
L O G H A Z A R D R E G R E S S I O N 

by 

Huiying Sun 

Ph.D, Harbin Institute of Technology, Harbin, CHINA, 1991. 

A THESIS S U B M I T T E D IN P A R T I A L F U L F I L L M E N T OF 

T H E R E Q U I R E M E N T S F O R T H E D E G R E E OF 

M A S T E R OF SCIENCE 

in 

T H E F A C U L T Y OF G R A D U A T E STUDIES 

Department of Statistics 

We accept this thesis as conforming 

/ to the required standard 

T H E U N I V E R S I T Y OF BRITISH C O L U M B I A 

September, 1999 

©Huiying Sun, 1999 



In presenting this thesis in partial fulfilment of the requirements for an advanced 

degree at the University of British Columbia, I agree that the Library shall make it 

freely available for reference and study. I further agree that permission for extensive 

copying of this thesis for scholarly purposes may be granted by the head of my 

department or by his or her representatives. It is understood that copying or 

publication of this thesis for financial gain shall not be allowed without my written 

permission. 

Department of 

The University of British Columbia 
Vancouver, Canada 

DE-6 (2/88) 



Abstract 

We propose using regression splines to estimate the two log marginal hazard func­

tions of bivariate survival times, where each time could be censored. The method is a 

modified version of Kooperberg, Stone and Truong's (JASA, 1995) hazard regression for 

estimating a univariate survival time. We derive an approach to find standard errors 

for estimates of the difference of the log hazard functions. The approach is inspired by-

Wei, Lin, and Weissfeld (JASA, 1989). 

We also propose procedures for testing the four hypotheses that the marginals follow 

an exponential or Weibull distribution and that the two failure times have the same 

distribution or have proportional hazards. 

A simulation study is conducted to assess the performance of our estimates and test 

procedures. We study the effects of the censoring rates, correlation levels, and number 

of knots. The regression is applied to the data set of the Diabetic Retinopathy Study 

(Diabetic Retinopathy Study Research Group, 1981). Our analysis for the data set 

matches study results of Huster, Brookmeyer, and Self (1989). 
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C h a p t e r 1 

I n t r o d u c t i o n 

Bivariate failure time data arise when study subject units are paired. Examples of paired 

units include eyes or ears from the same person, twins, and father and son. Since there 

exist natural relationships between the two subjects in one pair, the two failure times 

within the same pair might be correlated. Moreover, in such studies, either or both 

failure times might not be observed because of censoring. A well-know study involving 

paired failure times is the Diabetic Retinoparthy Study, Diabetic Retinopathy Study 

Research Group (1981). The dependence, along with the censoring, greatly complicates 

the analysis of the data. This data set will be discussed in Chapter 4. 

In univariate survival analysis, classical methods such as the Kaplan-Meier estimator 

and the Cox proportional regression model are based on the hazard function h(i), 

= P(t<T<t + At\T>t) = f£ 
v ; At->o At S(t)' 

where S is the survivor function and / is the density function, see Section 2.1. If T is 

a discrete random variable and T can take on values 0 < ti < t2 < • • •, then the hazard 

function is 

h(t) = P(T = t \ T > t ) - P ^ T = - 1 - - i o ... n[t3) t3\i>t,)- - i s { ^ , j - l , 2 , . 

1 



And thus the survival function can be written as 

s(t)= n 
j:tj<t 

see Lawless (1982). An analogous formula relating S and h exists for T continuous, see 

Gill (1992). But in the bivariate Ccisê  cis Gill discussed, we do not have a nice formula 

relating the hazard and survivor functions, since there is no canonical way to define 

past, present, and future at "time" t. 

Traditionally, there are two main approaches to analyze censored paired data. One 

approach is to try non-parametric estimation of the bivariate survivor function. The 

typical works on this approach are Dabrowska (1988) and Prentice and Cai (1992). 

Dabrowska extended the univariate Kaplan-Meier approach by defining a bivariate haz­

ard and using it to estimate the joint survival function. The marginals of Dabrowska's 

estimate are given by the univariate Kaplan-Meier estimates. She proved the consis­

tency of the estimates but did not give estimates for the covariance of the estimates. 

Prentice and Cai (1992) did not define a joint hazard. Instead, they gave a representa­

tion of the bivariate survivor function in terms of the marginal survivor functions and 

the covariance 

where Ti and T2 are paired failure times and hk is the hazard of 7*, k = 1,2. They 

proposed an estimate of this bivariate survivor function and proved the consistency of 

their estimate but they did not give estimates of standard errors. Lin and Ying (1993) 

presented a simple estimator of the bivariate survival function and also estimated the 

covariance function of their estimates. They assumed univariate censoring, that is, that 

there is one censoring time and it affects both failure times. 

The other approach to bivariate survival analysis is to extend the Cox proportional 

hazards model, Cox (1972), to paired data. Recall the Cox proportional model has 
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hazard function 

h(t\z) = h0(t) exp((3z) 

where h0 is the baseline hazard, z is a covariate vector, and (3 is unknown. The Cox 

proportional model assumes that all observations are independent. Holt and Prentice 

(1974) assume that within a pair, hazards are proportional according to a covariate, but 

the baseline hazard can depend on the pair. The effect of the covariate, that is, the 

value of (3, is the same across pairs. 

