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Abstract 

Natural resource management models simplify reality for the purpose of planning or manage
ment. In much the same way, an uncertainty model simplifies the many uncertainties that 
pervade the natural resource management model. However, though a number of uncertainty 
models have been developed, there has been little work on verifying such models against the 
uncertainty they purport to represent. The central research question addressed by this work is 
'can a natural resource management uncertainty model be verified in order to evaluate its 
utility in real-world management?' Methods to verity uncertainty models are developed in two 
areas: uncertainty data models, and uncertainty propagation through process models. General 
methods are developed, and then applied to a specific case study: slope stability uncertainty in 
the southern Queen Charlotte Islands. Verification of two typical uncertainty data models (of 
classified soils and continuous slope) demonstrates that (in this case) both expert opinion 
inputs and published error statistics underestimate the level of uncertainty that exists in 
reality. Methods are developed to recalibrate the data models, and the recalibrated data are 
used as input to an uncertainty propagation model. Exploratory analysis methods are then 
used to verify the output of this model, comparing it with a high-resolution mass wastage 
database—itself developed using a new set of tools incorporating uncertainty visualisation. 
Exploratory data analysis and statistical analysis of the verification shows that, given the 
nature of slope stability modelling, it is not possible to directly verify variability in the model 
outputs due to the existing distribution of slope variability (based on the nature of slope model
ling). However, the verification work indicates that the information retained in uncertainty-
based process models allows increased predictive accuracy—in this case of slope failure. It is 
noted that these verified models and their data increase real-world management and planning 
options at all levels of resource management. Operational utility is demonstrated throughout 
this work. Increased strategic planning utility is discussed, and a call is made for integrative 
studies of uncertainty model verification at this level. 



iii 

Table of Contents 

Abstract ii 
List of Tables vii 

List of Figures viii 

Acknowledgements x 

Chapter One: Introduction 1 

1.1. The Problem 1 

1.2. Major Questions 3 
1.3. Research Orgariisation 5 
1.4. Contribution to Knowledge 6 

Chapter Two: B a c k g r o u n d 8 

2.1. Introduction 8 
2.1.1. GIS and Uncertainty 9 
2.1.2. Chapter Layout 10 

2.2. Error and Uncertainty 10 
2.2.1. Uncertainty Defined 11 
2.2.2. Quality 12 
2.2.3. Subdivisions of Uncertainty 13 

2.2.3.1. Positional Uncertainty 14 
2.2.3.1.1. Registration 14 
2.2.3.1.2. Other Sources 15 
2.2.3.1.3. Lines and Areas 15 

2.2.3.2. Attribute Uncertainty 16 
2.2.3.3. Temporal Uncertainty 19 

2.2.4. Subdivision by Source 20 
2.2.4.1. Inherent Uncertainty 20 
2.2.4.2. Data Collection and Input Uncertainty 21 
2.2.4.3. Data Interpretation 21 
2.2.4.4. Data Entry 22 
2.2.4.5. Data Manipulation Uncertainty 23 
2.2.4.6. Propagation 23 
2.2.4.7. Generalisation Issues 24 



iv 

2.2.5. Measures of Uncertainty 25 
2.3. Uncertainty Modelling 26 

2.3.1. Modelling 27 
2.3.1;1. Modelling with GIS 27 
2.3.1.2. Methods of Modelling 28 

2.3.1.2.1. Bayesian Probability 29 
2.3.1.2.2. Dempster-Shafer's Theory of Evidence 30 
2.3.1.2.1. Non-Monotonic Logic 31 
2.3.1.2.2. Fuzzy Sets 32 
2.3.1.2.3. Lmking Fuzzy Sets With Attribute Data 35 
2.3.1.2.4. Combining Fuzzy Classifications 36 
2.3.1.2.5. Cardinal Values 37 

2.3.2. Propagation of Uncertainty 37 
2.3.2.1. Arithmetic Propagation 38 
2.3.2.1. Monte Carlo 40 

2.3.3. Uncertainty in Continuous Data 41 
2.3.4. Surnmary 43 

2.4. Communication of Uncertainty 43 
2.5. Uncertainty in Forestry Data and Models 45 

2.5.1. Uncertainty in Soil and Terrain Modelling 47 
2.5.1.1. Soil 47 
2.5.1.2. Elevation 48 

2.6. Research Gaps 50 
2.6.1. Uncertainty Modelling 50 
2.6.2. Validation 50 
2.6.3. Linking Uncertainty Management with Decision Making 51 

2.7. Summary 52 

Chapter T h r e e : M o d e l l i n g and S t o r i n g Measures of Uncertainty in Inventory. 54 

3.1. Introduction 54 
3.2. Methodology 56 

3.2.1. The Corridor of Transition Model 57 
3.2.1.1. The Semantic Import Model 57 

3.2.1.1.1. Polygon Centres 59 
3.2.1.1.2. Polygon Boundaries 61 

3.2.2. DEM Randomisation 65 
3.2.3. Combming Error and Uncertainty 67 

3.3. Slope Stability Modelling 67 
3.3.1. Combining and Summarising 68 

3.4. Case Study 69 
3.5. The Boundary Model and Attribute Uncertainty 70 



V 

3.6. The Monte Carlo Procedure 71 
3.7. Results 73 

3.7.1. Problems and Work Required 75 
3.7.1.1. Verifying Parameters 75 
3.7.1.2. Prediction 76 
3.7.1.3. Reporting and Communicating Uncertainty 77 

3.8. Summary ' 78 

Chapter F o u r : V e r i f i c a t i o n of M o d e l Inputs 79 

4.1. Introduction 79 
4.2. Background 81 

4.2.1. Fuzzy Classification 82 
4.2.2. Maximum Likelihood 85 
4.2.3. Continuous Classes - Fuzzy Clustering 86 

4.2.3.1. Background - Fuzzy Clustering 86 
4.2.3.2. Applying Fuzzy Clustering to Confirmatory Sampling 89 
4.2.3.3. Structure of the Classes in Attribute Space 90 
4.2.3.4. Nature of the Sample 92 
4.2.3.5. Metrics and Measures for Membership Values 93 

4.2.4. Summary of Theoretical Work 97 
4.3. Application to Parameter Verification and Tuning 97 

4.3.1. Samples Required 98 
4.3.2. Methodology 99 

4.3.2.1. Cross-Correlation 103 
4.3.2.2. Data Summary 106 

4.3.3. Results 107 
4.3.4. Applying Changes 110 

4.4. Discussion 113 

4.5. Calibration of Continuous Data 114 

4.6. Conclusions 117 

Chapter F i v e : e v a l u a t i o n of Uncertainty M o d e l Output 120 

5.1. Introduction 120 

5.2. Methodology 123 

5.3. Results 124 
5.3.1. Comparison of Means 125 
5.3.2. Alternative Realisations 128 
5.3.3. Variance 129 
5.3.4. Expected vs. Actual 131 
5.3.5. Zonal Spatial Limits 133 
5.3.6. Spatial Constraints 136 



vi 

5.3.7. Comparison: Old vs. New 136 
5.4. Discussion 138 
5.5. Conclusions 140 

Chapter Six: D i s c u s s i o n 141 

6.1. Introduction 141 
6.2. Resource Management 142 

6.2.1. Strategic Level 143 
6.2.2. Tactical Level 144 
6.2.3. Operational Level 146 

6.3. Uncertainty Model Validation 147 
6.4. Further Research 148 
6.5. Summary 154 

Chapter Seven: C o n c l u s i o n s 155 

7.1. Research Timeline 155 
7.2. Research Questions 156 

B i b l i o g r a p h y 160 

Appendix A : T h e H a r d k - M e a n s and Fuzzy c - M e a n s A l g o r i t h m s 174 

Appendix B : G P S A c c u r a c y Statistics 177 
i 

Appendix C: Cross C o r r e l o g r a m s and S i g n i f i c a n c e Tests 
for Sample Transects 179 

Appendix D : Uncertainty V i s u a l i s a t i o n in the Development of a New Data 
Update T o o l for GIS 182 

Appendix E : Development of the Mass Wastage Database 220 



vii 

List of Tables 

3.1. Misclassiflcation matrices derived from the SI model 59 
3.2. Soil characteristics and estimated standard deviations 72 
4.1. Calculation of the Mahalanobis distance for one sample 106 
4.2. Maximum values of correlation coefficients 112 
4.3. Original and updated misclassiflcation matrices 113 
5.1. Summary statistics for slope stability predictions, based on mean values 126 



List of Figures 

1.1. A view of data flow and feedback (verification) loops in resource management 3 
2.1. Location probability of a survey coordinate in 2-D space 13 
2.2. Epsilon boundary model of a digitised line 15 
2.3. Examples of probability density functions for line or digitising error. 16 
2.4. Boolean and fuzzy classification models 34 
2.5. Four probabilistic functions of spatial boundary uncertainty 42 
3.1. Alternative centroid models for variable polygon shapes 60 
3.2. The variable ridge model of a polygon's centre 61 
3.3. The 'corridor of transition' model for spatial boundary uncertainty 63 
3.4. Perspective view of the fuzzy surface representing soil type 1 65 
3.5. Perspective view of the fuzzy surface representing soil type 1 65 
3.6. Location of the Louise Island study site 70 
3.7. Detail of transition corridors 71 
3.8. The three types of surfaces resulting from the uncertainty modelling routine 73 
3.9. Maximum likelihood summary of slope stability factor-of-safety 75 
3.10. The spatial distribution of standard deviation of slope stability factor-of-safety 75 
3.11. An example of an application-specific data summary 75 
3.12. The worst-case-scenario summary 75 
4.1. Simplified view of p-dimensional attribute space, fuzzy classes and samples 84 
4.2. Notional distribution of individuals in attribute space 87 
4.3. Hard classes and continuous classes 87 
4.4. Mahalanobis distance in a 3-D attribute space 88 
4.5. Classes viewed as structures in (A,B,C) attribute space 88 
4.6. A new individual at an intergrade position between class A and B 91 
4.7. Centroids 92 
4.8. A sample hyper-polygon 93 
4.9. Sample to class distance defined using fuzzy sets in attribute space 96 
4.10. An overview of transect locations on the Louise Island test site 100 
4.11. Idealised transects and the effects of shifting them within uncertainty bounds 102 
4.12. Simplified examples of cross-correlograms 105 
4.13. The sequence of polygons 'encountered' on each transect 108 
4.14. Differences between measured slope and TRIM modelled slope 116 
5.1. The Lyell Island study area 123 
5.2. Relative frequency using an ML realisation 127 
5.3. Relative frequency using a worst-case realisation 128 
5.4. Factor-of-safety values for slide zones relative to number of cells 129 



ix 

5 . 5 . F a c t o r - o f - s a f e t y v a l u e s fo r n o n - s l i d e c e l l s r e l a t i v e to n u m b e r o f c e l l s 1 3 0 
5 . 6 . T h e p r e v i o u s t w o f i g u r e s g r a p h e d u s i n g c u m u l a t i v e v a l u e s 1 3 0 
5 . 7 . A s c a t t e r g r a p h o f v a r i a n c e v s . f a c t o r - o f - s a f e t y fo r s l i d e z o n e s 131 
5 . 8 . P o p u l a t i o n ( r a n d o m s u b s e t ) v s . s t a n d a r d d e v i a t i o n 132 
5 . 9 . W o r s t c a s e r e a l i s a t i o n f a c t o r - o f - s a f e t y v s . s t a n d a r d d e v i a t i o n 1 3 3 
5 . 1 0 . W o r s t c a s e r e a l i s a t i o n u s i n g t h e u p p e r 5 0 % o f s l i d e z o n e s 1 3 3 
5 . 1 1 . R e l a t i v e f r e q u e n c y o f t h e r e l a t i v e p o s i t i o n i n e a c h s l i d e 1 3 4 
5 . 1 2 . P o s i t i o n o f l o w F S p r e d i c t e d a r e a s r e l a t i v e to s l i d e s 1 3 5 
5 . 1 3 . A c o m p a r i s o n o f p r e d i c t i v e a c c u r a c y b e t w e e n t h e o r i g i n a l a n d u p d a t e d m o d e l s 1 3 7 
5 . 1 4 . T h e l o c a t i o n o f d i f f e r e n c e s b e t w e e n t h e t w o m o d e l s r e l a t i v e to s l i d e z o n e s 1 3 8 
6 . 1 . T y p i c a l g r a p h o f n o r m a l l y d i s t r i b u t e d u n c e r t a i n t y 1 4 8 



X 

Acknowledgements 

T h i s p r o j e c t w a s f u n d e d i n p a r t b y F o r e s t R e n e w a l B r i t i s h C o l u m b i a (p ro ject # H Q 9 6 0 7 8 - R E ) . 

T h e a u t h o r w i s h e s to t h a n k t h e f o l l o w i n g ( in c h r o n o l o g i c a l o r d e r ) : D r . O l a f N i e m a n n for p r o v i d 

i n g t h e o r i g i n a l d a t a a n d c o n t a c t s ; D r . P e t e r K e l l e r fo r a s s i s t a n c e w i t h c o n t a c t s , g r a n t m a n a g e 

m e n t a n d c o n s i d e r a b l e h e l p w i t h b r a i n s t o r m i n g ; m y s u p e r v i s o r , D r . B r i a n K l i n k e n b e r g , w h o 

s t a r t e d t h e b a l l r o l l i n g , b r a i n s t o r m e d , e d i t e d , a n d p e r f o r m e d a l l t h e o t h e r t h a n k l e s s s u p e r v i s o r y 

d u t i e s ; T o d d G o l u m b i a a n d h i s c r e w a t G w a i i H a a n a s A M B / P a r k s C a n a d a f o r l o g i s t i c a l s u p p o r t 

( a n d s o m e d e l i c i o u s f i s h ) — s p e c i f i c a l l y , W a r d e n D e b b i e G a r d i n e r fo r s u p p o r t o n L y e l l ( a n d fo r 

c l i m b i n g a l l t h o s e s l ides ) a n d W a r d e n D e n n i e C h r e t i e n fo r a s s i s t i n g w i t h t h e a e r i a l v i d e o w o r k ; 

P a t B a r r i e r , G w a i i H a a n a s G I S a n a l y s t , fo r m a k i n g d a t a a v a i l a b l e a n d a l s o h e l p i n g w i t h l o g i s 

t i c s ; M a c m i l l a n B l o e d e l a n d t h e i r e m p l o y e e s a n d c o n t r a c t o r s w h o a s s i s t e d w i t h d a t a a n d l o g i s 

t i c s o n L o u i s e I s l a n d ; D r . R o s a l i n e C a n e s s a for a s s i s t i n g w i t h f i e ld w o r k a n d d e t e r r i n g b e a r s ; 

J o h n B a r k e r a n d o t h e r s a t W e s t e r n F o r e s t P r o d u c t s fo r m a k i n g d a t a a v a i l a b l e a n d s u p p o r t i n g 

t h e r e s e a r c h e x t e n s i o n s ; t h e s t a f f a t t h e M a l c o l m K n a p p R e s e a r c h F o r e s t fo r l o g i s t i c a l a n d f ie ld 

a s s i s t a n c e ; a n d , t h r o u g h o u t i t a l l , m y w i fe W a n d a . 



1 

Chapter One 

Introduction 

1 . 1 . T H E P R O B L E M 

E f f e c t i v e n a t u r a l r e s o u r c e m a n a g e m e n t r e q u i r e s s i g n i f i c a n t a m o u n t s o f i n f o r m a t i o n . T o b e u s e 

f u l , t h i s i n f o r m a t i o n m u s t b e u p to d a t e a n d a c c u r a t e , m u s t c o v e r t h e e n t i r e m a n a g e m e n t a r e a , 

a n d m u s t b e i n a u s e a b l e f o r m . H o w e v e r , r e s o u r c e m a n a g e m e n t i s r a r e l y p r a c t i s e d i n a n o p t i m a l 

i n f o r m a t i o n e n v i r o n m e n t . If d a t a a r e s i m p l y m i s s i n g , o u t o f d a t e , o r i n t h e w r o n g f o r m , t h e s o l u 

t i o n s to t h e s e p r o b l e m s a r e o f t e n s t r a i g h t f o r w a r d ; h o w e v e r , d a t a accuracy i s s u e s a r e a f a r l e s s 

t r a c t a b l e p r o b l e m . A k e y i n g r e d i e n t i n i n c r e a s i n g t h e e f f e c t i v e n e s s o f n a t u r a l r e s o u r c e m a n a g e 

m e n t d e c i s i o n - m a k i n g i s t h e d e v e l o p m e n t o f e f f i c i e n t a n d r e a l i s t i c m o d e l s o f d a t a a c c u r a c y . A 

m o d e l o f d a t a a c c u r a c y d i f f e r s f r o m a m e a s u r e o f a c c u r a c y . T h e l a t t e r a l l o w s o n l y e v a l u a t i o n , 

w h i l e t h e f o r m e r a l l o w s b o t h e v a l u a t i o n a n d f u r t h e r m a n i p u l a t i o n . 

A n u m b e r o f m o d e l s h a v e b e e n d e v e l o p e d t h a t p u r p o r t to r e a l i s t i c a l l y r e p r e s e n t o n e o r m o r e 

a s p e c t s o f d a t a a c c u r a c y . H o w e v e r , a c r u c i a l d e f i c i e n c y e x i s t s i n t h i s r e s e a r c h a r e a . W h e n a 

s t a n d a r d m o d e l i s d e v e l o p e d , a n i m p o r t a n t p h a s e i n t h e d e v e l o p m e n t p r o c e s s i s t h e t e s t i n g a n d 

v e r i f i c a t i o n o f t h e m o d e l . T h e q u e s t i o n m u s t b e a s k e d : d o e s t h e n e w r e p r e s e n t a t i o n o f t h e r e 

s o u r c e o r r e s o u r c e - b a s e d p r o c e s s (the m o d e l ) accurately r e p r e s e n t t h e r e s o u r c e o r p r o c e s s i n t h e 

r e a l w o r l d ? W i t h o u t t h i s t y p e o f v e r i f i c a t i o n p r o c e s s t h e u t i l i t y o f t h e m o d e l i s i n q u e s t i o n . T h e 

e n t i r e f i e ld o f d a t a a c c u r a c y m o d e l l i n g s u f f e r s f r o m a n o t a b l e l a c k o f v e r i f i c a t i o n w o r k . 
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T h e r e s e a r c h p r e s e n t e d i n t h i s d o c u m e n t f o c u s e s o n t h e i s s u e o f a c c u r a c y (or, to b e m o r e p r e c i s e , 

' u n c e r t a i n t y ' ) m o d e l v e r i f i c a t i o n . T h e c e n t r a l r e s e a r c h q u e s t i o n i s : c a n a n a t u r a l r e s o u r c e m a n 

a g e m e n t u n c e r t a i n t y m o d e l b e v e r i f i e d i n o r d e r t o e v a l u a t e i t s u t i l i t y i n r e a l - w o r l d m a n a g e 

m e n t ? F o r e x a m p l e , a m o d e l t h a t c l a i m s to r e p r e s e n t u n c e r t a i n t y i n s l o p e s t a b i l i t y m i g h t b e u s e d 

to r e d u c e t h e a m o u n t o f r o a d c o n s t r u c t i o n i n a n a r e a w h e r e u n c e r t a i n t y i s h i g h . T h e q u e s t i o n 

b e c o m e s : i s t h i s j u s t i f i e d b y t h e actual u n c e r t a i n t y ? A n s w e r i n g t h e a p p a r e n t l y s i m p l e r e s e a r c h 

q u e s t i o n i n v o l v e s a d d r e s s i n g a w i d e r a n g e o f i s s u e s . F o r o n e , a n u n c e r t a i n t y m o d e l c a n o p e r a t e a t 

a n y o n e o f a n u m b e r o f l e v e l s , f r o m t h e r e p r e s e n t a t i o n o f a n a t t r i b u t e o f a p a r t i c u l a r r e s o u r c e 

( s u c h a s s o i l c o h e s i o n ) t h r o u g h to t h e r e p r e s e n t a t i o n o f a s p e c t s o f t h e h u m a n d e c i s i o n m a k i n g 

p r o c e s s ( s u c h a s r i s k m a n a g e m e n t i n r e s o u r c e a l l o c a t i o n ) . T h e u n c e r t a i n t i e s a t e a c h leve l a r e 

q u i t e d i f f e r e n t i n n a t u r e . V e r i f i c a t i o n a t e a c h leve l w i l l r e q u i r e u n i q u e m e t h o d s . T h e r e f o r e , i t w i l l 

b e n e c e s s a r y to f o c u s o n p a r t i c u l a r a s p e c t s . 

A s e c o n d i s s u e i n a n s w e r i n g t h e p r i n c i p a l r e s e a r c h q u e s t i o n i s t h a t t h e r e i s n o s t r a i g h t f o r w a r d 

yes o r n o s o l u t i o n . T h e r e e x i s t s n o s i n g l e s i m p l e s t a t i s t i c to d e t e r m i n e i f u n c e r t a i n t y a s m o d e l l e d 

m a t c h e s t h e a c t u a l l e v e l o f u n c e r t a i n t y . A n u n c e r t a i n t y m o d e l c a n r e p r e s e n t 'soft ' i n f o r m a t i o n 

s u c h a s ' t o o w h a t d e g r e e c a n I t r u s t t h i s v a l u e ' , o r ' w h a t i s t h e leve l o f risk a s s o c i a t e d w i t h t h i s 

d e c i s i o n ' (as c o m p a r e d to e a s i l y v e r i f i e d ' h a r d ' d a t a s u c h a s ' p e r c e n t s l o p e ' o r ' so i l c lass ' . ) T h e r e 

fo re , i t w i l l b e n e c e s s a r y to m a k e u s e o f s u r r o g a t e m e a s u r e s a n d e x p l o r a t o r y a n a l y s i s to a p p r o a c h 

t h e a n s w e r to t h e p r i n c i p a l q u e s t i o n . N e v e r t h e l e s s , t h e r e s e a r c h q u e s t i o n i s a c r u c i a l o n e . 

T h e r e s e a r c h p r e s e n t e d h e r e i n r e p r e s e n t s a m a j o r s t e p i n a n o v e r a l l r e s e a r c h p r o g r a m i n t e n d e d to 

i n t e g r a t e u n c e r t a i n t y m a n a g e m e n t i n t o n a t u r a l r e s o u r c e d e c i s i o n m a k i n g . T h i s r e s e a r c h f o c u s e s 

o n m o d e l l i n g a n d v e r i f y i n g u n c e r t a i n t y a t b o t h t h e d a t a g a t h e r i n g a n d i n f o r m a t i o n p r o d u c t m o d 

e l l i n g s t a g e s . In t h e p r o c e s s o f d e v e l o p i n g t h e v e r i f i c a t i o n m e t h o d s a n d r e s u l t s , s o m e i n i t i a l w o r k 

i s a l s o p e r f o r m e d o n t h e i n t e g r a t i o n o f u n c e r t a i n t y m o d e l s i n t o r e a l w o r l d m a n a g e m e n t d e c i s i o n 

m a k i n g . P r e s e n t a t i o n o f t h i s l a t t e r w o r k s e r v e s to h i g h l i g h t t h e n e e d f o r i n t e g r a t i v e r e s e a r c h ; 

h o w e v e r , s u c h r e s e a r c h c a n o n l y b e e f fec t i ve o n c e a l l t h e p i e c e s o f t h e p u z z l e a r e i n p l a c e . 
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Contributions to Metadata Modelling 

1. Measure and record uncertainty in data (Ch. 3) 1a. Evaluate fuzzy and mathematical model parameters (Ch. 4) 
2. Fuzzy model/mathematical model of data uncertainty (Ch. 3) 2a. Evaluate process model (slope stability) uncertainty (Ch. 5) 
3. Propagation through process model (Ch. 3) 3a. Discuss . . . future research (Ch. 6) 
4. (Touch on) visualisation and risk management (Ch. 3,6) 

Figure 1.1. A view of data flow and feedback (verification) loops in resource management. 
The shaded boxes represent metadata flows. 

1 . 2 . M A J O R Q U E S T I O N S 

The organisation of this research, and how it fits in to the flow of information in resource manage

ment, is presented in Figure 1.1. This figure represents a simplified typical information flow from 

initial data gathering through to the decision making stage. Work on uncertainty management 

superimposes another level onto each box in which the focus shifts to metadata (shaded sections). 

Metadata is data about data — information that explains the sources, fitness for use, and other 

similar factors. The feedback loops, representing data verification exercises, are well established 

for standard data collection. For example, the output of a forest growth model would be calibrated 

through field checks. However, the feedback loops and verification of metadata do not typically 

occur. 

The first box (data gathering) represents the initial stages at which raw data gathering takes 

place. The 'data modelling' stage (box two) represents the reduction of these data to a useable 

form, such as classification or downscaling (although these first two stages are often combined in 

tasks such as remote sensing). The principal purpose of metadata at the data modelling stage is to 

quantify how well the data model represents reality. The feedback loop from the data modelling to 

the gathering stage is typically performed through procedures such as classification accuracy 

checks or other types of spot sampling. However, the focus of the metadata feedback loop is to 



d e t e r m i n e i f t h e p r e d i c t e d v a r i a b i l i t y m a t c h e s t h e v a r i a b i l i t y o n t h e g r o u n d . S u c h v a r i a b i l i t y m a y 

b e a f u n c t i o n o f t h e d a t a g a t h e r i n g (e.g. , s e n s o r p r e c i s i o n o r r e s o l u t i o n ) o r o f t h e c l a s s i f i c a t i o n 

s t a g e (e.g. , r e d u c t i o n f r o m c a r d i n a l to i n t e r v a l d a t a ) . T h e s e m e t a d a t a c a n b e b a s e d o n a w i d e 

v a r i e t y o f i t e m s , f r o m t h e i n h e r e n t v a r i a b i l i t y i n t h e c l a s s i f i c a t i o n s c h e m e t h r o u g h to s p a t i a l 

v a r i a b i l i t y i n a c c u r a c i e s c a u s e d b y p o l y g o n a l s t r u c t u r e s . T h e i n h e r e n t c o m p l e x i t y o f q u a n t i f i e d 

m e t a d a t a c r e a t e s a n e q u a l l y c o m p l e x p r o b l e m i n v e r i f i c a t i o n w o r k . 

T h e t h i r d b o x i n F i g u r e 1.1 r e p r e s e n t s i n f o r m a t i o n p r o d u c t s . T h e s e c a n i n c l u d e a n y t h i n g f r o m 

s i m p l e d a t a o v e r l a y s (e.g. , a s o i l a n d o w n e r s h i p l a y e r c o m b i n a t i o n ) t h r o u g h to c o m p l e x s i m u l a t i o n 

m o d e l s t h a t u s e m a n y i n p u t s . A g a i n , t h e f e e d b a c k l o o p s a r e w e l l e s t a b l i s h e d fo r s t a n d a r d m o d e l 

l i n g — o n e s i m p l y c o m p a r e s m o d e l o u t p u t w i t h r e a l i t y t h r o u g h a s a m p l i n g s c h e m e . H o w e v e r , m e t a 

d a t a p r o p a g a t i o n p r o c e d u r e s fo r b o t h s i m p l e a n d c o m p l e x m o d e l s a r e a r e l a t i v e l y n e w a r e a o f 

i n q u i r y . T h i s r e f e r s to t h e p r o c e s s o f c o m b i n i n g t h e m e t a d a t a a s s o c i a t e d w i t h t h e m a j o r i n p u t s to 

a m o d e l i n s u c h a m a n n e r t h a t t h e r e s u l t a n t i s r e p r e s e n t a t i v e o f t h e m o d e l ' s o u t p u t u n c e r t a i n t y . 

T h e r e a r e n o e s t a b l i s h e d m e t h o d s fo r c o m p a r i n g t h e s e c o m p l e x m e t a d a t a w i t h t h e v a r i a b i l i t y t h a t 

e x i s t s i n r e a l i t y . W h i l e a n u m b e r o f m e t a d a t a p r o p a g a t i o n m o d e l s h a v e b e e n a t t e m p t e d (e.g. , 

D u n n et al. 1 9 9 0 ) , t h e r e h a v e b e e n l i t t le o r n o a t t e m p t s to v e r i f y t h e i r u t i l i t y . 

T h e a c t o f d e c i s i o n - m a k i n g b a s e d o n i n f o r m a t i o n p r o d u c t s i s r e p r e s e n t e d i n t h e f o u r t h b o x . T h e 

f e e d b a c k l o o p h e r e i s t h e e v a l u a t i o n o f t h e d e c i s i o n s — w h i c h w o u l d t y p i c a l l y l e a d to b e t t e r i n f o r 

m a t i o n p r o d u c t s . T h e m e t a d a t a l o o p h e r e f o c u s e s o n e v a l u a t i n g t h e q u a n t i f i c a t i o n , s u m m a r y a n d 

p r e s e n t a t i o n o f ' r i sk ' a s i t a f f e c t s d e c i s i o n s . 

T h e r e s e a r c h p r e s e n t e d i n t h i s d o c u m e n t i n c l u d e s c o n t r i b u t i o n s to e a c h o f t h e s t a g e s p r e s e n t e d 

i n F i g u r e 1 . 1 , a s s u m m a r i s e d a t t h e b o t t o m o f t h e f i g u r e . T h e k e y c o n t r i b u t i o n s f o c u s o n t h e f i r s t 

t w o f e e d b a c k l o o p s ( l a a n d 2a) . W h i l e t h e t h i r d l o o p ( d e c i s i o n e v a l u a t i o n ) w i l l b e d i s c u s s e d a n d 

d e m o n s t r a t e d , a p r o p e r e v a l u a t i o n w o u l d r e q u i r e a f a r l a r g e r p r o j e c t s c o p e . 

T h e s p e c i f i c q u e s t i o n s a s k e d i n t h i s r e s e a r c h a r e : 



1. W h a t a r e a p p r o p r i a t e m e t h o d s fo r m o d e l l i n g d a t a u n c e r t a i n t y i n n a t u r a l r e s o u r c e m a n a g e 

m e n t , m a k i n g u s e o f i n f o r m a t i o n t y p i c a l l y a v a i l a b l e ? 

2 . H o w a p p r o p r i a t e a r e t h e s e m e t h o d s (1), a n d h o w c a n t h i s ' a p p r o p r i a t e n e s s ' b e d e t e r m i n e d ? 

S p e c i f i c q u e s t i o n s i n c l u d e : 

2 a . H o w ef fect i ve i s g a t h e r i n g m e t a d a t a f r o m e x p e r t o p i n i o n ? 

2 b . H o w ef fect i ve i s g a t h e r i n g m e t a d a t a f r o m p u b l i s h e d v a r i a b i l i t y s t a t i s t i c s ? 

3 . W h a t a r e a p p r o p r i a t e m e t h o d s fo r p r o p a g a t i n g t h e s e m e t a d a t a t h r o u g h to i n f o r m a t i o n p r o d 

u c t s ( i .e. , u s i n g a t y p i c a l t y p e o f n a t u r a l r e s o u r c e m o d e l ) ? 

4 . H o w a p p r o p r i a t e a r e t h e s e m e t h o d s (3), a n d h o w c a n t h i s ' a p p r o p r i a t e n e s s ' b e d e t e r m i n e d ? 

5 . W h a t a r e s o m e o f t h e i m p l i c a t i o n s o f t h e m e t h o d s o u t l i n e d a b o v e fo r r e s o u r c e m a n a g e m e n t 

d e c i s i o n m a k i n g ? 

T h e p r i n c i p a l f o c u s o f t h i s w o r k i s a n s w e r i n g q u e s t i o n s #2 a n d 4 — t h o s e c o n c e n t r a t i n g o n v e r i f i 

c a t i o n o f m e t a d a t a . T h e p r i n c i p a l f o c u s o f t h e d i s c u s s i o n s e v o l v i n g f r o m t h e s e a n s w e r s i s t h e 

i m p l i c a t i o n s f o r m a n a g e m e n t — q u e s t i o n #5. Q u e s t i o n s #1 a n d #3 w i l l b e a d d r e s s e d ; h o w e v e r , t h e 

d i s c u s s i o n w i l l p a r t i a l l y d r a w u p o n r e s e a r c h c o n d u c t e d p r e v i o u s l y b y t h e a u t h o r . 

T h i s r e s e a r c h m a k e s u s e o f s p e c i f i c m o d e l s a n d a s p e c i f i c r e s o u r c e s e c t o r . T h e m o d e l s (s lope 

s tab i l i t y ) a n d t h e r e s o u r c e s e c t o r ( forest ry m a n a g e m e n t ) h a v e b e e n c h o s e n f o r t h e i r b r o a d a p p l i 

c a b i l i t y . T h e t h e o r y a n d p r o c e d u r e s d e v e l o p e d h e r e i n c a n b e a p p l i e d to a w i d e r a n g e o f m o d e l s a n d 

m a n a g e m e n t r e g i m e s . L i n k s to t h e b r o a d e r f i e ld o f ' r e s o u r c e m a n a g e m e n t ' a r e n o t e d t h r o u g h o u t 

t h e d o c u m e n t . 

1 .3. R E S E A R C H O R G A N I S A T I O N 

T h i s d i s s e r t a t i o n i s o r g a n i s e d a s f o l l o w s : a f t e r t h i s i n t r o d u c t i o n , t h e s e c o n d c h a p t e r c o n t a i n s t h e 

b a c k g r o u n d a n d s p e c i f i c r e s e a r c h j u s t i f i c a t i o n fo r a l l t h a t f o l l o w s . It i s d e m o n s t r a t e d t h a t t h e 

t r a d i t i o n a l m e t h o d s o f m o d e l l i n g n a t u r a l r e s o u r c e s a r e i n a d e q u a t e . U n c e r t a i n t y , u n c e r t a i n t y 

m o d e l l i n g , u n c e r t a i n t y p r o p a g a t i o n , a n d l i n k s w i t h m a n a g e m e n t a n d d e c i s i o n m a k i n g i n t h e 

r e s o u r c e s e c t o r a r e e a c h e x a m i n e d i n t u r n . T h e v a r i o u s r e s e a r c h f i e l d s a r e d e s c r i b e d w i t h a n e y e 
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to h i g h l i g h t i n g t h e f a c t o r s t h a t l i n k t h e m . T h e t h i r d c h a p t e r p r e s e n t s t h e m e t h o d o l o g y a n d r e s u l t s 

o f e a r l i e r u n c e r t a i n t y m o d e l l i n g w o r k u n d e r t a k e n b y t h e a u t h o r — w o r k t h a t d e v e l o p e d t h e b a s i c 

f o r m s o f t h e m o d e l u s e d i n t h e r e m a i n d e r o f t h i s d o c u m e n t . In t h i s c h a p t e r , o n e s p e c i f i c m e t h o d 

o f m o d e l l i n g a n d p r o p a g a t i n g n a t u r a l r e s o u r c e u n c e r t a i n t y i s u s e d to h i g h l i g h t t h e p o t e n t i a l o f t h e 

f i e ld . 

T h e f o l l o w i n g c h a p t e r p r e s e n t s n e w t h e o r e t i c a l a n d a p p l i e d w o r k o n v e r i f y i n g u n c e r t a i n t y m o d e l s 

a n d s a m p l i n g f o r u n c e r t a i n t y v a l u e s . T h e m o d e l p r e s e n t e d i n t h e p r e c e d i n g c h a p t e r i s g r o u n d -

t r u t h e d , a n d t e c h n i q u e s a r e d e v e l o p e d to t u n e t h e m o d e l s o t h a t i t s r e s u l t s m a t c h t h e s e g r o u n d 

d a t a 

C h a p t e r F i v e m o v e s to t h e n e x t s t a g e o f v e r i f i c a t i o n — w i t h a f o c u s o n t h e m e t a d a t a generated b y 

t h e m o d e l l i n g p r o c e d u r e . T h e o u t p u t o f t h e m o d e l d e v e l o p e d i n C h a p t e r T h r e e i s v e r i f i e d u s i n g 

f i e ld d a t a . M e t h o d s a r e d e v e l o p e d to a d d r e s s t h e c o m p a r i s o n o f v a r i a b i l i t y - f o c u s e d m e t a d a t a w i t h 

y e s - o r - n o c o n f i r m a t i o n d a t a . 

T h e f o l l o w i n g c h a p t e r t a k e s a f u r t h e r s t e p u p i n m e t a d a t a c o m p l e x i t y b y e x a m i n i n g s o m e p o s s i b l e 

m e t h o d s o f i n t e g r a t i n g u n c e r t a i n t y m a n a g e m e n t i n t o r e a l - w o r l d d e c i s i o n m a k i n g . T h i s d i s c u s s i o n 

c h a p t e r p r e s e n t s e x a m p l e s d e v e l o p e d d u r i n g t h e v e r i f i c a t i o n w o r k , w h i c h a l s o s e r v e to d e m o n 

s t r a t e s o m e p o s s i b l e a p p l i c a t i o n s o f t h i s r e s e a r c h i n d e c i s i o n s u p p o r t . I m p l i c a t i o n s for m a n a g e 

m e n t i n b o t h f o r e s t r y a n d r e s o u r c e m a n a g e m e n t i n g e n e r a l a r e d i s c u s s e d . R e c o m m e n d a t i o n s for 

f u t u r e r e s e a r c h a s a l s o p r e s e n t e d h e r e . T h e f i n a l c h a p t e r s u m m a r i s e s t h e o v e r a l l c o n c l u s i o n s . 

1 . 4 . C O N T R I B U T I O N T O K N O W L E D G E 

T h i s r e s e a r c h c o n t r i b u t e s to k n o w l e d g e i n t h e f i e ld o f u n c e r t a i n t y a n a l y s i s o n b o t h t h e o r e t i c a l a n d 

a p p l i e d f r o n t s . T w o m a j o r t h e o r e t i c a l a r e a s a r e e x p l o r e d : 1) t h e i n t e g r a t i o n o f c o n f i r m a t o r y s a m 

p l i n g i n t o a s p a t i a l l y v a r i a b l e u n c e r t a i n t y m o d e l , w i t h a f o c u s o n t h e r e p r e s e n t a t i o n o f f u z z y 

c l a s s e s i n a t t r i b u t e s p a c e a n d t h e d e v e l o p m e n t o f s e v e r a l m e a s u r e s o f c o m p a r i n g s a m p l e s a n d 

c l a s s e s ; a n d 2) t h e d e v e l o p m e n t o f m e t h o d s for v e r i f i c a t i o n o f u n c e r t a i n t y m o d e l o u t p u t , w i t h a 

f o c u s o n c o m p a r i n g c o m p l e x m u l t i v a r i a t e v a r i a b i l i t y d a t a w i t h g r o u n d s a m p l e s . A s a s e c o n d a r y 

c o n t r i b u t i o n , p r o c e d u r e s a r e a l s o d e v e l o p e d fo r i n t e g r a t i n g o b l i q u e d a t a w i t h p l a n i m e t r i c d a t a -
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b a s e s i n G I S , w i t h a f o c u s o n c a p t u r i n g a n d u s i n g r e g i s t r a t i o n a n d d i g i t i s i n g u n c e r t a i n t y a s 

s p a t i a l l y - v a r i a b l e m e t a d a t a . C h a p t e r T w o w i l l d e t a i l h o w t h e s e t h e o r e t i c a l c o n t r i b u t i o n s f it i n t o 

t h e o v e r a l l d i s c i p l i n e o f u n c e r t a i n t y r e s e a r c h . 

A p p l i e d c o n t r i b u t i o n s i n c l u d e : 1) v e r i f i c a t i o n o f ' e x p e r t k n o w l e d g e ' o n s o i l s p a t i a l s t r u c t u r e i n a 

s l o p e s t a b i l i t y m o d e l ; 2) d e v e l o p m e n t a n d e v a l u a t i o n o f a s e t o f t o o l s fo r m e a s u r i n g s p a t i a l p a r a m 

e t e r s f r o m o b l i q u e i m a g e d a t a ; 3) t e s t i n g o f a s l o p e s t a b i l i t y u n c e r t a i n t y m o d e l u s i n g a t e m p o r a l 

l a n d s l i d e d a t a b a s e d e v e l o p e d w i t h t h e s e t o o l s ; a n d 4) e v a l u a t i o n o f t h e m o d e l l i n g t e c h n i q u e s a n d 

t o o l s d e v e l o p e d i n 1 - 3 t h r o u g h a c a s e s t u d y . 

U n c e r t a i n t y i s a c r u c i a l i s s u e i n r e s o u r c e i n v e n t o r y d a t a , a s w e l l a s a l m o s t a l l o t h e r t y p e s o f 

s p a t i a l d a t a . Y e t i t i s u n l i k e l y t h a t a g e n e r a l p u r p o s e ' e r r o r b u t t o n ' w i l l e v e r b e d e v e l o p e d — t h e 

p r o b l e m s f a c e d a r e t o o d i v e r s e a n d a l s o too a p p l i c a t i o n - s p e c i f i c . T h e r e a r e s o m a n y w a y s o f a p 

p r o a c h i n g t h e p r o b l e m s o f u n c e r t a i n t y m o d e l s , v i s u a l i s a t i o n , s a m p l i n g , e t c . , t h a t d e v e l o p m e n t s i n 

o n e o f t h e s e a r e a s i s r a r e l y a p p l i c a b l e to o t h e r s . T h e r e f o r e , b y f o c u s i n g o n a c r u c i a l s e t o f p r o b 

l e m s (ver i f icat ion) a n d i n t e g r a t i n g t h e m i n t o a ' c r a d l e - t o - g r a v e ' u n c e r t a i n t y m a n a g e m e n t t a s k , it 

i s h o p e d t h a t t h i s r e s e a r c h w i l l b o t h d e m o n s t r a t e a n d i n c r e a s e t h e u t i l i t y o f u n c e r t a i n t y m o d e l 

l i n g for n a t u r a l r e s o u r c e m a n a g e m e n t i n g e n e r a l . 
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Chapter Two 

Background 

2 . 1 .INTRODUCTION 

'Gulliver's Travels' contains the story of a cartographer from a small kingdom. In his quest for 

greater and greater mapping accuracy, he created maps at larger and larger scales. Eventually, he 

found himself working at a 1:1 scale; unfortunately, there was no kingdom left to describe—it was 

filled with his creation. Maps and spatial databases are an abstraction of reality. Details are 

filtered out in order to clarify information. The 1:1 scale map rather defeats this purpose (as well 

as being somewhat difficult to fold). Sampling, filtering—in fact any abstraction—leaves a gap 

between representation and reality. This gap, in essence, is data uncertainty. 

In the days when cartographers risked their lives in leaky boats trying to chart the unknown 

reaches of the world, uncertainty was, to say the least, very high. Yet no ship captain expected to 

use these charts in any precise way. It was sufficient to know that there was a big piece of land 

somewhere in a general westerly direction. Blank areas or straight lines meant unknowns. If a 

map of a particular piece of coastline was drawn in some detail, you would expect that it roughly 

corresponded to reality, yet you would be foolish to bet your life on the location of a particular 

shoal. Uncertainty was built into the structure and conventions of map making. In any case—any 

map was better than no map at all. 
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As cartography matured and information on maps became more precise, the issue of uncertainty 

still remained largely part of the map-making process. If the source data did not support it, then 

a competent cartographer would simply not draw a 1:5,000 map. Within a map, the thickness and 

style of lines could be used to indicate local spatial uncertainty, or uncertainty in a particular 

class of objects. Other visual techniques could be utilised to draw attention to degraded or miss

ing information, or source data that had a limited life-span. While control of map making re

mained within the hands of cartographers, uncertainties were largely understood. 

Then came the computer 'revolution'; the control of spatial data began to slip out of the cartogra

phers' hands. In a short span of years the production of maps—formerly solely the realm of 

specialists—became possible using simply a home computer; a six-year old (or a newspaper col

umnist) became able to turn out professional looking maps with the touch of a button. Yet such 

software is only capable of imitating what was the simplest part of the cartographer's job: the 

mechanical drawing of the map. Communication skills are not so easily emulated. Computers 

also took the analysis of spatial data out of the cartographer's hands. Automated area and perim

eter calculations soon gave way to data overlays, topographic analysis and spatial statistics—all 

of which are available to anyone who knows which button to press. In the areas of both cartogra

phy and spatial analysis the control of data uncertainty was wrested from the arms of cartogra

phers, and soon began to be a problem; or, to be more precise, a non-problem—it was virtually 

ignored. 

2.1.1. GIS AND UNCERTAINTY 

Some cartographic and most analytical tasks formerly performed by cartographers have been 

passed on to geographic information systems (GIS). These often massive programs have revolu

tionised the manipulation of spatial data. However, some of the basic assumptions and structures 

built into GIS foster this 'non-problem' of data uncertainty. A GIS enables spatial data to be 

viewed and manipulated at virtually any scale. It is, in fact, a scaleless working environment. If 

addressed at all, scale information will normally only accompany data for display purposes (e.g., 

what size to print a label). A typical GIS stores data at a resolution that is capable of locating a 

point down to a tolerance of less than the width of a hydrogen atom (using double precision with 
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a local co-ordinate system). It also typically reports all information: co-ordinates, areas, etc., with 

the same excessive precision. These two characteristics—lack of scale and the reporting of ex

treme precision—virtually eliminated the implicit recognition of uncertainty found in manual 

cartography. 

After a number of years and a considerable amount of frustration on the part of users, GIS and 

spatial analysis researchers began to examine how this implicit uncertainty could be made ex

plicit. It took many more years for basic conceptual work to appear, in which the nature of spatial 

data uncertainty was examined, terms were defined, and eventually standards put in place. This 

field of inquiry is still in its infancy, due in part to the complexity of the problem, and also in part 

to the reluctance of users to accept the fact that an answer of lesser precision can be more 

'correct'. 

2.1.2. C H A P T E R L A Y O U T 

This chapter examines the current state of research into error and uncertainty in spatial data as 

it relates to the various elements of resource inventory, with a specific focus on forestry aspects. 

It does not attempt to trace the evolution of thought in this field, as this 'evolution' does not 

represent a co-ordinated effort towards a clear goal. Instead, what appears in the literature is a 

haphazard series of incremental steps on many diverse fronts towards numerous disparate goals. 

Therefore, the chapter is organised in a manner reminiscent of the overall document. Terms and 

basic concepts are defined and presented first, followed by a discussion of some of the major areas 

of application. Relevant research into the modelling of uncertainty is then presented, with later 

sections focusing on output issues relevant to this added dimension of data. The final section 

details research into uncertainty in natural resource management—in particular forestry data— 

and its implications for this current research. 

2 . 2 . E R R O R A N D U N C E R T A I N T Y 

Geographic information systems can be found on the desks of public utility planners, natural 

resource scientists, and almost anyone else concerned with spatially referenced data. Utility man

agement focuses primarily on straight lines and unambiguous locations. Detailed GIS co-ordi-
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nates and precise analytical routines cater to a utility manager's desire to see the world in black-

and-white. In contrast, when the same data structures and models are utilised in the resource 

sector, they potentially bear little resemblance to the spatial characteristics of the information 

being captured or modelled. Here, entities in question might be better represented by shades of 

grey. 

This dichotomy between imprecise reality and its precise digital representation has given rise to a 

rapidly growing research area in which spatial data experts grapple with the implications of 

uncertainty and error analysis, while cartographers focus on the special problems of communi

cating uncertainty. As this field has developed, researchers have fanned out across a broad front: 

advancing error analysis (Chrisman 1989; Chrisman 1991), locational and feature uncertainty 

analysis (Burrough et cd. 1992), error propagation methods (Heuvelink and Burrough 1993), the 

visualisation of uncertainty (MacEachren 1992; Goodchild et al. 1994), and numerous related 

topics. 

The self-referential problem of uncertainty about uncertainty terminology has been a notable 

stumbling block in this avenue of inquiry. The primary terms, namely 'error' and 'accuracy', are 

commonly used interchangeably—compounding the problem. Most writers would agree that 'er

ror' refers to deviations from a 'true' value. Almost all resource data contain some degree of error; 

however, as the 'true' value is generally unknown, the error cannot be easily quantified and stated 

in the same manner as errors in a numerical model might be. The term 'accuracy', as defined by 

Buttenfield and Beard (1994), is a more easily quantifiable alternative. In their definition it refers 

to measures of discrepancy from a modelled or assumed value. 

2.2.1. U N C E R T A I N T Y D E F I N E D 

Here, the term 'uncertainty' is utilised to include both of the above, as well as to extend these 

concepts. In its broadest sense, uncertainty refers to knowledge of possible deviation from a 'true' 

value, but without precise knowledge of the magnitude. It is not as broad a term as data 'quality' 

which, in its commonly accepted definition (Guptill and Morrison 1995) includes items that can

not be subjected to test or verification, such as lineage or completeness. Uncertainty may exist for 
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many reasons: inability to measure precisely, alterations in values during processing (e.g., ma

nipulation or classification) or, at a more fundamental level, natural variability in the phenomena 

being measured. Uncertainty is not necessarily an absolute, since the resolution of the dataset or 

analysis may be a factor. 

2.2.2. Q U A L I T Y 

Uncertainty is the focus of this work, yet the other elements of data quality play important sup

porting roles. Before delving into the subdivisions of uncertainty, it is important to step back and 

put it in context with other metadata elements. As introduced earlier, a U.S. committee on data 

standards (NCDCDS 1988) produced an influential document that attempts to categorise the 

major elements of data quality. It includes the following: 

1. l i n e a g e : the history of the data and the operations performed on it; 

2. c o m p l e t e n e s s : the extent of data coverage (spatial or attribute) relative to the complete 

real-world object (e.g., the subset of soil attributes in the database relative to all possible 

attributes) ; 

3. p o s i t i o n a l a c c u r a c y : the closeness of spatial co-ordinates to the 'true' values (or values 

accepted as true); 

4. a t t r i b u t e a c c u r a c y : as above, but with reference to the attributes of the spatial location; 

5. l o g i c a l c o n s i s t e n c y : for example, the appropriateness of a chosen classification scheme; 

and 

6. t e m p o r a l i n f o r m a t i o n : includes references to periodicity, the temporal range (shelf life) of 

the data, and other relevant descriptive temporal elements. 

These categories function well in a descriptive sense, but are not oriented towards implementa

tion of quality tracking or analysis. In fact, the descriptive nature of these categories has prompted 

many agencies to implement metadata through descriptive add-ons to their spatial and attribute 

GIS layers or data products. The US Geological Survey (USGS) and many Canadian government 

agencies have taken this approach. Given the metadata files and some interpretative information, 

a knowledgeable user can make general decisions about the utility of a data product for their 
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purposes—sometimes. Lack of standards makes it difficult to compare products from different 

agencies, or at times even within a single agency. Positional accuracy can usually be described 

with a small set of numbers; however, an item such as 'logical consistency' can be interpreted in 

many ways. 

Three items from this list do lend themselves to a more quantitative implementation: positional 

accuracy, attribute accuracy, and temporal information. Only when metadata such as these are 

stored quantitatively does it become possible to mathematically manipulate these values, to follow 

them through overlays or models, and to present them visually. A qualitative understanding of 

the implications of these metadata is still an important ingredient, for only then can a user 

determine data's fitness for use; however, quantitative metadata expands the utility of this infor

mation considerably. A focus on numerical aspects of quality brings the discussion back to the 

realm of uncertainty. 

2.2.3. SUBDIVISIONS OF UNCERTAINTY 

By limiting this discussion to the measurement of natural resource data, uncertainty can be 

subdivided into these three broad areas: positional, attribute, and temporal. Positional uncer

tainty is a well defined topic area in geomatics. Those making positional measurements, notably 

surveyors, are accustomed to imagining a bell curve of uncertainty that exists along both the 

horizontal axes (Figure 2.1) and on the vertical axis as well. Much of surveying science is designed 

to minimise these uncertainty envelopes. However, when the study of uncertainty is expanded to 

more complex objects than 'points', numerous other issues appear. For example, how does uncer

tainty vary along the line drawn between two known points? How does uncertainty behave in an 

Figure 2.1. Location probability of a survey coordinate in 
2-D space. 
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overlay of two data layers? The following sections present the primary sources of uncertainty in 

each of these areas, and provide an overview of research into these topics. 

2.2.3.1. POSITIONAL UNCERTAINTY 

Uncertainty in position is certainly the most tractable of the issues discussed here. It is the basic 

problem that cartographers dealt with through line size and scale, and one that continues to 

occupy much of the efforts of geomaticians and surveyors. The three co-ordinates used to define 

a point in space may be mathematically compared with 'true' values, providing simple measures 

of positional uncertainty. Of course, the elusiveness of'true' values compounds this problem, as 

does measurement accuracy, data entry error, etc. 

2.2.3.1.1. Registration 

Positional uncertainty is an issue at several points in the processing of spatial data. The first of 

these is the registration of the data source to a reference value. This might involve registering an 

air photo using survey markers and ground control points, or the registration of a satellite image 

to a reference dataset. Survey markers are undoubtedly the best spatial reference point available. 

First and second order control points are established with extremely high accuracy, using math

ematics that correct for the earth's curvature, as well as triangulation within the survey grid. The 

co-ordinates of a control point are subject to errors in the reference datum and ellipsoid; however, 

the magnitude of these errors is very small in a local context. 

High order survey control points are rarely used in the registration of satellite images or air 

photos. Lower order control points, GPS derived control points, or existing planimetric dataset 

points are more commonly used. Each of these sources is subject to various inaccuracies. Lower 

order control points are not subject to strict controls over placement, and may have positional 

errors significantly higher than their 'parents'. GPS points are subject to the many types of error 

associated with GPS data (see Owens and McConville 1996), and existing datasets have already 

been subject to registration, and so act to compound uncertainty. 

The process of image registration might involve simply shifting the image until the control points 

line up with minimal error, skewing the image (independent x and y stretching), or 'rubber-
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sheeting', which allows every co-ordinate in the image to shift. Each of these methods generate 

non-uniform registration error for every point in the image. However, these values are normally 

summarised in a single value such as root mean squared (RMS) error (and then typically ignored). 

Recent research has begun to address this loss of information during registration. New methods 

of performing and summarising registration accuracy have been developed (Mather 1995; Buiten 

and van Putten 1997), and methods of employing multiple representations are proving useful 

(Djamdji 1993; Fonseca and Manjunath 1996). A key element is not to simply perform the best 

possible registration, but to also maintain the uncertainty information for later processing (e.g., 

Delavar 1997). 

2.2.3.1.2. Other Sources 

Positional uncertainty also occurs at later stages of spatial data processing; however, typically the 

entities being manipulated are of a higher order than points. Both line and area entities (vectors 

and polygons) are built out of point data, yet involve uncertainties of a different nature (see 

below). Raster datasets are somewhat simpler; however, uncertainties generated during the ma

nipulation of raster datasets can be complex in nature. 

2.2.3.1.3. Lines and Areas 

During the period of transition from paper to digital datasets (still continuing in some sectors), 

manual digitising was the primary method of vector data input. Studies of digitising uncertainty 

constitute a major part of the field of uncertainty analysis. One of the first important works in this 

field (Perkal 1966) introduced the concept of an 'epsilon band', which later led to the epsilon 

distance model of cartographic lines (Peucker 1975; Chrisman 1982). In this model the assump

tion is that a cartographic line (i.e., the proper loca

tion of a feature) is surrounded on each side by an .,. u , u 

Width of the |grr~srr-^ 
epsilon band '

 £*^Z^SjS^^ 

area of constant width epsilon, and that the digitised ^ ^ ^ ^ v - ° ' 9 "3l ^ 

representation of the line will lie somewhere within Digitised une -

that area (Figure 2.2). The distribution of the location 
Figure 2.2. Epsilon boundary model of 

of the lines may then be described by some type of a digitised line, where the true location 
of the line is assumed to lie within the 

distribution function, such as a probability density epsilon band 
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function (PDF). A number of functions are possible, 

depending on the assumptions used (Figure 2.3). The 

epsilon band can use various measures, such as maxi

mum deviation (range), interquartile range, or some 

other. There is no single accepted definition of this 

model. It is explored in some depth by several au

thors (e.g., Dunn et al. 1990; Chen and Finn 1994). 

