 

(2.37) 
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Evidently, the wavenumber is a complex quantity that depends on the frequency of the waves 

and the constitutive parameters of the medium through which they travel. We will now use 

this expression for k to determine some important propagation parameters. 

Substituting (2.35) back into the plane wave solutions (2.32) and (2.33), we obtain: 

E(z,t) = E 0 e - a V ( < l r t - / J * ) (2.38) 

B(z,t) = B0e-azei^t~^ (2.39) 

This shows that the imaginary part of the wavenumber is responsible for an exponential 

decrease in the amplitude of the plane waves as they propagate. For this reason, a is called 

the attenuation. The real part of the wavenumber fl, on the other hand, can be seen to 

represent the spatial frequency of the waves. It is usually referred to as the phase parameter. 

The skin depth of the waves, defined as the distance to which they can travel within the 

medium before they are attenuated to 1/e of their original amplitude, is easily determined 

from a using: 

6=- (2.40) 
a 

Similarly, the velocity v and wavelength A of the waves are obtained from ft as follows: 

v = ^ (2.41) 

A = ^ (2.42) 

In GPR, we are usually dealing with high enough frequencies and materials having low 

enough conductivities such that the low-loss condition a/cue < 1 is satisfied. This can be 

shown to correspond to the case where displacement currents (energy storage mechanisms) 
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dominate over conduction currents (energy loss mechanisms) (Annan, 1992). When this 

relationship is valid, a binomial expansion of the inner square root term in (2.36) and (2.37) 

can be used to significantly simplify the propagation parameters above (Balanis, 1989). 

In particular, the expressions for the attenuation and velocity simplify to: 

(2.43) 

v ~ —— (2.44) 

It is important to note that these simplified expressions are not explicitly dependent upon 

frequency. However, we have already stated that a is very frequency-dependent in GPR 

(this is the main cause of wavelet dispersion). Clearly, this frequency-dependence must be 

largely due to the complex and frequency-dependent nature of the parameters cr, e, and \i. 

It should also be noted that the behaviours of the attenuation and velocity parameters 

with frequency are related through the Hilbert transform (Aki & Richards, 1980): 

~ = — + n 

where Voo is the limit of v(u) as u —> oo, and % denotes the Hilbert transform operator. This 

equation is simply a statement of the Kramers-Kronig dispersion relations between the real 

and imaginary parts of a medium's index of refraction, and can be derived solely from the 

condition of causality without recourse to a specific wave equation. Knowing the attenuation 

behaviour of a medium, it allows us to calculate the velocity dispersion, and vice versa. 

2.5 Reflection and Transmission Coefficients 

When an EM wave encounters an interface between two materials having different electric or 

magnetic properties, a portion of the wave is reflected and the other portion is transmitted. 

a(to) 
(2.45) 
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The ratio of the complex amplitude of the reflected wave to that of the incident wave is called 

the reflection coefficient for the interface. Similarly, the ratio of the complex amplitude of 

the transmitted wave to that of the incident wave is called the transmission coefficient for 

the interface. We thus have: 

* = | (2.46) 

T = § (2.47) 

No­

where R and T are the reflection and transmission coefficients, respectively. Note that these 

parameters are defined in terms of the amplitudes of the electric, not the magnetic, field. 

In general, solving for R and T for a particular interface is very complicated; their 

values depend on the geometry of the interface, the polarization, frequency, and angle of the 

incident wave, and the electric and magnetic properties of the two materials comprising the 

interface (Powers, 1995). This procedure can be simplified, however, if we make a few key 

assumptions. Assuming that (i) we are dealing with an interface that is smooth and planar 

at the wavelength scale, (ii) the incident wave is planar, uniform, and linearly polarized, 

and (iii) the incident wave's electric field is polarized perpendicular to the plane of incidence 

(referred to as T E mode), then R and T for the interface are given by: 

R _ iMth cos Bj - Hi y7k-i - kx

2 sin2 Q{ ^ 

fi2ki cos di + p,\ y/k2

2 — k2 sin2 d{ 

2^kx cos 9i 

fi2ki cos 6i + ii\ \Jk2

2 — k\ sin2 Q{ 

where Q{ is the angle of incidence measured from the interface normal, and the subscripts 

1 and 2 denote the materials on either side of the interface containing the incident and 

transmitted waves, respectively. 
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Equations (2.48) and (2.49) are known as the Fresnel equations, and can be rather 

lengthily derived from the boundary conditions for the electric and magnetic fields 

(e.g., Stratton, 1941; Griffiths, 1981). For normal incidence (t9j = 0), they simplify to: 

R = ^ ~ Mlf2 (2.50) 

T = , 2 M l , (2.51) 

The Fresnel equations demonstrate that any contrast in either a, e, or ii across an interface 

will generate a reflected wave (R ^ 0). Since the wavenumber A; is a complex quantity, they 

also show that the reflection and transmission coefficients for EM waves are actually complex; 

that is, R and T describe not only the relative amplitudes of the reflected and transmitted 

waves, but also any phase changes (other than 180°) that might occur upon reflection or 

transmission. Finally, it should be noted that R and T are, in general, frequency-dependent 

quantities. This means that each frequency component of a wavelet incident on an interface 

will be reflected and transmitted with a different amplitude and phase shift. The significance 

of this observation will be discussed in Sections 4.2 and 4.3. 

2.6 Complex and Effective Parameters 

So far, we have treated the constitutive parameters a, e, and \i as real, constant values. 

However, in the context of EM waves, these parameters are actually dispersive; that is, they 

are frequency-dependent and complex. Following convention, we thus have: 

<T(W) = a'(u) + io"(u) (2.52) 

e(w) = e'{co) - ie"(u) (2.53) 

= - in"(u) (2.54) 
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The dispersive nature of the conductivity can be briefly explained as follows. When we 

are dealing with low frequency EM waves and thus slowly varying electric fields in materials, 

inertial effects on free charges can essentially be ignored, and the conduction current density 

varies in phase with the electric field. At very high frequencies, however, these inertial effects 

can become significant and J c can actually lag in phase behind E . To account for this in 

Ohm's law, we must introduce a complex and frequency-dependent conductivity. 

In a similar fashion, we can also explain the dispersive nature of the dielectric permittivity. 

In materials, there exist many types of bound charges that contribute to the net polarization 

P in the presence of an electric field by shifting or rotating in response to the field. At low 

frequencies, all of the bound charge movements that contribute to the polarization occur 

in phase with the oscillating electric field, and thus P varies in phase with E . At higher 

frequencies, however, certain polarization mechanisms can start to lag behind the electric 

field and cause P to become out of phase with E . To account for this phenomenon, we must 

introduce a complex and frequency-dependent electric susceptibility, and thus a complex and 

frequency-dependent dielectric permittivity. 

Lastly, the dispersive nature of the magnetic permeability can be explained in the very 

same manner as the permittivity above, except that in this case we are dealing with the 

alignment of bound currents and a phase lag that can occur between the total magnetization 

M and the magnetic field B. It should be noted that the mechanisms by which J c , P and 

M lag behind the driving E and B fields are termed relaxation processes. For an excellent 

set of physical analogues that help to describe the relaxation processes mentioned above, the 

reader is referred to Griffiths (1981) and Balanis (1989). 

In general, it is a rather tedious process to accommodate the dispersive nature of all 

three constitutive parameters into the equations that we derived for EM wave propagation 

in Section 2.4. However, in GPR, we can make two important assumptions that simplify 

this procedure considerably. First, we can assume that conductivity relaxation is negligible 
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at GPR frequencies, and thus that the conductivity is simply equal to its value at zero 

frequency adc (Keller, 1987; Olhoeft k Capron, 1994; Xu & McMechan, 1997). Secondly, 

we can assume in GPR that the effects of magnetic relaxation are also negligible, and that 

the magnetic permeability for subsurface materials is just equal to its free space value Ho 

(Topp et al, 1980; Turner & Siggins, 1994; Hollender & Tillard, 1998). Although it has 

been shown that this second assumption is not valid for materials containing large amounts 

of ferromagnetic substances such as iron, cobalt, and nickel (Olhoeft k. Capron, 1994), large 

quantities of these materials (which are highly conductive) are not likely to be found in 

the resistive environments suitable for EM wave propagation and thus GPR. We can now 

incorporate the complex and frequency-dependent nature of the dielectric permittivity into 

our existing framework for EM wave propagation as follows. 

Expressing the conduction and displacement current density terms in Maxwell's fourth 

equation (2.20) in terms of the electric field and our constitutive parameters, we have the 

following: 

V x H = crE + e— (2.55) 

Acknowledging the dispersive nature of the permittivity, our assumptions that a — adc and 

H = Ho, and also the fact that we are dealing with time-harmonic electric fields such as those 

described by the plane wave solution (2.32), we get: 

V x H = adcE + [e'(u)-e"(ij)]{iuB) 

= [ a d c W V ) ] E + e'(u;)^ (2-56) 

This shows that the imaginary or out-of-phase component of the dielectric permittivity 

contributes to energy loss through the conduction current density. For this reason, we can 
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treat e"(uj) as a conductivity term and thus define an effective conductivity and dielectric 
permittivity as follows: 

V x H = aef(u) E + eef(u) ^ (2.57) 

where 

aef(co) = adc + coe"(co) (2.58) 

ee/(w) = e'(u) (2.59) 

Incorporating the complex and frequency-dependent nature of the permittivity into our 
existing framework for EM wave propagation is now straightforward. Any a and e terms in 
Section 2.4 should be replaced with the real, effective parameters above. 

The real and imaginary parts of the dielectric permittivity are not independent quantities. 
In fact, like the attenuation and velocity parameters, causality dictates that they be closely 
related through the Hilbert transform, once again satisfying the Kramers-Kronig dispersion 
relations (Jonscher, 1977; Bano, 1996): 

c ' M - C o o = ri[-e"(cj)} (2.60) 

e » = W ^ M - C o o ] (2.61) 

where denotes the high frequency limiting value of the real part of the permittivity. 
Also, a parameter commonly seen in the GPR literature is the loss tangent, which can 

now be defined as: 

tmS=^L (2.62) 
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In order for GPR to serve as an effective tool for high-resolution subsurface imaging, the 

loss tangent must be less than 1. As mentioned previously, this corresponds to the case 

where displacement currents (energy storage mechanisms) dominate over conduction currents 

(energy loss mechanisms). 

Finally, it should be noted that, because we can generally ignore the complex and 

frequency-dependent nature of both the conductivity and magnetic permeability at GPR 

frequencies, the strong frequency dependence exhibited by the attenuation, and thus wavelet 

dispersion in GPR data, must largely result from the complex and frequency-dependent 

nature of the dielectric permittivity. This will be explored further in Chapter 3. 
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3 Rock Physics 

In the last chapter, we concluded that wavelet dispersion in GPR data is largely a result of the 

complex and frequency-dependent nature of the dielectric permittivity. This chapter begins 

by discussing some of the specific reasons for dielectric dispersion in geological materials at 

GPR frequencies. Then, two empirical models for fitting complex permittivity measurements 

will be discussed. Using laboratory data from different studies fitted with these two models, 

we will then demonstrate that the distortion that occurs in a GPR pulse as it travels through 

a homogeneous material can often be quantified using one parameter. 

3.1 Reasons for Dielectric Dispersion at G P R Frequencies 

In geological materials, many different polarization mechanisms contribute to the complex 

and frequency-dependent nature of the dielectric permittivity. However, in the GPR fre­

quency range from 10 to 1000 MHz, only two of these mechanisms are commonly cited 

as being important; these are interfacial polarization and the dipolar polarization of water 

molecules (Olhoeft & Capron, 1994; Powers, 1995). 

Interfacial polarization processes, otherwise known as Maxwell-Wagner mechanisms 

(Maxwell, 1891; Wagner, 1914), become possible when two materials having different conduc­

tivities are combined. When such a composite is in the presence of an electric field, charged 

particles move easily through the more conductive material, but they become impeded and 

accumulate at boundaries with the more resistive medium. Consequently, such substances 

can undergo much higher degrees of polarization than their individual constituents. Indeed, 

"anomalously" high values for the measured dielectric permittivity at low frequencies are 

well known in rock physics research (Sen, 1981). As an example, consider the case of a 

resistive rock matrix saturated with a conductive pore fluid such as brine. When this rock is 

subjected to an electric field, ions in the pore fluid begin to move, but many are prevented 
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from moving freely throughout the rock because of the geometry of the pore space. As a 

result, numerous ions become trapped at various locations within the rock and contribute to 

its polarization. This interfacial polarization mechanism resulting from ionic conductivity 

has been shown to be an important contributor to dielectric dispersion at GPR frequencies 

(Kenyon, 1984; Garrouch & Sharma, 1994). Other examples of interfacial processes that 

contribute to dielectric dispersion in the GPR frequency range are electrochemical double 

layer polarization, which occurs in moist, clay-bearing materials (Olhoeft & Capron, 1994), 

and surface effects seen in fully and partially-saturated sandstones whereby the presence of 

a thin, conductive surface layer coating the pore space has a large impact on the dielectric 

response (Knight & Nur, 1987). Note that, in order for the above mechanisms to contribute 

to dielectric dispersion at GPR frequencies, we must have relaxation; that is, the polarization 

processes must become unable to keep up with the oscillating electric field. It appears as if 

interfacial mechanisms relax at the low end of the GPR frequency range (Sherman, 1988). 

Olhoeft (1994) notes that frequency dependence due to interfacial polarization should only 

occur below 300 MHz. 

The relaxation of dipolar polarization is also commonly cited as an important contributor 

to dielectric dispersion at GPR frequencies (Hoekstra & Delaney, 1974; Carcione, 1996; 

Davis & Annan, 1989). This type of polarization occurs because water molecules, which 

are dipolar species, tend to undergo a common rotational alignment in the presence of an 

electric field. Most dipolar relaxation occurs from 1 to 100 GHz (Sherman, 1988), which 

is outside the GPR range, and thus most of the dielectric dispersion resulting from this 

mechanism occurs within this band. However, there is still enough dipolar relaxation from 

100 to 1000 MHz to cause a significant variation in the attenuation with frequency over the 

GPR range. Figure 3.1 shows the dielectric permittivity, effective conductivity, and plane 

wave attenuation parameter versus frequency for pure water at 10 °C. Note that, although 

the real and imaginary parts of the permittivity change very little with frequency in the 
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Figure 3.1: Dipolar relaxation of pure water at 10 °C calculated using data from 
Hasted (1973). Relaxation mechanisms at higher frequencies have been ignored. The 
relative dielectric permittivity, effective conductivity, and attenuation are shown on 
a linear scale in the GPR frequency range. 

GPR range, just the presence of an imaginary part in this range due to water relaxation 

causes the effective conductivity to vary quite significantly with frequency above 100 MHz 

(this is clearly shown in the expression for the effective conductivity, aef = adc + toe"). 

