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Abstract 

We introduce a new class of generalized linear mixed models assuming Tweedie 

exponential dispersion model distributions for both the response and the random ef

fects. This class of models accommodates a wide range of discrete, continuous and 

mixed data. By letting the random effects enter as weights as well as means in the 

conditional distributions, the variance matrix may be expressed as a sum of variance 

components. We consider an orthodox BLUP approach to parameter estimation and 

random effects prediction for this new class of models based on a predictor of the 

random effects that is truly best linear and unbiased, in contrast to the conventional 

BLUP which is the conditional mode. We obtain an optimal estimating equation 

based on the orthodox BLUP, which is solved by a modified Newton algorithm. This 

approach facilitates analysis of residuals and allows justification of asymptotic results 

under realistic conditions through standard estimating equation theory. An impor

tant feature of this approach is that the principal results depend only on the first 

and second moment assumptions of unobserved random effects. The common fitting 

algorithm based on orthodox BLUP enables us to study this new class of models as a 

single class, rather than as a collection of unrelated different models. This approach 

is illustrated with the analyses of seed germination data, epilepsy data and cake bak

ing data. By means of asymptotic justifications, simulations and worked examples, 

we conclude that the orthodox BLUP approach is of practical value for analysis of 

clustered non-normal data. 
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Chapter 1 

Introduction 

In recent years much effort has been devoted to extending regression methodology to 

clustered non-normal data. A wide range of applications of generalized linear mixed 

models to clustered data has been investigated by many researchers (Breslow and 

Clayton 1993; Lee and Nelder 1996). Traditional generalized linear models (McCul-

lagh and Nelder 1989) have unified regression analysis for a variety of independent 

responses, but have difficulties in providing valid inference for clustered, and hence 

correlated, data. Clustered data usually exhibit significant heterogeneity and over-

dispersion as well (cf. Engel 1987; McCullagh and Nelder 1989, p. 124-126, 198-200). 

Such cluster effects are often modelled by incorporating random effects into general

ized linear models. 

The application of generalized linear mixed models to clustered data has attracted 

much attention since the seventies (Crowder 1978; Laird 1978). However, the early 

development of generalized linear mixed models focussed mainly on relatively simple 

cases such as random intercept models (Hinde 1982; Williams 1982; Breslow 1984; 

Stiratelli, Laird and Ware 1984; Anderson and Aitkin 1985; Brillinger and Preisler 
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1986). The modelling of more complicated problems has largely been hampered by 

the intractability of high-dimensional integrals involved in evaluating the likelihood. 

To avoid these numerical problems, numerous alternative approaches to the analysis 

of clustered data have been proposed recently. The most popular approaches are 

generalized estimating equations (Liang and Zeger 1986; Zeger, Liang and Albert 

1988), Bayesian methods using computational techniques (Zeger and Karim 1991), 

penalized quasi-likelihood (Breslow and Clayton 1993) and maximum hierarchical 

likelihood (Lee and Nelder 1996) methods. We briefly review these approaches and 

discuss their advantages and disadvantages. 

Generalized estimating equations (GEE) approach focuses on the marginal rela

tionship between covariates and clustered responses, but only estimates the covari-

ances as nuisance parameters by adopting a so-called "working correlation". This 

approach enjoys robustness against mis-specification of covariances, but sometimes 

suffers from a lack of efficiency due to such incorrect specification (Lipsitz et al. 1994; 

Fitzmaurice 1995). It is of limited use when the correlation structure is of primary 

interest. This approach mainly deals with marginal models instead of random effects 

models. On the other hand, in areas such as genetics, it is often the unobserved 

genetic effects which are of primary interest (Harville 1977; Clayton 1991; Karim and 

Zeger 1992). Robinson (1991) presented a variety of applications where the random 

effects themselves are of interest; therefore random effects models are more relevant 

in such situations. 

As a general approach to complicated generalized linear mixed models, Zeger 

and Karim (1991) proposed to cast these models in a Bayesian framework and ap

proximate maximum likelihood estimates using flat or diffuse priors. However, such 

2 



approximations are often impossible because the posterior may not exist for such 

priors (Natarajan and McCulloch 1995; Hobert and Casella 1996). This problem of 

the posterior may not be detected when using computational techniques such as the 

Gibbs sampler; therefore misleading estimates may result. 

On the other hand, recent non-Bayesian approaches to generalized linear mixed 

models have focussed on the explicit or implicit modification of the E-step in the EM 

algorithm (Dempster, Laird and Rubin 1977) due to the difficulty evaluating the con

ditional expectation of the random effects given the data. The most widely adopted 

technique is the generalization of the linear mixed model equations of Henderson et al. 

(1975), but with various approximations (Gilmour, Anderson and Rae 1984; Harville 

and Mee 1984; Schall 1991; Breslow and Clayton 1993; Wolfinger 1993; McGilchrist 

1994; Lee and Nelder 1996). It can be shown that these approaches essentially mod

ify the EM algorithm with the conditional expectation of the random effects given 

the data being replaced by the predictors based on the mode of the corresponding 

conditional distributions. These modal predictors are often referred to as the 'BLUP' 

(Schall 1991; McGilchrist 1994), although in general it is neither linear nor unbiased 

for non-normal distributions. 

In contrast to the modal predictor approaches, Bayesian approaches enjoy great 

flexibility in modelling the data with normal or non-normal random effects distribu

tions, but are computationally intensive. The computational time required is suf

ficiently long as to possibly discourage fitting several different models (Karim and 

Zeger 1992). This drawback may pose serious problems in practice because it is gen

erally difficult to justify a particular distribution for the unobserved random effects. 

Data will often point with almost equal emphasis at several different models and it is 
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important that we recognize these models and their possible different interpretations. 

On the other hand, the modal predictor approaches enable us to explore several dif

ferent models with reasonable computing time. The penalized quasi-likelihood (PQL) 

approach deals with models with approximate multivariate normal random effects. 

The maximum hierarchical likelihood (MHL) approach widens the choice of random 

effects distributions to include conjugate distributions (George et al. 1987), but fails 

to model the dependence structure of the random effects. The introduction of flex

ible, yet tractable distribution classes to model both the distributional shape and 

dependence structure of random effects is certainly needed to facilitate appropriate 

inference. 

The implementation of the Bayesian approach is relatively straightforward in con

trast to the requirement for manipulation of large matrices for modal predictor ap

proaches when there are a large number of random effects; however the assessment of 

convergence of computational techniques such as the Gibbs sampler remains an area 

of debate (Glifford 1993; Smith and Roberts 1993). On the other hand, non-Bayesian 

approaches provide a natural framework for model checking, but are forced to rely 

on asymptotics. In fact, the existing approaches to generalized linear mixed models 

mainly concentrate on the model fitting part, but to a large extent ignore another 

important ingredient of the modelling process, the model checking component (Lee 

and Nelder 1996). 

The justifications of these modal predictor approaches were generally intuitive un

til Breslow and Clayton (1993) presented some ad hoc justifications for their penalized 

quasi-likelihood approach and Lee and Nelder (1996) provided rigorous justification 

for their maximum hierarchical likelihood approach. The asymptotic results for quite 
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general settings are obtained under certain conditions by Nelder and Lee (1996), but 

with respect to large cluster sizes with fixed number of clusters. This raised con

cerns about more practical situations where the number of clusters is large, but with 

relatively small cluster sizes (Clayton 1996; Engel and Keen 1996). In addition, the 

estimating equations based on the modal preditors are generally biased (Breslow and 

Lin 1995; Lin and Breslow 1996a). 

This thesis considers generalized linear mixed models based on the class of Tweedie 

exponential dispersion model distributions (J0rgensen 1987a) for both the response 

and the random effects. This gives a very flexible class of models which includes 

various combinations of Poisson, normal, gamma, inverse Gaussian, compound Pois-

son and extreme stable and positive stable distributions. In the context of clustered 

data, the hierarchical structure is very clear so that the modeled covariance struc

ture should clearly reflect those hierarchies. The dominant tradition in accounting 

for dependence between or within clusters is to explicitly incorporate random effects 

into a monotonic transform of the conditional mean ignoring the dispersion compo

nents. This approach generally does not lead to variance components decomposition 

structure for covariance matrix of the response. By incorporating correlated or un

correlated random effects into both mean and dispersion components, the covariance 

matrix of our model possesses an interpretable variance components decomposition. 

The novelty of our approach lies in the introduction of a new unbiased estimating 

equation, which is based on a modification of the EM algorithm where conditional 

expectations are approximated by an orthodox BLUP, in the context of generalized 

linear mixed models. An orthodox BLUP is defined as the best linear unbiased predic

tor in the literal sense, (cf. Brockwell and Davis 1991 p. 64). The unbiased estimating 
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equations introduced via the orthodox BLUP lead to consistent estimators for both 

regression and dispersion parameters under practical conditions where the number of 

clusters is large. The estimating equation for the regression parameters is optimal in 

the sense of Godambe (1976). While the parametric nature of our models facilitates 

residual analysis, our estimating procedure also allows a semi-parametric interpreta

tion of the models. Our approach does not require manipulation of large matrices; 

therefore is computationally simpler than the modal predictor approaches. This ap

proach is applicable to a wide range of clustered discrete, continuous and mixed data. 

The organization of this thesis is as follows. In Chapter 2, besides a brief intro

duction of Tweedie exponential dispersion model distributions and some estimating 

function results, we compare the orthodox BLUP and modal predictors and present 

. a few data examples to motivate our study. In Chapter 3, we propose a class of 

nested random effect models and derive their moment structures. The prediction of 

random effects and the consistency properties of the orthodox BLUP are discussed in 

Chapters 4. In Chapter 5, we discuss estimation for both regression and dispersion 

parameters as well as asymptotic properties of these parameter estimators. An out

line of the residual analysis and computational procedure is presented in Chapter 6. 

We address in detail a so-called conventional model and its relationship with other 

models in Chapter 7. Illustrative examples and simulations are presented in Chapters 

8 and 9, respectively. We present a discussion in Chapter 10. 
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Chapter 2 

Preliminaries 

2.1 Generalized linear models with random effects 

2.1.1 Definitions 

We study generalized linear models with random effects based on the class of Tweedie 

exponential dispersion model distributions. Here we first define exponential dispersion 

models. A random variable Y is said to follow reproductive exponential dispersion 

model ED(n, a2) if its probability density functions can be written in the form: 

P(V, </>, V) = <f>) exp{0[y rj - K(T,)]}, (2.1) 

where \x = E[Y] and a2 = 1/0. Let «'(•), the first derivative of K(-), be denoted by 

r(-). V(/JL) = T'{T~1 (fj,)} is called the variance function. Further, 

d(y; /*) = 2[y{T-\y) - r " 1 ^ ) } - /.{r" 1^)} + /.{r" 1^)}] (2.2) 

is known as the (unit) deviance function. 

The distribution of Z = <\>Y is called an additive exponential dispersion model, 
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denoted by Z ~ ED*(r],(f)). The justification of terminology 'reproductive' and 'ad

ditive' can be found in J0rgensen (1997, p l l ) . 

Now we can define a generalized linear model with random effects. Let Y = 

( Y i i , V i m , Y m i , Y m n j n ) T be an n = YnLi n^-dimensional vector of observed 

responses. Let (3 = (Pi,3P)T be a p-dimensional vector of fixed effects and 

U = (Ui,Um)T be a m-dimensional vector of random effects. 

We suppose that, given U = u, Y u , Y i n i , Y m i , Y m n j n are conditionally in

dependent and 

Yij\U = u^ED(^,a2), (2.3) 

Let fx u = (/z^, . . . , / / i n i , ...,Aimi. - > / C n m ) T a n d l e t #(•) denote the link function. 

We denote ( g ^ ) , g ( t f n J , g ( ^ ) \ g ( ^ n J ) T by #(/i u). Suppose further 

that 

g(^) = Xf3 + Zu, (2.4) 

where X and Z are two known matrices. Then 

E [ F i j | U = u] = ^ , (2.5) 

The expectation and covariance matrix of U are denoted by the following equa

tions: 

E[U] = 77 and Var[U] = D ( 7 ) , (2.6) 

where D ( 7 ) is a q x q covariance matrix depending on an unknown vector of variance 

components 7 . 
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The expectations of U or transformed U are often assumed to be known. The 

transformed U is also often called random effects. 

2.1.2 Tweedie exponential dispersion models 

Many exponential dispersion models have variance functions that are asymptotically 

of the Tweedie form, leading to a general convergence theorem with the Tweedie 

models as limiting distributions (J0rgensen et al. 1994). For this reason, Tweedie 

models occupy a central position among exponential dispersion models. Now we 

define Tweedie exponential dispersion models. We call (2.1) a reproductive Tweedie 

exponential dispersion model, denoted by Twp(/i, a2), if E(Y) = p and Var(Y) = 

a2pP. Here p = 0, 2, 3 and 1 < p < 2 correspond to well known normal, gamma, 

inverse Gaussian and compound Poisson distributions respectively. The case p = 1 

with a2 = 1 corresponds to Poisson distributions. In fact, using usual notations, we 

have 

Twi(/i, 1) = Poisson(̂ x), 

Tw2(//, cr2)= Gamma(/i, ff2), 

and 

Tw3(/i,a2) = Inverse Gaussian(//, a2). 

Furthermore Tweedie exponential dispersion models posses the following scale 

transformation property: 

cTwp{p, a2) = Twp(cp, c2'pa2). (2.7) 

A complete list of Tweedie exponential dispersion models is given in Table 2.1 

where S, f2 and 0 denote the support, mean parameter domain and canonical pa

rameter domain of the Tweedie exponential dispersion model, respectively (J0rgensen 

9 



Table 2.1: Summary of Tweedie exponential dispersion models. 

Distributions P S 0 e 
Extreme stable p<0 R R + Ro 

Normal p = 0 R R R 

[Do not exist] 0<p<l — R + Ro 

Poisson p=l N 0 R + R 
Compound Poisson K p < 2 Ro R+ R_ 

Gamma p = 2 R+ R + R_ 

Positive stable 2 <p < 3 R + R + —Ro 

Inverse Gaussian p = 3 R + R + —Ro 

Positive stable p > 3 R+ R+ —Ro 

Extreme stable p = oo R R R_ 

Notation: —Ro = (—oo, 0] 

1987a). 

To ease the derivation of the estimation function for regression parameter for our 

random effects models later, we rewrite the density of the Tweedie exponential dis

persion models Twp(/i, a2) as follows: 

fP(y; A*, o-2) = { 

c , ( 2 / ; ^ 2 ) e x P { ^ ( ^ - ^ ) } i f P 7 U , 2 , 

c 2(2/;^ 2)exp{-^ (j + log^)} iip = 2, 

Ci(y)exp{ylog/u - p,} if P = 1, 

where the explicit expressions for cp(y;a2) are given by J0rgensen (1987). The fact 

that cp(y; a2) do not depend on p is crucial to the derivation of our unbiased estimating 

function in Chapter 5. The exact expressions for cp(y; a2) are immaterial in the 

derivation of the unbiased estimating function, thus omitted. For more details about 

10 



Tweedie exponential dispersion model, see J0rgensen (1987, 1996). 

2.2 Prediction of random effects 

The prediction of random effects plays an important role in random effects models. 

It is especially useful in the identification of outliers. 

The distinction between Bayesian and non-Bayesian approaches to generalized 

linear models with random effects is clear. Bayesian approaches use posterior means 

or modes as point estimators for both parameters and random effects. The regression 

coefficients and the random effect variance are assumed to be random vectors and 

treated symmetrically with the observed responses and unobserved random effects. 

On the other hand, non-Bayesian approaches such as penalized quasi-likelihood 

approach of Breslow and Clayton (1993) and the maximum h-likelihood estimation 

approach of Lee and Nelder (1996) predict random effects using the mode of the 

conditional distribution of the random effects given the data. We concentrate on 

making comparisons of these two approaches with our approach. 

2.2.1 Likelihoods 

Before we make comparisons, we need to introduce the concept of the partially ob

served joint (log) likelihood as follows. 

Let Y be the response and U be the unobserved random effects. We assume 

that both the conditional distribution of Y given U and the distribution of U are 

parametric. The partially observed joint log likelihood with only the response being 
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observed is defined as 

£(/3, a, 7; Y, U) - a; Y|U) + £ ( T , U), 

where £((3, a 2; Y|U) is the logarithm of the conditional density of Y given U with 

(3 and cc being the regression and dispersion parameters respectively, and £ ( 7 ; U) is 

that for U with parameter 7 . Thus the marginal likelihood is 

|exp[£(/3,a,7;Y,U)]dU. 

In Breslow and Clayton's paper, the partially observed joint likelihood is approx

imated by the penalized quasi-likelihood defined as 

q(J3,a,r, Y , U ) = ^n^Ud^Y^p^) - ^u T D- 1 ( 7 )u , (2.8) 

where dY,-(-; •) denotes the deviance function defined in Section 2.1.1. 

2.2.2 Penalized quasi-likelihood and h-likelihood approaches 

Breslow and Clayton consider the model in (2.3), but assume U follows, at least 

approximately, a multivariate normal distribution with mean 0. They use solutions 

(/3, u), for fixed 7 , from the following equations 

flg(y,/3,u,7) _ n dg(y»ft ,u,7) _ n 

d(3 du 

as the estimators for ((3, u). That is, they obtain estimators through maximizing an 

approximation of the partially observed joint likelihood. They adopted the Fisher's 

scoring algorithm to obtain the solutions. The multivariate normality assumption 

is convenient to incorporate correlation structure among random effects, but quite 
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restrictive to model the distributional shape. 

On the other hand, Lee and Nelder consider the model in (2.3), that is 

Yij\\J = u~ED(^,o2), 

but with 

</(/0 = X / 3 + v, 

where v is a monotonic transformed variable of u, denoted by v = v(u), and the 

distribution of random effects is assumed appropriately. 

They call the partially observed joint log likelihood of (Y,V) the h-likelihood, 

denoted by £(Y, V; (3, a, 7 ) . The solution ( / 3 , V), for fixed 7 , from the following 

equations: 

M ( y , / 3 , v , 7 ) n 0 * ( y , f r v , 7 ) _ n ( 9 Q , 
dp ' av _ u { Z - y ) 

is used as the estimator for ( / 3 , V). They also adopted the Fisher's scoring algorithm 

to obtain the solutions. Lee and Nelder's method is feasible when the distribution of 

the random effect is conjugate to that of the observed response. 

2.2.3 Comparison for different predictors 

To better compare our approach with other current approaches, we make a compari

son of conditional expectation, conditional mode (the mode of conditional distribution 

of U given Y) and the orthodox BLUP. 

When both Y and U are normally distributed, the conditional mode of U given 

Y equals the corresponding conditional expectation which is also orthodox BLUP. 
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Hence Lee and Nelder approximated the conditional expectation by the maximum h-

likelihood estimates (MHLEs), that is, the solutions of equation (2.9). In fact, these 

solutions are equivalent to the modes of the conditional distribution of U given Y 

since 

£({3, « , 7; Y , U) = ^( /3 , a, 7; U|Y) + £2((3, a, 7; Y). 