Others have gone on to examine the structure of un

certainty on the line segment between the digitised 

points, allowing the epsilon band some flexibility 

(Chrisman 1982; Dutton 1992). 

(a) 

1 (b) 

1 (c) 

• 

True Line 

Figure 2.3. Examples of probability den
sity functions for line or digitising error: 
(a) rectangular, (b) bell-shaped, (c) bimo-
dal (Adapted from Dunn et al. 1990) 

Most recently, stochastic methods of addressing uncertainty in vector objects have begun to 

appear. For example, Hunter and others (Hunter 1995; Hunter et al. 1996) have developed a 

method of imposing controlled stochastic changes in the spatial location of all vector objects, 

allowing stochastic simulation in a vector environment. Others (Youcai and Wenbao 1997) utilise 

similar methods to address digitising error specifically. Other methods, such as moving bands, 

spatially autoregressive and Markov processes have been described (see Haining et al. 1983). 

Most of the above research applies specifically to database objects representing linear features in 

the real world. However, database vectors are also used to represent more abstract structures 

such as soil polygons. Here, uncertainties in spatial locations still apply, but are generally ren

dered insignificant due to the magnitude of uncertainty generated through the abstraction of 

reality: namely attribute uncertainty. 

2.2.3.2. ATTRIBUTE UNCERTAINTY 

Positional and attribute information are stored separately in most spatial data models. The un

certainties in each are often determined by quite different processes, and in this case are termed 

separable (Goodchild 1991). For example, the boundary of a clearcut might be digitised from an 

orthophoto, with the accompanying registration and digitising error; yet the attributes are deter-
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mined through interpretation and field sampling. Uncertainties in these values have no bearing 

on spatial uncertainty. 

However, initial forest inventories do not necessarily contain obvious spatial discontinuities be

tween stands. In a typical procedure the stand polygons might be outlined on imagery, followed by 

an iterative process of ground surveys leading to changes in stand boundaries. Here, positional 

and attribute uncertainty are not separable, as the process of determining attributes is linked to 

the process of determining boundaries. A forest cover map would typically contain a mix of sepa

rable and inseparable uncertainties. Most research treats both types as completely separable, 

although a few studies (notably Mark and Csillag 1989; Brimicombe 1993) attempt a synthesis. 

It should be noted that many of these problems of separability are partially a result of, or com

pounded by, the data model utilised. Spatial data may be modelled in two basic ways: as discrete 

objects (e.g., vector model or object-oriented model) or as continuous fields (e.g., raster model). 

When fields are used, the attributes modelled are usually not sharply bounded, and so separabil

ity is less of an issue (Goodchild 1989). 

In contrast to positional uncertainty, attribute uncertainty has received considerably less atten

tion in research and analysis. This is hardly surprising, as the dimensions of the problem are 

vast, and many of the uncertainties resist easy quantification. Attribute uncertainty can arise in 

several general ways. Error or imprecision in field measurements is perhaps the simplest to deal 

with. More complex are uncertainties generated due to the way the data object represents com

plex reality. For example, a point object might be used to represent a city at a particular scale. 

Polygons are often used to represent transitions between soil types. The transition, which extends 

over some distance, is represented by a sharp discontinuity. The attributes assigned to such a 

polygon will have varying degrees of validity throughout its spatial extent (Mark and Csillag 1989). 

The simplification of reality necessary for data storage and modelling imposes these types of 

attribute uncertainty. 

Simplification of attributes themselves also generates uncertainties. The process of classification 

splits a continuous reality into discontinuous parcels for ease of sampling, storage and analysis. 
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However, the taxonomy involved may produce an incomplete or even misleading description of the 

attribute. Problems include: 

Internal purity: the degree to which a random sample matches the class descriptor can be abys

mally low for some data types—notably soils. 

Class boundaries: some classes may be functionally similar, visibly similar, or both. Other classes 

may be extremely distinct. Rigid class boundaries do not allow this distinction. A sample is either 

class A or B, even if its' properties are similar to both. 

Sampling error: field or laboratory error introduces a random element into classification or study 

comparison. Although multivariate statistical techniques can often ameliorate such problems, 

resulting indices or principal component scores are not necessarily easy to interpret (Burrough 

1989). 

Once attributes are combined in a modelling scenario these uncertainties can play havoc with the 

results. Within a particular speciality the user often has some implicit understanding of the 

attribute uncertainties. However, when complex environmental models draw from numerous dis

ciplines for their source data, a lack of attention to uncertainty at the source leaves the model's 

user with no choice but to trust the datasets implicitly. It then becomes difficult to estimate even 

the general variability in the results. 

Some researchers have proposed alternative data structures that better describe attributes with

out abandoning the concept of a categorical coverage. Spline values might be used to describe 

environmental gradients within a polygon (Herring 1991). Fuz2y classification methods that rec

ognise the variability within and between classes have been proposed (Hall and Wang 1992; 

Burrough et al. 1992) and implemented in numerous disciplines, such as forestry (Palubinskas 

1994) and earth science (Du and Lee 1996). 

Others have noted the inadequacy of vector-based categorical data structures to model many 

types of natural resources. Vector structures were the only alternative when computing power 

was relatively minimal relative to the amount of data in a large inventory. Today, as many data 
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sources are raster based, the advantages of continuous data structures are becoming obvious. 

Researchers such as Mark and Csillag (1989) point to the advantages of a native raster structure 

to represent both spatial and attribute uncertainty. Implementations include soil databases 

(Rogowski 1996), model propagation (Mowrer 1995) and fire modelling (Delavar 1997) among 

others. 

2.2.3.3. TEMPORAL UNCERTAINTY 

Other than subsurface geologic maps, most natural resource databases are dynamic to some 

degree. The nature and extent of temporal uncertainty will vary with the resource being mapped. 

The principal sources of temporal uncertainty include: 1) gradual change, such as tree growth, 

succession, or urban expansion; 2) cyclical change, such as variations in deciduous canopy be

tween summer and winter; and 3) uncertainty due to measurement, where measurements may be 

spread over time, or analysis is delayed relative to measurement. The first of these—gradual 

change—is of primary interest in forestry and most other types of GIS analysis. Forestry is a 

particularly good example of temporal change in a heterogeneous environment. 

Gradual change in forest inventory is normally accounted for using a periodic inventory cycle. In 

British Columbia (BC) the cycle is approximately two years; cycle times in other areas vary (e.g., 

the Province of Quebec uses ten years). Natural forests are spatially heterogeneous, making stand 

delineation an uncertain and often unrepeatable exercise. Estimates of map accuracy from pho-

tointerpretation of forested areas indicate that disagreement is as high as fourty to fifty percent 

(Edwards and Lowell 1996). The natural heterogeneous forest also changes in different ways, and 

at different rates, making it a challenge to model. 

Temporal uncertainty models for forestry must focus on several issues. Of particular importance 

is the variability in stand boundaries over time, due to both change in the forest and photointer-

pretation uncertainty. Also important is the uncertainty in model results. For example, a growth 

model is based on data collected at a particular date from point samples within a forest stand 

polygon. The output of this model develops greater uncertainty as time passes; the uncertainty 

being based solely on model precision. While this uncertainty is commonly reported, it is rarely 
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integrated with uncertainty in data collection, uncertainty in volume estimates, uncertainty in 

other stand attributes, and boundary variability. The resulting change in uncertainty over time is 

a function of spatial and attribute variability over time, as well as built-in model uncertainty. 

Although pure computer research deals with temporal uncertainty databases separately, as in 

data structures (Kanazawa 1994), or computer vision (Rohrer and Sparks 1993), natural resource 

research focuses on integration of spatial and temporal elements. Examples include forestry work 

(Lowell et al. 1996), soils (Or and Hanks 1992), and fisheries (Hougard and Valdez 1994). 

2.2.4. SUBDIVISION BY SOURCE 

Spatial, attribute and temporal uncertainties are clearly linked in complex ways. Although this 

three-way subdivision may be useful for basic research, from an operational perspective it is more 

beneficial to subdivide them by the sources of uncertainties. Where uncertainties are currently 

addressed in spatial database management it is usually in this manner. From a source perspec

tive there are three main areas: inherent uncertainty, uncertainty in data collection and input, 

and uncertainty in data manipulation. 

2.2.4.1. INHERENT UNCERTAINTY 

Natural vagueness, also referred to as conceptual error (Veregin 1989), inherent uncertainty (Lanter 

and Veregin 1992) and inherent property error (Maffini et al. 1989), occurs in data that possess no 

standard for comparison of measurement. Beyond a certain point, increases in sampling density 

or in the precision of instruments used will not result in any increase in information content. 

Natural vagueness may be due to natural variations in the source or due to an inability of the 

chosen data model to fully encompass all properties of the source. 

Soil polygons are a commonly cited example of this problem (e.g., Burrough 1986b; Kollias and 

Voliotis 1991; Burrough 1993) due to the inability of the polygonal structure to address gradual 

changes over space. Other examples of natural vagueness include mobile species, seasonal fluc

tuations, and quantities that simply cannot be measured with available techniques. For example, 



21 

radar images of an ice pack may show well-defined lines, yet the constant movement of the ice 

introduces uncertainty. 

2.2.4.2. DATA COLLECTION AND INPUT UNCERTAINTY 

Two field scientists, independently studying the same resource, will rarely generate the same 

data. This is a well-recognised phenomenon, and many data gathering techniques are designed 

specifically to minimise this observer bias. However, it remains an issue in uncertainty manage

ment because there is rarely sufficient time or money to complete the number of samples needed 

to minimise such bias. When 'judgement calls' are made, they introduce a subjective element that 

is very hard to quantify without repeating the entire process. The problem of observer bias will 

vary in severity between different classes of resource survey and different resources. Rapid recon

naissance surveys, such as shore-zone typing (e.g., Howes et al. 1994), will be particularly sus

ceptible to this effect. 

2.2.4.3. DATA INTERPRETATION 

The precision of sampling instruments is rarely a problem in natural resource surveys. Data 

interpretation uncertainty arises when the data generated by those instruments are manipulated 

into a form suitable for storage and analysis. Field samples often require the application of a 

variety of inference techniques to estimate the distribution between sample sites. For example, 

soil or forestry point samples on the ground are combined with spatial parameters inferred from 

remote sensing to derive a polygonal distribution. Although the point samples may be precise to 

the n"1 decimal place, their purpose is to describe a local average of conditions. A good sampling 

scheme will pick up the main components of this variation; however, between the samples the 

data are always inferred. Once the procedures are complete, an inferred data point is indistin

guishable from a sampled one. 

The data gathering and interpretation stages are also subject to mistakes in the sampling proc

ess. Although commonly termed 'errors', the narrow definitions employed in this research field 

require a separate term to describe accidents or mistakes, rather than deviations from a known 

value. The term most commonly used is 'blunders' (although this departs from the dictionary 
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definition which focuses on 'gross mistakes'). Such blunders can occur in the field (mislabelling, 

misreading, wrong position, etc.) or in lab analysis. The statistical likelihood of such blunders can 

be estimated, providing further information about uncertainty in source data. 

When remotely sensed data are the primary data source there are a number of other inference 

uncertainties to account for. Air photos commonly have several geometric problems that must be 

corrected prior to use, including tilt displacement, radial displacement and topographic displace

ment. They are also subject to distortions such as atmospheric refraction, lens irregularities, film 

or print shrinkage and image motion. The process of correction is often one of inference based on 

other information (e.g., correcting topographic displacement with elevation data) and can intro

duce its own uncertainties into the process. 

Satellite images can only measure the reflectance of an object to radiation at various wavelengths, 

and therefore introduce uncertainty in the interpretation of these data. There are also a number 

of factors that intervene between the source and the sensor, such as atmospheric haze, path 

radiance, or variations in solar angle. Satellite and other digital remote sensing devices are also 

subject to many of the geometric distortions mentioned above. Once again, while some of these 

distortions can be corrected, each correction introduces uncertainty into the data collection proc

ess. 

2.2.4.4. DATA ENTRY 

When data are entered into a system using some manual means, there are a number of opportu

nities for uncertainty to appear. Digitising, one of the more studied sources of uncertainty (e.g., 

Chen and Finn 1994 orYoucai and Wenbao 1997), can include registration skewing, variability in 

line location and outright blunders such as mislabelling. The source map being digitised is also a 

source of uncertainty due to printing registration problems, stretching of the medium or thick

ness of lines. For example, the area covered by lines (i.e., underneath) on a map represents an 

area of uncertainty. In one study, Burrough (1986b) notes that as much as ten percent of the total 

map area of a 1:25,000 soil map consists of lines. 
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2.2.4.5. DATA MANIPULATION UNCERTAINTY 

The process of manipulating data can include measures as simple as classifying a cardinal meas

ure, or as complex as the simulation of an ecosystem. While the process of digital data manipula

tion itself produces rounding errors, such problems are dwarfed by uncertainties introduced 

through simplification and combination of different types of data. 

The process of classification is rarely simple—it involves a number of subjective elements. The 

choice of the appropriate classification procedure is not always straightforward; different proce

dures often produce different numbers of classes and different class boundaries. Even if the class 

divisions are mathematically obvious, there is still the question of appropriate representation of 

the source. The purpose of the classification is also a factor. Class divisions are often chosen 

based on their appropriateness for a particular purpose, such as soil classes for slope stability 

analysis or forest classes for maximising profitability. However, such special-purpose classified 

data are often made available for other purposes. The secondary user is then faced with subopti-

mal class definitions and therefore a heightened level of uncertainty. 

A related problem (although also related to issues discussed under 'data gathering') is that of cell 

value averaging. An individual pixel of a remotely sensed image represents the reflectance of all 

surface features within its bounds, as well as some from adjacent pixels due to factors such as 

atmospheric haze and viewing angle. If the resolution of the sensor is appropriate for the phenom

ena being measured, then this is not a crucial issue. All too commonly, however, the pixel is larger 

than the target. This basic variability in reflectance leads to many of the classification problems 

discussed above. Although it can be reduced by processes such as spectral unmixing (e.g., Mathieu 

et al 1994), it still remains an issue for uncertainty management. 

2.2.4.6. PROPAGATION 

Much of the functionality of a GIS lies in its ability to combine two or more maps for the purpose 

of analysis. The complexity of this combination ranges from Boolean functions between raster 

layers, through topological polygon overlay, and right up to the integration of environmental 

simulation models within or closely linked to a GIS. Even one of the most basic GIS functions, 

topological overlay, generates data uncertainty that is difficult to both understand and quantify. 
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Sliver polygons that result from such overlays may be spurious or may actually represent infor

mation. Determining which is often a difficult task. 

Attempts to estimate cumulative errors (e.g., Newcomer and Szajgin 1984) have led to the general 

conclusion that, at best, the accuracy resulting from digital overlays is less than the accuracy of 

the least accurate input layer. This upper bound occurs when all uncertainties spatially coincide. 

At worst, when they are not coincident, accuracy can be much lower. At the upper end of the 

complexity scale, spatial analysis and simulation models often perform an elaborate series of 

operations in order to make their projections. Trying to derive statistical estimators of the uncer

tainty propagated through such models is generally an intractable problem (Mowrer 1995; 1997). 

2.2.4.7. GENERALISATION ISSUES 

Uncertainty is also a function of the difference between the scale of the source data and the scale 

of use. A substantial difference between the two can, and often does, lead to problems at the 

analytical stage. The definition of 'substantial' depends upon the nature of the data, the type of 

analysis, and the traditions of the discipline. Some data are relatively scale invariant. The 49 t h 

parallel that divides much of the U.S. and Canada is a line that will appear the same no matter 

what the scale of map. In contrast, a coastline or a road system would be displayed with a greater 

or lesser degree of complexity depending upon the operational scale. 

This type of scale variability is not only a feature of data display, it is also important in analysis. 

A soil or forestry map at a 1:5,000 scale would present different attributes than a map at 1:250,000. 

Although the resource itself remains the same, the type of analysis performed on a handful of 

forest stands would be substantially different in nature from one performed on an entire forest 

district. 

Data gathered at one scale can often be utilised at another if generalisation procedures are per

formed. Normally, one would only move from large to small scale; however, specialised procedures 

may allow some movement in the other direction. Generalisation involves a complex set of data 

manipulation procedures that can act on both spatial and attribute data, and as such generate 
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data uncertainty. However, as the scale of analysis changes so does the tolerance for such uncer

tainty. Generalisation may, therefore, result in a decrease in data uncertainty in some cases. 

2 . 2 . 5 . M E A S U R E S O F U N C E R T A I N T Y 

Measures of uncertainty are dependent upon the type of data under consideration. Spatial data 

uncertainty will typically be measured using standard circles (assuming x and y are dependent) 

or error ellipses [x and y independent). The z dimension is normally reported separately, as the 

data source is usually independent of the others. A more complex analysis might include the 

distribution of error—typically assumed to be a normal curve. Unfortunately, many of the simpler 

measures do not lend themselves to further analysis. For example, the USGS type of spatial 

standard (also employed by the BC government for their terrain data) uses statements such as 

"Ninety percent of all well-defined planimetric features shall be co-ordinated to within 10 metres 

of their true position" (SRMB 1990 p. 4-5). In the absence of additional information one could 

assume that the other ten percent might be located anywhere. 

Analysis of continuous thematic data might involve statistical measures such as dispersion, meas

ures similar to those employed for spatial data, or implicit measures such as monthly precipita

tion graphs indicating climatological variability (Buttenfield 1991). Categorical data often utilise 

an index of classification accuracy computed from a classification error matrix. The matrix con

sists of a cross-tabulation of estimated and actual thematic values for a sample of points. In such 

a matrix, element c s represents the number of points belonging to class i that actually belong to 

class j. Accuracy indices include: a) the kappa (or khat) statistic, which accounts for correct 

classifications that occur by chance alone (Hudson and Ramm 1987, for example see Stehman 

1996; Naesset 1996); b) user's and producer's accuracy, which account for the accuracy of indi

vidual thematic classes (Aronoff 1982); and c) the PCC statistic (proportion of points correctly 

classified) which may be viewed as the probability that a point selected at random from a layer is 

correctly classified (Lanter and Veregin 1992). Alternatives to the matrix approach include area 

comparisons between polygons and ground survey results, or computation of positional error in 

polygon boundaries arising from classification error (e.g., Hord and Brooner 1976). 
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The principal problem with all of these measures is that they simply report a generalised account 

of uncertainty at a certain stage of the process. The numbers may be useful for ascertaining 

whether data or results are useful for a particular task, but do not offer much help in examining 

the spatial variability of uncertainty, what occurs when data are combined, or what the implica

tions of the uncertainty are for a particular task or decision. Such tasks are only possible when 

uncertainty becomes part of the data modelling process. 

2 . 3 . U N C E R T A I N T Y M O D E L L I N G 

The term 'uncertainty modelling' is used rather loosely in the research literature. It is important 

to distinguish between the modelling of uncertainty, and uncertainty integrated into the model

ling process. The modelling of uncertainty is the same as other types of scientific modelling: it is 

an approximation of how some aspect of the world works. In general, the modelling of uncertainty 

refers to the concepts, methods, algorithms and data structures that allow uncertainty to be 

represented in a useable format, compressing the complexity of the real world. The measures of 

uncertainty introduced above are models of uncertainty; however, they constitute a very high 

degree of data compression—often a single number represents an entire layer of data. More com

plex methods of modelling uncertainty will recognise spatial, attribute and/or temporal variabil

ity. The goal of uncertainty modelling is the appropriate representation of uncertainty within a 

data structure. It is difficult to specify an 'appropriate' model if the context is not specified. This 

problem represents one of the major drawbacks of 'pure' research into models of uncertainty. 

In contrast, the integration of uncertainty into environmental modelling maintains a focus on the 

environmental model itself. Uncertainty models are an essential part of the process, however, the 

choice of model(s) is based on a number of other factors. Uncertainty estimates and models are 

utilised with an eye to their integration with other types of data, their ability to function within the 

modelling software, and the possibilities for propagating the information through to the environ

mental model's results. Other important constraints include the overall purpose of the modelling 

exercise (which determines the degree of uncertainty tolerance) and the overall complexity of the 

process relative to the computing facilities available. 
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This section will focus on both the structures used in uncertainty models and the process of 

environmental modelling as it relates to uncertainty management. 

2.3.1. MODELLING 

Most branches of science concentrate on the specific physics and chemistry required to develop 

functional models. Earth sciences have been no exception; hydrologic, erosion and other mod

els—simple or complex—have focused primarily on the processes, not the distribution of proper

ties. Only recently has it become expedient to extend such 'lumped' process models to distributed 

models that attempt to include spatial distribution or transport across the landscape. Huge in

creases in data availability through satellite imagery coupled with exponential increases in com

puting power have enabled this recent shift. 

However, these specialists do not necessarily understand all the ramifications of spatially distrib

uted data. The spatial distribution of properties can be complex. Scale changes can affect these 

properties substantially. Changes over time also affect the properties of distributed models. Al

though surveyors and spatial analysts and some hydrologists have studied a number of these 

topics, traditional divisions between the branches of science have slowed the cross-fertilisation 

necessary to properly develop distributed models. 

2.3.1.1. MODELLING WITH GIS 

Distributed models will typically be linked in some way with a GIS. The model may be run exter

nally, using the GIS as a data source and method of display, or internally, utilising standard 

analytical functions. The former method is advantageous when the model is complex, has been 

previously developed in a particular programming language, or requires specialised hardware. 

The latter—running the model inside the GIS—has the advantage of minimising data translation 

problems; however, most GIS programs only provide a range of general-purpose functions. It may 

be difficult to express a complex model in terms of such functions, and, even if such expression is 

possible, the generalisation may also lead to suboptimal computation time. 
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One of the crucial issues in this migration of models to a distributed GIS-linked form is the lack of 

techniques for determining model reliability. Often, the only criterion of quality in GIS-linked 

models is the cartographic display of the results (Burrough 1993). Even standard non-distributed 

models suffer from this problem. Users—particularly non-specialists—often accept the simulated 

results without adequate validation. In fact, there are few standard methods for validating mod

els, and for some validation is difficult or impossible. Even if a simulation model is validated it 

may, through reliance on empirical relationships, not describe the underlying process correctly. 

This dearth of techniques for analysing, propagating and reporting error in distributed models 

has been addressed by a recent surge of research. Some methods utilise derivations of standard 

techniques, while others borrow from related fields. The following section details some of the more 

common techniques available to address the modelling of uncertainty for the purpose of deter

mining the reliability of natural resource models. 

2.3.1.2. METHODS OF MODELLING 

In sections above a number of methods of modelling spatial uncertainty in basic GIS entities have 

been discussed. Uncertainty in points, lines and polygons—the traditional reductionist entities— 

can be addressed with a number of statistical measures. Often a single measure refers to all 

entities within a data layer; however, the standard circular error, epsilon band or other measure 

could be stored as an attribute of each object. The methods of modelling uncertainty presented 

thus far focus on describing the variability between where an entity is in space and where its 

database representation places it. 

Attribute uncertainty is a different matter entirely. There are two basic types of attribute value: 

classified (nominal or ordinal) values such as soil classes, or continuous (cardinal) values such as 

elevation. Classified values are the more intractable of the two for uncertainty management. 

Although some classifications refer to easily-defined, sharply-bounded areas such as bedrock 

zones or lakes, in many cases of ordinal uncertainty there is no 'true' value for comparison, and 

problems introduced earlier such as internal purity, class boundaries, and sampling error in

crease the complexity of the problem of representation of a complex reality. This section describes 
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some methods that are available to address ordinal attribute uncertainty. A number of these 

methods are drawn from expert system analysis, which focuses on 'ill-structured problems' using 

non-dichotomous structures (i.e., more-or-less structures rather than yes-or-no). The method of 

fuzzy set theory, which forms the basis for the model presented in the following chapter, is dis

cussed in detail. The section concludes with a presentation of several alternatives for propagating 

uncertainty models. 

The quantification of uncertainty has been studied primarily in reference to expert systems. Un

der development in many different fields, expert systems utilise a series of carefully formulated 

rules to come to a specific conclusion or offer a set of alternatives. Uncertainty metadata is 

required to navigate some of the more complex decision-making functions, such as determining 

the strength of rules, when to apply them, and how to resolve conflicts between the rules (Winston 

1984). 

The methods developed during the evolution of expert systems can also be applied in quantifying 

and manipulating classified attribute uncertainty in resource data. There are four approaches 

that have been commonly used to generate such metadata: Bayesian probability, Dempster-Shafer 

theory of evidence, non-monotonic logic, and fuzzy-set theory. 

2.3.1.2.1. Bayesian Probability 

Probability theory is the earliest formal approach applied to quantifying uncertainty and, there

fore, has received the most attention in expert system design. This theory translates uncertainty 

into a rigorously formal definition easily utilised by expert system designers. The probability of a 

hypothesis represents a number between zero and one indicating the belief in that hypothesis. If 

we have an observation and wish to compute the probability that a hypothesis is true given that 

observation, we can do so if we have two items of information: 

1. the likelihood that the observation will occur if the hypothesis is true; and 

2. the prior probability of that hypothesis being true. 
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This is termed the 'conditional probability,' and is calculated using the following formula - Bayes 

Theorum (Stoms 1987): 

where H is the hypothesis and D is the observation. 

The mathematical manipulation of probability with Bayesian methods has several drawbacks 

when applied to uncertainty. First, the theory assumes that probabilities can be assigned with 

great precision by experts in a consistent way; often an unreasonable expectation. Second, there 

exists no consistent and fully objective method of rating the probability assignments; some may 

be based on thorough research while others may simply be guesswork. When we know nothing 

the theory requires us to assume equal probabilities. A third criticism, voiced by Gordon and 

Shortliffe (1992), is that committing partial belief to a hypothesis commits the remaining belief to 

its negation—which can be counter-intuitive. Bayesian probability theory is therefore best at 

dealing with uncertainty due to randomness or variability rather than vagueness or imprecision 

(Stoms 1987; Zimmerman 1990). 

2.3.1.2.2. Dempster-Shqfer's Theory of Evidence 

Dempster and Shafer's theory (Shafer 1976) focuses on the quality of evidence rather than truth 

of hypothesis. A zero to one rating is applied relating to the chance that evidence demonstrates 

the truth of the hypothesis. Evidence is accumulated to narrow down the hypothesis set using 

convergence of evidence. Two functions are applied: Bel[H] measures the probability that the 

evidence implies H; it therefore is the lower bound on the probability that H is true. A plausibility 

measure, PL[H] = 1 - Bel[not H], represents the upper bound—the degree to which the evidence 

fails to refute the hypothesis. The range between the two, [Bel[H],PL[H]], indicates the incomplete

ness of evidence for H due to uncommitted support. Utilising the notation [lower bound, upper 

bound], this implies the following: 

(2.1) 

• H[0,11 

• H[0,01 

- no knowledge at all concerning H; 

- H is certainly false; 
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H[l.l] H is certainly true; 

H[.25,l] evidence provides partial support for H; 

H[0,.851 evidence provides partial support for not-H; 

H[.25,.85] simultaneous partial support for H and not-H. 

Support may be distributed among several hypotheses when evidence does not support a single 

one. The reliability of the source may be accounted for by discounting evidence for all hypotheses. 

Dempster's rule of combination allows pooling of multiple pieces of independent evidence, focus

ing on the intersection of their independent conclusions. For example, a set of airborne multi-

spectral data has been gathered regarding vegetative reflectance of a specific tree species. The 

probabilities for the cause of a specific anomaly have been estimated as follows: 

• p(a) = .25 that the trees are water-stressed; 

• p(b) = . 15 that the trees are nutrient-stressed; 

• p(c) = .40 that the trees are insect stressed; and 

• p(d) = .20 that the cause is unknown (represents distributed support for the above). 

The belief value for p(a) (the trees are water-stressed) = [.25,.45] (the second measure being 

derived from 1 - .15 [nutrients] - .40 [insects]). The calculated belief values could then be com

bined with other values generated from evidence such as soil samples or rainfall data utilising 

Dempster's Rule. 

This theory has been criticised for its lack of attention to content of evidence. If two pieces of 

evidence conflict there is no mechanism for addressing the reasons for the conflict. Instead, 

conflicts generate indeterminate results or a diffusion of support among multiple hypotheses. 

2.3.1.2.1. Non-Monotonic Logic 

Non-monotonic logic utilises non-quantitative reasoning modelled along the lines of certain hu

man decision-making processes. When evidence is lacking, a logical conclusion is to expect de

fault values. Multiple inferences are allowed, generated from a set of default axioms (Cohen et al 
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1985). A list of observations is also required, separated into those that would prove the assump

tion true, and those that would prove it false. These act as the rules that drive the system. 

A system utilising non-monotonic logic begins the process of reasoning to a conclusion by making 

decisions based on rules. General rules such as 'increased timber production reduces wildlife 

habitat' might be applied at one particular branch point in a land-use decision. However, if this 

inference is proven false at some later point by an observed increase in wildlife, the system back

tracks to the branch point that led to the false inference and continues searching until a consist

ent set of assumptions and facts are found. 

This method has several drawbacks that limit its application in real-world situations: it contains 

no method of deciding which assumption to reject from a set of contradictory ones, nor does it 

recognise degree of conflict—a direct contradiction is addressed in a manner similar to minor 

inconsistencies. However, it does provide a method of dealing with incomplete evidence by making 

best use of defaults. 

2.3.1.2.2. Fuzzy Sets 

Fuzzy sets have a superficial similarity to Bayesian probability; they represent an uncertainty 

gradient using numbers between zero and one. However, fuzzy sets are considerably different in 

concept and, therefore, in application. The numbers represent a degree of membership in a set 

rather than the chances of probability theory. The implications of this 'degree of membership' 

mirror the nature of imprecise data, making fuzzy set theory a prime candidate for inclusion in an 

uncertainty model. 

In 1965 L.A. Zadeh introduced fuzzy set theory to a sceptical audience of mathematicians. It has 

since blossomed into an industry that produces billions of dollars worth of fuzzy products. At the 

heart of the difference between classical and fuzzy set theory is something Aristotle called the law 

of the excluded middle. In standard set theory, an object either does or does not belong to a set; 

there is no middle ground. The number seven belongs to the set of odd numbers and not at all to 

the set of even numbers. This principle preserves the structure of logic and avoids the contradic

tion that an object both is and is not a thing at the same time. 
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Multivalent or fuzzy sets allow degrees of membership. Items belong only partially to a fuzzy set. 

They may also belong to more than one set. Fuzzy set theory does not contradict classical set 

theory, but acts as a generalisation in situations where the class boundaries are not, or cannot 

be, sharply defined. Applications are numerous: they allow a mathematical way to express vague

ness in language, a structure for acting on imprecise information and, key to this discussion, a 

method of combining and manipulating imprecise input sets. For example, the concept of'moder

ately well-drained soil' does not require a strict class allocation, but might be better served by a 

quantitative judgement that allows partial membership. 'Fuzzy logic' refers to the rules of ma

nipulating these non-standard class functions as defined by the mathematics of fuzzy set theory. 

As with class intervals in crisp sets, the choices governing membership functions in fuzzy sets 

determine the utility of the model. The function utilised should ensure that the grade of member

ship is maximised at the centre of the set and falls off in an appropriate way to the regions outside 

the set. Burrough (1989) utilises a common function that can be adapted to specific require-

where a is a parameter governing the shape of the function and c defines the value of the property 

x at the function's centre. By varying the value of a, the form of the function and the position of 

the crossover point (usually 0.5—where the Boolean-style maximum likelihood would shift from 

one class to another) can be easily controlled. In Figure 2.4, the difference between fuzzy and 

crisp sets as well as variations in membership function parameters are illustrated. The first three 

models (a-c) show several interpretations of symmetric Boolean and fuzzy function comparisons. 

The latter two (d-e) show asymmetric functions. Other fuzzy concepts, such as Very low' or 'close 

to' might be represented by decaying functions. 

Fuzzy logic has found its primary application in control circuitry. The most famous is a subway 

car controller used in Sendai, Japan. Utilising fuzzy rules, each of which is defined as a member

ship function (e.g., 'apply more brake pressure when the train is moving downhill'), the system 

ments: 

1 
for 0 < x < P (2.2) 
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Figure 2.4. B o o l e a n a n d f u z z y c l a s s i f i c a t i o n m o d e l s . T h e a t t r i b u t e v a l u e 
(x) i s g r a p h e d a g a i n s t t h e f u z z y m e m b e r s h i p f u n c t i o n v a l u e . T h e b r o k e n 
l i n e s s h o w t h e e n v e l o p e s o f t h e f u z z y c l a s s e s fo r e a c h m o d e l , w h i l e t h e 
s o l i d l i n e s a n d s h a d e d a r e a s i n d i c a t e t h e r e l a t e d B o o l e a n s e t s . ( S o u r c e : 
B u r r o u g h et al. 1992) 

o p e r a t e s t r a i n s m o r e s m o o t h l y a n d w i t h g r e a t e r e n e r g y e f f i c i e n c y t h a n h u m a n o p e r a t o r s ( K o s k o 

a n d I s a k a 1 9 9 3 ) . A n o t h e r a r e a o f a p p l i c a t i o n i s i n s p e e c h r e c o g n i t i o n : t e a c h i n g c o m p u t e r s to 

i n t e r p r e t t h e f u z z y c o n c e p t s i n h e r e n t i n h u m a n l a n g u a g e (e.g. , Z a d e h 1 9 7 0 ) . 

In t h e c o n t e x t o f n a t u r a l r e s o u r c e m a n a g e m e n t f u z z y log ic h a s b e e n p r i m a r i l y a p p l i e d to two 

a r e a s : 1) a n s w e r i n g c o m p l e x q u e r i e s t h a t c o m b i n e B o o l e a n m a p s u s i n g f u z z y r u l e s a n d p r o d u c e 

f u z z y o u t p u t ; a n d 2) u s i n g f u z z y m e m b e r s h i p f u n c t i o n s to r e c l a s s i f y e x i s t i n g d a t a a n d s u b m i t t i n g 

t h e r e s u l t s to s i m p l e o r c o m p l e x q u e r i e s . T h e f o r m e r i s i l l u s t r a t e d b y a n u m b e r o f l a n d c l a s s i f i c a 

t i o n a p p l i c a t i o n s , i n c l u d i n g Z h a n g et al. (1988) a n d W a n g et al. (1990) . F u z z y s e t s a r e c o m b i n e d 

w i t h a m u l t i - c r i t e r i a m e t h o d o l o g y b y B a n a i (1993) i n r e f e r e n c e to l a n d c l a s s i f i c a t i o n . M e n d o z a 

a n d S p r o u s e (1989) d e s c r i b e t h e g e n e r a t i o n o f f o r e s t p l a n n i n g a l t e r n a t i v e s u t i l i s i n g f u z z y r u l e s , 

w h i l e K o l l i a s a n d V o l i o t i s (1991) u s e f u z z y r u l e s to re t r i eve s o i l i n f o r m a t i o n . 

T h e s e c o n d t y p e o f a p p l i c a t i o n i s d e m o n s t r a t e d b y B u r r o u g h s ( 1 9 8 9 ; 1991) s o i l s u r v e y a n d l a n d 

e v a l u a t i o n a n d M c B r a t n e y a n d M o o r e ' s (1985) c l i m a t i c c l a s s i f i c a t i o n m o d e l . S u r y a n a (1993) a p 

p l i e s f u z z y r e c l a s s i f i c a t i o n to e r o s i o n h a z a r d m a n a g e m e n t a n d l a n d s u i t a b i l i t y m a p p i n g . 
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2.3.1.2.3. Linking Fuzzy Sets With Attribute Data 

P u b l i s h e d p a p e r s t h a t l i n k f u z z y s e t t h e o r y w i t h g e o g r a p h i c i n f o r m a t i o n c a n b e d i v i d e d i n t o two 

b r o a d c l a s s e s . M o s t d e a l w i t h f u z z y r e p r e s e n t a t i o n a n d a n a l y s i s o f s i te a t t r i b u t e s . C l a s s e s m a y b e 

a s s i g n e d u s i n g f u z z y c l a s s i f i e r s , s u p p l i e d w i t h f u z z y l i m i t s , o r g r o u p e d a n d a n a l y s e d w i t h f u z z y 

log ic . H o w e v e r , a f e w a u t h o r s h a v e v e n t u r e d to b r o a d e n t h e a p p l i c a t i o n o f f u z z y s e t s i n t o t h e 

r e p r e s e n t a t i o n o f t h e s p a t i a l d i s t r i b u t i o n o f g e o g r a p h i c p h e n o m e n a . F u z z y b o u n d a r i e s , n e i g h 

b o u r h o o d s , a n d c o n t i g u i t y o f r e s u l t s a r e e x a m p l e s o f t h e s p a t i a l a p p l i c a t i o n s t o u c h e d o n b y t h e s e 

l a t t e r a u t h o r s . 

W h i l e t h e r e a r e u n d o u b t e d l y n u m e r o u s p o s s i b l e m e t h o d s o f d e r i v i n g f u z z y m e m b e r s h i p f u n c 

t i o n s , t w o d i s t i n c t g r o u p i n g s h a v e a r i s e n i n t h e g e o g r a p h i c l i t e r a t u r e . R o b i n s o n ( 1 9 8 8 ) , d r a w i n g 

o n t e r m s c o i n e d b y B u c k l e s a n d P e t r y (1985) , d e f i n e d t h e s e two g r o u p i n g s a s t h e S i m i l a r i t y 

R e l a t i o n (SR) a n d t h e S e m a n t i c I m p o r t (SI) m o d e l s . 

T h e f i r s t i s s i m i l a r to c l u s t e r a n a l y s i s a n d n u m e r i c a l t a x o n o m y i n t h a t t h e v a l u e o f t h e m e m b e r 

s h i p f u n c t i o n i s a f u n c t i o n o f t h e c l a s s i f i e r u s e d . R o b i n s o n t e r m e d t h i s t h e ' S i m i l a r i t y R e l a t i o n 

M o d e l ' . F u z z y c l u s t e r i n g , i n t r o d u c e d b y R u s p i n i ( 1 9 6 9 ) , p r o v i d e s a w a y a r o u n d s o m e o f t h e r e p r e 

s e n t a t i o n a l d i f f i c u l t i e s o f c o n v e n t i o n a l c l u s t e r i n g w h e r e , fo r e x a m p l e , s t r a y p o i n t s o r ' b r i d g e s ' 

b e t w e e n s e t s c a n c a u s e p r o b l e m s . F o r e x a m p l e , t h e f u z z y - c - m e a n s m e t h o d i n t r o d u c e d b y D u n n 

(1974) g i v e s p o i n t s m e m b e r s h i p v a l u e s i n i n v e r s e r e l a t i o n to t h e i r d i s t a n c e s f r o m c l u s t e r c e n t r e s . 

O p e r a t i o n a l e x a m p l e s i n c l u d e M c B r a t n e y a n d M o o r e ' s (1985) u t i l i s a t i o n o f t h e f u z z y - c - m e a n s 

m e t h o d to p e r f o r m c l i m a t i c c l a s s i f i c a t i o n s , a s w e l l a s t h e i m p l e m e n t a t i o n o f s u c h c l u s t e r i n g a l g o 

r i t h m s i n t h e G I S p a c k a g e ' IDRISI ' ( C l a r k e U n i v e r s i t y , W o r c e s t e r , M a r y l a n d ) . 

S u c h c l a s s i f i c a t i o n m e t h o d s h a v e b e e n f o u n d to b e m o s t u s e f u l w h e n p e r f o r m i n g e x p l o r a t o r y d a t a 

a n a l y s i s ; w h e n t h e r e s e a r c h e r h a s l i t t le i n f o r m a t i o n o n c l a s s i f i c a t i o n t r a i n i n g t h e S R m o d e l o f f e r s 

a n a l t e r n a t i v e m e t h o d o f a u t o m a t i c a l l y g r o u p i n g d a t a . F o r f u r t h e r d e t a i l s o n t h i s c o m p u t a t i o n a l l y 

c o m p l e x m e t h o d t h e r e a d e r i s r e f e r r e d to B e z d e k et al. (1984) o r M c B r a t n e y a n d M o o r e (1985) . 

A m a t h e m a t i c a l l y s i m p l e r a p p r o a c h i s to u s e a n a priori m e m b e r s h i p f u n c t i o n w i t h w h i c h i n d i 

v i d u a l i t e m s m a y b e a s s i g n e d a m e m b e r s h i p g r a d e . T h i s i s k n o w n a s t h e ' S e m a n t i c I m p o r t M o d e l ' 
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(Robinson 1987; Burrough 1989). The concept of semantic import refers to this model's ability to 

represent semantic classifiers such as 'close to', 'nearly', or 'rarely' in numerical form. Natural 

resource scientists are often aware of such classifiers, but have become accustomed to translat

ing them into precise cut-offs for typical numerical analysis. 

A membership function can be structured in several ways. A symmetric function (Figure 2.4 a-c) 

might be useful for a situation where we want to distinguish between 'light' and 'moderate' rain

fall. The parameters are adjusted to create proper centring and a smooth crossover between the 

two functions. An asymmetric function (Figure 2.4 d-e) might be applied when the function can be 

truncated on one side. 'Insufficient' versus 'sufficient' rainfall for crop growth might qualify as two 

asymmetric functions. 

2.3.1.2.4. Combining Fuzzy Classifications 

Logical models that assess complex issues such as land suitability for agriculture require that 

data from a variety of sources be combined in various ways. Boolean classifiers and Boolean logic 

have traditionally been utilised in everything from simple overlays to complex models of runoff 

and erosion (e.g., De Roo et al. 1989). For example, the Structured Query Language (SQL) inter

face built into many information systems allows class combinations using the operators AND, 

OR, NOT, etc. 

Unfortunately, when data contain some degree of uncertainty, considerable information loss can 

occur in these strict combinations. Several studies (Marsman and de Gruijter 1984; 1986; 

Drummond 1988) provide examples of comparisons between derived attributes and ground checks. 

The 'quality' estimates in these studies were often abysmally low. However, the degree of misclas

siflcation was rarely serious because the attribute values causing the misclassiflcation were often 

only slightly outside the defined class limits. The information existed; however, the map's quality 

was underestimated by the Boolean matching process (Burrough et al. 1992). 

A multivariate fuzzy set does not produce such strict boundaries. Data that have been trans

formed from original observations to fuzzy class values can be combined with a single 'joint fuzzy 

membership function' or JMF (Burrough et al. 1992) as follows: 
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Result (JMF) = M I N ( M F A , M F B , M F C ) (2.3) 

where MF A > M F B and MF C represent the membership functions of three different spatially-concur

rent attributes. The minimum value of each single membership function for each attribute value 

gives the JMF. 

The great majority of existing papers in this field focus on applications of this classification/JMF 

technique. Two streams of research have emerged—the first focuses on physical applications 

such as land or crop suitability analysis (Drummond 1988; Burrough 1989; Suryana 1993), ero

sion hazard assessment (Suryana 1993) and soil-property analysis (Burrough 1989; Burrough et 

al. 1992). The second emphasises spatial decision support modelling, including generating deci

sion-making alternatives (Mendoza and Sprouse 1989; Banai 1993) and linear programming 

(Mendoza and Sprouse 1989). 

2.3.1.2.5. Cardinal Values 

Resource data may be modelled using either discrete or continuous data structures. Further

more, the data may be stored as ordinal classes or as cardinal values. Fuzzy sets, as well as the 

other methods presented above, are of use with either type of data structure, but focus particu

larly on ordinal classes. Data that are stored as cardinal values cannot be referred to using 

membership values or single probabilities. Uncertainty in these values is a numerical distribu

tion, and must be simulated using a strictly numerical method such as probability distributions. 

Ordinal and cardinal values must be dealt with differently when uncertainty is propagated through 

modelling procedures. Although reduction to ordinal classes is a possible solution, this reduces 

the potential to model the data mathematically. 

2 . 3 . 2 . P R O P A G A T I O N O F U N C E R T A I N T Y 

Study of the propagation of uncertainty through GIS and spatial modelling processes is an impor

tant, even crucial, task. There is considerable justification for such a statement. Goodchild 

(1991:121) notes that "currently we lack comprehensive methods of describing error, modelling 

its effects as it propagates through GIS operations, and reporting it in connection with the re

sults." Lanter and Veregin (1992:825) note that most research into error modelling has been 
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carried out "in isolation from the broader context of error propagation modelling in a GIS environ

ment". For example, Fisher's viewshed error analysis (e.g., Fisher 1991a; 1992; 1994) or Veregin's 

(1996) buffer operation propagation error modelling concentrate on very specific, spatially ori

ented operations. Work on isolated operations provides necessary input; however, generic propa

gation modelling for environmental models requires more universal methods. A model of the 

propagation of uncertainty through spatial data processing may utilise two basic approaches (Joy 

et al. 1994). An analytical approach, such as that employed by Heuvelink et al. (1989), uses 

mathematical functions. However, standard propagation theory (Taylor 1982) restricts such math

ematical analysis to operations that are continuously differentiable. The alternative is the Monte 

Carlo method. 

2.3.2.1. ARITHMETIC PROPAGATION 

The simplest way of propagating uncertainty through a model is through basic arithmetic rela

tions. However, this only holds true for errors in cardinal values that are both random and inde

pendent (for examples see Burrough 1986a). A simple model such as A+B will yield significantly 

different error values than A-B, particularly if A=B. However, when variables are correlated and 

the model involves a product or quotient, partial differentiation of a Taylor expansion is required 

(Taylor 1982). The rules of thumb for mathematical model error propagation (Alonso 1968) in

clude suggestions to: 

• avoid intercorrelated variables; 

• try to avoid multiplication or division; and 

• avoid as far as possible taking differences or raising variables to powers. 

These limitations, though not absolute, place severe limitations on the development of environ

mental models. Nonetheless, arithmetic propagation is utilised in some studies. For example, 

Burrough (1993) uses a second order Taylor series to model heavy metal sediment levels in the 

Netherlands. The model used consists of one environmental variable and one terrain variable. 

Similar studies have been carried out by other members of Burroughs research group (e.g., 

Heuvelink 1995). 
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2.3.2.1. MONTE CARLO 

A m o r e u n i v e r s a l m e t h o d o f u n c e r t a i n t y p r o p a g a t i o n i s f o u n d i n M o n t e C a r l o s i m u l a t i o n . T h i s 

m e t h o d , t h o u g h c o m p u t a t i o n a l l y i n t e n s i v e , i s t o t a l l y i n d e p e n d e n t o f t h e u n c e r t a i n t y m o d e l s u s e d 

a n d t h e n a t u r e a n d s e q u e n c e o f G I S o r m o d e l l i n g o p e r a t i o n s e m p l o y e d . It i s g e n e r a l l y a p p l i c a b l e 

to e r r o r p r o p a g a t i o n p r o b l e m s i n a G I S c o n t e x t ( O p e n s h a w 1 9 8 9 ; F i s h e r 1 9 9 6 ; H e u v e l i n k a n d 

B u r r o u g h 1 9 9 3 ) . 

T h e M o n t e C a r l o m e t h o d w a s i n t r o d u c e d b y v o n N e u m a n n a n d U l a m d u r i n g W o r l d W a r II a s a 

c o d e w o r d f o r t h e s e c r e t w o r k a t L o s A l a m o s . T h e m e t h o d w a s a p p l i e d to s i m u l a t i n g r a n d o m 

n e u t r o n d i f f u s i o n i n f i s s i o n a b l e m a t e r i a l . L a t e r i t w a s e x p a n d e d to e v a l u a t i n g c o m p l e x i n t e g r a l s o r 

s o l v i n g c e r t a i n e q u a t i o n s t h a t w e r e n o t a m e n a b l e to a n a l y t i c a l s o l u t i o n s ( R u b e n s t e i n 1 9 8 1 ) . M o n t e 

C a r l o m e t h o d s n o w a r e a p p l i e d i n a v a r i e t y o f d i s c i p l i n e s i n o r d e r to s o l v e c o m p l e x p r o b l e m s — 

f r o m r a d i a t i o n t r a n s p o r t to r i v e r m o d e l l i n g . R e c e n t l e a p s f o r w a r d i n c o m p u t e r p r o c e s s i n g p o w e r 

h a v e m a d e t h i s ' b r u t e f o r c e ' m e t h o d i n c r e a s i n g l y a p p e a l i n g . 

M o n t e C a r l o t e c h n i q u e s a l l o w fo r replication o f a n e x p e r i m e n t . R e p l i c a t i n g i m p l i e s r e - r u n n i n g t h e 

e x p e r i m e n t o r s i m u l a t i o n n u m e r o u s t i m e s w i t h s e l e c t e d c h a n g e s i n t h e i n p u t p a r a m e t e r s . I n p u t 

d a t a u n c e r t a i n t y i s a s s u m e d to b e c h a r a c t e r i s e d b y a n e r r o r m o d e l t h a t r e p r e s e n t s r e a s o n a b l e 

e s t i m a t e s o f t h e p o s s i b l e v a l u e s . A s i n g l e s i m u l a t i o n i n v o l v e s r a n d o m l y s e l e c t i n g a v a l u e f r o m 

e a c h o f t h e i n p u t e r r o r m o d e l s , c o m p l e t i n g a s e r i e s o f a n a l y t i c a l o p e r a t i o n s , a n d s t o r i n g t h e 

r e s u l t s . T h e p r o c e s s i s r e p e a t e d M t i m e s , a n d t h e M r e s u l t m a p s a r e s u m m a r i s e d to p r e s e n t s o m e 

s o r t o f c o n f i d e n c e i n t e r v a l a r o u n d t h e m e a n o f a l l t h e s i m u l a t i o n s . T h e b a s i c a l g o r i t h m i s a s 

fo l l ows : 

1) determine the types, levels and error characteristics of each source data set; 

2) replace the observed data with a set of random variables drawn from an appropriate probability distribution 

designed to represent the uncertainty of the inputs; 

3) apply a sequence of (GIS) operations to the data—uncertainties in models and equations may also be simu

lated by randomisation, if possible; 

4) save the results; 

5) repeat steps 2 to 4 M times; and 

6) compute summary statistics. 
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A n i m p o r t a n t c o n s i d e r a t i o n i s d e t e r m i n i n g t h e a p p r o p r i a t e M v a l u e . M o s t a u t h o r s s u g g e s t r a t h e r 

s m a l l v a l u e s , o n t h e o r d e r o f 2 0 - 3 0 . O p e n s h a w (1989) n o t e s t h a t o n e s h o u l d n o t p l a c e t o o m u c h 

e m p h a s i s o n s i g n i f i c a n c e t e s t s o f t h e r e s u l t s a s c l a s s i c a l i n f e r e n c e r e a l l y i s n o t a p p r o p r i a t e d u e to 

m u l t i p l e s i g n i f i c a n c e t e s t i n g p r o b l e m s a n d t h e a b s e n c e o f a f o r m a l e x p e r i m e n t a l d e s i g n . H e s u g 

g e s t s t h a t a n y s i g n i f i c a n c e t e s t s b e u s e d a s a g u i d e to a c t i o n r a t h e r t h a n a p r e c i s e t e s t o f a 

h y p o t h e s i s . If o n e m a k e s t h e b r o a d a s s u m p t i o n t h a t t h e t a r g e t v a l u e (the B o o l e a n r e s u l t ) i s t h e 

m o s t a c c u r a t e , t h e n h e s u g g e s t s s t o p p i n g t h e s i m u l a t i o n o n c e t h e t a r g e t r e s u l t i s r a n k e d h i g h e r 

t h a n f i f th . It m a y a l s o b e a p p r o p r i a t e to s i m p l y w a t c h fo r t h e a p p e a r a n c e o f t h e t a r g e t v a l u e i n o n e 

o f t h e t a i l s o f t h e o u t p u t d i s t r i b u t i o n , i n d i c a t i n g a s k e w e d r e s u l t . 

A s a M o n t e C a r l o s i m u l a t i o n i s t o t a l l y i n d e p e n d e n t o f t h e u n c e r t a i n t y m o d e l s a n d d a t a m a n i p u l a 

t i o n o c c u r r i n g , i t i s a n i d e a l p l a t f o r m for a d d r e s s i n g p r o p a g a t i o n t h r o u g h c o m p l e x G I S p r o c e s s e s . 

O p e n s h a w et cd. (1990) r a n s u c h a s i m u l a t i o n o n a s t u d y o f r a d i a t i o n w a s t e d u m p s i te s . In t h i s 

c a s e , t h e y c h o o s e to p e r t u r b s p a t i a l c o m p o n e n t s o f t h e d a t a s u c h a s n o d e a n d v e r t e x l o c a t i o n s . 

F i s h e r ( 1 9 9 1 c ) f o c u s e s o n s o i l i n c l u s i o n s : r a n d o m i s i n g g r i d c e l l s i n a s o i l c o v e r a g e to s i m u l a t e t h e 

d i f f e r e n c e s b e t w e e n r e a l i t y , w h e r e s m a l l s o i l i n c l u s i o n s o c c u r , a n d t h e s m o o t h e d s o i l m o d e l u s e d 

b y s t a n d a r d B o o l e a n p r o c e s s i n g . H e o f f e r s u n c o n t r o l l e d ( total ly r a n d o m ) a n d c o n t r o l l e d a l g o 

r i t h m s ; t h e l a t t e r r e q u i r i n g k n o w l e d g e o f i n c l u s i o n p r o b a b i l i t i e s fo r t h e v a r i o u s s o i l t y p e s p r e s e n t . 

E m m i a n d H o r t o n (1995) u s e M o n t e C a r l o p r o c e d u r e s to e x a m i n e u n c e r t a i n t y i n r i s k a s s e s s m e n t 

fo r e a r t h q u a k e s , w h i l e K u n k e l a n d W e n d l a n d (1997) u s e s i m i l a r t e c h n i q u e s to m o d e l g r o u n d w a t e r 

r e s i d e n c e . 

T h e M o n t e C a r l o t e c h n i q u e i s s i m p l e i n p r i n c i p l e ; p r o p e r i m p l e m e n t a t i o n i s m o r e d i f f i c u l t . It 

s h o u l d b e n o t e d t h a t , i n t h e s t u d i e s s u m m a r i s e d a b o v e , a c o n s i d e r a b l e a m o u n t o f t h e s i m u l a t o r ' s 

e f for t h a s g o n e i n t o c h o o s i n g t h e r a n d o m i s e d v a r i a b l e s i n a m a n n e r a p p r o p r i a t e to t h e a p p l i c a 

t i o n . 

2 . 3 . 3 . U N C E R T A I N T Y I N C O N T I N U O U S D A T A 

T h e v a r i o u s e r r o r m o d e l s d i s c u s s e d e a r l i e r c a n b e u t i l i s e d i n e i t h e r a d i s c r e t e o r c o n t i n u o u s 

s p a t i a l d a t a m o d e l . In a d i s c r e t e m o d e l a s i n g l e m e a s u r e w o u l d t y p i c a l l y b e a p p l i e d to e a c h ob jec t . 
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For example, one number would describe an entire polygon's spatial uncertainty, while another 

number would describe its classification uncertainty. However, many environmental models im

plicitly assume a continuous spatial variation, as do interpolation techniques such as kriging. 

The continuous data model used in most GIS is a raster. Although raster structures discretise the 

continuous nature of the reality/models, they do so to a far lesser degree than the standard 

discrete entitles of points, lines and polygons. 

Fuzzy set theory has been utilised in three primary ways in geographic data analysis: fuzzy class 

memberships, fuzzy rules for class combinations or queries, and fuzzy spatial boundaries be

tween entities. This latter application represents an important bridge between discrete and con

tinuous models. There has been some research in this area, although, as Heuvelink and Burrough 

(1993) point out, there is little experience regarding how to deal with these transition zones be

tween source polygons. 

