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Abstract 

This thesis presents three models of asset pricing involving non-competitive behavior and asym

metric information. In the first model, a risk averse investor with private information about 

dividends trades shares over an infinite time horizon with risk neutral uninformed agents. The 

informed investor trades strategically in equilibrium. The second model also involves an infi

nite time horizon, but all agents are risk averse and equally informed about dividends. Non

competitive behavior is exogenously specified; price takers trade shares with a strategic investor 

who accounts for the effects of her trades on the stock price. In this case, an endogenous infor

mation asymmetry arises in equilibrium. Closed form equilibria are derived for both models and 

implications for price dynamics are explored. While the first model constitutes a new extension 

of the multiperiod Kyle model of insider trading, the second model generates more interesting 

price dynamics. If the strategic investor manages a large mutual fund, significant risk premia 

and price volatility may arise in equilibrium. In fact, if mutual fund participation is sufficiently 

widespread, multiple equilibria may exist. The third model extends the multiperiod Kyle model 

to a case where the insider observes a noisy signal of the stock's terminal liquidation value. A n 

equilibrium much like Kyle's is derived. Price tends toward value over time, and stock price 

volatility depends on both the drift and volatility of the insider's private signal. Like the Kyle 

model, the insider's trading activity leaves no detectable trace in trading volume, expected 

returns, or price volatility. 
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Chapter 1 

Introduction 

The relationship between the price of a financial asset and its fundamental value is central to 

financial economics. Black (1986) attributes deviations of price from value to the presence of 

irrational noise traders; people who, from an objective point of view, would be better off not to 

trade. On average, noise traders should expect to lose money to people who are better informed 

about the asset's fundamental value. Prom the standpoint of rational investors, noise traders 

simply introduce random variations in the asset supply. Irrational noise traders are not the 

only possible cause of random supply variations. Spiegel (1998) argues that supply noise is also 

caused by random changes to the capital base of the economy as society creates and destroys 

assets. Whatever their cause might be, the presence of random supply shocks together with 

differentially informed rational investors can lead to rich models of asset pricing. 

Perhaps the two most influential models of this type are Kyle (1985) and Wang (1993). In 

Wang's model, informed investors maintain an infinitely long-lived informational advantage over 

their uninformed counterparts. Trading in a stock and a riskless bond takes place continuously 

over an infinite time horizon. The stock's dividend dynamics are determined in part by a 

stochastic growth factor which can only be observed by the informed investors. Uninformed 

investors can only observe the stock price and the dividend process. The supply of stock 

is stochastic and a priori unobservable. Wang obtains a competitive equilibrium in which the 

informed can infer the supply from the stock price and dividend, while the uninformed can infer 

neither the supply nor the dividend growth factor. The resulting informational asymmetry is 

1 



CHAPTER 1. INTRODUCTION 2 

impounded in both investors' consumption-investment policies. A similar dynamic arises in a 

finite horizon context in the multiperiod Kyle model (1985), where an insider with exclusive 

knowledge of the terminal stock price executes trades through a risk neutral market maker. 

Supply noise, attributed to noise traders, prevents the market maker from observing the insider's 

trades. As Kyle puts it, "the noise traders in effect provide camouflage which enables the insider 

to make profits at their expense." In both models, the uninformed rational agents cannot 

distinguish between supply variations and informed agents' trades. Consequently, the informed 

may trade on their private information without revealing it to the uninformed. The Kyle model 

illustrates how information asymmetry and non-competitive behavior can jointly arise. The 

stock price moves in response to changes in the insider's shareholdings, causing her to trade 

strategically rather than competitively. 

The purpose of this thesis is to investigate the relationship between non-competitive behavior 

and informational asymmetry from three different perspectives. Our first model, presented in 

Chapter 2, is a hybrid version of the Kyle and Wang models. A risk averse investor with private 

information about a stock's dividend stream trades shares with uninformed investors over an 

infinite time horizon. While this model has the same information structure as Wang's, it also 

resembles Kyle's in that the uninformed agents are risk neutral. By contrast to the Kyle model, 

the true value of the stock is not announced at some finite date. Instead, partial information 

about stock fundamentals is continually released to the uninformed via the dividend stream. 

Like the Kyle model, we find an equilibrium in which the informed investor trades strategically. 

Our first model can be viewed as a contribution to the literature on applications and extensions 

of the Kyle model. The model is unique in that the informed investor's total wealth has no 

impact on her equilibrium shareholdings, while the composition of her investment portfolio 

does. Such "leverage dependence" does not arise in other models of this type. Moreover, in 

contrast to Wang's model, the informed investor may rationally act as a price chaser while the 

uninformed agents act as contrarians. 

Unfortunately, the first model is not compelling from an econometric standpoint. Since the 

uninformed agents are risk neutral, the excess stock return is simply a Brownian motion con

ditioned on public information. This property violates the most basic findings of empirical 

studies of stock price behavior. Substantial supply noise is also required in order to generate 

realistic levels of stock price volatility, or variability. Since supply noise variations are generally 
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thought to be much smaller than stock price variations [Spiegel (1998)], this is an unattractive 

characteristic. Our second model, appearing in Chapter 3, generates more realistic implications 

for the time series behavior of stock prices. In this case, agents have identical information about 

dividends but have different beliefs about the extent to which their trades move the stock price. 

There are two types of rational agents in this economy; a risk averse strategist, who accounts 

for the impact of her trades on prices, and risk averse price takers. Despite the fact that there 

is no a priori information asymmetry, we find an equilibrium in which the strategist can infer 

the supply of stock from the stock price and dividend while price takers cannot. In contrast 

to the Kyle and Wang models, this information asymmetry does not arise as a result of pri

vately held information about stock fundamentals. Instead, it arises as a consequence of agents' 

heterogenous beliefs about how their respective trades affect the stock price. As in the first 

model, the strategist is a price chaser and her equilibrium investment policy exhibits leverage 

dependence. However, unlike the first model, significant price variability can arise even when 

the supply noise is relatively small. As Spiegel (1998) points out, this is a desirable feature of 

any asset pricing model involving supply noise. Furthermore, risk premia and serial correlation 

in stock returns can be strongly influenced by the size of the strategist's shareholdings. Viewing 

the strategist as the manager of a large mutual fund, this behavior is consistent with anecdotal 

evidence reported in the popular press. 

Our third model, appearing in Chapter 4, is closer in nature to the multiperiod Kyle model. 

However, it involves a weaker informational advantage on the part of the insider. Instead of 

assuming that the insider knows the terminal share value, we assume that she has exclusive 

knowledge of a noisy dynamic signal terminating at the terminal share value. Like Back (1992), 

the model accommodates relatively general distributions for the terminal share value. We 

show that, within an interesting parametric class of diffusion models for the private signal, an 

equilibrium virtually identical to Kyle's exists. We also obtain a closed form representation for 

the equilibrium price process. For example, if the signal follows a geometric Brownian motion, 

then so does the equilibrium share price. The arrival pattern of the insider's private information 

is of little consequence to the equilibrium price or to the market maker's perception of trading 

volume. This behavior is much different from that of the Admati-Pfleiderer (1988) model, in 

which the insider's informational advantage is short-lived. There, the insider acts on private 

information immediately, imparting an informational component to price changes. By contrast, 
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the insider's equilibrium trading strategy in this model conveys no information to the market 

maker about shocks to the insider's signal process. This model differs substantially from Kyle's 

in the way that information is impounded in the insider's shareholdings. In the Kyle model, 

the insider can simply "look ahead" to the terminal share value at any prior point in time. In 

the model constructed here, the insider must form her trades based on successive realizations 

of the signal process. The fact that the resulting equilibrium should be so similar to that of 

the Kyle model is interesting and not at all obvious. The third model has been independently 

discovered by Back and Pedersen (1998), who arrive at the same equilibrium under somewhat 

different technical assumptions.1 

1Back and Pedersen's model is slightly more general than ours in that they permit noise trades to have 

deterministic variability patterns. Our model requires noise trades to have constant variability. However, this 

additional generality is of minor consequence to the equilibrium. Back and Pedersen also assume that the insider's 

private signal is her expectation of the terminal share value. Our approach is informationally equivalent to theirs 

in that the insider's private signal can be expressed as a function of time and the expected terminal share value, 

and is monotone increasing in the latter variable. It should be noted that Back and Pedersen's work first came 

to my attention in June 1997, two weeks after I completed the first draft of Chapter 4. I immediately sent a copy 

of the draft to Kerry Back, who confirmed via email that my work appeared to be an independent discovery of 

the same equilibrium. 



Chapter 2 

A n Infinite Horizon Counterpart to 

the K y l e Mode l 
This chapter presents an infinite horizon, continuous-time asset pricing model involving non
competitive behavior and informational asymmetry. A risk averse investor with private infor
mation about a stock's dividend stream trades shares with risk neutral uninformed investors. 
Like the multiperiod Kyle model (1985), the informed investor trades strategically in equilib
rium. However, unlike the Kyle model, the true value of the stock is not announced at some 
finite date. Instead, partial information about stock fundamentals is continually released to 
the uninformed via the dividend stream. This model has some features in common with the 
Kyle model. The strategic investor's equilibrium investment policy has continuously differen-
tiable sample paths. The model also satisfies a "no-trade" theorem analogous to that of the 
Kyle model. However, there are also some important differences. For example, unlike the Kyle 
model, the strategic investor's equilibrium policy depends upon how much stock she currently 
holds. The larger her shareholdings, the more favorable market conditions must be in order for 
her to further increase her position. This behavior is largely due to the fact that in the present 
model, supply noise reverts to a zero mean, while the supply noise in the Kyle model follows 
a Brownian motion. The use of a mean reverting noise process follows Wang (1993), and is 
required in order to obtain a stationary equilibrium. In order to provide some intuition, we 
discuss this aspect of the strategic trader's equilibrium policy in some detail at this point. 

5 



CHAPTER 2. AN INFINITE HORIZON COUNTERPART TO THE KYLE MODEL 6 

Because of her market power, it is costly for the strategic trader to turn shares over at a high 
rate. However, her private information, having a Brownian component, can change rapidly. 
Consequently, her current shareholdings may not reflect the current state of her private infor
mation. She is unable to act sufficiently quickly on bad news to prevent it from partially eroding 
the value of her position. This problem worsens as her position in the stock increases relative 
to the total supply of shares. She must pay a large cumulative premium to unwind a large 
position if the market as a whole is relatively thin. To avoid this scenario, her shareholdings 
never deviate too far from the total supply of stock, which is stationary. While the insider 
trading strategy in the Kyle model is also sensitive to the supply of stock, this phenomenon 
does not arise there because the total supply is not stationary. Moreover, despite the similarity 
of our model to Wang (1993), the strategic investor may rationally act as a price chaser, in 
contrast to the contrarian behavior exhibited by Wang's informed investor. More accurately, 
the price chases her; when she buys stock the price tends to rise and when she sells it the price 
tends to fall. This is a direct consequence of the strategic trader's market power. 

While our model extends the Kyle model in several directions, it unfortunately does not produce 
realistic stock price dynamics. The equilibrium excess stock return is simply a Brownian motion 
conditioned on public information. Furthermore, the equilibrium price variability is smaller 
than that of a simple benchmark model in which no informed trader is present. Consequently, 
substantial supply noise is required in order to generate realistic levels of stock price variability. 
As Spiegel (1998) points out, this is an undesirable characteristic of any asset pricing model. 
Despite these drawbacks, the first model establishes a useful context for our second model, 
presented in Chapter 3. 

2.1 Model I 

The following model is a hybrid version of Kyle (1985) and Wang (1993). A stock and a riskless 
bond are continuously available for trade throughout the time interval [0, oo[. The riskless rate 
of interest is a constant r > 0, while the stock pays dividends at the rate Dt per unit time, 
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where 

dDt = (Ut-kDt)dt + aDdzD{t), 

dILt = an (fl - Ut) dt + andzn (*). 

(2.1) 

(2.2) 

An information asymmetry arises because the dividend rate D is common knowledge, but only 
one investor, the informed investor, has exclusive knowledge of the dividend growth factor 
II. The terms an(> 0), <TJ(> 0), k(> 0) and fl are constants, while [̂ u,zn]T is a two-
dimensional Brownian motion. When k > 0, the dividend rate reverts to the "stochastic mean" 
FI*. Otherwise the dividend process is nonstationary. Dividends may take on both positive and 
negative values in this somewhat stylized model. Following Wang, the total supply of stock at 
time t is 1 + 0t, where 

d&t = -aQetdt + a@dz@(t). (2.3) 

The terms ae and UQ are positive constants, while ZQ is a standard Brownian motion indepen
dent of Z£> and ZR. The factor —6 is analogous to noise trader demands in the Kyle model. 

The informed investor trades shares with uninformed risk neutral agents. In previous literature 
related to the Kyle model, the informed investor seeks to maximize the expected utility of 
accumulated wealth at the time the liquidation value of the stock is announced. Since there is 
no such announcement date in our model, we assume instead that the informed investor is risk 
averse over her (infinite) consumption stream {ct}. The informed investor seeks to maximize 

where p and 7 are positive constants. The informed investor's information filtration 3 = {Jt\t> 
0} is generated by D, LT, the stock price P, and her initial wealth and shareholdings. While a 
typical uninformed agent cannot observe the informed investor's shareholdings X or the supply 
noise 0, she can deduce their difference Y — X — © since in aggregate, the uninformed hold the 
residual supply 1 + 9 — X. Each of the uninformed agents believes that the informed investor's 

(2.4) 
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shareholdings take the form X = X*, where X* is some J-adapted state-contingent process. 

Thus, if U denotes the filtration generated by D and Y, we require 

Pt = E* e-r(s-t)D d s U, ( 2 . 5 ) 

where E* denotes the uninformed agents' conditional expectation operator under the belief 

X = X*.1 Provided the state dependence of X* is sufficiently simple, P is a IC-adapted 

semimartingale and the excess stock return dQt = dPt+Dtdt—rPtdt takes the form dQt = dQx, 

where 

dQ? = aQdt + XdXt + bQDdzD{t) + bQ@dz@(t). ( 2 . 6 ) 

Here A and the 6 Q J S are nonzero constants, while ag is an J-adapted process.2 We call ( 2 . 6 ) 

(or, more briefly, Q x ) the pricing rule. It generalizes the linear pricing rule assumed in Kyle 

( 1 9 8 5 ) . X must clearly be a semimartingale in order for the pricing rule ( 2 . 6 ) to be well defined. 

Given the pricing rule Qx, the informed investor's self-financing budget constraint takes the 

form 

dWt = (rWt - ct)dt + Xt_dQx, ( 2 . 7 ) 

where her nominal wealth Wt = P>t + XtPt is defined as the sum of her riskless bond holdings 

Bt and the market value of her shareholdings Xt. Here denotes the left-hand limit of X 

at time t.z As in Wang (1993), there is no exogenous lower bound on the informed investor's 

nominal wealth. She seeks a self-financing, utility maximizing consumption-investment policy 

1 Here and throughout the remainder of the chapter, (in)equalities involving random variables hold with 

probability one and information nitrations satisfy the usual conditions. For example, the nitration generated by 

a random process is the right-hand limit of the corresponding null-augmented natural nitration. [Karatzas and 

Shreve (1991, §2.7)]. 
2In other words, the excess return is an affine combination of the informed investor's incremental order dX and 

exogenous shock terms. Thus, the informed investor has partial control over the corresponding price innovation 

dP. 
3Discrete-time dynamics analogous to (2.7) can be obtained as follows. Suppose that if the informed investor 

wishes to hold Xt shares at time t, she submits an order for Xt — Xt-e shares at time t — e and pays Pt per share 
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(c, X) among a class A of Q -admissible policies, where the notion of admissibility will be 
developed in the sequel. Given these primitives, we define an equilibrium as follows. 

Definition 2.1 The pricing rule Qx, the uninformed belief X = X*, and the Qx-admissible 

policies A comprise an equilibrium if there is a consumption process c* such that, with probability 

one, 

^0 > 

for every t > 0. 

The stock price P appearing in ii) is defined by (2.5). 

Definition 2.1 is directly comparable to Kyle's definition of equilibrium (1985, p. 1318).4 The 
Qx-admissible policies A represent possible deviations from the informed investor's optimal 
policy. In equilibrium, the informed investor has no incentive to deviate from a policy confirming 
the uninformed agents' belief X*. Like Kyle (1985) and Wang (1993), we do not require the 
bond market to clear in equilibrium. Some external mechanism (i.e. the government) maintains 
an infinitely liquid supply of riskless bonds. 

at time t. If she consumes at the rate ct_£ over the time interval [t — e, t[, we must then have 

Bt = (l+ re)Bt-e + Xt-cDt-,e - ct-ee - Pt (Xt - Xt-e) • 

Upon rearrangement, it follows that 

Wt - Wt-, = (rWt-e - ct-t) t + X^ {Pt - Pt-, + Dt-,e - rPt-te). 

Taking the limit as e I 0 yields (2.7). Equation (2.7) differs slightly from its competitive counterpart, where the 

"t-" subscript is replaced by "t" [Wang (1993), Equation (4.9)]. This distinction is important; under the pricing 

rule (2.6), Qt jumps (Qt ̂  Qt-) precisely when the informed investor's shareholdings jump. The competitive 

self-financing condition involving XtdQt does not properly reflect the impact of such jumps on the informed 

investor's wealth. 
4Using Kyle's terminology, the first condition corresponds to the profit maximization condition, while the 

second corresponds to the market efficiency condition. 

' roo 

i) (c\X*) € argmax(C]X)eyl E j -e'^'^ds 
ii) dQ? 

X=X' 
= dPt + Dtdt - rPtdt 
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2.2 A d m i s s i b i l i t y a n d a candidate pr ic ing rule 

The pricing rule (2.6) cannot be specified arbitrarily. Likewise, the choice of a pricing rule 
impacts the definition of the class A of admissible consumption-investment policies. In this 
section we examine the constraints involved in choosing a pricing rule and defining the class 
of admissible policies. Until indicated otherwise, z denotes the three-dimensional Brownian 
motion [zp, zji, ZQ]^ . 

We begin by defining an admissible pricing rule. 

Definition 2.2 Qx is an admissible pricing rule if there is a finite-dimensional 3-adapted 
semimartingale \I/ such that the Bellman equation 

J(Wu*t) = max {-e-^dt + e-pdtE[J{Wt +dWu% +d^t)\3t]} (2.8) 

s.t. dWt = (rWt - c)dt + XtdQx 

dXt = xdt 

has a unique C2 solution J. 

The existence of an admissible pricing rule precludes the presence of arbitrage opportunities that 
might be exploited by the informed investor.5 The Bellman equation (2.8) differs from those 
arising in standard price-taking portfolio choice problems. The choice variable x appearing 
in (2.8) relates to the rate at which the informed investor purchases stock rather than to her 
shareholdings directly. The somewhat heuristic statement of Definition 2.2 can be made rigorous 
by applying the Ito formula. However, the intuition behind the definition is straightforward. It 
simply asserts that the solution to the informed investor's Bellman equation, given that X has 
absolutely continuous sample paths, is unique.6 

5Jarrow (1992) provides general conditions ruling out arbitrage in a discrete-time economy involving a non-

price-taking investor. 
6It is possible to generalize Definition 2.2 to accommodate sample paths involving Brownian components and 

jumps. However, this additional generality involves lengthy technical considerations and is of no consequence to 

the equilibrium constructed below. 
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Given the admissible pricing rule Qx, we define the class A of Qx-admissible policies as follows. 