As a result, the attenuation for pure water is extremely frequency-dependent in the upper 

part of the GPR band. 
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Ground penetrating radar operates in a frequency range that is generally between the 

peaks of the interfacial and dipolar relaxation processes; the interfacial relaxation peak 

occurs at lower frequencies, whereas the dipolar peak occurs at higher frequencies. As 

a result, there is a region in the GPR frequency band between these two very dispersive, 

high-loss zones where the real and imaginary parts of the dielectric permittivity for geological 

materials exhibit very little variation with frequency (Olhoeft & Capron, 1994; Powers, 1995). 

This region is known as the high frequency window for electromagnetic wave propagation 

(Olhoeft, 1984). However, as shown above, just the presence of an imaginary component to 

the permittivity in this region is enough to cause the attenuation to be strongly dependent 

upon frequency. Therefore, it can be concluded that it is more the complex, rather than 

the frequency-dependent, nature of the dielectric permittivity that is the cause of wavelet 

dispersion in GPR. 

Finally, it should be noted that all of the polarization mechanisms mentioned here rely on 

the presence of water in subsurface materials. Indeed, most dry geological materials exhibit 

little dielectric dispersion at GPR frequencies (Hoekstra Sz Delaney, 1974; Sherman, 1988; 

Olhoeft & Capron, 1994). In reality, however, we are almost always dealing with materials 

containing some water in GPR, so dielectric dispersion (and therefore wavelet distortion 

during propagation) is usually present. 

3.2 Models for Fi t t ing e(u) 

In order to conveniently describe the behaviour of the dielectric permittivity with frequency 

for various materials, researchers fit their laboratory measurements using a number of 

different empirical models. Two of the most commonly used and successful models in rock 

physics research are the Cole-Cole formula (Cole & Cole, 1941) and the power law model 

(Jonscher, 1977). The Cole-Cole formula is a generalization of the Debye relaxation equation 
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(Debye, 1945), which describes the complex dielectric permittivity for a system containing 

a single polarization mechanism. The Debye equation states the following: 

e » - z e » = £ o o + (3.1) 
1 + VJJT 

where e'(w) and e"(co) are the real and imaginary parts of the permittivity, respectively, 

Coo and es are the high and low frequency limiting values of the real part, ui is the angular 

frequency in radians, and r is a relaxation time constant for the system. Balanis (1989) 

derives this equation using a mechanical analogy for electric polarization consisting of a 

mass-spring-friction assemblage subject to an oscillating force field. In fact, the Debye 

equation applies to any physical system classified as an overdamped harmonic oscillator. 

A typical Debye response for the dielectric permittivity was seen in Figure 3.1, where we 

examined the dipolar relaxation of pure water. At low frequencies, the polarization varies in 

phase with the electric field, and thus there is no imaginary component to the permittivity. 

As frequencies increase, however, the polarization begins to lag in phase behind the field 

(relaxation begins), and the permittivity becomes complex. At some point, the imaginary 

component of the permittivity reaches a maximum value, which corresponds to the maximum 

amount of energy being lost from the system per cycle. The frequency at which this occurs 

is called the relaxation frequency. Eventually, at very high frequencies, the electric field 

oscillates far too rapidly for the polarization mechanism to operate at all. When this is the 

case, the real and imaginary contributions from the mechanism become zero. 

The Debye equation can be used to adequately describe the relaxation of any of the 

individual polarization mechanisms that were discussed in the last section (Carcione, 1996). 

In geological materials, however, more than one type of polarization process occurs and 

contributes to the measured permittivity. To account for this, we could sum over a number 

of Debye expressions having different relaxation time constants (Xu & McMechan, 1997), 
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but fitting experimental data to a function of this form requires far too many parameters. 

Instead, the empirical Cole-Cole formula accounts for the effects of numerous polarization 

mechanisms through the addition of a distribution term over the time constants in the Debye 

equation (Cole k, Cole, 1941). That is, 

£ < M + T ^ - j ^ (3.2) 

where a is the time constant distribution parameter that varies between 0 and 1. 

The Cole-Cole formula has been used with great success in the GPR frequency range to 

fit dielectric permittivity measurements on geological materials within experimental errors 

(Taherian et al, 1990; Olhoeft & Capron, 1993). It can be seen that only four fitting 

parameters are required: ê , es, r, and a. Also note that the Cole-Cole formula is a 

generalization of the Debye equation; when a = 1, the two expressions are the same. 

Another commonly used and successful model for fitting permittivity measurements 

versus frequency is the power law model. This empirical model stems from the work of 

Jonscher (1977), who noticed that the post-relaxation-peak behaviour of the imaginary 

component of the permittivity for most solid dielectrics can be described by the following 

power law relationship: 

e"(to) oc a / 1 - 1 where n < 1 (3.3) 

Jonscher also noted that, in many cases, n ~ 1; that is, the imaginary or lossy part of the 

permittivity is often very flat over a wide range of frequencies. An interesting property of 

(3.3) is that the Hilbert transform of such a power law function also has the same dependence 

upon frequency. Since, as discussed earlier, the real and imaginary parts of the dielectric 

permittivity are related through the Hilbert transform (see equations (2.60) and (2.61)), 
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this led Jonscher to conclude that: 

e'(u) - oc un~l (3.4) 

In other words, away from a relaxation peak, the real and imaginary parts of the permittivity 

should have the same power law dependence upon frequency. Jonscher called this behaviour 

the "universal" dielectric response. Furthermore, he showed that the ratio between the real 

and imaginary parts is related to the exponent n as follows: 

„ , '— = cot — 3.5 

Jonscher's results have been used in many different ways to fit dielectric permittivity 

measurements versus frequency. A particularly useful power law model that has been very 

successful in fitting data in the GPR frequency range is derived from the above equations 

by Hollender and Tillard (1998). They note that if we define 

eref — e'(u>) — C Q Q when u = uiref (3.6) 

where ujrej is an arbitrary reference frequency, then the constant of proportionality in (3.4) 

can be determined, and the relationship becomes: 

e'(w) - Coo = <W ( ) (3.7) 
\Wref/ 

Combining this with (3.5), the complex dielectric permittivity can now be expressed as: 

UJ 
n-l 

CJ, ref, 
e'(u;) - = eref [ — ) 1 - cot (̂ — ) I + eoo (3.8) 
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Hollender and Tillard call this formulation the Jonscher parameterization. It requires only 

three fitting parameters: ere/, n, and ê . 

The Cole-Cole and power law models have both been shown to fit permittivity data in 

the GPR frequency range with a high degree of accuracy (Taherian et al, 1990). This is very 

interesting, considering that the forms of equations (3.2) and (3.8) are so markedly different. 

Knight and Nur (1987) explain this phenomenon by noting that, away from the relaxation 

frequency, the Cole-Cole formula reduces to an expression showing a power law dependence 

upon frequency of both e'(u) and e"(to). Since, as mentioned previously, the GPR frequency 

range tends to lie between the relaxation peaks of the interfacial and dipolar polarization 

mechanisms, it therefore makes sense that permittivity measurements in this range should 

be fitted well with either model. 

3.3 Laboratory Measurements 

In order to estimate and correct for wavelet dispersion in GPR data, we must first learn 

from laboratory measurements how the wave propagation parameters that control wavelet 

dispersion behave with frequency in geological materials. As mentioned previously, these 

parameters are the attenuation and the velocity. Figures 3.2 and 3.3 show laboratory 

measurements by Turner and Siggins (1994) of attenuation versus frequency for a wide 

variety of sands and rocks in the GPR frequency range. The parameter Q* on the plots will 

be discussed in Section 3.4. Note that, although there is a wide variation in the behaviour of 

the attenuation between materials, the attenuation is generally very frequency-dependent. 

This confirms our previous statement that wavelet dispersion is a common and significant 

problem in GPR data. More important, however, is the nature of the attenuation-frequency 

relationship shown on these plots. Present commercial GPR systems radiate wavelets with a 

bandwidth of approximately two octaves (Hollender & Tillard, 1998). Over any two octave 
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Figure 3.3: Attenuation properties of a variety of rocks as a function of frequency. 
From Turner and Siggins (1994). 
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range, Figures 3.2 and 3.3 show that the attenuation for many geological materials can be 

approximated by a linear function of frequency. Noting that velocity dispersion can be calcu­

lated from the attenuation behaviour using the Hilbert transform relationship (2.45), Turner 

and Siggins make an important conclusion from this result. They suggest that the change 

in shape that occurs in a radar pulse as it propagates through a homogeneous material can 

often be well described using one parameter. This parameter is related to the slope of the 

material's attenuation versus frequency curve over the bandwidth of the pulse. 

To investigate this further, the attenuation and velocity parameters have been calculated 

using equations (2.36), (2.37), and (2.41) for an additional number of geological materials 

whose dielectric properties have been measured in the GPR frequency range. Note that the 

effective parameters given by (2.58) and (2.59) were used for the calculations. Unfortunately, 

due to a significant lack of published data at GPR frequencies, the choice of materials was 

quite limited. Figure 3.4 shows the attenuation and velocity versus frequency for a collection 

of soils and rocks whose permittivity measurements have been fitted using the Cole-Cole 

formula. Figure 3.5 shows these parameters for a variety of rocks whose permittivities have 

been fitted using the Jonscher parameterization (Hollender & Tillard, 1998). Both figures 

are very informative. Indeed, over most two octave frequency ranges, it can again be seen 

that the attenuation is generally very frequency-dependent, and that this dependence can 

be approximated by a linear relationship. Thus, in accordance with Turner and Siggins, 

it seems reasonable that we should be able to describe using one parameter the change 

in shape that occurs in a GPR wavelet as it propagates through a homogeneous material. 

Figures 3.4 and 3.5 also show that the velocity for many geological materials is approximately 

constant (increasing very slowly with frequency) over typical wavelet bandwidths. This 

suggests that the change in wavelet shape due to velocity dispersion alone will often be 

minimal in GPR. 
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Figure 3.4: Attenuation and velocity calculated as a function of frequency for a variety 
of geological materials whose dielectric permittivities have been fitted using the Cole-
Cole formula. (1) sandy soil (natural state), (2) sandy soil (saturated) (Olhoeft & 
Capron, 1993); (3) clay soil (dry), (4) clay soil (30.18 wt% water) (Olhoeft & Capron, 
1994); (5) and (6) limestone saturated with brine, (7) and (8) sandstone saturated 
with brine (Taherian et al., 1990). 
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Figure 3.5: Attenuation and velocity calculated as a function of frequency for a variety 
of rocks whose dielectric permittivities have been fitted using the Jonscher parameteri­
zation (Hollender & Tillard, 1998). (1) limestone (freshwater saturated) (Coutanceau, 
1989); (2) andesite, (3) shale, (4) gabbro, (5) siltstone (Turner, 1993); (6) granite 
(freshwater saturated), (7) granite (dry), (8) schist (measured perpendicular to the 
schistocity) (Tillard, 1994). 
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3.4 Q and Q * Parameters 

The quality factor, Q, is a measure of the maximum energy stored to the energy dissipated 

per cycle in a propagating wave. Q is given by the relation (Stacey et al, 1975): 

co 

where co is the angular frequency, v is the velocity, and a is the attenuation. In seismic 

studies, Q has been found to be largely frequency-independent over a wide frequency range 

(Strick, 1967; Stacey et al., 1975; Kjartansson, 1979). This is known as "constant Q", and 

it results because seismic wave attenuation is nearly linear with frequency and velocity 

dispersion is minimal over a broad bandwidth for many materials. Consequently, seismic Q 

is sometimes expressed as (Turner & Siggins, 1994; Quan & Harris, 1997): 

« = s b ( 3- 1 0 ) 

where VQ is the approximately constant value for the velocity, and s is the slope of a best-fit 

line through the attenuation-frequency curve, constrained to extrapolate through the origin. 

Q is a well known parameter in seismic studies. When combined with (2.45), the Hilbert 

transform causality relationship, it completely describes the change in shape of a seismic pulse 

as it propagates through a material. Values for seismic Q tend to lie between 50 and 300 

(Sheriff, 1984), a lower value representing greater wavelet distortion during propagation. 

For electromagnetic waves, Q is closely related to the loss tangent, given by (2.62). This 

is most easily shown using equations (2.43) and (2.44), the low-loss approximations for the 

attenuation and velocity parameters, respectively. From these we have: 

wtan<5 
a  = -^r  ( 3-n )  
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and thus Q can be defined as (von Hippel, 1962): 

Q = 
l (3.12) 

tan S 

Unfortunately, constant Q has no real significance in GPR. A number of studies have shown 

that the loss tangent, and thus Q, are rarely constant over the bandwidth of a GPR wavelet, 

let alone over a wide frequency range like we have in seismology (Xu k, McMechan, 1997; 

Hollender & Tillard, 1998). The reason for this lies in the nature of the attenuation-

frequency relationship in GPR. Although we have shown that, over the bandwidth of a 

GPR wavelet, attenuation is roughly linear with frequency and velocity dispersion is small, 

the line approximating the attenuation in GPR seldom passes directly through the origin 

(see Figures 3.4 and 3.5). According to (3.9), this is necessary for constant Q. It should be 

noted that Bano (1996) derives a constant Q relationship for GPR from the power law work 

of Jonscher (1977). However, in order to do this, he neglects the important contribution 

to the dielectric permittivity, and also the zero frequency conductivity o^. 

In order to describe the change in shape of a GPR wavelet as it propagates through 

a homogeneous material using one parameter, and also to conveniently compare wavelet 

dispersion in GPR with that in seismology, Turner and Siggins (1994) define a new parameter, 

Q*. This parameter is obtained from the slope of a best-fit line through the material's 

attenuation-frequency curve over the bandwidth of the wavelet as follows: 

(3.13) 

In the frequency region of interest, the attenuation can now be expressed as: 

(3.14) 
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where a0 is the intercept of the best-fit line at to = 0. Note that Q* is a generalization of 

the Q parameter; when ao = 0, Q* = Q. 

Although Q* has no significance in terms of energy like Q, Turner and Siggins show that 

the change in shape of a pulse described by a particular value of Q* is the same as that 

described by the same value of Q. The only difference between a constant Q* and a constant 

Q response is in the total amplitude. Therefore, we can compare Q* directly with Q to 

evaluate wavelet dispersion. Using their laboratory results, Turner and Siggins also suggest 

that values for Q* in GPR tend to lie between 2 and 30 (see Figures 3.2 and 3.3). This range 

is significantly lower than the range of values given for seismic waves, which indicates that 

wavelet dispersion is far more severe in GPR than in seismology. 

