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ABSTRACT 

It is now common to hold that causes do not always (and perhaps never) determine their 
effects, and indeed theories of "probabilistic causation" abound. The basic idea of these 
theories is that C causes E just in case C and E both occur, and the chance of E would have 
been lower than it is had C not occurred. The problems with these accounts are that (i) the 
notion of chance remains primitive, and (ii) this account of causation does not coincide with the 
intuitive notion of causation as ontological support. 

Turning things around, I offer an analysis of chance in terms of causation, called the 
causal theory of chance. The chance of an event E is the degree to which it is determined by its 
causes. Thus chance events have full causal pedigrees, just like determined events; they are not 
"events from nowhere". I hold that, for stochastic as well as for deterministic processes, the 
actual history of a system is caused by its dynamical properties (represented by the lagrangian) 
and the boundary condition. A system is stochastic if (a description of) the actual history is not 
fully determined by maximal knowledge of these causes, i.e. it is not logically entailed by them. 

If chance involves partial determination, and determination is logical entailment, then 
there must be such a thing as partial entailment, or logical probability. To make the notion of 
logical probability plausible, in the face of current opposition to it, I offer a new account of 
logical probability which meets objections levelled at the previous accounts of Keynes and 
Carnap. 

The causal theory of chance, unlike its competitors, satisfies all of the following criteria: 

(i) Chance is defined for single events. 
(ii) Chance supervenes on the physical properties of the system in question. 
(iii) Chance is a probability function, i.e. a normalised measure. 
(iv) Knowledge of the chance of an event warrants a numerically equal degree of belief, i.e. 
Miller's Principle can be derived within the theory. 
(v) Chance is empirically accessible, within any given range of error, by measuring relative 
frequencies. 
(vi) With an additional assumption, the theory entails Reichenbach's Common Cause Principle 
(CCP). 
(vii) The theory enables us to make sense of probabilities in quantum mechanics. 

The assumption used to prove the CCP is that the state of a system represents complete 
information, so that the state of a composite system "factorises" into a logical conjunction of 
states for the sub-systems. To make sense of quantum mechanics, particularly the EPR 
experiment, we drop this assumption. In this case, the EPR criterion of reality is false. It states 
that if an event E is predictable, and locally caused, then it is locally predictable. This fails 
when maximal information about a pair of systems does not factorise, leading to a non-locality 
of knowledge. 
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1. Causation and Determinat ion 

This is a thesis about physical probability, or chance. The term chance has had a number of 

different meanings, but is now regularly used to refer to the kind of probability that is inherent 

in some physical systems. The half-life of a nucleus, for instance, is defined as the length of 

time in which the probability of decay is 1/2. The use of the term 'probability' here has nothing 

to do with any weight of evidence or degree of subjective certainty, as is the case in some other 

contexts, but appears to denote something objective and physical. Thus, when we say that in 

the period of its half life the chance of a nucleus decaying is 1/2, we mean this in an objective, 

physical sense. 

It will be granted, I think, that the chance of an event is a degree of something or other, 

so that a chance of one represents the possession of that thing in its fullest measure, and a 

chance of zero represents its complete absence. An event has chance one if it has some 

property F, and occurs with a lesser chance if it has F partially, or to some degree. Looking at 

chance this way, the principal question to be answered is: What is the property F? In this 

chapter we shall consider the two main types of answer that have been given to this question. 

The first is that F has something to do with causation, and the second is that F has to do with 

determination. In other words, if an event happened by chance this might mean that it was 

uncaused, or spontaneous. Alternatively, it could mean that the event was undetermined, or 

under-determined. My own theory of chance, which is developed and defended in this thesis, 

involves both causation and determination. The chance of an event, I claim, is the degree to 

which it is determined, or necessitated, by its causes. I call this the causal theory of chance. 

In this chapter I give a short survey of several historically important ideas about chance 

and causation, including those of Aristotle and Hume. I then outline my own view of chance, 

explaining its relations to previous ideas, and to other philosophical issues. Finally I will give 

an overview of the rest of the thesis. 
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1.1 Some Historical Background 

1.1.1 Aristotle 

In Aristotle's Physics1, and indeed among ancient thinkers generally, a cause is what generates, 

produces, or brings about, some object, event or change. Reference to causes is central in 

explaining why objects exist, and why events occur. For instance, the father is a cause of the 

child, and generally what makes is a cause of what is made. As Aristotle states when he begins 

his enquiry into causes, "Knowledge is the object of our inquiry, and men do not think they 

know a thing till they have grasped the "why" of it (which is to grasp its primary cause)" (194b, 

19-21). 

Aristotle developed this simple idea by distinguishing four different kinds of answer to 

the "why" question, i.e. the question as to why some object exists or some event occurs. First, 

there is the material of which the object is composed, or in which the change is wrought. If one 

asks, for instance, why this statue exists, one answer is that the bronze in the statue exists. This 

is not a complete explanation, of course, but the statue could not exist without the bronze. The 

bronze is the material cause of the statue. It is important here to lay aside the idea that causes 

temporally precede their effects. The idea is that the existence of the statue is continually 

supported by the existence of the bronze. 

Second, there is the form or the archetype of the statue. We must recall here the 

Platonic notion that the form (of square, say) is the characteristic in virtue of which an object is 

square. It is through the form's being present in the physical object, in some way, that the 

object is square. Thus the forms that are present in a statue support its existence as a statue, 

making it the thing that it is. This cause is referred to as the formal cause. 

These first two kinds of cause, although they do answer the "why" question to some 

extent, are not what immediately springs to mind when we wish to explain the existence of a 

'Book I I , available in Barnes (1984). 
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statue. We would normally invoke the sculptor who actually manufactured it. We are not 

usually concerned with the metaphysical constituents which maintain an object in existence, but 

rather with the agent (whether personal or otherwise) which brought about some change. If 

there are muddy footprints on the new rug, and I want to know why they are there, I am not 

usually interested in what they are made of or what forms they instantiate. Rather, I want to 

know who or what put them there. This object (i.e. the dog, the room-mate, or whatever), 

which Aristotle calls the "primary source of the change" (194b, 30), is known as the efficient 

cause of the footprints. Efficient causes are often persons, or animals, but in many cases are 

inanimate objects. For instance, the efficient cause of a crater is often a meteor, and the sun and 

moon are the efficient causes of the tides. In modern parlance, the term 'cause' almost always 

means the efficient cause. 

The fourth kind of cause in Aristotle's classification is the purpose of the object to be 

explained. If one wonders why there is a metal rod at the top of a tall building, for example, 

one might be told that it is to protect the structure from electrical storms. In this case one is 

referred to the purpose, or goal, of the object. Since this seems to be a legitimate answer to the 

"why" question, Aristotle counts it as another kind of cause - the final cause. Final causes have 

been out of favour in science, over the past couple of centuries, but they seem to be making a 

comeback.2 It is becoming recognised that to explain something by reference to a final cause 

does not exclude another explanation in terms of efficient causes. Having said that the metal 

pole is a lightning conductor, one can also say that it was erected by so-and-so. Moreover, the 

antipathy to final causes seems partially due to a misunderstanding of what they are. They are 

not efficient causes, operating mysteriously from the future, somehow pulling an object into 

being. Indeed, it seems that a final cause cannot "operate" except through efficient causes. If 

someone erects a lightning rod, this is surely caused by a desire to protect the building, and this 

desire is an efficient cause. 

2See, for instance, Ell iott Sober (1993). 
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In this thesis I use the word 'cause' in its modern sense, which corresponds roughly at 

least to Aristotle's efficient cause. One difference between ancient and modern discussions of 

causation is the tendency for moderns to regard causation as a relation between events, rather 

than objects. This does not seem to be a very substantial disagreement, but more a matter of 

terminology. One can see the dog as being the cause of the footprints on the rug, or 

alternatively one can consider the dog's walking on the rug to be the cause of the rug's having 

muddy footprints on it. These two perspectives appear to be quite compatible. In general I 

shall follow the modern approach and view causation as a relation between events, but where it 

is convenient I will use the (equally valid) older idiom. 

In Aristotle, chance is defined in terms of causation rather than necessity. He mentions 

the opinion of those who "say that nothing happens by chance, but that everything which we 

ascribe to chance or spontaneity has some definite cause" (196a 1-2). It is thus implied, though 

not explicitly stated, that an event which happens by chance has no (efficient) cause. Aristotle 

is unhappy with this account of chance since, even if we agree that all events are caused, we 

still require a distinction between those events which occur by chance and those which do not. 

Aristotle applies the concept of chance only to events which are caused by intelligent agents, in 

those cases where there is a mismatch between the agent's intended outcome and the actual 

outcome. For instance, suppose a man goes to the market to buy eggs, and while he is there 

runs into a friend of his. He met his friend by chance, we would say, because that was not his 

purpose in going to the market. This anthropocentric notion of chance, while no doubt useful, 

seems unconnected to the notion explored in this thesis. 

1.1.2 The Scholastics 

In general the scholastics followed Aristotle in their ideas on causation, although one 

innovation is worthy of note. They distinguished between a causa fiendi and a causa 

cognoscendi. I do not want to endorse this distinction, as I think it contains a fundamental 

mistake, but it is a mistake to be learned from. What are these two causes? They actually to the 



two meanings of the English word 'because'. Consider the sentence "Grandfather is ill because 

he ate lobster yesterday"3. Here the lobster (or the event of eating it) is proposed as an efficient 

cause of Grandfather's illness. On the other hand, if we say "Grandfather is ill, because he is 

still in bed", then clearly the word 'because' does not mean efficient cause. Grandfather's 

being in bed is not an efficient cause of his illness, but rather it is seen as conclusive evidence 

for an illness. We are dealing with a logical relation between propositions rather than a 

physical relation between events. 

A causa fiendi is an efficient cause, but a causa cognoscendi is rather a logically 

sufficient ground. In the sense of causa cognoscendi, therefore, we might say that the premise 

of a valid argument causes the conclusion, or perhaps that the truth of the premise causes the 

conclusion to be true. Of course this scholastic distinction is valid, in that the two relations are 

certainly distinct, but in my view they are so distinct that the use of the term 'cause' for a 

logically-sufficient ground is very unwise. As we noted above, the fundamental idea of a cause 

is that which produces, or brings about, an object or event. Now, a causa cognoscendi does not 

produce, or bring about, the conclusion it entails. Rather, it supplies knowledge which enables 

one to infer the conclusion. Indeed, in the example above, where Grandfather's being in bed is 

the causa cognoscendi of his being ill, the actual causal relation is the very reverse of this. 

Grandfather's being ill causes him to remain in bed. 

The moral of this discussion is that we must be very careful to distinguish between 

logical and causal relations. This may seem an elementary point, but I believe that these two 

are systematically confused even at the present time. The distinction between causation and 

determination, for instance, which is still controversial, is of this very kind.' One of the 

fundamental conclusions of this thesis is that determination, unlike causation, is a logical 

relation, a matter of inference. 

3 Th is example is taken f rom C. S. Lewis (1947:19). 
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1.1.3 David Hume 

Hume4 regarded causation and necessitation (determination) as the same relation. An event of 

type C causes, necessitates or determines an event of type E just in case C-events are invariably 

followed by £-events. This is usually known as a regularity theory of causation, although in 

the terminology of work on chance it would be called & frequency theory. We may express this 

definition in the following equivalent form: C causes E just in case, among the class of C-

events, the relative frequency of these which are immediately followed by is-events is 1. Now, 

here is a relation between C and E which admits of degrees, as this relative frequency could 

(conceivably at least) take values which are less than one. 

Here then is what might be called (somewhat misleadingly) Hume's theory of chance. 

The chance of E, when C occurs, is the degree to which C causes E. This is just the relative 

frequency, among the class of C-events, of those which are immediately followed by E-events. 

To attribute this theory to Hume is misleading since Hume held that there is "no such thing as 

Chance in the world" (1748:§VI). Still, however, he must have meant something by "chance", 

even to deny its existence, and there is evidence that his meaning was that of the theory above. 

Hume notes that some causes are more "regular", or "certain", than others. For 

instance, while "fire has always burned, and water suffocated every human creature", "rhubarb 

[has not] always proved a purge, [nor] opium a soporific to every one, who has taken these 

medicines" (1748: §VI). There are two possible responses here. Hume takes the view that 

opium is just part of the cause of sedation, so that there are additional "secret" causes which 

may not be apparent to us. For instance, opium may only have its soporific effect when acting 

upon a certain type of constitution. Thus, according to Hume, if C is the total cause of E, then 

C-events are invariably followed by is-events. The other possible response is to assert that, no 

matter how much additional information we have about the cause C, there will always be some 

cases where C is not followed by E. 

4 The relevant works are Hume (1739), (1748). 
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When Hume asserts that there is no such thing as chance in the world, therefore, he 

surely means that a total cause is invariably followed by its effect; any apparent exceptions to 

this rule are due to the operation of "secret causes". Putting it another way, all true chances are 

either zero or one. 

Interestingly, Hume does acknowledge the existence of what he calls probability, which 

is some sort of pseudo-chance. In the case where C-events are invariably followed by E-events, 

Hume points out that, on seeing an instance of C, we infer that E will follow. This inference 

may or not be justified, but it does in fact occur. In a similar way, Hume claims, if E follows C 

(let us say) 60% of the time, then upon seeing an instance of C we form a partial belief that E 

will follow, a belief with degree 60%. This degree of belief is what Hume calls "probability" 

(1748: §VI). 

We shall see the causal theory of chance is actually somewhat similar to Hume's, even 

though there are deep points of divergence between us. The most fundamental problem with 

Hume's account, in my view, is that his analysis of causation does not even faintly resemble our 

intuitive idea of this relation. As Aristotle says, C causes E just in case C makes E happen, i.e. 

C brings E about. Causation is a matter of ontological dependence, which is not the same as 

constant conjunction. When we observe a constant conjunction of two types of event we 

wonder if there a causal link between them, and of what kind. This is not merely to ask 

whether the conjunction will continue to occur. 

It is interesting to see how Hume approaches his analysis of causation - a notion which, 

he claims, is "more obscure and uncertain" than any other. He takes empiricism, the claim that 

all our ideas, including the idea of causation, derive from experience, as a premise, "all our 

ideas are nothing but copies of our [sense] impressions" (1748: §VII Part I). To understand the 

idea of causation, therefore, we must find the impression from which it is derived. Now, we 

clearly cannot directly observe a relation such as ontological dependence; one cannot form an 

sense impression of it. According to empiricism, therefore, our notion of causation cannot be 

the Aristotelian one - it is ruled out as a candidate from the very start. 
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What therefore is the original of our idea of causation, in Hume's view? He notes two 

things: (i) If C causes E, then C-events are invariably conjoined with E-events; (ii) Having 

experienced such a constant conjunction over a large number of instances, we immediately infer 

that an E will occur, whenever we observe a C. Hume then claims that the idea of cause and 

effect arises from a habit of the mind, which results from observing that one type of event is 

invariably followed by another. In other words, the idea of causal power comes from 

acquaintance with our own belief dynamics. 

...the mind is carried by habit, upon the appearance of one event, to expect its usual attendant, and to 

believe, that it wi l l exist. This connexion, therefore, which we feel in the mind, this customary 

transition of the imagination from one object to its usual attendant, is the sentiment or impression, 

f rom which we form the idea of power or necessary connexion (§VI I , part I I ) . 

It is hard to reconcile this account of the origin of the idea of causation with Hume's 

regularity analysis of causation itself. One would think that, just as our idea of a robin is a copy 

of impressions of robins, our idea of heat is a copy of impressions of hot objects, and so on, that 

our idea of causation would be a copy of an impression of causation. In that case, our idea of 

causation would be a copy of sense impressions of constant conjunction, not human belief 

dynamics. Perhaps Hume is suggesting that our idea of causation contains a fundamental error, 

a projection onto the world of something that is really in the mind? 

This puzzle is deepened when Hume offers a second analysis of causation itself, in 

terms of human belief dynamics. He defines a cause as "... an object followed by another, and 

whose appearance always conveys the thought to that other" (§VU, Part II). This is obviously 

inconsistent with the first definition, so that it is hard to see what he may have in mind. 

Immediately after giving the second definition, he states that: 
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But though both these definitions be drawn from circumstances foreign to the cause, we cannot 

remedy this inconvenience, or attain any more perfect definition, which may point out that 

circumstance in the cause, which gives it a connexion with its effect. We have no idea of this 

connexion; nor even any distinct notion of what it is we desire to know, when we endeavour at a 

conception of it. 

Again, these remarks are difficult to interpret with certainty, but Hume seems to admit that the 

two notions, of (i) constant conjunction and (ii) habitual inference, are different from causation 

itself. Neither, it seems, touches the basic issue of what connects a cause with its effect. 

Nonetheless, he remains firm in his view that we have no idea of this connection, beyond our 

ideas of constant conjunction and habitual inference. 

Contrary to what Hume repeatedly says, it is quite clear that there is a common notion of 

a cause as that which produces an effect, or brings it into existence. This is shown by the fact 

that it makes perfect sense to say: I grant you that lightning is always followed by thunder, and 

that we all habitually expect thunder after lightning, but is it really the lightning that produces 

the thunder? Hume is right that our idea of causal power is not perfectly clear, but it is easily 

sharp enough for us to distinguish it from both constant conjunction and habitual inference. 

Since empiricism forces us to deny what is so plainly true, we should simply reject empiricism. 

This allows us to retain the Aristotelian conception of causation. This general notion of 

causation does not provide us with a priori knowledge of particular causal connections, of 

course, just as one can grasp the general concept of molecular structure without knowing the 

structure of any particular compound. 

As an account of necessity, or determination, Hume's theory is somewhat more 

successful. I show in §1.3.1 that necessary connection is a logical (inferential) relation, so that 

Hume's account is at least along the right lines. Indeed, the main problem with Hume's 

reasoning is his conflation of power or force with necessary connection, i.e. of causation with 

determination. 
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1.1.4 David Lewis 

David Lewis (1973:160) agrees with two important claims made above, that regularity theories 

of causation are false, and that causes need not determine their effects. He also thinks there are 

chancy events, although he takes chance as primitive and offers no analysis. Lewis does offer 

an analysis of causation, however, using chance. Suppose C and E both occur, and the chance 

of E was JC. Also, if C had not occurred, then the chance of E would have been y. Then C is a 

cause of E just in case x>y. In other words, a cause increases the chances of its effects. In the 

special case of a deterministic system this means (roughly) that C causes E just in case E 

depends counterfactually upon C; i.e. C and E both occur and, if C had not occurred, E would 

not have occurred either.5 

This counterfactual analysis of causation is rather more plausible than Hume's regularity 

account. For one thing, instead of abandoning the common-sense notion of cause as 

meaningless, it attempts to clarify and sharpen that notion. I shall argue, however, that while 

there is a close link between causation and counterfactual dependence, this link alone does not 

permit a successful analysis of causation. 

To examine the relation between causation and counterfactual dependence it is helpful 

to look at a simple example of causation, where we understand fairly clearly what is going on. 

The best such example is where one object supports another, i.e. prevents it from falling under 

gravity. The supporting object causes the supported object to remain in place. 

A support C helps to prevent an object E from falling, under the force of gravity. It does 

so by exerting an upward force on E which, to a greater or lesser extent, balances the 

gravitational force. Thus, we shall say that C is a (partial) support of E just in case C exerts 

some upward force on E, however small it may be. Moreover, C is a total support of E if it is, 

5This definition has to be modified slightly to make the relation transitive, but this detail does not concern us. 
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by itself, sufficient to prevent E from falling. The force exerted on E by a total support is equal 

and opposite to the weight of E.6 

If C partially supports E, then what would happen if C were removed? Would E then 

fall? In some cases it would, but in others it would not. Consider a square table top, E, which 

is supported by four legs, one in each corner. Due to symmetry, each leg exerts a force on E 

equal to one quarter of the top's weight, so that each leg is a partial support of E. Now suppose 

that one leg were cut off; would the top fall? Normally it would not, in fact. The two legs 

nearest to the one removed would bear all of the weight, roughly speaking, while the one 

diagonally opposite would be almost redundant (depending on the exact geometry, which has 

not been specified). For a case where removal of a partial support does cause E to fall, consider 

a triangular table top supported by a leg at each vertex. Here, removal of any leg causes the top 

to fall. 

Now let us consider total supports. Does removal of E's total support cause E to fall? 

The answer is yes, in all normal cases, although one can contrive situations where this does not 

hold. I once heard of an architect who designed some kind of roof which was supported in an 

unorthodox way. It had no pillars where, at the time, it was customary to have pillars, being 

perhaps cantilevered or something. The builder, or perhaps the owner, was unhappy with the 

design, fearing that the roof would collapse, and insisted that pillars be added. To this the 

architect eventually consented, although to prove his point they were built so that there was a 

tiny gap, perhaps an inch or two, between the tops of the pillars and the roof. Thus, the pillars 

exerted no force at all on the roof, and so were not even partial supports of it. If the roof had 

slipped even slightly, however, it would have come to the rest upon the pillars and still not 

fallen. In such a case as this, it may be that E does not fall even if its total support is removed, 

as things are arranged so that a back-up support automatically comes into effect when this 

happens. Something which, in fact, is not a support would become a support. 

6 T o keep things simple, I am neglecting consideration of moments. We should really consider the line of 
application of each force to ensure that E is also in moment equilibrium. 
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It is clear that Cs supporting E is wholly a matter of the force actually exerted by C on 

E, and is only indirectly connected with what would happen in the absence of C. Removal of C 

may reduce the upthrust on E to such an extent that it falls down, but that depends on factors 

which vary independently of the force exerted by C on E. Thus a counterfactual analysis of 

support would miss the essential point. It is no doubt possible to deal with some of these 

awkward examples by adding epicycles, but this is a clear sign of a degenerate analysis - is the 

notion of support really that complicated? A counterfactual analysis would also fail to make 

the important distinction between total and partial supports. 

This is all very well for the case of support, but perhaps support is not a good example 

of a causal relation? Perhaps it is not a genuine causal relation at all? To allay these fears I 

shall show that the same points can be made for a more standard type of example. 

Consider an atom bomb, which requires a conventional explosive as a detonator. 

Instead of a single charge of TNT, suppose we have four separate, similar charges, which all 

explode together, causing the fission reaction to begin.7 The four charges together are a 

sufficient "match" to ignite the main bomb, but let us suppose that each one singly is not 

enough. What would three of them have done? Both alternatives are surely possible here; by 

choosing the size of the charges, we can make three charges together either sufficient or not. In 

other words, we can have an analogue of either the square or the triangular table. If we suppose 

that three would have been enough, and consider one of the small explosions C, it seems that C 

is a partial cause of E, the atomic explosion. If C had not occurred, however, E would still have 

occurred, so that E does not depend counterfactually upon C. 

We see therefore that, in the case where three charges are insufficient, E depends 

counterfactually upon C, but not in the case where three are sufficient. Thus, according to 

Lewis' theory, any single charge (pick one!) causes the main explosion in the one case but not 

7 W e may suppose also that each pair of small charges is symmetric within the entire set-up. 

12 



in the other. This is highly counter-intuitive. One might as well say that a leg on a triangular 

table supports the top, but a leg of a square table does not! 

Lewis does consider cases similar to this, saying that the four charges over determine E. 

This means that there is a smaller set of causes (pick any three charges) which are jointly 

sufficient to determine that the big explosion happens. Lewis avoids situations exactly like this, 

however, where there is symmetry between the causes, since (he says) "For me these are useless 

as test cases because I lack firm naive opinions about them" (1973:171, n.12). The problem 

with Lewis's intuitions seems to be the lack of a distinction between total and partial causes. 

The symmetry of the case prevents any single charge being identified as the (total) cause, and 

Lewis does not have the notion of a partial cause, so he does not know what to say. 

We see then that, although there is a link between causation and counterfactual 

dependence, it is not sufficiently tight to allow an analysis of causation in such terms. The 

fundamental reason for this is that causation is a non-modal relation, so that it depends only 

upon what exists in the actual world, whereas counterfactual conditionals are modal. 

Another problem with Lewis's modal approach concerns the relata of the cause-effect 

relation. Lewis wants causes and effects on his account to be singular, concrete events, rather 

than event-types, propositions about events, or any such abstract objects. This requires, 

however, that the same event can occur in different worlds, which is problematic. Yet this does 

not seem possible.8 At best, for some event E in the actual world, another world may contain a 

counterpart of E. It seems that, if causation is a relation between singular, concrete events, then 

it must exist within the actual world. 

Even so, the claim that the causal relation is non-modal has also been criticised. 

Hume's theory also has this non-modal feature, of course, as causation is a matter of constant 

conjunction in the actual world. Now a frequently-criticised part of Hume's theory has been his 

denial of any "necessary connexion" between cause and effect, as it seems to make the constant 

8 For a modal realist like Lewis, transworld identity of events is problematic. For the rest of us, possible events are 

abstract entities of some kind, not concrete objects. 
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conjunction of cause with effect merely accidental or contingent. Hume's claim seems 

intuitively wrong; the effect does not merely follow the cause, however regularly, but rather the 

effect is brought about by the cause. There is surely some kind of intimate connection between 

the two events which is stronger than mere contiguity in spacetime. 

One obvious way to strengthen the connection is to make it modal, i.e. to extend it to 

include counterfactual states of affairs. This can be done in various ways, of course, resulting 

in relations of varying strength. The strongest connection would be if the effect follows the 

cause in all physically-possible worlds, so that the conjunction is necessary9. A weaker 

connection is achieved in Lewis's account. This modal approach springs to mind because it is 

the way we deal with a superficially similar problem, namely the difference between material 

and strict implication.10 The material conditional is rather weaker than logical entailment, as is 

well known. A material conditional is true, for instance, whenever its antecedent is (in fact) 

false. Strict implication can be defined in terms of the material conditional, however, by 

making it modal. If a material conditional holds necessarily, then it has to hold even in worlds 

where the antecedent is true - indeed, the consequent has to be true also in all these worlds at 

least. Thus necessary material implication is the same as strict implication. 

Bearing in mind the important distinction between causal and logical relations, we 

should be wary of the use of modality to understand the connection between cause and effect. 

Instead, following the example of support, I suggest that we imagine a sort of "ontological 

force" which causes exert on their effects. Indeed, I regard the relation of support, discussed 

above, to be a metaphor for causation of all kinds. A cause supports its effect in existence; it 

gives the effect being. In short, I view causation as ontological support. 

9This necessity would be mere nomic, rather than logical, necessity. 
1 0Lewis's account, of course, uses counterfactual conditionals, which are another kind of modal conditional. 
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1.2 Causation 

It is not the purpose of this thesis to offer a complete account of causation, but the analysis of 

chance given in Chapter 3 does rest upon certain assumptions about this relation. It may have 

been gathered from the discussions so far that my general approach to causation is Aristotelian, 

as I hold for instance that causation is a primitive relation that cannot be analysed into more 

basic elements. The nature of this relation seems to vary considerably from case to case. When 

a foot causes a footprint in soft sand it is physically pushing the grains of sand, moving them to 

new positions. When a woman and man cause a child, the relation is more complex, but it 

again concerns what occurs in the actual world. In this section I will try to shed some light 

upon the causal relation by explaining its connections to related topics. 

1.2.1 Causation and signalling 

Consider a crude method of signalling between two fixed sites, connected by some link such as 

a wire. For simplicity, we shall suppose that one site is the transmitter and the other is the 

receiver, so that the signalling is always in the same direction. The basic principle is that the 

person at the transmitter manipulates the machinery at that end, which causes other events to 

occur at the receiver. A person at the receiver who observes these events can infer the message 

from what he observes. A simple example of such a set up is if the transmitter has a switch 

which can be turned to 'on' or 'off, and a lamp on the receiver is either lit or not according to 

the state of the switch. A message could then be sent using Morse code, for example. 

It seems intuitively clear that communication of this kind requires a causal link between 

the transmitter and the receiver. If twiddling the knobs on the transmitter had no effect on the 

receiver, then observing the receiver would convey no information about which knobs had been 

turned on the transmitter. 

In such an arrangement we would say that information can pass from the transmitter to 

the receiver, but what does this mean exactly? Let the transmitter be X and the receiver Y. X 
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can be set manually to either one of two states, 0 and 1, and Y is free of human influence. What 

does it mean to say that information can be passed from the transmitter X to the receiver Y? 

Suppose we observe Y, and its state is 1. From this we must infer something about the state of 

X. For this inference to occur, a necessary condition is that PK(X=\\Y=l) is different from 

PK(X=\), where PK represents the receiver-operator's epistemic probability. In other words, X 

and Y must be correlated in epistemic probability, given the knowledge of the receiver. Thus, 

for information transmission to occur, the receiver must have some relevant knowledge about 

this set-up. What kind of knowledge is this? 

The obvious answer is that he has some knowledge about physical chance. More 

exactly, he knows the physical chance11 of each state of Y for each possible state of X, such as 

the chance that Y moves to 1 when X is set to 1. Letting P represent physical chance, this 

knowledge will allow communication just in case P(Y=1) and P(Y=0) vary according to the 

state of X. The inference can then proceed as follows, supposing that P(Y=1) = p when X=0, 

and equals q when X=l. Using Miller's Principle12, that knowledge of the chance of an event 

authorises a numerically equal degree of belief, we have PK(Y=l\X=0) = p, and PK(Y=l\X=\) = 

q. Then, using Bayes's theorem, we have: 

PK(Y = \\X = l).PK(X = l) 
PK(X = \\Y = \) = K\ \ ) K\ > 

PK{Y = \\X = \).PK{X = \) + PK(Y = \\X = 0).PK{X = 0) 

«.P j r(X = l) 
q.PK(X = \) + p.PK(X = 0Y 

Thus, provided PK(X=0) differs from both 0 and 1, observing Y=l alters the receiver's 

epistemic probabilities for X. We see therefore that there is an important link between 

causation and chance, as Lewis, Suppes etc. believe13. Communication implies a causal link. It 

1 ' i n fact he does not need to know for sure what the chances are; it is enough to have some idea of what they are. 
1 2 M i l l e r ' s principle is discussed in detail in §3.2. 
1 3 See Lewis (1986:175-184), Suppes (1970), Cartwright (1979) and Mel lor (1986). 
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also implies a correlation in the chance function. Lewis's definition of a cause as a chance 

raiser satisfactorily explains why a causal link is necessary for communication, and we shall see 

that the causal theory of chance can account for this as well. 

1.2.2 Causation and Time 

One feature of the causal relation which is almost never denied is that causes temporally 

precede their effects. Is this true? If so, is it something which requires explanation, or must it 

be accepted as a brute fact? Is it a genuine fact at all? Perhaps it is just a linguistic convention. 

It is not possible to outline and argue for my view fully here, although the matter is discussed in 

detail in § 4 . 7 . My position may be summarised as follows, however. 

The actual, concrete history of a system may be partitioned into disjoint "time slices", 

each of finite duration.14 A time slice is a "chunk" of history that falls within a bounded 

interval of time [tx,t2), and so is a concrete event. It is a genuine fact, amenable to explanation, 

that each time slice is a total cause of one of its immediate neighbours, so that the causal 

relation defines a linear ordering on the set of slices. Using the metaphor of support, we can 

picture the time slices as a vertical stack of books. Each book in the stack (apart from the 

bottom one) is supported by those below, and supports those above. The book at the very 

bottom represents the earliest time slice,15 which gives being to all the rest. 

Although there is this close relation between causation and time in the cosmos, I view 

causal relations as essentially timeless. I consider it intelligible, for instance, that the cosmos 

itself have a cause, even though (since time is part of the cosmos) the cause and the effect could 

not be temporally related. Indeed, since I hold that time is just a physical dimension, like the 

spatial dimensions, even the causal relations between time slices are timeless. Each supports, 

timelessly, its successor in existence. 

1 4 F o r simplicity, I am making the Newtonian assumption that spacetime is uniquely decomposable into space and 

time. This assumption is not necessary for the view itself. 
1 5 Th is view of time does not require there to be a final time slice, but there has to be an init ial one. 
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It is in virtue of the causal structure of the cosmos that the past is "fixed", while the 

future is "open". Since the past is causally upwind of the present, actions in the present have no 

causal influence on the past. The past is ontologically deeper than the present. Present events 

are instrumental in bringing about future events, however, so the future is open to 

manipulation.16 

The stack of books metaphor suggests an obvious question: What supports the book 

right at the bottom? This question takes us into difficult territory, and is well beyond the scope 

of the thesis. It does seem to me, however, that the causal structure of the cosmos reveals that it 

is not causally self sufficient. It is not a causa sui, but depends for its existence upon 

something else. 

1.3 Logical Relations 

1.3.1 Determination 

Lewis's definition of determination is as follows (1979:37): C determines E just in case for 

every dynamically-possible world in which C occurs, E also occurs. (A dynamically-possible 

world is one which satisfies all physical laws.) This definition, modulo some irrelevant 

differences in the wording, is now fairly standard.17 Let us suppose that the proposition I 

describes the laws of physics for the system in question. We now have that C determines £ just 

in case every logically possible world which satisfies I and C also satisfies E, i.e. 0(1&C -» E). 

Then, using the fact that A entails B, i.e. A=>5, just in case L3(A—>B), it follows that C 

determines E if and only if C entails E relative to I, i.e. I (C—>E). 

Determination is therefore a logical relation, being in fact the relation of entailment 

relative to I. Since it is a logical relation, its relata have to be logical entities, and cannot be 

1 6 I can make no sense of the idea that there is something called the present that "moves". I take the "block 

universe" view that terms like "now" , "present", and so on are token-reflexive indexicals, l ike "here". 
1 7 I believe it was first given by Montague (1962). 
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concrete objects. It is meaningless to assert that one physical object necessitates, or entails, 

another. Thus, since we are using "C" and for physical objects that are the relata of the 

causal relation, we need to define some corresponding logical entities for the determination 

relation, which we shall call m(C) and m{E). What are these entities, however? 

As a first approximation, we might say that m(Q is the state of affairs that C occurs, or 

exists. This is promising, since possible states of affairs are logical entities. One possible state 

of affairs can entail another, as for instance Vancouver's being very wet entails Vancouver's 

being wet. Also, states of affairs can be negated, conjoined and disjoined. This definition of 

m(C) will not do as it stands, however, since for any concrete event C there are many different 

states of affairs that C occurs. Consider, for instance, consider some particular, physical event 

C of Smith stubbing a toe. The states of affairs of Smith stubbing one of his toes and of Smith 

stubbing a toe on his left foot both concern the event C. Both of them are actual states of 

affairs. Which, if either, is m(Q? The problem here is that some states of affairs concerning C 

are more detailed than others; we might say that some "contain more information" than others. 

The obvious way around this problem is to define m(C) as the maximal actual state of 

affairs concerning the physical event C. In what sense is m(C) maximal, i.e. what ordering 

relation is being used? The ordering relation is just logical entailment or necessitation, so that 

m(C) entails all the other actual states of affairs concerning C. 1 8 One may worry that there is, 

perhaps, no maximal state of affairs concerning C, but instead an infinite sequence of such 

states of affairs, each of which entails its predecessors. In this case, however, the terms of the 

sequence are pairwise consistent, so that they have a conjunction. This conjunction entails each 

member of the sequence. We then have that C determines E just in case, relative to I, m(C) => 

m(E). 

According to the ordinary notion of causation as ontological dependence, causation is a 

relation between concrete entities, such as events. Consider a crater which is caused by a 

1 8 A "state of affairs concerning C" is one that only concerns C, i.e. it does not give information about anything 
else. 
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meteor impact. It is the crater itself, the concrete event, which is brought about the impact, 

another physical event. It is not the states of affairs concerning these events which stand in 

cause-effect relations. Here then is the first reason why causation and determination must be 

distinct: One is a physical relation between concrete things (primarily), and the other is a logical 

relation between possible states of affairs (primarily). One has to say "primarily", as the causal 

relation could be extended to possible states of affairs, and the determination relation could be 

extended to concrete things, in the obvious way. 

We must be wary of the word "sufficient" in relation to causes. Suppose C is a total 

cause of E, so that C alone "exerts ontological force" on E. Then, since E does in fact exist, it 

seems reasonable to say that C is sufficient for E. After all C, by itself, was enough to bring E 

about. This is purely a fact about what did happen, in the actual world. It should not be 

confused with the claim that C is sufficient to determine E, so that m(Q entails m(E) relative to 

I, which is a modal claim. The latter says that any world that includes m(Q also includes m(E). 

We must distinguish therefore between causal and determinative sufficiency. 

1.3.2 The Generalised Lagrangian 

In the previous section I introduced the symbol I, calling it a description of the laws of physics 

for the system in question. In this section I shall be a little more precise about what £ is, 

exactly. I call lx the generalised lagrangian for the system X. 

The concept of a generalised lagrangian is a somewhat Aristotelian one, as we may say 

that it represents the dynamical nature of the system. In the Physics19, Aristotle says that every 

thing that exists by nature has "...a principle of motion and of stationariness (in respect of place, 

or of growth and decrease, or by way of alteration)". An alteration of a system is according to 

nature if it proceeds from the system's innate principle of motion. If a motion has an external 

cause, being produced by a force acting on the system from outside, then the motion is 

1 9 T h i s material is found in Book II, Chapter 1 (192b - 193b), and is available in Barnes (1984). 
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compulsory or unnatural. The downward gravitation of a dense body, for example, was 

considered to be a natural motion, a change produced by the body's internal impulses, and not 

the result of any external force. 

By the end of the seventeenth century, it seemed that this teleological approach to 

mechanics was infertile and bankrupt. In the light of Newton's achievements, the only change 

that could be considered natural was the motion of a particle in a straight line, at a constant 

speed. Since this rarely (if ever) occurs, the idea of a natural motion was of little value. Even 

gravitation was considered to be the result of an external force. 

The forces that produce motion were considered to be governed by laws, such as 

Newton's law of gravitation, and the law of action and reaction. Moreover, the relations 

between forces and motions were also governed by laws, such as the second law of motion. In 

general we may say that the idea of the dynamical nature (as a regulator of motion) was 

replaced by the concept of a law. The idea that motions are regulated by laws persists in the 

philosophical community even to the present day. 

This situation changed when Joseph Lagrange (1788) developed a system of mechanics, 

for deterministic systems, that is rather more Aristotelian. It will not be necessary to develop 

Lagrange's theory here, as the details are widely available,20 but the rough idea is to analyse 

motions not in terms of forces, but rather in terms of exchanges between different forms of 

energy. A particle in free fall, for example, is steadily converting its gravitational potential 

energy into kinetic energy, in such a way that the overall difference between these two is 

minimised. Indeed, the backbone of Lagrangian mechanics is now considered to be the 

teleological principle that the actual trajectory of a system is always the one that makes the 

action integral take a stationary value. (This is now known as Hamilton's Principle.) The 

action integral is simply 

2 0 See, for example, Sposito (1976: Ch. 9). 
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<2 

S = JL(x(t),v(t))-dt, 
ti 

where L(x,v) is the difference between the kinetic and potential energies of the system, and is 

known as the lagrangian of the system. The lagrangian depends, then, on the gravitational field 

that is the source of the potential. In this way, the gravitational field is viewed not as an 

external force that manipulates the particle, causing it to undergo unnatural motions, but rather 

as a part of the total "system". The total system acts according to its own nature, which is 

(roughly) to minimise the action. 

It turns out that any isolated system, no matter how complex, has a lagrangian function, 

provided that all the forces involved are conservative. This lagrangian captures all the 

dynamically-relevant information about the system, so that Hamilton's Principle is sufficient to 

determine the actual motion of the system, from its lagrangian, once a boundary condition is 

supplied. In short, the lagrangian of a system X, together with Hamilton's Principle, may be 

viewed as a representation of X's dynamical nature. It is natural for a system to behave in such 

a way that its action is minimised. 

If a system X has a dynamical nature, then we can define l x , the generalised lagrangian 

for X, as the maximal state of affairs concerning X's dynamical nature. The state of affairs l x 

can then be used to define the determination relation, as in the previous section. Determination 

is entailment relative to the generalised lagrangian. The generalised lagrangian is a replacement 

of, and an improvement upon, the concept of a physical law. It does all the same work, and 

more. 

Are these two approaches to mechanics, using laws and using dynamical natures, really 

any different, however? It may seem that they are, at bottom, fully equivalent, by the following 

argument. In Lagrangian mechanics one typically does not make explicit use of Hamilton's 

Principle. Instead, to calculate the motion of the system, one uses Lagrange's equations of 

motion, which for a single particle are just: 
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d_ 
dt 

* - 0. 
dx 

Now, since dL/dv is the momentum of the particle, and BL/dx is (minus) the gradient of the 

potential, i.e. the applied force, this equation entails Newton's second law of motion. Thus, it 

may seem, the introduction of a "dynamical nature" for the system is a rather superficial 

change. It may be an aid to calculation, but it makes no difference in theoretical terms. 

This argument faces four objections. First, the Lagrangian formalism is more general 

than the Newtonian one. It is possible to write down a lagrangian for many systems that cannot 

be analysed using Newton's methods. This suggests that the concept of a dynamical nature is 

fruitful. Second, it should be admitted that the introduction of a dynamical nature does not 

show the concept of a law to be invalid. Rather, it enables us to obtain a much better 

understanding of what a law of nature is. Suppose some proposition A truly describes the actual 

history of a system X. Is A a law, or merely an accidental fact? Using the notion of a 

dynamical nature for X, we can say that A is a law (i.e. nomically necessary) just in case ZX=>A. 

The point is that the idea of a dynamical nature is more fundamental and general than the idea 

of a law. 

On this view, a law is characteristic of the dynamical nature of the system. Its necessity 

consists of the fact that it is entailed by lx, which maximally describes that dynamical nature. 

The modal force of the law, in other words, derives from its logical relation to the dynamical 

nature. This account of laws solves the inference problem, as van Fraassen (1989: 29; 38-39) 

calls it, of showing that the inference of "A is true" from "A is a law" is valid. This is 

immediate, since given lx=>A, and given that £ x is true, we infer that A is true by modus 

ponens. 

The third advantage in introducing the generalised lagrangian lx is that it offers a 

superior understanding of the dynamics of a stochastic system. This matter is discussed in 

detail in chapters 3 and 4, but the rough idea is as follows. Stochastic laws involve probability, 
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which is a kind of modality. Now, if our fundamental account of the dynamics of a system is in 

terms of a stochastic law, such as a stochastic equation of motion, then the probabilities are 

built into the fundamental dynamical description of the system, and so their nature remains 

mysterious. The description £ x of the dynamical nature, on the other hand, does not involve 

probabilities. £ x talks about what is there, in the system, rather than about what will probably 

occur. The probabilities arise from the logical relation of partial entailment between £ x and 

propositions about the motion of X. 

A stochastic system does not have a lagrangian in the usual sense, because the forces are 

random, and so the potential energy is not well defined. It does not follow, however, that the 

more general concept of a dynamical nature is not valid for stochastic systems. One of the main 

theoretical claims of this thesis is that every system has a generalised lagrangian. 

The fourth advantage of the dynamical nature is that it can be understood as a cause of 

the motion of the system. Suppose a pendulum vibrates with a particular frequency. What is 

the cause of this frequency? It is easy to show that the frequency of a pendulum is 

approximately independent of both the amplitude of its motion and the mass of the bob. It 

depends only upon the length of the string. It seems clear, therefore, that the frequency of the 

vibration is brought about, or caused, by the length of the string. The length of the string is part 

of its intrinsic dynamical nature, represented in the generalised lagrangian, so that in general we 

can say that a system's dynamical nature is one of the causes of its behaviour. A law, on the 

other hand, does not cause anything. It is merely a statement about the motion of the system. 

I say that £ x describes only one of the causes of X's behaviour since, in the pendulum 

example, the dynamical nature is not sufficient to cause a particular amplitude of vibration. 

There can be two pendula which are exactly similar, so that they have the same generalised 

lagrangian, yet whose amplitudes of oscillation are quite different. This difference is due to the 

fact that one is initially given a large kick to begin its motion, and the other only a little push. 

Thus a second cause of a system's behaviour is the manner in which it is set going, which is 

usually represented by a boundary condition. 
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1.3.3 Determinism 

Determinism has been defined as the claim that every event21 has a cause. Those advancing 

this definition, however, believed that causation and determination are the same relation, or at 

least necessarily equivalent. If the relations are distinct, then it makes sense to define 

"determinism" in terms of the determination relation, rather than the causal relation. So the 

rough idea of determinism is that every event is determined. But determined by what? 

The usual answer is that, in a deterministic system, every event is determined to occur 

by past events, or the total past, in the system in question. Why is this, however? Why be 

interested in determination by past events, rather than future events (or a bit of both)? The 

answer is not that future events do not determine past events, for examples of this are very 

common. Consider the weather, for instance. It is doubtful whether November's weather is 

determined by the state of the world in October; at least, humans are not very good at drawing 

correct inferences about November's weather from information about October. By contrast, 

November's weather is very precisely determined by the state of the world in December, as in 

December there exist very precise records of November's weather, from which facts about the 

weather itself may be inferred with a high degree of certainty. We can "predict" temperatures, 

pressures, levels of rainfall, etc. with great accuracy. 

The reason why one is interested in whether events are pre-determined, I believe, is that 

causes temporally precede their effects. We are really interested in whether an event has causes 

which determine that it will occur. The causes of an event are contained in its past, so if an 

event is determined by its causes then it is pre-determined. 

Or every contingent event, to avoid a regress. 
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1.4 The Principal Problem for Chance 

As stated above, the analysis of chance to be offered in this thesis is that the chance of an event 

is the degree to which it is determined (i.e. entailed) by its total cause. Thus, for there to be 

such things as genuinely chancy events, there must be events which are not (fully) determined 

by their causes. Now, until fairly recently, it was seen as obvious that if C is a total cause of E, 

then C determines E as well. This was not a careless, unfounded assumption, but is supported 

by an argument which I consider to be valid, though not sound. This argument I call the 

Principal Problem for Chance, as if it is sound then there are no chancy events. 

The Principal Problem is described in one special case by van Fraassen (1989:239-240), 

in his consideration of Buridan's ass. Van Fraassen argues that, if we accept the claim that an 

asymmetry must always come from a prior asymmetry, then determinism follows. (Let us call 

this principle, that symmetry is preserved under causal evolution of a closed system, 

Conservation of Symmetry, or CS.) Here is how it works. The hungry donkey is faced with 

two tasty-looking bales of hay, but unfortunately the entire situation is exactly symmetric with 

respect to the two bales. If the ass were to move even an inch toward one of the bales, then the 

symmetry would be broken, which is impossible (by hypothesis). If the donkey were to choose 

one bale over the other, then the system would be indeterministic, since this event cannot be 

predicted from the initial state of the system. (If it could, that would break the symmetry.) 

Thus, any event which violates CS must be indeterministic. The converse, that any 

indeterministic event violates CS, is not so easy to prove, however. Of course, this is the result 

van Fraassen actually needs, to show that CS implies determinism. 

The result van Fraassen requires may easily be shown if we consider a more 

complicated case. Two asses are better than one here, particularly if they are exactly similar to 

one another, and set up in the same initial state. Since they are "clones"22, let us call them 

2 2 N o t e that they are not merely clones in the usual sense, of sharing the same genotype, but are "atom-for atom" 

similar. 
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Dolly and Polly. The initial states of Dolly and Polly need have no symmetry, but the similarity 

of Dolly with Polly means that the combined system <DolIy, Polly> has symmetry with respect 

to the two beasts. Now suppose that Dolly and Polly are placed in exactly similar (separate) 

environments. The question is whether they will engage in exactly the same behaviour. If 

Dolly lifts her left hind leg, will Polly do the same? Will they blink simultaneously? If Dolly 

and Polly are indeterministic, then their being similar (having the same lagrangian) and having 

the same initial state does not entail that they will have identical histories; it is possible that 

their histories will differ. 

Here is the argument. Suppose that the donkeys are stochastic, and have different 

histories in fact. Then, at some time, the total system <Dolly, Polly> is not symmetric with 

respect to the two animals. But, in its initial state, <Dolly, Polly> was symmetric in this way, 

so CS fails here. Thus indeterminism entails that CS is false, and so CS implies determinism, 

as required. 

Why should one think, however, that an asymmetry cannot arise spontaneously out- of 

symmetry? The intuitive reason is that such a breakdown of symmetry could only occur if there 

were a hiatus in' the causal nexus - the first symmetry-breaking event could not have a total 

cause. It would be an event "from nowhere". The event has partial causes, no doubt, such as 

the donkey's being hungry and so on, but there is no event which is causally sufficient for this 

choice. This follows immediately from the symmetry of the situation. If there is a prior event 

which is causally sufficient for the ass to choose bale A , then (by symmetry) there is also an 

event which is causally sufficient for the donkey to choose bale B. This is a contradiction, 

however, as the ass cannot choose both bales. (Even if it eats both, it must eat one of them 

first.) 

It is now considered fairly well established that not all systems are deterministic, and so 

van Fraassen concludes that CS is false, so that some events are not fully caused (1989 :240). 

These are "events from nowhere", in other words, ones that simply occur without anything 
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making them occur. It is agreed that events determined to occur by prior causes are not chancy, 

so that on this view chancy events are just such uncaused (i.e. not fully caused) events. 

The main problem with this idea of chancy events as uncaused is that it is very hard to 

reconcile with the phenomenon of quantum-mechanical correlation. In order to account for the 

fact that some events are pre-determined, but not locally pre-determined, we are forced to 

regard even chancy events as fully caused. This issue is discussed in Chapter 5. 

1.5 The Causal Theory of Chance 

According to the causal theory of chance, the chance of an event is the degree to which it is 

determined by its total cause. There are two causes of a system's concrete history23, 

represented by the generalised lagrangian and the boundary condition. If we write the boundary 

condition of a system X as bcx, then the chance of an event E is the degree to which it is 

logically entailed by lx & bcx. 

It should be noted that this theory coincides with Lewis's analysis of probabilistic 

causation24, to a certain extent. Lewis's rough idea is that a cause is a chance-raiser; thus, if C 

caused E, then E's chance would have been less had C not occurred. We have seen the flaws in 

such a counterfactual analysis of causation, but it remains true that causes do usually raise the 

chances of their effects. This fact is easily demonstrated from the causal theory of chance, as is 

shown below in §1.5.2. 

The term "causal theory of chance" is intended to indicate this reversal of priority, by 

being the reverse of "the probabilistic (chancy) theory of causation". Instead of taking chance 

as primitive and attempting to define causation (which is unworkable) I take causation as 

2 3 T h e concrete history of a system is a convenient "super-event" which includes all the events that occur wi thin a 

system. 
2 4 I am focusing on Lewis's account of probabilistic causation as it is the best of its k ind, but there are many other 

such analyses. 
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primitive and attempt to define chance. Many of the connections between chance and causation 

are unaffected by this reversal in the order of analysis. 

1.5.1 Type Causation 

So far we have been considering the kind of causation that is a relation between singular, 

concrete events. Sometimes, however, the term is used to denote a relation between types of 

event, as in the statement that smoking causes heart disease. What is the meaning of such 

claims? First we shall suppose that an event-type is a general property of events, and thus may 

be considered as a proposition about an event with the particularity of that event removed. 

Thus an event-type is a Fregean concept25, such as "x is an explosion", "x has heart disease at 

time f", and so on. 

Now let us consider a particular person who smokes, and then gets heart disease as a 

result. To say that his heart became diseased because of his smoking is to say that, somehow, 

the smoking was part of the chain of events that led up to, or brought about, the disease. Now, 

of course, the actual story of how the heart became diseased is very complex, involving 

innumerable factors. Many of these factors, moreover, are quite normal and healthy in 

themselves, such as the eating of food and the circulation of blood. The act of smoking, 

therefore, is merely a partial cause of the heart disease. 

Let us look at some possible meanings of "smoking causes heart disease", trying to 

reduce it to the meaning of "cause" in the singular, concrete case. Does it mean that every case 

of smoking causes a case of heart disease in that person? No, because some smokers never get 

heart disease, and so in such people smoking does not cause heart disease. Perhaps then we 

should weaken it to "for some smokers, smoking causes them to develop heart disease"? This 

is far too weak, however, as in this sense running causes heart disease, as does breathing, 

25SeeFrege(1891). 
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eating, blood circulation and so on. For many people, these are parts of the process which leads 

to heart disease. 

We want to be able to say something like: "smoking causes heart disease more often 

than does not smoking", or more precisely, "smoking has a higher chance of causing heart 

disease than does not smoking". For simplicity let us assume that all smoking humans share the 

same lagrangian, as far as the development of disease is concerned, as do all non-smokers. If S 

represents the property of being a smoker of a particular kind, so that Ps represents the chance 

function for a smoker, etc., and H the property of developing heart disease, then the claim that 

smoking causes heart disease is just that PS(H) > P_^(H). We see therefore that, in the generic 

sense of causation, a cause is a chance-raiser. 

1.5.2 Causes as Chance-Raisers 

Let us consider a die that has been weighted on one face, so that the chance26 of a six is 2/3 

rather than 1/6. In the generic sense of causation just discussed, we can say that the weighting 

of the die causes it to give the result 6. Let us now look at an individual roll, however, on 

which the die comes up 4. In this case, the weighting is part of the cause of its yielding a 4! 

The weighting is part of the dynamical nature of the die, which is a partial cause of the 

outcome. We see therefore that a cause in the proper sense cannot be defined as a chance-

raiser, as a cause is sometimes a chance-lowerer. In a case where the weighted die yields a 4, 

the weighting is a partial cause of this, even though it greatly lowers the chance of a 4. It may 

be that the weighting reduces the chance of a 4 from 1/6 to 1/15, for example. 

If we look at a typical27 large class of trials, rolling weighted and non-weighted dice, 

however, then we do find in the class that the weighting, being a chance-raiser, is more 

frequently a cause of sixes than non-weighting is. A weighted die causes (in the proper sense) a 

2 6 L e t us suppose that the die is genuinely stochastic. 
2 7 A large class is typical i f the relative frequencies of outcome-types are roughly equal to the chances. It w i l l be 

shown in Chapter 3 that chance and frequency are linked in this way. 
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six more frequently than does a non-weighted die, from which it follows that a cause (in the 

proper sense) usually raises the chance of its effects. A type of cause that lowers the chance of 

some effect will not cause that effect very often. Thus, the causes that actually succeed in 

producing their effect are usually ones that give the effect a relatively high chance. 

1.5.3 Signals Again 

Let us consider again what is required for a signal to be transmitted from X to Y, by Morse 

code. In §1.2.1 we saw that, for this to occur, the chance of Y=l must vary according to the 

state of X. This condition is met by the causal theory of chance just in case the state of X is at 

least a partial cause of the state of Y. For, if the state of X is among the causes of the state of 

Y, and the chance of an event is the degree to which it is determined by its causes, then the 

chance function for Y may vary as the state of X varies. On the other hand, if the state of X is 

not even a partial cause of the state of Y, then P(Y=1) is the same for both states of X. Thus, 

the fact that a causal link is necessary for signalling is a consequence of the causal theory of 

chance. 

1.5.4 The Principal Problem Solved 

I assume that all events are fully caused, so that CS holds. How can this position be maintained 

in the face of the Principal Problem described above? We should remember that causation is a 

relation between C and E, concrete particulars, whereas determination is a relation between 

m(Q and m(E), the maximal states of affairs concerning C and E. 

An important step in the two-ass argument was the supposition that Dolly and Polly are 

in the same initial state. What I take this to mean is that, if C and C are the concrete initial 

time slices of Dolly and Polly respectively, then m(C) and m(C) are congruent. Dolly and 

Polly initially have congruent maximal states of affairs. From this it is inferred that the system 

<Dolly, Polly> is initially exactly symmetric with respect to the two beasts. Now this inference 

is valid if m(C) and m(C') are "complete", in some sense, for in that case any difference in C 
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and C would show up as a difference between m(Q and m(C). If m(Q and m(C) are 

incomplete, however, then the inference is not valid. In this case there could be a difference 

between C and C even though m(Q and m(C) are identical. 

Thus, a necessary hidden premise of the argument is that maximal states of affairs 

concerning events are always complete. With this premise the argument is valid, but otherwise 

it is not. I claim that the premise is false, so that the Principal Problem rests upon an unsound 

argument. 

What is meant by "complete" here? The intuitive idea is that a complete state of affairs 

m(Q provides complete information about the physical event C - it leaves nothing out. Thus 

the completeness of m(Q would consist in its having some sort of equivalence, or 

correspondence, to C itself. This relation would connect two very different kinds of entity, 

however, one logical and the other physical, so I claim that it could not be anything like a 

perfect matching. 

To support my claim that no possible state of affairs is complete, I shall first consider 

and criticise an argument that maximality entails completeness. I shall then give two arguments 

in favour of my view. 

One may think that a state of affairs m(a) is complete regarding an object a just in case 

m(a) contains a complete list of the properties of a - a list in which none of the properties of a 

is left out. If this understanding of completeness is adequate, then a maximal state of affairs has 

to be complete. For, if m(a) were incomplete, then it would be missing some property F that a 

in fact possesses. In that case, the state of affairs (m(a) & Fa) would also be actual, and of 

course it entails m(a). It follows that m{a) is not maximal, so that incompleteness implies sub-

maximality. Therefore, a maximal state of affairs must be complete. 

The flaw in this argument lies in its understanding of completeness. We must first 

remember that properties are just abstractions from states of affairs, as for instance the property 

F is abstracted as the "common component" of states of affairs like Fa, Fb, Fc, etc. What, 

therefore, is a complete list of properties? A list such as {Fu F2, F3} is complete for an object 
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a just in case there is no other property (F4 say) that a possesses, but is not entailed by any of 

Fj, F 2 , or F 3 . But this is just to say that the state of affairs (F{a & F2a & F3a) is maximal, as I 

define it! This argument proceeds by re-defining a maximal state of affairs as complete. 

To clarify this point I should explain further the difference between the concepts of 

maximality and completeness. The notion of a maximum is derived from an ordering relation > 

on a class O, say. A member x of O is a maximum of O with respect to > just in case, for every 

y in <E>, x > y. The notion of completeness, or perfection, is quite different from this. A perfect 

object is one that matches, or corresponds to, some external standard. Consider, for example, 

the idea of completing a one-mile race. The length of the race is marked out in advance, and an 

athlete has completed the course when she arrives at the finishing post. 

Suppose that, after running about half a mile, Janet is leading the race. Her position is 

then maximal, although it is not complete. Its maximality depends upon the comparison of her 

position with the positions of other athletes - the length of the course is irrelevant here. The 

maximality of an object is an internal affair, being a matter of its relation to other objects of the 

same type. The incompleteness of her position, on the other hand, has nothing to do with the 

other athletes, but concerns her relation to the finishing post. The completeness, or perfection, 

of an object is an external affair, being a matter of conformity to an external standard. 

For another example, consider the problem of filling a bucket with water. The bucket is 

maximally full when the mass of water it contains cannot be increased, so that no fuller state is 

possible. It is completely, or perfectly, full when the level of the water coincides with the top of 

the bucket. Now, in this case the states of being maximally and completely full are 

extensionally the same, at least roughly, but notice how the concepts themselves are defined 

differently. 

In this section we are concerned with the issue of maximality and completeness of 

information, so let us consider the example of maps. In the spirit of Definition 2.2.2.8 we shall 

say that one map A entails another, B, just in case the pair of maps {A,B} gives the same 

knowledge as the single map A. If O is a class of (true) maps, then the map A is maximal in O 
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just in case it entails all the other maps in O. What would it mean for a map to be complete? A 

map is a representation of a certain territory, so a complete (or perfect) map is one that 

corresponds the that territory exactly. A complete map would therefore be indistinguishable 

from the territory it represents. Such a map would have to be the same size as the territory, and 

composed of the same materials, so it would not really be a map at all, but a full-scale replica. 

We see that, since a map has to be made of paper, or some such two-dimensional material, then 

it is fundamentally different from the territory it depicts. Thus even a maximal map must be 

incomplete. 

So far I have argued that the supposition that maximality entails completeness rests 

upon a confusion about the concepts maximal and complete. Now I shall argue that there are 

strong reasons to hold that even a maximal state of affairs is incomplete. The first argument is 

direct: We need a strong distinction between the real and the merely possible in order to avoid 

modal realism. The second argument is rather indirect: The causal theory of chance, which 

solves a number of difficult problems, requires that maximal states of affairs be incomplete. 

For the first argument, that accepting complete states of affairs would commit us to 

modal realism, it is convenient to think about the whole world, so that we are concerned with 

the relation between the real world W and the maximal actual state of affairs (or actual world) 

m(W). We have already seen that Wand m(W) cannot be identified, since Wis a concrete object 

whereas m(W) is a logical entity. In spite of this, one might still think that the difference 

between W and m(W) is rather trivial, so that they can be regarded as exact replicas of each 

other. If this were so, however, then W and m(W) would be similar in ontological status. It 

would then follow that the other, non-actual possible worlds like m(W), whose status is equal 

to that of m(W), would be just as real as W. This amounts to modal realism, which I take to be 

false. 

The alternative to modal realism is to say that the possible worlds (including the one 

that is actual) are abstract, or ersatz. I do not want to discuss the exact meaning of "abstract", 

but I take it that the ontological status of possible worlds is somehow drastically inferior to that 
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of the real world. Should we be morally concerned about possible catastrophies that might have 

occurred but did not, in fact, happen? Is there anything that it is like to be a possible person? 