Definition 2.3 The consumption-investment policy (c,X) is Qx-admissible if it is an 3-
adapted semimartingale such that, for any fixed t > 0, 

E [e-pTkJ(WTk ,1? T J \J t ] 0 ask—• oo (2.9) 

for any nondecreasing sequence of bounded "J-stopping times —> oo. Here W is the wealth 
process (2.7) associated with (c, X). 

(2.9) is a minor variation on Wang's transversality condition (1993, Equation (4.9)).7 It ensures 
that Q -̂admissible consumption-investment policies satisfying the local optimality condition 
(2.8) are optimal over the entire class A. As the definition suggests, every policy in A is associ
ated with a unique wealth process W defined by the informed investor's initial wealth and the 
dynamics (2.7). 

We now provide an example of a relatively simple admissible pricing rule, and examine its 
implications for admissible consumption-investment policies. 

Lemma 2.1 If bQ is a constant nonzero row vector and A = ||6Q||27 (1 + 2as/r)~1, then 

dQ? = A (aeXtdt + dXt) + bQdzt (2.10) 

is an admissible pricing rule. The Bellman equation (2.8) has the solution 

J(W, X) = - - exp (1 - P- - nW + ^X2) . 

r \ r 2 / 

Proof. See Appendix A. 
7 A bounded 3-stopping time is a bounded, nonnegative random variable r such that {r < i) € 3t for every 

t > 0 [Karatzas and Shreve (1991, §1.2)]. 
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Thus, the state process \I/ appearing in Definition 2.2 is simply X, the informed investor's 

shareholdings. 

The following Lemma demonstrates that there is a relatively large, easily described class of 

admissible policies corresponding to the pricing rule Qx. 

Lemma 2.2 Let Qx be the pricing rule defined in Lemma 2.1. Let (c,X) be an 3-adapted 

semimartingale such that X has continuous sample paths of finite variation over finite time 

intervals, and let W be the associated wealth process. If i) there exists e < p/rj such that 

rX n 

ct + ~2~Xt < rWt + e for every t > 0, 

and ii) for every T > 0 there exists a finite valued, 3o -measurable random variable KT such 
that 

max X? < KT (1 + max 11̂  II2 ) 
0<t<T 1 _ V o<t<r" " ) 

then (c, X) is Qx-admissible. 

Proof. See Appendix A. 

According to Lemma 2.2, as long as the informed investor's shareholdings X have continuous 

sample paths of finite variation and her consumption rate and shareholdings remain within 

certain limits, her consumption-investment policy is Qx-admissible. Investment policies having 

continuous, finite variation sample paths are of particular importance. Like the Kyle model, 

optimal investment policies must have this property, as demonstrated below. 

Lemma 2.3 (Verification Lemma) Suppose Qx and J are as defined in Lemma 2.1. Let 

At(w,x) C A denote the Qx-admissible strategies (c,X) such that Wt = w and Xt = x a.s. 

Then with probability one, 

J(w,x) — sup E 
(c,X)£At(w,x) u; _e-p(s-t)-jc3ds V(w,x) e l 2 W > 0. 
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If {c,X) £ A is such that i) X has continuous sample paths of finite variation over finite time 

intervals and ii) 

ct = rWt - y l (

2 + J-Hp/r - 1) Vt > 0, 

then (c, X) is a dynamically consistent optimal policy. Any admissible policy for which X has 

a nonzero martingale or jump component is strictly suboptimal. 

Proof. See Appendix A . 

In particular, the solution to the informed investor's Bellman equation coincides with her value 

function. 8 The informed investor's optimal policy is not uniquely determined by the pricing rule. 

According to Lemma 2.3, her optimal consumption rate is uniquely determined as a function of 

her wealth and shareholdings, but there are many possible optimal trading strategies. As Back 

(1992, Lemma 2) demonstrates, a similar property holds for the Kyle model; any insider trading 

strategy having continuous, finite variation sample paths and satisfying a terminal condition is 

optimal. In both models, the informed investor's shareholdings can only be pinned down by 

the equilibrium market clearing condition. We proceed with the construction of an equilibrium 

in the following section. 

2.3 Constructing an equilibrium 

In this section, we construct a stationary equilibrium; i.e. one in which the equilibrium stock 

price has no explicit dependence on time. 9 We begin by denning the fundamental share value 

e - r ( s - t ) D s d s = moDt + m n n 4 + m i , 

8Dynamic consistency, or the lack thereof, plays an important role in other models of strategic investment. 

Basak (1995) provides an example of a model in which a non-price-taking agent's optimal policy is time-

inconsistent. Kihlstrom (1998) relates such time-inconsistency to the Coase conjecture. 
9However, keep in mind that if k — 0, the dividend process itself is a nonstationary stochastic process. 
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where 

1 mrj anTOnl! mD = , , , m n = —• , mi = . 
r + k r + on' 

We then define the function 

<t>b*) = — a n 

a D 2 + °e V 

(aD

2 + cr 0

2/i 2)a n 

1 + - n 1 

Assumption 2.1 The transcendental equation 

4>(lJ,)\ + [mnaeWMj = + ^ (2.11 

has a positive root 

A sufficient condition for (2.11) to have a positive root is 7 > 7crjt, where 

7 c r i t = 0© 1 + 2ae\ rnndn 
r / (mDcrr»)2 + (mncrn)2' 

If 7 > 7 c r j t , the graphs of the left- and right-hand sides of (2.11) must cross at some positive 
value of /J,. Thus, Assumption 2.1 holds if the variability crQ of the supply noise is sufficiently 
large. 

Assumption 2.2 The conditional distribution o/[lTo,6o]T given Uo is Gaussian with covari

ance matrix Cl, where 

Cln 

fil2 11 

2̂2 = 

(aD

2 + cr0 V A ) Cln + a n + a 0 ' 

a»t _tf+fAto\. 
a 0 V 2 / 
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Notice that fin > 0 by definition, while straightforward algebra establishes that det > 0. 
Therefore fi is positive definite. 

In what follows, define the row vector 6Q = [&QD, 0, bQ@], where 

Let Q be the corresponding pricing rule (2.10) and let A denote the set of Q -̂admissible 
consumption-investment policies. We may now state the equilibrium. 

Proposition 2.1 Suppose that Assumptions 2.1 and 2.2 hold. Then there exists a belief X* 

such that (QX,X*,A) comprise an equilibrium. X* satisfies 

where At = E* [Ilt \Ut] — lit- The informed investor's optimal consumption rate c* is given by 

Lemma 2.3, while the equilibrium stock price satisfies Pt = m,£)Dt + mrjE* [Lit \lit] + m\ for 

every t > 0. 

Proof. See Appendix B. 

2.4 Properties of the equilibrium 

By definition of the fundamental share value $t, Proposition 2.1 implies that we may write 
Ai = m ^ P f — $j). Thus, A is a measure of mispricing relative to the fundamental share 
value. When A is positive the stock is overvalued and if A is negative it is undervalued. To 
implement the policy (c*,X*), the informed investor need only observe current levels of nominal 
wealth W, the mispricing error A, and her shareholdings. As Lemma 2.3 indicates, her nominal 
wealth and shareholdings alone suffice to describe her value function. In equilibrium, the rate 
with which the informed investor purchases stock is 

OQD = r n D a D + mxio-Q<f>(nb), b Q Q = - m n c r e VA</>(/"A)-

dX* = - / J A A - a&X* 
dt 

dX* 
= - / J A A - a&X*. 

dt 
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Since and CLQ are both positive, dX*/dt is decreasing in the mispricing error and in the 
informed investor's current shareholdings. Thus, if she has a long position or a small short 
position in overpriced stock (At > 0), she will sell; i.e. dX*/dt < 0. However, if she has a 
large short position she will purchase stock, even if it is moderately overpriced. To understand 
this behavior further, notice from Lemma 2.3 that the informed investor's value function J is 
decreasing in \X\. Thus, for a given amount of nominal wealth W, she is worse off the greater 
the proportion of wealth (long or short) invested in the stock. This reflects her market power; 
since A > 0, her trades impart changes to the excess stock return that reduce her instantaneous 
profits. Thus, the larger her position in the stock, the more costly it is to unwind that position. 
Consequently, she may choose to reduce her position and forego short-term profits that might 
be obtained by increasing it further.10 The informed investor's distaste for large positions in the 
stock market is also reflected in the fact that her consumption rate c* is decreasing in \X\. As 
\X\ increases, investing in the bond becomes more attractive than immediate consumption. She 
draws upon her savings to unwind her position in the stock market should subsequent market 
conditions turn against her. 

One respect in which Wang's model differs from the Kyle model relates to the informational 
role of prices. Equilibrium prices in Wang (1993) reveal a signal to the uninformed investors 
that they cannot observe a priori. The uninformed impound this information in their portfolio 
selection decisions. By contrast, the actions of uninformed agents in the Kyle model do not 
depend on a priori unobservable signals. The equilibria constructed here are similar to Wang's 
in that market participants expect prices to reveal an important signal to the uninformed, and 
in equilibrium, this expectation is confirmed. Defining Qx = J^dQ^, the equilibrium pricing 
rule can be expressed as 

where ( = bQDZD + (Acre + &e?e)ze- Given that the uninformed agents have no a priori 

knowledge of (, how can they enforce this pricing rule? The device of an "artificial market" 
[Grossman (1981), Back (1993)] provides an explanation. In an artificial market in which ( 

1 0Strictly speaking, Lemma 2.3 states that the informed investor is indifferent over many different trading 

strategies. Her "choice" of this particular strategy is actually determined by the market clearing condition 

rather than by her own utility maximization considerations. 

(2.12) 
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is exogenously revealed to uninformed agents, the pricing rule (2.12) and the informed policy 

described in Proposition 2.1 are mutual best responses; they comprise an equilibrium in the 

artificial market. They must then comprise an equilibrium in the actual market because ( is 

revealed to the uninformed by equilibrium prices, dividends, and the residual supply 1 — Y. 

By holding the belief X * , the uninformed induce the informed investor to trade in such a way 

that ( can be inferred from publicly observable signals. 1 1 This is similar to Wang's competitive 

equilibrium, where the equilibrium price reveals a linear combination of the private signal II 

and the supply noise 0 to the uninformed. 

The present model differs from Wang (1993) in that the supply noise © is not revealed to 

the informed investor. (2.12) implies that the informed investor can infer Y, and hence Q — 

X — Y, from observed excess stock returns if she knows the initial value Yn- However, YQ 

cannot be inferred from the information available to her at time zero. Consequently, a form of 

informational diversity prevails. The informed investor observes n but cannot infer the residual 

supply, while the uninformed observe the residual supply but cannot determine II. By constrast, 

the informed investor in the Kyle and Wang models can infer the residual supply from public 

signals, resulting in an informational hierarchy. 

Another important difference between the our model and Wang's is the following. In Wang's 

model, the informed investor's value function depends on her wealth W, the mispricing error 

A , and the supply noise 0 . By contrast, in our model the informed investor's value function J 

depends only on her nominal wealth and her shareholdings X. There is no apparent dependence 

on either the mispricing error A or the supply noise 0 . To explore this further, consider the 

definition of (nominal) wealth W. In both models, W is defined as the sum of the informed 

investor's bondholdings B and the market value XP of her shareholdings. In Wang's model, 

the informed investor's wealth is equivalent to W dollars in cash since she may costlessly 

liquidate her shareholdings at any time. Both the stock and the bond are perfectly liquid 

assets. However, this is not true in our model. It is impossible for the informed investor to 

liquidate her shareholdings without incurring a loss. Therefore the portion of nominal wealth 

1 1 This issue would not arise if the pricing rule only involved a linear combination of dt, dD, and dY, where 
the coefficients axe U-adapted processes. By definition, such a pricing rule could be enforced by the uninformed 
agents regardless of the informed investor's behavior. However, we are unable to find a pricing rule of this form 
that admits an equilibrium. See Section 5.2.1 for further details. 
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attributed to her perfectly liquid bondholdings B should be distinguished from the remainder 

XP attributed to her somewhat illiquid shareholdings. It is more appropriate to interpret her 

value function, or welfare, as a function of her bondholdings B, the stock price P, and her 

shareholdings X; i.e. J(W,X) = J(B + XP,X). Prom this viewpoint, the mispricing error A 

and the supply noise © do have an impact on her welfare. By virtue of the dynamics of X*, 

the entire history of mispricing errors As and supply noise @s, s < t, is impounded in the time 

t stock price. 1 2 

By definition of the informed investor's value function J , we have 

The first term in the sum is the informed investor's change in nominal wealth A X per unit 

share purchased, times her marginal utility of nominal wealth. The second term is her marginal 

disutility of holding additional shares. The informed investor can temporarily drive up the 

stock price by purchasing more shares, but this increases her exposure to dividend risk and 

incurs additional liquidity risk should she want to sell them at some future date. As (2.13) 

indicates, the welfare effects of these factors cancel. The nominal wealth benefit derived by 

purchasing shares perfectly compensates for the dividend and liquidity risk associated with 

holding additional shares. Equality (2.13) does not simply hold along the equilibrium path. If 

it failed to hold at some arbitrary pair (W, X), there would be an incentive for the informed 

investor to adjust her shareholdings there, contradicting the definition of her value function. 

Consequently, the informed investor is indifferent to marginal changes in her shareholdings in 

every state of the world. In particular, as time progresses, she is indifferent between trading now 

or waiting until some future time to trade, even if, by waiting, she deviates from the equilibrium 

path. Much the same behavior arises in the Kyle model. The notion that the insider is willing 

to refrain from trading until the last possible instant is a key intuition supporting Back's (1992) 

formulation and extension of Kyle (1985). 

1 2This dependence also confounds any attempt to compare the equilibria on the basis of Pareto dominance. 
The interpretation of such a comparison would be questionable in any case if supply noise is attributed to noise 
trading. A noise trader cannot be assigned a meaningful notion of welfare [Cao (1998)]. 
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Assumption 2.1 is illustrated in Figure 2.1, where graphs representing the left- and right-
hand sides of equation (2.11) are shown.13 These graphs, denoted respectively by LHS(n) 
and RHS(fi), cross at ji = As 7 decreases, RHS(fi) moves upwards. As illustrated in 
the figure, the graphs eventually separate as 7 falls to zero. Thus, there are no stationary 
equilibria of the type described in Proposition 2.1 for small 7 (or equivalently, small ue). 
While this does not rule out the possibility that a strategic equilibrium exists for small 7 , it 
does suggest that a stationary strategic equilibrium does not exist unless 7 is sufficiently large. 
The model exhibits somewhat interesting behavior when 7 < 7crit- Equation (2.11) may have 
two roots within this range. As shown in Figure 2.2, a graph of /UA VS. 7 typically has two 
branches. The upper branch approaches 00 as 7 f 7crit, while the lower branch approaches 
zero as 7 | co. As one moves rightwards along the lower branch, //A decreases. In other 
words, as the informed investor becomes more risk averse, she trades less aggressively on her 
private information. This relationship is reversed along the upper branch. As the informed 
investor's risk aversion coefficient increases to 7crit, the aggressiveness of her trading increases 
without bound. Nonetheless, the variability of the stock price approaches the variability of the 
fundamental share value $4 as one moves rightwards along the upper branch. 

The next result characterizes the distributions of some important state variables as seen by the 
uninformed agents. Let U*t = E'^U*] and 64* = E*[9t|lCt]. 

Proposition 2 . 2 For every t > 0, [Aj,0£ - 6 t]T is N(Q,fl)-distributed, conditioned on Ut. 

Moreover, there exists a U-adapted Brownian motion [ZO,ZY]T such that 

dDt = (U*t - kDt)dt + aDdzD{t), 

dR*t = a n(5 - U*t)dt + a^l<f)(^)dzD(t) + cr@ VA<?KM)<^Y(t), 

dYt = — aeYtdt + a&dzy (t). 

In particular, from the perspective of the uninformed agents, innovations to the difference Yt — 

X% — Qt have the same law as innovations to the supply noise —@t-

Proof. See Appendix B. 
1 3 The parameter values used in several of Wang's numerical examples (1993, §5) are also used here. 
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Propositions 2.1 and 2.2 imply that the equilibrium stock price is a two-factor process. Price 

innovations are positively correlated with dividend innovations and with innovations to Y. 

Since the uninformed investors' (conditional) estimation error for the state variables ITt, ® t 

has a time invariant, nondegenerate Gaussian distribution, the same is true of the pricing error 

Pt — $t = m n A t . In other words, like Wang's uninformed investors, they cannot improve their 

estimate of the fundamental share value $t. The informed investor maintains a long-lived 

informational advantage over them. The equivalence of the dynamics of Y and those of —9 

corresponds to the "no-trade" theorem prevailing in Kyle's model [Back (1992, Lemma 5)]. 

If the uninformed confine their attention to the residual supply 1 — Y, the informed investor 

appears not to trade the stock. However, the informed investor's trades do have an impact 

on the dividend dynamics inferred by the uninformed. In the absence of an informed investor, 

the uninformed agents' conditional expectation of LT is independent of the residual supply 

1 — Y = 1 + 9 . As Proposition 2.2 illustrates, this is no longer true in the presence of an 

informed investor. 

2.5 Price stabilization and price chasing 

Recalling our previous notation, the variability of the equilibrium stock price is O Q D + 6 Q 0 = 

LHS(p&). It is straightforward to show that the price variability in the absence of an informed 

investor is LHS(0), while LHS'(oo) = lim^ >00LHS(fi) is the variability of the fundamental 

share value. For the parameter values corresponding to Figure 2.1, it is apparent that the stock 

price has a higher variability than that of the fundamental value, since LHS(PA) > LHS(oo). 

However, the price variability is still lower than it would be in the absence of an informed 

investor. Thus, using Wang's (1993) terminology, the informed investor stabilizes the stock 
14 

price. 