It is important to note that, in the above discussion, we have expressed both constant 

Q and Q* using the slope of an attenuation-frequency curve and a constant velocity. In 

doing this, we may have implied that these parameters completely describe wavelet distortion 

during propagation by assuming that velocity dispersion does not occur, and that attenuation 

is strictly linear with frequency. This is not the case, and is actually a violation of causality 

(Futterman, 1962; Aki & Richards, 1980). Although both Q and Q* can be determined from 

the slope of a best-fit line to an attenuation-frequency curve and a reference velocity, they 

describe a much more complex scenario whereby attenuation is nearly linear with frequency 

and velocity is nearly constant. This will be explored further in Chapter 5. 

Assuming that the attenuation and velocity behaviour of all subsurface materials can be 

characterized using some Q* value, our problem of estimating wavelet dispersion in GPR 

data now becomes one of determining Q* in the subsurface. Chapter 4 is devoted to the 

development of a method for estimating general values for subsurface Q* from GPR data. 

Chapter 5 focuses on the removal of wavelet dispersion from GPR data using a technique 

known as inverse Q filtering. 
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4 Estimation of Q* from G P R Data 

In the last chapter, we concluded that the change in shape that occurs in a GPR wavelet as it 

travels through a homogeneous material can often be well described using one parameter, Q*. 

This parameter is related to the slope of the material's attenuation-frequency curve over the 

wavelet's bandwidth. Assuming that all subsurface materials can be characterized in this 

manner, this chapter develops a possible means of estimating general values for Q* in the 

subsurface from GPR data. First, we will make some geometrical assumptions. Then, 

the effects of other mechanisms that can produce distortion in a GPR wavelet (aside from 

frequency-dependent attenuation and velocity) will be evaluated. Using these results, a 

convolution model for a GPR trace will be introduced. Finally, we will develop from this 

model a possible method for estimating Q* using the wavelet transform. 

4.1 Geometrical Assumptions 

In this chapter, we will make two important geometrical assumptions. First, we will assume 

that the traces that we record in GPR are effectively zero-offset (i.e., that the transmitter 

and receiver antennas can be considered to be coincident). This assumption is common 

in GPR research (e.g., Davis & Annan, 1989; Turner, 1994), and is especially valid at later 

times where wavelet dispersion is significant. This is because signals received at later times 

come from greater depths in the subsurface where the error in this geometrical approximation 

is negligible. In a 200 MHz GPR survey, for example, a commonly used antenna separation 

is 0.5 m (Annan, 1992). From personal experience, dispersion is rarely seen in 200 MHz data 

at times corresponding to depths above 4 m. At 4 m, the ratio of antenna separation to 

depth is 0.125, which is insignificant. Note that the assumption of zero-offset traces implies 

that all reflections reaching the receiver occur at normal incidence. This in turn implies that 

all reflected waves received have the same polarization as the incident wave. 
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The second geometrical assumption that we will make in this chapter is that we are 

dealing with linearly polarized, EM plane waves in GPR. In other words, we will assume that 

the propagating GPR wavelet can be expressed as a linear combination of monochromatic 

plane waves given by (2.32) and (2.33). This assumption is common to nearly all of GPR 

research. Away from the immediate vicinity of the transmitter antenna (in the radiating 

far-field region), it is well known that radar waves can be approximated by plane waves 

(Turner, 1994; Powers, 1995). Wavelet dispersion is significant only in reflections received 

from this region. Also, most GPR antennas are designed to create linearly polarized waves 

(Powers, 1995). 

Because the transmitter and receiver antennas are parallel in GPR data collection, the 

assumptions made above imply that the signal that we record in GPR represents the actual 

amplitude of the reflected electric wavefield, and not just the projection of this wavefield onto 

some direction. This is an important simplification that is necessary for the development 

of a convolution model. It allows us to ignore wave polarization and treat the electric field 

vector as a scalar quantity in terms of its amplitude. 

4.2 Scattering Attenuation 

The attenuation that we observe on a GPR trace is actually a result of two mechanisms. 

Intrinsic attenuation, which is the only mechanism that we have discussed so far, results 

as EM wave energy is absorbed by subsurface materials and converted into heat during 

propagation. It clearly involves energy loss. Scattering attenuation, on the other hand, 

occurs as a result of subsurface geometry. It does not involve a loss of energy, but merely 

consists of the redistribution of energy to later arrival times and other propagation directions. 

There are many types of scattering that contribute to scattering attenuation. These include 

geometrical spreading, volume scattering, reflection and transmission, scattering at rough 
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interfaces, and multipathing. Since our goal is to estimate and correct for wavelet dispersion 

in GPR data, we are interested only in those types of scattering that are frequency-dependent; 

that is, we want to know about, and evaluate the effects of, scattering mechanisms that can 

cause a change in wavelet shape and therefore corrupt our estimation of subsurface Q*. 

A number of different types of scattering and their effects on the GPR wavelet are briefly 

discussed below. 

Although we have noted that radar waves can be approximated by plane waves in the 

far-field region of the transmitter antenna, we cannot ignore the fact that a great deal 

of amplitude loss down a GPR trace is caused by geometrical spreading. This type of 

"scattering" occurs because the energy leaving the transmitter is actually spread over the 

area of an ever-expanding surface (the antenna radiation pattern) during propagation. 

In a constant velocity medium, the amplitude of a GPR wavelet decays roughly as 1/r 

due to geometrical spreading, where r is the distance traveled from the transmitter. In 

realistic subsurface situations where velocity changes with depth, this spreading relationship 

is much more complicated (Powers, 1995). Because the velocity of EM waves in the GPR 

range is slightly dependent upon frequency, geometrical spreading is also slightly frequency-

dependent, and can therefore, in theory, cause wavelet dispersion. In accordance with most 

GPR researchers, however, we will assume that this frequency dependence is negligible, and 

that geometrical spreading results in uniform amplitude losses during propagation. 

Volume scattering occurs when the wavelength of electromagnetic energy propagating 

through a material approaches the size of spatial heterogeneities within that material. When 

this is the case, energy is scattered randomly by the heterogeneities. Note that, in Section 2.2, 

we assumed that the wavelengths used in GPR are big enough to effectively "see" subsurface 

materials as homogeneous. Volume scattering results because this assumption is not entirely 

valid. Volume scattering causes a progressive decay in the amplitude of an EM wave as it 

propagates. More importantly, however, it is very frequency-dependent; high frequencies 
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are generally scattered much more than lower ones (Davis & Annan, 1989; Olhoeft, 1998). 

As a result, this scattering mechanism can potentially cause wavelet dispersion in GPR 

data identical to that caused by intrinsic attenuation. Fortunately, it appears as if the 

frequency-dependent effects of volume scattering are often negligible in the GPR range. 

Schaber et al. (1986) show that volume scattering only becomes significant at frequencies 

above 1 GHz for a dry sample of pebble channel alluvium (a very coarse material). Further, 

Olhoeft and Capron (1994) state that the intrinsic attenuation effects of only a few weight 

percent water within a material will usually dominate over the dispersive effects of volume 

scattering at GPR frequencies. For these reasons, we will assume that volume scattering has 

negligible frequency dependence in GPR. In the case where frequency-dependent attenuation 

due to volume scattering cannot be neglected, the general values for Q* that we estimate 

from our GPR data will include a contribution from this mechanism. 

Reflection and transmission of the GPR wavelet at subsurface interfaces make up another 

important contribution to scattering attenuation. Much of the decay in amplitude down a 

GPR trace is a result of transmission losses, which occur because signals reflected from deep 

interfaces encounter more transmission coefficients (and therefore more energy partitioning) 

along their path from transmitter to receiver than signals reflected from shallow interfaces. In 

addition to causing amplitude losses down a trace, reflection and transmission can also cause 

distortion of the GPR wavelet. As mentioned in Section 2.5, the reflection and transmission 

coefficients for EM waves are, in general, complex and frequency-dependent quantities. This 

means that each frequency component of an incident wavelet will be reflected and transmitted 

with a different amplitude and phase shift at an interface (i.e., the wavelet will undergo a 

change in shape). The significance of this distortion upon reflection and transmission will 

be evaluated in Section 4.3. 

In order to express the reflection and transmission coefficients for EM waves using 

the Fresnel equations (2.48) and (2.49), we assumed smooth and planar interfaces at the 
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wavelength scale. In GPR, however, this is often not the case, and amplitude losses due 

to random scattering at rough interfaces constitute yet another contribution to scattering 

attenuation. As could be expected, scattering at rough interfaces is frequency dependent; 

high frequencies are, in general, scattered more than lower ones (Annan & Davis, 1977). 

Thus, like volume scattering, this mechanism can potentially mask as frequency-dependent, 

intrinsic attenuation and cause a progressive broadening of received wavelets down a trace. 

We will assume in this study, however, that the frequency-dependent effects of rough inter­

face scattering are insignificant compared to those of intrinsic attenuation. Once again, if 

this assumption is not valid, then our estimates of subsurface Q* will include a contribution 

from this scattering mechanism. 

The last type of scattering that we will consider is multipathing. Unlike the mechanisms 

discussed above, multipathing does not contribute to scattering attenuation by altering the 

shape or amplitude of a propagating GPR pulse. Instead, it causes apparent wavelet dis­

tortion on a GPR trace through the interference of reflection events. For our purposes, 

multipathing can be defined as the process by which two or more reflected signals that have 

traveled via different paths in the subsurface reach the receiver antenna at approximately 

the same time. When this occurs, the signals combine constructively and destructively to 

produce unusual waveform shapes that can be mistaken for frequency-dependent material 

properties (Olhoeft, 1998). In seismic studies, multipathing has been shown to cause strong, 

progressive, signal broadening down a trace in geological environments that contain cyclic 

sequences of very thin layers (O'Doherty & Anstey, 1971; Schoenberger & Levin, 1974). 

This can result in estimates of Q that are much too low, and therefore inverse-Q deconvolu-

tions that are unsuccessful. We will ignore such effects in this study, but it should be noted 

that our estimates of Q* from GPR data may be significantly affected by this phenomenon. 

We will also ignore the effects of isolated multipathing events in this study. Under the defi­

nition of multipathing given above, this includes thin layer reflections. Although Hollender 
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and Tillard (1998) show that these events can result in significant signal distortion on a GPR 

trace, their effects will be spurious. In other words, isolated multipathing events will produce 

isolated regions of anomalous distortion on a GPR trace. These regions will occur on top of 

the general trend of pulse broadening caused by frequency-dependent intrinsic attenuation. 

In Sections 4.5 and 4.6, we will introduce a means of estimating Q* from GPR data that is 

somewhat insensitive to these anomalous regions. 

4.3 Reflection and Transmission Effects 

As mentioned, reflection and transmission at subsurface interfaces can cause distortion of 

the GPR wavelet. This is because the reflection and transmission coefficients for EM waves 

are, in general, complex and frequency-dependent quantities. For the special case involving 

interfaces between constant Q materials, Turner and Siggins (1994) show that the reflection 

and transmission coefficients are independent of frequency. For interfaces between constant 

Q* materials, however, no such simplification can be made. Consequently, we cannot always 

obtain accurate reflected and transmitted waveforms in GPR simply by scaling our source 

wavelet by some factor. Instead, we must convolve it with time series representing the 

reflection and transmission coefficients. 

Assuming a 1-D layered earth and ignoring multiple reflections, a GPR wavelet reflected 

from the ith interface in the subsurface will encounter one reflection coefficient during its 

travels, and all of the transmission coefficients in both directions for the i — 1 overlying 

interfaces. Since convolution is a linear operation, we can thus think of our received wavelet 

(distorted only by reflection and transmission effects) as being the convolution product of 

the source wavelet with 1 reflection coefficient and i — 1 two-way transmission coefficients. 

Acknowledging our assumptions of zero-offset traces and that ix — no for geological materials, 

the Fresnel equations for normal incidence, (2.50) and (2.51), can be used to express the 
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reflection and two-way transmission coefficients for an interface in the frequency domain as 

follows: 

R { U J ) ~ M " ) + A*M { ] 

From these expressions, it is apparent that the following relationship exists between the 

coefficients R and T*: 

Tt(w) = 1 -i?(u;)2 (4.3) 

Note that, since we assumed that scattering from rough interfaces has negligible frequency 

dependence in GPR, our use of the Fresnel equations to obtain the above expressions is well 

justified. Power losses at rough interfaces will be accounted for in the next section through 

the introduction of a frequency-independent factor. 

To evaluate the significance of wavelet distortion caused by reflection and transmission, 

(4.1) and (4.3) were used to calculate the reflection and two-way transmission coefficients for 

a number of "typical" subsurface interfaces. Once again, due to a significant lack of published 

permittivity data at GPR frequencies, the choice of geological materials for these interfaces 

was quite limited. Figure 4.1 shows the modulus and phase of the reflection coefficients as a 

function of frequency. Figure 4.2 is a similar plot of the two-way transmission coefficients. It 

should be noted that, although the interfaces selected are typical in the sense that they are 

geologically reasonable, they by no means represent the majority of interfaces encountered in 

a GPR survey; that is, high-contrast interfaces were purposely chosen in order to get a feel 

for the maximum amount of distortion that can occur upon reflection and transmission. The 

vast majority of subsurface interfaces encountered by a GPR wavelet will have much smaller 
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R values than those shown, and values will be much closer to 1. More importantly, most 

reflection and two-way transmission coefficients will exhibit far less frequency dependence 

than the coefficients shown. 

Figures 4.1 and 4.2 illustrate a number of important points. First, it can be seen that 

the reflection and two-way transmission coefficients for the selected interfaces exhibit little 

frequency-dependence over most of the GPR range. Also, the phase of these coefficients tends 

to lie within tolerable limits of 0 and 180 degrees at most frequencies. This suggests that, 

except at low operating frequencies, wavelet distortion caused by reflection and transmission 

can essentially be ignored in GPR. Secondly, the figures show that two-way transmission 

coefficients are significantly less frequency-dependent than their corresponding reflection 

coefficients. In fact, for operating frequencies above 100 MHz, the frequency dependence 

of is negligible for the chosen interfaces. This is important because a received wavelet is 

filtered by many two-way transmission coefficients, but by only one reflection coefficient. It 

suggests that the combined effects of transmission through many interfaces will often result 

in minimal wavelet distortion. Finally, Figures 4.1 and 4.2 illustrate that, at low frequencies, 

the moduli of R and increase for some interfaces, but decrease for others; that is, some 

interfaces provide a low frequency "boost" and a high frequency "cut" upon reflection and 

two-way transmission, respectively, whereas other interfaces do the opposite. This suggests 

that the frequency-dependent effects of reflection and transmission are somewhat random in 

the subsurface, and will possibly cancel for a received wavelet. 