Do possible people suffer? I assume that the answer to each of these questions is No. 

The second argument for the claim that even maximal states of affairs are incomplete is 

that this allows us to understand the nature of physical chance. If a perfect correspondence 

between a concrete object and an abstract state of affairs is impossible, even in principle, then 

even a total cause need not determine the existence of its effect. This permits us to define the 

chance of an event as the degree to which it is determined by a total cause. As will be shown in 

the remainder of the thesis, this causal theory of chance is far superior to all of its competitors. 

It is particularly successful in making sense of the behaviour of chances in quantum theory. 

Consider, for instance, the familiar claim that, if quantum mechanics is incomplete, then there 

are hidden variables. Bearing in mind the distinction between completeness and maximality, 

we see that this claim is invalid. If quantum mechanics were maximal as well as incomplete 

then there would be no hidden variables. I argue in Chapter 5 that quantum mechanics is both 

maximal and incomplete, as this view makes sense of the non-locality of chance in quantum 

mechanics. 

We still have not provided an answer to the question of how W and m(W) are related. 

This is a difficult task, but the following picture may help. Leibniz imagined a God who 

surveyed the possible worlds and, finding the best, chose it as the real world. Creating the real 

world cannot be just a matter of taking one of the possible worlds "off the shelf and re-naming 

as the real world, however. In that case, the possible worlds would have the same fundamental 

nature as the real world, which amounts to modal realism. Rather, the actual world, once 

selected, would have to undergo some mysterious process of "concretisation", to turn it into the 

real world. The actual world m(W), on this view, is something like the formal cause of the real 

world W. The actual world helps to bring about the existence of real world, but the two cannot 

be identified. The actual world is merely the pattern, structure, or skeleton, of the real world. 
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1.5.5 Explanation 

The concept of explanation is very familiar. Indeed, that is exactly where we began this 

chapter, with Aristotle's idea that a cause is just the thing invoked in answer to a "why" 

question. Why are there muddy footprints on the rug? Because the dog walked on the rug, 

after being outside. The dog's action, which is the cause of the footprints, seems also to be 

their explanation. 

Empiricists, such as Hume and his successors, cannot accept this account of 

explanation, as they hold that causal claims are meaningless. Lacking causal relations, they 

turn instead to logical relations, and offer us some version of the "Deductive-Nomological", or 

D-N, model of explanation.28 The basic idea is that, to explain a physical phenomenon, one 

must deduce it from laws.29 

In my view, Aristotle and the empiricists are both half right. To explain a phenomenon 

is to cite its cause, and this frequently involves deducing (i.e. inferring) the phenomenon from a 

law. To see how this can be, let us recall the account of physical laws given in §1.3.2. The 

fundamental concept is that of the generalised lagrangian, I, of the system in which the 

phenomenon exists. The lagrangian represents the intrinsic dynamical nature of the system, and 

thus encodes such properties as geometrical configuration, masses, charges, elastic constants 

and so on. Now, from the above discussion of pendula30, it is clear that I describes one of the 

causes of the system's behaviour. Thus, if one infers a phenomenon from I, then one infers that 

phenomenon from one of its causes. 

Explanation can then be cashed out as follows: To explain a phenomenon is to infer the 

phenomenon from (a description of) its causes. Thus, since a physical law describes the 

dynamical nature of a system, which is one of the causes of its behaviour, one kind of 

2 8See for instance Hempel (1965), Ernest Nagel (1961:29-46) 
2 9 T h e explanans may also include statements about the antecedent conditions. 
3 0There is, of course, nothing special about a pendulum in this regard. The same conclusion follows from 
considering any other type of system whose dynamics is understood. 
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explanation is to infer the phenomenon from a law. There are other kinds of explanation, 

however, such as inferring a phenomenon from the boundary condition. 

1.5.6 Overview of the Thesis 

Since the determination relation is logical entailment, relative to I, partial determination must 

be partial entailment relative to I. The causal theory thus requires there to be such a thing as 

partial entailment, or logical probability. The consensus in many quarters today is that there is 

no probability function which is determined by logic alone, so the first task is to show that this 

view is mistaken. In Chapter Two I attempt to demonstrate that logical probability is still very 

much a viable idea by giving an account of it. 

In Chapter Three the causal theory of chance is outlined in detail, and compared to its 

rivals. It will be shown that the causal theory entails Miller's Principle, that knowledge of the 

chance of an event E warrants a numerically equal degree of belief that E occurs. From this 

result it follows that, according the causal theory, chances can be inferred (albeit approximately 

and fallibly) from empirical observations of relative frequency. This conforms perfectly to 

what we ordinarily suppose about chance and frequency. 

The remaining three chapters concern the application of the causal theory to some 

outstanding problems in theoretical physics. The purpose of these chapters is twofold. First 

they provide support for the causal theory itself, since they demonstrate its fruitfulness in 

problem solving. They give indirect empirical evidence that stochastic events are caused but 

not determined. Second, since the problems considered are themselves important, the solutions 

provided are of independent interest. 

In Chapter Four I set up a mechanical formalism for stochastic processes. The main 

purpose of this is to act as a foundation for the later chapters on correlation and measurement, 

but it is also used to tackle the problem of the direction of time, which I see primarily as one of 

accounting for temporally-asymmetric physical phenomena. In particular I focus upon 

Reichenbach's common cause principle as a general example of such a phenomenon. The 
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formalism is based upon five assumptions about physical systems which seem reasonable, at 

least at large scales, and from these the required phenomena may be derived. 

In Chapters Five and Six I analyse some problems in quantum mechanics from the point 

of view of the causal theory. This involves a detailed examination of the dual nature of chance. 

According to the causal theory, the chance function supervenes on the physical properties of the 

system concerned, and thus is itself a physical feature of the system. Since, however, it is 

defined using logical probability, it also turns out to be an epistemic probability function. 

These are the two faces of chance; it is entirely physical, yet it also represents rational degrees 

of belief within a particular possible epistemic state. A second feature of the causal theory, 

which also assumes central importance in understanding quantum chances, is that the 

knowledge "possessed" by the chance function is incomplete, even though it is maximal. 

In Chapter Five I develop a theory of correlation which explains the counter-intuitive 

results obtained in EPR-type experiments. I show how these correlations, which cannot be used 

to transmit information, do not require any causal link between the separated systems. In other 

words there is no need to drop Einstein's locality principle of special relativity, that causal 

influences cannot travel faster than light. We are forced to drop another locality principle, 

however, that a maximal state is always local, in the sense that the maximal state of a pair of 

systems can always be split into two separate states, one for each system. 

In Chapter Six the theory of quantum correlation developed in Chapter Five is applied 

to the more difficult problem of interpreting the state vector, and particularly the way it changes 

when a measurement occurs. The state vector is closely related to the chance function, and 

shares the latter's dual nature, being both physical and epistemic. 
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2. Logic and Probabi l i ty 

The aim of this chapter is to argue that there is such a thing as logical probability. The 

conception of logical probability I defend is somewhat different from previous accounts, 

however, so why do I call it "logical probability"? The essential notion of logical probability, 

as pioneered by Keynes (1921), is captured by the following three ideas: 

(1) As the name suggests, logical probabilities are probabilities that are, in some sense, part of 

logic. 

(2) A logical probability is a degree of entailment of one proposition by another. Thus a logical 

probability represents a logical relation between two propositions. 

(3) A logical probability is some sort of degree of belief. The rough idea is that the logical 

probability of A given B, which we write as Pr(A \ B), has something to do with the degree to 

which A should be believed, for someone who knows only that B holds. 

Since my account of logical probability agrees with that of Keynes on these points, the use of 

the term 'logical probability' seems appropriate. 

These three strands are far from independent, of course, as (2) fleshes out what is meant 

by (1), and (3) does the same for (2). Since entailment is a logical relation par excellence, it 

follows that degrees of entailment must be part of logic as well. What, however, is meant by a 

"degree of entailment"? We obviously require an account of partial entailment according to 

which ordinary entailment is a special case of partial entailment. The idea of a degree of 

entailment as a conditional degree of belief seems, at least, to be capable of providing such an 

account. If B entails A fully, then an ideal thinker who knows B with certainty will also believe 

A to the greatest possible degree. Thus we see that the notion of logical probability is most 

fully captured by (3). 
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I realise that some may find the following account of logical probability unconvincing, 

and so it may be wondered which features of logical probability are required for the rest of the 

thesis. Apart from the obvious requirements, such as satisfaction of the axioms of probability, 

these are as follows. 

(i) Logical probability is not anthropocentric (so that chance is not anthropocentric). It is 

defined on objective states of affairs rather than human thoughts. 

(ii) The Authority of Logic principle of §2.2.3 holds. 

These two properties of logical probability are needed to ground the two main features of 

physical chance, (i) is needed for chance to be an objective, physical quantity, and thus not 

dependent upon human beings, and (ii) is required for Miller's principle, i.e. the Authority of 

Chance principle, that knowledge of the chance authorises a numerically equal degree of belief. 

If another account of logical probability were found that also satisfied (i) and (ii), then it would 

serve the thesis equally well. 

2.1 The Objections to Logical Probability 

Logical probability has been in the academic wilderness for some decades now, and many 

consider that its rightful place. Before I begin to investigate it, and examine its properties, I 

therefore should explain why I think there is at least some hope of giving a satisfactory account 

of it, despite the failure of greater minds to do this. Perhaps the main reason why the prospects 

for logical probability seem so dim is that previous attempts to characterise it have failed, and 

in ways that seem quite fatal. The principal difficulties are 

(I) Measures that are arguably logical in character do not support learning from experience, and 
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(II) Logical probability seems to require an indifference principle, but these all lead to 

contradictions. 

In addition to these practical problems that arise when trying to construct a theory of logical 

probability, there are also two more theoretical objections to the concept itself, namely 

(HI) The logical probability function is too opinionated to be part of logic. The number Pr(A \ 

T), where T is a tautology, is an exact degree of belief in the possible state of affairs A on the 

basis of no information at all! Logic, however, is independent of matters of fact, and so should 

have no such opinions. 

(IV) The idea of logical probability violates the distinction between logic and psychology. A 

probability is a degree of belief, and belief belongs to psychology rather than logic. Logic is 

concerned with truth, not belief, and there are no degrees of truth. 

These problems, as a whole, may look quite severe, but they will all be answered in this 

chapter. Objection (II) is met by formulating a symmetry axiom, proving it from the definition 

of logical probability, and showing that it is free of contradiction. The symmetry relation 

involved, which exists between some pairs of states of affairs, certainly appears to be logical in 

character. 

Objections (I) and (IV) are the most interesting, as they concern the relation of logic to 

human thought. Problem (I) assumes, for instance, that logical probability is involved in the 

rationality of scientific inferences. This assumption was certainly made by the two main 

investigators of logical probability, J. M. Keynes (1921) and R. Carnap (1950). Keynes, for 

instance, summarises the notion of logical probability as follows: 

Part of our knowledge we obtain direct; and part by argument. The Theory of Probability is 

concerned with that part which we obtain by argument, and it treats of the different degrees in which 
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the results so obtained are conclusive or inconclusive. ... Given the body of direct knowledge which 

constitutes our ultimate premises, this theory tells us what further rational beliefs, certain or 

probable, can be derived by valid argument f rom our direct knowledge. This involves purely logical 

relations between the propositions which embody our direct knowledge and the propositions about 

which we seek indirect knowledge, (pp. 3,4) 

Keynes believed, in other words, that the inductive inferences of natural science can be 

analysed using logical probabilities. He is quite explicit about this, as his main aim in the 

Treatise is to lay a firm, logical foundation for scientific reasoning. In science one often claims 

that a theory H is supported by experimental data E, that it is valid to accept the theory in the 

light of the empirical evidence. In Keynes' view this simply means E entails H to some degree, 

so that Pr(H \ E) is reasonably high.1 

This view of Keynes, that warranted scientific theories have high logical probabilities 

given the empirical data, is now known to be false. The basic problem is neatly illustrated by 

the example of predicting the colours of balls as they are drawn at random from an urn.2 

Suppose we know that an urn contains N balls, some of which are black and the rest white, in 

unknown proportion. Some balls are drawn randomly from the urn, all of which are found to be 

black. What is the correct degree of belief that the next ball drawn will also be black, in the 

light of this evidence? It should surely be greater than that of the first ball's being black, if we 

are to learn anything from experience. The possibility of such learning depends, however, on 

the prior probability function. 

It will be useful to compare two different prior probability functions that have been 

discussed extensively. Though they are quite different, they both display uniformity, being 

'This claim, notoriously, leads to the problem of the priors. In order to calculate Pr(H | E) one has to use Bayes's 

theorem, for which one already needs the values of terms like Pr(E \ H) and Pr(H). Unfortunately the terms like 

Pr(H), the infamous prior probabilities, do not seem to exist. 
2 Th is discussion is based on Howson and Urbach (1993: 59-72). 
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based on assignments of equal probability. The first, which is an instance of Carnap's measure 

ct (Catnap, 1950), assigns the same probability to each possible constitution of the urn. A 

possible constitution is a specification of the colour (white or black) of each of the N balls, so 

that there are 2N possible constitutions. This measure is considered by some (such as Keynes) 

to be logical in character, but it does not permit any learning from experience. Since Bayesian 

conditioning preserves the relative probabilities of any two hypotheses consistent with the data, 

if we start with this measure then the probability of next ball's being black remains always at 

1/2, regardless of the data. I myself do not find this measure to be purely logical in any case, 

since there is no perfect symmetry between the different constitutions. At best, there is 

symmetry only between different constitutions of equal frequency (of black balls, say). 

The second probability function assigns the same probability to each possible frequency 

of black balls in the urn, so that each of the N+l possible frequencies has probability 1/(̂ +1). 

Within a class of constitutions of the same frequency, each constitution has the same 

probability. Under this measure, which is an example of Carnap's measure c*, some 

constitutions are far more likely than others. In particular, constitutions whose frequency is 

close either to 0 or to N+l have high probability in comparison to those with roughly equal 

numbers of black and white balls. This prior expectation of uniformity in the colours of the 

balls leads one to infer that the next ball drawn will likely be the same colour as the majority of 

those drawn already. Indeed, it is simple to derive Laplace's rule of succession here, that if m 

of the first n observed balls are black, then the probability that the next ball is black is 

(m+l)/(ra+2). This second measure, however, is certainly not logical in character. It cannot be 

justified in terms of symmetry, for example. 

This example, though simple, is a fine illustration of scientific reasoning. In order to 

make scientific inferences, one must make strong background assumptions about the nature of 

the world. In short, one assigns higher prior probabilities to hypotheses that seem plausible, 

and are in accordance with good sense. The question of whether these background 

assumptions, or prior probabilities, are valid is beyond the scope of this thesis. The point I wish 
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to make is that, valid or not, they fall outside the domain of logic. The prior probabilities used 

in scientific reasoning are not logical probabilities, but rather epistemic probabilities, i.e. 

rational degrees of belief for humans. The reason why human good sense is not part of logic 

will be made clear in the next section, where the relation between logic and psychology is 

discussed in detail. 

Objection (HI) is dealt with rather simply by pointing out that Pr(A \ B) is not defined as 

a single number for all states of affairs A and B. In general, as discussed in §2.6, a logical 

probability is a sub-interval of [0,1]. This is why Keynes stresses the relational nature of 

logical probability (1921: 6-7). In order for a precise value of Pr(A \B) to exist, B has to 

contain some information that is relevant to A, which means that B is not a tautology. In 

general, Pr(A | 7) will be a wide interval, perhaps even [0,1] itself. Logical probability satisfies 

King Lear's dictum: "Nothing will come of nothing". 

2.2 The Nature of Logical Probability 

I hope that the discussion so far has begun to make the idea of partial entailment seem more 

plausible. Now I will try to explain more precisely the nature of this relation. To do this, it will 

be necessary to discuss some general views about logic. The essential point is that a logical 

probability is some sort of degree of belief, and it is currently held that the concept of belief has 

no place in logic. I shall argue, however, that belief (or, more precisely, epistemic state) is 

actually the central concept in logic. 

2.2.1 Bedeutung and Sinn 

Why is the notion of belief excluded from logic? It is arises from the distinction, most 

forcefully defended by Frege (1884), between logic and psychology. The first of the three 

"fundamental principles" of the Grundlagen is "always to separate sharply the psychological 

from the logical, the subjective from the objective" (1884: X). Thus the concept of belief, 
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which belongs to psychology, must sharply be distinguished from its logical counterpart, 

namely truth. Logic studies the laws of truth, whereas psychology studies belief and thought. 

Frege's insistence on the separation between logic and psychology was prompted by the 

emergence of psychologism in the study of logic, over the previous two centuries or so. The 

term 'psychologism' has been used in a variety of senses,3 but the basic idea is that logical 

relations can be reduced to psychological relations. The subject matter of logic is the human 

mind, and the particularly way it forms concepts, makes judgments, performs inferences, and so 

on. Frege is implacably opposed to this invasion of psychological terms into logic and the 

foundations of mathematics, so that the first several pages of the Grundlagen are devoted to a 

forthright, sarcastic denunciation of it. He writes for instance: 

A proposition may be thought, and again it may be true; let us never confuse these two things. We 

must remind ourselves, it seems, that a proposition no more ceases to be true when I cease to think 

of it than the sun ceases to exist when I shut my eyes. Otherwise, in proving the Pythagorean 

theorem we should be reduced to allowing for the phosphorus content o f the human brain; and 

astronomers would hesitate to draw any conclusions about the distant past, for fear of being charged 

with anachronism,—with reckoning twice two as four regardless of the fact that our idea of number 

is a product o f evolution and has a history behind it. I t might be doubted whether by that time it had 

progressed so far. How could they profess to know that the proposition 2 x 2 = 4 already held good 

in that remote epoch? Might not the creatures then extant have held the proposition 2 x 2 = 5, f rom 

which the proposition 2 x 2 = 4 was only evolved later through a process of natural selection in the 

struggle for existence? Why, it might even be that 2 x 2 = 4 is itself destined in the same way to 

develop into 2 x 2 = 3! Est modus in rebus, sunt certi denique fines'. (1884:V-VI) 

3 R o l f George (1997) identifies four distinct senses. 
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The distinction between logic and psychology, i.e. truth and belief, is of the greatest 

importance, in my view, and an excellent place to begin an enquiry into the nature of logic. It is 

well known that a sentence4 has two properties: it expresses a thought, and it has a truth value. 

A sentence is true just in case it corresponds to an actual state of affairs in the concrete world, 

and is false if it corresponds to some state of affairs that does not obtain. Thus every sentence, 

if it is meaningful, corresponds to some state of affairs, which may or may not be actual. 

Indeed, we may say that the state of affairs described by a sentence is the meaning of the 

sentence.5 

In human terms a sentence is used for communication, to express a belief, or rather the 

content of a belief. Following Frege, I shall call the content of a possible belief a Gedanke. 

Since two sentences may express the same belief, or have the same content, it is possible for 

two sentences to share the same Gedanke. If two Gedanken are equal, then it is not possible for 

a (properly-functioning) human to believe one and not the other, at a single time. Like Frege, I 

assume that two humans may think the same (type of) Gedanke, and that to understand a 

sentence is to grasp the Gedanke it expresses. 

One might be tempted to say that a Gedanke, or belief content, is the thing believed 

when one has that belief. This would be a grave mistake, however. To explain this point I shall 

adapt one of Frege's illustrations (1892: 60). Suppose one looks at the moon through a 

refracting telescope. The objective lens of this instrument forms a virtual image of the moon 

just in front of the eye lens. When one looks into the telescope, it is the moon that one 

observes, the actual celestial body. The image inside the telescope is, however, a necessary part 

of the physical process of observation; one might say that the moon is presented to the observer 

via this virtual image. In a similar way, consider a belief that the moon has no atmosphere. 

This belief concerns the external world, i.e. the moon itself, and not any psychological entities 

4 B y 'sentence' I mean a declarative sentence, i.e. a sentence that has a truth value. 
5 Frege did not say this, but instead held that the meaning of a sentence is its truth value. I argue for my view over 

Frege's below. 
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such as thoughts. The thing that is believed here is the possible objective state of affairs that 

the moon has no atmosphere. A belief, however, is a psychological event that occurs within a 

human mind, and a Gedanke is one necessary component of any belief. It is analogous to the 

virtual image within the telescope, that is a necessary part of the physics of the process of 

observing with a telescope. A Gedanke is the manner in which a state of affairs is presented to 

a human mind. 

We see then that a sentence both expresses a thought, or Gedanke, and also corresponds 

to a state of affairs. The Gedanke is a psychological entity, a feature of the human mind, 

whereas a state of affairs is objective, or "inhuman", i.e. a feature of the external world. The 

logic/psychology distinction therefore matches the state of affairs/Gedanke distinction. States 

of affairs are part of the realm of truth, or objective reality, whereas Gedanken belong to the 

realm of human belief. Why is it necessary to make this distinction, however? Why not 

identify these two entities (as they perhaps look rather similar) and simplify the picture? (One 

might call the single entity a "proposition".) The necessity of this distinction is proved by 

Frege, however, in his monumental paper "liber Sinn und Bedeutung" (1892b), with an 

argument that I will now summarise. 

Frege begins by noting that equality, or identity, gives rise to questions that are not easy 

to answer. He observes that an identity statement 'a=&' must refer to the subject matter, i.e. the 

objects denoted by V and 'b', rather than the written symbols, or it would not express any 

proper knowledge of the world. In that case, however, an identity statement seems to be rather 

trivial, as it merely says that an object is identical to itself. Yet some identities are far from 

trivial, or obvious, being important discoveries. For instance, Phosphorus (the morning star) is 

equal to Hesperus (the evening star). This was an important astronomical discovery, requiring 

empirical observations, and cannot be known by internal reflection alone. How can this be? 

This identity is far from trivial, Frege argues, because the two names 'Hesperus' and 

'Phosphorus' are associated with different manners of presentation of the single planet Venus. 

Venus presents itself to us humans under two different guises, sometimes as a morning star and 
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sometimes as an evening star, so that it is not easy to tell that it is the same planet in each case. 

The manner of presentation associated with a linguistic unit, such as a proper name, Frege calls 

a Sinn, whereas the real meaning of that unit is its Bedeutung. Thus, in the Venus example, the 

names 'Hesperus' and 'Phosphorus' have the same Bedeutung (the planet Venus) but distinct 

Sinne. Note that, while a Bedeutung is an external, inhuman object, a Sinn is some sort of 

psychological entity, being bound up with the manner in which an object presents itself to 

humans. 

Now let us consider the two sentences: 

(1) Hesperus is Hesperus 

(2) Hesperus is Phosphorus 

These two sentences have the same meaning, in that they correspond to the same state of 

affairs. (One often says that they are "true in the same class of possible worlds".) They do not 

express the same Gedanke, however, as someone might, without any mental dysfunction, 

believe (1) but not (2). At the level of Gedanken, (1) is a trivial tautology, whereas (2) is a 

significant statement of fact. This point is illustrated by considering the following two 

sentences: 

(3) Abraham believes that Hesperus is Hesperus 

(4) Abraham believes that Hesperus is Phosphorus 

It may well be that (3) is true and (4) is false. It is clear that, for Abraham at least, the two 

thoughts are quite distinct, even though they correspond to the same external state of affairs. If 

the two Gedanken were equal, then it would be possible to substitute one for the other, even in 

a belief context, without any change of truth value in the whole sentence. 
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The distinction between Gedanke and state of affairs seems to be an instance of Frege's 

general distinction between Sinn and Bedeutung. The Bedeutung of a linguistic unit is its real 

meaning, its significance in the external world. The Sinn of a linguistic unit contains the 

manner in which the Bedeutung the unit is presented to humans, under that unit. Thus the 

Bedeutung of 'Hesperus' is the planet itself, while the Sinn of 'Hesperus' is determined by the 

manner in which Venus presents itself to us under the name 'Hesperus', i.e. as a bright light 

visible above the western horizon after sunset. In a similar way, the Bedeutung of a sentence 

seems to be the state of affairs it represents, while the Sinn is the manner in which that state of 

affairs is presented to us humans, as a Gedanke. The sentences (1) and (2) present the same 

state of affairs under two different guises. 

This identification of the Bedeutung of a sentence with the state of affairs it represents is 

Fregean in spirit, but not in detail. In what I consider to be his greatest mistake, Frege argues 

that the Bedeutung of a sentence is its truth value. What is his argument for this? Frege's 

premise is that the Bedeutung of a sentence should not depend upon the Sinne of its sub-units 

(such as proper names) but only on their Bedeutungen. This premise is surely sound, as 

Bedeutungen are all external objects, having nothing to do with human beings. Then consider 

the sentences: 

(5) Hesperus has no moon. 

(6) Phosphorus has no moon. 

Whatever the Bedeutung of (5) may be, it must be equal to that of (6), since (6) is obtained 

from (5) by substituting 'Phosphorus' for 'Hesperus', whose Bedeutungen are equal. Now 

Frege notes that the truth values of (5) and (6) are equal, and indeed that truth values must 

always be preserved under such a substitution. He then asks, rhetorically, "what feature except 

the truth-value can be found that belongs to such sentences quite generally and remains 

unchanged by substitutions of the kind just mentioned?" (1892b: 64-65). For some reason that 
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is unclear to me, Frege does not seem to notice that the state of affairs represented by a sentence 

is just such a feature. The sentences (5) and (6), for example, correspond to the same state of 

affairs, as they are true in exactly the same class of worlds. 

Frege's argument thus fails to rule out states of affairs as the Bedeutungen of sentences. 

Is there any reason to hold that the meaning of a sentence is a state of affairs, rather than a truth 

value, however? The following three arguments prove this. First, consider the following true 

statement: 

(7) The 1998 World Cup was held in France. 

Since (5) and (6) are also true it follows that, according to Frege, (5), (6) and (7) all have the 

same meaning, namely The True. It nonetheless seems that there is a similarity of meaning that 

exists between (5) and (6) that does not exist between (5) and (7). One would describe this 

similarity by saying that, while (5) and (6) correspond to the same state of affairs, (5) and (7) 

represent distinct states of affairs. Frege apparently has no way to mark this important 

distinction, however. He cannot appeal to Sinn here, as the Sinne of these three sentences are 

all distinct. 

A second argument proceeds from the premise that the sentence is the basic linguistic 

unit, and the fundamental carrier of meaning, since it is the smallest unit that "says something". 

In that case, the meanings of smaller units, such as proper names and predicates, should be 

definable in terms of the meaning of a sentence. This is just not true if the meaning of a 

sentence is its truth value - the planet Venus does not seem to be a component of The True, for 

example. Venus does look as if it is a component of the state of affairs that Venus has no 

moon, on the other hand. It might even be possible to define Venus as the common component 

of all the states of affairs concerning Venus. This would explain why there is no possible state 

of affairs in which Venus is not identical to Venus - it is because Venus, as an object, is 

constituted by being a common component of distinct states of affairs. In a similar way, a 
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Begriff (or concept, i.e. the meaning of a predicate) may perhaps be abstracted from an 

equivalence class of states of affairs. 

The third argument is that logic should only require Bedeutungen. The primary logical 

relations, namely consistency and entailment, are not relations between truth values. Does the 

True entail the True? Is the False consistent with the False? These questions are meaningless. 

These relations do hold between states of affairs, however. One state of affairs can entail, or 

include, another. For example, the state of affairs of Phosphorus's having no moon includes the 

state of Hesperus's having fewer than two moons. To make these relations of consistency and 

entailment part of logic, Frege is forced to regard the Sinne as part of logic rather than 

psychology. This is perhaps the reason why he is so adamant that Sinne are objective rather 

than subjective, and sharply to be distinguished from mental ideas. In view of Frege's account 

of a Sinn as a manner of presentation (to humans, presumably) this placement of Sinne on the 

logic side of the logic/psychology (truth/belief) division is rather implausible. In particular a 

Gedanke, or thought, is clearly a human thought, as who else's thought could it be? Thus Sinne 

are closely tied to humans, and hence to psychology. 

2.2.2 Entailment and Probability 

It is stated in the introduction that a logical probability is a degree of entailment, so we must try 

to understand the entailment relation. It is generally thought that entailment is a relation 

between propositions, but what are propositions? Sometimes "proposition" means a declarative 

sentence, but sentences themselves cannot directly entail other sentences. Rather, the 

proposition expressed by one sentence may entail that expressed by another sentence. In the 

previous section we saw the need to distinguish between two different kinds of sentence 

meaning, namely Gedanken and states of affairs. Perhaps either Gedanken or states of affairs 

are propositions? 

It seems to me that the term 'proposition' is sometimes used to mean a Gedanke, and 

sometimes a state of affairs, without a clear distinction being made between these two. Indeed, 

51 



if we wish to use the term 'proposition', we should perhaps talk of "logical propositions" 

(objective states of affairs) and "psychological propositions" (human belief contents). There 

are plenty of examples of the term 'proposition' being used in each of these two ways. A 

proposition is often said to be defined by a class of possible worlds, namely the set of worlds in 

which it holds true. In this case, a proposition is indistinguishable from a state of affairs. At 

other times, however, a proposition is said to be the content of a (presumably human) belief.6 

If there are two kinds of proposition, the logical and the psychological, then we might 

expect there to be two matching kinds of entailment, which seems to be the case. Consider, for 

instance, the sentences (5) and (6) above. Does (5) entail (6)? At the level of Bedeutung they 

have the same meaning, so that each trivially entails the other. The state of affairs of 

Phosphorus's having no moon is necessitated by Hesperus's having no moon. At the level of 

Sinn, however, it seems that neither entails the other. It would certainly be invalid for a human 

to infer (6) from (5) since, as far as one knows, (5) could well be true and (6) false. We should 

not imagine, of course, that these two levels of entailment are quite disconnected. After all, a 

Gedanke is just a manner in which a human mind grasps a state of affairs. 

Entailment at the level of Gedanken is a rather messy affair, as one has to take account 

of human limitations, including the following. First, a single state of affairs may have different 

probabilities (degrees of rational belief) under different Gedanken, within a single epistemic 

state. Second, there is no guarantee that Gedanken defined by logical operations will exist. 

There may be two Gedanken A and B that are consistent, and yet no conjunction A&B exists 

simply because it is too complicated. The human mind is finite, and cannot grasp states of 

affairs of arbitrary complexity, so that the class of Gedanken will not form even a Boolean 

algebra. Third, the same finite nature of the mind surely precludes deductive closure of 

epistemic states, even as an ideal. 

6 Remarkably, these two explications of what a proposition is sometimes even appear together! See, for instance, 

Plantinga(1974: n . l , p . 45). 
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Entailment at the level of Bedeutung, on the other hand, is much cleaner and "logical", 

being free of human limitations. The class of states of affairs does (it is assumed) form a 

Boolean algebra, for example, as for any two consistent states of affairs there exists also a 

conjunction of them. If logical probability is to be used in an analysis of physical chance, it 

must be non-anthropocentric, and thus a generalisation of this entailment relation at the level of 

Bedeutung rather than Sinn. We must therefore find an account of objective entailment, which 

will henceforth be called just "entailment". 

As far as I am aware, there have been only two attempts to define entailment. The first 

is inspired by Tarski's definition of formal entailment (Tarski, 1935), as a relation between 

sentences of a formal language.7 One sentence O formally entails another, XF, if every 

interpretation that satisfies O also satisfies *F, roughly speaking. This idea is adapted to the 

problem of defining real entailment as follows: One state of affairs A entails (or includes) B 

just in case every possible world that satisfies A also satisfies B. The second attempt to define 

entailment is a more radical idea, due to Peter Gardenfors (1988: 135). He introduces the 

notion of an epistemic state into logic, and defines propositions as functions between epistemic 

states. The proposition A then entails B just in case the composite function AoB equals the 

function A. We shall see that Gardenfors' idea is by far the more fertile of the two. 

Let us look first at the Tarski-style definition. The two key terms here are 'possible 

world', and 'satisfaction', so we must first be clear on what they mean. A possible world is a 

possible state of affairs, a way things might have been, but not every state of affairs is a 

possible world. A possible world has the special feature of being maximal, in some sense. The 

obvious difficulty here is that to be maximal is, apparently, not to be entailed by (or included 

in) any other state of affairs. The definition of a possible world thus requires a prior 

understanding of entailment between states of affairs. This is bad enough, but matters get even 

worse when we consider the satisfaction relation. What is it for a possible world to satisfy a 

7Though the subject of formal entailment is interesting, it does not concern us here. 
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state of affairs? A world w satisfies a state of affairs A just in case A necessarily obtains if w 

does. In other words, w satisfies A just in case w entails, or includes, A! We see that this 

approach to defining entailment is hopelessly circular. 

Gardenfors' foundation for logic is based upon the concept of an epistemic state. In 

Fregean spirit, he emphasises that this is not a psychological notion, but is rather 

epistemological. It is a state of rational belief for an idealised epistemic agent. (An important 

part of the idealisation is that every epistemic state is self-consistent and deductively closed.8) 

In his work, of analysing epistemic expansions and contractions, Gardenfors looks at idealised 

human epistemic states, however, which are not suitable for our purpose. As stressed above, 

we are trying to understand entailment at the level of Bedeutung, as a relation between 

objective states of affairs. An examination of human epistemic states, however idealised, can 

only shed light upon entailment at the human level of Sinn, as a relation between Gedanken. 

We will therefore consider the epistemic states of a perfect, infinite intellect, a mind of 

unlimited capacity that infallibly draws all and only valid inferences. I assume that the 

Gedanken of this being are (or are indistinguishable from) states of affairs themselves, so that 

the Sinn/Bedeutung problem does not arise. For this reason I will treat states of affairs as 

components of epistemic states, and definable from epistemic states, rather than as separate 

entities.9 The analysis of states of affairs and the entailment relation roughly sketched below is 

my own, although it borrows heavily from Gardenfors (1988: 132-145). 

Gardenfors is interested in changes of epistemic state with time, which fall into two 

basic kinds, called expansions and contractions. (A third kind of change, called a revision, may 

be understood as a contraction followed by an expansion.) An expansion occurs when one 

acquires extra knowledge, or learns new information. A contraction occurs when one discovers 

8 Clear ly, the statement that all epistemic states are deductively closed is part o f the informal explication of 

epistemic states, and not a rigorous definition. The use of epistemic states to define entailment would otherwise be 

circular. 
9State of affairs are dependent on these ideal epistemic states in the same way that Gedanken are caused1 by human 

beliefs. 
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a mistake of some kind, and so gives up previously-held beliefs. It is important to understand 

that when new information acts as a defeater for some previously-held beliefs, reducing their 

probabilities, this is an expansion rather than a contraction. A contraction occurs only when 

one decides that the old beliefs were mistaken even on the information one had at the time. 

Both expansions and contractions are possible for human beings, but contractions can never 

occur for a perfect intellect, so we only need consider expansions. 

The epistemic states can be seen as the points of a kind of logical space. States of 

affairs are present in this space, but not as independent entities. Rather, they are vectors that 

take you from one epistemic state to another. The rough idea is that a state of affairs is a carrier 

of information, and so the vector for a state of affairs A represents the change of knowledge due 

to learning that A is actual.' In this picture, the fundamental logical relations are those between 

epistemic states, with relations between states of affairs defined in terms of them. 

The chief logical relation between epistemic states, which is the root of the entailment 

relation, I call superiority. The rough idea of superiority is that a state K is superior to K', 

which we write K > K', just in case K knows at least as much as K', i.e. nothing is known in K' 

that is not also known in K. In Gardenfors' terminology, K> K' just in case K is an expansion 

of K'. Alternatively we may say that K > K' if it is possible to move from K' to K. Since 

knowledge cannot be lost, only gained, it is only possible to move from one state to a superior 

one. Note that each state is superior to itself, as a "move" from A' to A' is trivially possible. If K 

is superior to K', then we shall say that K' is inferior to K. 

To define states of affairs in terms of epistemic states, we first need the notion of a 

maximal epistemic state. A maximal epistemic state is a state Kw for which there does not exist 

any K' (other than Kw itself) such that K' > Kw. What, intuitively, does a maximal state look 

like? It should be a state of certainty about every possible state of affairs A, i.e. one believes 

either A or its negation with certainty. Such an epistemic state is a "learning terminus": after 

one gets there, one can move nowhere else. It is a state that cannot be expanded further. Kw is 
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therefore the epistemic state where it is believed with certainty that some possible world, say w, 

obtains. It is shown below that possible worlds can be defined from maximal epistemic states. 

A general state of affairs A will be abstracted from the epistemic state KA, where KA is 

the minimal state in which A is fully believed. How can we define KA, without invoking A? 

We first define a disjunction of epistemic states, as follows. 

2.2.2.1 Definition The disjunction of states {Kx, K2,Kn} is the maximal state that is 

inferior to each of Kx, K2,Kn. The disjunction of Kx with K2 is written 

KxvK2. 

This matches the usual truth-functional definition of disjunction, as the disjunction of two 

sentences is their strongest common consequence. (Note how there is a disjunction relation 

between epistemic states, that is ultimately used to define disjunction between states of affairs, 

and also that disjunction is defined in terms of superiority.) We then define pure epistemic 

states: 

2.2.2.2 Definition (i) Every maximal epistemic state is pure. 

(ii) The disjunction of a set of pure epistemic states is also pure. 

(iii) No state is pure unless (i) and (ii) together entail that it is. 

What, intuitively, is a pure epistemic state? It is generally recognised that a state of affairs is 

uniquely determined by the set of all possible worlds that include it. This is basically the idea 

that the meaning of a sentence is determined by its truth conditions, i.e. the conditions under 

which the sentence is true. Now consider a pure state K that is the disjunction of maximal 

states Kx, K2, Kn, corresponding to belief in worlds wx, w2, wn, and let the state of affairs 

A be the disjunction of those worlds. Since each of wx, w2, wn entails A, it follows that A is 

believed with certainty in each of the states Kx, K2, Kn, and hence A is believed with 
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certainty in K. Now, is there any other state K' < K, such that A is also believed with certainty 

in K'l Such a K' would also be inferior to each of K{, K2, Kn, since inferiority is transitive. 

Within the state K' one is certain that one of the worlds w{, w2, wn obtains, as these are the 

only worlds consistent with A. It follows from this, however, that K' > K, since in K one merely 

knows (for certain) that one of the worlds w{, w 2 , w n obtains. Thus K' > K, and K' < K, so K' 

= K, and we see that K is the minimal state in which A is believed with certainty. We can write 

this state as KA. Each pure state can be used to define a state of affairs, as is shown below. 

Before we can define states of affairs, we need some preliminary definitions. 

2.2.2.3 Definition A class of epistemic states is consistent iff there is some epistemic state 

that is superior to all its members. 

2.2.2.4 Definition The conjunction of {Kx, K2,Kn} is the minimal state that is superior to 

each of K{, K2, Kn. The conjunction of K{ with K2 is written K{ & K2. 

Clearly, if the class {Kt, K2, Kn] is not consistent, then these states do not have a 

conjunction.10 This is in contrast to conjunction as an operation on sentences, where the 

conjunction always exists. The essential difference is that, while there are sentences (0&->0, 

for example) that are inconsistent, there are no inconsistent epistemic states. Each epistemic 

state could be the epistemic state of an ideal intellect. 

In Gardenfors' account a state of affairs is a function, although he does not specify 

which one exactly. Since the function represents the expansion upon learning that A obtains, it 

makes sense for the domain of A to be the class of epistemic states consistent with KA, and for A 

to map each such state K to K&KA. Under this definition, A entails B, i.e. KA > KB, just in case 

AoB = A, so his proposed account of entailment works. We shall have occasional use for these 

1 0 W e could introduce a (fictitious) absurd epistemic state, to ensure that conjunctions always exist, so that the pure 

epistemic states form a Boolean algebra. 
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functions, which I call Gardenfors functions, but a better way to define states of affairs is as 

follows. 

Consider some epistemic state K that is consistent with KA. In general, when the 

Gardenfors function A is applied to K, resulting in K&KA, the actual expansion (or learning) 

involved is rather less than A, since K might already have some of the information carried by A. 

In the extreme case where K > KA, for example, no learning takes place at all, as A{K) = K. If 

we want to talk about the actual learning that takes place on a particular expansion, therefore, 

the Gardenfors function does not help. 

One expansion where the full learning of A takes place is if one moves to KA from an 

initial state of no information at all. We define this state as follows: 

2.2.2.5 Definition The epistemic state K0 is the disjunction of every epistemic state. 

It is clear that K0 is the minimal state, being inferior to every epistemic state. I assume that it is 

also equal to the disjunction of all the maximal states, and thus a pure state. In that case, it 

defines a state of affairs O, whose truth set is the class of all possible worlds. O, in other 

words, is the unique necessary state of affairs. Any sentence that is necessarily true, such as 

"Hesperus is Phosphorus", has O as its Bedeutung. Again, we see a contrast between symbolic 

logic and real logic. In symbolic logic there are many tautologies, whereas in real logic there is 

only one "tautology" O. We now define states of affairs. 

2.2.2.6 Definition The state of affairs A is the expansion from K0 to KA. 

2.2.2.7 Corollary The possible world w is the expansion from KQ to Kw. 

We can now define entailment, and the usual logical connectives, between states of affairs. 
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2.2.2.8 Definition A entails B, i.e. A => B, just in case KA > KB. 

Since states like KA & KB are easily shown to be pure, we can define the usual logical 

connectives in the obvious way, viz.: 

2.2.2.9 Definition KA&B = KA& KB. 

KAvB = K A V KB> e t C -

2.2.2.10 Definition Let t(K), the truth set for K, denote the class of possible worlds consistent 

with K. (Note that K may be any epistemic state, and does not have to be 

pure.) 

2.2.2.11 Theorem If K' > K, then t(fC) e t(K). 

Proof: Suppose that K' > K, but that for some world w e K',w <£ K. Then K knows that w is 

not the case, whereas K' does not know this. Thus, contrary to the hypothesis, K' is not superior 

to KM 

2.2.2.12 Corollary If A is believed with certainty in K, and K' > K, then A is believed with 

certainty in K'. 

Proof. Since A is certain in K, it follows that A is entailed by each member of t(K). Then, since 

K' > K, it follows that t(K) cz t(K), and so A is entailed each member of t(K'). Since A obtains 

in every world consistent with K', A must be certain in K'M 

2.2.2.13 Theorem A entails B iff B is believed with certainty in KA. 
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Proof: (i) If A entails B, then KA > KB. B is believed with certainty in KB, and hence in KA as 

well, since it is superior to KB. (ii) If B is believed with certainty in KA, then KA > KB.K 

We see that the definition of A => B, that KA > KB, is equivalent to the statement that B 

is certain in KA. Now, at the human level, belief is a matter of degree, so that there are grades 

of certainty with regard to a state of affairs, ranging from firm belief down to firm disbelief. A 

human epistemic state is not dogmatic with regard to every state of affairs; on some matters one 

is sceptical, tentative or unsure. It is plausible to suppose, therefore, that the same is true of 

ideal epistemic states. Consider, for instance, the state of affairs A, that Venus has either one 

moon or none, and B, that Venus has no moon. Within KA, is B believed or not? It would be 

irrational for B to be believed with certainty, and also for ->B to be believed with certainty, as 

neither of these is entailed by A. The correct attitude within KA is surely some partial belief in 

B. Unless epistemic states can include such partial beliefs, it is impossible to regard them as a 

rational ideal. 

If an epistemic state can include partial beliefs, however, then there is a natural way to 

generalise the entailment relation to include degrees of entailment. 

2.2.2.14 Definition A entails B to degree p iff B is believed to degree p in KA, i.e. 

Pr(B | A) is the degree to which B is believed in KA. 

2.2.3 Truth and Authority 

One of the maximal epistemic states, KT say, has a rather special relationship with the real, 

concrete world. It does not make sense to say that KT is true, since it is itself the standard for 

truth and falsehood. The actual world, T, is merely the expansion from K0 to KT, and the real 

world is an embodiment, or concrete version, of T. KT is the formal cause of the real world, and 

the defining characteristic of true sentences and beliefs, so we may call it the truth. It might 
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seem a little extreme to define the truth as an epistemic state11, but it is the only way I can see to 

understand the relation between belief and truth. The truth/belief distinction is just the 

Bedeutung/Sinn distinction. (It is interesting that postmodern thinkers, who reject the very 

notion of truth, use "truth" and "belief as synonyms, talking about "your truth" and so on.) 

2.2.3.1 Definitions (i) K is veridical iff it is consistent with KT. 

(ii) A state of affairs A is actual just in case KA is veridical. 

(iii) A true sentence is one whose Bedeutung is an actual state of affairs. 

Suppose one knows for sure that the state of affairs A obtains. Moreover, A in fact 

entails some other state of affairs B. One may well not believe that B obtains, as one fails to see 

that B follows from A. Perhaps one still cannot see the entailment even when it is pointed out 

and explained. If, however, one somehow learns that A does include B, then one can infer B 

from these two premises: A, and A => B. (This is quite a different inference from deducing B 

directly from A as a single premise.) In the two-premise inference, one is effectively submitting 

to the authority of logic, accepting its verdict, whereas in the one-premise inference one does 

the thinking for oneself. Both inferences are valid, of course. 

Logical relations of all kinds seem to be authoritative in this way with regard to belief. 

If one learns that two states of affairs are inconsistent, for example, then one should not believe 

firmly in both of them. It is reasonable to suppose, therefore, that logical probabilities are also 

authoritative. 

2.2.3.2 Definition If K > K', and K is veridical, then K is an authority for K'. 

1 ' I actually got the idea f rom Plato, however, so its pedigree is not to bad. See the Republic (Cornford, 1941, V I 

507-508). 
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This is a rather stringent definition of relative authority; I imagine that some weaker condition 

would be sufficient, but this definition will serve our purpose. 

2.2.3.3 Principle (Authority of Logic) 

If one knows that K is an authority for one's epistemic state, and knows that A is believed to 

degree p in K, then one is (defeasibly) authorised to believe A to degree p. 

This is the foundation for Miller's Principle, which I call the Authority of Chance principle. 

The authorisation is clearly defeasible, as there may be more than one such authority. The only 

non-defeasible authorisation occurs when p=l, so that A is known with certainty. 

2.2.4 Relative States of Affairs 

We defined a state of affairs A as the expansion from K0 to K A . Of course, KQ is not the only 

epistemic state that may be expanded upon learning that a state of affairs obtains. For instance, 

there is the smaller expansion from KV to KA&U. 

2.2.4.1 Definition The relative state of affairs A/U, read "A given U", is the expansion from 

K u t 0 KA&U-

Two distinct states of affairs, A and B, may be such that, for some third state of affairs U, A/U = 

B/U, i.e. A(KV) = B(KJJ), where A and B are the Gardenfors functions. For example, if U is 

Smith's being an Albertan, A is Smith's being a farmer, and B is Smith's being a Canadian 

farmer, then A/U and B/U are the same relative state of affairs. 

The conjunction operation, for absolute states of affairs, is defined above in Def. 

2.2.2.9. This definition cannot be used for relative states of affairs, since there is no epistemic 

state K A / U , in general. The expansion A/U cannot be applied to the state K 0 , I think, because 

A/U presupposes U - it simply makes no sense from the point of view of K Q . For example, the 
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relative state of affairs that the Loch Ness Monster weighs 300 tons only makes sense relative 

to the state of affairs that there is a monster in Loch Ness. 

In the case of absolute states of affairs, Def. 2.2.2.9 is equivalent to the following: 

2.2.4.2 Definition KA&B = A(KB) = B(KA), where A and B are Gardenfors functions. 

Now, this idea can be applied to relative states of affairs, in cases where the expansion A/U can 

be applied to a state Kc. Such cases occur when the presuppositions made by A/U are all 

contained in Kc. For instance, if A is logically independent of U, then A/U presupposes 

nothing, and can be applied to any epistemic state. Also, A/U can be applied to Kw and any 

state superior to Ky. 

2.2.4.3 Definition KC&^A/U) is the state obtained from applying A/U to Kc. 

2.2.4.4 Theorems (i) B&A/B = A&B. 

(ii) If A => B, then A = B & AIB. 

Proof. Since AIB is defined as the expansion from KB to KA&B, part (i) is trivial. Part (ii) 

follows from (i), since if A => B then A&B = AM 

Relative states of affairs are required later in this chapter, in the definition of symmetry 

between states of affairs, and again in Chapter 6, where they are essential to the interpretation 

of the quantum-mechanical state vector. 
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2.3 Measuring Degrees of Belief 

Having sketched out the nature of logical probability, let us now proceed to giving a precise 

account of it. The rough definition we have so far is: Pr(A \ B) is the degree to which A is 

believed in KB. So the first task is to devise a system for measuring degrees of belief. 

One standard way to define degrees of belief is using gambles, but I prefer to use 

contracts instead, as they are more flexible. A contract is something like this: I'll give you g if 

it rains tomorrow. The general form is [g if A], where g is some desired thing and A is a state of 

affairs. If you possess that contract, then you acquire g if A is true, and nothing (from that 

contract) otherwise. It is easy to define a gamble on A, with betting quotient p and stake $1, as 

the purchase of [$1 if A] at the price $p. 

If the object g is desirable, then clearly the contract [g if A] has some value too, as 

whoever possesses it might get g from it. Moreover, the worth of the contract depends on the 

degree to which one believes A - indeed, the value of the contract increases strictly with the 

degree of belief in A. Thus we can use the value of the contract to measure the degree of belief, 

i.e. to give "degree of belief a precise meaning. We shall therefore be defining the probability 

of A given B as the value of a contract. 

It may seem odd to consider desires and preferences as part of logic, but these need not 

be human preferences. Indeed, it surely makes sense to use the desires and preferences of the 

perfect, infinite mind already invoked in §2.2. If this being has beliefs, then why not desires as 

well? Moreover, we shall see that to define values for arbitrarily-great goods, which are needed 

to define real-number values, one must consider the preferences of a being of infinite capacity. 

We require a function, which I call val, that maps each contract to a real number that 

measures its value, within an epistemic state. What meaning can this number have? In general, 
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one measures12 objects by reference to a standard object, called a unit. Mass, for example, is 

measured by reference to a standard massive object, as the number of instances of the unit 

required to equal the body in question with respect to mass. In a similar way, the rough idea of 

val(g) is the number of units required to equal g with respect to preference. Let us begin by 

describing the different preference relations. 

The fundamental preference relation between desirable objects a and b is that a is 

preferred to b, which is written a > b. 

2.3.1 Definition a > b just in case there is no objection to giving up b in return for a. 

Note that the relation is reflexive, i.e. a is preferred to a. This relation of preference can be 

used to define three further preference relations, as follows. 

2.3.2 Definition (i) a> b, i.e. a is strictly preferred to b, iff a > b but not b > a. 

(ii) a ~ b, i.e. a and b are preference equivalent, iff a > b and b > a. 

(iii) a <> b, i.e. a and b are preference incommensurable, iff neither is 

preferred to the other. 

Let us denote the unit desired thing by '$'. (We will call it "dollar", but its true identity 

is not relevant.) In order for it to be suitable as a unit, it must be reproducible, so that there can 

be arbitrarily many other objects $,, $2, all similar to $, so that $, ~ $•. One may possess 

several of these dollars, in which case we shall say that one owns the bundle {$,, $2, ...}. A 

bundle is a simple collection, or aggregate, rather than a set, so that a singleton bundle is equal 

to its only member, {$,, {$2, $3}} = {$1, $ 2 , $3}, and so on. 

1 2 One must be aware of the two meanings of 'measure'. First there is a specification of what it means for an object 
to be assigned a number. Second, there is the physical process by which a number is assigned to a particular 
object. I am using 'measure' in the first sense. 
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If the dollar is to work as a unit of value, it is clearly necessary that equally-sized 

bundles of dollars be preference equivalent, e.g. {$,, $2} ~ {$3, $4}, as otherwise a cardinal 

number of dollars would not specify a unique value. In that case one could not say that an 

object is worth two dollars, without saying which two dollars! We thus postulate that, for any 

bundle of dollars a, {$,-, a} ~ {$j, a}. Assuming the dollars are all intrinsically similar, this is 

sure to hold. We will henceforth denote a bundle of n dollars by '$«', as the identity of each 

dollar is irrelevant. 

Now let us consider contracts. It makes sense to use contracts for dollars, such as 

[$r if A], as the object $r always has a precise value, namely r. Indeed, from now on the term 

'contract' will always mean a contract of the form [$r if A]. In order for the value function to 

be linear, in the sense that the value of a bundle (of dollars and contracts) equals the sum of the 

values of its parts, we need to assume a principle known as independence, which is as follows. 

2.3.3 Principle (Independence) 

If [$r if A] ~ $q, then {[$r if A], a} ~ {$q, a}, where a is any bundle of dollars and contracts. 

This principle will not hold in general, as the following two examples show. First consider a 

coffee shop that gives away one $ with each cup of coffee bought there. When ten of these 

have been collected, they may be exchanged for a cup of coffee. Suppose further that each $ 

has little or no value in itself, but is only useful as a means for acquiring coffee. In this case, 

the principle of independence will fail. For suppose that the contract [$6 if A] is worth $3, for 

someone who has no other dollars. Then, if one already has $4, the contract [$6 if A] will be 

worth more than $3, as $10 is worth a cup of coffee whereas $7 is practically worthless. 

Second, suppose that [$1000 if A] is worth $1. It does not follow that 1000 such 

contracts together (which is equivalent to the single contract [$1,000,000 if A]) is worth $1,000, 

since it may be that $1,000,000 is more dollars than a person could possibly use in their whole 
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lifetime. In that case one would be foolish to give up $1000 in return for the contract, as 

$1,000,000 may be worth only about the same as (say) $5000. 

To avoid the first kind of example, we shall suppose that dollars are desired for their 

own sake, and for no other reason. Their value is purely intrinsic, so that (intuitively speaking) 

the value of a bundle of dollars is just the sum of the values of the parts. The second kind of 

example is actually impossible since we are considering not human desires, which my be 

saturated, but those of a being of infinite capacity. 

If [$r if A] ~ $n, then val[$r if A] = n. What about contracts that are not preference 

equivalent to a bundle of dollars, however? Fortunately, this value function is easily enriched 

to include quotients as well. If two bs together are worth $1, for example, then each b has value 

1/2, and three bs have joint value 3/2, etc. Finally, we can extend the value scale to the positive 

reals, using the method of Dedekind cuts. For a contract a may be such that, for the value scale 

defined by $, for every possible quotient value r, either r<a or r>a.n The object a then defines 

a Dedekind section on the $-value quotient scale, and this cut may itself be regarded as a further 

possible value on the scale, represented by the obvious irrational number.14 The precise 

definition of val is as follows, where a is bundle of dollars and contracts. Note that {} is an 

empty bundle - literally nothing at all. 

1 3 Th is is use of ' < ' does not fall within the scope of our previous definit ion, as r is a quotient rather than a 

desirable object. One may imagine, however, that the symbol r here denotes an arbitrary object of value r. 
1 4 A11 values on this scheme are non-negative real numbers. The question of whether there are negative values does 

not concern us here. 
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2.3.4 Definition The value of a, or val(a), is defined for the unit $ as follows. 

(I) Iftf ~ {},then val{a) = 0 

(II) If {a,, aj~$p, then val(a)-p/q. 

(HI) For each object a, let Q* = {reQ:(3x)(val(x)=r & x<a} and Q* = {reQ:(3x)(val(x)=r & 

x>a). Assuming each quotient is the value of some object, <Q*, Q*> is a Dedekind cut. We 

then define val(a) as the real number represented by <Q*, Q*>. 

Once again, it is quite clear that we are not concerned with human beings here. It is not 

plausible that desirabilities for humans are as finely graduated as this. Indeed, why suppose that 

it even makes sense to talk of such precise values? There is no a priori guarantee that it does 

make sense15, but let us see what follows from it. It should be noted that, according to Def. 

2.3.4, real-number values are not precise, in the sense that val{a) may equal val(b) even if a and 

b are not preference equivalent. For instance, any object whose value is "infinitesimal" will 

have the real number zero as its value, even though it is strictly preferred to the empty bundle 

{ } - 1 6 

Although the equality of val(a) and val(b) does not entail that a~b, unless val{a) and 

val{b) are quotients, the converse does hold. 

2.3.5 Theorem If val(a) exists, and a ~ b, then val{a) = val(b). 

Proof: Suppose val(a) exists and that a ~ b; then val(a) is either a rational or an irrational 

number. Case (i): suppose that val(a) is rational. Then, for some natural numbers p and q, we 

have that {au aq}~$p. Now, applying independence q times, together with the assumption 

that a~b, it follows that {b{, bq}~$p, and so val(b) = plq = val(a). Case (ii): val(a) is 

1 5 Many logical truths cannot be known a priori. 
1 6 This point was brought to my attention by Paul Bartha., 
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irrational. It is clear that a and b will have the same preference relations to all objects of 

rational value, i.e. if a>x then b>x and so on, and so a and b define the same Dedekind cut of 

the rationals. Thus val(a) = val(b)M 

2.4 The Axioms of Probability 

We are now almost ready to demonstrate the four axioms of probability17, but first we shall 

need some definitions and preliminary results. The objects a, b, etc. are bundles of dollars and 

contracts. It should be noted that the proofs given below are not "Dutch book" arguments, 

involving the dubious assumption that a set of betting quotients is irrational if it leaves one 

vulnerable to a Dutch book18, but are direct demonstrations. 

2.4.1 Definition Pr(A \ B) = va/[$l if A] within KB. 

2.4.2 Lemma val{a, b] = val{a) + val(b), in any state K. 

Proof. 

Case (i): val(a) and val(b) are natural numbers, say p and q respectively. We then have, by the 

definition of val, that a - {$ls $2, %p] and & ~ {$,, $2, $ }. By independence it follows 

that {a, b} ~ {$j, $2, $p+q}, and thus val{a, b) = p+q, as required. 

Case (ii): val(a) and val(b) are rational numbers, say p/q and r/s respectively. Then, again by 

the definition of val, we have {a{, a2, aq] - %p and {bu b2, bs} ~ $r. Then, using Lemma 

I 7 T h e first three of these axioms were formulated by Kolmogorov (1933). 
1 8 T h e assumption of irrationality becomes dubious in the case of bets made at different times. I t means that 

changing one's mind, without additional information, is always irrational. In a sense this is true, but frequently 

such changes are corrections of earlier mistakes. Here, it is the original belief, rather than the change, which is 

irrational, yet it is the change (not the original belief) which exposes one to a Dutch book. 
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2.4.2 in Case(i), we have {au a 2 , a s q \ ~ $sp and [bx, b2, —, bsq) ~ %qr. Again using Lemma 

2.4.2 in Case (i) it follows that {{a,, bx], {asq, bsq}} ~ %(sp + qf). Thus, by definition, 

val {a, b}=(sp+qr)lsq = p/q + r/s, as required. 

Case (iii): val(a) and val(b) are real numbers r and s, represented by Dedekind cuts <Rt, R*> 

and <S*, S*> respectively. Let t = r+s, and t be represented by the cut <7"», T*>. Then we are 

required to prove that val {a, b] is represented by <T*, T>, i.e. that T* is the set of quotient 

values of objects inferior to {a, b}, and 7* is the set of quotient values of objects preferable to 

{a, b}. Consider arbitrary f e T*. It is always possible (by the definition of real addition) to 

find quotients r, s~ in R*, S* such that r+s- = t; then select objects a; b- whose (quotient) values 

are r and s\ Then, by Lemma 2.4.2 Case (ii), val{<r, Zr} = r+s-, and it is also clear that 

{a-, b-}<{a, b}. Thus each element of T* corresponds to an object inferior to {a, b), and it may 

similarly be shown that each member of T* corresponds to an object preferable to {a, b}M 

2.4.3 Lemma Pr(A \ B)=p iff ([$1 if A] - $p) within KB. 

Proof: Immediate from Definition 2.4.1 . • 

2.4.4 Lemma [%p if O] ~ $p, in any state K. 

Proof. K is superior to K0, so O is believed with certainty in KM 

2.4.5 Lemma val[$rp if A] = r.val[$p if A], in any state K. 

Proof. 

Case (i): r is a natural number. Since [%rp if A] ~ {[$p if A],, [$p if A]r}, we can apply 

Lemma 2.4.2 to get val[%rp if A] = val[$p if A], + ... + val[$p if A]rM 
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Cases (ii), where r is a quotient, and (iii) where r is real, may be proved using arguments 

similar to those given in the proof of Lemma 2.4.2. 

2.4.6 Lemma If val[$p if A] = val[$q if B], then val[$rp if A] = val[%rq if B]. 

Proof. Immediate from Lemma 2.4.5.• 

The axioms of the probability calculus may be shown as follows. The "within KB" part is 

omitted unless it is manipulated in the proof. 

Axiom 1 Pr(A\B)>0 

Proof. The contract [$1 if A] either yields $1 or nothing. It has to be worth at least zero 

therefore. • 

Axiom 2 Pr{0\B)=\. 

Proof. [$1 if O] ~ $1, from Lemma 2.4.4, and va/($l)=l.B 

Axiom 3 Pr(AvB \ Q=Pr(A \ Q+Pr(B | Q, where A and B are inconsistent. 