Breslow and Clayton also adopted this approach in their penalized quasi-likelihood 

method, but they differentiated penalized quasi-likelihood which is an approximation 

of the partially observed joint likelihood. That is, they used an approximation of the 

conditional mode to be the predictor of random effects. 

Clearly the mode is neither necessarily a good approximation to the correspond

ing mean when the conditional distribution is not approximately symmetric about 

its mode such as in the case of normal, nor is it easy to evaluate its departure from 

the conditional mean. Lee and Nelder actually consider the partially observed joint 

likelihood of the response and a monotonic transform of original random effects. They 

claimed that their MHLE predictors of random effects are invariant with respect to 

monotone transformation of the random effects U. However the location of the mode 

depends on the dominating measure, therefore estimates on the original scale of ran

dom effects are preferred. Thus we suggest approximating the conditional expectation 

by orthodox BLUP on the original scale of random effects where appropriate. 

The orthodox BLUP is defined as a linear unbiased predictor of U given Y which 

minimizes the mean square distance between the random effects U and their predictor 

within the class of linear functions of Y . We call it 'orthodox' BLUP to distinguish 
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it from the modal predictor. 

Comparing with the conditional expectation which is the best unbiased predic

tor for U among all functions of Y , the orthodox BLUP is truly the best unbiased 

predictor for U among all linear functions of Y . We will demonstrate that the or

thodox BLUP is often a good predictor for U though the conditional expectation is 

generally a non-linear function of Y . Unlike the conditional mode, the mean square 

distance between random effects and the corresponding orthodox BLUP can usually 

be evaluated easily. 

2.3 Estimating functions 

Our orthodox BLUP approach is based on estimating functions. Some results on 

estimating functions will be used repeatedly later. We briefly summarize them here. 

2.3.1 Unbiased estimating functions 

Suppose Y i , . . . , Y m are independent random vectors. Let us consider the estima

tion for the parameter 0 = . . . ,9q)T based on estimating functions of the form 

V>(0;Y) = E £ i ^ i ( 0 ; Y i ) = £ £ i V \ ( 0 ) , where tp^ i = 1,..., m are unbiased esti

mating functions, that is 

Egi/,i(0;Y) = 0, 

where tb(0;Y) is of the same dimension as the dimension of 0. 

We also assume that ib(9;Y) is regular, (J0rgensen and Labouriau 1994; McLeish 

and Small, 1988). Let the density function of Y and the range of Y be denoted by 
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p(Y; 0) and X, respectively. We define a regular estimating function as follows: 

Definition 2.1 

An estimating function ib(0;Y) is said to be regular if the following conditions are 

satisfied for all 0 in the parameter space: 

1. The support ofY does not depend on 0; 

2. E0ih(0;Y) = 0; 

3. The partial derivative a^^'Y^ exists for almost every Y in X, j = 1,..., q; 

4- The order of integration and differentiation may be interchanged as follows: 

A I m Y) P (Y; = jx J - me; Y W Y ; *)} dY, 

j = l,...,q. 

5. S(0) = Eg d^^'Y^ is a nonsingular q x q matrix; 

6. V(0) = EQ[IP(0; Y)xb(9; Y) T ] is a q x q positive-definite matrix. 

S(0) and V(0) are called the sensitivity and variability matrices, respectively. 

Note that we do not assume that ib^O; Y)s are regular. Actually the corresponding 

sensitivity and variability matrices for Y) are often singular in practice, due to 

the presence of categorical covariates. However, we assume that 1/̂ (0; Y) satisfies all 

above conditions except the non-singularity requirement of its sensitivity and vari

ability matrices. 
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In the estimating function approach one considers estimators which can be ex

pressed as solutions of the following estimating equation: 

m 

tf(0;Y) = 5>i(0) = O. 
i-l 

By standard asymptotic theory for estimating functions, we may show that under 

certain regularity conditions, the sequence of roots, 9^ \ associated with the estimat

ing function ^ ^ ( 6 ) , is consistent for 0 and asymptotically normal. Specifically 

we have (Artes and J0rgensen 1998): 

Lemma 2.1 

xAr7(0(m) -ff)-2+N (0, J _ 1(0)) as m -> oo, (2.10) 

where 3(6) can be expressed in terms of the sensitivity and variability matrices for 

cluster i, defined by S*(0) = E0 { ^ r 1 } , and V;(0) = E0 {^(0)V\T(0)} respec

tively: 

^ E S i W J j m - ^ V ^ ) ! j m - ^ S i W J - (2-11) 

The asymptotic covariance matrix of 0 is therefore given by the inverse of the 

Godambe information matrix defined by 

3(0) = S(0)V(0)-1S(0)T, (2.12) 

where S(0) = ET=i Si(0) and V(0) = Z?=1 V<(0). 

The estimating function is a generalization of the score function U(6): 
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where £(Y; 0) = logp(Y; 0) is the log likelihood. 

The sensitivity and variability matrices for the score function have following rela

tionship: 

S(0) = -V(0), 

which does not hold for regular estimating functions in general. 

The estimator and Godambe information matrix for the score function are the 

maximum likelihood estimator, denoted by MLE, and the Fisher information ma

trix, denoted by 1(0), respectively. Among all regular estimating functions, the score 

function is optimal in the sense that the estimator associated with the score func

tion attains the minimum asymptotic variance among estimators associated with all 

regular estimating functions. To state this result precisely, let the Godambe informa- , 

tion matrix for any given regular estimating function ip be denoted by J^(0). Then 

(J0rgensen and Labouriau 1994) 

jj(0)-r\0), 

is nonnegative-definite for all 0 in the parameter space. 

However, in the context of generalized linear mixed models, the full score function 

for both the response and the random effects is not available since the random effects 

are unobserved. Thus we consider estimating functions other than the score function. 

We can also consider the optimality property, but within a more restricted class of 

estimating functions. In the next section, we state an optimality result within a 

certain linear class. 
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2.3.2 Optimal estimating functions 

Crowder (1986, 1987) proved, under some regularity conditions, the following 

Lemma 2.2 
m 

*l>opt(0) = Z2Si(0)V-1(0)ibl(0) (2.13) 
i=i 

is an optimal estimating function within the class of all linear estimating functions 

of the form 
m 

EQiWiW. (2-14) 
i=i 

where Qi(0) is a constant weights matrix of appropriate dimensions. More specifically, 

Qi(0) is a matrix function of parameter 0, but does not involve Y. 

The solution 0 from the estimating equation xbopt(0) = 0 is then asymptotically 

normal with the asymptotic mean 0 and asymptotic variance given by the inverse of 

m m m 

•VP) = £ - S ; ( 0 ) = £ V , ( 0 ) = £ Ji(0). 
i=l i=l i=l 

That is, the Godambe information for the optimal estimating equation is the sum of 

the Godambe informations for each i. 

2.3.3 Nuisance parameter case 

Suppose that 0 = (0(i), 0(I

2))T where 0(i) and and 0(2) are taken as the parame

ter of interest and the nuisance parameter, respectively. We partition ,ibi(0) into 

{\bf\0), tp[2\0)), where xb^f1 and ipf1 are of the same dimensions as those of 0(X) 

and 0(2), respectively. Let ib^ = Y^Li ipf"1 k = 1, 2. Then the asymptotic covariance 

matrix for 0 ( 1 ) is given by (2.15) if E e

d ^ { 0 ) = 0. 
(2) 

Lemma 2.3 

Asymptotic Var(0{l)) = S^(0)Vn(0)S^(0)T, (2.15) 
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where Skl{0) = EQ^O^- andVkl(0) = EQ (0)V>(/)(0)t| k,l = 1,2. 

Knudsen (1998) obtained this result in his unpublished thesis. Note that since 

Si2(0) = 0, his proof is straightforward, and is based on the following equation: 

Sn(0) 0 V 1 

Vn(6>) V 1 2(0) 

^ S21(0) S22(0) ) \ V 2 1(0) V 2 2(0) j \ S21(0) S22(0) 

Sn(0) 0 
- T 

sri1WVn(0)sr1

1(0)T * (°" 
V 

Clearly the upper left block of the right hand side, Sr1

1(0)Vii(0)Sn1(0)T, is the 

asymptotic covariance of 0(i) since the right hand side is the asymptotic covariance 

of 0. 

The asymptotic covariance of 0(i) will, in general, be affected by both the variance 

of the nuisance parameter estimator and the variability for the estimating function 

for the nuisance parameter. However, under nuisance parameter insensitivity, that 

is> Efl \ A = 0, this result tells us that the asymptotic covariance matrix of 
U 0 " ( 2 ) 

the estimator for the parameter of interest will be affected by the variability and 

sensitivity of the estimating function for the parameter of interest, but not by the 

remaining parts of the variability and sensitivity matrices for the estimating function. 

2.4 Data examples 

In this section, we describe some clustered data examples where over-dispersion and 

heterogeneity may exist. We will analyze these data sets in Chapter 8. 
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2.4.1 Epilepsy data 

Thall and Vail (1990) presented longitudinal data (see Table A.2) from a clinical trial 

of 59 epileptics who were randomized to a new anti-epileptic drug progabide (Trt=l) 

or a placebo (Trt=0). Baseline data available at the start of the trial included the 

number of epileptic seizures during the 8-week period prior to randomization and the 

patient's age. A multivariate response variable consisted of the counts of seizures 

during the 2-week periods before each of four visits to the clinic. 

Count data are traditionally modelled by the Poisson distribution; however the 

Poisson assumption that E(Y) = Var(F) is generally inconsistent with the empirical 

behaviour for clustered data. A set of count data is called over-dispersed or under-

dispersed if Var(y) > E(F) or Var(F) < E(F), respectively. Over-dispersion is very 

common in biological data. An over-dispersion diagnostic plot for count data relative 

to Poisson regression models (Lambert and Roeder, 1995) is displayed for the epilepsy 

data in Figure 2.1. The graph is convex if over-dispersion exists with respect to the 

corresponding generalized linear model. The clear convexity of the over-dispersion 

diagnostic graph for the epilepsy data with respect to the Poisson generalized linear 

model may indicate the existence of over-dispersion. 

Subject (random) effects are often incorporated into Poisson models to account 

for heterogeneity, over-dispersion relative to Poisson models, and dependence among 

the repeated measurements within the same subject. It is natural to introduce a 

second level of random effects at familial level to account for familial aggregation of 

epilepsy (Paik, Tsai and Ottman 1994); however we do not have such familial grouping 

information for this data set. A second level of random effects is often introduced to 
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Figure 2.1: Overdispersion diagnostic plot for epilepsy data. 
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account for uncontrollable covariates at each visit (Lee and Nelder 1996). We will thus 

consider generalized linear models with two levels of random effects in next section. 

Such two levels of random effects arises from many practical situations (Hedeker and 

Gibbons 1994; Goldstein 1995). 

2.4.2 Seed germination data 

Crowder (1978) presented data (see Table A.l) on the proportion of seeds that germi

nated on each of 21 plates arranged according to a 2x2 factorial layout by seed variety 

and type of root extract. In particular, he presented the total number of seeds on 

each plate and the number of seeds germinated on that plate (Table A.l). He noted 

that there is between-plate heterogeneity of proportions. Figure 2.2 shows that these 

proportions vary from 0 to 0.83 among plates. Furthermore, the variability among 

clustered binary responses also often exceeds what would be expected due to binomial 

variation alone. It is natural to account for such heterogeneity and overdispersion by 

means of random effects models. 

2.4.3 Cake baking data 

Cochran and Cox (1957) presented data (see Table A.3) from an experiment in baking 

chocolate cakes. Three recipes were tested and each recipe was replicated 15 times, 

giving total of 45 batches of cake mix. Each batch was divided into six cakes and these 

were baked at six different temperatures. After baking, a breaking angle was measured 

as the response of the experiment. Firth and Harris. (1991) found the residual plots 

based on the analysis of variance revealed heterogeneity between batches. This can 

also be seen from the boxplot of the responses by batches in Figure 2.3. 
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Figure 2.2: Scatter plot of proportions of seeds germinated versus plates. 
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Figure 2.3: Boxplots of cake baking data by batches. 
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Chapter 3 

Tweedie mixed models 

In this chapter, we introduce a class of models with nested random effects based on 

the class of Tweedie exponential dispersion model distributions. We call these models 

Tweedie mixed models. When the conditional responses follow a specific distribution, 

say, the Poisson or gamma, we call it a Poisson mixed model or gamma mixed model, 

respectively. For a model with Poisson responses and gamma random effects distribu

tions, we call it Poisson-gamma model. We will also discuss the covariance structure 

of the model. 

In this section, we consider three-level hierarchical models where each model is com

posed of m independent clusters indexed by i. Within each cluster i, there are J; 

correlated sub-clusters indexed by Then within each sub-cluster there 

are correlated observations. Let the vector of observations be denoted by Y = 

( Y i n , . . . , Y n n i l , . . . , Y m J r n l , . . . , Y m j m n m J m ) T . Then Yijk represents the kth observation 

in sub-cluster (i, j). One such hierarchy would be a multi-center longitudinal clini

cal trial involving repeated measurements within patients and patients nested within 

3.1 Models 
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study centers. Another example is teaching method evaluation involving high scool 

students within classes and classes nested within schools. (Goldstein 1995; Gray et 

al. 1995). Yijk denotes the A;th measurement for patient j taken in the ith medical 

center for the former example, whereas the represents the test score for student k in 

class j of the ith. school. 

Denote the cluster, sub-cluster and observation covariates by z^Zjj and z^, re

spectively. We assume that there exist cluster and sub-cluster specific random ef

fects. The random effects for the cluster i and sub-cluster (i,j) are denoted by 

Ui and Uij, respectively. Thus the vector of the random effects can be written as 

U = (Ui, ...,Um,Un,UmJm)T = (U*, £/**), where U* and stand for (Uu Um)T 

and (Un, ...,Umjm)T, for short. We assume further that, given the random effects, 

the responses are independent and follow certain Tweedie distributions. Specifically: 

Al) Given U = u, Y m , Y n n u , Y i n , Y i j n . . , Y m J m i , F m J m „ m J m are con

ditionally independent, and the conditional distribution of Y ^ , given U = u, depends 

on Uij only which is 

Yijk\U = u ~ r£wp{}iijkuij,p2uijl~lp) 

= UijTwp ifiijh, — ) , (3.1) 
V Uij) 

where / i ;^ = exp(z Â./9(3)). For case p = 1, namely the Poisson distribution, p2 = 1. 

Furthermore we assume that, given the cluster level random effects, the sub-cluster 

level random effects are independent and follow Tweedie distributions as follows: 

A2) Given U* = u*, Un, ...,Umjm are conditionally independent, and the condi-
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tional distribution of [/»_,-, given U* = u*, depends on Ui only which is 

t/ij|U„, = U * ~ TWq(fJ,ijUi,UJ2Ui1 Q) 

= UiTwq (^lij, ^- j . (3.2) 

where ptj = exp(zJ/3(2)). 

A3) Finally we assume that the cluster level random effects are independent with 

Ui ~ Tw r(^,a 2), (3.3) 

where ^ = exp(zt

T/3(1)). 

L e t x5fc = (z7> zij> zijfe)- T h e n t h e f u l 1 covariate matrix is X = ( x m , . . . , x m J m „ m J m ) 

The Tweedie distributions Tw r, Tw 9 and Twp are called the level 1, level 2 and level 

3 distributions, respectively. To avoid non-positive random effects, r > 2 and q > 2 

are required. 

Now we discuss some implications of the model assumptions. First, note that (3.1) 

interprets Uij as weights. Note also that the dispersion component takes a special 

form p2U\~v for the assumed level 3 Tweedie distribution in assumption Al). This 

special form will enable us to obtain unbiased estimating equation for the regression 

parameters later. It also leads to variance component structure of the covariance ma

trix which will be shown in the next section. This special dispersion component form 

also gives the linear structure of the conditional variance of the level 3 distributions. 

Thus we have the following double linearity: 
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Double linearity 

E[Yijk\\J] = m^Uij, Var[^ i fc|U] = p2pp

ijkUl3. 

The first statement is clear from the assumption, whereas the second statement 

is immediately verified as follows: 

V a r o l i i ] = P

2Ut-pi4jkU% = p 2 ^ . 

That is, both the conditional mean and the conditional variance of the level 3 

distribution is linear in the second level random effects. In fact, for any given p, the 

double linearity is equivalent to the assumption Al). Similarly, for any given q, A2) 

is equivalent to the following double linearity of the level 2 distributions. 

E[cyU»] = fMjUi, Varol i i*] = wV'A 

We discuss some decompositions of the models. We consider the structure of 

the conditional mean. In the literature, the modeling of within cluster dependence 

is usually focused on incorporating random effects into a monotonic transform of 

the conditional mean assuming constant dispersion components. For multiplicative 

models, it is usually defined as 

E[Yijk\V,V] = pHjkUiVij. 

This implies that 

Var[Yijk\\J]=uj2V(LiijkUiVij) 

where V(-) is the variance function for the conditional distribution of Yijk, given 

(U, V). In addition, Ui and V}j are often taken as independent, but the covariances 
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of the responses in general do not then exhibit a variance component structure (Mor

ton 1987; Thall and Vail 1990; Firth and Harris 1991; Lee and Nelder 1996). In our 

model assumptions, the conditional expectation of Y given U is linear in the random 

effects. To compare our model assumptions with others, we give the following multi

plicative decomposition for the conditional expectation of Y given U. 

Multiplicative decomposition 

EfY -̂fclU] = fajkUij = fajkUi-jji- = PijkUiVij, 

where Vij = ^ji- and Cov[C/j, V~ij] = 0. The latter can be shown as follows: 

E , | , u . ] - E { ™ } 

therefore 

Cov[^,vy = E (ujfy - E(0i)E 

= E (Uij) - HiHij = 0. 

Additive decomposition 

Besides the above multiplicative decomposition, the response of this model also 

possesses the following additive decomposition with three uncorrelated, but dependent 

components as follows: 

Yijk = {Yijk — P-ijkUij) + {p-ijkUij — Hij^ijkUi) + HijllijkUi. (3.4) 
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This additive decomposition will facilitate residual analysis. The two sides of the 

equation are clearly equal. The three components on the right-hand side can be eas

ily shown to be uncorrelated through the covariance structure described in the next 

section. 

Tweedie mixed models with one level of random effects 

A Tweedie mixed model with one level of random effects is a special case of the 

Tweedie mixed model with two levels of random effects by setting us2 = 0 and J; = 1 

for all i. 

3.2 Covariance structure 

The derivations of both our parameter estimators and random effects predictors are 

based on the moment structure of the model. Thus we investigate the moment struc

ture of the model here. 

3.2.1 Derivation 

We begin our investigation with the moments of the random effects. The intra-

dependence within clusters are clearly reflected by the covariance structure described 

below. The derivations of the following moment expressions are straightforward us

ing the conditioning technique. Using Kronecker notation 8^) being 1 if s = i, 0 

otherwise, the covariance structure can be expressed in the following way: 

E[Ui] = ^ and Cov[Us, Ui] = 8(s, i)o-2f4. 