Clayton (1978) and Oakes (1982) presented a fully parametric model for paired sur­

vival data. This model assumes that each marginal follows the Cox proportional model 

with respect to some covariates. They used an additional parameter to describe the 

association within a pair. Huster, Brookmeyer, and Self (1989) extended the Clayton-

Oakes model to allow censoring. They also discussed another approach for inducing the 

correlation within a pair. They obtained the parameter estimates from an independence 

working model, that is, univariate estimates are used in the model to get the parameter 

estimates, and then they estimated variance robustly. 

Wei, Lin, and Weissfeld (1989) proposed a model for multivariate failure times. They 

assumed each marginal distribution of the failure times follows a Cox proportional haz­

ards model with respect to some covariates. They showed that the resulting estimators 

of the parameters for covariate effects are asymptotically jointly normal and gave a 

consistent estimate of the covariance matrix. 

Lee, Wei, and Amato (1991) used a different way to extend the Cox proportional 

model to paired data. For paired data (Tu, T2i), with treatment indicator Z j , they showed 

the consistency and asymptotic normality of the estimated regression coefficient in the 

Cox proportional model. In this case the Zi's might be dependent. But the corresponding 

variance-covariance estimate may no longer be valid due to the dependence between the 

members in the pairs. They proposed a correct variance-covariance estimate taking 
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account of the correlation within a pair. 

Al l of the proposed models do not estimate the baseline hazard functions, treating 

it as a nuisance parameter. 

With the development of smoothing theory and methods, many people have used 

splines in survival analysis, that is, to approximate density functions, survival functions, 

hazard functions, or baseline hazard functions, in the presence of censored data. For 

example, Abrahamowicz, Ciampi, and Ramsay (1992) used B-splines to estimate the 

density and O'Sullivan (1988) used smoothing splines to estimate log hazard functions. 

Kooperberg, Stone, and Troung (1995) used linear B-splines and their tensor prod­

ucts to estimate the conditional log-hazard function as a function of t and a covariate 

vector z. Their model contains the Cox proportional hazards model as a submodel. 

Since cubic splines can provide a better approximation than linear splines, Kooperberg 

et. al. also proposed a model in which the log hazard function is estimated with cubic 

B-splines. Unfortunately, because of the complication in estimation and model selection, 

they did not consider covariates in this model. Nor did they provide standard errors for 

the estimated log hazard function. 

In this thesis, we use cubic B-splines to estimate log hazards in univariate survival 

data and log hazard ratios in bivariate data. We use Kooperberg's approach to get 

estimates, but we provide estimates of standard errors. 

In Chapter 2, we define the log hazard regression model, the estimates of the log 

hazard functions and ratios, and prove the asymptotic properties of the estimates. In 

Chapter 3, we discuss the properties of cubic B-splines functions and how to choose 

knots which define these functions. In Chapter 4, we use our model to analyze the 

data set from the Diabetic Retinoparthy Study. We present our simulation study in 

Chapter 5. 
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Chapter 2 

Hazard Regression 

In this chapter we define a parametric regression model for log hazard functions of 

censored failure times. We start with introducing definitions and notation in the first 

section. The regression model and the estimates are defined in Section 2.2. We show 

the consistency and normality of the estimates in Section 2.3 and leave the proofs of two 

required lemmas to Section 2.4. Finally, in Section 2.5, we define the regression model 

for bivariate failure times and discuss inference based on the estimates. 

2.1 Definitions and Notation 

2.1.1 Failure Time Distribution 

All functions, unless stated otherwise, are defined over the interval R+ = [0,oo). Let T 

be a nonnegative continuous random variable representing the failure time of individuals 

in some population. Let / denote the density function of T and let the distribution 
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function be 

F{t) =P{T <t) = f f{u)du. 
Jo 

The probability of an individual surviving till time t is given by the survivor function 

f(u) du = l- F(t). 

The hazard function is defined as 

= l i m r(t<T<t + At\T>t) = M 
V 1 Ai-+0 At S(t) ' 

which specifies the instantaneous rate of failure at time t, given that the individual 

survives until at least time t. 

The functions / , F, S, and h give mathematically equivalent specifications of the 

distribution of T. Since f(t) = —S'(t), by the definition of h, 

h(t) = ~~ logS(t). 

Thus 

log S(t) - log 5(0) = - /'' h(u) du 
Jo 

and since 5(0) = 1, 

S(t) = exp (- £ h{u) duj (2.1) 

and 

f(t) = h(t) exp (- J* h(u) du^j . (2.2) 

For our log hazard regression, we denote the log hazard function by a, that is, 

a{t) = log h(t). (2.3) 

It is easy to derive expressions for S(t) and f(t) in terms of a(t). 

6 



2.1.2 Censored Survival Data 

Consider n individuals in some population. Let Tj be the failure time of individual i, 

and Ci a censoring time, that is, a time beyond which individual i can not be observed. 

The variable Tj will be observed whenever Tj < Cj. Let Xi = min(Tj, Ci) and 

That is, 5i indicates whether the failure time Tj is censored or not and Xi is equal to Tj if 

Ti is observed, and to Ci if it is not. The data from observations on n individuals consist 

of the pairs (Xi, 6i), i = 1, • • •, n. For the data we first make the following assumptions. 

Assumptions 

(1) (Xi,6i) are independent random vectors with an identical distribution; 

(2) the failure times Ti and the censoring times Cj are independent. 