Proof. val[$l if AvB] = val{[$\ if A], [$1 if B]} 

= val[$l if A] + va/[$l if B], using Lemma 2.4.2. • 

Axiom 4 If Pr(B | Q exists and is non-zero, then Pr(A&B \ Q = Pr(A \ B&QPr(B \ Q. 
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Proof. 

1. ([$ 1 if A] ~ [$Pr(A | B) if O]) within KB Consequence of Lemma 2.4.3. 

2. ([$1 if A] ~ [$Pr(A I B&Q if 0]) within rT B & c Consequence of Lemma 2.4.3. 

3. ([$\ if A&B] ~[$Pr(A\ B&Q if B]) within KB8CC From 2. Since B is known to be 

true, it can be added to both sides. 

4. ([$1 if A&B] ~ [$Pr(A \ B&Q if B]) within K^B&C Both contracts are worthless. 

5. ([$1 if A&B] ~ [$Pr(A \ B&Q if B]) within KC From 3 and 4. One of KB&C, 

K^B&C 1 S a n authority for KC. 

6. ([$1 if B] ~ [$Pr(B | O if O]) within /T c Consequence of Lemma 2.4.3. 

7. ([$Pr(A | B&Q if 5] 

~ [$Pr(A | B&QPr(B \ Q if #]) given C From 6, multiplying both sides by 

Pr(A | fl&Q, using Lemma 2.4.6. 

8. ([$1 if A&B] 

~ [$Pr(A | B&QPr(B \ Q if 0]) given C From 5, 7, using transitivity. 

9. Pr(A&5 | O = Pr(A \ B&QPr(B \ Q From 8, by L. 2.4.3, as required. 

This fourth axiom of the probability calculus is also known as the Principle of 

Conditioning. Note that it is not a diachronic constraint on one's beliefs, for time has nothing 

to do with it; rather, it describes the partial entailment relation between states of affairs. It is 

often written in the equivalent form (suppressing C for simplicity): Pr(A \ B) = Pr(A&B)/Pr(B), 

72 



and referred to as the definition of the symbol Pr(A \ E), or as the definition of "conditional 

probability". This is a mistake, for two reasons. First, all probabilities exist only relative to an 

epistemic state, so Pr(B) means Pr(B \ O), which does not exist in general. Second, the symbol 

Pr(A | B) already has a meaning, as the value of [$1 if A] within KB. That is why we read it as 

"the probability of A given B". One cannot give two separate definitions for the same symbol, 

unless their equivalence is demonstrated. 

2.5 Relative Probabilities 

It is common to talk of relative probabilities, such as in the statement "A is three times as likely 

as B". What do these assertions mean, however? Perhaps the most obvious answer is that "A is 

three times as likely as B" means that Pr(A)IPr(B) = 3, or 

Pr(A) = 3.Pr(B) (1). 

Using Definition 2.4.1, (1) is equivalent to va/[$l if A] = 3.va/[$l if B], or 

va/[$lifA] = va/[$3iffl] (2). 

Statement (2) entails, but is not equivalent to, 

[$1 if A] ~ [$3 if 5] (3). 

Although (1) entails (3), statement (3) does not entail (1) since va/[$l if A] and va/[$3 if B] 

might not exist. Thus (3), being weaker than (1), requires a new notation, and will be written 

R(A,B) = 3. In general we have the following definition. 
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2.5.1 Definition For propositions A, B we define R(A,B), the probability of A relative to B, 

as follows: R(A,B) = p just in case [$1 if A] ~ [$p if B]. 

The following theorems are obvious. 

2.5.2 Theorem Pr(A) = R(A,0). 

2.5.3 Theorem If Pr(B) exists, then R(A,B) = Pr(A)IPr{B). 

A more interesting theorem is a generalised version of the principle of conditioning, which is 

proved in the same way as Axiom 4. 

2.5.4 Theorem Pr(A | B) = R(A&B,B) 

The advantage of Theorem 2.5.4 over Axiom 4 is that there is no need for Pr{B) to exist. This 

is of particular importance to cases where one wants to condition on very unlikely events, 

whose probability might be described as "infinitesimal". 

Consider, for example, an infinite lottery, where a ticket is selected at random from an 

urn that contains a countably infinite number of such tickets. Does it make sense to assert that 

every ticket has the same probability of being selected? Though this seems like a meaningful 

scenario, one sometimes hears that it is impossible, on the grounds that it cannot be represented 

by a probability function. If each ticket has probability 8, then 8 has to be either zero or a finite, 

positive number. Both of these are ruled out by the addition axiom, however. The problem 

here is that, if each ticket has the same probability, then that probability has to be infinitesimal, 

so to speak. If the proposition A says that some ticket a is picked, then [$ 1 if A] > $0, since A 

might be true, but [$ 1 if A] < $8, for each 8>0. 
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Using relative probabilities, we can express the fact that A and B are equally likely by 

the statement R(A,B) = 1. Thus, if b is some ticket distinct from a, and B says that b is picked, 

then it is meaningful to assert that [$1 if A] ~ [$1 if B], i.e. R(A,B) = 1. 

It is clear that the "absolute" probability function Pr can be reduced to the relative 

probability function R, since Pr(A | B) = R(A,0), within the state KB. Is a reduction possible in 

the reverse direction, however? Can relative probabilities be reduced to relations between 

absolute probabilities? The answer to this is clearly No, if we are restricted to real-number 

probabilities, as the case of the infinite lottery shows. This limitation of the real number system 

is surely related to the point made in connection with Definition 2.3.4, that real numbers are 

only approximate representations of measure. Two objects of slightly different value can 

generate the same Dedekind cut on the quotients. Unfortunately there does not seem to exist 

any system of measures that is more accurate than the real numbers. 

2.6 Interval Probabilities 

In §2.4 we assumed that the contract [$1 if A] had an exact dollar value within KB. This is not 

the case for every pair of propositions A and B, however, as we shall see below. More generally 

there exists some interval of values, each of which is incommensurable with [$1 if A]. 

Suppose that, for some good $p, we have that [$1 if A] <> $p. This entails that there 

does not exist any good $a such that [$1 if A] ~ $a, so that va/[$l if A] does not exist, as the 

following theorem shows. 

2.6.1 Theorem If [$1 if A] <> $p, then there is no good $a such that [$1 if A] ~ $a. 

Proof. Suppose that there is some ae [0,1] such that [$1 if A] ~ $a. Then, since p is also a real 

number, we have that either p<a, p=a or p>a. These cases entail however that [$1 if A] < $p, 

[$1 if A] ~ $p, and [$1 if A] > $p respectively, contrary to the hypothesis.* 
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2.6.2 Definition If val[$l if A] does not exist, within KB, then let Pr(A \ B) equal the set I, 

where 7= [p: [$1 if A] <> $p (within KB)}. 

2.6.3 Theorem / is an interval (if we include 0 as an interval). 

Proof: Any set D such that, if a, c e D and a<b <c, then b e D is an interval. (Thus the null 

set and singletons are intervals.) For the sake of reductio, therefore, let a, c e I but suppose that 

there exists some b g I in between them, i.e. a < b < c. Since b <£ I, it follows that either 

[$1 if A] < $b, [$1 if A] ~ $b, or [$1 if A] > $b. In each of these cases we can refute at least one 

of the statements a£ I,c <£ I. Thus, by reductio, each b between a and c is a member of 7, 

and so / is an interval. • 

Thus, if we define Pr(A \ B) as in Def. 2.6.2, a probability is a sub-interval of [0,1]. One 

kind of example where Pr(A \ B) is plausibly an interval is the following. Suppose B says that, 

in a particular urn, the proportion of black balls is somewhere in the interval [a, b], and that a 

ball is drawn from the urn at random. A says that the ball drawn is black. Let us assume for 

now that, if the proportion of black balls were known to be p, then the probability would also be 

p. It then follows that Pr{A \ B) = [a, b] in this example. 

It should be noted that, although the axioms of probability are stated in terms of single-

value probabilities, they also apply to interval probabilities. The trick here is to represent the 

interval Pr(A \B), = [a{, a2] say, as a parameter x that ranges over [a{, a2], i.e. as an arbitrary 

function x whose range is [au a2]. The advantage of this parametric representation is that the 

parameters obey the axioms of probability. If Pr(A \ B) = x, for example, then Pr(-A \ B) = l-x. 

Thus we immediately infer that Pr(—A \ B) = [l-a2, 1-aJ, i.e. the range of the parameter l-x. 

76 



Later in this thesis, in chapters 4 and 5, some problems involving correlation will be 

examined. A crucial concept, therefore, is that of probabilistic independence, which we will 

now define for the logical probability function. 

2.6.4 Definition A and B are logically independent just in case Pr(A \ B) = Pr(A). 

Independence implies consistency, of course, or else Pr(A \ B) = 0. O is independent of 

everything, even O. 

The intuitive idea of independence is that A and B have no overlap of content, i.e. they 

do not "intersect". The two propositions "Smith is an Albertan farmer", and "Smith is a dairy 

farmer", for instance, both say that Smith is a farmer - they overlap, in other words. For this 

reason the propositions are not independent; if we learn that Smith is an Albertan farmer, this 

increases the probability that Smith is a dairy farmer, because we can now be sure that he is at 

least a farmer. 

2.7 The Symmetry Axiom 

As I have presented them, the axioms of probability are not part of the definition of the logical 

probability function, for that is defined in Def. 2.4.1. Moreover, within the theory of logical 

probability they do not function as axioms, but as theorems, since they are proved from the 

definition of probability. The purpose of proving the axioms is not to define probability, nor to 

argue that the axioms are true, but rather to confirm Definition 2.4.1 by showing that the 

axioms all follow from it. An analysis of logical probability that did not allow one to prove the 

axioms would be unacceptable. 

One common element in previous accounts of logical probability is the use of a 

symmetry, or indifference, principle. It is widely felt that, if there are logical probabilities, then 

they must be assigned largely (though by no means wholly) on the basis of symmetries. I also 
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hold this conviction, and so in this section I shall develop and prove a fifth axiom, the 

symmetry axiom. 

The notion of symmetry is well known in geometry, so we shall begin there. In 

geometry, however, symmetry is usually considered to be an absolute property of a single 

object. It is absolute in the sense that we say figure A has reflective symmetry tout court, not 

that it has reflective symmetry w.r.t. figure B. It is a property of a single object, rather than a 

relation between two objects, in the sense that we say A has reflective symmetry, rather than 

saying that the pair {A,B} has reflective symmetry. We shall see however that the ordinary 

notion of symmetry is easily extended to become relative and relational in the required way. 

Let us consider a geometrical plane, containing some geometrical figures. The notion of 

symmetry in geometry is defined using transformations, known as isometric transformations, or 

isometries, which preserve the distances between all pairs of points. Such functions include 

translations, rotations and reflections, and combinations of these. For a particular isometric 

transformation/, (such as rotation through angle 7t/3 about point (2,5), or reflection in the line 

y=2x) a figure A has/-symmetry just in case fA=A. That is to say, if we consider A to be the set 

of points of which it is constituted, then the set of images under/of points in A is just the set A 

itself. 

To be more precise, we shall represent a plane "universe" U as a "colouring function" u, 

which maps R 2 to {0,1}. The idea is that u(x,y) represents the colour of the point (x,y), where 0 

means the background colour (white, say) and 1 means the ink colour, perhaps black. In this 

representation a figure is a set of points that are coloured black. A transformation on U is a 

function / which maps R 2 to R 2, as usual. What colouring function u represents fU, i.e. the 

image of the universe U under f? If u(x,y) = 1, then we want that black point to be moved to 

f{x,y), so that u'(f(x,y)) = 1. White points need to be moved in the same way. We therefore 

have that u'(f(x,y)) = u(x,y), which entails that u - ufx. Thus, if u represents U, then/77 is 

represented by ufl. 
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We are now ready to extend this notion of symmetry to make it a relation between a pair 

of figures within a "universe". Consider for instance a figure A which is not/-symmetric, and 

suppose that the function/is its own inverse, i.e. f=f{, or ffA=A.19 Then the pair of figures, 

A u fA, which may be considered a single, non-connected figure20, has /symmetry in the above 

sense. This is clear since/(A u/4) =fA u jfA =fA u A, as required. In general we can say that 

A and B are/-symmetric, i.e. A bears the relation of /-symmetry to B, just in case fA=B, and the 

combined figure Au5 has/symmetry, that is/(Au5) = Au5. 

Suppose that A and B are / symmetric, and consider a plane which contains only the 

figures A and B. This plane will be called the universe U. It is clear that, within U, there is no 

way to pick out either A or B using only distances. If someone asks which of the figures is A, 

and which is B, one cannot say: "A is the one that since there is no property F, which 

depends only upon distances between pairs of points in U, such that A has F but B does not. 

This may be clearer if we draw the universe U, as in Figure 2.7.1 below. 

V 

Figure 2.7.1 

(Note that the border is not part of U, as U consists only of A and B.) We single out A from 

among the pair {A, B} by means of the shapes of A and B themselves, as fA=B and all distances 

1 9 Since A is a set of points , /4 is the set of images of these points under/, i.e.fA = {(x,y):f'(x,y) e A}. 
2 0 Reca l l that a figure such as A is a class of points that are coloured black, so that A u B is just the set of points that 

are either in A or in B or both. 
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are invariant under / (which is a reflection in this diagram). Moreover, we cannot pick A out 

from {A, B] by means of its relationship to the rest of U either, using only distances, since 

/(AKJB) = A\JB. For consider some relation R, definable in terms of distances, which A bears to 

the rest of U. (We may think of this as A's view of U.) Since U as a whole is invariant under/, 

and/maps A to B, ZTs view of U is distance-indistinguishable from A's view. Thus B must 

bear R to the rest of U as well, which means that R cannot be used to single out A. 

This matter of not being able to "single out" either of A or B may become clearer if we 

consider another universe where A and B are not symmetric, such as the one in Figure 2.7.2. 

U 

Figure 2.7.2 

Here there is an isometric transformation/such that fA =B, namely a horizontal translation, but 

we do not have/7J= U since/maps B even further to the right rather than onto A. It is also clear 

that, while A and B are internally the same shape, their views of U differ. A sees another hand 

with the thumb pointing away from him, whereas B sees another hand with the thumb pointing 

towards him. The figure A can thus be picked out within U as the hand whose thumb is 

pointing at another hand in U. 

This feature of a symmetric pair of objects, A and B, that neither can be uniquely singled 

out from among the pair {A, B), is not a mere curiosity but the very property of symmetry 

which (in the context of propositions, rather than geometrical figures) gives rise to the 

symmetry axiom. Indeed, we may consider the fundamental definition of symmetry (at least the 

80 



kind of symmetry required for the symmetry axiom) to be as follows: A and B are symmetric in 

U just in case neither can be singled out from among {A, B) within U. 

It is crucial to recognise the difference between symmetry and similarity. Symmetrical 

objects may be dissimilar. Consider, for instance, two right-handed gloves of the same type. 

The relation between these objects is similarity, or qualitative identity. There is no contrast 

between them. Now think of two gloves of the same type, but where one is left handed and the 

other right handed. They are not similar, as there is a contrast between them. This contrast 

emerges clearly if we imagine that someone is given a pile of left-handed and right-handed 

gloves, all mixed up. He will have no difficulty in separating them into two distinct piles, one 

of left-handed gloves and the other of right-handed ones, but he cannot tell which pile is which 

unless he has some previously-identified right-handed (or left-handed) object to compare them 

to. 

If two objects are similar then they are also symmetric, but the converse does not hold, 

as the glove example shows. Two objects that are not similar may still be symmetric, if the 

contrast between them is of a kind that does not allow either one to be uniquely singled out. Of 

course, the possibility or otherwise of using a dissimilarity between A and B to pick out (say) B 

depends on the resources available. 

Our definition of geometrical symmetry is then as follows: 

2.7.3 Definition A is symmetric to B, which we abbreviate to A Y B, within U if and only 

if, for some isometric transformation f,fU=U andfA=B. 

2.7.4 Theorem Symmetry is a symmetric relation, i.e. AY B => BY A (all within LO-

Proof. Suppose that A Y B, within U. Then, for some isometry ffU=U and fA=B. Now, since 

/ i s isometric, so is / 1 . Then/ 1 ^ = flfU = U, and flB = fxfA = A. Thus/ 1 is the required 

isometry to make it the case that BY A within UM 
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2.7.5 Theorem Symmetry is also reflexive and transitive, and thus an equivalence 

relation. 

Proof AT A within U, since the identity transformation is an isometry and maps U to U and A 

to A. To show that Y is transitive, suppose that AT B and B T C, by virtue of isometries /and g 

respectively. Then the composition gf'is also an isometry which maps U to U, and gfA = gB = 

C. Thus A T C, as required." 

2.7.6 Theorem If A T B within U, then it is impossible to single out A from among 

{A, B} using properties which supervene on distances within U. 

Proof. Suppose that AT B within U, by virtue of isometry / . It is then clearly impossible to 

find a difference between A and B by comparing distances within A to those within B, as the 

fact that fA =B entails that A and B are isomorphic with respect to distance. Moreover, A's 

relation to U is indistinguishable from that of B, since U is itself invariant under/.B 

So far we have only considered A-B symmetry within a universe U consisting only of A 

and B themselves. This is an unnecessary restriction, as Definition 2.7.3 and the resulting 

theorems can be applied to any geometrical universe at all. Consider, for instance, the universe 

in Figure 2.7.7. 
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Figure 2.7.7 

The universe U now contains four figures, A, B, C and D, and we see that A and 5 are 

symmetric in U. This is because there is an isometry / , namely a rotation of it/A about the 

obvious point, such that fA =B and fU=U. It is also clear that it is impossible to single out A 

from among {A, B} within U using only distances, as we should expect from Theorem 2.7.6. A 

and B are not the only symmetrical pair within U, as A and C are also symmetric for example. 

In fact, every pair of figures in U is symmetric in U. 

I have so far discussed the notion of relational symmetry in the context of geometry, as 

it is a simple way to convey the basic idea. We are really interested however in symmetry 

between states of affairs. Is it possible to apply the definition we have of "A and B are 

symmetric within £/" to states of affairs A, B and UI What would this intuitively mean? Let us 

consider the pure epistemic state Kv. We shall now consider two states of affairs, A and B say, 

within K,j, i.e. the relative states of affairs A/U and B/U. The intuitive idea is that the relation 

of A and B being symmetric within the epistemic state Kv is analogous to the geometrical case 

defined above. Kv does not contain sufficient resources to single out A/U from among the pair 

{A/U, B/U}. We therefore have the following definition: 

83 



2.7.8 Definition A is symmetric to B, which we abbreviate as A T B, within Kv just in 

case A/U cannot, within Kv, be singled out from among {A/U, B/U}. 

To get a firmer grip on this definition, let us think about similarity and symmetry 

between states of affairs, with the help of an example. Consider a pair of dice, a and b, that are 

intrinsically similar, having the same size, shape, weight, colour and so on. As any high-school 

student of probability knows, there are two ways to obtain a total score of 11 with two such 

dice: you can have a 6 on a and a 5 on b, or a 6 on b and a 5 on a. Even though these two states 

of affairs "look the same", as the dice are similar, they still count as distinct possibilities as the 

dice are distinct entities. The two states of affairs are not similar, as there is a contrast between 

them, but they are symmetric. The perfect similarity of the dice prevents either from being 

uniquely singled out from among [a, b}, and so neither of the states of affairs can be singled 

out either. 

I can see no difference, with regard to states of affairs, between similarity and identity. 

Similarity between states of affairs seems to be sufficient for identity. If there is no contrast 

between states of affairs A and B, then they are the same state of affairs. 

Now we have a definition of symmetry, we are ready to state the Symmetry Axiom. It is 

as follows. 

Axiom 5 If A Y B within Kw then [$ 1 if A] ~ [$ 1 if B] within Kv.21 

Proof By symmetry(!) it is sufficient to prove that [$1 if A] > [$1 if B], i.e. that there is no 

objection within Kv to giving up [$1 if B] in return for [$1 if A]. Now, assuming AT B within 

Kv, neither contract can be singled out within Kv. Thus, one cannot single out the case of 

2 1 I am tempted to miss out the number 5 and call this Ax iom 6, as 5 is an unlucky number for axioms. Consider 

the trouble with Frege's Rule V, Euclid's f i f th postulate and Peano's fifth axiom. 
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possessing [$1 if A], as compared with the case of possessing [$1 if B]. (One can see that these 

cases are distinct, but one cannot pick out either case.) This being so, a rational person does not 

object to an exchange of [$1 if B] for [$1 if A], as required.B 

2.7.10 Theorem If A Y B within Kv, and val[$l if A] (within Kv) exists, then Pr(A \ U) = 

Pr(B | U). 

Proof By Axiom 5, if A Y B within Kv then [$1 if A] ~ [$1 if B], in Ka. If va/[$l if A] (in Ka) 

also exists, then by Theorem 2.5.5 it follows that va/[$l if A] = va/[$l if B], in Kw i.e. Pr(A \ U) 

= Pr(B | U)M 

2.1.W Theorem If AXIU, A2/U,AJU are pairwise symmetric within Kw and also 

pairwise mutually exclusive and jointly exhaustive within Kv, then 

Pr(At | LO = Pr(Aj \ U) = 1/n. 

Proof Since AYIU, A2/U, AJU are mutually exclusive and jointly exhaustive within Kv„ we 

have that {[$1 if A,], [$1 if A2], [$1 if AJ} ~ $1. Also, since they are pairwise symmetric, 

Axiom 5 entails that [$1 if A J ~ [$1 if A2] ~ ... ~ [$1 if AJ . Then, using independence, it 

follows that {[$1 if AJ, , [$1 if A,]2, [$1 if A,]„} ~ $1, i.e. n separate contracts [$1 if A,] are 

together worth $1 as well. By Def. 2.3.4 we thus get val[$\ if A,] = and then by Theorem 

2.3.5 we deduce that va/[$l if A,] = va/[$l if Ay] = 1/n. The result is immediate.• 

This latest theorem bears more than a passing resemblance to Keynes's Principle of 

Indifference, and its predecessors. This should be a cause for concern since, while many issues 

in the foundations of probability are disputed, there is an impressive consensus that all such 

principles are invalid. Van Fraassen states, for instance, "... I regard it as clearly settled now 

that probability is not uniquely assignable on the basis of a Principle of Indifference, or any 
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other logical grounds"22. Howson and Urbach concur: "... 'logical' probability measures, 

whether based on the Principle of Indifference or on some other method of distributing 

probabilities a priori, do not, we believe, possess a genuinely logical status. For such systems 

are ultimately quite arbitrary, and we take logic to be essentially noncommittal on substantive 

matters."23 

Why are these authors so sure that any equi-probability principle must fail? There are 

two main reasons. First, there are the so-called paradoxes which these principles generate, 

whereby different ways of applying them to the same problem produce inconsistent results. 

Second, as mentioned in §2.1, there is the fact that purportedly a priori measures, such as 

Carnap's c* measure24, which are intended to provide a purely logical basis for inductive 

inferences, clearly contain synthetic assumptions about the world. These reasons do not seem 

to count against Theorem 2.7.11 in the least, however. It is true that this theorem is of no use at 

all in giving a theory of inductive inference but, as explained in §2.1, inductive inferences are 

not purely logical and so this is just as it should be. Moreover, as is demonstrated below by 

examining some examples, this definition of symmetry cannot be applied to a single problem in 

different ways, yielding inconsistent conclusions. 

Let us look at some previous formulations of the Principle of Indifference, and the 

problems they face. According to Howson and Urbach, a typical formulation of the Principle 

from Bernoulli to Keynes is as follows:25 

i f there are n mutually exclusive possibilities A i , An, and U gives no more reason to believe any 

one of these more l ikely to be true than any other, then Pr(A} \ U) is the same for all i. 

2 2 v a n Fraassen (1989:292). 
2 3 H o w s o n and Urbach (1993:71-72). 
2 4 Carnap (1950). 
2 5 H o w s o n and Urbach (1993:52). I have adjusted the notation to harmonise it wi th the rest of this chapter. 
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This principle is significantly more liberal than Theorem 2.7.11 in a manner which is 

highlighted by the following example. Let U be the state of affairs that a certain bag contains a 

nickel and a dime, one of which is drawn out, and let A be that the nickel is drawn, and B the 

dime. We should now consider the two contracts [$1 if A] and [$1 if B] from the point of view 

of U. According to the Principle above, Pr(A \ U) = Pr(B | U), since U gives us no reason to 

suppose that either A or B is more likely to be true that the other. From this it follows that 

[$1 if A] ~ [$1 if B], but does Axiom 5 give the same result? It does not, as it is easy to single 

out either state of affairs, and so A and B are not symmetric within U. 

It seems very reasonable, in this example, to rule out the relations [$1 if A] > [$1 if B] 

and [$1 if A] < [$1 if B] between these contracts, since U does give us no reason for a definite 

preference of one over the other. Such a preference surely would be irrational, as it would be 

under-motivated. The Principle seems then to conclude that [$1 if A] ~ [$1 if B], by 

elimination, but this is incorrect in my view since there is a fourth possibility, written [$ 1 if A] 

<> [$1 if B], that the contracts are incommensurable. Nothing of interest follows from the 

relation [$1 if A] <> [$1 if B]\ for instance, it does not follow that Pr(A \ U) = Pr(B \ U). The 

above Principle is therefore invalid, as lack of grounds for supposing the probabilities to be 

different is insufficient to make them equal. 

A clearer example of two incommensurable contracts is as follows. U says that there 

are two urns, a and b, each of which contains only black balls and white balls. The proportions 

of black balls in each urn are unspecified, but U does say that the proportion in a lies in the 

interval [0.1, 0.5], and that of b lies in [0.2, 0.3]. A ball is selected from each urn. Let A be the 

state of affairs that the ball from a is black, and B that the ball from b is black. We are able to 

distinguish between A and B within Kw as U gives different information about the two urns, so 
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A and B are not symmetric. It also seems clear, however, that there is no reason to prefer the 

contract [$1 if A] over [$1 if B], or vice-versa; these contracts are therefore incommensurable.26 

We have shown that symmetry is an equivalence relation, which means that granting 

equi-probability on the basis of symmetry is safe from outright contradiction. The same is not 

true for giving equi-probability to any pair of propositions A and B such that [$1 if A] o 

[$1 if B], since <> is not an equivalence relation. In particular the relation is not transitive, as a 

slight addition to the urn example shows. Let U also say that urn c has a proportion of black 

balls in [0.4, 0.45], and that a ball is selected from c, with C saying that it is black. Then there 

is no reason to prefer [$1 if C] over [$1 if A], and no reason to prefer [$1 if A] over [$1 if B], 

but [$1 if C] is definitely preferable to [$1 if B]. It is therefore inconsistent to assert Pr(C \ U) -

Pr(A | U) and Pr{A \ U) = Pr(B \ U), as it implies that Pr(C \ U) = Pr(B \ U). Even though there is 

insufficient reason to give different probabilities to a pair of states of affairs, that does not 

warrant giving them the same probability, for they may not have probabilities at all.27 

We should not be surprised therefore if this Principle of Indifference leads to 

contradiction (which it does, as everyone knows). The most famous examples of such 

contradictions are the ones developed by Joseph Bertrand28, a selection of which we will now 

consider. 

Consider a cube, whose edge length is given to be less than 2cm. What is the 

probability, given this information, that the edge length is less than 1cm? If we let the random 

variable L represent the edge length of the cube, then we see that the intervals (0,1] and (1,2] 

are of equal (Lebesgue) measure. Then, letting A represent Le(0,l] and B represent Le(l,2], 

we seemingly have no reason to regard A as more likely than B, or vice-versa, so the classical 

Principle of Indifference declares them equi-probable. The problem arises when we realise that 

2 6 I t should be noted that Pr(A\U) and Pr(B\U) do not exist, as [$1 i f A] and [$1 i f B] do not have precise values. 

For instance, [$1 i f A] is clearly preferable to 100, and less preferable than 500, but it is impossible to say more 

than this. 
2 7 T h i s crit icism of the classical Principle of Indifference is given in Keynes (1921:42). 
2 8 See Bertrand (1889). 
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the information we have, that Le(0,2], may equivalently be expressed as L3e(0,8]. L 3 , of 

course, represents the volume of the cube, another perfectly acceptable physical quantity. 

Assigning equal probability to sets of equal measure in (0,8], however, results in B being seven 

times as likely as A! 

Another famous problem, known as Bertrand's Paradox, concerns the length of a chord. 

Given merely that AB is a chord on a given circle, what is the probability that the length of AB 

is greater than V3 times the radius of the circle? In other words, what is the probability that AB 

is longer than the side of an equilateral triangle inscribed in the circle? (Call this proposition 

E.) Bertrand provides three incompatible solutions to this problem, each one justified by the 

Principle of Indifference, which are as follows. 

(a) Let us suppose we are given the location of A, one end point of the chord. (By the 

rotational symmetry of the problem, this should not affect the probability.) We then consider 

the angle between AB and the tangent to the circle at A. The angle lies in [0, n], and E is true iff 

the angle is in [TC/3, 2TC/3], so Pr(E)=\/3. 

(b) Let us suppose we are given the direction of AB, so that AB is limited to a set of parallel 

chords. (By the rotational symmetry of the problem, this should not affect the probability.) 

There is a unique diameter to the circle which is perpendicular to these chords, so let us 

consider the point of intersection P of AB and this diameter. P determines AB, and vice-versa, 

but P may lie anywhere on the diameter. It is easy to show that E is true iff P is within half a 

radius of the centre of the circle. Assigning equal probabilities to equal segments of the 

diameter, we deduce that Pr(E)=\/2. 

(c) Excluding the case where AB is a diameter, the position of AB is uniquely determined by 

the position of its middle point M. E is true, of course, if M is less than a half radius from the 

centre of the circle. The area of this region is one quarter of the area of the circle, so Pr(E)=\IA. 
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These examples are devastating and unanswerable, showing decisively that the classical 

Principle of Indifference is invalid. There have been previous attempts to rehabilitate this 

Principle, however, the best of which (in my view) being that of J . M. Keynes. Keynes's 

version bears many similarities to my own Axiom 5, but is firmly rejected by current 

scholarship. It should therefore be examined, so that its similarities and differences to my own 

approach may become clear. 

Keynes sees the need for the Principle of Indifference to contain positive, rather than 

negative, criteria for equi-probability. The mere absence of grounds for assigning different 

probabilities is not enough; we require instead the presence of grounds for assigning equal 

probabilities. What positive criterion is offered? It is that "...our relevant evidence ... must be 

symmetrical with regard to the alternatives, and must be applicable to each in the same 

manner", and elsewhere, "If this relevant evidence is of the same form for both alternatives, 

then this Principle authorises a judgment of indifference".29 

This idea of symmetry, or "sameness of form" of the evidence between different 

possibilities is the mainstay of Keynes's idea, but there are two other, less attractive, features 

which require mention. First there is the notion that only the relevant evidence need be 

symmetric with regard to the alternatives. The idea seems to be that we take our evidence U, 

and the pass it through a kind of filter which removes all information which is irrelevant to the 

relative likelihood of A and B, to get an epistemic state If. A and B are then equally likely 

relative to U just in case If is symmetric over A and B. Thus, in general, a judgment of 

indifference consists of two stages: first we deem certain data irrelevant to the issue, and second 

we find that what remains is symmetric between the alternatives. 

The filtering out of irrelevant information makes Keynes's Principle more liberal than it 

would otherwise be, since the information excluded as irrelevant is often sufficient to break the 

2 9 Keynes (1921:55-56). (The italics belong to the original text.) 
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symmetry. To see this, let us consider one of Keynes's own examples (1921:53-54). Suppose 

we know that an urn contains two balls, one white and one black, one of which is drawn out. Is 

the selected ball equally likely to be white as black? Keynes acknowledges here that "we know 

of some respects in which the alternatives differ", which presumably entails that the evidence is 

not symmetric with regard to these alternatives, but claims that "a knowledge of these 

differences is not relevant". Thus, according to Keynes, since the colour difference is irrelevant 

the two balls have the same probability of selection relative to this evidence. 

It should be agreed, I think, that judgments of irrelevance are an important and valid part 

of calculating epistemic probabilities, but they do not seem to fall within the realm of pure 

logic. In my view, which I defend below, they involve the human faculty of le bon sens, and so 

rely upon some synthetic knowledge of the world. They are thus important for epistemic 

probability, but inadmissible in logical probability. 

If we consider again the irrelevance of colour in the urn example, why is it that 

differences of colour can be ignored? If the balls were different sizes, would that be irrelevant? 

What if we had a ball and a cube instead of two balls? Is shape irrelevant also? What if one of 

the balls is sticky? I suspect that, at some point in this list, the differences would be considered 

relevant, so why is colour irrelevant? The only reason I can see is that balls are usually selected 

from urns by a blindfolded person, who clearly is unable to distinguish colours by touch alone. 

With the logical probability Pr(A \ U), however, we consider the epistemic state consisting only 

of knowledge of U. There is no additional "background" information concerning the customary 

ways of drawing balls from urns. Moreover, if this is what Keynes has in mind30, then it seems 

that he is confusing two kinds of independence. We are here dealing with what is called logical 

independence, or irrelevance, whereas for a blindfolded selector the colour is causally 

irrelevant. Now, it is shown in Chapter 5 that causal independence gives rise to independence 

in the physical chance function, but this is very different from independence in the logical 

3 0 H i s reference (p. 54) to the case where the balls are drawn by a magnet, and the balls are made of different 

metals, suggests strongly that it is. 
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probability function. Finally, it seems that to filter out "irrelevant" information takes us back 

towards the classical Principle of Indifference - the very last thing Keynes wants to do. For the 

question of what counts as a reason to prefer A over B is rather similar to the question of what 

counts as relevant information in considering the symmetry between A and B. 

The second unattractive feature of Keynes's Principle is that he adds an extra necessary 

condition for equi-probability, that the alternatives be indivisible. The extra condition is 

motivated by cases where it seems that the relevant information is symmetric over A and B, but 

that it is also symmetric over A,, A2 and B, where A = A, v A 2 and A, => —A2. If symmetry 

alone is sufficient for equiprobability, and A and B are exhaustive, then the symmetry of A and 

B yields Pr{A \ U)=l/2, but the symmetry of A 1 ; A 2 and B gives Pr(A \ U)=2/3. The condition of 

indivisibility forbids the declaration of equi-probability in precisely this sort of case, where one 

or more of the symmetric alternatives is divisible into sub-alternatives which are symmetric 

with the rest of the original set. 

If such cases are indeed possible, where sub-alternatives are symmetric with the rest of 

the original set, then clearly the symmetry condition alone will not suffice. To patch up the 

Principle with additional conditions seems ill-advised, however. For, if such examples exist 

then it follows that symmetry (in Keynes's sense, whatever that is exactly) is not an equivalence 

relation. In the case above we have A{ symmetric to B, and B symmetric to A, but A, is not 

symmetric to A, so that the relation is not transitive. Now this seems plain wrong, particularly 

if we think of symmetry as "sameness of form". If U has the same form for A and B, and for B 

and C, then it must also have the same form for A and C, since identity is transitive. Any 

relation which can be thought of as "sameness of/', so that a is related to b just in case fa=jb, 

must be an equivalence relation. If it turns out that symmetry on some account is not an 

equivalence relation, then that account is wrong and needs to be corrected. To cover up the 

problem with ad hoc tinkering is unacceptable. 

Keynes has very little to say about the relation of symmetry itself, and I myself cannot 

see how sub-alternatives might be symmetric with some members of the original set. It is 
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provably impossible within Definition 2.7.8, as is shown by Theorem 2.7.5. Keynes's revised 

Principle has been attacked on account of the arbitrary nature of its indivisibility condition31, as 

well as for its perceived failure to avoid the problems raised by Bertrand. 

Since Keynes has almost nothing to say about the relation of symmetry itself, I am not 

sure whether or not his principle escapes the Bertrand paradoxes. From my point of view, 

however, the question is of little importance, as I have shown that there are important 

differences between Keynes's Principle and my Axiom 5. The differences, in summary, are as 

follows. 

(i) Axiom 5 is based on a highly informative definition of symmetry (Defs. 2.7.3 and 2.7.8), 

whereas Keynes's Principle involves no discussion of symmetry at all. 

(i) Axiom 5, unlike Keynes's Principle, does not allow information in U to be dismissed as 

irrelevant. 

(ii) The symmetry of Def. 2.7.8 is shown to be an equivalence relation, which means that no 

condition of indivisibility is required. 

What needs to be shown is that Axiom 5 does not give rise to paradox in the sets of 

circumstances concocted by Bertrand. To this I now turn. 

First there was the example of the cube, for which we can consider either its edge-length 

L or its volume L 3 . Given that Le(0,2], what is the probability of A, that Le(0,l]? The first 

question is: Is A symmetric to B, where B says that Le(l,2]? If we consider an arbitrary world 

that entails A, and also one that entails B, we find that the cube in the world for A always fits 

inside that of B. It is therefore easy to pick out the state of affairs A from among {A, B). In a 

similar way, equal-length intervals in the range of L 3 are not symmetric either. There is 

therefore no contradiction here. 

31See Howson and Urbach (1993:61-62). 
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Now let us look at Bertrand's paradox. Which, if any, of the three solutions is correct? 

It turns out that none of them is, although (b) is the correct solution to a very similar problem. 

Solution (a) involves partitioning an angle of 7t into three equal sectors, but are these 

symmetric? The outer two, [0,7t/3] and [2n/3, n], actually are symmetric, as becomes clear if 

we consider the reflection about the diameter which includes the chord-end A. The middle 

sector, (7i/3, 27t/3), is however not symmetric with either of the other two. It can be singled out, 

for instance, as the one in the middle. Thus the first argument fails. 

Argument (b) considers a set of possible positions for AB which are all parallel, and 

perpendicularly bisected by a diameter D. The position of AB is therefore determined by its 

point P of intersection with D. The argument assumed that equal-length segments of D are 

equally likely to contain P, but are these states of affairs symmetric? Some pairs are, but most 

are not. For instance, if we represent D by the interval [-r, r], then [-r, 0) and (0, r] are indeed 

symmetric; but [-r, -r/2] and [0, r/2] are not, as the former is closer to the circumference, and 

can be singled out as such from among the pair. Roughly speaking, a segment near the 

circumference is not symmetric to one which close to the centre. The second argument fails. 

Argument (c) considers the mid point M of AB, which (except in the case where AB is a 

diameter) determines the position of AB. It assumes that equal areas inside the circle are 

equally likely to contain M. It is true that some such pairs of regions are symmetric, but most 

are not on account of their differing distances to the circumference. This argument also fails. 

One may feel intuitively that argument (b) is somehow better than the other two. (If so, 

this is likely to be encouraged by the fact that, if one drops straws from a great height onto a 

floor with a circle drawn on it, then about one half of the chords produced are longer than the 

side of an inscribed equilateral triangle, in accordance with solution (b).) We can make sense 

of this intuition, using the symmetry axiom. 

In the physical experiment where the straws are dropped, there is presumably no causal 

interaction between the falling straws and the circle below; thus the final positions of the straws 

are causally independent of the circle's position. As I mentioned before, there is a link between 
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causal and probabilistic independence (demonstrated in Chapter 5), so we may wonder what 

solution may be obtained if we assume that the circle's position is irrelevant to the position of 

the full line AB. Under this assumption we find that solutions (a) and (c) are still invalid, but 

something similar to (b) is valid. This will now be demonstrated. 

The chord AB is part of an infinite line; the chord AB determines the line AB, and the 

line AB together with the circle C determine the line segment (i.e. chord) AB. Let us then 

consider the line AB for now. The state of affairs U does not say anything about AB except that 

it intersects C, but let us consider IT which also specifies the direction of AB. Thus, within K^, 

all the possible positions for AB are parallel to one another. Let us define the rectangle Im as 

the subset of these parallel lines which lie between two of them, / and m. U does not specify 

the diameter of C, but let us suppose that IT gives the diameter as 5cm. Then precisely one of 

the rectangles of width 5cm contains C. Since we have no information about the position of C, 

any two propositions specifying different 5cm rectangles in which C lies are symmetric. Also, 

for any rectangle R of width 5cm, the various sub-rectangles of equal width inside it are 

symmetric within IT, as each may be mapped to the others under translation, which leaves the 

plane as a whole unchanged. 

Now suppose we are told that a particular 5cm rectangle, R*, is the one which contains 

C. Its sub-rectangles now lose their symmetry with one another, as we can use C to pick out 

some over others. Now we apply our (extra-logical) assumption that the position of C is 

irrelevant to the position of the full line AB. This means that we cannot use C to single out any 

equal-width sub-rectangle in R* from among a pair of them, so they retain their symmetry. 

Then states of affairs of the form "the full line AB is in rectangle a," where the a, are equal-

width sub-rectangles of R*, are symmetric within IT. Now, even though we do not know where 

C lies within R*, the line AB still determines the length of the chord AB. The original reasoning 

of (b) can now be used to show that the length exceeds that of a side of an inscribed equilateral 

triangle with probability 1/2. 
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We are not done yet, as we have only shown that Pr(E \ U)=\I2, and so Pr(E \ U) is still 

unknown. IT contains two extra pieces of information over U, namely the diameter of C and 

the direction of AB. It is clear from the argument above, however, that the particular values of 

these two data do not affect the result, that the probability is 1/2. Then, since Kv> is an authority 

for Kv, it follows that Pr(E \ U) = Pr(E \ If), by the Authority of Logic principle. 

If this were a thesis on logical probability then it would be necessary to illustrate my 

theory of Pr with many more examples. In view of the modest aim of this chapter, however, 

which is merely to show that a revised notion of logical probability is viable, this would be 

excessive. 
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3. Physical Chance 

In this chapter I shall use the theory of logical probability developed in Chapter 2 to give an 

account of objective chance. There is nothing new about the basic idea, which is similar to a 

previous proposal1, but there are some innovations in matters of detail. 

What do we mean by physical chance? There are some probability statements which 

apparently just ascribe some physical property to a system. For instance, the half-life of a 

radioactive isotope may be defined as the length of time in which the probability of a given 

nucleus decaying is one half. Now the half-life of an isotope is a physical property, measurable 

experimentally and so on, which has nothing to do with anyone's state of knowledge. This kind 

of probability, which depends entirely on the physical properties of the system concerned, is 

called physical chance, objective probability, physical probability, objective chance, or just 

chance. The chance of a state of affairs A will be written P(A). 

3.1 The Definition of Chance 

Like Lewis (1980:109), I think that Miller's Principle2 shows us how to proceed in giving a 

theory of chance. Miller's Principle, in its simplest form, states that the epistemic probability 

of some event A, given only that its physical chance is p, is also p. Thus we have 

Miller's Principle 

If one knows that the chance of A is p, then this authorises a degree of belief pin A. 

•See for instance Lewis (1980). 
2 Unfortunately there is no sensible name for this principle. "The Principal Principle" is obviously sil ly, and van 

Fraassen's term, "Mi l le r ' s Principle" is also inappropriate because David Mi l le r rejected the principle. I use the 

latter term simply because it is less of a mouthful. 
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I write "in its simplest form", as the principle thus stated has counter-examples. Such cases 

arise when one's epistemic state K has too much extra knowledge about A, in addition to 

knowing that P(A)=p. For instance, if K includes knowledge of A itself (or not-A) then the 

principle fails. This complication is discussed in §3.3 below. 

The principle is important as it provides a link between the two kinds of probability, 

physical and epistemic. It shows us that the two kinds cannot be fundamentally distinct; one 

must be a special case of the other, or both are linked to some third, more basic, kind. The 

situation is analogous to the fact that, in Newtonian mechanics, the gravitational mass of a body 

is exactly proportional to its inertial mass. For Newton this was a brute fact which has no 

explanation, as the concepts of inertial and gravitational mass are totally different. The fact that 

they are proportional, however, shows that in fact they must be two manifestations of the same 

property, and so it turns out. In general relativity, only gravitational mass is required, and we 

can see how it determines a body's resistance to acceleration relative to the "fixed stars". 

If chance and epistemic probability are connected, then what is the link? Either one of 

them can be reduced to the other, or they are linked via some third thing. Epistemic probability 

cannot be a special case of chance, for it depends on the knowledge one possesses. However, it 

seems equally clear that chance cannot be a special case of epistemic probability, for the latter 

is very much bound up with human brain structure. The first constraint on physical chance, laid 

down in Chapter 1, was that chances depend only on the physical properties of the system in 

question. 

The third alternative is that epistemic and physical probability are linked via their being 

related to some third thing; this is the solution I propose. The third thing is logical probability. 

It is reasonable for chance to be a special case of logical probability, since the latter is 

independent of all contingent matters of fact. Thus, if the information given to the logical 

probability function is entirely concerned with physical properties of the system in question, 

then the logical probability of any event in this system, given those facts, is determined by those 
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properties alone. Moreover, there is a link between logical and epistemic probability, namely 

the Authority of Logic principle. 

We have seen that the logical probability function is a function of two arguments, 

whereas chance is a function of one argument. So, if we are to reduce chance to logical 

probability, we need to find something to fill the second argument place. Our task is to 

discover the state of affairs, U say, such that P(A) = Pr(A \ U). It would, as stated above, be 

quite intolerable if the chance function depended on human beings in some way. It could not 

then be described as "physical", or "objective". Thus the choice of U cannot depend on what 

any human knows about the system. On the contrary, U must be fixed by only physical facts 

about the system. 

As a first guess, we might say that U contains complete knowledge of the system in 

question, as chance should not depend upon ignorance in the way epistemic probability does. 

This clearly will not do, however, as A is also a state of affairs concerning the system, and so 

either A or —A will be a consequence of U, making all chances either 0 or 1. Clearly, we cannot 

tell the logical probability function everything, so what information do we give it? 

As stated in Chapter 1, the answer is to supply the logical probability function with a 

maximal specification of the causes of the actual history of the system, of which there are two. 

First there is the dynamical nature of the system, represented by the generalised lagrangian lx, 

and second there is the boundary condition bcx. The boundary condition is a constraint on the 

motion of the system that is independent of the system's dynamical nature. 

It may not be clear that the boundary condition for a system is a cause of its motion, or 

actual history. Indeed, although the boundary condition is a constraint of some kind, it is 

sometimes considered to be an epistemic constraint, rather than a physical one. In other words, 

the boundary condition may be viewed as a piece of information about the system, that 

constrains what we may believe about the motion, but does not physically constrain the motion 

itself. This attitude toward the boundary condition is strongly encouraged by the fact that, for a 

deterministic system, the possible boundary conditions are grouped into equivalence classes, 
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where the members of an equivalence class all generate the same actual history. Given this 

fact, how can it be maintained that just one of the boundary conditions is the real one, the cause 

of the motion, whereas the others in that equivalence class are not? 

The full answer to this question must wait until § 4 . 6 , where the matter is discussed in 

detail. The basic idea is that the grouping of possible boundary conditions into equivalence 

classes is a special feature of deterministic systems, that does not occur for any stochastic 

system. In a stochastic system, distinct boundary conditions give rise to different chance 

functions, and hence (probably) to different motions. In that section, certain physical 

phenomena are explained by a hypothesis about the nature of the boundary condition. In other 

words, the boundary condition is postulated as a cause of the motion, and so it is necessary to 

regard the boundary condition as a physical constraint. 

The causal theory of chance is then as follows: 

3.1.1 Definition (The causal theory of chance) 

If £ x represents the dynamical nature of a system X, and bcx its boundary condition, 

then PX(A) = Pr(A \ £x & bcx). 

In the general, stochastic case, as well as the deterministic case, £ x does not contain any modal 

facts, but is just an ordinary physical state of affairs. As we saw in the previous chapter, the 

logical probability function does not need to be given probabilities in order to yield 

probabilities. In other words, we may say that probability enters the physical world not by there 

being probabilistic physical facts, but by there being relations of partial entailment between 

ordinary physical facts. If this were not so, and the state of affairs £ x made probabilistic 

assertions, then we would not have any theory of chance at all, as the analysis would be 

circular. 
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The chance function thus defined will satisfy the axioms of probability, as it is just the 

logical probability function supplied with particular information. 

3.2 Chance is Relativised to a System 

It should be noted that, in Definition 3.1.1, the chance of an event A is defined for a particular 

system X in which A occurs. On this view, therefore, there is no such thing as the chance of A 

simpliciter; one must always specify a reference system, one which includes the event A. 3 If we 

assume (as I do in the next chapter) that the composition of two systems is also a system, then 

every event occurs in many different systems. If an event A occurs within X, and X is a 

subsystem of Z, then A also occurs within Z. 

As an illustration of the fact that chances are system dependent, consider a system X 

that consists of a fair, six-sided die together with a device that rolls the die whenever a button is 

pushed. The button is pushed on some occasion, let us suppose, causing some outcome A, such 

as a '4' on the die. Since the die is fair, it seems clear that the chance of this outcome within X 

is 1/6. Now let us consider a larger system Z, however, which includes X as a subsystem. The 

button in X was pushed by some part of Z, another chancy contraption that lies outside X. If 

the chance (within Z) of the button being pushed at all is only 1/2, then it appears that the 

chance of A within Z is only 1/12, not 1/6. We thus write PX(A) = 1/6, and PZ(A) = 1/12, to 

mark this difference. 

The fact that chances are defined only for a particular reference system is related to the 

idea that the chance of a single event can change with time. Consider, for instance, a particle 

undergoing a random walk within a maze, and let the event A be that the particle emerges from 

the exit of the maze before some given time, say noon. It may be that at eleven o' clock, 

perhaps, the particle is only a few steps away from the exit, and so at this time the chance of A 

3 I am grateful to Paul Bartha for pointing out this aspect of the causal theory. 
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is quite high. Unfortunately, by 11.30am the particle has moved back toward the centre of the 

maze, so that its chance of escape before noon is now much diminished. As is shown in §4.6, 

this time-dependence of chance can be accounted for under the assumption that a time slice4 of 

a system is itself a system, possessing its own lagrangian and boundary condition. The chance 

of an event A at time t within X can then be defined as the chance of A within some time slice 

[t,x] of X, where T is any time after A has finished. 

3.3 Lewis's Objections 

David Lewis (1980) does not propose a definite analysis of chance, but presents a range of 

possible approaches which includes my own. By a rather circuitous route, which I shall not 

retrace here, Lewis arrives (1980:97) at the following statement which he considers to be a form 

of Miller's Principle: 

PJA) = P ^ ( A | / Y n v & r j . 

The subscripts will require some explanation. The chance function is written rather than P, 

as Lewis considers chance to be both time dependent and world dependent. These 

complications do not concern us here. The proposition Hw is a complete description of the 

history of world w up until time t, and Tw is a complete "theory of chance" for the world w. A 

theory of chance is a conjunction of conditionals from history to chance, i.e. a specification of 

what the chances of events would be for each possible initial segment of w's history. 

Lewis then considers the suggestion that this formulation of Miller's Principle could 

serve as an analysis of chance. Clearly, such an analysis would bear strong similarities to the 

causal theory proposed above in Def. 3.1.1, so let us look at the difficulties Lewis raises against 

4 A time slice of a system X is, roughly speaking, the part of X that exists in some time interval [fj,f2l-
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this idea. He sees two separate problems. First, the appeal to P K , which Lewis calls a 

"reasonable initial credence function", will be illegitimate unless we can give an account of it 

which does not itself appeal to chance. Lewis believes that such an account will probably 

require symmetry constraints in order to be sufficiently restrictive about what counts as 

'rational', but these constraints are associated with well-known problems. He points out, for 

instance, "...it is not possible to obey too many different restricted principles of indifference at 

once and it is hard to give good reasons to prefer some over their competitors" (1980:111). I 

have argued in Chapter 2, however, that there is a symmetry principle that seems to be a part of 

logic, and free of paradox, so I shall not discuss this objection again here. 

The second problem is that such an analysis runs the risk of circularity, on account of 

the use of Tw. For this term, which appears in the analysans, itself involves the concept of 

chance. In order to avoid this objection, Lewis notes (1980:111-112), we must replace Tw with 

a "Humean" statement - one which only describes matters of particular fact, and not anything 

modal. The only possible way to accomplish this, Lewis believes, (correctly I think) is if each 

world has the same theory of chance. This would make the theory of chance necessary rather 

than contingent.5 

According to the causal theory of chance, the history-to-chance conditionals are 

provided by the dynamical properties of the system, together with logical probability. The 

dynamical properties lx are independent of the actual history of X - in Lewis's terms they are 

the same in every nomically possible world. Moreover, the same relations of logical inference 

hold in all worlds. Thus, my causal account of chance is one according to which the "theory of 

chance" is necessary.6 In his discussion, Lewis does not refer to intrinsic dynamical properties 

of systems, such as geometrical shape, viscosity, elastic constants, masses, charges and so forth, 

5 O f course chances themselves would stil l be contingent, as they depend upon the history of the wor ld as well as on 

the theory of chance. 
6 Note that the history-to-chance conditionals are not exactly of the form: " i f the initial segment of the actual history 

is Hv then the chance of E is p". Rather, they are like: "given that the initial segment of the actual history is Ht 

(and the dynamics) one can infer E to degree p". The difference is not too important, however. 
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so it is not clear whether he is willing to countenance such things.7 Their importance to my 

theory is highlighted by Lewis when he points out that (1980:113) 

...according to [the idea that the theory of chance is necessary] i f I were perfectly reasonable and 

knew all about the course of history up to now (no matter what that course of history actually is, and 

no matter what time is now) then there would be only one credence function I could have. Any other 

would be unreasonable. I t is not very easy to believe that the requirements of reason leave so little 

leeway as that. 

Not very easy indeed! This is surely a huge understatement, as (from my point of view) it 

makes the dynamical properties of a system logically necessary! I am not sure what it would 

even mean to assert that this pendulum has a string-length of 28.5cm by logical necessity. If 

one grants the existence of lx, however, then one's credence is not stretched nearly so far. 

3.4 A Proof of Miller's Principle 

Since the causal theory of chance was motivated by the desire to account for Miller's principle, 

to make it not a mere coincidence, we should ensure that the principle holds for it. Consider 

some event A, about which the only relevant information you have is that the chance of A is p. 

Given only this knowledge, is the epistemic probability of A also pi I shall now show that it is, 

using two premises. First I need a screening-off assumption, and second the Authority of Logic 

principle of §2.2.3. 

If we let U be the state of affairs £x&bcx, where X is any system in which A occurs, then 

the screening-off assumption is that Ky is an authority for one's own epistemic state. In other 

words (since Ky is obviously veridical) we assume that Ky is superior to one's own state. This 

7 I suspect that he would not, although from the point of view of an applied mathematician this seems untenable. 
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assumption will not always be true, of course, but then (as noted in §3.1) Miller's Principle has 

counter-examples as well. The derivation of Miller's Principle will be adequate, therefore, if 

these two sets of counter-examples coincide exactly. That is, we require that Miller's Principle 

hold in all and only those cases where the knowledge in K is screened off by knowledge of 

lx&bcx. 

3.4.1 Theorem (Miller's Principle) 

Let U = £x&bcx. Then, if KV > K, then PK(A \ Px(A)=p) = p. 

Proof By the causal theory of chance, Px(A)=p means that Pr(A \ U) =p. Then, supposing that 

KJJ > K, we have that KV is an authority for K, so that PK{A \ Pr(A \ U)=p) = p. Thus 

PK(A | Px(A)=p) = p, as required. • 

We see that, since chance is defined using logical probability, it is also authoritative in 

the same way. One might therefore call Miller's Principle the Authority of Chance principle. It 

should be noted that this conditional form of the principle answers the previously difficult 

question8 of which epistemic states Miller's Principle applies to. Any proposition is 

admissible, in Lewis's sense, provided it is screened off by lx&bcx. 

3.5 The Objections of Howson and Urbach 

Howson and Urbach (1993: 342-344) criticise a theory of chance which they simply call 'the 

theory of objective chance'. According to this theory, a stochastic system (such as a coin, for 

instance, in a coin-tossing experiment) has a certain chance of producing each of its possible 

8 Lewis , for instance, offers no criterion to pick out "admissible" propositions, i.e. those propositions such that 

knowledge of them does not render Mi l ler 's Principle inapplicable. 
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outcomes. Thus, for instance, there is a certain chance that the coin will land heads, and this 

number attaches to a single trial, rather than to a collective of outcomes. The problem of 

showing that the chance function is a measure is solved by postulating that Miller's Principle 

holds, so that "chances license numerically equivalent degrees of belief. By tying chances to 

coherent degrees of belief, which (according to a plethora of arguments) must obey the axioms 

of probability, it follows that chance must be a probability function as well. 

Howson and Urbach are not critical of the theory as described so far, but rather of Levi's 

additional claim (Levi, 1980: 258) that no characterisation of chances independently of Miller's 

Principle is either possible or necessary. Chances are left then as mysterious, postulated entities 

which justify corresponding degrees of belief. As they point out, this is rather unsatisfying and 

we should try to do better. Howson and Urbach also attack Lewis on the same grounds, 

although less justly since Lewis does not actually offer any theory of chance, and hence does 

not offer this theory. Lewis does however place the following constraint on any proposed 

theory: "I would only ask that no such analysis [of chance in terms of epistemic probability or 

relative frequency] be accepted unless it is compatible with the Principal Principle" (1980:90). 

As a necessary condition for a theory to be acceptable this is beyond reproach, but as a 

sufficient condition ("I would only ask...") it is much too weak, and does leave him open to a 

related objection. For if an analysis of chance is merely compatible with Miller's Principle, and 

does not entail it, then the latter is left unexplained. As I argued in §3.1, this would be like the 

unexplained numerical equality of inertial with gravitational mass in Newtonian mechanics. An 

adequate theory of chance should explain why, in certain cases, chances and epistemic 

probabilities are numerically equivalent. 

The causal theory of chance faces no objection along these lines since, as is shown in 

§3.4, Miller's Principle may be derived from Definition 3.1.1 
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3.6 Chance and Relative Frequency 

If there is such a quantity as physical chance, then it is surely connected in some way with 

relative frequency. More precisely, for a given experiment that has A as one of its possible 

outcomes, there is surely some link between P(A) and the relative frequency of outcomes 

similar to A in a large class of similar experiments. In this section it will be shown that, 

according to the causal theory of chance, there are two links between chance and relative 

frequency. 

The first link between chance and frequency is epistemological. The chance of an event 

may be inferred, albeit approximately and fallibly, by measuring the relative frequency of 

similar events in a large class of repeated trials. Chance, in other words, is empirically 

accessible, in that it can be discovered (approximately and fallibly) by empirical means. 

The second link between chance and frequency is concerned with explanation. Chances 

are often cited as explanations of a certain physical phenomenon, namely the tendency of an 

outcome type of a given kind of trial to be associated with a stable relative frequency. In 

quantum mechanics, for instance, one explains the distribution of actual positions of photons 

detected at a screen by positing a chance distribution for each single photon. One says that the 

density of detected photons is greatest at this point because that is where the chance of 

detection is highest for each photon. 

To show that the causal theory of chance accounts for both of these connections 

between chance and frequency, we need first to define some terms. The standard experimental 

situation in which frequencies are discussed is when a certain type of experiment is performed 

many times. We can either suppose that the same apparatus is used for each experiment, being 

completely reset before each new trial, or that many exactly-similar sets of apparatus exist. In 

the former case the experiments are well-ordered by the times at which they occur, and in the 

latter case we shall suppose that some other well-ordering exists. Let K be the set of possible 
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outcome-types on each experiment, and F some field of subsets of K. Then the combined 

outcome of all the trials together may be represented by an outcome sequence such as s = 

<Sj , s2, s„, ...>, where each s, is a member of K. In the case where the total number of 

experiments is some finite number n, we can define the relative frequency of each member A of 

F as the number of times A occurs divided by n. Writing the relative frequency of A in s as 

f(A,s), we have that 

f(A,s) = (#A in s)/n. 

If the number of experiments is countably infinite, then we can still define/„(A,s) as the relative 

frequency of A in the first n terms of s, and then we define 

/(A,s) = lim„_^/„(A,s). 

This limit only exists for some outcome sequences, of course. In cases where the sequence 

/„(A,s) does not converge, the quantity/(A,s) is not defined. In circumstances where it is clear 

which outcome sequence is in question we shall write '/(A)' instead of '/(A,s)'. 

Now let us look at the issue of whether chance is empirically accessible. Suppose an 

experiment is performed and a certain outcome obtained, say A. If one desires to know what 

the chance of that outcome was, one can repeat the entire experiment ab ovo a very large 

number of times and record the outcome in each case. If one goes to the trouble of calculating 

the relative frequency of As in the first n trials, for every n, then it usually appears that the 

values are converging towards a limit9. The experimenter then has a high degree of confidence 

that the chance of A lies in a certain interval centred on the relative frequency of A for the entire 

9 I say "appears", since convergence is a property only infinite sequences can have, and furthermore is a "tai l 

event", depending only on the final (infinite) segment. Breiman (1968:40) defines a tail event as fol lows. "Let X j , 

X 2 , . . . be any process. A set E e a ( X ) w i l l be called a tail event i f E e o(Xn, X „ + 1 , ...), for all n." 
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class. The problem is to show that this reasoning is justified, if the causal theory of chance is 

correct. 

The reader may have noticed that the concept of relative frequency does not appear in 

Definition 3.1.1, so one may doubt that the theory can account for the fact that chances are 

empirically accessible. In this section I shall show that such fears would be unfounded. 