E[iy.y»] = iHjUi and Var[Ly[/,] = co2^. 
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Cav[Ua, Uij] = S(s, i)<T 2/Zi/iij, 

E[Uij] = miMj, (3.5) 

Cov[<7st, Uij] = S(s,i) \o2^iiijHn + 6{t,j)u2fMifiij] , (3-6) 

Cov[Us,Yijk] = 5(s,i)a2pJinijfj,ijk, 

Cov[Ust, Yijk] = S(s, i) [a2^pu + 6(t, J)UJ2miAj] pijk, (3.7) 

E [ ^ | U ] = iMjkUij. 

Var[F l j f c|U] = p2tfjkUl3, 

E[Yijk] = mpijHijk = exp(xJfc/3), (3.8) 

therefore the link function is log. 

Cov[YM,Yijk] = 5(s,i) \o2tfiPijiiitPijkPiti 

+ SitJ^pirfjPijkPiji 

+ 5(l,k)p2»ipl3tfjk]}. (3.9) 

Since all the derivations of these moment structures are similar, we show, as an ex

ample, the derivations of covariance of the responses. Given U , Ym,..., Ynnu,..., Yi3x, 

• • •, Y i j n i j , Y m J m l , . . . , YmjmnmJjn are conditionally independent, so we have 

Cov[r s t (,r i j f c|u] = o if ( s , u ) ^ ( M , *0, thus 

Cov[y s U,^- f c |U] = S(s,i)8(t,j)S{l,k)Vai(Yt3k\U) 

= 8{s,i)S(t,j)5(l,k)p2f/ijkUi3. 

Therefore 

Cav[YM,Yijk] = E{Cov[F s «,y u f e |U]} + Cov[E(r s«|U),E(F i i f c |U)] 

= S(s,i)S(tJ)6(l,k)E\yax{Yijk\U)] 
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+Cov[pstlUst, fJ.ijkUij] 

= 5(s,i)5(t,j)5(l,k)p2^ijkE(Uij) 

+tiaiilHjkCov[Uat,Uij]. (3.10) 

The proof is completed by plugging (3.5) and (3.6) into the last equation. 

Now we return to (3.4) and verify that the three components on the right-hand 

side are uncorrelated. The verifications are very similar so we only show that the first 

two components are uncorrelated. It follows from (3.6) and (3.7) that 

Cov[Yijk, Uij] = fjLijkVar(Uij); 

hence 

Cov[Yijk - fj,ijkUij, PijkUij] = HijkCov[Yijk, U^} - fj,2

ijkCov[Uij, Uij] 

= 4-*Var(^-) - p2ijkV&r(Uij) = 0. 

Similarly we have 

Cov[Yijk — fajkUij, Hijfj-ijkUi] = 0. 

So the result follows immediately. Finally, note that 

Corr[WS,]-

clearly depends on the mean parameters. 

3.2.2 Matrix expressions 

To facilitate the derivations of the quantities of interest in the rest of the thesis, 

it is desirable to express the moment structure in matrix form. After introducing 
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some matrix notation, we will state the covariance matrices between random effects 

and the responses in matrix form. The matrix form will be useful in the derivation 

of the orthodox BLUP predictors of the random effects. We will then concentrate 

on the derivation of the inverse of the covariance matrix of the response since this 

inverse plays a key role in all stages of the derivation of the orthodox BLUP approach. 

Let us first introduce some matrix notation. Let Y$ denote the responses cor

responding to the ith cluster, that is, (Yin,..., Ynnil,..., YUil,..., Y i J i n i J i ) T . Let 

Mi* = (Mil) • • • > t^ijjy Vij* = (Mtjl> • • • J ^ijmjY") Mi** = (Mil*> • • • ' MZ/i*) a n d  Uij*  =  

(^it^ijIHjli • • • i fJ'ifJ'ijH'ijriij) • Then 

E(Y i) = ^i = K T i * , - - - , ^ i * ) T -

In addition, for any a = (ai,... , an), ar is defined as (a[,..., â ). Then we have 

Cov[Ui,Yi] = a-2i4-1vJ, (3.11) 

Covp7y, Yi] = ^tt-^uj + ̂ ( O 7 , . . . , i/?,, . . . , 0T). (3.12) 

Now we derive an explicit expression for the inverse of Var(Y). Note first that 

I Var-^Yi) 

Var _ 1 (Y) 

0 \ 

V 0 V a r - ^ Y J j 

since different clusters are independent. Thus it is enough to derive the inverse of 

Var(Yj). The inversion of Var(Yj) can be further simplified by noting that Var(Y;) 

is a patterned matrix which reflects the hierarchy. To find a simple expression for 

34 



Var(Yi), we define 

Then 

/ v 

•A-ij P P'iP'ij 

U i 0 X 

Var(Y i) = 

0 

Therefore Var(Yj) can be expressed as a positive-definite matrix plus a matrix 

product between a column vector and a row vector. Thus we can invert Var(Yj) 

using the following well-known formula (cf. Rao 1973) 

(A + a b ^ - 1 = A " 1 
A-labTA~l 

1 + b T Aa ' 

where a and b are vectors and A is invertible. With 

(3.13) 

( 

V 

Aii 

0 

0 \ 

a = <T2//£ Ui and b = i>i, we obtain 

VarfY,)- - (A, + O V - W ) " = A."' - f f ^ f f i ^ . (3.14) 

where 
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A T 1 

A - 1 

0 

0 

Now 

where each block A^- is again of the form (3.13). Applying the same matrix inversion 

formula to the A^- gives 

< ± 0 

A " 1 

\ 

(fillip [ M ' 

where ^ = l/(p2 + to2^ 1 £*=i M i ? / ) - Thus we have 

(3.15) 

Ajj ̂ jj* 
2 A ^ I J * 

^ Mij Z^fc=l H-ijk Wij 1-p 
p2 Mij* 

_ 1-P — wijH>ij* , 

Plugging the last two equalities into (3.14) gives the explicit formula for the inverse 

of the covariance matrix of the responses. We will write out this explicit expression 

with simpler notation later. This explicit expression will be very useful in our discus

sion of random effects prediction and parameter estimation in the following chapters. 
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Chapter 4 

Orthodox BLUP predictors of 

random effects 

In this chapter, we study the orthodox BLUP of random effects. Robinson (1991) 

presented a variety of applications where the prediction of random effects is of inter

est. These applications arise from areas such as sports, genetic study, quality and 

management, time series, image analysis, geostatistics, actuarial science and small-

area estimation. The prediction of random effects is also found to be very useful in 

the identification of outliers. Fellner (1986) discussed this topic with some examples. 

He found that looking at the predictors of random effects is often more sensitive for 

detecting outliers than merely looking at residuals. 

We derive the explicit expressions for the orthodox predictors of random effects. 

Let us begin with the general expressions for orthodox BLUP. 
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4.1 Orthodox BLUP 

Let U and Y be random vectors with finite second moments. We define the orthodox 

BLUP of U given Y by: 

U = E(U) + Cov(U, Y )Va r _ 1 (Y) (Y - E(Y)). (4.1) 

The mean squared distance between U and U can be evaluated through the fol

lowing equation (Harvey 1981; J0rgensen et al. 1996b): 

V a r ( U - U ) = E [ ( U - U ) ( U - U ) T ] 

= Var(U)-Cov(U,Y)Var- 1(Y)Cov(Y,U). (4.2) 

This mean squared distance can be further decomposed into the sum of the mean 

squared distance between orthodox BLUP of U given Y and the conditional expec

tation of U given Y and mean squared distance between the conditional expectation 

of U given Y and U as follows: 

E [ ( U - U ) ( U - U ) T ] = E[ (E(U-E(U |Y) ) (U-E(U |Y) ) T ] 

+E[(E(U|Y) - U)(E(U|Y) - U) T]. (4.3) 

In addition, we have the following two desirable orthogonality properties concern

ing the orthodox BLUP: 

Cov[U - U, U] = 0 and Cov[U - U , Y] = 0. (4.4) 

That is, the residuals between the random effects and their orthodox BLUP pre

dictors are orthogonal to both the response and the predictors. These orthogonality 

properties will be repeatedly used later. 
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The first two moments of the orthodox BLUP are as follows: 

E(U) = E(U), 

Var(U) = Cov(U, Y)Var 1(Y)Cov(Y,U). (4.5) 

The first equation follows immediately from (4.1) since E[Y — E(Y)] = 0. The 

second statement can be easily verified by using (4.4) as follows: 

Var(U) = Var(U - U + U) 

= Var(U - U) + Var(U) + 2Cov(U - U, U) 

= Var(U - U) + Var(U) + 0. (4.6) 

The verification is completed by noting (4.2). Comparing (4.2) with (4.5), we have 

Var(U) < Var(U). 

Thus the variance of the orthodox BLUP predictor of random effects is generally 

smaller than that of the random effects. Thus the orthodox BLUP predictor is also 

referred to as the shrinkage predictor of random effects. 

4.2 R a n d o m ef fects p r e d i c t o r s 

Explicit expressions for the orthodox BLUP predictors of random effects U given Y 

can be derived from (4.1). Since different clusters are independent, we derive the 

random effects predictors from the following two formulae: 

Ui = E(Ui) + Cov(Uu Y i)Var(Y i)" 1 {Yt - E(Y^), (4.7)' 

and 

Un = E(Uij) + Cov(% Y i)Var(Y i)" 1 (Y* - E(Y,)). (4.8) 
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Let us first derive the explicit expression for the orthodox BLUP predictor Ui. 

It is more convenient to derive the expression using a matrix form based on (3.11), 

(3.12) and (3.14) as follows: 

u- - u I . V - W A - I ^ r 2 A ^ ( A r ^ ) T ) ( Y v ) 

1 + a^-2ujA^Ui 

Noting that 

we have 

Ji riij 

j=l fc=l 

Hence 

where u>ij = l/(p 2 + co2/4j 1 Y^=i Pnjk) a s defined in (3.15). 

(4.9) 

Thus the orthodox BLUP predictor for each cluster i is a linear function of re

sponses within the cluster. A reasonable predictor of Ui should be nonnegative since 

Ui is. The orthodox BLUP predictor Ui is clearly nonnegative when the responses 

are. In fact, we mainly concentrate on models with nonnegative responses in this 
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thesis. 

Similarly we can derive an explicit expression for l \ . We introduce a notation 

which denotes (0 T , . . . , t/J^,..., 0 T ) T . We have 

Cov[tfy, Yt] = o 2 ^ 1 ^ + uj2^eJ3. (4.12) 

Thus 

Uij = (a2prx^vl + ^ - ^ V a r ^ ) " 1 ^ - n) 

= HjUi + rftf^elVaxOTiy^Yi-Vi) 

„ f F x „ 2 „ H 0 T | i - i a2p\-2AllUi(AilUi)T\ / v 

l + a ^ - ^ A - 1 ^ ) ^ 

= mjUi + ̂ Vr1(Ar1%)T(Yi - -UilJi). (4.13) 

Plugging A^ey = (0 T , . . . , Wij(fj,l~p)T,..., 0 T ) T into (4.13), we obtain 

Uij = /Jy/7i + uj2nlJlWij Pi'kiYijk - HijHijhUi) 
fc=i 

= p2wijfMijUi + u2fj,q

i[1WijJ^i21

i[k

pYijk, (4.14) 
fc=i 

where the second expression is obtained from the identity 

Uij 
2 i 2 o - l 2-p 

pwij = l - u filj Wij 2^ 
fc=l 
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The first expression for Uij shows that U^ is PijUi adjusted by a linear function of 

the responses within sub-cluster (i,j). The second expression shows that Uij is also 

nonnegative when the responses are. 

4.3 Mean squared distance 

To evaluate the distance between random effects predictors and the corresponding 

random effects, we study the diagonal elements of Var(U — U). These mean squared 

distances form the basis of our discussion of consistency of random effects predictors 

in next section. 

Using the notation c(i) = E(Ui — Ui)2 and c(ij) = E(f/y — U^)2, it follows from 

(4.6) that 

Vai(Ui) = Var(Ui-Ui + Ui) 

= Vai(Ui-Ui) + Vai(Ui) + 2Cov[Ui-Ui,Ui] 

= c(i) + V a r © ) + 0. 

Hence 

c(i) = Viur(Ui)-Vax(Ui) 

= a 2 ^ - V a r (ft). (4.15) 

Similarly, we have 

c(ij) = V a r ( i y - V a r ( l \ ) 

= <r2t*il*ij + u 2Pi(J, 9ij - Var(<7y). (4.16) 
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We derive explicit expressions for c(i) and c(ij) via Var(U). The explicit expres

sion for Var(CTj) can be derived from (4.5) as follows: 

Var(^) = Cov(C/ i )Y i)Var(Y i)- 1Cov(Y l,f/ i) 

2 r—1 T I i - l u -"-t "i) J2..t-1,. 

, 1 + a^ujAr^i 

1 + a^-'ujA-1^ 

Thus 

l + a V r V A " 1 ^ 

= ^ 1 

Mi 

Hence we have the following proposition: 

Proposition 4.1 

1 + <72/i£ 1 Efcil wiilxijli'i3k 

Now we derive the explicit expression of c(ij) based on (4.16). As the derivation of 

a concise expression for V&r(Uij) using the matrix form in (4.5) becomes much more 

complicated, instead we derive V&v(Uij) directly from (4.4). To ease the derivation, 

we first rewrite Uj as 

c(i) J i n u 

Ui = EE wiiViilhrkYiik + constant. 
Mi 1=1 k=l 

Also note that 
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Ji
 nH _ 2 . , r 

2 r - 1 2-p u A*i -> 
a wijVijVijk = 7777 - 1-

j=ifc=i c w 

Furthermore, it follows from (4.4) that Cov(Uij, Uij) = Cov(C/y, C/y). Now we have 

V a r ( l \ ) = CoviU&Uij) 

= Cov(p2WijHijUi + u2\i\~xWij VijkYijk, Uij) 
fe=i 

= (PwijiUjCoviUi, Uij) + <J^XWij £ /4/Cov(y i j f c, C/y). (4.17) 
fc=i 

But 

( c ( j \ Ji nu 

zZ zZ wiiVii^i\kYiik + const, C7y 
^ i=l fc=l 

= — £ £ ^ ^ / ^ f c p C o v ( y ^ , c / y ) 
W l=ik=l 

r^l. (=1 fc=l 

C R 2 A i i " 1 zZ £ wulMi&b + ^lAj^Wij Ihjk 

l-\ k-l k=l 

= c ( z ) ^ j | ^ - - l + l - p V J | 

= cP-^Hij - p2c(i)nijWij, (4.18) 

and 

2-P u2Aj ^ij zZ ^ f c

p C o v ( y ; j A : , i y = (CT 2 ^A4 + ̂ MijWtfj lwa zZ Hk 
k=l k=l 

= { a 2 ^ l + u2^q

ij){l-p2wij). (4.19) 

Plugging (4.18) and (4.19) into (4.17), after some simplification we have 

Var(ftj) = CT2A</4 + uPmnlj - p2Wij (w2#j/4j + p2c(z)wy/Li2) . 

Therefore we have 
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Proposition 4.2 

c(ij) = o2wij + ffctywijfij) . 

This expression does not involve a2 and pijk explicitly, but implicitly via c(i) and 

w^. In the expressions for both c(i) and c(ij), the p,ijks appear only in the form of 

Z)fc=i Aii7/c

P) that is the average of p2~k

p within sub-clusters. 

4.4 Consistency 

In this section, we draw consistency results about random effects predictors based 

on the mean squared distances derived in last section. According to Chebyshev's 
.—. p p 

inequality, we have c(i) —» 0 implies Ui —> Ui, and c(ij) —¥ 0 implies Uij —> Uij. To 

draw our consistency results based on this inequality, we need to find upper bounds 

for c(i) and c(ij). Since oversimplified upper bounds do not result in desirable consis

tency results, we derive the upper bounds through a sequence of inequalities. After 

some algebra, we can show that c(i) is bounded above as follows: 

Lemma 4.1 

fr2/4 (f?+ u2minj{nij)maxj(tf71)minjjk{p]jk

p)) 
c{i)< 

p2 + u2minj(nij) maxj(p,jj )minj,k(pijk) + a2minj(riij)Ji mui m^nj(lIij)m'''nj,k(fJ'ijk). 

Proof 

We start our investigation with w^. 

1 

P2+U2p1j Efc=l Mijfc 
1 

p2 + w2minJ-(riiJ0minj(/j?71)mini/b(^7) ^ . 9 , . . 9 _ : _ <- / , 2 - P V ( 4 - 2 0 ) 
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Also we have 

nij sr^ij . , 2 - p 

E 2 - p _ Z ^ f c = l H'jjk 
wijf1ijk 

fc=l P - I - W /Xy 2^k=l Pijk 
1 

„ P 2 \-L02ufl~l 

E nij ,,2-p I ^ PlJ 
fc = l ŷfc 

> 
m i n J ( n , J ) £ i n j f c ( ^ ) + a ; 2 m a X ^ ^ 1 ) 

mi"j(^)minjfc(^ rfcP) 

p2 + u2mmj(nij)ma,xj([iq

i71)mmjk(^ ' 

hence 

2 r - i v * ^ 2 - P ^ gV» ^min^^ )mmj(nij)mmjk{pijk

p) 
i=ifc=i P +w 2 min J (n l i )max i (^ )mmjk(nijk

p) 

Now we have 

c( i ) = 

< 
o2ti ( P 2 + ^2m%(^j)maxJ(pf~1)min j ; f c( 

p2 + w2minj(nij)maxi(pf71)minJ-fc(pJ

27fe

p) + ^min^n^) Ĵ ^mm /̂Jminj,k{lAjk ) 
• 

The derivation of an upper bound for c(ij) is straightforward. Note that Propo

sition 4.1 immediately implies that 

c(i) < a 2 t f • 

In addition, we have 

piw.. = ?! < i 
13 o2 + uPulj1 E ^ i lAik 
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Thus 

c(ij) = p2wij {uPliifij + p2c{i)wijp2

i]) 

^ 2 I 2 Q , 2 r 2 \ 

It follows from (4.20) that c(ij) is bounded above as follows: 

Lemma 4.2 

c(ij) < 

The following 'small dispersion asymptotics' (J0rgensen 1987b) is an immediate 

consequence of Lemma 4.1 and 4.2: 

Proposition 4.3 

1. Ui as a2 -> 0 or (UJ2, p2) -> (0,0); 

2. ftj - A as p2 -> 0 or (a 2 , a;2) -)• (0,0). 

For large sample asymptotics, clearly we have 

Proposition 4.4 
p Ui as Ji —>• oo and C/j,- p C/jj as mirijinij) —>• oo, 

a// Pi, Uij and p,ijk are contained in a compact set not containing zero. 
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This result distinguishes the consistency conditions for Ui from those for U^. The 

former is implied by a large number of sub-clusters within a certain cluster, while the 

latter is implied by large sizes of the sub-clusters. This result matches our intuition. 