Polygon boundaries are represented as lines on categorical maps. This belies the fact that these 

lines are fundamentally different from all other geographic linear features. Works such as Tho

mas Poiker's classic "A Theory of the Cartographic Line" (Peucker 1975) focus on the relationships 

between linear elements on maps and their computer representations. Cartographic generalisa

tion focuses on complex or dynamic linear features such as shorelines or rivers. The lines that 

represent boundaries between the classes in categorical maps have received considerably less 

attention. These types of boundaries exist in the real world to varying degrees. For example, forest 

types are divided by transition zones whose widths vary widely (Joy et al. 1994). Even before 

addressing positional error, the 'sharp' boundary between a clearcut and mature forest is a 'cor

ridor of transition' that is a minimum of several metres wide. Soil type divisions other than bed

rock boundaries or fault lines can exhibit considerably more variability in their boundary widths. 

The inclusion of these spatial constraints in attribute classification is a necessity in a spatial 

uncertainty model. The traditional separation of 'attribute' and 'geometry' is consistent with an 

entity-relationship model of phenomena in which geometry defines objects which then have at-
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t r i b u t e s a n d r e l a t i o n s h i p s ( M a r k a n d C s i l l a g 1 9 8 9 ) . H o w e v e r , t h e t w o a r e t i g h t l y i n t e r t w i n e d . T h e 

l i n e g e o m e t r y i s s t i l l a n a r t e f a c t o f t h e a t t r i b u t e c l a s s i f i c a t i o n p r o c e s s . 

In F i g u r e 2 . 5 f o u r m o d e l s o f p r o b a b i l i s t i c f u n c t i o n s a r e p r e s e n t e d . T h e f i r s t t w o h a v e t r a d i t i o n a l l y 

b e e n a p p l i e d to l i n e p o s i t i o n ; h o w e v e r , M a r k a n d C s i l l a g (1989) e x t e n d t h i s m o d e l to i n c l u d e 

m e m b e r s h i p p r o b a b i l i t i e s . T h e y f o c u s o n d e v e l o p i n g t h e t h i r d m o d e l (c). T h i s w o r k i s e v e n m o r e 

a p p l i c a b l e to f u z z y m e m b e r s h i p f u n c t i o n s , a s a ' p r o b a b i l i t y ' o f 0 . 2 5 a d m i t s a 7 5 % p o s s i b i l i t y o f 

anything e l s e , w h e r e a s a s i m i l a r f u z z y m e m b e r s h i p r e f e r s to a degree o f c l a s s m e m b e r s h i p . M a r k 

a n d C s i l l a g a s s u m e t h a t t h e p r o b a b i l i t y o f m e m b e r s h i p a t a n y g i v e n p o i n t n e a r t h e b o u n d a r y c a n 

b e a p p r o x i m a t e d b y s o m e f a m i l y o f p a r a m e t r i c c u r v e s . T h e y a d m i t t h e s t r o n g l i k e l i h o o d o f a n 

a s y m m e t r i c f u n c t i o n t h a t v a r i e s w i t h l o c a t i o n a l o n g a b o u n d a r y , h o w e v e r , t h e y u t i l i s e a s i m p l e 

c u m u l a t i v e n o r m a l f u n c t i o n a s a f i r s t a p p r o x i m a t i o n . T h e f o u r t h m o d e l p r e s e n t e d i n F i g u r e 2 . 5 i s 

t h e ' c o r r i d o r o f t r a n s i t i o n ' m o d e l d e v e l o p e d i n D a v i s (1994) a n d u t i l i s e d i n t h e f o l l o w i n g c h a p t e r . 

T h e s h i f t f r o m p r o b a b i l i s t i c l i n e f u n c t i o n s to a f u z z y ' p o s s i b i l i t y ' i s a s i m p l e o n e . O n a m u l t i p l e -

c a t e g o r y m a p t h e l i n e s m a y b e s a i d to b e t h e a r e a s o f least s p a t i a l a t t r i b u t e c e r t a i n t y . In t h e o r y , 

t h e y r e p r e s e n t a s e r i e s o f p o i n t s w h e r e l i k e l i h o o d s c o l l i d e . U t i l i s i n g t h e f u z z y d a t a m o d e l i t i s 

a p p a r e n t t h a t t h i s l i n e r e p r e s e n t s a s e r i e s o f p o i n t s i n s p a c e w h e r e , r a t h e r t h a n t h e r e b e i n g a n 

.Q 
o 

• 

(a) 

• h V 

(c) | 

(b) 

(d) 

Figure 2.5. F o u r p r o b a b i l i s t i c f u n c t i o n s o f s p a t i a l b o u n d a r y u n 
c e r t a i n t y : a) t h e s h a r p B o o l e a n b o u n d a r y ; b) t h e e p s i l o n m o d e l ; c) 
t h e m e m b e r s h i p p r o b a b i l i t y m o d e l ; a n d d) t h e c o r r i d o r o f t r a n s i 
t i o n m o d e l . T h e a r r o w i n d i c a t e s t h e s a m e s p a t i a l p o s i t i o n (the 
B o o l e a n b o u n d a r y ) i n e a c h . ( S o u r c e : D a v i s , 1 9 9 4 ; M a r k a n d C s i l l a g , 
1989) 
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e q u a l p r o b a b i l i t y o f o n e o r t h e o t h e r b e i n g p r e s e n t , t h e m e m b e r s h i p v a l u e s o f t h e t w o e q u a l i s e . 

T h e r e f o r e , r a t h e r t h a n d e f i n i n g a s t a n d a r d c u r v e for t h e b o u n d a r y m o d e l , t h e f u z z y c l a s s i f i c a t i o n 

t e c h n i q u e s d i s c u s s e d e a r l i e r i n t h i s c h a p t e r c a n b e a p p l i e d to c r e a t e a n a t t r i b u t e - o r i e n t e d f u z z y 

b o u n d a r y m o d e l . 

2.3.4. SUMMARY 

T h e a b o v e s e c t i o n h a s i n c l u d e d d i s c u s s i o n s o f m o d e l l i n g a n d p r o p a g a t i o n u s i n g d i s c r e t e e n t i t i e s , 

c o n t i n u o u s e n t i t i e s , s p a t i a l l o c a t i o n , a n d t h e u s e o f b o t h o r d i n a l a n d c a r d i n a l a t t r i b u t e d a t a . T h i s 

m u l t i t u d e o f f a c t o r s t h a t m a k e u p u n c e r t a i n t y m o d e l l i n g a n d p r o p a g a t i o n s e r v e s to h i g h l i g h t t h e 

m u l t i d i m e n s i o n a l a s p e c t o f t h i s f i e ld o f i n q u i r y . T h e r e i s n o s i n g l e a n s w e r — n o ' u n c e r t a i n t y b u t 

t o n ' t h a t c a n b e t a c k e d o n to a G I S . T h e n a t u r e a n d c o n t e x t o f t h e d a t a a n d t h e t a r g e t a p p l i c a t i o n 

d e f i n e t h e t y p e o f u n c e r t a i n t y m o d e l l i n g a n d p r o p a g a t i o n n e c e s s a r y . 

2 . 4 . C O M M U N I C A T I O N O F U N C E R T A I N T Y 

H a r k i n g b a c k to t h e b i g p i c t u r e — t h e m a n a g e m e n t o f u n c e r t a i n t y fo r d e c i s i o n - m a k i n g — t h e f i n a l 

s t e p i n t h e p r o c e s s i s c o m m u n i c a t i n g t h i s u n c e r t a i n t y to t h e t a r g e t a u d i e n c e . W h e n d e a l i n g w i t h 

l u m p e d m o d e l s t h e u n c e r t a i n t y c a n b e c o m m u n i c a t e d w i t h a s i m p l e n u m e r i c a l s u m m a r y . It s t i l l 

m a y b e a c h a l l e n g e to u n d e r s t a n d a n d c o m m u n i c a t e t h e implications o f a s t a n d a r d d e v i a t i o n , 

f u z z y , o r o t h e r s i m i l a r m e a s u r e ; h o w e v e r , t h e d i m e n s i o n s o f t h e p r o b l e m a r e r e l a t i v e l y l i m i t e d i n 

c o m p a r i s o n to s p a t i a l d a t a . A d i s t r i b u t e d u n c e r t a i n t y m o d e l w i l l p r o b a b l y h a v e a v a r i a b l e s p a t i a l 

d i s t r i b u t i o n o f u n c e r t a i n t y ; h i g h e r i n s o m e a r e a s t h a n o t h e r s , o r h i g h e r fo r c e r t a i n f e a t u r e s . A 

g r a p h i c a l m e t h o d o f c o m m u n i c a t i o n i s n e c e s s a r y to c o m m u n i c a t e t h i s i n f o r m a t i o n . T h i s s e c t i o n 

b r i e f l y d e s c r i b e s s o m e o f t h e b a c k g r o u n d a n d c u r r e n t r e s e a r c h i n t h i s f i e l d . 

R e s e a r c h i n t o u n c e r t a i n t y v i s u a l i s a t i o n h a s g r a d u a l l y e x t e n d e d t h e g r a p h i c v a r i a b l e s o f f e r e d b y 

B e r t i n (1985) i n t o n e w r e a l m s o p e n e d u p b y c o m p u t e r d i s p l a y s . T h e f i r s t o p t i o n i s t h e u s e o f s t a t i c 

v a r i a b l e s s u c h a s c h a n g i n g t h e ' f o c u s ' o f a p a r t i c u l a r o b j e c t to r e p r e s e n t u n c e r t a i n t y ( M a c E a c h r e n 

1 9 9 2 ; 1 9 9 4 ) . U s e o f a c o l o u r v a r i a b l e s u c h a s d e c r e a s i n g c o l o u r s a t u r a t i o n v a l u e s o r c h a n g i n g h u e 

i s a n o t h e r p o s s i b i l i t y . O t h e r p o t e n t i a l s t a t i c v a r i a b l e s s u c h a s f o g o r t e x t u r e c h a n g e a r e d i s c u s s e d 

b y G o o d c h i l d , B u t t e n f i e l d , a n d W o o d (1994) . 
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Dynamic cartography (map animation) offers advantages over static displays in terms of informa

tion density. Simple dynamic variables such as 'duration' in a flashing symbol map or shifting 

pixel map (Dibiase et al. 1992; Fisher 1994) may be used to express degree of certainty in dis

played information. Allowing the user to toggle between the actual data and uncertainty informa

tion is another possibility (MacEachren 1994; van der Wei et al 1994). A third alternative is 

displaying individual realisations of a model to express variability (Goodchild et al 1994). This 

concept may be extended to a dynamic display of the full range of realisations. Displaying such 

realisations has the advantage of drawing attention to the possible effects of the uncertainty—a 

key issue for the user that lacks understanding of the statistical basis for the uncertainty model. 

For example, watching the slope stability values for the area above a road change from 'safe' to 

'unsafe' has a more dramatic impact than simply reporting standard deviation values numeri

cally. 

A variety of variables are available for manipulation. Static visualisation might include the com

mon technique of pairing uncertainty maps with the data they represent, or using Bertin's (1985) 

variables in combination to depict data and uncertainty in a single map—the best candidates 

being value, colour and texture (Goodchild et al. 1994). MacEachren's (1992) concept of defocus-

ing symbols fits this category, as does Fisher's (1994) use of interactive sound. Another of Bertin's 

variables, arrangement, could be utilised to represent uncertainty as the z-axis in a perspective 

view. 

In dynamic visualisation, some of the available choices include display animation using various 

realisations, Fisher's (1993; 1994) use of randomisation of pixels, the use of sound, text and 

images in a multimedia role to support map presentations (Beard and Buttenfield 1991), or inter

active manipulation—where the user is involved in altering parameters and viewing results in real 

time (MacEachren 1994). 

The exploratory nature of many of the studies cited above has typically led to exclusion of the 

human factor. Cartographic research has made steady progress in understanding how humans 

interact with static maps. Rapid advances in visualisation technology require equally rapid ad-
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v a r i c e s i n u n d e r s t a n d i n g t h e p s y c h o l o g y o f t h e s e d i f f e r e n t d i s p l a y s . S o m e s u c h a d v a n c e s a r e 

s u m m a r i s e d i n H e a r n s h a w a n d U n w i n (1994) . H o w e v e r , a p p l i c a t i o n s t h a t f o c u s o n t h e d i s p l a y o f 

u n c e r t a i n t y i n f o r m a t i o n h a v e b e e n r a r e . N u m e r o u s s t u d i e s s u c h a s E v a n s (1994) a r e r e q u i r e d to 

c o m p a r e t h e e f f i c a c y o f t h e m a n y p o s s i b l e r e a l i s a t i o n s o f u n c e r t a i n t y d i s p l a y . 

2 . 5 . U N C E R T A I N T Y I N F O R E S T R Y D A T A A N D M O D E L S 

F o r e s t r y i n v e n t o r y d a t a , g r o w t h m o d e l s a n d d e c i s i o n m o d e l s a r e e a c h s u b j e c t to m a n y o f t h e 

u n c e r t a i n t i e s a n d i s s u e s p r e s e n t e d a b o v e . A n u m b e r o f t h e u n c e r t a i n t y m o d e l s h a v e b e e n a p p l i e d 

to v a r i o u s c o m p o n e n t s o f t h e f o r e s t r y r e s o u r c e s e c t o r ; h o w e v e r , c o n s e r v a t i v e a t t i t u d e s a n d a 

c e r t a i n a m o u n t o f i n e r t i a i n f o r e s t r y a g e n c i e s a n d b u s i n e s s e s h a s m e a n t s l o w a d o p t i o n o f n e w 

t e c h n i q u e s . U n c e r t a i n t y m o d e l l i n g h a s t h e p o t e n t i a l to a l l o w m o r e t i m e l y a n d i n f o r m e d d e c i s i o n s , 

g r o w t h a n d y i e l d m o d e l s t h a t b e t t e r re f lec t r e a l i t y , a n d i n v e n t o r y d a t a t h a t i n c o r p o r a t e s l e s s 

a b s t r a c t i o n a n d i s e a s i e r to m a i n t a i n . 

U s i n g t h e c l a s s i f i c a t i o n o f u n c e r t a i n t y s o u r c e s a n d i s s u e s p r e s e n t e d i n t h e p r e v i o u s s e c t i o n , t h e 

f o l l o w i n g i s a s u m m a r y o f f o r e s t r y - r e l a t e d i s s u e s a n d r e l e v a n t r e s e a r c h : 

Positional uncertainty - F i e l d s a m p l i n g r e l i e s o n a c c u r a c y i n t h e a b s o l u t e p o s i t i o n o f s a m p l e 

s i t e s a n d p l o t s . S o m e f o r e s t r y r e s e a r c h ( B i l o d e a u etal. 1 9 9 3 ; L o w e l l 1997) h a s e x a m i n e d a l t e r n a 

t ive s a m p l i n g s t r a t e g i e s t h a t p o t e n t i a l l y l e a d to r e d u c t i o n s i n a t t r i b u t e u n c e r t a i n t y . T h e s p a t i a l 

p o s i t i o n o f b u f f e r s a n d b o u n d a r i e s o f f o r e s t s t a n d s a r e s u b j e c t to u n c e r t a i n t i e s i n t h e v a r i o u s d a t a 

g a t h e r i n g t e c h n i q u e s . T h e e f fect t h i s h a s o n a r e a c a l c u l a t i o n s h a s b e e n e x a m i n e d ( M a g n u s s e n 

1996) . 

Temporal uncertainty - I n v e n t o r y a n d s a m p l i n g t a k e p l a c e a t v a r i a b l e s p a c e d i n t e r v a l s . B e t w e e n 

t h e s e t i m e s u n c e r t a i n t y g r a d u a l l y i n c r e a s e s i n i t e m s s u c h a s v o l u m e e s t i m a t e s v i a g r o w t h m o d 

e l s . T h e r e f o r e , t h e a c c u r a c y o f t h e c u r r e n t i n v e n t o r y i s d e p e n d e n t o n f r e q u e n c y o f u p d a t e . T h e 

m o r e s o p h i s t i c a t e d d e c i s i o n m o d e l s p r e d i c t c h a n g e i n s o c i a l a n d e c o n o m i c s y s t e m s . U n c e r t a i n t y 

i n t h e s e v a l u e s a l s o i n c r e a s e s o v e r t i m e . 
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Attribute uncertainty—There i s v a r i a b i l i t y i n t h e s i z e - v o l u m e r e l a t i o n s u s e d i n e s t i m a t o r s . C o n 

s i d e r a b l e w o r k h a s b e e n u n d e r t a k e n i n d e t e r m i n i n g t h e n a t u r e o f t h i s v a r i a b i l i t y (e.g. , C u n i a a n d 

W h a r t o n 1 9 8 6 ) . P o l y g o n s a r e n o t h o m o g e n e o u s ; t h e r e i s a l s o v a r i a b i l i t y i n s p e c i e s w i t h i n a p o l y 

g o n . A c c u r a c y a s s e s s m e n t s h a v e b e e n c a r r i e d o u t b y s o m e a g e n c i e s ( C a l i f o r n i a D e p t . o f F o r e s t r y 

1 9 9 2 ; B C M i n i s t r y o f F o r e s t s 1 9 9 5 ) . M e t h o d s s u c h a s f u z z y c l a s s i f i c a t i o n h a v e b e e n p r o p o s e d a s 

a s o l u t i o n ( C a p r a et al. 1 9 9 5 ) . W o r k o n s t o c h a s t i c m o d e l s s u c h a s J o y et al. (1994) d e a l w i t h 

m u l t i p l e u n c e r t a i n t i e s t h r o u g h M o n t e C a r l o s i m u l a t i o n , 

Boundary uncertainty—The s t a n d a r d p o l y g o n a l s y s t e m o f f o r e s t i n v e n t o r y d i s t o r t s a m o r e c o n 

t i n u o u s r e a l i t y . A l t h o u g h t h i s s i m p l i f i e s d a t a g a t h e r i n g a n d m a i n t e n a n c e , a c c u r a c y o f i n v e n t o r y 

s u f f e r s . T h e r e i s a l s o t h e i s s u e o f u n r e p e a t a b l e b o u n d a r y d e l i n e a t i o n d u e to i n t e r p r e t a t i o n u n c e r 

t a i n t y . R e s e a r c h o n f u z z y r e p r e s e n t a t i o n o f b o u n d a r i e s h a s a l s o t a k e n p l a c e i n t h e f o r e s t r y sec to r . 

F o r e x a m p l e , L o w e l l ( 1 9 9 3 a ) c r e a t e s f u z z y b o u n d a r i e s u s i n g V o r o n o i a r e a - s t e a l i n g t e c h n i q u e s , 

a n d e v a l u a t e s t h e m t h r o u g h c o m p a r i s o n s w i t h e x i s t i n g m a p s a n d s a m p l e s . 

Satellite classification uncertainty—As sate l l i te i m a g e s b e c o m e a m o r e s u b s t a n t i a l d a t a s o u r c e 

for i n v e n t o r y , u n c e r t a i n t y i n c l a s s i f i c a t i o n b e c o m e s a n i s s u e . W o r k s u c h a s C a p r a et al. (1995) 

p r o p o s e a l t e r n a t i v e s s u c h a s f u z z y c l a s s i f i c a t i o n t e c h n i q u e s fo r f o r e s t r y m a n a g e m e n t . 

Digitising uncertainty—During t h e t r a n s i t i o n f r o m p a p e r to d i g i t a l m a p s d i g i t i s i n g u n c e r t a i n t y 

w a s a n i s s u e . It i s l e s s s o p r e s e n t l y a s m o r e a n d m o r e d a t a a r e c o l l e c t e d d i g i t a l l y a n d a r e a v a i l a b l e 

i n d i g i t a l f o r m . 

Propagation—Growth m o d e l s a n d d e c i s i o n s u p p o r t m o d e l s h a v e g r o w n c o n s i d e r a b l y i n c o m p l e x 

i t y o v e r r e c e n t y e a r s . P r o p a g a t i o n o f u n c e r t a i n t y t h r o u g h t h e s e m o d e l s i s a n i s s u e . A l t e r n a t i v e 

m o d e l s s u c h a s t h a t p r o p o s e d b y T h o m p s o n a n d V e r t i n s k y (1991) i n c l u d e u n c e r t a i n t i e s t h r o u g h 

r e c o g n i t i o n o f s p a t i a l c o n s t r a i n t s a n d l o n g - t e r m d y n a m i c s . V a n K o o t e n et al (1990) u t i l i s e M o n t e 

C a r l o t e c h n i q u e s to p r o p a g a t e u n c e r t a i n t y t h r o u g h a g r o w t h m o d e l , h o w e v e r , t h e y f o u n d t h a t a 

l a c k o f d a t a o n v a r i a b i l i t y h a m p e r e d t h i s t y p e o f m o d e l l i n g . 

Generalisation—Data a r e g e n e r a l i s e d fo r v a r i o u s r e a s o n s i n t h e c o u r s e o f i n v e n t o r y , p r o d u c i n g 

s u m m a r i e s a n d s e t t i n g u p m o d e l s , a l t h o u g h t h e r e i s l i t t le f o r e s t r y - s p e c i f i c r e s e a r c h o n t h i s i s s u e . 
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Modelling with GIS—Growth m o d e l s t h a t w e r e f o r m e r l y ' l u m p e d ' (i .e., n o n - s p a t i a l ) a r e g r a d u a l l y 

b e i n g i n c o r p o r a t e d i n t o G I S a s t e c h n i q u e s b e c o m e a v a i l a b l e (e.g. , T h o m p s o n a n d V e r t i n s k y 1 9 9 1 ) . 

T h i s s p a t i a l o r i e n t a t i o n o f f o r e s t m o d e l s i s b e c o m i n g i m p o r t a n t fo r m a n y r e a s o n s , f r o m f i n a n c i a l 

to e c o l o g i c a l . S i m i l a r l y , m a n a g e m e n t d e c i s i o n s m u s t b e i n c r e a s i n g l y s e n s i t i v e to s p a t i a l c o n c e r n s . 

F o r e x a m p l e , t h e d e c i s i o n to h a r v e s t a p a r t i c u l a r s t a n d m a y d e p e n d u p o n t h e s t a n d ' s p r o x i m i t y to 

s t r e a m s , a r e a s o f e c o l o g i c a l c o n c e r n , o r u r b a n a r e a s . O u t s i d e o f a G I S , i n c o r p o r a t i n g a s i n g l e 

s p a t i a l f a c t o r c a n b e a m a j o r i s s u e (e.g. , L i u a n d H e r r i n g t o n 1 9 9 6 ) . A d j a c e n c y — t h e m a n a g e m e n t 

o f a c t i v i t i e s o c c u r r i n g i n n e a r b y s t a n d s — w i l l a l s o a f f e c t d e c i s i o n m a k i n g . C r i t i q u e s o f s i m p l i s t i c 

d e c i s i o n - m a k i n g m o d e l s i n u s e i n t h e i n d u s t r y ( M a r s h a l l 1 9 8 6 ; M e n d o z a a n d S p r o u s e 1989) h a v e 

l e d to s t u d i e s a n d i m p l e m e n t a t i o n s t h a t d e a l w i t h e c o n o m i c i s s u e s ( C l e a v e s 1 9 9 4 ; L i u 1 9 9 5 ) , 

p l a n t i n g d e c i s i o n s ( R e e d 1 9 9 1 ) , l a n d a l l o c a t i o n ( V a n K o o t e n et al 1996) a n d o v e r a l l r i s k m a n a g e 

m e n t ( F i g h t a n d B e l l 1 9 9 4 ; M u l d e r a n d C o r n s 1 9 9 5 ) . 

Visualisation—The c o m p l e x i t y o f t h e c u r r e n t f o r e s t m a n a g e m e n t d e c i s i o n - m a k i n g e n v i r o n m e n t 

m a k e s d a t a v i s u a l i s a t i o n a n i m p o r t a n t i s s u e . T h e v i s u a l i s a t i o n o f b o t h d a t a a n d i t s a s s o c i a t e d 

u n c e r t a i n t y i s o f t e n t h e o n l y w a y to m a k e s e n s e o f c o m p l e x i s s u e s . W o r k s u c h a s O r l a n d (1994) 

d e m o n s t r a t e t h i s i m p o r t a n c e to f o r e s t p l a n n i n g a n d d e c i s i o n m a k i n g 

2 . 5 . 1 . U N C E R T A I N T Y I N Son. A N D T E R R A I N M O D E L L I N G 

B o t h s o i l a n d t e r r a i n m o d e l s a r e a l s o c r u c i a l c o m p o n e n t s o f f o r e s t i n v e n t o r y d a t a . U n c e r t a i n t y i n 

t h e s e d a t a m a y a f f e c t g r o w t h m o d e l s ( t h r o u g h s o i l p a r a m e t e r s , s l o p e a n d a s p e c t ) , p r o f i t a b i l i t y a n d 

h a r v e s t d e c i s i o n m o d e l s ( t h r o u g h a c c e s s i b i l i t y fac to rs ) , a n d s l o p e s t a b i l i t y , a m o n g o t h e r f a c t o r s . 

2.5.1.1. SOIL 

S o i l d a t a a r e n a t u r a l c a n d i d a t e s for u n c e r t a i n t y s t u d i e s . P e d o l o g i s t s h a v e l o n g b e e n d i s s a t i s f i e d 

w i t h t r a d i t i o n a l m a p p i n g s y s t e m s , a s s o i l p o l y g o n s a r e p o o r r e p r e s e n t a t i o n s o f t h e c o n t i n u o u s 

v a r i a t i o n f o u n d i n r e a l i t y . S o i l t y p e s a r e r a r e l y d e l i n e a t e d b y s h a r p b o u n d a r i e s . T h e r e i s a l s o 

c o n s i d e r a b l e u n c e r t a i n t y i n s a m p l i n g , s i n c e m o s t d a t a a r e i n f e r r e d f r o m v e g e t a t i o n t y p e s . S h i f t i n g 

a n a l y s i s o v e r to t h e s t a n d a r d d i s c r e t e e n t i t l e s o f G I S d i d l i t t le to a m e l i o r a t e t h i s p r o b l e m . H o w 

ever , t h e d i g i t a l e n v i r o n m e n t o f f e r e d n e w a l t e r n a t i v e s for b o t h c o n c e p t u a l a n d p h y s i c a l d a t a s t r u c -
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tures. Uncertainty modelling techniques could be used to represent spatial variability, attribute 

uncertainty, sample uncertainty, and uncertainty in classification. Soil scientists paved the way 

for many other applications that also deal with uncertain data. 

Burrough's publications dealing with fuzzy sets for soil data (1986b; 1989; 1991) were some of the 

first applications of this methodology to GIS data. This work led to recognition of the utility of 

fuzzy methods in classification (Burrough et al. 1992; Odeh et al. 1992) and to experiments in 

visualising soil data uncertainty (Fisher 1993; Maclean et al. 1993). Soil sampling schemes were 

also improved through explicit recognition of variability (Domburg et al. 1994; McBratney 1994). 

As techniques developed for the propagation of uncertainty in GIS-based models, soil data be

came a favourite example. Both attribute (Goodchild 1994; Stein 1994) and spatial characteristics 

(Rogowski 1996a; 1996b) of soils have been modelled using a variety of uncertainty models. 

2.5.1.2. ELEVATION 

Digital elevation data are used for a large and rapidly growing number of applications. In particu

lar, elevation and its derivatives—slope and aspect—are used in forestry for growth models, slope 

stability models, models to visualise alternative strategies, viewshed modelling, and others. There 

are several options for gathering elevation data. Ground surveys are the most expensive, but also 

(potentially) the most accurate. Ground surveys may utilise traditional surveying techniques or, 

more commonly, GPS derived readings. Elevation data may also be gathered from stereo photo-

grammetry, or read directly from synthetic aperture radar (SAR) data. 

Uncertainty in elevation data and its derivatives is almost always in reference to cardinal data, 

and since there is a 'true' value for reference (subject to geoid variability), the most common 

problem is numerical error. This assumes that the spatial location of an elevation datum is known 

absolutely; however, spatial uncertainty can also create variability. This latter problem may be 

addressed as with other types of spatial uncertainty (e.g., Monckton 1993). 

Error typically propagates through a series of readings and operations on its way to a final eleva

tion, slope or aspect value. For example, in surveying elevation, errors in each reading of a transect 
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are cumulative, instrument error must be added in, and these errors are added to the error of the 

reference benchmark. However, these errors are minor relative to the errors generated through 

interpolation between sample points. 

In photogrammetry, or its digital equivalent, error is introduced when the stereo correspondence 

produces mismatches. These can result from a variety of conditions, including low contrast, 

clouds, relief distortions between images, periodic terrain textures, or the presence of vegetation. 

Poor alignment of the images, the hardware, or the image software can also generate errors. Some 

of these problems can be reduced through post-processing techniques. However, post-processing 

can introduce its own subtle errors due to assumptions in the algorithms used (e.g., Hannah 

1981). SAR data are particularly dependent upon registration and algorithmic accuracy; over the 

past decade algorithms have improved and errors have been reduced. It may soon join the ranks 

as a regular source of topographic data. 

Elevation data are commonly interpolated into DEMs which can then be manipulated via GIS and 

used for a variety of applications. The interpolation and the manipulations also introduce uncer

tainty into the data. Interpolation uncertainty has been studied for a variety of procedures, in

cluding contours (Wood 1994), and satellite-derived data (Sasowsky et al. 1992). The accuracy of 

the DEMs themselves has been the subject of many studies. Typically, due to the difficulty in 

accurately ground-truthing the models, different sources are compared (e.g., Brown and Bara 

1994; Garcia 1994; Felicisimo 1994), although the advent of accurate GPS data has led to some 

ground-truthed studies (Adkins 1994). 

The surfaces derived from DEMs are typically used as input to various environmental models. 

These uncertainties have been studied by themselves (Skidmore 1989), and in relation to views-

hed modelling (Fisher 1991a; 1992; 1994), feature extraction (Lee etal. 1992), hydrologic model

ling (Bruneau and Gascuel-Odoux 1995), and fire modelling (Delavar 1997) among many others. 

Monte Carlo simulation has been applied to DEM error propagation modelling (under the new 

name of'stochastic imaging'), in which constrained random values are applied to the entire sur

face (e.g., Flamm and Turner 1994; Journal 1996). 
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2 . 6 . RESEARCH GAPS 

T h e r e a r e a n u m b e r o f s p e c i f i c a s p e c t s to u n c e r t a i n t y m a n a g e m e n t t h a t h a v e b e e n i n s u f f i c i e n t l y 

r e s e a r c h e d . O v e r a l l , t h e r e i s a g l a r i n g l a c k o f i n t e g r a t e d s t u d i e s t h a t e x a m i n e ' c r a d l e - t o - g r a v e ' 

u n c e r t a i n t y — f r o m s o u r c e s t h r o u g h to f i n a l m o d e l l i n g s u c h a s d e c i s i o n s u p p o r t . It i s r a r e t h a t a 

s p e c i f i c m o d e l l i n g r o u t i n e w i l l h o s t o n l y o n e t y p e o f u n c e r t a i n t y . S p a t i a l , t e m p o r a l a n d t h e m a t i c 

u n c e r t a i n t i e s o f b o t h c a r d i n a l a n d o r d i n a l d a t a i n t e r a c t i n u n p r e d i c t a b l e w a y s i n c o m p l e x e n v i 

r o n m e n t a l o r d e c i s i o n m o d e l s . It i s i m p o r t a n t to s t u d y t h e s e i n t e r a c t i o n s i n r e a l - w o r l d s c e n a r i o s . 

2.6.1. UNCERTAINTY MODELLING 

U n c e r t a i n t y m o d e l l i n g r e s e a r c h i s s t i l l i n i t s i n f a n c y , a n d j u s t i f i c a t i o n f o r r e s e a r c h i n t h i s f i e ld i s 

n o t d i f f i c u l t to c o m e b y . In a g e n e r a l s e n s e , t h e i m p o r t a n c e o f t h e a c c u r a c y i s s u e i n s p a t i a l d a t a i s 

e p i t o m i s e d b y t h a t i s s u e b e i n g t h e s u b j e c t o f t h e f i r s t o f t h e 12 r e s e a r c h i n i t i a t i v e s u n d e r t a k e n b y 

t h e N a t i o n a l C e n t e r fo r G e o g r a p h i c I n f o r m a t i o n a n d A n a l y s i s ( N C G I A , 1 9 8 9 ) . M o r e s p e c i f i c a l l y , 

B u r r o u g h et al. (1992) p o i n t to t h e l a c k o f w o r k o n t h e p r o b l e m s o f f u z z y s p a t i a l m a p p i n g : b o u n d a 

r i e s , n e i g h b o u r h o o d a n d c o n t i g u i t y a n a l y s i s . In a n e a r l i e r w o r k , B u r r o u g h ( 1 9 8 6 b ) n o t e d t h a t : 

It i s r e m a r k a b l e t h a t t h e r e h a v e b e e n s o few s t u d i e s o n t h e w h o l e 
p r o b l e m o f r e s i d u a l v a r i a t i o n a n d h o w e r r o r s a r i s e o r a r e p r o p a g a t e d i n 
G I S p r o c e s s i n g , a n d w h a t t h e e f fec ts o f t h e s e e r r o r s m i g h t b e o n t h e 
r e s u l t s o f t h e s t u d i e s m a d e . (p. 103) 

In h i s s u m m a r y p a p e r fo r t h e 'b ib le ' o f s p a t i a l a c c u r a c y ( " A c c u r a c y o f S p a t i a l D a t a b a s e s " , G o o d c h i l d 

a n d G o p a l 1 9 9 2 ) , S t a n O p e n s h a w (1992) s t a t e s t h a t : 

T h e r e i s c l e a r l y a n u r g e n t n e e d fo r b a s i c r e s e a r c h to r e s o l v e m a n y o f 
t h e [GIS e r r o r a n d p r o p a g a t i o n ] i s s u e s . [ Th is i n c l u d e s ] d e v e l o p i n g a b e t t e r 
u n d e r s t a n d i n g o f e r r o r p r o p a g a t i o n t h r o u g h s p a t i a l d a t a b a s e s , i d e n t i f y i n g 
a n d c l a s s i f y i n g o p e r a t i o n s m o s t s e n s i t i v e to e r ro r , a n d p r o v i d i n g b a s i c 
t o o l s to h a n d l e e r r o r i n a v a r i e t y o f s i t u a t i o n s , (p. 2 6 4 ) 

H e g o e s o n to i n d i c a t e t h e n e c e s s i t y o f u t i l i s i n g t h e l a t e s t h i g h - s p e e d p r o c e s s i n g t e c h n o l o g y to 

i n v e s t i g a t e t h e e x t e n t o f t h e p r o b l e m i n r e a l - w o r l d a p p l i c a t i o n s . 

2.6.2. VALIDATION 

O n e a s p e c t i s a l m o s t c o m p l e t e l y l a c k i n g i n u n c e r t a i n t y r e s e a r c h : v a l i d a t i o n o f u n c e r t a i n t y m o d 

e l s . G e n e r a l e v a l u a t i o n s s u c h a s E b e r b a c h (1993) a n d L i u a n d H e r r i n g t o n (1996) t h a t l o o k a t t h e 
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consequences or specific costs of uncertainty base their conclusions on the propagation of uncer

tainty values. These may be derived in numerous ways, including expert evaluations via semantic 

analysis, variability data recorded in field surveys, or simply rough estimates. Mathematical propa

gation models such as those discussed in Burrough (1986b) and implemented in Heuvelink (1995) 

can produce incredibly large uncertainty values if subtraction of inputs is part of the model. 

Other propagation models are based on numerous assumptions, such as the validity of stochastic 

landscape simulation (e.g., Journal 1996) or the Gaussian distribution of error terms. It is rare 

that uncertainty in the model inputs is validated; rarer still that outputs are confirmed. 

The primary difficulty is a lack of techniques for sampling uncertainty. Dealing with cardinal 

values is a straightforward matter, though certainly time-consuming. One simply compares real

ity with samples and generates an error distribution. However, if both spatial and attribute un

certainty are addressed, this sample point may actually be located elsewhere, complicating mat

ters considerably. Ordinal data are even more complex. For example, how does one confirm a 

fuzzy membership value in a soil class? How can boundary uncertainty values be confirmed 

under both spatial and attribute uncertainty? 

If the results of uncertainty models are to be considered useful in decision support, there must be 

some methods available to indicate that they tell the 'truth'. Although it is accurate to state that 

a particular uncertainty model or representation is more 'honest' than standard Boolean methods 

(e.g., Lowell 1993b), it would assist the credibility of this research field if it were possible to 

compare the degree of 'honesty'. 

2 . 6 . 3 . L I N K I N G U N C E R T A I N T Y M A N A G E M E N T W I T H D E C I S I O N M A K I N G 

Although uncertainty in decision making is a common research area, links between data uncer

tainty and decision making are rarely investigated. There are two major aspects: developing meth

ods of summarising uncertainty for decision makers (and evaluating these methods), and devel

oping methods for evaluating the effectiveness of decisions made using such inputs. 

The first of these aspects focuses primarily on the visualisation of uncertainty. MacEachren (1992) 

indicates that cartographers have spent little time investigating methods of presenting uncer-
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tainty information. This is also indicated by a 200 page report on the "Visualization of Spatial 

Data Quality" (Beard and Buttenfield 1991) as part of another NCGIA research initiative. The bulk 

of the position papers in this work indicate a need for applied research in this area, the major 

impediment being that uncertainty models are required before they may be visualised. The mod

els themselves are perhaps the most neglected area of research, yet the models, the propagation 

algorithms, and the visualisation methods can only be effectively developed in concert with each 

other. Evaluation of their effectiveness is also a crucial issue. 

The second aspect—evaluating the effectiveness of decisions made using uncertainty informa

tion—is also a neglected area. This may be principally due to the immaturity of this research field; 

however, the lack may also be due to the immensity of the problem. It is difficult to compare the 

implications of decisions made under differing information environments without performing 

substantial double-blind experiments. Before committing resources to such experimentation, it is 

important to have a thorough understanding of uncertainty management at all levels. Therefore, 

while this current research examines some of the implications of decision making using uncer

tainty management, verification and evaluation is not implemented for the reasons discussed 

above. 

2 . 7 . SUMMARY 

This chapter has attempted to summarise a number of related research fields that, together, focus 

on uncertainty modelling in spatial data and natural resource inventory. A number of research 

gaps have been noted, including the need for better understanding of uncertainty behaviour and 

propagation in spatial databases, the need for applied research to allow interpretation of uncer

tainty, and a requirement for validation and applied tests of uncertainty models. 

The following chapter makes the first inroads into these research gaps by presenting an uncer

tainty model developed in previous research undertaken by the author. The basic components of 

this model are used as data sources during the new research described in upcoming chapters. 

Rather than introduce these components piecemeal into the discussion of new research method-
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ology, a summary of the previous research is presented in the following chapter to facilitate 

understanding of data lineage. 
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Chapter Three 

Modelling and Storing Measures of 
Uncertainty in Inventory 

3 . 1 . I N T R O D U C T I O N 

There are a number of uncertainty models that could be used in the process of developing sam

pling, evaluation and verification techniques (e.g., Fisher 1991, Heuvelink 1995). Much of the 

work undertaken in this dissertation makes use of an uncertainty model developed by the author 

during previous research (Davis 1994; Davis and Keller 1997a). The purpose of that research was 

to develop the basic components of an uncertainty model that could parallel a standard process 

model. The theoretical data model used was fuzzy sets, implemented in a raster environment. The 

principal focus of the research was on dealing with the troublesome conversion of standard vector 

and raster data, based on a Boolean concept of reality (something either is or isn't), into a fuzzy 

representation. The process model utilised in the test case of the research was the infinite slope 

stability model. 

Upcoming chapters will make use of various components of the uncertainty model. Building on 

the groundwork established in the previous research, Chapter Four will focus on the development 

of uncertainty sampling and evaluation techniques (applicable to a variety of uncertainty models), 

while Chapter Five will include evaluation of uncertainty model output. Throughout the remain-
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der of this dissertation, the fuzzy-set data concept (introduced in the previous chapter and further 

discussed herein) is used extensively. 

In these upcoming chapters, the specific details of the uncertainty model used are not of great 

importance during discussion of the sampling, evaluation and verification concepts and of the 

development of theoretical techniques (i.e., various models could have been used). Nevertheless, 

when these concepts and techniques are implemented, an understanding of the examples pre

sented in upcoming chapters will require some degree of understanding of the details of the 

underlying data model. Therefore, this chapter provides a capsule overview of the previous re

search. Sufficient detail is provided for the reader to understand the purpose and major compo

nents of the model. Minor components are, for the most part, omitted. The reader is referred to 

the original document for clarification (Davis 1994). 

To summarise, the previous research included two major stages: 

1) Making use of information such as expert opinion and published statistics, metadata was 

generated that describes uncertainty in a number of data layers (including soil type, per

cent slope, and ground cover). These metadata focus on the spatial variability of uncer

tainty, rather than simply summary measures, and are therefore described as an 'uncer

tainty model' of input data. 

2) By utilising a combination of fuzzy set analysis and Monte Carlo simulation, an uncertainty 

model for slope stability was developed. The uncertainties modelled in stage (1) were propa

gated through a slope stability modelling procedure. 

In order to address the various types of uncertainty, the research used a variety of techniques, 

including constrained DEM randomisation, the coding of expert opinion as fuzzy classifiers, fuzzy 

set manipulation, and uncertainty parameter estimates from compiled laboratory data. Two ma

jor shortcoming were noted in the conclusion: 1) the visualisation of the results is a key compo

nent of understanding such a complex dataset—work is required on designing and implementing 

effective visualisation tools for this type of uncertainty data in order to feed into work on decision 

making under uncertainty; and 2) although a number of alternative uncertainty models had been 
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generated by various researchers, there existed no way of evaluating or comparing these models. 

Both of these items require considerable research work—both in laboratory development and field 

data gathering—and were felt to be well beyond the scope of the original project. 

3 . 2 . METHODOLOGY 

The central focus of the previous research was the production of spatially variable uncertainty 

estimates in the output of a typical resource modelling procedure: slope stability assessment. 

This procedure was chosen due to the variety of data types required as input: soil and forestry 

polygons, DEM and slope surfaces, and laboratory-derived soil attribute data. The methods devel

oped emphasised three new elements: 1) an asymmetric spatially-variable polygon boundary model 

termed the 'corridor of transition model'; 2) refinements to and applications of a theoretical DEM 

randomisation procedure (proposed by Goodchild 1980); and 3) the combination of fuzzy values 

and variability data in the same modelling procedure. 

The first stages of the modelling procedure required that each of the major uncertainties in the 

inputs be identified and numerically modelled. These are identified as follows: 

1. Classification uncertainty in classified values such as soil type or forest type; 

2. Data collection uncertainty (e.g., 10% of polygons misclassified); 

3. Spatial uncertainties (e.g., certainty in classification decreases near polygon boundaries); 

4. Error envelopes around derived items (e.g., soil cohesion for Type 1 = X±A); and 

5. Error envelopes around continuous mapped values such as elevation. 

These five general groups can be split into two major types. The first three focus on uncertainties 

in classified values, while the latter two focus on error—where cardinal numbers are available (or 

can be derived). The two groups differ conceptually, and so must be addressed in different ways. 

The first three deal specifically with classes and polygons. One of the principal issues that had to 

be addressed revolves around the polygon data structure. Polygons are somewhat appropriate in 

describing information such as forest cutblock boundaries, but less useful in describing the bounda-
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ries of tree stands, and even less useful in delineating the distribution of soil or slope. In the 

process of reducing a continuous reality to a polygon data structure, a great deal of uncertainty is 

introduced into the data. The first task in generating an uncertainty model for polygon data is to 

model exactly how much uncertainty is generated in this process and where it is located. 

3 . 2.1. T H E C O R R I D O R O F T R A N S I T I O N M O D E L 

Uncertainty in resource data is often spatially variable, and in such cases would be best repre

sented by a continuous surface. However, the most common method of storing such resource 

data (polygons) is a representation that contains abrupt transitions between homogenous areas. 

The 'corridor of transition' (COT) model is a term developed to describe a procedure of estimating 

both the level and spatial location of uncertainty generated by the data reduction process leading 

to polygon formation. Essentially, this procedure takes a polygonal surface, information about 

what assumptions were used in forming the polygons, and information about the data gathering 

and classification system, and generates information about the level of uncertainty in each type of 

polygon at every point in the mapped area. 

3.2.1.1. THE SEMANTIC IMPORT MODEL 

Ideally, most of the required information would be available from the original data used to gener

ate the polygons. However, it is rare that such information would be available to the typical 

resource modeller—who normally has to make due with a map generated by others, and possibly 

some minimal metadata. The modeller could go out in the field and perform extensive resampling 

of the data; however, as before, this scenario is unlikely given the costs of current sampling 

techniques. While less accurate, a reasonable substitute can be found in expert knowledge re

garding the resource (note that in the following discussion, soil data are used as an example; the 

procedures discussed are equally applicable to ground cover data or any other spatially variable 

phenomena). 

Soil scientists, familiar with the area being modelled, can be polled for information regarding the 

mtermixing of soil types, the characteristics of soil inclusions, and other generalised data. Burrough 

(1989) utilised such methods in a study of fuzzy soil classification. His 'Semantic Import Model' 



58 

(Robinson 1988) was utilised in the previous research to translate semantic classifiers into nu

merical form. Similarly, textual soil survey results often contain such non-mathematical data; 

but such information is lost when the soil maps are produced. Using the techniques of Semantic 

Import, this quantitative information can be translated into a fuzzy index or Certainty Factor (CF), 

where 0 <= CF <= 1. This technique has been used in a number of soil survey studies, including 

the Robinson and Burroughs work noted above, as well as by Suryana (1993), who modelled crop 

suitability using expert opinions on the certainty of a variety of soil factors. 

For example, the soil class 'sandy/silty morainal blanket' is described as 'very easily confused' 

with the class 'silty morainal veneer'. In this case, the term 'very easily confused' would be trans

lated as a low certainty factor: '0.2' when quantifying the classification certainty of one relative to 

the other. A scale of phrases linked to numerical values is utilised (for more information on the 

method see Robinson 1988 and Davis 1994). In the same way, the level of certainty in boundary 

delineation is also captured. For example, there is generally high certainty in delineating the 

boundary between a bedrock extrusion and another soil class, but low certainty when the bound

ary is between two surficially similar soil types. Note that the data derived from Semantic Import 

were not used to replace existing quantitative data, but to enhance detail regarding the level of 

certainty to be assigned to these numbers. 

The concept of 'certainty factor' is simply another name for fuzzy set theory. Fuzzy sets are a way 

of quantifying degrees of membership in a set. If the 'set' in question is the class 'sandy/silty 

morainal blanket', then this number would refer to the degree to which a particular sample is like 
the ideal class. It may also refer to our degree of certainty that the value at a particular point 

would fall into the bounds of this class. Fuzzy set theory is introduced in greater detail in Section 

2.3.1.2.4. 

The behaviour of fuzzy thematic indices (the 'certainty factor') in the 'transition corridor' between 

polygons can be referred to as a thematic spatial interaction model. Spatial interaction models, 

such as the gravity model, have a long history in human geography. The concept has application 

on the physical side of the discipline as well. The transition corridor model is defined as follows. 
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3.2.1.1.1. Polygon Centres 

In addressing the areas that bound a polygon, it is necessary to focus on zones both inside and 

outside the polygon. In defining such zones, a very precise definition of a polygon's spatial struc

ture is necessary—with particular emphasis on the polygon centre. One basic assumption of this 

transition corridor model is that polygons are most similar to their classified type at their physical 

centres, while least 'pure' at or at some distance beyond their borders, subject to the constraints 

of the Semantic Import (SI) tables (such as Table 3.1). This contention is supported by Burrough 

et al. (1992) in reference to soils, while Joy et al. (1994) support such a model regarding forest 

stands. The physical centre of the polygon is an important part of this model, so adopting it 

requires defining what the centre actually is. Circular polygons have an easily determined centre; 

however, the more common irregular polygon does not. 

The most common measure of polygon centrality is the centroid. The centroid of a polygon does 

not necessarily define a practical spatial centre—a non-circular polygon can easily have a cen

troid located outside its borders. A method used by Lowell (1993a) in which centroids were digi

tised at the visual centres of a polygon (by eye) is impractical in a real-world data set—too many 

polygons exist for such a manual technique. In automating the procedure it became necessary to 

redefine the polygon in a way that accounts for irregularities in its shape. For example, in compu

ter image analysis / object recognition research it is often necessary to 'skeletonise' an image 

segment in order to compare (and recognise) a generalised shape (e.g., see Choras 1993, Brandt 

Soil Type 1 2 3 4 5 6 7 8 9 10 

1 0.85 0.35 0.25 0.15 0.15 0.10 0.15 0.15 0.15 0.35 

2 0.85 0.25 0.15 0.15 0.10 0.15 0.15 0.15 0.35 

3 090 0.15 0.35 0.10 0.15 0.15 0.15 0.25 

4 0.80 0.15 0.10 0.40 0.40 0.35 0.25 

5 090 0.10 0.15 0.15 0.15 0.20 

6 0.90 0.10 0.10 0.10 0.25 

7 0.40 0.35 0.25 

8 0 80 0.35 0.25 

9 0.85 0.25 

10 0.90 

Forest 
Type 1 2 

1 0.1 

2 0.95 

Table 3.1. Misclassiflcation matrices derived from the SI model. The value at c9 

represents the possibility that type J would be misclassifled as type J. The chart's 
trace contains the maximum certainty values. 
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1994). A skeleton is composed of lines that run parallel or at right angles to the contours defining 

an object's 3-D shape. Another relevant application is the construction of extended Voronoi net

works (Gold 1992). These networks capture the spatial relationships between objects in an intui

tive manner. Although current research has implemented them for points, extensions of the con

cept may be applicable to defining the relationships between the points surrounding a polygon. 

In the current application, although the polygons are only 2-D, the effective 'shape' of a polygon 

can be defined by treating it, in essence, as a 3-D object. An even slope is drawn from the bound

ary to the central region. Where the various slopes intersect—there lies the centre. The centre 

now is defined as a line, rather than a point, with varying degrees of centrality. The method 

utilised in this 'corridor of transition' is as follows. 

A spatial model was defined in which the 'centre' of an irregular polygon is delineated by a series 

of points that are located the maximum-minimum distance from any polygon boundary; that is, 

each point in the series is as far from an edge as it can be without being closer to another edge. As 

illustrated in Figure 3.1, a circular polygon has only one point at a maximum-minimum distance 

from its boundaries. A 'sausage' polygon has a clear line, each point on which is the same dis

tance from its closest boundaries. In the case of the irregular polygon, the centre ridge is more 

complex. If the distances to the edge are treated as an elevation (using a slope of one), the result

ing ridge-like structure can be visualised as shown in Figure 3.2. The elevation of the ridge varies 

with max-min distance to the nearest boundary. 

Utilising a raster surface model, the algorithm used to produce this 'max-min ridge' creates a 

stepped surface by filling the cell from its boundaries inward. The details are as follows: 

Figure 3.1. Alternative centroid models for variable 
polygon shapes 
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Figure 3 .2 . The variable ridge model of a polygon's centre, using the 
z dimension and a perspective view for illustrative purposes. The cen
tral ridge, and its relative height, defines the local thickness of the 
polygon and provides a 'direction to centre' for later algorithms. 

1) Produce a raster surface of polygon boundaries (set at '1'); all other cells remain empty; 

2) Begin a loop through all cells with Current_Depth initialized at '2'; 

3) If Current_Cell is empty AND adjacent to a filled cell AND the filled cell's value = Current_Depth -1 (i.e., the 

current cell is the next step up on the stepped surface); 

3a) Fill Current_Cell with Current_Depth; 

3b) If an adjacent cell meets the criteria of (3), move and fill as above; 

3c) Repeat until criteria cannot be met; (note that special processing is required for very narrow structures) 

4) Repeat for all cells in surface; 

5) Increment Current_Depth and repeat loop (i.e., next step up in the surface); 

6) Continue until all cells have been assigned a value; 

Although similar to a raster distance function (i.e., 'distance from every pixel to the nearest bound

ary'), this algorithm provides a more evenly stepped surface as required by later procedures, 

particularly in areas with narrow polygon extensions. 

3.2.1.1.2. Polygon Boundaries 

With the polygon centre defined, the next stage is to incorporate the 'expert opinion' information 

into the boundary model. To reiterate, the boundary between two polygons is assumed to be the 

point where the possibility of a sample falling into one or the other category is equal. If one 

polygon is Soil Type 5,and the other Type 2, a sample at their bounds would have equal possibility 
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of being 5 or 2. The boundary model deals with what the possibilities are in all other areas. If, for 

example, the two types are very dissimilar, and could be easily distinguished during a soil survey, 

then it is likely that the boundary is well placed, and a sample taken a short distance within the 

Type 5 polygon would likely show Type 5 soil. In contrast, if the two soil types are quite similar, 

then the opposite would be true. By applying the 'expert opinion' data coded via semantic import, 

the entire surface of the (originally) polygonal map can be coded with the 'certainty factor' that 

quantifies this possibility for every soil type. This procedure must also capture other information 

into the boundary model, such as overall classification error. 

Standard boundary models (Figure 2.5) are inadequate to the task of incorporating the certainty 

factors—also termed 'fuzzy metadata'—defined by the Semantic Import (SI) work. Even Mark and 

Csillag's (1989) parametric functions (Figure 2.5-c) suffer from an (admitted) series of broad as

sumptions—chief of which is symmetry. There is no reason to assume that two classes will blend 

evenly at their polygon's boundaries with a similar membership function slope on both sides. 

In defining the membership function(s) that occur around the polygon boundaries, four primary 

items are of interest. 

1. What are the certainty factors involved in classifying each cover type? This will indicate the 

maximum certainty that can be associated with a particular type. For example, even in the 

centre of a polygon there would still be some degree of uncertainty in the class due to 

variability on the ground. 

2. What are the minimum certainty factors; that is, what is the likelihood that Soil Type B has 

been misclassified and is actually Soil Type A? In this case the focus is on misclassiflcation 

rather than variability. As this will vary for different soil-type relationships, a matrix of 

values is required. 

3. How do two spatially adjacent types interact in the transition corridor? If the two are similar 

there may be a gentle gradient, while dissimilar types may have sharper barriers. For exam

ple, on the boundary between two similar soil type polygons, there might be a large area 
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where a random sample would have similar possibilities of showing one class or the other. 

This information also requires a matrix of values. 

4. The attribute 'blurring' in the transition corridor between polygons is likely dependent upon 

polygon size. An estimation of the size factor is also required. 

Utilising such Si-derived data, the following model was defined (Figure 3.3). Keep in mind that the 

'slopes' referred to in the definition are changes in the certainty factor of a classification, and not 

a measure of actual intermingling (although the two might coincide). 

For a given point on a polygon boundary the directions of internal and external slope were deter

mined from the max-min ridge map. The maximum intrusion distance was determined from the 

values derived from the SI matrix. One effect of this limit is to cause small polygons (with a 

maximum width below this distance) to be 'influenced' (shift in the internal fuzzy structure) by 

their larger neighbours. 

A final intrusion limit was also determined from the SI data. For example, a value of 0.9 sets the 

final intrusion distance as 90% of the distance to the maximum intrusion line. The SI data were 

Figure 3 .3 . The 'corridor of transition' model for spatial boundary 
uncertainty - cross-section and plan views. 
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also used to set the extrusion distance in a similar manner. Note, however, that the spatial con

straints on the extrusion result from the characteristics of the adjacent, rather than the current, 

polygon. 

The internal and external slopes were calculated and applied to the fuzzy surface using a 0.5 

index at the polygon boundary. At this boundary an idealised sample taken from the surface 

should be 'equally' similar to the polygons on both sides of the line. This is termed the 'coinciding 

of possibility' by Mark and Csillag (1989), or, in Boolean-style probability terms, there is a 50% 

chance of a sample belonging to either polygon. 

The following algorithm was devised, making use of 'soil type' as an example. 