In Wang's model, informed investors are typically contrarians while the uninformed are "price 

chasers." In other words, informed investors buy when the stock price falls while the uninformed 

1 4 Numerical experimentation suggests that LHS(p) is monotone decreasing for a wide range of parameter 

values, which in turn suggests that the informed investor always stabilizes prices. However, we are unable to 

provide general conditions under which LHS(fj,) is monotone decreasing, or to provide a counterexample. 
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buy when the stock price rises. In the present model, this relationship is reversed. The informed 
investor is a price chaser, while the uninformed agents are contrarians. Because of the informed 
investor's market power, prices tend to rise when she purchases stock and fall when she sells it. 
This is illustrated in Figure 2.3, where the steady-state correlation 

between changes in excess returns and changes in the informed investor's shareholdings is plotted 
for several values of the supply noise mean reversion rate ae-15 Notice that limr >n PQX* (R) = 

0. Since the informed investor's shareholdings have zero instantaneous variability, there is zero 
correlation between dXt* and dQx over any infinitesimal time interval [t, t + dt]. Figure 2.3 
indicates that the larger a& is, the smaller the correlation between changes in stock returns 
and changes in the informed investor's shareholdings. In other words, the uninformed are less 
able to estimate the informed investor's trades as ae increases. Another aspect of this behavior 
is the fact that the steady state variance limj y o o Var(Xt*+r — X£) increases rapidly as ae 
increases. This is somewhat counterintuitive; one might expect the informed investor to make 
smaller trades as ae increases. An increase in the supply noise mean reversion rate would seem 
to reduce the informed trader's ability to "hide" her trades from the uninformed. However, we 
find instead that as ae increases, the uninformed agents' ability to filter out the supply noise 
declines rapidly. The informed investor trades more agressively to compensate for this decline. 
This phenomenon is also illustrated in Figure 2.4, where 

is plotted using the same parameter values. When ae is small, Y is composed almost entirely 
of supply noise —9, since the informed investor's trades are small relative to changes in 9. As 
ae grows PQY also grows, since the uninformed agents' ability to filter out the supply noise 
decreases. For the parameter values chosen in this case, Y is still largely composed of supply 

1 5 The covariances appearing here can be computed in closed form [Karatzas and Shreve (1991, §5.6)]. Aside 

from ae, which is allowed to vary, and o©, the model parameters coincide with those used in Figures 2.1 and 2.2. 

cr© has been doubled to ensure that 7crit < 7 for all the values of a© appearing in Figure 2.3. 

Cov(Qx

+T-Qx,Xt+T-Xt) 

Cov(Qx

+T-Qx,Yt+T-Yt) 
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noise. However, the informed investor compensates for the uninformed agents' reduced filtering 
ability by increasing the size of her trades. 

Finally, it is easy to prove that 

C O V ( Q £ T - Q * y t + r - y 4 ) 
lim o Var(Yt+T - Yt) 

= -O-Q^QQ e]0,A[. 
x=x* 

This limit describes the sensitivity of excess return innovations to innovations dYt in the residual 
supply. Therefore, using Kyle's (1985) terminology, it can be interpreted as the inverse of market 
depth. However, unlike the Kyle model, market depth is strictly larger than A - 1 , where A is the 
sensitivity of excess stock returns to the informed investor's incremental order. The difference 
arises because in the Kyle model, the market maker only observes one signal; the residual supply. 
In the present model, the uninformed also observe the signal C, = bQ^zr) + {\<JQ + bQo)z@, which 
is correlated with the residual supply. 
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R H S ( u ) 

LHS ( | i ) 

Figure 2.1 Model I - Equilibrium 
r = 0.05, k = 1.0, o- D = 1.0, an = 0.2, a n = 0.6, a 0 = 0.4, CT0 = 3.0, 

YcWt= 2.H2 
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2.108 2.11 2.112 2.114 2.116 2.118 

Figure 2.2 Model I - Multiple Equilibria 
r = 0 .05 , Jc = 1.0, CTD = 1.0, a n = 0 .2, a n = 0.6, aQ = 0 .4, CT0 = 3.0, 

Ycrit = 2 - 1 1 2 
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Figure 2.3 Model I - p Q X * 
y = 3.0, r = 0.05, k = 1.0, cD = 1.0, an = 0.2, c>n = 0.6, a@ = 6.0 
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y = 3 .0 , r = 0 .05 , k = 1.0, a D = 1.0, a n = 0 .2, an = 0 .6, CT0 = 6.0 



Chapter 3 

A Model of Endogenous Information 

Asymmetry 

In this chapter, we present a model in which risk averse agents have identical information 
about dividends, but different beliefs about the extent to which their trades move the stock 
price. There are two types of agents in this economy; a strategist, who accounts for the impact 
of her trades on prices, and price takers. Despite the fact that there is no a priori information 
asymmetry, we find an equilibrium in which the strategist can infer the supply of stock from 
the stock price and dividend while price takers can only infer partial information about the 
supply. Thus, an endogenous informational asymmetry arises in equilibrium. Unlike the model 
presented in Chapter 2, the equilibrium stock price exhibits interesting properties involving 
risk premia, serial autocorrelation, and excess variability. Each of these quantities is strongly 
influenced by the size of the strategist's trades. If the strategist trades on behalf of a significant 
proportion of the investor population, numerical examples indicate that very large risk premia 
and price variability may arise in equilibrium. While we make no attempt to calibrate the model 
to actual data, these examples indicate that the price variability can be much larger than that 
of a conventional representative agent benchmark model. For example, if half the members 
of a moderately risk averse population delegate their investment decisions to a strategic fund 
manager, the expected risk premium of the stock can be twice the size of its counterpart in the 
benchmark model, while the stock price variability can be thirty times larger. If ninety percent 

27 
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of the population invests exclusively in the fund, the expected risk premium of the stock can be 
ten times larger than that of its benchmark counterpart, while the price variability can be three 
orders of magnitude larger. Since conventional representative agent models deliver risk premia 
and price variability that are unreasonably small in comparison to empirical observations, these 
findings are encouraging. 

3.1 Model II 

Subrahmanyam (1991, §2) extends the one-period Kyle model (1984) to a case where both 
the informed investor and the market maker are risk averse. In our second model, we also 
investigate an equilibrium arising between two types of risk averse agents. However, we depart 
somewhat from Subrahmanyam by assuming that both types of agents have the same a priori 

informational standing. Instead, one investor, the strategist, believes that her trades move prices 
while the remaining N — 1 investors take prices as given. In the resulting equilibrium, the stock 
price reveals the supply noise 0 to the strategist but not to the price takers. The strategist 
impounds this private information in her equilibrium consumption-investment policy.1 

Both the strategist and the price takers have time-additive preferences (2.4) over consumption, 
with respective preference parameters p, 7 and p',7'. The dividend rate satisfies (2.1), where 
n t = n is a constant known to both investors; i.e. 

dDt = (fl - kDt)dt + aDdzD{t). 

All investors observe the dividend rate Dt at each date t. The per capita supply of stock is 
1 + Of, where 0 satisfies (2.3) and is independent of D. Like our first model, we assume that the 
excess stock return is determined by a pricing rule Qx of the form (2.6). Given this pricing rule 
and their respective self-financing budget constraints, both investors compute their optimal 

1Instead of imposing a zero profit condition on the market maker, Subrahmanyam assumes that the market 
maker achieves a reservation level of expected utility in equilibrium. We instead seek a market clearing equilibrium 
in which each agent is a utility maximizer. A related problem is addressed in Cuoco and Cvitanic (1998, §8), who 
present a model in which the dependence of price on a large investor's shareholdings is exogenously specified. 
However, their model does not arise from equilibrium considerations, nor does it involve information asymmetry. 

t 
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consumption-investment policies. The strategist faces the same type of optimization problem 
as the first model's informed investor. A price taker, on the other hand, arrives at his optimal 
policy (c',X') by treating the strategist's shareholdings X as an exogenous process. Thus, in 
order to determine his optimal policy, the price taker must hold a belief X = X* about the 
dynamics of X. 

Given the pricing rule Qx and her budget constraint, the strategist seeks a solution to the 
Bellman equation (2.8), where 3 now denotes the information filtration generated by D, the 
stock price P, and the strategist's initial wealth and shareholdings. As before, we say that Qx 

is an admissible pricing rule if (2.8) has a unique C 2 solution J for some U-adapted state process 
In turn, the consumption-investment policy (c, X) is Q -̂admissible if it is an J-adapted 

semimartingale satisfying the transversality condition (2.9). Let u> = (N — 1)/N denote the 
proportion of price takers among the population of investors. By analogy to our first model, 
we say that an equilibrium arises under the following conditions. 

Definition 3.1 The pricing rule Qx, the price takers' belief X = X*, and the Qx-admissible 
policies A comprise an equilibrium if there is a consumption process c* such that, with probability 
one, 

ii) each price taker optimally holds X' shares, where uX' + (1 — u)X* = 1 + 0. 

The market clearing condition ii) is identical to that of Wang (1993, Equation (4.16)). Each 
price taker holds the same belief X = X*. In equilibrium, the strategist has no incentive to 
deviate from a policy (c*,X*) that confirms this belief and clears the stock market. 

3.2 Constructing an equilibrium 

In this section, we construct a stationary equilibrium. Unlike our first model, restrictions on the 
parameter values or the initial distribution of the underlying state variables are unnecessary. 
We begin by specifying the coefficients A, 6Q£>, 6QG appearing in the pricing rule (2.6). 
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Lemma 3.1 Given b £R, define 6Q(6) = \pQD, b]T and X(b) = ||&Q(&)||27 (1 + 2a&/r) 1 , where 

bQD = o-n/{r + k). Let 

co (6) 

Cl(6) 

C2(b) 

r2i2\\bQ(b)\\2 (b\D u 

2u2b \ b 7'a0 

1 + 2ae 

^ ( l l ^ W I I 2 
m i A(6)w 

2(1 -a;)7'a e 

1 + 
2ae 

A(6) / A(6) 
(l-w)6 \2(l-u)b © 

T/ien £/iere e»s^5 6 = 6ge < 0 such that the quadratic ip((;b) = c*2(&)£2 + ci(6)£ + co(6) /ms a 
rooi S(6) < 0 satisfying 

E(b) (1 -a;)(r + aQ)b 
(1 -w)6 + aeA(&)' 

Proof. See Appendix C. 

This result can be motivated as follows. By analogy to our first model, define 

Y = (l-u)X-e, (3.1) 

where X is the strategist's shareholdings. 1 - Y is the residual supply of stock per capita, net 
of the strategist's shareholdings. The market clearing condition can be stated as wl' = 1 — Y. 
We seek an equilibrium in which Y has dynamics 

dYt = (m + fiYYt) dt - aQdze(t), (3.2) 

where the /LtjS are constant scalars to be determined. Given 6Q£>, 6QG as defined above, let 
A = A(6ge); S = S(6ge)> a n d &Q = [frqcbge]. Assuming that the pricing rule Qx defined in 
Lemma 2.1 holds with z = [zrj, ZQ]T, the excess stock return corresponding to (3.2) is 

A 
dQt = — [/xi + (fiy + a,Q)Yt] dt + bQdzt. 

1 — UJ 
(3.3) 
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Since 6Q9 < 0, instantaneous supply shocks and price shocks are negatively correlated, as we 
should expect. Moreover, since Y and consequently z are observable to the price taker, his 
optimization problem is a conventional dynamic program in the state variable Y ? His Bellman 
equation yields a quadratic in Y, each of whose coefficients must vanish. The coefficient of Y2 

is T/>(H;6QO), which is zero by definition. Furthermore, if we set 

= (1 -uj)ra@E il'bQp)2 (r + 2qe) Q 

vbQo -yuE2 + 7'(1 - u)(r + a&)(r + 2a©) ' 
HY = S - a 0 < 0, 

the other two coefficients of the price taker's Bellman equation also vanish and he optimally 
holds X' shares, where wl' = 1 — Y. Thus, the stock market clears.3 We now state an 
equilibrium. 

Proposition 3.1 Let <&t = E [/t°° e-r(s~*)Dsds Dt] be the fundamental share value. Suppose 

the initial stock price Po satisfies Po = $o + Po +PYYQ, where 

PY = - V Q ^ Q ® , PO = (PY ~ T3Tj ) y-

Then there exists a belief X* such that (QX,X*,AJ comprises an equilibrium. X* satisfies 

^ - J a - + w jf-ef±«ae, (3.4) 
dt 1 — u I — oj 

where the constants are as defined above. The strategist's optimal consumption rate c* is 

given by Lemma 2.3. Moreover, the equilibrium stock price satisfies Pt = <&t+Po + PYYt for 

every t > 0. 

Proof. See Appendix C. 
2In fact, the price taker's optimization problem is of the same form as that faced by Wang's uninformed 

investor [Wang (1993, Appendix C)]. 
3Notice that since fiy + a& = 2 < 0, the expected excess stock return ¥.tdQt/dt increases as the residual 

supply 1 — Y increases. In equilibrium, the increase is just enough that the price takers, in aggregate, continue 

to hold the residual supply. 



CHAPTER 3. A MODEL OF ENDOGENOUS INFORMATION ASYMMETRY 32 

The proof of Proposition 3.1 relies on the fact that Lemmas 2.1, 2.2, and 2.3 remain true when 
z — [ZD, ZQ]T. The equilibrium share price is uniquely determined by the initial share price Po, 
the pricing rule Qx, and the strategist's optimal shareholdings X*. Equations (3.1) and (3.4) 
imply that (3.2) holds in equilibrium. 

3.3 P r o p e r t i e s o f t he e q u i l i b r i u m 

It is important to distinguish the pricing rule Qx from the equilibrium share price $t+Po+PYYt-
The strategist views the sensitivity of the price to an incremental order dX as A, not py- These 
two quantities generally differ. It is also important to notice that since py ^ 0, both investors 
can infer Yt from the time t stock price and dividend. The strategist can then deduce the 
supply noise 0 t = (1 — UJ)X£ — Yt from this information. Therefore the strategy X* is well 
defined. Finally, recall that in our first model and in Wang's (1993) competitive model, the 
economy must reach (or begin from) a long-run steady state in order for the equilibrium to 
hold. This ensures that the uninformed investors' filtered estimates of the informed investors' 
private information have reached a steady state. Since no filtering is involved in the present 
model, this type of assumption is not required here.4 

Like the equilibrium arising in our first model, this equilibrium is of the rational expecta
tions type. All investors rationally expect the signal ZQ to be revealed to the price takers in 
equilibrium.5 By definition, we have p,\ > 0 and py < —O,Q. Therefore, from the price taker's 
perspective, the dynamics (3.2) differ from those of -0. Consequently, the "no-trade" theorem 
prevailing in the first model does not hold in this case. The residual supply 1 — Y has a higher 
mean reversion rate and a smaller mean than the total supply. The strategist reduces the vari
ance of the residual supply relative to that of the total supply 1 + 0 and takes, on average, 
a long position in the stock. To implement the policy (c*,X*) described in Proposition 3.1, 

4We could conceivably include a filtered estimate of 0 as a state variable for the price taker's problem. 
However, given the dynamics (3.2) and (3.3), Y alone suffices for this purpose. 

5 Alternately, the device of an artificial market in which z@ is exogenously revealed to price takers can be used. 
Price takers can enforce the pricing rule Qx in this artificial market, and since z@ is revealed by equilibrium 
excess returns, they can also enforce it in the actual market. The supply shock z@ plays the same role as the 
signal £ in our first model. 
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the strategist need only observe her wealth, the supply noise 0, and her current shareholdings. 
Since /iy < —o-e < 0, (3.4) implies that the strategist's order rate dX^ /dt is decreasing in her 
current shareholdings X% and increasing in the total supply 1 + ®t- The strategist's decision to 
buy or sell stock is therefore determined by the size of her shareholdings relative to the total 
supply. She will further increase an existing long or short position in the stock only if her 
current shareholdings are sufficiently small relative to the total supply. Like our first model, 
this behavior reflects the fact that the strategist's value function J is decreasing in \X\. For a 
given amount of wealth W, the strategist is worse off the greater the proportion of wealth (long 
or short) she has invested in the stock. Due to her market power, it is costly for the strategist 
to unwind a large position in the stock should market conditions eventually turn against her. 
In anticipation of this possibility, she may choose to reduce her current position and forego 
short-term profits that might be obtained by increasing it further. 

A change in the proportion UJ of price takers in the population changes the balance between 
opposing forces. As u falls, the relative increase in strategic trading causes the residual supply 
to be smoothed to a greater degree. This tends to reduce stock price variability. On the other 
hand, since the strategist's shareholdings have no Brownian component, her trades only smooth 
the residual supply over finite time horizons. On an infinitesimal time scale, her trades do not 
smooth the supply at all; the price takers must absorb the instantaneous supply shocks dzQ. 
Since fewer price takers are available to do this as u> decreases, this tends to increase stock price 
variability. Thus, like Wang's model, where UJ is the proportion of uninformed investors in the 
economy, important aspects of the model change simultaneously as UJ varies. Unlike Wang's 
model, our model currently requires u> to take the form 1 — J V - 1 , where iV is a positive integer. 
However, the following generalization has a meaningful economic interpretation for any rational 
UJ e]0, 1[. Suppose that the strategist is a mutual fund manager acting on behalf of M > 1 unit 
holders. The fund manager seeks to maximize the utility of a representative unit holder having a 
pro-rata claim to a fraction 1/M of the fund's security holdings and consumption stream.6 It is 
natural to consider equilibria in which the fund manager trades strategically, even if the number 

6Here we ignore details related to the fund manager's compensation, assume that the number of unit holders 
M is constant over all states and time, and require all unit holders to refrain from holding securities outside of 
the fund. One justification for the last of these assumptions is that mutual fund investors face information costs 
or other frictions preventing them from investing outside the fund. A similar assumption appears in Basak and 
Cuoco (1998). 
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of mutual fund investors M is a relatively small fraction of the total population N. Let MXt be 
the fund manager's shareholdings at time t. Assuming once again that the per capita supply of 
shares is 1 + 0, the market clearing condition takes the form (N — M)X[ + MXt — N(l + 0t), 
or 

OJX[ + (1 - u)Xt = 1 + 0t, 

where u = (N — M)/N. This condition coincides with that of Wang (1993, Equation (4.16)). 
In this context, Definition 3.1 has a meaningful interpretation for any rational to between 0 
and 1. Furthermore, Lemma 3.1 and Proposition 3.1 remain true for all rational u e]0, 1[. 
As u> decreases, these results tell us how the model behaves as the proportion of mutual fund 
investors increases. 

3.4 A b e n c h m a r k m o d e l 

To better understand the implications of the model, it is helpful to use a conventional benchmark 
as a basis for comparison. For this, we employ a model in which identical price takers each 
hold 1 + 0 shares (i.e. u = 1). In this case, a standard argument establishes that the market 
clearing share price is P\ = $ t — + Pe®*)> where 

The share price in this case is simply the expected discounted value «3>t of future dividends minus 
a risk premium p\ +pb

Q®t-7 The expected risk premium p(j is proportional to each agent's risk 
aversion coefficient 7'. The larger 7' is, the greater the expected risk premium and the expected 
excess stock return. As shown in Proposition 3.1, the equilibrium share price for our second 
model takes a similar simple form, where the risk premium is 

V ae 1-uJ r ere 
7Compare to Wang (1993, Theorem 3.1). 
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Recalling the various definitions, we obtain the following simple result. 

Lemma 3.2 7/7 = 7' '', then 

E[$t-Pt] = pb

0 ( 1 + 
r \ a&(r + 2a&) 

J uE2 + (1 - u){r + a@){r + 2aQ) 

(3.5) 

The expected risk premium is a multiple of its benchmark counterpart p0. The multiplier de
pends on the population parameter UJ e]0, 1[, the term H arising in the definition of equilibrium, 
and the supply noise mean reversion rate a&. These quantities play no role in the benchmark 
model's expected risk premium. Unfortunately, we are unable to provide a comparably simple 
and interesting lower bound for the expected risk premium. 