The above results can be expressed in a more delicate form derived from Cheby-

shev's inequality as follows: 

Proposition 4.5 

under the same conditions. 

It follows from (4.3) that c(i) ->• 0 and c(ij) -> 0 also imply Ui - A E(Ui\Y) 

and Uij - A E{Uij\Y), respectively. Thus Ui - A E(Ui\Y) and U{j - A E(J7„|y) are 

clearly implied by the conditions stated above. Similarly, we have 

Proposition 4.6 

A more delicate discussion of the consistency of the random effects predictors 

would involve the relationships among the quantities fa, fj,ijk,p,q,r,riij. Some 

further results will be discussed in Section 7.1.1. 
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Chapter 5 

Parameter estimation 

5.1 Estimation of regression parameters 

We begin our discussion on the estimation for the regression parameters with the case 

of known dispersion parameters. The inclusion of unknown dispersion parameters wi l l 

be discussed in next section. 

5.1.1 Estimated score function 

As the score function is optimal among al l regular estimating functions, we begin our 

investigation with the partially observed score function defined below: 

30(2) 

m Ji / X 1 " 9 

— £ £  Zij~~2~(Uij — UiPij), 
!) i=l j=l 

£ £ £ Zijk K O^ijk UijPijk)-

m Ji ritj 1-p 

3/3(3) i=l j=l k=l P' 
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The marginal score function for the response Y is obtained by taking expectation 

of the above partially observed score function with respect to the conditional distri

bution of the unobserved random effects U given the responses Y. Since the partially 

observed score function is linear in the unobserved random effects U, the marginal 

score function for the response Y is obtained by replacing unobserved random effects 

U in the partially observed score function by the expectations of the unobserved ran

dom effects U given the responses Y, denoted by E(U|Y). To find the maximum 

likelihood estimate, in principle, we can then solve the marginal score equation ob

tained by setting the marginal score function to zero.. 

However, a closed form expression for E(U|Y) is generally difficult or impossible 

to obtain. Note that E(U|Y) is the best unbiased predictor of unobserved random 

effects U given the response Y and we showed that the orthodox BLUP predictor, 

the best linear unbiased predictor of the unobserved random effects U, generally 

converges to E(U|Y) in probability. Thus we approximate E(U|Y) by the orthodox 

BLUP predictor of the unobserved random effects in the marginal score function as 

follows: 

m m 

(5.1) 

</>(2)(/3) = £ £ z ; 

IkpiP) (ul3{(3)-um^M) = iZ^\P) (5.2) 
i=i j=i 

</>(3)(/3) = £ £ £ Z y f c 

i = l jz=l k = l 

m Ji ™ij 

P 2 

(Yljk - UyfflfMikiPJ) = z24Z\P)- (5-3) 
i=i 
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The three functions in (5.1),(5.2) and (5.3) are clearly linear functions of the 

responses as the orthodox BLUP predictors of the random effects are. We call ib((3) 

as defined below the estimated score function (based on the orthodox BLUP): 

= (V> ( W,V> ( W,V> ( 3 W) T 

m m m 

i=l i=l i=l 
m 

i=i 
m 

= £V>,(/3), 
i=l 

where ipi{0) corresponds to the estimated score function for the zth independent 

cluster. Clearly t/>j(/3) is an unbiased estimating function as the orthodox BLUP 

predictors of the random effects are unbiased. 

If we treat the unobserved random effects as 'missing data', the EM algorithm 

can then be used to obtain the maximum likelihood estimate. This algorithm iterates 

between an E-step, which involves evaluating the conditional expectations of unob

served random effects given the response in the marginal score function using current 

parameter values, and an M-step, which involves obtaining updated parameter es

timates by solving the marginal score equation. The orthodox BLUP approach is 

equivalent to approximating the E-step by replacing the conditional expectations by 

orthodox BLUP predictors and approximating the M-step by solving 

m 

E ^ ( / 3 ) = 0 . 
1=1 

The roots of this equation are then used as regression parameter estimates. 
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5.1.2 Standard errors of regression parameter estimators 

Letting (3^ denote the sequence of roots oiY%L\ rfiifi) = 0, it follows from Lemma 2.1 

that $ ^ is consistent for (3 and asymptotically normal as m —> oo. Specifically, the 

asymptotic variance is given by the inverse of the Godambe information matrix: 

J(/3) = S(/3)V(/3)-1S(/3)T, (5.4) 

where the sensitivity matrix S(j3) and the variability matrix V(/3) are given by: 

m m 
V(/3) = £ V M = zZE/3 {*M1>J(P)} • 

1=1 1=1 

From now on, we simply denote ft ^ by /3. 

An analogue of Wald's test is available for testing the hypothesis H0 : (3^ = 0, 

where (3^ is a sub-vector of (3. The test statistic is: 

^ = 3(

r

1){j11(3)}~13(1), 

where Jn(0) is the corresponding block of the asymptotic covariance matrix of /3. 

Asymptotically, this statistic follows a x2(A;)-distribution, where k is the size of the 

sub-vector (3^. 

5.1.3 Newton scoring algorithm 

The orthodox BLUP approach is actually a linearized EM algorithm. Instead of us

ing this approximate EM algorithm, we adopt a more efficient algorithm, the Newton 
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scoring algorithm, introduced by J0rgensen et al. (1996a) to solve the estimating 

equation ib((3) = 0. 

The Newton scoring algorithm is defined as the Newton algorithm applied to the 

equation il)((3) = 0, but with the derivative of t/?(/3) replaced by its expectation S((3). 

The resulting algorithm gives the following updated value for (3, 

(3* =(3-S-1{(3)ib{P). (5.5) 

Clearly the sensitivity and variability matrices are crucial in this estimation proce

dure. USij denotes and denotes E(V>(i)(/3)V>0)(/3)T), then the sensitivity 

and variability matrices can be expressed as follows: 

i Sn s 1 2 S13 
\ 

m = S21 S22 S23 

\ S31 S32 S33 / 

V n v 1 2 v 1 3 

V 2 i V 2 2 V 2 3 

V31 v 3 2 V 3 3 

Note that S(/3) is apparently of asymmetric form. For example, Si 3 = ^ar , 

whereas S31 = y J^>'• Actually S{(3) can be shown to be symmetric. However 

a block-by-block direct derivation of these matrix blocks from (5.1), (5.2) and (5.3) 

would be complicated by the nonlinearity of f3 in U (J0rgensen et al. 1996b, 1996c). 

Instead, we introduce a concise matrix expression for ib(f3) in the next section. This 
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expression not only facilitates derivation of the sensitivity and variability matrices, 

but also helps to clarify the relationships between the sensitivity and variability ma

trices. 

5.1.4 O pt imality 

After introducing a matrix expression for we will study the relationships be

tween the sensitivity and variability matrices and the optimality of the estimated 

score function. The concept of optimality here is in the sense that the estimated 

score function attains the minimum asymptotic covariance for / 3 among a certain 

linear class discussed below. 

Recall that the full covariate matrix is X with x7fc = (zT, zJ-: zj f c). Let Xj denote 

the sub-matrix of X corresponding to the ith cluster. We state the following results: 

Theorem 5.1 For Tweedie mixed models, the estimated score function, sensitivity 

and variability matrices can be expressed as follows: 

1. = X.rdiag{E{Y)) Var~l(Y) (Y - E{Y)), 

2. V(/3) = Var{xb{f3)) = XTdiag(E(Y)) VarCY)'1 diag{E(Y)) X, 

3. J ( / 3 ) = - S ( / 3 ) = V ( / 3 ) . 

The first statement gives a global matrix expression for the estimated score func

tion. This expression can be viewed as a multivariate version of the quasi-score 

function first proposed by Wedderburn (1974) . The second statement gives the ex

pression for the variability matrix. The third statement for the sensitivity matrix is 
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similar to that for the Fisher information matrix. Both the derivation and computing 

efforts are greatly eased by the relationship given in the second and the third state

ments. Clearly now the asymptotic covariance matrix of (3 is given by the inverse of 

the variability matrix alone. 

The key statement in Theorem 5.1 is the first statement; the second and third 

statements are immediate consequences. We will leave the derivation of ib((3) to a 

separate section since it is long and technical. Now we show the second statement. 

V((3) = Var(V(/3)) 

= Var(X T diag(E(Y))Var- 1 (Y)(Y-E(Y))) 

= XTdiag(E(Y))Var- 1(Y)Var(Y)Var- 1(Y)diag(E(Y))X 

= XTdiag(E(Y))Var _ 1(Y)diag(E(Y))X. 

The third statement can also be easily shown based on the first statement. Noting 

that 
<9E(Y) 
d/3T 

and E ^ (Y - E(Y)) = 0, we have 

= diag(E(Y))X 

f d (xTdiag (E(Y)) VarfY)- 1) 
E/3 j ((Y - E(Y)) ® E) 

+ E / 3 | (xTdiag (E(Y)) Var(Y)- 1) 9 ( Y ~ ^ ( Y ) ) } 

f3(xTdiag(E(Y))Var(Y)-1) . . 
^ (E0 (Y - E(Y)) ® E) 

+ (xTdiag(E(Y))Var(Y)- 1) ( - ^ ^ ) 
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= 0-X T diag(E(Y))Var(Y)- 1 diag(E(Y))X 

= -V(/3), ' 

where <S> denotes the Kronecker product and E is an identity matrix whose order 

equals the size of /3. 

Now we can derive the explicit expression for S(/3). Note that 

S((3) = -V09) 

= -X Tdiag(E(Y))Var(Y)- 1diag(E(Y))X 

= - ( X T , . . . , Xjjdiag (E(Y)) Var(Y)-1diag (E(Y)) 

= - £ X I

T d i a g ( E ( Y i ) ) V a r ( Y i ) - 1 d i a g ( E ( Yi)) Xj. 
i = i 

(5.6) 

Rewrite Var X(Y,) as 

Var-^YO 

A n 

V o 

o 

Aij , 

/ 1-p \ 
c(i) 

/ I 1 

l-p\T\ 

where A y 1 is given in (3.15). Plugging this expression for Var 1{Yi) into (5.6), we 

have 

m Ji nij jt mj 
S(P) = zZ

 c(S) (zZ zZ wijtojVij~kxijk) (zZ ZZ wijto3t£jkXijk)T 

i=l j = i fc=i j-i fc=i 

m ^2^2 Ji n{j n{j 

+ zZ zZ VijtfPizZ V2m^Jk)CzZ »ij~kXijk)T 

i = l P j=l fc=i fc=l 
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- £ £ £ -^rffkXijkxJjk- (5-7) 
i=ij=ifc=iP 

In next section, we show that 

tl>M = XTdiag (E(Yj)) VarCY,)-1 (Y, - E(Y;)). 

This immediately implies that the results of Theorem 5.1 hold for each cluster. Ap

plying Lemma 2.2 to the estimated score functions for each cluster, we may directly 

show the optimality of the estimated score function among the class of all linear esti

mating functions of the form Y%Li Qi(/3)V>j(/3) if the variability matrices Vj(/3)s are 

nonsingular; however, these variability matrices are often singular in practice. On 

the other hand, J2iLi Qi(/3)V'i(/3) is a subclass of the class of all linear estimating 

functions of the form YliLi^iiP) (Yj — E(Y;)) since is a linear function of 

Yj — E(Yj). Applying Lemma 2.2 to the latter linear class, we have 

m 

</>(/3) = E X i r d i a g ( E ( Y 0 ) V a r ( Y l ) - 1 ( Y l - E ( F i ) ) 
i=i 

= -tEp{d { Y l e f Y l ) ) } V a r ( Y - ) - 1 ( Y » " E ( Y ' ) } 

is the optimal estimating function among the linear class. 

5.1.5 Derivation of matrix form of ip((3) 

We will derive the matrix expression for ib((3) in terms of ipi((3). Furthermore we 

will deal with t/> (̂/3), %bf\(3) and ij)f\p) separately. The basic technique of han

dling V>|̂ (/3) and ibf\(3) is to convert (5.1) and (5.2) into explicit linear functions of 

Yj - E(Yj) directly. We will then deal with il>f\(3) by converting (5.3) into explicit 

linear function of Yj — E(Y*) indirectly due to the technical convenience. 
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The derivation of ib\l\(3) is quite straightforward. First rewrite Ui as 

Ui = tM + aVr 1 E(Y i ) T Var(Y i )" 1 (Y* - E(Y,)). 

Thus we have 

# } ( / 3 ) = *£l'Ui-tii) 

= z i ^ ( a V r 1 E ( Y l ) T V a r ( Y l ) - 1 (Y, - E(Y,)) 

= z iE(Y i)TVar(Y l)" 1 (Y, - E(YS)) 

= (Zi,Zi)diag (E(Yj)) V a r ^ ) " 1 (Y, - E ( Y 0 ) • 

Similarly, we may deal with ibf^ (/3) by noting that 

= iHjUi + o ; V r l e 5 V a r ( Y i ) _ 1 ( Y i - " 0 -

Thus we obtain 

Uij - KjUi = ^nf-'eljVMCY^CYi - E ( Y 0 ) . • 

Plugging this formula in ib^\/3), we have 

ib?\(3) = ^Zij^&j-U^j) 
j=i v 

= E z ^ ( ^ ^ ^ V a r f Y O - ^ Y , - E(Y,))) 
3=1 U 

= X;^-e5Var(Y0- 1 (Y i -E(Y0) 

= (E z ^ V a r f Y O - ^ Y i - E(Y,)) 
J'=I 

= . . . ,z l J ii/ l

T

J i)Var(Y i)- 1(Y i - E(Y,)) 

= (za,..., za , . . . , zUi,..., z i7i)diag (E(Y;)) Var(Y i)"1 (Y, - E(Y;)). 
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A direct derivation of ib\ ((3) would be much more complicated than those of 

tp^\(3) and xp[2\(3). Instead, we introduce a new matrix notation to ease the deriva

tion. Let 

Uj*A*i** — (UnPm,..., UiiHnnn,..., Uu^ij^,..., Uu^u^j.) . 

This new vector is the same size as the longer, vector piJfif with components 

UijHijhS- That is, each component pijk of p^ is matched by a random effect com

ponent Uij within the same sub-cluster. We may call it a nested product between 

= (Un,..., UUi) and p^ = (pin,Pijinu.)- This nested product notation is 

especially convenient in the generalization of Tweedie mixed models with two levels 

of nested random effects models to higher levels. Similarly we have 

Ui*Pi** = (Uiipni,..., C/jiMiinjD . . . , Uij^ij^,..., UuifJ-iJimj.)1'• 

With this notation, we can express ibf\(3) simply in terms of Yj—-XJ^p^. Before 

doing so, we note: 

Ui^i** = E(Yj) + C o v ( U ^ „ , Yi)Var(Yi)- 1 (Y< - E(Y<)), 

Now we can rewrite the covariance of the responses in terms of that between 

Ut*/A I ] M , and Yi as follows: 

P Pin UH1 

Var(Yi) = Cov(Ui#A*<**,Yi) + 

P ViJiniJ.
ViJlniji J 
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/ 2 P— 1 
' P M i l l 

= Cov(U i , / * i „ ,Y i ) + 

P^PHJXJ. J 

diag(E(YO) 

Hence Yj — U i * / / ^ has the following simple expression: 

Yj - U i , / i i M = Yi - E(Yi) - C o v ( U ^ „ Yi)Var(Yi)- 1 ( Y - E(Y,)) 

= {Var(Yi) - C o v ^ ^ , YO} Var(Y l)- 1 (Y< - E(Yj)) 
/ 2 P—1 
' P Mil l 

p ^ „ r - i ; 

diag (E(Yi)) Var(Y l)" 1 (Yi - E(Y,)) 

Now we have 

W (0) = EE zufc " J " - ^ijMijfc) 
i=ifc=i P 

i-p . / - P 

— /'Mill ^iJinjjj s / v :pjr v 

— I 2
 Z i l l 5 - • • •> 2

 Z i ^ n i J , A * » — 

P , p ' 

= ( Z i l l , . . • , Zi J i n i J { )d iag (E(Yj)) Var(Yi)"1 (Y, - E(Yj)). 

These equations for ipf\l3), ibf\p) and ibf\/3) give 

^!2)(/3) 

V ^3)(/3) 

Zil 

Z i l l 

Z i 

Z i J i 

Z i J v n v 

diag(E(Yi)) VartY,)"1 (Yi - E(Y,)) 
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= (x m , . . . , xUiniJi )diag (E(YO) VarCY,)"1 (F, - E(Y,)) 

= xTdiag (E(YO) VarCY,)"1 (Y, - E(Y,)). (5.8) 

Now Theorem 5.1 follows immediately. Noting that Var _ 1 (Y) is block diagonal, 

we have 

m 
</>(/3) = £ < / > i ( / 3 ) 

t=i 
m 

= E X z T d i a g( E ( Y 0) Var(Yj)-1 (Yi - E( F/)) i= i 

(X7,...,X^)diag(E(Y))Var(Y) - l 

/ Y ! - E ( Y ! ) ^ 

^ Y m - E(Y m ) ) 

= X'diag(E(Y))Var- 1 (Y)(Y-E(Y)) . 

5.2 Estimation of dispersion parameters 

We now discuss the situation when the dispersion parameters are unknown. We esti

mate unknown dispersion parameters using the adjusted Pearson estimator (J0rgensen 

et al. 1996b); that is, the Pearson estimator adjusted by bias correction. 

5.2.1 Adjusted Pearson estimators 

Recall (4.16), or equivalently 

a 
c(i) , E(Ui - Hif 

+ M i M i 

We may thus estimate a2 by the following adjusted Pearson estimator: 

(5.9) 

2 _ 1 " (Uj - / / j ) 2 1 " c(i) 
™ ,,r ™ 2-~i ,,r • 

i = l M i mT=i Mi 
(5.10) 
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To obtain an unbiased estimator for to2, we consider 

E(Uij - mftif = Var(r7ij) + tfjVaxiUi) 

-2piijCov(Ui, Uij) 

= VaxiUij) + tfjVaxiUi) 

-2fXijCov(UhUij), (5.11) 

where the last equality follows from (4.4). 

Rewrite (4.15) and (4.16) as 

Var(£/i) = o2p\ - c(i), (5.12) 

and 

VaxiUij) = o2

iir

iix\j + ~ c(ij). (5.13) 

Plugging (5.12), (5.13) and (4.18) into (5.11), after some simplification we obtain 

w2//i/4 = E(Uij - HijUi)2 + c{i)ii2j + c(ij) - 2p2c(i)wiJiJ2j. (5.14) 

Thus we may estimate u2 as follows: 

Lb2 = 
1 1 (Uij l^ijUi) 

m i=l *̂ » j=zl VipHj 

| 1 A 1 ^c(i)tfj + c(ij)-2p2c(i)Wijtfj 

The dispersion parameter p2 can be estimated similarly. Noting that (4.4) implies 

CovCYijk, U^) = Cov(Yijk, U^), we have 

E(Yijk - UijUijk)2 = VsLi(Yijk) + p2jkV&v(Uij) - 2pijkCov(Yijk, l \ ) 

= Va,v(Yijk) + p,2jkVa,v(Uij) - 2pJijkCov(Yijk, U^) 
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(Vax(Yijk) - PijkCov(Yijk, Uij)) 

+H%k (Var(fty) - Var(E^)) 

P2PiPijPP

ijk + c(ij)n2

jk. (5.16) 

Therefore p2 can be estimated as follows: 

^2 1 1 1 (^ijfc UijP*ijk} 
m i=i j= i n i j fe=l PiPijP%k 

. (5,7) 
m i=i •'t j= i n » j fc=l MiMij 

Similar to the REML estimator, we may also consider a small sample degree of 

freedom correction. For example, we may replace m by m minus the number of 

regression parameters estimated; however the latter correction is suggested on an 

intuitive basis. 