1) Create a surface for each soil type, where 0 <= Cell_Value <= 1; 

2) Initialize surfaces using SI values. For every cell in every surface: 

2a) Assign the related value from the SI table. For example, if Current_Surface is Type B, and Current_Cell 

was originally assigned Type C, then use SI value for possibility of C being misclassified as B. If Current_Cell 

was originally assigned B then use max. certainty factor (SI trace). 

3) For every surface; For every cell in Current_Surface: 

3a) If Current_Cell is a polygon boundary, assign it 0.5 and determine number of adjacent polygon types. For 

each Adjacent_Type: 

(i) Calculate distance to internal 'ridge' from Current_Cell using the line of max slope from the max-min 

ridge surface. 

(ii) Calculate internal slope, where rise/run = maximum internal fuzzy value / Sl-derived max intrusion 

distance (see Figure 3.3). 

(iii) Loop around Current_Cell, assigning SI values based on slope and distance to Current_Cell; When 

inside a Current_Surface polygon, overwrite if < current value, when outside a Current_Surface poly

gon, overwrite if > current value; 

In summary, this transition corridor' procedure has taken the original Boolean model of poly

gons, where there are sharp bounds between class A and class B, and—using a number of values 

derived from expert opinion—created a constrained smoothing between classes. If the 'certainty 

factor' or fuzzy surface is visualised using a perspective view, the results appear as in Figure 3.4 
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and 3.5. These views represent the certainty in one particular class. In the first figure a standard 

(Boolean) soil class map is shown. The ridges are areas where the polygons are classified as soil 

class 1 (sandy/silty morainal blanket), while the valleys are areas that are not soil class 1. In the 

second figure the transition corridor model has been applied to the original polygons. High de

grees of classification certainty only appear in the central regions of the original polygon struc

tures. Note that this type of surface is generated for each of the soil classes. 

3.2.2. DEM RANDOMISATION 

Classification uncertainty and how this uncertainty varies over space has been dealt with above. 

The next issue in addressing uncertainty in the inputs to the slope stability model is the latter two 

of the five general classes of uncertainty—the error envelopes for spatially distributed values such 

as slope, and values that are attributes of classified values, such as soil cohesion. 

In this section the principal issue is error—a far more common problem than the modelling of 

uncertainty dealt with above. Error propagation can be addressed in two basic ways: mathemati

cal functions (e.g., Heuvelink et al. 1989), or a Monte Carlo method. Standard propagation theory 

(Taylor 1982) restricts mathematical analysis to functions that are continuously differentiable. 

Though computationally intensive, Monte Carlo methods are considered applicable to error propa

gation problems in a GIS context (Openshaw 1989; Heuvelink and Burrough 1993). 

Figure 3 .4 . Perspective view of the fuzzy 
surface representing soil type 1 prior to im
plementation of the transition corridor al
gorithm. 

Figure 3 .5. Perspective view of the fuzzy 
surface representing soil type 1 after ap
plying the transition corridor algorithm. 
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In Monte Carlo simulation the model is run using the standard set of inputs, and then run again 

using a new set of inputs that have been randomised within the error envelope for each type of 

data. Rather than deriving a single output, the output becomes a distribution, and the overall 

variability can be ascertained. Attribute values such as 'soil cohesion' can be randomised in a 

straightforward manner. However, spatially distributed values such as slope must be treated 

slightly differently due to autocorrelation. The following procedure is an extension of one origi

nally proposed by Goodchild (1980). 

A typical continuous digital elevation model (DEM) is derived from spot height data. The errors 

associated with these spot heights are normally available as accompanying metadata. If Kriging is 

utilised to generate the DEM, then variance values for every cell in the model can be saved. 

Combining this variance with the original spot height error, a final error value can be generated 

for every cell. It is assumed that this error follows a normal error curve (Goodchild 1980; SRMB 

1990). 

By making use of this error curve and a constrained randomisation procedure, it is possible to 

generate an 'equally likely' elevation surface in which each cell is provided with a new height 

(within its error bounds). However, there is one major problem. Working with individual cells 

ignores the autocorrelation present in an elevation model. If two adjacent cells are assigned val

ues from opposite ends of their error envelopes, artefactual roughness has been created, decreas

ing the overall autocorrelation index. This problem was addressed by Goodchild (1980). However, 

the original algorithm suggested by Goodchild brings the original and new autocorrelation indices 

together through a constrained random swapping of cells. However, this algorithm was intended 

for datasets other than DEMs. The procedure described here utilises a series of constrained 

smoothing passes over the dataset to gradually reduce short-range variability. In so doing, it 

lessens the artefactual peaks and troughs generated in the randomisation procedure. In the end, 

a new elevation surface is created in which each cell's value falls within the original elevation 

value's error envelope, and the autocorrelation index of the entire surface matches the original 

surface to within a stated tolerance. 
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This process uses the following algorithm: 

1) Generate a variogram from the original DEM and fit a curve; 

2) Generate a blank DEM. For every cell: 

2a) Determine distance (D) from cell to closet elevation spot height. 

2b) Substitute D in variogram curve, and derive std dev for Current_Cell (SDc); 

2c) Add SDc to SD of closest spot height, giving actual SD for cell's elevation (SDe); 

2d) Generate a normal-constrained random number based on SDe, using the original DEM value as a mean; 

3) repeat for every cell in the DEM; 

4) determine a spatial autocorrelation index (Moran's Index: / ) for the original DEM (/0rig) and for the 'equally 

likely' surface (/e|); 

5) If l/orig - fell > specified tolerance 7"; 

5b) Smooth the new DEM (using 0.1 * I Old_Value - 9-cell-window mean I) and repeat (5); 

3.2.3. COMBINING ERROR AND UNCERTAINTY 

Application of the procedures developed in the previous two sections resulted in data structures 

that carry considerably more information content than the original polygonal maps and raster 

DEM. This information might be used to provide uncertainty estimates in simple GIS queries 

such as 'area of class A' or 'what is here?' 

The fuzzy datasets generated through the transition corridor procedure can be combined using a 

fuzzy math function known as the 'Joint Membership Function', described in more detail in Sec

tion 2.3.1.2.4. The error values can be combined using a Monte Carlo procedure as described 

above. However, more complex resource modelling procedures require the development of meth

ods of combining fuzzy class membership data and cardinal error data. These procedures are 

presented in the context of slope stability modelling. 

3.3. S L O P E S T A B I L I T Y M O D E L L I N G 

The infinite slope stability equation is a commonly used measure of the stability of surficial mate

rials. This model utilises data with a variety of potential appended uncertainties, namely soil 

cohesion and other soil properties, forest cover and root depth, and slope of the soil plane based 
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on an elevation model. The resulting 'factor-of-safety' value is a relative number only—compara

ble only within a particular application. 

p £ _ Cr +c; + c o s 2 a[g0 +y{D-Dw)+(rsal-yw)pjtan0' ( 3 1 } 

smacosa[q0+r(D-Dw)+rsatDw] 

FS = factor of safety 

f) = total soil thickness 

C r = tree root cohesion 

C s = soil cohesion 

Y = moist soil unit weight 

yw = water unit weight 

(X = slope of ground surface 

Dw = saturated soil thickness 

CJQ = tree surcharge 

0 = internal angle of friction 

ysat = saturated soil unit weight 

3.3.1. COMBINING AND SUMMARISING 

Fuzzy set membership values for soil and forestry classes can be easily combined with the fuzzy 

'AND' of the JMF function. The cardinal DEM and soil attribute error data can be propagated 

through the equation using Monte Carlo methods. Combining the two requires a multiple stage 

simulation procedure, resulting in a number of output maps representing degrees of certainty in 

each particular realisation. Rather than simply generating factor-of-safety data, these results can 

be utilised to present information relevant to the particular application of the model. 

Each cell in the map is a member of all soil classes and all forest classes, with varying degrees of 

membership—some close to zero. Each realisation requires a different set of soil parameters to be 

applied in the FS equation (3.1). The Monte Carlo procedure must, therefore, be repeated for every 

possible combination of forest and soil class. The following algorithm summarises this procedure: 

1) For each soil type; for each forest cover type; 

2) Generate an 'equally likely' DEM based on error estimates (as discussed above); 

3) Derive a slope map from the DEM; 

4) For every cell, randomise all the derived variables based on the current soil and forest cover types; 

5) Apply the factor-of-safety formula to every cell; 

6) Repeat #2-5 M times; and 

7) Compute summary statistics for the M maps. 
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The number of Monte Carlo runs (M) required to properly represent the distribution of the uncer

tainty is a subject of debate in the literature. In this case, a significance test does not really apply 

as there is no formal experimental design. The only value to test against is the Boolean result, 

which, technically, should be the mean of the resulting Monte Carlo frequency distribution. How

ever, as proposed by Openshaw (1989), there is no reason why such a statistic might not be used 

as a guide rather than a precise test. Hope (1968) showed that only 19 realisations were required 

to yield statistically useful results. Openshaw refers to an M of 20-30 if only summary statistics 

are required. 

For the purpose of the following case study, a conservative value of M=50 was chosen. To test the 

consistency of the Monte Carlo algorithm at this M, the 50 run algorithm was repeated 20 times 

for a limited subset of test data and the results plotted (see Davis 1994). The curves were consist

ent, arid the Boolean value never approached the tails, indicating that M=50 was sufficient for the 

operation. Too small an M value would be indicated by exceedingly random lines, while identical 

curves would indicate an unnecessarily large M value. This visual method was suggested by 

Openshaw (1989). 

3 . 4 . C A S E S T U D Y 

In order to demonstrate these techniques a case study was implemented. As a test-of-concept, the 

purpose of this case study was not to verify the actual numbers involved, but to demonstrate how 

these uncertainty and error management techniques could be used to extract additional informa

tion from existing data and knowledge. The case study served to illustrate how slope stability data 

can be turned into information useful in a decision support context, but did not actually involve 

any additional interpretation of the output for decision support. 

An 8500 hectare study site was selected. The area is located on Louise Island, on the east side of 

Moresby Island in the Queen Charlotte Group, British Columbia, Canada, at 53°N, 132°E (see 

Figure 3.6). The area is a forest company test site, and was selected for: 1) the availability of data, 

and 2) the availability of experts with experience in the region. 
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Figure 3.6. Location of the Louise Island study site 

3 . 5 . T H E B O U N D A R Y M O D E L A N D A T T R I B U T E U N C E R T A I N T Y 

Soil data were imported from existing maps digitised during previous Boolean slope stability 

studies. Though a factor, positional uncertainty of linework was minimised and then ignored in 

order to simplify this test of concept. Ten classes of soil were defined. Forestry data were gathered 

from digital forest cover maps and reduced to three classes: cut within 3-10 years, forested and 

other. Maps were rasterised at a 25m resolution. 

Several soil and forestry experts were consulted regarding SI data for the transition corridor 

model. A sample of the resulting values for soil types is presented in Table 3.2. The values shown 
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represent the estimated likelihood of misclassification based on surface indicators. The trace 

represents the maximum certainty values. A similar table was generated for class-to-class intru

sion (overlap). Tables for the considerably simpler forest classes were also generated. 

The transition corridor algorithm detailed above was then implemented for each soil and forest 

class, resulting in a fuzzy surface similar to Figure 3.5 for each. Although many small polygons 

appear in the foreground, note the plateaus' apparent on the larger structures, indicating central 

areas of polygons not affected by the boundary model. In contrast, the equivalent Boolean map 

(Figure 3.4) shows nothing but plateaus and cliff-like transitions. Cross-sections of two different 

boundary types are presented in Figure 3.7. 

3 . 6 . T H E M O N T E C A R L O P R O C E D U R E 

The 'non-spatial' items required for Equation 3.1 were gathered from an extensive literature re

view undertaken by the US Forest Service Intermountain Research Station (Hammond et al 1992) 

while developing their slope stability modelling system. Soil types found in the Louise Island 

study site could be successfully matched with the classification system used by the USFS, and 

means and standard deviations of the relevant data were calculated. The USFS study found that, 

for the most part, the values for each variable were normally distributed, with the exceptions of 

soil cohesion and root cohesion which were log-normal. The values are presented in Table 3.2. 

The Monte Carlo simulation process must be repeated for every possible combination of soil and 

forest cover. In the limited 'test-of-concept' there were only 10 soil and 3 forest types, requiring 30 

different simulation runs. However, more complex models could require significantly more simula

tions. In such a case, it would be prudent to deterinine in advance what classified data value 

Figure 3.7. Detail of transition corridors between (a) bedrock and soil type 
1; and (b) two similar soil types (1 and 3). 
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Class Desc. UCS Dry Weiqht Cohesion Ang. Frictio n SoilTh ckness 

1 gm/cc mean sd kg/m2 mean sd degrees mean sd mean sd 

low hi lo hi lo hi 

1 Sandy/Silty Morainal Blanket SM 1.121 2.051 1.586 0.155 • 0 3197.7 1598.9 533.0 32 46 39 2.33 1.5 0.1 

2 Silty Morainal Blanket/Veneer ML 0.961 1.922 1.442 0.160 1221 1855.2 1537.8 105.8 23 43 33 3.33 1.5 0.1 

3 Rubbly, Silty Colluvium/Morainal ML-MH 1.378 1.474 1.426 0.016 390.6 1464.6 927.6 179.0 29 32 30.5 0.50 1.5 0.1 

4 Gravelly, Silty, Fluvial GM 1.762 2.083 1.922 0.053 488.2 2099.3 1293.7 268.5 33 43 38 1.67 1.5 0.1 

5 Rubbly Colluvial GW 1.570 2.051 1.810 0.080 0 0.0 0.0 0.0 28 39 33.5 1.83 1.5 0.1 

6 Bedrock . 0.000 0.000 0.0 0.0 88 89 88.5 0.17 0 0 

7 Gravelly Silty Fluvial GM 1.762 2.083 1.922 0.053 488.2 2099.3 1293.7 268.5 33 43 38 1.67 1.5 0.1 

8 Gravelly Silty Fluvial GM 1.762 2.083 1.922 0.053 488.2 2099.3 1293.7 268.5 33 43 38 1.67 1.5 0.1 

9 Silty Fluvial ML 0.993 1.089 1.041 0.016 0 0.0 0.0 0.0 22 30 26 1.33 1.5 0.1 
10 Silty Morainal w. Bedrock MH 1.121 1.442 1.282 0.053 390.6 1464.6 927.6 179.0 27 47 37 3.33 1 0.3 

Table 3.2. Soil characteristics and estimated standard deviations (Primary source: 
Hammond et al 1992). 

combinations are incompatible or very unlikely (e.g., bedrock and mature forest) and eliminate 

these from the procedure. 

Elevation data consisting of a semi-regular grid of elevation spot heights (British Columbia TRIM 

data; SRMB 1990) produced from stereo-photogrammetry were utilised. The average spacing be

tween data points is 28m, therefore a raster grid spacing of 25m was chosen to minimise the 

interpolation required. 

The stated error parameters for spot height data are (SRMB 1990): 

• 90% of all determinate DEM points vertically accurate within ±5 metres. 

• 90% of all indeterminate points vertically accurate ± 20m 90% of the time. 

The vertical accuracy of the primary elevation points was calculated as follows: assuming that the 

error at each point is normally distributed (an assumption supported by Fisher 1989, 1991b), 

90% of the area under a normal curve is contained within ±1.28 standard deviations of the mean. 

As this 1.28 refers to a 5m elevation difference regarding determinate points, one standard devia

tion of a specific point is calculated as 5/1.28, or 3.91m. One standard deviation for indetermi

nate points can be calculated as SD = 20/1.28, or 15.62m. 

Block kriging using Surfer 4.0 was used to interpolate from these points to a regular grid. Kriging 

was chosen as the interpolation method for two reasons: its high accuracy and an ability to 

produce variance maps of the derived values. The published error values were combined with the 

variance for each data point to produce a final variance value for each interpolated cell. 
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The variance values were utilised in running the 'equally likely' DEM algorithm; in most cases, 

three to five smoothing iterations were required to bring Moran's Index within 0.001 of the origi

nal. Slopes were then derived from the DEM. 

3 . 7 . R E S U L T S 

The entire run of 1500 Monte Carlo simulations (50 runs x 30 type combinations) at a 25m 

resolution cannot be feasibly stored on most contemporary GIS platforms. A series of initial test-

runs of the slope stability model were performed on a representative section of the data in order to 

determine the shape of the output curve. When fitted to a curve, the results indicate that a 

normal function would suffice to properly describe the resulting realisations of the slope stability 

values. Three maps were generated for each type combination: certainty factor, factor-of-safety 

mean and factor-of-safety standard deviation. 

For example as illustrated in Figure 3.8, a particular cell might be assigned the following values: 

1. For realisation Soil = 3 and Forest = 2, CF = 1.2, FS = 2.1, SD = 1.4 

2. For realisation Soil = 4 and Forest = 2, CF = 6.5, FS = 6.2, SD = 1.5 

Realisation #1 
Soil = 3 (Rubbly/Silty Colluvium) 
Forest = 2 (Forested) 

Realisation #2 
Soil = 4 (GraveJIy/Silty Fluvial) 
Forest = 2 (Forested) 

Factor-of-Safety 
Mean 

2.1 " 

Factor-of-Safety 
Std. Dev. 

Certainty 
Factor 

mm® •• • 
mm 

Figure 3.8. An illustration of the three types of surfaces resulting from the uncer
tainty modelling routine. Two of the many realisations are pictured. (Note that 
these are typical planimetric grids - the image is for illustrative purposes only) 
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This means that, in the first case, the likelihood that the soil type is 3 and the forest type is 2 is 

rather low (CF=1.2); if this actually is the case then the factor-of-safety is relatively low (2.1 -

indicating a high likelihood of failure), and there is a reasonably high certainty in this factor-of-

safety prediction (standard deviation = 1.4). 

The second realisation, where the soil is Type 4 and the forest is Type 2, is much more likely. In 

this case, the factor-of-safety is relatively high (i.e., safe), and the standard deviation indicates a 

relatively high certainty in this FS value. It is necessary to examine all realisations to determine 

the most likely combinations, and it is important to note that certainty factors and standard 

deviations are relative to the entire study area. 

The standard slope stability results (i.e., Boolean results) may be extracted using a maximum 

likelihood filter, in which only the highest certainty factor for each cell, and its associated values, 

are retained. Essentially, this maximum likelihood summary tosses out all the additional infor

mation generated by the new procedures discussed above, and returns to the Boolean represen

tation. The maximum likelihood map for the entire region is displayed in Figure 3.9. 

By incorporating the standard deviation information into the analysis (Figure 3.10), it is possible 

to use the maximum likelihood information in different ways. For example, as demonstrated in 

Figure 3.11, areas in which slope instability are highly possible (low standard deviation and low 

factor-of-safety) are highlighted. 

The uncertainty model's real utility is in its retention of information about realisations that do not 

quite 'make the grade' in the maximum likelihood filter. For instance, using the example values 

presented above, if the CF for realisation one was 6.2 rather than 1.2, the low factor-of-safety 

associated with this very likely realisation would be important. If this realisation should represent 

reality, then the cell is particularly unstable and perhaps should be avoided for road construction 

or harvesting. Realisation two would give the opposite results. This type of 'less-than-maximum 

likelihood' analysis is illustrated in Figure 3.12. Here, the lowest factor-of-safety with a reason
able likelihood is retained, rather than maximum likelihood. This type of data summary might be 

termed a 'worst case analysis', and would be useful when potential danger is the issue. 
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Figure 3.11. An example of an appllcation-spe- Figure 3.12. The worst-case-scenario sum-
cific data summary: highlighting the areas in mary, in which the 'most dangerous' realisa-
which slope instability is highly possible. tion that has a reasonable likelihood of oc

curring is utilised (on a cell-by-cell basis). 

These multiple surfaces can be used in many other ways. Although the research in this disserta

tion stops short of incorporating the information into management schemes, some of the relevant 

issues are introduced in Chapter Six. 

3 .7 .1. PROBLEMS AND WORK REQUIRED 

3.7.1.1. VERIFYING PARAMETERS 

A typical modelling procedure results in an unequivocal answer. It may be right, it may be wrong, 

or it may be somewhere in between, but the interpretation of the values is normally straightfor-
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ward. In the uncertainty model, however, equivocal values are more the norm. In this case study, 

soil classes, forest classes, and model results all have certainty factors assigned to them during 

the procedure. Standard deviations were also assigned to each cell of the results. What do these 

values actually mean on the ground? 

The field of uncertainty modelling clearly lacks procedures for verifying or comparing the results 

of the models developed. A straightforward Boolean soil classification can be verified with a sam

pling scheme, and perhaps summarised in a classification error matrix. If errors are too high, 

then the classification scheme may need to be modified. However, there are no existing proce

dures to verify, for example, a certainty factor of 6.5 in a particular soil class. Procedures are 

needed to demonstrate the utility of uncertainty modelling in a quantitative format, rather than 

simply relying on generic statements such as "a truer representation of reality" (Ramlal 1996) that 

have little value in practise. Given such procedures, it would then be possible to re-tune model 

parameters to better represent the uncertainty in a particular area, or to modify the model's 

inputs derived from semantic import for the same purpose. In the following chapter such proce

dures are developed and tested through field verification of the uncertainty model. 

3.7.1.2. PREDICTION 

A second problem with this particular modelling procedure is the difficulty in verifying its output 

(as opposed to verifying input as discussed above). Slope stability models are inherently difficult 

to verify unless considerably detailed data are available. A single sample (e.g., an image) of an 

area gives only one temporal slice. Mass movement takes place over time; areas grow back and 

obscure the evidence of past mass movement; and some mass movement is delayed for many 

years beyond the peak initiation time. Both temporal and spatial detail are required to properly 

evaluate slope stability. 

In a similar manner to the previous problem, there are no standard procedures for verifying 

certainty factors in multiple realisations resulting from the uncertainty model. We need to deter

mine if this model predicted mass movement correctly, but of greater importance is: did it predict 

mass movement uncertainty correctly? Procedures are required for this problem as well. These 
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procedures are developed and discussed in Chapter Five. There, the model developed in this 

chapter and a second model (based on new parameters) developed in the following chapter are 

applied to a separate test area. The model results are validated using a high-resolution temporal 

model of mass movement. 

3.7.1.3. R E P O R T I N G A N D C O M M U N I C A T I N G U N C E R T A I N T Y 

The Louise Island test case provided a platform for demonstrating the complexities of uncertainty 

propagation, and for developing one particular approach to handling this complexity. One under

lying purpose of this procedure was to maintain a maximum amount of information through to 

the final results of the environmental model; whatever it may be. As one author puts it, "it is a 

mistake to round inventory data or classify it [prior to] final presentation" (lies 1994:12). 

This multiplicity of results should then lead to a further stage in model processing: summarising 

the results for the particular application at hand. For example, when slope stability data are used 

in a harvesting profitability model, the key issue is: what areas are too steep/unstable to cut? 

When road building is the issue, the question becomes: what areas have a medium to high prob

ability of catastrophic failure? The data required of the slope stability model would be somewhat 

different in each of these two cases. Summarising procedures will use different parameters in 

each situation. 

It is particularly difficult to understand spatially variable, multidimensional model results using 

simple summary statistics. Although maps are an improvement, they too are inadequate to the 

task; particularly if the target audience is not familiar with the underlying science. Decision 

support models making use of this information have as basic criteria: clear, concise, understand

able summaries of many types of data. If uncertainty models are to fit into this framework then it 

will be necessary to place considerable emphasis on communication of the model results. Exam

ples of simple types of communication were offered above. A more extensive discussion of commu

nicating uncertainty in this particular project can be found in Davis and Keller (1997b); however, 

as discussed in that paper, a considerable research program would be required to implement 
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uncertainty communication into real world management. The research discussed in this disserta

tion is but one step in that direction. 

3 . 8 . S U M M A R Y 

In this chapter a previously developed uncertainty model has been described, and its application 

to slope stability modelling on Louise Island, B.C. has been presented. Procedures were developed 

to address the conversion from a Boolean-polygon to fuzzy-continuous data model, and to apply 

this fuzzy model to a typical process modelling procedure. At this stage, the results are of limited 

utility due to a lack of procedures for visualising and therefore enhancing understanding of the 

data. Its spatial constraints are primarily based on information gathered from semantic import 

(SI), so there is also a lack of proof that the model's inputs actually describe uncertainty correctly. 

Furthermore, at this stage there are no data to determine if the prediction of uncertainty in the 

model outputs is actually correct; only with extensive landslide data could this be addressed. The 

following chapter focuses on the second of these problems: evaluating the parameters of the 

uncertainty model obtained through semantic import and other secondary methods. 
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Chapter Four 

Verification of Model Inputs 

4.1.INTRODUCTION 

The uncertainty model described in Chapter Three uses parameters obtained from both numeri

cal analysis of resource attributes and semantic import of expert opinion. The metadata available 

for the modelling procedures described are somewhat typical of resource modelling in general: 

metadata are not gathered during resource surveys and so must be extracted through analysis, or 

estimated from other sources (e.g., Burrough 1989; Livingstone and Raper 1994). Only in highly 

controlled studies is a wealth of metadata likely to be available. 

In typical resource modelling, data derived from secondary sources are usually subjected to some 

type of procedure to confirm their utility in the current modelling scenario. For example, in stand

ard slope stability modelling, the slope values derived from photogrammetry might be spot checked 

in the field to determine their accuracy. However, one of the principal problems with studies of 

uncertainty in resource models is the difficulty in obtaining these confirmatory data. In essence, 

uncertainty modelling uses additional data (either retained or from new sources) to increase 

knowledge about the potential variability of databases, modelling procedures or decision models. 

However, the use of an inappropriate uncertainty model or propagation procedure can lead to 

under- or over-estimating this variability. Such mistakes can potentially be as significant as 
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ignoring uncertainty altogether. Even if the appropriate procedures have been used and the esti

mates of variability make sense, there is no easy way of confirming this fact. 

There are two principal areas where confirmatory procedures are currently lacking: a) fuzzy num

bers, and b) classification uncertainty. 

Fuzzy Numbers: There is some difficulty in understanding and utilising fuzzy numbers outside of 

database manipulations. For example, what does a 0.7 certainty factor for a sandy/silty morainal 

soil actually look like? In theory, it refers to a sample that is 'somewhat like' the ideal class. 

Membership values make sense in manipulating data; however, confirming this number with a 

sample is more difficult. There are no established procedures to compare such a fuzzy classifica

tion with a confirmatory sample. 

Classification Uncertainty: Fuzzy classes and fuzzy classification methods are utilised in many 

resource management disciplines. However, the majority of the effort in resource management 

uncertainty analysis involves either creating fuzzy classifications from a series of samples (e.g., 

remotely sensed images), or assigning fuzzy class memberships to samples based on a training 

dataset. When faced with the typical situation of existing definitions of class structure, and exist

ing polygon-based resource databases, fuzzy class membership routines do not necessarily make 

sense. The data used to establish these classes are not available at that point. In comparing 

samples with classes one is faced with a 'black box', where attribute I of sample A falls between 

parameters b and c, and so sample A belongs to class X (and only class X). There is often insuffi

cient information to support notions of class 'purity' required in fuzzy classification. 

In addition to these two problems, there is also the issue of tuning an uncertainty model. In 

standard discrete natural resource models, confirmatory sampling might be used on a random (or 

systematic) basis to determine if polygons were classified correctly. Parameters could then be 

redefined to fit reality. In a standard distributed model, one might perform transect samples to 

determine if the spatial structure of the attribute(s) being modelled are accurate. For example, a 

transect between two forest stands could establish if the spatial distribution of species between 

the stands matches the model (e.g., gradual change or abrupt change). 
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However, in a distributed uncertainty model this transect involves a series of changing member

ship values. If we focus on a complex system such as soil class—which is based on multiple 

attributes—the model might indicate that "a sample at point [x,y) should belong to class 'gravelly, 

silty fluvial' with CF (certainty factor, also known as fuzzy membership value) of 0.7, and class 

'sandy morainal' with CF of 0.5". There are no established methods for sampling such a transect 

and then comparing it with these modelled values. Fuzzy classification systems provide a starting 

point; however, their assumptions do not necessarily apply. 

This chapter addresses this issue of sampling in order to calibrate an uncertainty model. The 

methods explored are extensions to existing fuzzy classification techniques—adapted and ex

panded to address confirmatory sampling. Existing techniques are reviewed, new extensions are 

developed, and the implications are addressed for uncertainty modelling in general. A subset of 

the techniques are then applied to the model developed in Chapter Three. Samples taken within 

the study area are used to re-calibrate the most crucial parameters of the uncertainty model. The 

differences between the new data models and the originals are then discussed (implementation of 

the data models in the process model and comparisons with the original will occur in the following 

chapter). The sampling and allocation issues discussed herein have considerable relevance to 

uncertainty models in general, particularly those utilising expert opinion as input. 

4 . 2 . B A C K G R O U N D 

The principal questions addressed in this chapter are: 1) how can fuzzy classification structures 

be compared with confirmation samples?; 2) how well did expert opinion function as an input to 

generate the distribution of uncertainty represented by the fuzzy structures? (the transition cor

ridor model); 3) how well does metadata gathered from published statistics represent the actual 

uncertainty on the ground? (focusing on major model inputs); and 4) how can these confirmation 

data be used to recalibrate the model? 

Although most of the physical effort involved in answering these questions is concentrated on 

numbers two and three, it is the first question that consumes most of this chapter. Fuzzy classes 

represent a unique and often highly appropriate way of looking at the world. However, when the 
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focus is on specific attributes, such classes are also a considerable abstraction. Given this focus 

on fuzzy classification, the first point of business is to delve into the topic in greater detail than 

provided in the introduction to fuzzy sets in Chapter Two. 

4.2.1. F U Z Z Y C L A S S I F I C A T I O N 

The model utilised in this work is based in part on the theory of fuzzy sets (see §2.3.1.2.4. for 

background details). Four main application areas of fuzzy sets have appeared in resource analy

sis. These are: 

1. Fuzzy rules: Rather than encoding the steps in decision making as a series of IF-THEN 

statements, fuzzy rules are a set of parameters that are applied all at once, and the decision 

is made through a weighting system. This more closely emulates the human decision proc

ess, and is the most common application of fuzzy set mathematics (e.g., Bouille 1992). 

Fuzzy rule applications are numerous. For example, the Tokyo subway system uses a brak

ing system based on fuzzy rules. The speed of braking is determined through a fuzzy deci

sion-making process based on simultaneous evaluation of dozens of separate inputs (speed, 

weight, weather, etc.). In cases such as this, the fuzzy system has been found to provide 

smoother, more efficient operation than standard computer-assisted hardware. The fuzzy 

decision-making process can be encoded in hardware, speeding the process by exponential 

factors. 

2. Fuzzy class definitions: Fuzzy classifications allow a blurring between standard classes by 

defining a class boundary as a function, rather than the hard boundaries of an IF-THEN 

statement (e.g., Burrough 1989). A sample might belong to two (or more) classes to varying 

degrees. Figure 2.4 demonstrates how the edges of 'hard' classes are blurred by a fuzzy 

classification system. 

3. Fuzzy queries: Standard spatial database queries involve hard numbers. For example, 

determining the suitability of an area for agriculture requires queries such as 'IF RAINFALL 

< 200mm AND DRAINAGE = GOOD THEN...'. Fuzzy queries apply fuzzy set theory to the 

analysis of spatial data, allowing the fuzzy semantics of a query such as 'What areas are 
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NEAR the river, NORTH of the town and SUITABLE for agriculture?' When humans ask 

such a question, they are actually setting a series of fuzzy constraints on the query. For 

example, the word 'near' has different meanings depending upon the scale and the purpose 

of the analysis. We do not mentally picture a sharp cut-off when using this word. Fuzzy 

queries serve to translate this type of meaning into an actual spatial data query. 

4. Fuzzy classification systems: A variety of methods have been developed to segment com

plex environmental sample sets into classes. Fuzzy set theory has been applied through 

algorithms such as fuzzy-c-means (Bezdek et cd. 1984), in which classes and sample mem

berships in classes are determined through iterative minimisation of a fuzzy function. This 

system has proven useful in several areas, including remote sensing (Du and Lee 1996; 

Foody 1996) and soil classification (McBratney and DeGruijter 1992). 

In the work discussed in this chapter the focus is on using the latter item—fuzzy classification— 

as well as the second item—fuzzy classes—to verify the uncertainty inherent in the major inputs 

to the slope stability model. In essence, it involves defining how far a particular sample is away 

from its modelled class in fuzzy attribute space. In this section, soils are used as the principal 

example as forestry data are represented by a much simpler classification system and the other 

major inputs to the slope stability model are based on cardinal data. 

The model discussed in the previous chapter uses fuzzy values to define to what degree a particu

lar point on the ground (actually, a cell in the raster structure) belongs to each of the soil classes. 

In this case, the fuzzy value refers to how much we expect a ground sample at that site would be 

like each ideal class. For example, a value of 0.8 for class 1 indicates high similarity, while (in the 

same cell) a value of 0.2 for class 4 indicates low similarity. We would expect that an average 

sample taken in the cell would be similar to the ideal definition of class 1, and dissimilar to the 

ideal definition of class 4. 

However, the key question is, how is it possible to make this comparison? In a normal confirma

tion sampling situation one would gather and analyse samples, classify them, and then compare 

modelled class with sampled class. If the comparison did not fall within a classes parameters, 

then the cell is deemed misclassified. 
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In a more complex situation the classes might be defined using a fuzzy system (we are now 

referring to 'fuzzy class definitions'—number two in the above list). In this case, small differences 

such as the sand content falling marginally outside the class bounds would not disqualify the 

sample. The comparison between the sample and the class would not be a yes or no, but a fuzzy 

number—a degree of belonging. However, the definition of a class typically involves a number of 

different attributes. This comparison must therefore summarise how the sample and the class 

compare relative to all of these class components. If the comparison is made using a graphical 

method, the graph must have as many axes as there are attributes. This is termed p-dimensional 

attribute space, where p is the number of attributes used to define the class. Figure 4.1 illus

trates a simplified view of this space, showing just two attribute axes, three classes and two 

samples. Note how the fuzzy class definitions blur the class boundaries. 

Essentially, the uncertainty model discussed in the previous chapter has generated a prediction 

for this fuzzy number. The purpose of the verification is to see if the number corresponds with 

reality. 

Soil systems are particularly suited to fuzzy classification. As Fridland (1974) notes (quoted by 

Odeh et al. 1992:506): "in terms of classification, the soil cover is liable to be either continuous 

(with gradual transitions between soils, though closely related soil forms) or discrete (with sharp 

transitions between soils and very dissimilar neighbouring soils)." This complexity is apparent at 

all scales of soil analysis (Webster 1985). Soil science was one of the first natural resource-based 

applications of fuzzy classification (e.g., Burrough 1989), and this discipline continues to be a 

favourite area of application for these techniques. 

In the sections that follow, two terms will be used to ad

dress uncertainty verification: classification and allocation. 

'Classification' refers to building a new set of classes based 

on detailed data (e.g., a series of samples using cardinal 

values,) while 'allocation' refers to fitting a new sample (with 1 — i - " — — L ~ — 1 ' 
° r Attribute B 

its cardinal values) into previously defined classes. The term Figure 4.1. Simplified (p=2) view 
of p-dimensional attribute space, 

'allocation' is the more correct of the two in this context, as fuzzy classes and samples 



85 

classes will have already been defined when verification commences. However, the methods avail

able for allocation are all drawn or extended from classification procedures; therefore, much of 

the preliminary discussion below will focus on this latter term. 

There are a number of possible ways of setting up classes or deciding to which class a new sample 

belongs. Most of these methods assign one class (and only one class) to a particular sample. There 

are, however, several techniques that allow multiple class memberships. The following sections 

will introduce or elaborate on classification methods that, in the process of setting up classes, 

utilise some type of multiple class technique that is potentially useful in the process of allocation. 

4 . 2 . 2 . M A X I M U M L I K E L I H O O D 

The maximum likelihood (ML) classification algorithm is a decision rule that assigns a set of 

measurements to a class based on probability. It is commonly used as a supervised classification 

procedure in remote sensing, yet it is equally applicable to assigning a sample to a class in 

attribute space. The ML rule is normally used to assign a pixel/sample Xto a single class; how

ever, if the decision stage is removed, a series of probabilities can be assigned to X indicating 

probability of membership in every class. 

The ML classification algorithm is as follows: 

Decide that X is in class c if, and only if, 

pc > pt, where i =1,2,3...,m possible classes (4-1) 

and 

pc = [- 0 5 bg. (detfe ))]-[(15(X-Mc J t \x " Mc ) ^.2) 

where Mc is the mean measurement vector (i.e., the set of measurements in attribute space to 

class centroids), Vc is the covariance matrix of class c, and det[VJ is the determinant of the 

covariance matrix (Odeh et al. 1992). To retain probabilities for all classes (rather than create 

hard boundaries) the first decision rule is removed. 
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In remote sensing classification the primary problem with this routine is the assumption that 

each class has an equal probability of occurring in the terrain. If this is not the case then the 

decision rule can be changed by weighting each class by it's a priori probability. 

There are two primary problems with this algorithm when applied to the allocation of new indi

viduals to existing classes. First, the ML routine assumes a Gaussian distribution of all statistics. 

This assumption is sensible for remote sensing applications, since in supervised classification the 

training sites may be chosen with this restriction in mind. However, there is no indication that all 

attributes of soil or forestry classes are distributed this evenly. Indeed, there is some evidence 

otherwise (Odeh et al 1992; discussed in the following section). Secondly, the assumptions of 

'probability' are not the same as fuzzy 'possibility'. Though similar in notation, the two are consid

erably different in application. The former deals with yes/no answers, while the latter deals in 

similarity. For a full discussion of the difference the reader is referred to Yoshinari et al (1993) or 

Bezdek(1992). 

4 . 2 . 3 . CONTINUOUS CLASSES - FUZZY CLUSTERING 

Starting with the work by Ruspini (1969), Dunn (1974) and Bezdek (1974), several methods for 

constructing continuous classification systems have been developed, where the reduction to a 

single class membership per sample does not (necessarily) occur. Collectively, these methods are 

referred to as fuzzy clustering. The most popular and well studied method is known as the fuzzy-

c-means or fuzzy-Jc-means algorithm (the two are identical but use different notation). Fuzzy-c-

means is a direct generalisation of hard-k-means (Hartigan 1975). This method is based on mini

mising the within-class sum-of-square error function. The details of both methods are presented 

in Appendix A. 

4.2.3.1. BACKGROUND - FUZZY CLUSTERING 

Fuzzy clustering was developed for geo-statistics and soil science due to problems encountered in 

restricting class boundaries to regions (in attribute space) with a small probability density. The 

gradual changes found in reality were poorly represented by hard classes. For example, individu

als could be very close to each other in all attribute values but be split into different classes due 
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to hard-and-fast rules. Figure 4.2 details some of 

the possible distributions of soil samples (individu

als) in simple 2-D attribute space; hard bounda

ries are only useful in some of the cases. 

Although ordination methods (e.g., principle com

ponents analysis or multidimensional scaling) of

fer ways to represent data using a continuous model 

and a simplified dimensional space, these meth

ods are less than ideal for non-linear class struc

tures such as those found in soil analysis 

(McBratney and DeGruijter 1992). Fuzzy cluster

ing using continuous classes is better suited to non-

linearity. 

(b) 

(c) 

Figure 4.2. Notional distribution of indi
viduals in attribute space: (a) hierarchical, 
(b) clusters with directed lines, (c) weakly 
clustered, (d) equal density (Source: 
McBratney and DeGruijter 1992). 

Continuous classes provide better representation of individuals located interstitially between classes 

(intergrades) than do standard discontinuous classes. Instead of trying to expand the nearest 

class to include them (or simply calling them 'exclusions'), intergrades are given partial member

ship in all nearby classes based on the distance in attribute space to each class centroid (Figure 

4.3). The key difference between partial (or fuzzy) memberships and other types is this series of 

memberships. A particular sample is not locked out of all other classes once its maximal member

ship value is determined. As with other fuzzy values, a particular class membership indicates to 

what degree the sample is 'like' the idealised or chosen class, rather than a probability of mem

bership. 

The concept of using a distance metric to allocate 

an individual sample in attribute space is demon

strated in Figure 4.4. The spheres around the 

classes represent the boundaries used in 'hard' 
Figure 4.3. Hard classes and continuous 
classes. In (a), the interstitial sample be
longs to no class, while in (b), its member
ship is defined based on centroid distances. 
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classification to exclude all others. In fuzzy clas

sification, such boundaries become gradients. 

The classification algorithms (such as those dis

cussed in Appendix A) do not define any specific 

method of calculating the distance to the class 

centroids. This distance can be calculated using 

several possible metrics. One option is the Eucli

dean norm which gives equal weight to all axes Figure 4.4. Mahalanobis distance in a 3-D 
attribute space. The spheres indicate Boolean 

and ignores any dependencies among them. For class divisions that are discounted in fuzzy 
clustering. 

example, in a two attribute soil class, the distance 

from a new sample to the class centroid would be measured using a simple Pythagorean equation, 

as demonstrated in Figure 4.3. Additional attributes would simply increase the number of dimen

sions in the calculation. 

However, this simple concept of a circular (2-D), spherical (3-D) or hyper-spherical (>3-D) class 

would require that all attribute variables be linear. It is possible to normalise the various axes in 

order to approach the spherical class 

shape, but non-linearity will distort 

the imaginary spherical class. In fact, 

studies have shown that such regu

larly shaped classes are a rare occur

rence when modelling soil systems 

(Odeh et al 1992). Non-linearity in 

variables will requiring a class shape 

that might be termed a 'hyper-poly

gon'. In Figure 4.5 the concept of a 

hyper-polygon class is demonstrated = r<~'~ 
Figure 4.5. Classes viewed as structures in (A,B,C) at-

in three dimensions. tribute space. Classes are not necessarily spherical group
ings (e.g., yellow class); they may be represented by more 
complex objects, here termed 'hyper-polygons' (e.g., red 
class). 
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The other problem with the Euclidean norm is that, in practise, many of the axes will be depend

ent on one another to some degree. Therefore, in most cases a more appropriate distance metric 

is the Mahalanobis norm. This metric is utilised in many natural resource studies (e.g., Abel et al. 

1992; Leese and Main 1994). It is capable of compensating for a non-spherical shape of the class 

in attribute space and, additionally, can account for dependencies in the variables. It makes use 

of the pooled within-classes variance-covariance matrix. 

matrix (Odeh et al. 1992). 

4.2.3.2. A P P L Y I N G F U Z Z Y C L U S T E R I N G T O C O N F I R M A T O R Y S A M P L I N G 

Functionally, the work discussed in this chapter differs from the fuzzy clustering derived from 

fuzzy-c-means algorithms. We are not interested in defining classes; these were defined during 

the original soil survey. The focus is instead on allocating new samples (individuals in attribute 

space) to existing classes. The methods will draw on the algorithms described above; however, 

classification (in the sense of defining classes) is no longer the issue, so iterative procedures are 

not necessary. 

There has been relatively little research performed on alternative methods of allocation. Some of 

the basic methods are reviewed by Sneath (1979), Payne and Preece (1980) and McBratney (1994). 

These authors note three primary methods of allocating new individuals to existing classes: diag

nostic keys, diagnostic tables, and distance in attribute space. 

Diagnostic Key: Keys force a user to make a sequence of tests, each having different possible 

outcomes. After a series of tests the unknown individual will be fitted into a known class. Keys 

make use of a tree structure of decision making, although the tree can have a variety of topolo

gies. Keys are normally restricted to standard hard' classification systems such as a standard 

soil taxonomy. 

(4.3) 

where xt is the vector of attributes, c, is the vector of centroids, and X is the variance-covariance 
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Diagnostic Table: This is a two-way table used for identifying the class of an unknown individual. 

For example, the rows would represent the class and the columns the range of attribute values 

required. An unknown may belong to more than one class, or none. This system is often used in 

biology for nested classification systems (e.g., order, group, subgroup). 

Distance in Attribute Space (taxonomic distance): These methods use some measure of the 

distance from the individual to a class centre in attribute space. Methods such as discriminant 

analysis and pattern recognition can be considered part of this group. For example, neural net

work-based methods (e.g., Skidmore et al. 1997), though they use a network structure rather 

than points in attribute space, allocate individuals based on example rather than a set of prede

termined rules. 

A fuzzy classification system such as fuzzy-c-means (and its extensions) utilises this type of dis

tance measure as an integral part of the analysis. The Euclidean or Mahalanobis distance met

rics, minus the iterative steps, can be used to determine the distance in attribute space. 

4.2.3.3. STRUCTURE OF THE CLASSES IN ATTRIBUTE SPACE 

The algorithms used in classification procedures group the samples (individuals) in a wide variety 

of ways. However, once classes are established (even as an intermediate step in an iterative proce

dure) the most common method of measuring how 'close' an individual is to a particular class is to 

use the class centroid as a target (as illustrated in Figure 4.4). This makes perfect sense when 

shuffling centroids in the iterative classification process, particularly when variances are equal

ised and classes are somewhat spherical. However, in the process of allocation—particularly re

garding soil or other non-linear sets of attributes—the centroid may not be the best target for a 

quantified degree of membership. 

In a simple example using spherical class structures, Figure 4.6a shows a new individual located 

in an intergrade position between homogeneous classes. Though it is located equidistant from 

each centroid (and therefore has equal memberships in both classes using Euclidean or Maha

lanobis measures), it is clearly 'closer' to class A than class B. Whether this fact is of functional 

utility depends upon the application. 
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(a) (b) 

Figure 4.6. (a) A new individual at an intergrade position between class A and B is given 
equal membership if MD values are the same, despite the variations in class size. In (b), 
MD is smaller for class C, but the fuzzy structure of the classes indicate that D may be 
the better choice (the dotted line represents the location of class bounds if the fuzzy 
classes were to be 'hardened'. 

In another example (Figure 4.6b) the intergrade individual is located between two classes with 

fuzzy attribute definitions. It is clearly closer to the centroid of class C; however, class C is defined 

internally with a gentle membership slope. It may be more appropriate to assign the individual to 

class D due to its higher internal 'density' (the dotted line indicates where the class bounds would 

be located if the fuzzy classes were 'hardened'). 

Another issue is the classification system itself. Using soils as an example, standard classification 

uses a general purpose taxonomy where soils are divided into classes based on many different 

attributes. When a classification subset is used for a specific purpose such as agriculture or slope 

stability modelling, only certain attributes may be of interest. The classes thus defined may have 

no 'pure' centre. There may be no ideal combination of attributes that define the perfect 'sandy, 

morainal blanket'; the definition is simply a range of values (with or without a fuzzy boundary). 

The 'pure' centroid as a target makes little sense in this situation. 

Yet another problem with centroids is the non-linearity of some environmental classification sys

tems (notably soils). In spatial data analysis the spatial centroid of a polygon is only an appropri

ate summary device if the polygon is regular. Various distortions in polygon shape can lead to a 

centroid that is highly inappropriate (Figure 4.7). A similar situation exists with hyper-polygons 

in attribute space. The class centroid may, therefore, be a poor measure of centrality. 
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What is clearly required is a more complex measure of 'belong-

we are trying to allocate may also be represented by more than 

ing' to a class than a simple centroid. However, the sample that 

a simple point in attribute space. The nature of the sample will (a) (b) 

also determine what methods are required. Figure 4 .7 . Centroids are not 
an ideal measure of polygon 
location when polygons are 
non-circular. 

4.2.3.4. NATURE OF THE SAMPLE 

To reiterate, simple measures that generate classification or allocation statistics for a sample in 

attribute space may be insufficient due to complicated class structure. A more complex method 

may also be required due to the nature of the sample itself. This individual (the sample) may not 

simply be a point in attribute space, but instead a region of higher geometry (i.e., a hyper-sphe

roid or polygon rather than a point). The nature of this region is determined by two major factors: 

1) sample uncertainty; and 2) the nature of continuous models. 

Sample Uncertainty: The single measurement of each attribute represented by a point sample 

would normally appear as a zero-dimensional point in attribute space. This is the standard way of 

dealing with samples in most classification schemes, including those that incorporate fuzzy clus

tering. However, the precision of the tools used, the possible errors in laboratory analysis, and the 

nature of the attribute being measured all contribute to sample uncertainty (see §2.2.3.1. and 

§2.2.3.3.). This uncertainty in essence blurs the sample point in attribute space. This will compli

cate any measure of attribute distance to a class, for the sample itself may be represented by a 

region or by fuzzy boundaries. 

Continuous Model: The second problem is the resolution of a continuous model. A raster-based 

model of a continuous data layer (a common method of representation) has a specific cell size that 

defines the model's resolution. In a remote sensing application the reflectance of a pixel is an 

average of all occurrences within (and some from neighbouring pixels). In a raster data model the 

value of a cell is normally the 'typical', most common, or the effective contents of the cell (e.g., a 

raster model of transportation might assign a cell a value of 'road' even if only 10% of the cell 

contained a road). There are a number of other methods of determining how a cell should be 
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coded, based on what is inside or what its' neighbours contain (for a full listing see Chrisman 

1997). On the ground, a simple point sample within this cell would not be an appropriate method 

of testing a model; rather, a series of samples or a sample in a typical location within the cell 

would be more sensible. Such a sampling scheme 

would generate something more than a point in 

attribute space. In extreme cases, where vari

ability is high or inclusions are common (e.g., 

soil inclusions, heterogeneous forests) a sample 

hyper-spheroid or polygon would be appropri

ate. In Figure 4.8 a sample hyper-spheroid with 

three classes in attribute space is demonstrated. 

Note how the centroid-to-centroid membership 
Figure 4.8. A sample hyper-polygon (lower 

measures become increasingly inadequate as the right) and three classes in attribute space with 
Mahalanobis measures between their centro-

complexity of the situation increases. ids. 

4.2.3.5. METRICS AND MEASURES FOR MEMBERSHIP VALUES 

If the data are available, the situation in attribute space can be modelled in quite complex ways. 

The metrics used to make measurements can be based on the Euclidean or Mahalanobis types 

discussed herein, or could also be based on numerous others generated in fields such as remote 

sensing, pedology, biology, and most other natural sciences (for e.g., Manhattan or Minkowski 

metrics). The measures and axes being measured may be complicated by transformations such as 

those used in principle components analysis. The classes could be defined by anytJiing from a 

black-box with rigid boundaries to a hyper-polygon composed of a complex function. Samples 

could be points, blurred points, or equally complex hyper-polygons with discontinuous struc

tures. 

Therefore, even when using a relatively simple metric such as Mahalanobis, the measurements 

that are used to characterise class memberships may not be optimum if the standard centroid-to-

centroid method is used. There are a number of alternatives; the choice of which would depend 
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upon the amount and type of data available, the nature of the feature being modelled, and the 

purpose of the modelling. In the case of soil modelling these might include a) class boundary 

inclusion, b) alternative vector measures, and c) various combinations. 

Inclusion of class boundaries: The boundary of a class in attribute space provides additional 

information regarding a sample's potential membership in that class. Depending on the class 

model utilised, the boundary may be either a rigid yes/no line or a function that tapers off. The 

rigid boundary provides an obvious measurement point; the tapering boundary has many. 

In the case of classes that differ in size (on one or more attribute axes) the use of class boundary 

is a more accurate measure of relative membership than the centroid (Figure 4.6). When the class 

shape does not approximate a hyper-spheroid it may also be a more accurate measure. 

Measurement to a hard boundary could be accomplished as follows: 

Each class is represented by a membership function, which (for comparison) in hard partitioning 

is in the form of: 

mA(x) = 0 for x < bmin or x > bmax (4.4a) 

mA(x) = 1 for bmin <= x <= bmox (4.4b) 

where b is the set of values defining the class, and mA(x) is the 'grade of membership' of x in A 

(either a yes or no when using hard partitioning). For one attribute, the distance to the border is 

simply the minimum of | x-b \. If xis within the bounds of the class then the distance equals zero. 

The grade of membership {mA(x)) will be defined as the inverse of this distance function. With 

multiple classes the Euclidean distance function becomes: 

4=X[min(x,v-fcJj (4-5) 

where p is the number of classes, x is the sample value and b is the boundary location for the 

class. Adding the covariance matrix to the equation would incorporate the Mahalanobis distance. 
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In the case of continuous or fuzzy classes, the class membership function is more complex than 

defined in Equation 4.4. A typical fuzzy class membership function might be defined as (Burrough 

1989): 

where a is a parameter governing the shape of the function and c defines the value of the property 

at the centroid. In this case the distance function will be more complex, as a cutoff value is 

required to 'harden' the boundary. In any case, the resulting number will reflect the distance in 

attribute space from the class; however, it will not take into account the continuous nature of the 

class. For this, a more complex measure will be required. 

Vector Measures: If the class, the sample or both are considered fuzzy sets, then metrics for fuzzy 

set distance are appropriate. Several authors have developed such metrics for the measurement 

of physical distance (Preparata and Shamos 1985; Altman 1994). The metric developed by Altaian 

(1994) returns a fuzzy set as a measure of the distance between two fuzzy regions. These authors 

focus on raster datasets, and so are actually dealing with stepped, or discretised continuous 

values. The sets being compared do not have infinite memberships, as might be found in a truly 

continuous structure (e.g., object-oriented data structures with fuzzy sets defined by functions). 

This restriction simplifies calculations considerably, and is appropriate for the current study. 

Preparata and Shamos (1985) note that there are several distance metrics available to measure 

inter-group distance, such as the Mahalanobis, Euclidean, Manhattan, and Minkowski Lp met

rics. However, as noted above, one of the problems with a predefined class is the difficulty in 

utilising a centroid or group mean, due to non-linearity in the attributes (attribute space) or 

problems in assuming normality. These authors make use of a nearest-neighbour metric. Altman 

(1994) extends this metric to return a fuzzy set from the calculation. The nearest neighbour fuzzy 

distance metric (NNFD) between regions A and B is defined as: 

(4.6) 

dist(A,B)= KJ (rmn(jiA{a),^B(b))/d2{a,b)) 
(a,o)e AxB 

(4.7) 



96 
where d2(a,b) is the distance between elements a and b using one of the metrics defined above 

(Altaian 1994). This NNFD metric results in a fuzzy set of distances and membership values. 

These values may be summarised graphically or 'hardened' in an application-specific manner. 

For example, in Figure 4.9 the nearest neighbour fuzzy distance results for a simple set of two 

classes and a new individual are illustrated. The area represented by the 9 x 9 raster map is a 

simplified two-dimensional attribute space (all three raster maps represent the same attribute 

space—the objects are separated out for clarity). The object in the first view is a class, but defined 

using a fuzzy representation rather than hard bounds (a hard bounded class would be repre

sented by all ones). In the second view a second, smaller class is shown. The third view shows a 

fuzzy sample. The two graphs on the bottom show the resulting distance from the sample to each 

of the classes. Instead of the single value that would result from a standard distance measure, 

each graph contains a fuzzy set of values. This set represents the distance from all of the sample 

to the entirety of the class. For example, the values above zero in class two (top middle raster) are 

contained with nine cells. The 'new individual' (sample) is contained within four cells. The graph 

on the lower right contains points that describe the physical distance between each of the four 
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Figure 4.9. Sample to class distance defined using fuzzy sets in a simplified 2-D 
attribute space. 
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sample cells and the nine class cells (horizontal axis) and also describe the fuzzy overlay value, 

min(a.b), for the two (vertical axis). 

Other Measures: A variety of combinations of the above measures are possible. For example, the 

distance from a sample with variability to a well-behaved (i.e., Gaussian on all axes) class could be 

accomplished with a vector series of measurements to the centroid, summarised (if appropriate, 

i.e., normal distribution) using a mean distance and a standard deviation. For example, if the 

second graph in Figure 4.9 was represented by a line around the boundary (and the raster was 

smoothed at a higher resolution), the result would be approximately a normal curve that could be 

represented by summary numbers (as long as the class was 'well-behaved'). 