Since the expressions for both the share price variability 6Q@ + 0 Q D and the risk premium are 
somewhat unwieldy, the remainder of this chapter investigates the model through numerical 
examples. We find that there are two distinct regimes. There appears to be only one equilibrium 
when sufficiently many investors are price takers. However, below a certain threshold value of 
UJ, multiple equilibria may exist. We examine the two regimes separately below. 

3.5 Some comparative statics for a price taking majority 

The proof of Lemma 3.1 addresses two separate cases; one where the denominator of E(b) has no 
negative roots, and the other where it does. Figure 3.1 illustrates the former case when UJ = 0.9.8 

The function E(b) (the dashed curve) is plotted together with the roots of the quadratic ip(»; b) 
(the solid curves) over the negative b axis. We assume that both types of investors have the 
same preference parameters; i.e. p = p' and 7 = 7'. The equilibrium value frge is the point 
b where E(b) coincides with one of the two roots. Figure 3.2 plots the ratio o^/al vs. u, 

8Here we use somewhat different parameter values than those appearing in Wang (1993). While the qualitative 
behavior of the model is unaffected by changing these values, this particular choice of parameters emphasizes 
the interesting features of the equilibria. 
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where a2 = OQQ + OQD is the equilibrium price variability and a\ is the price variability for 
the benchmark model. Figure 3.3 plots the corresponding ratio E[$t — Pt]/Po of expected risk 
premia. As one moves from left to right along the a> axes, mutual fund participation declines 
and price taking activity increases. As w | 1, both ratios converge to one. This is because 
the drift and diffusion coefncents of the two-dimensional process [Qx, — Y]T converge to those 
of [Qb,Q]T, where Qb is the cumulative excess stock return for the benchmark model.9 This 
is interesting because no matter how large u> might be, as long as it is smaller than one, the 
price takers cannot observe the supply noise 0. However, at u> = 1, 0 is revealed to the price 
takers in equilibrium. As ui | 1, the equilibria converge to the benchmark equilibrium despite 
this informational discontinuity. Wang (1993, p. 275) notes that similar phenomena arise in his 
competitive model. However, in his model, this may lead to instabilities where equilibria do 
not converge to the equilibrium prevailing at the discontinuity point. 

As shown in Figures 3.2 and 3.3, the price variability and expected risk premium may be 
monotone increasing, monotone decreasing, or hump-shaped as ui decreases from 1. The shape 
of these curves reflects the trade-off between finite-horizon supply smoothing caused by the 
fund manager's trades and the availability of price takers to absorb instantaneous supply shocks. 
When risk aversion is low, the fund manager smooths the residual supply more aggressively and 
price takers are more willing to absorb supply shocks. As a result, the former effect dominates, 
causing price variability and risk premia to fall as to falls. When risk aversion is high, the fund 
manager smooths the supply less aggressively and price takers are less willing to absorb supply 
shocks. In this case the latter effect dominates, causing price variability and risk premia to rise 
as u> falls. This behavior is consistent with anecdotal evidence, reported in the popular press, 
that with liquidity reduced, price volatility tends to rise while price itself tends to fall.10 

The hump-shaped curves in Figures 3.2 and 3.3 demonstrate that the trade-off between these 
effects can be relatively complex at intermediate levels of risk aversion. A similar shape appears 
in Wang (1993, Figure 2), but it arises for somewhat different reasons related to informational 
asymmetry. The case where mutual fund participation and risk aversion are relatively high 
is particularly interesting in this numerical example. When 7 = 7' = 4 and w = 1/2, the 

9While we have not formally proved this assertion, a search over a wide range of parameter values failed to 

produce a counterexample. 
1 0 For example, see "The risk business," The Economist, Oct. 17-23, 1998, p. 21. 
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stock price variability for our model is thirty times its counterpart for the benchmark model 
and almost nine hundred times the variability of the supply noise and the dividend. The 
expected risk premium is roughly twice that of the benchmark. Spiegel (1998) notes that 
conventional representative agent models typically require a large amount of supply noise in 
order to produce the stock price variability observed in empirical studies. Our model provides a 
means of generating substantial price variability with a relatively small amount of supply noise. 
Since supply noise variations are generally thought to be much smaller than price variations, 
this is a desirable property. 

Figure 3.4 plots the serial correlation PQ+Q-(T) in excess stock returns, where 

Cov(Q?+T — QX, QX - Q?LT) 
t "oo Var(Qf+T - Qf) 

x=x* 

As in our first model, the quantities appearing here can be computed in closed form using 
standard methods. PQ+Q- (T) is plotted for several values of UJ at 7 = 4. The notable feature 
of Figure 3.4 is that excess stock returns are negatively serially correlated. This is consistent 
with well known empirical studies [e.g. Fama and French (1987)]. Moreover, this negative serial 
correlation becomes more pronounced as UJ falls; i.e. as the number of mutual fund investors 
grows and the number of price takers diminishes. This relationship is reversed for small values 
of 7; excess returns are still negatively serially correlated, but become less so as UJ decreases. 
At intermediate values of 7, the serial correlation is no longer monotonic in UJ; the curves in 
Figure 3.4 may cross at various points.11 However, in each case, these curves approach their 
benchmark counterpart as u | 1-

The mechanism behind the serial correlation is the following. Suppose the fund manager sells 
shares over the time period [t — r, t]. Then the residual supply increases and the stock price 
tends to fall; i.e. the fund manager is a price chaser. Since \xy + a® < 0, (3.3) implies that 
the expected excess stock return over the subsequent time period [t, t + r] rises. Provided \p,y\ 
is moderately large, this results in negative serial correlation in stock returns. The magnitude 
of the correlation depends on both the nature of the fund manager's trades and the extent 
to which the stock price moves in response to them; i.e. the sensitivity of price to residual 

1 1 Wang observes a similar nonmonotonicity in his model (1993, Figure 6), but it arises for different reasons. 
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supply variations. This sensitivity rises as price takers become fewer in number. Conversely, 
as mutual fund participation increases, the fund manager's trades smooth the residual supply 
to a greater extent. The balance between these opposing forces changes as the risk aversion 
coefficient 7 varies. At high levels of risk aversion, serial correlation strengthens as u> falls; the 
increasing sensitivity of price to residual supply variations outweighs the impact of increased 
residual supply smoothing. At low levels of risk aversion, the opposite effect is observed. 

3.6 Multiple equilibria for a strategic majority 

If sufficiently many investors are price takers, the equilibrium described in Section 3.5 appears 
to be unique. However, for smaller values of LJ, the situation is somewhat different. Figure 
3.5 is the counterpart of Figure 3.1 when ui = 0.1. In this case the function E(b) has two 
poles on the negative b axis. More importantly, multiple roots exist. The rightmost root below 
the b axis is the one guaranteed by Lemma 3.1. However, there are four additional roots, 
two lying above the b axis and two lying below. Each of the three roots lying below the b 
axis corresponds to a valid equilibrium. As long as investors agree on the pricing rule implied 
by one of these roots, the stock market clears when they optimize their respective utilities 
of consumption.12 The leftmost of these roots lies at b = —145.56, well outside the range of 
Figure 3.5. The equilibrium corresponding to this root has a large expected risk premium; 
it is 9.96 times that of the benchmark model. In other words, the expected risk premium 
is within a half percent of attaining the upper bound (3.5).13 The price variability in this 
equilibrium is enormous; it is three orders of magnitude larger than that of the benchmark 
model. This behavior is similar to that of the "negative root" equilibrium in Spiegel's (1998) 
overlapping generations model. However, the comparative statics of this equilibrium differ from 
those of Spiegel's. As GQ decreases, the two leftmost roots of Figure 3.5 eventually converge 
to a common intermediate root when <JQ reaches some positive value <T0. These roots do not 
exist if ae < cr0. By contrast, Spiegel's negative root equilibrium exists at all levels of supply 

1 2Like Spiegel (1998), we do not attempt to Pareto rank the various equilibria. Also note that the roots above 
the 6 axis correspond to a mean averting residual supply: i.e. \XY > 0. Since this leads to implausible stock price 
behavior, we choose not to examine these roots. 

13Recalling the expression for po, the investors' risk aversion coefficient must be increased by the factor 9.96 
in order to obtain the same expected risk premium using the benchmark model. 
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variability. In fact, price variability in the negative root equilibrium approaches infinity as 
the supply variability approaches zero [Spiegel (1998, Theorem 1)]. By comparison, the price 
variability associated with the leftmost root of our model approaches infinity as u approaches 
zero. In other words, pervasive strategic trading can greatly destabilize the share price relative 
to the benchmark model. As price takers become scarce, the share price variability consistent 
with their absorption of the instantaneous supply shocks grows without bound. 



Figure 3.1 Model II - Equilibrium 
r — 0.05, a D = C J q = 1.0, k = aQ = 0.4, y' = y = 3.0, co = 0.9 
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0.5 0.6 0.7 0.8 0.9 1 
gamma = 4.0 
gamma = 3.488 
gamma = 3.0 

Figure 3.2 Model II - excess variability 
r = 0.05, o-D = o-Q = 1.0, k = aQ = 0.4, y' = y 
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gamma = 4.0 
gamma = 3.488 
gamma = 3.0 

Figure 3.3 Model II - risk premium 

r = 0.05, cD = ce = 1.0, k = aQ = 0.4, y' = y 
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Figure 3.4 Mode l II - returns autocorrelation 

r = 0.05, aD— aQ= 1.0, k = aQ = 0.4, y' = y = 4 
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Figure 3.5 Model II - multiple equilibria 
r = 0.05, a D = a Q = 1.0, k = aQ = 0.4, y' = y = 3.0, co = 0.1 



Chapter 4 

Insider Trading with Incomplete 

Information 

In one of his many seminal contributions to finance, Fischer Black (1986) conjectures that the 
price of a stock and its fundamental value must display several qualitative properties. Chief 
among these are the following. First, price tends to move toward value over time, and the 
farther price moves from value, the faster it will tend to move back. This is due to informed 
traders taking larger positions as the deviation between price and value increases. Second, both 
the price and value processes look like geometric Brownian motions with time-varying means. 
Changes in tastes, technology, and wealth cause the mean of the value process to change over 
time, while the mean of the price process changes in response to changes in the relationship 
between price and value. Third, Black conjectures that short term price movements can be 
decomposed into movements due to changes in value and movements due to noise. When the 
variance of these two components is the same, the variance of day-to-day price moves is roughly 
twice the variance of corresponding value moves. Over time, however, the variance of price 
movements tends toward the variance of value movements. The purpose of this chapter is to 
determine the share price in a greatly simplified version of Black's model, where a single trader 
has exclusive knowledge of a signal related to V\, the terminal liquidation value of the share. 
The model is similar to the Kyle (1985) model of insider trading. The share is continuously 
traded throughout the time interval [0,1]. Traders submit their orders to a market maker, who 

45 
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sets a market clearing share price in response to the total order. There are two types of traders; 
the insider and uninformed noise traders who submit random orders. Since the market maker 
only observes the combined order of the insider and noise traders, he is unable to distinguish 
noise trades from insider trades. Unlike the Kyle model, we assume that the insider cannot 
necessarily observe the liquidation value V\ precisely at times t < 1. Instead, at each time t, 
the insider observes a signal Vt, where V is a stochastic process terminating at V\ at time t = 1. 
Vt could simply be the insider's expectation of V\, conditioned on her time t information set. 
Alternately, provided default can be ignored, Vt could be the leveraged value of the firm; i. e. the 
time t value, on a per share basis, of the firm's assets in place and future growth opportunities 
less outstanding debt. We show that, within a parametric class of diffusion models for Vj, an 
equilibrium analogous to Kyle's exists. We also obtain a closed form representation for the 
equilibrium price process. For example, if the signal V follows a geometric Brownian motion, 
then so does price. 

Despite the increased generality of this model, the equilibrium is very similar to that of the 
Kyle model. In fact, the pricing rule and the distribution of trading volume, conditioned on the 
market maker's information set, are identical to their counterparts in the Kyle model. Thus, in 
contrast to Black's conjecture, the model displays constant price volatility when the underlying 
value process follows a geometric Brownian motion. Moreover, altering the arrival pattern of the 
insider's information by introducing systematic variations in the volatility of the signal V only 
serves to increase or decrease the price volatility. It has no intertemporal impact upon prices or 
upon the market maker's perception of trading volume. This property is much different from 
that of the Admati-Pfleiderer (1988) model, in which the insider's informational advantage is 
short-lived. There, the insider acts on private information immediately, imparting an infor
mational component to price changes. By contrast, the insider's equilibrium trading strategy 
in this model conveys no information to the market maker about shocks to the fundamental 
value. As in the Kyle model, the insider's trading strategy has continuous sample paths of 
finite variation. Therefore her trades are locally correlated with neither the fundamental value 
nor the noise trades. The equilibrium trading strategy admits a relatively simple description. 
At each point in time, the insider adjusts her holdings in proportion to the size of the market 
maker's error in estimating the fundamental value. The proportionality constant grows without 
bound as t f 1. As a consequence, the share price is driven toward its fundamental value as 
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t f 1. An interesting feature of the model is the impact of mean reversion in value on price 
volatility. A uniform decrease in the rate with which value reverts to the mean increases the 
price volatility and reduces market efficiency. 

Like the Kyle model, the insider's expected profits in equilibrium are identical to those of a 
perfectly discriminating monopsonist who refrains from trading until the last possible moment. 
This observation, together with those of the previous paragraph, might suggest that there are 
only minor differences between the Kyle model and the model under present consideration. 
However, the present model differs substantially in the way that information is impounded in 
the insider's investment strategy. If, as in the Kyle model, the insider knows Vi throughout [0,1], 
she can simply "look ahead" to the terminal realization V\ to construct an optimal portfolio at 
any time t < 1. By contrast, in the model presented here, the insider must form her portfolio 
based only on past realizations of the stock price and her private signal. The fact that the 
equilibrium pricing rules and expected profits should coincide for these models is interesting 
and not at all obvious. The model primitives are presented in preliminary form in Section 4.1 
and developed in full detail in Section 4.2. Various qualitative properties of the equilibrium are 
also described in Section 4.2. Proofs appear in Appendices D, E, and F. 

4.1 Model III 

Apart from the insider's uncertainty about the terminal share value V\, the model described 
below is identical to the Kyle model. Thus, the description is brief and closely parallels the 
discussion in Back (1992, §1). A non-dividend paying share is available for trade throughout 
the time interval [0,1]. At each time t G [0,1], a risk-neutral insider and noise traders simulta
neously submit order quantities to a market maker, who sets a market clearing share price in 
response to the combined order. At time t = 1, the share liquidation value V\ is announced. 
None of the market participants can observe V\ until the announcement date. However, at 
each time t 6 [0,1], the insider observes a private signal Vt, where V — {Vt} is a diffusion 
process on [0,1] with terminal value V\. We call Vt the fundamental value at time t.1 For 

1 The fundamental value usually has the more specific interpretation as the discounted expected value of all 
future cash flows, [e.g. Summers (1986)]. However, we use this terminology in this more general context as a 
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concreteness, suppose that Vt = <?(£*)) where g S C2(M) is strictly increasing and £ = {£t} is 
the Gauss-Markov process satisfying 

d£ = [F(t)Zt + f(t)]dt + q(t)dB, £ 0 ~ iV ( M ,4> 2 ) , (4.1) 

on the time interval [0,1]. Here B = {Bt} is a standard Brownian motion independent of £o 
and F, / , and q are continuous, deterministic functions on [0,1]. This specification nests the 
geometric Brownian motion commonly appearing in continuous-time models of the firm. It 
also exhibits mean reversion if F < 0.2 

Let Xt be the number of shares held by the insider at time t. The total order at time t, Yt, 
is the sum of Xt and Zt, where Zt is the total number of shares held by noise traders at time 
t. Z = {Zt} is a Brownian motion independent of £o and B satisfying E [Z2] = a2t for all 
t £ [0,1], where a is a positive constant. Thus, noise trades are uncorrelated with shocks to the 
fundamental value. Since the market maker only observes the total order process Y = {Yt}, 
the time t share price Pt can depend only upon realizations of Y up to time t. Following Back 
(1992), we restrict attention to the case where Pt depends only upon Yt; i.e. 

Pt = H(Yt,t), (4.2) 

where H G C2'l(Rx]0,1[) is continuous on R x [0,1] and strictly increasing in its first argument. 
H is called the market maker's pricing rule. The function H is assumed to belong to "K, a class 
of functions that satisfy technical conditions described in the following section. 

matter of convenience. 
2For example, suppose the unleveraged value of the firm has constant proportional volatility <x„, a constant 

proportion Sv of the firm's assets are paid to security holders per unit time, and the instantaneous return p.v(t) on 

the firm's assets is a deterministic function of time [Leland and Toft (1996, equation (1))]. Suppose that, at time 

0, the firm issues a discount bond of face value D maturing at t = 1, and the unleveraged firm value is lognormally 

distributed. Then if the possibility of default can be ignored, we define F(t) = 0, / (£ ) = — $v — c 2 /2, 

q(t) = av, and g(x) = ex — D. The time dependence of the drift coefficients is intended to capture the impact of 

(deterministic) changes in the economic factors mentioned in the introduction. In general, the time dependence 

of the dispersion coefficient q(t) reflects changes in the firm's leverage and changes in the rate of arrival of 

information about the firm's prospects [Black (1986, p. 533)]. 
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Since H is strictly increasing in its first argument, the insider can deduce the total order Ys 

from the share price prevailing at time s. By subtracting Xs from Ys at each time s < t, she 
can then infer the history of noise trades {Zs,0 < s < t} before submitting her order Xt at 
time t. Since the insider also observes the fundamental value process, it is natural to require 
her trading strategy X to be adapted to the information filtration S^'2 generated by V and 
Z. 3 Specifically, we assume that X belongs to X#, a set of y^-adapted semimartingales 
satisfying technical conditions described in the following section.4 The requirement that X 
be a semimartingale is somewhat stronger than the technical conditions usually imposed on 
trading strategies in competitive models [i.e. Harrison and Pliska (1981, p. 239)]. However, as 
Back notes, this assumption permits a useful integration by parts formula that is instrumental 
to the construction of an equilibrium. 