We denote the survivor functions and the density functions of failure time Tj and 

the censoring times Cj by S,Sc,f and fc, respectively. By Lawless (1982), under the 

Assumptions (1) and (2), 

The probability is a measure defined on [0, oo) x {0,1}. We denote it by v. Then the 

density function of (Xi, Si) is defined by 

It is easy to check that / is the Radon-Nikodym derivative of v with respect to the 

cr-finite cross-product measure a. defined on [0, oo) x {0,1} such that the marginal of \i 

on [0, oo) is the Lebesgue measure and the marginal on {0,1} is counting measure. 

r 
1 i fT j<Cj 

0 i fT j>Cj . 

f(t,5) = f(t)sS(t)1-6fc(t)1'SSc(t)s. (2.4) 
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2.2 Log Hazard Regression 

In this section we fit a parametric model for the log hazard function a of failure time T. 

First we define the model in a general form and determine the estimates that we will 

use. Then, in Section 2.2.2, we discuss the conditions on the model. 

2.2.1 Model and Estimates 

Let G be a p-dimensional linear space of real continuous functions defined on |0, oo), 

and let {bj,j = 1, • • • ,p} be a basis of G. We call G the regression space. The log hazard 

regression is a model for the log hazard function, that is, 

a(t\B) = J2PMt) = PT1>(t), (2-5) 
3=1 

where (3 = (Pi,PP)T is unknown and b(t) = (h(t), • • •, bp(t))T. 

Given (3, by Equations (2.3), (2.1), and (2.2), we have the hazard function, survivor 

function, and density function 

h(t\3) = exp (2.6) 

S(t\/3) = e x p ( - / t e x p ( ^ ^ ( W ) ) d u ) , (2.7) 
J 0 j=l 

f(t\0) = exp(2 /3 J -6 i (t))exp{- f eW (j^ PM^)du}, (2.8) 
i=i J o j=i 

respectively. 

Note that to ensure that (2.7) defines a non-degenerate survivor function, it is nec­

essary and sufficient that 
rt P 

/ exp ( 53 Pjbj(u))du < oo (2.9) 

for some t > 0 and 
P 

exp ( I exp ( Pjbj(u))du = +oo. (2.10) 



So we need some conditions on b and (3. For now we assume that (2.9) and (2.10) hold, 

and we will postpone discussing the conditions until Section 2.2.2. 

For n observations (Xi,5i),i = l,---,n, we make the following assumptions, in 

addition to Assumptions (1) and (2). 

Assumptions 

(3) the log hazard function a of Tj satisfies model (2.5); 

(4) the distribution of the censoring times Ci does not involve (3 and the density fc of 

C is bounded. 

Then by (2.4), the density function of (X{,5i) is 

/(*, si® = nm'sitw-'Mty-'Sctt)'. (2.H) 

We denote the joint distribution function of (Xi, S{) by L(X\(3), that is, 

L(X\(3) = f[f(Xi, 6,1(3), 
i=i 

and we choose 0 to maximize L. 

Let 

fq(t,5\(3) = f(t\!3)5S(t\(3f- & (2.12) 

and 

Lq((3\X) = f[fq(Xl,Si\(3). 
i=i 

Then 

L(X\(3) = fiMXiJifflMXtf-'iSciXi)*' 
i=l 

= Lq(3\X)f[fc(Xi)1-s*Se(Xi)6*. 
i=i 

Since Sc and fc do not involve j3, we estimate (3 by J3, the maximizer of the function 



We call the partial derivative of log Lq with respect to j3 the score function, denoted 

by U~(n\j3\X), which is a vector with p components 

uM(P\X)m = ^-logLq(f3\X) = J2^-loefq(Xi,Si\0), (2-13) 

m = 1,2, •••,£>. The observed information matrix, denoted by I^((3\X), is a p x p 

matrix with (mZ)-th entry 

' ' " ' c i * ' - = -a£w,]06LMX) = "gaSft w (214) 

We denote the information matrix, in the usual way, by I((3), which is a p x p matrix 

with the (ml)-th entry 

I(f3)ml = -E | ^ £ ^ - log fq{Xx, 5,|/3)|. (2.15) 

By definition of / , and Equations (2.8) and (2.7), we can write fq, log U^n\ I^n\ 

and I ((3) in terms of the basis functions b\, • • •, bp. We have 

fq(t,5\(3) = [ e x p ( £ / ^ ( i ) ) ] 5 e x p { - /*exp ( £ P M u ) ) d u \ ; (2.16) 
3=1 ° 3=1 

and 

log/ g(M|/3) =5J2(3Mt) ~ [texV(J2pjb3(u))du. (2.17) 

Thus, under regularity conditions, 

log fq{Xu 5t\f3) 
d(3m 

= I h E M M - / * e x P ( E 
fXi P 

= 5j6 m (^i) - / 6 m (« ) exp Pjbj(u))du; 
J 0 • i 

and 

J'=I 

- ^ - ^ log fq{Xi,8i\(3) = ~ Jo bm{u)bi(u) exp 
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Hence 

U^(f3\X)m = Y\sibm(Xi)- [ , 6 m ( u ) e x p ( ^ / 3 i 6 i ( u ) ) d « (2.18) 
1=1 J 0

 .7 = 1 
and 

/ W ( / 3 | X ) M / = £ bmiuMu) exp (J2PMu))du. (2.19) 

Since for any vector v = (vi, • • •, vp)T ^ 0, 

vTI^((3\X)v = £ r\vTb(u))2eW(YPMu))du > 0, 
i=i 1 / 0 i=i 

I^n\p3\X) is positive definite (i.e., the second partial derivative of logL g is negative 

definite). Therefore, if (3 exists, it is the unique solution of the p equations 

U{n\f3\X) = Q. (2.20) 

In the next chapter, we will show how to numerically solve (2.20) for (3. 