Weighted measures would be appropriate when the various axes (attributes) contribute to the 

class definition to greater or lesser degrees. Although normalising of the attribute axes deals with 

numerical and number scale differences, there should be a way of de-emphasising non-crucial 

attributes in a similar manner to weighted fuzzy classification rules. 

4 . 2 . 4 . SUMMARY OF THEORETICAL WORK 

The sections above have introduced the concepts of fuzzy classification systems and the allocation 

of new members to existing sets using a variety of methodologies. Several possible distance met

rics were introduced. Existing methods of fuzzy allocation based on centroids of classes were 

extended to include recognition of class boundaries using both hard and fuzzy classification func

tions. Several other methods were discussed that allow a fuzzy sample and a fuzzy class to be 

compared resulting in either scalars or new fuzzy vectors. 

4 . 3 . APPLICATION TO PARAMETER VERIFICATION AND TUNING 

The distance metrics described in the previous sections are primarily useful in allocating new 

individuals in a fuzzy classification scheme. Application of one or more of these metrics will allow 

an uncertainty model to be verified using confirmatory sampling procedures. This is an important 

step in determining if the model adequately represents reality (adequate for the purpose of the 

model). In this section an appropriate distance metric is chosen and used to allocate new samples 
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into the fuzzy classification scheme introduced in the previous chapter. The samples and alloca

tion procedures allow the spatial structure of the uncertainty to be verified. In some uncertainty 

models the structure may have been inferred from other studies, or given some default smoothing 

value (e.g., Mark and Csillag 1989). In the scheme developed for the previous research, expert 

opinions about uncertainty levels and structure were coded using the Semantic Import (SI) Model 

(see §3.2.1.1). Parameter verification (and subsequent re-tuning) will allow a new uncertainty 

model to be produced that reflects the actual levels and structure of variability at the site. 

4.3.1. SAMPLES REQUIRED 
The primary purpose of parameter verification in this context is to verify and update the spatial 

constraints of the uncertainty model. Classification uncertainty is not included as an explicit part 

of the model (e.g., fuzzy class functions, boundaries in attribute space, etc.). The classes utilised 

are considerably simpler than those used in standard soil taxonomy, for they focus specifically on 

soil cohesion parameters. The classes are predefined, and have rigid boundaries. However, spatial 

and classification uncertainty constraints create a model of continuous spatial variation of fuzzy 

membership values. 

The key elements of the model that are subject to verification are the overall levels of uncertainty 

(maximum and minimum—referring to the possibility of misclassiflcation) for each of the soil 

classes, as well as the spatial variation in uncertainty across the boundaries of the original po

lygonal layer. Sampling will therefore focus on these polygon boundaries as well as on the 'purity' 

of a class in the centres of the original polygons. 

For simplicity of sampling and analysis seven attributes are defined, each of which can be repre

sented by a percentage. The target classes are defined using these seven attributes, based on the 

original subdivision of a standard soil survey (see Davis 1994 for details on the original survey). 

The attributes include relative percentages of different grain size classes, as well as values for 

general origins: morainal, fluvial, etc. Due to the huge number of samples required, values were 

chosen that could be quickly estimated in the field (after calibrating the estimates; discussed 

further below). 
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4 . 3 . 2 . METHODOLOGY 

The purpose here is to verify the spatial structure of uncertainty used as input to the uncertainty 

model of slope stability. There are two main types of data (as discussed in §3.2), classified (for

merly) polygonal—run through the transition corridor model, and non-classified continuous. Ini

tially, this verification will focus on the classified data, in particular the soil data, as it is the most 

important and most variable classified input. 

The transition corridor model makes use of two data sources: the original polygon locations and 

expert opinion about classification uncertainty and spatial structure of that uncertainty. The 

purpose of this current exercise is to verify the predicted spatial structure and, later, to revise the 

structure based on the results. 

The first step in verifying the spatial structure of the uncertainty is to design a ground-sampling 

scheme that will capture this uncertainty in an efficient manner. The transition corridor model 

algorithm is designed to work, as much as possible, at right angles to polygon boundaries. There

fore, the most efficient way of sampling would be along transects that follow this direction. In 

ideal circumstances the transect locations would be chosen randomly within the study area. The 

transects would then be oriented to pass directly through polygon centres and to cross their 

boundaries at right angles. This would represent the most efficient way of verifying the spatial 

structure of the soil uncertainty model (due to the assumptions of the interpolation procedures; 

see §3.2.1 and Figure 3.3). Also, a substantial number of transects would be used. However, 

several practical constraints limited the number of transects and their locations. Transportation 

logistics limited the available areas to those reasonably close to roads. Time constraints and the 

high intensity of the sampling required to delineate spatial structure limited the number of transects 

possible. The extreme and often impassable nature of the terrain made it difficult to travel along 

an ideal transect line; suboptimal opportunistic transects were often required. The presence of a 

large numbers of bears in the area also precluded work in deep forest cover or valley bottoms. 

These limitations no doubt reduced the efficiency of the comparative procedures (the limitations 

are discussed in greater detail below). 
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The data were collected in a representative section of the test site described in Chapter Three 

(Figure 3.6). A total of 171 samples were collected using four transects, each crossing a number of 

original polygons (Figure 4.10). Due to the low incidence of certain soil types in the study area, 

only three of the original ten soil classes are part of the sampling (Types 1,2 and 3 in Table 3.2). 

These three comprise 79% of the total study area, and over 92% of the forested land. Spatial 

locations of the initial control points for each transect were recorded using GPS co-ordinates. 

Intermediate stations were surveyed using hand-held compass transits and tapes. 

To match the resolution of the spatial model, sample locations were separated by 25 metres. Pit 

locations were chosen based on the typical surficial soil type within the surrounding 25 x 25 

metre area. Estimated percentages of other soil type inclusions in the local area were also re

corded. The soil was sampled for grain size as a percentage in seven classes, as well as for its 

relation to three origin classes: colluvial, morainal and fluvial. 

There are two potential drawbacks to this type of sampling. First, by matching the resolution of 

the spatial model (at 25 metres), the samples may suffer from grid mismatching (ignoring spatial 

Figure 4.10. An overview of transect locations on the Louise Island test site. 
The circled numbers represent the transect numbers, while the smaller num
bers represent soil types for the original polygons (for reference). 
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uncertainty for the moment), creating a mixed-pixel problem. Smaller sample separations would 

not eliminate, but would considerably reduce this problem. Although a separation of 10 metres 

was originally planned in the sampling scheme, initial test sampling work (prior to the beginning 

the first transect) indicated that 10 metre separations were highly redundant. The spatial resolu

tion of the resource itself is at least 25 metres in the areas sampled. The sample spacing for the 

actual transects was therefore increased accordingly. Also, as the target of the verification scheme 

is the relative structure of the surface (rather than a point-by-point comparison), this mismatch

ing of grids becomes less of an issue; mismatches are subsumed by structural smoothing (dis

cussed in the next section). 

The second potential drawback is spatial uncertainty. Tests using a GPS unit in the field indi

cated that 95% of all readings would fall within ± 1 1 0 metres of the true location (Appendix B 

details the method used; note that differential GPS, though preferable, was unavailable in this 

region). Spatial uncertainty in the original soil data is not known; however, minimum mapping 

units used in the survey indicate that resolution is on the order of 25 metres, and so well within 

the bounds of the GPS uncertainty. Therefore, each of the sample 'cells' could be misaligned with 

the soil model by up to (approximately) four cells distance. Note, however, that this only applies to 

the entire transect (i.e., a global transformation). Within the transect itself the uncertainty of 

location is several orders of magnitude smaller (approximately one to three metres—no further 

quantification was performed due to the small magnitude of this uncertainty relative to the oth

ers). 

The direction of the transect relative to local polygon boundaries has considerable influence on 

the spatial uncertainty. In Figure 4.11 (an idealised demonstration), the modelled values (using 

the fuzzy model illustrated in Figure 3.3) are represented by the shaded squares, while the origi

nal polygon boundary is the wavy line. The transect at 90° to the polygon boundary (B) is only 

effectively misaligned along its length; misalignment parallel to the polygon border would have 

little effect on the results. However, a parallel transect's (A) misalignment would have the opposite 

effect. The only area where the parallel transect would be substantially uncertain is in the neigh-
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Figure 4.11. Idealised transects and the effects of shifting them within uncertainty bounds. 
Transect A, running roughly parallel to the original polygon boundary, is minimally affected by 
shifts along its length, while sideways shifts create changes in magnitude. Transect B, at 90° to 
the boundary, is significantly affected by shifts along its length, though sideways shifts produce 
minimal change. 

bourhood of the original polygon boundaries because, if this transect were on the wrong side of 

the line, the relevant interpolation algorithm would be quite different, and so the values might 

shift drastically. If the parallel transect is located well within the current polygon (i.e., > ~100m 

from the boundary), the sideways variability would be less significant (although still a factor). 

Moreover, as demonstrated in Figure 4.11, the primary shift would be in magnitude. The analyti

cal methods discussed below focus on relative change and are less sensitive to differences in 

absolute magnitude, so the problems of parallel transects are further minimised. Nevertheless, 

the issue of transect uncertainty when close to a modelled boundary is an important one. How

ever, it is only relevant to spatial uncertainty issues (which may or may not be related to attribute 

uncertainty - see Goodchild 1991.) 

Addressing this spatial uncertainty makes the task of analysis considerably more complex. To 

address the uncertainty in a truly comprehensive manner it would be necessary to generate 

numerous (anywhere from 12-25 or more depending upon the assumptions used) realisations of 

the model in a manner akin to the Monte Carlo techniques discussed in the previous chapter. 



103 

However, if suboptimal transects are eliminated, a reasonable solution (i.e., only slightly less 

accurate and much easier to interpret) is to perturb (i.e., offset) the transect locations only along 

their length. If the transects are at 90° to the boundary then this shift will (potentially) align the 

models and the sample if they correspond to some degree. Elements of a transect that parallel a 

boundary will not be affected by the shift (other than in absolute magnitude) because, in the 

model, paralleling a boundary generates a (roughly) straight line (Figure 4.11, upper graphs). The 

methodology used to implement this 'reasonable solution' is described below. 

4.3.2.1. CROSS-CORRELATION 

For comparison of the sample transect and the modelled values across-correlation statistic is 

utilised. The purpose of cross-correlation is to compare two or more data series and determine the 

strength of the relation between them. The offset (often termed 'lag' in reference to cross-correla

tion) at which the two are maximally equivalent can also be determined. 

Designating n* as the number of positions in the series, and Yx and Y2 as corresponding values 

from sample and model, the cross-correlation for match position m is (Davis 1986): 

r„, = (4.8) 

The significance test (using standard t-test tables) is (df = N*-2): 

In*-2 

A value of 1.0 indicates perfect correspondence, while a -1.0 indicates perfect negative corre

spondence. Two random, independent series would generate a value of zero. The match position is 

varied within the bounds of spatial uncertainty, and the resulting set of values plotted in a cross-

correlogram (Appendix C). 

There is significantly more short-range variability on the transects than is apparent in the model. 

In order to better represent the general variability of the model, a series of smoothing passes are 
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performed using a moving average equation based on orthogonal polynomials. Initial tests indi

cated that the relevant range of smoothing would be +2 pixels to ±4 pixels (larger amounts of 

smoothing led to decreases in correspondence). Therefore, the smoothing equations utilised are 

limited to those that function within this range: 

Avg(5): YT =-^[W +12fc+1 +Y,_l)-3(YI+2+YI_2)] 

Avg(7): Y, =^[7y,+6(yw+yl_I)+3(y;+2+y;_2)-2(yl+3+yl_,)] (4.10) 

Avg(9): ̂  =^[597, + 54{YM +Y„)+39(YM +YI_2)+U{YI+3 + Yi_3)-2\{YI+4 + YI_4)] 

To further clarify this issue, a set of idealised cross correlograms is illustrated in Figure 4.12, with 

the correlograms on the left, and the data they are based on placed on the right. The two values 

being compared are a modelled transect of an attribute and a measured transect of the same 

attribute. In the first pair (a), the model and the measured values line up exactly. This is reflected 

in the cross correlogram by a steep rise to a value of 1 at 0 (zero) offset. In (b), the modelled and 

measured values are similar, although the amplitude is different. The cross correlogram gives the 

same results as it is relatively insensitive to amplitude variations. In (c), the measured value is the 

exact opposite of the modelled value. Here, the correlogram is reversed, showing -1 at offset zero, 

indicating perfect negative correspondence. In (d), modelled and measured are similar in pattern, 

but are offset from each other by 2 distance units. This is reflected in the cross correlogram by a 

steep rise at an offset of +2. In example (e), a more complex situation is pictured. Although the two 

are in perfect correspondence—generating a steep rise on the left graph at 1, they would also be in 

perfect correspondence if the entire 'measured' curve were to be shifted left or right by 6 distance 

units. This offset correspondence gives rise to the peaks in the correlogram at +6 and -6. The 

correlogram also dips at +3 and -3, because an offset of +3 or -3 would give rise to high negative 

correspondence. In reality, the situation is rarely this unambiguous. For example, in (f) the effect 

of offsetting the modelled values would be minimal, therefore the correlogram shows high corre

spondence at all offsets. There is little information regarding pattern correspondence that can be 

gained from this graph. 
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The purpose of smoothing is to eliminate short range variation that causes a reduction in corre

spondence between measured and modelled values. In Figure 4.12 (g) and (h) the effects of this 

smoothing are demonstrated. However, smoothing is not automatically called for. In cases where 

short term variability is the norm, then it would decrease overall correspondence. 

4.3.2.2. DATA SUMMARY 

The Mahalanobis distance (MD) metric is used to determine the fuzzy allocation statistics for each 

sample. In this instance the centroid of each class is used as a target. While this situation is not 

ideal, a lack of information regarding the detail of class structure makes it necessary. Due to the 

generalisations involved in simplifying the original soil classes, considerable overlap in class at

tribute space is expected. A continuous class structure is therefore utilised, with the fuzzy value 

(p = 2. This is the standard value utilised as a first approximation in fuzzy-c-means implementa

tions (Appendix A explains the significance of this value). Variations in this value have been 

explored by Odeh et al. (1992) (also see Appendix A). Ideally, this allocation procedure would take 

place in concert with the primary soil survey. In that case the detailed class definitions would be 

readily available from earlier calculations. 

The MD values assigned to each sample are then inverted (distance is the effective opposite of 

fuzzy membership), normalised (using the maximum value in the dataset) and scaled (globally) for 

comparison with the fuzzy membership values assigned by the uncertainty model. Scaling is not 

BR Cob Peb. Sand Silt Fluv Mor. Coll. 
Class 3 0 0 30 20 70 100 0 0 
Weighting 0.17 0.17 0.17 0.17 0.17 0.05 0.05 0.05 
Sample #17 0 0 20 40 40 0 100 0 

Membership = -yJ(dA f * wA + {dB )2 * wB +... 
where d = sample to centroid distance, w = weighting of attribute 

= V(30-20)2 *O.17 + (20-40)2 *0.17 + (70-40)2 *0.17 + (l00-0)2 *0.05 + (100-0)2 *0.05 
= 35 

, Max- Value. _ , „ 66-35 
Normalise, scale and invert: = * Scale Factor = * 0.8 = 0.37 

Max 66 
where 'Max' is the largest membership value in the dataset and 'Scale Factor' is determined by 
visually lining up result graphs (it has no significance in cross - correlation statistics). 

Table 4.1. Calculation of the Mahalanobis distance for one sample. 
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strictly necessary, as the cross-correlation procedures ignore magnitude; however, scaling assists 

in visual comparison of the model and sample datasets. An example of the original data and 

calculated allocation values are shown in Table 4.1. 

4.3.3. RESULTS 
The resulting cross-correlograms for the transects are displayed in Appendix C, as are calculated 

significance tests of cross-correlation at the 5% level. Smoothed values are also calculated in 

order to determine if large-scale variability is affecting the correlation coefficients. In most cases 

the smoothed values perform better than the raw data. 

The cross-correlograms summarise a great deal of information, and are used here to develop 

general observations about the behaviour of the transect samples relative to the model. The transects 

are individually summarised below. Each of the paragraphs refers to the soil types defined in 

Table 3.2, where Type 1 = sandy/silty morainal blanket, Type 2 = silty morainal blanket/veneer, 

and Type 3 = rubbly, silty colluvium/morainal. In the discussion, a 'positive correlation coefficient 

for Type 1' would refer to a strong positive correlation between a) the Mahalanobis Distance 

values for Type 1 based on samples along the transect, and b) the values generated from the 

uncertainty model. The 'spatial offset' refers to the peak (or trough) at which the correlation 

coefficient is maximised. 

There is some difficulty in applying standard terminology in a comparison of MD sample data arid 

fuzzy modelled data. Using a fictitious example, in the original Boolean polygonal soil model, soil 

Type 2 is not present at location A—whose map co-ordinates are (3,7); however, the fuzzy model 

would represent it with some value (e.g., 0.2), based on possibilities of misclassification and other 

data discussed in the previous chapter, indicating that there is a small possibility that whatever is 

there would be misclassified as Type 2. The ground sample data run through the MD manipula

tion will also report some value at (3,7) for Type 2, even if the presence of bedrock makes the value 

zero. Therefore, when a type is termed 'not present', this only refers to the original polygonal 

data—its' uncertainty value is still present. Unfortunately, it is not possible to use the cross-

correlation statistic to directly compare samples and model for these 'not present' types (and 
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therefore compare the misclassification estimates for all soil types). This is because the calcula

tions are not sensitive to absolute values, only relative changes. Therefore, two reasonably flat 

graphs (such as the graph typically generated by a 'not present' type) will show high correlation at 

all offsets, even if they differ somewhat in absolute values. This type of correlation is demon

strated in Figure 4.12(f). It may be possible to compare such values using simple averages; how

ever, this extension to the work is not pursued herein (if it were possible to sample all soil types 

this work would have merit; with only one parameter to test—misclassification—the test would be 

of little use in model tuning); therefore, the focus of this analysis will remain on the three types 

deemed 'present' by the original polygonal soil map. 

The following observations refer to the graphs (Figure C.3—'Original') of Appendix C. Note that 

correlations beyond an offset of +4 or -4 are considered spurious, as the spatial uncertainty is 

~ 100m (4 x 25m cells). The graphs are extended to -6 and +6 to assist in trend visualisation. The 

paths of the transects are illustrated in Figure 413. 

Transect 1: Comparison of samples and model along this transect indicates that Soil Types 1 and 

2 both demonstrate substantial positive correlation coefficients (see Appendix C), and both of 

these exhibit a similar spatial offset (~+2). Soil Type 3 shows a weaker positive correlation, but at 

a very different offset (-4). It shows a strong negative correlation at +2. 

(a) 
Original polygon boundary 

Soil type (original Boolean) \ 

2 I 3 I 1 I 3 I 1 

5 10 15 20 25 30 
Sample Number (25m spacing) 

35 

(b) 

3 1 1 

40 50 60 70 80 90 
Sample Number (Note shift in scale) 

(c) I I (d) 
3 1 3 1 3 1 3 1 1 

100 110 120 130 140 150 160 170 
Sample Number (Note shift in scale) Sample Number (Note shift in scale) 

Figure 4.13. The sequence of polygons 'encountered' (i.e., using the Boolean model) on each 
transect, (a) Transect #1, (b) Transect #2, (c) Transect #3, and (d) Transect #4. The transects 
have been individually scaled to fit a standard length. 
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The following general conclusions can be drawn from this transect analysis. The +2 offset com

mon to all three cross correlograms indicates that the transition between 'soil units' (using the 

term to refer to groups of similar soils) is likely being modelled well, though at a 50m (+2) offset. 

For soil Types 1 and 2 the model and the samples appear to correspond well; however, there is an 

apparent significant problem in one of the soil type definitions—possibly Type 3—indicated by the 

mirrored coefficients. This means that the values modelled are changing in the opposite direction 

than expected, though they are changing at the expected spatial location. 

Transect 2: Again, both Types 1 and 2 demonstrate significant positive coefficients between 

samples and model, and the offsets fall within the same range. The range in which the offsets are 

high is broad, indicating that the transitions between soil units may not be very distinct. This 

may be explained by the fact that this transect spends some of its length in the vicinity of a 1/3 

boundary. Because it does not cross the 1/3 boundary at the ideal 90°, the transition between the 

two on the graph is less distinct. Again, Type 3 demonstrates some negative correlation; almost 

the reverse of Types 1 and 2. This lends further evidence to the apparent soil type definition 

problem for Type 3. 

Transect 3: This transect passes through a number of smaller areas, back and forth between 

Types 1 and 3 (Type 2 is 'not present', though is included in the discussion as noted above). In this 

case, correlation for Type 1 is highly negative at an ~0 offset; Type 2 is highly variable, with a 

small peak at 0, but a small negative peak at +3, and Type 3 has a positive peak (-0.4) around 

offset 0. As with transect 1, it appears that the common offset is 0, and again there is an apparent 

definition problem causing a 'mirrored' negative offset of Types 1 and 3, however it is Type 1 that 

receives the negative value this time. This provides some evidence that the type definition problem 

may be related to confusion or overlap between Types 1 and 3. 

Nevertheless, there is also a polygon size influence occurring. The polygons encountered in this 

transect are smaller than in others (Fig. 4.13c). The results of cross-correlation may also be 

influenced by a poor representation of small polygons in the soil model and derived uncertainty 

model (due to cell size and implied scale of analysis). For example, at some points on the transect 
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a 100m offset is sufficient to 'hop' from one Type 1 polygon into another, providing spurious 

results, as demonstrated in Figure 4.12e. 

Transect 4 : This transect crosses a 1-3 boundary between two large masses. Both Types 1 and 2 

show peaks at a 0 offset, while Type 3 shows a somewhat flat line. Type 3 is obviously poorly 

represented in the uncertainty model; the flat line indicates that the single boundary present on 

the transect may also be poorly modelled. 

These results indicate that the definition of the spatial structure of Soil Type 3 may be inad

equate. This soil type (rubbly, silty, colluvium/morainal) is the only one defined that contains a 

wide variety of materials. The other types are much more specific. It appears that, on the ground, 

Type 3 and Type 1 have greater similarity than their definitions indicate. Classification confusion 

between the two is higher than predicted by experts. Overall, there are a number of points where 

the correlation peaks (or troughs) are located at very similar offsets. Although this suggests that 

the samples and model are in general agreement about the locations of boundaries, there are too 

many dependencies between the soil types (both samples and model) for this to be considered 

statistically significant, or the significance to be investigated. 

4.3.4. APPLYING CHANGES 
In general, the results indicate that expert definitions of classification accuracy and spatial be

haviour of uncertainty in soil distribution are not ideal. Five of the cross-correlations did not 

achieve significance on the t-test (Appendix C); some of the more specific problems are noted 

above. In particular, the spatial boundaries and overall misclassification estimates between the 

models of Types 1 and 3 are apparently in error to some degree; a number of other parameters 

also may be suboptimal. However, though there is some indication of what direction these param

eters should move (e.g., the misclassification values between Types 1 and 3 should increase), 

there is no direct way of determining the degree to which they should move. 

The purpose of the routines described in this section is to attempt to re-set the parameters (origi

nally defined by expert opinion) so that they provide a better match between the model and the 

samples. Given the complexity of the situation—the fact that a change in one parameter would 



Ill 

affect others—there is no simple, direct way to effect such a change. One possible way of address

ing this problem is an exhaustive search of all the possible parameter settings, with a check of 

cross-correlation statistics at every step. The target is to find a set of model parameters that 

achieves the highest overall cross-correlation for all transects simultaneously. 

An iterative procedure is therefore applied to the soil data subset of the uncertainty model. The 

parameters defining misclassiflcation and spatial behaviour (Table 3.1) for these three soil types 

are varied within reasonable bounds. Cross-correlation for all transects are calculated at each 

stage. When the parameters converge on the highest overall correlation coefficient for each transect 

the procedure is ended. Essentially, this procedure takes all potential values that the 'expert 

opinion' input could possible have, and builds a new set of cross correlograms for each of the 

many combinations (approximately 129) for each transect. It searches for the set of values that 

give the highest overall correlation in a maximum number of the graphs (though ensuring that 

the result is reached through convergence, rather than through erroneous peaks). 

'Reasonable bounds' were used to reduce the number of nested iterations required to complete 

the procedure. They were chosen based on the original expert opinion estimates of the values 

(Table 3.1). For example, the possibility of Type 3 being misclassified as Type 2 was defined 

originally as 0.25. The values were therefore varied between 0.05 and 0.6 (an initial guess at 

possible parameter bounds). The results of the procedure discussed below were checked to deter

mine if these limits were adequate (i.e., did any new misclassiflcation values approach these 

limits). No changes were required. 

The algorithm used is as follows: 

1) define the bounds of the fuzzy misclassification and intrusion matrices (Table 3.1) (in the absence such 'expert 

input'the range of 0.1 to 0.9 would be used) and initialise with the lowest value; 

2) (re-) calculate the correlation coefficients for all soil types; 

3) if a coefficient is > previously stored max value, store this value and append the fuzzy values used in the 

calculation (retain previous maximum values); 

4) repeat (2-3) with the next set of fuzzy values; continue until all combinations have been attempted (i.e., through 

nested iteration); 



5) examine results and discard any maximum that shows no evidence of convergence. 
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T h e r e s u l t s o f t h i s p r o c e d u r e s h o w c o n s i d e r a b l e s i m i l a r i t y fo r e a c h t r a n s e c t ( T a b l e 4 .2 ) . F o r e x a m 

p l e , t h e m i s c l a s s i f i c a t i o n m a t r i x v a l u e s c a l c u l a t e d fo r S o i l T y p e 1 o n t r a n s e c t 1 a n d t r a n s e c t 4 

(two t r a n s e c t s c r o s s i n g s i m i l a r b o u n d a r i e s ) a r e a s fo l l ows : 

T r a n s e c t 1: M a x i m u m c o r r e l a t i o n c o e f f i c i e n t : 0 . 9 2 u s i n g ( 0 . 5 0 , 0 . 1 5 , 0 . 4 0 ) 

(the t h r e e v a l u e s i n p a r e n t h e s e s r e p r e s e n t t h e r e l a t i v e p o s s i b i l i t y o f m i s c l a s s i f i c a t i o n fo r T y p e s 1-

3 r e s p e c t i v e l y a s d i s c u s s e d i n § 3 . 2 . 1 . T h e y a r e s u m m a r i s e d i n T a b l e 4 .2 ) . 

T r a n s e c t 4 : M a x i m u m c o r r e l a t i o n c o e f f i c i e n t : 0 . 4 1 u s i n g ( 0 . 6 5 , 0 . 1 5 , 0 . 6 5 ) 

F o r S o i l T y p e 3 t h e v a l u e s a r e a l s o q u i t e s i m i l a r : 

T r a n s e c t 1: M a x i m u m c o r r e l a t i o n c o e f f i c i e n t : 0 . 8 5 u s i n g ( 0 . 7 0 , 0 . 1 0 , 0 . 5 0 ) 

T r a n s e c t 4 : M a x i m u m c o r r e l a t i o n c o e f f i c i e n t : 0 . 5 6 u s i n g ( 0 . 6 0 , 0 . 1 0 , 0 . 5 0 ) 

In o t h e r w o r d s , t h e p r o c e d u r e d e s c r i b e d a b o v e w a s u s e d to d e t e r m i n e t h e m o d e l p a r a m e t e r s t h a t 

b e s t d e s c r i b e t h e f i e ld d a t a . T h i s w a s d o n e i n d i v i d u a l l y f o r e a c h o f t h e t r a n s e c t s . T h e p a r a m e t e r s 

c h o s e n b y t h e p r o c e d u r e (the t h r e e n u m b e r s i n p a r e n t h e s e s above ) w e r e q u i t e s i m i l a r fo r d i f f e r e n t 

t r a n s e c t s , i n d i c a t i n g i n d e p e n d e n t c o n f i r m a t i o n o f t h e v a l u e s . 

T h e r e s u l t s o f t h i s p r o c e d u r e w e r e t h e n u s e d to r e s e t t h e o r i g i n a l m i s c l a s s i f i c a t i o n m a t r i c e s i n t h e 

u n c e r t a i n t y m o d e l . O r i g i n a l v a l u e s a n d u p d a t e d v a l u e s a r e d i s p l a y e d i n T a b l e 4 . 3 . In g e n e r a l , i t i s 

Type Transect MaxCC Lag Avg Misclass Values Comment 

1 1 0.92 2 9 0.50, 0.15, 0.40 large 1/3 boundaries 
2 0.56 2 5 0.60, 0.50, 0.50 one large 1/3 
3 0.55 -1 0 0.50, 0.15, 0.70 small 1/3, small Inclusions of 1 
4 0.41 -4 5 0.65, 0.15, 0.65 one large 1/3 

2 1 0.83 3 9 0.70, 0.50, 0.60 one section at the edge 
2 0.76 0 9 0.25, 0.50, 0.10 one large section 
3 0.35 -4 0 0.70, 0.50, 0.55 no 2 present 
4 0.70 0 9 0.30, 0.50, 0.20 no 2 present 

3 1 0.85 3 9 0.70, 0.10, 0.50 large 1/3 boundaries 
2 0.50 2 9 0.55, 0.60, 0.50 one large 1/3 
3 0.56 1 9 0.15, 0.10, 0.55 small 1/3, small inclusions of 1 
4 0.56 1 9 0.60, 0.10, 0.50 one large 1/3 

Table 4.2. M a x i m u m v a l u e s o f c o r r e l a t i o n c o e f f i c i e n t s o b t a i n e d t h r o u g h 
i t e r a t i v e c a l c u l a t i o n s . 
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(a) 

Soil 
Class 1 2 3 Soil 

Class 1 2 3 Soil 
Class 1 2 3 

1 0.85 0.35 0.25 1 0.60 0.25 0.55 1 -0.25 -0.10 0.30 

2 0.35 0.85 0.25 2 0.25 0.55 0.30 2 -0.10 -0.30 0.05 

3 0.25 0.25 0.90 (b) 3 0.51 0.10 0.55 (c) 3 0.26 -0.15 -0.35 

Table 4.3. Original (a) and updated (b) misclassiflcation matrices, and the difference between the 
two (c). The value at cfl represents the possibility that type i would be misclassified as type j . The 
chart's trace contains maximum certainty values. 

evident that all maximum certainty values have decreased substantially, and that classes one and 

three have been considerably 'blurred'. Note also the lack of symmetry in the second table. Ac

cording to the optimisation procedure results, the possibility of mistaking Type 3 for Type 1 is 

different than the possibility of mistaking Type 1 for Type 3. 

4 . 4 . D I S C U S S I O N 

These confirmatory sampling and fuzzy allocation procedures indicate that, in this soil and slope 

stability modelling scenario, expert opinion has not provided an accurate assessment of classifi

cation uncertainty. However, there are only 171 samples over four transects available to base this 

conclusion on. Sampling for spatial structure is very time and resource consuming relative to 

spot sampling; it would be difficult to gather sufficient amounts of transect datasets to even 

approach statistical certainty. When 40 or 50 individual soil pits are subsumed into one statistic 

(such as the cross-correlation peak or t-test for one transect), it becomes difficult to generate a 

sufficient n to satisfy most statistical tests. Moreover, most standard statistical comparison tech

niques require independence of samples; by its very nature the samples composing a transect are 

not independent, although the transects themselves are independent from one another. 

Here, cross-correlation is used to compare sampled transects with modelled transects. Cross-

correlation provides two results: the strength of the relations between the two series, and the 

offset in distance between them at their position of maximum correspondence. In this section, the 

parameters of the model generating the modelled transects were reset using an iterative proce

dure. Resetting the parameters of the model has increased the strength of the relations between 

the sample transects and the model. Details are provided in Appendix C. 
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However, this 'increase in strength of the relations' is only a statistical comparison between the 

actual and modelled versions of a slope stability model input (soil). The true test of these confirma

tory samples and changes in model parameters will be a comparison of the model's final results— 

slope stability uncertainty—with some actual slope stability data. Only then will it be possible to 

see if the changes wrought by this procedure have any real value in increasing the predictive 

capability of the slope stability uncertainty model. A high-resolution dataset of slope failures is 

required to perform this task. The following chapter is devoted to analysis of both realisations of 

the uncertainty model (i.e., pre- and post-calibration) using such a dataset. 

4 . 5 . C A L I B R A T I O N O F C O N T I N U O U S D A T A 

The work discussed above focuses on calibration of classified, polygonal data in a spatially-ori

ented uncertainty model. Although the focus is on soils, the techniques developed or adapted are 

of use with any type of data that have been broken into classes and 'shoe-horned' into a polygonal 

structure (i.e., they have a more continuous distribution in reality than polygons would indicate.) 

This section focuses on calibrating data of a different nature: continuous data represented by 

cardinal values. This type of calibration or verification is not typically a difficult procedure, as 

values can be directly compared between the model and samples. The only major complicating 

factors are spatial uncertainty causing mismatches between the two, and issues of sampling 

scale. 

The two principal inputs to the slope stability model are soil type and slope; the previous section 

used the former as an example, while this section addresses calibration of the latter (again, as an 

example of a typical set of continuous values). In the work discussed in Chapter Three, the level of 

uncertainty in the slope values was estimated from the published error statistics for the data 

source and from the Kriging function used to generate the elevation model. These values were 

propagated through the slope function using Monte Carlo techniques, and a final value and vari

ance were derived for each cell in the model (details are in §3.2.2). 

Typically, calibration of a continuous value does not require advanced methods, just a numerical 

comparison. However, this calibration is of particular interest due to a heavy reliance on elevation 
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data in many sectors of natural resource management. Many decisions are made based on these 

data (e.g., sight-lines, slope stability, road placement, growth models), and few independent stud

ies have been undertaken to verify the elevation data or their derived products such as slope. 

There are no known studies from the test region or, in fact, the Queen Charlotte Islands in 

general. Again, it must be noted that the calibration focuses on values falling within the estimated 

uncertainty bounds. In the case of continuous values, however, this comparison is much easier to 

achieve than with classified values. 

The soil sampling effort described in the previous sections also included slope measurements at 

all sample points. Additional slope measurements were made on an opportunistic basis, providing 

a grand total of 240 sample points. The purpose of this sampling was not to perform a thorough 

statistical analysis of elevation data. This type of work has been undertaken by several authors 

(e.g., Xiao 1996; Ruiz 1995), who generally conclude that elevation error is specific to regions, 

terrain, methods used, etc. Instead, the specific purpose is to characterise any significant consist

ent deviation from the elevation-model-based slope that fall outside of the error estimates for this 

particular area, and to use this information to perform a correction of slope values. However, if 

significant deviation does exist, this fact implies that other areas where similar data are used may 

also be subject to deviations outside the published error statistics. 

Slope values were sampled using a hand-held inclinometer with a tested accuracy of ± 3°. Sample 

values were gathered as above—characterising the local 25 x 25 metre zone. By focusing on the 

average slope over this area, rather than a 'spot' slope measurement, the value recorded for the 

sample eliminates short-range variations in slope. This fits the assumptions of the elevation model 

that is being calibrated (where 25 metre cells are used to best characterise source spot heights at 

an average 30 metre spacing). Positional uncertainty is an issue, as was noted with the offsets 

used for soil transects above. Initial tests were performed in which the comparisons discussed in 

the following paragraph were repeated using random shifts in cell location within the bounds of 

locational uncertainty. However, these tests indicated that the shifts had no significant effect on 

the results. The averaging nature of slope calculations (where a cell only has a slope relative to the 
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eight cells that surround it) is likely the reason for this lack of significant change. Therefore, 

positional uncertainty was ignored in the following procedure. 

The variance in the slope values was derived as discussed in Chapter Three. To reiterate, elevation 

values were gathered from published spot height data derived from photogrammetry. The eleva

tion model was produced using Kriging, and elevation uncertainty was determined by combining 

the variance output from the Kriging procedure with the published error statistics for the spot 

heights. The predicted variance in slope was determined through a Monte Carlo procedure, in 

which an 'equally likely' DEM was produced, a slope surface derived, and then the procedure 

repeated (n = 50). The predicted slope variance values were saved on a cell-by-cell basis, but are 

summarised in the figure discussed in the following paragraph using a set of lines (those above 

and below the zero line). 

A comparison of the modelled and sampled slopes (Figure 4.14) illustrates considerable variability 

between the two outside the bounds established by variance calculations. However, a definite 

trend is apparent in the data. Gentle slopes are generally overestimated by the source data and 

slope modelling procedure (i.e., the inclinometer-measured values were consistently gentler than 

30 

Measured Slope 

Figure 4.14. Differences between measured slope and TRIM modelled slope graphed relative to 
measured slope. The 'expected' lines enclose the variance that is expected to be found in the 
values, based on the published error values and the additional error introduced during DEM 
generation. Variance is generally larger on gentle slopes. 
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the slope values derived from the spot height data), while steep slopes are generally underesti

mated. The trend-line is represented by: 

Y = -0.0006.*3 + 0.037* 2 - 1.02* + 9.8; JP = 0.73 (4.11) 

This formula (4.11) can be used to correct calculated slope values for this particular region. It 

would be unwise to use this formula to generalise outside of the study area and its environs, as it 

is unclear whether the extreme terrain, the contractors who produced the elevation spot heights, 

or the slope modelling routine assumptions are to blame. For example, the photogrammetric 

equipment and algorithms used to derive elevations for the source data might have been 

miscalibrated, or designed for less extreme terrain. The abrupt changes between forested and 

cleared areas may not have been compensated for (stem density tends to be very high in this 

area). The slope algorithm used in the GIS could also have a bearing on the error; such derived 

values are rarely checked in the field. This would be an area for further study. Some related work 

has been performed by Ruiz (1995) and Xiao (1996). 

Nevertheless, whatever the cause, within this type of terrain and in areas where the same photo

grammetric equipment and routines were used to gather elevation data, this slope correction 

should provide more accurate values for stability modelling. This correction factor was applied to 

the dataset, and the corrected values will be employed in the following chapter when implement

ing a slope stability model on an island near to the current study area. This correction has 

reduced variability, but the variability of the corrected slope values are still greater than the 

published statistics indicate (demonstrated by the vertical range in Figure 4.14—which still fall 

outside the variability line after the trend is straightened out). Therefore, the overall variability 

values are redefined for the calibrated version of the model, based on these post-correction val

ues. 

4 . 6 . C O N C L U S I O N S 

The calibration and verification of uncertainty models was noted as a neglected area in the devel

opment of such models. Two major areas were identified: the verification of classified 'fuzzy' val

ues and the verification of continuous values. Several procedures were proposed, including a 
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number of possible extensions to the Mahalanobis distance metric for dealing with class variabil

ity in attribute space. Sample 'fuzziness' was also noted as an issue, and a complex measure of 

distance were adapted for use in measuring and determining fuzzy sample allocation statistics. 

The principal questions addressed in this chapter were: 1) how can fuzzy classification structures 

be compared with confirmation samples?; 2) how well did expert opinion function as an input to 

generate the distribution of uncertainty represented by the fuzzy structures (the transition corri

dor model)?; 3) how well does metadata gathered from published statistics represent the actual 

uncertainty on the ground? (focusing on major model inputs); and 4) how can these confirmation 

data be used to recalibrate the model? 

Methods for comparing fuzzy classification structures with confirmation samples were developed 

using the extensions to the Mahalanobis distance metric; other issues were presented, such as 

sample variability and complex distance issues. A subset of these methods was utilised to cali

brate the uncertainty model developed in Chapter Three using field transect data. It was deter

mined that the expert opinion input for classification uncertainties did not adequately describe 

the necessary values, due in part to the nature of the classes utilised. 

The metadata gathered from published statistics were tested against ground data for the major 

continuous input to the model: slope percentage. Analysis of field data indicated that the continu

ous values in the slope dataset were outside their expected zone, as determined by stochastic 

simulation using source data error statistics. However, a clear trend was found to be present in 

the model-sample comparisons, and therefore global corrections were possible. The model was 

recalibrated using these data. The soil uncertainty values were also recalibrated based on the 

confirmatory data using an iterative procedure, utilising cross-correlation analysis incorporating 

sample spatial uncertainty. 

Having introduced the uncertainty model and its application to slope stability modelling in Chap

ter Three, and having presented methods for field-verifying and updating the inputs and param

eters of such a model, at this point there remain several crucial unanswered questions. First, how 

useful is the uncertainty model? The principal model parameters (though not all) have now been 
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calibrated, but currently the model results are simply predictions of possibility of slope failure 

and level of certainty in that prediction. The basic question is: does the uncertainty model accu

rately predict uncertainty in the slope stability model? For example, in areas where slides have not 

occurred, did the model either predict a low factor-of-safety (FS) or predict a high FS with high 

uncertainty? A second hypothesis follows from the work in this chapter: does the updated version 

of the model better predict slides and slide uncertainty than the original? 
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Chapter Five 

Evaluation of Uncertainty Model 
Output 

5.1.INTRODUCTION 

The confirmatory sampling undertaken in Chapter Four addresses the problem of tuning uncer

tainty model parameters. This type of information is useful for a purely descriptive inventory 

model, or when inventory information is used as input to a process model such as slope stability. 

However, much of the work in Chapters Three and Four refers to the output of a slope stability 

process model—one of the essential items of information used to make forest management deci

sions. The model itself predicts relative levels of stability, while the uncertainty model predicts the 

variability in these results. This chapter focuses on confirming the latter through use of a highly 

accurate landslide database. 

The work discussed in this chapter is applicable to many types of inventory uncertainty models; 

however, slope stability model evaluation is important in its own right. Slope stability models are 

rarely evaluated in a data-rich environment. Typically, they are tested on very limited areas, then 

applied in a wide variety of situations (Christian et al. 1994). Proper evaluation of a model requires 

detailed landslide data that cover a wide temporal swath. This type of information is rarely gath

ered at a scale appropriate to mass wastage analysis (Aung 1992). Even though this information 

is available here, the relative nature of the model's predictions (i.e., there is no 'slide/no slide' cut-
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off line) precludes a complete evaluation. True 'evaluation' of a model that makes use of relative 

predictions requires something similar to evaluate it against—typically another model or another 

version of the current model. Evaluating it against reality is more difficult. 

Process models incorporating spatially variable uncertainty are a relatively new development. 

There are few guidelines for developing methods of evaluating their predictive capability. In the 

case of the slope stability uncertainty model there are several issues that circumvent simple 

analysis. These include: 

1. Binary events predicted on a cardinal scale. The predictions made regarding slope stabil

ity are on a cardinal (i.e., approximately one to six) scale. In the absence of prior studies 

that calibrate these numbers for the region, there is no obvious cut-off line between 'slides 

will occur' and 'slides won't occur'. However, this information is to be compared with just 

such yes/no events. Simple summaries and tests of significance are therefore not available 

to fully evaluate model performance. 

2. Evaluating predictions with variance. The uncertainty model would no doubt be consid

ered successful if all mass wastage zones were predicted with low factor-of-safety values 

and tight standard deviations. However, it could be considered equally successful if very few 

slides were predicted, but associated variance was very high. Although in such a case the 

predictions for mass wastage would be useless, the uncertainty model would be illuminat

ing the fact that the source data are of insufficient quality to support predictions (in itself 

an important output). This considerably complicates the process of evaluation. 

3. Grid model. The raster model used for this procedure involves some different assumptions 

them the vector model used to gather the mass wastage information. For one, the resolution 

of the raster model is different than the vectors (25m vs. lm or less). Slide zones smaller 

than a 25 metre pixel will therefore be poorly modelled, leading to inaccuracies. Similarly, 

the smoothing of slide boundaries will also affect model predictive accuracy. Another raster 

issue is the multiple predictions applied to slide areas larger than one cell. This variability 

must be addressed in the evaluation. However, a raster model is required by the slope 
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stability uncertainty modelling procedure, whose focus is the continuous variation of uncer

tainty across the landscape, and therefore these raster-vector issues must be addressed. 

4. Spatially variable variance. For similar reasons to the point above, multiple cell slides will 

not only incorporate variance between cell predictions, but also variance in each cell's pre

diction. 

5. Multiple realisations. The fuzzy model allows multiple realisations of its output; the user 

must choose the appropriate way of visualising or using these data. Therefore, there is no 

single answer to the question of model confirmation. 

6. Incomplete data. Although the mass wastage database used in this evaluation has both 

high spatial resolution and a wide temporal extent, it does not capture every possible slide. 

There are undoubtedly still some areas that have yet to slide due to past forestry activity, 

and pre-logging slides are only partially captured (i.e., they are outside the temporal extent 

of the model). This will contribute to apparent inaccuracies in model predictions. 

7. Autocorrelation. As with most spatial models, contiguous spatial units cannot typically be 

considered as independent samples. In the case of slope stability analysis, if one cell con

tains a slide, it is very likely that the one below or above it (on the slope) also contains a 

slide. It is almost as likely that the ones beside it are slide zones as well. This lack of 

independence violates many statistical test assumptions. It is therefore necessary to rely on 

a number of descriptive or exploratory techniques in their stead. 

This evaluation therefore relies primarily upon techniques of exploratory spatial data analysis 

(ESDA, see Keller 1994), coupled with some standard statistical tests where appropriate. It pro

vides no single answer to a hypothesis of predictability. Instead, it offers comparisons of a number 

of model realisations and methods of summarising model predictions. As with many other uncer

tainty analysis techniques, this lack of a single answer may frustrate those accustomed to seeing 

the resource analysis world in black and white. However, this is balanced by the increase in 

information content regarding the process model, the source data, and the field site itself. 
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5 . 2 . M E T H O D O L O G Y 

The slope stability uncertainty model developed 

and calibrated on Louise Island (Chapter Four) 

is applied to data of similar source and resolu

tion on Lyell Island, 50km to the south (Figure 

5.1). The two islands have similar terrain, simi

lar soils, and were subject to similar resource 

extraction methods. There is reason to believe 

that slope processes are similar on both (B. Pe

ters pers. comm.). Although it would be ideal to 

calibrate the model at the original test site, the 

second site was used for practical reasons. Fund

ing was available for mass wastage database 

development for only the latter. 

Soil and elevation data are processed in a manner similar to that described in Chapter Three. The 

calibrated version of the model (calibration includes both soil parameters and updated slope 

values based on field testing) is run using the methodology described therein, and results are 

produced at the same spatial resolution (25m). A second set of results is produced using the 

original (not calibrated) model parameters and slope values to facilitate comparative evaluation. 

The mass wastage data are taken from a database developed for this work. The database covers 

over twenty years of slide history in the study area, has a spatial resolution of approximately 1 

metre, and an average accuracy level of under 3 metres. The tools used to develop the database 

make use of uncertainty visualisation techniques in a data fusion tool that merges oblique frames 

with planimetric data. The details of the system and its development are provided in Appendix D. 

This development represents a new way of entering data into a GIS through the use of uncertainty 

tracking and uncertainty visualisation. It was an integral part of building the database used in 

this chapter. 

Figure 5.1. The Lyell Island study area. 
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The landslide data were gathered for two complimentary purposes. The first is the uncertainty 

model confirmation discussed herein. The second purpose was to provide a baseline and initial 

high resolution dataset for on-going monitoring of landslide stabilisation efforts. A summarised 

version of the case study is presented in Appendix E. The full case study is described in Davis et 

al. (1998). Appendix E also includes (in context) details of construction of the database used in 

this chapter. 

All slides in the database are utilised (going back to those visible in 1976), including those that 

have since stabilised and grown back. Divisions between spatially contiguous slides are dissolved, 

and a raster database is produced at the working resolution of 25m. 

Two general hypotheses are proposed: 

1. H 0 : Predictions in slide zone cells are not significantly different than predictions for the 

population (all cells). 

2. H 0 : Predictions made by the original version of the model (prior to parameter calibration) are 

not significantly different than those made by the calibrated version produced in Chapter 

Four. 

These hypotheses are tested using summary values in several different contexts. 

The exploratory analysis methodology uses the following sequence: 

1. Analysis of data means; 

2. Presentation of alternative realisations of the uncertainty model; 

3. Description and analysis of data variance; 

4. Graph and comparison of expected vs. actual values; 

5. Incorporation of spatial constraints. 

5.3. R E S U L T S 

The infinite slope stability model predicts where areas of greater or lesser slope stability occur 

based on local slope, soil type, and ground cover. The model of uncertainty in slope stability 
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introduced in Chapter Three is a generalisation of this model, in which the mean value of the 

maximum likelihood output corresponds to the original (Boolean) model. The uncertainty model 

contains a considerable amount of additional information about alternate possibilities and vari

ance in the results. With this additional information comes an increased responsibility to under

stand the details of the model, the assumptions built in, and the implications of the data in order 

to properly analyse and communicate this information. 

In this discussion of results a number of different methods are used to compare the model predic

tions with the landslide data. The discussion progresses from a simple non-spatial statistical 

comparison of means through to a number of different methods of dealing with variance in the 

results and spatial constraints on the model. 

5.3.1. C O M P A R I S O N O F M E A N S 

An initial step in comparing the predictions and the landslide data is to simply see if the slide 

areas (mapped as discussed in Appendix D) have predicted factor-of-safety values (slope stability 

predictions) that are significantly different than non-slide areas. This involves comparing the 

mean values of the factor-of-safety for the population (all cells) and for the slide cells. 

As noted in the Chapter Three, the uncertainty model can be viewed using a variety of 'realisa

tions'. For each cell in the model, all possible combinations of inputs (soil and forest classes) are 

stored with their associated likelihood. A 'realisation' of the uncertainty model involves choosing 

from among these possibilities in a structured manner. The realisation utilised initially in this 

means comparison is maximum likelihood, in which the most likely value for each cell, as defined 

by the fuzzy overlay value, is fixed. This realisation produces the same numbers as would be 

obtained using the standard (Boolean) version of the slope stability model. The values are pre

sented in Table 5.1., row #2. Other realisations presented in this table will be discussed in up

coming sections. The values in this table are based on the calibrated version of the model as 

produced in the previous chapter. They are presented together here to facilitate comparison at 

later stages of analysis. 



1 2 6 

As Cells Mean SD N ' Z-test Probability * 

1 
Slides: Max Likelihood Realisation, Std. 
Dev. Surface. 

0.040 0.020 1801 

2 
Slides: Max Likelihood Realisation, 
Factor-of-Safety Surface 1.61 0.48 1801 -18.33 0.99 

3 
Slides: Worst Case Realisation, Std. 
Dev. Surface 

0.030 0.023 1593 

4 
Slides: Worst Case Realisation, Factor-
of-Safety Surface 

1.19 0.65 1593 -44.9 0.99 

• ' ., " VC ' 

5 
Slides: Worst Case Realisation, Std. 
Dev. Sfc, Upper 50% of slides 

0.025 0.017 683 

6 
Slides: Worst Case Realisation, Factor-
of-Safety Sfc, Upper 50% of slides 

1.09 0.57 683 -33.58 0.99 

. . . . • , . . 

7 
Population: Max Likelihood Realisation, 
Std. Dev. Surface 

0.051 0.024 1825 

8 
Population: Max Likelihood Realisation, 
Factor-of-Safety Surface 

1.87 0.61 1825 

9 
Population: Worst Case Realisation, 
Std. Dev. Surface 

0.34 0.68 1825 

10 
Population: Worst Case Realisation, 
Factor-of-Safety Surface 

1.00 0.94 1825 

11 As Slide Units 1.55 0.22 154 -6.65 0.99 

* Probability that slide cells are a different population than non-slide cells 

Table 5.1. Summary statistics for slope stability predictions, based on mean values. Rows 1 
through 10 show various realisations of the uncertainty model, and summarise values for either 
'slide' cells—where the model predictions were correct, or 'population' values, for the entire area. 
The paired rows (e.g., 3&4) show summaries for the standard deviation surface and the prediction 
surface for a particular realisation. The realisations listed here are introduced one at a time as the 
chapter progresses. 

Although the Z-test statistic is not entirely appropriate, due primarily to the lack of random 

sampling (the population is roughly normally distributed based on x 2 at 15% significance), the 

very high value displayed (-18.33) indicates that the mean predictions of factor-of-safety in slide 

zones are significantly different from the population (i.e., the slope stability analysis is generally 

capable of distinguishing slide zones from non-slide zones). However, the probabilities associated 

with the Z statistic cannot be reliably estimated due to the violation of statistical assumptions. 

Further on in this chapter a sampling method will be discussed that bypasses some of these 

violations. 
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These simple summaries do very little to explain the 1 o 
0.8 detailed information contained in the slope stability 

predictions. A first step in expanding the analysis is 

to look at the relative frequencies of the results. A 

pair of histograms illustrating the factor-of-safety (FS) 

predictions for slide zones and the non-slide zones 

are presented in Figure 5.2. The peak of the graph is 

chosen as a rough dividing line between 'slide' predic

tions and 'non-slide' predictions. This means that: 

0.6 

0.4 

0.2 

0.0 

1 Slides 

Not Slides 

Slides 

Not Slides 

/ 1 \ \ 

' V \ 

Factor of Safety 

Figure 5.2. Relative frequency of slide 
zones and non-slide factor-of-safety val
ues using an ML realisation. 

a) everything under the slide curve (light line) on the left side of the divide represents cells that 

were predicted as 'will slide' and did actually contain a slide (correct prediction); 

b) everything under the slide curve on the right side of the divide represents areas that were 

designated 'safe', but actually contained a slide; 

c) everything under the 'non slide' curve on the left represents areas that were predicted as 

slides that did not slide; and 

d) Everything under the 'non slide' curve on the right represents areas predicted as 'safe' that 

are safe. 

Keep in mind that this is a histogram, so the absolute values of the curves are not an issue (i.e., 

in an absolute graph the 'slide' curve would be tiny relative to the 'non slide' curve). 

This highlights an important distinction in slope stability modelling: there are two types of wrong 

answer, comparable to Type I and Type II errors in hypothesis testing. Predicting that an area will 

fail when it does not (hereafter called Type A) creates only an economic problem (e.g., trees in the 

area are not harvested when they could have been). However, not predicting a slide that does 

occur (Type B) can have more than economic consequences. Damage to personnel, equipment and 

infrastructure can occur, in addition to environmental damage such as stream degradation and 

loss of soil. In this ML realisation, one-half (47%) of slide cells that were predicted as 'safe' (using 

the rough estimator discussed above) fall into the crucial Type B class. 
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dently at the expense of Type A error. The Type A curve (the 'non-slide' line on the left of the divide) 

has increased in relative area from Figure 5.2. 

A variety of other realisations are possible, as the uncertainty model delays 'hardening' the data 

into a specific state for as long as possible in the analysis process. The purpose of the analysis will 

determine the appropriate realisation, as there is no 'best' way of looking at the data. For exam

ple, a road building project would have different requirements from a harvesting risk model, and 

a seismic crew utilising the data would have their own specifications for acceptable uncertainty. 

5.3.3. V A R I A N C E 

While alternate realisations make use of some of the unique characteristics of an uncertainty 

model, the variance values have not, as yet, been utilised. The variance values represent, on a 

cell-by-cell basis, the spread of output generated by the Monte Carlo simulations in the uncer

tainty-based slope stability model (see §3.3.1). Once you decide on the realisation you will use, 

each cell in that realisation has a slope stability pre

diction (factor-of-safety number) and an associated 

standard deviation. The standard deviation in each 

cell will differ between realisations. This standard 

deviation value will help to determine with what cer

tainty a particular prediction has been made, and how 

this uncertainty varies with both spatial and attribute 

variables. Figure 5.4. Factor^of^saiery values for 
slide zones relative to number of cells. A 
series of standard deviation thresholds are 

In order to generate a summary of how standard de- used in separate curves. 

viation (SD) behaves relative to factor-of-safety, the 

SD values are thresholded at decreasing values and a histogram similar to Figure 5.2 generated 

(Figure 5.4). The largest SD is approximately 0.16, therefore, the 'SD=0.16' curve is virtually 

identical to the 'slide' curve in Figure 5.2. The 'SD=0.14' curve represents a histogram of all cells 

with a SD of 0.14 or less. This thresholding is continued down to the small SD=0.02 'bump' at the 

lower left (around FS=0.8). 
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Generally the graph shows that: 

1. Some very dangerous areas are predicted with high prediction certainty, but there are not 

very many of these. 