If t > 0, let Xt- = lims-j-j Xs and define _X"o_ = 0. In view of the insider's risk-neutrality, her 
initial wealth may be assumed to be zero. Given the pricing rule Pt = H(Yt,t), the insider's 
terminal wealth W\ is given by 

Wi= f1 Xt-dPt + (V1-P1)X1. Jo 

W\ is the sum of the cumulative gain from trade over the time interval [0,1] and the capital 
gain at the announcement date t = 1. The self-financing budget constraint implicit in the 
expression for the cumulative gain is similar to its counterpart in competitive models [Back 
(1992, pp. 391-392)]. However, as explained in Kyle (1985, p. 1327), it better reflects the 
impact of trades on the share price. In effect, trades are priced at the end of the instant 
in which they occur. Accordingly, the cumulative gain is expressed as JQ Xt-dPt instead of 
JQ1 XtdPt- Since X is a semimartingale, the generalized Ito formula [Jacod and Shiryaev (1987, 

3More precisely, 3"v,'z denotes the null-augmented nitration generated by V and Z. [Karatzas and Shreve 

(1991, §2.7)]. 
4Loosely speaking, the 3^'Z-adapted semimartingales comprise a vector space containing all Ito processes; 

i.e. all processes of the form xo + /J.sds + f*asdVs + f*cr'sdZs, where xo 6 R and the coefficient processes 

Ht, crt, cr't are adapted and satisfy standard integrability conditions. However, the class of semimartingales also 

contains jump processes, which is a natural requirement in the present context. 
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Theorem 1.4.57)] implies 

W1 = [ (Vt - H(Xt- + Zu t)) dXt + ll Xt-dVt + [V - P, X] i> (4.3) 

where [V — P, X]t is the quadratic (co)variation of the processes V — P and X.5 The first 
integral in (4.3) explicitly includes the left endpoint of the interval [0,1] because X may jump 
there. 

Following Back, we now define an equilibrium to be a pair (H, X) G 0i x X# such that given the 
pricing rule H, the insider's trading strategy X is optimal; i.e. the insider's expected terminal 
wealth E [W\ \ VQ] is maximized over all strategies in X#; and given the insider's trading strategy 
X, the pricing rule H is rational; i.e. 

to notice that in equilibrium, the insider takes the pricing rule H as given, rather than the 
price process P. This requires the insider to account for the impact of her own trades on the 
share price when selecting a trading strategy. In this sense, the insider rationally anticipates 
the effect of her orders on the equilibrium share price. 

4.2 M a i n resu l t s 

In this section, we define the class "H from which the market maker chooses his pricing rule 
H and the class X# from which the insider selects her trading strategy X. An equilibrium 
is then constructed. Closed form expressions for the equilibrium pricing rule and an optimal 
insider trading strategy are also obtained. We begin by noting that equation (4.1) can be 
solved explicitly [Karatzas and Shreve (1991, §5.6C)]. Given t G [0,1] and £t = £ G M, we have 

5The square bracket [•, -]t is a natural generalization of its more familiar counterpart (•, )t appearing in the 
Ito process literature [i.e. Back (1991)]. 

H(Yt, t)=E [Vi 1 for every 0 < t < 1, (4.4) 

where &Y 

is the information filtration generated by the total order process Y. It is important 
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£1 = £(£,£) almost surely, where 

£(S,t) = e(F)til 

e(F)t,T = exp J F(s)ds 

ds+ [ dBs e(F)ttS Jt e(F)t,s 

(4.5) 

(4.6) 

For every t G [0,1], let C(t) be the covariance matrix of the random vector (£{tl,t),Zi - Ztj 
and define 

||C(t)|| = max {x'C(t)x\ x € M 2 , |x| = l} , 

where |x| = \Jx\ + x\. C(t) evidently has no dependence upon £. 

(4.7) 

Assumption 4.1 There exists p > 1 such that |g ,(£i)|2p and g'((i)2p have finite expectations. 

Moreover, there exists 5 > 0 such that supte[0jlj ||C(i)|| < 1/25 and 

e Sx2\g(x)\dx < oo. 

Assumption 4.1 holds if max.{\g(x)\,g'(x)} < K\eK2X for constants K\, K2 < oo. This is true, 
for example, when the fundamental value follows a geometric Brownian motion (g(x) = ex).6 

Definition 4.1 If h : M —> R is strictly increasing and (£,y) 6 M 2 , define 

KZ,V,h)= [g(0-h(x)}dx. (4.8) 
Jy 

Since h is strictly increasing, it is easy to verify that j(£,y; h) > 0 with equality iff g(£) = h(y). 
As in Back (1992), the function (4.8) plays a key role in the construction of an equilibrium. 

6Back's counterpart to Assumption 4.1 is simply the requirement that g{Z\) be square integrable (1992, p. 
390). The randomness of the fundamental value process assumed in the present model mandates the more 
complicated assumptions appearing here. 
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It has the following straightforward economic interpretation. If h(-) = H(- ,1), j(£i,Yi_;/i) 
is the area in price-quantity space bounded by the "supply curve" P = h(Q) and the lines 
P = Q = Yi_, and Q = h~l o g(£x). Thus, it represents the profit available to a 
perfectly discriminating monopsonist at the last instant before the liquidation value Vi = ff(£i) 
is announced. 

Definition 4.2 Withy as in Assumption 4.1, letp' > 1 be the conjugate ofp: i.e. 1/p+l/p' = 1. 

\)pC denotes all strictly increasing functions h e C2(R) such that \h{Z±)\2p and \h~l o g(t,i)\2p' 

have finite expectations, and such that 

To illustrate, suppose \h(Zi)\2p has a finite expectation, \h~l o g(x)\ < |poly(a;)| for some 
polynomial poly(a;), and /f^ e~5y2\h(y)\dy < oo for some constant 8 as described above. Then 
h satisfies the conditions of Definition 4.2. The integrability condition (4.9) follows from the 
bound 

In particular, the conditions of Definition 4.2 are satisfied when h(x) = g(ax + (3), a > 0, and 
\g(x)\ < K\eK2X for constants K~i,K~2.7 With these definitions in place, we now define the class 
"K of admissable pricing rules. 

Definition 4.3 "K denotes the class of functions H onRx [0,1] of the form 

7Simpler technical conditions analogous to Definition 4.2 appear in Back (1992, p. 400). |/i(Zi)| must have a 
finite expectation and the term J(v, 0,0) defined in equation (22) of Back must be finite. 

(4.9) 

for some 6 > 0 satisfying suptej01] ||C(i)|| < 1/28. 

j(Z,y,h)<\h-log(()-y\\9(t)-h(y)\. 

H(y,t) = E[h(Z1)\Zt = y] 

= Ehiy + Zx-Zt), (4.10) 
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where h £ hPic-

The definition of "K is motivated by the equilibrium pricing rule found by Back (1992, Theorem 
1). It is consistent with the rationality condition, which requires the equilibrium price to be 
the conditional expectation of a function of a normally distributed random variable.8 We now 
turn to the definition of the class XJJ of admissable insider trading strategies. 

Definition 4.4 Given H € 'K, X# consists of the 3V,Z-adapted semimartingales X on [0,1] 

such that 

where h(-) = H(-, 1) and Ih{£,y,x,t) = E [dj/d£ (fa,t),y + Zx - Zt;h) + xg'^t)) . 

The integrability conditions (4.11), (4.12) are analogous to those ruling out "doubling strate
gies" in competitive models [i.e. Dybvig and Huang (1988)]. Condition (4.11) also appears in 
Back (1992). It can be interpreted to mean that noise traders would not lose money on average 
if they could trade at the midpoint of the spread [Back (1992, pp. 394-395)].9 We finally turn 
to the construction of an equilibrium. To this end, two additional assumptions are required. 

Assumption 4.2 The dispersion coefficient q(t) in (4.1) satisfies a Lipschitz condition att = 1. 

Assumption 4.3 There exists A > 0 such that 

8In fact, any equilibrium pricing rule H e C 2 , 1(Rx]0,1[) must take this form provided the insider's Bellman 

equation [Equation (D.2) below] admits a smooth solution that is linear in the state variable x and which has a 

Feynman-Kac representation [Compare to Back (1992, Theorem 2)]. We do not pursue the issue of uniqueness 

further. 
9Unfortunately, condition (4.12) doesn't appear to have a clear intuitive interpretation. 

(4.11) 

(4.12) 

for every t € [0,1], (4.13) 
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with equality ifft = 1. Moreover, 

a2\2 > g ( l ) 2 . (4.14) 

Assumption 4.3 is illustrated in Figure 4.1. The shaded area below the line y = a2\2 less the 

shaded area above is equal to 4>2e(F)1l at t = 1, and is strictly less than (p2e(F)ll for every 

t < 1. As indicated in the figure, it follows that cr 2A 2 > e ( F ) f 1 g ( l ) 2 = g( l ) 2 . The strict 

inequality assumed in (4.14) is required in order to construct the equilibrium described below. 

It is evident from Figure 4.1 that (4.13) holds if e (F ) 2

1 g(s ) 2 is nonincreasing in s. The latter is 

true, for example, when q is constant and F > 0. (4.13) also holds if the graph of the function 

y = e(F)2

slq(s)2 lies below the line y = a2X2 for all 0 < s < 1. In Section 4.3, we will see that 

when g(x) = ex, the volatility of the equilibrium price is aX. Condition (4.14) then states that, 

in equilibrium, the terminal volatility of the fundamental value process is strictly smaller than 

the price volatility. 

The conditions under which (4.13) holds when q and F are constant are summarized in the 

following simple lemma, whose proof we omit. 

Lemma 4.1 Suppose the coefficients q and F in (4.1) are constant. If F > 0, then Assumption 

4.3 holds. If F < 0, Assumption 4.3 holds iff 

(2F + l)e 
2F 

-2F 

(4.15) 

Thus, in order to accommodate a constant coefficient mean reverting specification (4.1), in

equality (4.15) states that the ratio (f)2/q2 must be larger than a strictly positive threshold. In 

other words, the uncertainty about the initial realization £o must be sufficiently large relative 

to the rate at which information about £t, t > 0, subsequently arrives. 

Proposition 4.1 Suppose that Assumptions 4.1 through 4.3 hold. Define, for every 0 < t < 1, 

W = l\^^-<F?sMs)2]ds, (4.16) 
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A® = m$^, (4-17) 

A(t) = — ( 4 . 1 8 ) 

a(t) = ->y(t)A(t), (4.19) 

where 

7(t) = 1 

e(F)t,i 

Define the function 

fie{F)0,i+ f e(F)sAf(s)ds\, 0 < t < 1. (4.20) 
./o 

n(a:) = 5(Ax + 7(l)). (4.21) 

T/ien h p C , i/ie pricing rule H(y,t) = Eh(y + Z\ — Zt) and the insider trading strategy 

v / So + + a{s)] ds ifO < t < 1 ' 
I A- 1 [6-7(1)] -Zx ift = l 

constitute an equilibrium. With probability one, the sample paths of X are continuous and of 

finite variation on [0,1]. Moreover, the insider's expected terminal wealth in equilibrium is 

E[W1\V0] = E[j(t;1,Zl;h)\Zo}. (4.23) 

Proof. See Appendix F. 

Assumption 4.3 ensures that Il(t) > 0 for all t E [0,1[, so the terms in (4.17) - (4.19) and (4.22) 
are well defined. Proposition 4.3 below shows that the equilibrium pricing rule H coincides with 
Back's pricing rule [Back (1992, Equation (12))]. Furthermore, by substituting F = f = q = 0 
into (4.16) through (4.22), the resulting trading strategy X reduces to the strategy obtained 
by Back (1992, Equation (13)). In general, the entire history of fundamental value shocks is 
impounded in the equilibrium trading strategy through the term A(s)£s in the integrand of 
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(4.22). However, in this special case, the fundamental value is constant throughout the time 
interval [0,1] and there are no fundamental shocks to be impounded in the trading strategy. 
Recalling the discussion following Definition 4.1, the insider's expected terminal wealth is the 
expected profit of a perfectly discriminating monopsonist who does not trade until the last 
instant before the announcement date. While the insider cannot implement monopsonistic 
price discrimination instantaneously, she can approximate it by accumulating a large position 
in many small increments over a short time period [Kyle (1985, p. 1329)]. (4.23) implies 
that in the continuous time limit, the insider can expect to earn perfect monopsony profits in 
equilibrium. This is consistent with Back (1992, Lemma 2). 

Proposition 4.2 In equilibrium, dP = [dH/dy(Yt,t)]dY, and the process dH/dy(Yt,t) is a 

martingale relative to the market maker's information filtration JY. Moreover, conditioned on 

JY, the total order process Y is a Brownian motion with the same distribution as Z. 

Proof. See Appendix F. 

Proposition 4.2 is a direct counterpart to Back's Theorem 3. It says that the slope dP/dY of 
the residual supply curve at time t is a martingale relative to the market maker's information 
set. This property eliminates trading schemes in which the insider obtains arbitrarily large 
expected profits [Kyle (1985, p. 1329)]. Since the residual supply curve has no predictable bias, 
it follows that buy and sell orders are equally likely to arrive [Back (1992, pp. 389-390)]. Thus, 
the total order process is also a martingale relative to the market maker's information set. In 
fact, from the market maker's perspective, only the noise traders appear to trade. 

4.3 P r o p e r t i e s of the equ i l ib r ium 

Proposition 4.1 is based in part on the Kalman filter [Liptser and Shiryaev (1977, Chapter 
8)], which specifies the dynamics of the conditional expectation & = E JSF̂  [See equation 
(E.3) in Appendix E]. Deviations of & away from (t correspond to incorrect expectations by 
the market maker about the fundamental value. Accordingly, they represent profitable trading 
opportunities for the insider. This can be seen as follows. Equations (4.16) through (4.22), 
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together with the Kalman filter equation, imply that Yt = — 'y(t)]/&(t), where a(t) 
\/e(F)t,i [Equation (E.8)]. Substituting this expression into (4.22) yields 

= f A(s) k s - i 

Jo L 

ds 

for all t 6 [0,1[. At each time t, the insider takes an (incremental) position dXt proportional 
to the error £t — £t. This action counteracts continued movement of (t away from £t through 
its impact on the total order Yt = Xt + Zt, from which the market maker forms his expec
tations. The proportional multiplier A(t) is a measure of the aggressiveness with which the 
insider pursues profitable trading opportunities.10 Since lim î A(t) = oo, the insider becomes 
unboundedly aggressive in her trades as the announcement date approaches. 

The insider's increasing aggressiveness is reflected in the dynamics of £ — £, which are derived 
in Lemma F.3 of Appendix F: 

d(i - £) = [F(t) - &{t)A{t)] [it ~ Zt) dt + a{t)dZ - q(t)dB, 0 < t < 1. (4.24) 

Since lim -̂j a(t)A(t) = oo, the drift term in (4.24) opposes any deviation of | t away from £t with 
unboundedly increasing strength as t t 1. In this sense, | — £ behaves much like a Brownian 
bridge process [Karatzas and Shreve (1991, §5.6B)]. In particular, | t - £t —> 0 almost surely 
as t f 1. Consequently, as t f 1, 

= 5(6) 

almost surely. In other words, the share price converges, with probability one, to the liquidation 
value V\ = o(£i) as the announcement date approaches. 

We now turn to the issue of price volatility. Consider the special case where g(x) = ex. The 
fundamental value process is a generalization of geometric Brownian motion which exhibits 

1 0^(t) is comparable to Kyle's j3{t) [Kyle (1985, p. 1326)]. 
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mean reversion (or aversion) and time-dependent volatility \q(t)\. According to Proposition 
4.1, the equilibrium pricing rule is given by 

H(y,t) = Eexp[A(y + Z i - Z t ) + 7(l)] 
= exp [Ay + 7(1) + A2a2(l - t)/2] . 

It then follows from Proposition 4.2 that 

dP 
— = XdY. (4.25) 
Pt 

Thus, the share price has constant volatility Xa. In contrast to Black's conjecture regarding the 
relative volatilities of price and value, the volatility of fundamental value may, at times, be larger 
than the price volatility. However, if the fundamental volatility is constant over time, (4.14) 
implies that the price volatility is strictly greater than the fundamental volatility. Although 
price volatility is constant over time, it is not independent of the volatility of the fundamental 
value. Holding the variance of noise trades a constant, (4.13) implies that a uniform increase of 
\q{t) \ over the time interval [0,1] causes A, hence the price volatility, to increase. Price volatility 
also depends upon the mean reversion coefficient F(t). A uniform increase of F(t) over the time 
interval [0,1] (i.e. a reduction of the tendency to revert to the mean) also causes A, therefore the 
price volatility, to increase. As indicated in (4.25), the share price is more sensitive to changes 
in the total order for larger values of A. In this sense, market efficiency declines as A increases 
[Kyle (1985, pp. 1316-1317)]. 

Equation (4.25) implies that, relative to the insider's information filtration the share price 
process is a geometric Brownian motion with constant volatility and time varying drift rate 
XdXt/dt. The drift rate changes over time in response to the insider's increasingly aggressive 
pursuit of profitable trading opportunities. It also changes in response to movements in £t. 
However, Proposition 4.2 implies that, relative to the market maker's filtration 3ry, the share 
price follows a geometric Brownian motion with constant drift rate —Xa2/2. Thus, given the 
order flow history (equivalently, the history of prices), changes in mean returns due to insider 
trading cannot be detected. The distribution of the equilibrium price is identical to what it 
would have been in the absence of insider trading. In other words, using terminology similar 
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to Summers (1986, p. 599), divergences of price from value leave no discernable trace in the 
historical record of returns alone. 

The following proposition provides an alternative representation for the equilibrium pricing 
rule. 

Proposition 4.3 Let v\(x) = F(v\ < x) denote the distribution function of V\ = <?(£i). Then 

with h as defined in (4.21), we have 

h(x) = v^1 o N{x), 

where N(x) is the N(Q,o~2) distribution function. 

Proof. We have 

P(Vi<s) = F(g($i)<x) 

where Ni is the distribution function for £ i . Hence, by definition, v^[1(x) = g o N^1(x). Let us 
conjecture that iV-j-1 o N(x) = ax + (3 for some constants a, 3, where a > 0. Then we require 

P(6 < ax+ 8) = N(x), 

which is true iff 

^^~JV(0,a 2 ) . a 

The latter is true iff 3 = E£i and Var (£i)/a 2 = a2. Setting t = 0 and £ = £0 in (4.5), it follows 
that a = X and 3 = 7(1). But then 

v^1 o N(x) = go N^1 o N(x) 

= g(\x + >y(l)) 

= h{x). 
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This completes the proof. • 

The representation of the pricing rule appearing in Proposition 4.3 coincides with the equilib
rium pricing rule derived by Back (1992, Equation (12))]. However, while the pricing rules are 
identical for the two models, the insider trading strategy described in Back (1992, Equation 
(13)) is not admissable under the present model. Innovations to this strategy depend explicitly 
upon the realization V\ at each time t € [0,1]. Since the insider is unable to see V\ until the 
announcement date in the present model, this trading strategy fails to be J^-adapted. 
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Figure 4.1 

A regularity condition 



Chapter 5 

Conclusion and Suggestions for 

Future Research 

5.1 Summary and concluding remarks 

This thesis presents three noncompetitive equilibrium models of asset pricing under asymmetric 
information. The agents in the economy rationally extract information from all available signals. 
Those agents with superior information also account for the impact of their trades on the 
price. Conditions under which equilibria exist are obtained and equilibria are derived in closed 
form. Agents with superior information may rationally act as price chasers and those with less 
information may act as contrarians. In our first model, strategic trading by a single informed 
trader tends to stabilize the stock price. In our second model, strategic trading by, or on behalf 
of, a small proportion of the population may either stabilize or destabilize the stock price 
depending on the investors' level of risk aversion. Pervasive strategic trading in the second 
model can result in multiple equilibria, some of which involve extremely high price variability. 
The role of mutual funds in contributing to stock price volatility is a recent topic of interest in 
the popular press. The preceding analysis, although highly stylized, suggests that the presence 
of very large traders such as mutual funds may indeed contribute significantly to stock price 
volatility. Our third model demonstrates that the Kyle model can be further extended to a 

62 
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case where the insider observes a noisy signal of the terminal liquidation value prior to the 
announcement date. We find that the equilibrium price process looks much like the insider's 
private signal. In particular, when the signal follows a geometric Brownian motion, then so 
does the price. As time progresses, the insider's increasingly aggressive trades gradually drive 
the share price to its terminal liquidation value. However, the insider's trading activity cannot 
be detected by the market maker. Conditioned on public information, only the noise traders 
appear to submit orders. 