Based on these results, we will assume that the wavelet distortion introduced by reflection 

and transmission in GPR is negligible compared with that caused by frequency-dependent 

attenuation. In the case where this distortion cannot be ignored, it will most likely result 

in spurious effects that will not influence our estimation of Q*. In other words, reflection 

and transmission will not likely cause progressive wavelet broadening down a GPR trace 

like intrinsic attenuation. It should be noted that Hollender and Tillard (1998) assert that 
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Figure 4.1: Reflection coefficient modulus and phase versus frequency for a number 
of subsurface interfaces. Reflection coefficients were calculated using published Cole-
Cole and Jonscher parameters. Numbers after material descriptions refer to weight 
percent water saturation. (1) sandy soil (1.23%) / sandy soil (10.53%), (2) sandy soil 
(1.23%) / clay soil (15.77%), (3) sandy soil (10.53%) / clay soil (30.18%), (4) clay soil 
(15.77%) / clay soil (30.18%) (Olhoeft and Capron, 1993, 1994); (5) granite / schist, 
(6) andesite / gabbro (Hollender & Tillard, 1998). Note that reflection coefficients for 
waves traveling in the opposite direction (i.e., from the second medium to the first) 
have the same modulus, but differ in phase by 180°. 
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Figure 4.2: Two-way transmission coefficient modulus and phase versus frequency for 
the interfaces in Figure 4.1. See Figure 4.1 for interface details. 
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reflection and transmission are the cause of significant wavelet distortion in GPR data. 

However, to make this point, they use an example involving an interface between a low-loss 

and extremely high-loss material. This type of interface is the exception, rather than the 

norm, in GPR surveys. Further, the high-loss material used in their example was found to 

not even permit radar wave propagation due to the attenuation being so high. 

4.4 The Convolution Model 

Making use of the assumptions in the last three sections, we can now represent a recorded 

GPR trace as a series of convolutions. Specifically, it can be thought of as the convolution 

of the transmitter source wavelet with the impulse responses of the earth and the recording 

system (Turner, 1994). That is, 

where tr(t) is the GPR trace, s(t) is the source wavelet, y(t) is the recording system response, 

and e(t) is the earth's response. Note that we have ignored the effects of noise for now. The 

earth's response can also be expressed as a series of convolutions. For a subsurface containing 

N reflection coefficients, and ignoring multiple reflections, this yields: 

Here, c(t) is a filter that represents source coupling between the transmitter antenna and 

the ground, g(zj) accounts for frequency-independent amplitude losses in signals received 

from depth Zj, p{zj,t) is a propagation filter that accounts for all effects of velocity and 

attenuation, and rj(t) is a time series representing the jfth effective reflection coefficient. Note 

that g(zj) accounts for geometrical spreading, volume scattering, and scattering from rough 

tr(t) = s(t) * y(t) * e(t) (4.4) 

tr(t) = s(t) * y(t) * c(t) * V ^ ) \p(zj: t) * rj(t)] (4.5) 
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interfaces, all of which we assumed in Section 4.2 to have negligible frequency-dependence. 

Also note thatTj(t) represents all of the reflection and transmission coefficients encountered 

by the GPR wavelet as it travels from the surface to depth Zj and back; that is, rj(t) is the 

convolution of all of these time series. 

Equation (4.5) can also be expressed in terms of an "effective" source wavelet w(t) in the 

following manner: 

N 

tr(t) = w(t) * 5>(̂ ) Wv*) * r M (4-6) 

where 

w(t) = s(t) * y(t) * c(t) (4.7) 

This formulation illustrates two very important points. First, it shows that a GPR trace 

is simply a sum of wavelets reflected from different interfaces in the subsurface. We will 

use this property shortly to develop a means of estimating general values for subsurface Q*. 

Secondly, (4.6) illustrates that we can think of a GPR trace as the convolution of an effective 

source wavelet w(t) with the term under the summation. This term is commonly referred 

to as a reflectivity series. In seismic studies where spectral contributions from reflecting 

interfaces are minimal and wavelet distortion during propagation can often be neglected, 

the reflectivity series is simply a series of spikes. In other words, reflections received from 

subsurface interfaces have the same spectral character as the source wavelet. In GPR, 

however, wavelet distortion due to frequency-dependent attenuation cannot be neglected. 

For this reason, the reflectivity series is a series of altered spikes that accommodate the 

non-stationarity. 
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For our purposes, it is much more useful to express the above convolution model for a 

GPR trace in the frequency domain. In order to do this, we take the Fourier transform of 

equation (4.6), which yields: 

N 
TR(u) = W{u,)Y,9(*i) [P{zj,u>)Rj{u>)] (4-8) 

If we assume, as discussed in the last section, that the wavelet distortion introduced by 

reflection and transmission at subsurface interfaces is minimal compared with that caused 

by frequency-dependent attenuation, then the effective reflection coefficients RJ{UJ) can be 

treated as real and frequency-independent. Lumping the RJ(OJ) and g(zj) together into the 

real, frequency-independent quantity Gj thus gives: 

N 
TR(u) = W(u>) GjP(zj, w) (4.9) 

3=1 

For propagation through a single material, the transfer function P(ZJ,UJ) can be determined 

from the plane wave solution for the electric field given by equation (2.32). Treating the 

propagating GPR wavelet as a sum of monochromatic plane waves of this form and taking 

the Fourier transform, we can obtain: 

P{zj,u) = e-2ik^ (4.10) 

where k(u) is the complex and frequency-dependent wavenumber of the material, and the 

factor of two arises because the wavelet is traveling to depth Zj and back. In reality, however, 

the GPR wavelet does not propagate through a single material having a constant wavenumber 

(if this were the case, we would not receive any reflected signals from the subsurface). We 

must therefore generalize the above equation to account for variations in k(u) with depth. 
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That is, 

P(zj,cu) = exp fZj 

—2i / k(uj,z) 
Jo 

dz (4.11) 

Using (4.9) and (4.11), the complex frequency spectrum of an individual wavelet reflected 

from depth Zj can now be expressed as follows: 

RWj(u)) = GjW{u)) exp 
Jo 

2i / k(u, z) dz (4.12) 

Noting that k = f3 — ia, we can determine the amplitude spectrum of an individual reflection 

by taking the modulus of (4.12). This gives: 

,RWj(w)\ = Gj\W(u>)\ exp —2 / a(u,z) 
Jo 

dz (4.13) 

A reflected wavelet cannot contain any frequencies outside the frequency band of the source 

wavelet w(t). If we now acknowledge our assumption that the attenuation behaviour of all 

subsurface materials can be characterized by some Q* value over the bandwidth of the source 

wavelet, then we can substitute (3.14) into (4.13) to get: 

RWj{u)\ = Gj\W{u)\ exp f(a»( 2v(z)Q*(z) 
dz (4.14) 

Note that the exponential resulting from the first term under the integral sign above is 

independent of frequency. This demonstrates that the intercept of the attenuation-frequency 

curve cvo, which distinguishes Q* from Q, has no effect on the form of the amplitude spectrum 

of a reflected wavelet, and thus the wavelet's shape in the time domain. It only affects the 

total amplitude, as was discussed in Section 3.4. Incorporating the frequency-independent 
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exponential in (4.14) into the term Gj, we thus have: 

RWj(u)\ = GJ\W(UJ)\ exp 
Jo v{z)Q 

u 1 i s * (4.15) 

In GPR, the traces that we record are time series; that is, we receive reflected wavelets as 

a function of time, not depth. However, (4.15) gives the amplitude spectrum of a reflected 

wavelet only as a function of the depth of the reflector Zj. Also note that it involves the 

velocity function v(z), which is generally unknown. Remembering that the goal of this 

chapter is to develop a means of estimating subsurface Q* from G P R data, it would be 

useful to have an equation that gives the amplitude spectrum of a reflected wavelet in terms 

of the time of its arrival tj, and without needing to know the velocity distribution. We can 

exploit the following relationship to accomplish this goal: 

dz = ^ - d t (4.16) 

Substituting (4.16) into (4.15), we arrive at the final result: 

RWj(u)\ = Gj\W(u)\ exp 
rh i 

7o wr* -OJ / _ „ . . . . dt (4.17) 

This formula will be used in the next section. 

4.5 The Frequency Shift Method 

In seismic studies, a broad variety of methods exist for the estimation of Q in the subsurface. 

Of these methods, the two most widely used and accepted are the rise time and spectral 

ratio techniques (Tonn, 1991). Since, as discussed previously, Q and Q* describe the same 

change in wavelet shape that occurs during propagation, both the rise time and spectral ratio 
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techniques can, in theory, be used to estimate Q* from GPR data. However, a number of 

practical limitations make the use of these two methods difficult, if not impossible, in GPR. 

First, we will discuss briefly the rise time and spectral ratio techniques, and the reasons why 

they are not particularly suitable for our purposes. Then, a variation of the frequency shift 

method will be developed from our results in Section 4.4 as a possible means of overcoming 

some of their limitations. 

Introduced by Gladwin and Stacey (1974), the rise time technique is a time domain 

method that involves the determination of subsurface Q (or Q*) from the rise times of 

received wavelets. The rise time r is most easily defined as the time difference between 

the 90% and 10% amplitude levels of a wavelet's first peak (Blair & Spathis, 1982). This 

technique relies on the following empirical relationship between r and Q: 

where ro is the rise time of the source wavelet, T is the travel time, and C is an empirical 

"constant". Equation (4.18) demonstrates that, as a pulse propagates and broadens due to 

frequency-dependent attenuation, its rise time increases at a rate inversely proportional to 

Q. The two main problems that result when attempting to apply this technique to GPR data 

are the following. First, it is difficult to obtain precise and robust measurements of r from 

field data because the rise time parameter is very sensitive to noise (Tarif & Bourbie, 1987; 

Quan & Harris, 1997). Since signal-to-noise ratios in reflection GPR data are often quite 

low, this suggests that rise time measurements from these data could be very inaccurate. 

Secondly, the parameter C in (4.18) is actually not constant, but depends on the nature of 

the source wavelet and on the value of Q when Q < 20 (Kjartansson, 1979; Tonn, 1991). 

Since our effective source wavelet in GPR is generally unknown due to the complexities of 

antenna/ground coupling (Hollender k. Tillard, 1998), and Q* values have been suggested to 

(4.18) 
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lie between 2 and 30 (Turner & Siggins, 1994), this means that C is an unknown quantity in 

GPR, and thus determination of Q* using the rise time technique will likely involve a great 

deal of speculation. 

In contrast to the above, the spectral ratio technique operates in the frequency domain 

and involves the determination of Q (or Q*) from the ratio of the amplitude spectra of 

received wavelets to that of a source or reference wavelet. This technique has been used for 

years by seismologists, and is given excellent treatment in Toksoz et al. (1979) and Sears and 

Bonner (1981). Taking the natural logarithm of (4.17), we can formulate the spectral ratio 

technique for GPR data from our results in Section 4.4 as follows: 

Since the term under the integral sign and Gj are both frequency-independent, (4.19) shows 

that the natural logarithm of the amplitude spectral ratio on the left-hand side is linear 

with frequency. The slope of this linear relationship can, in theory, be used to determine 

Q*. In practice, however, a number of problems arise when attempting to apply the spectral 

ratio technique to GPR data. First, the method requires a complete and accurate reference 

spectrum | W(u>)|, which is difficult to obtain in GPR. As mentioned, our effective source 

wavelet w(t) is generally unknown due to the complexities of antenna/ground coupling. 

Secondly, the technique requires the isolation of individual reflected arrivals in time in order 

to determine their amplitude spectra. This can be difficult with GPR data because the 

density of reflections down a trace is often quite high; that is, it can be hard to tell where 

one reflection begins and another ends. Finally, the spectral ratio technique is very sensitive 

to any extra signal present in a reflection as a result of wavelet interference. This extra signal 

causes scalloping and nulls in the amplitude spectrum, and thus tends to corrupt estimates 

of Q or Q* (Tarif & Bourbie, 1987; Dasgupta & Clark, 1998). 

(4.19) 
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In an attempt to overcome the limitations discussed above, we propose a variation of 

the frequency shift method as a means of determining general values for subsurface Q* 

from GPR data. Originally developed by Quan and Harris (1997) for seismic attenuation 

tomography, this method is based on the principle that, as a wavelet propagates and broadens 

due to frequency-dependent attenuation, the centroid of its amplitude spectrum undergoes 

a gradual downshift in frequency. Quan and Harris relate this downshift to Q for a number 

of different source spectra. Applying their results to equation (4.17) from Section 4.4 and 

converting LO (in rad/s) to / (in Hz) for practical convenience, the relationship between 

the centroid frequency of a received wavelet and that of our source wavelet in GPR can be 

expressed as follows: 

f™<=fw-cJ!'c7mjd t  ( 4- 2 0 )  

where fRW. and fw are, respectively, the centroid frequencies of the received and source 

wavelets, and C is a constant that depends on the nature of the source wavelet's amplitude 

spectrum. The parameters JRWJ and fw are defined as follows: 

f w~ !?\w(i)\df ( 4 ' 2 2 ) 

For a boxcar source spectrum with bandwidth B, Quan and Harris show that C ~ B 2/12. 

For a triangular source spectrum, C ~ B 2/18. Finally, if the source spectrum is Gaussian 

in shape, then C is exactly equal to the spectrum variance given by: 

, _ io°°U-M'\w(f)\ df 
w ~ sr\w(S)\dj ( 4 2 3 ) 
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It is important to note that, like the rise time and spectral ratio techniques, the frequency 
shift method has no dependence on the frequency-independent quantity Gj, which contains 
the combined effects of a number of different scattering attenuation mechanisms, and is 
generally unknown. This is necessary for a robust measurement of Q*. 

To formulate the above results for the practical estimation of Q* from GPR data, consider 
the case of two interfaces in the subsurface separated by a layer of constant Q* material. In 
this case, the difference between the centroid frequencies of the two wavelets reflected from 
these interfaces can be expressed using (4.20) as: 

where t\ and i2 refer to the arrival times of the wavelets on a trace. This is an important 
result. If we assume that (i) we have a high density of reflections down our recorded GPR 
traces (this is often the case), and (ii) the subsurface can be described by one or a small 
number of general Q* values with depth, then (4.24) allows us to state the following: 

That is, we can obtain general or average values for subsurface Q* from the slope of a best-fit 
line to a centroid frequency versus time curve. This curve is determined by calculating the 
centroid frequency of the local amplitude spectrum at each time down a trace. In the 
situation where we have one general value for Q* with depth, the curve will exhibit only one 
slope. If two regions having considerably different Q* values are present in the subsurface, 
then the curve should exhibit two distinct slopes, and so on. 

At first glance, it appears as if the frequency shift method as formulated above is subject 
to the same practical limitations as the spectral ratio technique. Note that both methods 

IRW2 ~ IRWI — — 757 (h — * i ) (4.24) 

(4.25) 
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operate in the frequency domain to determine Q*. However, this is not the case. Although 

it seems as if this method still requires complete and accurate knowledge of our source 

spectrum | W ( / ) | for the determination of C, Quan and Harris (1997) show that estimates 

of attenuation obtained using the frequency shift method are relatively insensitive to small 

changes in source spectrum shape; that is, a certain value of C can be used with minimal 

error if the spectrum corresponding to that value of C is an approximate fit to the true source 

spectrum. We will assume that our source spectrum in G P R is roughly Gaussian in shape 

(Annan, 1992, p. 110), and therefore that C = a^y. Because Quan and Harris also show 

that a Gaussian input spectrum remains Gaussian with the same variance during constant 

Q propagation, we should be able to determine o^ relatively easily from the average of the 

variances of received wavelet spectra down a trace. 