2. In the zone where most slides occur (FS 1.3-

1.8; medium danger), they can only be predicted 

with intermediate rather than high certainty. 

3. As predictions move towards the safer side of 

the series (> 1.6), the uncertainty in the pre

diction increases, demonstrated by the increas

ing spread on the graph. 

Factor of Safety 

Figure 5.5. Factor-of-safety values for 
non-slide cells relative to number of 
cells. A series of standard deviation 
thresholds are used in separate curves. 

(a) 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 
r r CO CM tD 
O O N (V 

(p) Factor of Safety Factor of Safely 

Figure 5.6. The previous two figures are here graphed using cumulative values, (a) details 
slide cells, while (b) shows the non-slide cells. 

Viewing this same type of graph using the non-slide data (Figure 5.5), it is apparent that there is 

a different distribution of uncertainty in these data than exhibited by the slide data. The graphs 

are similar in dangerous areas; however, overall the non-slide demonstrates more uncertainty. 

Figure 5.6 highlights how the variance increases gradually for the non-slides towards the right of 

the curve (b), but quickly for the slide cells (a). These variations will be examined in further detail 

below. 
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5.3.4. EXPECTED VS. ACTUAL 

T h e sections above have looked p r i n c i p a l l y at descriptive s tat is t ica l a n d graphic methods for 

e x a m i n i n g differences between sl ide a n d non-s l ide areas. However, the eva luat ion of any type of 

model typical ly uses a c o m p a r i s o n of expected vs. a c t u a l values . T h e p r o b l e m is that, as intro

d u c e d above, there i s a range of expected values. H i g h u n c e r t a i n t y a n d low predictive success 

m u s t be cons idered as va luable (though of less p r a c t i c a l use) t h a n low uncer ta inty a n d h i g h 

predictive success . F o r example, i f one of the sources for the model i n t r o d u c e d low r e s o l u t i o n or 

low qual i ty data , t h i s w o u l d be represented i n the resul ts as h i g h u n c e r t a i n t y a n d low predictive 

success. In th is case the u n c e r t a i n t y model is h ighl ight ing a data p r o b l e m rather t h a n problems 

w i t h the m o d e l itself. E v e n t h o u g h the sl ide areas are poorly predicted, as a n uncertainty model , 

the process is a success . L o w predictive success w i t h low u n c e r t a i n t y w o u l d indicate poor per

formance of the slope stabi l i ty model (or some other factor s u c h as cal ibration). 

A second p r o b l e m is that direct c o m p a r i s o n s of sl ide areas a n d predict ions are diff icult , due to the 

necessity of j u x t a p o s i n g b i n a r y (slide) d a t a w i t h c a r d i n a l predict ions a n d the ir associated v a r i a b i l 

ity (enumerated i n greater detai l above). One possible way of a d d r e s s i n g b o t h of these problems is 

t h r o u g h d e t e r m i n i n g w h a t the expected d i s t r i b u t i o n w o u l d be for b o t h factor-of-safety a n d v a r i 

ance, a n d t h e n g r a p h i n g the expected zone. Success w o u l d be d e t e r m i n e d b y g r a p h i n g b o t h the 

p o p u l a t i o n a n d the s l ide cells a n d d e t e r m i n i n g the percentage that fall in to the 'expected' area. 

T h i s possible range of expected va lues is rep

resented graphical ly as the area shaded dark ly 

i n Figure 5 . 7 u s i n g a n F S variance vs. F S graph 

(the s h a d i n g represents a general tendency 

rather t h a n specific n u m e r i c values). However, 

a plot of the p o p u l a t i o n (Figure 5.8a) shows 

that the p o p u l a t i o n a lready exhibi ts this ten

dency (i.e., i t falls r o u g h l y w i t h i n the shaded 

area of F i g u r e 5 .7) . General ly , h i g h var iance 

always is associated w i t h safe areas, whi le low 

1 2 3 
Factor of Safety 

Figure 5.7. A scatter g r a p h of var iance 
vs. factor-of-safety for sl ide zones s h o u l d 
fall w i t h i n these general b o u n d s i f the pre
dictive a c c u r a c y of the u n c e r t a i n t y model 
is good. 
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Figure 5.8 (a) P o p u l a t i o n ( r a n d o m s u b s e t ) v s . s t a n d a r d d e v i a t i o n ; (b) S l i d e c e l l s (all) v s . s t a n d 
a r d d e v i a t i o n . 

v a r i a n c e i s a s s o c i a t e d w i t h u n s a f e a r e a s . R e - e x a m i n i n g t h e s t a n d a r d d e v i a t i o n f i g u r e i n C h a p t e r 

T h r e e ( F i g u r e 3 .10) , t h i s a s s o c i a t i o n i s g r a p h i c a l l y a p p a r e n t . H i g h e s t v a r i a b i l i t y e x i s t s o n v a l l e y 

b o t t o m s , m o s t p r o b a b l y d u e to e x a g g e r a t i o n s of m i n o r s l o p e v a r i a t i o n s i n t h e m o d e l l i n g p r o c e s s . 

T h e fac t t h a t t h e p o p u l a t i o n already e x h i b i t s t h e e x p e c t e d d i s t r i b u t i o n m a k e s a n ' i n s i d e o r o u t 

s i d e t h e l i n e ' t y p e o f u n c e r t a i n t y m o d e l e v a l u a t i o n d i f f i c u l t . T h e r e a r e few c e l l s u i a t h a v e a h i g h F S 

and a l o w v a r i a n c e . T h i s d i f f i c u l t y i s c o m p o u n d e d b y a l a c k o f s p e c i f i c n u m e r i c b o u n d a r i e s fo r t h e 

p r e d i c t i o n r e g i o n , m a k i n g it i m p o s s i b l e to c o m p a r e s l i d e p r e d i c t i o n s w i t h t h e p o p u l a t i o n o n t h e 

b a s i s o f s c a t t e r p l o t s h a p e s . (Note t h a t t h e p l o t i n F i g u r e 5.8a d i s p l a y s a r a n d o m s u b s e t o f t h e 

p o p u l a t i o n w i t h a c o u n t e q u a l to F i g u r e 5.8b fo r t h e p u r p o s e o f c o m p a r i s o n a n d v i s u a l c lar i ty ) 

T h e r e f o r e , it i s n e c e s s a r y to d r o p t h e s t i p u l a t i o n n o t e d a b o v e t h a t h i g h v a r i a b i l i t y a n d h i g h f a c 

t o r - o f - s a f e t y e q u a l s p r e d i c t i v e s u c c e s s . ' It w i l l i n s t e a d b e n e c e s s a r y to f o c u s s p e c i f i c a l l y o n p r e 

d i c t i o n s o f s l i d e s w i t h l o w v a r i a b i l i t y a n d l o w F S (i.e., o n w h e t h e r s l i d e c e l l s a p p e a r i n t h e l o w e r 

left s i d e o f t h e c u r v e — t h e ' u n s a f e ' a r e a ) . 

A c o m p a r i s o n o f t h e p o p u l a t i o n a n d t h e s l i d e c e l l s ( F i g u r e 5.8) s h o w s a s l i g h t s h i f t i n c o n c e n t r a 

t i o n to t h e left ( d e c r e a s e i n m e a n F S i n s l i d e ce l ls ) , a n d t h e d i s a p p e a r a n c e o f m o s t s a f e o u t l i e r s (far 

r ight ) . H o w e v e r , t h e r e i s n o s u b s t a n t i a l c h a n g e i n t h e c o n c e n t r a t i o n o f c e l l s . (The a p p e a r a n c e o f 

two a p p a r e n t ' n u c l e i ' o r c o n c e n t r a t i o n s o n t h e l o w e r left a r e m o s t p r o b a b l y r e m n a n t s o f t h e c e n -

t r o i d s i n s o i l a t t r i b u t e s p a c e o f t h e t w o m o s t p r e v a l e n t s o i l t ypes ) . H o w e v e r , w h e n t h e w o r s t - c a s e 

d a t a a r e i n t r o d u c e d ( F i g u r e 5.9), t h e d e g r e e o f c o n c e n t r a t i o n i n t h e l o w e r left i s f u r t h e r i n c r e a s e d . 



133 

P r e d i c t i v e s u c c e s s h a s g o n e u p ( f rom t h e v i e w p o i n t 

o f r e d u c i n g v a r i a b i l i t y ) . H o w e v e r , t h i s i s n o t t h e f i n a l 

c o m p a r i s o n . T h e r e a r e s t i l l a d d i t i o n a l m a n i p u l a t i o n s 

t h a t a r e p o s s i b l e d u e to b o t h t h e l a r g e a m o u n t o f 

i n f o r m a t i o n i n t h e u n c e r t a i n t y m o d e l a n d t h e s p a 

t ia l l y v a r i a b l e n a t u r e o f t h a t m o d e l . 
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Figure 5.9. W o r s t c a s e r e a l i s a t i o n f a c t o r -
o f - s a f e t y v s . s t a n d a r d d e v i a t i o n . 5.3.5. ZONAL SPATIAL LIMITS 

T h e W C r e a l i s a t i o n p l a c e s c o n s t r a i n t s o n t h e a t 

t r i b u t e s i n o r d e r to b e t t e r f o c u s o n t h e o v e r a l l g o a l s o f t h e m o d e l . Spatial c o n s t r a i n t s c a n a l s o h e l p 

t h i s f o c u s . T h u s f a r i n t h e a n a l y s i s t h e c o m p a r i s o n s h a v e b e e n b e t w e e n t h e p r e d i c t e d a n d a c t u a l 

v a l u e s for t h e e n t i r e a r e a s d e s i g n a t e d a s m a s s w a s t a g e . H o w e v e r , w i t h i n a n i n d i v i d u a l s l i d e t h e r e 

a r e d i f f e r e n t z o n e s w h e r e d i f f e r e n t p r o c e s s e s o c c u r . 

O f p a r t i c u l a r c o n c e r n a r e t h e d i f f e r e n c e s b e t w e e n t h e u p p e r a n d l o w e r a r e a s o f a s l i d e . A c e r t a i n 

p e r c e n t a g e o f t h e l o w e r s e c t i o n o f a n y s l i d e c a n b e c o n s i d e r e d t h e d e p o s i t i o n z o n e . It c o n s i s t s o f 

t e r r a i n f e a t u r e s t h a t a r e n o t c o n d u c i v e to c o n t i n u i n g t h e s l i d e , s u c h a s s t a b l e s o i l s o r a r e d u c t i o n 

i n s l o p e . T h i s a r e a i s n o t t e c h n i c a l l y p a r t o f t h e s l i d e process, b u t c e r t a i n l y p a r t o f t h e d i s t u r b e d 

r e g i o n . T h e u p p e r a r e a o f t h e s l i d e i s t y p i c a l l y t h e i n i t i a t i o n z o n e , a n d i s m o r e i n v o l v e d i n t h e 

p r o c e s s o f t h e l a n d s l i d e . T h e r e f o r e , a l t h o u g h t h e d i v i d i n g l i n e w i l l v a r y , t h e u p p e r s l i d e a r e a s 

s h o u l d b e p r e d i c t e d w i t h g r e a t e r a c c u r a c y t h a n t h e l o w e r a r e a s , a l l e l s e b e i n g e q u a l . 

A s a g e n e r a l i s a t i o n , t h e l o w e r 5 0 % o f e a c h s l i d e z o n e 

w a s r e m o v e d f r o m t h e ' s l ide ' d a t a s e t . A s a r e s u l t , c o n 

c e n t r a t i o n i n t h e l o w e r left o f t h e s c a t t e r p l o t s u b s t a n 

t ia l l y i n c r e a s e s ( F i g u r e 5 . 1 0 ) . T h i s i s r e f l e c t e d b y a 

d r o p i n t h e m e a n f a c t o r - o f - s a f e t y v a l u e f r o m 1 .20 ( W C , 

f u l l s l ide) to 1 . 0 9 ( W C , u p p e r s l ide) i n T a b l e 5 . 1 . 

W i t h t h i s l a t t e r r e f i n e m e n t o f p r e d i c t i o n s s o m e o f t h e 

m i n o r v a r i a t i o n s b e c o m e m o r e v i s i b l e . F o r e x a m p l e , 
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Figure 5.10. W o r s t c a s e r e a l i s a t i o n u s 
i n g t h e u p p e r 5 0 % o f s l i d e z o n e s . 
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i n c o m p a r i n g t h e l a t t e r g r a p h o f u p p e r s l i d e s w i t h t h e m a x i m u m l i k e l i h o o d r e a l i s a t i o n , it i s a p p a r 

e n t t h a t o n l y o n e o f t h e two m a i n ' n u c l e i ' s h i f t s to t h e left. T h e W C r e a l i s a t i o n p r e d i c t s t h e m o s t 

f a i l u r e - p r o n e s l i d e a r e a s w i t h e q u a l p r o b a b i l i t y to t h e M L r e a l i s a t i o n . O n l y t h e ' m e d i u m d a n g e r ' 

p r e d i c t i o n s a r e s h i f t e d d o w n (left). 

T h e r o u g h a p p r o x i m a t i o n o f ' 5 0 % ' to d i v i d e s l i d e s i s ef fect ive ; h o w e v e r , t h e r e i s l i k e l y a m o r e 

ef fect ive d i v i s i o n p o i n t t h a t w i l l f u r t h e r i n c r e a s e p r e d i c t i v e a c c u r a c y . T h e r e f o r e , a l l s l i d e z o n e c e l l s 

(observed) w e r e c o d e d b a s e d o n t h e i r p o s i t i o n i n t h e l o c a l s l i d e a r e a . F o r e x a m p l e , a c e l l a t e l e v a 

t i o n 1 0 0 m o n a s l i d e r a n g i n g f r o m 5 0 m to 1 2 5 m i n e l e v a t i o n w a s a s s i g n e d a ' p o s i t i o n v a l u e ' o f 0 . 6 6 

(66%) . T h e s l i d e c e l l s w e r e t h e n d i v i d e d i n t o two g r o u p s b a s e d o n t h e f a c t o r - o f - s a f e t y p r e d i c t i o n s , 

m a k i n g u s e o f t h e g r a p h p e a k ( F i g u r e 5 . 2 , v a l u e o f F S = 1 . 6 ) a s a d i v i d i n g l i n e b e t w e e n ' s l ide 

p r e d i c t e d ' a n d ' n o s l i d e p r e d i c t e d ' (note t h a t , a s m e n t i o n e d ear l ie r , d u e to t h e r e l a t i v e n a t u r e o f t h e 

F S p r e d i c t i o n s t h i s d i v i s i o n i s n o t n e c e s s a r i l y ideal ) . 

T h e ' p o s i t i o n v a l u e s ' f o r t h e ' s l ide p r e d i c t e d ' c e l l s a r e g r a p h e d i n F i g u r e 5 . 1 1 ( re lat ive f r e q u e n c y ) . 

It i s e v i d e n t f r o m t h e m o v i n g a v e r a g e o v e r l a y ( th in l ine) t h a t t h e r e i s n o c l e a r s i n g l e b r e a k - p o i n t o n 

t h i s g r a p h to d i v i d e t h e s l i d e z o n e s b y p o s i t i o n . O f t h o s e t h a t a r e e v i d e n t , t h e s m a l l s l o p e b r e a k a t 

~ 3 0 % w o u l d r e m o v e 2 0 % o f t h e c o r r e c t l y c l a s s i f i e d c e l l s f r o m t h e set , w h i l e t h e b r e a k j u s t a b o v e 

5 0 % w o u l d r e m o v e 3 8 % o f t h e s l i d e p r e d i c t e d c e l l s . F r o m t h e d a t a g r a p h e d h e r e it i s e v i d e n t t h a t 

a n y d i v i s i o n i n t h i s g e n e r a l r a n g e w i l l i n c r e a s e p r e 

d i c t i v e a c c u r a c y , b u t a t t h e e x p e n s e o f T y p e B e r 

r o r s (as d i s c u s s e d earlier). 

In o r d e r to f u r t h e r e x a m i n e t h i s i s s u e a v i s u a l c o m 

p a r i s o n o f p r e d i c t i o n a c c u r a c y a n d s l i d e p o s i t i o n i s 

c o m p i l e d (for t h r e e m a j o r s l i de a reas ) i n F i g u r e 5 . 1 2 . 

In t h i s f i g u r e i t i s e v i d e n t t h a t , g e n e r a l l y , p r e d i c 

t i o n s fa l l i n t h e u p p e r s e c t i o n s o f s l i d e s — p a r t i c u -
Figure 5.11. R e l a t i v e f r e q u e n c y o f t h e r e l a -

l a r l y t h e la rge a n d / o r l o n g s l i d e s . H o w e v e r , m e d i u m u v e p o s m o n i n e a C h s l i d e for a l l c o r r e c t l y p r e -
, „ . . . , , , . „ . . , , , d i e t e d c e l l s ( b a s e d o n a n F S = 1.6 d i v i s ion ) , 

a n d s m a l l s l i d e s w o u l d t y p i c a l l y b e e i t h e r i n c l u d e d . . . ,. . _ 
J r J T h e t h i n l i n e i s a m o v i n g a v e r a g e o f t h e r a w 

d a t a ( th i ck l ine) 

Relative Position in Slide 
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Figure 5.12. Position of low FS predicted areas (grey cells) 
relative to slides (dark lines) and their position and orienta
tion on slopes (using 50m contours—thin lines). The 25m 
cell size provides a relative scale indicator, (a) is a draped 
perspective view of one side of the Gogit valley; (b) is a plan 
view of an intensive slide region in the centre of the island; 
(c) is a plan view of the Powrivco Valley (the initial test area). 
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or excluded from the predicted set. The strong influence of soil polygon divisions is also evident in 

this Boolean realisation of slide prediction, providing evidence indicating why the graph in Figure 

5.11 shows no clear division. Note, however, that this binary division into 'predicted' and 'not 

predicted' is a somewhat arbitrary slice into a complex range of predictions. Extensions to this 

analysis might focus on how prediction behaves spatially as the division line slides up or down 

(i.e., the dotted line in Figure 5.2 moves left or right). 

5.3.6. SPATIAL CONSTRAINTS 
Cell-by-cell predictions of slide zones violate the independent sample assumption required for 

most statistical significance tests. One method of overcoming this problem is subsampling the 

slide areas at regular intervals to reduce spatial dependence (based on a semivariogram sill). 

However, this dataset already is operating at the limit of its resolution. Many slides are composed 

of less than 4 pixels. Subsampling would effectively reduce the dataset, so that predictions would 

only focus on large slide areas—biasing the results. 

Another option is to treat each individual slide as one event, and compile statistics based on this 

reduced summary dataset. Slide area FS values were reduced to one mean value per slide zone. 

For comparison, a series of areas of similar size to each slide were located randomly within the 

island's boundary. Statistics were compiled as with the slide zones. Although the Z test score was 

substantially reduced, even with a large decrease in Nthis still indicates a very high probability 

that the slides are not part of the background population (Table 5.1 above—last line). 

5.3.7. COMPARISON: OLD vs. NEW 
A secondary purpose of this evaluation exercise is to determine if the changes made to the model 

in Chapter Four resulted in any increase in predictive accuracy. The following methodology is 

used: 

1. Run the uncertainty model described in Chapter Three using the Lyell Island soil and for

estry datasets (the soil dataset is described in Appendix E; the forestry dataset was gener

ated using the 1990 orthophoto coverage). 
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2. Reset the uncertainty model parameters using the numbers determined by the allocation 

routines in Chapter Four. Generally, these routines determined that soil types one and 

three have a higher likelihood of misclassification with each other than the original param

eters accounted for. Other minor changes were also made, but only in reference to the three 

most common soil types. 

3. Repeat the model and compare results. 

The graph in Figure 5.13 compares the two using a maximum likelihood realisation. It is apparent 

that changes in the model did not affect the slide zones to any significant degree. Exploratory 

spatial analysis indicates that the areas affected by the differences in the model (Figure 5.14 -

shaded pixels) are not located in slide zones to any large degree. The shaded zones in this figure 

are located principally in bedrock zones (cross-hatched polygons), classified as Type six. This type 

is not present to any significant degree within mass wastage zones, where the dominant type(s) 

consist of sandy/silry colluvial or morainal blankets. Bedrock generates a very high factor-of-

safety in the infinite slope stability model—so high that minor variations in model parameters can 

cause significant numerical differences between runs. However, these variations are all between 

very 'safe' values, and so are of little consequence. 

Changes in the model (parameter and slope calibration) resulted in minor variations over the 

entire surface of the study area. Although these changes had little impact on the slide predic

tions, they may affect other applications that do not focus on soil cohesion or weight. Although 

exploration of the implications of this information would 

be best left to specialists in geomorphology or soil sci

ence, it is apparent that this type of comparison is poten- 0.8 
0.6 

tially useful for exploring the details of environmental 
0.4 
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models. Here, although the model may now be more rep- 0.2 

resentative of reality, the effort expended to make it so 

did not translate into increased utility. This type of analy-
. . . , , ,„ , Figure 5.13. A comparison of predic-sis is, in a sense, the spatial equivalent 01 a non-spatial ,. . ... . , r ^ r tive accuracy between the original and 

sensitivity analysis (such as the type used by Hammond u P d a t e d uncertainty models. 
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et al. 1992 to determine that 

slope and cohesion are the 

most sensitive components of 

the infinite slope stability 

model). 

5 . 4 . D I S C U S S I O N 

This evaluation of the uncertainty 

model has certainly generated more 

questions than it has answered. In the 

simplest case, the two null hypotheses pro

posed in the introduction to this chapter 

have been addressed. Namely, the first (pre

dictions in slide zones are not signifi-
Figure 5.14. The location of differences between the 

cantly different than predictions for two models relative to soil polygons. Significant differ
ences are indicated by shade variations. Soil type six 

the population) was rejected, and the (bedrock) is highlighted with cross-hatching. Bedrock 
and significant variation tend to coincide. 

second (predictions made by the origi

nal version of the model are not significantly different than those made by updated version) was 

not rejected. The only general conclusions that can be drawn from these two items of information 

are that 1) the slope stability model works better than random assignments, and 2) calibration of 

the spatial constraints on the soil model input had no significant effect on predictions in this 

particular environment. 

Delving deeper into the spatial and attribute structure of the model, it becomes apparent that 

realisations of the model other than maximum likelihood increase the prediction success. When 

'success' is redefined using the Type A and B errors (as redefined above), realisations such as the 

'worst-case scenario' can be used to concentrate the error within the less important of the two. 

However, it is difficult to compare realisations on other than a summary level, for each creates an 

entirely unique population. 
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Variance data allows some more specific conclusions to be drawn about prediction accuracy. For 

example, the most unsafe areas were predicted with highest certainty, while uncertainty in poor 

predictions (high FS in slide zones) increases with increasing FS. This generally confirms the 

expected performance of the model; however, the numerical significance of this correspondence 

cannot be directly ascertained. 

A graphical analysis of actual vs. expected model results shows that the population data already 

exhibit the expected shape, eliminating some possible methods of analysis. However, the model, 

particularly in its spatially constrained realisations, has sufficient predictive success (slides vs. 

not) to allow evaluation to concentrate on this particular aspect, and ignore the possibility of low 

success at high levels of uncertainty (a secondary method of defining uncertainty model 'suc

cess'). The use of zonal spatial limits creates the greatest increase in slide prediction success, 

virtually eliminating high FS values from the slide cells. 

One of the greatest difficulties with this type of analysis (as with any mass wastage modelling) is 

the problem of comparing the relative predictions of the model with the binary events of land

slides. Most studies fall back on simple percentages and cut-off lines for evaluation methods (e.g., 

a cut-off FS of 1.7 classifies 70% of slides correctly). The methods used here offer more informa

tion that can be used to evaluate other models or alternative realisations of this model. 

As for the new questions generated, there are numerous aspects of the data, the model and the 

underlying process(es) that can be illuminated through exploratory analysis. These might in

clude: 

• Working backwards by determining the realisation for each cell that gave best predictive accu

racy, then determining why the certainty factor was not optimised. This would highlight prob

lems with the soil database, the classification system or the model itself. 

• The use of border spatial constraints, such as 'nibbling' the edges of the slide zones to reduce 

inaccuracies caused by data errors, such as vector-raster conversion, or due to physical proc

ess, such as the outside edges of slides being 'dragged along for the ride' by the main failure. 

Similarly, a higher resolution dataset could also reduce these problems, though at the cost of 

reducing the spatial extent of the area modelled, or increasing the processing requirements. 
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• Examining where the average deposition area begins on a slide, and increasing model accu

racy in this way. By thresholding the model using different spatial constraints/variations in 

prediction accuracy could be used to determine the optimal way to represent a landslide in 

the database. Areas to investigate might include percentage area, slope effects, type of soil 

and nature of the deposition zone (slope effects have been noted by Fannin and Rollerson 

1996). 

5 . 5 . C O N C L U S I O N S 

This chapter has presented an evaluation of the slope stability uncertainty model developed and 

originally implemented on Louise Island. A high resolution database, detailing landslide timing 

and location on Lyell Island, was used to this end. For the most part, the evaluation focused on 

exploratory analysis of the data. Comparisons between various realisations of the model led to the 

conclusion that the worst-case-scenario version, coupled with spatial constraints limiting analy

sis to the upper 50% of slide zones, was the most effective for predicting slides with low variance. 

The second possible type of correct prediction—high FS with low variance—was not analysed due 

to the parameters of the population. A comparison of the model using its original parameters and 

a second run of the model with parameters updated through ground-truthing was performed. The 

changes did not appear to improve the model's predictive capability. 

The development, testing and application of uncertainty modelling, as presented in the previous 

three chapters, is perhaps the simplest part of managing uncertainty in forest inventory. The 

crucial, most difficult step is widespread implementation of such tools in resource management. 

Certain aspects of management would require changes if uncertainty in data were to be recog

nised and addressed. The following chapter 'caps' much of the technical work by briefly pointing 

out the utility of this research in a management context. 
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Chapter Six 

Discussion 

6.1.INTRODUCTION 

This dissertation has primarily been concerned with the development of techniques for storing, 

propagating, and in particular, verifying certain types of metadata. The work in this chapter 

focuses on the implications of these metadata, metadata manipulation techniques, and their 

verification in the realm of real-word natural resource management. The discussion will initially 

revisit the arguments used to justify this line of research, and then broaden out into the integra

tion of uncertainty models into natural resource management, with a specific focus on forestry. 

The importance of uncertainty model verification will be highlighted throughout. 

The broad discussion of uncertainty modelling in Chapter Two highlighted the fact that, in many 

natural resource applications, the traditional methods of analysis—based on a Boolean approach 

to data—are inadequate. A variety of uncertainty modelling methods are possible—one of which is 

demonstrated in Chapter Three. Much of the work in the remaining chapters has focused on 

verifying the inputs and outputs of this model, as well as the development of general techniques 

that allow this type of verification to occur in other uncertainty models. The final research ques

tion posed in the introduction is 'what are some of the implications [of these methods and tech

niques] for resource management decision making?' This is a rather open question, and has not 
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been posed with the expectation of generating a complete answer. However, as one of the under

lying themes of this research is the juxtaposition of uncertainty research with real-world data, the 

work would be incomplete without juxtaposing the general process of uncertainty modelling and 

verification with real-world decision making. 

There is a need for the integration of uncertainty modelling, both spatial and non-spatial, with 

natural resource management decision making. The first part of this chapter will focus on justify

ing this statement. To begin, there are already several areas where basic types of uncertainty 

modelling exist in the decision making process. These include high level 'risk management' and 

lower level metadata. Considerable research has focused on the former, and the topic will only be 

addressed peripherally here. The latter is a rapidly growing area of resource data management (in 

fact, most spatial data management); however, this effort is primarily in the capture and storage 

stages, rather than in the 'how do we use this information?' stage. A discussion of this topic—the 

data management aspects of metadata—can be found in Chapter Two (§2.4). Here, the issue is the 

implications for management. The latter part of this chapter includes a discussion of other 'future 

research' directions highlighted or generated by the research in this document. 

6 . 2 . R E S O U R C E M A N A G E M E N T 

Although 'resource management' is a term that has been part of the discussion in most of the 

preceding chapters, here the term will be broken down into specific components. As yet, the term 

has not been explicitly defined. One simple, generic definition is "a series of deliberate interven

tions in system processes" (lies 1994). Although this 'intervention' could include forcibly doing 

nothing (e.g., halting urban expansion to preserve certain habitat), more typically it involves a 

sequence of planned activities introduced at different points in space and time that focus on 

creating or maintaining a particular state of the resource (lies 1994). The goal, or 'state of the 

resource', is usually defined externally (e.g., government policy, societal values). In any case, the 

'activities'—the management strategy—are used to move towards this goal. 

In delineating the types of problems that uncertainty management and verification might ad

dress, it will be necessary to partition the topic of management into three commonly accepted 
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principal phases (or levels) often applied to both planning and management: strategic, tactical 

and operational. At each of these levels the problems, opportunities and constraints are some

what different. The following sections will focus on the management of natural resources, with 

most examples drawn from the forestry sector. 

6.2.1. STRATEGIC LEVEL 

At the strategic level the concept of uncertainty management has received a considerable amount 

of attention. Most strategic management and planning occurs at a summary level, with little 

spatial specificity. At the strategic level, 'risk management' is quite a common component of 

decision support, usually in the form of identifying risks in various categories that are associated 

with various alternative decisions or plans (e.g. Marshall 1986, Pollard 1994). For example, the 

economic risk of a shift in harvesting strategies might be determined using models of uncertainty 

in the economy, uncertainties in public policy change, and various other inputs. Decisions might 

be made in order to minimise risk, or to minimise risk while maximising profitability or stability. 

In a more specific example, the expected value of forestry restoration programs is often calculated 

using the expected value approach to risk management, in which biomass additions and other 

values are calculated using the 'best available evidence' to assess relative probabilities of different 

decisions (Scarfe 1997). Conservative estimates are used to ensure that societal aversion to envi

ronmental risks are captured in the estimate. Rather than simply guessing at these conservative 

values (e.g. -3% per annum social discount rate; see Scarfe 1999), uncertainty analysis incorpo

rated with risk management would provide this conservative approach with some actual variabil

ity data. 

Uncertainty in the types of spatial models dealt with in this dissertation are rarely direct inputs to 

strategic level planning. Most planning at this level involves tabular data, such as summaries of 

inventory by region or by type (e.g., Traas 1994). However, uncertainty management at the spa

tially-specific (lower levels) is a crucial, and often ignored component of these summary data. 

Even when they have been estimated, it is often difficult to combine uncertainty in the various 

components into an overall statistic. A clear example is the calculations that lead to an allowable 

cut determination (AAC) for regions British Columbia. In these documents (e.g., BCMOF 1996), 
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summary statistics are typically perturbed by a standard amount (± 10% in the example) and the 

calculations are repeated twice to set lower and upper bounds. Strategic decisions are then made 

based on the sensitivity of the model to each of the inputs individually. Uncertainty modelling and 

propagation have a clear role in a) identifying the actual variability in the figures, b) combining 

the various input variabilities through uncertainty propagation, and c) providing realistic esti

mates of the overall sensitivity of the models used. 

Uncertainty models also have a place in long-term strategic forecasting. In attempts to determine 

the future state of a resource based on the present situation and a chosen strategic management 

strategy, uncertainty modelling can play a role (in addition to that discussed above) in deciding 

just how far to trust the model. One question is: when do the data become 'buried' in their own 

uncertainty?, and another is: what is the actual uncertainty in the long-term supplies of a re

source? These are crucial strategic planning questions that properly verified uncertainty manage

ment models can help address. 

6.2.2. TACTICAL LEVEL 

The tactical level of management or planning generally involves a short or medium term view

point, a greater detail of planning than the strategic level, usually more spatial specificity, and 

increased reliance on spatially-specific data. In the forest sector, tactical planning focuses on 

inventory and inventory updates, the allocation of resources, and various short-range (i.e., 2-5 

year) management plans. Uncertainty management has the potential to be very useful at this level 

due to a) increased reliance on spatial data, b) increased variety of data required, and c) the 

emergence of multi-stakeholder decision-making systems. 

As plans become more complex and begin to draw on spatially-specific information, spatial uncer

tainty management becomes increasingly important. For example, in forest inventory and inven

tory updates there is currently little information available regarding the spatial distribution of 

uncertainty. Updates are generally performed at fixed intervals and on large segments of the 

inventory (delineated by political or cartographic boundaries). The incorporation of a verified un

certainty model has the potential to allow identification of specific areas that have high uncer-
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tainty, leading to spatially-specific updates. For example, uncertainty might be relatively high in 

areas that were originally inventoried from smaller (than normal) scale photos, or in areas where 

growth is relatively fast. This type of update has the potential to decrease costs significantly (see 

Appendix D for further discussion of this topic). 

At the tactical level a wider variety of data are required than at higher planning levels. For exam

ple, where strategic plans required a rough summary of the area covered by wetlands, tactical 

plans require knowledge of exact area values, and how these wetlands are distributed relative to 

other items. Similarly, tactical planning brings a number of different models together, such as 

growth and yield, slope stability, and regeneration models. Even if the uncertainty in each indi

vidual model is understood, what is generally lacking is the ability to bring these together at the 

landscape level. Verified uncertainty propagation techniques offer a way to perform this task. 

Another relevant aspect of tactical level planning is the gradual shift from a relatively simple 

process with one agency, company or individual making decisions to complex multiple-stake

holder processes. Although this is not the case in all sectors of resource management, in those 

where multiple-stakeholder processes have been implemented the requirement to thorough jus

tify planning decisions has increased substantially. These often-adversarial processes commonly 

involve different interest groups bringing their version of the resource data to the table, leading to 

arguments about data veracity (e.g., Basta 1990). The fact is, they may all actually be looking at 

the same data—with each group displaying a different tail of the variance curve. An understand

ing of data uncertainty, coupled with uncertainty models in which the actual distribution of that 

curve has been verified, could lead to a decrease in contention over this particular issue. Perhaps, 

in recognising the level of uncertainty in their data and models, such decision-makers (or commit

tees) might implement greater levels of conservatism in their decisions. 

This section has introduced several areas where uncertainty management might assist tactical 

level planning in resource management. There are also secondary issues—areas in which second

ary effects of uncertainty management would widen the scope of planning. One example is the 

development of temporal models (discussed in greater detail in Appendix D). Inventories used on 



146 

a tactical level time frame quite often are composed of different versions (e.g., 1995 version, 1999 

version). It is difficult, often impossible, to perform efficient studies of broad scale change-over

time using such a system. This may be due to scale changes (greater/lesser detail), variation in 

interpretation (e.g., polygon boundaries redrawn) and other similar issues. Temporal-oriented 

data storage (such as the simple example in Appendix E, or more complex temporal models such 

as those discussed in Langran 1992) increases the potential for change-over-time modelling. 

However, uncertainty in these temporal objects is a crucial factor that needs to be addressed. For 

example, if 10m satellite data are added to a lm airphoto-based temporal inventory, the level of 

uncertainty in the new information increases. If temporal databases do not track uncertainty 

using verified models, they stand to decrease their utility for analysis. 

6 . 2 . 3 . OPERATIONAL LEVEL 

At the operational level of management and planning, spatially specific uncertainty management 

has a decided, though often different, role to play. Much of this role hinges on the fact that 

resource sectors such as forestry currently have smaller profit margins than they have had his

torically and, therefore, decreased room for error in operational planning. One example is the 

decreasing supply of old-growth timber, leading to operations in forests of marginal profitability. 

Uncertainty modelling can potentially support operational planning in several areas: basic data 

gathering, modelling at fine scales, and highly specific inventories. 

Uncertainty modelling has the potential to assist operational level data gathering in a manner 

similar to that described in the previous section, although with a focus on large-scale data. By 

pointing out specific areas of high uncertainty (such as the polygon boundaries highlighted in the 

worst case scenario model in Chapter Three), operational planning can focus on gathering addi

tional data only in areas of high uncertainty. 

An example of the role that uncertainty modelling can play in fine scale operational modelling is 

found in Chapter Three. Knowledge of uncertainty in slope stability might lead to different deci

sions regarding road placement or the timing and location of harvesting. 
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Some forest resource management sectors are currently in the process of shifting to an opera

tional planning level lower than the accustomed stand-level management. In the usual stand-

level planning, it was assumed that errors tended to average out—offset each other when a number 

of stands were harvested. In the new, fine-scaled operational regime, operational plans that focus 

on selective removal will require a greater understanding of what actually constitutes a stand of 

trees. An understanding of uncertainty at the largest scale of inventory will be of increasing 

importance. This also applies to operational plan development. An increasing amount of planning 

and documentation is required in today's highly regulated resource sectors. It is crucial to the 

success of future plans that today's plans be correct in as many aspects as possible. If, for exam

ple, a visibility analysis indicates that the altered terrain will constitute 11% of the landscape, yet 

the actual visibility is 18%, future plans may be looked on with some scepticism. With terrain 

uncertainty and inventory uncertainty modelling, increasingly realistic operational planning esti

mates can be developed. Uncertainty management in general is of increasing importance in a 

leaner, information-rich operational management environment in all resource sectors. 

6 . 3 . U N C E R T A I N T Y M O D E L V A L I D A T I O N 

Uncertainty modelling can potentially address many planning and management issues at strate-

gic, tactical and operational levels. In addition, the validation of these models increases their 

importance in many ways. 

At the strategic level, risk management is gradually becoming an indispensable part of decision

making. However, there is a clear need for validation of the risks associated with different actions. 

This will not be an easy task, but it remains a crucial one. At both the strategic and tactical levels 

there is a need to evaluate decisions made on the basis of uncertainty information; not simply 

risks, but specific plans (such as allowable cut). The principal impediment is the difficulty in 

evaluating decisions made in different information environments without both (or all) decisions 

being made in comparative (e.g., double-blind) experiments. Without such experiments it is diffi

cult to tell what might have happened. 
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At operational levels validation is also important. Currently, 
High, , | | 

the '15.72157 ha of mature timber' type of answers that 

result from GIS-based analysis and modelling are mis

trusted—with good reason. GIS and associated spatial (and 

non-spatial) models must prove that their estimates are 
Figure 6.1. Typical graph of nor-

sound before they will be accepted at the operational level. mally distributed uncertainty 

For example, knowing that the level of harvestable timber 

is as graphed in Figure 6.1 might make for quite different operational planning than simply 

knowing the central number. The validity of those outside figures is as important as the central 

one. 

Through tests of expert opinion estimates of risk or uncertainty, we end up with both better 

models and, through feedback, better understanding of uncertainty. This benefit cannot easily be 

measured. However, when planners, managers or scholars are forced to revise their estimates of 

the quality of the data they work with every day, they may also be forced to revise their methods, 

plans and research tactics. In the same way, confirmation of their quality estimates may also have 

positive benefits. 

6 . 4 . F U R T H E R R E S E A R C H 

The sections above have each included several recommendations for further research directions. 

Each of the chapters have also included specific suggestions for areas in which further work 

might enhance understanding of uncertainty, or lead off into separate research streams. This 

section summarises these points and indicates relative priorities of the suggestions, with the 

presentation progressing from general to specific items. 

Research Programs. In reviewing the research literature in the general area of uncertainty man

agement of spatial data (Chapter Two), it soon becomes apparent that this field particularly lacks 

research programs. Many laudable individual projects exist; however, the diverse range of applica

tions (as indicated in documents such as the Proceedings of the International Symposium on Spa

tial Accuracy of Natural Resource DataBases, Congalton 1994) are rarely tied together in integra-
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tive programs. Verification of uncertainty metadata and models is a crucial element of such a 

program, and it is therefore hoped that the research presented in this document will assist in the 

development of such areas of study. 

Integration into Management. As noted in sections above, there are a number of specific areas 

where properly verified uncertainty models and uncertainty propagation routines would be of use 

in real-world management. Potentially useful areas of research include the verification of the 

probabilities and possibilities associated with risk management scenarios through tests where 

various outcomes of a decision are followed through to their conclusion. At tactical or operational 

levels of management, uncertainty verification work is required on a more task-specific basis, 

with the goal of allowing a manager to expect to encounter a specific level of uncertainty, enabling 

her to put detailed contingency plans in place to deal with all likely eventualities. 

Issues of uncertainty communication noted in Chapters Two and Three also have considerable 

impact on the integration of uncertainty modelling in natural resource management. When visu

alisation tools are developed (e.g., Fisher 1991b, Goodchild et cd. 1994), this process usually 

ceases at the demonstration stage. Verification research is required to determine a) if what the 

visualisation routines/tools indicate is correct, and b) that the impression of uncertainty levels 

provided by these tools to non-technical users is in line with the actual level of uncertainty. Work 

such as this is underway (e.g., Antle, in prep.); further efforts are required in various resource 

sectors and tasks. A shift in 'spatial understanding' regarding uncertainty can only be judged 

through its effects on policy, resource decisions, scientific hypothesis generation or other bottom-

line items. 

The integration of verified uncertainty models into real-world management is undoubtedly the 

most crucial research issue to be discussed in this section. Using this general issue as a target, an 

efficient research program can thereby be planned and executed, tying in the various tasks of 

modelling, verifying and decision-support integration. Initial test cases such as the projects dis

cussed in Davis (1994) and in Appendix E are needed to make decision-makers aware of the 
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issues and importance of this work. However, concerted, application-specific research is required 

in order to develop applications for real-world, day-to-day management. 

Uncertainty Model Input Verification. The research discussed in Chapter Four focused on 

verifying several of the inputs to a specific uncertainty model, based on a more general approach 

to verifying uncertainty models of classified and data. There are several possible research avenues 

that derive from this and the work on continuous data, including: 

• Performing exhaustive sampling in limited areas in order to verify (and therefore better define) 

the behaviour of class uncertainty in attribute space. 

• Performing comparative studies of slope representation in terrain models in order to deter

mine the probable reasons for the noted variations from estimated uncertainty. It was noted 

in Chapter Four that, given the available data, it would be difficult to determine whether the 

extreme terrain, the elevation data contractors, the slope modelling routine assumptions, the 

GIS algorithm, or some other factor (or a combination) is to blame for the discrepancy. A 

comparative study might be undertaken using one or more of the following: increased inten

sity of slope sampling, a variety of comparative areas in different locations and with different 

types of terrain and ground cover, a comparison of photogrammetric techniques, and GIS 

algorithm evaluation in variable terrain. Although some studies exist that compare various 

types of elevation models (e.g., Sasowsky etal 1992) or GIS techniques (e.g., Skidmore 1989), 
there is a lack of detailed ground evaluation studies, which has led to a potentially 'unhealthy' 

reliance on inventories such as TRIM. 

Uncertainty Model Output Evaluation. In Chapter Five the uncertainty model was evaluated 

using the Lyell Island data. A number of new questions were generated that might be answered 

through exploratory analysis or with a more extensive dataset. These include: 

• Working backwards by determining the realisation for each cell that gave best predictive accu

racy, then determining why the certainty factor was not optimised. This would highlight prob

lems with the soil database, the classification system and/or the model itself. This would 
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require a more extensive dataset than is currently available for the island in order to bring 

secondary factors into play. 

• The use of border spatial constraints, such as 'nibbling' the edges of the slide zones to reduce 

inaccuracies caused by vector-raster conversion. Similarly, a higher resolution dataset could 

also reduce these problems, though at the cost of reducing the spatial extent of the area 

modelled, or increasing the processing requirements. 

• Examining where the average deposition area begins on a slide, and increasing model accu

racy in this way. By thresholding the model using different spatial constraints, variations in 

prediction accuracy could be used to determine the optimal way to represent a landslide in 

the database. Areas to investigate might include percentage area, slope effects, type of soil 

and nature of the deposition zone. Once again, a higher resolution and more detailed dataset 

would be required for accurate determination of these factors. Some work on this topic has 

been conducted by Fannin and Rollerson (1996), who noted that deposition is generally trig

gered by a distinct change in slope gradient. 

Other Areas. A number of the techniques developed during the mass wastage database produc

tion and testing (Appendices D and E) led to possibilities for further specific research. These 

include: 

• The 'crossings index' was presented as a rough indicator of mis-registration under certain 

circumstances. In the text of Appendix D it was noted that a possible extension study would 

further explore the implications of line crossings relative to scale, digitising accuracy, and 

other factors. It was also noted that a more intensive study would be required to determine 

what the absolute implications of the crossings index number are (rather than the relative 

implications explored in the text). 

• In Appendix D an attempt was made at automating the image registration procedure. It was 

noted that new types of search algorithms would be required to complete this procedure in 

reasonable time, quite possibly requiring some degree of understanding of the human vision 
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process. A logical extension of this work would be a study of the visual clues used by a manual 

system operator to register images in a small number of steps, and to translate this into a 

computer procedure—possibly using expert systems or other learning algorithms. 

• A direct comparison between different terrain types focusing on similar targets would enable 

quantification of the apparent increase in accuracy of the ODFS registration in extreme ter

rain noted in Appendix D. 

Communication of Uncertainty. Uncertainty models, such as the model presented and verified 

earlier, are typically complex assemblages of data. Communicating these data to both analysts 

and decision-makers presents a challenge in the area of data visualisation. No standard, proven 

methods for display of uncertainty data exist. A number of techniques have been discussed in the 

literature; however, few implementations exist, and the majority of these refer to artificial or 

sample datasets. Exploratory visualisation of practical datasets focusing on real-world problems 

is required to further develop this research field. 

More specifically, an understanding of the implications of the results of an uncertainty modelling 

procedure cannot easily take place without visualising uncertainty measures in concert with the 

original data. For example, slope stability can be easily classified and displayed. However, there 

are many unknowns regarding how uncertainty in these data can be effectively communicated to 

a user accustomed to seeing crisp, Boolean-style data. Considerable research is needed in this 

area. 

More specifically, the numerous dimensions involved in a multiple uncertainty representation 

place an increased burden on the spatial analyst. The database is far more flexible than in the 

Boolean case, but flexibility is coupled with complexity. Uncertainty and error can be combined 

at the summary/display stage, but only in an environment where the users' needs are thoroughly 

understood. The wide variety of possible representations allows the database to provide just 

about any answer desired. Therefore, considerable work is required to determine just what 'rea

sonable' uncertainty/error values are and how these translate into reality in the field. At this 

point the concepts of risk analysis and acceptable risk come into play. Once the display has been 

calibrated with field data (e.g., green: safe, yellow: a reasonable possibility of failure, and red: the 
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near certainty of failure) using techniques such as those discussed in this document, it becomes 

possible for the user to set the desired risk level (e.g., 5% chance of being wrong) and proceed with 

an analysis. The term 'risk' implies that there are social, economic, or other factors interacting 

with the spatial uncertainty metadata in a decision-making context. This concept of 'acceptable 

risk level' may be easier for most users to interpret than the quantified uncertainty values used as 

internal representations in the database. 

The added dimensions available through the use of dynamic visualisation tools also place an 

increased burden on the cartographer. The purpose here is not simply effective communication of 

a particular message. The 'message' imparted through visualising uncertainty information is far 

less tangible, and therefore far more difficult to evaluate. A shift in 'spatial understanding' re

garding uncertainty can only be judged through its effects on policy, resource decisions, scientific 

hypothesis generation or other bottom-line items. 

In addition to the issues discussed above, visualisation tool development would benefit from user 

evaluations—not simply regarding cartographic communication, but through a simulated deci

sion-making scenario. The effectiveness of these tools can only be properly judged through a 

cross-comparison of decisions made based on different techniques, as well as comparisons with a 

control group using static, Boolean-based maps (for example see Antl'e, in preparation). It is likely 

that experience and innate understanding of uncertainty are already incorporated into many 

types of Boolean-based decisions. It will, however, be difficult to make predictions outside of 

particular application areas. 

Comments on Further Research/Implementation. Although this work has focused specifically 

on a slope stability model implementation of uncertainty modelling, many of the techniques devel

oped and implemented are also highly applicable to other types of natural resource modelling. 

First, the uncertainty model itself is generic in nature, in that it can encompass a wide variety of 

types of uncertainty, and acts as a shell around the process model. The basic requirements are: a 

good understanding of the nature of uncertainty in each of the model inputs, and the ability to 

interpret the extensive output of the procedure. In essence, the entire uncertainty modelling 
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procedure forces the investigator to develop a thorough and complete understanding of the data 

she works with. 

This research has indicated that the process of gathering expert opinion can be fraught with 

error, and that published error statistics are not necessarily trustworthy. The effort required to 

determine the actual values for uncertainty must be balanced with the depth of analysis required 

for the application at hand. There are many other possible ways of gathering this information; 

however, they too should be viewed with some suspicion if a precise accounting of uncertainty is 

necessary. 

Overall, it is important to identify and then concentrate on the specific types of uncertainty that 

affect the resource model to the greatest extent. Some of this information might be gained from a 

sensitivity analysis, while others will simply be common sense. However, because of the poten

tially multiplicative nature of uncertainty, the other types should at least be estimated and in

cluded wherever possible. 

6 . 5 . S U M M A R Y 

The discussion in this chapter has touched on a number of resource management areas where 

uncertainty management, and particularly uncertainty model validation, may be of use in solving 

problems or increasing efficiency. The issues are different at different planning or management 

levels; therefore, the discussion was partitioned into the three main levels of planning: strategic, 

tactical and operational. 

At each level, some of the more obvious implications of incorporating verified, spatially variable 

uncertainty models were discussed. As with the remainder of this document, forestry was utilised 

as the principal example of resource management. This sector's heavy reliance on data and mod

els of a highly spatially variable resource with numerous associated uncertainties makes it a 

prime example. No doubt, in other sectors there are many other implications of data uncertainty 

and verification for resource management. It is hoped that these examples will bring some of the 

relevant issues to the forefront. 



155 

Chapter Seven 

Conclusions 

7 . 1 . S U M M A R Y O F S T U D Y 

The new research discussed in this document and its appendices took place over the span of four 

years. The major tasks can be broken down as follows: 

Louise Island - Model Input Verification: Approximately six weeks were spent in the field gath

ering the data for this phase. Two of those weeks were used to gather existing data from various 

agencies in the Queen Charlotte Islands, two were spent on Louise Island and two on Lyell Island 

performing preliminary work for the next phase. In the lab, two months work went into develop

ing the systems and performing the preliminary analysis; another four weeks were spent develop

ing the visualisation routines for analysis and reporting. Development of the conceptual work 

took place over an extended period. 

Lyell Island - Model Output Verification: Lyell Island is located approximately 100km from the 

nearest roads, and 200km from the nearest fuel supplies. Access required 2-10 hours of boat 

travel (weather dependent). A single water circumnavigation of the island required 3-4 hours in 

good weather. Therefore, much of the field effort involved in this research focused on logistics. 

During the second field season three weeks were spent on Lyell (author and assistant). All travel 

on the island was on decommissioned roads (by foot). Survey equipment was carried to fourteen of 

the major landslides, and the slides were physically surveyed. A typical survey of a single slide 
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required 5-6 hours of hiking and 2-3 hours actually on the slide. Extremely remote slides were 

accessed via zodiac landings on highly exposed beaches. 

The aerial survey work described in Appendices D and E required a single day of effort, and 

approximately one week of logistics and preparation. The system was also tested in a separate 

area (in work that is not described herein), with another two weeks of field time required. 

Development and analysis of the Lyell data took place over two years. Approximately four months 

of full-time work (two months with an assistant) went into developing the orthophotos and the 

baseline database of mass wastage. Another three months were required for code development of 

the ODFS system described in Appendix D. Approximately two months were required to perform 

the rehabilitation case study described in Appendix E. As with the Louise analysis, the final 

analysis and conceptual work took place over an extended period. 

7 . 2 . R E S E A R C H Q U E S T I O N S 

The research presented in this dissertation has focused on the issue of uncertainty model verifi

cation. Specifically, the central research question was: c a n a n a t u r a l r e s o u r c e m a n a g e m e n t 

u n c e r t a i n t y m o d e l b e v e r i f i e d i n o r d e r t o e v a l u a t e i t s u t i l i t y i n r e a l - w o r l d m a n a g e m e n t ? In 

the introduction it was noted that there can be no simple yes or no solution, as there exists no 

simple statistic to determine if uncertainty as modelled equals uncertainty as sampled. As the 

research has shown, the issue of uncertainty model verification is a complex one; yet, through 

techniques such as exploratory data analysis, it has been possible to address the principal re

search question. 

The question was addressed by breaking it down into a series of manageable questions, each of 

which focuses on one of the 'verification boxes' in Figure 1.1. The questions are as follows. 

1. What are appropriate methods for modelling data uncertainty in natural resource manage

ment, making use of information typically available? 

This question was addressed in previous research, summarised in Chapter Three, and used as a 

model base for the following chapters. It was noted that there are several types of uncertainty that 
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must remain conceptually separate, but may be brought together in data summaries and queries 

of the resulting uncertainty model. A number of methods were discussed, and fuzzy sets were 

chosen for the test case (but only for particular types of uncertainty). 

2. How appropriate are these methods, and how can this 'appropriateness' be determined? 

Specific questions include: 

2a. How effective is gathering metadata from expert opinion? 

2b. How effective is gathering metadata from published variability statistics? 

The effectiveness of these two inputs to an uncertainty model was determined through ground 

verification of the modelled information. Methods were developed to allow comparison of sampled 

values with classification uncertainty levels, allowing the 'appropriateness' of the model to be 

determined. This development was the principal focus of Chapter Four, and was used in a test 

case to verify the model described in Chapter Three. Metadata gathered using expert opinion on 

soil uncertainty were found to underestimate uncertainty in all cases, with specific soil types 

exhibiting greater uncertainty than others. Therefore, it was concluded that expert opinion is not 

necessarily an ideal input to this particular model, and should be looked on with some trepidation 

in similar exercises. The results pointed to the apparent fact that soil scientists do not necessarily 

have a strong grasp of the overall level of uncertainty in the data they regularly employ. Uncer

tainty verification was shown to have considerable importance in 'tuning' this model input. 

Tests on the effectiveness of gathering data from published variability statistics also showed that, 

in the most important input to the test case model (slope stability), the published values underes

timated the variability found in reality. However, the tests also indicated that, in this case, correc

tions could be applied that would reduce this margin. 

The question of 'appropriateness' is not one that can be answered with a direct yes or no. The 

methods of modelling uncertainty did not, in their initial 'laboratory value' state, effectively reflect 

uncertainty on the ground. However, even prior to verification, they still—by definition—reflected 

the ground condition better than a standard Boolean model. The focus of the research was on the 

latter half of Question Two: 'how can this appropriateness be determined?' The methods devel-
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oped are applicable to a wide range of uncertainty models and data sources, and will allow the 

appropriateness of other types of data and models to be determined and compared. 

3. What are appropriate methods for propagating these metadata through to information prod

ucts (i.e., using a typical type of natural resource model)? 

4. How appropriate are these methods, and how can this 'appropriateness' be determined? 

The first question was addressed in Chapter Three, where a combination of techniques (fuzzy 

joint membership function and Monte Carlo simulation) were utilised to propagate dissimilar 

types of uncertainty through a typical model. The focus of this research was addressing the fourth 

question through the development of techniques to determine the appropriateness of this uncer

tainty propagation. Again, methods were proposed and developed that would be applicable in a 

variety of situations. Here, they were tested using the output of the slope stability uncertainty 

model. The principal issue was addressing the fact that the model predictions incorporate multi

ple realisations and variability data, while the verification data were back or white. The results 

showed that the uncertainty model and propagation methods were highly appropriate in develop

ing information products for a typical natural resource model. The information retained in the 

uncertainty modelling system allowed the slope stability model predictions to be of greater use in 

predicting slope failure with high certainty than the typical Boolean model. The fact that the 

uncertainty level in the Boolean model (in a typical application) is an unknown value serves to 

highlight the utility of uncertainty modelling procedures in general. 