5.2 Suggestions for future research 

5.2.1 Alternative equilibria and generalizations of Models I and II 

There is a simple one-period counterpart of Model II in which the stock price is adapted to 
the residual supply and the equilibrium is fully revealing. Given an initial amount of wealth 
WQ at time zero, investor i can consume cl units of wealth, purchase X1 shares in a risky asset, 
and invest BL in a riskless bond bearing no interest. The asset pays a liquidating dividend of 
D ~ N(/j,r), cr2}) at time one. Subject to her budget constraint WQ = BL + X L P + c1, investor i 
solves the problem 

where W[ = BL + X L D . At time zero, the total supply of stock is 1 + 6. Suppose there are two 
investors, a price taker (i = p) and a strategist (i = s) who assumes that her trades move the 
share price P. What is the equilibrium share price at time zero? Defining 1 — Y = 1 + 0 — XS 

to be the residual supply available to the price taker, it is easy to verify that the pricing rule 

and the strategist policy XS = (l + 9)/3 comprise an equilibrium; the stock market clears when 
both investors are at an optimum. In equilibrium, the price is an affine function of the supply 
noise 6, so the price reveals 0 to both investors. This simple model can be extended to the case 

max 

P = - 10% + >ya2

DY (5.1) 
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where the liquidating dividend takes the form D = U+D', where the strategist knows IT at time 
zero while the price taker does not. Provided II and D' are normally distributed, the equilibrium 
share price reveals a linear combination of the strategist's private information and the supply 
noise, as in Wang (1993). The model can be further extended to a multiperiod discrete-time 
setting in which the stock pays a dividend at each date, 6 follows a mean-reverting random 
walk, and the strategist has private information about the next dividend. At each trading date 
t, an affine pricing rule P = a\(t) + ay(t)Y similar to (5.1) holds. 

Following the intuitive argument in Kyle (1985), is it possible to obtain a continuous-time ana
logue of this equilibrium by allowing the time between trades to approach zero? We conjecture 
that it is; by holding the investment horizon fixed at T and allowing the time between trading 
dates to approach zero, we should obtain a limiting pricing rule in which the price increment 
dP takes the form dPt = a\(t,T)dt + ctY(t,T)dYt. As indicated, the coefficients cu; in this 
relationship should depend explicitly on calendar time t and the investment horizon T.1 We 
further conjecture that as the investment horizon T approaches infinity, the slope coefficient ay 
either grows without bound or converges to zero. The resulting limit does not have a meaning
ful interpretation in either case. The latter conjecture is based on our inability to construct an 
infinite-horizon, continuous-time model such that dP = a\dt + otydY for constants OJJ. Under 
a pricing rule of this form, we find that an equilibrium can hold only if an overdetermined 
system of equations is satisfied. In general, this system fails to have a solution.2 

The equilibria described in Chapters 2 and 3 need not be the only ones involving strategic 
trade. By analogy to Wang (1993), we might propose a pricing rule of the form 

P = A T ^, * = [l,X,D,e,U,U*]T, 

where A is a constant 6-vector and II* is the uninformed agents' expectation of II under the 
belief X = X*. Since the informed investor's shareholdings X explictly enter the share price, 

xThis is consistent with the findings of Baruch (1997) for a similar model. 

2Recalling footnote 11 of Chapter 2, a similar failure occurs under the more general conjecture 

dP = Q I ( D , Y)dt + aydY + aDdD, 

where ot\(D,Y) is an affine function of its arguments and Q y , a n are constant. 
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she wil l trade strategically in equilibrium. In fact, if we assume that dP/dX = A2 > 0 and 

parametrize the informed investor's value function as 

where B is her riskless bond holdings and v is a constant 6 x 6 symmetric matrix, then the 

equilibrium condition reduces to a system of simultaneous quadratic equations involving the 

same number of equations as unknowns. Unfortunately, this system of equations is formidably 

large, and we are, as yet, unable to provide conditions guaranteeing it to have a solution. 

However, an equilibrium of this form, should one exist, would be more easily compared to 

Wang's competitive counterpart than is an equilibrium of the type described in Chapters 2 and 

3. 

Another concern is the indifference of the informed investor over a large number of trading 

strategies (Lemma 2.3). It would be more appealing if the informed investor's equilibrium 

trading strategy was uniquely determined by her utility maximization incentives rather than 

by the market clearing condition. This might simply be a matter of including the uninformed 

investors' belief X* as a state variable in her utility maximization problem. As in our existing 

models, the informed investor's Bellman equation would take the form 

0 = max {(slope)dX + (intercept)} 

(Compare to (A. l ) in Appendix A) . This requires the slope term to vanish identically, as before. 

However, instead of forcing the intercept term to vanish, as we do in the existing models, we 

might now seek conditions under which the intercept term takes the form — a2(X — X*)2, 

where a ^ 0. The informed investor's trading strategy would then be uniquely determined as 

X = X*.3 

3 A similar mechanism arises in Back et al (1997). 
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5.2.2 Investor size and market power 

In our first and third models, the strategic investor's market power arises through her informa

tional advantage. By contrast, there is no external mechanism determining why the strategic 

investor is singled out in the second model. Like Cuoco and Cvitanic (1998), we simply pos

tulate at the outset that she has market power. The fact that there exists an equilibrium in 

which this postulate is true says very little about how the market participants might arrive at a 

consensual belief in which one of them has market power and the others don't. Typically, mar

ket power is associated with large investors, but the notion of investor size does not explicitly 

enter the second model. Since order size is critical in determining real-world price dynamics, 4 

it would be very desirable to explore the link between investor size and market power. 

5.2.3 Incorporating a solvency constraint 

In conventional portfolio selection problems, the solvency constraint W > K is often imposed, 

where W is the investor's (nominal) wealth and K is an exogenously specified constant. This 

constraint rules out continuous-time versions of double-or-nothing strategies that result in 

arbitrage profits [Dybvig and Huang (1988)]. We have not imposed this constraint in any of 

the models presented here. If such a constraint exists, the uninformed investors must not only 

filter the informed investor's private information, but they must do so while conditioning on 

the constraint W > K. (Here we assume that as soon as the barrier W = K is reached, the 

informed investor publicly announces her insolvency and ceases trading). A similar problem 

arises in Duffle and Lando (1998), where corporate outsiders must determine whether or not the 

value of a firm's assets has reached a bankruptcy trigger level, based only on periodic and noisy 

observations of firm value. Incorporating a solvency constraint into our models is a more difficult 

problem than that solved by Duffie and Lando. In their case the bankruptcy trigger process 

is exogenously specified, while in our case it is controlled by the informed investor. Moreover, 

instead of making periodic observations, our uninformed investors continuously observe the 

signals available to them. Both of these differences are likely to involve technical issues not 

4Taleb (1997, p. 74) notes that even highly liquid markets can be influenced by orders representing only 0.2% 

of total volume. 
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addressed by Duffle and Lando. 

5.2.4 Multiple strategists 

Each of the models presented in this thesis involves only one strategic investor. However, in 
our second model, by assuming that the strategic investor trades on behalf of several individual 
investors, we obtain the most interesting price dynamics. Similar interesting behavior is likely 
to arise if each of these investors trades strategically on her own behalf. In particular, as the 
proportion of strategic investors approaches one, we should expect to find equilibria in which 
the price variability approaches infinity, since the number of price takers available to absorb 
instantaneous supply shocks approaches zero. In light of recent results of Back et al (1997), it 
would also be interesting to investigate the possibility of supporting diversely informed strategic 
traders in the infinite horizon context of our first two models. The implications of such a model 
would differ from those of Back et al, where the existence of a finite announcement date plays a 
crucial role. As Back et al demonstrate, these efforts will be complicated by the fact that each 
of the strategic investors competes with all the others. 

5.2.5 Eliminating supply noise 

In our first and third models, an information asymmetry arises because uninformed investors 
cannot disentangle the informed investor's private information from the supply noise. We 
might expect an information asymmetry to prevail in almost any model in which uninformed 
investors cannot distinguish between two or more sources of uncertainty, whether they arise 
from supply noise or not.5 For example, suppose informed investors have private information 
about the dividend stream but there is no supply noise. Then the uninformed can observe the 
informed investor's trades. However, if they do not know the informed investor's risk aversion 
coefficient 7, they will be unable to disentangle the effects of the informed investor's risk aversion 
from those of her private signal. Unfortunately, the uninformed investors' filtering problem is 
unlikely to admit a closed form solution in this case. Likewise, suppose the informed investor 

5Wang (1994), for example, involves an information asymmetry in which there are investors having private 

knowledge of the dividend stream and private investment opportunities. 
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has private information about the dividend stream and receives a private endowment stream. 
If she maximizes a (known) utility function of the CRRA type; i.e. 

E 
' roo 

Jo ^ 
0 <p < 1, 

then even in the absence of supply noise, the uninformed will be unable to disentangle the 
informed investor's endowment stream from her private information. Similar effects will arise if 
the informed investor has two separate pieces of private information about stock fundamentals. 
For example, our third model might be revised so that there are no noise traders, but the insider 
has exclusive knowledge of both the fundamental value VT and its drift rate.6 The market maker 
will be able to observe the insider's trades, but will be unable to isolate the extent to which 
they reflect the fundamental value or its drift rate. 

This precludes the conventional definition of Vt as the time t expectation of the terminal share payoff. (See 
footnote 1 of Chapter 4). More generally, we could assume that V is a two (or more) parameter process, and 
that the insider has exclusive knowledge of one of the parameters. 
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Appendix A 

Infinite horizon pricing rules and 

trading strategies 

Proof of Lemma 2.1. Given the pricing rule Q x , the Brownian motion 6QZ is J-adapted. 
Therefore, by Ito's formula, it suffices to show that the function J(W, X) is the unique C2 

solution to the problem 

0 = max (-e-7C
 - P J + ( r W - c + XX[aeX + a;]) J w + x J x + \ x 2 \ \ b Q \ \ 2 J w w \ . (A.l) 

The first order conditions for this maximization problem are 

0 = XXJw + Jx, (A.2) 

0 = i e ^ c - J w . (A.3) 

We now show that these conditions uniquely determine J. Since the characteristic curves of 
the PDE (A.2) are of the form W — XX2/2 = constant, J must take the form 

J ( W , X ) = j ( w - ± X 2 ^ 
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for some C2 function j on the real line [Rauch (1991, pp. 42, 53)]. Substituting this condition 
and the first order conditions into (A.l), we obtain the differential equation 

0 = -7~V - PJ + (rW + 7 - X log(7-7) + Aa@X2);' + \x2\\bQ\\2j", 

where j, j', and j" are evaluated at the argument W = W — XX2/2. Rearranging terms, it 
follows that 

( 7 - 1 - [rW+ 1-Hog{1-1j\W))])j'{W) +pj(W) = 

A(«e + 0 X2j'(W)+l-X2\\bQ\\2j"(W). 

Since X does not appear in isolation on the left hand side of this equation, both sides must 
vanish. Hence, 

0 = ( 7 - 1 - [rW+ 1-x\og{1-lj\W))])j'{W) + pj{W), (A.4) 

0 = A(a e + Q / ( W ) + ̂ | |MlVW- (A.5) 

Since ||6Q||2 = Xj~1(l + 2ae/r), (A.5) implies that j(W) must be of the form d exp(-r7^) + 
C2, where C\ and C2 are constants of integration. It then follows from (A.4) that 

C 1 = - ^ e x p ^ l - ^ , C2 = 0. (A.6) 

Recalling that W = W—XX2/2, we conclude that J(W, X) = C\ exp(-r7iy) is the only possible 
C2 solution to (A.2) through (A.3). This solution also satisfies the second order conditions with 
respect to c, while any choice of x is optimal given (A.2). • 

Proof of Lemma 2.2. Let J be as defined in Lemma 2.1; i.e. J(Wt,Xt) — C\e~riWt, where C\ 

is defined in (A.6) and Wt — Wt — XX2 j2. By definition of W and Qx, we have 

dWt = dWt-XXtdXt 

= (rWt - ct)dt + XtdQf - XXtdXt 

= {rWt -ct + Xa@Xt)dt + XtbQdzt. 
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By hypothesis, the drift term of this equation is bounded below by 

rX ( 2a 0\ 2 n 2 2 

T I 1 + —)Xt ~e = YlM X t "e" 

It then follows that rjWt > r^Wo — rjet — \ogEt{X), where £(X) denotes the exponential 
process 

Et{X) - exp 

Consequently, 

(A.7) 

where K = p — r^ye > 0. Given t € M+ and 8 > 0, choose T € [£, oo[ so that 

>{\C1\e-r^-KTZt(X)>8}<6-. (A.8) 

Then choose a constant n < oo so that the Jo-rneasurable event F = {\K~T\ < n} has probability 
larger than 1-8. Since \ K T \ <nonF, Corollaries 1.3 and 2.4 of Haussmann (1986) imply that 
E(lpX) is a martingale on [0,T]. Corollary 2.3 of Haussmann also implies that [ET{1FX)]P is 
integrable for some constant p > 1. It then follows from Doob's maximal inequality that 

E sup [Et(lFX)]p < oo. 
\0<t<T I 

(A.9) 

Let {r/t} be a sequence of bounded J-stopping times such that limjt >Q0 Tfc = oo a.s. Clearly 

Et [e-^ETk(lFX)] < Et [ l { T f c < T } £ T f c A T ( l F X ) ] +Et [e~KTETk(1FX)] , 

for every k, where Et[»] = E[» By (A.9), the first term on the right-hand side approaches 
zero in Ll, hence in probability, as k —>• oo. Furthermore, since is a bounded J-stopping 
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time, the second term is equal to e KTETkAt{lFX), which approaches e KTE^FX) almost 
surely as k —> oo. Therefore, if k is sufficiently large, 

P J E t [e-«T*ETk(lFX)] > e-KTEt(lFX) + 8\Cl\~ler^} < 

Since FF > 1 — 5, this implies 

P { E 4 [e-KR*ETk(X)] > e-KTEt{X)+8\Cx\-ler^) < Z-8. 

Combining this with (A.7) and (A.8), we conclude that P { E t [e~PTk \ J{WTk, XTk)|] > 28} < 28. 
Since t E R+ and 8 > 0 may be chosen arbitrarily, it follows that (c, X) is Qx-admissible. • 

Proof of Lemma 2.3. The strategist's Bellman equation has the solution J(W,X) = j(W) = 
C1exp{-rjW), where Cx is the constant denned in (A.6) and W = W - XX2/2. Let (c,X) 
be a Q -̂admissible consumption-investment strategy, and let W be the corresponding wealth 
process. Given t E M+ and a bounded 3-stopping time r > t, the generalized Ito formula 
implies 

e-PTJ(WT,XT) - e'ptJiWuXt) = [ e~ps ~3s- {~ndWs - pds + \(n)2d[Wc,W%} 

+ e'"S h- {e~r^W' - 1 + nAWs} , (A.IO) 
t<S<T 

where Ws = Ws - XX2/2 and js = j{Ws). Wc denotes the continuous local martingale compo
nent of the process W, [W°,WC] is its quadratic variation, and AWS = Ws - Ws-.1 Again by 
the generalized Ito formula, 

\d(x*) = XXs-dXs + Xd[Xc,Xc]s + ±{A(X2)s-2Xs-AXs} 

= XXs_dXs + ̂ d[Xc, Xc]s + ^ (AX,)2 , 

1See Jacod and Shiryaev (1987, Theorem 1.4.57) for the generalized Ito formula. Despite the conflict with 

the notation of Section 2.3, we use the symbol A as indicated above, in keeping with conventional usage. This 

terminology is confined to the present proof, and the context in which it is used should be clear. 
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where X° is the continuous local martingale component of X, A(X2)S = X2 — X2_, and 
AXS = Xs — Xs-. Combining this with (2.7), we have 

dWs = (rWs - cs)ds + XaQX2ds + Xs-bQdzs - ^d[Xc, Xc]s - ^ (AXS)2 . (A.ll) 

Here we have used the fact that, with probability one, Xs-Xs = X2 for almost every s > 0, 
since X has right-continuous, left-limited sample paths. (A.ll) implies that the right-hand 
side of (A. 10) can be written as 

[ e~ps js { - r y W - cs + Xa@X2) + \{n)2 X2

s\\bQ\\2 - p}ds 

+ e-ps Js- \e-r^° - 1 + nAWs + ^ (AI S ) 2 } , (A.12) 
t<s<r L 1 > 

where 

M . = - r 7 / e~ps js-Xs-bQdzs. Jo 

Using the fact that ||6Q|| 2
 = A7_1(l + 2ae/r), the first integral in (A.12) simplifies to 

^ e-P* js j - r 7 ( r W 8 - cs) + \x-yr2X2 - p J ds. 

Combining these results, it follows that 

e-P°-v»ds - [e-ptJ(Wt,Xt) - e-PTJ(WT,XT)] = 

[ e~ps (-e-^ + js {-n(rW, - cs) + \x7r2X2 - p}) ds 

+ e~pS Js- \ e ~ r ^ - 1 + nAWs + r-^(AXs)2} . (A.13) 



77 
APPENDIX A. INFINITE HORIZON PRICING RULES AND TRADING STRATEGIES 

Elementary calculus establishes that the first integrand on the right-hand side of (A. 13) is < 0 
with equality iff 

cs = - 7 _ 1 log(-rj 8) = rWs - \r\X2

s - 7 - 1 ( l - p/r). 