It would also seem that the frequency shift method is subject to limitations associated 

with the isolation of individual reflections and wavelet interference like the spectral ratio 

technique. However, since this method involves the determination of amplitude spectra at 

all times down a trace, the isolation of individual reflections is not necessary. Further, we will 

see in Section 4.6 that windowing in time to determine these spectra is not needed using the 

wavelet transform. Also, unlike the spectral ratio technique, our variation of the frequency 

shift method uses the benefits of averaging to determine general values for subsurface Q*. 

Although some spectra will obviously be inaccurate due to wavelet interference, the fact that 

we are taking the slope of a best fit line through the centroids of many spectra down a trace 

means that the effects of any errors will likely be diminished. Moreover, we will see shortly 

that, by using the wavelet transform, we can reduce the problems associated with wavelet 

interference on the calculated spectra. Finally, it should be noted that the frequency shift 

method as formulated above is faster and easier to implement than the rise time and spectral 

ratio techniques. Since it is based on the statistics of the amplitude spectra down a trace, it 

may also be more robust in the presence of noise (Quan & Harris, 1997). 
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As with any Q estimation procedure, the frequency shift method is most reliable when the 

source spectrum is broad-band and absorption is large (White, 1992; Quan & Harris, 1997). 

This can be seen in equation (4.20), which shows that the centroid shift is greatest for large 

values of C and small values of Q*. Since frequency-dependent attenuation is far more severe 

in GPR than in seismology, it is thus likely that we can obtain reliable average estimates of 

subsurface Q* using this technique. This is especially the case for higher frequency antennas, 

which radiate wavelets having broader bandwidths. It should be stressed that our variation 

of the frequency shift method is useful only for determining general values for Q* in the 

subsurface; a high degree of resolution for Q* with depth cannot be obtained. For this 

reason, borehole radar attenuation tomography methods may be more suitable for estimating 

subsurface Q* in situations where Q* varies significantly with depth, or when subtle changes 

in Q* with depth are desired for quantitative purposes. 

4.6 The Wavelet Transform 

As mentioned, we need to calculate the local amplitude spectrum at each time down a 

GPR trace in order to determine Q* using our variation of the frequency shift method. 

In other words, we must obtain the time-frequency representation of the trace. A critical 

issue in time-frequency analysis is the uncertainty principle. This principle states that we 

cannot know exactly what spectral components exist in a signal at a given instant in time; 

all we can know are the time intervals in which a certain band of frequencies are present. 

Another way of stating the uncertainty principle is that we cannot have arbitrarily good 

resolution in both time and frequency simultaneously. As our resolution (or certainty) in 

time increases, our resolution in frequency decreases, and vice versa. With this in mind, 

there are essentially two methods that have been developed to obtain the frequency content 

of a signal locally in time; these are the windowed or short-time Fourier transform and 
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the wavelet transform (Kumar &; Foufoula-Georgiou, 1994). We will discuss both of these 

techniques briefly, and the reasons why we have chosen to use the wavelet transform for our 

analysis of GPR data. The reader is referred to Kumar and Foufoula-Georgiou (1994) for 

further comparison between the two techniques in a geophysical context, as well as for an 

excellent list of references providing additional information. 

Until the mid 1980's, the standard method of obtaining a time-frequency representation 

of a signal was to isolate sections of the signal in time using a window function, and then 

take the Fourier transform of each of these sections. This technique has been formally named 

the short-time Fourier transform (STFT), and is expressed mathematically as follows: 

where f(u) is the time series to be analyzed, g(u) is the window function chosen for the 

analysis, and gWtt — g(u — t) e~lwu is the analyzing kernel. To compute the transform, it can 

be seen that the window function is moved along the time series. The result is the complex 

frequency spectrum around the time t, subject to the resolution limits of the uncertainty 

principle. It is important to note from (4.26) and (4.27) that the analyzing kernels for each 

frequency component in the STFT have constant support; that is, gw,t(u) has the same 

non-zero width for all to, which is determined by the width of the window function g(u). 

Because of this, the STFT has fixed resolution in time and frequency. In other words, 

all frequency components are resolved equally in time and in frequency with the STFT, as 

determined by the window function. Narrow windows provide good time resolution, but poor 

frequency resolution. Wide windows, on the other hand, provide good frequency resolution, 

but poor time resolution. When the Gaussian function is used as a window, the STFT is 

called the Gabor transform (Gabor, 1946). 

(4.26) 

(4.27) 
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For our purposes, the STFT possesses a number of limitations, all of which are associated 

with the windowing process. First, to compute the transform, we must choose a single 

window function that will be used for the entire time-frequency analysis. In our case, this 

is extremely difficult because the wavelets present on a dispersive GPR trace broaden with 

time. That is, we want to choose a window that is broad enough to span the widths of all 

reflections on a trace; however, we don't want this window to incorporate unwanted features 

outside of these reflections. Secondly, the frequency spectra obtained using the STFT often 

exhibit properties associated with the window function used, along with the signal being 

analyzed (Pike, 1994). This adds further complication to our choice of window function 

(i.e., which function gives the best spectrum for the estimation of Q*l). Finally, with the 

STFT, it is likely that spurious high frequency events, such as those resulting from wavelet 

interference and noise, will have a significant impact on many spectra because these events 

will be included in numerous windowed segments down a trace. It would serve useful to have 

a time-frequency analysis tool that is relatively "insensitive" to these anomalies. 

Like the STFT, the wavelet transform (WT) also examines the time-frequency character 

of a signal by integrating that signal with a series of analyzing kernels. However, in the 

WT case, the kernels are scaled and shifted versions of a prototype or "mother" wavelet 

function, rather than windowed exponentials. Developed in the early 1980's to overcome 

some resolution-related problems with the STFT, the wavelet transform can be expressed 

as follows: 

where f(u) is again the time series to be analyzed, ip(u) is the mother wavelet function 

a > 0 (4.28) 

(4.29) 

chosen for the analysis, a is a scale parameter, and iba>t — 1S the analyzing kernel. 
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Note that the wavelet transform does not involve frequency; instead, we obtain the analysis 

of our signal around the time t in terms of scale, which acts as the inverse of frequency. 

Scaling, as a mathematical operation, either dilates or compresses a signal. When a < 1, 

the mother wavelet is compressed for the analysis; when a > 1, it is dilated. The ^ term 

in (4.28) serves to ensure that the compressed and dilated wavelets have the same total 

energy as the mother wavelet function (Pike, 1994). It should be noted that the choice of 

ib(u) for the wavelet transform is neither unique nor arbitrary. The mother wavelet must be 

a function with unit energy, compact support (i.e., sufficiently fast decay), and zero mean 

(Kumar & Foufoula-Georgiou, 1994). Having said this, there are many well known mother 

wavelet functions to choose from. Our choice oiib(u) will be described in Section 4.7, where 

we apply our Q* estimation procedure to a synthetic G P R trace. 

In contrast to the STFT, (4.28) and (4.29) demonstrate that the analyzing kernels for 

each scale in the wavelet transform do not have the same support; that is, the non-zero 

width of ipaj is not constant, but varies inversely with a. For this reason, the wavelet 

transform does not resolve all spectral components equally like the STFT. With the W T , 

good resolution in time but poor resolution in frequency are obtained at high frequencies 

(low scales), and good resolution in frequency but poor resolution in time are obtained at 

low frequencies (high scales). As a result, the wavelet transform has the ability to examine 

features of a signal locally in time and in frequency with a detail matched to their scale 

(Kumar & Foufoula-Georgiou, 1994). This property is especially useful for the analysis of 

signals that are either noisy, non-stationary, or have important features of differing sizes 

(Liu & Oristaglio, 1998). A dispersive G P R trace possesses all of these qualities. 

With the wavelet transform, we can largely avoid the previously mentioned problems 

associated with the S T F T in our time-frequency analysis of G P R data. For example, because 

windowing is not necessary with the W T , the difficulties associated with choosing a window 

function are not an issue. Although we must still choose a mother wavelet function for 
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analysis with the wavelet transform, it seems reasonable that the wavelet used to analyze 

a G P R trace should somewhat resemble the G P R wavelet; that is, our choice of mother 

wavelet function should be relatively easy. Also, for our purposes, the wavelet transform 

is probably less sensitive than the S T F T to spurious high frequency events such as those 

resulting from wavelet interference and noise. Because the W T analyzes high frequencies with 

good resolution in time, these events will not likely affect as many spectra down a trace, 

and will thus have less influence on our estimates of Q*. Finally, it should be noted that, 

although the wavelet transform appears to be limited in the sense that it only provides us 

with a scale parameter, we can easily translate this parameter into an approximate frequency 

by determining the dominant frequency of the scaled, analyzing wavelet (e.g., Pike, 1994; 

Liu k Oristaglio, 1998). 

4.7 Synthetic Tests 

To test our variation of the frequency shift method, the method was applied to a synthetic 

G P R trace possessing a rather conservative amount of constant Q* wavelet dispersion. As 

discussed previously, the reliability of the frequency shift method will improve with increasing 

wavelet dispersion (decreasing Q*). Figure 4.3a shows the reflectivity series used to create 

the synthetic data. The series contains 40 reflection coefficients randomly distributed in 

time between 20 and 350 ns. A sampling interval of 0.8 ns (typical for a G P R trace) was 

used, which implies a Nyquist frequency of 625 MHz. Note that the effects of transmission 

at interfaces have not been included in this simple model. Also note that, for a constant 

velocity of 0.1 m/ns, 400 ns would represent a depth of 20 m in the subsurface. To account 

for wavelet dispersion, the reflectivity series was convolved point-by-point with a series of 

forward Q propagation filters given by equation (5.13), which were used to simulate the effect 

of constant Q* = 30 with depth (see Chapter 5). Figure 4.3b shows the attenuated series. 
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Note the extreme broadening of the reflection spikes with time for this conservative value 

of Q*. This again confirms that wavelet dispersion is a significant problem in GPR data. 

Also note that, as time increases, many spikes "blur" together and become indistinguishable 

from one another; there is a significant decrease in resolution with time/depth. To create the 

synthetic GPR trace shown in Figure 4.3c, the attenuated reflectivity series was subsequently 

convolved with a Gaussian source wavelet having a center frequency of 200 MHz. The wavelet 

and its amplitude spectrum are shown in Figures 4.4a and 4.4b, respectively. The Gaussian 

spectrum was set with -20 dB points at 80 and 320 MHz to give the wavelet an effective 

bandwidth of about two octaves. It should be noted that attempting to estimate Q* from the 

trace in Figure 4.3c using either the rise time or spectral ratio techniques would be extremely 

difficult; individual reflections cannot be distinguished. 

To estimate Q* from the synthetic trace using our variation of the frequency shift method, 

the trace's time-frequency representation was first computed using the wavelet transform. 

For the mother wavelet function, the Morlet wavelet was used, which can be approximated 

by (Daubechies, 1992): 

'if,(t) = e _' 2 / 2cos5i (4.30) 

Figures 4.4c and 4.4d show the Morlet wavelet and its amplitude spectrum, respectively. 

The wavelet shown was scaled to have a dominant frequency of 200 MHz for comparison 

purposes. The Morlet wavelet was chosen for our analysis for two reasons. First, this 

wavelet has already been used quite successfully for the time-frequency analysis of seismic 

and GPR data (e.g., Pike, 1994; Liu & Oristaglio, 1998). Secondly, it can be seen that the 

Morlet wavelet is smooth and symmetric in the time and frequency domains, and it closely 

resembles the Gaussian source wavelet in Figures 4.4a and 4.4b. As mentioned previously, it 

seems reasonable that the wavelet we use to analyze a dispersive GPR trace should closely 
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Figure 4.3: Synthetic GPR data used to test the frequency shift method, (a) random 
reflectivity series; (b) reflectivity series in (a) attenuated using constant Q* = 30; 
(c) the synthetic GPR trace, obtained by convolving the attenuated reflectivity series 
in (b) with the 200 MHz Gaussian wavelet shown in Figure 4.4a. 



4 ESTIMATION OF Q* FROM GPR DATA 64 

600 

-20 -10 0 10 20 0 200 400 600 
time (ns) frequency (MHz) 

Figure 4.4: Wavelets used to create and analyze the synthetic trace in Figure 4.3c. 
(a) 200 MHz Gaussian wavelet used to create the synthetic trace; (b) amplitude 
spectrum of (a); (c) Morlet wavelet used to analyze the synthetic trace with the 
wavelet transform (200 MHz Morlet wavelet is shown for comparison); (d) amplitude 
spectrum of (c). 
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resemble the GPR wavelet. When time is measured in nanoseconds, equation (4.30) yields 

a mother wavelet with a dominant frequency of 800 MHz. As a result, we can translate 

the wavelet transform scale parameter a into an approximate frequency (in MHz) for our 

analysis using the following relationship: 

Figure 4.5 shows the wavelet transform time-frequency representation of our synthetic 

GPR trace. The transform was calculated using wavelets having dominant frequencies from 

1 to 400 MHz, in order to cover the full range of frequencies contained within the GPR signal 

(see Figure 4.4b). Individual amplitude spectra in Figure 4.5, which can be visualized as 

running vertically and out of the page, were normalized to their maximum values so as to 

better show the trend in the dominant frequency of the GPR signal with time. The wavelet 

transform plot illustrates two very important points. First and foremost, the plot clearly 

shows the gradual downshift in the dominant frequency of the GPR signal with time as a 

result of wavelet dispersion. At the beginning of the trace, it can be seen that the dominant 

frequency is around 200 MHz (the center frequency of the source wavelet); near the end 

of the trace, the dominant frequency is significantly lower (around 100 MHz). Secondly, 

the wavelet transform plot demonstrates the resolution limits of the uncertainty principle; 

high frequencies can be seen to be resolved well in time but poorly in frequency, whereas low 

frequencies are clearly resolved well in frequency but poorly in time. 

To determine a general value for subsurface Q*, the centroid and variance values for 

each local amplitude spectrum in Figure 4.5 were computed using equations (4.22) and 

(4.23), respectively. Figure 4.6 shows the centroid frequency versus time curve for our 

synthetic trace. Because the trace contains a high density of reflections, and because we have 

only one general value for Q* with depth, the centroid frequency can be seen to decrease 
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Figure 4.5: Wavelet transform time-frequency representation of the synthetic trace in 
Figure 4.3c. Individual spectra at each time have been normalized to their maximum 
values in order to better show the downward trend in the dominant frequency of the 
GPR signal with time. 
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roughly linearly with time. This trend was fitted using least squares from 25 to 340 ns 

(the region of the trace containing reflections) with a line having slope -0.374 MHz/ns. 