The first thing to realise is that, according to generally-accepted ideas about chance, a 

statement about the chance of an event is not logically equivalent to any statement which is 

purely about frequency.10 This is quite clear for frequencies in finite sequences of outcomes, 

but is also true for countably infinite sequences of trials. Consider, for instance, a fair coin 

which is flipped ten times. The chance of heads is 1/2 on each toss, but the relative frequency 

of heads may or may not be 1/2. The relative frequency of heads may take any value in the list 

0, 1/10, 2/10, 9/10, 1. If we assume that the individual trials are pairwise probabilistically 

independent,11 then using the axioms of probability we can calculate the chance of each 

possible relative frequency in this set of experiments. It turns out that the most likely frequency 

is 1/2, with a chance of about 0.25. 

Now suppose we increase the number of trials from ten to one thousand. Again, the 

relative frequency of heads could be anything from 0 to 1 in steps of 1/1000, but now there is a 

95% chance that the frequency will lie between 0.47 and 0.53. The general picture is that as the 

sequence of trials is lengthened, the chance distribution over possible frequencies tends to a 

Gaussian normal distribution, which becomes increasingly peaked around the physical chance. 

What happens then for a countably infinite sequence of experiments? 

In the infinite case, we are of course concerned with the limiting relative frequency. 

One result, known as the Strong Law of Large Numbers, states that (for our coin-tossing 

experiment) the limiting relative frequency almost surely exists and is equal to 1/2. If one 

enquires about the meaning of "almost surely", then the usual answer is that an event occurs 

1 0 I shall use 'frequency' as an abbreviation for 'relative frequency'. 

• 'The physics involved in this assumption is examined in detail in §4.4. 
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almost surely if and only if its chance is one. Using the definitions given in this thesis, 

however, this is not strictly correct. For, if the chance of this event (getting a frequency of 1/2) 

were one, then the contract [$1 if/(>7)=l/2] would be worth exactly $1.12 This is not the case, 

however, as possessing $1 dominates possessing the contract [$1 if/(/7)=l/2]. That is to say, 

there are possible states of affairs where it is better to have $ 1 than the contract, but no states of 

affairs where it is better to have the contract. 

One such state of affairs is where the outcome sequence consists entirely of tails, so that 

the relative frequency of heads is zero. No one, as far as I know, denies that this is a possible 

event, and yet in this case the contract yields nothing. What then is the contract worth, if not 

$1? Its value cannot be any real number strictly less than one, such as 1-8, for then it is easy to 

find some other contract C which is worth 1-8/2, yet [$1 if/(/7)=l/2] dominates C. But now we 

are in a fix, because there are no real numbers left! We must conclude that this contract has no 

exact value among the real numbers. It is worth more than all the values in [0, 1), but less than 

$1. 

If an event has a chance of one, then it occurs necessarily, in the nomic sense. This 

event f(H)= 1/2 is not nomically necessary, and does not have a chance of one, strictly speaking. 

Since however one is the best approximation to the chance, in some sense, we shall write 

P(f(H)=U2)~\. The statement that P(/7)=l/2 does not (together with the independence 

assumption) entail that/(//)=l/2, so it is impossible to regard the two statements as equivalent. 

As we shall see in Section 3.7.1, this fact is the Achilles' heel of all frequency theories of 

objective probability. 

The Strong Law of Large Numbers is an example of what I call a chance-chance 

statement. It is a conditional, where both the antecedent and the consequent are about chances. 

It may be expressed in the form: "if P(A) = p, then P(f(A)=p)~l". The conclusion so far about 

the link between chance and frequency is that there are no true chance-frequency statements. 

2 This is for someone who knew only £&bc. 
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That is, there is no true statement of the form: "If P(A)=p, then necessarily f(A)=p", or "If 

P(A)=p, then if an infinite sequence of trials were performed,/(A) would (necessarily) equal p", 

and so on. 

It is impossible to deny that there is a link between chance and frequency, of a kind 

which allows us to learn about chances by observing frequencies, so it is perhaps surprising that 

there are no true chance-frequency statements. Can chance-chance statements serve instead? 

My view is that they can, but only if we can also make use of Miller's Principle. It is most 

helpful here to consider finite laws of large numbers, ones of the form: "if P(A)=p, then 

P(fn(A)e [p-e, p+£]) = 1-8", where 8 and 8 depend upon n. Suppose we flip a coin 1000 times, 

and obtain /(/f)=0.51. Intuitively, this should increase our confidence in the hypothesis 

P(H)=\I2 at the expense of hypotheses like P(H)=5/6. An inference of this kind requires 

Bayes's theorem, which yields 

PK(P(H) = V HH) = 0.51) = W W = o ^ « « W W * f l ) = *>, 
* 2 PK(f(H) = 0.51) 

The crucial terms here are the ones like PK(f(H)=0.51\P(H)=l/2). It is easy to derive a 

statement like "P(f(H)=0.5l) = p" from the premise that P(H)=\/2, and so we should like to 

replace uPK(f(H)=0.5l\P(H)=l/2)" with '/?'. If we can replace epistemic probability with 

chance in this way, then there is the required modification of the epistemic probability function, 

as the most likely chances according to PK become those close to the observed relative 

frequency.13 It must be stressed that this replacement of epistemic probabilities with chances is 

all we require in order to do the calculation.14 

1 3 O f course one also needs a sufficiently uniform prior epistemic probability distribution over the possible values 

of the chance, but this is a different problem. 
1 4 Thus , for instance, Lewis (1980.106-108) has the resources to carry out this calculation, even though he does not 

endorse any particular theory of chance. 

I l l 



Such a substitution of lP' for 'PK' is, of course, licensed by Miller's Principle, as 

follows. Since P(H)=\/2 entails15 that P(/(/7)=0.51) =/?, we have: 

PK(f(H)=0.5l I P(H)=l/2) = PK(f(H)=0-5l I P(H)=\/2 & P(f(H)=0.5\) = p) 

PK(f(H)=0.5l\P(f(H)=0.5\)=p), 

since T(/(/V)=0.51) = /?' screens off 'P(H)=V2' here, as it contains everything in '?(#)= 1/2' 

relevant to PK(f(H)=0.5l). This, in turn, yields 

PK(f(H)=0.51 | P(H)=\/2) = p, by Miller's Principle. 

Thus what is required of a theory of chance, in order for chances to be empirically accessible, is 

that 

(i) The theory entails that chances are probabilities, in the formal sense, and 

(ii) The theory entails Miller's Principle. 

Now let us look at the second problem, of showing that hypotheses about chance can be 

used to explain relative frequencies, at least to some extent In §1.5.5 it was argued that to 

explain an event A one must infer A, to some degree, from a hypothesis about the causes of A. 

One must demonstrate that, given the causes of A, one should have some (fairly high) degree of 

belief that A occurs. Now suppose that a coin X is flipped a very large number of times, and in 

the course of these experiments the relative frequency of heads seems to be converging to 

somewhere around 0.41. According to the causal theory of chance, can one explain this datum 

f(H) ~ 0.41 by means of a hypothesis like PX(H) = 0-41 (on each trial)? 

1 5 O f course one must also assume independence, so we really have P£(/(/ /)=0.51 | P(H)=l/2 & independence). 
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Using Definition 3.1.1 the statement PX(H) = 0-41 means that the coin has some 

lagrangian16 £ x such that Pr(H\lx) = 0.41 (on any single trial). As we have already seen, it 

follows from this that Pr(f(H) ~ 0.41 Ux) is close to one. Thus it is clear that a hypothesis 

about lx can be used to explain the datum f(H) = 0.41, as lx is a purported cause of the datum, 

from which the datum may be inferred. 

In making a conjecture that Pr(H\lx) = 0.41, one does not say what lx actually is; nor 

does one actually make the partial inference from lx to H. One merely claims that some such lx 

exists and that the inference from lx to H (to degree 0.41) is valid. In spite of this vagueness in 

the hypothesis, however, the claim that PX(H) = 0.41 is nonetheless a statement about the cause 

of the datum f(H) ~ 0.41, and it does entail the datum (with near certainty). One can therefore 

explain an observed relative frequency using a hypothesis about a chance, although it is better 

to use a more direct hypothesis about lx if possible. 

In conclusion, we find that although the causal theory of chance does not explicitly refer 

to relative frequencies, it nonetheless accounts for the two ways in which chance and frequency 

are connected. It delivers the results that (i) chances are empirically accessible, by measuring 

relative frequencies, and (ii) hypotheses about chance may be used to explain observed relative 

frequencies. 

3.7 Frequency Theories of Probability 

There are other interpretations of the probability calculus in terms of purely physical properties, 

which may be described as frequency theories of probability. The first sophisticated 

formulation of this idea is due to Richard von Mises, but many others have followed in his 

footsteps, producing their own versions. Among these we shall consider those of Popper, 

Howson and Urbach, and Van Fraassen. 

1 6 For the sake of the example I am assuming that the coin is genuinely stochastic, and that the chance of heads is 
the same for each toss (i.e. independent of the boundary condition). 
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Frequency theories are founded upon two common observations. The first is that 

relative frequencies are, formally speaking, probabilities.17 In any outcome sequence s, for 

instance, if A and B are mutually exclusive, then f(AvB,s)=f(A,s)+f(B,s), which is an axiom of 

probability. The other axioms also hold, including even the Principle of Conditioning, as we 

can define f(A \ B) as the relative frequency of A in the sub-sequence of terms which are 

members of B. Second, there is a close link between physical probability and frequency, which 

we examined in the previous section. 

There are two basic kinds of frequency theory which, following van Fraassen (1980:181, 

190), I shall call strict frequency theories and modal frequency theories. A strict frequency 

theory, such as that proposed by Reichenbach (1949) states that the objective probability of an 

event-type is its relative frequency in the actual sequence of outcomes sa, i.e. P(A) is just/(A,sa) 

by definition. The proper response to this view seems to be as follows. It cannot be denied that 

relative frequencies among outcomes of actual experiments are objective quantities, and 

moreover that they are probabilities in the formal sense. Thus, one might well call them 

"objective probabilities". They are not, however, what we mean by physical chances, as was 

shown in §3.6. It is an essential property of chance that it does not strictly determine a unique 

relative frequency, but merely provides a chance distribution over the the various possible 

relative frequencies. In short, frequency is one thing and chance is another. 

Reichenbach cannot claim that he provides an analysis of our common notion of chance, 

although he may hold that that notion is bankrupt, and that his alternative is sufficient for the 

needs of science. In response here I would say first that the notion of chance is not bankrupt, 

since the causal theory gives a good account of it. Second, we cannot do without chances, as 

they are so deeply involved in quantum mechanics. 

1 7 This is not strictly true in the case of an infinite sequence of experiments, but I shall not pursue the matter here. 
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The second kind of frequency theory, the modal frequency theory, is far more plausible 

and has many distinguished advocates. There are many different versions of it, however, which 

we shall consider in turn. 

3.7.1 VonMises 

Von Mises's frequency theory (1928) starts with the idea of a collective. A collective is an 

infinite outcome sequence s with the following two properties. 

(i) The Axiom of Convergence: /(A,s) exists for each A in F. 

(ii) The Axiom of Randomness: If we take any subsequence s' of s, which is picked out by a 1-

1 increasing recursive function, then/(A,s') also exists and is equal to/(A,s).18 

Now let us consider some experimental set-up, and one possible outcome A for that experiment. 

The objective probability of A, which we shall write P(A), exists if and only if 

(i) this set-up would (on an infinite sequence of experiments) produce some collective or other, 

and 

(ii) any two collectives s{ and s2 which might be produced are such that /(A^^ftA^), for 

every A in F. 

If these two conditions are satisfied then we can define P(A) =/(A,s), where s is any collective 

which might be produced by the experiments. (I assume that von Mises' claim is that an 

experiment for which objective probabilities are defined necessarily produces some collective 

or other, but not necessarily any collective in particular.) 

1 8This formulation is actually due to Alonzo Church (1940). It sharpens up von Mises's original idea. 
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It is clear that this definition is in conflict with the common-sense notion of chance, as 

according to von Mises it is impossible for a fair coin, i.e. one with P(H)=\I2, to land heads 

every time in an infinite set of tosses. The term 'P(H)' is not even defined unless the coin 

necessarily generates a collective. Moreover, it is hard to see how the collective <H, H, H, ...> 

could be impossible if, on each individual trial, the outcome H is possible for that trial. It 

would seem to require that some of the experiments, at least, "know" the outcomes of other 

experiments, even though they are supposed to be carried out independently. Worse still, it is 

not just the collective <H, H, H, ...> which is excluded for a process with P(H)=l/2, but an 

uncountably infinite set of other collectives. And then, of course, the uncountably infinite set of 

non-collectives is also ruled out. On the face of it at least, and according to standard probability 

theory, each of these is individually just as possible as any one sequence in the select group of 

collectives. Let us call this problem, that frequencies do not necessarily equal probabilities, 

even in an infinite class of trials, the cardinal problem for frequency theories. 

Excluding "communication" between experimental trials, the only way to restrict the 

outcome sequence to a select group of collectives is by the outcomes, as a group, being 

determined by something or other. This idea is also extremely problematic, however, for two 

reasons. First, it would mean that the first toss is determined perhaps to land heads, the second 

heads also, the third tails, and so on, even though the experiments are supposed to be set up 

under maximally similar initial conditions. This is a contradiction, so we would have to say 

that the initial conditions vary slightly from experiment to experiment. Then, however, it is 

clear that these mysterious variations are faced with the same difficult task of guaranteeing that 

the outcome sequence is a collective with the right frequency. They cannot be "random", but 

must be rigged to follow some pre-set pattern. There must be something in the background, 

pulling the strings so to speak. 

Second, if the trials are all deterministic, then one is inclined to agree with Lewis 

(1980:117-121) that the genuine chance of heads varies from trial to trial, being either 0 or 1 in 
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each case. The number 1/2 is then some sort of "counterfeit chance", depending upon human 

ignorance. It is not determined by the experimental arrangement itself. 

This objection (that chance set-ups would not necessarily produce collectives upon 

infinite repetition, let alone collectives with the right frequencies) seems to be quite fatal to all 

modal frequency theories, so it is surprising that it is so rarely mentioned in the literature. The 

only reason I can see for ignoring it is as follows. In recent discussions of the measurement 

problem in quantum mechanics, there is much talk of two quantities being equal FAPP, i.e. For 

All Practical Purposes.19 For instance, if a density matrix is such that it is practically 

impossible to distinguish it experimentally from a classical mixture, then one says that the state 

is a classical mixture, FAPP. To many who work on the experimental end of the subject, this 

seems a completely satisfactory solution to the measurement problem. The more theoretically 

inclined, however, feel very uneasy about it. 

The situation with chance seems rather similar. For any sensible person, the distinction 

between events which are necessary and those which occur almost surely is too fine to see. If 

two propositions are equivalent almost surely then they just are equivalent, FAPP. Anyone who 

insists on a difference here is just being perverse. 

Am I being perverse? I think it is important to distinguish between practical and 

theoretical contexts. In a practical context one can normally treat an event whose probability is 

as low as 0.9999 as being certain to occur, and it would indeed be perverse to express doubt 

about an event which occurs almost surely. In a theoretical context the situation is quite 

different. It is a matter of simple logic. If two propositions are equivalent, so that one can be 

analysed as the other, then they entail one another. Therefore, since the statement "P(/T)=l/2" 

does not entail "if the experiment were repeated infinitely many times, we would necessarily 

have/(/7,s)=l/2", they are not equivalent. In theoretical contexts, a miss is as good as a mile. 

1 9 I believe this acronym was first used by Bel l (1990:33). 
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It should be noted that the cardinal problem is universally recognised with regard to 

defining objective probability as relative frequency in a finite sequence of outcomes. No one, 

for instance, defines P{H) as the relative frequency of heads which would exist in a sequence of 

1000 tosses, since there is no single relative frequency which would necessarily occur in this 

experiment. The use of an infinite experiment constitutes a 'FAPP' solution to the cardinal 

problem. The unwanted relative frequencies are ignored by making them very, very 

improbable. 

A more common objection is that von Mises's probabilities cannot be determined 

empirically. Let us call this the problem of empirical access, which is also common to all 

frequency theories. The problem is that the limit of a sequence depends only upon the infinite 

final segments, so to speak, and is entirely independent of any finite initial segment. Yet, of 

course, only finite initial segments are open to examination. More precisely, the convergence 

of the outcome sequence is what is known as a tail event,20 i.e. the limit of the sequence/n(A,s) 

is unaffected by any change in the first r terms of s, for any finite r. Thus, for any finite r, the 

first r terms of s tell us precisely nothing about the value of/(A,s).21 

Another way to express this objection is to consider what we might call deceitful 

collectives. A deceitful collective, with f(A)= 1/2 say, is one which seems to be converging on 

some other relative frequency for (say) the first billion terms. For instance, it may be 

converging quite convincingly to 3/4 in the first billion terms, but then suddenly switch and 

converge to 1/2 thereafter. Since whether or not an outcome sequence is a collective depends 

only upon its limiting behaviour, such "deceitful" sequences are perfectly good collectives. We 

may contrast deceitful collectives with honest ones, that is, ones which begin to converge to 

their final limit right from the start. Now suppose we repeat a type of experiment one billion 

times, and obtain a relative frequency which is close to 3/4. Can we take this as very good 

evidence that P{H) is close to 3/4? 

2 0 Seeno te 13. 
2 1 F o r a detailed discussion of this objection see Howson and Urbach (1993:331-337). 
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To keep things simple we shall compare two hypotheses, that P(H)=3/4 and that 

P(H)=l/2. To be fair, we shall assume that these have the same initial (epistemic) probability. 

The question is now whether this evidence of one billion trials causes the hypothesis that 

P(H)=3/4 to become much more probable than its alternative. The crucial terms in a Bayesian 

evaluation of this question are Pe(fn(H,sa)=3/4 \ P(H)=3/4) and Pe(fn(H,sa)=3/4 | P(H)=\I2). For 

long-run frequencies to be empirically accessible, the first term must be much greater than the 

second. 

Intuitively, the ratio of these two quantities depends upon the relative probabilities of 

two classes, the deceitful collectives, s', with f(H,s')= 1/2 (which converge to 3/4 in the first 

billion terms) and the honest collectives, s, with f(H,s)=3/4. All of these sequences yield the 

observed datum. Now, since the two classes of collectives, those with/(//)=1/2 and those with 

f(H)=3/4, are assumed to have equal prior probability, the question is about the relative 

probabilities of honest and deceitful collectives within classes of fixed f(H). Von Mises 

requires that, among collectives with f(H)=1/2 for instance, the class of honest sequences is 

much more probable than the class of deceitful ones. 

This difference of probability cannot be a matter of cardinal power, for both classes 

have the power of the continuum. Moreover, since von Mises has nothing in his account to 

suggest any privileged measure over the set of collectives, it is hard to see where it could come 

from. This problem of empirical significance therefore appears to be quite fatal to von Mises's 

account.22 

3.7.2 Popper 

Popper's theory of objective probability (Popper, 1959) is almost the same as that of von Mises. 

The only difference seems to be that Popper is willing to ascribe probabilities to particular 

events, rather than merely to types of event. Popper, like von Mises, defines the probability of 

2 2 H o w s o n and Urbach claim to have solved this problem, however. We w i l l discuss their "Bayesian 

reconstruction" of von Mises in §3.7.3 below. 
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an event type as the relative frequency of that event type in all the collectives which might be 

generated by an infinite repetition of the experiment. Now, for Popper, these imagined 

repetitions are supposed to be carried out under exactly similar conditions; thus, assuming/(A,s) 

differs from 0 and 1, it follows that the outcomes are irreducibly indeterministic. (If they were 

deterministic, then the same initial conditions would invariably lead to the same outcome.) 

Thus the probability is determined entirely by the experimental conditions on a single trial: 

these conditions determine the possible collectives which might be generated upon infinite 

repetition, and the collectives determine the probability. 

For this reason, Popper describes his theory as one according to which there are 

objective, single-case probabilities. These are seen as the propensity for experiments of that 

type to produce collectives of a particular relative frequency. Popper seems to be quite correct 

about this. The puzzle is why von Mises and others insist that probability is irreducibly a 

property of the whole collective, and cannot be attached to a single event. 

Howson and Urbach (1993:340) do give an argument, on von Mises's behalf, as to why 

probabilities are not defined for a single experiment. They point out that, in a coin tossing 

experiment for example, there are many causes which combine to produce the outcome in a 

single case. In addition to the intrinsic properties of the coin there are variations in air density, 

convection currents, the precise way in which the coin is released, and so on. This is quite true, 

of course. They then assume, however, that the outcome of a toss is uniquely determined by a 

set of parameters qx, q2, qk. This leads to a serious problem for Popper, as it means that an 

exact repetition of an experiment will yield the same result. It then follows that a single 

experiment can only define one of the two collectives <T, T, T, ...> and <H, H, H, ...>, and so 

all single-case probabilities are either 0 or 1. 

The way to avoid this unwelcome triviality, Howson and Urbach contend, is to give up 

the idea of single-case probability, but it is not clear to me how one is to draw this conclusion. 

A more attractive response for Popper is surely to deny the assumption of determinism present 

in the argument. After all, any probabilities one defines for a deterministic process cannot be 
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genuine chances. Howson and Urbach consider this response, but are wary of basing a theory 

of physical probability upon the metaphysical assumption of indeterminism. They explain that 

"Our objective is to find a theory of objective probability that will fit in with the practice of 

statistics" (1993:341), and of course the practice of statistics will continue regardless of 

whether or not the world turns out to be irreducibly stochastic. 

It seems to me that the view that objective probabilities are not defined for a single 

experiment is equivalent to saying that physical probabilities do not belong to complete 

descriptions of an experiment. (A single, concrete, instance of an experiment type defines an 

exact description.) Yet if probabilities do not belong to complete descriptions of experimental 

conditions, then surely the only alternative is to attach them to incomplete specifications. Now, 

if an incomplete description is needed, then question arises as to how incomplete it will be, and 

in which respects. In other words, one is faced with the old "problem of the choice of reference 

class" (1993:340), which Howson and Urbach are anxious to avoid. 

It is quite unclear to me how an appeal to the collective is supposed to help here. The 

collective23, after all, is the very thing this incomplete description is supposed to specify! At 

best one might refer to some set of more than one actual experiments, but this would surely be 

no better than a single trial at defining the exact conditions for an infinite sequence of trials. 

To summarise, it seems that the only way to avoid the problem of the choice of 

reference class is to say that each experiment is performed with maximally similar initial 

conditions, as this leaves one with no choice to make. Of course, for a deterministic system this 

means that the probabilities defined will be trivial. 

2 3 M o r e precisely, its l imit ing relative frequency. 
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3.7.3 Howson and Urbach 

We now return to the problem of empirical access, which Howson and Urbach claim to have 

solved on behalf of von Mises. The basis of their position is a version of Miller's Principle, for 

which they offer a proof. 

Their version of Miller's Principle (1993:345), applied to the case of a coin-tossing 

experiment, is that PK(H \f(H)=p) = p. In other words, if you know that a certain coin produces 

a collective with frequency p (w.r.t. the property heads), and not too much else that is relevant, 

then your epistemic probability for heads (on any particular trial) should also be p. More 

briefly, knowledge of the frequency licenses a numerically equivalent degree of belief. Since 

Colin Howson is responsible for the chapter in which this principle appears, I shall refer to it as 

Howson's Principle. 

If Howson's Principle is true, then there certainly is no problem of empirical access for 

von Mises. The Principle provides exactly the probability measure required, in other words, to 

rule out deceitful collectives as massively improbable compared to their honest competitors. It 

says that our beliefs about finite initial segments of outcome sequences should depend strongly 

upon what we suppose to happen in the limit. This is counter-intuitive, in view of the fact that 

the limit of the sequence fn(H,s) is entirely independent of the first r terms of s, in the sense that 

the initial segment of s can be altered at will without any effect on/(/Y,s). We should therefore 

examine the argument for Howson's Principle. (I have altered the terminology of this to fit 

with my Chapter 2, but the substance is the same.) 

Howson considers the situation where a coin is tossed a certain number of times to 

produce an outcome sequence s, where each term is H or T, and a person X is given an 

opportunity to buy the contract [$1 if s:=H]. X is given only the information that, if the tosses 

were continued indefinitely, the outcomes would constitute a collective with f(H)=p. Suppose 

that X considers some amount $p' to be a fair price for this contract. X should then also be 

willing to pay $p' for the contract [$1 if s2=H], and indeed for any contract of the form 
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[$1 if sr=H]. Let us then suppose X is willing, as he should be, to buy all of these contracts. In 

this case, after n trials in which m had the outcome heads, his net gain is m-np', i.e. n(m/n - p'). 

Now since the limit of m/n as n tends to infinity is p, if p'>p then there is some n0 such that X 

has made a loss after n0 trials, and this loss is never recovered thereafter. It follows therefore 

that $p' is too much to pay for the contract, since it leads X to a purchase which is a certain loss. 

By a similar argument anything less than $p would be too little, and so $p is the fair price. 

Thus, by the definition of epistemic probability, PK(H | P(H)=p)=p, which is the required result. 

The argument seems to consider the case where X buys all the contracts [$1 if s=H], for 

every r, at the price $p' each. X then loses, and gains, infinite amounts of money. These 

quantities are not comparable, so it makes no sense to ask whether X loses or gains overall. In 

the case where X buys all the contracts, therefore, he is not obviously irrational, and so the 

value p' is not obviously incorrect. But wait a minute! Howson showed, apparently contrary to 

this, that after some finite number n0 of trials X "goes into the red" and never comes out! This 

reasoning seems to indicate that the infinite losses and gains, taken together, should be 

considered an overall loss. How can there be this conflict? 

The apparent contradiction is due to value being a cardinal quantity, whereas the 

limiting relative frequency depends essentially on the ordering of the outcomes. Let us suppose 

p - 1 / 2 , and imagine the losses and gains to be measured in gold coins. Then each losing 

contract costs X one coin, and each winning contract pays out one coin. It may help to think of 

each coin being marked with the numeral for r, if it is concerned with the r t h trial, and suppose 

that each coin is only used once. After all is finished, therefore, there are two piles of coins, 

one of coins lost and the other of coins gained. These two piles of coins are entirely 

independent of how the trials are ordered. Any re-ordering of the trials may re-order the piles, 

but exactly the same coins, marked with the same numerals, will be present. Wealth is a 

cardinal quantity; it does not depend upon ordering. 

On the other hand, a re-ordering of the trials may have a very large effect on f(H). After 

re-ordering, f(H) may have any value between 0 and 1, or indeed no value at all, as the sequence 
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fn(H) may no longer converge. Thus, the fact that the sequence nimln - p') goes permanently 

negative at some point does not mean that X suffers an overall loss. By a well-chosen 

reordering of the trials, this sequence will instead go permanently positive at some finite point, 

but still the piles of coins are the same! Wealth cannot be measured by anything which is 

sensitive to ordering in this way. 

As I describe the situation, X buys all these contracts as a bundle, i.e. "all at once", so to 

speak. In Howson's argument, however, it seems rather that X buys them "one at a time", each 

one just before the coin is tossed, although of course X is not permitted to see the outcomes. (If 

X gets to see the outcome of each bet before deciding whether to place the next, then he has 

more information about the outcomes than merely that they are a collective with frequency p.) I 

do not see, however, how this difference of presentation makes any concrete difference, 

however. In both cases X decides to buy all the contracts, and makes certain gains and losses. 

There remains this fact that, for some finite n0, X will dip into the red at n 0 and never 

return to the black. Although this is a logical consequence of the fact that f(H)=p, i.e. it follows 

from a fact about the infinite tail of the outcome sequence, it looks rather like a finite 

consequence. Indeed, I think the initial plausibility of Howson's argument stems from this 

equivocation. The illusion can be improved if we suppose that all the coin tossing is done in 

advance, with the results kept secret, so that we are dealing with a particular collective s. There 

is now some definite number k, (let us say 865 for definiteness) such that X's final slide into 

ruin begins at k. X even knows that there is such a k, although he does not know the actual 

value. One may feel that it must be possible to construct some irrational bet for X which is 

forced upon him by his being willing to pay $p' for [$1 if s=H]. 

If buying all these contracts is not irrational, as the gains and losses go to infinity and 

become incomparable, then perhaps buying some finite initial segment is? It does not take 

much thought, however, to see that this is not the case. If X buys all the contracts up to r=n say, 

then whatever the value of n it could still be less than k, for all X knows. The only way to 

ensure that X keeps buying contracts after k is to make him buy them all. 
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It is quite clear that Howson's Principle cannot be justified using an argument of this 

type, so his attempt to rehabilitate von Mises's theory fails. Also, even if Howson did solve the 

problem of empirical access, the cardinal problem of frequency theories would remain. 

3.7.4 Van Fraassen 

Van Fraassen's frequency theory (1980:190-196) is essentially the same that of von Mises and 

Popper24, although there are some improvements in matters of detail. He defines a good family 

as a class of collectives with certain properties. These restrictions on the class of collectives 

used in the definition of probability mean that the probability function defined is a countably 

additive measure. These refinements do not, of course, have any impact on the two problems 

which face frequency theories, so let us look at what van Fraassen has to say about them. 

Van Fraassen does not mention the cardinal problem for frequency theories. His 

concern is to define a set of collectives which generate relative frequencies with the right 

formal properties. He appears not to notice that the outcome sequences excluded from the 

"good family" are all quite possible, in any reasonable sense. It is hard to see what he might be 

thinking. 

There is however an attempt to deal with the problem of empirical access. (1980:194-

196) Van Fraassen's basic idea is to regard a finite sequence of actual outcomes as a "random 

sample" from one of the collectives in the good family. He likens this random sampling to the 

random selection of marbles from a finite barrel where, as is well known, the proportion of 

marbles with a given property A determines a sampling distribution for A. Thus, examination 

of a finite set of randomly-selected marbles gives useful information about the proportion of A 

in the barrel. 

2 4 A t least, as I read Popper. Van Fraassen somehow interprets Popper as holding that there is a single virtual 

sequence which would arise in an infinite sequence of trials. This interpretation makes Popper inconsistent of 

course, as he is committed also to indeterminism. 
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Van Fraassen seems willing to consider cases where the actual set of experiments is 

infinite, even though we only know the outcomes for a finite number of them. It seems like a 

good idea to discuss his response to the problem of empirical access in this context, as it means 

we are dealing with a particular collective s. For definiteness, let us suppose that we are 

dealing with tosses of a fair coin, so that f(H,s)= 1/2. Van Fraassen then regards the outcome of 

a single toss as a random selection from s. Since, in a manner of speaking, one half of the terms 

in s are heads, it seems that the probability of heads on a single toss is also one half. 

What kind of probability is this? Is it physical or epistemic? It surely cannot be 

physical, for van Fraassen has already given an account of physical probability, and it did not 

involve the notion of random selection. So it must be epistemic probability; we have something 

rather like Howson's Principle, in that the epistemic probability of heads (presumably given 

that f(H,s)= 1/2) is one half on each toss. We found that Howson's argument for his principle 

was fallacious, so we should see if van Fraassen has anything better. 

Unfortunately there is no argument provided. Instead van Fraassen merely tries to 

convey "...an intuitive idea of how the theoretically predicted frequencies are derived" 

(1980:195). The intuitive idea is that we regard the collective s as a barrel of marbles. Now, 

everyone agrees that if a barrel of marbles has a known relative frequency of 1/2 black marbles, 

then the epistemic probability of an arbitrary marble being black is also 1/2. Thus, it seems, the 

epistemic probability that an arbitrary term in s is H is then just the relative frequency of H in s. 

We should note first that the relative frequency of s depends essentially on the ordering 

of terms, as mentioned before. The usual idea of a "random element" of a set S, in the 

epistemic sense, is of an object whose only known property is that it is a member of S. Thus, if 

a random term in s has a probability 1/2 of being heads, then the ordering of s must be given. If 

this is so, however, then it is quite unclear how it can be shown that Pe(st=H |/(/7,s)=l/2) = 1/2. 

In the case of a finite barrel of marbles, one uses the symmetry between the marbles in the barrel 

to argue that each marble has the same epistemic probability of being the selected one; the 

result then follows by the addition axiom of probability. If the ordering of s is known, however, 
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as it must be for a relative frequency to be defined, then this destroys the symmetry between the 

terms. I have no idea how Howson's Principle can be derived along these lines, therefore. 

Judging from his cheerful talk of "standard statistical calculation", such as in the y} test, van 

Fraassen seems unaware of the theoretical difficulties involved here. 

3.7.5 Conclusion 

It is perhaps surprising that frequency theories have such difficulty getting the right link 

between probability and frequency, since probability on these accounts is defined as frequency! 

On these accounts the connection between probability and frequency is both too tight and too 

loose at the same time - too tight for infinite outcome sequences, and too loose for finite ones. 

It is too tight in the infinite case, since it makes limiting relative frequencies necessarily equal 

to chances, which is overly strong. This is the cardinal problem. It is too loose in the finite 

case, as for a finite outcome sequence s the limiting relative frequency is irrelevant, and it does 

not provide an epistemic probability for s. This is the problem of empirical access. 

Howson perceives that to solve the problem of empirical access one must be able to 

derive epistemic probabilities over finite sequences of actual outcomes from knowledge of the 

limiting relative frequency. Unfortunately, however, the principle required is very hard to 

justify, due to convergence being a tail event as well as sensitive to ordering. Limiting relative 

frequencies in infinite outcome sequences are used instead of real frequencies in finite outcome 

sequences as a 'FAPP' solution to the cardinal problem, but even if this were satisfactory in 

itself (which it is not) it creates another problem which is just as severe. The relative frequency 

is then pushed infinitely far away, out to the limit, making it empirically irrelevant. 

3.8 Cond i t i ona l Chances 

Since, according to the causal theory, the chance function is just the logical probability 

function, given certain information, it may be conditioned in the usual way. That is to say, 
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conditioning has its usual meaning, in terms of updating beliefs in light of new information, and 

so the Principle of Conditioning is satisfied. In general we have: PX(A \ B) = 

Pr(A | £x&bcx & B). 

Intuitively it seems that conditional chances ought to be meaningful. It validates such 

reasonable-sounding sentences as: "the chance that the gun will fire, given that the trigger is 

pulled, is 0.97", since we can interpret "given" in the usual, epistemic way, as the addition of 

extra information. There is no need, in general, even to restrict such conditioning to events 

which occur in the past. The term P(A \ B) is perfectly meaningful even if the event A occurs 

before event B. 

As an example of this, let us consider an experimental arrangement which has a 

radioactive source encased in such a way that particles can only escape in one direction. A 

short distance away there is a detector which clicks each time a particle is registered. (To keep 

things simple, we shall suppose that time is discrete.) The detector is imperfect in that each 

time a particle arrives it has only a 95% chance of firing. Also, at any time when no particle 

arrives, there is a 1% chance of the detector firing.25 At each time, the chance of a particle 

being emitted is 0.2. Times tx and t2 are such that if a particle is emitted by the source at tx then 

it necessarily arrives at the detector at t2. Let Ex be the event that a particle is emitted at tx, and 

let F2 be the event that the detector fires at t2, whether or not a particle was present. One would 

normally have no qualms about calculating the following probabilities: 

P(EX) = 0.2 

P(F2\EX) = 0.95 

P(F2\^EX) = 0.01 

P{F2) = 0.19 + 0.008 = 0.198 

P(EX\F2) = 0.19/0.198 = 0.96 (approx.). 

2 5 F o r simplicity, I am assuming that time is discrete. 
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The question is what meaning can be given to the conditional chances. Some26 have taken the 

"given", or "conditional upon" as primitive, and incapable of further explication, but within the 

causal theory of chance we can do better. As stated above, P(EX \ F2) for example is defined as 

Pr(Ex | IScbc & F2). There is no reason why one should be restricted to conditioning chances on 

past events. This is just as well, since P(E{ \ F2) seems to be a meaningful term. It is the chance 

that a particle is present, given that the detector fires. It can even be measured empirically, if 

there is some way to determine when particles are emitted from the source. One simply looks 

at the proportion of cases, among the class of detector firings, where particles are emitted the 

right amount of time before that firing. 

It may be wondered why we cannot define P(A | B) simply as P(A&B)/P(B). There are 

two reasons for this. First, and less importantly, this definition would be rather narrow as it 

would only apply to cases where P(B) exists and is non-zero. The notion of conditional 

probability is valid in a much wider class of cases than this.27 Secondly, and more importantly, 

this merely formal definition does not provide any intuitive meaning for P(A \ B), and so the 

definition would be useless. One could define many such symbols, such as P(A*B)= 

P(AvB)/P(A), P(A#B) = P(A) + P(A&B), and so on, but what for? What usually happens when 

such formal definitions are provided is that an intuitive meaning is smuggled in by the use of 

English words like "given", "conditional upon" and so on. This is cheating, as we require a 

proof that the formal and intuitive meanings are equivalent. 

2 6 See for instance McCurdy (1996). 
2 7 T h i s point is argued in §2.6. 
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4. Classical Stochastic Mechanics 

As stated in Chapter 1, I think an account of physical chance should prove its mettle by being 

useful in stochastic physics. Physicists do not often say that, in order to understand some aspect 

of a physical theory, one must first grasp von Mises' or Popper's interpretation of probability! 

An analysis of chance which does at least engage certain problems in physics is surely 

preferable to one that is independent of them. The remaining chapters are an attempt to show 

that the causal theory of chance is indeed useful, if not indispensable, in understanding some 

aspects of physical theory. 

In this chapter I shall use the causal theory of chance to develop a very general system 

of mechanics. Since the formalism is fundamentally probabilistic, I call it classical stochastic 

mechanics (CSM). I use the word classical since, as we shall see later, it is provably 

inconsistent with quantum mechanics, and thus is only valid in the classical limit, i.e. for 

"large" systems, in some sense. 

4.1 What is CSM Good For? 

The main purpose of developing CSM in this thesis is to act as a foundation for the later 

chapters on quantum mechanics. A comparison with relativity theory may be helpful here. In 

one of Einstein's presentations of his theory of relativity (Einstein, 1922) he begins, perhaps 

surprisingly, with a chapter laying out Newtonian kinematics and dynamics. Why does he do 

this, given that Newton's theory is already well understood? The point is that he develops the 

old theory in a different, and much more general, framework. Instead of starting with space and 

time as separate structures, for example, which effectively rules out the Lorentz tranformation 

of coordinates, he begins with a unified structure of spacetime coordinates. When the 

Newtonian theory is expressed in this way, the arbitrary assumptions involved become 

apparent, instead of being hidden. The Galilean transform, for instance, now appears to be 
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rather arbitrary, in acting on only the spatial coordinates. The overall effect of presenting the 

familiar in a novel way is to broaden the mind, and particularly the imagination, to new 

possibilities. 

In my view, to feel at home with quantum mechanics requires a similar broadening of 

the imagination, the acquisition of new concepts. The easiest way to introduce these, I believe, 

is to follow Einstein's method, and present the familiar concepts of stochastic physics within a 

more general framework. We will then be in a position to see the arbitrary assumptions 

involved, and consider alternatives. The most difficult assumption to drop is an unconscious 

assumption. 

The opportunity to develop a general framework for stochastic mechanics is provided by 

the causal theory of chance. This theory enables one to define some concepts which are usually 

taken to be primitive, and evaluate some claims which are normally treated as axioms. Apart 

from the concept of chance itself, one is able to give a detailed analysis of probabilistic 

independence, and also the notion of a boundary condition. The claims that are provable 

include: 

(i) Causal independence implies probabilistic independence. 

(ii) Traces of an event may succeed, but cannot precede, that event. 

(iii) Forward, but not backward, transition probabilities are lawlike and time independent. 

(iv) Reichenbach's Common Cause Principle holds. 

(v) Entropy tends to increase. 

CSM is of course related to other stochastic approaches to mechanics, and these 

connections will be spelled out as we go along. The basic difference, however, is that CSM is 

to be used for theoretical rather than practical purposes. As an analogy, consider the difference 

between a formal system used to construct proofs in its object language, and one used to prove 

mathematical results (in the metalanguage) about formal systems. The former will be more 
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complex, containing many rules of inference to facilitate concise reasoning, as well as syntactic 

rules permitting the omission of brackets, and so on. A formal system used as an object about 

which theorems are proved, however, will be "stripped down" as far as possible. The number 

of connectives, quantifiers, rules of inference, etc. will be minimised for the sake of simplicity. 

4.2 The Law Function 

A stochastic system, X, is modelled by a stochastic process {X (0} whose range is Hx, the class 

of possible histories for X. 1 The proposition lx, which was introduced in §1.3.2, is called the 

generalised lagrangian of X, and is a maximal description of X's dynamical nature. A possible 

history is a maximal description of the actual behaviour of the system which is consistent with 

£ x , so that lx determines Hx. Each possible history describes the system in the same set of 

times Tx.
2 Possible histories of a system will be denoted by bold lower-case letters, such as x. 

Recall from §1.5.4 that the possible history which happens to be the actual history is still an 

abstract object. It is not identical to the concrete history, but is the best representation of the 

concrete history. 

We can now re-state the definition of chance from the previous chapter using the 

language of stochastic processes. It is that PX(X=x) = Pr(X=x \ £x&bcx), where x is a possible 

history of X and bcx is the boundary condition for X. We will usually write 'Px(xY in place of 

iPX(X=xy for brevity. 

CSM is derived from five postulates concerning the nature of real systems. The first of 

these is as follows. 

' i n this chapter we are only concerned with chance distributions for random vectors and variables, so there is no 

need to specify a sample space. The definition of a random variable as a P-measurable function D.—>S is just a 

mathematical nicety; terms like P{X=x) are unambiguous even i f Q is unspecified. (Think of CI as the class of all 

possible worlds, i f you wi l l . ) 
2 Note that I assume a "B-series", or "block universe" view of time, where each time is the present f rom its own 

point o f view. (See McTaggart (1908).) I can make no sense of the idea that time f lows, or that the present moves, 

or that the present has a special metaphysical status. 
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CSM1 The chance of a history x of X does not depend on the boundary condition be 

for X, but only on whether or not JC satisifies be. In other words, if bc{ and bc2 

are two possible boundary conditions for X, and x satisfies both of them, then 

Pr(X=x | £x&bc{) = Pr(X=x \ £x&bc2). 

C S M 1 gives rise to a notion of dynamical facility, which is a generalisation of the idea of 

dynamical possibility that one has in deterministic mechanics. Whereas dynamical possibility 

is a bivalent quantity, having only the values possible and impossible, the dynamical facility of 

a history make take any one of a continuous range of values. Dynamical facilities are given by 

a measure that I call the law function, which is defined as follows. 

Definition 4.2.1 The law function maps each history x of X to the chance x has if it 

satisfies the boundary condition. In other words, L^x) = 

Pr(X=x | £x & be), where be is any boundary condition which x satisfies. 

The law function is thus similar to the chance function, but there is an important difference. 

The law function for X is determined entirely by £ x , the generalised lagrangian for X, and is 

independent of the actual boundary condition. Consider, for instance, a history x which is 

inconsistent with the actual boundary condition bcx. The chance of x is zero, since from bcx 

we can infer with certainty that JC is not the actual history, yet the law value of x will not be 

zero, in general. We may express the relation between Px(x) and L^x) as follows: 

f L v (x) if x satisfies the boundary condition 

[0 otherwise. 
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It is clear that exists if and only if CSM1 holds, since if different boundary 

conditions consistent with x give rise to different values of Px(x), then there is no such thing as 

the chance x has for all boundary conditions it satisfies. Why do we bother to define L\, 

however, and why call it the "law" function? The first point to make, in answering these 

questions, is that for a deterministic system the law function is equivalent to the equation of 

motion. This is best explained with an example. Consider a classical particle X in one 

dimension, whose equation of motion is: 

Note that CSM 1 is satisfied here, as any two boundary conditions consistent with x give it the 

same chance (either 0 or 1, depending upon whether x satisfies (1).) This equation defines a 

law function as follows. If a history x(t) satisfies (1), then L^ix) = 1; if JC does not satisfy (1), 

then LX(JC) = 0. In general, assigns the value 1 to each dynamically possible history, and 0 to 

each impossible history. A deterministic equation of motion, of course, is satisfied by a history 

if and only if it is dynamically possible, so that it contains the same information about the 

histories as L^. Equations of motion are considered to be laws, of course. 

Does a stochastic equation of motion also satisfy CSM1, and define a law function? It 

does, as will be explained with another example. Consider a particle X(t) in one-dimensional 

Brownian motion, that is buffeted by a random force F(t), due to collisions with other particles. 

If a is a friction coefficient that depends on the viscosity of the fluid, and Y(t) is the particle 

velocity, then the particle can be modelled by Langevin's equation:3 

(D 

in 
dY(t) 

dt = - a V ( 0 + F(f). (2) 

3See Snyder (1975: 186-7). 
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What is the law value of a particular history4 v(t), according to this equation? Let fv(t) be the 

forcing function which, together with v(r), satisfies equation (2). /v(f), if it exists, is assigned a 

probability by the stochastic process F(f). This probability, p say, is also the law value of v(t). 

It is the physical chance of v(t), if it satisfies the boundary condition. Note that the chance of 

v(t) does not depend on the boundary condition as such, according to equation (2), but only on 

whether the boundary condition is satisfied. 

Other stochastic equations of motion, such as the Fokker-Planck equation5, can also be 

expressed as a law function. These equations all have the property expressed in CSM I, that the 

chance of a history does not depend upon the specific boundary condition applied, but only on 

whether or not the boundary condition is satisfied. Applying a boundary condition to a 

stochastic equation of motion, one obtains a chance distribution over the class of histories, and 

so the stochastic differential equation does the same job as the law function. The law function 

gives far less insight than a differential equation into the dynamics of a system, of course, as the 

individual terms of an equation can be given individual physical interpretations. Since we do 

not consider any particular systems in this chapter, however, this is not a handicap. Moreover, 

the law function has the advantage that we do not have to specify the members of HX - they 

need not even be mathematical functions. 

As stated above, the law function is a measure of the "dynamical facility" of a possible 

history. If a history has law value 0, for example, then it has no dynamical facility at all - the 

system simply cannot follow that trajectory. A law value of 1, on the other hand, represents 

perfect dynamical facility. Once that trajectory has been embarked upon, the system will 

necessarily follow it all the way. In a stochastic system, the dynamical facility of a history will 

lie somewhere in between these extremes. 

4 F o r simplicity, I am assuming that the law function assigns non-zero measure even to single histories, although in 

general we must of course deal wi th Borel classes of histories. 
5See Gardiner (1983:117-174). 
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It is useful to have a measure which is determined by £ x alone. Many properties of 

stochastic systems are independent of the boundary condition. These properties correspond to 

rather simple arithmetical relations between law values, and more complex ones between 

chances, as one would expect. We shall see, for example, that the Markov property can be 

expressed as a very simple constraint on L. 

In the above discussion I have assumed that the law function is defined on individual 

histories but in general, like any measure, it is defined on classes of histories. This is not a 

serious complication, as we can modify Definition 4.1.1 so that L^C) = Pr(Xe C \ £x & be), 

where every history in C satisfies be. This defines on an algebra of rectangles, and then we 

use the Caratheodory technique6 to extend to a c-algebra. To specify the details of this 

construction would require some specific assumptions about Hx, the class of possible histories. 

In a theoretical work such detail is surely unnecessary. Since the existence of on a o-field of 

subsets of Hx presents no more difficulty than the existence of a normalised measure such as 

Px, there is no reason to suppose that any problem will arise here. 

4.3 Relevance and Correlation 

Before we can consider the dynamics of composite systems, we must understand some basic 

facts about relevance and correlation. This work is foundational to the major problem 

investigated in this chapter and the next, namely how to understand correlation with respect to 

chance. In this section we shall define all the necessary concepts, lay down some postulates and 

prove some useful theorems. 

According to the causal theory of chance, relevance and correlation are, at bottom, the 

same relation. This is counter-intuitive, since 'relevance' is associated with epistemology and 

6See Breiman (1968:393). 
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'correlation' with physics, but will be argued for. Let us begin by defining epistemic relevance 

in the standard way. 

4.3.1 Definitions (i) A is relevant to B within epistemic state K iff PK(B\A) # PK(B). 

(ii) A is positively (negatively) relevant to B iff PK(B\A) > (<) PK(B). 

For the first definition, the probabilities are intervals in general, and single values only 

as a special case. Thus, for example, if PK(B | A) = [0.1, 0.4] and PK(B) = [0.1, 0.3), then A is 

relevant to B. Intuitively, A is relevant to B within K just in case, for someone with epistemic 

state K, learning that A is true makes some kind of difference to their attitude to B. 

4.3.2 Theorems (i) Relevance is a symmetric relation; 

(ii) If A, B are mutually irrelevant, then PK(A8cB) = PK(A)PK(B). 

The proofs of these are trivial. Mutually irrelevant propositions are sometimes described as 

'independent'. To avoid confusion, however, I shall reserve the term 'independent' for causal 

independence, i.e. non-interaction. 

The term 'correlation', although it is usually reserved for physical contexts, has a purely 

formal definition. In fact, the definition of correlation is formally identical to the one given 

above for relevance. The difference is that the term 'correlation' is rarely (if ever) used where 

the probability function in question is an epistemic probability. For a correlation, the 

normalised measure must be either physical chance or relative frequency. There are thus two 

types of correlation, which we shall call correlation with respect to chance and frequency 

correlation. These two are quite distinct, although one may be evidence for the other. 

Frequency correlations are the kind that can be measured directly, by counting. They hold, of 

course, not between singular propositions like "Jim is a surgeon" and "Jim is wealthy", but 

rather between properties, such as being a surgeon and being wealthy. 
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Frequency correlations are often good evidence for a correlation with respect to chance. 

Suppose there is a random number generator which produces numbers between 1 and 20, 

inclusively. After (say) a hundred numbers have been picked, we observe that there is a 

positive frequency correlation between a number thus produced being even, and its being 

greater than 10. That is, the proportion of even numbers among those greater than 10 is higher 

than their proportion among numbers less than 10. This does not guarantee, but is some 

evidence for, a correlation with respect to chance for these two properties. The correlation with 

respect to chance, however, applies at the level of each individual trial rather than the reference 

class of 100 trials. 

The frequency correlation does not entail a correlation with respect to chance, since the 

absence of a correlation with respect to chance is perfectly consistent with there being a 

frequency correlation - the frequency correlation may be, as one says, due to chance. See how 

unfortunate that expression is, from my point of view! A frequency correlation which is "due 

merely to chance" is precisely one that is not associated with any correlation with respect to 

chance! The expression seems to derive from the ancient notion that some events are caused by 

a being called "Chance", an entity rather like Fate, Destiny or Providence. Alternatively, it may 

arise from the idea that some events have causes, and others do not. An uncaused event is said 

to occur by chance, so that one might ask: "Was it caused, or did it just occur by chance?". As I 

have argued in Chapter One, both of these notions are deeply erroneous and should be 

eliminated. 

I will sometimes use the term chance correlation as a synonym for correlation with 

respect to chance, for convenience. I hope that this will not cause any confusion of the kind 

discussed in the previous paragraph. 

When is one proposition relevant to another? We will not answer this question in 

general, but only consider the case of two propositions which are about separate systems, which 

we call X and Y. X and Y are separate in the sense that they are entirely disjoint, having no 
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common part, yet they need not be causally isolated from one another. The Earth and the Sun, 

for instance, are separate systems, yet they interact in various ways. 

In order to talk of two systems X and Y being correlated, with respect to chance, we 

need to compare the chance functions for X and for Y with some sort of joint chance function 

for X and Y together. This joint chance function is most naturally and conveniently identified 

with the chance function of a third system, namely the composite system which consists of X 

and Y together (and nothing else). We thus require that, for every pair of system X and Y, there 

exists a composite system <X,Y>. The composite system need not have any essential unity or 

cohesion - it may be an arbitrary collection of spatially-distant systems. It is designated a 

"system" simply because it may be treated as a system in the formalism, i.e. it has its own 

lagrangian and boundary condition. Note also that <X,Y> is a concrete object, and thus quite 

distinct from the class {X,Y}. There is no difference, for example, between « W , X > , Y> and 

<W, < X , Y » . The second postulate of CSM is therefore as follows. 

CSM2 If X and Y are systems, then so is the collection of X and Y, which we write 

<X,Y>. Thus <X,Y> has its own lagrangian and boundary condition. 

If we call the collection of all physical systems the cosmos, then it should be noted that CSM2 

entails that the cosmos is a physical system. At this stage we deliberately do not specify which 

objects count as systems in the first place, to keep things as general as possible. 

The basic postulate concerning relevance is as follows: 

4.3.3 Postulate If X and Y are separate systems, and A x , A Y are propositions about X and 

Y respectively, then A x , A Y are mutually irrelevant within K0J 

1K0 is the state of maximal ignorance, defined in §2.2.2. 
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As noted in Chapter Two, terms like Pr(A \ O) are generally undefined unless either A or —A is 

a necessary truth. That is, there is no single value which is the correct degree of belief in A, 

determined by rationality alone, but there is always an interval of permitted degrees of belief, 

even if it is only (0,1). Moreover, according to Definition 4.3.1, relevance is defined in terms 

of interval probabilities, with single-point probabilities merely as a special case. A x and A Y are 

mutually irrelevant within K0 just in case Pr(Ax \ T) and Pr(Ax | AY) are the same interval. 

Postulate 4.3.3 entails that, if A x is relevant to A Y within some epistemic state K, then K 

contains some knowledge of the systems X and Y. The question now before us is: What 

general character must K have in order for A x to be relevant to AY? The following theorem 

helps us to answer this question. 

4.3.4 Theorem If K contains knowledge of X only, then A x is irrelevant to A Y within K. 

Proof Suppose K consists only of the proposition Bx concerning X. Then PK(AY \ Ax) = 

Pr(AY | A x & Bx). But A x & Bx is a proposition about X alone, and thus by Postulate 4.3.3 we 

have that Pr(AY \ Ax & Bx) = Pr(AY \ T). Moreover, by the same reasoning, PK(AY) = Pr(AY \ O), 

and so we have PK(AY | A x ) = PK(AY), which is the result.B 

By symmetry it is clear that, for A x to be relevant to A Y within K, K must not merely contain 

information about Y. We see therefore that K must contain information about both X and Y. 

This information cannot in the form of two separate propositions, however, one about X and the 

other about Y, as the following theorem shows. 

4.3.5 Theorem If K consists of Bx and 5Y, concerning X and Y respectively, then A x is 

irrelevant to A Y within K. 
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Proof 

PK{AY Ax) - Pr(AY\Ax&(Bx&BY)) 

Pr(AY\(Ax&Bx)&BY) 

R( AY&BY | AX&BX , BY | AX&BX ) 

Now, PK(AY) = 

R{ AY&BY , BY). 

Pr(AY\Bx&BY) 

R(AY&BY | BX,BY | Bx) 

R( AY&BY , BY). 

Thus P^(AY U x) P^Ay), as required.* 

4.3.6 Definition Let 5< X Y > be a proposition about <X,Y>. Then {5<XY>}X is the 

maximal proposition about X that is logically entailed by B<XY>. 

4.3.7 Definition A proposition B<x Y > concerning X and Y is said to befactorisable just in 

case it is equivalent to the conjunction Bx & BY, where Bx = {B<x Y>}X 

and5Y= {5<XY>}Y-

The propositions Bx and BY may be considered "factors" of B<XY> since truth-functional 

conjunction is sometimes called the logical product. Indeed, if we represent The True by 1 and 

The False by 0, then conjunction is multiplication. Note that B<XY> is only considered 

factorisable if each of its factors is only about one system. 

4.3.8 Corollary If Kconsists of B<XY> and A x is relevant to A Y within K, then B<XY> is 

not factorisable. 
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Proof Immediate from Theorem 4.3.5.B 

What are some examples of non-factorisable propositions about X and Y? Conditionals are 

perhaps the most obvious kind. The statement "If X=l then Y=l", for instance, cannot be 

factorised. The same holds for disjunctions, of course. A more interesting class of examples is 

where K contains information about causal interaction, such as "X interacts with Y". It is clear 

that this cannot be factorised (it is not equivalent to, for instance, "X interacts with something 

and Y interacts with something"). 

If an epistemic state K does not factorise with respect to the two systems X and Y it 

concerns, then we might say that the knowledge K of the two systems is entangled* 

Alternatively we might say that the knowledge K is non-local, as it irreducibly concerns both 

systems together, which may be far apart in spacetime. 

It is important to realise that the converse of Corollary 4.3.8 does not hold, as not every 

non-factorisable proposition gives rise to relevance. Consider, for instance, the information that 

X does not interact with Y. This cannot be factorised, yet intuitively at least it does not create 

an inferential "bridge" between X and Y; i.e. knowing that X and Y do not interact does not 

enable one to make inferences about Y from statements about X. The presence of non-

factorisable knowledge is a necessary condition for relevance, but not a sufficient condition. I 

shall assume, however, that if the epistemic state K says an X-Y interaction does (or might) 

occur, then this does provide an inferential bridge between X and Y. 

4.4 Chance i n a Composi te System 

Let Z be the composite system <X,Y>. Since Z is a system, it must have a lagrangian lz, which 

determines a class of histories Hz. The first question to examine, therefore, is how Hz is related 

8Schrodinger (1935:161) uses the term Verschrankung unseres Wissens to describe this situation. 
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to Hx and HY. The usual assumption to make here is that each member of Hz can be identified 

with a pair of histories, one history for X and one for Y. In other words, if zeHz, then there 

exist xeHx andye/7Y such that z = <x,y>. Since x, y and z are states of affairs, we can also 

write z = x & y. Using the notation of Definition 4.3.6 we shall say that zfactorises into x &y. 

Also note that, according to this postulate, Hz is the cartesian product of Hx and HY. 

This assumption that histories of composite systems factorise seems intuitively correct, 

and also has powerful consequences for the structure of the chance function. We should 

therefore examine it carefully, to see if it depends upon any substantive assumptions about the 

system. It clearly is not straightforwardly a matter of logic since, as we have seen, some 

propositions about composite systems do not factorise in this way. 

Perhaps the best approach here is to look at why a history z may not factorise into a 

conjunction x&y, to see if it is viable. The reason is that z includes information that is 

intrinsically relational, such as the proposition "X interacts with Y". This particular example 

does not factorise, but is also not the kind of information that may appear in history descriptions 

such as z. The basic idea is that z describes what Z actually does, its behaviour in some sense. 

In the case of a pair of simple point-particles, for example, z just describes their trajectories. 

Thus, while it may be true that the particles interact, this is a fact about the causes of Z's 

behaviour, and does not describe the behaviour itself. A history z just describes motions, in the 

broadest sense of the word. 

Some relational descriptions do describe behaviour, however, such as "X is longer than 

Y" and "X and Y are one metre apart". The idea here is that properties such as length and 

position are irreducibly relational, i.e. we can only determine the length of one body relative to 

another, and so on. It may be true that properties such as length are ultimately relational, but 

this does not by itself prevent the above propositions from being factorised. We can, for 

instance, determine the precise length of X and of Y in relation to some third body, obtaining 
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ratios of 3.2 and 1.7 perhaps. These separate statements about X and Y 9 together entail the 

required proposition that X is longer than Y. The situation for positions is exactly parallel. We 

can describe the position of X and of Y relative to some third reference body, and these two 

facts will together entail the propostion that X and Y are one metre apart. 

The above method of factorisation, whereby a relation between X and Y is reduced to a 

relation between properties of X and Y, or perhaps to an X-W and a Y-W relation, may not 

always be available. Consider, for instance, the example of relative probabilities from §2.5. 

We found that, for some propositions A and B, such as those which are "infinitely unlikely", we 

could not reduce the relative probability R(A,B) to the ratio of probabilities Pr{A)IPr(B), i.e. 

R(A,0)IR(B,0). Roughly speaking, the set of real numbers is not sufficiently fine grained to 

reduce all relative probabilities to ratios between absolute probabilities. Moreover, this 

problem is ineliminable, as there is no finer-grained structure (of the appropriate kind) than the 

real numbers. The real numbers are the best structure there is, but they are still not good 

enough. 

The relative probability R(A,B) can be expressed as a ratio such as R(A,C)IR(B,C), 

where C is another proposition of "infinitesimal probability". In general we might say that 

R(A,B) exists only if A and B are not too dissimilar in probability. Thus R(A,0) does not exist, 

but R{A,B) does. A and O are incommensurable in probability. 

Suppose X and Y are similar in a certain respect, so that some relation holds between 

them, as described by the history z. If we wish to factorise z then this will involve finding 

another system W which is commensurable with X and Y in the respect in which they are 

similar. For instance, in order to factorise a statement about the relative length of Y with 

respect to X, we must find another body with a length that is commensurable with both X and 

Y. This procedure will run aground therefore if there simply is no such third system W that is 

9 I f the third system is W , then the statements are really about < W , X > and < W , Y > , of course. 
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commensurable with X and Y in the required way. This may occur perhaps if X and Y have 

just interacted with each other, leaving special traces or signatures on each other. 

In spite of these reservations, we shall include the factorisability of histories among the 

postulates of CSM. It may not be universally valid, but it is a defining assumption (perhaps 

even the defining assumption) of classical physics. It is needed to derive the familiar, common-

sense independence properties of the chance function. 