Since j < 0, the second integral on the right-hand side of (A.13) is < 0 a.s. with equality iff 
Xc — 0 a.s. Moreover, since ex — 1 > x for all real x, 

h- [ e - r ^ - 1 + r7AWs + ̂ (AX S ) 2 } < js-r-^(AXs)2 < 0, 

with equality iff AXS = 0. Provided the conditional expectation E [MT \Jt] exists, it follows 
that 

E 
i; 

e-ps-1Csds < e-#J{Wt,Xt)+E[MT - Mt\Jt}-E[e-PrJ(WT,XT) \3t] , (A.14) 

with equality if (c, X) satisfies the conditions stated in the Lemma. By definition of M, there 
exists a nondecreasing sequence of bounded 3-stopping times {T̂ } such that ro = i, —> oo 
a.s., and E [MTk - Mt \3t] = 0 for every k G N. Setting r = rk in (A.14) and letting k —> oo, 
it follows that 

E e-PS-lCsds ^e-fiJiWuXt) 

with equality if (c, X) satisfies the conditions stated in the Lemma. Convergence on the left-
hand side of the inequality follows from the (conditional) monotone convergence theorem, while 
convergence on the right-hand side follows from the definition of (̂ -admissibility. The inequal
ity in (A.14) is strict unless (c, X) satisfies the conditions stated in the Lemma. A straight
forward refinement of the preceding limit argument establishes that the final inequality is also 
strict unless (c, X) satisfies these conditions. • 



Appendix B 

Model I — equilibrium 

In order to prove the claims in Section 2.3, define the process S by 

80 = E [ n 0 | i C o ] - n 0 , 

dSt = -an6tdt + [Tu, Tw] 
—5tdt + o-£>dzD(t) 

-H&8tdt - <TQdzQ(t) 
- o-ndzn(t), (B.l) 

where 

r = 
T21 T22 

= [Hn + aaTY (/3/3)-1 (B.2) 

and 

H = 
1 0 0 0 0 0 

, a = 
_ M 0 0 -0-© _ 0 0© 0 cr0 _ 

HA and Ct are as defined in Section 2.3. Since E*[no|lC0] = E[n0|Uo] for any belief X = X*, we 

have 6t = A t at i = 0. The following Lemma specifies a belief under which this equality holds 

for all t > 0. 
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Lemma B.l Under Assumptions 2.1 and 2.2, the process X£ = XQ — /0* ((J,A5s + OQX*) ds 

satisfies 

dX* 
~dT 

= — /J,&A — QQX* a.s. 

Proof. Define Ut = Ut + 5t. Then n 0 = E[n 0 |U 0] and 

<mt = dHt + d5t 

= an(ti-fLt)dt + [Tn, T12] 
dDt 

dYt 

n t - kDt 

-a&Yt 

dt \ . 

Therefore, II is U-adapted. The dynamics of the processes = E*[nf|lXt] and 6T* = E* [ 6* 1 1 X 4 ] 

can now be obtained by solving the following filtering problem. The state equation is 

" lit" " lit" 

V 
+ f\dt + a 

dzn(t) 
dzQ (t) 

where F = diag[—an, —a©], / = [anil, 0]T, and a is as defined previously. Defining the 
IX-adapted process ht = [—kDt, —M t̂ - aQYt]T, the observation equation is 

" dDt ( ' n t " 
= H 

' n t " 

\ 
+ ht \ dt + a 

dzn{t) 

dz@(t) 
+ 

oDdzD(t) 

0 

where H and a are as defined above. By Liptser and Shiryaev (1977, Theorem 12.7), the filter 
dynamics are 

" du; ' ( " du; ' 
= \ F 

de; \ 
+ fjdt + 

(HEt + aaT)T (/3/3) -1 " dDt ' ( " dDt ' 
- [H V 

+ ht\dt (B.3) 
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where is the (unique) solution of the Riccati equation 

S 0 = fi, ±t = - (HZt + aaT)T {3d)-1 (ffS t + aaT) + a a T + FY,t + (PS*) 7 

Straightforward algebra establishes that E 4 = Vt for all i > 0. Thus, recalling (B.2), we have 
(HT,t + aaT)T(88)-1 = T. Substituting this into (B.3) and simplifying, 

" dU*t ' 
= 

" an(n-n» " 
dt + r 

-(U*t -Ut)dt + aDdzD(t) 

. d@t. -/iA(n* -Ut)dt- aQdze(t) 
(BA) 

Subtracting dYlt from the first row of this equation and comparing to the definition of 6, it 
follows that St — II* — Ilt = A t a.s. for every t > 0. • 

Proof of Proposition 2.1. Suppose the uninformed agents hold the belief X = X*, where X* is 
the process described in Lemma B.l. The equality 

Pt = E* u; e-r(s-t)Dds Ut = moDt + mnll* + mi (B.5) 

follows immediately from (2.1), (2.2) and the law of iterated expectations. (B.4) then implies 
that the excess return dQ = dP + Ddt — rPdt satisfies 

dQt = - (mD + m N ^ ( M A ) o-D

2 + O Q V A )
 Atdt + bQDdzD(t) + bQQdz&(t) 

It then follows from (2.11) that 

dQt = -Xp-A^tdt + bQDdzD(t) + bQ@dze(t), (B.6) 

where A = {b2QD + bQQ)j(l + 2a&/r) l . Now under the belief X = X*, the term -/j,AAtdt can 
also be written as aeXtdt + dXt. Recalling the definition of Qx in Lemma 2.1, it follows that 

dQx = dQt 
x=x* 
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This establishes the second of the equilibrium conditions in Definition 2.1. 

If we can show that (c*,X*) is a Q -̂admissible consumption-investment policy, the remainder 
of the proof follows from Lemma 2.3. In view of (B.5), A is an affine combination of D, II, and 
P and is therefore J-adapted. Therefore X* is also 3-adapted. The self-financing condition 
ensures that c* is also J-adapted. It suffices now to show that that X* satisfies the conditions 
of Lemma 2.2. To this end, (B.l) implies dAj = aAAtdt + bAdzt, where OA € M. and 6A is a 
constant 1x3 row vector. Therefore 

At = ea^A0 + aA \\ e^'^b^ds + bAzt. (B.7) 
Jo 

Defining z* = maxn<s<t \\zs\\, it follows that there are continuous, deterministic functions Ki 
such that |A ( | < Ki(t)\A0\ + K2{t)zl. Likewise, since dX% = —/j,AAtdt — ciQXfdt, there are 
continuous, deterministic functions Kj(t) such that 

|A7| < K3(t) \X0\ + K4(t) |A 0 | + K5(t)zl 

We conclude that X* meets the conditions of Lemma 2.2, so (c*,X*) is Q -̂admissible. • 

Proof of Proposition 2.2. Let S t be the solution to the Riccati equation defined in the proof 
of Lemma B.l. By Theorem 12.7 of Liptser and Shiryaev (1977), [IIt,6t]T is conditionally 
Gaussian given lit, with covariance matrix St. Since S* = fl for every t > 0, the first part 
of the proposition is immediate. Turning to the second part, (12.65) of Liptser and Shiryaev 
implies that 

a^{Ut-U*t)dt + dzD{t) 

c-Ql{dYt + aQYtdt) 

is a Brownian increment with respect to II. In view of (2.1), we may write 

dDt = (nj - kDt)dt + aDdzD{t), 

dYt = —aoYtdt + o-QdzY(t). 

dzD(t) ' dDt ' -L 
dzy (t) \ 

+ ht) dt 
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Moreover, (B.3) implies 

82 

" dU*t ' a n ( n - n ? ) 

-a©G* 
dt + Yd 

dzD(t) 

dzy (t) 

By definition of F, we conclude that 

all* — on(fl - Ut)dt + a^1 <i>{ii&)dzD{t) + o© 1M0(M)^y(*)• 

This completes the proof. • 



Appendix C 

Model II — equilibrium 

Proof of Lemma 3.1. For any fixed £, we have 

ftf o 2 U - w L r J OJ J 

Since the mapping (6, £ ) H + b2ip(£; b) is continuous at the origin, it follows that 

^ ( = ( 6 ) ; 6 ) - + % ( ^ ) \ o 

as b f 0. Therefore yj(E(b);b) > 0 if 6 < 0 is sufficiently close to zero. To complete the 
proof, two separate cases must be considered. First, suppose there exists b < 0 such that 
(1 — u))b + <7eA(6) = 0. Let b\ be the largest such value (there are at most two such values). 
Then if e > 0, there exists k 6 {1,2} such that 

E(b1 + e) = C1e-k + o(e-h), 

where C\ # 0 and o(e~k)/e~k —> 0 as e —> 0.1 This implies 

4> (Hfa + e); 6i + e) = -C2e-2k + o( e - 2 f c ) , 
1 fc = 1 if the quadratic (1 — o>)6 + <roA(6) has two roots. Otherwise k = 2. 
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where C2 > 0 and o(e~2k) / e~2k —> 0 as e —> 0. Since H(«) is continuous on the open interval 
]&i, 0[, the mean value theorem yields 6QG £ ]h, 0[ such that -i/)(H(6ge); OQQ) — 0. Moreover, 
by definition of 61, S(6ge) < 0. On the other hand, suppose that (1 — oj)b + <7Q\(b) > 0 for all 
b < 0. Then S(«) is continuous and strictly negative on ] — 00, 0[, so it suffices to find b' < 0 
such that ip(E(b');b') < 0. To this end, we first note that if b is sufficiently negative, then tp(»; b) 
has two roots. The leftmost root £o(b) approaches a finite limit £0 < 0 a s b -—> —00 and the 
rightmost root £1(6) approaches zero. Moreover, the quadratic formula implies 

= (i-u,)(r + 2 a e ) ( § + q e ) r l + , 

where o(b~l)/b~1 —> 0 as b —> —00. By comparison, it is easy to show that 

= (l-u)(r + 2aQ)(r + ae)b_1 + , 
rcr 0 7 

It follows that E(b') lies between £o(b') and £i(6') for sufficiently negative b'. Since ip(»\b') is 
convex for large negative b', it follows that ip(E(b');b') < 0 for sufficiently negative b'. • 

Proof of Proposition 3.1. Under the pricing rule Qx and the belief X = X* described in 
Proposition 3.1, the price taker observes the excess return dynamics (3.3), (3.2). Assume for 
the moment that his shareholdings do not jump. Then his Bellman equation is 

0 = max(-e-7' c-p'J'+ (rW-c + X-^- [m + {a& + pY) Y}) J ' W 

+ Oxi + p-yY) J ' y - XuQbQQj'WY + T ^ H & Q H 2 . / ^ + ^ o - @ J y y | . ( C l ) 

Wang (1993, Appendix B) proves that this equation has a solution J' of the form 

J'(W,Y) = -exp (-riW - ^Tv^ , 

where ^ = [1, Y]T and v is a constant 2x2 symmetric matrix 

v = 
Vn VIY 

ViY VYY 
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As Wang points out, the first-order conditions are necessary and sufficient for a maximum. In 
fact, if 

they imply that the price taker optimally holds X' shares, where 10X' = 1 — Y. Thus, the 
stock market clears. Substituting the first-order conditions into the right-hand side of (Cl) 
and dividing through by J' yields a quadratic in Y, each of whose coefficients must vanish. 
Provided v\y and vyy are as defined above, the coefficient of Y2 is ip(E; 6QS), which vanishes by 
definition of bQQ. By our choice of HI, the coefficient of Y1 also vanishes. Finally, the coefficient 
of y° is of the form rv\\j2 + 77, where 77 depends on the model parameters, the /Z jS, and the 
bQjS. Accordingly, we simply choose vn = —2rj/r. Let W be the wealth process corresponding 
to the price taker's optimal shareholdings. By Ito's formula, J'(WT,YT) = e^' - 7")*J'(W0,Y0)E' t, 

where £' is an exponential martingale of the form 

the f j S being constant 1x2 row vectors. Since Y satisfies the growth condition required of X 
in Lemma 2.2, the argument used in the proof of Lemma 2.2 implies that J'(WT, YT) satisfies a 
suitable transversality condition. A verification theorem similar to Lemma 2.3 then establishes 
that it is indeed suboptimal for the price taker's shareholdings to jump.2 

Having established that the price taker chooses to clear the stock market, it suffices to show that 
(c*, X*) is a Q -̂admissible consumption-investment policy. The remainder of the proof then 
follows from Lemma 2.3. Let us temporarily assume that the equilibrium stock price satisfies 
Pt = P[ for every t > 0, where P[ = $t + po +pyYj. Then Y is clearly 3-adapted. Since 

Viy = (bQeo-e)-1 (lIMI V / u , - W ( l - ")) , 

exp HIo •s 

dX* = 
1-u 

- aeX* + Y\ dt 

2Implicit in this claim is the understanding that the price taker's consumption-investment policy belongs to 

a set of admissible policies satisfying a transversality condition relative to J''(•). 
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both X* and 0 = (1 — UJ)X* — Y are 3-adapted. The self-financing condition then establishes 
that c* is also J-adapted. An argument similar to that used in the proof of Proposition 2.1 
yields the inequality 

\X;\ < #i(*)|A-0| +K2(t)\eQ\ +K3(t) max \\za\\, 
0<s<t 

where the KiS are deterministic, continuous functions. Consequently the conditions of Lemma 
2.2 are satisfied, so (c*,X*) is Q -̂admissible. Finally, Po = PQ by assumption and dP[ + Dtdt — 
vP[dt = dQ? for all t > 0. Therefore P = P', which confirms our standing assumption 
about the equilibrium stock price. • 



Appendix D 

Model III — the insider's problem 

The proofs of Propositions 4.1 and 4.2 require several preliminary results. We begin as follows. 
Given v £ §++, the set of symmetric positive definite 2x2 matrices, let 

p(v,x) — . exp — - (x'v~1x) (D.l) 

be the density for a normally distributed random vector with covariance matrix v. Defining 
= max ^x'vx] x E K 2 , \x\ = l | , we then have the following. 

Lemma D . l Suppose f : M 2 —> M. is a Borel-measurable function satisfying 

[ e-5W2\f(x)\dx < oo 
JR2 

for some 5 > 0. Suppose v : [0,1[—> S + + such that the mappings 11-> Vij(t), 1 < i,j < 2, are 

continuously differentiable on ]0,1[. Then the function 

^{x,t) = / f{y)p{v(t),y - x)dy 
JR2 

is well defined on R2 x Us, where Us = {t E [0,1[, \\v(t)\\ < 1/28}. Moreover, for every i,j > 0 

87 
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and (x,t) £ l 2 x Us, 

di+j%l) f di+j 

—: j(x,t) = / f(y)—: -p(v(t) ,y — x)dy, 
dx\dx3

2

y ' JR*jyy)dx\dx3

2

 K w y > y 

while 

dt "(M) = J 2f(v)frP(v(t),y - x)dy 

for every i £ l 2 and t > 0 in Us-

Proof. This is a straightforward two-dimensional extension of Karatzas and Shreve (1991, 
Problem 4.3.1). ' • 

We now address the insider's optimization problem. The approach is much the same as in Back 
(1992, Lemmas 1 and 2). However, in this case we must account for the additional stochastic 
state variable £t. Proceeding heuristically, suppose the insider's value function is of the form 
J = J(€uYt,Xt,t) and the market maker adopts the pricing rule Pt = H(Yt,t). The Bellman 
principle states that 

maxEt [dWt + dJt) = 0, 
dXt 

where dWt = [Vt — H(Yt, t)] dXt + XtdVt is the instantaneous profit realized by the insider 
between t and t + dt. Assuming the order rate 9t = dXt/dt exists and that J is sufficiently 
smooth in its arguments, it follows from Ito's formula that 

max 
eeR 

{ ( £ + ^ + 9(0 ~ H(y> t])6 + % + VtJ + Xv{t t]} =
 ° ( D - 2 ) 

for all (£,y,x,t) € M3x]0,1[. Dt is the differential operator 
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and t) is the drift coefficient in the differential representation dV = udt + T,dB for the 
fundamental value process Vt = g(£t)- The next lemma, inspired by Lemma 1 of Back (1992), 
provides conditions under which (D.2) has a solution. 

Lemma D.2 Suppose h G \)pC and H(y,t) = Eh(y + Z\ — Zt) for every (y,t) £ i J x [0,1]. 
Then there exists J G C ' 1(R3x]0,l(j solving (D.2) subject to the boundary condition 

J{£,y,x,l) > 0 with equality iff g{£) = h(y). (D.3) 

The boundary condition (D.3) reflects the fact that the insider can extract a positive capital 
gain whenever the share price differs from its fundamental value at the announcement date. 

Proof. Define, for every (£,y,x,t) e l 3 x [0,1], 

J(£,y,x,t) = §(£,y,t)+xV(t,t), (D.4) 

where 

*(t,y,t) = Ejfat^y + Zi-Zfth), 

= Eg(fe,t))-g{t). 
(D.5) 

(D.6) 

Notice that $(£,y,l) = j{€,y;h) and #(£,1) = 0. Provided the covariance matrix C(t) is 
nonsingular, we can write 

= / J(xi,x2;h)cf)(x,t,y,t)dx, 
JR2 

where, recalling (D.l), 

4>(x,t,y,t)=p\ C(t), 
x1-ft

1e(F)s>1f(s)ds-e(F)t^ 

x2-y 
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In view of (4.9), Lemma D.l implies that $ is well defined on R2 x [0,1]. Moreover, since 
(4>t + T)t4>) = 0, Lemma D.l also implies that $ 6 C^^xjO, 1[) and 

$ t + D t$ = 0 (D.7) 

on M2x]0,1[. Similarly, since 

*) + 9(0 = / . 9{xi)<l>(x, £, y, t)dx, 
JR.2 

Assumption 4.1 and Lemma D.l imply 

^!t + 'Dt{^ + g) = 0 (D.8) 

on Kx]0,l[. Since T>tg{£) = u{£,t), (D.7) and (D.8) yield 

Jt + DtJ + xv = 0 (D.9) 

on M3x]0,l[. 

Now since dj/dy — h(y) — g{(), Lemma D.l implies 

$v(Z,y,t) = Ehiy + Zi-Zj-Egfatj) 

= H(y,t)-*{Ztt)-g{Q 

for every (£, y, t) G K2 x [0,1]. Since Jy = $y and Jx = \I>, it follows that 

Jx + Jy + g(O-H(y,t)=0 (D.10) 

for every (£, y, x, t) G E 3 x [0,1]. Since the objective in (D.2) is linear in 9, it follows from (D.9) 
and (D.10) that J satisfies (D.2). Finally, since J(£, y, x, 1) = j(£, y; h), the boundary condition 
(D.3) is satisfied. A similar argument establishes the desired result when C(t) is singular. • 
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Definition (D.5) is easily recognized as the Feynman-Kac representation for the solution to 
(D.7) subject to the boundary condition $(•, 1) = j(-; h). However, condition (4.9) is weaker 
than the polynomial growth condition usually imposed in order to ensure such a representation 
[i.e. Karatzas and Shreve (1991, Remark 5.7.8 iv)]. 

The heuristic argument preceding Lemma D.2 is based on the presumption that the insider's 
optimal strategy X has difTerentiable sample paths. The following counterpart to Lemma 2 of 
Back (1992) establishes that this is indeed the case. 

Lemma D.3 Suppose the conditions of Lemma D.2 hold, and define J as in (D.4). Then for 

any trading strategy X G %H, the insider's expected profit conditioned on VQ = g(£o) is no larger 

than J(£rj) 0,0,0). Any X G X# having continuous sample paths of bounded variation such that 

XQ = 0 and for which H{X\ + Z\, 1) = Vi a.s. is optimal. Any other X G X# yields an expected 

profit strictly less than J(£o, 0,0,0). 