It should be noted that, in some cases, fitting the centroid frequency versus time curve by 

eye may be more appropriate than using least squares. In regions where no reflections are 

present, for example, the centroid frequency tends to plunge towards zero. This can be seen 

at the beginning and ends of our trace, as well as briefly around 190 ns. These drops in 

the centroid frequency will greatly influence a best-fit line, and should therefore be ignored. 

It is also important to note that, based on the centroid frequency versus time curve for this 

simple example, fitting a large number of values for Q* with depth would be very difficult 

using our version of the frequency shift method; the curve clearly exhibits a large amount 

of variation, and it suggests that our estimation procedure will probably only work for a 

maximum of two or three values for Q* down a trace. 

Figure 4.7 shows the standard deviation versus time curve for our synthetic example. 

The standard deviation (square root of equation (4.23)) is plotted, rather than the variance, 

in order to better illustrate the spread of each local amplitude spectrum (in MHz) about the 

centroid frequency. As mentioned previously, Quan and Harris (1997) show that a Gaussian 

source spectrum remains Gaussian with the same variance during constant Q propagation. 

As a result, the standard deviation calculated down our synthetic trace should remain roughly 

constant with time. Indeed, although the curve in Figure 4.7 shows a great deal of variation, 

it can be seen to remain around a constant value, which was estimated using the average of 

values between 25 and 340 ns to be 62.4 MHz. It is important to note that this estimated 

value for aw is slightly higher than the actual standard deviation of our source wavelet, 

which was calculated to be 55.9 MHz. This observation, combined with the high variability 

shown in Figure 4.7 and the fact that Q* is dependent upon the square of the standard 

deviation measurement, suggests that the determination of C in equation (4.25) may be a 

significant source of error in our Q* estimation procedure. This is discussed below. 
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Figure 4.6: Centroid frequency versus time curve for the synthetic trace in Figure 4.3c. 
Curve was determined by calculating the centroid frequency of each local amplitude 
spectrum in Figure 4.5. Slope of best-fit line between 25 and 340 ns (the region of 
the trace containing signal) is -0.374 MHz/ns. 
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Figure 4.7: Standard deviation versus time curve for the synthetic trace in Figure 4.3c. 
Curve was determined by calculating the standard deviation of each local amplitude 
spectrum in Figure 4.5 around the centroid frequency value calculated for Figure 4.6. 
Average of values between 25 and 340 ns (the region of the trace containing signal) 
is 62.4 MHz. 
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Using the slope and standard deviation values determined above, equation (4.25) was 

used to yield an estimated value of Q* = 32.7 for our synthetic G P R trace. This estimate 

is very close to the correct value of Q* = 30, which indicates that our test of the frequency 

shift method was successful. To gain further insight into our Q* estimation procedure, the 

synthetic trace was subsequently inverse Q filtered to remove wavelet dispersion using three 

different values for Q. Chapter 5 discusses the design and implementation of the inverse 

Q filter used. Figure 4.8a shows again the centroid frequency versus time curve for the 

unprocessed synthetic trace. Figures 4.8b, 4.8c, and 4.8d show the curves determined for 

the inverse Q filtered traces using Q — 30, Q = 20, and Q = 40, respectively. Note that a 

running average filter could be applied to these plots to show more clearly the trend in the 

centroid frequency with time; this is done for our field data example in Chapter 6. 

The plots in Figure 4.8 illustrate an extremely important point. As mentioned above, the 

determination of C may be a significant source of error in our Q* estimation procedure. In 

fact, it seems reasonable that both our centroid frequency and variance measurements should 

be somehow affected by the resolution limits of the uncertainty principle, as well as by noise 

in the data (note that the latter was not considered in our synthetic example, and will be 

investigated more thoroughly in Chapter 6). Any errors in these parameters lead directly 

to errors in the estimation of Q*. However, Figure 4.8 demonstrates that the success of an 

inverse Q deconvolution, and thus the success of our estimation procedure, can be roughly 

verified using the frequency shift method. When the value of Q used in the inverse Q filter is 

too low, the input trace will be over-corrected for frequency-dependent attenuation, and the 

filtered output will show an increase in the centroid frequency with time, as illustrated in 

Figure 4.8c. On the other hand, when the value of Q used in the filter is too high, the input 

trace will be under-corrected for frequency-dependent attenuation, and the resulting output 

will show a decrease in the centroid frequency with time (see Figure 4.8d). Finally, a trace 

filtered using the correct value for subsurface Q* should show no general trend in the centroid 



4 ESTIMATION OF Q* FROM GPR DATA 71 

250 250 

100 200 300 400 
time (ns) 

200 
time (ns) 

400 

250 250 

200 
time (ns) 

300 400 200 
time (ns) 

400 

Figure 4.8: Centroid frequency versus time curves for the synthetic trace in Figure 4.3c 
after inverse Q filtering to remove wavelet dispersion, (a) before inverse Q filtering; 
(b) after inverse Q filtering using the correct value of Q — 30; (c) after inverse Q 
filtering using Q = 20; (d) after inverse Q filtering using Q = 40. 
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frequency with time, as illustrated in Figure 4.8b; that is, the centroid frequency versus time 
curve should have approximately zero slope. For this reason, it can be concluded that errors 
in our Q* estimation procedure are relatively unimportant. If the value determined for Q* 

using our variation of the frequency shift method yields an inverse Q filtered trace whose 
centroid frequency versus time curve is not approximately flat, then that value for Q* is 
simply incorrect and another one should be tried. In other words, a reasonably correct value 
for subsurface Q* can be found by iterating. In this case, our Q* estimation procedure is 
still useful in that it provides a good initial guess for the iterative process. 
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5 Inverse Q F i l t e r i n g 

Assuming that the attenuation behaviour of all subsurface materials can be characterized 

using some Q* value, we developed in the last chapter a means of estimating general values for 

Q* in the subsurface from the shift in the centroid frequency of local amplitude spectra down 

a GPR trace. Presuming that we have estimated Q* reasonably correctly using this method, 

this chapter presents a technique for the removal of wavelet dispersion from GPR data called 

inverse Q filtering. First, we will introduce a model for constant Q wave propagation. Then, 

the results of this model will be used to design a filter for the removal of constant Q (or Q*) 

wavelet dispersion. Finally, the practical implementation of this filter will be discussed. 

5.1 Constant Q Wave Propagation 

As mentioned previously, Turner and Siggins (1994) have shown that Q and Q* describe the 

same change in wavelet shape that occurs during propagation; the only difference between 

a constant Q and constant Q* response is in the total amplitude. As a result, we can 

remove constant Q* wavelet dispersion from GPR data using a relatively common seismic 

technique known as inverse Q filtering, which removes the effects of propagation through 

constant Q materials. As discussed in Section 3.4, constant Q does not describe a situation 

whereby attenuation is strictly linear with frequency and velocity is constant. By invoking 

causality, it can been shown that frequency-dependent attenuation must be accompanied by 

velocity dispersion (e.g., Futterman, 1962; Aki & Richards, 1980). Consequently, constant Q 

describes a more complex scenario whereby attenuation is nearly linear with frequency and 

velocity is nearly constant over a wide frequency range, such that a and v satisfy the Hilbert 

transform causality relationship given by (2.45). Thus, to truly correct for constant Q (or Q*) 

wavelet dispersion, we must correct for both amplitude and phase spectrum changes in our 

source wavelet due to frequency-dependent attenuation and velocity, respectively. 
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Many models have been developed to describe constant Q wave propagation, all of which 
yield similar results for the attenuation and velocity parameters as a function of frequency 
(Kjartansson, 1979; Varela et al, 1993). In this study, we will consider a causal, linear 
model based on a power law formula for the wavenumber k (Strick, 1967; Kjartansson, 1979; 
Bickel & Natarajan, 1985), which yields any positive value of Q exactly independent of 
frequency. With this model, we can express k as follows: 

where 7 is a constant that describes the medium, w0 is an arbitrary reference frequency, 
and a also describes the medium but depends on our choice of w0- Here, 0 < 7 < 1, with 
7 = 0 corresponding to the case of no attenuation. Writing k above in terms of its real and 
imaginary parts, and considering only positive frequencies , we find that: 

= f3 — ia 

Note from equations (2.41) and (3.9) that Q is equal to one-half the ratio of the real to the 
imaginary parts of k (i.e., Q = L3/2CX). A S a result, we can obtain: 

(5.1) 

(5.2) 

Q = 
1 (5.3) 2tan ( f ) 

which is clearly independent of frequency. We can now express 7 as follows: 

(5.4) 

1 for relatively large Q (5.5) 
nQ 
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Using the above results, the attenuation and velocity parameters for a constant Q material 

(according to the power law model) can be expressed in the following manner: 

where v0 = a/ cos(2^) is the velocity at the reference frequency co0. Figure 5.1 shows a(yj) and 

v(co) plotted over the GPR frequency range for various values of Q with v0 = 0.1 m/ns and 

WQ = 100 MHz. Note that, except in the highly dispersive case where Q = 2, the attenuation 

is nearly linear with frequency (when constrained to pass through the origin) and the velocity 

is nearly constant over a wide range. Also note that v(u) increases gradually with frequency, 

the rate of increase being fastest for low Q (highly frequency-dependent attenuation). This is 

consistent with Figures 3.4 and 3.5, in which we also observed a slight increase in the velocity 

with frequency. Incidentally, it should be mentioned that, when Q is relatively large and 

the frequency range is restricted to some degree around wQ, substitution of (5.5) into (5.6) 

and a subsequent Maclaurin series expansion of the exponential can be used to obtain the 

commonly seen Futterman (1962) dispersion relationship (Kjartansson, 1979): 

Futterman derived this relationship by assuming that attenuation was exactly linear with 

frequency over a specified range and invoking causality. Hence, in his results, Q is a function 

of frequency in order to satisfy (3.9). When Q is large and the frequency range is restricted, 

the Futterman results converge with the power law results because Q becomes essentially 

frequency-independent. 

(5.6) 

(5.7) 

(5.8) 
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Figure 5.1: Attenuation and velocity calculated as a function of frequency for various 
values of Q. Equations (5.6) and (5.7), which are derived from a power law model for 
constant Q wave propagation, were used for the calculations. In all cases, a reference 
velocity of 0.1 m/ns at 100 MHz was used. 
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Using equations (5.6) and (5.7), we can now express the wavenumber for a constant Q 

material in terms of Q and a reference velocity as follows: 

This formula will now be used to develop an inverse Q filter. 

5.2 Inverse Q Filter Design 

In order to develop an inverse Q filter for the removal of constant Q (or Q*) wavelet dispersion 

from GPR data, we must first determine the forward Q filter operator; that is, we must first 

determine the operator that produces constant Q wavelet dispersion on a GPR trace. As 

discussed in Section 4.4, all effects of velocity and attenuation (and thus wavelet dispersion) 

are incorporated into our convolution model through the propagation filter P(ZJ, to). We will 

thus begin by examining this filter for the constant Q case. Assuming that we are dealing 

with a single constant Q medium, or equivalently, that the subsurface can be adequately 

described by one general value for Q with depth, equations (4.10) and (5.9) can be used to 

express P(ZJ,LO) as follows: 

It should be noted that, using a similar transfer function derived by Kjartansson (1979) 

from a power law formula for the wavenumber, Turner and Siggins (1994) successfully predict 

the change in shape of GPR wavelets that have propagated through the subsurface in a 

shallow, cross-hole, tomographic experiment (except for a difference in total amplitude). 

This indicates that the model for constant Q wave propagation introduced in Section 5.1 is 

a valid one for describing wavelet dispersion in GPR data. 

(5.9) 

(5.10) 
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Equation (5.10) gives the constant Q propagation filter for an arrival received from depth 

Zj in the subsurface. Note, however, that this formula involves two parameters that are 

generally unknown in the context of a GPR trace: Zj and v0. Assuming that time on a 

trace represents the travel time experienced by the reference frequency UJ0, we can express 

the filter more conveniently as follows: 

Our constant Q propagation filter is now completely specified down a GPR trace by two 

parameters: Q and a reference frequency. If we further assume that time down a trace 

represents the travel time experienced by the center frequency of the transmitter antenna 

(a reasonable assumption), then u>o is determined, and the filter is completely specified by 

the parameter Q. It must be stressed that the constant Q propagation filter given by (5.11) 

is time-varying; reflections received at different times on a trace experience different delays 

and exhibit different amounts of wavelet dispersion. It should also be noted that, in many 

cases, we will have more than one general value for Q (or Q*) with depth. As discussed 

in Chapter 4, our variation of the frequency shift method has the ability to resolve a small 

number of general values for Q* in the subsurface. When this is the case, multiple Q values 

can be accounted for in (5.11) using the effective Q approach (Bickel & Natarajan, 1985; 

Varela et al., 1993), whereby an effective value for subsurface Q is calculated for each depth 

Zj, which represents the attenuation effect of the variable Q structure above that depth. 

In terms of time down a trace, this is expressed as follows: 

(5.11) 

Qef(tj) = (5.12) 

where the effective value Qef(tj) is simply substituted for Q in (5.11) above. 



5 INVERSE Q FILTERING 79 

As mentioned, because P(tj,u>) accounts for all effects of velocity and attenuation on 

a G P R trace, it accounts for wavelet dispersion. However, in accounting for all effects of 

velocity, our propagation filter is also responsible for placing a dispersed arrival around the 

time tj on a trace (the travel time of the reference frequency). We desire to know the filter 

that just produces wavelet dispersion about the time tj] that is, we wish to obtain the filter 

that, when convolved with a trace possessing no wavelet dispersion, produces constant Q 

wavelet dispersion in an arrival at time tj. This is easily accomplished by removing a linear 

phase shift term from (5.11). Multiplying by e1^, we arrive at: 

where U[tj,to) is our desired result, the forward Q filter operator. Note that this operator was 

used to produce constant Q wavelet dispersion in the random reflectivity series in Figure 4.3a; 

reflection coefficients at different times were subjected to different filters given by (5.13). 

Knowing the forward Q filter operator for each time down a G P R trace, our inverse Q 

filtering procedure becomes straightforward. To remove the effects of constant Q (or Q*) 

wavelet dispersion at the time tj on a trace, we simply convolve the trace with the time 

domain inverse of U(tj,u), which is easily seen to be (in the frequency domain): 

Thus, to deconvolve an entire trace of the effects of constant Q (or Q*) wavelet dispersion, 

we (in theory) just calculate H(tj,u)) for each time down the trace, take the inverse Fourier 

transform of each of these transfer functions, and then convolve the trace with each of the 

resulting time series. The j th time sample of the inverse Q filtered output trace is just equal 

to the jth. sample of the convolution product of the input trace with the jth time series. 