CSM3 If Z is the composite system <X,Y>, then each history z of Z is equal to some 

x & y, where x andj are histories of X and Y respectively. 

CSM3 gives us an extra theorem about relevance, that inferential bridges can be 

destroyed by adding extra information. Suppose the proposition 5 < x Y > about the history of 

<X,Y> is not factorisable, and makes X relevant to Y. Then consider the proposition C x , 

which is a complete description of X's history. If K is the minimal state including B<XY>&CX, 

then is X relevant to Y within Kl In fact it is not relevant, as 5 < x Y>&CX is factorisable, as is 

shown below. 

4.4.1 Lemma If B<x Y > is complete concerning X, i.e. {B<x Y >} x is complete, then 

5 < x Y > factorises. 

Proof: Let Bx = {B<XY>}X. By hypothesis, Bx is complete, i.e. equivalent to some single 

history x. B<x Y > on the other hand is a disjunction of histories z,, viz: 

£<x,Y > = l k 

i 
= l l ( * , & y , } 
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where the union symbol denotes truth-functional disjunction. Now, since Bx = x, the xt in the 

summation must all be equal to x. Thus: 

* < x ,Y > = U ( x & y . ) 

= x & U y ; 

And so B<x Y > factorises into Bx & BY, as required. • 

4.4.2 Corollary If Cx is complete, then C x & B<XY> factorises. 

Proof: Since Cx is complete, it follows that {Cx & 5<XjY>}x l s complete. The result then 

follows using Theorem 4.4.1.B 

We should now examine how Lz is related to and Ly. By the definition of Lz(z) we 

have 

L z(z) = Pr(Z=z I £z & bcz), where bcz is any boundary condition consistent with z. 

Now, according to CSM3 we may replace Z=z with X=x & Y=v, which yields: 

Lz(z) = Pr(X=x & Y=y \lz & bcz) 

= Pr(X=x | lz & bcz)Pr(Y=y \ lz & bcz & X=x) 

= Lz(x)Lz(y\x). 
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To dissect this expression further, we must consider how £ z is related to £ x and lY. We 

should first note that lz does not determine either lx or £ Y (we might say that £ z does not 

"know" what £ x and £ Y are). This is because £ z does not determine the actual history of either 

X or Y and, on account of the X-Y interaction, £ x depends on the actual history of Y, and £ Y 

depends on the actual history of X. Thus, £ z together with X=x determines £ Y , but lz alone does 

not. 

Let us now consider the special, and very important, case where X and Y cannot 

interact. This means that the chance of interaction is zero, so that £z & bcz together entail that 

no interaction occurs. In this case, since £ Y does not depend on the actual history of X, £ z 

(together with bcz) does know £ Y , as well as £ x of course. When X and Y cannot interact, 

therefore, £z & bcz can be written as £x & £Y & bcz. The two propositions are logically 

equivalent. In short, if X and Y cannot interact (for a given bcz) then, within bcz, £z factorises 

into £ x & £ Y . Causal independence entails that the joint lagrangian factorises. 

Another important question is how bcz, the boundary condition for Z, relates to bcx and 

bcY. In the spirit of CSM3,1 shall assume that bcz = bcx & bcY, regardless of whether X and Y 

may interact or not. I shall later argue that bcz, bcx and bcY are states, and that states are just 

very short parts of a history, so this assumption is really a consequence of CSM3. 

4.4.3 Theorem If, for a particular bcz, systems X and Y cannot interact with each other, 

then they are uncorrelated w.r.t chance, i.e. Pz(x & y ) = Px(x)PY(y). 

Proof 

4. 

2. 

3. 

l.Pz(x&y) = Pr{x &y\£z&bcz) 

Prix&y\£x&£Y&bcx& bcY) 

Pr(x Ux & £Y & bcx & bcY)Priy \x & £x& £Y & bcx& bcY) 

Prix | £x & bcx)Priy \ £Y & bcY) 
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5. 

Line 1 follows from the definition of Pz. Line 2 just factorises lz & bcz. Line 3 applies Axiom 

4, the Principle of Conditioning. Line 4 applies Theorem 4.3.5, since x &£x& bcx concerns X 

only, and lY & ^ C Y concerns Y only. Line 5 follows from line 4, using the definitions of Px and 

PYM 

4.5 Sub-Histories, States and Markov Systems 

So far in this chapter we have only considered one kind of event within a system X, namely an 

entire history for X. Physicists frequently refer to events which are less extensive than whole 

histories, however, so we shall look at what these "smaller" events may be. It will then be 

possible to define and discuss the Markov property of stochastic processes. 

Consider a system X which exists in a time interval Tx. This interval can be mentally 

split into sub-intervals, of course. Such a division of Tx automatically splits up JC , the actual 

history of X, into corresponding chunks. For instance, if Tx = [0,10], and we split it into [0,4) 

and [4,10], then we can define x{ as the part of x which occurs in [0,4), and x2 as the part that 

exists in [4,10]. We note that the motion or change that occurs in JC also occurs in JC , and J C 2 

together: some of the motion is in J C , , and the rest shows up in x2. If we partition Tx into finer 

time slices, such as [0,5), [5,28), [10-8,10], where 8>0, then the amount of change in each 

sub-interval is reduced, but it still appears that all the change in JC shows up in the time slices. 

So far I have not introduced the concept of a state of a system, which is one important 

kind of event, but it seems to be closely connected to the idea of a time slice. Perhaps a 

possible state of X just is a thin time slice of a possible history of X, such as the piece of JC in 

[n5, (n+l)6)? This does not seem quite right, however, since regardless of how small 5 may be, 

X undergoes some change in this sub-history. States are supposed to be "static", and not 

containing any motion at all. To get sub-histories which are also states, therefore, perhaps we 
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can partition Tx into the individual real numbers of which it is composed? The sub-histories of 

X corresponding to this partition will be very thin indeed, and it does appear that each one 

contains no change. 

Unfortunately, we run into Zeno's paradox of the arrow here. If each of these very thin 

sub-histories contains no motion at all, then where is all the change in xl Consider, for 

instance, the flight of an arrow from the bow to the target, a distance of perhaps 100m. The 

total history contains 100m of motion, and so the collection of sub-histories should contain 

100m of motion as well. This is the case for a finite partition into sub-histories, but not for an 

infinite partition into states. In each state the arrow moves zero metres, and an infinite sum of 

zeros is still zero. It appears that all the motion occurs "between" the states, but in that case we 

do not have a genuine partition of Tx, as something in the history x has been lost. 

For this reason it seems to me that the concept of a state is something of a mathematical 

fiction, rather like the Dirac delta function. It should not be taken literally as a real entity, but 

rather as the fictional limit of a real sequence. In the limit as a (finite) time slice tends to a 

point, the amount of change may be treated as negligible, and so that time slice can be regarded 

as a state. This is essentially the same problem that we face in the classical mechanics of a 

single particle. Although the whole trajectory is captured by the position function r(t), the state 

at a single time t' is not fully represented by r(t'), as this gives no information about the 

momentum of the particle. To fix the momentum at t' we require a short (but finite) portion of 

the trajectory that includes t'. Since this time interval may be arbitrarily short, it makes sense to 

regard a state as a limiting concept, as in the following definition. 

4.5.1 Definition A possible state of a system X at time t is the limit of a sequence of time 

slices of a possible history of X, which converge to the interval {t}. 

We must now consider some general properties of stochastic systems in relation to time. 

The main such property is known as the Markov condition, which real systems are frequently 
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assumed to possess, as least to a good level of approximation. We shall now examine the 

metaphysical basis of the Markov condition by attempting to derive it from more fundamental 

assumptions. 

The Markov condition may be expressed in various equivalent ways, one of which is as 

follows: 

4.5.2 Definition A system X is Markov iff the distributions for sub-histories in disjoint 

intervals are conditionally independent, given a sub-history in between 

them. 

One consequence of the Markov property is that if t0 < tx < t2, and you want to predict the 

behaviour of a system at t2, then knowledge of the state of the system at tx renders the state at t0 

irrelevant. This is sometimes expressed by saying that the state at t{ screens off the state at t0, 

as far as the state at t2 is concerned. It seems clear that, if this is true, then the system at t0 

cannot directly interact with the system at t2, under the general principle that causal interaction 

implies logical relevance. To make sense of the idea of different time slices of a system 

interacting with each other, we need to consider the finite time slices of a system as systems 

themselves. We therefore require the following postulate. 

CSM4 Finite time slices of a system are causally-isolated systems. (Each time slice has 

its own lagrangian and boundary condition, and non-intersecting time slices of a 

given system cannot interact with each other.) 

If CSM4 is true, then we may be able to derive an expression relating the chance 

distributions of the whole system to the chance distributions of the time slices, which would be 

analogous to Theorem 4.4.1. One problem that arises here is the question of boundary 

conditions for the time slices. We have not yet discussed what form of constraint the boundary 
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condition is in general, and for this reason it is hard to make sense of CSM4. If a time slice is 

an autonomous system then it should not only have its own boundary condition, but also the 

same basic kind of boundary condition as the total system. As we shall see, this means that 

CSM4 is quite restrictive, as it rules out most types of boundary condition. 

4.6 B o u n d a r y Condi t ions and T i m e 

In deterministic mechanics the topic of the metaphysical status of boundary conditions is not 

often discussed. The behaviour of a system is often thought to be produced by the dynamical 

properties of the system alone, with the boundary condition seen as mere "information", rather 

than as a second cause.10 I believe that this point of view results from the fact that, in a 

deterministic system, the boundary condition is "invisible", in a sense which is explained 

below. In a stochastic system, on the other hand, the boundary condition is "visible" and so has 

to be taken seriously as a physical cause. 

In a deterministic system X there are only two grades of dynamical facility, namely 

perfect facility and none at all, which correspond to the two law values 1 and 0 respectively. 

One consequence of this fact is that a given chance function over Hx can be generated by many 

different boundary conditions. Consider, for instance, the boundary condition X(/,)=x,. This 

fact, together with £ x , entails that the actual history is the unique xeHx such that x(tl)=x1 and 

Zoc(JC)= 1. But now, any other complete boundary condition consistent with x, such as 

X(f2)=jc(f2), will yield that very same history JC. Thus, if one only has the chance function Px for 

a deterministic system X , then one has no idea which of these possible boundary conditions is 

the real one - it could be set at any time in Tx. In this sense, the boundary condition of a 

deterministic system, considered as a cause, is invisible (to the chance function). 

More precisely, every deterministic system has the following three properties: 

1 0 Recal l that, in §3.1,1 argued that (at least some) boundary conditions represent physical constraints. 
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(i) The nature of the real boundary condition is empirically inaccessible. (One cannot infer 

anything about the boundary condition from observation or experiment.) 

(ii) One cannot explain any observed phenomenon (natural or experimental) by a hypothesis 

about the boundary condition. 

(iii) In particular, one cannot explain the arrow of time phenomena by a hypothesis about the 

boundary condition. 

To see that (i) is true, consider two rival hypotheses hx and h2 about the boundary 

condition, where hx says that the boundary condition is bcx and h2 says that it is bc2. If JC is the 

observed actual history for X , and hx, h2 are consistent with JC, then P x(JC | £x&bcx) -

Px(x | lx&.bc2). Then, by Miller's principle, we have that PK(x | hx) = PK(x | h2), so that: 

PAW = P^x^PM 
P^lx) P^hJP^h,) 

=

 p M 

Thus the empirical datum JC has no bearing on the relative probability of hx and h2. 

To see that (ii) holds, recall from Chapter 1 that to explain a phenomenon is to infer it 

from a hypothesis about its cause. Thus, to explain JC by hx one must infer JC from hx. One 

problem here is that there are too many rival explanations. For instance, one could explain the 

same datum JC by the alternative hypothesis h2. Since every boundary condition consistent with 

JC successfully entails JC, JC itself does not help us to choose between these competing 

explanations. Another problem is that even the most bizarre counterfactual data could be 
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explained just as easily as the actual data. As long as a history is dynamically possible, it will 

be actual provided it satisifes the boundary condition. 

To explain phenomena within a deterministic system by a hypothesis about the 

boundary condition is thus a very weak explanation. The choice of explanatory hypothesis is 

arbitrary, and also by this method we could explain just about anything. Such explanatory 

power is not considered a theoretical virtue! 

It may be possible to judge some hypotheses to be a priori more (epistemically) 

probable than others but, since the boundary condition is an external constraint on the cosmos, 

this means that the explanation is more metaphysical than physical. While I do not wish to rule 

such explanations out as generally invalid, I take it that a physical explanation, if available, is 

preferable to a metaphysical one. 

Claim (iii) concerns the famous "arrows of time", which are discussed in §4.7. They are 

temporally-asymmetric physical phenomena that are awkward to explain, in light of the fact that 

the laws of physics seem to be time symmetric. Claim (iii) follows from (ii), of course, but 

some more particular remarks may be made. It is orthodox among physicists to attribute 

temporal asymmetries to special initial conditions, as by the following authors:11 

While matters are by no means universally agreed upon, the most plausible view at the present time 

seems to be that in order to get a reasonable picture of the entropic increase accompanying 

expansion of our current phase of (at least the ' local ') universe, we must impose a low entropy init ial 

condition on the big-bang singularity. 

...we are led more or less inevitably to cosmological considerations o f an init ial "state of the 

universe" having a very small Boltzmann entropy. That is, the universe is pictured to be born in an 

n S k l a r (1986), Lebowitz (1993, 36), Feynmann (1967, ch. 5). 
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init ial macrostate M 0 for which [the phase space volume] is a very small fraction of the "total 

available" phase space volume. 

...it is necessary to add to the physical laws the hypothesis that in the past the universe was more 

ordered, in the technical sense, than it is today ... to make an understanding of the irreversibil ity. 

For such an explanation to work one must assert that some hypotheses about the boundary 

condition have much higher epistemic probabilities than others, which is a metaphysical rather 

than a physical statement. If this were the only explanation on offer then we would perhaps be 

justified in accepting it. I will argue, however, that a physical explanation is available, within 

stochastic physics. 

To sum up, it seems that physics requires the concept of probability. If one accepts 

indeterminism then these probabilities exist within the cosmos, so to speak, and are thus 

squarely within the domain of physics. If one insists on determinism, on the other hand, then 

the probabilities are forced out of the physical cosmos itself and into the Great Beyond. For 

this reason, among others, I believe that the cosmos is genuinely stochastic. 

For a stochastic system, none of (i)-(iii) holds, as we shall now see. Consider, for 

instance, the two boundary conditions X(t{)=x and X(t2)=x for the stochastic system X. Do they 

give rise to the same chance function P x? They do not, as Fx(X(r[)=jc) = 1 in the first case, but 

in the second case it will have some value less than one. If t} and t2 are widely separated in 

time, then Px(X(t{)=x) may be quite low for the boundary condition X(t2)=x. 

Thus, if X is stochastic then Px depends strongly on the time at which the boundary 

condition is set. Now, as shown in Chapter 3 , Px is empirically accessible by measuring 

frequencies, so it follows that facts about the boundary condition are also empirically 

accessible, at least to some extent. Indeed, in this section I will argue that from certain data we 

can infer that the boundary condition for the cosmos is set at the Big Bang. 
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We should also note that, for a stochastic system, a boundary condition that physically 

constrains the actual history at a single point in time introduces a temporal asymmetry, and a 

local direction of time. (One temporal direction points towards the time of the boundary 

condition, and the other points away from it.) This is particularly clear in the case where the 

boundary condition is set at one extremum of the time interval Tx, where the orientation of time 

is the same throughout the interval. 

The final postulate of CSM is that, in actual physical systems, the boundary condition is 

set at a single point in time.12 This is not just true for the cosmos as a whole, I claim, but also 

for the subsystems within it, including time slices of systems. I shall argue for this postulate by 

consideration of theoretical elegance, in this section, and on empirical grounds, by showing that 

it has the right physical consequences, in the next section. 

CSM5 The boundary condition of a system X specifies the state of X at one 

instant of time, i.e. bcx is of the form X(r,)=x,. 

The first argument for CSM5 is that it allows CSM4 to be true, as will now be shown. 

The following notion of a connected partition will be useful here. 

4.6.1 Definition A connected partition of Tx is a class of closed sub-intervals of Tx whose 

union is Tx and whose pairwise intersection is either empty or a singleton 

set. 

Thus, for instance, if Tx is [0,10], then one connected partition of Tx is {[0,3], [3,4], [4,10]}. 

Consider this connected partition of a stochastic system X. If the boundary condition is 

at a single point of time, then it constrains only one time slice of the partition (unless it happens 

2 O r something similar, such as a surface of spacelike-separated points. 
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to hit the point of intersection of two adjacent intervals, a case which we consider below). For 

example, let us suppose that the boundary condition is set at t=3.l. The time slice [3,4] then 

has a lagrangian and a boundary condition, which are sufficient to cause its actual history. Thus 

the actual history of this time slice comes into being. Now, since the history in [3,4] is actual, 

the states at t=3 and f=4 are actual as well since they are sub-histories within this interval. The 

state at t=3, however, is also part of the interval [0,3], so the interval [0,3] has one of its states 

constrained by the actual history in [3,4]. This constraint on [0,3] is a boundary condition for it, 

so it has a sufficient cause for its own actual history, which also comes into being. In a similar 

way, the state of [3,4] at t=4 provides a boundary condition for the time slice in [4,10]. 

If the boundary condition falls on the intersection of two time slices, such as at t=3, then 

it causes histories for both time slices [0,3] and [3,4]. The actual history in [3,4] then provides 

a boundary condition for [4,10] as before. 

We see then that the time slice which has the boundary condition for the total system X 

provides a (single-time) boundary condition for each of its neighbours. These, in turn, by 

acquiring actual histories, provide boundary conditions for their adjacent time slices, and so on. 

Thus each time slice receives its own single-time boundary condition, and hence CSM4 is 

satisified. It is hard to conceive of any other kind of boundary condition which will yield this 

same result. For a particular connected partition of X we can no doubt cook up such a 

boundary condition, but this is uninteresting since any partition of X is arbitrary, and so if 

CSM4 is valid it should hold for all such partitions. 

The second argument for CSM5 is that it (together with the other postulates) enables 

one to prove the Markov property, which (intuitively) ought to follow from CSM3 and CSM4 

together. Moreover, closed systems are usually assumed to be Markov, since in that case the 

system cannot have an external "memory". Before we can show this, however, we need some 

preliminary results. 
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4.6.2 Theorem The law function is point normalised, i.e. if C is a subset of Hx 

containing all the histories x such that x(t')=x, for fixed t', x, then 

Proof L x ( Q = P T ( C U X & X(t')=x), by Definition 4 .2 .1 , since each member of C satisifes the 

boundary condition X(t')=x. But, since C is the class of all histories in Hx satisfying this 

condition, Pr(C \ l x & X(t')=x) = 1 . • 

4.6.3 Definition Suppose {T,} = {T{, T2,Tn} is a connected partition of Tx. Then 

possible histories in T, will be denoted at, b{, etc. and variables over these 

Xj. The lagrangian for Ti is denoted lt, and the corresponding law 

function is L,. 

The main result that is used to prove the Markov property is a product rule for time 

slices, analogous to Theorem 4 .4 .1 , as follows. 

4.6.4 Theorem Consider a connected partition {T(} of Tx which splits the history a into 

connected sub-histories {a,}. Then L^a) = L,(a1)L2(a2)...Ln(a). 

Proof: We only need consider the case n=2, as then the other cases follow by iteration. Let tl 

be the single member of T{ n T2, so that a^r,) = a2{tx). The relation L^ia) = Ll(al)L2(a1) is true 

just in case the relation Px(a) = Px(ax)P2{a2) is true when a satisfies bcx, a{ satisifies bcx and a2 

satisfies bc2. Let us therefore assume that a, a, and a2 all satisfy their respective boundary 

conditions. We further assume wlog that bcx falls within T{, so that bcx constrains Xj only, and 

thus is equivalent to bcv We then have 

Px{a) = P x (a,&a 2 ) 
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Pr(a, & a 2 U x & bcx) 
Pr(a, &a 2 U, &£2&Z?c,) 
Pr(a, Ui (fe^fcZjc^PrC^U, & Z , & i 2 & £ c , ) 
Pr(a, | & £c,)Pr(a 2 | a,(f,) & £,) 

(Note that this proof is exactly parallel to the proof of Theorem 4.4.3, and also relies on CSM3. 

It is necessary to assume, for instance, that a = a] & a2.) Since the assumption that a, a, and a2 

all satisfy their respective boundary conditions leads to the conclusion that Px(a) = 

Pl(a])P2(a2), it follows that L^a) = Lx(ax)L2(a2)M 

The intuitive idea of the law function is a measure of dynamical facility, of how easily 

the system follows the trajectory in question. Now, the dynamical facility of a sub-history such 

as a2 should depend only upon the lagrangian i^, so it should be the case that Lx(a2) = L2(a2). 

We shall now prove this. 

4.6.5 Theorem £x(«,) = £ , ( a / ) -

Proof. Let us consider the connected partition {Tt, Tj, TJ of Tx, where 7' and V should be 

read 'lower' and 'upper'. We then have that: 

Lx(ai)=JiLK(xl&a.&xu) 

where the variables xt and xu range over all histories in Tt, Tu respectively which connect to at. 

Using Theorem 4.6.4 it follows that 
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Lx(ai)=JjL,(xl)Ll(ai)Lu(xu) 
xl >xu 

= L,(ai)JJLl(xl)'^Lu(xu) 

The last line follows using point normalisation (Theorem 4.6.2) since the variables xt and xu are 

each constrained at a single instant of time.B 

4.6.6 Corollaries (i) If bcx is set in Tt, and consistent with a(, then /^(a^L^a,). 
(ii) If bcx is set in Tt then Px(a,) = Z^(a()^Z,(x;). 

We are finally in a position to prove the Markov condition. 

4.6.6 Theorem Consider sub-histories ax, a2, a 3 in time intervals Tx, T2, T 3 respectively, 

where TX<T2< T3. (These intervals may or may not form a connected 

partition of Tx.) Then Px[ax & a 3 | a2) = Px(ax \ a2)Px(a31 a2). 

This is easily proved from the following lemma. 

4.6.7 Lemma Consider the connected partition {Th T2, Tu}of Tx, so that Tx e Tt and 

T3 e Tu. Then, for all sub-histories xt, xu in T ;, T u, 

PX(X[ & x„ | a2) = Px(xt I aJPjfau I fl2)-

Proof: From Axiom 4 we have: 

^ , „ i s Pyix.&a.&xJ 
Px(xl&xtt\aJ = -*±J 2- "—. 

X ' 2 P x (« 2 ) 

Case (i): Suppose that bcx is set somewhere in T{. Then, for every JCJ that satisfies bcx, 
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P x ( x , & s > 2 ) = Z « ( x ' & f l » & X - ) 

_ ^U;)^2(Q2)L«(-cJ 

J1/ 

Note that V; is constrained to agree with a2 at their point of intersection, and also to satisfy bcx, 

so the denominator is less than one. By similar reasoning we find that 

and hence Px(xi & x

u I ai) ~ Px(xi I ai)Px(xu I a2)-

Case (ii): &cx is set somewhere in T2. It is trivial to show that Px(JC, & xu \ a2) = 

Px(Xl\a2)Px(xu\a2). 

Case (iii): bcx is set somewhere in Tu. From case (i), P x ( x , & xu \a2) = / ^ ( X / | a2)Px(xu \ a2) 

follows by symmetry. 

Thus we infer that Px(xl & xu \ a2) = Px(xt \ a2)Px(xu \ a2), as required." 
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Proofof Theorem 4.6.6: 

Px(a1&a3lo2)= X E P x ( ^ / & ^ l « 2 ) 

= X X P X . ( * / l « 2 ) ^ x ( * > 2 ) 

= Px(a,la2)Px(a3la2). 

This is the required result.* 

The chance of an event does not vary with time. Yet, since chance is relativised to a 

system, and time slices are systems, we can easily define a time-dependent chance, which I call 

up-to-date (utd) chance. The basic idea is that the chance at time t of some later event E is the 

chance of E within the time slice system in [t, x]. Note that this depends on the actual history 

before t. It is not predictable in advance of t what the chance of E at t will be. 

4.6.8 Definition Consider a sub-history x( in T{, and a time f<T,, so that T, c [t, x]. Then 

the chance at time t of xt, written Pt(Xj), is the chance of x{ within the 

time slice [t, x]. 

As one might expect, utd chances are related to conditional chances, as the following 

results show. The interval Tr is [t, tt], where tt is the lower bound of Tt. 

4.6.9 Lemma Pt 0 ; ) = A (x,. ) ^ Lr (xr), where the xr are all consistent with xt and X(t). 
xr 

Proof: 

J ? ( * , ) = X l , ( * r & * , ) 

xr 
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4.6.10 Theorem If X[0,t] specifies the actual history of X in [0,f], then 

P,(x,.) = Px(x,.|X[0,t]). 

Proof. Let the actual history in [0,f] be a0. Then 

Px(a0&x,) 
Px(x,la0) 

^ x ( « o ) 

£ P x ( a 0 & x r & x , ) 

" PM 

XL J(a 0)L r(x r)A(x,) 

A ( « o ) 

= i f ( x J ) j ; A ( * r ) -

Using Lemma 4.6.9, it then follows that P,(x,) = Px(xi I X[0,t]), as required.* 

4.6.11 Corollary Pf(x,) = Px(x,. | X(0). 

Proof. Immediate from theorems 4.6.10 and 4.6.6. 

Note that, since x, may be a state, a utd chance may be a forward transition probability. 

4.7 The Arrow of Time 

In the previous section we saw that postulate CSM5, which says that the physical boundary 

condition of every system is a constraint at a single point of time, has two theoretical virtues: It 
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allows C S M 4 to be true, and together with C S M 4 entails the Markov relation. In this section I 

shall argue that a single-instant boundary condition also provides a suitable arrow of time. 

What are the phenomena that constitute the "arrow(s) of time"? The three such 

phenomena considered in this chapter are, as mentioned in § 4 . 1 : 

(i) Traces of an event (such as a crater, with respect to a meteor impact) may only succeed, not 

precede that event. 

(ii) Forward, but not backward, transition probabilities are lawlike and time-independent. 

(iii) Entropy tends to increase. 

Other such phenomena are sometimes discussed as arrows of time, such as the expansion of the 

cosmos and the outward propagation of radiation, but these three are sufficient to demonstrate 

how CSM can be used to investigate the arrow of time. 

The puzzle created by these phenomena lies in the fact that the laws of physics are time 

symmetric. If, therefore, one explains phenomena only by these laws, then one is in the 

difficult position of explaining an asymmetric effect by appeal to a symmetric cause. Of 

course, if the cosmos is stochastic, then the actual history may turn out to be time asymmetric 

just by chance. However, the fact that there are several distinct arrows of time, which are all 

consistent with one another, strongly suggests that the actual history has some cause that is not 

time symmetric.13 

In my view there is such a time-asymmetric cause, which is the boundary condition. 

The boundary condition is not time asymmetric by virtue of the state that it fixes, but rather 

from being a constraint on the cosmos at one instant of time. Any such boundary condition, 

regardless of the state involved, will cause phenomena (i) and (ii). Moreover, if the fixed state 

is also one of low entropy, then (iii) is brought about as well. 

1 3For a fuller discussion of this problem, see Price (1996: 16-21), Sklar (1986) or Davies (1974). 
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4.7.1 Time's Arrow and causation 

In the previous section it was shown how, if the boundary condition constrains the actual 

history at just one instant, one time slice may provide a boundary condition for its neighbour. 

In the special case where the boundary condition is set at either extreme of Tx, this means that 

the time slices of X are well ordered by the cause-effect relation, as will now be shown. 

Suppose Tx = [0,10] and bcx is set at ?=10 (it would just as well if set at t=0). Also, let 

us consider the arbitrary connected partition {[0,1], [1,3], [3,8], [8,10]} of Tx. Since the time 

slice in [8,10] has a boundary condition, it has a sufficient cause for its actual history, so an 

actual history for [8,10] comes into being. This actual history fixes the state of X at t=S, which 

is part of the interval [3,8], so then this time slice acquires a boundary condition. Having a 

boundary condition, its actual history is also caused to exist, which in turn sets a boundary 

condition for [1,3] and so on. The actual history in [8,10] is brought about by the boundary 

condition, and this history causes the history in [3,8], which causes the history in [1,3], which 

causes the actual history in [0,1]. 

There is nothing special about the partition chosen; the same causal ordering would hold 

for any such partition. Also, I considered a boundary condition at f=10 rather than t=Q, making 

causation run "backwards", to show that the causal order does not depend on the <-ordering of 

the real numbers. Note that, on this approach, the coincidence of temporal order with causal 

order is not analytic but merely a physical fact. If the boundary condition is set at some time 

which is not an extremum of Tx, for example, then the cause-effect relation does not provide 

even a linear ordering of the time slices. Moreover, if the boundary condition constrained the 

actual history at two or more different times, then presumably an even stranger situation would 

obtain. 

In the above example there is no mention of any causal ordering within a single time 

slice, such as [3,8]. Since CSM4 allows any partition into time slices, however, we can 

consider the time slice in [3,8] to be composed of two subsystems, one in [3,5] and the other in 
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[5,8] perhaps. From this perspective we see that the actual history in [5,8] causes the history in 

[3,5], and so a little more of the causal order is revealed. Since this causal structure will appear 

for any connected partition of Tx, no matter how fine, we see that there is in fact a continuous 

causal flow of events (in a closed system) rather than a discrete causal chain. 

The above talk of a causal order of becoming and a continuous causal flow may be 

taken to suggest that I have abandoned my earlier commitment to a "B-series" view of time. 

This is not the case. The recognition of a causal structure in spacetime does not require one to 

believe in a moving present. I do hope, however, that this recognition may weaken the common 

intuition that the B-series view leaves out something important about time which distinguishes 

it from a mere physical dimension. Causation does indeed relate to time and space quite 

differently, and there really is something which may be called a flow of potentiality into 

actuality. Perhaps the so-called "flow" of time is really just the causal ordering? 

In this chapter I am concerned with time rather than with space, so the three spatial 

dimensions have been ignored altogether. If they were included then we would have to deal 

with spacetime slices rather than time slices, and each spacetime slice would be a cause of the 

other slices which are in its future light cone. Thus, although I am currently ignoring space it 

seems that my account is capable of being extended to cover a four-dimensional cosmos. 

This idea of a causal arrow of time which arises from a single-instant boundary 

condition is not often taken seriously, even though it fits very well with our pre-theoretical 

intuitions about time. Why is this? I think there are two main reasons. First, to explain the 

arrows of time by means of a physical constraint on the whole cosmos seems like resorting to a 

deus ex machina. One would prefer to explain all phenomena by means of the intrinsic 

properties of the cosmos itself, with no interference from "outside". Second, the very 

simplicity of the hypothesis, and its conformity with common sense, can be seen as weaknesses. 

It may be considered merely a "folk" explanation of the phenomenon, involving pre-scientific 

notions. A scientific explanation would be more technical and sophisticated, and would make 

no fundamental use of the antiquated idea of causation. 
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With regard to the first objection, I agree that a "self-contained" explanation of the 

arrow of time would be preferable, in accordance with Ockham's Razor. However, the very 

nature of dynamical systems strongly suggests that they do not contain within themselves the 

entire cause of their own motions. The intrinsic nature of a system includes what we may call 

laws of development, governing transitions from one state to another, but it does not (we 

generally think) impose any lawlike constraint on the initial state, or any other state. The appeal 

to an external constraint is therefore unavoidable. 

As for the second objection, we have seen that the old idea of cause and effect is needed 

to give a theory of physical chance. Attempts to eliminate the notion of causation (or reduce it 

to something less mysterious) have failed, and there is little prospect for success in the future. 

If there really is a causal relation then it must be deeply involved in the arrow of time. Since 

the causal relation itself cannot be reduced to anything more basic, it is unlikely that its role in 

this phenomenon can be expressed in other, more modern, terms. 

4.7.2 Temporal Symmetries of the Lagrangian 

Physical laws are generally thought to possess a high degree of temporal symmetry. In CSM 

the physical laws are represented by I, the lagrangian, so we might expect I to display some 

temporal symmetry as well. So far we have only postulated one such kind of symmetry for I, 

but it is very easy to impose two further kinds. There are two reasons to postulate that I has 

these temporal symmetries: First, there is evidence that real systems do have the symmetries in 

question. Second, it highlights the fact that the temporal asymmetries of P are due entirely to 

CSM5, that the boundary condition constrains the state at a single time, and not to any temporal 

asymmetry of I. 

The two kinds of time symmetry in I are expressed in terms of the law function L. They 

are usually called time-translation invariance and time-reversal invariance. The basic idea of 

time-translation invariance is that, for a given system X, £x does not vary with time. Thus, if lx 
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and £2 are lagrangians of equal-duration time slices of the same system, then £X = £2. In terms of 

the law function we have the following definition. 

4.7.2.1 Definition The lagrangian £ x is time-translation invariant (tti) just in case for any 

two equal-duration time slices of X, such as Xj and X 2 , and any possible 

history a of X, , L , (a) = L2{a). 

The basic idea of time-reversal invariance is that the lagrangian £ does not distinguish 

between the two directions of time. To make this notion more precise we require the concept of 

a time-reflection, or a time-reverse, of a possible history. If we imagine that a possible history 

is some sort of geometrical object, then it can be reflected in a "simultaneity plane". The image 

ar under reflection of a history a will be different from a, and yet the two will be congruent. 

Intuitively, ar is just a going backwards. 

4.7.2.2 Definition The lagrangian £ x is time-reversal invariant (tri) just in case, for any 

possible history a of X, Lx(a) = Lx(ar). 

The property of tti entails that forward transition chances are independent of time, i.e. 

Px(X(^+cO=& I X(f,)=a) = Px(X(t2+d)=b I X(t2)=a). 

The property of tri entails such relations as 

Px(X(t2)=b I X(t{)=a) = Px{X(t2)=ar I X ( f , ) = n 
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4.7.3 Time's Arrow and Chance 

We have supposed that I has every conceivable kind of time symmetry, and these symmetries 

show up as time-symmetries in P; thus P is also highly symmetric with respect to time. Let us 

now fix our time coordinates so that the boundary condition is set at t=0, and only consider 

positive times, so that Tx is the interval [0, x].14 There are then some important temporal 

asymmetries in P, of which we shall now examine the following four. 

(i) The forward transition chances are independent of time, whereas the backward ones are 

not.15 

(ii) Interference with a system in a time interval T{ alters the chance distributions for time slices 

after Tt, but not before Tt. 

(iii) Diffusion occurs toward the future, but not toward the past. 

(iv) Reichenbach's Common Cause Principle holds, i.e. there exist conjunctive forks open to 

the future, but not open to the past. 

Perhaps a better way of saying (i) is that the forward transition chances depend upon the 

lagrangian alone, whereas the backward transition chances depend upon the boundary condition 

as well as the lagrangian. This is why the backward transition chances are time dependent; they 

vary with the proximity of the boundary condition, and this proximity depends on the time. It 

also accords with the common view that the forward transition chances are lawlike and 

"physical", whereas the backward ones are suspect. We have seen, from Theorem 4.6.10 and 

Corollary 4.6.11, that: 

Px(xI\X(t)) = L!(xL)JjLr(xr). 

1 4 T h i s is in order to make the temporal direction a global, rather than merely local, one. 
1 5 T h i s matter is discussed in Arntzenius (1995). 
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Now, if we contract the sub-history JC, to a single state b, at time t+d say, then L((x()=l. We 

thus infer that 

Px(X(t + d)=blX{t) = A) = X LMr), 
xr 

where the histories jc r in [t, t+d] are all such that xr(t) = a and xr(t+d) = b. Intuitively, the 

forward transition chance is just the law value of the class of histories which contain the 

transition in question from a to b. 

Since we have assumed that the law function is time-translation invariant, it 

immediately follows that the forward transition chances are independent of time. 

4.7.3.2 Theorem The forward transition chances are independent of time, i.e. for any times 

ty, t2 e Tx, Px(X{tx+d)=b | X(f,)=a) = Px(X(t2+d)=b | X(t2)=a). 

Proof. Consider the two sub-intervals of Tx, Tl=[tl, tx+d] and T2=[t2, t2+d], which are of equal 

duration, and a sub-history JC in [tu tx+d] where x(tx) = a and x(t{+d) = b. By Thm. 4.6.10 we 

have that P x(JC | X(r,)=a) = L[(JC). Similarly, if JC' is the time translation of JC into T2, we have 

that P x(JC' | X(t2)=a) = L2{x'). Thus, since P^X^+d)^ \ X(tx)=d) and Px(X(t2+d)=b \ X(t2)=a) 

are just sums of terms like P x(JC | X(Y,)=a) and P x(JC' | X(t2)=d), and by tti L ^ J C ^ Z ^ C J C ' ) , it 

follows that Px(X(t{+d)=b \ X(t{)=a) = Px(X(t2+d)=b \ X(t2)=a).a 

4.7.3.3 Theorem The backward transition chances depend on the boundary condition, and 

are not independent of time. 
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Proof: Let us consider the backward conditional chance Px(ax I ai)> where a, is in [t,t+d] and a2 

is in [t+d,t+d+d']. We have that 

Px(a,la2) 
P^&a^ 

_ £ o 

^Px(x0&X]&a2) 
x0>xl 

lA>K)A(ai)^(«2) 
xo 

^L0(x0)Lt(xi)L2(a2) 
x0'xl 

f o 

If the temporal order of ax and a2 were reversed, then Px(a{ I #2) would just be Lx(a{). Thus we 

see that that the backward transition probability has two additional terms, one in the numerator 

and one in the denominator. Both of these depend on the boundary condition, and thus on the 

time.* 

Now let us prove property (ii). Consider the chance function for a system X which 

suffers outside interference within some time interval Tt. The standard example of this is where 

X is a patch of sand, and the interference consists of a foot stepping on it. Observations 

indicate that after the footstep there is a foot-shaped impression in the sand which did not exist 

before. The difficulty is to explain the time-asymmetry of this phenomenon. 

We represent the fact that the system X is disturbed during Tt in the usual way, by 

modifying lt and thus L (. 

170 



4.7.3.4 Theorem (a) The chance function before T, is independent of the interaction in 71,. 

(b) The chance function after Tt is dependent on the interaction in Tt. 

Proof, (a) Consider a history ax in T{ < Tt. Let T0 be the closed interval from 0 to T{, and T2 be 

the closed interval from T{ to Tt, as in Figure 4.1. Then 

Px(a,)= ^PxixQ&a^&Xi&Xi&x^) 
X0'X2-
xi 'xl 

= Ly(a1)^L0(x0)^L1(x2)Y,^xi)^Li(x?i). 
X0 X2 XJ x 3 

Now, the variable x0 is constrained by the boundary condition, and also to fit with a, at the 

intersection of T0 with Tl. The variable x2 is constrained at the lower end only, to fit with ax at 

T{ n T2. In a similar way, JC, and JC3 are constrained only at the lower end. Thus, by Theorem 
4.6.2, ^Z,(x 3) = 1, and may be cancelled from the summation. The same applies to all the 

other sums whose variables have only one constraint. This leaves us with 
Px(al) = Ll(al)^Li)(x0), 

which is clearly independent of L,. 

u 

Figure 4.1 

(b) Consider a history a2 in T2 > Tt. This time let T0 be the entire closed interval from 0 to T,, 

and let Tl be the closed interval from Tt to T2, as in Figure 4.2. Then 
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x0< xi' 
xt,x, 

= ^L\(Xo)Li(xi)L\(xl)L1(a2)Li(x?i) 
x0 < xi' 

= L^(a2)JjL^(x0)JjLl(xi)^L[(x^Li(x3) 
X0 X: X, X , 

x„ Xi xt 

Note that x{ is constrained by x( and a2, and thus ^ A ^ i ) 1 S n o t e c l u a l t 0 o n e> s o m a t it cannot 
x\ 

be cancelled. The same is then true of xt, so that the total expression depends on LtM 

u 
Tt 

Figure 4.2 

Now let us prove property (iii), that diffusion occurs in the forward direction of time. 

To examine this issue we will need a model of a process in which diffusion can occur. The 

Ehrenfest urn model, though rather simple, is sufficient for our modest purpose. 

The Ehrenfest urn model is a chamber with two compartments, separated by a slightly-

permeable membrane. The chamber contains N particles, each of which is in one of the 

compartments. The particles are free to move within each compartment, and also have a small 

chance, at any time, of passing through the membrane into the other compartment. To keep 

things simple we will not consider the exact position and momentum of each particle, but only 

the compartment it occupies. Thus a state of the system specifies the compartment (A or B) of 

each of the N particles. Also we will only consider the state of the system at integer times t=0, 

1, 2, ... etc., so that if a particle penetrates the membrane twice in [2,3] for example this motion 
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will not show up in the history. A history of the urn specifies the compartment occupied by 

each particle at all the times {0,1,2,...,n). 

The dynamics of the urn are given by its law function, which is as follows. For a 

possible history x, let k be the total number of membrane crossings in x. For instance, if /V=3, 

and particles 1, 2 and 3 pass through the membrane 5, 1 and 3 times (respectively) during x, 

then k=5+1+3=9. Let p be some small number, such as 0.01. Then 

Lx(x)=pKl-p)nN-k. 

Intuitively this means that each particle has chance p of crossing to the other compartment in 

each unit of time, and chance \-p of staying where it is. It also says that the particles are 

stochastically independent. Since the quantity p is independent of time, the law function is 

time-translation invariant. Also, the time reverse of a compartment switch is a compartment 

switch, so the law function is time-reversal invariant as well. 

What is diffusion? Diffusion is a phenomenon that appears at the macro level, so let us 

define some macrostates for the urn. A macrostate of the urn is a specification of the number of 

particles in each compartment. We can use the notation <a,b> to represent the macrostate in 

which there are a particles in compartment A and b in B. In this model, diffusion occurs when 

the numbers of particles in the two compartments become more nearly equal, such as in the 

transition from <15, 3> to <11,7>. A transition from <9,9> to <6,12>, on the other hand, is the 

opposite of diffusion. 

As usual, I assume that the boundary condition is set at t=0. We are then required to 

prove that there is a temporal asymmetry in Px as far as diffusion is concerned. Roughly 

speaking, the system is disposed to undergo diffusion in the forward direction of time, and not 

in the backward direction. Of course, for diffusion to occur it must be physically possible. If 

the boundary condition is that the state at t=0 is <9,9>, then because this is already a state of 

equilibrium, or maximum diffusion, any further diffusion is impossible. We shall therefore 
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assume that the boundary condition involves a macrostate like <15,3>, which is far from 

equilibrium. 

An important feature of a macrostate is the number of states which are consistent with 

it. (We may, if we wish, regard a macrostate simply as the class of states which are consistent 

with it.) The macrostate <0,4>, for instance, has only one state, whereas the macrostate <1,3> 

is consistent with four states, as there are four particles which could be the one in compartment 

A. Let us call the logarithm of the cardinal number of a macrostate its entropy.16 In general, for 

fixed N, the entropies of more diffused macrostates are much greater than those further from 

equilibrium. 

The proof of forward diffusion relies on two facts: First, it uses Lemma 4.7.3.1, that 

forward transition chances are just the law values, or sums of law values, for sub-histories in 

that time interval. Second, it uses the fact that diffusion involves an increase of entropy. 

A helpful way to proceed is to consider chances of single transitions, i.e. forward 

transition chances of the form Px(X(t+l)=x' \ X(t)=x), and backward transition chances of the 

form Px(X(t-l)=x' | X(t)=x). Using Lemma 4.7.3.1, the forward transition chance is just the law 

value of the sub-history xt with state x at t and x at If this sub-history xt contains j particle 

movements then it may be shown that 

L,(x,)=p/(i-p)*-;. 

We then have that: 

Px(X(t+\)=x' I X(t)=x) = pi(\-p)N-J. 

I 6 T h i s quantity is not exactly the Boltzmann entropy, of course, but it is related to it. 
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Now we must consider how the value this expression depends on the entropy change in the sub-

history xr The answer is: Not at all! Since is tri, the time-reverse of xt has exactly the same 

law value as xt, and so Px(X(t+l)=x \ X(t)=x') = Px(X(t+l)=x \ X(t)=x).17 It may seem to follow 

from this that, in the interval [r, tt-1], the entropy is just as likely to go down as up. This is not 

the case, however, as if x is a non-equilibrium state then there is simply a greater number of 

sub-histories with increasing entropy than with decreasing entropy. 

This may be shown with a simple example. Suppose N=4, and the state x is <{0}, 

{1,2,3 }>, i.e. particle #0 is in A and particles #s 1, 2 and 3 are in compartment B. This is a non-

equilibrium state, as the equilibrium states are all members of the macrostate <2,2> and this is a 

member of <1,3>. If the state x is <0,4> or <4,0> then entropy decreases. If x is a member of 

<1,3> or <3,1> then the entropy is constant. If the state x' is in <2,2> then entropy increases. 

Here is a table of all the important histories with their law values (I neglect histories whose law 

values are less than p2(l-p)2 since p~0, and so these have a negligible impact). 

1 7Note that, since on this model the particles' momenta are ignored, each state is its own time reverse. 
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Table 4.1 

From To Entropy Law value 

{0} {123} {} {0123} i p{\-pf 

{0} {123} {0} {123} - (\-PY 

{0} {123} {012} {3} - P2(1-P) 2  

{0} {123} {013} {2} - P2d-P) 2  

{0} {123} {023} {1} - P 2(\-P) 2  

{0} {123} {01} {23} T p(l-pf 

{0} {123} {02} {13} T Pd-Py 

{0} {123} {03} {12} t P{\-pf 

We see that there is one history with decreasing entropy, four with constant entropy and 

three with increasing entropy. Overall, it is most likely that the entropy is constant, but an 

increase is about three times as probable as a decrease. (With a larger value for N the chance of 

constant entropy is greatly reduced of course.) 

When N is large it is not difficult to see that, on each forward transition, about 

proportion p of A's particles will move to B, and about proportion p of B's particles will move 

to A. Thus the overall flow will be about proportion p of the difference between the numbers in 

A and B. Now, this situation holds for every forward transition, so that in the history as a whole 

there will probably be a gradual evolution toward equilibrium in forward time. 

Can this same reasoning be applied to the backward transition chances? Table 4.7 could 

certainly be switched around without any change in the law values, as the law function is time-

reversal invariant. The argument stops there, however, since the backward transition chances 
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are not equal to the corresponding law values. The reasoning would apply, at least to a 

reasonable approximation, for times long after the boundary condition, but in this region the 

system probably spends most of its time at equilibrium anyway, so there is no temporal 

asymmetry of diffusion. The temporal asymmetry of diffusion is a phenomenon that only exists 

near the boundary condition. 

It should be stressed that this reasoning also applies to the time interval r<0, if the 

system exists there. Thus, for negative times, the entropy will "increase into the past", i.e. 

actually decrease over the interval [-T, 0]. This emphasises the fact that the temporal 

asymmetry brought about by the boundary condition is local rather than global. In the interval 

0], the forward direction of time (i.e. the direction pointing away from the boundary 

condition) is the negative direction, towards 

We finally come to the fourth temporal asymmetry of chance, which is Reichenbach's 

Common Cause Principle (1963:157-63). This Principle (abbreviated as 'CCP') has been 

interpreted and used in a number of different ways, from being a way of defining causation to 

providing an argument for scientific realism. I will treat it as describing an empirically-attested 

physical fact, which requires a physical explanation. This is basically the way Reichenbach 

originally viewed it, I think. Its truth as a physical claim has been questioned by van Fraassen 

(1980:28-31), particularly on the basis of observed correlations violating the Bell inequality. I 

agree that CCP is not universally valid, but it does hold within CSM. The discrepancy here is 

due to CSM3 which, though not universally valid, holds as a good approximation for "large" 

systems. Van Fraassen also claims that CCP will fail in "almost any indeterministic theory of 

sufficient complexity" (1980:29), but this is doubtful since CCP is true within CSM, which 

allows for highly complex systems. 

CCP is easily derived within CSM, unlike any other formalism I know of. It arises 

automatically, without any need for special, ad hoc, assumptions. Before we show this, 

however, we should say what CCP is. 
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It frequently occurs that systems which do not directly interact, at least not significantly, 

have actual histories which are frequency correlated. Moreover, I think, two such non-

interacting systems X and Y may be correlated with respect to chance, i.e. 

Pz(XeB | o"(Y)) ̂  Pz(XeB) (in a set of non-zero probability), for some Borel set B. 

A simple example of this is of two properly-functioning barometers in the same town. They 

will vary in sympathy, even though they do not interact with each other. In such cases of 

correlation without interaction, CCP says that there is always some other system, say W, which 

does interact with both X and Y. In our barometer example, the third stochastic process is the 

air pressure, of course. 

There could be many systems like W which interact with both X and Y, but let us 

assume that, in this case, W is the only one18. CCP says that if we condition on the state of the 

common cause, then the correlation disappears, so we have 

Pz(XeB{ & YeB2 | o(W)) = Pz(Xe5, | a(W) ).Pz(YGB2 | a(W)), a.s. 

CCP involves a temporal asymmetry. To see this, let us suppose that W interacts with X and Y 

only in some bounded interval of time Tt. CCP then says that the X-Y correlation may exist 

after Tt, but not before. In other words, it may be that 

P z(X,€fl|a(Y,))*P2(X,eB), 

1 8 W e could always let W represent all these processes lumped together, i f there were more than one. 
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but only if t is after Tt. Before the interaction there can be no correlation at all. When 

Reichenbach says that conjunctive forks are always closed to the past, but usually open to the 

future, this is basically what he means. 

The Common Cause Principle can therefore be expressed as the following four claims: 

(I) If X and Y cannot interact, and there is no "common cause" W, then X and Y are 

uncorrelated. 

(II) Where there is such a system W which may interact with them both, X and Y can be 

correlated. 

(III) In such cases of correlation, the correlation disappears when we condition on (the sigma 

field generated by) W. 

(IV) If the interaction is restricted to some bounded interval of time, the correlation only exists 

after the interaction. 

The first claim is just Theorem 4.4.1. (II) and (HI) are easily deduced from the 

following theorem. 

Theorem 4.7.3.5 Let Z = <W,X,Y>. If bcz entails that X and Y cannot directly interact, 

then Pz(x&y \ w) = Pz(x \ w)Pz(y \ w). 

Proof: Using Axiom 4 we have that Pz(x&y \ w) = Pz(x \ w)Pz(y \ w8oc). By the causal theory 

of chance, this may be written as Pr(x \ lz & bcz & w)Pr(y \ lz & bcz & w & x). The question 

here is whether x is relevant toy within the epistemic state K = lz& bcz & w. Now, according 

to lz & bcz, X may interact with W, and W with Y, but X cannot interact directly with Y. If we 
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let 7<wx> stand for "W may interact with X", and so on, then the bridge between X and Y 

provided by lz & bcz is the conjunction 7<w x > 

AW,Y>- The proposition W=w, however, gives 

complete information about the actual history of W, so using Corollary 4 . 3 . 1 0 the conjunctions 

Awx> & w< 4WY> w both factorise. Then, by Theorem 4 .3 .5 , x is not relevant to y within the 

epistemic state K = lz& bcz & w. The result is immediate.* 

4.7.3.6 Corollary If X and Y can each interact with W, though not with each other, then X 

and Y may be correlated. 

Proof: Since X and Y can each interact with W, Pz(x \ w) and Pz(y | w) can vary with w. Thus, 

since 

Pz(x&y) = YJPz(x&y\w)Pz(w) 

= ^Pz{x\w)Pz(y\w)Pz(w), 
w 

and neither term Pz{x \ w) or Pz(y \ w) can be taken out of the sum as a constant, it may be that 

P z (JC&V | w) * Pzix | w)Pz(y | w)M 

Note that to prove the existence, rather than the possibility, of a correlation would 

require consideration of a particular system, with specific dynamical properties. We thus have 

proved both (II) and (UI). 

The final theorem is immediate, provided that we again interpret "before" and "after" in 

terms of closer to, and further from, the boundary condition. For, by Theorem 4 .7.3.4, at times 

before the interaction Px is exactly what it would be if there were no interaction with W, and 

the same is true of P Y . But, by Theorem 4 .4 .1 , where there is no interaction there is no 
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correlation. It follows then that there is no correlation between X and Y before the interactions, 

which is the result. 
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5. Correlat ion 

The topic of probabilistic correlation has become important, and puzzling, due to its central role 

in quantum theory. Einstein, Podolsky and Rosen (1935) showed that the rules of quantum 

mechanics predict correlations between measurement results which seem to require "hidden 

variables", i.e. physical quantities not represented in the quantum wave function. The hope of 

explaining these correlations using local hidden variables seemed to be quashed decisively by 

two results however, one mathematical and one experimental. The mathematical result was 

Bell's theorem (Bell, 1964) which showed, within certain assumptions, that any local hidden 

variable theory must differ from quantum mechanics in some of its empirical predictions. The 

empirical result consisted of a number of different experiments to test the predictions of hidden-

variable theories against those of quantum mechanics (QM), the best of which is considered to 

be that of Aspect et al (1982). The verdict on these experiments, at least from 1980 onwards, is 

unanimous in favour of QM, and against hidden variable theories of the type Bell considered. 

The correlations discovered theoretically by Einstein, Podolsky and Rosen (hereafter 

EPR), and experimentally confirmed by Aspect, are therefore a source of controversy at the 

present time. They have given rise to an extraordinary range of theories attempting to account 

for them. In this chapter we shall discuss the most promising explanations offered to date, and 

find them all unsatisfactory to various degrees. 

We shall also see that the EPR correlations are provably impossible within CSM, which 

means that CSM cannot be generally valid; at best, it holds within some special case. It will be 

argued in §5.3 that the postulate CSM3, though approximately true of "large" systems, is false 

in general, and shown that when this assumption is relaxed the inconsistency between CSM and 

QM disappears. This result shows that a kind of "hidden variable" explanation of EPR 

correlations is possible, within a stochastic framework. The hidden variables are not, of course, 

of the type Bell considered, nor are they non-local as in Bohm's theory (Bohm, 1952). 
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5.1 Classical and Quantum Correlation 

The EPR correlations are correlations with respect to chance, but we shall see that they are 

quite different from the chance correlations allowed for within CSM. In a sense defined below, 

the correlations of CSM are classical, whereas the EPR correlations are not classical. 

5.1.1 Classical Chance Correlations 

Let us review the results obtained in Chapter 4 about chance correlations. First, systems which 

are necessarily causally independent at all times are uncorrelated (Thm. 4.4.3). Second, if 

systems X and Y possibly interact within the time interval Tt, then X and Y are correlated after 

T, but not before. What does it mean, exactly, to say that "X and Y are correlated after 77'? 

Here is a suitable definition. 

5.1.1.1 Definition X and Y are chance correlated at time t just in case the random variables 

X(f) and Y(t) are correlated w.r.t. chance. 

By "chance" here I mean the chance function Pz, where Z=<X,Y>. In Definition 4.6.8 I also 

defined a time-dependent chance function Pt, which is intuitively the chance at time t. One 

might wonder therefore which events are correlated with respect to Pt, and for which values of 

t. We find that, within CSM, time-slice subsystems are only correlated with each other if those 

time slices themselves interact. We have, in other words, the following theorem. 

5.1.1.2 Theorem Suppose X, Y cannot interact outside Tt. Then, for t* > t > Tt, X(t*) and 

Y(r*) are uncorrelated with respect to Pt. 

Proof: The time slices of X, Y in [t, T] do not interact, so we can apply Thm. 4 . 4 . 3 . • 

183 



Since correlations within CSM all have this property, we shall call such correlations 

classical correlations. 

5.1.1.3 Definition Suppose X and Y may interact within Tt only. Then they are classically 

correlated (w.r.t. Pz) iff X and Y are correlated w.r.t. Pz, but 

uncorrelated w.r.t. P(, where t is any time after T{. 

One may be tempted to think that all chance correlations in nature are classical, but this 

is not so. We shall see that the formalism of quantum mechanics permits correlations which are 

not classical. 

5.1.2 The Rules of Quantum Mechanics 

Quantum mechanics (QM) is a stochastic mechanical formalism, like CSM, but is set up rather 

differently. In this section I shall describe those of its properties which I need to appeal to later 

in the chapter. In QM a system X has a set of possible states, as in CSM. Each possible state is 

represented by a mathematical structure known as a wavefunction \\f. The idea that material 

particles such as electrons are associated with waves was first proposed by De Broglie (1924), 

and Schrbdinger (1926) discovered a linear, deterministic equation which seemed to govern 

these "matter waves". The wavefunction for an electron, say, is a complex-valued function 

whose domain is the set of spacetime points, if we ignore electron spin. Schrbdinger hoped that 

by means of this wavefunction, which at first he considered to represent some straightforward 

physical property, the discontinuities of Bohr's "old" quantum theory could be eliminated. 

Schrbdinger was able, for instance, to derive the Rydberg formula for spectral lines in the 

hydrogen atom from his wave equation. 

The attempt to remove discontinuous changes from quantum theory failed, however, 

since Born showed that the intensity of the wavefunction has to be interpreted as a probability. 

Roughly speaking, for any position x, the intensity of the wavefunction at x, i.e. I\|/(JC)I2, is the 
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probability that the electron's position, if measured, will be found to be x. Thus, upon 

measurement, the state of a system evolves stochastically, rather than in accordance with 

Schrodinger's wave equation. 

For a single particle, the domain of the wavefunction is just R 3, which is the position 

space (space of possible positions) of a single particle. For a pair of particles, however, the 

wavefunction is defined on R 6, as the two particles have 6 degrees of freedom in their positions. 

In general we might say that the domain of the wavefunction is the configuration space of the 

system concerned, although we must remember that the configuration space of a system in 

quantum mechanics is generally only half the size of the phase space of its classical counterpart. 

In classical mechanics, for example, the state of a particle is specified by its momentum as well 

as its position - a total of six numbers. 

To describe the formalism as simply as possible we shall use the vector space notation. 

A crucial fact about the set H of possible wavefunctions for a system is that they form a vector 

space. That is, if \|/,, \)/2 e H, then \\fl + \|/2 6 H, and if \\f e H then c\|/ e H, where c is any 

complex number. We can therefore consider each wavefunction in H to be a vector, indeed, 

they are known as state vectors. In future we will denote \|/ in the "ket" vector notation as ll|/>. 

We can define the scalar product of two ket vectors \\\f{> and li|/2>, written g-(l\|/1>,lvj/2>), 

as follows: 

where x ranges over the configuration space of \)/, and c* is the complex conjugate of c. 

It is possible to define a second vector space, in addition to the ket vector space, by 

considering linear functions from ket vectors to complex numbers. In other words, we can 

consider functions / from H to C, such that/"(l\|/i> + lx|/2>) = f\\yl>) + /0 vl /2 >)- ^ i s trivial to 

show that the class of such functions also forms a vector space. Moreover, for any ket vector 
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l\|/>, we can associate it with a linear function/v, using the metric g, as follows.1 

Definition / v is the unique linear function/such that/(l<|») = g(ly>, \ty>), for all l(f»e//. 

Since/¥ is also a vector, we write it in the "bra" vector notation as <\j/l. The space of linear 

functions on ket vectors is then known as the bra vector space. Using this bra-ket notation, the 

metric g(\\\J>, l(|)>), which is equal to /v(l<|»), by definition, is written <\j/l<|)>. Since g has the 

form of an inner product, we can define the length or norm of a state vector lv|/> as <\|/l\|/>, and 

speak of two state vectors \§> and l\|/> as orthogonal when «j)l\|/> = 0. We will assume that all 

ket vectors l\|/> are normalised, so that k\|/lv|/>l2 = 1 

The state vector l\|/> evolves in accordance with Schrodinger's equation when the 

system is isolated. When a measurement occurs, however, the situation is quite different. Each 

type of measurement on the system is represented by a linear "operator" on H, that is a function 

H-*H. Each such operator A has eigenstates, that is states l\|/> such that AI\|/> = a\\\i>, where a 

is a (complex) scalar called the eigenvalue corresponding to the eigenstate l\|/>. A linear 

operator A is called Hermitian if g(l(j»AI^>) = g(AI<|»,l\|/>). Hermitian operators have two 

important properties, that (i) their eigenvalues are real, i.e. their imaginary part is zero, and (ii) 

the eigenstates corresponding to distinct eigenvalues are orthogonal. 

The rule for measurement in quantum mechanics, known as the Projection Postulate, 

can now be expressed as follows. If a measurement is made which corresponds to a Hermitian 

operator A, then the possible states of the system after the measurement are just the eigenstates 

of A, which we can write as la,>, \a2>, .... \ai>,..., regardless of the original state lvp> of the 

system. The "probability" of each eigenstate la,> is the squared scalar product or projection 

ka,lv|/>l2. It seems that "probability" means the "up to date" (utd) chance Pt, where t is any time 

just before the measurement occurs. For each possible final state la,> the outcome of the 

'This presentation of Q M is partially based upon that of Wi l l i am Unruh (1994). 
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measurement, i.e. the measured value for the quantity associated with A, is just a,-, the 

eigenvalue associated with la,>. 