5.2.2 Asymptotic properties 

Let £ denote (o2, u2, p2)T. Let 

Pi Pi 

0( 2) (0 |) =

 1 jr f ^ ~ ^ ' ^ ^ i + C ^ ~ 2 P 2 c ^ W i ^ l | 

and 

^ ( 3 ) ^ 0 = £ ~ E l Uij^ijk^ + ^fi^Jk \ - p2 

j=l nij fc=l I PiPijPijk PiPij I 

Let 
m -i -p m -I 

W 0 = E - ( ^ O , 0 , <t>?] ( f t # } ( / 3 > 0 ) = E 0-
i = i m i = i m 
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If we replace (a2,u2,p2) in (5.10), (5.15) and (5.17) by (a2, cu2, p2)T, clearly these 

three equations can be rewritten as an unbiased estimating equation 

m -I 

i=l m 

where </>;(/3, £) is unbiased estimating function. Together with 

m 

V(/3,0 = £ ^ ( / 3 ) = 0, 

i=l 

we obtain a set of unbiased estimating equations. Applying Lemma 2.1 again, we 

obtain that the sequence of roots, ( /3 T , £ T ) T , is consistent for ( / 3 T , £ T ) T and asymp

totically normal with mean (/3 T , ,£ T ) T , as m —t oo. 

Note that 

= f 3 (xTdiag(E(Y)) Var-^Y) (Y - E(Y))) | 

= a ( x ^ i a g ( E ( Y ) ) V a r ^ ( Y ) ) E ( Y ^ 

= 0. 

Taking /3 and £ as parameter of interest and nuisance parameter respectively and 

applying Lemma 2.15 to (tb((3, £ ) T , <p((3, £ ) T ) T = 0, we conclude that the asymptotic 

variance for 0 is still given by S ^ O ^ V ^ S " 1 ^ ) = -S" 1 ^). 

In the literature of generalized linear mixed models, the asymptotic variance of /3 

for the unknown dispersion parameters case is generally taken as that obtained for 

the known dispersion parameters case, but with unknown dispersion parameters being 

naively replaced by their corresponding estimators. The usage of this naive plug-in 
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estimator generally needs to be more cautious since it ignores the additional variabil

ity stemming from the need to estimate the dispersion parameters. Lee and Nelder 

(1996) proved that this information loss is asymptotically negligible for h-likelihood. 

Breslow and Clayton (1993) and McGilchrist (1994) did some simulations to investi

gate this problem for their methods. Now we showed that the asymptotic variance of 

/3 for our orthodox BLUP approach is exactly the same as the naive plug-in estimator. 

This result coincides with the noted observation from simulation studies for pe

nalized quasi-likelihood method (Breslow and Lin 1995). That is, inference about 

regression parameters is mainly affected by the bias, rather than the variance, of the 

dispersion parameter estimators. 

5.2.3 Heterogeneity 

In practice, heterogeneity is often substantial across clusters. To account for the 

heterogeneity in the marginal distributions of the responses, we may allow different 

dispersion parameters for different clusters. One of the choices would be to assume 

the similar models as those in Section 3.1, but with dispersion parameters (a2, u>2, p2) 

being replaced by cluster specific dispersion parameters (a2,u2,p2). All the previous 

derivations of orthodox BLUP random effects predictors and estimated score function 

remain valid if we replace (a2,u2,p2) by (a2, to2, pf). The dispersion parameters can 

now be estimated through the following equations: 

+ l_ c(i)/4- + c(ij) - 2p2c{i)wijp2

j 

Ji 
3 = 1 PihAj 

(5.18) 
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and 

1 Ji 1  nij (v. _ fj .. \2 
~2  uijh lijk) 

Pi ~f / , / y p 
J i j=i  nij k=l \ XiP Jiji Xijk 

1 ^ 1 ^ c(ij)ii2-k

p

 / 

+yE — E 3 • (5-19) 
Ji j—i n<ij fc=1 Mi Mi? 

That is, the appropriate quantities are now averaged only within each cluster to ac

count for the heterogeneity. Therefore consistency of dispersion parameter estimators 

(a)2, p2) for large number of clusters is not available for this situation. 

In addition, dispersion parameters (a2,uj2,p2) often appear in the literature when 

the designs are balanced with respect to the number of sub-clusters, that is, J\ = 

• • • = Jm = J- Such dispersion parameters can be estimated as follows: 

u 2  1_ ™ ( U i j - ^ U i ) 2  

3 m fr[ p i p l j 

and 

^2 1 ^ > \ Ii j k uijH'ijk) 

3 m j=l n i j fc=l P'i^ijPijk 

+ I g i g c W ) ^ _ ( 5 2 1 ) 

m i=l ^ t j fc=l MiMij 

The index j here often represents time in longitudinal data settings where the dis

persion parameter estimators are obtained by averaging the appropriate quantities 

across time. These two estimators are consistent for large number of clusters. 
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Chapter 6 

Residual analysis and 

computational procedure 

In this chapter, we briefly discuss residual analysis and computational issues. 

6.1 Residual analysis 

Residual analysis for both the responses and the random effects is an important 

ingredient of our approach. Note that the marginal residuals of the responses can be 

decomposed into three uncorrelated residual components as follows: 

Yijk — PiPijPijk = (Yijk — PijkUij) + (Uij — Hij)HijkUi + (Ui — HijHijHijk- (6.1) 

These three components actually correspond to the residuals for the three levels 

of distributional assumptions given in the model. Thus we may check those distri

butional assumptions via estimated residuals Yijk — HijJJij, Uij — [HjUi a n d Ui — 

All three estimated residuals have zero mean and can be standardized to have unit 

variance. Actually the variances of the three estimated residuals are already available 

from (5.16), (5.14) and (5.9). We now define the appropriate types of standardized 
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(estimated) residuals for the three levels of distributions. 

Level 1: 

r(i) = 
Ui - Hi 

(6.2) 

Level 2: 

Uij Pij Ui 
(6.3) 

\l^2PiPqij ~ c{i)H2j - c(ij) + 2p2c{i)wijH2j 

Level 3: 

ijk HijkUij (6.4) 
^p2HiHijHv

ik + c(ij)ix\k 

The level 2 and 3 residuals, and , are residuals for conditional distributions, 

so we will call them conditional residuals. The level 1 residual is the residual for 

the first level random effects distribution. We can also check the marginal distribu

tional assumptions of the response and the second level random effects through the 

following marginal residuals: 

The basic idea in residual analysis is then to use plots of standardized residuals 

in much the same way as in standard generalized linear models. Plots of standard-

relative to the model. To check the log link assumption, we plot logYyfc against the 

Ui 

r(3) = 

ized residuals against each covariate are useful for detecting nonlinearity of the data 
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log fitted values logPijkUijk- Ideally this plot should show a horizontal linear rela

tionship; curvature or other unusual shape would indicate inadequacy of the log link 

assumption. 

As in generalized linear models, we may check the form of the variance functions 

and hence the distributional forms by plotting the standardized residuals against the 

corresponding fitted values. In order to check the variance function of the distribution 

for the random effects, we thus plot the standardized residuals against log fitted 

values. 

6.2 Computational procedure 

Initial values for regression parameter estimates are taken as the regression parame

ter estimates obtained from standard generalized linear models techniques assuming 

independent responses. We take initial random effects predictions for Ui and Uij as 

the average of the responses within cluster i divided by the average of all responses 

and the average of the responses within sub-cluster divided by the average of 

all responses, respectively. That is 

m ^i=\ j{ 2^j=l n i j 2"k=\  Iijk 

1 x^ nij v. 

U*3 _i_ sr^m J_ y>Ji _1_ \-^ nij -y 
m ^»=1 Ji £"j=l riij ^k=l 

The initial dispersion parameter estimates are calculated from Pearson estimators 

via (5.10), (5.15) and (5.17), but omitting the bias-correction terms. More specifically, 

of = 

and 
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we have 

and 

a(o) = — E 

i™{Ui- in? 

U) ( o ) - ~ L j L TTTF. > 
" b i = l Ji j=l riF-ij 

and 

P (O) = - E T E — E 
m i-l Ji j=l nij k=l ViVijV' ijk 

The algorithm then iterates between updating the regression parameter estimates 

via the Newton scoring algorithm, updating random effect predictors via the ortho

dox BLUP and updating dispersion parameter estimates via the adjusted Pearson 

estimators. 
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Chapter 7 

Conventional, semiparametric and 

binomial mixed models 

In the literature of multiplicative random effects models, the marginal means of the 

random effects are usually taken to be 1 (Morton 1987; Thall and Vail 1990; Firth and 

Harris 1991; Lee and Nelder 1996). Imposing these conventional constraints on the 

Tweedie mixed models is equivalent to taking fa = I and faj = 1 for all i and j. We 

thus call a Tweedie mixed model with such contraints a conventional Tweedie mixed 

model. After discussing the conventional Tweedie mixed models in the following 

section, we will discuss mixed models beyond the Tweedie family which are related to 

the conventional Tweedie mixed models. The first model is a semiparametric mixed 

model with only first and second monents assumptions about the random effects; 

the second one is a mixed model assuming log-normally distributed random effects; 

whereas the last model involves binomial distributions for the conditional responses. 
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7.1 Conventional Tweedie mixed models 

To be more specific, we give the assumptions for the conventional Tweedie mixed 

models: 

BI) Given U = u, Y 1 U , Y U n n , Y i j U Y i j n i j , Y m J m l , Y m J j n r i m J m are con

ditionally independent, and the conditional distribution of Y ^ , given U = u, depends 

on only as 

Yijk\U = u ~ Twp(ij,ijkUij,p2Uij1~p) 

P2 

= UijTwp(p,ijk,—), 
Uij 

where nijk = exp(xT.fe/3). 

B2) Given U* = u», Un, ...,Umjm are conditionally independent, and the condi

tional distribution of Uij, given U* = u*, depends on Ui only, which is 

£/y-|U, = u» ~ Tw q(ui, cu2
 Ui l- g) 

to2 

= U i T w , ( l , — ) . 
Hi 

B3) 

Ui,...,Um iid T w r ( l , ( 7 2 ) . 

The derived random effects predictors, estimated score function and adjusted 

Pearson estimators for the more general models in Section 3.1 remain valid with 

the constraints p; = /iy = 1. Since the detailed expressions for the random effects 

predictors, estimated score function and adjusted Pearson estimators will be useful to 

discuss related models beyond the Tweedie family, we will present these expressions 

in the following sections. 
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7.1.1 Covariance and variance function 

The first and second moments of the second level random effects possess the following 

simple structure 

E[Ul3] = 1, 

and 

' a2 + u2 if (s,t) = 

a2 if s = i and t ̂  j 

0 otherwise. 

The covariance between the random effects and responses is simply given by 

cov[[/ s i,cy = ^ 

Cov[Ust, Yijk] = 5(s,i) [a2 + 5(t,j)tu2} /j,ijk. 

The first and second moments of the response for the conventional Tweedie mixed 

models are then given by 

and 

E[Vij/t] — pijk, 

Cov[Ysth Yijk 

P2f4jk + (o2 + 0J2)p?ijk if (s, *, I) = (i, j, k) 

(CT 2 + uj2)iii]kpiji if (s, t) = andl^k 

o2VijkViti if s = i and t ̂  j 

0 otherwise. 

The covariance of the response displays an interpretable variance components struc

ture which clearly shows the variance contribution from each level of random effects. 
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The marginal variance of Yi3k for conventional Tweedie mixed models has a simple 

form as follows: 

Var(Yyfc) = p2^k + (a2 + a,2)/,2.,. (7.1) 

The case p = 1 and p = 2 which correspond to Poisson-Tweedie models and gamma-

Tweedie models are especially interesting. The marginal variances of these two models 

are 1 

Var(Y^) = pijk + (a2 + u)2)p2

jk, 

and 

Var(y ijfc) = (p2 + a 2 + to2)tfjk, 

respectively. Therefore the marginal variance functions of these two models coincide 

with those of the negative binomial and gamma distributions, respectively. It is known 

that the marginal distribution of Yijk of the conventional Poisson-gamma models with 

only one level of random effects (to2 — 0) follows a negative binomial distribution. 

This negative binomial distribution is frequently adopted to account for overdisper-

sion relative to Poisson model (Venables and Ripley 1994). It is unclear, in general, 

if the marginal distributions of the responses of the Poisson-Tweedie and gamma-

Tweedie models follow the negative binomial and gamma distributions, respectively. 

It is known that the distribution of a random variable is uniquely characterized by its 

variance function within the exponential dispersion models (J0rgensen 1997); how

ever, the marginal distribution of Yijk may not follow an exponential dispersion model 

(J0rgensen 1987). Hence whether the marginal distributions of the responses of these 

two models follow the negative binomial and gamma distributions, respectively, re

mains an open question. 
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Finally, we give an expression for the correlation between the responses: 

U o r r ( r j , - f c , Ystl) = . .— — . 

ylftiik + (°2 + rfHkJPAu + (°2 + <*2)tit 

Clearly the correlation matrix still depends on both the regression and the dispersion 

parameters for the conventional Tweedie mixed models. 

7.1.2 Random effects predictors 

The random effects predictors for conventional Tweedie mixed models also have simple 

expressions as follows: 

fr _ 1 + ° 2 s £ i ffii , 7 -

1 + ° 2-3=1 Lk=l Wi3Vijk 

where w{j = l/(p 2 + u2 1%$), and 

Uij = p2WijUi + UJ2Wij VijkYi3k- (7-3) 
k=l 

The conventional Poisson-gamma model coincides with the conjugate Poisson-

gamma model studied by Lee and Nelder (1996) when there is only one level of the 

random effects. For this model both the orthodox BLUP predictors and MHLEs for 

the random effects are exactly the conditional expectations of the random effects given 

the responses; therefore both orthodox BLUP and MHLE estimation procedure lead 

to maximum likelihood estimates for (3 when dispersion parameters are known. In 

general, the orthodox BLUP predictors and MHLEs are not identical. Lee and Nelder 

(1996) presented a class of conjugate hierarchical generalized linear models with one 

level of random effects, and provided an explicit expression for MHLEs of the random 
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effects. As with any multiplicative conjugate hierarchical generalized linear models 

within this class, a direct calculation shows that the MHLEs for the random effects 

are linear functions of the response. However, the orthodox BLUP predictors of the 

random effects are the best linear unbiased predictor for Tweedie mixed models. 

The estimates for Cov(/3, U ) and Var(U—U) are useful in making inferences about 

realized or sample values of U (Harville 1976). Lee and Nelder (1996) mentioned that 

they have not found consistent estimates for these quantities except in few special 

cases. They further conjectured that consistent estimates may not exist under their 

regularity condition: the number of clusters is fixed when the number of observations 

increases. We have not obtained estimates for Cov(/3, U ) for the orthodox BLUP 

approach yet, but exact expressions for Var(U — U ) are available below: 

Cov[Ui - Uh Us - Us] = 5(Sii)c(i) 

Covfft - Ui, Ust - Uat] = S(s,i)P2c(i)wit 

Gov[Uij - U^, Ust - Ust] = 5(s,i) [p2Wij[5^j)Uj2•+ p2c(i)wit]} . 

These are clearly consistent estimates for Var(U — U ) when the parameter esti

mators are plugged in. 

Besides the general small dispersion and large sample asymptotics established in 

Section 4.4, we give another small dispersion asymptotics result: 

c ^ < a 2 (p 2 + ^^in^nijQmiiijjfe^2^)) ^ ^ 

~ p2 +a;2minj(ny)min:/fc(tfrfc

p) + a2mmj{nij)mmjk{p2~k

p)Ji 

and 
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P > 2 + CT2) 

P2 + ^ 2 min j (n i j )min j f c (^) 

Obviously, when p ^ 2, we also have 

c ( « < . . . , ^ , _ \ " J _ , > - R V (7-5) 

Uij - A Uij as min^/x 2 /) oo. 

For Poisson-Tweedie (p = 1) and compound Poisson-Tweedie (1 < p < 2) mod

els, m\Ujk(iJ?i3~k

p) —> oo is equivalent to all /̂ fc -> oo. For positive stable Tweedie 

models (p > 2), including the inverse Gaussian, minjfc(p2rfc

p) oo is equivalent to all 

Vijk ->• 0. 

Clearly when p = 2, the same large sample asymptotics conclusion as in Section 

4.4 holds without any restrictions on /XjjfcS. Actually, the large sample asymptotics 

conclusion upon the second level random effects now holds for any p under much re

laxed conditions such as mmj(nij)mmjk(fi2~k

p) —>• oo as min,-(njj) —> oo. A sufficient 

condition is that m in^ / i 2 ^) > clog(minj(ny))/minj(nij) for a positive constant c. 

That is, the only restriction is that p,ijk should not tend to zero too fast for the Pois

son and compound Poisson cases, whereas minjfc(pJ

27fc

p) should not tend to infinity too 

fast for positive stable case. 

Actually, for conventional Tweedie mixed models, only the behavior of Uij affects 

the orthodox BLUP estimation procedure. This will become apparent in Section 7.2. 

7.1.3 Parameter estimation 

The estimated score function now reduces to 

m Ji nij l - p 

W ) = E E E *m^t{Yijk - U i m k \ (7.6) 
1=1 j = \ k=l p 
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whereas the matrix form of the estimated score function is still given by 

ip(P) = XTdiag (E(Y)) Var_ 1(Y) (Y - E(Y)). 

In addition, the expression for sensitivity matrix S(/3) also has the following sim

plified version: 

m Ji nij Jt Uij 

S(/3) = £ c ( z ) ( £ zZ wijPiik^ijk)(zZ zZ wi3hhik*ijk)T 

i=\ j=lk=l j=lk=l 

m Ji . .2 "y ritj 

i = l j = l " fc=l fc=l 

^h^ijk ^ijk^ijk 
i = l j = l jfc=l P 

7.1 .4 Adjusted Pearson estimators 

The adjusted Pearson estimators have simpler forms: 

1 m -i m 

* 2 = 1)2+ - £ ' ( 0 , • (7-8) 
m " ™ t = i 

. 2 1 ^ 1 * 
= - E T E {(ft* - ft)2 + c(tj) + c(i) - 2p2c(i)wij\ , (7.9) 

i=l  1 j = l 

? = ltjt^"±{  (V"k ~S"lU'i)2 + cdfinl-A . (7.10) 

j = i J i j=i 'Hj k=l I Mijfc J 

7.2 Random effects beyond Tweedie family 

For the general Tweedie mixed models defined in Section 3.1, the estimation pro

cedure of the orthodox BLUP approach depends on the specific parametric forms 

of the random effects distributions among Tweedie family of distributions through 
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Pi, Uij, q and r. Since we have //; = pij = 1 for conventional Tweedie mixed models, 

this dependence of the estimation procedure on the specific parametric random ef

fects distributional forms forms is then via q and r only. However, for conventional 

Tweedie mixed models, q and r actually do not enter the estimation procedure in 

either the estimated score function, the sensitivity matrix, the random effects pre

dictors or the adjusted Pearson estimators. That is, the estimation procedure of the 

orthodox BLUP approach to conventional Tweedie mixed models is robust against 

misspecification of the random effects distributions within the Tweedie family. 