In general, the methods used to answer Questions Two through Four also demonstrate appropri

ateness through greater flexibility. The uncertainty modelling and propagation techniques, when 

properly verified, serve to increase the number of questions that can be asked of the data—both 

the model source and results. This could lead to either increased utility for research, or wider 

practical applicability of data and models. 

5. What are some of the implications of the methods outlined in the above questions for re

source management decision making? 
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The final question is a more general one, and was answered in the previous chapter. The implica

tions are many and varied, and were broken down into three levels of planning. The implications 

of uncertainty modelling and verification at the strategic level are primarily non-spatial, and 

revolve principally around the task of'risk management'. Verified uncertainty models would allow 

the various possible outcomes of a decision model to be assigned metadata, increasing decision 

model utility. At the tactical and operational levels the spatial variability of uncertainty becomes 

more important. Here, one of the crucial implications uncertainty modelling is in understanding 

the data used for planning, possibly allowing planners to understand that, in some cases, many of 

the presented scenarios fall within the range of possibility. Verified uncertainty models may also 

allow planning for leeway in strategic and operational plans. 

Finally, returning to the overall question, it is apparent from the above research that a natural 

resource uncertainty model can be verified in order to determine its utility in real world manage

ment and, furthermore, one of the principal utilities of such a model is to allow greater flexibility 

and understanding of datasets and resource models by real world manager. However, this in

creased flexibility is combined with increased complexity. Communication becomes a crucial tool 

in bringing uncertainty models to the desktop of real world managers. 

The research presented in this document represents a major step in an overall research program 

intended to integrate uncertainty management into natural resource decision making. Uncer

tainty models, uncertainty model verification, and resource model uncertainty verification feed 

directly into management integration. With another piece added to the puzzle, it is hoped that 

research into the process of integration will continue to grow. 
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The Hard k-Means and Fuzzy c-
Means Algorithms 

174 

B o t h of t h e s e a l g o r i t h m s a r e d e s i g n e d to d i v i d e a n u m b e r o f i n d i v i d u a l s a m p l e s ( i n d i v i d u a l s ) i n t o 

l o g i c a l c l a s s e s . T h e f u z z y c - m e a n s v e r s i o n i s a g e n e r a l i s a t i o n o f t h e h a r d fc-means v e r s i o n , i n t h a t 

i t a l l o w s m e m b e r s h i p i n m o r e t h a n o n e c l a s s . T h e h a r d k - m e a n s a l g o r i t h m i s s t r u c t u r e d a s f o l 

lows . 

G i v e n a s e t o f n i n d i v i d u a l s ( s a m p l e s ) d i v i d e d i n t o k d i s c o n t i n u o u s c l a s s e s , e a c h i n d i v i d u a l i s a 

m e m b e r o f e x a c t l y o n e c l a s s . T h i s c a n b e r e p r e s e n t e d b y a n x f c m a t r i x o f m e m b e r s h i p s M = ( m ), 
ic 

w h e r e m = 1 i f i n d i v i d u a l / b e l o n g s to c l a s s c a n d m=0 o t h e r w i s e . T h e f o l l o w i n g c o n d i t i o n s a p p l y to 
ic 

a s s u r e t h a t c l a s s e s a r e m u t u a l l y e x c l u s i v e : 

k 

2 m fc = 1 ' i= 1 n w 
c=l 

Xm ,>0, c=l k (2) 
n=l 

mic e {0,1}, i = l n; c = l , . . . , fc . (3) 

In o t h e r w o r d s , t h e s u m o f a l l c l a s s m e m b e r s h i p s o f a s a m p l e i s 1, w h i l e t h e n u m b e r o f c l a s s e s i s 

g r e a t e r t h a n z e r o , a n d e a c h s a m p l e c a n o n l y h a v e a m e m b e r s h i p v a l u e o f 1 (be longs) o r z e r o (does 

n o t b e l o n g ) . T h e t h e o r y o f f u z z y s e t s r e l a x e s c o n d i t i o n (3), a l l o w i n g m e m b e r s h i p s to b e p a r t i a l . T h u s 

c o n d i t i o n (3) i s r e p l a c e d b y : 

m k e [ 0 , l ] , i= l , . . . , n ; c = l , . . . ,Jc. (3a) 

N o w t h e m e m b e r s h i p v a l u e s o f e a c h s a m p l e n o l o n g e r h a v e to b e o n l y 1 o r 0, b u t c a n fa l l i n 

b e t w e e n , a s l o n g a s t h e y s u m to 1 f o r a l l c l a s s e s . 

T h e h a r d - f c - m e a n s a l g o r i t h m m i n i m i s e s t h e w i t h i n - c l a s s s u m - o f - s q u a r e s e r r o r s f u n c t i o n J ( M , C ) 

u n d e r c o n d i t i o n s (1), (2), a n d (3): 

7(M,C) = X i>,,J2(x,.,cc), (4) 
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where C = (ccJ is a k x p matrix of class centres, ccv denoting the value of the centre of class c for 
variable v. 

X j = (xn Xjp) is the vector representing individual i. 

c c = (ccj.-".ccp) is the vector representing the centre of class c, and d 2 (Xj.cJ is the square 
distance between x, and cc according to a chosen definition of distance, further de
noted as d 2^. 

This function measures the distance from the sample to the centre of each class along each at
tribute axis, and calculates the sum of the distances squared. If the purpose of the procedure is to 
allocate a new sample to known classes, then the smallest of these distances determines which 
class it is assigned to. If the purpose is to generate the classes themselves, then the procedure is 
used iteratively, looking for a set of classes with the smallest within-class total error. 

The fuzzy generalisation employed in fuzzy-c-means provides the memberships with an exponent cp 
which determines the fuzziness of the solution. A value of 1 represents a hard partition, while 
values above this increase the fuzziness of the memberships. In other words, as values of this 
exponent increase, the 'fuzzy boundary' around a class grows, and samples that are distant from 
the class (in attribute space) are given higher membership values. 

If a value of 1 is used for cp, the solution is usually solved by iterative relocation of individuals to the 
classes as noted above. If cp > 1, then the solution can be minimised by iteration of the following 
equations: 

m,, = 
•2/(<p-l) 

k_ 

2l(<p-\) 
1= l,...n; c= l,...,fc (4) 

cc~—n c=l, . . . ,k (5) 

The main algorithm is as follows: 

1) c h o o s e the n u m b e r of c l asses k, 

2) c h o o s e a v a l u e for t h e fuzz iness e x p o n e n t <p, w i th <p > 1; 

3) c h o o s e a def in i t ion of d i s tance in the at t r ibute s p a c e ; 

4) c h o o s e a v a l u e for the s topp ing cr i ter ion e (e = 0.001 g ives reasonab le c o n v e r g e n c e ) ; 

5) ini t ial ise M = M q , us ing ei ther r a n d o m m e m b e r s h i p s or m e m b e r s h i p s f rom the hard- /c-means par t i t ion; 
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6) at iteration / = 1,2,3,... (re-)calculate C = C using equation (5) and M^; 

7) re-calculate M = M , using equation (4) and Cj 

8) compare M to M ; if <= e, then stop; otherwise return to step (6). 

By relaxing the 'hard' boundaries around classes, and allowing partial memberships in each class, 
the number of possible solutions becomes effectively infinite. The purpose of this algorithm is to 
look for a reasonable solution, rather than the best solution. 
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The field sites that were surveyed with GPS were also tested for GPS positional accuracy. The first 
site (Louise Islands) was surveyed with a Trimble Scoutmaster GPS in non-differential mode. The 
second site, the Lyell Island aerial and ground truthing work, was surveyed with the same unit, 
also in non-differential mode. Differential correction was unavailable (post-processing was also 
not possible due to the remote location of the sites). However, differential tests u>ere part of related 
research not reported in this document. This other research made use of a a Magellan Mark 10 
GPS, and was corrected to a station approximately 60km distant. For comparison purposes accu
racy tests were performed for both differential and non-differential co-ordinates. In both cases the 
methodology utilised was as follows: 

1. Tie in to the local survey grid via a control point. 
2. Take multiple readings with the GPS. For each site 2500 readings were taken at four 

different times during the day. 
3. Readings are processed as offsets from the known position. 
4. Statistics are calculated as below. 

( 

Standard Error is calculated as: Tf n -1 

s0.5 

(1) 

Mean Square Error = a = ((T2 + <J2

y J5 

(at 90% probability multiply by 1.520) 

Circular Standard Error is: ac = 0.707\(<72

x + <72 J~ 

(2) 

(3) 

at 90% probability this is the Circular Map Accuracy Standard (CMAS); multiply by 2.146. 

The following graphs show a random subset of the 2500 readings. They have a tested normal 

distribution. 



Figure B. 1. Random subset of the 2500 test points gathered for non-differential and differential 
tests. 



1 7 9 

Appendix C 

Cross Correlograms and 
Significance Tests for Sample 
Transects 

The tests summarised below (Figure C l ) are a t-test of the significance of the correspondence 
between the sample transects and the model. A 'y' indicates a significant correspondence, while a 
'n' indicates lack of significance. For example, the graph below (Figure C.2) shows the actual curves 
(the model and sample) that are compared in generating the cross-correlogram (next page) for type 
2, transect 2, which generated a significant t-test result of 5.45 when a lag of 1 and an Avg(9) 
smoothing was applied. 

Original Data Optimised Data 
Type Transect X-Corr Lag Avg(x) n DF ttest Signif? X-Corr Lag Avg(x) n DF ttest Signif? 

1 1 0.888 2 9 30 28 10.22 y 0.638 -4 5 30 28 4.384 y 
2 1 0.67 1 9 30 28 4.776 y 0.535 -4 5 30 28 3.351 y 
3 1 0.468 -4 7 32 30 2.901 y 0.801 3 9 32 30 7.328 y 
1 2 0.542 -2 7 48 46 4.374 y 0.24 -3 5 48 46 1.677 y 
2 2 0.635 1 9 46 44 5.452 y 0.565 1 9 46 44 4.542 y 
3 2 -0.0114 3 Raw 50 48 -0.079 n -0.14 1 Raw 50 48 -0.98 n 
1 3 0.093 -4 5 41 39 0.583 n 0.449 -1 Raw 41 39 3.138 y 
2 3 0.21 -4 9 39 37 1.307 n 0.35 0 7 37 35 2.21 y 
3 3 0.445 1 9 39 37 3.023 y 0.217 -2 Raw 39 37 1.352 n 
1 4 0.204 0 9 22 20 0.932 n 0.392 4 9 26 24 2.087 y 
2 4 0.7 -1 9 22 20 4.384 y 0.32 1 5 28 26 1.722 y 
3 4 -0.06 4 0 26 2A -0.294 n 0.559 2 9 26 24 3.303 y 

Figure C l . t-test results for the cross-correlogram and lag generating 
maximum correspondence between sample and modelled transects (5% 
signif.) 

Type 2, Transect 2 

Modelled 

Sampled (Avg. 9) I " 

Modelled 

Sampled (Avg. 9) I 

Modelled 

Sampled (Avg. 9) I 

/ \j -\ / v 

Figure C.2. Sampled and modelled transect example. 
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Introduction 

The research presented in this appendix focuses on inventory update in large-scale (i.e., limited 

area) projects. It involves the merging of several research streams: a subset of the uncertainty 

models discussed in some of the chapters, image fusion of dissimilar images in a GIS, and change 

detection in forest inventory. The questions addressed in this research are: 

• How can areas identified as 'uncertain' (e.g., out of date or lacking data relative to a particular 

application) in a spatial inventory model be efficiently updated? 

• How can data uncertainty be tracked through this process? 

• What other types of inventoried objects can be updated (i.e., other than polygons), and with 

what level of accuracy? 

This work has been placed in an Appendix to this dissertation because it represents a tangent to 

the overall theme of uncertainty model verification. The tools developed in this work are used to 

develop the landslide database used in Chapter Six to verify uncertainty model output. The data 

update tool development project stands on its own as a 'nested' piece of research. This appendix 

presents it as such. 

Updating Areas of High Uncertainty 

As noted in Chapters Two and Three, one major advantage of uncertainty tracking databases and 

modelling procedures is their ability to highlight areas of unreasonably high uncertainty (where 

'unreasonable' is defined through risk assessment). For example, data combinations such as those 

displayed in Figure 3.11 can highlight key areas where uncertainty is high and information is 

crucial. Given the spatial specificity of this information, it would be highly inefficient to attempt 

data updates through a complete re-inventory. A more practical solution would be to gather data 

only in the areas where uncertainty is high. However, this presents a number of practical prob

lems, chief of which is the issue of knitting these small inventories together into the bigger picture. 

Depending on the technique(s) utilised, the information might arrive with variations in scale, 

temporal variations, different levels of skewing error, and other types of variability. An update 

system will have to address the relevant types of variability in a more explicit manner than a 

standard inventory system. 
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For example, a particular stand of trees may have had its boundaries delineated in 1985 using a 

source with a spatial accuracy of five metres. In 1995, an update is produced using a system 

accurate to one metre. In the new data the stand boundary appears to have shifted four metres to 

the west. Unless there is spatially specific metadata available to indicate the 1985 spatial uncer

tainty level, this four metre shift will be considered to be an actual change in the dataset, when in 

fact it may be an artefact of the process. 

Chapters Three and Four focused on addressing uncertainty in basic terrain inventory data and 

in modelling routines; however, an update system has the potential to address a wider variety of 

uncertainties. For example, certain stands of trees grow faster than others due to species compo

sition, site situation, or treatments. In a growth model the uncertainty in the volumes of these 

stands increases over time at a higher rate than other stands, making them candidates for site-

specific inventory update. Similarly, high elevation areas or sections containing slow growing spe

cies could be updated on a much longer cycle. 

Unfortunately, although the technology exists, the potential for local inventory update has largely 

remained unrealised. This is due to both inertia in traditional inventory systems, as well as to a 

variety of technical factors. For instance, there is no quick way of registering a new air photo into 

an old air photo series and transferring observed changes into the inventory. Similarly, when new 

data are entered, the old and new lines will undoubtedly mismatch to some degree, generating 

slivers during comparison operations. 

Shifting the traditional re-inventory system to an inventory update system could produce consid

erable advantages in the area of forestry planning. First, an update system could drastically re

duce the costs of inventory or, if desired, make inventory more timely by allowing site-specific 

updates between major inventories. Second, by maintaining a standard baseline that is gradually 

altered over time, an update system would make a fully temporal database possible. Detailed analysis 

of change over time would be just one benefit of such a system. This baseline makes possible a 

third advantage: properly integrated temporal models of growth, terrain processes, and many oth

ers. Decision support systems would also benefit from this update system. Currency in informa

tion is perhaps the single greatest defect in decision modelling in this industry (Liu and Herrington 

1996). 

The tracking of uncertainty through the updating process allows the decision-maker to make a 

quantified risk assessment of factors such as 'cost of update vs. cost of being wrong'. It also inte

grates the update process into the overall process of inventory management under uncertainty. 
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Data Sources for Performing Updates 

One area where inventory update work is well advanced is remote sensing satellite image analysis. 

In this field, 'change detection' is the term used to refer to algorithms that allow spatial and at

tribute comparisons between images whose acquisition dates vary (e.g., Congalton and MacLeod 

1994). Although originally limited to the detection of small-scale changes due to sensor resolution, 

recent advances in have led to some large-scale applications in a wide variety of areas, including 

forestry. Change detection algorithms are particularly suited to determining overall percentage 

changes, as in 'a 10% decrease in wetlands in Chesapeake Bay'; however, they are generally less 

suited to repeated measurements of small spatial changes as required for large-scale forestry 

inventory work. 

Change detection using a spatial inventory as the base requires a close integration between re

mote sensing analysis software and GIS. The GIS maintains the spatial data, performs analysis, 

integrates with models and decision support tools and provides output capability. The remote 

sensing software focuses on satellite image correction, enhancement and spatial control. Accu

rate, high-resolution data, applied to a closely integrated remote sensing and GIS package, can 

make change detection possible at reasonably large scales. 

Yet satellites are not the only source of remotely sensed data. Aircraft mounted sensors can gener

ate extremely high-resolution datasets that are also useful for change detection. Aerial photos, 

digital sensors, imaging spectrometers, and digital video are some of the sources utilised. Aircraft-

based detection has several advantages over satellites. It can be of higher resolution, can be flown 

when required (rather than relying on satellite schedules), and sensors can be tuned for a particu

lar task. Yet aircraft-based detection is expensive. Specialised aircraft or instrument mounts are 

required, and in remote areas the aircraft may have significant transit times. This type of detec

tion is not generally suitable for smaller projects. 

However, one relatively inexpensive source of data is found in oblique aerial photography or aerial 

video. Oblique images have long been part of aerial photography; they are invaluable in helping to 

identify structures and objects on the ground. However, they have been of little use in constructing 

or maintaining spatial databases. With existing tools only a vertical photo can be registered to a 

planimetric database. An oblique image would require a much more complex system of registration 

that would have to address image depth, variability in skewing, and numerous other factors. How

ever, oblique images have the advantages of being inexpensive, quick, and useful under cloud 

cover and in extreme terrain. In this appendix techniques are developed to make use of oblique 

images as a data source for inventory update. 
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Tracking Uncertainty 

There are several reasons why measures of uncertainty must be an explicit part of a spatial data

base that will be used for inventory update. For one, it is necessary to specify the areas where 

uncertainty is high. Second, uncertainty must be tracked through updates in order to determine 

whether visible change is actual change. Third (and specific to the oblique data source), the vari

ability created by skewing an oblique image must be merged with existing metadata and newly 

added data in order to determine the uncertainty in the final product. 

The project presented in this appendix addresses the questions of inventory update and related 

uncertainty tracking through the development of an 'image fusion' system that is suitable for 

inventory update and change detection. The system developed herein is not designed to replace 

inventory or most re-inventory systems. Its utility is primarily in areas where site-specific updates 

are required between larger inventories, where regular updates are required on small areas, or 

where terrain and remote locations make other options too expensive. Uncertainty management is 

an integral part of the system, making possible both registration under spatial uncertainty, un

certainty tracking, and change detection decisions regarding artefactual vs. real change. 

Updating Other Types of Objects 

The system developed in this research focuses on the update of the boundaries of polygonal or 

linear structures. However, this image fusion system is also capable of addressing other types of 

measurements. For example, slope distance, ground distance, and the height of objects in oblique 

frames can be measured directly on the image. This makes possible other types of forest inventory 

with the system. A number of forest mensuration parameters typically gathered through ground 

survey can be measured. Other research projects will examine these applications separately. 

Background 

This section reviews three areas relevant to data update through the integration of oblique data 

with GIS. The first is 'change detection' as implemented in remote sensing applications and re

search. Change detection (as applied in remote sensing) is the analysis of several vertical images 

or photographs of a particular area taken at different time periods in order to quantify change. The 

second area is 'image fusion'—which refers to the merging of images of the same scene, but gath

ered with different sensors or at different times. In the application introduced herein, the two 

'sensors' will be an oblique image of a scene and a GIS-generated perspective view. The third area 

is 3-D digitising, which will be required to extract information from the 'fused' images. 
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Change Detection 

Remote sensing change detection uses two or more satellite or aircraft-based images (photographic 

or digital), spread over time, to quantify spatial or land-use changes on the surface of the earth. 

Change detection work was originally based on aerial photography and photo interpretation. Even 

the basic update of a forest inventory could be considered as change detection. However, the term 

is more commonly used in reference to digital images and algorithmic methods of automatically 

detecting change. 

Change detection in remote sensing is not a straightforward process of image comparison. Two 

images of the same location at different times will have numerous subtle differences in addition to 

any real change. Differences in illumination and slight differences in angle will create variations in 

reflectance. Therefore, a processing step is required before the images can be compared. For exam

ple, principle components analysis can be used to maximise data variance along principle axes. 

This process can separate out minor reflectance variation from forest cover variation, and then 

separate those factors from urban development. Other algorithms for change detection include 

image differencing (using a variety of bands—e.g., Estes et al. 1982), spectral-temporal change 

classification (Weismiller et al. 1990), and post-classification change detection differencing (e.g., 

Wickware and Howarth 1981). 

Change detection routines have been applied in many areas. The principle ones are the evaluation 

of land cover changes associated with urbanisation (Wickware and Howarth 1981; Ridd and Liu 

1998), desertification ((Robinove etal. 1981), and coastal zone monitoring (Congalton and MacLeod 

1994). In forestry remote sensing, change detection has been used for specific types of defoliation 

studies (e.g., Vogelmann and Rock 1988; Muchoney and Haack 1994), as well as more general 

woody land cover change (Ringrose and Matheson 1992). 

Despite the numerous advances in image analysis, change detection with aerial photography is 

still a useful technique. In some tasks photography is better suited to the target being modelled. 

For example, change detection of coastal and shoreline features may require special films and very 

specific timing to match tidal fluctuations (e.g., Ferguson et al. 1993 or Robbins 1997). In other 

cases historical data exists only as photographic images. And in some instances the high-resolu

tion available from photos is important (e.g., Csaplovics 1992). 

This latter example (Csaplovics 1992) discusses the integration of aerial photography with a satel

lite sensor in order to increase available information. This type of combination, generally termed 

'data fusion', is becoming a common remote sensing tool and analytical data source. 
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Data Fusion under Uncertainty 
The term 'data fusion' has typically been used in the design of advanced avionics control systems, 

or for the combination of several sensors in the field of image processing for computer vision (e.g., 

Crowley and Demazeau 1993; Mascarenhas etal. 1996). Typically, two or more representations of 

the same scene are registered to each other and the data about the scene are combined—leading 

to stereo computer vision, increased detail in radar displays, or simply more precise images. In 

most cases the two sensors being 'fused' represent slightly different versions of the same scene. 

For example, two radar antennas may operate at different frequencies, or two cameras may be 

slightly offset. In contrast, the research discussed herein focuses on the fusion of two very different 

representations of a scene: the archived, planimetric, stylised vectors of a GIS database fused with 

images obtained from oblique aerial video imagery. 

A number of researchers have explored the integration of remote sensing data with GIS data (e.g., 

Price 1992; KontoesetaL 1993; Harris 1995; Wilkinson 1996). Such work brings to light a number 

of issues, the main ones being positional ground control, grid rectification, and variations in cell 

shape and size. Minimising the loss of data through these procedures is a central goal. Such 

integration has generally been very successful, particularly in the case of pre-processed satellite 

data. In fact, the increasing availability of satellite data has made such integration crucial for the 

success of many GIS. 

Airborne sensors, operating much closer to the earth, do not generate data that are quite as easily 

integrated into the fixed grids used in GIS raster structures. For example, data derived from imag

ing spectrographic scanners may require considerable correction of aircraft induced registration 

problems (roll, pitch...) before even beginning the process of GIS integration. As sensors move 

closer to the earth, orthographic correction also becomes an important element of data pre-process

ing. 

Video 
Recently, airborne video cameras have been utilised as data gathering tools for a variety of pur

poses. Video frames are georeferenced with a GPS system, allowing data gathering without the use 

of precise flightlines. Used as multispectral scanners, they can provide relatively inexpensive data 

for many types of studies (e.g., King and Vlcek 1990). Airborne video has also been used in place of 

standard aerial photography in several situations: 1) where large areas need to be covered quickly, 

but the detail of aerial photography is not required; 2) where repeated images are required, and 

the cost of aerial photography is prohibitive; and 3) when quick production is required. Examples 

include Everitt et al (1993) identifying shrubs on rangeland, Graham (1993) mapping forest veg

etation, Estep et al (1994) determining seal size and location on ice floes, and a variety of others 

covering many of the topics formerly reserved for expensive sensors. 
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Most video systems do not offer the resolution available from aerial photographs (although high-

resolution video photogrammetric systems are under development, e.g., Peipe 1995; Thom and 

Jurvillier 1997). Nevertheless, video has carved out a large niche as a source of spatial data. For 

many projects, price and speed Eire of greater importance than resolution. Video systems are also 

commonly used to gather descriptive (i.e., non-georeferenced) information. Oblique video—shot out 

of helicopter doors or from remote camera pods—provides reference information for a variety of 

tasks. Foresters use video to examine cutblocks and monitor code adherence. Large sections of the 

province's coastline have been captured on oblique video, allowing rough estimates of shoreline 

type to be developed (Howes et al. 1994). Oblique video has a number of advantages over vertical 

video: 

1. oblique images can cover a wider area than vertical images; 

2. oblique images can be taken below cloud cover, when vertical capture would be impos

sible; 

3. the view obtained is more natural—allowing easier interpretation of landforms, vegeta

tion, and human-made objects; 

4. specialised camera mounts are not required, allowing almost any aircraft to be used, 

and allowing video gathering to be incorporated into other aerial work; and 

5. targets located on steep terrain can be relatively 'invisible' to a vertical image. An ob

lique image can capture a better representation of area and shape. 

The principle reason that oblique video is relegated to gathering merely descriptive data is that 

georeferencing and registration to spatial databases are not currently possible. For example, those 

using oblique imagery (photography) to detect change in cutblocks commonly utilise a series of 

pictures taken at fixed ground photo-stations. Such images can be compared over time, but actual 

area estimates are very difficult to obtain from these oblique images. Oblique aerial video is also 

often used as a preliminary survey technique; a quick over-flight and review of video leads to more 

detailed ground surveys. 

There is, however, sufficient information available to allow oblique imagery to be georeferenced. 

There are numerous video systems in use that store GPS data on video frames. Vertical video 

systems use these data to locate an image's nadir point, allowing registration to a spatial data

base. For oblique imagery, the aircraft location data, combined with camera angle and lens infor

mation, can be used to register an oblique image. 
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Image Registration for Fusion 

Registration is a fundamental task in image processing. It is used to match two or more images 

taken, for example, at different times, from different sensors, or from different viewpoints. Most 

registration tasks in geo-information processing involve tying an image into an existing planimet-

ric database (remote sensing/GIS integration tools), or registering two images taken at different 

times. However, registration is also used for many other purposes: military target acquisition sys

tems, robotic stereo vision for autonomous navigation, and aligning images from different medical 

sensors for diagnosis. 

A broad range of registration techniques have been developed for these various types of data and 

problems. These techniques have been, for the most part, developed independently in different 

fields. However, using a taxonomy developed by Gottesfeld-Brown (1992), three major groupings 

can be distinguished. The first group are techniques that address variations due to differences in 

acquisition. These differences (e.g., camera movement) cause images to be misaligned. They can 

be addressed by global or local translation techniques. The optimum translation technique for a 

particular application is determined by knowledge about the nature of the variation. For example, 

aircraft roll during sensor operation would be corrected using a series of local translations, typi

cally with specialised software. 

The second group of registration techniques also focus on image variations caused by differences 

in acquisition, but here, the differences cannot be so easily modelled. These include lighting differ

ences, atmospheric distortion or perspective distortion. The third group deals with variations due 

to differences of interest, such as change, growth or movement. Overall, the set of registration 

techniques chosen for a particular application must address the first type of variation while over

coming the second (which make an exact match impossible), and also avoiding removal of the 

third—the information content. 

In this project the registration problem falls under both the first and second of these major groups. 

The purpose is to register an oblique image of a scene to an oblique representation generated from 

a planimetric database. Differences between the two scenes will be caused primarily by differences 

in viewpoint position, angle, and frame size. Both perspective distortion and differences in acqui

sition (i.e., angles and viewpoints) must be accounted for. Other sources of registration error, such 

as DEM and other data uncertainty, must also be accounted for in the process. 

Both registration and data entry using an oblique perspective view generated by a GIS require that 

the image be accessible for co-ordinate input. This technology is not current part of any GIS. 

However, such systems are in place in other disciplines. 
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3-D Digitising 
Almost all terrain-oriented GIS are capable of generating perspective views of a surface. However, 

none incorporate the ability to use this representation of data as an input device to enable the 

registration and digitising of oblique images. These oblique images, including still photos and 

video frames, therefore represent an untapped source of spatial information. 

There are several reasons why oblique digitising presents a problem for typical GIS: 1) continuous 

variations in scale from the foreground to the background will create lines with varying levels of 

uncertainty; 2) hidden areas (terrain shadowing) must be explicitly dealt with; 3) registration of 

the image requires visual, rather than simply numeric alignment; and, on a more basic level, 4) 

with few exceptions GIS are not three-dimensional—the Z value is simply an attribute. All three-

dimensional procedures require translation from a 3-D conceptual space to the '2.5-D' spatial 

attribute space. 

The concept of three dimensional digitising is not new—it has gradually become an established 

technology in the area of computer aided design (CAD), biology (Uenohara and Kanade 1995), and 

nuclear medicine (Pietrzyk et al. 1995; Rusinek et al. 1993). Nevertheless, it remains both an art 

and a science (Wohlers 1997). Typically, specialised workstations are used to perform on-screen 

manipulation of images. Structures are stored as full 3-D representations in memory. Digital ma

nipulation of the object requires the computer to capture actions not only in the 2-D plane of the 

standard screen, but also using a pseudo depth. The user's action (e.g., clicking a point on screen) 

is translated into a vector that is extended into the 'depth' dimension until it intersects an object. 

A variety of translation functions are required for even the simplest manipulations. There are 

separate co-ordinate systems for each object set, the object environment, display, and the work

station itself. Hardware and software designers must also utilise the 'art' side of the system to 

make the 3-D environment comfortable and intuitive. 

Many of these problems are simply technical in nature. However, the variations in uncertainty 

represent a more fundamental problem. There are uncertainties in the database used as refer

ence, and uncertainties in the data to be digitised from. Rendering these data in an oblique display 

will create continuous variations in uncertainty due to variations in visual depth. For example, 

although uncertainty may be constant throughout the database, lines further away in the visual 

field will have narrower uncertainty bands around them. Secondly, the accuracy of 3-D digitising 

decreases as field depth increases, creating a complex visual environment in which uncertainties 

vary continuously, as does the 'product' of these uncertainties: the digitised line. 

This complex environment will require unambiguous uncertainty visualisation tools to allow the 

operator to 1) decide what is a datum and what is an artefact of uncertainty; 2) decide what is an 
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appropriate scale for visualisation to perform the most effective digitising, and 3) to decide how far 

'into' the image a digitising session should go (i.e., what is the limit of acceptable target distance). 

The combination of these three factors—an aerial video source, image fusion and uncertainty 

visualisation—make possible the effective combination of oblique and planimetric data in a GIS. 

Note that this term 'effective' refers to how useful the resulting data are for analytical purposes. 

For purposes of visual comparison over time, it may be of greater use to store the information in a 

multi-media database. 

Purpose 

The system developed herein has two principle purposes: 1) in the context of the work presented in 

this dissertation, the practical purpose of the system is to update a landslide database in areas of 

high uncertainty, leading to a highly accurate, current database of mass wastage and feeding into 

the work described in Chapter Five; and 2) at a general application level, to demonstrate a practi

cal application of uncertainty visualisation and management—the development of a tool that makes 

use of a data source for GIS that would, otherwise, be merely descriptive. 

An inventory update system capable of both tracking and capturing uncertainty is developed herein. 

The system is termed the Oblique Data Fusion System (ODFS). Its practical purpose is to enable 

planimetric inventory data updates from low-resolution oblique data sources, while tracking un

certainty through the process. The following sections of this appendix focus on development steps, 

problems encountered, tests applied to validate information, and tests of system application to 

various types of objects. The results of applying the tool in a terrain inventory update will be 

presented and discussed in Appendix E; however, as development occurred in concert with this 

application, much of following sections will employ examples from that study. The development 

study area, Lyell Island, British Columbia, is introduced in detail in Appendix E. Here it is deemed 

the 'test area'. The landslide areas used for the test are here deemed 'targets', as they represent 

any visible object with distinct boundaries. 

Methods 

After performing initial tests to determine the viability (i.e., the level of accuracy that could be 

obtained) of registering oblique images and GIS-generated perspective scenes, the following meth

odology is utilised: 

1. gather and choose appropriate frames from video source; 

2. capture, translate and view one frame; 

3. load nadir position from GPS data file; 
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4. generate a perspective view of the planimetric database using default nadir param

eters and overlay the wire-frame perspective view on the video frame; 

5. interactively manipulate the digital viewpoint until visual registration is achieved; 

6. visualise vector location uncertainty; 

7. decide on validity of registration; if invalid, either repeat from (4) or choose a new frame 

and repeat from (1); 

8. if new data are present (i.e., outside of uncertainty bounds) digitise new linework; 

9. gather localised information on registration uncertainty, apply registration uncertainty 

information to new linework, and store in vector database; 

10. merge new linework into original data and update topology as appropriate for the data 

type; 

11. if appropriate, verify linework and uncertainty by repeating from (2) using a different 

image of the same feature; 

12. continue from (2) with a new feature. 

Each of these steps is detailed in the following sections. 

Initial Tests 

The development of the Oblique Data Fusion System (ODFS) followed a series of preliminary field 

tests to determine the potential accuracy of the tool. A series of mass wastage zones, visible from 

aerial photography, were surveyed in the test area. Video frames were acquired from ground sta

tions at various angles and distances from the targets (Figure D. 1). 

Aerial photos from several time periods (1977, 1980 and 1990) were converted into orthophotos 

using TRIM planimetry (See Chapter Three for a discussion of these data source) and survey 

control points as the base. Mass wastage zones were digitised directly from these orthophotos. 

Digitising uncertainty was estimated at e = lm. When an orthophoto is skewed to a reference data

base there are areas of high and low correspondence. Although it would be ideal to capture this 

information and carry it through into later processes (so that it is possible to know the skewing 

uncertainty at any given point in the image), proprietary software routines make this task difficult. 

Lacking this information, a conservative estimate of the overall skewing uncertainty can be taken 

from the maximum error value. This number is deemed 'conservative' due to the fact that logged 

areas are typically rich in accurate control points, allowing maximal skewing accuracy in such 

zones. The overall epsilon distances (one SD for a normal distribution) for the images are: 1977: 

3.1m; 1980: 2.9m; 1990: 1.9m. The production of the images is described in detail in Appendix E. 
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Figure D . l . The initial test site, located near Powrivco Bay, Lyell Island. Slide 
Pv-4, one of the slides tested, is shown from two of the base locations used to 
compare image geometry. Shaded areas in the planimetric views represent 
forested areas. 

Using a GIS-derived perspective view based on the location data from the ground stations, the 

angle, zoom and other display factors (for the perspective view) were adjusted to bring the video 

image and the display into maximal correspondence (Figure D.2). Deviation values from key points 

were estimated on-screen (Figure D.3). The procedure was repeated with a second viewpoint (i.e., a 

new ground station and a new GIS-derived perspective view) and results compared. Over 95% of 

the lines (by length) fell within the epsilon distance of the most detailed image (1990). Additional 

statistics of correspondence are not available due to the non-Gaussian skewing uncertainty and 

the small number of samples available. Estimates of polygon area from the two viewpoints were 

within 7%. In comparison, digitising error could vary the area by as much as 5%, and slope area 

corrections would add 14% to the polygon area. Standard photogrammetric analysis (forest open

ings at 1:40,000) involves area uncertainty of approximately 6-15% (Ministry of Forests 1995). Two 

other test sites provided comparable values. Therefore, uncertainty in the 3-D digitising and ob

lique registration procedures for the test sites were judged to be well within tolerable limits set by 

data manipulation. 

Video Frame Acquisition 

Although any type of oblique image would be useful for data input, video frames were chosen for 

several reasons: 
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Figure D.2. M a t c h i n g a video frame (inset) w i t h the 
digi ta l representat ion of the terra in . C h a n g i n g the 
perspective v iew i s equivalent to m o v i n g , rotat ing a n d 
w a r p i n g the image w i n d o w . 

1. l o c a t i o n i n f o r m a t i o n c a n be stored w i t h the video data , or easi ly added d u r i n g post

processing; 

2. a c o n t i n u o u s series of frames are avai lable, so that a n y v ibrat ion-damaged images 

have m a n y replicates; 

3. image s t a b i l i s a t i o n technology is avai lable at m u c h lower cost for video cameras t h a n 

for st i l l - image cameras; 

4. video frames c a n be direct ly t rans lated into c o m p u t e r image formats. 

o ol 1 1 1 • 1 1 1 1 
0 10 20 30 40 50 60 70 80 

Distance along Border(m) 

Figure D.3. L i n e w o r k c a p t u r e d f rom video i s c o m p a r e d w i t h field sample points 
for sl ide Pv-4. 
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The primary disadvantage is the (relatively) low resolution of the images. An 800x600 pixel image 

was the maximum available after translation to computer image format. This disadvantage is 

offset by optimising distant-to-target as much as possible. It is also offset by (2) above. 

The video data were gathered using a Super-8mm one-CCD camera, with a time-code link to a 

recording GPS. Both differential (Magellan Ml0) and standard (Trimble Scout) GPS were utilised in 

the trials. The GPS data logging was performed on both the GPS and a laptop computer. A position 

was stored every second, using output sentences that included position, heading and elevation 

(Figure D.4). 

Helicopters utilised in the trials included both aluminium and carbon fibre bodies. The latter was 

found to be far more conducive to GPS data reception, given that aircraft regulations require 

internal antennae be used for ancillary equipment. However, in this project the GPS reception was 

found to be adequate (99% data recovery) for the aluminium frame as well. In other trials, using 

less sensitive GPS antennae, the aluminium airframe was found to block signals as much as 30% 

of the time. 

Although a single pass over each zone being imaged would typically suffice, in these trials a number 

of passes were taken at various elevations and target distances. Later evaluation showed that the 

camera/aircraft configuration that leads to maximum registration accuracy is (Figure D.5): 

• A maximum aircraft speed of 25-30 knots (slow enough to reduce buffeting). 

• The aircraft positioned at a point where a maximum number of reference points are in view, 

balanced with moving as close to the target as possible. These reference points include (in 

order of utility) roads (particularly in the foreground), ridgelines (above the target and in the 

background), rivers, and other planimetric data (e.g., cutblock boundaries). Coastlines were 

found to be less useful due to tidal variations. Running at just above the local maximum height 

Figure D . 4 . Schematic of the data gathering system for aerial video data. 
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Figure D .5 . Maximum registration accuracy is achieved using a balance between minimising 
target distance and maximising visible reference points. 

of land and approximately 800-1000m away from the target proved to be the ideal zone given 

the conditions in the test area. 

• A camera technique that involved both wide shots to establish reference points, coupled with 

zooms to capture detail. Although zooming is useful, if the aircraft is too far away from the 

target the image can easily be degraded due to sun glare, air disturbance or clouds and mist. 

Zooms of over 10X also reduce the usability of images due to camera vibration. 

Translate and View Frame 

Frames were captured from videotape and loaded as computer images, referenced by Greenwich 

time. GPS data were downloaded, differentially corrected if required, and stored in a tabular for

mat. Frames were chosen so that every target could be viewed from at least two positions if possi

ble. Frames were down-sampled to 640x480 without appreciable loss of quality (image blurring 

presented more of a problem than frame size). 

Although there was some supposition that the small lens of the video camera would introduce 

distortion into the image, tests (using various lens settings and a controlled grid target) showed 

that minimal distortion occurred at common lens settings. At long zoom settings the distortion in 

the image periphery was noticeable, however such lens settings were not used in the fieldwork due 

to vibration blur. In other applications using longer lens settings a focal length-based correction 

might be required. 

The geographic information system utilised for development of the ODFS was ARC/INFO. Display 

and user-interface oriented procedures were developed in the Arc Macro Language (AML), while 
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other procedures were developed using C language subroutines. All relevant code is available on 

the disk. The system was developed over a six-month period, with approximately four months 

related to development and two to testing and data input. The orthophotos and databases dis

cussed in this appendix and Appendix E took approximately six months of additional effort to 

develop. The only other researcher directly involved was a digitising assistant who independently 

duplicated the slide zone identification and digitising to assure accuracy in both crucial tasks. 

Load Nadir Position 

The nadir position of each frame is available through cross-reference to the GPS data file. These 

values are loaded automatically the first time each frame is loaded into the system. Subsequently, 

preference values detailing refined location, viewing angles and other information are saved and 

loaded in place of the nadir position. 

The original information loaded from the GPS file also contains aircraft heading information. These 

values are converted to camera heading (normally -90°). The downward inclination of the camera 

was separately gathered from the soundtrack of the tape (estimated using an inclination device 

attached to the camera), which had been patched into the internal aircraft communication sys

tem. A second value for camera heading was also taken from the soundtracks. However, the GPS 

information and an estimated -10° camera angle were found to provide sufficient information to 

initialise the registration procedure. Nevertheless, the audio system was found to be useful for 

tracking other ancillary information. 

Generate Perspective View 

For each image a wire-frame perspective view is then generated using the values loaded above. 

Initially, a large default area of the DEM is chosen for viewing (a square with a width five times the 

distance to target). This area can then be widened or narrowed based on target parameters. The 

perspective view is generated on top of the video frame. The ability to toggle on/off each layer of the 

database is provided, as are controls for grid density. As each target is in a unique situation, each 

perspective view is configured differently. Tests showed no ideal initial configuration (Figure D.6). 

Registration of Image 

The image is registered to the database through interactive manipulation of view parameters in 

order to achieve a visual match between the two. Two methods were attempted: manual interac

tion through graphical user interface (GUI) controls (buttons, sliders, etc.), and automatic regis

tration through iterative procedures. Manual controls were developed first, and then automated 

procedures were investigated. 
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Manual controls were developed which 

directly accessed view parameters and 

allowed for fast, interactive changes. The 

controls include: zooming, panning, tilt

ing, movement in 3-D space, target defi

nition, as well as changes in elevation 

model limits and resolution. These latter 

items affect the speed of display as well 

as the availability of background infor

mation to assist in registration. For ex

ample, a typical registration session is 

presented in Figure D.7. 

Ideally, this type of registration procedure 

would be automated. However, standard 

registration methods do not offer ready-made solutions to this problem. The primary area of appli

cation where this type of problem arises is in computer vision, where it is termed 'viewpoint regis

tration' (Keller 1997). In these robotic applications the general problem is the registration of im

ages taken from different viewpoints, with the application being depth or shape reconstruction of 

objects. Here, the methods primarily focus on feature correspondence. When a plane is the target, 

the problem is somewhat simplified. However, with 3-D targets, perspective and occlusion become 

problems (Figure D.8). 

Neither global nor local methods of transformation are applicable to this type of registration 

(Gottesfeld-Brown 1992). The changes in perspective that occur when the viewpoint is shifted are 

not amenable to direct calculation (in feasible time). Iterative procedures are called for. The target 

of an iterative procedure would be to bring a series of point-pairs (defined by the user to represent 

'from' and 'to' locations in the database and image respectively) into maximal correspondence 

through manipulation of viewpoint parameters. However, though the goal is easily defined, the 

route to the goal is not necessarily linear. Both perspective and terrain distortions make the goal a 

complex one, particularly in extreme terrain. 

There are a variety of search algorithms that have been developed or adapted for image registra

tion (summarised in Table D. 1). The implementation of one of these strategies to this unique situ

ation is a non-trivial problem, but an obvious goal if the system developed in this project is to be 

applied to a large number of images. 

In this initial implementation an iterative procedure was implemented that focuses on exploiting 

the spatial relations between features in a manner similar to the 'relaxation' method, though with 

F i g u r e D.6. The initial configuration of a frame. 
The unique situation of each target allows no stand
ardised configuration to start the registration. Some 
frames are close to their final registration, while 
others require considerable adjustment. 
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a 

Figure D.7. An example of image registration (simplified). Red lines indicate roads, green - slide 
boundaries and white - cutblock boundaries (turned off in d and e). From the initial position (a), 
the operator first moves the viewpoint to the right (b), then gains altitude (c). The image is then 
rotated (d) to complete the registration. In (e) the uncertainty in road vector location is visual
ised, indicating that the registration is generally within specified tolerances. The visualisation 
in (e) provides feedback as to where the session should end (i.e., return for effort expended 
begins to decrease). Lines are exaggerated for clarity. 
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Figure D.8. Although the arrangement of points on a 3-D surface will not change 
when the viewpoint shifts, their relative spacing will vary in a non-linear fashion. 
Points will also appear and disappear due to occlusion by intervening terrain. 

Search Strategy Advantages and Applications 

Decision Sequencing Improved efficiency for optimising rigid transformations 

Relaxation 
A practical approach for finding global transformations 
when local distortions are present by exploiting spatial 
relations between features 

Dynamic 
Programming 

Good efficiency for finding local transformations when 
intrinsic order for matching is apparent 

Hough Transform For shape matching of rigidly displaced contours through 
the use of'dual-parameter space' 

Linear Programming For solving systems of linear inequalities, used for rigid 
transformations in point matching 

Hierarchical 
Techniques 

Applicaable to speed up many other approaches by guiding 
a search through progressively finer resolutions 

Tree and Graph 
Matching 

Good for search minimisation using inexact matching of 
higher-level structures 

Table D. 1 - Search algorithms for image registration (adapted from 
Gottesfield-Brown 1992) 

a local transformation focus. The procedure accepts as input a series of point pairs from the 

image/perspective view that define from-to targets. It then uses a search order defined through 

observation of an operator using manual methods to produce target correspondence. It is purpose

fully designed as a 'forgiving' procedure (i.e., 'relaxed'), in that small deviations from the goal do not 

immediately force the abandonment of the current configuration. The general algorithm is as fol

lows (Figure D.9): 

1) Define target point pairs and step sizes, STEP; 

2) Calculate ground distance between pairs and produce an overall RMS statistic: TOTAL_ERR; 

3) Move the viewpoint STEP in direction -Z, and recalculate TOTAL_ERR; 
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Image 

Overlay 
Total Error = 10 Move In... Error = 14 Pan/Move In... Error = 5 

Move Up... Error = 2 Zoom Out... Error = 0.5 

Figure D.9. A simplified example of the iterative search algorithm imple
mented for automated registration. 

4) Repeat (3) ten times. If TOTAL_ERR continues to generally decrease, repeat (3) and (4). If TOTAL_ERR 

increases or stops decreasing, stop repetition. 

5) Repeat (3) and (4) in all 26 (3-D) directions. Retain the position in which minimum TOTAL_ERR is calculated; 

6) Pan the image STEP in direction LEFT, and recalculate TOTAL_ERR; 

7) Repeat (6) ten times. If TOTAL_ERR continues to generally decrease, repeat (6) and (7). If TOTAL_ERR 

increases or stops decreasing, stop repetition. 

8) Repeat (6) and (7) in all other 7 (panning) directions. Retain minimum TOTAL_ERR; 

9) Repeat the procedure using 'zoom' (2 directions), 'tilt' (2 directions), and stretch (2 directions). 

10) Repeat entire procedure from (3) until TOTAL_ERR is minimised. 

The implementation of this algorithm made possible automated registration of the oblique image. 

However, the time taken to complete the registration procedure was far in excess of manual meth

ods (on the order of 10 to 30 times). This difference is primarily attributed to the human capacity 

for visual processing. A human operator of the system can intuitively grasp the spatial relation

ship between the two scenes superimposed on the screen. The operator can then move directly to 

the registration goal in a small series of steps. The operator is also not deterred by an increase in 

overall error at intermediate stages, because they are aware of the path to the goal. The computer, 

however, lacks this intuitive sense, and so must explore a large number of spatial relationships 

while gradually approaching the goal. 

For example, in Figure D. 10 a typical situation the system operator might face is demonstrated. 

Figure D. 10b represents a target video image, while (a) is the current GIS-derived wire-frame per-
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Figure D. 10. Zooming and moving generate different image geometry, (a) Current view
point for reference; (b) Target image where a zoom (from (a) to this view) is appropriate 
(exaggerated for effect); (c) Target image where a move is appropriate. 

spective view. The purpose of the procedure is to manipulate the viewpoint of (a) until it matches 

the geometry of (b). Visually comparing the two, the operator would note the differences in overall 

geometry, where the lower section of (b) is elongated relative to its' upper section (when compared 

with (a)). This simple clue is all the operator requires to ascertain that the target is located on a 

slope, and that the lower section is closer to the viewpoint than the upper section. 'Zooming in' the 

viewpoint in (a) will create the distortion observed in (b). However, if the target is instead (c), the 

lack of relative distortion indicates that a simple 'move in' would suffice to change the viewpoint of 

(a) to match (c). This entire process is an elementary function (i.e., based on intuitive processing) 

for a human operator, but would require numerous iterations of the algorithm presented above to 

produce the same results. 

Intelligent search procedures and the introduction of expert systems and other learning algo

rithms would no doubt increase the efficiency of the automated procedure (e.g., Kontoes et al 

1993). However, such implementation is beyond the scope of this project. The automated proce

dure is currently part of the registration software, and is useful for 'fine-tuning' the registration of 

an image once the operator has manually performed a coarse registration. 

In order to speed up the registration system, parallel processing was implemented for visualisa

tion. The procedure utilised is as follows: 

1) Make all data available to other network computers; 

2) Poll the network for available GIS sessions; 

3) If X sessions are available, start remote processes that generate the next X likely viewpoints (e.g., the most 

likely is a repeat of the previous step); 

4) If the next step chosen by the user has been generated, load it directly; 

5) If the next step chosen by the user is currently being generated, wait for processing to complete, then load; 

6) Otherwise generate the next view locally, and repeat from (3). 
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The uncertainty in registration is quantified in a separate procedure discussed below. 

Uncertainty Visualisation 

The purpose of displaying uncertainty in this procedure is twofold: first, viewing uncertainty in the 

planimetric data used for registration will assist in determining if registration correspondence 

(i.e., RMS error) around the feature of interest has been maximised (RMS error minimised). If a 

section of a road in the image falls within the epsilon distance of its planimetric counterpart, 

further registration effort (for features in its vicinity) may be futile. Secondly, visualising uncer

tainty in the linework of the target (in this example the mass wastage boundaries) will enable the 

operator to determine if changes visible in the image are in fact new data or are simply artefacts of 

the database. 

The data for uncertainty visualisation were produced prior to this procedure. Data were gathered 

from global values published as metadata for the source data layers, as well as from skewing error 

associated with images used to update these layers. The data represent the epsilon distance (one 

standard deviation for Gaussian distributed uncertainty), and are stored in an attribute field. The 

metadata and the collection procedure are discussed in more detail in Appendix E. 

Several types of uncertainty visualisation are implemented in the system (Figure D. 11). The sim

plest provides a crosshatched overlay onto draped linework with a width epsilon. In the example, 

the slide boundaries have a crosshatched overlay (green lines) that visually demonstrate the un

certainty in their position. This type of overlay enables image data beneath the Crosshatch to be 

visible to the operator. A second method utilises dot density to indicate the probability of line 

location (red areas); providing more information about the structure of the uncertainty, but also 

increasing visual clutter. A third method using colour saturation bands was also implemented. 

Here, a user-defined number of bands are draw around the object, with the saturation of the 

colour indicating probability of line location (yellow). This third method produces a similar amount 

of information to the second method, while allowing some visibility of features occluded by the 

second. However, it substantially increases display processing time. 

Each of these methods was found to be useful in certain situations. For registration, the first 

method—crosshatching—is most useful due to its display speed. The second and third are both 

useful in the 'target growth vs. artefact' situation discussed above. The second is most useful for 

optimising speed of display, while the third is best for complex uncertainty or where precision is 

crucial. 
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3-D Digit ising 

A 3-D digitising system was developed to enable direct input of new information from the registered 

image to the planimetric database. The system functions as follows: 

A grid of x-y co-ordinates is drawn over the perspective view (drawing pen off) and the co-ordinates 

of each intersection, as well as the corresponding screen co-ordinates, are stored in a table. The 

density of the grid represents the resolution of the digitising session, and is user-defined. When 

the user digitises a line, each point picked on the screen is looked-up in the table, and the closest 

planimetric co-ordinate is entered into the (new) layer. 

The system is based on the concept of ray-tracing, but rather than tracing each digitised co

ordinate individually, all calculations are performed on the grid before the actual digitising begins. 

Although more calculations are required than for individual tracing, this method is the only one 

compatible with the GIS access routines. 

Figure D. 12 shows the digitising of a new landslide into an existing database (1:1200 scale, 0.5m 

resolution). All lines between points digitised follow the ground contours. 

All input is buffered, so the user can step back (i.e., undo) through the points already entered. Due 

to the availability of extensive editing facilities in the GIS, no on-screen editing has been imple

mented. Once input is complete, the user can edit co-ordinates in a separate window using a 

planimetric view. 

Quantify Registrat ion Uncertainty 

One of the principle problems with 3-D digitising is the variability of uncertainty across the visible 

image. For example, a digitised line running from the foreground (target distance = 400m) to the 

background (800m) would see digitising uncertainty (epsilon) effectively double along its length. 

There is also the problem of registration uncertainty which, as discussed above, will vary across 

the modelled surface. There is no global or local spatial transformation function to draw these 

uncertainty values from, therefore a separate function is required to determine the spatial distri

bution of this uncertainty. In addition, the routine described below also effectively captures the 

variations in the epsilon distance function along the digitised line. It is illustrated in Figure D. 13. 

1. The user enters a series of points to define the general outline of a working area in the 

model (to minimise processing time). 

2. Although the user has registered the wire-frame perspective view to the image as closely 

as possible, there will quite often be discrepancies between the two. Such discrepan

cies will commonly vary in magnitude and direction, depending upon the complexity of 

the topography, the resolution of the data, and other factors. There are certain loca-
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(a) 

9 ;30:57AM 

Figure D . l l . Various methods of displaying vector uncertainty, (a) crosshatching; (b) dot-
density; (c) saturation bands. Note: this 6-bit depth printed image considerably com
presses the colour range of the original 24-bit screen image. The width of each band or 
Crosshatch is also dependent on vector segment's distance from the vantage point. 

Figure D. 12. Digitising a new landslide into an existing 
database. Left inset - in progress; Right inset - completed 
polygon. 
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Figure D.13. Skewing procedure to quantify the registration uncertainty, (a) plan view of a 
well-defined existing object (square) and a new object (triangle); (b) perspective view of the 
objects; (c) the image of the square object is added (the wireframe is drawn over the image—the 
image is not draped); (d) point pairs are chosen between visible corresponding points; (e) a grid 
is generated; (f) the grid is draped (for illustrative purposes only); (g) each point in the grid is 
skewed using a distance-weighted function; and (h) numerical skew values are applied from 
the nearest grid point to the new object. 

tions in the image/wire-frame overlay where the discrepancies are obvious, such as 

river confluences, road intersections, or the corners of polygons. In order to capture 

these discrepancies, the user now enters a series of point-pairs, in which the first point 

refers to the image, while the second refers to the corresponding position on the wire

frame (Figure D. 13c). 

3. The two points in each pair are converted from screen co-ordinates to map co-ordinates 

through reversal of the projection process (similar to 3-D digitising). 

4. A north-south, east-west grid is generated (within the working area at a user-specified 

resolution; Fig. D. 13e-f). Each point-pair's 'from' point is matched to its nearest grid 

intersection. The vector (i.e., the distance and direction) of the pair is then used as one 

input to a skew function. This is repeated for each point-pair, and then the skew func-
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tion is applied to the entire grid. This 'skew' consists of all grid intersection points being 

shifted based on a distance weighted vector sum of all point-pair vectors (Fig. D. 13g). 

5. This new 'skew grid' is then compared with the original grid; the offset at each grid 

point represents an estimated epsilon variance for that area of the current image/wire

frame overlay. 

6. These values are then applied to each line segment of the newly digitised line (Fig. 

D.13h) 

Ideally, each cell that the line segment passes through would be averaged (weighted by sub-seg

ment length) to derive this overall uncertainty value. However, to simplify the procedure (and to 

speed it up to an acceptable rate) the grid value at the midpoint of each line segment is taken as 

'typical' for the entire segment. Given the digitising point density used in this application, the use 

of a midpoint is roughly comparable to the ideal value (as judged through trials). In applications 

where line segments are typically longer it would be necessary to either break the segments up 

(e.g., using a 'density' type of procedure) or alter this current procedure as discussed above. 