There are operators for each classical property of the system, such as position, 

momentum, energy, angular momentum, and so on, as well as some new properties such as 

intrinsic spin. In general, however, a state vector does not contain a definite value for each of 

these properties. To say that a system possesses a definite value a for quantity A means, at the 

least, that a measurement of A would necessarily yield the value a; yet for a quantum state li|/> 

this only holds in the rare case that l\|/> is an eigenstate of A. The usual situation is that lv|/> is a 

linear combination, or superposition, of A's eigenstates, i.e. l\|/> = c{\a{> + c2\a2> + ...+ c,la,> + 

where Xlc,l2 =1. If the property A is measured on a system in such a superposition with 

respect to A, the wavefunction jumps to one of the eigenstates la,->, as stated above. This 

change is sometimes called the "collapse" of the wavefunction. 

For two Hermitian operators A and B we define the commutator of A and B, written 

[A,B], as AB - BA. If [A,B] = 0, i.e. [A,5]l\|/> = 0 for all yeH, then the operators A and B are 

said to commute. If A and B commute, then it may be shown that they share the same set of 

eigenstates, which means that a single state vector may determine a precise value for both A and 

B. If A and B do not commute, then there is no state vector for which A and B both have precise 

values. 

Since, for each state \\f, there is a chance distribution over the eigenvalues of A, there are 

degrees to which a quantity A has a value in state A will have an expected value <A>, 

defined in the usual way as the sum of its possible values multiplied by their probabilities, from 

which it follows that <A> = <\|/IAI\|/>. The standard deviation of A, written Aa, can then be 

defined in the usual way as Aa = V(<A2> - <A>2). The smaller the standard deviation Aa, the 

more precisely defined the quantity A is. Indeed, when \|/ is an eigenstate of A, Aa = 0. The 

standard deviation of A is referred to in QM (rather confusingly) as the uncertainty of A. One 

important relation in quantum mechanics, which is a theorem of the formalism, is known as the 

Heisenberg Uncertainty Relation. It is that, for any two operators A and B, 
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AaAb> ±<[A,B]> 

Thus, if A and B do not commute then there is an upper limit to their simultaneous precision. If 

the uncertainty of one is reduced, then this forces the system into a state where the other is more 

uncertain, so that AaAb does not drop below 1/2I<[A,5]>I. Either of A or B can be made to have 

an arbitrarily precise value, but only at the expense of the other. It turns out that canonically 

conjugate quantities, such as position and momentum, do not commute. Thus, at any time, a 

quantum system has definite values for at most half of the quantities which define a classical 

state. 

The feature of quantum mechanics which we shall focus upon in this chapter is the way 

composite systems are dealt with. This is very elegant and obvious, but has the surprising 

consequence that non-classical correlations are possible. Let us consider the composite system 

Z = <X,Y>, where the Hilbert spaces of X and Y are Hx and HY respectively. The Hilbert 

space of <X,Y> is then just the tensor product Hz = Hx 0 HY, as one might expect. Also, if X 

is in state \§> x, and Y is in state l\|/>Y, then Z is in state \§> x ® li|/>Y, which we write l(|)>xl\|/>Y. 

This seems very mundane, but now let us suppose that X and Y interact, in the time interval 

[3,4] say. During the interaction the state of Z evolves in accordance with Schrddinger's 

equation, ending up in a state lvF>z say at t=4. We would perhaps expect that \*¥>z somehow 

specifies an independent state for the sub-system X, and also one for Y, but this is not so. It 

would only be this way if l*F>z could be "factorised" into a tensor product of vectors in Hx and 

HY, i.e. be expressed as l 1 ?^ = l(t»xlv|/>Y, which is not the case in general. I*F>Z can be always 

expressed as a linear combination of such products, but not always as a single product. 

What this means is that, after X and Y interact with each other, they each cease to have 

a state vector. The composite system Z continues to have a state vector, as it is a closed system, 

but its component parts do not. Nothing like this happens within CSM, where interacting 

systems retain their individual states at all times. As we shall see below in the discussion of the 
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EPR argument, two quantum systems which have lost their individual states in this way are 

non-classically correlated. 

It is possible to represent a quantum state using an operator on the Hilbert space. One 

may wonder about the value of this, but we see below that it is very useful. The operator on H 

we need to represent the wavefunction \\f is the one which maps a ket vector x to/v(X).li|/>, i.e. it 

maps to <\|/l(j)>.l\)/>. This operator is known as the projection operator, or just projector, for 

the state l\|/>. Intuitively, it maps each l(j» onto a vector parallel to l\|/>, whose length is the 

projection of onto \\\f>. The projector for \\f is usually written l \ | /><V| / l . 

Given a particular orthonormal basis \et> for H, any operator A on the Hilbert space may 

be expressed as the matrix of complex numbers Ars = <er\A\es>. In the particular case of a 

projector l \ | /><V| / l , this entails that the operator can be expressed as a matrix Prs, as follows. 

V ¥ = X c 'k >'then
 P« =

 crc*-

i 

We then define the trace of P, written TrP, as follows: 

TrP^P,, 
i 

so that the trace is just the sum of the diagonal elements of the matrix. (It may be shown that 

the trace of an operator is independent of the orthonormal basis chosen.) It is now possible to 

calculate the probabilities of measurement outcomes using the projectors. If a system is in state 

\\\f>, and we measure an operator A, then the probability of the outcome a is just 7V(PvPa), 

where P v = lvj/x\|/l and Pa - laxal. 

So we see that, in a sense, the operator l\j/x\|/l is an alternative representation for the 

state l\|/>. What advantage is there in this representation, however? Suppose a physicist is 

unsure of the actual state of a system X; it could be in any of the states l\|/,>, l\|/2>, l\|/3> and so 
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on, with epistemic probabilities p{, p2, p3 etc. Let us now define the following operator p, 

which is called a density operator. 

The density operator has the nice property that it delivers epistemic probabilities of 

measurement outcomes, viz.: PK{A~a) = Tr(pPa). It may also be shown that the epistemic 

expectation of an observable A in state p is given by 7>(pA). The density operator is sometimes 

described as a (classical) mixture of projectors, as it is simply a weighted mean. A state 

represented by a density operator2 is therefore called a mixed state, in contrast to the pure state 

represented by a projector. 

Is it possible to distinguish experimentally between a pure state and a mixture? More 

specifically, can one tell the difference between the superposition of states 

\y> = y£ci\ai>, 
i 

and the mixture of those very same states? (i.e. p = X > < ; a/'> where pt = lc,l2). In fact it is 

I 

indeed possible, as I shall now explain. 

Clearly, if the states {!«,>} are eigenfunctions of the observable A, then measuring A on 

l\|/> and on p give identical statistics. Thus, one cannot distinguish lv|/> from p by measuring A. 

Let us therefore measure another observable B which does not commute with A, so that it has 

different eigenstates. If X is in state l\|/>, then the chance of the outcome B-b is 

2 

P(B = b)= YJck<b\ak> . (1) 

2 That is, a density operator which is not also a projector. Clearly, a projector is a special case of a density 

operator. 
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For the state p, however (i.e. the system is really in one of the states {la(>}, each with epistemic 

probability lc,l2) we have 

PK(B = b) = ̂ \<b\ak>\2\ck\2. (2) 
k 

The important difference between these two expressions is that in (1) the terms in the 

summation are complex, whereas in (2) they are real. Thus, in the pure state \|/ there will, in 

general, be interference between the elements of the superposition, but for a mixture this is 

impossible. 

To clarify the situation, let us consider a third possible state of knowledge, where we 

know that the system is in some superposition \\l of eigenvectors {lap*}, with coefficients ck, but 

we do not know the phases of the ck. In other words, if we write ck = Iĉ lexpO'Ŝ ) then we are 

ignorant of the phases 9̂ .. This being so, in calculating Pe(B=b) we must treat each 8̂ . as a 

variable and integrate the expression (1) separately w.r.t. each unknown phase. This yields 

PK(B = b) = \ XI ck I exp(z'0 k) < b\ ak > 

= ^\<b\ak >\2\ck\2, 

2 

.dP(Qk) 
(3) 

assuming that the phases each have a uniform probability distribution, and are pairwise 

probabilistically independent. Thus the statistics in case (3) are identical to those in (2). 

In the third case the system is in a superposition of states, but the phases of the 

coefficients are unknown. Now, a superposition is often described as coherent, which means 

that the relative phases of the elements are determinate and precise. It is this property of 

coherence which gives rise to the famous interference phenomena of quantum mechanics, such 
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as in the double-slit experiment.3 In the epistemic state of ignorance about the phases, 

however, the elements are incoherent, in the sense that the relative phases are unknown or 

indeterminate. Since this epistemic state is equivalent to a mixture, mixtures are often 

described as incoherent. 

It should be noted that the introduction of density operators is merely a formal 

convenience, and does not alter the theory itself (it is a conservative extension, in other words). 

It does, however, enable some features of the formalism to become clear. Two such features, 

which are considered significant, will now be briefly discussed. First, when two systems are 

correlated, so that neither has a state vector, each system can still be assigned a density 

operator. Second, the decomposition of a density operator into projectors is not unique. It is 

always possible to expand a density operator in two or more alternative orthonormal bases. 

Suppose X and Y are correlated. The state vector of Z = <X,Y> may then be expressed 

as the following sum 

l ^ > Z = S C " l ^ > X l V . s > Y , 
r,s 

where l(j),->x and liy,>Y are orthonormal bases for X and Y respectively. Now consider an 

observable A for the system X only - perhaps A is the operator for a measurement of the 

momentum of X. If we want to calculate the probabilities of measurement outcomes of A on Z 

in state we must apply A to vectors in Hz rather than Hx. For a vector in Hz of the 

product form l())>xl\j/>Y this is straightforward: the image under A is just (AI(|)>X)I\|/>Y. In other 

words, we apply A only to the factor which exists in Hx. To apply A to a general vector in 

Hz we express \XV>Z as a sum of such products, apply A to each product, and then sum up the 

images (which is valid because A is linear). 

3 F o r relative phases of 0, 2n, etc. the inference is constructive, but for a relative phase of ±71 it is destructive. 

192 



As with a single system, it is convenient to express operators as matrices. Previously 

we expressed a ket vector as a column vector, but it is simpler to represent the ket vector lxP>z 

as the matrix cn. The reason for this is that each column of this matrix can be considered as a 

column vector, and in each such vector the base vector for Y is constant. Thus, using the rule 

above, we can apply A to l ^ > z using the matrix product, viz.: 

(AI»F>)„ = 24A-
i 

How can we calculate the value of a scalar product <OlvF> of two vectors in Hz using this 

matrix notation? If IO>z is drs and \*¥>z is crs, then 

r,s 

Using these facts, let us calculate the expectation of A when Z is in state l\F>z. We have: 

<A> = <*¥\A\X¥> 

r,s,i 

r,s,i 

This quantity is just the trace of the matrix pxA, where 

px=yc.c., 
r rs / i ri si ' 

/ 

so that p x is the density matrix for the system X. 4 

Let us now consider some arbitrary element l\|/ f c>Y of the orthonormal basis for Y. 

Following Everett, we can now define the relative state l£ t > x for the system X, w.r.t. the state 

4 Recal l that <A> = 7r(pA). 
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\ y k > Y for Y, within as follows, 

i 

where Mk is just a normalisation factor. This is just the fcth column of the matrix of coefficients 

for \ y¥> z , as this is the column containing all and only coefficients of terms like l^x lV^v We 

can now simplify the expression of \^>z, as 

' * > Z = X ^ > x l V | / , > Y -
j j 

(Note the single variable of summation.) More importantly, however, the density operator p x 

for X can now be expressed as 

PX=X^><U 
i 

where #=XLC/-
i 

Thus the system X behaves exactly as if it had a definite (but unknown) state l^>x! If we are 

restricted to making measurements on X, rather than on both X and Y, then we cannot 

distinguish between this situation where X has no (pure) state, and one where it has some 

unknown pure state l£p»x. 

It should be noted that the orthonormal basis {l\|/,>Y} is perfectly arbitrary, and so some 

other basis {l\|/',>Y} could be used instead. By the same reasoning we then infer that X behaves 

exactly as if it had some definite state in the set {l£' (> x}. But the two sets {l̂ ,->x} and {l̂ ',>x} 

may be entirely disjoint! Thus we cannot conclude that X really has a pure state which is some 

member of {l̂ ,>x}, for then by parity of reasoning we would have to conclude that it also has a 

pure state in {l̂ ',>x}, and these two conclusions are sometimes inconsistent. 
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5.1.3 The Orthodox Interpretation 

In order to put EPR's argument into its historical context, I shall first briefly outline the 

interpretation of QM devised by some of its founders, which in 1935 was regarded as orthodox. 

This view was developed by a group of researchers clustered around Niels Bohr, based in the 

Institute of Theoretical Physics in Copenhagen, and so is known as the Copenhagen 

Interpretation. 

The Copenhagen interpretation may be represented by the following five principles5. 

(1) Microscopic entities (such as electrons and atoms) do not possess in themselves values for 

physical quantities (except for conserved quantities such as mass and charge). These values are 

only defined in the context of, i.e. relative to, a definite experimental arrangement, involving 

preparation and measuring devices. 

(2) There exists what Bohr repeatedly refers to as an "unanalyzable link" between the 

microsystem and the macroscopic measurement apparatus. 

(3) Macroscopic experimental arrangements, and the results of experiments, are to be described 

in the language of classical physics.6 

(4) The principle of complementarity: It is not necessary (or possible) to construct a single 

description of a microsystem which is accurate across different experimental arrangements. 

Since different experimental arrangements exclude one another, the different perspectives they 

provide on the microsystem cannot contradict one another, but should be regarded as 

5 Th is presentation is based on that of Leggett (1986:35-36). 
6 Landau and Lifshitz (1977:2) put this point as fol lows: "The possibility of a quantitative description of the motion 

of an electron requires the presence also of physical objects which obey classical mechanics to a sufficient degree 

of accuracy." 
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complementary. We must give up the classical idea of a unified, perspective-free description of 

reality when dealing with microsystems. 

(5) The formalism of quantum mechanics cannot therefore be made more complete, by adding 

quantities which are not defined by measuring instruments. Quantum mechanics is not 

complete in any naive sense, of corresponding exactly to a unified reality which is somehow 

"given", but does capture every quantity which is physically meaningful. 

These principles all arise rather easily from the formalism of QM, as can be seen even 

from our cursory presentation in Section 5.1.2, although this will not be fully apparent until we 

come to discuss the EPR argument. The main point for now is that, within the formalism of 

QM, a statement like "the electron has position q" can only be interpreted as "the state vector of 

the electron is an eigenstate of the position operator Q, with eigenvalue q". Thus, it appears, 

the very meaning of the ascription of position to the electron requires a reference to a measuring 

device, i.e. an experimental arrangement. 

The principle of complementarity is important in Bohr's understanding of the 

Heisenberg uncertainty principle. Suppose there were two non-commuting operators which 

were both measurable together, in the same experimental arrangement. This would cause a 

major difficulty for QM, since there is no quantum state in which both quantities have precise 

values simultaneously. We would have a contradiction within the theory. It turns out, 

however, that measurements of non-commuting quantities are always exclusive, in the sense 

that it is physically impossible to carry out precise measurements of both at one time. (This is 

not true of commuting pairs of operators, which can be measured together.) This fact that the 

measurements are exclusive is not a matter of luck; rather, the operators do not commute 
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because the measurements are exclusive. It is only meaningful to ascribe precise values to two 

quantities together if it is possible to measure the two together.7 

We will discuss the Copenhagen interpretation more fully in the next chapter, when we 

deal with the measurement problem, but to avoid misunderstanding a few remarks should be 

made at this stage about anti-realism. The Copenhagen interpretation has often been presented 

as a form of anti-realism, or relativism, or instrumentalism. Anti-realism is essentially the 

claim that there is no "God's-eye view" of the world - no way things actually stand, 

independent of all possible human knowledge. It collapses the distinction between justification 

and truth, and generally rejects metaphysics in favour of epistemology. A committed anti-

realist does not even understand what it means to claim that a theory is true, rather than merely 

justified. Relativism, or perspectivism, seems in most contexts to be the same thing as anti-

realism. It claims that the different perspectives belonging to different "observers" (in the most 

general sense) cannot be understood as relations to a single reality. Rather the perspectives, or 

"realities", are all that exists. Instrumentalism is in a similar vein, as it states that scientific 

theories (such as QM) should not aim at truth, or correspondence to objective reality, but should 

merely attempt to save the phenomena. To characterise Bohr's own philosophical ideas in such 

terms may well be accurate, and is certainly justified by many of his remarks, but I believe that 

the Copenhagen interpretation as presented here is not essentially wedded to anti-realism. 

There is an important difference between the claim that there is no objective, 

perspective-independent reality, and the claim that physical quantities of microsystems are only 

defined relative to a measurement apparatus. The essential point is that relations can be just as 

objective as properties, so that a discovery that a quality once thought to be a property turns out 

to be relational does not threaten objectivity. For instance, Newton thought that the time 

interval between two events was a property of those events, but we now think that this duration 

is only defined within a particular reference frame. This does not mean that there is no 

7 Th is argument was first made by Heisenberg (1927:68). 
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perspective-independent reality, no fact of the matter, but merely that durations are not part of 

that reality in the way we previously thought. In the next chapter I shall argue for an 

interpretation of QM which is similar to the Copenhagen interpretation, yet thoroughly realist. 

5.1.4 The EPR Argument 

The 1935 paper by Einstein, Podolsky and Rosen arose out of a long dialogue between Einstein 

and Niels Bohr8 on the interpretation of quantum theory. The earlier thought experiments 

devised by Einstein were intended to show that, under certain conditions, it is possible to make 

simultaneous measurements of non-commuting quantities to a greater precision than is allowed 

by the Heisenberg uncertainty relation. He was motivated by the desire to show that QM as it 

stands is not a complete theory, but is instead like statistical mechanics, dealing with mass 

phenomena. He wanted to interpret the uncertainty of a physical quantity as the standard 

deviation of the quantity in an ideal ensemble of systems prepared in a similar way. In other 

words, Einstein wanted to show that quantities always had precise values, even if they could not 

be measured precisely.9 Einstein was not overly worried by the indeterminism of QM, but 

rather with Bohr and Heisenberg's idea that types of measurement actually define physical 

quantities, so that the idea of a precise value which cannot be measured, even in principle, is 

absurd. Einstein wanted to preserve the realist's intuition that the world can outstrip our 

knowledge, or even possible knowledge, of it. 

The EPR paper was based on their "criterion of physical reality", an idea of the greatest 

importance. It is as follows. 

8 Bohr first met Einstein in 1920, and by Bohr's account (1949) their basic differences of approach were already 

apparent. The famous "Bohr-Einstein dialogue" is usually considered to have begun in 1927, however, at the Fi f th 

Physical Conference of the Solvay Institute. 
9 For a discussion of Einstein's views on Q M , see Ballentine (1972). There is however some controversy about 

Einstein's attitude to the statistical interpretation. 
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If, without in any way disturbing a system, we can predict with certainty (i.e. wi th probability equal 

to unity) the value of a physical quantity, then there exists an element of physical reality 

corresponding to this physical quantity, (p. 138) 

If this principle is true, and we assume locality, then it does follow that QM is incomplete, by 

the following reasoning. Consider two systems X and Y which interact in some interval of 

time, say [3,4]. After t=4, the individual systems no longer have state vectors, as pointed out 

above, although Z = <X,Y> still has the state vector l^z- If A is the operator for some 

quantity on system X, then let its eigenstates be la,>, la2>, la3>, ... and the corresponding 

eigenvalues be a,, a2, a3, ... Now, according to the rules of QM, Yi'>z may be expressed as 

follows. 

l x P>z=S c « l f l . - > x l < P . - > Y» 

where lcp(> is the relative state for Y with respect to. X being in state la,->, when <X,Y> is in 

state l ^ , as defined by Everett (1957:317). Suppose A is now measured on X, yielding the 

value ak. This means that X now has the state vector \ak>, and Y also now has a state vector, 

namely l(pp>. We are not forced, of course, to measure A on X, as we could measure anything 

we like, such as B instead. B has eigenstates \b]>, \b2>, \b3>, ... with eigenvalues bx, b2, b3, ... 

Let us then expand l*F> using the orthonormal basis defined by \b(>, \b2>, \b3>,... as follows. 

i v> = X ^ > i v , > , 

where l\|/,> is the relative state for Y w.r.t. X being in state \bt>, when <X,Y> is in state l*F>. If 

we measure B on X instead of A, X will be left in some eigenstate of B, such as \bs>, which 

means that Y will have the state vector lv|/p> instead of lcpp>. Now, since X and Y are no longer 
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interacting at the time of X's measurement, the choice of measuring A or B cannot have any 

physical effect on Y. Thus, as EPR put it, it is possible to assign two different state vectors, 

\\ys> and l(pt>, to the same reality. The problem with this is that there are cases where the 

{l(pp>} are the eigenstates of some operator P, and {l\J/?>} of some operator Q, where P and Q 

do not commute. Let l(pp> have eigenvalue p for P, and l\|/p> have q for Q. Then, without in any 

way disturbing Y, we can (by alternative measurements on X) predict with certainty either the 

result of a measurement of P or of Q on Y. There must therefore be an element of physical 

reality in the system Y to determine the result of both a P-measurement and a -̂measurement, 

as Y cannot "know" which measurement on X has been performed. It must hold answers to 

both questions in readiness, so to speak. But quantum mechanics does not represent these 

elements of reality; indeed, within QM it is not even possible for P and Q to have precise values 

simultaneously. Since then QM fails to represent some aspects of physical reality, it is 

incomplete. 

The EPR argument is certainly valid, in that the conclusion does follow from the 

premises. There are two premises which have been doubted, however. First, one may doubt 

that two systems which have a combined state but no individual states can ever cease 

interacting, even if they are far apart in space. In short, one can deny the locality assumption of 

the argument. This is difficult to do, as the correlation between measurements on X and Y 

exists even if the measurement events are spacelike separated, so that any signalling between 

them must be super-luminal. Second, one may doubt the reality criterion. 

Let us look more closely at the reality criterion. It seems to involve two separate ideas 

about reality, both of which are very plausible. We note first that the criterion involves the 

notion of prediction. What is prediction? It is a matter of inferring the later behaviour of a 

system from some information about its earlier behaviour. Thus, when the criterion speaks of 

being able to predict the value of a physical quantity, we might wonder what information is 

used to make the prediction. 
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In the example to which the criterion is applied, the total system can be considered to 

consist of four subsystems, X, Y and a couple of measuring instruments, M B and MQ say, which 

measure the quantities B and Q. Now suppose we are able to predict with certainty the result of 

Q being measured on Y, that Q=q perhaps; this is really a prediction about the system <Y,MQ>. 

The question then arises as to which systems we are allowed to have knowledge of in making 

this prediction. The criterion itself suggests no restrictions here, and in the application of the 

criterion we use the result of a measurement on X to make such a prediction; thus, I assume, we 

are allowed knowledge of all systems, not just the system <Y,Mg> that the prediction is about. 

The first part of the reality criterion is then as follows: If, given knowledge of the world 

up to time t, we can predict with certainty the result of a measurement at t+d, then there exists 

an element of reality at t which determines that outcome. This is practically a tautology. There 

is surely no possibility that it is false. If the value of Mgit+d) can be predicted with certainty 

from the states of <X,Y,MB,M e> up until time t, this just means that there are some true 

propositions about the latter which entail, i.e. determine, the value of M.Q(t+d). 

One will note that this part of the criterion has nothing to say about not disturbing the 

system in question. What work does this part of the criterion do? Although the criterion itself 

is not explicit about this, I think it is a matter of where the "element of reality" corresponding to 

the prediction is located. The second part of the criterion, I believe, is that if <Y,Mg> is 

causally isolated from t onwards, and its state at t+d is predictable with certainty from the state 

of the world at t, then the element of reality corresponding to this prediction "resides" in the 

system <Y,Me> itself. Without this additional claim about the location of the element of 

reality, the words "without in any way disturbing the system" are unnecessary. We should note 

also that the EPR argument does not work if the element of reality is even partially located at X. 

For then the element of reality may depend upon which type of measurement (A or B) is 

performed at X, in which case the elements of reality corresponding to the predictions P=p and 

Q=q need not both exist together. It is only if they are safely placed at Y, immune from X's 

influence, that they are guaranteed both to exist. We may summarise these parts as follows. 

201 



CI If an event E at t2 in system Y can be predicted with certainty from the state of the world 

up until tx<t2, then the world at t{ contains some element of reality corresponding to E. 

C2 If Y is also causally isolated from f, onwards, then the element of reality resides in Y. 

We should now investigate the meaning of "element of reality". The most charitable 

approach here is to take the weakest interpretation for which the EPR argument is valid, so let 

us look at how EPR actually use the term. We find that if a measurement result A=a is 

predictable from the state of a system X, then X contains an element of reality corresponding to 

that prediction. An element of reality corresponding to a measurement result A=a, therefore, is 

a physical fact about some system from which the result A=a may be predicted. It should be 

noted that EPR offer this merely as a sufficient, and not a necessary, condition of physical 

reality. 

It may have been noticed that I am departing slightly from Einstein's terminology in 

speaking of an element of reality corresponding to a measurement prediction rather than a value 

of a physical quantity. My formulation is slightly more general than Einstein's, while leaving 

the basic idea unchanged. The point is that Bohr, to whom the argument was addressed, 

considered an assertion that a system X has value a for some quantity A to posit a relation 

between X and a measuring instrument. The value a for the quantity A does not exist within X 

alone, but only within the composite system <X,MA>. We can grant this to Bohr, at least for 

the sake of argument, and still get the same conclusion. 

Using this sharpened reality criterion we can state the EPR argument as follows. 

Suppose X and Y do not interact after t=4. At t=5 we can measure either A or B on X, so let us 

consider two possible worlds: wA in which A is measured on X, and wB where B is measured; 

otherwise, wA and wB are as similar as they can be. In wA, A on X will have some definite value 

at t=5, and so P on Y will also be value-definite. In wB, B on X will have some definite value at 
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t=5, and so Q on Y will also be value-definite. But, since Y is isolated from t=4 onwards, wA 

and wB do not differ at all with respect to the system Y. As EPR put it, "no real change can take 

place in the second system in consequence of anything that may be done in the first system" 

(1935: 140). 

We now apply the reality criterion. By C l , there is some element of reality in wA at t=5 

corresponding to P=p say, and in wB at r=5 there is some element of reality corresponding to 

Q=q. Also, by C2, this element of reality resides in the system Y in each case. Now, since Y is 

unchanged between wA and wB, these two elements of reality both exist in each world! Thus it 

is possible for P and Q to possess values simultaneously, and so QM is incomplete. 

5.1.5 Predictive and Causal Locality 

The reality criterion C2 is a kind of locality principle, although it is quite different from what 

one normally means by 'locality'. Locality is the view that causal interaction can only occur 

between events that are contiguous in spacetime - in short, there is no "action at a distance". 

Locality in the usual sense, therefore, is concerned with causation. The principle C2, on the 

other hand, is concerned with prediction, or determination. The claim is not that the 

measurement result Q=q is caused by <Y,MQ> alone; this is trivially true, since <Y,Mg> is by 

hypothesis a causally-isolated system. Rather, C2 holds that the measurement result can be 

predicted from knowledge about <Y,MQ> alone, so that facts about <Y,Me> are in themselves 

sufficient to determine the result Q=q. 

We saw in Chapter 1 that causation and determination are distinct relations, since 

causation is neither necessary nor sufficient for determination. Indeed, even the relata of the 

relations are different, as causation is concerned with concrete events while determination is 

defined on representations of events. We must not confuse C2 with the trivial claim that, since 

Y is causally isolated, outcomes of measurements on Y are caused by Y alone. 

The criterion C2 can be strengthened in an obvious way, to yield what we might call the 

principle of determinative locality, or Predictive Locality, as follows. 
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Predictive Locality Suppose a system Y is isolated from time t0 onwards, and t0<tl< t2. 

Then, in making predictions about Y(t2) from the state of the world at r,, 

only Y(f,) is relevant. In other words, Pz(Y(t2)eB | Y(fj) & X(r,)) = 

Pz(Y(t2)eB | Y(f,)), a.s., for every other system X. 

This principle clearly entails C2, as the special case where an event in Y can be predicted with 

certainty, i.e. its utd chance is one. Predictive locality merely generalises C2 to cover all 

predictions, including those that are uncertain. The important theorem here is the following, 

although the converse also holds. 

5.1.5.1 Theorem If all correlations w.r.t. chance are classical then predictive locality 

holds. 

Proof If X and Y are correlated classically, then they are become independent upon 

conditioning on their joint state after they cease interacting. In that case, information about X is 

irrelevant to the later states of YM 

In the next section we consider Bell's Theorem, which shows that if causal locality is true then 

predictive locality is false. 

5.1.6 Bell's Theorem 

One important consequence of predictive locality and causal locality together is that some 

measurement interactions are deterministic, including many that appear to be stochastic within 

the formalism of QM. Consider, for example, the EPR situation again, and suppose that we 

measure A on X and P on Y. From the outcome of either measurement the other can be 

predicted with certainty, even if the measurement events are far apart in space; but each 
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individual measurement could, with non-zero chance, have a number of different results. The 

total state vector l*F>z does not rule out any individual measurement results, but does rule out 

most combinations of measurement outcomes. This fact, together with predictive locality, 

entails that both measurement events are locally pre-determined, as follows. The result of an P-

measurement of Y can be predicted from the state of the world after A is measured on X, and so 

(if Y is isolated) this outcome can also be predicted from Y's state before the measurement. 

But this is just to say that Y's measurement has a locally-determined outcome, and the same 

must hold for X as well. 

One would not expect to be able to refute this consequence of predictive locality 

empirically, as it is usually impossible to distinguish between deterministic and stochastic 

systems experimentally. In particular, a system which appears to be stochastic may be merely 

chaotic, and since we cannot control the initial conditions with infinite precision it is practically 

impossible to tell the difference. It is therefore a remarkable achievement of John Bell to prove 

that, under the assumption of local determinism for experiments of this kind, we would expect 

different empirical results from those predicted by QM (Bell, 1964). 

Bell proved his theorem using a version of the EPR experiment devised by David Bohm 

(1951:359).10 A pair of spin-Vi particles, X and Y, are prepared in a state where their spins are 

perfectly anti-correlated. This means that, if their spins are both measured (separately) with the 

same spin axis, the outcomes are guaranteed to be opposite. One will always be spin up, and 

the other spin down, regardless of the direction chosen. We imagine that the particles emerge 

from a central source in opposite directions, and then (when they are several metres apart) their 

spins are measured. We shall suppose that each measurement is on one of three different 

directions A, B and C; the particles may be measured either in the same direction, or in different 

directions. 

1 0 T h e proof given here differs f rom Bell 's, and fol lows instead Mermin (1985). 
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What does QM predict about this experiment? As stated above, when the spin 

measurements are parallel, such as when A is measured on both X and Y, the results should 

always be opposite. For measurements in different directions, we need to specify the directions 

A, B and C. Let us suppose they all lie in the plane perpendicular to the motion of the particles, 

and at 120° to one another. If we measure A on X and B on Y, then QM gives a probability of 

1/2(1-cos 120°) = 3/4 that the outcomes are the same, and indeed by symmetry any two 

measurements in different directions have the probability 3/4 of yielding the same outcome. 

What should we expect if each measurement is locally deterministic? In this case, each 

particle has what we may regard as a set of instructions, specifying the outcome it will produce 

for each measurement type A, B and C. If we denote a spin-up result by T , and a spin-down 

result by '0', then an instruction set will be something like (A=l, B=\, C=0), or just (110) for 

short. (The "instruction" A=l is of course just the element of reality corresponding to the 

prediction that if A is measured then the result will be spin-up.) It is clear that to account for 

the fact that measurements in the same direction always have opposite results, for X and Y, the 

instruction sets for X and Y must be opposite, i.e. where X has a '0' Y has a '1', etc. When the 

measurement directions are different, this deterministic hypothesis does not assign a probability 

to the measurement outcomes being equal, as it all depends on which instruction sets the 

particles have. 

We can still get a frequency prediction from the hypothesis of determinism however, as 

follows. Suppose we repeat the experiment many times, setting the measurement directions on 

each particle randomly and independently each time. For instance, on each trial we might roll a 

pair of fair, six-sided dice, one for each particle. Then on a 1 or a 2 we set the measuring 

device to A, on a 3 or 4 we set it to B, and so on. For this experiment consider a particular 

instruction set (110) for X, so that Y has (001). For this set, there is a chance of 4/9 that the 

measurement results will be equal, since there are nine possible pairs of measurements (each 

with the same chance 1/9) including four on which the results will be the same. Moreover, by 
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inspection, this chance of 4/9 exists for every instruction set for X except (000) and (111), on 

which the chance is zero. 

We have no information about the chance of each instruction set for X but, since the 

chance of the results being the same is no greater than 4/9 on each set, this is an upper bound 

for the unconditional chance that the results are the same. According to QM, however, the 

chance that the measurement directions are the same is 1/3, so the chance of equal outcomes is 

0 + (3/4)(2/3) = 1/2. We thus obtain Bell's theorem, the surprising result that any locally 

deterministic theory actually yields empirical predictions which differ from those of QM. 

Moreover, real experiments similar to the one described here seem to show fairly conclusively 

that the true chance is much closer to 1/2 than 4/9. 

If these experimental results are reliable then the conjunction of causal with predictive 

locality must be false. If we continue to affirm causal locality, therefore, we must give up 

predictive locality. Of course, using Theorem 5.1.5.1 it then follows that the systems X and Y 

in the EPR experiment are non-classically correlated. 

5.2 Reactions to the EPR Argument 

In Section 5.3.3 I shall show that a firm commitment to local realism11 does not require 

acceptance of predictive locality, or even C2, and thus a local-realist explanation of non-

classical correlations will be given. First, however, we shall examine some other attempts to 

account for this phenomenon. 

5.2.1 Bohr's Reply 

According to Bohr's colleague Leon Rosenfeld (1967:142), the EPR paper "came down upon 

us as a bolt from the blue". Everything had to be dropped until this argument had been 

n This term 'local realism' is due to Bernard d'Espagnat (1971:158). It is also defined in §5.3.3 of this thesis. 
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analyzed, understood, and refuted. Within a few weeks Bohr had finished his reply, a paper 

with the same title as EPR's. As one might expect from the brief summary of the Copenhagen 

interpretation in §5.1.3, Bohr's attack was focused on the criterion of physical reality, which he 

alleged to contain an essential ambiguity. Where does this ambiguity lie? It is in the phrase 

"without in any way disturbing the system". Bohr agrees that, in the EPR experiment, there is 

indeed no "mechanical" disturbance of the system Y after it has ceased to interact with X, so it 

cannot be mechanically disturbed by the event of X being measured. He holds nonetheless that 

Y is disturbed in some sense by the measurement of X, as this measurement is part of the total 

experimental arrangement which, according to principle (1) of the Copenhagen interpretation, is 

necessary to define physical quantities on Y. He notes, moreover, that physical quantities are 

used to predict the future behaviour of a system. 

Bohr's paper is rather obscure and confused, even to the point of mixing up two 

different thought experiments,12 but his response does seem to be along the right lines, from my 

perspective. In denying any "mechanical" disturbance of Y he clearly affirms causal locality, so 

his claim that Y is "disturbed" in some other sense is likely to cause confusion. What other 

sense of "disturbed" is there? Bohr regards Y as "disturbed" when the values of its physical 

quantities are altered by the measurement on X. Now, according to principle (1) of the 

Copenhagen interpretation, the value of a quantity on Y is a non-local entity: it supervenes on 

the whole experimental apparatus, including system X, and is not confined to Y. Thus Bohr, 

while holding on to causal locality, seeks to deny some other kind of locality principle which 

bears at least a superficial resemblance to predictive locality. 

Bohr's reply was not well understood by the physics community, and thus support for 

the Copenhagen interpretation was, in the long term, greatly weakened by this final exchange 

with Einstein. EPR's common-sense realist approach seemed far more wholesome than Bohr's. 

One physicist expresses his dissatisfaction as follows (Polkinghorne, 1984:72): 

1 2 B o h r confuses the one-particle experiment, on pp. 146-148, with the two-particle experiment on p. 149. On p. 

148 he inexplicably starts talking about two particles, in a way that makes no sense. 
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This reply illustrates the strengths and weaknesses of the somewhat positivist approach of Bohr and 

his friends, with their emphasis on classical measuring apparatus. I t enabled them to shrug of f EPR, 

but at the cost, one might think, o f refusing to face the issue. There is a way o f proceeding in 

conceptual matters whose method is to define away any inconvenient diff iculty. A l l the really tricky 

questions are declared meaningless, despite the fact that they are sufficiently well comprehended to 

give rise to perplexity. On the EPR paradox it seemed that the Copenhagen school had achieved just 

such a Pyrrhic victory. 

This criticism is not entirely just, I believe, yet Polkinghorne's discomfort does seem 

representative of a large part of the physics community. Einstein's criterion of reality may have 

been wrong, as Bell's theorem and Aspect's experiment have shown, yet he did succeed in 

conveying his point that there is something very strange about quantum theory, something we 

do not yet understand. In short, I think Einstein's argument awakened the realist's desire for a 

deeper understanding of how these non-classical correlations can come about. 

5.2.2 Bohm 

David Bohm (1952) formulated a theory which is similar to QM, but is nonetheless very much 

in the classical tradition. In his theory each particle has a well-defined trajectory, regardless of 

whether it is ever measured, and the motion is also deterministic. In spite of its deterministic 

nature, Bohm theory is not refuted by Bell's theorem, since the theory is non-local. Bohm 

theory seems to coincide with QM in its predictions regarding the EPR experiment - it is 

believed to predict the statistics obtained by Aspect, in other words. One might think that if one 

is prepared to sacrifice causal locality, then it is possible to explain Aspect's data without resort 

to non-classical correlations. 

The basic idea of Bohm theory is rather simple. We retain the state vector, or 

wavefunction, from QM but it has a completely different interpretation. Instead of being a 
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probability amplitude, it represents some sort of physical force field, analogous to the 

gravitational and electromagnetic fields. This \|/-field, as Bohm calls it, obeys the deterministic 

Schrbdinger equation at all times - it never "collapses". In addition to the wavefunction, each 

particle also has a trajectory which is determined by a separate equation of motion. The 

velocity of the particle is directly dependent on the instantaneous value of the \j/-field, so that 

we might say that the particle is driven along by the field. 

More precisely, the Schrbdinger equation for a single particle in one dimension, x, is: 

„ 8w h2 d 2\|/ . 
d t 2m a x 

Let us express the complex field \\t in exponential form, i.e. \\f = R. eh , so that S is the phase of 

the \}/-field. Then the equation of motion of the single particle is: 

dX _ 1 dS 
dt mdx,X{t) 

We see then that the trajectory of the particle is determined by its initial position, together with 

the \|/-field. The particle is "running on rails", so to speak, which are built into the \j/-field. 

It is well known that Bohm's theory violates causal locality - the nonlocality has even 

been described as "hideous"13 - but it will be instructive to see exactly how this comes about. 

We must consider the dynamics of a pair of particles in Bohm theory, to see if forces applied to 

one can alter the motion of the other, even if they are far apart. (For simplicity, we assume that 

their masses are equal.) The pair of particles X, Y will have a joint \|/-field in the 2-dimensional 

1 3 See Mermin(1993 : 813). 
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configuration space of coordinates (x,y), which obeys at all times the Schrodinger equation for 

pair of particles, namely: 

dt 2m\d x ay J 

Again writing the \)/-field in exponential form, the equation of motion of X is now: 

dX _ 1 dS_ 
dt m dx 

( x ( f ) . y ( O ) . 

The important detail to notice here is the point in configuration space at which the x-gradient of 

the phase field 5 is evaluated. It is the point given by the instantaneous positions of not only X, 

but Y as well! Thus, in some cases at least, the velocity of X may depend functionally upon the 

position of F, which is perhaps spatially quite distant from X. 

Under what circumstances is there such a nonlocal dependence? First let us consider 

the case where the \j/-field V|/(x,y) is the product of two separate \|/-fields, one for each particle. 

This is the case when the two particles have not interacted in the past. Then, if V|/(x,y) = 

2(y), the phase S of \\f will be a sum of phases, i.e. S(x,y) = S,(JC) + S2(y). We then have that: 

^-S(x,y) = -)-(Sl(x) + S2(y)) 
dx dx 

_dSL 

dx 

Thus, in the case where y is a product, the velocity of X depends only on the gradient of the 

phase of its own \|/-field, evaluated at its own position, and so there is no nonlocal dependence 

on Y. When the two particles are correlated, however, in the sense that the \|/-field for the 
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combined system <X,Y> does not factorise, there will be a nonlocal dependence of X on Y and 

vice-versa. 

What happens if we choose to apply some force to just one of the particles, such as XI 

Will the position of Y be affected? We model forces applied to the particles, such as those due 

to magnetic fields for example, using the potential V(x,y). If we apply a force to X only, then V 

will be a function of x only. This potential has a causal influence over the \|/-field, according 

the Schrbdinger equation, but in what way exactly? How will the introduction of a force on X 

affect the \|/-field? 

To investigate this, let us first assume that the particles have not interacted, so that the 

\|/-field is a product \|/(x,y) = \\Ji(x)\\f2(y). In this case, each particle has its own \|/-field and 

Schrbdinger equation, and the Hamiltonian for \|/2 is just 

2 2m 3 y 2 ' 

i.e. independent of V. Also, since in this case the velocity of Y is determined by S2 alone (as 

shown above), the trajectory of Y is independent of V. Thus, when \|/ factorises the magnetic 

field potential V has no effect on F's motion. 

In the case where \j/ does not factorise, however, this argument cannot be used. Neither 

particle has its own \|/-field, and so the motions of both particles will be affected by V, even if 

this magnetic field exists in part of space which is always far away from Y. We see that 

Bohm's theory is indeed grossly nonlocal, as a force applied to one particle can cause another 

particle, which may be arbitrarily distant, to change its motion. 

It does not follow, however, that such a pair of particles may interact at a distance. The 

latter would involve a causal influence of X on Y, or vice-versa, which does not unambiguously 

happen here. It may instead be that the potential V influences the \j/-field, which then alters the 
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trajectories for both X and Y. The correlation between the motions of X and Y may not be due 

to any causal interaction between them, but is instead due to their common cause V|/. 

As noted above, in Bohm theory the \|/-field always obeys the Schrbdinger equation, and 

thus does not "collapse", upon measurement, into an eigenstate of the quantity being measured. 

How does Bohm reconcile this with the fact that each measurement has a definite outcome? 

The rough answer is that the particle being measured in some sense "selects" one of the 

eigenstates, and that the rest can subsequently be ignored, for all practical purposes, but first we 

must look at what quantum-mechanical properties in Bohm theory look like. 

We have seen that the particle really has only one property, in itself, namely x, its 

position (as well as its mass). What of all the other properties then, such as momentum, spin 

and so on? We have already seen that the velocity of the particle is constrained to be equal to 

(VS(x))/m, so that we can consistently regard V5(x) as the momentum of the particle. Thus the 

momentum of the particle is a property of the \|/-field in conjunction with the position of the 

particle (and, if it is correlated with other particles, with their positions too14). In a similar way, 

other properties such as spin also reside partially in the \|/-field. 

If one measures the position of a particle, then one is simply measuring the quantity x. 

What about measurement of other quantities, however, such as intrinsic spin? In these cases 

too, one is ultimately measuring x, although under circumstances where x indicates the value of 

the other quantity. Spins, for example, are measured using the Stern-Gerlach apparatus, which 

involves deflecting a beam of particles in a magnetic field. The spin state of a particle is then 

determined by the direction in which it deflected by the magnet, either up or down, so that spins 

are measured ultimately by measuring positions. 

1 4 W e gain some insight into the nonlocality of Bohm theory here. A force on X alters the momentum of Y, it 
seems, because F s momentum resides at X just as much as it resides at Y, i f X and Y are correlated. I t becomes 

dif f icul t even to regard X and Y as distinct entities. Perhaps i t is more natural to think of a single particle which 

moves through the configuration space? The spatial separation of X and Y then merely gives an il lusion of 

ontological separation. 
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Let us now consider the textbook treatment15 of quantum measurement. Consider a 

system X, whose state \|/ may be expanded using the eigenstates la;>x of A as follows: 

We then suppose that a measurement of A on X is performed by some measuring instrument M, 

whose "needle position" is represented by the operator Q. The eigenstates of Q are lg0>M, 

l#!>M, I ^ M ' e t c - a r , d w e assume that the initial state of M is \q0>M, its "zero" position. The 

initial state of the joint process <X,M> is therefore the product 

l xF> <X,M> X C M >x ®'9o > M -

If the measurement interaction between X and M is successful, then the final state of <X,M> 

will be 

l ^ > < x . M > = 2 c ' l f l i ! > x ^ ^ M ' 
i 

so that the variables A and Q are correlated. 

The problem is now for Bohm to explain how, from this final superposition, which 

never collapses, a definite measurement result emerges. The answer, of course, is that the 

position of the pointer Q has a definite value at all times, since it is composed of a huge number 

of position-definite particles. Superpositions, for Bohm, exist only in the \|/-field - particles 

never suffer from such an indignity. Thus each measurement always has a definite outcome, as 

the needle on a measurement apparatus always has a definite final position. 

A more difficult problem for Bohm concerns the other elements of the superposition, 

which do not correspond to the particles' positions. In standard quantum mechanics these are 

1 5 See, for instance, London and Bauer (1939, §11). 
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assumed to vanish when the state vector is reduced, according to the Projection Postulate, but 

for Bohm they continue to exist for eternity. Will these parts of the y-field not lead to 

predictions which diverge from QM? 

While Bohm admits that this could occur in principle, he maintains that, for all practical 

purposes, the other elements of the superposition may be assumed to vanish. To argue this he 

appeals to a feature of the QM formalism now known as decoherence. A measurement 

apparatus is a macroscopic object, and thus cannot be causally isolated from its environment. 

The interaction of a measuring instrument with the environment brings about a correlation 

between them, so that the measuring device loses its pure quantum state. We thus have to 

represent its state using a density matrix, as described in §5.1.2. Now, it is commonly argued 

that this density matrix rapidly evolves into a state where, expressed using a coordinate system 

of eigenfunctions of classical observables, it is diagonal. This means that, unless we also 

perform very detailed measurements of the environment, which is practically impossible, no 

measurement of the measuring device will show any interference between the components of 

the superposition. We are thus free to ignore, for all practical purposes, the elements that are 

not selected by the particle trajectories. 

One aspect of Bohm theory we have not yet examined concerns the role of probability 

within the theory. Quantum mechanics, since it deals in physical chances, is able to predict 

(approximately and fallibly) the relative frequency of an outcome-type within a large set of 

repeated experiments. Clearly, if Bohm theory is to match this feat then it must say something 

about probability. It does this via an additional postulate, which I call the norm squared rule. 

This rule says that, given knowledge of the \|/-field of a system at time t and nothing else, one's 

personal probability density for the position of the particle is l\j/(x,r)l2. 

The personal probability, of course, is the warranted degree of belief for a subject who 

has exactly this information. A postulate about warranted degrees of belief is a rather odd 

component of a physical theory, so let us look at how Bohm supports its inclusion. First, it 

should be pointed out (though Bohm does not mention this fact) that l\|/(x,0l2 is a measure, so 
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that when normalised it is (formally) a probability function. Second, this measure is invariant 

under Schrodinger evolution of the \j/-field, i.e. the measure of any region of configuration 

space is equal to that of its image under the time-evolution operator. Thus, if the initial squared 

norm of the \|/-field is numerically equal to probability, then the same is automatically true for 

all later times as well. Bohm thus points out that the norm squared rule is self-consistent. 

Third, if one adds the norm squared rule to the other two postulates of Bohm theory, then one 

obtains a theory which is empirically equivalent to standard quantum mechanics. 

We are now finally in a position to discuss how Bohm theory deals with the Bell 

inequality and the Aspect correlations. The situation here is rather simple. Since Bohm theory 

(it is claimed) is empirically equivalent to QM, it predicts that the Bell inequality will be 

violated in actual experiments, in agreement with the empirical results. Thus, it seems, these 

results do not force a renunciation of determinism. Instead we can give up both causal locality 

and predictive locality, neither of which holds in Bohm theory. 

There are five difficulties with Bohm theory, which I will discuss in ascending order of 

severity. First, the equation of motion is a little odd in that the velocity, rather than the 

acceleration, of the particle is determined by the intensity of the field. This means that the 

momentum of the particle belongs mostly to the \|/-field - the particle has no momentum, or 

inertia, in itself. This is a stumbling block for some physicists16, who complain that this ruins 

the symmetry between position and momentum. 

Second, as already mentioned, the theory explicitly violates causal locality. A 

measurement in one place can cause an instantaneous change in the velocity of another particle, 

which may be arbitrarily distant at the time. This is considered an undesirable aspect of any 

theory. 

Third, Bohm theory as it stands is non-relativistic. A satisfactory theory would have to 

be Lorentz-invariant, like quantum field theory, but Bohm theory presents severe obstacles in 

I 6 Accord ing to Albert (1994: 66), "Many researchers have perennially dismissed Bohm's theory on the grounds 

that it granted a privileged mathematical role to the positions of the particles". 
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this regard due to its non-local nature. This difficulty should not be regarded as fatal, however, 

at the present time, since a Bohm-style version of quantum field theory cannot be ruled out.17 

Fourth, the norm squared rule is not legitimate as part of a physical theory. A physical 

theory should describe the physical world, and not include (logically separate) normative claims 

about what humans should believe. If the norm squared rule could be derived from the other 

two postulates then it would be acceptable, but this is not the case. It should be noted here that 

the norm squared rule is similar to Miller's principle, which I use to explain relative 

frequencies, but there is an important difference. Miller's principle follows logically from the 

definition of chance, whereas the norm squared rule cannot be derived from the definition of 

the \|/-field. 

Fifth, the theory does not explain the observed data, even if we include the norm 

squared rule. To explain a phenomenon E, we should recall from Chapter 1, is to infer E from a 

maximal description of £"s causes. Now the causes of an event, according to Bohm theory, are 

the initial state of the \|/-field, the initial positions of the particles, and the dynamics of the field 

and the particles. The predictions of relative frequencies, however, are not based on maximal 

knowledge of these facts. Instead the predictions depend upon the right kind of ignorance, 

namely ignorance of the particle positions, together with the norm squared rule (which has 

nothing to do with causation). Bohm theory does provide rules for inferring relative 

frequencies, but does not thereby explain those frequencies. 

It may seem odd that physicists have not been as critical of Bohm's norm squared rule 

as philosophers have been of Miller's principle. The reason for this, I believe, is that Bohm's 

rule is merely a continuation of the long-established tradition of such rules in statistical 

mechanics. It is unfortunate that, at the time when it became necessary to introduce 

probabilities into physics, determinism was so firmly entrenched. This made the reliance on 

assumptions about epistemic probabilities inevitable, though hardly good physics. 

1 7 F o r one approach to a hidden-variables quantum field theory see Bell (1984). 
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Bohm theory is almost certainly false, for the reasons noted above, yet it is very 

instructive. For one thing it shows just how hard it is to account for the EPR correlations 

within the paradigm of classical physics, with complete models of well-defined trajectories. In 

particular it shows that such a theory has to violate predictive locality, and also to smuggle in 

assumptions about relative frequency. 

5.2.3 Everett 

Like Bohm, Everett (1957) claims to have found a theoretical framework in which the EPR 

correlations make sense. The central part of his project, which is extremely ingenious as well 

as ambitious, is a reformulation of quantum mechanics itself, which he calls the relative state 

formulation. Everett is critical of the conventional formulation of quantum mechanics, which 

he calls the "external observation" formulation, on account of its silence regarding closed 

systems. He claims that "The whole interpretive scheme of that formalism rests upon on the 

notion of external observation" (1957: 316), and this criticism seems to be just. We have seen 

that the Copenhagen interpretation is quite explicit about this, with its view that the properties 

of quantum systems depend essentially upon the macroscopic experimental arrangement, and 

particularly the measuring instruments with which they interact. Everett attempts to construct a 

universal quantum mechanics, the foundations of which are quite free of the concept of 

observation, and this is surely a noble task. 

The relative state formulation of quantum mechanics is remarkably simple. It is actually 

just quantum mechanics, without the Projection Postulate. A measurement is treated in exactly 

the same way as any other physical interaction, as a physical process governed entirely by the 

Schrodinger equation. Now, since in the standard formalism a system evolves stochastically 

only when a measurement is made it follows that, in the relative state formulation, all systems 

are deterministic. Thus in one respect Everett's theory is similar to Bohm's, but there are also 

very large differences, as we shall see. 
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A second similarity between Everett and Bohm is that Everett also interprets the 

wavefunction as an objective, physical entity. It does not, in any sense, represent an epistemic 

state. Everett has no separate particles in his ontology, however; the \j/-field is all there is. 

The main difference between Everett's theory and Bohm's is that Bohm does not allow 

a particle's state to be a superposition. According to Bohm, although a particle is driven along 

by the wave function in a manner which is unpredictable for us, it still has a well-defined 

position at all times. Knowledge of the wavefunction may not enable us to predict exactly 

where the particle will be measured, so that there may be some epistemic probability of finding 

it "here", and some probability of finding it "there", but its position cannot be a superposition 

of "here" and "there". On Everett's view, on the other hand, such genuine superpositions are 

very common. 

A second difference between Everett and Bohm is that Everett's theory satisfies causal 

and predictive locality. The Schrodinger equation is the only dynamical law, according to 

Everett, and it is fully local. Of course there is a kind of nonlocality about the \|/-field, as two 

systems which previously interacted will share a wavefunction which does not factorise, even if 

they are now spatially quite distant. This should be called something else, however, such as 

'nonseparability', as it is quite different from either causal or predictive locality. 

The really novel feature of Everett's approach is his explanation of how the classical 

world, which its precise values for macroscopic quantities, emerges from the \j/-field. This is a 

serious issue for any view which maintains that quantum mechanics is to be applied to every 

system without exception, even measuring instruments. Since, after measurement, the "needle" 

on the measuring instrument will have no definite position, according to the \|/-field, how can 

we reconcile this with the common-sense reality in which it does? 

Everett's answer to this question is as follows. First he points out that common-sense 

reality, i.e. the classical world, is fundamentally a matter of the way things appear to us. We 

look at the needle and see that it has a definite location, rather than being smeared out perhaps. 

He then considers what happens, according to his theory, when an observer looks at the 
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measuring instrument at the end of the experiment. According to the Schrddinger equation, the 

observer is also then "sucked into" the superposition! Assuming, for simplicity, that the system 

measured has been absorbed into the measurement apparatus, we get a state for the measuring 

device + observer as follows: 

where the states lm,> of the apparatus are ones like "the needle has position q", and the states 

\of> of the observer are ones like "I see the needle in position q". 

Everett then (having defined his relative state as in §5.1.2) points out that, although 

neither the apparatus nor the observer has a definite, common-sense state, each does have such 

a state relative to the other. More precisely, for each state \ot> of the observer there is a well-

defined relative state lm,> of the apparatus. What is it like to be such an observer? What is the 

nature of his conscious experience - will he see a smeared-out needle? According to Everett, 

each vector lo,> of the observer is associated with a separate locus of consciousness, each of 

which sees a definite position for the needle. Thus, for instance, the "mind" associated with 

\oi> sees the needle in position qt, where qt is the eigenvalue corresponding to \mi>. 

When the observer looks at the measuring instrument, then, his \|/-field branches as it is 

entangled with the \|/-field of the instrument. He does not notice this, however, as each branch 

of the wavefunction is associated with a separate mind, each of which is unaware of the others 

(at least before 1957!).18 

Everett does not discuss the problem that, even after the branches of the superposition 

become "macroscopically distinguishable", they may still be liable to interfere with one 

another, giving rise to predictions different from QM. I assume however that, like Bohm, he is 

1 8 T h e picture is actually a little more complicated than this, as one must consider the issue of the memory of the 

observer, and matters of consistency between a second observation of the instrument reading and one's memory of 

the first observation, and so on. I refer the reader to Everett (1957) for the fu l l details. 
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relying on the decoherence of the measuring instrument's density matrix. This, for all practical 

purposes, makes it impossible to observe any macroscopic quantum phenomena, even though 

they are not ruled out in principle.19 

The "classical world", or rather worlds, which emerge in this way from the universal viz-

field are not entirely in accordance with common sense. First, the future is entirely 

indeterminate. This does not mean that the future is unpredictable from the past, but that there 

simply are no facts about what will happen. If I assert, in March 1997, that the Labour Party 

will form the next government, then this is likely neither true nor false, since the Labour Party 

wins the next election in some future branches of "me" but not others. We are familiar with the 

notion that such assertions about the future may be impossible to verify, until the time comes of 

course, but the idea that they lack truth values is counter-intuitive. 

A more serious oddity of Everett's worlds is that the past is also, albeit to a lesser 

extent, indeterminate.20 Since branches may converge as well as split, there are alternate pasts 

as well as alternate futures. In general, we might say that Everett's view is rather solipsistic, in 

a sense. The only shared, objective reality is the \|/-field, which is completely unfamiliar to us. 

The common-sense world turns out to be merely my common-sense world, having little reality 

beyond my experience of it. The appearance of a shared, familiar world is an illusion. 

Perhaps the greatest virtue of Everett's theory is that it accounts for the EPR correlations 

without invoking any nonlocal causal interactions. Given that the formalism satisfies both 

predictive and causal locality, one may wonder how this is possible - does Bell's theorem not 

rule out such theories? The point to realise is that it is the evolution of the \|/-field which 

satisfies causal and predictive locality, not the classical world; and the EPR correlations exist in 

the classical world. Everett's classical world evolves neither deterministically nor 

stochastically - these categories simply fail to apply. The future of the classical world cannot 

1 9 This is probably a virtue of Everett's approach, as macroscopic quantum phenomena are now being discovered. 
For an introduction to these developments see Leggett (1986). For more empirical detail see Stamp (1991, 1992, 
1996). 

2 0 F o r a discussion of actuality as a relation between times in Everett's theory, see Saunders (1995). 
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be determined by the past, as the future is not even determinate. Yet, for the same reason, the 

classical world does not evolve stochastically either. Instead, the classical world branches into 

a large number of distinct futures, all of which are equally real as they are all part of the \|/-field. 

It is not a matter of chance which of these futures "I" end up experiencing; rather, each is 

experienced by someone, although none of these awarenesses can really be identified with me 

since identity is a transitive relation. 

If we examine the EPR experiment from Everett's point of view then we find that, in 

each classical world, spins measured in the same direction give opposite results. It does not 

follow from this, however, that each spin measurement had a determined outcome. Rather, 

each spin measurement has both possible outcomes, as upon measurement each apparatus 

becomes correlated with the particles, and enters the joint superposition. The important point is 

that, relative to the state of having recorded spin UP on one device, the other device has the 

unambiguous state spin DOWN, and vice-versa. Thus in any classical world, as defined by 

Everett, the instruments display opposite readings. 

The analysis of spin measurements in different directions is more tricky, as in this case 

quantum mechanics gives a chance 3/4 that the outcomes will be equal, which supports a 

prediction that the long-run relative frequency of equal results will be about 3/4 as well. Since 

the classical world evolves neither deterministically nor stochastically, on Everett's view, how 

does he predict such relative frequencies? 

It is clear that, in Everett's picture, if the EPR experiment is repeated many times, using 

the measurement directions A and B say, a frequency for equal outcomes of about 3/4 will exist 

in some final branches of the superposition but not others. Indeed, for every sequence of 

outcomes that we generally regard as possible, there will be a branch containing exactly that 

sequence. How then can Everett claim that his theory predicts, or explains, the datum 3/4 that 

we actually observe? Could it not, just as easily, be any other value from 0 to 1 ? In response to 

this problem Everett (1957:321) says that 
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In order to establish quantitative results, we must put some sort of measure (weighting) on the 

elements of a final superposition. This is necessary to be able to make assertions which hold for 

almost all of the observer states described by elements of a superposition. We wish to make 

quantitative statements about the relative frequencies of the different possible results of observation 

- which are recorded in the memory - for a typical observer state; but to accomplish this we must 

have a method for selecting a typical element from a superposition of orthogonal states. 

The rough idea, then, is to have a probability measure over the final branches, or classical 

worlds, such that the collection of branches with frequencies close to 3/4 gets most of the 

weight. For a very long sequence of experiments, we might have for example that the measure 

of the class with frequencies in [0.74, 0.76] is 0.99. In this way Everett can assert that the 

statistics one actually observes exist in "almost all" worlds, where "almost all" refers to the 

measure rather than the cardinal number.21 

Which measure does Everett take? Like Bohm, he considers that any viable candidate 

must be invariant under Schrodinger evolution, which of course leaves us with only the familiar 

squared norm of the \|/-field. (Let us call this "Born measure", for convenience.) This measure 

has the added bonus that it yields frequency predictions identical to those of QM, so Everett's 

theory predicts that the Bell inequality will be violated (as it is violated in "almost all" worlds). 