(5.13) 

(5.14) 
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That is, 

tr?*={tr i»*r-1[H(tjlu,)]). (5.15) 

where trm and trout are the input and output traces, respectively, and T~x denotes the 

inverse Fourier transform. It should be noted that this point-by-point procedure not only 

corrects for the effects of frequency-dependent attenuation, but also for velocity dispersion 

such that all frequency components in the filtered trace travel at the reference velocity v0. 

Since higher frequencies travel more quickly than lower ones (see Figure 5.1), this means that 

frequencies less than UJQ in the input trace will experience positive delays, and frequencies 

greater than UJQ will experience negative delays (Varela et al., 1993). 

5.3 Practical Implementation 

In practice, a number of important issues must be considered when applying the inverse Q 

filtering algorithm described above to G P R data. Most importantly, it should be noted that 

the true inverse Q filter operator given by (5.14) is an increasing exponential in time and 

frequency. To correct for wavelet dispersion, high frequencies must be boosted more than 

lower ones, and reflections at late times must be amplified more than those at earlier times. 

However, the fact that H(tj,u) is an increasing exponential makes it very unstable in the 

presence of noise, and thus unsuitable for the inverse Q filtering of real data. To see this more 

clearly, note that noise will tend to dominate signal on a G P R trace (i) at high frequencies, 

outside or near the edge of the frequency band of the G P R wavelet, and (ii) at late times, 

when the signal has become significantly attenuated. Since H(tj, to) increases with both time 

and frequency, it can thus be seen that the amplification performed by an inverse Q filter 

based on equation (5.14) will be greatest when a trace is "noisiest". As a result, filtering a 

noisy trace using the algorithm described above will yield an output trace which "blows up". 
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Obviously, this must be avoided. To make our algorithm stable in the presence of noise, we 

will therefore use the least squares inverse of equation (5.13) for our inverse Q filter operator, 

which is given by (Berkhout, 1982): 

Hl2(tj,u) = —— .v. v r (5.16) 

where * here denotes the complex conjugate, and A(tj,u) is a regularization parameter that 

represents the inverse square of the input trace's signal-to-noise ratio as a function of time 

and frequency. It should be noted that, given an estimate of the initial signal-to-noise ratio 

at t = 0, and assuming that the noise present in our GPR data is both white and stationary 

(i.e., that it possesses uniform power at all frequencies and times), we can roughly track the 

signal-to-noise ratio in time and frequency down a trace using the forward Q filter operator. 

For this reason, we will express the regularization parameter in (5.16) as follows: 

A(ti,u) = =• (5.17) 
SNo(w)2|tf(ti,o;)|2 

where SN0(co) denotes the input trace's initial signal-to-noise ratio as a function of frequency, 

for which a reasonable estimate can be obtained with knowledge of the amplitude spectrum 

of the GPR source wavelet. 

By using the least squares inverse of equation (5.13), noise is optimally taken into account 

in our inverse Q filtering procedure. In other words, we avoid excessively boosting regions 

of an input trace's time-frequency spectrum where noise is dominant, yet we still amplify in 

the most accurate manner those regions where signal-to-noise ratios are high. As mentioned 

previously, the amplification performed by an inverse Q filter based on equation (5.14) will be 

greatest when a trace is "noisiest". With the least squares inverse, our filter is prevented from 

becoming too large in the presence of significant noise by a large regularization parameter. 
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On the other hand, when signal-to-noise ratios in the input trace are high, the regularization 

parameter in (5.16) will be small and the least squares inverse will approach the true inverse 

given by (5.14). It is important to note that, in the presence of noise, we can never obtain an 

inverse Q filtered trace that is completely devoid of wavelet dispersion. At frequencies and 

times where noise is dominant, signal cannot be boosted the appropriate amount without 

tremendous error. However, we will see in Chapter 6 that inverse Q filtering can still remove 

the majority of wavelet dispersion from field GPR data, and thus significantly enhance the 

resolution of the GPR image. 

In addition to stability in the presence of noise, a number of other practical issues must 

be considered when applying the inverse Q filtering procedure described in Section 5.2 to 

GPR data. First, since the algorithm involves the transformation of Hi2(tj,ui) from the 

frequency domain to the time domain using the inverse Fourier transform, we must be 

careful to avoid excessive ringing (Gibbs phenomena) in the resulting time domain filters. 

Gibbs phenomena occur after the inverse Fourier transform because of sharp cutoffs in a 

signal's amplitude spectrum, and can be significantly reduced by tapering the amplitude 

spectrum using a window function. Although tapering will obviously reduce the effectiveness 

of our inverse Q filter operator, it was found that the application of a Gaussian window 

(-10 dB point set at the Nyquist frequency) to the amplitude spectrum of Hi2(tj,co) before 

performing the inverse Fourier transform tended to produce the best inverse Q filtered results 

(i.e., those results that had the best trade-off between accuracy and lack of ringing). Another 

practical issue that must be considered when applying our inverse Q filter is the stability of 

the inverse Fourier transform of (5.16). Although the earth filter is a causal and minimum 

phase function (Aki Sz Richards, 1980; Varela et al, 1993), it was found that the windowed, 

least squares inverse of (5.13) is slightly acausal, and therefore "blows up" in a numerical 

inverse Fourier transform algorithm. To remedy this problem, a constant, linear phase shift 

must be added to the phase spectrum of Hi2(tj, ui) before transforming into the time domain, 
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which makes the inverse Q filter operator causal and thus stable. The number of time 

samples corresponding to this phase shift must then be removed after the transformation. 

Finally, it should be noted that, in order to derive equations (5.6) and (5.7) which were used 

in the derivation of our forward Q filter operator, we considered only positive frequencies 

(see page 74). As a result, the expression for H~i2(tj,oj) given by equation (5.16) is valid only 

for OJ > 0. Since, for the inverse Fourier transform, we need to know the complex spectrum 

from —fpf to /AT, where is the Nyquist frequency, we must thus compute Hi2(tj,oj) at 

negative frequencies from the complex conjugate of its values at positive frequencies. This 

is a valid step because our time domain inverse Q filter operator is a real function. 

Using the above results, we can now summarize our inverse Q filtering algorithm for 

practical application to GPR data as follows: 

1. Compute U(tj,u>) from 0 to Nyquist frequency using equation (5.13). 

2. Determine regularized Hi2(tj,co) from U(tj,u) using equation (5.16). 

3. Introduce constant, linear phase shift for stable inverse Fourier transform. 

4. Window amplitude spectrum to reduce ringing in the time domain filter. 

5. Set negative frequencies equal to complex conjugate of positives. 

6. Inverse Fourier transform. 

7. Convolve time domain filter with input trace. 

8. Extract jth time sample. 

9. Repeat for all times tj down the input trace. 

10. Merge extracted time samples together to form inverse Q filtered trace. 

5.4 Synthetic Examples 

To illustrate some of the points discussed above, the application of our inverse Q filter is 

now demonstrated on a few simple, synthetic examples. Figure 5.2a shows a reflectivity 
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series containing 12 reflection coefficients. As in Figure 4.3, a sampling interval of 0.8 ns 

was used. Figure 5.2b shows this reflectivity series after accounting for constant Q = 30 

wavelet dispersion using the forward Q filter operator given by equation (5.13). No noise 

was added to these data. Note again the significant broadening of the reflection spikes 

and lack of resolution that increases with time for this conservative value of Q. It is also 

now appropriate to point out the effects of velocity dispersion in the data. Since higher 

frequencies travel more quickly than lower ones, the attenuated spikes can be seen to be 

asymmetric, having a sharp onset with slowly decaying tails. Lastly, it should be noted that 

the first arrival on the attenuated trace exhibits slight ringing due to the Gibbs effect. This 

is a result of transforming U(tj,uj) into the time domain. 

To correct for wavelet dispersion, the attenuated reflectivity series was subsequently 

inverse Q filtered using the algorithm given on page 83. Figure 5.2c shows the inverse Q 

filtered output for Q = 30 and SN0(u) = 1.0 x 109. A constant value was used for the 

initial signal-to-noise ratio because the "GPR source wavelet" in this case is a spike, which 

contains equal amounts of all frequencies. The value chosen is exceptionally high because 

the input data contain no noise, except for numerical errors resulting from our forward 

modeling to produce wavelet dispersion. Note the extremely high resolution of the inverse Q 

filtered result. Comparing this plot with Figure 5.2a, it can be seen that we have successfully 

removed all wavelet dispersion (i.e., that caused by both frequency-dependent attenuation 

and velocity dispersion) from the input trace. Also note, however, the difference between 

the amplitudes of the reflection spikes in the initial and recovered spike series. Although not 

particularly important because relative amplitudes remain the same, it can be seen that the 

amplitudes of the spikes in Figure 5.2c are significantly less than those in Figure 5.2a. This 

is a result of our application of a Gaussian window to Hi2(tj,u)) in order to reduce Gibbs 

phenomena in the inverse Q filtered trace. Slight ringing can still be seen before and after 

each reflection; without windowing, the amplitude of this ringing would be significant. 
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Figure 5.2: Inverse Q filter applied to a noise-free, attenuated, reflectivity series, 
(a) noise-free reflectivity series with no attenuation; (b) reflectivity series in (a) 
attenuated using constant Q — 30; (c) attenuated series in (b) after inverse Q 
filtering, Q = 30, SN0{u) = 1.0 x 109. 
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In order to demonstrate the performance of our inverse Q filter in the presence of noise, 

Gaussian random noise was next added to the attenuated reflectivity series in Figure 5.2b. 

The variance of this noise was set equal to 1% of the trace's maximum value. Figure 5.3b 

shows the resulting data. To illustrate the effects of too little regularization, the noisy trace 

was first inverse Q filtered using Q = 30 and SN0(co) = 1.0 x 109. In other words, the 

initial signal-to-noise ratio was set extremely high so that the regularization parameter in 

(5.16) would be much too small. Figure 5.3c shows the inverse Q filtered output. Note 

that, as discussed previously, the output "blows up" at late times because the amplification 

performed by the inverse Q filter is very high when signal-to-noise ratios are low; regions 

of the input trace's time-frequency spectrum where noise dominates are greatly boosted. 

Figure 5.3d, on the other hand, shows the inverse Q filtered result for the more realistic 

case of SNQ(LO) = 2.0 x 103 (proper regularization). In this case, the filter is stable in the 

presence of noise, and resolution is considerably improved by inverse Q filtering. Reflections 

down the output trace are reduced greatly in width, and all of the individual spikes in the 

input reflectivity series (with the exception of the one at 220 ns) can be easily distinguished. 

It is important to note that there is a noticeable broadening of the reflections with time 

in Figure 5.3d, even after inverse Q filtering. As mentioned previously, it is impossible to 

completely remove wavelet dispersion in the presence of noise. However, when properly 

applied, our algorithm clearly does a good job of removing most of the wavelet dispersion 

from the noisy input trace. 

As a final example, the noisy, attenuated, reflectivity series in Figure 5.3a was inverse Q 

filtered using two incorrect values for Q. Figures 5.4a and 5.4b show the output for Q = 20 

and Q = 40, respectively, with SN0(co) = 2.0 x 103. In the first case, the input trace 

has been over-corrected for frequency-dependent attenuation. Although, at first glance, this 

result appears to be better than the one obtained in Figure 5.3d with Q = 30 in the sense that 

reflections seem sharper, note the significant number of artifacts created by the over-boosting 
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Figure 5.3: Inverse Q filter applied to the attenuated reflectivity series in Figure 5.2b 
with added Gaussian random noise, (a) input reflectivity series; (b) attenuated 
series plus noise; (c) noisy, attenuated series in (b) after inverse Q filtering, Q = 30, 
SN0(u) = 1.0 x 109; (d) same as in (c) except SN0{u) = 2.0 x 103. 



5 INVERSE Q FILTERING 88 

of high frequencies in the data; new "reflections" appear that are not present in the original 
spike series. Obviously, this is an undesirable result. In the second case where Q = 40, our 
noisy input trace has been under-corrected for frequency-dependent attenuation. It should 
be noted that this trace is quite similar in appearance to Figure 5.3d. However, it can be seen 
that reflections are slightly more dispersed, and the four events between 140 and 160 ns are 
not as well separated in time; we have not removed all possible wavelet dispersion from the 
data. The above results demonstrate that it is quite important to use a reasonably correct 
value for Q when inverse Q filtering. When Q is too low, we get the creation of artificial 
reflections. When Q is too high, on the other hand, all possible wavelet dispersion is not 
removed from the input data. 
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Figure 5.4: Inverse Q filter applied to the noisy, attenuated, reflectivity series in 
Figure 5.3b using incorrect values for Q. (a) series in Figure 5.3b after inverse Q 
filtering, Q = 20, SN0(to) = 2.0 x 103; (b) same as in (a) except Q = 40. 
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6 A p p l i c a t i o n to F i e l d D a t a 

In the last two chapters, we have presented a possible means of estimating and correcting 

for wavelet dispersion in GPR data using a variation of the frequency shift method and 

inverse Q filtering, respectively. We have seen these two techniques successfully applied to 

synthetic traces. This chapter presents the true test of these methods: their application to 

field GPR data. First, a 100 MHz GPR data set collected near Langley, British Columbia 

will be briefly introduced and discussed. Then, a general value for subsurface Q* will be 

estimated from these data using our variation of the frequency shift method. Finally, we will 

attempt to remove wavelet dispersion from the data set by inverse Q filtering. 

6.1 The Langley Data Set 

As a final test, the techniques described in Chapters 4 and 5 for the estimation and correction 

of wavelet dispersion in GPR data were applied to a 100 MHz field data set collected near 

Langley, British Columbia. The field site consists of a sand and gravel aquifer underlain by 

a conductive clay, which was not penetrated with the radar. The data were gathered using a 

PulseEKKO IV GPR system with a trace spacing of 0.2 m and a sampling interval of 0.8 ns. 

Preprocessing included three basic steps. First, each trace in the data set was "dewowed" 

using a residual median filter (Gerlitz et al, 1993) in order to remove the slowly decaying 

transient or "wow" following the direct air and ground arrivals. This transient, present in 

all raw GPR data and characterized by a sharp onset and exponential decay, is a result of 

the low frequency component of the transmitter pulse diffusing, rather than propagating, 

into the ground. That is, the lowest end of the GPR signal spectrum sees an inductive 

(conduction current) type response as opposed to a propagating (displacement current) type 

response (see Section 2.3) (Annan, 1996). Removal of the wow in GPR data is necessary 

in order to obtain traces with approximately zero mean, and thus make small amplitude 
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reflections superimposed on the inductive response more distinct. Since dewowing is a form 

of high pass filtering, it should be performed with great care. Removing too much of the 

low frequency component on a GPR trace results in the removal of important reflection 

signal, and can often hide the presence of wavelet dispersion. Removing too little of the low 

frequency component, on the other hand, results in a trace possessing too much wow, on 

which reflections at early times are difficult to identify. For the Langley 100 MHz data set, 

it was found that a residual median filter with a window length of 51 points was optimal for 

the removal of wow and the preservation of signal. 