This robustness indicates that the orthodox BLUP approach to conventional 

Tweedie mixed models depends on the random effects only via the first and second 

moments of the second level random effects. Therefore we can extend the orthodox 

BLUP approach to deal with conventional models with only the first and second mo

ment assumptions about the second level of random effects. These models are usually 

referred as semiparametric random effects models with nonparametric random effects. 

7.2.1 Nonparametric random effects 

To discuss this semiparametric model in more detail, we assume that 

Cl) Given U = u, F m , ...;Ynnn,Yyi,Yijnij,Ymjmx,YmjmnmJm are con

ditionally independent, and the conditional distribution of Y^, given U = u, depends 

on only as 

Yijk\U = u ~ Twp(pijkUij,p2Uij1~p) 

P2 

= UijTwp(fj,ijk,—), (7.11) 
Uij 

where pijk = exp(xyfc/3). For case p = l , namely Poisson distribution, p2 = 1. 
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C2) The random effects Un,..., Umjm are positive random variables with 

E(Ulj) = l, 

and 

Cov[Ust, Uij] — 5(s>i) \a2
 + <J( t )j)W 2} • 

Here we make no further parametric assumptions on the random effects. In addition, 

we do not explicitly assume any first level random effects. 

Note that the random effects Uu,..., UmJm have the same first and second mo

ments as in conventional Tweedie mixed models; therefore it follows from assump

tion Cl) that Cov[Ust,Yijk], E[Yijk\\J] and Cov[Ysu,Yijk] are also the same as in the 

conventional Tweedie mixed models since the derivation based on the conditioning 

techniques in Section 3.1 did not involve the Tweedie distributional assumption of 

Uij. These moments then imply that the orthodox BLUP predictors of the random 

effects U^, the estimated score function and the sensitivity matrix have exactly the 

same expressions as in conventional Tweedie mixed models. 

The adjusted Pearson estimator for p2 also has the same expression as in conven

tional Tweedie mixed models. However the adjusted Pearson estimators for LO2 and 

a2 for conventional Tweedie mixed models involve Ui although we do not assume the 

existence of Ui. On the other hand, in conventional Tweedie mixed models Ui is a 

linear function of the responses and the adjusted Pearson estimators are moment esti

mators; therefore the estimating equation induced by the adjusted Pearson estimators 

for to2 and a2 remain valid if we use the linear expression for Ui as an intermediate 

quantity to estimate to2 and a2 in the current semiparametric models. The difference 
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is that the linear expression for Ui does not necessarily have a parametric interpreta

tion beyond the Tweedie family. 

In summary, the estimating equations associated with the estimated score func

tion and adjusted Pearson estimators given in (7.6), (7.8), (7.9) and (7.10) are still 

unbiased estimating equations for both the regression and dispersion parameters in 

these semiparametric models. The regression and dispersion parameter estimators are 

also consistent asymptotically normal with the inverse of — S(/3) being the asymptotic 

variance of /3 under the same regularity conditions. 

As the expression for Var(U — U) in (4.2) 

c(ij) = Var((7ij - Ui3) 

= E(Ui3) - Cow(Ui3, Y i)Var" 1(Y i)Cov(Y l, Ui3) 

depends on the first and second moments only, the expression for c(ij) will not be 

changed. Thus both small dispersion and large sample consistency results Uij in con

ventional Tweedie mixed models can be extended to these semiparametric models 

under the same regularity conditions. 

In conclusion, besides its parametric interpretation with the Tweedie random ef

fects distributions, the orthodox BLUP approach to generalized linear mixed models 

is robust against misspecification of the random effects distributions. 

7.2.2 Log-normal random effects 

An interesting example of non-Tweedie distributions for U^ in the conventional 

Tweedie mixed models setting is the log-normal. Let V ŝ be log-normal random 
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variables 

logVy ~ A T ( 0 , r 2 ) , 

with T 2 = log(l + a2 + to2) and covariance structure 

S(.,i) {a2 + S(t,j)u2} 
, Vij\ -

Clearly Ui3- = V l + ^ + u ) 2 satisfies 

cov[v.„vy= 1 + ff2 + w 2 

E(£/«) = 1, 

and 

Cov[Ust, Uij] = {cr2 + <5(tj)o;2} . 

Assume Cl) in the last section holds, then we would have 

logE(l^lU) = x;fc/3 + logf/y 

= xJfc/3 - I l 0g(l + a 2 + a;2) + log VI3, 

where, under log link, the term \ log(l+a2+a;2) affects only the value of the intercept. 

Now the conditional expectations of the responses given the random effects can 

be expressed as a linear combination of regression parameters plus the normal ran

dom effects. This example shows the connection between generalized linear models 

with Tweedie random effects distributions and those with the normal random effects 

distribution. Note that the covariance structure assumptions are made about the log-

normal random effects instead of the normal random effects; therefore, unlike Tweedie 

random effects cases, the partially observed joint log likelihood for both the response 

and log-normal random effects is not explicitly given here. 
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7.2.3 Binomial mixed models 

Binomial mixed models are usually handled by logistic-normal and binomial-beta 

models because of their analytic tractability. While our orthodox BLUP approach 

to Tweedie mixed models is not directly applicable to this case since the binomial 

distribution does not belong to the Tweedie family, we can deal with binomial mixed 

models via the conventional Poisson-Tweedie models based on the the following well-

known relationship between the binomial and Poisson random variables: 

Suppose that Y\ and Y2 are independent with 

Yk ~ Poisson(fj,k), 

then 

Fi + Y2 ~ Poisson (pi + /i2), 

and 

Fi|Fx + Y2 = N ~ binomial(7V, ̂ /(^ + fi2)). 

(cf. McCullagh and Nelder 1989). 

Suppose that there are m pairs of observations, (Ri, Ni) i = 1,2,... ,m, Ri being 

the number of successes in Ni trials. Consider the following paired Poisson-Tweedie 

models: 

Yn = Ri\U = u ~ Poisson (un exp[xj(a + (3)f) 

Yi2 = Ni — Ri\XJ = u ~ Poisson (ui2expfx^a]j , 

where F u , Y" 1 2 , . . . , F m l , Ym2 are independent given U — u. Assume further that the 

random effects U = ( U \ , U m , U n , U m j m ) T satisfy assumption B2) and B3) for 

conventional Tweedie mixed models with J, = 2 for all i as usual. Then we have 
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where 

Hence 

Yn\Yn + Yi2 = Ni,U ~ binomial(Ni,pi), 

Un exp[x7(a + /3)] 
Pi 

Un -exp[x7(a + /3)] + Ui2 expfx^a 

logit pi = xj(3 + logit- U t l 

Un + Ui2 

Clearly a2 = cu2 = 0 corresponds to binomial models without the random effects and 

a2 = 0 is equivalent to one level random effects models. 

The binomial-beta model is the special case with a2 = 0 and Ui3- ~ Gamma(l,w2) 

j = 1,2. This is because Vi = u.^u.2 is known to follow a symmetric beta distribution 

if U^ ~ Gamma(l,w2) j = 1,2. Asymmetric beta distributed random effects can 

easily be incorporated by allowing different dispersion parameters to2 for U^ j = 1,2. 

Lee and Nelder (1996) also derived the binomial-beta model from a pair of Poisson-

gamma models with the common covariates xj, but different regression parameters 

(3j for each of the two groups (J = 1,2). Under logit link, they have 

logit pi = x; (Px - p2) + logit-
Un + Ua' 

with (31 — /32 corresponding to our (3 here. But they derived their estimating equa

tions for MHLEs directly from the binomial-beta model. 

We derive our binomial mixed models based on paired Poisson-Tweedie models 

with the common regression parameter (e*T,/3T)T, but different covariates for each of 

the two groups, that is, (x ,̂ x )̂ for Ri and (xj, 0) for A^-i i j . This approach enables 
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us to obtain the fixed effects estimate /3 as well as its standard error and the random 

effects predictors Vi for binomial mixed models by fitting the paired Poisson-Tweedie 

models. Clearly J3 is a consistent estimate for (3 as m —> oo since (a,/3) is shown to 

be a consistent estimate for (a,/3) in Section 5.2.2. 

There are many different approaches to Poisson mixed models in the literature. 

The paired Poisson mixed models trick provides a way of handling binomial mixed 

models via Poisson mixed models. The extension of this trick to handle multinomial 

mixed models via Poisson mixed models is straightforward. Such multinomial data 

examples can be found in McCullagh and Nelder (1989). 
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Chapter 8 

Data analysis 

Illustrative examples for the orthodox BLUP approach to analyzing data of different 

types based on conventional Tweedie mixed models are presented in this chapter. 

We will concentrate mainly on the analysis of the epilepsy data to illustrate the 

use of variations of the models. We will also analyze the seed germination data and 

cake baking data to illustrate the use of orthodox BLUP approach to handle binomial 

and continuous data. 

8.1 Count data 

In this section, we illustrate the orthodox BLUP approach to count data with analyses 

of the epilepsy data described in Section 2.4.1. Preliminary analysis indicated that 

the counts were much lower during the fourth visit so Breslow and Clayton (1993) 

introduced a linear trend covariate Visit (coded (-0.3,-0.1,0.1,0.3)). To facilitate vi

sual understanding of the data, Breslow (1996) plotted the logarithm of the seizure 

counts reported at baseline (visit 0) and at each of the four visits as in Figure 8.1. 

Counts at the four follow-up visits were increased by 0.5 when taking log-transform 
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0 1 2 3 4 

visit number 

Figure 8.1: Profile plot of log transformed epilepsy seizure counts. 

to avoid infinities. The baseline counts were divided by four since the baseline counts 

were measured over eight weeks instead of two weeks. The baseline seizure counts 

are less variable because the period over which they were measured was four times as 

long as for each of the subsequent visits. Patient 207 had exceptionally high counts 

at baseline count and all subsequent visits. 

8.1.1 Overview of the previous analyses 

Breslow and Clayton (1993) reanalyzed the epilepsy data using the penalized quasi-

likelihood approach, whereas Lee and Nelder (1996) also reanalyzed the same data 

based on hierarchical generalized linear models. To make a systematic comparison of 
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these analyses, we summarize their models as follows. 

Lee and Nelder (1996) considered a model where the response Y given the random 

effects (U, V) follows a Poisson distribution and 

Yij\U = u , V = v ~ Poisson(iJ,ijUiVij) i = 1,..., 59, j — 1,2,3,4, (8.1) 

where Us and V~ijS are all mutually independent having E(£/j) = E(Vjj) = 1 and 

Var(£/j) = a 2 and Var(Vjj) = <r2. Lee and Nelder assume that Ui and follow 

gamma distributions. 

Thall and Vail (1990) considered a similar model, their model 22, but with V~ij 

replaced by Vj with known first two moments only. Breslow and Clayton (1993) also 

considered models similar to Lee and Nelder's models. Since these approaches yield 

very similar results, we list the results of Lee and Nelder in Table 8.1 for later com

parisons in this section. 

Model GLM in Table 8.1 is the standard Poisson regression model. Model HGLM 1 

has Oj = 0 for all j = 1,2,3,4, namely the model of random subject effects only. 

Model HGLM 2 has Vij = Vi x Visit,- where Visit, is the jth component of covariate 

Visit for j = 1,2,3,4. The model HGLM 3 is the one with o\ = cr2 = cr3 and 0 4 = 0. 

Lee and Nelder set a 4 = 0 since it is reported to tend to zero when fitting. By the way, 

the estimated GLM regression coefficient for covariate Visit was reported as -0.29 in 

their paper which appears to be a typographical error. 
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Table 8.1: HGLM parameter estimates for the epilepsy data. 

GLM HGLM 1 HGLM 2 HGLM 3 

Parameter est.* s.e.* est. s.e. est. s.e. est. s.e. 

Constant -2.80 0.41 -1.35 1.20 -1.32 1.20 -1.21 1.20 

Base 0.95 0.04 0.88 0.13 0.89 0.13 0.89 0.12 

Trt -1.34 0.16 -0.89 0.39 -0.86 0.39 -0.86 0.38 

Base.Trt 0.56 0.06 0.34 0.20 0.33 0.20 0.32 0.19 

Age 0.90 0.12 0.51 0.36 0.49 0.36 0.46 0.35 

Visit -0.08 0.10 -0.29 0.10 -0.16 0.16 -0.28 0.14 

a2 0.27 0.26 0.22 

o\ 0.40 0.15 

°l 0 0 

* est. and s.e. represent estimates and standard errors respectively. 

8.1.2 Poisson-Tweedie models 

Our reanalysis of these data is based on conventional two level Poisson-Tweedie mod

els. The fixed effects are logarithm of a quarter of baseline seizure counts (Base), 

logarithm of age (Age), Trt and Visit. Since there is no repetition for each visit, the 

third index is thus omitted. We denote yij the seizure count for patient i on visit 

j; therefore the random effects Ui and ity are at patient and visit levels respectively. 

The formulation is as follows: 

Yij\\3 = u ~ Poisson ( / i j j U y ) , 

whereas 

t y u , = u„ ~ Tw g(l,4^), (8.2) 
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and 

Ui,...,U59 i i d Tw r(l,a 2), 

where j — 1, 2,3,4 and i = 1,... ,59. The conditional independences corresponding 

to assumptions BI) and B2) given in Section 7.1 are assumed to hold. As explained 

in Chapter 7, this model can also be regarded as a semiparametric model. 

We consider four models with different assumptions for the dispersion param

eters ujfy Model(o>2 = 0), Model(a;2), Model(w2) and Model(a>?) assume a;2 = 

0, LO2, to2 and LO2 in (8.2), respectively. Thus Model(o;2 = 0) is the same one level 

model as HGLM 1, but without the gamma distributional assumption for the random 

effects. Model(a>2) is the model with equal to2 for all (i, j) corresponding to HGLM 

3. Model(a>2), namely the model with distinct co2 for different visits, has the same 

covariance structure of the response as that of model 22 proposed by Thall and Vail 

through crossed random effects design. The last model, Model(cj2), has distinct co2 

for each subject. 

We start with the Model ( C J 2 ) , including all possible two way interaction terms 

among the covariates. We removed all those interaction terms except.the interaction 

term Base.Trt from the model based on the Wald test and residual analysis. The 

p-value of Wald test for this last interaction term is slightly larger than 5%, but we 

retained it in all our models to allow a systematic comparison. That is, we take Base, 

Age, Trt, Visit and Base.Trt as the covariates. We fit the four models and present 

the results in Table 8.2. 
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Table 8.2: Parameter estimates for the epilepsy data. 

Model(cj2 = 0) Model(cj2) Model(cj2) Model(cj2) 

Parameter est.* s.e.* est. s.e. est. s.e. est. s e. 

Constant -1.35 1.22 -1.35 1.22 -1.37 1.16 -1.11 0.72 

Base 0.88 0.14 0.88 0.14 0.87 0.13 0.94 0.07 

Trt -0.89 0.41 -0.89 0.42 -0.91 0.40 -0.49 0.28 

Base.Trt 0.34 0.21 0.34 0.21 0.35 0.20 0.03 0.13 

Age 0.51 0.36 0.51 0.36 0.52 0.34 0.36 0.21 

Visit -0.22 0.10 -0.22 0.22 -0.28 0.23 -0.35 0.18 

a 2 0.28 0.19 0.16 0.007 

u, 2 0.36 0.33 0.03 

w\ 0.32 0.08 

u\ 0.67 0.54 

"I 0.25 12.9 

* est. and s.e. represent estimates and standard errors respectively. 

8.1.3 Model checking 

We have done model checking through residual analyses. The normal plots for 

Model(cj2), Model(cj2) and Model(a;2) are displayed in the first, second and third 

columns, respectively of Figure 8.2. The plots in the three rows correspond to the 

level 1, 2 and 3 residuals defined in Section 6.1. As expected, Model (CJ?) exhibits the 

least curvature since there are many more dispersion parameters estimated. Unlike 

Model (CJ 2 ) , the dispersion parameter estimators are known to be consistent for the 

Model(cj2) and Model(cjJ). There is not much difference between the normal plots 

for Model(cj2) and Model(cj2). 

We plot the standardized residuals against fitted values for the level 2 and level 
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Model (u;2) Model(o;2) 
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Model(o;2) Model(o;2) Model(w2) 

Figure 8.2: Normal plots of level 1, 2 and 3 residuals for epilepsy data. 
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Standardized residuals vs fitted values Residuals vs lilted values Residuals vs fitted values 

Model(a;2) Model(u;2) Model(w2) 

Standardized residuals vs fitted values Residuals vs log (fitted values) Residuals vs log (fitted values) 

leg<!B«fv«iM> 

Model(o;2) Model(a;2) Model(o;2) 

Figure 8.3: Scatter plots of level 2 and 3 residuals for epilepsy data. 

3 distributions in Figure 8.3. The level 1 residual plot is omitted since the fitted 

values are fixed at 1. The residual plots for these three models are arranged in the 

same fashion as the normal plots. The residuals for the level 3 distribution from the 

three models are approximately around zero, but display distinct lines due to the 

discreteness of the Poisson distribution. The residuals of Model(u;2) for the level 2 

distribution show a slightly megaphone shape, whereas the residuals of Model(o;2) for 

the level 2 distribution exhibit an upward trend. The residuals of Model(u 2) for the 

level 2 distribution show less pattern than the other two. 
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Based on the residual plots, Model(o;2) appears to fit slightly better than Model ( C J 2 ) . 

But the inferences about regression parameters are not significantly different for these 

two models. The dispersion parameter estimators are shown to be consistent for these 

two models as well. On the other hand, the normal plots for Model(u;2) look less 

curved. 

8.1.4 Comparison of different approaches 

Thall and Vail (1990) found their model 22 had the best fit among their fitted models. 

The numerical results from Breslow and Clayton (1993) were reported as similar to 

those obtained from this model 22. Analyses from the hierarchical generalized linear 

models and penalized quasi-likelihood are also very similar except for the intercept 

estimators. The regression parameter estimates and the standard errors obtained 

from Model(cj2 = 0) and Model(cj2) are quite similar to those in their counterpart 

from HGLMs except our standard error estimates are slightly larger. Thus all dif

ferent approaches yield essentially the same results about the regression parameters 

although different random effects distributional assumptions were made. 