The reader may notice some similarity between Everett's and Bohm's use of the Born 

measure to predict relative frequencies. Indeed Everett, like Bohm, refers to the use of 

Lebesgue measure in statistical mechanics by way of justification: "Our procedure is therefore 

quite as justified as that of classical statistical mechanics" (1957:322). Now the comparison 

with statistical mechanics is appropriate for Bohm, since his theory is deterministic and directly 

parallel to statistical mechanics. The probabilities he introduces are epistemic, and arise due to 

our ignorance of the exact initial conditions. Although his identification of epistemic 

2 1 I f we looked at the cardinal number, then "most" worlds would have a relative frequency close to 1/2, for well-
known combinatorial reasons. 
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probability with Born measure is unjustified and illegitimate, it is at least meaningful. Everett, 

on the other hand, cannot match this level of success, as we shall now see. 

What would an identification of epistemic probability with Born measure mean, within 

Everett's theory? Ideally it would work in the same way as in Bohm theory, specifying 

warranted degrees of belief about future experimental outcomes given knowledge of the current 

wavefunction, for that is the usual manner in which quantum-mechanical probabilities are used 

to predict frequencies. In this case probabilities would be defined for statements such as "If I 

repeat the experiment 10,000 times, then the relative frequency of a will be 3/4". The problem 

here, however, is that such statements are actually meaningless in Everett's picture, as there is 

no unique future, and so such statements lack truth values. If Everett were to identify Born 

measure with epistemic probability, therefore, this move would be not merely unjustified but 

actually nonsensical. 

To his credit, Everett does not attempt such an identification, and leaves the Born 

measure uninterpreted. This being so, however, it is quite unclear how the measure is used to 

predict relative frequencies. An inference from "this outcome has Born measure 0.99" to "this 

outcome will occur" is simply invalid, unless a suitable interpretation for Born measure is 

provided. This inference problem for Everett looks very severe, particularly when we bear in 

mind that the only known way to infer frequencies from objective probabilities is via Miller's 

principle, an approach that is unavailable to Everett. 

Everett's theory has been criticised on other grounds, such as its ontological profligacy, 

its revisionary ideas about reality and actuality, and its need for a preferred orthonormal basis 

for an observer system, but the problem of predicting relative frequencies seems to be the most 

devastating. As it stands, at least, the theory does not save the phenomena. 

5.2.4 Other Approaches 

The three responses to the EPR argument discussed above are all several decades old, at least, 

although each still has able contemporary supporters. I consider them to be the best work on 
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the subject to date, but for the sake of completeness I will briefly mention one other, more 

recent type of response. 

The main idea of this final approach is to regard the wavefunction as a real field, as do 

Bohm and Everett, but hold that the Schrodinger equation is of limited validity. Thus the 

Schrodinger equation is obeyed, for all practical purposes, in the atomic and sub-atomic world, 

but at some larger scale is superseded by another rule. This other rule prescribes a stochastic 

localisation of the wavefunction, in some manner that at least approximates the von Neumann 

collapse. Thus, roughly speaking, the state vector reduction is seen as a physical, rather than 

epistemological, process. One view of this kind has been advanced by Ghirardi, Rimini and 

Weber (1986), and another is due to Roger Penrose (1994:Ch.6). 

5.3 Beyond Postulate CSM3 

We have seen that nature suffers non-classical correlations between systems, whereas CSM 

does not. It follows that CSM is false, although I believe it is approximately true within a 

restricted domain of "large" systems. If CSM is false, it follows that at least one of the 

postulates on which it is based is false, and I think that postulate is CSM3. This postulate 

allows a history of a composite process always to be factorised into histories of the subsystems, 

which is a necessary assumption in the proofs of the independence theorems 4.4.3 and 5.1.1.2. 

This section has two aims, therefore. It must be shown that (i) for some systems at least, CSM3 

may be false, and (ii) if CSM3 is dropped, then non-classical correlations are possible. 

5.3.1 Factorisability and Consistent Families 

It is intuitively plausible that the possible histories and states of a composite system Z = <X,Y> 

each factorise into a pair of histories or states, one for X and one for Y. What is the source of 

this plausibility? A possible history, as defined in Chapter 4, is a maximal abstract 

representation, or model, of how the concrete history of a system may run, i.e. a maximal state 
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of affairs concerning the concrete history. Now, if we have a proposition A z about a system Z = 

<X,Y>, does A z always factorise22 into a conjunction of the form A x & A Y , where A x , A Y are 

about X, Y respectively? We have seen that it does not, as is immediately demonstrated by 

such counter-examples as A z = "X+Y=0". 

A simple case of this type is as follows. I make two mugs of coffee and absent-

mindedly put a lump of sugar into one of them. A few moments later I remember adding the 

sugar but am unsure which mug it went into (they both look the same). If the mugs are X and 

Y, then I know that Z = <X,Y> contains one sugar cube, but I do not know the number for X or 

for Y. My knowledge can be represented as X+Y=l, or alternatively as (X=l & Y=0) v (X=0 

& Y=l). This does not factorise into knowledge about X and knowledge about Y. 

Examples of this kind, while showing that knowledge of a composite system may not 

factorise, do not help us very much. For one thing the knowledge is clearly sub-maximal, as it 

may be expressed in the form of a disjunction, so that it is entailed by each disjunct. States and 

histories, on the other hand, are maximal representations. It will be noted that each disjunct is 

factorisable, so one might even suspect that the failure to factorise is due to the lack of 

maximality. Also the "correlated" systems - the mugs - need not have interacted in any way 

and bear no special physical relation to each other. The correlation in such examples is purely 

an artifact of the way we have gathered information about the systems, and does not depend 

upon the systems themselves. In the case of non-classical chance correlations there does seem 

to be a physical relation between the correlated systems, due to their previous interaction. 

To get some insight into why even a maximal description of a system <X,Y> may fail to 

factorise let us again consider the problem briefly brushed aside in §4.4, that physical quantities 

represent relations rather than intrinsic properties. Let us examine length, as it is perhaps the 

simplest example of a physical quantity. What is a length? It is a number, perhaps a quotient 

2 2This should be understood in the sense of Definition 4.3.7. 
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or a real number, that attaches to a body such as a straight rod. How does it become attached, 

however? A rather simplistic version of the story is as follows. 

Given two straight rods, such as X and Y, we can define the relative length R(X,Y) as 

follows. Take a rod Y' that is similar to Y, in the sense that when placed side-by-side with Y 

both ends of Y' can touch an end of Y at the same time. Place Y and Y' end-to-end so that they 

form another straight rod. The rod Y-Y' can be compared with X to see if it is longer or 

shorter, as follows. Place X and Y-Y' side-by-side so that one end of X touches one end of 

Y-Y'. If the other end of Y-Y' touches an interior part of X then X is longer. If it touches no 

part of X then it is shorter. If it touches the other end of X then Y-Y' and X are similar. If Y-Y' 

is shorter than X then get another rod Y", also similar to Y, and form the rod Y-Y'-Y". 

Continue this process until the two rods are about the same length. R(X,Y) is then the number 

of Y-rods that together are similar to X. 

Clearly, for some pairs of rods the number >?(X,Y) will not be very precise, whereas for 

others it will be quite accurate. Let us just consider those pairs for which is it fairly precise, in 

the sense that X is, as far as we can tell, similar to some concatenation of Y-rods. We can then 

extend the relation R to all pairs of rods by stipulating the following: 

Thus, if previously 7?(X,Y) was defined, R(Y,X) is now also defined. If previously R(X,Y) was 

not defined, then find some (perhaps very short) W such that R(X,W) and R(Y,W) are both 

defined, and then define R(X,Y) as the ratio of these. 

Now, in making stipulations such as these there is no a priori guarantee that they will 

even be consistent. For instance, there might be two non-similar rods W and W' such that 

R(X,W), R(Y,W), R(X,W) and R(Y,W) are all defined, but R(X,W)/R(Y,W) is different from 

7?(X,W')//?(Y,W'). As a matter of empirical fact, however, these stipulations do turn out to be 

R(X,Y) = 
R(Y,X) 

and i?(X,Y) = 
*(X,W) 
R(Y,W) 
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consistent, within the limits of experimental error. Since the two relations above do hold of the 

family of relations R, I shall say that R is a consistent family. 

The fact that R forms a consistent family allows us to define length as a property, 

attaching to a single body, as follows. We select some rod - it does not matter which one - and 

designate it as the unit. We may, for instance, choose the popular rod called "metre", or M for 

short. The length of a rod X, /(X) say, is then defined to be i?(X,M). It must be stressed that 

the unit for length, like all units, is a concrete body and not an abstract number. 

The fact that R forms a consistent family also allows us to factorise statements involving 

length about composite systems. The statement R(X,Y) = 2.64, for instance, might be 

expressed as the conjunction /(X) = 12.91M & Z(Y) = 4.89M. 

The example of length is unusually simple (although it is still a good deal more complex 

than as portrayed here), yet the essential features are apparently shared with all physical 

quantities (most obviously for quantities with units). The factorisability of descriptions 

involving such relations, therefore, depends upon their forming a consistent family. 

Why do relative lengths form a consistent family? A common-sense realist answer to 

this question might be as follows. The relative length i?(X,Y), as defined above, is caused by 

the individual properties of the bodies X and Y. If, for instance, X is three times as long as Y, 

then this relation is brought about by the individual concrete natures of the two bodies. 

Moreover, it seems that all rigid, straight rods are commensurable with respect to the relations 

of relative length, i.e. any two rods have a well-defined relative length. Since then the relation 

R is grounded in the objective natures of individual bodies, which are all pairwise 

commensurable, we should expect the kind of stability that a consistent family of relations has. 

This is exactly the right kind of "stability" that enables each rod to be assigned its own length, 

relative to some unit. We should expect relative lengths to reduce to these quasi-absolute 

lengths, since relative lengths are ontologically grounded in the individual natures of the bodies. 

This answer, though rough, is basically correct in my view. It should be noted that the 

"concrete natures" of the individual bodies, which determine the relative lengths, cannot 
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themselves be represented by numbers. It simply does not mean anything to assert that the 

length of this rod is the (dimensionless) number 17.62. We thus have the paradox that, while 

lengths are ultimately grounded in the individual natures of bodies, their numerical 

representation is irreducibly relational. This paradox is easily resolved, however, provided we 

recognise the distinction between concrete reality and abstract states of affairs, i.e. between the 

territory and maps of it. We must resist the temptation to think of physical quantities, i.e. 

numbers, as existing in concrete systems. Numerical lengths, which are mere representations, 

are irreducibly relational, whereas the concrete natures, or "real lengths", belong to individual 

bodies. 

If the "real length" of a body, which is part of its concrete nature, cannot be represented 

by a number then how is it to be modelled, or understood? It is hard to see how it could be 

represented in abstract terms, even in principle. The best, most versatile, models we have are 

mathematical structures, and yet these are only able to model relations between concrete 

systems. The individual natures that underlie these relations seem to be forever hidden from 

our view. (We note therefore that mathematical models cannot be complete representations of 

concrete systems, even in principle.) 

We have seen that a description of a system <X,Y> involving physical quantities will 

factorise provided the relations in question form a consistent family. On the other hand, if a 

maximal description of <X,Y> requires mention of some relation that is not part of a consistent 

family, then the description will not factorise. Which relations might not be part of a consistent 

family, however? Do such relations exist? I think the following example is useful here. 

Suppose a sheet of paper is torn roughly into two pieces, X and Y . 2 3 There is then a 

similarity between X and Y which is of such a particular and idiosyncratic kind that probably 

no other object in the cosmos is similar to them in this way. (Unless you perhaps take a 

2 3 This example was given in a lecture course by William Unruh. 
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photograph of one of them, or some such thing.) This relation is therefore not part of a 

consistent family and cannot be directly factorised. 

This relation may be factorised, of course, if we consider Z = <X,Y> as a collection of 

fibres. (Z is then viewed as a very large collection of systems, rather than a mere pair.) Now 

the fibres are described adequately by their relative lengths, breadths, positions and so on, all of 

which form consistent families. The description of Z using such quantities is therefore fully 

factorisable, and so a description of Z at the level of fibres will factorise into descriptions of X 

and Y. The latter two propositions will jointly entail, of course, that X and Y fit together 

exactly. 

If we are being pedantic, it should be noted that the above argument assumes that each 

torn fibre breaks cleanly, without any irregular, jagged edge, as otherwise the shift of focus 

from the sheets to the fibres does not help. What if, however, the fibres do tear in an irregular 

way, so that the two halves of a single torn fibre bear a unique relation to each other? In this 

case the focus will have to be shifted again to an even smaller scale where, with any luck, such 

awkward sui generis relations do not exist. 

Will such a level of description be found, where the relations between the systems all 

belong to consistent families? For the torn sheet of paper I think that such a level of description 

does exist, as least for all practical purposes. Thus a maximal description of the two jagged 

pieces will factorise. I see no reason to hope that this will be true in general, however, for all 

pairs of systems that have interacted with each other. In particular, if the systems X and Y are 

small (perhaps they are photons) then there is far less scope for finding other descriptions at 

smaller scales. If, as a result of their common origin, a pair of photons can have a sui generis 

relation like that between the two halves of the torn sheet of paper, then it is likely that their 

maximal description will not factorise. 

As in the case of length, my view is that the sui generis relation between the photons is 

grounded in the concrete nature of each photon. However, due to the way mathematical models 
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relate to real systems, via relations between systems, these individual natures cannot be 

represented individually. 

The above analysis of factorisability is admittedly crude, but I think it is along the right 

lines. It leads us to expect that CSM3 will break down for small systems that have interacted in 

the past. What is meant by "small" here? It is not a matter of physical dimension, as in that 

case a pair of photons ten metres apart might be considered a large system! It is rather a matter 

of composition, i.e. if X is a sub-system of Z, then X is smaller than Z. The distinction 

between classical and quantum systems is discussed in more detail in §6.2.1. 

5.3.2 Factorisability and Predictive Locality 

The reason why CSM3 is so important to the issue of non-classical correlation is that if 

factorisability fails then so does predictive locality. This is most easily shown in the coffee 

mug example. By Theorem 5.1.5.1 it then follows that non-classical correlations are possible. 

Suppose each mug is measured for sugar content, perhaps by someone tasting it. What 

will I predict for each measurement outcome, if my state of knowledge K is given by the 

proposition X+Y=l? In view of the symmetry of the mugs, it seems reasonable to put PK(X=l) 

= PK(Y=l) = 1/2. What if I learn of the result of X's measurement before that of Y, however? 

If I learn that X=l, for instance, then I can infer with certainty that Y=0, and if I hear that X=0 

then I infer that Y=l. Within the epistemic state K, in other words, information about the 

system X is highly relevant to the predictions I make about Y, which is just to say that 

predictive locality fails for K. 

Now the state K is not maximal, of course, but this is not relevant to the issue here. The 

relevant fact is that K does not factorise. This means that the information in K is non-local, so 

that the predictions supported by K are also non-local. This nonlocality of information does not 

depend upon any causal nonlocality of course, as these statistics for PK obviously do not require 

any mysterious causal interaction between the mugs while they are being tasted. 
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5.3.3 Predictive Locality and Local Realism 

There is a consensus that Bell's theorem, together with the Aspect results, rules out a view 

which d'Espagnat (1979:158) calls local realism.24 Local realism consists of three separate 

theses, which d'Espagnat calls locality, realism and induction. By 'locality', he means causal 

locality, the claim that no causal influence can propagate faster than light. d'Espagnat's 

definition of realism is that "regularities in observed phenomena are caused by some physical 

reality whose existence is independent of human observers" (1979:158). In the case of the EPR 

correlations, which count as a "regularity", this surely means that they are due to some common 

cause. They must have some cause or other, according to realism, and locality rules out any 

direct interaction between the two systems, so that we are left with a common cause. (Induction 

is just the view that the physical chances of event types can be estimated by measuring relative 

frequencies of those event types in repeated trials.) 

The argument against local realism given by Bell and d'Espagnat assumes that realism 

includes the EPR criterion of physical reality, discussed in §5.1.4. As we have seen, the 

application of this criterion to the EPR experiment yields the conclusion that each spin 

measurement is locally pre-determined. The general layout of the argument may therefore be 

represented as follows: 

1. local realism => local determinism Using the EPR reality criterion 

2. local determinism => the Bell inequality Bell's theorem 

3. Not(the Bell inequality) Aspect experiments 

.-.4. Not(local realism). From 1,2,3. 

I have shown, however, that the EPR reality criterion is dependent upon the principle of 

predictive locality, so that where predictive locality fails it does not provide even a sufficient 

2 4 T h i s view is advanced by Bell himself, for example (1964, 1975, 1980). 
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criterion of physical reality. Predictive locality, in turn, depends upon CSM3, since it fails if 

histories of composite processes do not factorise. Finally, we have seen that CSM3 is probably 

false in general, even if realism is true. Thus realism does not entail predictive locality, and so 

local realism is not refuted by Bell's theorem and Aspect's results. This may be summarised as 

follows: 

1. (local realism & predictive locality) => local determinism 

2. local determinism => the Bell inequality Bell's theorem 

3. Not(the Bell inequality) Aspect experiments 

.•.4. Not(local realism & predictive locality) From 1,2,3. 
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6. The State Vector 

In the previous chapter on correlation we saw that the chance function in quantum mechanics 

does not always satisfy predictive locality. I offered an explanation for why this might be so, 

but did not give any interpretation of the quantum-mechanical formalism. In this chapter I will 

develop a theory of what the quantum state vector represents. I shall look at the two main 

views on this, that (i) it models some physical field, as Bohm, Everett and R. Penrose maintain, 

and that (ii) it represents "knowledge", or "information" about the system. My view, perhaps 

surprisingly, is that both (i) and (ii) are correct. 

As is well known, many of the conceptual difficulties of quantum mechanics are centred 

around the issue of measurement. This cluster of puzzles is often called the measurement 

problem of QM. The measurement problem is impossible to separate from the question of how 

the state vector is to be interpreted, so I will have to say something about measurement as well. 

Among the standard range of interpretations of QM, my own view is closest to the 

Copenhagen interpretation. I agree, at least roughly, with the five principles laid out in §5.1.3. 

Nonetheless, I reject the instrumentalist and positivist aspects of Bohr's philosophy. There is 

far more going on in the world than can be represented in mathematical models. 

6.1 The Problem 

The state vector represents, apparently, some sort of physical field, as will be argued in the next 

section. Also, however, it is closely connected to epistemic probability, so that it represents the 

possible knowledge that one can have about the system, as I argue in §6.1.2. These two facets 

of the wave function seem to be in contradiction, forcing us to choose between them. Physical 

facts and epistemic states are quite different things. The latter makes an essential reference to 

minds, since knowledge requires a knower, whereas one would usually say that a physical fact 
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is independent of mind. I will show in §6.3.4, however, that the causal theory of chance allows 

them both to be correct. 

6.1.1 The Physical Interpretation 

I shall advance two arguments that the wavefunction represents a real, physical field of some 

kind. 

First, the wavefunction has a deterministic equation of motion, which has been used to 

predict a wide range of phenomena to a very high degree of accuracy. Consider, for instance, 

one of the early successes of wave mechanics, the explanation of Balmer's formula for the 

spectral lines of hydrogen. These energy differences fall right out of the Schrbdinger equation, 

using an appropriate static potential well. Moreover, the individual solutions to the time-

independent wave equation (which correspond to the electronic energy levels) make physical 

sense, being similar to standing waves. Since the wave is confined to the well, and must be 

continuous in \\f and V\|/, only certain discrete frequencies (energies) are possible, which 

correspond exactly to those observed. It should be noted that this "prediction"1 does not 

involve probabilities, and indeed was made prior to Born's statistical interpretation of 

Schrbdinger, of course, did not "cook up" his equation to generate these data, but was 

working with a very general, theoretical heuristic, based on the assumption that the classical 

Hamilton-Jacobi equation gives an incomplete and approximate description of V|/. He took that 

equation to describe only the phase of the wavefunction, and also imposed a condition of 

linearity, which led to his own equation. The "prediction" of the Balmer series was a 

remarkable success for such a deep, theoretically-motivated equation, and it is but one of a 

galaxy of such triumphs. If there is ever evidence of correspondence between a model and 

reality, this must be such a case. It simply will not do to say that the standing waves within a 

'Schrodinger developed his equation long after Balmer's formula was published, but such calculations are stil l 

called "predictions" by philosophers of science. 
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hydrogen atom are "waves of knowledge", since these waves are causes of physical phenomena, 

and one's knowledge of a system does not have any causal power. 

For the second argument, we grant the fact that the wavefunction can be used to 

calculate probabilities of measurement outcomes. It does not follow from this, however, that 

the wavefunction is just a means for summarising what we know about a system. The essential 

point here is that the wavefunction is complex-valued, and so involves what are called 

'probability amplitudes' rather than probabilities. The use of amplitudes rather than 

probabilities, moreover, is not a mere mathematical convenience but is necessary for empirical 

adequacy. 

An analogy with geometry may be helpful here. The basic quantity in geometry is the 

distance between a pair of points. A geometrical representation of a rigid system of particles, 

however, is not usually a list of such distances, one for each pair of particles in the system. (Let 

us call this the d-list.) Instead we give a set of coordinates (x,y,z) for each particle, from which 

the d-list can be calculated using the Euclidean metric, as the square root of the sum of the 

squares of the coordinate differences. Now what are we to say about these coordinates? Are 

they merely a convenient way of summarising all our information about the distances? It seems 

that the coordinates are rather more significant than this, that they provide a deeper 

representation2 of the system than does the d-list, for the following two reasons. 

First, the coordinates manage to generate the d-list using fewer numbers. If there are TV 

particles in the system then there are Vz.N{N-\) distances, but only 3N coordinates. For any N 

greater than 7 the coordinate description is shorter, and the difference becomes very significant 

for large N. With N=50, for example, the J-list contains 1225 numbers, whereas there are only 

150 coordinates. It seems that the coordinate description, which includes the Euclidean metric, 

has some built-in knowledge about the structure of space. The coordinate description "knows", 

for example, that space is three-dimensional and Euclidean. 

2 O f course coordinates, unlike distances, are only defined within a reference frame, so that distances are more 

absolute, but coordinates are nonetheless deeper. 
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Second, the coordinate structure can be used to make predictions of distances which 

have not been. measured, as follows. A coordinate system is determined by assigning 

coordinates to any four non-coplanar points, which we may call O, X, Y and Z. The coordinates 

of any further point P may be calculated, using the Euclidean metric, from the four distances 

OP, XP, YP, ZP. Obtaining the coordinates for P and Q in this way does not require us to 

measure the distance PQ, yet this distance can be calculated from the coordinates of P and Q. 

Thus the coordinate description predicts this distance. Since the coordinate description can 

infer the whole J-list from a small portion of it, the coordinates must correspond to reality in 

some deeper way than the J-list. 

These arguments for "coordinate realism" surely apply also to probability amplitudes. 

Consider, for instance, the fact that the state vector generates the chances of possible outcomes 

for every measurement operator. It does not do this in the form of a list of probabilities (a P-

list, say), but rather by use of a metric on the Hilbert space. The probability of the state lv|/> 

going to the state \a> after measurement of A, for example, is g2Qa>, l\|/>) or kal\|/>l2. The 

transition probabilities, in other words, are not listed in the wavefunction but generated using 

the metric from the probability amplitudes. The complex amplitudes, therefore,, seem to 

represent the system in a deeper way than do the probabilities. 

Perhaps the best illustration of how the probability amplitudes seem deeper than the 

probabilities is the famous two-slit experiment. Let us consider a single particle that passes 

through a membrane and then has its position measured when it hits a screen. The membrane 

has a pair of slits cut into it, which are separated by a distance of a few (perhaps 300) 

wavelengths for the particle. Let us suppose that the particle is initially described by a 

wavefunction that is a plane wave in physical space.3 This plane wave passes through the 

membrane in just the same manner as any classical wave, so that only the parts of the wavefront 

3 Since the particle has only one property, namely its position, the configuration space for the system is just 

ordinary physical space. The plane wave is, o f course, a momentum eigenstate in which the position of the particle 

is highly uncertain. 
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that pass through the slits manage to get through. These parts undergo diffraction, in the usual 

way, so that when they reach the screen there is a considerable overlap, and the wave intensity 

at any point x of the screen may be written as \|/](.c) + \\f2(x), where and \\f2 are the 

components of the wavefunction due to slits 1 and 2 respectively. 

If and \|/2 were probabilities they would have to lie in the interval [0,1], and so the 

chance of detecting the particle at JC with both slits open would always be greater than for a 

single-slit membrane. Opening the second slit gives the particle an additional way to get to 

point JC. In this case the chance distribution for the particle's position at the screen would be 

smooth, since the chance distribution for each single slit is smooth. In QM, however, XJ/̂ JC) and 

\|/2(JC) are complex, and it is I\|/,(JC)+\|/2(JC)I2 that represents physical chance. It then follows that 

the chance of the particle being at JC when both slits are open may be less that the chance for a 

single slit, as I\)/1(X)+V|/2(JC)I2 may be less than I\|/,(JC)I2. (This occurs, for instance, if V|/,(JC) = 

exp(m), \\J2(x) = exp(m/6), so that I\|/,(JC)I2 = 1 but I\J/,(JC)+\J/2(JC)I2 is only about 0.54. Such 

destructive interference occurs when the relative phase of the two components is close to 71.) 

Also note that, when \\f{(X) and \|/2(JC) are in phase, the chance is four times what it would be for 

a single slit. 

The chance function for the particle's position at the screen, in other words, shows an 

interference pattern. The separation of the fringes is determined partly by the wavelength of the 

particle, which is determined by its energy according to the Planck relation E-h\). The 

derivation of this interference pattern within QM depends essentially on the \|/-function being a 

complex probability amplitude rather than a real-number probability. As with the energy levels 

in the hydrogen atom, it does not make sense to think of "waves of knowledge" as interfering 

with each other in this way. Epistemic probability functions, for instance, do not exhibit such 

interference. 

We see that, while it is true that the usual meaning given for the complex amplitudes in 

the wavefunction is that they generate epistemic probabilities, it seems that they correspond to 

reality in some deeper way. 
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6.1.2 The Epistemological Interpretation 

The epistemological view of the wavefunction is one of the tenets of the Copenhagen 

interpretation, at least in my reconstructed version of §5.1.3. This idea has not yet been 

developed as clearly as the realistic interpretations of the state vector, such as those of Bohm, 

Everett and Penrose, but in this section I will outline and defend the epistemic view as best I 

can. 

The epistemological view of the state vector is essentially that it represents knowledge 

of a physical system. This knowledge is in the form of providing an epistemic probability for 

every possible outcome of every kind of measurement that might be performed on the system. 

One must be careful to distinguish the epistemic view of the wavefunction from what might be 

called the statistical, or ensemble, view associated with Einstein4. The statistical view is that 

the state vector represents not a single system but an ideal ensemble of similarly-prepared 

systems. QM is thus similar to statistical mechanics, which describes a system using a coarse­

grained partition of the state space into macrostates, defined by large-scale properties such as 

temperature and pressure. On this view, therefore, it is at least in principle possible to find a 

more complete representation of a system than its state vector. 

We see that there are definite similarities between the epistemic and statistical 

interpretations, since in both the wavefunction represents a state of knowledge. Indeed, the 

statistical interpretation really is one (rather mild) kind of epistemic interpretation. As is well 

known, however, Einstein and Bohr had some fundamental disagreements about QM, so what 

are the differences? The essential point of contention is that, for Bohr, the information 

represented by the wavefunction is maximal.5 It says everything about the system that can 

meaningfully be said. In the statistical interpretation on the other hand the wavefunction, and 

4 T h e term 'statistical interpretation' is used by Ballentine (1970), who claims (p. 358) that it is "rather l ike [the 

opinion] of Einstein". 
5 B o h r actually uses the word "complete", but it seems to me that he really means to say that it is maximal. 
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the probabilities it generates, are at least largely6 a reflection of our ignorance of the exact 

microscopic state of the system. Suppose, for instance, we are about to measure the position of 

an electron whose wavefunction is not an eigenstate of position. In this case the probabilities of 

measurement outcomes, which the wavefunction provides, are due to our ignorance of the exact 

position of the electron. On the epistemic view the probabilities are not due to ignorance, 

exactly, since on this account there is no further information about the system that one is 

ignorant of. They are the epistemic probabilities of someone whose information is maximal. 

The idea that the wavefunction represents maximal information leads to Bohr's and 

Heisenberg's view that the limits of measurement accuracy are also limits on meaning. The 

Heisenberg uncertainty principle, for instance, on the orthodox view, does not merely place a 

limit on the accuracy to which non-commuting observables may simultaneously be measured, 

but restricts how accurately they may be defined. According to the statistical view, on the other 

hand, "the physical implication of the uncertainty principle is that no state preparation 

procedure is possible which would yield an ensemble of systems identical in all of their 

observable properties" (Ballentine, 1970: 361). Every individual electron has a well-defined 

position and momentum at all times; the uncertainty of a quantity describes its statistical 

distribution across the ensemble. 

The key to making at least some sense of this is to remember Bohr's idea that in the 

quantum domain "no sharp distinction can be made between the behaviour of the objects 

themselves and their interaction with the measuring instruments" (Bohr, 1949:42). As 

Schrodinger (1935:823) more helpfully put it, in explaining Bohr's "epistemological 

viewpoint", "We are told that no distinction is to be made between the state of a natural object 

and what I know about it, or perhaps better, what I can know about it if I go to some trouble".7 

6 The statistical interpretation is consistent with, but not essentially committed to, a deterministic evolution of the 

underlying microstate. Thus, i f even the complete state evolves stochastically, some transition chances w i l l remain 

even when all ignorance probabilities are removed. 
7 I ronical ly Schrodinger, though an opponent of the epistemological viewpoint, was perhaps its clearest expositor. 

See §§6-10 of Schrodinger (1935). 
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The only way to describe (and define quantities for) microscopic objects is in terms of their 

interactions with classical, macroscopic objects, and their probabilities of causing certain 

measurement outcomes. The best description of the quantum world coincides with what we (or 

someone) can know about that world, from probing it with instruments. 

On the epistemic view, therefore, although the probabilities of quantum mechanics are 

epistemic probabilities, representing information, they are also ultimate, or irreducible. They 

are irreducible since they represent the best possible knowledge of the system; there is no more 

complete description to be had. Being, it appears, something of a positivist, Bohr finds no 

meaning to the word 'reality' beyond what can in principle be described, and so identifies 

reality with what Schrbdinger (1935:823) calls Mefiwirklichkeit, or measurement reality. 

Wigner (1963:337) describes Bohr's view that the probabilities of QM are ultimate as follows. 

We recognize, f rom the preceding discussion, that the state vector is only a shorthand expression of 

that part o f our information concerning the past of the system which is relevant for predicting (as far 

as possible) the future behavior thereof. The density matrix, incidentally, plays a similar role except 

that it does not predict the future behavior as completely as does the state vector. We also recognize 

that the laws of quantum mechanics only furnish probability connections between results of 

subsequent observations carried out on a system. I t is true, of course, that the laws of classical 

mechanics can also be formulated in terms of such probability connections. However, they can also 

be formulated in terms of objective reality. The important point is that the laws of quantum 

mechanics can be expressed only in terms of probability connections. 

It is important to bear in mind that the only quantum reality that Bohr recognises, 

namely the Mefiwirklichkeit, is something quite objective and independent of the mind. Bohr 

constantly stresses, for instance, that an observation is finished as soon as the system has 

interacted with a measurement apparatus. The recorded value exists in the device whether or 

not a conscious observer ever looks at, so that he does not share the position of Wigner (1961) 
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or Wheeler (1981). This objective status for the wavefunction clearly requires that it represent 

maximal, or best possible, information about the system, the limits of which are set by the 

actual physical nature of interactions. Otherwise it would depend upon, for example, the 

diligence or laziness of the experimenter, in the trouble to which he goes in learning about the 

system. 

I realise that this account of the epistemic view is rather vague, but it is an accurate 

summary of the clearest discussions available. Fortunately, as will be shown below, these ideas 

can be made more precise using the causal theory of chance. For now, let us look at the 

arguments that motivate such an epistemic view of the \|/-function. 

The first point to note is that the \|/-function is defined not on physical space but rather 

on the configuration space for the system. The number of dimensions of this space is the 

number of degrees of freedom of the system concerned, and so may be much greater than the 

three dimensions of physical space. For a system of N particles, for instance, the configuration 

space has 3N dimensions, and there is a single, shared wave function for all the particles 

together. This does not itself mean that the wave function is not physical, of course. In 

Hamiltonian mechanics, for example, the state of a system is represented by a point in the phase 

space, which has 6N dimensions for an iV-particle system, but there is no temptation to say that 

classical states are epistemic. For one thing, each point in phase space is equivalent to a 

specification of the position and momentum for each of the N separate particles, so that the 

phase space can (in principle) be dispensed with, in describing the state of the system. 

The significance of the use of configuration space in quantum mechanics arises from the 

fact that physical quantities are, in general, "smeared out". That is to say, a wave function \|/ for 

a physical system does not (in general) specify a definite value for each quantity A. Rather, it 

gives a set of possible values for A, such as a,, a2, and so on, each of which has a complex 

amplitude c,, c2, etc. This smearing out of physical quantities prevents the wave function for a 

composite system from being split up into separate wave functions for the component 

subsystems. As an example of this, consider the positions of a pair of particles X and Y in one 
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dimension. If X has position coordinate x, and Y has position y, then the total system <X,Y> 

has a single wavefunction *F(x,y). In general, this cannot be expressed as a product of 

wavefunctions, one for each system, i.e. ^Ffcy) = i\ix(x)\\fY(y). This is in sharp contrast with 

classical mechanics, where the state of a composite system can always be decomposed into a set 

of states - one for each subsystem. 

In the general case where *P does not factorise into separate wave functions for X and Y, 

the complex number *F(;t,y) is not associated with any point in space - it is not localised, in 

other words. The quantity *¥(x,y) is instead associated with two points in the same space, x, and 

y. This is unusual, as we expect physical properties to be located in space and time, not floating 

free. What would one make of a temperature field that assigned a temperature to each pair of 

points on a metal rod, in such a way that it could not be reduced to a pair of localised fields? 

What interpretation could be given to the number T(x,y)l It would be a temperature that did not 

exist anywhere in physical space. 

Non-localised quantities are therefore difficult to interpret as representing physical 

properties. On the other hand, we have already seen in Chapter 5 that information is very 

frequently non-localised. A simple example of this was the case of the two coffee mugs, where 

it was known that one of them contained sugar. This information about the pair of mugs was 

not localised, in the sense that it could not be split up into separate pieces of information about 

each mug. The epistemic probability function generated by this information is also not 

localised, in the sense that each probability attaches irreducibly to a joint event, whose parts are 

spatially separated. Thus the mere fact that the wave function is not localised strongly suggests 

an epistemic reading. 

One may counter this reasoning by saying that we should simply reject the notion that 

physical properties must be localised in spacetime. Why cannot we regard the configuration 

space as physically real, in some sense? Indeed, this is precisely the view held by David Bohm, 

for example. In response to this suggestion, we can make the following points: 

243 



(i) We should not posit such a space unless there are strong advantages to doing so, according 

to Ockham's Razor. The epistemic interpretation is far more parsimonious. 

(ii) If we do allow non-localised properties to be physical, then we must also admit causal non-

locality, or action-at-a-distance. 

The second point is clear from the fact that the wave function, though not localised in 

space, does provide probabilities of measurements made at specific locations. Moreover, if the 

wave function is physical, then the probabilities it generates must also be physical. Now, we 

saw in the EPR experiment that the probability of an experimental outcome in one place can be 

altered by carrying out an experiment somewhere else, on a different system. If these 

probabilities are physical, then this constitutes action-at-a-distance, as one is bringing about a 

physical change at a distant location. 

It would be rash to rule out causal non-locality as impossible, but any theory that 

requires causal non-locality is hard to accept. Any alternative account, that preserved causal 

locality, would (ceteris paribus) be greatly preferable. But such an alternative is readily 

available, as we have seen in §5.3. The failure of joint probability distributions for composite 

systems to factorise is easily understood within the causal theory of chance, where chance in an 

epistemic probability. It arises directly from the fact that maximal information about the 

composite system may not be localised. 

It should be noted that this epistemic understanding of QM correlations is not available 

to the statistical interpretation. This naive epistemic view involves the claim that each 

observable on a single system possesses a definite value, which (locally) determines the 

outcome of a measurement of it. As we saw in the previous chapter, however, this is precisely 

the assumption used to derive the Bell inequality. Thus, within the statistical interpretation, the 

mere correlation of knowledge will not produce the required degree of correlation in the 

observed frequencies. One may try to fill the gap by postulating some non-local causal 
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interactions, but then the advantage of an epistemological understanding of QM correlations has 

been given up. 

6.1.3 The AND/OR Problem 

The AND/OR problem concerns the two different ways of reading superpositions of pure states, 

which are most vividly exposed in connection with delayed-choice experiments. Consider for 

instance the experiment described by Wheeler (1981:183), which is shown in Figure 6.1. 

0 

Figure 6.1 

A beam of light hits the half-silvered mirror M, on the bottom left, so that half of it is reflected 

and half passes through. The two halves of the split beam take different routes through the 

apparatus, going via the mirrors A and B, but they converge again at a second half-silvered 

mirror M 2 just in front of the counters D, and D 2 . This mirror reflects only half of the light 

from A, transmitting the rest, and the same for the light from B, so that each of D, and D 2 

receives a superposition of two beams. The geometry is set up so that the two beams entering 

D, are in destructive interference and cancel out, whereas the beams entering D 2 interfere 

constructively. Thus only D 2 registers the arrival of any photons. 
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This result, that only D 2 records the impact of photons, holds even when the intensity of 

the light is so low that there is only one photon in the apparatus at a time, so it may be difficult 

to understand how there can be any interference. Each photon, one would think, is sent by M, 

either up to mirror A or across to B. Then, among those photons arriving from A, half will end 

up at D! and half at D 2 , and the same for photons arriving from B. Thus, the overall counts by 

D, and D 2 should be roughly equal. 

Let us look at how QM treats this experiment. When a photon hits M, , its wavefunction 

becomes a sum of two components, one which heads for mirror A and the other for B. It is as if 

even the single photon is split into two, with one part taking each route. These two 

components, when they strike the mirror M 2 , each split again so that each of and D 2 gets a 

sum of two "quarter" wavefunctions. For Dj these two components are out of phase and so 

cancel out, whereas for D 2 they reinforce each other. QM thus obtains the correct result, that 

photons are registered only at D 2 , by allowing the photon's wavefunction to travel both routes, 

and so interfere with itself. 

The "delayed choice" aspect of this experiment concerns the fact that, if we leave out 

the second half-silvered mirror M 2 , counters Dx and D 2 receive roughly equal numbers of 

photons. In this case one might think that each photon takes a definite route through the 

apparatus, but this cannot be so. For the choice of whether or not to put M 2 in place may be 

delayed until the very last moment, so that a photon "looking ahead" and seeing that M 2 is 

missing, and thus deciding to take a definite route, would be foiled by a last-moment insertion 

of M 2 . Such a route-definite photon might easily be recorded at D,, but this never happens in 

actual experiments. Even when M 2 is missing there can still be no definite route for the photon, 

since it has to be prepared for the possibility that M 2 be added later. 

Whether or not the mirror M 2 is present, therefore, the photon's wavefunction is a sum 

of two components, which we shall write schematically as \a> + \b>, for the parts which travel 

via mirrors A and B. It seems that, in view of the possible interference between them, we must 

regard each of \a> and \b> as representing something physically real, rather than just an abstract 
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possibility. As Bell (1990:36) helpfully puts it, the elements of the superposition coexist in the 

concrete world, so that we have \a> AND \b>. 

Now let us consider what happens to the wavefunction after it reaches the detectors, in 

the case where the mirror M 2 is not put in place. According to QM the photon becomes 

correlated with the detectors, so that the final state may be written as: 

l*F> = la>l->1l+>2 + l£>l+>,l->2, 

where l->2 and l+>, are the states of D, corresponding to not detecting and detecting the photon, 

respectively, and l->2 and l+>2 similarly for D 2 . One generally assumes8 that each measurement 

has a definite outcome, so that each of D, and D 2 either has definitely detected a photon or has 

definitely not detected a photon (a detection being indicated perhaps by a numeral displayed on 

an LCD increasing by one). If each counter has a definite state, however, then it seems that 

only one of the elements of the final superposition is physically real, the other being a mere 

abstract possibility. In other words, we read the superposition as la>l->jl+>2 OR lfc>l+>1l->2. 

This is what I call the AND/OR problem in interpreting the state vector. In some 

circumstances we read superpositions as AND, but in other cases we read them as OR. It is 

problematic since the connectives AND and OR are fundamentally distinct, and so this 

variation of meaning looks like a nasty equivocation. This problem is sometimes called the 

problem of the "collapse" of the wavefunction. The reading of a superposition as OR is 

equivalent to applying von Neumann's Projection Postulate, causing a superposition to collapse 

into just one of its elements. I consider the AND/OR talk to be more helpful, however, as the 

term "wavefunction collapse" suggests a dynamical change whose status is questionable at best. 

The usual rule for deciding whether to read a superposition as AND or OR is roughly as 

follows: A superposition is read as OR whenever a measurement is deemed to have occurred, 

8 A s noted in §5.2.3, Everett denies this claim, as do those who hold that conscious minds are required for such 

definite values to emerge. 
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and as AND at all other times. This is problematic, however, for two reasons. First, although 

the term 'measurement' is clear enough for most practical purposes, it has no theoretically-

precise definition. Second, even if a precise definition could be found, it should not merely 

demarcate measurements from non-measurements but also explain why measurements deserve 

such special treatment. These problems are discussed in more detail in §6.1.5 below. 

How are the AND and OR readings of superpositions related to the physical and 

epistemic interpretations of the state vector? Let us first consider the physical interpretation, 

that the wavefunction represents a physical field of some kind. If a field has different values at 

different points in space, then we do not regard these as alternatives, but as all existing together 

in the real world. The field has value c, at x{ AND c2 at x2 AND c3 at x3. The weights c,, c2, c3 

represent physically real properties, not degrees of belief. On this view, therefore, if a particle's 

wavefunction is a superposition of position eigenstates bc,>, lx2>, br3>, we would say that the 

particle (or something physically real associated with the particle) exists at all three places 

together. 

The physical interpretation easily accounts for the AND reading of superpositions 

therefore, but the OR reading is less straightforward. In Bohm's account the particle 

trajectories come to the rescue, by effectively selecting one position eigenstate. For Everett the 

OR interpretation is an illusion, since in fact all the elements of the superposition exist. 

According to others, such as R. Penrose, and Ghirardi, Rimini and Weber, the vanishing of all 

but one element of the superposition is explained in terms of a dynamical change. 

Now let us consider the epistemic interpretation, in which the wavefunction is closely 

connected to epistemic probability. When each of a number of distinct alternatives has a certain 

epistemic probability, only one of these possibilities actually obtains. If, for instance, the 

unseen card in my hand has epistemic probability 0.2 of being an ace, 0.4 of being a king, 0.3 of 

being a ten, and 0.1 of being a jack, then it is either an ace OR a king OR a ten OR a jack. 

These alternatives all exist together in the epistemic probability function, side-by-side so to 

speak, each with a certain weighting, but this a just a matter of knowledge. In fact, i.e. in the 
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real world, only one of these alternatives exists. Thus, when the wavefunction assigns non-zero 

amplitudes to a number of distinct alternatives, such as to position eigenstates LX[>, \x2> and 

bc3>, from the epistemic point of view it would seem most natural to say that the particle either 

has position xx OR x2 OR x3. 

This reasoning ignores the fact, discussed below in §6.2.4, that the term "measurement" 

does not have its usual meaning in quantum mechanics. The result of a quantum measurement 

does not, in general, indicate the value of a pre-existing quantity in the system. Thus, if a 

system has state l\|/> = cx\xx> + c2lx2> + c3bc3>, we cannot infer that the system is really in just 

one of the positions x{, x2 or x3. If measured, it would be found in one of those positions, but 

that position did not exist prior to the measurement. Moreover, this view of superpositions as 

disjunctions is ruled out by Bohr's claim that the state vector represents maximal information 

about the system. If, for instance, only the term Lx3> existed in reality, then the state l\|/> = bc3> 

would contain more information than l\|/> = cx\xx> + c2\x2> + c3bc3>, and so the latter would not 

be maximal. 

It follows that, when a measurement is not being made, all three terms of the 

superposition have to be taken seriously, each as a necessary part of the best possible 

representation of the system. This is not exactly an AND reading, as it does not claim that the 

terms each correspond to something physically real, but it is close to an AND reading. 

It should be noted that, according to the epistemic interpretation, the Schrbdinger 

equation does not apply to all processes without exception. By reading a superposition as OR, 

after a measurement, one assumes that the wavefunction does not represent maximal 

information at that time. The OR reading supposes that the physical world contains a result for 

the measurement, in the form of a definite final state for the apparatus, yet this result is not 

contained in the final wavefunction. The wavefunction in this case, failing to describe 

something that is there to be described, is clearly sub-maximal. 

We thus reach the conclusion that, for the OR reading of a superposition (after 

measurement) to be valid, within the epistemic interpretation of the state vector, the state vector 
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does not always represent maximal knowledge. This loss of maximality would be due, 

presumably, to the measurement process being stochastic rather than deterministic. It is part of 

the very definition of a stochastic process that maximal knowledge of that process at one time 

does not allow one to infer exactly what will happen at a later time, so that maximal knowledge 

about tj does not provide maximal information about a later time t2. 

6.1.4 The Shifty Split 

I have avoided the terms "collapse of the wavefunction", "reduction of the state vector", and so 

on since I consider them unhelpful. They suggest some sort of physical change which 

corresponds to the replacement of a state vector with the eigenstate of some observable (or with 

a statistical mixture of such eigenstates) yet it is doubtful that any such physical process exists. 

Indeed, even among those who propose a purely physical interpretation of the state vector, only 

R. Penrose and GRW recognise something like the wavefunction collapse as a physical process. 

According to both Bohm and Everett the Schrodinger equation applies universally. 

In my terminology, the reduction of the state vector is (roughly speaking) just the shift 

from the AND to the OR reading of the state vector. Instead of seeing the elements of a 

superposition as existing together in the real world, we consider that only one of them is really 

there, and interpret the squared modulus of each coefficient as its epistemic probability of being 

the real one. We must be more precise than this, however, since any pure state can be expanded 

as a superposition using many different alternative orthonormal bases. A ket vector l\|/>, for 

instance, may be expanded in either of the bases {la,>} or {!&,•>}, but it is not possible to read 

both of these superpositions as OR. In that case one would think the system really had some 

state \ak>, and also some state \b,>, but these are incompatible in general. The OR reading can 

only be applied to one superposition at most, i.e. with respect to only one complete orthonormal 
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basis. In practice the base vectors used are generated by eigenstates of "macroscopically-local" 

observables.9 

Since the AND reading of the wavefunction is applied to some systems, while the OR 

reading is used for others, quantum mechanics involves a split between the parts of the world to 

which each reading applies. On one side of the split is the "system", whose superpositions are 

all read as AND, and on the other side is the "apparatus", the "environment" and so on, some of 

whose superpositions (those involving suitable observables) are read as OR. The OR reading 

applies not only to the wavefunction of the apparatus itself, but also to any joint wavefunction 

for the system and apparatus together. As Everett's theory highlights, an orthonormal basis for 

the apparatus defines a unique decomposition of the state vector for the total system+apparatus, 

where each term of the superposition is the product of a base vector for the apparatus and the 

corresponding relative state for the system. 

We saw in the discussion of the delayed-choice experiment that the OR reading of the 

state vector can be applied inappropriately. After the photon has encountered the first mirror 

M l 5 for example, its state vector can be expressed as a sum of two components, which take 

different routes through the apparatus. If we apply the OR reading at this point, and regard one 

of the components as fictional, then we cannot account for the experimental results actually 

obtained, which require interference. Is it also possible to apply the AND reading 

inappropriately, and so predict the wrong empirical results? In principle this is possible, 

although it is virtually impossible in practice, as the following results show. The move from 

AND to OR can be delayed as long as one desires, without affecting (FAPP10) the empirical 

predictions finally obtained. Of course, to get empirical predictions (probabilities of 

measurement outcomes) from the theory, we must eventually apply the OR reading. The first 

of these results is due to von Neumann (1932:641-644). 

9See Gottfr ied (1991: 37). 
, 0 F o r A l l Practical Purposes. 
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Let us divide the world up into three parts: a system X, a measurement apparatus M and 

the rest of the world R. The system X is described quantum mechanically, and so has some 

state vector lv|/>x. Suppose we make a measurement on X, using M. If the AND/OR split is 

applied at the interface between X and M, so that <R,M> is described classically, then this 

measurement results in l\|/>x jumping to one of the eigenstates of the operator A measured by 

M. There is no obvious need to place the split at the M-X interface, however, since M is made 

of atoms, and so it should be possible to describe it also using quantum mechanics. Perhaps we 

can instead divide the world into R, treated classically, and <M,X>, which is given a state 

vector? In this case, when X interacts with M during the measurement, the Schrodinger 

equation applies throughout and the two systems become correlated. A definite measurement 

result then does not emerge until something in the environment R measures the measurement 

outcome of M. 

The important question is whether or not the formalism of QM allows the AND/OR 

split to be shifted in this way. In other words, are these two procedures consistent, in the sense 

of providing the same probabilities for measurement results? Von Neumann showed that they 

are consistent, as follows. 

Suppose first we divide the world into <R,M> and X. Then the possible results of the 

measurement of X by M are the eigenvalues a, of the operator A, with probabilities l<a£lu/>I2. If, 

however, we treat M quantum mechanically, then the state of <X,M> before the measurement 

is 

where l(j)0>M is the initial wavefunction for M. Now suppose that X is initially in some 

eigenstate \ak> of A, i.e. \|/ = \ak>. In this case we want <X,M> to evolve, during the 

measurement, to a state such as \ak>x\bk>M, where \bk>M is an eigenstate of some 

IY> = I\|/ >xlcp0 > M 

M ' 

(1) 
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macroscopically-local property B, such as the position of a needle, and la'p>x is the final state of 

X. 1 1 (We assume that <b]\bk>M = bjk.) This is the criterion of a successful measurement 

interaction. If such a measurement occurs when X is in a superposition of eigenstates of A, as 

in (1), then since the time-evolution operator is linear the final state will be 

w> = y£ci\a;>x\bi>M. 

If we now apply the OR reading to <X,M>, then the probability of some measured value bk on 

the measurement apparatus M is 

P(B = bk) = ̂ P(A = ai&B = bk) 

<bk\M<ai\x J^c^a'j >x\bj >, 
V J 

= JJ\cj<bk\bj > M <fl , la;> x | 2 

•J 

= X h 8 « < a < K >x | 2 

•j 

= l c , l 2 2 | < a X > x f 

= \ck\2. 

Thus the probability of each result A=ak and B=bk is \ck\2, i.e. \<ak\\p>\2, and so the two 

approaches are consistent. 

This result is not surprising in view of the property of correlated systems shown in 

§5.1.2, that when two systems X and Y are correlated each has a definite state relative to the 

other. More precisely, for each state l\|/>x in the sub-space for X there is a unique 

corresponding relative state for Y. Also, both X and Y have density matrices, which means that 

1 'Note that, unless the measurement is " ideal", the final state of the measured system need not be an eigenstate of 

the observable just determined. 
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a measurement on X alone (or on Y alone) has exactly the statistics which it would have if X 

(or Y) had a definite, but unknown, pure state. In short we may say that, if we can subsequently 

only measure one of the systems concerned, a correlation between X and Y is indistinguishable 

from a measurement of Y by X. The "collapse of the wavefunction" seems to have something 

to do with correlation. 

Von Neumann's theorem only shows that measurements on M by R cannot distinguish 

a M-X correlation from M having a definite state. If R measures both M and X, on the other 

hand, and compares the results, then (in principle at least) one can determine whether or not the 

wavefunction was collapsed by the measurement of X by M. Von Neumann considers an 

ascending "chain" of measuring devices, stretching from the system to the conscious observer, 

where each device measures only the outcome of the previous instrument. In such a situation it 

is impossible to tell at what point in the chain the OR reading becomes valid, or a definite 

outcome emerges. If a device is able to measure all the systems that may be correlated together, 

however, then it is possible to see if the correlation is really there. 

The practical problem with such an experiment arises from the fact that measuring 

instruments are large objects, which under normal circumstances are impossible FAPP to 

isolate from the environment. For suppose that, upon measurement of X by M, the two merely 

become correlated, i.e. the wave function does not collapse. Since M is macroscopic, however, 

it is in constant interaction with the environment R, and so <X,M> very quickly becomes 

correlated with R. Thus even measurements on both X and M will give the appearance of a 

wave function collapse. To see any interference effects we must measure <X,M,R>, which is 

impossible FAPP. That would involve measuring billions of systems together, at the least. 

The elimination of coherence FAPP by interactions with the environment seems to 

provide a solution to the practical problem of when to shift to the OR interpretation of the state 

vector. Whatever the "wavefunction collapse" may be, and at whatever stage it may occur, is of 

no practical concern since the onset of decoherence brings about a reduction FAPP. Indeed, as 

Joos and Zeh (1984) show, many at least of the familiar classical properties of systems, such as 
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the well-defined spatial structures of all but the smallest molecules, depend essentially on the 

destruction of phase coherence in the system by interaction with the environment.12 It is 

important to realise however that such work, while of great importance, cannot succeed in 

giving a complete derivation of classical concepts (the OR reading) from quantum mechanics 

(the AND reading). As Joos and Zeh explain, "The use of the local density matrix allows at 

most only a partial derivation of classical concepts for two reasons: it already assumes a local 

description, and it presupposes the probabilistic [i.e. OR] interpretation leading to the collapse 

of the state vector at some stage of a measurement" (1984: 224). 

Some have suggested that decoherence provides not just a solution to the practical 

problem of when to shift from AND to OR, but rather a complete reconciliation of this 

difference. As Stamp (1995: 127) puts it, "It is then argued that there is no longer any 

measurement problem or paradox, and that the classical world of Bohr is defined as the world 

of phenomena in which decoherence has already taken place". This idea dates back at least to 

Jordan (1949) and, as Stamp notes, "it seems to get reinvented every five years or so" (1995: 

127). Concerning this proposed solution of the AND/OR problem I share the view of John 

Bell, that it is very hard to see how it is supposed to work. Like Bell, I do not see how "...the 

elimination of coherence, in one way or another, implies the replacement of 'and' by 

'or'..."(1990:36). 

6.1.5 The Measurement Problem 

In orthodox interpretations of quantum mechanics, measurement is forced to play a 

fundamental role. As shown in the previous section, for example, the concept of measurement 

is used to create a shifty split between "system" and "apparatus", which are the spheres of 

application for the AND and OR readings of the state vector. According to Bohr, the role of the 

measurement apparatus in QM is similar to that of the reference frame in relativity theory, as a 

1 2 A s Joos and Zeh (1984:224) put it, "The interference terms still exist, but they are not there]" (i.e. they are not 

localised in the system wavefunction). 
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necessary vantage point from which to describe the world (Bohr, 1935: 150-151). The 

quantum-mechanical description is therefore the world as seen from the point of view of a 

measurement apparatus. (In post-modern terminology, one might say that QM is 

metrocentric\n) 

Many of us find the metrocentric nature of quantum mechanics problematic. Measuring 

instruments are, after all, just ordinary physical systems, made of atoms, and measurement 

interactions are ordinary physical interactions. Thus the fundamental theoretical role of 

measurement within orthodox QM is a problem, known as the measurement problem, or 

measurement paradox. The measurement problem is closely connected to the tension between 

the physical and epistemological interpretations of the state vector. On the physical 

interpretation of the wave function it is only to be expected that measuring instruments will 

have a special epistemological status, since they provide us humans with knowledge. They 

should not, however, have any special physical status. On the epistemological interpretation of 

the \|/-function it is less clear what role measuring instruments should have, but it is likely to be 

quite fundamental. 

Perhaps the most famous critic of standard QM, and its special role for measurement, is 

John Bell. Bell (1990:33) complains that "surely, after 62 years, we should have an exact 

formulation of some serious part of quantum mechanics?" By "serious", he means partly that 

the "... 'apparatus' should not be separated off from the rest of the world into black boxes, as if 

it were not made of atoms and not ruled by quantum mechanics" (p.33). Bell is especially 

dissatisfied with the fact that standard QM is only concerned with the results of measurements, 

that it seems to see the world only from the point of view of a measuring instrument. A 

satisfactory theory would be concerned with reality, not just Mefiwirklichkeit; it would describe 

not observables but fceables (1973:41, 1975). In short, we may say that Bell wants to describe 

1 3 F r o m the Greek U.£Tpov, meaning measure. It is intended to be parallel to such fun-to-use terms as 'Eurocentric', 

' logocentric', and 'phallocentric'. 
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reality from God's point of view, not from a measuring instrument's point of view. Such a 

divine description would, for example, be able to talk about the measurement process itself 

from beginning to end. 

The kind of solution to the measurement problem that Bell wants, therefore, is a new 

formulation of QM, or a new theory altogether14, in which measuring instruments have no 

special theoretical status. In such a theory the measurement process would be treated in the 

same way as any other interaction, so that measurement is "dethroned". Bell is encouraging 

toward attempts to provide such a theory, particularly those of Bohm and GRW. (He regards 

Everett's ideas less favourably however)15 

A second kind of solution to the measurement problem would be to keep measurement 

in its dominant place, but to show that this role is legitimate and necessary. Such a solution 

must provide a theoretically-rigorous definition of measurement which satisfies two criteria. 

First, it must draw a line between measurements and other interactions in a way that both makes 

physical sense and is consistent with practice. Second, it must explain why the split between 

system and apparatus is legitimate and necessary. 

At the present time there is no account of measurement that meets these criteria. Bohr, 

for instance, regarded the properties of amplification and irreversibility16 as important features 

of a measurement, but did not give a precise analysis. A measurement apparatus is a 

macroscopic system, being composed of 1024 or so atoms, and thus a measurement is the right 

kind of interaction with such a "large" system. Also a measurement interaction must be 

irreversible, as it results in a permanent record such as a photograph. Thus, since 

1 4 B e l l hopes for a "more objective description of nature". This may involve a continued role for something l ike 

the wavefunction, but Bel l thinks it much more l ikely that "the new way of seeing things w i l l involve an 

imaginative leap that w i l l astonish us" (1966:27). 
1 5 See for instance Bel l (1976). The GRW approach is sympathetically discussed in Bel l (1987). 
1 6 See Bohr (1958: 73). 
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thermodynamic irreversibility exists only for systems with many degrees of freedom, a 

measurement must involve an "amplification"17 to the macroscopic level. 

These ideas of Bohr are of some use in demarcating measurements from other 

interactions. In the delayed choice experiment, for example, the interaction between the photon 

and the mirror M, does not involve any amplification to the macroscopic level, so it should not 

count as a measurement. When the photon reaches the detectors, on the other hand, it is a 

different story. The problem is that these ideas do not even begin to satisfy the second criterion, 

of showing why measurement has to play such a central role. 

6.2 Large and Small Systems 

In the discussion of factorisation in §5.3.1 of the previous chapter, I argued that a description of 

a pair of systems is more likely to factorise if it concerns large-scale properties of large systems. 

Moreover, in this chapter we have seen that the epistemological interpretation of the state 

vector also appeals to a distinction between large and small systems. The probabilities 

generated by the state vector are probabilities of measurement outcomes, which must be events 

"at the macroscopic level". In §§6.2.1-6.2.3 I shall argue that this appeal to size is valid. 

The appeal to size in the very formulation of quantum mechanics certainly looks highly 

dubious. It is not a problem that large and small systems behave differently, of course, as this is 

even true in classical mechanics. For example, in the atmosphere a large particle in free fall has 

a greater terminal speed than a small one made of the same material, but this difference is 

explicable within a general theory that applies to particles of all dimensions. (As one increases 

the radius of a sphere, its volume increases more rapidly than its surface area, so the weight 

increases faster than the drag.) The problem with QM is rather that large and small systems 

1 7 T h e term 'amplif ication' is misleading, as it suggests that the measurement result already existed in the system 

prior to the measurement process, but was too small to see. This is not the case in general, however, when the 

system is not in an eigenstate of the observable being measured. What does not exist cannot be amplif ied. 
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seem to follow fundamentally different rules, which cannot be unified by deriving them both 

from a more general account. An electron, for instance, does not always have a definite 

velocity, but may exist in a superposition of velocity eigenstates. A cricket ball, on the other 

hand, always has a (more or less) definite velocity.18 The important point is that there is no 

overall principle that explains why cricket balls, but not electrons, always have definite 

velocities. If you apply QM strictly to large systems, without arbitrarily collapsing the 

wavefunction whenever a superposition of macroscopically-distinct states develops, then one 

infers that a cricket ball can be in a superposition of macroscopically-distinct velocities.19 

Bell is thus apparently right to include the terms 'microscopic' and 'macroscopic' on his 

black list of words which "...however legitimate and necessary in application, have no place in 

a formulation with any pretension to physical precision" (Bell, 1990:34).20 I shall argue, 

however, that (in some sense) new properties emerge in large systems that are not present in 

their parts. 

6.2.1 Emergent Properties 

What is meant by 'large' and 'small' in this context? We are obviously concerned with a 

continuous scale here, rather than a binary division, so we should begin by defining a size 

ordering, i.e. by giving the meaning of "X is larger than Y". I suggest the following definition. 