The effectiveness of this uncertainty assignment procedure depends upon both a careful choice 

and an adequate amount of point pairs. They must be defined in all working areas of the image, in 

areas of both high and low registration error. Users will typically focus on areas of high variance 

due to experience with standard planimetric registration point-pairs. A minimum number of pairs 

is therefore required by the procedure (8-20 depending upon grid size and density). 

For example, Figure D.14 shows the sequence of capturing uncertainty in the slide digitised in 

Figure D. 12. Frame (a) shows the user defining the working area for the skewing grid. Frame (b) 

shows the point-pair entry (the number of pairs has been minimised for legibility), and (c) shows 

the line variability (epsilon distance) displayed using a simple fill. 

Merge and Update Topology 

A standard planimetric database editor is used to clean up digitised linework and join it with 

original data. At this point polygon topology can be updated if desired. In Figure D. 15 the update of 

existing polygons using the ODFS is illustrated. Uncertainty data from the above procedure are 

now stored in the vector database, and can be accessed with the uncertainty visualisation rou

tines. 

Verification 

The validity of the linework generated by the ODFS was verified through several means. Ground 

survey, comparison with other representations, and several statistical techniques were utilised. 

During initial trials high-resolution (1:10,000) orthophotos were used to generate a database of 
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Figure D. 14. Steps involved in determining local skewing 
error, (a) Boundary points are defined for the working area, 
(b) Point pairs defining from-to positions are defined in all 
areas of the image, (c) Line blurring displays the results of 
the procedure. All lines have been widened for illustrative 
purposes. 
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mass wastage polygons for comparison. In 

Appendix E the construction of a substan

tial temporal database of mass wastage 

polygons from digital orthophotos will be 

described. Here, a subset of these polygons 

is used for comparison with the ODFS gen

erated data. The orthophotos are regis

tered to the provincial base mapping sys

tem: TRIM data (British Columbia terrain 

and planimetric inventory data). The RMS 

error in generating the relevant orthopho-

Figure D.15. Using the ODFS to add vectors to 
existing polygons. The new lines are displayed with 

Although the methods used to derive the skewing uncertainty saturation bands. 
orthophoto uncertainty value are de

scribed in Appendix E, presentation of some details at this stage is appropriate in order to facilitate 

understanding of the verification procedures. The software used to generate the orthophotos ('Or-

thoengine') reports error values for each control point, describing the mathematical convergence 

of the orthophoto model relative to the reference data. An overall summary is also provided. In 

registering the orthophotos, although summary (mean) error was held to less than four metres, it 

was apparent that this number was inflated by poor control point correspondence in heavily for

ested regions. Therefore, trials were undertaken in which orthophotos were generated for specified 

subsets (typical mass wastage regions) of the study area. The areas relevant to this study were 

registered with a maximum RMS error of ~2.3m. This number is therefore offered as the skewing 

uncertainty of locations derived from the digital orthophotos. 

Ground Survey 

Surveys were conducted in the test area using differential GPS to establish ground control, and 

standard survey techniques to complete all measurements. Seven medium to large well-defined 

mass wastage zones were surveyed. Two of these areas were withdrawn from verification work due 

to poor definition from aerial surveys (which would lead to misleading comparisons), and one area 

was truncated for a similar reason. The survey ground control was tested for accuracy against a 

known survey station, and a point location accuracy level of 2.8 metres (circular map accuracy 

standard; CMA) was derived (Appendix B details the methods used). 

Differential GPS ground control was utilised for the surveys due to a lack of readily available 

control points. The only existing provincial survey markers in the survey area are located at least 

three kilometres from the survey sites across difficult terrain. Ground control was established for 
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each survey site individually using a GPS shot at the in

strument location and a second shot at some distance along 

a opportunistically established baseline (see Figure D. 16). 

Using a total station, a series of sideshots were then taken 

as the flag-person made a circuit of the landslide. This 

method was utilised due to the extreme nature of the ter

rain; a closed traverse, though more accurate, was consid

ered too dangerous. 
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Figure D. 16. Survey methods 
utilised for surveys of mass wast
age boundaries. 

In this situation, distances from the instrument to the side-

shots and relative angles between the sideshots are high 

precision measurements (limited by instrument accuracy 

and operator error). However, the accuracy of the baseline 

used to establish absolute position of the survey points is 

much lower. For example (Figure D. 17), for a given baseline 

and an equidistant target, the positional error of the target is equal to the accuracy level of the 

GPS positions. An increased baseline length serves to reduce this number. Yet in the extreme 

terrain being surveyed it was not always possible to establish a baseline substantially larger than 

the target distance. In fact, with the target distance commonly over one kilometre, it was at times 

necessary to establish a baseline that was shorter than the target distance. 

S3 
Figure D. 17. Uncertainty in the survey baseline can lead to substantial 
uncertainty for survey shots, but only in reference to the overall relative 
angle of the survey. Distances and relative angles remain as precise as 
the instruments and operator error allow. 
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This problem was addressed in co-ordinate processing through rotation of the entire survey. The 

co-ordinates were rotated to minimise variability between the survey co-ordinates and the plani

metric database. As the target of the overall procedure is to maximise the relative accuracy of lines, 

this method was deemed acceptable for this application. All rotations used were well within the 

limits of angular error for each baseline situation. 

The epsilon bandwidth statistic is used to compare fusion system digitised lines and surveyed 

lines. All indistinct slide boundaries (i.e., not easily defined from imagery or aerial photos) are 

ignored; all others are compared in two ways. First, survey points are plotted as perpendicular 

offsets from the fusion system digitised lines (Figure D. 18). These results indicate that 90% of 

points fall within +2.5m. However, the points are not chosen randomly; they are intended to act as 

vertices of straight arcs that approximate the slide boundaries. A more useful statistic will be one 

that compares the arcs rather than just the points. The epsilon bandwidth statistic (Blakemore 

1983) is an appropriate way of performing this comparison. A extensive study of polygon boundary 

accuracy measures by the BC Ministry of Forests (Ministry of Forests 1995) noted that epsilon 

bandwidth was the most appropriate and useful method of summarising boundary accuracy. The 

statistic is generated by standardising the entire polygon boundary and the surveyed boundary to 

the same length, subsampling at appropriate intervals, and plotting the offsets. A line on the 

graph that contains 90% of the offsets is defined as the epsilon bandwidth. Other statistics for 

boundary inaccuracy such as MacDougall's (1975) H statistic (based on standard error, line length 

and map area) rely on an assumed normal distribution of error. As this is not the case, the epsilon 

bandwidth is considered the most robust (Chrisman 1989). 

The epsilon bandwidth statistic is calculated for the survey and polygon data, using one metre 

subsampling. Figure D. 19 shows a graphic representation of these offsets and the epsilon value. 

While the epsilon value approximates one standard 

deviation for a Gaussian distribution, it is more com

monly used for data with variable distributions due 

to its robust nature (Lodin and Skea 1996). A histo

gram of the data indicates that the distribution is 

non-Gaussian (Figure D.20). This is supported by the 

differing values for epsilon bandwidth (2.3m) and the 

standard deviation (1.7m). 

This calculated epsilon value refers to the deviation 

of the fusion system digitised lines from the best avail

able information regarding where the slide bounda

ries are actually located. Survey, differential GPS and 

datum errors are also factors, but have not been Figure D. 18. Survey points plotted as 
perpendicular offsets from the digitised 
lines. 
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quantified in this calculation. Although such quan

tification would be helpful in determining the overall 

uncertainty level, it is the relative errors that are 

important in determining the utility of the ODFS. 

Overall, the epsilon value of 2.3m is comparable to 

the CMA standard for differential GPS of 2.8m deter

mined through field tests. This indicates that, when 

optimal images are taken of well-defined (i.e., visible 

and good contrast) linear ground features, and regis

tration is not constrained by a lack of visible tie-

points, the accuracy of the ODFS is approximately 

that of a differential GPS survey. 

Comparison of ODFS and Digital Orthophotos 

Although statistical certainty tests for epsilon band

width have not been developed, it is clear that the 

number of comparisons available from the ground 

survey is insufficient to establish the validity of these 

statistics (57 original samples and -400 line sub-sam

ples at a lm spacing). The TRIM data used for ground reference do not include mass wastage 

polygons, and are therefore of no use in evaluating the system in this application. Therefore, a 

second stage of evaluation was undertaken. A random series of mass wastage polygons were cho

sen from the orthophoto-based database. Any polygons containing sections that were not clear in 

the original data (e.g., indistinct mass wastage boundaries due to low contrast ratios) or that had 

changed between the orthophoto date and the video imaging date were removed from the test. 

These polygons were then hidden, and the ODFS was used to digitise their boundaries from the 

video data (these data are hereafter referred to as 'confirmation polygons'). The resulting linework 

was then compared with the original (orthophoto-based) data using the same procedures as above. 

In this case, over 3000 sub-samples were available for comparison. Note that this comparison is 

between polygons generated from the high-resolution digital orthophotography and polygons gen

erated from the oblique fusion procedure applied to video frames. The comparison procedure is the 

same as that described in the previous section, with the exception of digital orthophoto generated 

polygons being substituted for ground survey-based polygons. 

The results are detailed in Figure D.21. This comparison results in an epsilon bandwidth of 3. lm. 

This indicates that, for well-defined features, clear video imagery and properly established regis

tration, 90% of digitised points fall within ±3. lm (at a 1:5,000 scale this represents 0.62 mm—the 

width of a typical line.) Again, distribution of the offsets is non-Gaussian. A median value of +0.7m 

Figure D. 19.. Epsilon values 
defined based on all perpendicular 
offsets. 
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Figure D.20. The frequency distribu
tion of offset magnitude. 



213 

10 

8 

6 

^ • c g ^ t c o c o o c o c D t c M ' s r 
c o ' c v i ^ o d ^ w ri 

Metres 

Figure D.21. Epsilon bandwidth and frequency distribution of re-digitised 
polygons. 

indicates that there was a small bias in favour of overestimating polygon area in the ODFS proce

dure relative to the orthophoto data. This may be due to digitising style or part of the registration 

process. It may also be caused by the errors in slope value resulting from TRIM data inaccuracies, 

as noted in Chapter Four. 

This accuracy value will obviously vary with distance to target, image quality and other variables. 

The slides chosen for this confirmation exercise had target distances that varied from 200m to 

1600m. This epsilon value therefore represents a rough approximation for typical circumstances. 

It is unlikely that target distances would vary far outside of these values in most situations. 

Area Comparisons 

Comparisons of polygon area between ground surveyed polygons, confirmation polygons and origi

nal (orthophoto-based) polygons were also compiled. Although these statistics are primarily de

scriptive, they focus on one of the crucial measurements used in many tasks such as forest inven

tory, terrain inventory and cutblock delineation. Area comparisons do not necessarily indicate 

accuracy of registration, since only 'stretching' will be highlighted. Offsets, shears and other trans

formations will not significantly affect area calculations. 

The areas of the four ground surveyed polygons that were eligible for area comparisons were all 

within 15% of the orthophoto-based polygons (the surveyed polygons were not included in the 

confirmation set). The use of just four polygons does not allow any conclusive comparisons. In 

contrast, the confirmation polygons provide considerably more information. 

Two tests are utilised. The first directly compares areas of the ODFS-derived confirmation polygons 

(new) and the orthophoto-based polygons (reference) graphically (Figure D.22). A regression line 

has been fitted to the data, confirming the above zero median value noted in the section above. The 

second (Figure D.23) shows the absolute difference as a percentage plotted against the original 
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Figure D.22. Confirmation polygon 
areas compared with original values 
(derived from orthophotographs). 
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Figure D.23. Percentage accuracy of 
confirmation polygon areas as a function 
of area digitised. 

area for each test polygon. This indicates that there is no obvious bias in area accuracy based on 

area magnitude (i.e., the percentage accuracy is not a function of absolute size). 

As a summary, 90% of all confirmation polygons fall within 17% of the area as determined from 

orthophoto polygons. The mean difference is 5%, with a standard deviation of 10.2%. As noted 

above in reference to digitising offsets, there is no evidence that the areas are normally distributed 

(Ministry of Forests 1995), so a robust estimate such as the former (17%) provides more informa

tion about variance than the latter. 

Line Crossings 

Area comparison is a rather brute-force method of determining the accuracy of the ODFS process. 

If, for example, the two polygons being compared are offset to a significant degree, the ODFS data

base update will be inaccurate, even though the areas of the two may be in complete agreement. 

The individual lines that make up the polygon cannot be directly compared, because, even if the 

two polygons are virtually identical, the vertices that construct them may be in different locations 

and have a different density. Other methods are necessary to estimate ODFS accuracy through 

polygon comparison. 

There are two major factors in comparing polygons in this application: how many vertices do they 

have (relative to each other), and how far are they offset relative to each other. The first of these 

factors—the ratio between the number of segments in the original and the re-digitised polygons— 

is an indicator of complexity. Assuming a similar input process and logic, a high ratio of original to 

new indicates a decrease in resolution; for example, the landslide or other object may have been 

digitised from an image taken a considerable distance from the target. A low ratio indicates an 

increase in detail. 
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The second factor—polygon offsets—is difficult to measure directly because the two polygons will 

typically have different structures. One possible surrogate measure is based on the number of line 

crossings, here termed the 'crossings index'. If the two polygons are accurately registered to each 

other, then the number of crossings will give a relative indication of offset. For example, the shaded 

polygon in Figure D.24a has another polygon (dotted lines) overlaid, but very closely registered to 

the first (both have 70 vertices). There is a large number of crossings between the two. However, in 

most cases mis-registration will reduce this number. For example, Figure D.24b demonstrates the 

relative reduction (68 to 19) in crossings due to a linear displacement in registration. In (c) the 

number is reduced to 12 when the registration has a scale displacement (in the ODFS this is might 

be due to a foreshortened target distance). If the number of crossings is presented as a ratio to the 

number of vertices, this 'crossings index' can be used to compare mis-registration of different 

polygon-pairs, and therefore act as an index of mis-registration 

Note that this reduction in crossings due to mis-registration is not a completely consistent proc

ess. In certain limited cases the number may actually increase. In extremely convoluted polygons 

it is possible that a very small rotation or translation would cause such an increase. A series of 

extremely sharp corners (e.g., a 3-vertex triangle) can also lead to increases. However, most poly

gons encountered in forest or terrain inventory are relatively simple in structure, and very sharp 

corners are not common. 

Prior to implementing this 'crossings index' for the ODFS-derived confirmation polygons, it is first 

necessary to determine how the first complexity factor mentioned above—the ratio of vertex counts— 

impacts on the index. If, for example, a decrease in resolution causes significant mis-registration 

(a consistently low crossings index), it will be necessary to account for the resolution change in 

determining ODFS accuracy. Figure D.25 compares the crossings index and the resolution differ

ence between polygons on a scatter chart. The randomness apparent in this chart indicates that 

there is no relation between the polygons that are offset (or zoomed) and the level of precision in 

Figure D.24. Misregistration can reduce the number of line crossings 
between two vector representations of an object, (a) represents two closely 
registered polygons; (b) shows an offset between the two, while (c) demon
strates a foreshortened target distance. 
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digitising. In other words, when the image had con

siderable registration error (low Y), there is no rea

son to suspect that it was caused specifically by a 

low-resolution image or long target distance. 

Therefore, the number of crossings relative to the 

number of vertices should provide a rough indica

tion of the mis-registration present. Figure D.26 

shows the distribution of this index relative to poly

gon area. A one (1) would indicate perfect correspond

ence between the old and new polygon, while num

bers approaching zero would indicate large offsets. 

This must remain a rough indicator, for it is unlikely 

that there is a linear relationship between the zero 

and one in this index (this question could make for 

an interesting digitising accuracy study). Overall, the 

data illustrated in Figure D.26 demonstrates that 25% 

of confirmation polygons have very high correspond

ence with their orthophoto-generated counterparts 

(using 0.9 as a cut-off), and none of the pairs have a 

crossings ratio much below 0.4 (where Fig. D.24b has 

a ratio of -0.3). Given that this index is a rough indi

cator of registration accuracy, further tests to deter

mine the actual implications of this value were not 

warranted (however, this is again an area for further 

study). 
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Figure D.25. Precision in digitising (as 
measured by the ratio between vertices 
in the old and new representations) is 
compared with a measure of offset error: 
the 'crossings index' (the ratio between 
the number of crossings and the number 
of vertices). 
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Figure D.26. The 'crossings index' (the 
ratio of crossings to vertices) for each 
polygon tested is plotted against the 
area of the polygon. Finally, one other factor that may influence these fig

ures is the absolute size of the polygon. If, for exam

ple, a relatively large polygon is being digitised, the fixed image size used in this fusion system will 

cause it to appear at a smaller scale than a small polygon. This may influence digitising precision, 

as determined by the crossing index. However, as shown in Figure D.26, there is no apparent 

relation between the crossings index and relative polygon size, so this factor can be discounted. 

Results Summary 
Overall, this confirmation digitising exercise has indicated that: 
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1. 90% of all ODFS digitised lines are accurate to within 3. lm of high-resolution ortho-

photo-generated lines; 

2. 90% of all ODFS-based polygon areas are within 17% of orthophoto areas; 

3. the mean area offset demonstrated by the ODFS is +5%; and 

4. line crossing analysis shows that 25% of confirmation polygons have nearly perfect 

correspondence (>0.9 index) with the originals; none were offset to any significant de

gree (<~0.4 index). 

Discussion 

The magnitude of the area variance (17%) may at first appear relatively high. However, in a relative 

sense this system does quite well. Trials by the provincial Ministry of Forests have indicated that 

errors in area derived from photogrammetry (1; 15000) are in the range of 6-20%, with considerable 

regional variability (Everitt et al 1991). Secondly, there is approximately a 7% error in area on the 

average slide in the study area (which has a slope of 21°) due to the slope-planimetric correction. 

While the oblique registration procedure accounts for some of this, undulations in the terrain still 

create an underlying uncertainty that cannot be reasonably corrected. 

This magnitude of area uncertainty is therefore typical of existing forestry analysis tools. Most 

studies of error in forestry mensuration note such errors, but indicate that overall totals are more 

trustworthy due to cancellation of over- and under-estimates. The mean of +5% found in this 

confirmation procedure is therefore more indicative of the magnitude of error that might be found 

in practise. 

Limitations 

The Oblique Data Fusion System is designed to be a low-cost, medium accuracy update tool, oper

ating in areas of either high data density or considerable topographic relief. Given these con

straints, the system displays some obvious limitations in operation. These include: 

Reliance on local registration: The system relies totally on the three-dimensional configuration 

of database objects draped onto an elevation model. It requires a certain density of data to estab

lish reasonable registration accuracy. The registration can rely on either topographic arrange

ment or key points in other data layers, or both. If both are lacking in a certain area, then registra

tion is impeded, and the resulting linework will be questionable. Although the uncertainty is docu

mented, a severe lack of registration points provides little data for even the uncertainty definition 

process. 

General increase in uncertainty: The system relies upon previously registered images and data 

for its own registration. Therefore, overall data uncertainty can only increase during an update 
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procedure. A series of updates, each relying on the former for registration, would eventually pro

duce a highly uncertain product through error compounding. This system is therefore best suited 

for interim updates between larger inventories or other primary data gathering tasks. 

Output of spatially variable metadata: While this type of data represents an overall increase in 

information content, most existing metadata management utilises single measures for entire data 

layers. For example, a data layer is often defined using a single scale, such as 1:20,000, to define 

its range of application. The ODFS output may be somewhat variable in effective scale across a 

single layer. Further processing of the data must explicitly take this limitation into account. 

Automated Registration: Ideally, registration point-pairs could be set up for each image, and a 

batch procedure run to complete all registration (overnight or in the background while digitising). 

An efficient search algorithm is required in order for registration to complete in reasonable time. 

Robotic/computer vision algorithms offer a starting point; however, such algorithms (e.g., Keller 

1997; Buzug et al. 1997) typically utilise one or two fixed positions and a search for shape match

ing in order to perform 3-D reconstruction. The search required here uses the reverse: a variable 

position and a fixed 3-D target. Definition of new search algorithms to solve this problem will quite 

possibly require some degree of understanding of the human vision process; therefore, expert 

systems and other learning algorithms may have some application. This is clearly an area for 

further research and development. 

Potential Utility 

There are several application areas where this system may be of use. Tests described above have 

focused on terrain inventory: delineating mass wastage zones and updating changes. However, 

any linear feature can be mapped with this system. 

Forest Openings and Updates: This system is particularly suited to mapping forest openings and 

updating changes on a regular basis. In a typical scenario, where a series of cutblocks are gradu

ally created in one general area over a period of years, this system would allow an extremely short 

update interval—keeping databases far more current than is presently the case. 

Road Networks: Any changes or additions to a road network can be easily captured with this 

system. New roads into virgin forest would present more of a registration difficulty; success would 

be dependent on other terrain or planimetric detail. 

Mensuration Data: Data gathering typically performed with manual cruising, such as tree heights, 

stem counts and species ID, is within the capabilities of this system. The oblique viewpoint, regis

tration geometry and 3-D input make interactive on-screen measurement of ground distance and 
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heights a possibility. Given sufficient resolution, species identification is also possible directly 

from the image. 

Buffer Size: Other ground measurement parameters (e.g., stream buffers required by forestry 

codes) can be directly measured from the image in a manner similar to tree height delineation. The 

registered elevation model makes ground distance measurements possible. This application has 

potential utility for code monitoring and other regulatory enforcement. 

The potential utility of the type of temporal database that the ODFS helps to make possible is 

illustrated in the latter sections of Appendix E. There, some initial temporal analysis is performed, 

and various components of the database are juxtaposed in a preliminary exploratory analysis in 

order to highlight the type of research these data can enhance. 

Conclusions 

This appendix has included a discussion of the development of an oblique data fusion system for 

input of oblique data to GIS-based planimetric databases. The system is made possible by uncer

tainty management techniques, which allow the variable registration distortion to be captured in 

the database. By tracking uncertainty, the utility of the registration and the data generated can be 

easily determined. A number of possible applications were discussed, including the capture of 

area objects. The costs of the system are far below air photo costs for comparable coverage; how

ever, the data has different utility, and so direct comparisons are difficult. 
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Appendix E 

Development of the Mass Wastage 
Database 

Introduction 

This appendix discusses the development of the mass wastage database used in Chapter Five to 

verify the output of the uncertainty model. An orthophoto-based temporal database is developed, 

and the Oblique Data Fusion System discussed in Appendix D is used to implement an update. 

The methods used for both tasks are described in detail. The development of such a database is 

not a trivial task; therefore, the latter section of this appendix includes an exploratory descriptive 

analysis of some of the information contained in this database, with the purpose of highlighting 

some of the possible applications of a temporal database based on the tools developed in Appendix 

D. 

This appendix also includes a detailed description and background of the study area used (and 

briefly introduced) in Chapter Six: Lyell Island. The background begins with an introduction to the 

issue of mass wastage in the general study area, the Queen Charlotte Islands (Haida Gwaii). 

Background 

Mass Wastage in the QCI 

Mass wasting constitutes the dominant geomorphic process in the coastal regions of British Co

lumbia (Clague 1989). On the Queen Charlotte Islands, a combination of high rainfall, strong 

winds and steep slopes result in an unusually high intensity of mass wasting. The term 'mass 

wasting' is used to encompass a variety of processes by which masses of soil, rock and debris are 

transported downslope primarily by gravity (Gimbarzevsky 1988). Mass wasting in the Queen Char

lottes can take a variety of forms, including rock and debris slides, debris avalanches, debris flows, 

debris torrents, and slump-earth flows (Clague 1989). There are two principle consequences of 

these processes. The act of transporting the debris can scour hillsides—at times down to the 

bedrock—and alter the site's physical characteristics. In commercial terms, site productivity can 

be considerably reduced. The second consequence occurs in the debris deposition zone, where 

rock, earth and woody debris can also alter site characteristics. Once a slide has occurred the 

altered flow characteristics of the site can trigger further slide and slumping events (Gimbarzevsky 
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1988). Debris accumulation, siltation and changes in flow are of particular importance to fish-

bearing streams. 

The high intensity of mass wasting found in the Queen Charlottes is not simply a function of 

structural and climatic characteristics. Two other major factors contribute: seismic activity and 

human activity. 

Earthquakes have played a major role in shaping 

the physiography of the Queen Charlotte Islands, 

primarily through displacement and landslides. Cur

rently (i.e., over the past 10,000 years), seismicity 

levels have been much higher than elsewhere in on

shore British Columbia, with the possible exception 

of Vancouver Island (Clague 1989). The impacts of 

these events have been greater than anywhere else 

in the province. Several of the region's major faults 

run directly under Lyell Island (Figure E. 1). The 

Queen Charlotte fault, found on the outer west coast 

of Moresby Island, is particularly active. 

Human activity—particularly forest harvesting and 

associated road construction—has considerable im

pact on the rate of mass wastage in the Queen Char-
r Figure E . l . Faults of the Queen Char

lottes. This fact has been noted by several studies of l o t t e ^ ^ ^ ^ (Source: Clague 1989) 
the region (Rood 1984; Gimbarzevsky 1988); how

ever, the relation has not been adequately quantified in either of these studies. The primary prob

lem with establishing such a relation is the scale of the mass wastage relative to the land base. An 

analysis of an area as large as the QCI utilising a database that can maintain (for example) 5m 

wide slides requires a technology that has only become common in recent years. For example, the 

Gimbarzevsky (1988) study utilised 1-km2 cells and air photo analysis. Such a study can provide 

general indications of slide frequency; however, the large cells generalise land use to a consider

able degree (e.g., a 1-km2 cell either contains roads or does not). Drawing conclusions about rela

tions between mass wastage and road building is inappropriate in such an analytical environ

ment. 

It is also difficult to draw conclusions about the relation between mass wastage and forest harvest

ing in general, given the methodologies used in these studies (and others in the general region). 

For example, a study in the Cascade Mountains (Morrison 1975) found that 7% of all slides oc

curred in undisturbed areas, with the remaining 93% occurring in logged zones. In contrast, the 
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Gimbarzevsky study reported the reverse: 10% in cut areas and 90% in undisturbed zones. This 

discrepancy does not necessarily reflect differences in regional character or logging technology; it 

is primarily a matter of differing methodologies. The former summary only looked at zones that 

actually contained slides and utilised air photos with a resolution of 1-2 m, while the latter looked 

at all areas, but based the work on 1-km2 grid cells. Other studies of mass wastage typically dem

onstrate similar variations. One might focus solely on disturbed areas and use satellite images at 

10m resolution, while another might focus on ground data, but use watersheds as the unit of 

analysis. Wide-ranging studies that utilise appropriate control zones to help establish causality 

are rare, and are non-existent in the QCI region. The amount of time and data required to perform 

such a study would be substantial. 

Despite these criticisms, the Gimbarzevsky study proves adequate as a general overview. The 

major conclusions of the study (relevant to this discussion) are that: 

1. The average number of failures in active slide areas is 2.6 / km 2. The rate falls to 0.8/ 

km 2 if the entire QCI land area is utilised. 

2. The estimated total area denuded was 12,500 ha, or about 1.25% of the QCI land area. 

In contrast, the more specific study by Rood (1984) found that failure rates could be as high as 30 

failures per km 2. Again, it is difficult to compare between studies due to differing methodologies 

and scale of analysis. Nevertheless, it is clear from both scientific and anecdotal evidence that 

road construction and clearcut logging affect mass wastage rates substantially. Although most 

authors assume that the QCI are the most mass wastage-prone area in the province, an inability 

to compare studies from different regions makes proof difficult, despite considerable visual evi

dence. 

This work focuses specifically on Lyell Island. As such, it only generates comparisons between 

disturbed and undisturbed areas in this relatively small area. However, through the use of exten

sive metadata, uncertainty tracking and precise georeferencing, databases should be comparable 

with similar studies in other regions of the Charlottes or elsewhere. This fine resolution will also 

allow the influence of logging and road building on mass wastage rates to be extracted from the 

data. 

Study Area—Lyell History 
Lyell Island is located on the east side of Moresby Island, in the southern Queen Charlottes (Figure 

5.1). Lyell consists of -19,000 ha of originally forested land. The central valleys and eastern sides 

contain(ed) the bulk of the merchantable timber, while much of the western side consists of smaller 

trees on thinner soil. While the west side of the island is relatively protected, the east faces directly 

onto Hecate Strait. This strait plays host to numerous winter storms, and is considered by mari-



223 

ners to be one of the more dangerous passages in North America. These storms typically strike 

Lyell from the south-east, and provide the rain and winds that trigger most mass wastage events. 

The island has been the site of extensive clearcut logging since about 1920. Originally, logging was 

conducted principally along the coasts. After a significant pause, the establishment of TFL 24 

(which covers the entire island and much of the surrounding region) in 1958 led to renewed cut

ting activity. The most recent activities began in 1976. In the 10 years between then and 1986, 

approximately 20% of the island's land base was clearcut. Over 140-km of roads were constructed 

to reach over 3,000 ha of timber, with a scaled volume extracted of just under 2 million m3. This 

timber would represent a gross market revenue of between $97 and $125 million (Ecosat 

Geobotanical Surveys 1989). Although cutting in the earlier part of the century had utilised tem

porary or floating camps, this more recent activity used a permanent camp at the south end of 

Powrivco Bay (central north shore). 

In 1985 the Haida Nation designated Gwaii Haanas as a Heritage Site under the Haida Constitu

tion, and in July 1987 Canada and British Columbia signed the South Moresby Memorandum of 

Understanding, which later led to the creation of Gwaii Haanas National Park Reserve / Haida 

Heritage Site. Gwaii Haanas includes all of Lyell Island, within a land area representing approxi

mately 15% of the entire Queen Charlotte Archipelago. Lyell Island was the principle focal point of 

the Haida campaign that brought about the creation of this protected area. Following the estab

lishment of Gwaii Haanas, it also became the focus of an extensive rehabilitation program. The 

agency responsible for the area is the Archipelago Management Board, or AMB. 

The most recent logging activities on Lyell have led to extensive slope destabilisation, resulting in 

numerous large landslides—many of which are visible from considerable distances. The camp and 

dump detritus in Powrivco Bay were both an eyesore and a source of substantial soil contamina

tion. The forestry company's figures showed that over 750 ha still required planting. The Ministry 

of Forests absolved the company of all responsibility for cleanup and restocking; the responsibility 

was passed to the AMB. They initiated a substantial rehabilitation program in 1989 and, over the 

next three years, spent over two million dollars on various components of the program. The data

base discussed in this appendix will also be used, over the long-term, to evaluate the success of 

this program. 

Methodology 

The overall purpose of the work discussed in this Appendix is to compile a mass wastage database 

at the best possible resolution (both temporal and spatial) for use in evaluating the output of the 

slope stability uncertainty model. A secondary purpose is to provide a case study of the effective-
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ness of the Oblique Data Fusion Tool discussed in Appendix D (note that the development tests 

used a limited subset of the case study data—a compromise necessitated by acquisition costs). 

The general steps in the methodology are: 

1. Evaluate the utility of available existing data sources for production of a high-resolu

tion georeferenced temporal database; 

2. Develop a 'baseline' database using existing sources, performing all corrections (e.g., 

referencing and orthocorrection) required; 

3. Gather aerial data for the ODFS tool; and 

4. Update the baseline database with the ODFS tool. 

Initial tests occurred in the summer of 1996. Existing aerial photographs were used to generate a 

landslide and cutblock baseline database for four different periods (1974, 77, 80 and 90) with a 

spatial resolution of under 1 m. In 1997, a single helicopter flight procured the video data, and 

several weeks of ground-truthing were performed for the purpose of system development. Data 

were extracted from the video frames using the ODFS. 

Data Sources 
The most important issue in developing the baseline database is that data must be carefully georef

erenced. Studies that provide area summaries, or those that use non-standard referencing tech

niques, cannot be revisited at a later date to determine either study accuracy or change over time 

(other than through general area summaries). Only when all relevant items can be spatially lo

cated and later relocated can a proper temporal database be created, allowing analysis such as 

change over time in relation to other spatial variables. 

Although considerable data are available through the AMB (and other sources), very little histori

cal data were explicitly georeferenced. Therefore, the first stage of this project involved determining 

the usability of the many data sources. These sources include: 

• air photos of varying resolution and coverage, dated 1964, 1974, 1977, 1980, 1986, 1989, and 

1990; 

• BC TRIM data (1:20,000, based on 1986 photos) including roads, rivers, cutblocks, coastline 

and photogrametrically-produced elevation points (~30m intervals); 

• inventory maps (forest cover) hand sketched onto mylar, dated 1975 and 1980; 

• AMB base map and thematic databases, based primarily on 1986 TRIM photos (1:65,000) and 

compiled by Westland Resources in 1994; 
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• summaries of a 1988 LANDSAT TM image (Ecosat Geobotanical Surveys 1989); 

• a 1991 LANDSAT TM image (30m, 7 band); 

• a 1992 SPOT image (10m); and 

• several timber harvesting history maps from Western Forest Products (1979 and 1985 plans). 

Aerial Photography 

The various aerial photography series provide the most detailed, unbiased data on cutting and 

landslide history. However, the resolution and coverage vary between series. Only the following 

series were used: 

1974 series: only exist as a compiled air photo mosaic at approximately 1:60,000. The mosaic was 

not intended for analysis, and therefore has not been orthocorrected or even lined up to match 

other data. However, it represents the only complete coverage of Lyell prior to the 1976 commence

ment of logging. It was therefore scanned and run through georeferencing and orthocorrection 

software. Area estimates could not be derived from this map, but the existence (or non-existence) of 

all major slides could be ascertained. This series therefore assisted in determining the approxi

mate natural slide rates. 

1977 series: provided partial coverage at ~ 1:18,000 in B&W. This series was digitised and orthoc

orrected (see below for georeferencing and elevation sources). 

1980 series: provided partial coverage at -1:18,000 in B&W. This series was also digitised and 

orthocorrected. 

1990 series: partial coverage in colour at 1:10,000, including all cut areas. This series was digi

tised in colour and orthocorrected. Figure E.2 details the extent of the three partial coverages. 

All photos were digitised with pixel sizes of approximately lm (1.2m for B&W, 0.9m for colour). 
Georeferencing and orthocorrection were accomplished using 'Orthoengine' software by PCI. The 

Figure E.2. Areal coverage of digital orthophotos. 
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1990 series consumed 2/3 of the working and processing time due to the detail involved at the 

higher photo resolution. An average overall RMS error of 4m was achieved. However, most of this 

error is confined to areas with standing timber due to a lack of georeferencing points. The primary 

landslide zones have an overall estimated RMS error of ~ 2.3 m. 

Elevation and Planimetric Data 
BC Terrain Resource Inventory Mapping (TRIM) data were utilised as ground reference for all 

orthocorrection work. TRIM data are extracted from 1:65,000 photos, but are given a resolution 

rating of 1:20,000. The quoted accuracy levels of TRIM planimetry are 90% of all well-defined 

features co-ordinated to within 10m of their true position. This corresponds to a circular standard 

error of 2.15m (SRMB 1990). These numbers represent the minimum accuracy standard for the 

data (quality can vary considerably between areas of the province due to the large number of 

contractors used to create these data). This level of accuracy might be a problem in dealing with 

individual points during photo correction and subsequent analysis; however, lines and area fea

tures also have a relative placement that helps to mitigate any inaccuracies. Even if the entire 

map sheet (TRIM data file) is shifted 5m from its true position, the features within will exhibit an 

accuracy relative to each other higher than 5m. Other accuracy concerns relating to the analysis 

of landslides will be discussed below. 

The digital elevation model (DEM) was developed from TRIM data as well. Points generated from 

digital photogrammetry are provided at approximately 30m intervals. A drainage-corrected digital 

elevation model was created for use in orthocorrection, landscape visualisation and analysis. The 

TRIM specification for these elevation points is 90% accurate to within 5m of true elevation. 

AMB Databases 

Relevant databases made available by the AMB include planimetry (TRIM data - 1986 vintage) and 

thematic databases for terrain and biophysical features. The thematic databases are based on the 

1:65,000 original TRIM photos (working resolution of 1:20,000), coupled with field observations 

within derived polygons. Data were collected in accordance with the Terrain Classification System 

for British Columbia (BC Ministry of Environment 1988). Surficial material and geomorphic proc

esses were derived directly from observations. Several types of terrain hazards were assessed 

based on these observed data, as well as derived values (such as slope and aspect). 

The biophysical database was derived in much the same way; however, the classification system 

used was developed specifically for Gwaii Haanas. Both it and the specifics of thematic database 

collection methodologies are described in detail in the Gwaii Haanas Ecological Land Classifica

tion (Westland Resources Group 1994). This project utilises portions of both databases in order to 

analyse slide characteristics. 
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Other Sources 
Other available data sources include satellite coverages (LANDSAT, SPOT) and a variety of engi

neering and thematic maps generated by both forest companies and rehabilitation contractors. 

Satellite data sources were considered too coarse-grained to be utilised in this study other than for 

general reference. The original 1:5,000 mylar sketch maps used by the forest company for their 

initial inventory in 1975 were examined and tested. However, they did not utilise any standard 

georeferencing method. With a great deal of effort these maps might be skewed to fit existing data, 

and the effort would be justified if details of the original forest cover were required for a study. This 

effort was not deemed worthwhile for this project. 

Maps of cutting activity (covering several periods) generated by the forest company and in subse

quent studies also lack georeferencing. Attempts to digitise and skew them in to fit existing data 

proved futile; it appears that these maps were based on road engineering sketches of the island 

and were never intended to be combined with other data. They are useful for general reference, but 

not for analysis. A series of strip charts generated by rehabilitation contractors were based on the 

same base-maps and suffer from the same deficiencies. Although numerous efforts were made, 

these maps proved impossible to accurately georeference. 

Baseline Database 
The three airphoto series whose coverages are illustrated in Figure E.2 (1977, 1980 and 1990) were 

used in combination with TRIM data to generate three orthophoto mosaics. These were then used 

in combination with other data discussed above to generate GIS vector layers detailing visible 

mass wastage, visible cutblocks and road updates. This section provides details of their lineage, 

accuracy, contents and structure. 

Description 
Orthophoto Mosaics: The coverage of the three mosaics was described above (Fig. E.2). Georefer

encing was accomplished with TRIM data and a TRIM-based elevation model. Problems encoun

tered in the georeferencing process were primarily due to inaccuracies in the TRIM data. Coast

lines and road intersections were generally trouble-free. Road endpoints were commonly found to 

be troublesome (i.e., inaccurately georeferenced and of limited utility), as were some of the rivers. 

Taking these issues into account, the final product represents a compromise between skewing 

accuracy and visual accuracy. Unfortunately, even though TRIM planimetry is known to be error-

prone, it is the current de facto standard baseline; there is no other 'truth' to refer to at present. 

The 1990 colour series is the most detailed and accurate of the three due to the larger scale of the 

photos. Over 300 ground reference points were used to reference the images, and over 500 tie 

points were used to knit them together. For all images the overall RMS error is under 4 metres, but 



228 

much of this error is due to a lack of reference points in unlogged areas. Points in the cut areas 

have average errors less than this value. This number was estimated at ~2.3m through separate 

trials as discussed in Appendix D. 

Mass Wastage: All visible mass wastage zones were digitised from each mosaic into (initially) three 

separate databases. In order to ensure the accuracy of these data, each air photo used in the 

mosaic was exhaustively examined by two independent analysts using a stereoscope. All mass 

wastage polygons required agreement by both. These polygons were dated by mosaic date, and 

then overlaid into a single coverage. 

Each polygon was then examined with the following data in-hand: rehabilitation slide-seeding 

records and maps, forest company reports detailing slide occurrence dates (with rough sketch 

maps), pre-1976 air photos, and records of extreme weather events. From these, each slide's date 

of occurrence and, if applicable, date of disappearance (i.e., regrowth to an 'non-disturbed' status) 

were estimated and entered. It should be noted that these values were entered conservatively. For 

example, many of the slides dated with a 1990 occurrence no doubt happened during the numer

ous storm events in the mid- 1980's. However, if no concurring evidence was available, dates were 

left as 'first noticed'. This has certain implications for analysis, and will be discussed in later 

sections. 

Only obvious artefact slivers were removed from these polygons in order to facilitate analysis. 

Some of the remaining slivers are due to overlay (i.e., they represent the same line), while others 

represent growth (or shrinkage) of slides. These were dealt with on an individual basis during 

analysis. 

Subsequently, each slide was examined in light of other data, and fields were coded based on the 

following criteria: source (natural or logging); impact on streams (scouring, side impact, or direct 

scouring of potential fish habitat); type of event (mass movement or road sidecast); and relation to 

roads (triggered by road or not). These items were not coded based on automated analytical crite

ria, but were coded individually taking all available data into consideration. Unfortunately, as 

there existed no standard reference or numbering system prior to 1990, much of these incidental 

data were not useful in database construction. For example, knowing that 20 slides occurred in 

Nov., 1988—but not which slides—does not assist greatly in database coding. 

Aerial Video Update 

Aerial Data Gathering 
The aerial video data gathering for the 1997 database update took place in late July of that year. 

The weather was overcast, with numerous low clouds and occasional rain. A Bell 206 helicopter, 
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rear left door removed, spent approximately 2 hours over Lyell gathering the data. All slide areas 

and cutblocks were flown at least twice, and all other potential slide areas were surveyed. Given 

that the system was under development, a number of different speeds, elevations, and distances to 

target were utilised. In a practical exercise all relevant data could have been gathered in 45-60 

minutes. 

The camera utilised was a Sony Handicam—a high-end one-CCD consumer model with optical 

image stabilisation. Earlier tests had indicated that the higher resolution offered by professional 

(three-CCD) cameras was not required, and the lack of standard image stabilisation technology in 

these cameras actually reduced the quality of most frames relative to the one-CCD model. The GPS 

data were captured to a laptop computer during the flight; however subsequent flights have uti

lised internal GPS memory only. Differential correction was not utilised in this test. It has been 

used in subsequent work, and found to speed up the georeferencing process to a small degree. The 

use of differential GPS did not increase overall accuracy of the captured linework. 

Image Registration and Data Capture 

Over 420 video images were captured from the tape and registered using the ODFS system de

scribed in Appendix D. Images were chosen based on minimal blur, target (landslide) centring, and 

optimal viewpoint/target geometry. Landslides were digitised using the ODFS system, and any 

with questionable geometry (e.g., not centred in frame or captured from too low/high an angle) 

were checked using a frame with a different viewpoint. 

Several additional factors were incorporated or dealt with during this procedure that were not part 

of the initial testing. 

1. It was found that the image was often rolled forward or backward relative to the refer

ence ground plane (i.e., helicopter pitch or camera roll). Although the database could 

be rotated, a much simpler approach was used: interactive rotation of the image be

came one of the final steps in the registration procedure. 

2. Tree height values were added to ground elevation values through the use of an 'age' 

parameter in the cutblock database. In retrospect, a more sophisticated ground cover 

database might have increased the accuracy of the registration process. This change 

would have to account for variations in tree height around watercourses, variations 

due to soil quality, etc. Forest inventory maps coupled with cutblock information could 

be utilised if available. 

3. In a GIS-based perspective view the more accurate the rendered surface is, the slower 

the image is to display. The most effective method employed in the tie-in process was 

gradually working up from a coarse to a fine display as parameters tightened. 
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4. The outer edges of both images and perspective views—particularly foreground areas— 

are prone to greater error due to both lens distortion and perspective algorithm inaccu

racies. Images were chosen that did not have crucial data in these areas. 

5. It was found that errors in TRIM planimetric data and errors in orthophoto mosaic 

registration could create discrepancies. These problems are dealt with in more detail in 

the following subsection. 

Overall, comparative work has shown that the high relief environment is of particular advantage 

in tying-in the image data. The presence of numerous ridgelines and incised streams and valleys 

greatly increased the speed and accuracy of the process. If a planimetric vector (e.g., a road) were 

visible in the foreground, the height of land visible above the target, and at least one peak or ridge 

visible in the background, then precise registration could take place very quickly. This level of 

precision refers to locating the aircraft to within 3-5 metres of its true x,y,z co-ordinates. The levels 

of precision of the baseline data and of the display process itself preclude tuning the parameters to 

a finer degree. 

Ground Truthing 
Ground truthing for this update was performed in concert with system development. All relevant 

details are described in Appendix D. 

Results 

The principle result of the above procedures is a detailed database of landslides in the study area, 

covering over 22 years of history (likely closer to 30 years based on slide visibility persistence), as 

well as an elevation and slope model. These data are used in Chapter Six in validation tests of the 

slope stability uncertainty model. However, a detailed temporal database such as this has a number 

of other uses. The following sections present a brief exploratory analysis of these data, with the 

purpose of highlighting the potential utility of the ODFS tool, and the level of detail available from 

these data gathering method. This information is not intended to represent a thorough analysis; 

instead, it is meant to offer possible directions for further study. It is also intended to point out why 

regular incremental update of information (rather than very occasional full re-inventory) is of 

considerable use in temporal analysis. 

Current Conditions 
An overall summary of the change over time in various categories is presented in Table E. 1. For 

each of the result columns that are based on orthophotos (1997, 1980 and 1990), the 'study area' 

refers to the orthophoto coverage. In the final column it refers to the area covered by the aerial 

video update, which encompassed the entire island. The orthophoto coverages include all areas 
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1977 1980 1990 1997 
Study Area: (ha) 10390.4 13990.2 14550.9 19036.8 

Total Area Logged (visible) 214.7 991.8 3517.2 3517.2 

as % of Lyell 1.1% 5.2% 18.5% 18.5% 

as % of study area 2.1% 7.1% 24.2% 18.5% 

Area logged during prev period 214.7 777.1 2525.4 0.0 

as % of Lyell 1.1% 4.1% 13.3% 0.0% 

Slide area show ing 9.1 27.0 97.7 115.3 

as % of Lyell 0.05% 0.14% 0.51% 0.61% 

as % of study area 0.09% 0.19% 0.67% 0.61% 
as % of total cut area 4.25% 2.72% 2.78% 3.28% 

Recovery since prev date 5.3 19.2 3.9 

New Slides 9.1 23.2 89.8 21.6 

as % of study area 0.09% 0.17% 0.62% 0.11% 
Treated Slides 75.0 

as % of 1990 slides 76.8% 

New Slides 
Cause Logging 5.8 17.7 83.4 21.1 

Natural 3.3 5.4 6.8 0.5 

(as % of untagged) 0.03% 0.04% 0.06% 0.00% 
Type Mass W 8.8 22.0 85.9 20.3 

96.8% 91.7% 95.6% 92.6% 

Sideslip 0.3 2.0 7.2 4.9 

Stream Scouring 7.3 19.7 54.2 4.3 

80.3% 85.0% 60.4% 19.7% 

Main (fish habitiat) 0.0 0.2 0.0 0.0 

Road Induced 1.3 6.5 18.2 7.3 

14.6% 28.1% 20.2% 33.8% 

Total Slides 
Cause Logging 5.8 18.6 89.1 106.6 

Natural 3.3 8.4 8.6 8.7 

Type Mass W 8.8 25.9 93.3 109.6 

Sideslip 0.3 2.0 0.8 12.5 

Stream Scouring 7.3 22.7 60.3 62.1 

Main 0 0.2 0.0 0.7 

Road Induced 1.3 6.5 20.3 26.7 

Treated Slides 
Cause Logging 75.0 

Natural 0.0 

Type Mass W 74.5 

Sideslip 3.5 
Stream Scouring 49.4 

Main 0.0 

Road Induced 16.0 

that had been logged to that date; 

therefore, no logging-induced mass 

wastage has been excluded from any 

of the study areas. 

Overall, there have been 144 ha of 

mass wastage observed on Lyell since 

1977 (0.75 percent of the land base), 

including areas visible at the onset of 

logging. Currently, 115 of those hec

tares remain visible. The 1997 update 

indicates that 21 ha of new slides 

have occurred since 1990, although 

approximately six of these occurred 

between 1990 and the onset of treat

ment in 1991 (based on differences 

between the 1990 data and a set of 

maps generated at the outset of the 

rehabilitation project) . Of this 144 ha 

total, 11% are classified as naturally 

occurring; and 21% of these natural 

slides were in place prior to the 1976 

commencement of logging. 

Note that the final column of Table E. 1 

was generated with a different meth

odology than the first three columns. 

Accuracy statistics for the ODFS tool 

(used to generate the final column) 

compiled in Appendix D indicate that 

90% of all areas should be within 17% 

of the area established with high-reso

lution orthophotos (for a given range 

of operational scale). However, in sum

mary statistics most errors in area will cancel out (a +0.7m area bias was observed during testing 

in Appendix D). 

Table E . 1. Summary of the rehabilitation study results. 
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Change Over Time 
The natural slide rate (i.e., restricting the analysis to only those slides occurring in unlogged 

areas) as interpolated from four data points is presented in Figure E . 3 . The 'uncorrected' line 

represents the data as observed, while the other represents a per-year estimate. It is obviously 

difficult to establish a natural rate on a land base that is constantly having natural areas re

moved. This drop in rates may be due to a) saturation - where most potential slide zones have 

experienced failures in the past and are in the process of regeneration; b) the removal of most 

potential slide zones from 'natural' to 'logged' areas; or c) a drop in natural slide rates due to 

weather, tectonic or other factors. Nevertheless, this 20-25 year window of time is likely insuffi

cient to determine slide rates, even given the best of data. 

This possible weather influence on slide rates is explored in Figure E.4. Major precipitation events 

appear to taper through the 1980's, in-line with the decreasing rate of natural slides. This graph 

provides evidence for reason (c); however, the limited amount of data makes this evidence merely 

circumstantial. 

Figure E.5 details values for all slides, regardless of origin. Chart (a) shows new slides using the 

same method as Figure E . 3 . The 'trend' curve represents the best approximation of slide rate 

available from the data (i.e., new area exposed per year). The cumulative values (minus grow-back) 

are shown in Figure E.5b. This curve represents the estimated visible area of mass wastage at any 

given time. 

It is apparent that the new slide rate has certainly changed since the cessation of logging opera

tions in 1986. Research indicates that the slide rate will typically peak at 10-15 years post-harvest 

(assuming sufficient regeneration). After this point, new root growth will typically overtake the old 

root decay, stabilising the slope (Hammond et al. 1992). This is supported by the database, as 

shown in Figure E.6. In this graph the two initial peaks are likely erroneous, since they represent 

Figure E.3. The natural slide rate. The Figure E.4. Estimated natural slide rate 
uncorrected points delineate totals for the plotted with peak rain events, 
intervening period. The second line shows 
the approximate rate per year. 
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Figure E .5 . (a) New slide rate (all sources), and (b) cumulative slide area minus grow-
back (area visible in the year specified). 

all the 1981-90 slides that were lumped into a 1990 

start date due to insufficient data. Otherwise, slides 

appear to typically commence right on schedule. 

•*t o> i- co tf> 

Years from Cut Date 

Figure E.6. Slide initiation delay. 

Limitations: It is difficult to make any broad state

ments regarding mass wastage given the limited data 

available. Although the mass wastage database rep

resents all available useable knowledge, it falls short 

in many areas. First, there are only four major data 

points. It is difficult to calculate rates and averages 

with these few data. Although slide initiation dates 

have been supplemented through records, it is obvious that many of the slides labelled (for exam

ple) START=1990 actually occurred during major storms in the mid-1980s. However, in an ab

sence of other information, the conservative value has been left in place. Secondly, mass wastage 

is generally driven by extreme rainfall events (cumulative over a short period of time). There is, 

therefore, no true value for 'slide rate'. There can only be an average slide rate over a period of time. 

The values presented here must be interpreted with these limitations in mind. 

Slide Characteristics 

The development of this database presents an excellent opportunity to study mass wastage events 

themselves. There are many possible applications, including comparisons with other areas, rela

tion to terrain form, relation to soil or weather, and assessments of predictive models. This section 

delves into several of these topics—principally to demonstrate the possible utility of the type of 

spatio-temporal mass wastage database that can be generated using the ODFS and uncertainty 

management techniques. 
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Slope and Aspect 

The existence of a DEM makes it possible to easily catalogue mass wastage areas based on terrain 
characteristics. The areas are broken down into grid cells and compared with the cells of the DEM. 
Figure E.7 compares the slope (average) of all slides with the overall distribution of slopes on the 
entire island. Between 30° and 44° the incidence is higher than expected (the expected value 
would occur if slides were placed randomly). Below 30° the incidence is lower, and above 44° it is 
approximately the same. This information on expected values is detailed in Figure E.8. 

0 5 10 15 20 25 30 35 40 45 50 degrees 

Figure E.7. A comparison of the frequency 
distribution of slope in slide areas with the 
distribution of slope over the entire study area. 
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Degrees 

Figure E.8. Slide slope frequency distribution 
compared with the distribution that would be 
expected if slides were located randomly (ob
served minus expected). 

The distribution of mass wastage aspect relative to expected 
is graphed in Figure E.9. This figure has been corrected based 
on the overall aspect of the DEM (i.e., a circle would indicate 
a random distribution of slides on the island). The influence 
of southeasterly storms is evident. The decrease in expected 
value in a northeast direction may be due to the fact that 
the NE corner of the island is the only substantially unlogged 
portion facing the winds of Hecate Strait. 

Weather 

The apparent correlation between natural slide rates and 
major weather events has been discussed earlier. Here, in 
Figure E. 10, major wind events are added to the chart. It is 
possible that the overall decline in general weather severity 
in the past 20 years has contributed to the decline in natu
ral slide rates. Only with detailed regular data updates could such a correlation be properly estab-

Figure E.9. The frequency 
distribution of slide aspect (cor
rected using the total aspect 
distribution for the study area) 
showing a SE directional bias for 
slides, and a negative bias to the 
NE. 
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Figure E. 10. General peak weather patterns compared with the natural slide rate. 
Figures are based on daily peaks (wind) and daily totals (rain) over the 20 year 
period (Sources: rain data - Environment Canada published statistics for Juan 
Perez Sound; wind data - Environment Canada database of daily wind peaks for 
Juan Perez Sound as compiled by Dr. S. Tuller). 

lished. There is quite probably a triggering threshold that involves a certain amount of precipita

tion over a certain period of time, applied to a slope of > x. Properly populating this temporal 

database will make it possible to determine these values and to better predict slide occurrence. 

Discussion 

This test of the ODFS in a real-world scenario has shown that, for extreme and remote environ

ments such as this, oblique video monitoring represents a highly useful data source. It is possible 

to capture seasonal and event influences by gathering data whenever new slide events are sus

pected to have occurred. Oblique monitoring does not require perfect weather conditions, and so 

could take place at nearly any time of year. Also, video data can be gathered opportunistically. For 

example, when a helicopter is ferrying equipment or personnel through the area, one extra hour's 

worth of fuel would accomplish the task. Database integration could take place at any time. 

The integration system functioned well for a wide selection of images. Very few of the 420 images 

were difficult to register. Spot checks, in which a newly digitised area was viewed from a different 

angle, led to very few changes in linework. Line uncertainty varied, as the system was designed to 

do, with very few vertices registering an epsilon of more than 4m. Due to this inherent variability 

within the system, it is not possible to state overall uncertainty statistics. 

Conclusions 

The work discussed in this appendix has brought together information from a number of sources 

in order to build a detailed spatio-temporal database of mass wastage on Lyell Island. A secondary 



236 

focus has been on evaluating the ODFS, and exploring possible secondary research areas that 

such a database makes possible. Specifically, the mass wastage history and current status of 

Lyell were determined through the use of orthophotographic interpretation and through the devel

opment of the ODFS—which integrates oblique photographs with an existing database. The utility 

of the database generated in this project was explored through comparisons with other data— 

including spatial continuous data (slope, aspect), spatial discrete data (soil, terrain) and non-

spatial data (precipitation and winds). The work concludes with a discussion of changes made to 

the ODFS due to this study. 