Note: By the relationship between Lq and L, 

9 log L(f3\X) = ^ log Lg(f3\X). 

Therefore, 

U^((3\X)m = Y^^gf(Xl,5l\p3) 
i=l °Pm 

and 

I^((3\X)ml = -£-*iogf<xii6i\/3) 
i = l opmopi 

which are the usual definitions of the score function and the observed information 

matrix. 
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2 . 2 . 2 Conditions on b and (3 

As we mentioned in the last section, we need some conditions on the basis b or on (3 such 

that (2.9) and (2.10) are true. A sufficient condition that (2.9) and (2.10) hold is that 

b is bounded. We say a function u : R+ —>• RP is bounded if there exists 0 < M < oo 

such that 

M * ) | | 2 = £ M * ) | 2 < M , 

for all te R+. 

Proposition 2.2.1 If b is bounded, then 

(i) (2.9) and (2.10) hold for all t and [3 and 

(ii) there exists a number M((3,p) such that 

' f m < M ( P , p ) e x P ( - 1 ^ ) . (2.21) 

Proof. Since b is bounded, there exists a number 0 < M < oo, dependent on (3 and p, 

such that | Y%=i Pjbj(u)\ < M. Hence 

< exp (£pMu)) < e x P ( M ) - (2-22) 

It follows that for any t 
rt P rt 
/ exp f ̂ 2Pjbj(u))du < / exp(M)du < oo 

JO j=\ 

and 
r ° ° 1 roo . r . roo I 

Jo « P ( E / A ( « ) ) d « > y 0 ^r^du 
— O O . 

^ - - -Jo exp(M) 
So we proved that (2.9) and (2.10) are true. 

Next, let M((3,p) = exp(M), then, by the definition of / from (2.8) and from (2.22), 

3=1 J° 3=1 

£ M ^ P » E X P ( - M ( ^ ) ) . 
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which completes the proof of (ii). • 

We would like the regression space G to contain the log hazard for the commonly 

used Weibull distribution. Recall that the density function of a Weibull distribution is 

Thus, if bp(t) = \og(t) and 6p_i = 1, then model (2.5) includes the Weibull distributions. 

More generally, we consider the basis 61, • • •, 6p_i bounded and bp(t) = log(i + c), 

where c > 0 is a constant. We call bp log tail and {bj, j — 1, • • • ,p} bounded plus log 

tail. This basis doesn't satisfy the assumption of Proposition 2.2.1. But we have the 

following result. 

Proposition 2.2.2 If b is bounded plus log tail and /3P > —1, then 

(i) (2.9) and (2.10) hold for all t and 

(ii) there exists a number M((3,p) such that 

fw(t) = 7 A 7 i 7 - 1 e x p ( - (Xty), i > 0 , A > 0 , 7 > 1. 

The corresponding log hazard function is 

aw(t) = log(7A-0 + (7-l)log(t). 

f(t\(3)<M((3,p)(t + c)^exP( 
(t + c ) ^ + 1 

M O M (2.23) 

Proof. Since b is bounded plus log tail, there exists M such that YJj=\ Pjbj(u) < 

log(M). Then 

(2.24) 

Therefore, 

00 
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for any t and 
0 0 (u + cYp 

du = oo o exp(M) 

as Pp > —1. Then (i) is proved. To prove (ii), using the definition of / from (2.8) and 

using (2.24), we have 

From now on, unless stated otherwise, we assume the n observations (Xi,5i), i = 

1, • • • ,n , satisfy Assumptions (1) - (4) defined in the previous sections and either 

A s s u m p t i o n 

(5a) 6 is bounded and (3 E RP 

(5b) 6 is bounded plus log tail and (3 6 RP 1 x (—1, oo). 

We call RP the parameter space, if (5a) holds and RP'1 x (—1, oo) the parameter space 

if (5b) holds. 

N o t e 1 Since (2.9) holds for all t > 0, f{t) > 0 for all t > 0. So the support of / is R+, 

which will be used for the proof of Theorem 2.3.1 in the next section. 

N o t e 2 It is easy to see that if b is bounded then for any compact set B in the parameter 

space, there exists M dependent on B and p such that 

f(t\f3) = exp ( £ ftbjit)) exp { - f exp ( E («))<*«} 

where M((3,p) = max{Ci,C 2}. So (ii) is true. • 

or 

/ ( * | / 3 ) < M e x P ( - - M 
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for all (3 e B. If 6 is bounded plus log tail, then for any compact set B in the 

parameter space, there exist M and f3'p > —1, dependent on B and p, such that 

for any (3 G B. That is, on a compact set B in the parameter space, the density 

function f(t\(3) of T can be dominated by a function of t. 

In this section we use Theorem 5.1 in Lehmann and Casella (1998) to show the following 

Theorem 2.3.1 Let (Xi, Si), • • •, (Xn, 5n) satisfy Assumptions (1) - (5). Then, for (30, 

the true parameter, 

(iii) ^I^((3\X) —> I((30)
 ? n probability provided (3 —> (30 in probability. 

We first state the conditions of their theorem. 

Conditions 

A . For different values of (3, the distributions P$ of the observations are distinct. 