The conclusions based on Model(c<;2 = 0), Model(c<;2) and Model(a;2) are similar 

to those previous studies. The interaction between the treatment and baseline is re

tained in the models since the approximate p-values for this interaction is just slightly 

larger than a = 0.05. As Thall and Vail indicated, this means the predicted mean 

seizure rate for the treatment group is either higher or lower than that for the placebo 

group, accordingly as the baseline count does or does not exceed a critical threshold 

(minus the ratio of the regression parameter for Trt to the regression coefficient for 

94 



the interaction term). This seems to suggest that the new drug progabide may be 

contraindicated for patients with high seizure rates. However they pointed out this 

suggestion should be treated with caution since it is based on a single dataset and a 

particular family of models. 

In fact, the interaction between the treatment and baseline is statistically insignif

icant in Model (of). Based on the Wald test, the p-value of dropping the interaction 

term from Model (LO2) is as high as 0.8. That is, the contraindication of the new drug 

progabide for patients with high seizure rates disappears after accounting properly 

for the marginal heterogeneity among patients. Dropping this interaction term, the 

p-value for the treatment effect in this model becomes extremely small. That is, the 

effectiveness of this new drug progabide is statistically significant. 

Thall and Vail (1990) focused their analyses on the regression parameters in the 

log-linear models for the marginal seizure rates and the covariance parameters in var

ious patterned covariance matrices. They carefully examined the marginal residuals 

comparing the observed and fitted counts of each subject at each visit, and identified 

patients 207, 135, 225, 227 and 112 as 'outliers'. 

The primary interest of Breslow and Clayton (1993) is systematic identification 

of patients who had extreme levels, or extreme degrees of change over time, in their 

seizure rates. They identified patient 135 as having marked improvement over time 

after an initially high seizure rate, and identified patients 227, 225 and 112 as having 

the highest overall count levels relative to expectation based on the covariates. They 

also identified patient 232 as having low and zero counts. However Lee and Nelder 

were more cautious in claiming outliers and indicated a single outlier, patient 227. 
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The marginal heterogeneity among patients is substantial, even after accounting 

for the treatment and baseline variables. In all models except Model(w2), the dis

persion parameters are assumed to remain the same across subjects. That is, the 

marginal variance only changes with the marginal mean in a systematic way. How

ever, in biological studies, due to the genetic, environmental or other unknown factors, 

the marginal heterogeneity across subjects often exceeds what could be explained by 

the mean change. We plot the sample variances s2 against sample means y~i across 

subjects in Figure 8.4 to study the mean-to-variance relationship. The boxplots of the 

responses for different subjects are also displayed in Figure 8.4 to serve this purpose. 

As indicated by (7.1), the variance is a monotone function of the mean for Tweedie 

mixed models with equal dispersion parameters. Thus the two plots in Figure 8.4 

should reflect this monotone pattern if the dispersion parameters do not vary across 

subjects. These two plots do show a kind of monotone pattern, but not very closely. 

To account for the irregular marginal heterogeneity, we considered Model (a;2) 

where different dispersion parameters u>2 are allowed across patients. This model 

seems to have effectively captured this irregular heterogeneity. The minimum, first 

quartile, third quartile and the maximum of Qjs are displayed in Table 8.2 labeled 

as to2 for j = 1,2,3,4. The estimated u;2s range from 0.03 to 12.9 corresponding 

to patients 213 and 225 respectively. Model(u;2) also seems to be very sensitive in 

detecting outliers. The scatter plot of cD2s in Figure 8.5 identifies patients 135, 227, 

112, 207 and 225 with large Q2. These patients match outliers reported by Thall and 

Vail (1990) and Breslow and Clayton (1993). 
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Figure 8.4: Heterogeneity plots for epilepsy data: (a) scatter plot of within subject 

sample variances versus sample means; (b) boxplots of within subject responses for 

all patients. 
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Figure 8.5: Heterogeneity plot for epilepsy data. 
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8.1.5 Computational aspects 

With regards to computing, we ran Splus on a Sparc ultra machine. All parame

ter estimates for the Model(u;2) updated in monotone directions after five iterations. 

Those included regression and dispersion parameters as well as standard errors for 

regression parameters. All estimates at the fifth iteration are close to those in Table 

8.2. The same two decimal point precision for all parameter estimates was achieved 

at the eighteenth iteration. At this iteration, the absolute value of the standardized 

components of ib((3) were less than 0.001. The absolute distance between regression 

parameter estimates and their updates were less than 0.00003. We stopped the pro

gram after sixty iterations. The maximum of the absolute values of the standardized 

components of i/>(/3) and the absolute distance between regression parameter esti

mates and their updates were less than 2E — 12 and 3E — 13, respectively. Each 

iteration took about 10 seconds of user time and 0.01 seconds of system time on the 

Sparc ultra machine. Twenty iterations took about four minutes. 

As to the other two level random effects models, the computing time for Model(a;2) 

was slightly longer than that for Model(a;2). For Model(c<;2), all parameter estimates 

stabilized after eight iterations, but they converged much more slowly although still 

in a monotone direction. Those estimates approached the values reported in Table 

8.2 after about fifty iterations. Each iteration took about 15 seconds on the same 

machine. 

8.2 Binomial data 

We illustrate the orthodox BLUP approach to binomial data with analysis of the seed 

germination data described in Section 2.4.2. 
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8.2.1 Paired Poisson-Tweedie models 

We analyze the seed germination data based on the paired Poisson-Tweedie models. 

The model notation is similar to that for the epilepsy data. The estimates and cor

responding standard errors are displayed in Table 8.3. 

Table 8.3: Parameter estimates for the seed germination data based on paired Poisson 

mixed models. 
Paired GLM Model(a2 - 0) Model(o;2) Model^J) 

Parameter est.* s.e.* s.e. s.e. s.e. 

Constant -0.558 0.126 0.349 0.181 0.179 

Seed (2) 0.146 0.223 0.512 0.289 0.287 

Extract (2) 1.318 0.177 0.475 0.250 0.248 

Interaction -0.778 0.306 0.708 0.398 0.395 

est. est. est. 

a2 0.229 0.226 

co2 0.265 0.042 0.055 

co\ 0.026 

* est. and s.e. represent estimates and standard errors respectively. 

As indicated in Chapter 7, the asymmetric binomial mixed models can be con

sidered based on the paired two level Poisson-Tweedie models with the second level 

random effects having unequal dispersion parameters co2s between the two groups 

j = 1,2. We started our modeling with this asymmetric model, Model (co2), but there 

is little evidence for this asymmetry as the difference between u2 and 0J\ is small 

relative to a2. Thus we proceed to fit the symmetric paired Poisson mixed model 

with one and two levels of random effects, namely Model(a2 = 0) and Model(t<;2). 

100 



The estimates and standard errors presented in the first and second columns 

were obtained from the standard paired Poisson generalized linear model, namely, 

the paired Poisson generalized linear models without random effects. This standard 

paired Poisson generalized linear model corresponds to the standard binomial gen

eralized linear models. The regression parameter estimates and their corresponding 

standard errors obtained from these two models are exactly the same. 

The regression parameter estimates obtained from all above paired Poisson-Tweedie 

models with various distributional assumptions for random effects are almost identi

cal to those obtained from the standard binomial generalized linear models. Breslow 

and Clayton (1993) also reported similar results from their simulation study based 

on some simulated data sets generated from a balanced binomial mixed model de

sign. Their marginal quasi-likelihood (MQL) approach to binomial mixed models led 

to regression coefficient estimates identical to those obtained from standard logistic 

regression; however neither the MQL nor PQL regression parameter estimates for 

this seed germination data were identical to those obtained from standard logistic 

regression. 

On the other hand, the standard error estimates obtained from the paired Poisson 

mixed models are much larger than those obtained from the standard paired Poisson 

regression models. Furthermore, the standard error estimates clearly vary from one 

random effects model to another. That is, the standard error estimates depend heav

ily on the random effects model assumptions. This is different from the results for 

the epilepsy data. 
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8.2.2 Model checking 

We performed residual analysis based on the paired Poisson-Tweedie models. Since 

the procedure is exactly the same as those presented in last section, we present the 

residual plots for Model(a;2) only. The normal plots of the level 1, 2 and 3 residuals, 

for Model(u;2) are displayed in Figure 8.6 and the scatter plots of level 2 and 3 resid

uals are displayed in Figure 8.7. Normal plots at all three levels exhibit moderate 

curvature, whereas the scatter plots of level 2 and 3 residuals against log-fitted values 

show moderate upward trends. Some patterns usually exist for a small data set with 

discrete responses. 

8.2.3 Comparison of different approaches 

Breslow and Clayton (1993) and Lee and Nelder (1996) also analyzed the seed ger

mination data. The estimates and the corresponding standard errors are presented 

in Table 8.4. 

Ta Die 8.4: Paramet :er estimates for t ie seed data based on binomial moc els. Ta 

Parameter 

GLM 

est.* s.e.* 

PQL 

est. s.e. 

HGLM 

est. s.e. 

els. Ta 

Constant 

Seed (2) 

Extract (2) 

Interaction 

a2 

-0.558 0.126 

0.146 0.223 

1.318 0.177 

-0.778 0.306 

-0.542 0.190 

0.077 0.308 

1.339 0.270 

-0.825 0.430 

0.098 

-0.543 0.187 

0.080 0.303 

1.337 0.265 

-0.822 0.423 

0.045 

els. 

* est. and s.e. represent estimates and standard errors respectively. 

The standard errors obtained from the paired Poisson-Tweedie models with one 
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Figure 8.6: Normal plots of residuals for seed germination data. 
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Figure 8.7: Scatter plots of residuals for seed germination data. 
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level of random effects are almost twice those obtained from penalized quasi-likelihood 

and maximum hierarchical likelihood approaches, whereas the symmetric paired Pois

son with two levels of random effects model gives similar, but slightly smaller standard 

error estimates than those obtained from penalized quasi-likelihood and maximum hi

erarchical likelihood approaches. The Model(cr2 = 0) corresponds to binomial-beta 

model (Lee and Nelder 1996); however the former gives quite different standard error 

estimates than the latter. This difference is not easy to explain. Further investigation 

is needed. 

8.3 Continuous data 

We illustrate our approach to clustered continuous data with an analysis of the cake 

baking data described in Section 2.4.3. Cochran and Cox (1957) analyzed the cake 

baking data using analysis of variance. The normal plot of residuals for the ANOVA 

model in Figure 8.8 shows a curvature. Firth and Harris (1991) re-analyzed the cake 

baking data using multiplicative models and they found strong support for the hy

pothesis of a constant coefficient of variation. Thus we analyze the cake baking data 

based on the conventional gamma mixed models, Model(a;2), where the two levels of 

random effects are at the batch and observation levels. Temperature and recipe are 

taken as factors. We screen these factors based on the Wald test. We found that the 

recipe effect and any interaction between temperature and recipe appear negligible, 

but the temperature effect is highly statistically significant. In fact, Figure 8.9 shows 

that there is an increasing trend in breaking angles as the temperature increases. 

Cochran and Cox (1957) and Firth and Harris (1991) reached similar results to 
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ours except they found the recipe effect is significant at the statistical significance level 

of 0.05. The normal plots of level 1, 2 and 3 residuals in Figure 8.10 do not reveal 

serious patterns except some curvature for the level 1 residuals. The scatter plot 

for level 2 residuals in Figure 8.11 does not exhibit any serious pattern, whereas the 

scatter plot for level 3 residuals shows an upward trend. Noting that the dispersion 

parameter p2 is nearly zero, one would expect that the effect of level 3 residuals 

on the model be small. To have a systematic comparison, we display estimates and 

corresponding standard errors for ANOVA, gamma and gamma mixed models without 

interaction in Table 8.5. The parameter estimates from ANOVA model are quite 

different from those obtained using standard generalized linear model and gamma 

mixed model; however the regression parameters for the latter two models are again 

almost identical for this balanced design. After accounting for random effects, the 

recipe factor becomes less statistically significant, whereas the temperature factor 

becomes more statistically significant. 
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Table 8.5: Parameter estimates for cake baking data. 

ANOVA GLM Model(o;2) 

Parameters est. s.e. est. s.e. est. s.e. 

Constan 32.122 0.474 3.466 0.015 3.466 0.030 

RI 0.989 0.821 -0.023 0.018 -0.023 0.037 

R2 0.819 0.474 -0.008 0.010 -0.008 0.021 

T l 0.598 0.335 0.034 0.026 0.034 0.014 

T2 1.092 0.260 0.028 0.015 0.028 0.008 

T3 0.647 0.212 0.020 0.010 0.020 0.006 

T4 -0.739 0.581 0.033 0.008 0.033 0.005 

T5 -0.261 0.335 0.020 0.007 0.020 0.004 

a 2  0.038 

LO2 0.019 

P 2  0.00025 

R and T represent recipe and temperature factors. 
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Figure 8.9: Boxplots of cake baking data by temperature. 
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Figure 8.10: Normal plots of residuals for cake baking data. 
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Figure 8.11: Scatter plots of residuals for cake baking data. 
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Chapter 9 

Simulat ion 

In this chapter, we evaluate the performance of the orthodox BLUP approach based 

on a simulation study. We will focus on Poisson mixed models since these models play 

an important role in the analysis of discrete data. Illustrative examples of applications 

of Poisson mixed models to analyze count data and binomial data were presented in 

the previous chapter. A possible connection between Poisson mixed models and the 

random effects Cox proportional hazard models for censored data will be discussed 

in next chapter. 

9.1 Results over 100 simulations 

To investigate the performance of the orthodox BLUP approach under realistic con

ditions, we 'replicate' the epilepsy data set 100 times via simulation using Poisson-

gamma model. To generate the random effects and responses via simulation from this 

model, we take the covariates Constant, Base, Trt, Age, Visit and Base.Trt of epilepsy 

data as the covariates for simulation. The corresponding regression and dispersion 

parameter estimates for the epilepsy data are taken as true model parameters. There 

are listed in Table 9.1 as 'true values' (30, px, ..., @5, a2 and LO2, respectively. Each 
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of these 100 data sets is then simulated through the following three steps: 

• Step 1: 

Generate 59 samples from Gamma(l, a2), denoted by Vq°\ . . . , u^; 

• Step 2: 

Generate 4 samples from Gamma(uf , w 2 « f ) for each i, denoted by j = 

1,2,3,4 and i = 1,..., 59; 

• Step 3: 

Generate a sample from Poisson (uij exp(x /̂3)) for each denoted by y£\ 

j = 1, 2, 3,4 and i = 1,..., 59, where the design matrix X is taken exactly the 

same as that of epilepsy data. 

The regression and dispersion parameter were fixed at the corresponding estimates 

for epilepsy data, that is, (3 = (1.30,0.88,-0.88,0.50,-0.23,0.34), a2 = 0.24 and 

co2 — 0.44, respectively. The 100 data sets are obtained by repeating this procedure 

for k = 1,...,100. 

We analyzed each of these 100 data sets based on the standard Poisson regres

sion model (GLM) and Poisson-Tweedie models with and without degree of freedom 

correction for small samples, denoted by BLUP.c and BLUP, respectively. The sum

maries are presented in the next subsection. 
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9.1.1 Summary statistics 

The averages of regression and dispersion parameter estimates over 100 simulations 

are displayed in Table 9.1. 

Table 9.1: Averages of parameter estimates over 100 simulations. 

f% Pi P2 Ps PA f% a2 cu2 

true value -1.30 0.88 -0.88 0.50 -0.23 0.34 0.24 0.44 

GLM -1.37 0.88 -0.78 0.51 -0.26 0.29 

BLUP -1.36 0.87 -0.89 0.51 -0.25 0.34 0.17 0.50 

BLUP.c -1.31 0.87 -0.88 0.50 -0.25 0.34 0.23 0.61 

The regression parameters are reasonably estimated by both GLM and orthodox 

BLUP approaches with or without small-sample correction. On the other hand, the 

dispersion parameters a2 and cu2 are underestimated and overestimated respectively. 

This phenomenon is different from simulation studies reported by Breslow and Clay

ton (1993) where the dispersion parameters were always underestimated. However 

the possibility of overestimation was previously predicted by Engel and Keen (1996). 

The small-sample correction alleviates the negative bias of the estimate of a2, but 

worsens the positive bias of the estimate of cu2. 

The standard errors of the estimates over 100 simulations and the averages of the 

100 estimated standard errors are termed as simulated and estimated standard errors, 

respectively (Lin and Breslow 1996b). Table 9.2 displays the simulated and estimated 

standard errors. The expressions of the simulated and estimated standard errors for 

Pi are as follows: 

1 100 1 100 

simulated s.e.(A) = , — Y(p\k) - — Y B\k))2, 
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and 
1 1 0 0 

estimated s.e.(0i) = s.e.(3^). 
v ' 100 

i 

Table 9.2: Simulated and estimated standard errors 
s.e. . 0o 0i A 0s As a2 ui2 

GLM Sim. 1.65 0.17 0.60 0.48 0.28 0.31 

Est. 0.41 0.04 0.15 0.12 0.10 0.06 

BLUP Sim. 1.42 0.15 0.43 0.41 0.22 0.23 0.07 0.07 

Est. 1.25 0.14 0.42 0.36 0.24 0.22 

BLUP.c Sim. 1.42 0.15 0.43 0.41 0.22 0.23 0.07 0.09 

Est. 1.39 0.16 0.47 0.41 0.26 0.24 

* Simulated s.e.: s.e. of estimates over 100 simulations. 

** Estimated s.e.: average of 100 estimated s.e.s. 

Clearly the GLM standard error estimates are seriously negatively biased. In 

contrast, the orthodox BLUP approach with small-sample correction slightly overes

timates standard errors for regression parameters, except for the intercept (30. On the 

other hand, the orthodox BLUP approach without small-sample correction slightly 

underestimates the standard errors for the regression parameters, severely so for the 

intercept. 

Table 9.3: Mean squared errors over 

f% 0i 02 03 04 05 a2 
LO2 

GLM 2.73 0.03 0.36 0.23 0.08 0.10 

BLUP 2.01 0.02 0.18 0.17 0.05 0.05 0.01 0.01 

BLUP.c 2.01 0.02 0.19 0.17 0.05 0.05 0.01 0.04 

00 simulations. 

To evaluate the overall performance of the estimates over 100 simulations, we dis-
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play the mean squared errors (MSEs) in Table 9.3. As expected, the mean squared » 

errors of regression parameter estimates based on standard Poisson model are larger 

than those based on the orthodox BLUP approaches. According to mean squared 

errors, the orthodox BLUP approach without small-sample correction performed 

slightly better than the orthodox BLUP approach with small-sample correction. All 

three approaches gave exceptionally large mean squared errors of the intercept ft. 

9.1.2 Confidence and prediction intervals 

Based on the simulated and estimated standard errors, we constructed simulated and 

estimated 95% confidence intervals for the parameters and 95% prediction intervals for 

the random effects (u\ and un) assuming normality of the estimators and predictors. 