6.2.1 Definition (i) System X is larger than system Y if Y is exactly similar to a proper 

subsystem of X. 

1 8 A g a i n , Everett denies this, as do those who hold that conscious observers collapse the wavefunction. 
1 9 I am thinking of "Schrodinger's Cat"-type situations, where an atomic-level superposition is amplif ied to the 

macroscopic level. This actual state is rather more complicated than a pure superposition, however, as the cricket 

ball rapidly becomes correlated with its environment, and so has to be described by a density matrix. The essential 

point is that the ball 's velocities is not well defined. 
2 0 T h e other words on the black list are system, apparatus, environment, reversible, irreversible, observable, 
information and, worst of all, measurement. 
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This definition only gives a partial ordering of course, and so needs to be supplemented21, but it 

expresses the general idea that 'size' in this sense is a matter of composition rather than length. 

A pair of electrons separated by a distance of five miles is large in some sense, but not in the 

sense used here. It is considered much smaller than, for instance, a one-micron speck of dust, 

as the speck will contain at least ten billion electrons. 

The world revealed by quantum mechanics is strange and unfamiliar, but this is not 

itself problematic. Indeed, it would surely be odd if protons behaved just like cricket balls, 

given that they have a mass ratio of about 1027! It is very easy to accept that the laws which 

operate at the atomic level are different from, and not derivable from, the familiar rules of the 

common-sense world. One feels, however, that the reverse should not be true. In principle at 

least, it should be possible to derive the rules for large objects as limiting cases of the rules of 

QM, in something like the way that Newtonian mechanics can be derived from special relativity 

in the limit as c tends to infinity. One should, in principle at least, be able to treat a cricket ball 

quantum-mechanically, merely as a large collection of atoms which jointly obey the 

Schrbdinger equation. 

Why should one be able successfully to apply the rules of QM to large objects? The 

idea seems to be that a whole system is nothing over and above the sum of its parts, so that 

there are no "emergent properties". Thomas Nagel (1979:182) expresses this view as follows. 

There are no truly emergent properties of complex systems. A l l properties of a complex system that 

are not relations between it and something else derive f rom the properties of its constituents and their 

effects on each other when so combined. Emergence is an epistemological condit ion: it means that 

an observed feature of the system cannot be derived from the properties currently attributed to its 

constituents. But this is a reason to conclude that either the system has further constituents of which 

2 1 I t is widely felt that size, in this sense, has something to do with complexity as wel l . 
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we are not yet aware, or the constituents of which we are aware have further properties that we have 

not yet discovered. 

It is interesting to note that, in later arguing for this thesis that there are no emergent properties, 

Nagel treats the parts of an object as causes of it, presumably in something like Aristotle's 

notion of a material cause which was mentioned in §1.11. The total system exists because its 

subsystems do, so that the existence of the subsystems is constitutive of, or supports, the 

existence of the whole. Indeed, it is on the basis of this causal relation between the parts and 

the whole that Nagel infers that the properties of the parts must necessitate the properties of the 

whole, since he holds that causes always necessitate their effects.22 

In view of the distinction between efficient causation and determination, as relations 

between events, which I argued for in Chapter 1, we may wonder if there is a similar distinction 

to be made between material causation and determination, as relations between parts and 

wholes. Indeed, on the face of it there is just such a distinction. On the one hand there is an 

ontological relation, whereby the existence of the whole is constituted by, or caused by, the 

existence of the parts. Also, however, there is the logical relation between the best descriptions 

of the parts and the best description of the whole. The causal relation holds between concrete 

systems, whereas the logical relation is defined on abstract descriptions, or models, of those 

systems. 

We see therefore that we must consider two distinct kinds of emergence, namely causal 

emergence and logical emergence. The concrete system X is causally emergent if it is not 

caused, or constituted, by X's subsystems X,, X 2 , X n . A description of a whole system X is 

2 2 I n a typical confusion of causation with determination, Nagel says "True causes do necessitate their effects: they 

make them happen or make them the case" (1979:186). We have seen that making something happen is 

extensionally distinct f rom necessitating it, yet Nagel actually sees the two as synonymous] 
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logically emergent just in case it is not logically entailed by the best individual descriptions of 

X's subsystems X 1 ; X 2 , X n . 2 3 

Causal emergence seems to be impossible. The very idea of parts and wholes surely 

entails that the whole is, ontologically speaking, nothing over and above its parts. I shall argue 

however that logical emergence, the kind that Nagel discusses, is quite possible. This situation 

is exactly analogous to the case of relations between events: every event has total causes, but it 

may not be necessitated by its causes. A random event is one that, although fully caused, is not 

fully determined by those causes. In a similar way, the large-scale nature of a system is always 

fully caused by the concrete natures of its parts, but its high-level properties maty not be 

logically determined by its low-level properties. We might even say, by analogy, that the high-

level properties are random. 

I have already argued in the previous chapter for the existence of logically-emergent 

descriptions, although under a different guise. Consider a composite system <X,Y> whose best 

description m<X,Y> does not factorise into separate descriptions m(X) and m(Y), of X and Y 

respectively. Of course the description m<X,Y> must entail m(X) & m(Y), since otherwise it 

would not be the best description of <X,Y>. The entailment fails in the other direction, as m(X) 

& m(Y) does not entail m<X,Y>. We will write this situation as 

m<X,Y> => m(X) & m(Y).24 

In this case the high-level description m<X,Y> is, according to the above definition, logically 

emergent. It cannot be inferred, with certainty, from the best descriptions of the subsystems. 

2 3 N o t e that the maximal description of a system must include any associated fields, in addition to the material 

bodies. For instance, a body containing electrons generates an E M field that should be seen as part o f the system. 
2 4 T h i s notation is not ideal, as it does not express the fact that the entailment fails in the opposite direction. When 

the entailment does hold both ways, however, I w i l l use the symbol '<=>'. 
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Thus, in short, the theory of non-classical correlation from Chapter 5 commits us to accepting 

logical emergence. 

It should be obvious that the failure of logical emergence requires that the maximal 

descriptions of the subsystems be imperfect, or incomplete. If each one were a perfect match, 

corresponding to the concrete subsystem in every last detail, then the conjunction of these low-

level descriptions would not leave anything out as a description of the total system. 

What kinds of properties are left out by the low-level maximal description? In the 

discussion of the EPR experiment, we saw that m<X,Y> contains non-local information about 

the pair of systems, i.e. information that does not concern either system individually but only 

the whole system together. In other words, the extra information at the higher level concerns 

the large-scale structure of the whole system. In the case of a macroscopic system, some of its 

large-scale properties will be logically emergent, i.e. not inferable even from maximal 

descriptions of its atomic-level subsystems. Of course not all of its large-scale properties are 

emergent. Its mass, for instance, which is a large-scale property concerning the whole system 

together, seems to be just the sum of the masses of its component parts. Thus, its mass may be 

inferred from a maximal description of its parts. My point is merely that some of the large-

scale properties of a macroscopic body, those properties that concern the whole body together, 

cannot be inferred from the properties of the parts. 

6.2.2 Saturated Models for Large Systems 

As one describes the world at larger and larger scales, does the emergence of new properties 

ever end? Is there a level such that the description of the world at that level is as complete as 

those above it? Suppose there is, and that "large" objects M and N are somewhere above that 

level. Then m<M,N> cannot contain more information than m(M) and m(N) combined, so that 

m<M,N> <=> m(M) & m(N). M and N cannot be non-classically correlated with each other, no 

matter how much they interact with each other. In this case the description m(M), say, is not 

just maximal in the usual sense, that there is no better description of the system M considered 
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by itself. It is also maximal in some stronger sense. We might say that the model m(M) is 

saturated. 

What is this "stronger sense" of maximal? Let us consider two systems X and Y that 

are non-classically correlated, so that m<X,Y> => m(X) & m(Y). This means that m<X,Y> says 

more about the systems X and Y than do m(X) and m(Y) together. Now, ontologically 

speaking, the combined system <X,Y> is nothing over and above the two systems X and Y. 

Since m(X) and m(Y) are maximal descriptions of X and Y, then, what is the extra information 

in m<X,Y> supposed to be about! It cannot be about X, as m(X) is maximal concerning X, nor 

about Y since m(Y) is maximal concerning Y, but then there is nothing left! There is clearly 

some sense in which m(X) and m(Y) are not maximal after all. The extra information concerns 

the relation between X and Y, which is indirectly information about both X and Y. The 

descriptions m(X) and m(Y) are only the best descriptions of X and Y considered in isolation; 

they are not maximal regarding these systems tout court. A saturated description m(M), on the 

other hand, is maximal tout court. It not only provides maximal information about M 

considered as a single system but also, in conjunction with m(N), provides maximal 

information about the relation between M and N, as long as m(N) is also saturated. 

Do such systems with saturated models actually exist, however? If they do, then this 

gives us a promising candidate for what is fundamentally different about classical and quantum 

systems. The classical world, containing the "macroscopic" objects of ordinary experience, 

such as chairs, beetles, automobiles and measuring devices may just be the world above the 

level of saturation.25 From this level up, there are no more logically-emergent properties. This 

would help to explain why logical emergence is so counter intuitive. I have no proof that there 

are objects with saturated models, nor much idea of where the line between classical and 

quantum objects may be. In any case, the line is surely quite fuzzy, as it is the sort of thing that 

is approached asymptotically. It may even lie at a higher scale for complex, biological systems 

2 5 W e must be careful here, however, since some of this impression of value-definiteness may be due to 

decoherence in the system's density matrix. 
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than for simple, inanimate objects. We shall assume that a level of saturation exists, however, 

to see if it is of any help in the interpretation of QM. 

In the remainder of this chapter the terms 'classical', 'quantum', 'large', 'small', 

'macroscopic' and 'microscopic' must be used with great caution, in order to avoid tautologies 

and circular arguments. Though it is undesirable to re-define words that are in common use, I 

am forced to make the following stipulative definitions. Fortunately, the meanings given are 

within the range of standard usage. 

6.2.2.1 Definitions (i) A classical system is one that can be described by classical physics. 

(ii) A quantum system is one whose states obey the superposition 

principle. 

(iii) A macroscopic system is one that is visible to the naked eye. 

(iv) A microscopic system is one that is roughly the size of an atom. 

(v) A small system is one that does not have a saturated model. 

(vi) A large system is one that has a saturated model. 

It should be noted that there is a huge gap between macroscopic and microscopic systems, as 

defined here. This is quite deliberate. It is common practice, of course, to apply quantum 

mechanics to microscopic systems and classical physics to macroscopic systems. I hold 

therefore that there is at least a rough equivalence between quantum and microscopic systems, 

and between classical and macroscopic systems. My more original contention, however, is that 

there is a similar correspondence between small and quantum systems, and between large and 

classical systems. 

6.2.3 Relative Models for Small Systems 

In Chapter 5 it was argued that the failure of a maximal description m<X,Y> to factorise is due 

to a special, sui generis physical relation between the systems X and Y. Since the description is 
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maximal, the failure to factorise cannot be merely a matter of knowledge, as it is in the coffee 

mug example, but rather a reflection of the physical situation. An example of such a physical 

relation was that which holds between the two fragments of a sheet of paper after it has been 

torn in half. It seems that, for two systems to be related in such a manner as this, they must 

have interacted in the past. 

Let us consider two systems X and Y, that interacted in the past but are now isolated. In 

general they will be correlated, so that m<X,Y> => m(X) & m(Y), and we cannot factorise 

m<X,Y> into separate absolute descriptions of X and Y. We may still factorise m<X,Y>, 

however, using relative propositions, or relative descriptions. Recall from Theorem 2.2.4.4 

that, if A=>B, we may express A as the conjunction {B & AIB), where A/B is the relative state of 

affairs A given B, as defined in Definition 2.2.4.1. In this case, since m<X,Y> => m(Y), we get 

the following equivalence. 

m<X,Y> ^ m(Y) & m<X,Y>/m(Y). 

The symbol 'ra<X,Y>/m(Y)' denotes everything m<X,Y> has to say, that is not already said by 

m(Y). For convenience, we will write m<X,Y>/m(Y) in the abbreviated form 'm(X,Y/Y)\ and 

call it the best description of <X,Y> relative to Y. It is clear that m(X,Y/Y) => m(X), but not 

vice-versa. We could, of course, exchange X with Y in these relations, and write: m<X,Y> <=> 

m(X) & m(X,Y/X). 

Now suppose that X is a small system whereas M is large, in the sense of Definition 

6.2.2.1, and that we want to describe X as completely and in as much detail as possible. Since 

M is large, it follows that m(M) is not merely maximal but also saturated. We then have 

m<X,M> «=> m(M) & m(X,M/M). 
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Since m(M) is saturated, and there is no overlap of content between m(M) and m(X,M/M), it 

follows that m(X,M/M) tells us nothing about M at all. It says nothing about M considered as 

an individual system, nor about how it is related to X. From this it follows that m(X,M/M) is 

entirely about the system X! This is perhaps surprising, as m(X,M/M) is stronger than m(X), 

which is maximal concerning X considered as an individual. m(X,M/M) goes beyond m(X) by 

describing X's relation to M - something that m(X) does not do. Since m(X,M/M) is a 

description of X only, and says nothing about M, we shall henceforth write it as m(X/M). 

We see that, unless perhaps X is also correlated with other systems, the best available 

description of X is not the absolute description m(X), but the relative description m(X/M).26 

This is the best description of X alone, and is from the vantage point of having saturated 

knowledge about M, to which X is physically related. I do not mean to suggest that m(X) gives 

no information at all about X, however. If X is a alpha particle, for example, then m(X) will at 

least specify the mass and charge of the system, as these can be described even in the absence 

of any correlation with a large system. 

The above discussion assumes that X is correlated to the whole of M, not merely to a 

part,' or a number of separate parts, of M. What does this mean? Suppose M can be mentally 

divided into two parts M , and M 2 , which may not themselves be large. If X is correlated with 

Mj alone, and not the whole of M, then we have 

m<X,M> <=> m<X,M1,M2> <=> m<X,M1> & m<M1,M2> 

<=> m(M 1)&m(X,M 1/M 1)&m<M 1,M 2> 

^ m(M) & mCX^/M,) . 

Note that the term m<M1,M2> cannot be factorised, since raCM,) and m(M2) may not be 

saturated, so that M , and M 2 may be correlated. In this case the relative model m^fviyM,) 

2 6 I f X were correlated with both M and N, then an even more complete description of X would be provided by the 

conjunction m(X/M) & m(X/N). 
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may add to the information about M , in miMy), so that it cannot be considered a description of 

X alone. Thus, if X is correlated only to M , and not to the whole of M, m(X,M/M) cannot be 

replaced by m(X/M), and may not be a relative model of X. A similar situation obtains if X is 

separately correlated to both M[ and M 2 , for this gives us: 

m<X,M> <=> m<X,M1,M2> 

<=> m<X,Mi> & m<X,M2> & m<M,,M2> 

<=> m(M,) & m^Mj/Mj) & m(M2) & m(X,M2/M2) & m<M1,M2> 

m(M) & miXMi/My) & m(X,M2/M2), 

and we again have no relative model of X alone. 

So, for m(X/M) to exist, as a description of X alone, X must be correlated with M as a 

whole. This would seem to require that X have interacted with M as a whole, and not just with 

some part of M, or separately with two or more parts of M. 

The notion of a relative model, defined as a relative state of affairs in the sense of 

Definition 2.2.4.1, is essential to the understanding of quantum mechanics being developed 

here. The idea that quantum-mechanical descriptions are relative descriptions is not new, of 

course. Niels Bohr for example found strong parallels between the role of measuring 

instruments in quantum mechanics and reference systems in relativity theory. He writes (1935: 

150-151), for instance: 

I should still l ike to emphasize the bearing of the great lesson derived from general relativity theory 

upon the question of physical reality in the field of quantum theory. In fact, notwithstanding all 

characteristic differences, the situations we are concerned with in these generalizations of classical 

theory present striking analogies which have often been noted. ... The dependence on the reference 

system, in relativity theory, o f all readings of scales and clocks may even be compared with the 

essentially uncontrollable exchange of momentum or energy between the objects of measurements 
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and all instruments defining the space-time system of reference, which in quantum theory confronts 

us with the situation characterized by the notion of complementarity. In fact, this new feature of 

natural philosophy means a radical revision of our attitude as regards physical reality, which may be 

paralleled with the fundamental modification of all ideas regarding the absolute character of physical 

phenomena, brought about by the general theory o f relativity. 

More recently, Everett (1957) has drawn attention to the apparent relativity of quantum states, 

in his proposal that the usual state vector in fact represents the relative state of a system, 

relative to some subspace of the Hilbert space of an observer system. Everett (1957: 317) 

writes: 

Thus we are faced with a fundamental relativity of states, which is implied by the formalism of 

composite systems. It is meaningless to ask the absolute state of a subsystem—one can only ask the 

state relative to a given state of the remainder of the subsystem. 

This relativistic aspect of Everett's ideas has been somewhat ignored, with most critics focusing 

on the "many worlds" version of the theory, but is restored to its proper place in some recent 

followers of Everett's approach, such as Saunders (1995) and Lockwood (1989: ch. 13). 

It is unfortunate that Einstein gave his theories the name "relativity", as there is nothing 

particularly relativistic about them.27 They do involve relativistic notions, such as the idea that 

some physical quantities previously supposed to be absolute, such as durations and lengths, turn 

out to be defined only relative to a reference frame. However, the scope of this relativism is 

somewhat limited, since all quantities are definable with the invariant structure of Minkowsky 

spacetime. In relativity theory, in other words, relative quantities (such as durations) are 

2 7 T h i s suggestion is no doubt far too late, but the theories of special and general relativity should be re-named, 

perhaps as Einstein's theories of spacetime and gravitation. Similarly, instead of talking about a "relativist ic" 

theory, we should speak only of a Lorentz-invariant theory. 
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reducible to relations within an absolute description, involving spacetime intervals, four-

vectors, and so on. 

In quantum theory, on the other hand, the relativity of some physical quantities is 

irreducible. Quantum mechanics, we might say, is the true theory of relativity. QM deals in 

states that are essentially relative, since there is no mathematical description of the quantum 

world that is absolute. In QM there is no God's eye view, no counterpart of Minkowsky 

spacetime. 

It is also worth noting that the definition of relative models given here is based upon a 

new logical concept - that of a relative state of affairs. An understanding of relative models 

thus requires the adoption of a new logic. This relativity logic is not revisionary, however, as it 

does not challenge any of the hallowed truths of classical logic. It is merely a supplement to the 

standard logic of absolute states of affairs, and is in conformity with common sense. Moreover 

its original introduction, in §2.2.4, was motivated quite independently of quantum mechanics.28 

6.2.4 Measuring Instruments 

On the view being developed here, pieces of laboratory apparatus, including devices for 

preparing and measuring quantum systems, are large systems. We shall now investigate 

whether this idea helps to make sense of quantum measurement. 

A measuring device M must have some attribute that serves to indicate the outcome of 

each measurement, such the position of a needle or the pattern shown on an LED display. We 

will represent this "pointer" variable as Q. Before a given measurement the apparatus is set to 

some standard initial "zero" state. The measurement process itself is an interaction between M 

and the system X, which leaves the pointer in some final position Q=q, so that q is the outcome 

of the measurement. It is well known that, for a quantum system X, we cannot in general 

regard a measurement as revealing some pre-existing attribute of the system. Many 

2 8 T h i s relativity logic should not therefore be compared to Putnam's (1969) version of "quantum logic", which 

involves an ad hoc t inkering with some laws of classical logic, such as the law of distribution of 'and' over 'or ' . 
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measurement processes are stochastic, in the sense that the final value of Q cannot be predicted 

in advance, even from maximal information. Thus we cannot say that M is a proper measuring 

device just in case it reliably produces the right values of Q for the right systems. So what is it 

that makes M a measurement apparatus, rather than some foolish contraption? 

The standard answer to this is as follows. Suppose the measurement apparatus 

measures some quantity A on the system, whose possible values are the eigenvalues a,- of A, and 

whose corresponding eigenvectors are \ap>. There is then a bijection between the eigenvalues a, 

and the possible pointer readings qt, so that if the system is measured when initially in state la,>, 

then the pointer necessarily ends up at qt. To put it briefly, if A has a definite value, then a 

measurement using Q is guaranteed to reveal that pre-existing value. In this case, to call the 

experiment a "measurement" seems appropriate. 

What if the system's pre-measurement state is not an eigenstate of A, however? What 

will happen when an experiment to measure A is performed? If the initial state of the system is 

l\j/>, then the outcome of the measurement could be any one of the positions qi for which the 

projection <a(l\|/> is non-zero, as each outcome qt has chance ka,lv|/>l2. In this case, however, it 

is hard to see why the outcome Q=qt should be called a measurement result, as it does not 

reflect the prior state of the system measured. All we can say is that the quantum system caused 

the pointer Q to adopt the final position qv 

In one kind of measurement, called a measurement of the first kind, the outcome Q=q{ 

does reflect the state of the measured system, but only after the measurement has occurred. 

After such a measurement with outcome Q=q(, the system is left in the eigenstate of A 

corresponding to this outcome, namely \at>. This type of experiment is also called a 

preparatory measurement, since it leaves the system in a prepared state. One important feature 

of a preparatory measurement is that a second measurement performed on the same system, 

immediately after the first, will always yield the same outcome as the first.29 Indeed, in some 

2 9 T h i s statement is precise only in the case where the quantity measured is a constant of the motion. In general, the 

outcomes wi l l differ slightly in the manner dictated by the Schrodinger equation. 
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philosophical discussions of quantum measurement, this consistency of outcomes in repeated 

experiments is held up as the defining characteristic of a measurement.30 

Unfortunately, although preparatory measurements are the kind most often discussed in 

textbooks, the majority of actual laboratory experiments are not of this kind. In general, the 

measured system is not left in any eigenstate of the observable measured, let alone the 

eigenstate whose corresponding eigenvalue is the measurement result. Indeed, in many cases 

the system measured no longer even exists after the measurement is complete, as for example 

when a photon is detected by a photographic plate. In this kind of measurement, called a 

measurement of the second kind, the outcome of the experiment Q=qt does not (in general) 

represent the state of the system at any time. 

We see that Bell (1990: 34) is right to say that the term "measurement" is misleading in 

quantum mechanics, so that the word "experiment" might be preferable. Even in a preparatory 

measurement, the outcome corresponds to the state of the system only after the interaction, in 

general; in a measurement of the second kind the "measured value" seems to have no 

significance at all, in relation to the system measured. This should be borne in mind during the 

following discussion. 

Of the two kinds of measurment, it is preparatory (or "ideal") measurements that are the 

more interesting. It is here that the measurement process seems to be endowed with a special 

physical significance, since it is the occasion of the infamous "collapse" of the wave function 

into an eigenstate of the observable. The following discussion of the measurement process 

focuses therefore on ideal measurements. 

As stated above, the first ideal measurement of a given type performed on a system 

usually has a random outcome, but a second measurement of the same type, made immediately 

after the first, is usually guaranteed to have the same outcome as the first. Thus, while the first 

process is stochastic, the second is deterministic. Suppose measurements are made by M on X 

3 0 See, for instance, Schrodinger (1935), Section 8. 
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at t{ and t2, both yielding Q=q. What information can be used to predict the outcome of the 

second measurement? It must be maximal information about the two systems involved in the 

process, i.e. m(M) & m(X/M),31 just before t2. Thus, if the first measurement has outcome 

Q=q, say, then the outcome Q=q for the second measurement may be inferred from m(M) & 

m,(X/M), for t{ < t < t2. The description m(M) can be regarded as independent of the 

measurement outcome, as M is reset after each measurement, so the result Q=q must be 

somehow contained in the relative model m((X/M). 

It follows that, if M is an ideal measuring device, then after each measurement is 

finished M displays information about the relation between M and X, indicated by its pointer. 

The pointer does not indicate any pre-existing feature of the system, but rather a feature that 

exists after the measurement is complete. Moreover, although this final feature exists within 

the system X, ontologically speaking, it can only be described relative to the measurement 

apparatus. More precisely, it is the system X that acts on M to cause the second outcome Q=q, 

yet this result cannot be predicted from m(X) alone - the more detailed relative description 

m(X/M) is required. 

Suppose we have two measuring instruments M and N, of different types, and measure 

M, then N, then M all on the same system X, at times f= 1,2,3. Let m,(X/M) denote the model 

of X relative to M just after time t. For some devices M and N, although not others, the result 

of the second measurement by M is not guaranteed to equal the first. Indeed, in such cases the 

second measurement by M has a random outcome, so that the result cannot be inferred from 

m2(X/M) & m2(X/N). Now this is a little odd since, as argued above, the measurement outcome 

for M is contained in the relative model m,(X/M). Thus, if m2(X/M) were equal to ra^X/M), 

the measurement outcome would also be entailed by m2(X/M) & m2(X/N). (The mere adding 

of extra information, namely m2(X/N), should not prevent the value of Q from being inferred 

from m2(X/M)! We are thus forced to conclude that m2(X/M) is quite distinct from m^X/M). 

3 ' B e f o r e the second measurement occurs, X is already correlated with M as a result of the first measurement. 
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Somehow the correlation between X and M, forged during their interaction, is destroyed or 

messed up by the measurement of X by N. 

In view of my theory that a non-classical correlation between two systems depends on 

their having some unique similarity, the following analogy suggests itself here. Imagine a wax 

tablet X, into which a seal M is pressed.32 The tablet now bears an exact imprint of the seal, so 

that the two are similar in a very special respect. (Indeed, it is this very fact that the shape of 

the wax requires a previous interaction with the seal which gave a document thus marked its 

authority.) Suppose now that a second seal, N, with a different pattern, is pressed into the same 

tablet X. This results not only in X becoming similar to N, but also in X ceasing to be similar 

to M. Provided the wax is reasonably soft and malleable, the previous imprint of M is simply 

obliterated by the new imprint of N. 

It is important to realise that this situation, where a measurement by N seems to erase 

the result of an earlier ideal measurement by M, does not exist for every pair of devices M and 

N. This erasure only occurs when the instruments are represented, in QM, by operators that do 

not commute. For a pair of instruments whose operators commute, it seems that the system can 

be correlated to both of them at once. The possibility of X's simultaneous correlation with M 

and N depends on the concrete natures of the three bodies concerned - it has nothing to do with 

description. I do not pretend to have any insight into why some pairs of devices are compatible, 

and others incompatible, but a second analogy may be of some help. 

Consider a rectangular plastic lunch box, with a lid that snaps onto the rim. Sometimes 

it is hard to find the right lid to a particular box, and on occasion I have tried to use a lid that is 

slightly too small. What then happens is that it is impossible to fit the lid completely onto the 

box. It is easy enough to get two diagonally opposite corners to snap on at one time, but then 

the other two will not go on. If you try to force the second two corners on, then the first two 

always slip off. The fitting of each corner, in other words, in physically incompatible with the 

3 2 I am thinking of the k ind of seal that was once used to authorise off icial documents. 
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fitting of either corner adjacent to it, but compatible with the one diagonally opposite. I have 

no doubt that, with a little work, an applied mathematician could figure out exactly why these 

relations obtain, in terms of the different forces required to stretch the lid in different directions, 

and its tendency to shrink in one dimension when stretched in another. 

In a similar way, there are no doubt good physical reasons why some pairs of 

instruments can be physically correlated with a system at the same time, whereas others cannot. 

The difference is that in the quantum case we cannot achieve the same level of understanding of 

why the correlations for a given pair of devices exclude one another. These correlations are the 

very means by which we are able to describe a small system in any detail at all, so we seem to 

be unable, even in principle, to describe the correlations themselves. 

The wax tablet analogy has another virtue which deserves mention. When the tablet 

interacts with the seal, the result is that the two systems become similar, but we should note that 

only the tablet is physically affected to any significant degree. The tablet takes on the pattern of 

the seal, not the other way around, which is an important asymmetry. This is quite different 

from the correlation between the two halves of the torn sheet of paper, which is symmetric. In a 

measurement of a microscopic system it seems that, as in the wax tablet example, the apparatus 

leaves its imprint on the system. If there is another device M ' exactly similar to M then, after a 

measurement of X by M, X is correlated just as much with M' as with M , even though M' has 

not interacted with anything. Although M is affected by the measurement interaction, as its 

pointer must move, this change is irrelevant to the correlation between M and X. (The 

correlation remains, for instance, when M is reset to its standard pre-measurement state.) We 

might say that the M-X correlation is one way, as it consists of just one system, X, changing to 

match M . 

The main drawback of the wax tablet picture it that it allows only one type of correlation 

between the tablet and a given seal. In the case of a measuring instrument and a small system, 

however, there are always at least two possible types of correlation, and often many more than 

that. Roughly speaking, each possible outcome of the measurement interaction corresponds to 
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a different manner of correlation between the two systems. The measurement apparatus does 

not therefore force a single type of relation between the systems, but "gives the system a 

choice" from a list of possible relations, which are represented in QM by the eigenstates of the 

observable. 

6.2.5 States for Small Systems 

We learn from QM that observables can be grouped together into "complete sets", which are 

such that (i) any two observables in the set commute, and (ii) every observable not in the set 

fails to commute with any of those in the set. The operators of a complete set seem then to 

correspond to a set of measuring devices that can all be simultaneously correlated with a given 

system, without getting in each other's way. Suppose that {M,} is such a complete set of n 

compatible devices, and that each makes a measurement of the system X, either all 

simultaneously or in quick succession. The best description of the X is now given by the 

conjunction of relative models m(X/M[) & m(X/M2) & ... & m(X/Mn), which we can abbreviate 

to '&m(X/M,.)\ 

This description &m(X/M;) is maximal in two different senses. First, it is the best 

description of X that exists in X's current situation. Secondly, X's current situation is also the 

best possible one, as far as facilitating descriptions of X is concerned. As an analogy, consider 

a hockey team whose roster is weakened by a number of injuries to key players. In that 

situation, suppose it plays as well as it possibly can, given the skaters available. This 

performance is maximal given the circumstances, but the circumstances themselves are less 

than ideal. The team could have played better with a deeper lineup. Now suppose that, later in 

the season, the roster is completed as the players return from injury, and the team once again 

plays as well as it possibly can. In this case the performance is maximal in two senses; it is the 

best performance from the best squad. Short of changing the team itself by making trades, there 

is no way to improve on the performance. In a similar way, the proposition &m(X/M,) is not 

only the best description of X under the present circumstances, but is at least as detailed as any 
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best description would be under different circumstances. We shall therefore say that the 

description &m(X/M,), which consists of maximal relative models for a complete set of 

measuring instruments, is saturated. A saturated relative model will be called a correlation 

state, or just state. 

The fact that there are such things as complete sets of measuring instruments suggests 

that a small system has a kind of correlation capacity that cannot be exceeded. Once a small 

system is fully correlated, new correlations may be formed only at the expense of some of the 

old ones. Also, judging from the structure of QM, it seems that the correlation capacity of a 

small system may be filled equally by other small systems as by large systems. If X is 

correlated with another small system Y, however, this does not provide any means for a 

description of X, as m(X,Y/Y) concerns Y almost as much as it concerns X. Thus the 

correlation with Y robs X of a saturated relative model, or state. 

6.3 Chance for Small Systems 

Now that we have examined the way in which information about small systems is represented, 

we are ready to discuss the chances of events in a small system, which we may call "small 

events". A small event can only be described, in any detail, if the small system is correlated 

with a large one, such as a measuring instrument, with a saturated model. Thus the chance of a 

small event is always the chance of some relative state of affairs m(X/M). In an ideal 

measurement, each final relative state of affairs m(X/M) for the small system is uniquely 

associated with some macroscopic state of the apparatus, so that the small event has the same 

physical chance as the corresponding measurement outcome. 

The up-to-date (utd) chance function Pt seems to be the more useful version of the 

chance function here, which is based on maximal knowledge of the dynamics of the system, the 

boundary condition and the history of the world up to time t. To define the chance function for 

a system X, one might think that it is sufficient to describe the past history of X alone, so that, 
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for some microscopic event A in X, Pt(A) = Pr(A \ £x & mf(X/M) )33. This approach is only 

valid, however, when X is not correlated with any other small system, as we shall now see. 

6.3.1 The Nonlocality of Chance 

Let us consider again the EPR experiment, in which small systems X and Y are initially 

correlated with each other. Since they are correlated with each other, neither is individually 

correlated with a complete set of measuring instruments, although we assume that the pair 

<X,Y> has a state. In other words, the relative model m(<X,Y>/M) is saturated, but it does not 

factorise into m(X/M) & m(Y/M) since these relative models m(X/M) and m(Y/M) are far from 

saturated. We then individually measure the systems X and Y, using some apparatus N which 

has two possible outcomes for each experiment. Let us suppose that from m(<X,Y>/M) we can 

infer with certainty that the two results will be opposite, even though we cannot predict the 

outcome of either experiment. 

If we measure X first, then Y, then the result of Y's measurement is predictable in 

advance, with certainty, using the outcome of X's measurement. Thus the chance function for 

Y is altered by the result of X's measurement - an outcome of spin up on Y might increase 

from 1/2 to 1, perhaps. This is so even if the systems are far apart when X is measured, so that 

the chance function for Y may depend on events which occur far away. At exactly what time, at 

the system Y, does the chance increase from 1/2 to 1? One would like to say that the change 

occurs when X is measured, but this is ruled out by special relativity. There is no time at Y that 

is simultaneous with the measurement on X, and so "the time of X's measurement" does not 

pick out any unique time at Y. The chance function, though defined for events in spacetime, 

does not itself exist in spacetime. 

When X is correlated with other small systems, therefore, we cannot define the chance 

function for X by reference to X alone. We have to consider a larger system, namely the 

3 3 T h e condit ioning on mt(XJM) screens of f the boundary condition, so the latter can be ignored. 
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smallest system that (i) includes X and (ii) is fully correlated to large objects, so that its relative 

model is saturated. The chance function thus obtained, for <X,Y> in this case, is obviously a 

joint chance for X and Y together, which cannot be factorised in separate distributions for X 

and Y, although X and Y do of course have their own marginal distributions. 

6.3.2 Coordinates for Chance 

Consider a set of measuring instruments {M,}, each of which is able to make a complete 

measurement on a small system X. The possible states for X are then of the form M r

a , i.e. a 

correlation of type a for the rth instrument, if we assume for now that X is not correlated to 

other small systems. For example, if X is a spin-1/2 particle whose motion can be ignored, then 

each M r is a device for measuring the intrinsic spin of the system along some particular axis, 

and a is one of two values, for spins up and down along that axis. Chances attach to transitions 

between pairs of such states, such as from M 4

+ to M 6 - , where '+' and '-' denote spin up and 

spin down. 

It would be very convenient if there were some way to represent all the possible 

correlations, i.e. all the states ML", on the same map, so to speak. As it is, since each represents 

a correlation with a differently-aligned device, the different possible states are completely 

unrelated. Essentially, each device M r defines a separate configuration space of (two) possible 

states for X, which we would like somehow to bring together, perhaps by embedding them all 

in a single, larger space. This unified structure would have to be based on a deeper 

representation of the system, as it must see relations between the different types of correlation, 

rather than viewing them as completely different kinds of animal. This deeper representation 

might even enable one to derive the chance of a given transition between two correlations from 

the relation between these states. 

Putting it another way, we would like there to be a kind of coordinate system for 

physical chance, analogous to the coordinate systems in geometry that generate distances. A 

coordinate system in geometry assigns an ordered triple of numbers to each particle in a rigid 
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system, thus putting all the particles together on the same map, so to speak. Moreover, the 

distance between any two particles (i.e. the d-list, as defined in §6.1.1) can be generated from 

the coordinates of those particles, using the Euclidean metric. In a similar way, we would like 

there to be a set of "coordinates" for each correlation state Mr

a, which enables these states to be 

put onto the same map. As a bonus, the chance of a transition from Mr

a to Ms

b might even be 

derivable as a function of the coordinate sets of these two states, i.e. using a metric on the 

unified state space. 

I see no a priori reason to hope that such a "coordinate structure" exists, but in fact just 

such a representation is provided by quantum mechanics. Suppose M 0 , for instance, represents 

a device for measuring spins along the positive z-axis. Then M 0 assigns a "coordinate pair", i.e. 

a wavefunction, (w,z) to each possible spin state of the system Mr

a, where w and z are complex, 

and normalised so that Iwl2 + \z\2 = 1. This coordinate pair (w,z) may be calculated from the 

angle, relative to the z-axis, along which the instrument M r measures spins, using some 

spherical trigonometry.34 Suppose X has the spin state (w,z), and we make a measurement of it 

using M 0 . Then, according to QM, the chance of measuring spin up is Iwl2, and the chance of 

spin down is Izl2. In this special case where the device making the measurement is also the one 

which defines the "coordinate system", the squared "coordinates" are just physical chances. 

In the more general case, where a system in state (w,z) is measured by some other 

apparatus M r , we need to use the vector space formalism. We define a state vector lv|/> as a 

function from wavefunctions to wavefunctions, which maps (w,z) to (w+a, w+b), where a and b 

are also complex. Each spin state vector is therefore characterised by a pair of complex 

numbers a and b, which may be written as a column vector . This state vector maps the 

origin (0,0) to the wavefunction (a,b), and so is the position vector of (a,b). In general, the 

3 4 T h i s is most easily done using the Pauli spin matrices, which define the spin operators along the x, y and z axes. 

Other spin matrices, for different axes, can be obtained as linear combinations of these three, using simple 

trigonometry. The two spinors for a given measurement apparatus are then just the normalised eigenvectors for the 

appropriate spin matrix. The eigenvector for spin up is the one with corresponding eigenvalue one half h bar, and 

so on. 
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position vector of a spin wavefunction i|/ is written l\|/>, and is known as a spinor. We can 

define the scalar product of two vectors as in §5.1.2, so that = a*bA + a2b2, and 

say that they are orthogonal just in case the scalar product is zero. If we add the usual 

operation of multiplication of a vector by a (complex) scalar, then we have a vector space H. 

We can now forget about the original wavefunction structure, as everything of importance is 

included in the vector space structure. 

Each measuring instrument M r defines an orthogonal basis on the vector space H, as 

follows. If the wavefunctions rx and r2 correspond to the states M r

+ and M / respectively, then 

it turns out that the position vectors \r{> and \r2> are orthogonal. We also normalise these 

vectors, so that lr,>.lr,> and \r2>.\r2> each equal unity. (The state M0+ has wavefunction (1,0), 

and M 0

_ has (0,1), for example, and the position vectors for these are clearly orthogonal.) The 

vector space structure therefore allows us to represent the spin state of a system with respect to 

any apparatus M r rather than just with respect to M 0 . Instead of writing a state as a 

wavefunction \|/ = (w,z), we may write it as a vector l\|/>, which can be expressed using any set 

of base vectors such as \rv> and lr2>, i.e. l\|/> = cjr,> + c2\r2>. If we had chosen some other 

apparatus My instead of M 0 as the reference system for the wavefunctions, then the 

wavefunction (w,z) for each state would have been different. Values like cx and c2, on the other 

hand, are independent of the reference system for the wavefunctions. 

Now that we can represent spin states relative to a general apparatus M r , we can give the 

chances of measurement outcomes for M r . If the system is originally in state \|/ = (w,z), we 

express this in the orthonormal basis for M r , to get l\|/> = cy\r{> + c2\r2>. The chance of spin up 

is then \cx\2, and the chance of spin down is lc2l2. Since a spin-up result leaves the system in the 

state \rx>, and a spin-down result leaves it in \r2>, the chance of a general transition from l\|/> to 

k]», upon measurement of some operator for which \ty> is an eigenstate, where both vectors are 

normalised, is ll(])>.l\|/>l2, which in the Dirac notation introduced in §5.1.2 is written k(|)lv|/>l2. It 

is easy to show that c, = <r,!\]/>. 
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We see that there is an analogy, at least, between coordinate sets and wavefunctions. 

The "points" to which wavefunctions are assigned are correlation states, and the metric defined 

on pairs of such points, i.e. the squared modulus of the overlap integral, represents physical 

chance. In geometry it is more convenient to use the vector space formalism rather than the 

coordinate formalism, as this representation has no privileged origin, and no preferred 

directions (i.e. coordinate axes) either. Instead of giving the position of a point as (x,y), we 

specify its position relative to some other point P as ai + bj, where {ij} is some arbitrary basis 

of the vector space. In a similar way the vector space formalism is also preferable in QM, as it 

enables one to treat all observables on an equal basis, so that one deals with state vectors rather 

than with wavefunctions. 

The analogy between wavefunctions and coordinate sets is my main heuristic in 

searching for an interpretation of the wavefunction, or state vector. In the next section, 

therefore, I will look more deeply into the nature of geometrical coordinates, in order to be able 

to develop the analogy further. 

6.3.3 The Nature of Coordinates 

There is no disagreement about the empirical meaning of rectangular cartesian coordinates. If 

J(a,b) = ^{(al-bl)2 + (a2-b2)2 + (a3-Z?3)2} is the Euclidean metric for a pair of coordinate sets a = 

(al,a2,a3) and b = {bvb2,b3), then the quantity d is the distance between the two particles whose 

coordinate sets are a and b, as measured by rigid, straight rods, or perhaps by lights rays, clocks 

and so on. Can anything more about the meaning of coordinates be said, however? 

To get a deeper understanding of coordinates, it will be useful look briefly at the history 

of geometry. The early work on geometry, prior to 300 B.C. or so, was summarised by Euclid 

in the Elements. Euclid's work does not make use of coordinates, and indeed the fundamental 

concepts involved are those of point and (straight) line. It is assumed that a line segment, i.e. 

the part of a line bounded by two points within it, can be translated in such a way as to make the 

relation of congruence an equivalence relation; thus some notion of rigidity is also assumed. 
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Euclid's method is to lay down axioms concerning these basic notions of point and line, and 

thus describe the nature of physical space. One of the propositions that can be proved from the 

axioms is the famous theorem of Pythagoras, that the square on the hypotenuse of a right-

angled triangle is equal to the sum of the squares on the other two sides. 

Surprisingly perhaps, it was not until the seventeenth century A.D. that coordinate 

geometry was introduced, by Descartes (1637). Coordinates can be defined within the 

Euclidean framework as follows (in two dimensions, for simplicity). Take an arbitrary point O, 

the origin. Let the x-axis Ox be an arbitrary line that includes O, and let the y-axis Oy be the 

unique line that is perpendicular to Ox and also includes O. Then the x-coordinate of a point P 

is the perpendicular distance from P to Oy, and the y-coordinate of P is the perpendicular 

distance from P to Ox. It may be shown from the axioms that any two points (in a plane) that 

share the same coordinate pair (x,y) are coincident, so that the coordinates of a point determine 

its position uniquely. 

The Euclidean metric, that gives the distance between two points as a function of their 

coordinate pairs, is also easily derived within Euclid's system. Suppose we wish to know the 

distance between P and Q, where P lies on Ox and Q is on Oy. Thus the coordinates of P and Q 

are (̂ ,0) and (0,yq) respectively. By the definition of coordinates, xp is the distance from O to 

P, and y„ is the distance from O to Q. But, since OPQ is a right-angled triangle, whose 

hypotenuse is PQ, the distance PQ can be calculated using Pythagoras' theorem as V(x 2 + y2). 

This special case is easily strengthened to the general case, where P and Q may not lie on Ox 

and Oy, by constructing ad hoc axes Ox' and Oy, parallel to Ox and Oy, on which P and Q do 

lie. This yields the required result that the distance PQ is equal to V {(xp - xq)2 + (yp - yq)2}, as 

x'p  =  xp ' - V a n d  y'p  =  yp '  y r 

Euclidean geometry thus includes the following proposition as a theorem, called CG 

(short for coordinate geometry). 
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CG There is a bijection between coordinate pairs (x ,y ) and possible points P such that the 

distance between any two points P and Q is equal to V{(xp - xq)2 + (yp- yq)2}-

It should be noted that CG does not explicitly say how coordinates are constructed, as 

perpendicular distances from coordinate axes. It gives no direct statement about what they 

actually represent. 

A remarkable fact about CG is that it entails all the axioms (and hence all the theorems) 

of Euclidean geometry! The whole of Euclid's system is compressed into this one statement. 

CG even enables one to infer that xp is the perpendicular distance from P to Oy, and so on - it is 

entirely self sufficient. 

CG involves only two empirical concepts, namely point and distance. In view of the 

amazing brevity and simplicity of CG, it seems clear that point and distance are, in some sense, 

the fundamental concepts in geometry. CG sums up all the laws of geometry, which involve 

numerous concepts, into one pithy statement about points and distances. 

As stated above, CG entails that individual coordinate numbers such as xp are 

perpendicular distances to coordinate axes, so we can give them a direct empirical significance, 

in addition to the indirect significance that the metric provides. It seems imaginable, however, 

that one could have coordinate sets with no direct empirical significance. The important thing 

is that, when pairs of them are fed into the metric, they generate the correct distances. It seems 

almost accidental that xp, as well as ^{{xp - xq)2 + (y - yq)2}, is a distance. It is surely 

conceivable that the individual quantities xp, xq, etc. might have no interpretation outside of the 

metric. 

If the numbers xp, xq, etc. had no direct empirical significance then the manner of their 

correspondence to the concrete system would be rather mysterious. We would still be forced to 

posit such a correspondence, however, due to their ability to compress information about 

distances and predict the values of distances not yet measured. 
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6.3.4 The Nature of the State Vector 

In the case of state vectors, it does seem that the individual complex numbers have no direct 

empirical significance. The number c, in the vector c,lr,> + c2\r2>, for instance, is certainly not 

a chance as it is complex rather than real, and even its modulus is the square root of a chance 

rather than a chance. Moreover, although the phase of c1 does not affect the chance IcJ2, it is 

still physically important in many situations, such as in the two-slit experiment, as it is needed 

to generate the correct chances. It seems that the only empirical significance of c, is its role in 

generating physical chances. 

It will be useful to introduce the notion of a substructure here. In the case of geometry, 

we have seen that the axioms describing the properties of physical space can be summarised by 

the single proposition CG, which is a rule governing distances. The rule is formulated using 

another structure, however, the coordinate structure, from which distances can be derived. We 

might say therefore that the coordinate frame is a substructure for distance. In a similar way the 

rules of QM, which concern physical chance, are formulated in terms of wavefunctions, from 

which chances are derived. We might say therefore that the wavefunctions (or state vectors) are 

a substructure for chance. 

One should not equate direct empirical significance with physical significance. Though 

state vectors seem to lack direct empirical significance, whereas coordinates have a direct 

empirical meaning, state vectors seem to be just as "physical" as coordinates. As I argued in 

§6.1.1, they seem to be descriptions of what is physically going on in a system. They prove 

their correspondence to the concrete system by generating the right values of the chance 

function, in a neat, economical and compelling way. (Chance is, as shown in §3.6, an 

empirically-accessible quantity.) 

Suppose it is granted that a substructure for a physical quantity is also a physical 

description of a system. Thus, since distance is a physical quantity, we would accept 

coordinates as representative of the concrete system even if they had no direct empirical 

meaning. Similarly, since chance is a physical quantity, it follows that the wavefunction is a 
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physical description. It should be remembered, however, that the physical chance function is 

(according to the causal theory of chance) an epistemic probability function. It is the 

probability function for an ideally-rational agent who has maximal knowledge of certain 

physical causes. For this reason one might expect a substructure for chance to have some 

epistemological features. 

We are faced with an interesting situation here, in that chance rather straddles the 

familiar division between physical facts and states of knowledge. It does represent a state of 

knowledge, but it is also fully determined by the physical facts. Chance is therefore both 

physical and epistemic. It is not somehow a mixture of the two, having a physical component 

and an epistemic component, but is fully physical and fully epistemic. How can this be? To 

understand this we must recall, from §2.2.2, that an objective state of affairs is defined in terms 

of epistemic states. The state of affairs A is the expansion from KQ to KA. Thus, fundamentally, 

there is no distinction between physical facts and states of knowledge.35 

One may object to the claim that all objective states of affairs are ultimately defined in 

terms of epistemic states on the grounds that it proves far too much. It is only in quantum 

mechanics that the states seem to have an epistemological character. In classical physics it 

quite a different story, as there no temptation to use terms like "knowledge" and "information" 

in the Copenhagen style. Why, on my account, does the epistemic nature of states in classical 

physics go unnoticed? 

To see why classical states do not display any epistemic character, in spite of being 

fundamentally epistemic, we must review the argument, in §6.1.2, in favour of the 

epistemological interpretation of the \|/-function. The essential point was that the state vector is 

not localised in spacetime. In the case of the EPR experiment, for example, the two correlated 

systems are spacelike separated and yet neither has its own state vector. Since knowledge of 

3 5It must be remembered here that these are not human states of knowledge, but those of an ultimate rational 
principle, something like Plato's Form of the Good. Note also that Bohr often speaks of "the knowledge" of a 
physical quantity rather than "our" knowledge. 
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two systems may well not be localised, it appears that the \|/-function represents knowledge 

about the two systems. In other words, the epistemological character of a state of affairs 

becomes apparent only when it does not factorise. When the state of a composite system 

factorises into a set of states for its component subsystems, we simply do not notice anything 

epistemic going on. Now, as was argued in §5.3, the claim that states (and histories) of 

composite systems always factorise, namely CSM3, is one of the basic assumptions of classical 

(i.e. non-quantum) physics. Thus in the classical domain, where this assumption holds FAPP, it 

is possible to ignore the epistemological character of the states of affairs. 

In addition to the fact that states of affairs are themselves epistemological, we must 

remember that the chance function is an epistemic probability function. According to 

Definition 3.1.1, PX(A) l S Pr(A Ux & bcx). Thus a chance is fundamentally a degree of belief, 

even though it is entirely determined by the physical facts £ x and bcx. 

This attempted rapprochement between physical states and states of knowledge may 

seem to threaten the very notion of objectivity, and the distinction between objective and 

subjective, but it is not so.36 All I am claiming is that the concepts of knowledge and belief 

belong in the both the objective and subjective realms. Human knowledge and belief are 

subjective, of course, but (as argued in §2.2) the logical distinction between Sinn and 

Bedeutung forces us to recognise the existence of objective counterparts of these human 

properties. It is only in this way that one can understand such objective, logical notions as 

entailment and truth. This idea of objective knowledge and belief does, of course, threaten 

some metaphysical views. One may well ask John Bell's question here: "Information! Whose 

information?" (Bell 1990: 34). We are not talking about the information (or knowledge) 

possessed by any human, so that my view seems to entail some kind of Platonism. 

3 6It is interesting that some physicists have held that QM threatens the very notion of objectivity. London and 
Bauer (1939: 220) describe this view as follows: "...the discussion of this formalism taught us that the apparent 
philosophical point of departure of the theory, the idea of an observable world, totally independent of the observer, 
was a vacuous idea". I strongly disagree with this. 
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I have argued that the Hilbert space of state vectors is a substructure for physical chance, 

and that a substructure shares the general characteristics of the quantity it is a substructure for. 

In this case, since chance is both physical and epistemic, it would follow that the wavefunction 

is also both physical and epistemological. This would explain why the wavefunction seems to 

have both physical and epistemological characteristics, as argued in §§6.1.1 and 6.1.2. 

6.3.5 Time Evolution 

The example of intrinsic spins in §6.3.2 ignores the time evolution of the state vector, during 

periods when X does not interact with any other system. In general, of course, the 

wavefunction evolves in time in accordance with the Schrbdinger equation, which is linear and 

deterministic. How is this evolution to be understood, within the view that the wavefunction is 

a substructure for the chance function? 

The Schrbdinger equation is not only deterministic, but also has the property that a state 

vector always evolves in time to another state vector rather than something weaker, like a 

density matrix. This is quite striking, as it seems to mean that a saturated relative model of a 

system at time r, enables one to infer an equal amount of knowledge about the system at t2 as a 

saturated model at t2 would provide. The simplest way for this to happen would be for the 

saturated relative model itself to evolve deterministically (i.e. predictably) between external 

interactions. This is a little surprising, as it is common to think that determinism is a feature of 

the large-scale classical world, which QM forces us to renounce at the atomic scale. We often 

hear that individual atoms behave randomly, in unpredictable fashion, so that only certain 

statistics defined on large ensembles of them are predictable FAPP. This seems to be mistaken, 

however. Atoms themselves are deterministic; it is only the outcomes of their interactions with 

large systems that are unpredictable. 

From our experience of geometry it is only to be expected that the evolution of quantum 

states will be modelled by variation of the state vector. The first precisely-formulated 

dynamical laws, those due to Newton (1687), employed the geometrical coordinates of 
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Descartes, modelling the motion of a particle by variation of its coordinates. While it is no 

doubt possible to formulate Newton's laws of motion and gravitation within a framework of 

synthetic geometry37, there is no doubt that the use of coordinates is a great convenience. In a 

similar way it is only natural that the dynamical law of quantum mechanics is stated in terms of 

the variation of "coordinates" with time. 

6.4 Summary 

Where does this interpretation of the state vector, as a substructure for physical chance, leave us 

with regard to the problems described in §6.1? These problems are 

(i) The tension between the physical and epistemic aspects of the state vector. 

(ii) The AND/OR problem (i.e. the collapse of the wavefunction). 

(iii) The "shifty split" between system and apparatus. 

(iv) The measurement problem (QM is metrocentric). 

I do not claim to have provided complete solutions to all of these problems, but I think that my 

interpretation sheds some light on them. 

Regarding (i), I argue that there is no tension between the physical and epistemological 

features of the state vector. The chance function, for which the state vector is a substructure, is 

both physical and epistemic in a way that is perfectly comprehensible. This does not help us to 

get much of an intuitive understanding of what the state vector means, of course. It gets rid of 

the tension rather than the mystery. It does not so much solve the mystery as describe it in 

precise terms. 

3 7For a heroic attempt at this, see Field (1980). 
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The solution I offer to the AND/OR problem is not original in itself, although I hope 

that the material in §6.2, and particularly §6.2.4, helps to remove the usual objections to it. 

Suppose a small system is in a state represented as \\\r> = cx\ax> + c2\a2>, where \ax>, \a2> are 

normalised eigenstates of some operator A. Do the components \ax> and \a2> exist together in 

the concrete world, so that we should read the superposition as AND, or are they alternatives, 

only one of which really exists? In my view, neither of these options is exactly right. It is 

certainly wrong to treat the superposition as a disjunction, as if the system were more accurately 

represented by either \\\f> = \ax> + or l\|/> = \a2>. One might as well consider a geometrical 

vector ai + b] as a disjunction, so that only one of the components i and j is really "there". Both 

components are needed for a correct representation. When a measurement of A is made, 

however, the chances of measurement outcomes are given by the squared moduli \cx\2 and lc2l2. 

Only one measurement outcome exists, of course, so at this stage we interpret the superposition 

as OR. 

In short, this is the standard view that the state vector is reduced when a measurement 

occurs or, more generally, when the system becomes correlated in an appropriate way with a 

large system. This view has the consequence that either a large system does not have a state 

vector, or (if it does) that the Schrbdinger equation is not universally valid. It seems to me that 

the former alternative is more likely, that systems large enough to have saturated models cannot 

be described by state vectors. 

Since a measurement of X by M simply results in a correlation of X with M, why does 

this amount to an "amplification to the classical level", or "definitisation" of some quantity? 

Nothing of this sort takes place when X becomes correlated with another small system Y. The 

difference is that, since M has a saturated model m(M), the X-M correlation gives X a relative 

model m(X/M), which describes X alone. The correlation thus gives rise to a huge increase in 

the detail and completeness of X's best model. The X-M correlation is like a lifeline 

connecting X with the macroscopic level. 
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The fact that, in QM, the act of measurement often causes a definite value for a physical 

quantity, a value that did not exist in the system prior to the measurement, strongly suggests 

that QM only applies to systems that are below the "saturation level", i.e. to systems that do not 

have saturated models. These are systems whose best model is a relative model m(X/M) rather 

than an absolute model m(X). It is not clear to me even roughly where this saturation level may 

lie, however. Since it seems that, under many circumstances, decoherence induces F A P P 

classical behaviour in systems far below the classical level, this level is difficult to locate. 

Current research programmes into macroscopic quantum tunnelling and coherence, where 

decoherence is suppressed by special conditions, may shed some light on this question 

however. 

If quantum mechanics only applies to small(ish) systems, describing them from the 

perspective of a large system they are correlated with, then there is clearly a need for a split 

between the system and the apparatus. The split is not an ontological one, of course, as the 

apparatus is also made of atoms, but rather a necessity of description. The apparatus is akin to a 

reference body, from whose perspective the system is described. 

The shiftiness of the split is more a feature of the quantum-mechanical formalism than 

of reality. Suppose an apparatus M makes a complete measurement on a small system X. We 

can, of course, then treat <X,M> as a single system, and attempt to describe it from the 

perspective of another apparatus N, thus shifting the split. The two large systems M and N 

cannot be correlated, however, and N does not interact with X, and so it is not correlated with 

X. Thus, even if N makes a measurement of the measurement outcome of M, the best 

description of M is still just m(M), and the best model of X is still m(X/M). When N measures 

M , nothing of importance changes except the state of N. 

If this situation is treated quantum mechanically, under the assumption that the 

Schrodinger equation applies universally, then N ends up being correlated with <X,M>. I 

maintain that this description is false, as no such chance correlation exists in fact. If the 

correlation did exist it would be very hard to observe, due to decoherence, so an empirical 
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refutation of universal quantum mechanics may not be possible. In other words, decoherence 

allows one to put the split in the wrong place. Decoherence has a contrastive pair of roles, 

therefore. On the one hand it makes quantum systems behave (under certain circumstances) in 

a classical way, and yet it also enables one to treat classical systems as if they obeyed quantum 

mechanics, without contradicting the empirical facts. 

Finally we come to the problem of measurement itself. Although I agree with Bell that 

QM applies to the world at large, and not just to "piddling laboratory operations" (1990: 34), 

my general approach is to justify, rather than eliminate, the metrocentric nature of QM. 

Measuring devices, or more generally large systems, have an indispensable role in enabling the 

description of small systems. The best model of a small system is a model relative to a large 

system correlated with it. 

The interpretation of the state vector proposed here is more complicated than most of its 

rivals, as it does not arise from just one idea. Although its foundation is the causal theory of 

chance, some additional components are required. The essential elements of this interpretation 

are: 

(i) The causal theory of chance. 

(ii) QM correlations are ultimately due to a sui generis relation of similarity between two 

systems. This means that their joint maximal description does not factorise, and so their joint 

utd chance function does not factorise either. 

(iii) The fact that maximal descriptions need not factorise implies that there are logically-

emergent properties. 

(iv) There exist systems with saturated models. Intuitively speaking, this is the level at which 

all properties have emerged already, i.e. the "classical level". 

(v) The best model of a small system is a model relative to some large system (having a 

saturated model) correlated with it. 

(vi) The wavefunction is a substructure for transition chances in a small system. 

292 



7. Conclusion 

This thesis covers a wide range of topics, so one may wonder what the overall message is. The 

main theme is that there cannot be a sharp separation between the study of probability by 

philosophers and the work of physicists. I have argued, in chapters four to six, that certain 

problems of theoretical physics are greatly illuminated by a correct philosophical understanding 

of probability and its attendant notions. Moreover, though it may not be apparent initially in 

reading the thesis, the study of physical problems was of crucial importance in formulating the 

"philosophical" analysis of chance in chapters one to three. The chapters were not written, of 

course, in the order they appear above. In fact, the thesis really began with the fourth chapter, 

so that the analysis of chance was, to a large extent, made to fit a pre-existing system of 

mechanics. Indeed, the writing of the earlier chapters was influenced by the later chapters just 

as much as the reverse. 

In the course of researching this thesis I have found it necessary to introduce some new 

notions, and resurrect some old ones. I shall end with a list of these, which I feel deserve 

recognition and further study. 

1. We need a full-blooded, Aristotelian notion of causation. The limp versions available 

within empiricism are not sufficient to do any physics. 

2. In Chapter Two I sketched out a new approach to logic, based on epistemic states, inspired 

by the work of Peter Gardenfors. I make use of this account to define logical probability, but I 

think that further study in this area would lead to many interesting discoveries. In particular, it 

seems that a workable correspondence theory of truth may now be possible. 

3. The analysis of chance as logical probability brings the concept of epistemic state into 

physics, without falling into anthropocentrism. I believe that the consequences of this are very 
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great indeed, and have tried, especially in chapters Five and Six, to show the fertility of this 

idea in understanding quantum theory. It allows, for instance, non-factorisable states of a 

composite system, logically-emergent properties, a distinction between predictive and causal 

locality, and relative states. 

4. The concepts of lagrangian and boundary condition, familiar to physicists, need to be 

recognised as philosophically important as well. The notion of the generalised lagrangian 

enables one to define the determination relation in terms of entailment, and also to give an 

analysis of nomic necessity. 

5. The distinction between abstract and concrete must be emphasised constantly. As noted in 

Chapter One, in the discussion of the principal problem for chance, the very analysis of chance 

as partial determination depends on there being a noticeable difference between the concrete, 

real world and the ersatz actual world. The idea of a perfect, abstract representation of a 

concrete system is a logical impossibility - there cannot be such a similarity between the real 

and the non-real. The premise that even maximal states of affairs are incomplete is of vital 

importance in the work on quantum mechanics. 

2 9 4 
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