B. The distributions Pp have common support. 

C. The observations (Xi, Si), • • •, (Xn, 6n) are i.i.d. with probability density f(t,6\(3) 

with respect to a cr-finite measure p. 

2.3 Consistency and Normality of /3 

theorem. 

(i) (3 —> (3Q in probability; 

(ii) y/K0 - fi0) => N(O,[I{0o)n 
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D. There exists an open set u of the parameter space Q, containing the true parameter 

point (30 such that for almost all (X, 5), the density f(X,5\(3) admits all third 

derivatives (d3/dpjdpkdpl)f(X, 8\(3) for all (3eu. 

E . The first and second logarithmic derivatives of / satisfy the equations 

d_ 
df3 

and 

£{^log / ( .M | /3 )} = 0, 

I ^ = E{-^^f(x-m} = E{^uVf(x,sW.±uvf(x,s\m}, 

I,me {1,•••,?}. 

F. I((3)jk is finite and the matrix I(/3), a p x p matrix with the (ml)-th entry 7(/3)m;, 

is positive definite for all (3 € to. 

G . There exist functions Mjki such that 

(P/dPjdpMnogfix^ip)] < Mjkl(x) 

for all {3 e OJ, where Ep (Mjkl(X)) < oo for all j, k, I e {1, • • • ,p}. 

Theorem 2.3.2 (Theorem 5.1 in Lehmann, E.L. and Casella, G, 1998). Let (X1,6X), 

• • •, (Xn,5n) be i.i.d., each with a density f(t,5\f3) which satisfies the above conditions. 

Then with probability tending to 1 and as n —>• oo, there exists a solution J3 of the 

likelihood equation 
" dlog/(A^|/3) 

such that 

(a ) Pj is consistent for estimating Pj, 

(b) y/n(0—p3) is asymptotically normal with mean zero and covariance matrix [I(p3)]~l, 

and 
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(c) J3j is asymptotically efficient in the sense that y/n($j — Pj) converges in distribution 

to a random normal variable with mean zero and variance [I((3)jj]~l. 

Proof of Theorem 2.3.1. 

Suppose (3 is the solution of the equation 

o = E 
i=i 

n dlog(/g(M|/3)) 
d(3 E 

n a i o g ( / M f l ) ) 
d(3 

To show (i) and (ii), we need only check the conditions of Theorem 2.3.2. 

First, by Assumptions 1 and 2 and the definition of f(-,-\(3) from (2.11), (Xi,6i), 

• • •, (Xn, Sn) and /(•, -|/3) satisfy condition C. 

Second, since {bi, • • •, bp} is a basis, from (2.16), the definition of fq in terms of the 

basis functions, for different value of (3, fg is distinct. From Note 1, after Propositions 

2.2.1 and 2.2.2, the support of fq is [0, oo). By the relationship between /(•, -|/3) and fq 

from (2.11) and (2.12), conditions A and B hold. 

Then, from (2.11) and (2.12), 

a i o g / C X x . f t l f l ) _ 3 l o g / , | / 3 ) f n O K . 

I = 1, • • • ,p, since Sc and fc do not involve (3. Hence condition D follows from a direct 

calculation of the derivatives of fq from the definition (2.16). 

Next for condition F, I((3)jk is finite follows from Lemma 2.3.4 below. As shown in 

the calculations after (2.19), 1(13) is positive definite. 

Finally, conditions E and G follow from Lemmas 2.3.4 and 2.3.5 below, respectively. 

Therefore, (a) and (b) in Theorem 2.3.2 yield (i) and (ii), respectively. 

To prove (iii), we need to use (i) and the bounds in Lemma 2.3.4 below. The proof 

is as in Theorem 3.10 of Lehmann and Cassella (1998). Thus, we have finished proving 

Theorem 2.3.1. 

Using (ii) and (iii) in the above theorem and Slutsky's theorem, we have the following 

Corollary. 

dPi 
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Corollary 2.3.3 Let (Xi, 81), • • •, (Xn, 8n) satisfy Assumptions (1) - (5). Then 

[n&\f3\X)}^{f) - (3) => N{QJ), 

where I is the p x p identity matrix. 

The following two lemmas are used in the proof of Theorem 2.3.1. 

Lemma 2.3.4 Suppose that b satisfies Assumption (5a) (or Assumption (5b)) and B is 

a compact set in RP (or in Rp~l x (—1, 00)). Then there exists 0 < M < 00, dependent on 

B andp (or on B,p, and c), such that for any (3 G B, sk G {1, • • • k = 1, • • •, m; m = 

0,1,2,3, 

\d™ log fq(Xu 8^(3) 
< MK(XX), (2.26) 

where 

K{X() 
1 + Xi if b is bounded 

1 + I log(A^! + c)| + (Xi + c)^ p + 4 if b is bounded plus log tail. 

Furthermore, E{K(Xi)} < 00. 

(2.27) 

Lemma 2.3.5 Let (30 be the true values of the parameters in model (2.5). Then 

d l o g / ^ , ^ ) , 
i) E 

ii) E 

d(3 l/30 

0; 

5 log / , ( * ! , 8i\f3)\ dlogfq(Xx,8i\(3) 
OP, 00 OP 0o 

= -E 
d2logfq(Xi,8i\(3) 

QPmdPi 0o l 

We will give the proofs of the above lemmas in the next section. 