After dewowing, the Langley data were subsequently corrected for shifts in "time-zero". 

During a GPR survey, there may be a gradual drift or erratic jumps in the arrival time of the 

direct air wave (referred to as time-zero) from trace to trace. This can occur while system 

electronics warm up to their ambient operating temperature, and also as a result of changes 

in tension on system fiber optic cables (Annan, 1996). In order to correct for this problem, 

the Langley data were "flattened" on the first arrival by finding the first point on each trace 

whose amplitude exceeded a certain threshold value, and then setting this point as t = 0. 

In the case where a GPR survey is conducted in a region having variable topography, the 

data would first be corrected for time-zero shifting, and then moved up or down accordingly 

to account for the differences in elevation from trace to trace. 

The last preprocessing step that was applied to the Langley 100 MHz data set was an 

approximate correction for the geometrical spreading of energy. As discussed in Section 4.2, 

although radar waves can be approximated by plane waves in the far-field region of the 

transmitter antenna, a great deal of amplitude loss down a GPR trace occurs as a result of 

this phenomenon. In the case where velocity is constant with depth, geometrical spreading 

losses vary directly with the travel distance from transmitter to receiver. Thus, to roughly 

correct for geometrical spreading, the Langley data were subjected to a gain whose strength 

varied linearly with time. 
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Figure 6.1 shows a section of the Langley data set from 50 to 120 m after the preprocessing 

described above. In an attempt to compensate for the gradual decay in amplitude down the 

traces due to attenuation, a standard, frequency-independent, time-varying, exponential 

gain was also applied to the data for this figure. An average subsurface velocity of 0.1 m/ns, 

determined using the common mid-point (CMP) method (Annan, 1992), was used to convert 

time into an approximate depth. Note that the sand and gravel aquifer can be seen to increase 

in depth from left to right. The underlying clay layer is plainly indicated on the GPR image 

as the region containing no reflections; it is too conductive to permit effective radar wave 

propagation. More importantly, however, note that there is a significant amount of wavelet 

dispersion in these data, as indicated by the lack of resolution or "blurriness" in the image 

that increases with depth. Evidently, attenuation in the sand and gravel aquifer is quite 

dependent upon frequency. Further, the gradual broadening of reflections down the image 

indicates that processing techniques based on the assumption of a stationary GPR wavelet 

(such as migration and spiking deconvolution) would be ineffective without first correcting 

for wavelet dispersion. Finally, it should be noted that most traces across the Langley profile 

exhibit a high density of reflections. This suggests that the data set is a good candidate for 

Q* estimation using our variation of the frequency shift method. 

6.2 Estimation of Q* 

To estimate a general value for Q* in the sand and gravel aquifer, eight traces across the 

Langley profile in Figure 6.1 were analyzed using our variation of the frequency shift method. 

As mentioned in Chapter 4, noise will obviously have some effects on the spectral centroid 

and variance values we calculate down a trace using equations (4.22) and (4.23), respectively. 

Since we are now dealing with real GPR data, it is appropriate here to briefly discuss these 

effects, along with some possible methods by which we can reduce the influence of noise on 
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Figure 6.1: Section of Langley 100 MHz GPR data set from 50 to 120 m before 
correcting for wavelet dispersion. Notice the lack of resolution or "blurriness" in the 
image that increases with depth. 
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our estimates of subsurface Q*. In an ideal situation, the signal and noise regions of a trace's 

frequency spectrum would not overlap, and signal could be separated from noise relatively 

easily using simple filtering techniques. In the real world, however, a large part of the GPR 

signal bandwidth is always occupied by noise, and we must thus deal with the effects of noise 

in any quantitative analysis. At early times on a GPR trace when signal-to-noise ratios are 

high, the influence of noise on our calculated centroid and variance values will be minimal. 

In other words, the centroid and variance values determined from noisy traces at early times 

will be approximately equal to those values that would be obtained in the noise-free case. 

At late times, on the other hand, when the GPR wavelet has been greatly attenuated and 

signal-to-noise ratios are low, noise can result in significant bias in these two parameters. 

Because high frequencies in the GPR source wavelet are attenuated more quickly than lower 

ones, for example, centroid values obtained from noisy data at late.times will tend to be 

higher than those obtained in the noise-free case; that is, the calculated centroid values will 

be biased towards higher frequencies by the noise. Similarly, variance values obtained from 

noisy data at late times will also tend to be higher than those acquired from a clean signal; 

the noisy spectra will exhibit a greater spread about the centroid frequency. For these 

reasons, estimates of Q* determined from noisy data using the frequency shift method as 

described in Chapter 4 will probably be larger than they should be (see equation (4.25)). 

In other words, the presence of noise will most likely result in our underestimating the effects 

of frequency-dependent attenuation. 

To reduce the influence of noise on our estimates of subsurface Q*, three techniques 

were used in our analysis of the Langley 100 MHz data set. First, instead of computing 

the wavelet transform for all frequencies from zero to the Nyquist frequency, the WT was 

computed only for those frequencies estimated to lie within the bandwidth of the GPR source 

wavelet. This has the effect of reducing as much as possible the influence of noise outside 

the GPR signal range. For the Langley data set, this range was estimated to lie between 
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20 and 180 MHz from power spectra taken at the beginning of traces where signal-to-noise 

ratios were high. It should be noted that, for the reasons stated in Section 4.7, the Morlet 

wavelet was chosen for our analysis. Secondly, instead of using equation (4.22) to estimate 

the centroid of the GPR signal spectrum at all times down a trace, a weighted average 

between this value and the frequency fmax at which the maximum spectral amplitude occurs 

was employed. Although by no means a robust parameter, fmax was found to be a better 

estimator of the true centroid of the signal spectrum at late times when signal-to-noise 

ratios were low. Thus, a linear weighting in time was used, whereby the computed centroid 

value was weighted most strongly at early times, and fmax was weighted most strongly at 

late times. Finally, in order to reduce the effects of noise on our estimates of the source 

spectrum variance aw, an average of values at early times (where signal-to-noise ratios were 

highest) was employed. As mentioned in Chapter 4, assuming that we are dealing with an 

approximately Gaussian source spectrum, aw should remain roughly constant down a trace. 

It should be noted that the techniques described here for reducing the influence of noise on 

our estimates of subsurface Q* involve only our estimation procedure. That is, methods for 

suppressing noise in our GPR data before the estimation of Q* and inverse Q filtering were 

not considered in this study, and are a definite topic for future investigation. 

Figure 6.2 shows the centroid frequency versus time curve for trace number 300 in 

Figure 6.1, one of the eight traces analyzed across the Langley profile. The curve was 

obtained using the weighted average method described above, and then smoothed using 

a 13-point running average filter in order to show more clearly the general trend in the 

centroid frequency with time. Note that the curve exhibits a steady downshift as a result of 

frequency-dependent attenuation in the sand and gravel aquifer. The centroid frequency can 

be seen to change from approximately 100 MHz to 50 MHz over the course of the trace. This 

downshift was fitted using least squares from 20 to 360 ns (the region of the trace containing 

reflections, but not including the direct air and ground arrivals) with a single line having 
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slope -0.177 MHz/ns. Figure 6.3 shows the standard deviation versus time curve for the 

same trace. Note here that, at late times, the standard deviation can be seen to increase due 

to the effects of noise discussed above. To obtain an estimate of the standard deviation of 

our source spectrum, an average of values at early times (between 20 and 200 ns) was used, 

yielding aw = 50.9 MHz. This implies a source spectrum variance of a2^ — 2591 MHz 2. 

Using these results for the slope and variance, an average value of Q* = 45.9 was estimated 

for the sand and gravel aquifer from trace number 300. Table 6.1 summarizes the results 

of our analysis of the eight traces across the Langley profile. The centroid frequency and 

standard deviation versus time curves for each of these eight traces were very similar in 

appearance to Figures 6.2 and 6.3, respectively. Note that the Q* values obtained lie fairly 

close together (between 36.2 and 46.1). This attests to the robustness of our estimation 

method, and also indicates that the sand and gravel aquifer can be adequately characterized 

using a single Q* value. It should also be noted that these values are slightly above the upper 

limit of Q* = 30 suggested by Turner and Siggins (1994). This indicates that the effects of 

frequency-dependent attenuation in GPR data may be slightly less severe than predicted in 

their paper, or that noise has affected our results. 

6.3 Inverse Q Filtering 

In order to remove wavelet dispersion, the Langley data in Figure 6.1 were inverse Q filtered 

using Q = 43, the average of the eight values obtained above for the sand and gravel aquifer. 

The algorithm given in Section 5.3 was employed. An initial signal-to-noise ratio of 1.0 x 103 

was found to produce the best inverse Q filtered results. It should be noted that this initial 

ratio is independent of frequency; making SN0(UJ) dependent upon frequency based on an 

estimate of the amplitude spectrum of the GPR source wavelet was found not to produce 

significantly better results than using a constant value. Figure 6.4 shows the inverse Q 
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Figure 6.2: Centroid frequency versus time curve for trace number 300 in Figure 6.1. 
Curve was smoothed using a 13-point running average filter to better show trend. 
Slope of best-fit line between 20 and 360 ns is -0.177 MHz/ns. 
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Figure 6.3: Standard deviation versus time curve for trace number 300 in Figure 6.1. 
Average of values between 20 and 200 ns is 50.9 MHz. 
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Table 6.1: Determination of Q* from various traces in Figure 6.1 

Trace # Position (m) Slope (MHz/ns) Variance (MHz2) Q* 

2 50.2 -0.237 3122 41.3 

55 60.8 -0.202 2722 42.3 

105 70.8 -0.188 2753 46.1 

155 80.8 -0.231 2660 36.2 

197 89.2 -0.187 2709 45.5 

247 99.2 -0.201 2504 39.2 

300 109.8 -0.177 2591 45.9 

347 119.2 -0.197 2815 44.9 

filtered data set. Notice the significant increase in resolution in this image compared with 

Figure 6.1. The GPR image is now well-focused and the widths of reflections at depth have 

been noticeably reduced. There are no visible signs of wavelet dispersion in the inverse Q 

filtered profile. By examining the image in more detail, it can also be seen that all reflections 

in Figure 6.4 correspond to events in Figure 6.1, and most can be followed laterally from 

trace to trace. This indicates that our inverse Q filtering has not produced any significant 

artifacts. Finally, it should be acknowledged that the data in Figure 6.4 are in severe need 

of migration, as indicated by the presence of numerous diffraction hyperbolae across the 

profile. Now that we have corrected for wavelet dispersion, migration would be the next 

logical processing step in order to further increase the resolution of the GPR image; this is 

another topic for future investigation. 

As mentioned in Chapter 4, after proper removal of wavelet dispersion, the slope of 

a trace's centroid frequency versus time curve should theoretically be reduced to zero. 

Figure 6.5 shows the centroid frequency versus time curve for trace number 300 in Figure 6.4 

(the same trace analyzed previously to produce Figures 6.2 and 6.3). Once again, the curve 
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has been smoothed using a 13-point running average filter for clarity. Indeed, it can be 
seen that the centroid frequency now shows no general trend in time, except for a slight 
decrease at late times due to the fact that our inverse Q filter avoids boosting regions of 
a trace's frequency spectrum that are dominated by noise (see Chapter 5). In this case, it 
is obvious that our variation of the frequency shift method has worked extremely well, and 
there is no need to solve for a more accurate value for subsurface Q* by trial and error as 
described in Section 4.7. In conclusion, we have successfully estimated and corrected for 
wavelet dispersion in the Langley 100 MHz field data set. 
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position (m) 

Figure 6.4: Langley 100 MHz GPR data after correcting for wavelet dispersion by 
inverse Q filtering, Q = 43. Notice the significant increase in resolution compared 
with Figure 6.1. 
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Figure 6.5: Centroid frequency versus time curve for trace number 300 in Figure 6.4. 
Curve was smoothed using a 13-point running average filter. Notice the absence of a 
downshift in frequency with time after inverse Q filtering. 
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7 Conclusions 

7.1 Summary 

In summary, wavelet dispersion is a common and significant problem in GPR data that 

primarily results from attenuation being strongly dependent upon frequency in the GPR 

range. This frequency dependence can be largely attributed to the presence of an imaginary 

or lossy component to the dielectric permittivity. Correcting for wavelet dispersion in GPR 

data is an important step that should be performed before either qualitative interpretation 

or quantitative determination of subsurface electrical properties are attempted. 

Over the bandwidth of a GPR wavelet, we have seen that the attenuation of EM waves 

in many geological materials is approximately linear with frequency. For this reason, the 

change in shape that occurs in a GPR pulse as it propagates through the subsurface can 

often be well described using a single parameter, Q*, related to the slope of the linear region. 

Assuming that the attenuation behaviour of all subsurface materials can be characterized 

using some Q* value, the problem of estimating and correcting for wavelet dispersion in GPR 

data becomes one of determining Q* in the subsurface and deconvolving its effects through 

the use of an inverse Q filter. 

In Chapter 4, a method for the estimation of general values for subsurface Q* from GPR 

data was developed. Essentially, this method involves the determination of Q* from the 

shift in the centroid frequency of the GPR signal spectrum with time down a trace. The 

method manages to largely overcome limitations associated with other means of estimating 

attenuation such as the rise time and spectral ratio techniques. Once Q* has been obtained, 

an inverse Q filtering technique based on a causal, linear, model for constant Q wave prop­

agation was introduced in Chapter 5 as a means of removing wavelet dispersion. Tests on 

both synthetic and field GPR data from Langley, British Columbia showed that these two 
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techniques together provide a robust and effective means of estimating and correcting for 

wavelet dispersion in GPR data. More importantly, our Q* estimation procedure is especially 

useful in that it allows us to conveniently verify the success of an inverse Q deconvolution; 

a trace properly corrected for wavelet dispersion should show no general trend in the centroid 

frequency with time. 

7.2 Future Work and Recommendations 

A number of topics for future investigation have presented themselves throughout the course 

of this thesis. First, since the methodology presented here provides an effective means of 

correcting for wavelet dispersion in GPR data, the successful application of migration and 

spiking deconvolution algorithms to further enhance the resolution of the GPR image may 

now be possible. This in turn may allow the determination of subsurface electrical properties 

from the earth's reflectivity. Secondly, since both our Q* estimation and inverse Q filtering 

algorithms are adversely affected by noise, it would serve useful to investigate methods of 

suppressing noise in GPR data before attempting to correct for wavelet dispersion. Finally, 

it should be stressed again that our variation of the frequency shift method is capable only of 

providing general estimates of Q* in the subsurface; a high degree of resolution for Q* with 

depth cannot be obtained. For this reason, borehole radar attenuation tomography methods 

may provide a more accurate means of determining subsurface Q*. 
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