Proof. Let St = ((t,Yt,Xt). Ito's formula implies 

J(Si, 1) = J(S0-,0) + [ (Jx + Jy) dXt + f1 JydZt + f1 JtfdBt 
J[0,1] Jo Jo 

+ [l (Jt + DtJ) dt 
Jo 
1 ri 

+ 2 J0 {Jxx + Jyy + %Jxy) d[X°,Xc]t 

+ [l(Jxy + Jyy)d[XC,Z]t 

Jo 
+ / (Jix + J^y)qd[Xc,B]t Jo 
+ [&J(St,t)-(Jx + Jy)(St-,t)AXt], (D.ll) 

0<t<l 

where So- = (£o;0,0), X° is the continuous martingale component of X, AJ(St,t) = J(St,t) — 
J(St-,t), and AXt = Xt — Xt-. Each of the integrands is evaluated at (St-,t). Differentiating 
(D.10) through, we have 

Jxx Jxy ~~ 0, 
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Jxy + Jyy = Hy, 

J^x + J$y = -g'iO-

Plugging these equalities and (D.9), (D.10) into (D.ll), it follows that 

J(5i, 1) = J(50_, 0) + / (H-g) dXt + P JydZt + f1 JiQdBt 

J[o,x] Jo Jo 

— xv dt 
Jo 

+ £ \Hyd [Xc, X% + Hyd [Xc, Z]t - qg'd [Xc, B]t 

+ Y [AJ{St,t)-(H(Yt-,t)-g(Zt))AXt]. (D.12) 
o<t<i 

Using the previous notation, (4.3) can be written as 

Wx = j (g-H)dXt+ f1 xdVt + [V-P,X]! 
J[0,l] Jo 

= [ (g-H)dXt+ f xudt+ f xg'qdBt 

J[o,i\ Jo Jo 

+ f1 g'qd[Xc,B]t - [P,X]L 
Jo 

Combining this with (D.12), it follows that 

Wx - J(50_,0) = -J(SU 1) + I' JydZt + f1 (Jf + xg') qdBt 

Jo Jo 

+ 1-JQ

1Hy(d[Xc,Xc}t + 2d[Xc,Z]t) - [P ,Xh 

+ Y [AJ(Sut)-(H(Yt_,t)-g(Zt))AXt]. 
0<t<l 

Now by definition of quadratic variation, 

[P,X]X = [PC,XC}1 + Y, A P f A X 4 

0<t<l 

= f1 Hyd[Yc,Xc]t+ Y, A P t A X t 

•'° o<t<i 

= fl Hy(d[Xc,Xc]t + d[Xc,Z]t)+ Y A P 4 A X t . 
0 < i < l 
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Here APt — H(Yt,t) — H(Yt-,t), and the second equality follows from the equality dPc 

HydYc. Hence 

J(S0-,0) = - J ( 5 i , l ) + f1 JydZt+ C (JK + xg')qdBt 

J 0 J 0 

-\f0Hyd[X<,X\ 
+ £ [AJ(Sut)-(H(Yt-,t)-g^t))AXt-APtAXt]. (D.13) 

0<t<l 

Combining (D.10) with (D.6), we have Jy(£,,y,x,t) — H(y,t) — E[g(£i)|£t = £]. Assumption 
4.1 and (4.11) then imply that E J?dt < co. Therefore 

E y1 JydZf V0 = E = 0. 

Similarly, since J$ + £#'(£) = e(F)t,iIh, (4.12) implies that 

E / (J^ + xg')qdBt Jo 
V0 = 0. 

Now plugging (D.4) into (D.13), the jump term can be written as 

J2 [A$(£uYt,t) + AXt*(Zut) - (H(Yt,t)-g((t))AXt]. 
0<t<l 

Since \I> - H + g — Jx - H + g = -Jy = -§y, this simplifies to 

£ [A$(ZtlYut)-$y(Zt,Yt,t)AXt]. (D.14) 
0<t<l 

Now §yy — Jyy — Jxy + Jyy — Hy > 0. Hence $ is strictly convex in y. Since AXt = AYt, the 
term in (D.14) is < 0 with equality iff AX* = 0 for all t with probability one. Finally, since 
Hy > 0, Jo Hyd [Xc, X% > 0 with equality iff Xf = 0 for all t with probability one. Now taking 
expectations through (D.13) and recalling the boundary condition (D.3), the lemma is proved. 
• 



Appendix E 

Model III — the market maker's 

filtering problem 

Having characterized optimal insider trading strategies corresponding to pricing rules in Ji, we 
turn to the specific pricing rule and trading strategy described in Proposition 4.1. Henceforth, 
we refer to the quantities n , A, A, a, 7, h, and X defined in equations (4.16) through (4.22). The 
approach taken here is somewhat different from Back's in its use of linear filtering theory. 

Given t € [0,1[, define 

(E.l) 

Since Zt = Yt - Xt, (4.22) implies 

Conversely, direct substitution establishes the equality 

94 
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recalling the notation of (4.6). Therefore 

&t=3Y for every t G [0,1[, (E.2) 

where 3̂ , "JY denote the augmented filtrations generated by ( and the total order process Y, 
respectively. 

It is easy to verify that LT(t) satisfies the differential equation 

dU (UA)2

 n r r r T 2 n — = - ^ / - + 2FU + q2, 0<t<l, dt az 

n(0) = cp2, 

suppressing the "£" argument. This is the Riccati equation corresponding to the linear filter 
with state process £ and observation process (. Accordingly, if t < 1 and if xt ~ N(Q,H(t)), 
the solution £ to the Kalman filter equation 

d£ = (Fi + f)ds + ^ ( d ( - Aids) , 0 < s < t, (E.3) 

io = 

satisfies 

E G(£t)\3i} = EG(y + xt) a.s., (E.4) 

whenever both sides of (E.4) are well defined. Here the expectation E is evaluated with respect 
to the distribution of xt. Equations (E.2) through (E.4) play key roles in establishing the 
following property. 

Lemma E . l For every t G [0,1[, H(Yt,t) = E [g(̂ ) Si Y 
a.s. 

Proof. For every t G [0,1], define 
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Now fix t 6 [0,1[. On the interval [0,t], we have 

di = (F£ + f) ds + a (d( - Aids) , 

d(aY) = adY-a'Yds. 

(E.6) 

(E.7) 

The first of these equations follows by substituting (4.16) and (4.17) into (E.3). The second is a 
simple consequence of Ito's formula. Subtracting (E.7) from (E.6) and recalling the definitions 
of £ and y, we obtain 

d (i - GY) = [(F - a A) [i -GY)+ f - aa] ds on [0, t]. 

Since 7' = Fj + f — (F — &A)y + / - aa and 7(0) = £0 ~ <5-(0)Y0 = M, i* follows that 

Zs - a{s)Ys = 7(s) a.s. (E.8) 

for all s € [0,t]. Setting s = t, (E.8) and (4.21) imply 

H(Yt,t) = Eh(y + Zx - Zt)\y=Yt 

~y - i(t) 
a(t) + Z1-Z, + 7(1) 

v=Zt 
(E.9) 

On the other hand, 

E 5(6) = E [ ^ ! ) | 3 f 

= E [ E [ 9 ( C I ) 
•B,Z 

= E 

= EE g (£{y + xt,tj) 
y=it 

(E.10) 

where the first equality follows from (E.2), the second from the law of iterated expectations, 
the third from (4.5), and the fourth from (E.4). Comparing (E.9) to (E.10), it suffices to show 
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that 

a(t) = e(F)t>u 
1 M 

e{F)t, 
•ds, 

and 

X^(l-t) = e(F)i1 

1 a(s)2 

These equalities follow directly from the definitions of a, 7, and IT. • 



Appendix F 

Model III — equilibrium 

With the possible exception of the announcement date t = 1, Lemma E.l establishes that the 
pricing rule denned in Proposition 4.1 is rational. The next three lemmas address the behavior 
of the pricing rule and the trading strategy (4.22) at t = 1. 

Lemma F. l Let &(t) be as defined in (E.5). Then there exist constants K < oo and 1 < c < oo 
such that 

sup 
0<t<l 

a(t)A(t) 
1-t 

< K. (F.l) 

Proof. By Assumption 4.2, t ^ e(F)2

xq{t)2 is Lipschitz at t — 1. Thus, there exist constants 
Ki < oo and e > 0 such that q(l)2 - e(F)2

tlq(t)2 < Ki(l-t) for every t e]l-e, 1[. Integrating 
this inequality over the interval [t, 1[, it follows that 

g ( l ) 2 ( l - i ) - j\{F)lxq{S)2ds < f d - * ) 2 (F.2) 

for every t e]l — e, 1[. Recalling (4.14), we may choose e so small that 

1 -t < 2 A 2 a 2 - g(l) 2 ft [\2a2 - e(F)lMs? ds (F.3) 
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for every t G]l — e, 1[. Substituting (F.3) into the right-hand side of (F.2), we obtain 

A V - q(l)2} (1 - t) - jf1 [ A V - e^) 2,^) 2 

<K2{l-t)\£ [A V - e(F)liq(s)2} ds 

ds 

where K2 < oo is a constant. Rearranging terms, it follows that 

Jl [\2a2 - e(F)liq(s)2) ds [*2°2 ~ ̂ (l)2] [1 - *] 
<K3 (FA) 

for all t e]l - e, 1[, where K3 < oo is constant. Since / / [A2 c r 2 — e(F)2

sl <?(s)2] ds > 0 on [0,1 - e] 
by Assumption 4.3, (F.4) may be assumed to hold for all t £ [0,1[. 

Now from (4.17) and (E.5), 

A V 
a(t)A(t) = -

J? [ A V - e(F)liq(s)2 ds 

for every t G [0,1[. (F.4) then implies 

a(t)A{t) - A V 
[A V - q(l)2} [1 - t] 

2„2 < K3\za 

It follows that (F.l) holds with 

2̂ 2 A V 
\2a2 - q{l)2' 

(F.5) 

This completes the proof. • 

Lemma F.2 Let a, b : [0,1[—> R be B'or•el-measurable functions such that 

k < ^ y c < K , k<\b(t)\<K 
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for all t G [0,1[, where 0 < k < K < oo and c > 1/2. Given the standard Brownian motion 

W = {Wt} on [0,1], define 

M, 
t b{s) f -

Jo a 
dWs, 0 < t < 1. 

Then for every e > 0, 

,. \a{t)Mt\ 
1 ^ t f P ( 1 _ , ) l / 2 - e = ° 

Proof. The quadratic variation process (M)t is strictly increasing and satisfies 

k2 ft ds K2 /•* ds f ds
 / /^v /

 K r W0 0 ^ <̂M>̂  W0 (T o (1-s) 2c (F.6) 

for every t G [0,1[. Since 

L 

ds ( l - i ) - 2 c + 1 - l 
o ( l - s ) 2 c 2c- 1 

(F.7) 

It follows that liniiii (M)t = oo. Accordingly, for every s > 0 we may define Bs = MT^, where 
(M)T^ = s. B = {Bs} is a standard Brownian motion on R + by Levy's Theorem [Karatzas 
and Shreve (1991, Theorem 3.3.16)]. The law of the iterated logarithm [ibid, Theorem 2.9.23] 
then implies 

lim sup 
B, (M)t 

w((M)t) 
= 1 a.s., 

where u(x) = y/2x log logx. Since 5(jw)t = Mt, it follows from (F.6) and (F.7) that 

lim sup Mt 
OO ([1 - f]-2c+!) 

< a.s., 
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where K\ < oo is a constant. Consequently, if e > 0, 

h m s u P 7 i ^ î ilimsup u / '-

< KKi lim sup 
tfi 

= KKi lim sup 
tfl 

= 0. 

K i - ^ ( [ i - r 2 c + 1 ) i 
(1 -t)V2-e 

(1 - 4)^2 log log [1-i]"2^1 

This completes the proof. • 

Lemma F.3 lim î = X"i a.s. Moreover, 

h{Xl + Zl)=g{Zl) a.s. (F.8) 

Proof. First, note that (4.24) follows directly from (E.6), (4.1), and (E.l). The solution to 
(4.24) admits the following representation [Karatzas and Shreve (1991, §5.6C)]: 

St-tt = e(F - aA)0,t [ M - 4~o + Mt] for all t 6 [0,1[, (F.9) 

where e(-) is defined in (4.6) and 

-L 

* a(s)dZs - g(s)dBs 

e(F - aA)0>s 

Now with c as defined in (F.5), we have 

e(F - dA)0tt = exp [F{S) - (j(s)A(s)] ds - clog(l - t) 

-}• 
F{s) - &{s)A(s) + 

Since F is bounded on [0,1], Lemma F.l then implies 

k < ^ _ ° ^ c

) ( ¥ < K for every re[0,l[, (F.10) 
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i 
for some constants 0 < A; < K < oo. Consequently, e{F — aA)ott(n — £0) —> 0 almost surely as 
11 1. Furthermore, applying Lemma F.2 with a(t) = e(F-aA)0tt and b(t) = y/o2o(t)2 + q{t)2, 
we have e(F - aA)oitMt —• 0 a.s. as t f L (F.9) then implies it ~ €t —> 0 a.s. as t t 1-
Consequently, by (E.8) and (E.5), 

l i m y = 6-y(i) a s 

m A 

Recalling the definition of X\ from (4.22), it follows that lim î Xt = X\ a.s. By definition of 
h, we also have 

n(A-! + Zi) = / t(^ 1~ A

7 ( 1 )) a"s-

= 9(6)-

This completes the proof. • 

Corollary 

H(YU 1) = E [Vi j a.s. (F.ll) 

Proof. By (F.8), V\ = g(£i) is a(Yi)-measurable, so both sides of (F.ll) evaluate to <?(£i). • 

Lemma E.l and the preceding Corollary establish the rationality of the pricing rule H defined 
in Proposition 4.1. It remains to show that the trading strategy (4.22) is optimal and belongs 
to the class of admissable strategies X#. 

Lemma F.4 With probability one, the sample paths of the trading strategy (4.22) have finite 

variation on the interval [0,1]. 

Proof. Combining (E.8), (E.5), (4.18) and (4.19), we can write 

Xt = J*A(s) (ts-£s) ds 
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for every t G [0,1[. Accordingly, we must show that /Q1 A(t) (^t — £tj | dt < oo with probability 
one. Since the integrand is continuous on [0,1[, it suffices to show that, with probability one, 
there exists e > 0 such that 

dt < co. (F.12) 

By (F.9), (F.10) and Lemma F.2, we have 

lim sup 
(i - *)V3 

0 a.s. 

Therefore, for almost every sample path, there exists e > 0 such that & — |t < cr{t){\ — f)1/3 

on [1 — e, 1[. Consequently, the left hand side of (F.12) is bounded above by 

y 1 \a(t)A(t)\{l-t)^3dt < y1 

(1 - t)2/3 
+ K(l-t) 1/3 dt 

< oo, 

where the first inequality follows from Lemma F.l. • 

Lemma F.4, together with Lemma D.3 and (F.8), implies that X is an optimal trading strategy, 
provided it belongs to XH • We establish this below, thereby completing the proof of Proposition 
4.1. First, note that the definition H(y,t) = Eh(y + Zx - Zt) = Eh(y + ZX-t) implies 

Ht + -a Hyy = 0 (F.13) 

[Karatzas and Shreve (1991, p. 254)]. It then follows from Ito's formula that 

dP = Hy{Yut)dY. (F.14) 

Back (1992, Lemma 5) and (F.14) then yield 

Lemma F.5 Relative to the filtration 3Y, Y is a Brownian motion with the same distribution 

as Z. 
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PROOF OF PROPOSITION 4.1. The formula (4.23) for expected terminal wealth follows from 
Lemma D.3 and the equalities 

J(£, 0,0,0) =$(£,0,0) =E\j(£1,Z1;h)\Zo = Z]. 

It remains to prove the regularity conditions (4.11) and (4.12). Since H(Zt,t) — E[h(Z\) \Zt], 
we have 

E f1 H{Zutfdt = flEH(Zut) Jo Jo 

< [ Eh(Zi) 
Jo 

2dt 

2dt 

= mzi)2, 

where the inequality follows from Jensen's inequality. Since h E hp,c and E JQ H(YT, t)2dt 
E J0

l H{Zt,t)2dt by Lemma F.5, condition (4.11) follows. We now turn to (4.12). Define 

h(Z,y,t) = E ^(i&fyy + Zi-Ztih) 

I2(t,x,t) = xEg'fatj) 

We first show that 

E h (Zt, Yt, t)2 < M for every t E [0,1], (F.15) 

where M < oo is a constant. To this end, notice first that Jensen's inequality implies 

h(t,V,tf<E ^(fa^y + Zi-Ztih)' (F.16) 

By definition of j, 

i-l, wo-*<*» dx. 
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Therefore, 

di 
<9£ 

< max\g'{£) - h(x)\ h-log(0-y 

where I is the closed interval with endpoints y, h 1 o Consequently 

dj_ 
<9£ <W(0 + \9(0\ + \h(y)\) h - ' o g ^ - y 

Recalling the definition of p and p', Hewitt and Stromberg (1965, Corollary 13.3) then implies 
that 

dj_ 
dt: 

2 < (9'(0 + \9(q\ + \h(y)\)2p

 { \h-'og(Q-y\2p' 

P 

< y (V(02p + \g(0\2p + Hy)\2p) + y- ( r 1 o g W + | y | V ) 

p' 
22p> 

Hence, the expectation on the right hand side of (F.16) is bounded above by 

E 32p (,f?l, 
-[9'(i^t))p + \g(a(,t)) 

32p 

2p\ 22P' 
+ 

P' 

2p> 

+E 
22p' 

\h(y + Z1-Zt)\" + — \y + Z1-Zt 

P P 

,2p' 

By definition of £(£,£) and by Lemma F.5, this bound can also be written as 

E 32p
 (j, 

^ (^(ei)* + 1 ^ ) 1 * ) + ^ | / » - x o ^ i ) 

Yt = y 

2p> 

+E 
o2p o2p' 
V\h(Y1)\2p+2—\Yl\2pl 

Taking unconditional expectations through (F.16) then yields (F.15). Furthermore, 

E / 2 ( £ t , X t , i ) 2 = E X?E 
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< E W + E[g ,(£i)16] 2 p 

p 

< E 
P 

2 2 p ' + l 

\Yt\2p' + \Zt 

P 

|2p' 

-E 

+ ^ [ < / ( £ i ) 2 p 

(F.17) 

where (F.17) follows from Lemma F.5. Combining (F.15) and (F.17), we conclude that (4.12) 
holds. This completes the proof of Proposition 4.1. • 

PROOF OF PROPOSITION 4.2. In view of (F.14) and Lemma F.5, it only remains to prove 
that dH/dy(Yt,t) is a martingale relative to 9rY. This follows directly from Proposition 4.3 and 
the proof of Theorem 3 in Back (1992). • 