2.4 Proofs of the Lemmas 

Now we prove Lemmas 2.3.4 and 2.3.5. 
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.9" l O g 1 ) 3 ) 
d(3Sl---d/3Sm 

= < 

For convenience, we first calculate the partial derivatives of log fq with respect to 

(3 in terms of the basis functions. By the definition of log/ g from (2.17), for sk G 

{l,---,p};k = l,---,m, 

$i YPibjixi) ~ j e x P ( Y/3jbj{u))du, m = 0; 
j=i J o 3=1 

fXi ,P . 

5ibSl{X]) - I bSl(u)exv{YPjbj(u))du> rn = 1; (2. 
J o j=i 

- / bSl(u) • • -bSm(u)exp [YPjbj(u))du^ m = 2,3. 
. J o j=i 

Proof of Lemma 2.3.4 
v 

If b is bounded, since B is a compact set, Y, \Pjbj{u)\ 1S bounded on B, and so is 
3=1 

V 
exp (YJ Pjbj(u)j. Hence, by (2.28), we can find 0 < M < oo, dependent on B and p, 

3 = 1 
such that (2.26) holds. 

If b is bounded plus log tail, then &i, • • •, fep—i are bounded. Hence there exists 

1 < M i < oo such that for (3 G B 

{ p-i p-i EftMu) Y \ b j ( u ) \ \ < M i , 
3=1 3=1 

which implies 

(2.29) 

(2.30) exp ( Y hb3 («)) < e M l (u + c)p". 
3=1 

Then for m = 0, by (2.28) and (2.30), (2.26) is true. To prove (2.26) for m = 1, 2,3, it 

suffices to show that there exists M < oo such that 
rXi 

[ 1 I M " ) • + tf'du < M i l + (xi + c ) ^ 4 ) , (2-31) 
J 0 

Sk G {1, • • • ,p}; k = 1, • • • ,m. This clearly holds for sk G {1, • • • ,p — 1}, since bj is 

bounded, j = 1, • • • ,p — 1. But the log tail \og(t + c) is unbounded, which makes the 

proof of (2.31) more complicated. So we need to investigate the properties of the integral 

fXl \ \og(u + c)\m(u + c)^du, 
Jo 

m = 1,2,3. Noting /3p > — 1 and c > 0, we have the following easily proven facts. 
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Fact 1 for any £ > 0 and any compact set B C (—l,oo), there exists M x < oo such 

that 

sup | log(u + c)I (u + c) 2 < M L ; 
ue(0,l],/3pGB 

Fact 2 for any compact set B 6 (—1, oo), sup / (u + c) 2 du < 00; 
/3peB Jo 

Fact 3 log(u + c) < it + c for u G [1, 00), 

Fact 4 for any /?' > 0, B" > - 1 , and M' > 0, 

J (u + c)^" exp { - (u +c)0'/M'}du < 00. 

We will use Facts 1 - 3 to prove that 

i) there exists M 2 < 00 such that for (3 G B, 

f1 I log(u + c)\m{u + cfpdu < M 2 , 
Jo 

m = 1,2, 3; 

ii) there exists M 3 < 00 such that for X\ > 1 and (3 E B, 

j*1 I log(« + c)|m(u + cfrdu < M3{X1 + c ) ^ + 4 , 

m — 1, 2, 3. 

If i) and ii) hold, then, when X\ < 1, 

/o 

M 2 , 

|log(w + c ) | M (M + c ) ^ ^ 
./o 

< [ \\og(u + c)\m(u + c)^du < 
Jo 10 

and when Xi > 1, 

/ A l |log(u + c)r(u + c)^du 
1/ 0 

= f11 log(u + c)\m(u + c)A>d« + /"*' I Iog(w + c)\m{u + c)*1*du 
J 0 */1 

< M2 + M 3 ( X ! + c ) ^+ 4 <M(l + (Xi + c)^ + 4 ) 
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for M = max{M 2 ,M 3 }. So (2.31) would hold, which implies that (2.26) would be true. 

Proof of i): Since B is compact, using Facts 1 and 2, we can find M'2, M'2' < oo such 

that for (3 G B, 

| log(« + c)\m{u + c)^ < Mj , 

m = 1,2,3, for u G (0,1) and 

Ciu + c ^ d u < M'i. 
Jo 

Then for 0 G B, 

C \log{u + c)\m(u + cf"du 
J 0 

< / \log(u+ c)\m(u + c)^(u + c)hs1du 
J 0 

< M'2 f (u + c)^du < M'2M'2 - M2 < oo, 
J 0 

m — 1, 2, 3. 

Proof of ii): By Fact 3 and (2.29), 

j * 1 \\og(u + c)\m(u + cf*du 

{u + c)3(u + cYvdu 

= ^ ( ( ^ i + ^ - a + c ) ^ 4 ) 

< M3(X1 + c)^+4 

m — 1, 2,3, for some M 3 > 0. 

Now that we have proven that (2.26) is true, we show that E{K(Xi)} < oo. 

First suppose that b is bounded. Then 

EiKiX,)} = E{1 + Xl}< E{(1 + Ti)}, 

since, by definition, X\ < Tx. By Proposition 2.4.1 below, E{T{\ < oo. 
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Now consider b bounded plus log tail. Write 

K(XX) = K*{X1) + K**{X1), 

where 

K*{X1) = l + (X, + c)^+ 4 + | log(X 1 + c)\I{XL + c > 1} 

and 

K**(XX) = | log(X! + c)\I{XL + c < 1}. 