We present in Table 9.4 the counts of the number of times the true values are covered 

by 95% confidence intervals or prediction intervals. The kth confidence intervals for 

ft are defined as follows: 

simulated C.I. for ft = - 1.96 simulated s.e .( f t) , $[k) + 1.96 simulated s .e . ( f t ) ) , 

and 

estimated C.I. for ft = ($*} - 1.96 estimated s.e.0[k)), 0{k) - 1.96 estimated s.e.0[k))) . 

As expected, the GLM estimated 95% confidence intervals performed very poorly. 

On the other hand, the estimated 95% confidence intervals based on the orthodox 

BLUP approaches performed reasonably well, especially those with small-sample cor

rection. The orthodox BLUP approaches also gave reasonable 95% prediction inter

vals, but with lower coverage counts for u\ and higher coverage counts for u n . 
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Table 9.4: Coverage counts of 95% confidence and prediction intervals. 

A) A i A> A3 A i As Ui 

GLM Sim. 95 96 94 94 94 93 

Est. 35 28 38 35 44 31 

BLUP Sim. 96 97 96 95 94 96 88 100 

Est. 90 96 94 91 97 92 84 98 

BLUP.c Sim. 96 97 94 95 94 97 92 100 

Est. 95 96 95 94 98 97 91 100 

9.1.3 Normality of parameter estimates and random effects 

To check the normality of parameter estimators, we did a normal plot for each of 

regression and dispersion parameter estimates over the 100 simulations. The results 

are displayed in Figure 9.1. The departures from normality do not seem serious even 

for the dispersion parameters. 

To assess the performance of the orthodox BLUP predictors, we plotted the simu

lated random effects versus their orthodox BLUP predictors over the 100 simulations. 

In particular, we plotted u[k^ versus and versus u[ki over k = 1,..., 100 in the 

upper rows of Figure 9.2. Perfect prediction would lead to diagonal lines in these two 

plots. The prediction for the second level of random effects seems to be better than 

that for the first level random effects. Normal plots of the orthodox BLUP predictors 

of random effects Ui and un over 100 simulations are displayed in the lower row of 

Figure 9.2. The clear curvatures in these normal plots imply that random effects 

predictors are not well approximated by normal distributions. 

The numerical results and plots from this simulation study show that the param-

117 



y 
: 

3 

y 

Po Pi P2 

; 
y 

/ 
S 

y 
s 

Pz PA Ps 

3 

Figure 9.1: Normal plots of parameters over 100 simulations: x and y axes are quan-

tiles of standard normal distribution and ordered parameter estimates over 100 sim

ulations, respectively. 
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Figure 9.2: Plots for random effects predictors iii and uu over 100 simulations. 
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eters are reasonably well estimated through orthodox BLUP approach. 

9.2 Residual analysis 

In Chapter 8, we did model checking through residual plots. Serious irregularities 

exhibited in residual plots may indicate serious violation of model assumptions. To 

help to set up standards for judging irregularity exhibited by residual plots, we will 

study the behavior of residuals through simulation in this section. 

In this section, we make comparison and contrast of residual plots for the epilepsy 

data and simulated data. The normal plots for the level 1, 2 and 3 residuals for 

the epilepsy data and simulated data are displayed at row 1, 2, and 3 of Figure 

9.3 where the normal plots for the epilepsy data and simulated data are on the left 

and right hand side, respectively. The histograms and scatter plots for the epilepsy 

data and simulated data are displayed in Figure 9.4 and 9.5, respectively, in the 

same fashion as the normal plots. The simulation shows that the residual plots may 

exhibit some patterns even if the data were generated from a Poisson-gamma model. 

That is, moderate patterns in residual plots may not indicate violation of the model 

assumptions. 
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Normal plot of level 1 residuals Normal plot of level 1 residuals (simulated data) 

quantiles of standard normal 

Normal plot of level 2 residuals 
quantiles of standard normal 

Normal plot of level 2 residuals (simulated data) 

quantiles of standard normal 

Normal plot of level 3 residuals 
quantiles of standard normal 

Normal plot of level 3 residuals (simulated data) 

quantiles of standard normal quantiles of standard normal 

Figure 9.3: Comparison of normal plots of level 1, 2 and 3 residuals for epilepsy data 

and simulated data. 
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Histogram of level 1 residuals Histogram of level 1 residuals (simulated data) 

-2 -1 

Histogram of level 2 residuals Histogram of level 2 residuals (simulated data) 

Histogram of level 3 residuals Histogram of level 3 residuals (simulated data) 

Figure 9.4: Comparison of histograms of level 1, 2 and 3 residuals for epilepsy data 

and simulated data. 
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Level 2 residuals vs level 1 random effects Level 2 residuals vs level 1 random effects (simulated data) 

(•vol 1 random affects 

Level 3 residuals vs log-fitted values 

k>g(fltlnd valuas) 

Level 3 residuals vs log-fitted values (simulated data) 

Figure 9.5: Comparison of scatter plots of level 2 and 3 residuals for epilepsy 

and simulated data. 
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Chapter 10 

Discussion 

10.1 Conclusion 

In this thesis we have introduced a new class of generalized linear mixed models, 

Tweedie mixed models, and adopted the orthodox BLUP in the fitting algorithm. 

This approach has several advantages. 

1. Tweedie mixed models take both the distributional shape and intra-dependence 

of clustered data into account. The resulting variance component decomposition of 

the structure of the covariance matrix of responses is not only very interpretable, 

but also makes the model fitting much simpler than modal predictor approaches; all 

expressions for the estimating equations were explicitly derived based on (3.13) so 

there is no need to invert large matrices. 

2. The orthodox approach provides us a common method for computing parame

ter estimates and random effects predictors for all Tweedie mixed models; therefore 

we can study Tweedie mixed models as a single class, rather than as a collection of 
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unrelated different models. Furthermore, the conventional Tweedie mixed models are 

shown to have close connection with well-known Poisson-gamma, binomial-beta and 

Poisson-lognormal models. The semiparametric interpretation of the conventional 

Tweedie mixed models allows specification only the first and second moments of the 

unobserved random effects. 

3. The orthodox BLUP for random effects in (4.1), estimated score function for 

regression parameter in Theorem (5.1) and adjusted Pearson estimators for dispersion 

parameters in (5.10), (5.15) and (5.17) show that our orthodox BLUP approach relies 

on only the first and second moment structure of (U, Y). It is important to note that 

the orthodox BLUP approach requires specification only of the first and second mo

ments of the random effects model. Tweedie mixed models play an interpretable role 

within this larger family of models just as exponential dispersion models do within 

generalized linear models. 

4. The asymptotic justification of orthodox BLUP approach does not rely on any 

kind of normality of random effects. In contrast, the asymptotic justifications of pe

nalized quasi-likelihood and maximum hierarchical likelihood approaches largely rely 

on the approximate normality for random effects or 'the right transformed normality 

for random effects on the right scale' , respectively. It is important to note that our 

asymptotic variance of regression parameter estimator is not affected by the variabil

ity of estimating dispersion parameters. 

Our orthodox BLUP approach leads to the same estimating equation for the 

regression parameters as that obtained by the generalized estimating equation ap

proach. This estimating equation was also reached via the quasi-likelihood function 
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(McCullagh 1983) and multilevel modelling (Goldstein 1995) approaches. All these 

approaches except the orthodox BLUP approach are marginal modelling instead of 

conditional modelling approaches, that is, they are useful to make the 'population-

averaged' instead of 'subject-specific' inferences on the mean (Schabenberger 1996; 

Burton et al. 1998). On the other hand, the orthodox BLUP approach explicitly 

incorporates random effects and mergers the 'subject-specific' and the 'population-

averaged' inferences using the same model. In addition, the marginal covariance 

structures for our models are generally different from those considered by the other 

three approaches. 

In the development of random effects modelling methodologies, the model check

ing has generally been ignored (see e.g. Zeger and Karim 1991; Breslow and Clayton 

1993) or done via normality checking of residuals (Lee and Nelder 1996); however 

the justification of the normality of residuals has not been found in the literature. 

It appears from our simulation study that moderate departures from normality may 

not necessarily indicate departures from the model assumptions. 

We illustrated the orthodox BLUP approach to analyses of clustered count, bino

mial and continuous data using Tweedie mixed models. In addition, our compound 

Poisson-Tweedie models may be applied to positive continuous data with a positive 

probability component at zero. One data example is car insurance data, for example, 

where the zero component corresponds to the case of no claims for a given insur

ance policy and the positive part of the distribution is the claim-size distribution 

(J0rgensen and Souze 1994). Another data example is the customers' expenditures 

in a certain shopping center. 
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In this thesis, we take dispersion parameters as nuisance parameters and their 

standard errors are not estimated; however it would be of interest to develop tests 

for the presence of random effects as well as issues such as over-dispersion and het

erogeneity. Testing for such hypotheses is complicated because the null values lie on 

the boundary of the dispersion parameter space. Bootstrap methods may be used to 

construct such confidence intervals (Lele 1991), but these are controversial as regards 

their ability to fully reflect the relevant uncertainties. 

10.2 Further study 

In this section, we discuss some further research of the orthodox BLUP approach to 

generalized linear mixed models. 

10.2.1 More than two levels of random effects 

We have presented the Tweedie mixed model with two levels of random effects in 

detail. This model is useful to handle three-level hierarchical structure; however, hi

erarchies involving more levels also occur frequently in practice (Goldstein 1995). One 

such example is multi-center longitudinal clinical trials with centers further nested 

within geographical regions such as cities or countries. 

The extension of the Tweedie mixed models with two levels of random effects is 

straightforward. The estimation procedure for more than two levels of nested ran

dom effects models is much the same as that for two-level models. The estimated 

score function and sensitivity matrix have the same global matrix expression as in 

Theorem 5.1. The key derivation of the orthodox BLUP approach is the calculation 
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of the orthodox BLUP prediction of random effects which involves the inverse of the 

covariance matrix of the response. However this inverse can be obtained by repeat

edly applying (3.13) to the covariance matrix of the response, twice for the models 

with two levels of random effects, three times for three levels of random effects, and 

so on. 

We have derived explicit expressions for all quantities of interest. These expres

sions are useful for theoretical study. In practice, those explicit expressions are not 

necessary for computing purposes. Calculation of the covariance matrix of the re

sponse can be programmed based on (3.13), and all quantities of interest can be 

evaluated in terms of this inverse. This remark will be especially useful to resolve the 

computing issue for these extended models. 

10.2.2 Crossed designs 

In our analyses of the epilepsy data, we considered the nested random effects only. In 

clinical trials, the nature and degree of the variability of such epileptic seizure counts 

over time may be as important as its average behavior (Thall and Vail 1990). This 

aspect of the epilepsy data may be analyzed through the following simple crossed 

factor Tweedie mixed model with p — 1: 

Yijk\U = u,V = v ~ Twp {pijk(ui + Vj), p2(ui + U j ) 1 _ p } , 

where Ui,..., Um, V\,...,Vn are mutually independent with E(Ui) = E(Vj) = \ . 

Replacing the random effects in the partially observed score function by their 
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orthodox B L U P predictors would give us an estimated score function as follows: 

i=lj=lk=l P 

= X T diag(E(Y))Var _ 1 (Y)(Y-E(Y)) . 

This estimating equation is clearly unbiased, but its asymptotic properties have yet to 

be studied. Ways of handling crossed designs are still rather limited in the literature 

of generalized linear mixed models. Further work on crossed factor random effects 

models would be of interest. The development of models for complicated crossed 

factor designs such as salamander mating data (McCullagh and Nelder 1989) is under 

way. 

10.2.3 Survival data analysis 

Incorporating random effects into Cox proportional hazard models has gained in

creasing attention in analyses of epidemiological or event history data. However, 

these models pose considerable theoretical difficulties in the development of estima

tion and inference procedures (Clayton 1991). Following Whitehead's (1980) idea 

of fitting the traditional Cox model using Poisson modelling techniques, we showed 

elsewhere that the random effects Cox model can also be fitted using random effects 

Poisson modelling techniques. To be more specific, we consider a Cox model with 

two levels of random effects as follows: 

Let the kth individual in the j th sub-cluster of the ith cluster be indexed by 

k). Let the hazard function for individual k) at time t be denoted by hijk(t). 

We assume that, given random effects U = u, the hazard functions for individuals 
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are conditionally independent with 

hijk(t) = h0(t)Uij exp(x;FC/3), (10.1) 

where h0(t) is the baseline hazard function and Ui3s are positive random effects, or 

'frailties', shared by all individuals of the same cluster. 

Suppose further that 

• T i , . . . , rg are distinct death times; 

• m/i is the multiplicity of deaths at time T > , ; 

• the risk set at rh is TZ(rh) = {(i,j,k) : ti3k > Th}, where ti3k is the observed 

survival time for individual (z, j, k). 

Let Yijk,h be 1 if individual (i,j,k) dies at Th and 0 otherwise. The fitting of 

random effects Cox model is equivalent to fitting the following auxiliary random 

effects Poisson model: 

Yijk,h\^J — u ~ Poisson (ui3 exp(ah + xjjkf3f) . (10-2) 

Given random effects, Peto's version of the conditional partial likelihood (Cox and 

Oakes 1984) and conditional Poisson likelihood are 

v£(3- Y I U - u) - TT " ( ^ t t f o ) ^ ( m h l ) 

and 

/(«, /3; Y | U = u) = JI " ' " ^ ^ ' > X p ^ + * 5 f ^ * (10.4) 

It can be shown that, given random effects, Peto's version of the conditional partial 

likelihood and conditional Poisson likelihood lead to the same maximum likelihood 
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estimates for regression parameters. Hence the orthodox BLUP approach may be 

adopted to fit the random effects Cox models via Poisson mixed models. 
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A p p e n d i x A 

D a t a sets 

Table A. l : Seed germination data (a)seeds: O. Aegyptiaca 75 and 73, (b)root 

tracts: bean and cucumber 

0. Aegyptiaca 75 0. Aegyptiaca 73 

Bean Cucumber Bean Cucumber 

r n r/n r n r/n r n r/n r n r/n 

10 39 0.26 5 6 0.83 8 16 0.50 3 12 0.25 

23 62 0.37 53 74 0.72 10 30 0.33 22 41 0.54 

23 81 0.28 55 72 0.76 8 28 0.29 15 30 0.50 

26 51 0.51 32 51 0.63 23 45 0.51 32 51 0.63 

17 39 0.44 46 79 0.58 0 4 0 3 7 0.43 

10 13 0.77 
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Table A.2: Epilepsy data: successive two-week seizure counts for 59 epileptics, (a) Trt: 

treatment 0=placebo, l=progabide); (b) Base: eight-week baseline seizure counts; 

(c)Age (in years). 

ID Vi Y2 Y3 n Base Age Trt 

104 5 3 3 3 11 31 0 

106 3 5 3 3 11 30 0 

107 2 4 0 5 6 25 0 

114 4 4 1 4 8 36 0 

116 7 18 9 21 66 22 0 

118 5 2 8 7 27 29 0 

123 6 4 0 2 12 31 0 

126 40 20 23 12 52 42 0 

130 5 6 6 5 23 37 0 

135 14 13 6 0 10 28 0 

141 26 12 6 22 52 36 0 

145 12 6 8 4 33 24 0 

201 4 4 6 2 18 23 0 

202 7 9 12 14 42 36 0 

205 16 24 10 9 87 26 0 

206 11 0 0 5 50 26 0 

210 0 0 3 3 18 28 0 

213 37 29 28 29 111 31 0 

215 3 5 2 5 18 32 0 

217 3 0 6 7 20 21 0 

219 3 4 3 4 12 29 0 

220 3 4 3 4 9 21 0 

222 2 3 3 5 ' 17 32 0 

226 8 12 2 8 28 25 0 

227 18 24 76 25 55' 30 0 

230 2 1 2 1 9 40 0 

234 3 1 4 2 10 19 0 

238 13 15 13 12 47 22 0 

101 11 14 9 8 76 18 1 

102 8 7 9 4 38 32 1 
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Table A.2: continued 

ID Yi Y2 Yz Yt Base Age Trt 

103 0 4 3 0 19 20 1 

108 3 6 1 3 10 30 1 

110 2 6 7 4 19 18 1 

111 4 3 1 3 24 24 1 

112 22 17 19 16 31 30 1 

113 5 4 7 4 14 35 1 

117 2 4 0 4 11 27 1 

121 3 7 7 7 67 20 1 

122 4 18 2 5 41 22 1 

124 2 1 1 0 7 28 1 

128 0 2 4 0 22 23 1 

129 5 4 0 3 13 40 1 

137 11 14 25 15 46 33 1 

139 10 5 3 8 36 21 1 

143 19 7 6 7 38 35 1 

147 1 1 2 3 7 25 1 

203 6 10 8 8 36 26 1 

204 2 1 0 0 11 25 1 

207 102 65 72 63 151 22 1 

208 4 3 2 4 22 32 1 

209 8 6 5 7 41 25 1 

211 1 3 1 5 32 35 1 

214 18 11 28 13 56 21 1 

218 6 3 4 0 24 41 1 

221 3 5 4 3 16 32 1 

225 1 23 19 8 22 26 1 

228 2 3 0 1 25 21 1 

232 0 0 0 0 13 36 1 

236 1 4 3 2 12 37 1 
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Table A.3: Cake baking data: breaking angles (deg 

Temperature 
Rep.. 175° 185° 195° 205° 215° 225° 

1 42 46 47 39 53 42 
2 47 29 35 47 57 45 
3 32 32 37 43 45 45 
4 26 32 35 24 39 26 
5 28 30 31 37 41 47 
6 24 22 22 29 35 26 
7 26 23 25 27 33 35 

Recipe I 8 24 33 23 32 31 34 
9 24 27 28 33 34 23 

10 24 33 27 31 30 33 
11 33 39 33 28 33 30 
12 28 31 27 39 35 43 
13 29 28 31 29 37 33 
14 24 40 29 40 40 31 
15 26 28 32 25 37 33 
1 39 46 51 49 55 42 
2 35 46 47 39 52 61 
3 34 30 42 35 42 35 
4 25 26 28 46 37 37 
5 31 30 29 35 40 36 
6 24 29 29 29 24 35 
7 22 25 26 26 29 36 

Recipe II 8 26 23 24 31 27 37 
9 27 26 32 28 32 33 

10 21 24 24 27 37 30 
11 20 27 33 31 28 33 
12 23 28 31 34 31 29 
13 32 35 30 27 35 30 
14 23 25 22 19 21 35 
15 21 21 28 26 27 20 
1 46 44 45 46 48 63 

. 2 43 43 43 46 47 58 
3 33 24 40 37 41 38 
4 38 41 38 30 36 35 
5 21 25 31 35 33 23 
6 24 33 30 30 37 35 
7 20 21 31 24 30 33 

Recipe III 8 24 23 21 24 21 35 
9 24 18 21 26 28 28 

10 26 28 27 27 35 35 
11 28 25 26 25 38 28 
12 24 30 28 35 33 28 
13 28 29 43 28 33 37 
14 19 22 27 25 25 35 
15 21 28 . 25 25 31 25 
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