Since K* is a non-decreasing function, 

E{K*(XX)} < E{K*{TX)} < E{K(TX)}, 

which is finite by Proposition 2.4.2 below. To show E(K**) is bounded, note that, by 

Assumption 4, fc is bounded, and by (ii) in Proposition 2.2.2, f(t\(3) is bounded on 

[0,1]. Thus, the marginal density of XX, 

fXl(x) - f(x\f3)Sc(x) + S(x\p)fc(x), 

is bounded. Then we have 

E{K**(X1)} < £ I log(a; + c)\fXl(x)dx < oo 

since / \\og(x + c)\dx < oo. Therefore, 
Jo 

E{K{XX)} = E{K*{X1)} + E{K**(XX)} < oo, 

which completes the proof of Lemma 2.3.4. 

The following propositions were used in the proof of Lemma 2.3.4. 

P r o p o s i t i o n 2.4.1 If b is bounded, then for any a > 0 , E(TA) < oo. 
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• 

Proof. Since b is bounded, by (ii) in Proposition 2.2.1, there exists 0 < M((3,p) < oo 

such that 

/ ( ^ ) < M ( / 3 , p ) e x p ( - F I i ; s ) . 

From this and Fact 4 in the proof of Lemma 2.3.4, we have 

roo roo . —f . 
E(Ta) = Jo taf(t\(3)dt< Jo M(P,p)taexp( p))dt < oo. 

Proposition 2.4.2 If b is bounded plus log tail and (5V > —1, then 

(i) for any a > 0, E(Ta) < oo, and 

(ii) E ( | l o g ( T + c ) | )<oo . 

Proof. Since bi, - • • ,bp-i are bounded, by (ii) in Proposition 2.2.2, there exists 0 < 

M((3,p) < oo such that (2.23) hold. Let 

Then from (2.23) and Fact 4 in the proof of Lemma 2.3.4, 

roo roo 
E(Ta) = / taf(t\3) dt < M(P,p) / ta(t + c)^g(t,3) dt < oo, 

yo Jo 

as /3P > —1. Thus (i) is proved. 

To prove (ii), using (2.23) and Facts 1 - 4 in the proof of Lemma 2.3.4, we have 

roo 
£ ( | l o g ( T + c) | )= / |log(t + c)|/(t|/3)dt 

Jo 
roo 

< M(3,p) \log{t-rc)\(t + c)^g(t,3)dt 
Jo 

< M(3,p) { £ | log(t + c)\(t + c)^{t + c)^g{t, 3) dt + {t + c)^+lg(t, 3) dt 

< M(3,p) {Mx j f \ t + c ) ^ ( t , / 3 ) dt + f"{t-¥cf-+lg{t,3) dt} < oo, 

which finishes the proof of (ii). • 
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Remark: The following proposition will be used in the proof of Lemma 2.3.5 and 

Section 2.5. The proof is omitted since it uses the same procedures and arguments 

as in the proofs of Propositions 2.4.1 and 2.4.2. 

Proposition 2.4.3 Suppose that b satisfies the assumptions of Lemma 2.3.4- Then 

EilKiXj}2} < oo. 

The proof of Lemma 2.3.5 

To prove i), write 

E 
d0 

df(Xu6M 
0o 

= E 
d\ogf{Xl,8l\0) 

d(3 0o 

00 

dE(l) 
0. 

To justify the interchange of differentiation and integration, we must prove that there 

exists a neighborhood B of 0O such that uniformly on B, the partial derivatives of 

f(Xi,6i\(3) with respect to 0 can be dominated by an integrable function of (Xi,5). 

Then by the Dominated Convergence Theorem, we can exchange the order of derivative 

and integral. 

To do this, we choose a > 0 such that B = {0 : \\0 — 0O\\ < a} is compact in the 

parameter space. By Lemma 2.3.4, there exists M such that for /3 e B, 

\dlog fq(X1,61\0Y 
< MK(Xi), (2.32) 

I = 1, • • • ,p, and E(K{Xi)) < oo. Hence, from (2.25) and (2.32), for 0 e B, 

dfiXuSM 
f(Xi,6M 

dlog/(XuSM 
00, 

<MK(Xl)f{Xu5l\0). 

Thus it suffices to find an integrable function of (Xi, 5) to dominate K(Xi)f(Xi, Si\0). 

By the definition of /(-,-\0) from (2.11), 

K(t)f(t,l\0) = K(t)f(t\0)Sc(t) < K(t)f(t\0) < K(t)f*(t), 
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where /* is the bound on / given in Note 2 after Proposition 2.2.2. It is easy to show 

that Kf* is integrable. 

To bound K(Xx)f(Xx, O\0) = K(Xx)S(Xx\0)fc(Xx), it suffices to bound K(Xx)S(Xx\0), 

since, by assumption 4, fc is bounded. By the definition of S(t\0) from (2.7) and by 

the proofs of Propositions 2.2.1 and 2.2.2, there exists M > 0 such that, for 0 G B, 

S(t|/j)<exp(-^)=S*(t) 

if b is bounded, and 

S(t\f3) < Mexp ( - ^ ) = S*(t) 

if 6 is bounded plus log tail, where (3'p is the lower bound of pp for 0 e B. One easily 

shows that KS* is integrable. 

To prove ii), provided integration and differentiation can be interchanged, we can 

write 

0 = J_E\d\ogf{XltSx\Pl\_ d fd\ogf(Xx,8x\0) 
dPm dPi j dp„ 

- r — ( 
J dpm \ 

dPi 
r\d\ogf{Xu8x\0) d\ogf{Xx,8x\0) , d*\ogf(Xx,8x\0)\ t f v 

= I \ Wm 1% + dpjit )ttx.MMn 
E\d\ogfq{Xl,8l\0) d\ogfq{Xx,8x\0)\ \d*\ogfq{Xx,8x\0)\ 

1 dpm dPi J j dpmdPi J ' 

Therefore, 

£ {afc l o g / ' w ' i l , ' 3 ) 4 l o g / ' ( ; f ^ l ! ' 3 ) } = - B { a £ k l o g / ' ( x ^ l l / 3 ) } -
To exchange integration and differentiation, we need to bound d2 log f(Xx,8x\0)/dpmdPi. 

By i) and Proposition 2.4.3, this can be done with an argument similar to that in the 

proof of i). We omit the calculations here. 
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2.5 Log Hazard Regression of Paired Failure Times 

Now we consider the individuals with paired failure times. We first introduce the nota­

tion and define the log hazard regression model and estimates for paired failure data. 

Then, in Section 2.5.2, we show the consistency and normality of our estimates and give 

a consistent estimate of the covariance matrix of the estimates. 

2.5.1 Model and Notation 

Consider n subjects with paired failure times for each. For k = 1, 2, and i = 1, • • •, n, let 

Tfa and Cki be the kih. failure time and censoring time of the zth individual, respectively. 

Let Xki = min(Tfci, Cki) and 

Ski = s 
1 if Tki < Cki, 

0 \iTki>Cki. 

Then (Xki, Ski) is the observation of the kth. failure of the zth individual. 

Note: the censoring times may be the same, i.e., Cu = C2i-

We refer to fk, Fk, Sk,hk, and ak as the corresponding density, distribution, survivor, 

hazard, and log hazard functions, respectively. We fit a log hazard regression model for 

the two log hazard functions separately. That is, we suppose that 

al(t\[3l) = Y,(3ljblj{t) 

and 

a2(*|/32) = £ # y M * ) -

For k = 1, 2, we estimate (3k by (5k as defined in Section 2.2.1. Referring to the univariate 

case, we denote the regression basis by bk. As in (2.16), we let 

/fc9(t,<5|/3,) = / f c(i| /9 f c)^ f c(t|/3 f c)1-'5. 
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We also let Uk

n\f3k\Xk), lln\(3k\Xk), and Ik{Pk) be the corresponding score functions, 

observed information matrix, and information matrix, respectively, see (2.13), (2.14) and 

(2.15). Similarly, we denote by Kk the corresponding functions defined in (2.27). Let 

(3 

( \ ( - \ 
(2.33) 

We denote the ith summand in U k by uki(f3k), that is, 

d 
Uki{Pk) = ^g-l0g/fc9(^fci,4i|/3fc), 

k = 1,2. Let 

U^(f31,(32\X1,X2) 
^ UP(02\X2) ) i=i 

v «2i(/32) 

and define 

£-21 ^22 

^ ^ cov(ttu(/3i),iin(^i)) c o v ^ n ^ ) , ^ ! ^ ) ) ^ 
(2.34) 

j y cov(u2i(/32)>wii(/3i)) cov(u2i(/32),W2i(/32)) J 

2.5.2 Consistency and Normality of (3 

In this section, we show the consistency and the normality of the estimates J3. The main 

result, given in Theorem 2.5.2, relies on the asymptotic normality of 11^0-^, /32\Xi, X2) 

given in the following. 

P r o p o s i t i o n 2.5.1 Suppose, marginally, each of the failure times satisfies Assumptions 

(1) through (5). Then 

-^ t /W ( / 3 1 , / 3 2 |X 1 ,X 2 ) ^ iV (0 , S ) . 
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Proof. Since uKI(3k),i = 1, • • •, n, are i.i.d. and, by i) in Lemma 2.3.5, E(uki{3K)) = 0, 

using the multivariate central limit theorem, we have 

( 

« 2 i ( / 3 2 ) 

iV(0,E). 

• 

Theorem 2.5.2 Suppose, marginally, each of the failure times satisfies Assumptions 

(1) through (5). Then 

(i) (3 —>• 3 in probability; 

(ii) y/n{J3 -&)=> N{0, Q), where 

( Qu Qn \ ( 

Q = 
Qn Qu 

{Q21 Q22 J [ I2{32)-lV2lh{Pi)-1 / 2 ( / 3 2 ) - 1 S 2 2 7 2 ( / 3 2 ) - 1 j 

Proof, (i) For any e > 0, by Theorem 2.3.1, 

P{\\3 -(3\\>e)< P{\\3X - 3J > e) + P(\\32 - L32\\ > e) -> 0, 

as n —>• 00. 

(ii) By expanding U^ifl^/32[-X"i,X2) in a Taylor series about 3, we have 

U^{p^2\XuX2) 
(n) 

N ( ltL\3\\XL){31-31) ^ 

KliN)(3*2\X2)(02-32) J \ u2

n>{p2\x2) ) 

where 3* = (3\,32)T is on a line segment between (3 and (3. Since 

U^01,L32\XUX2) = O, 

( U{?\BX\X,) A / 

^ U?(32\X2) ) 

I^idUX,) 0 

0 r(n) / r ( /3 ; |x 2 ) y 

(2.35) 
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i.e., 

^ J3 - (3 ^ ( i rin)ta* 

By (iii) in Theorem 2.3.1, 

i / H 0 t | X i ) o 

o l-i{

2\F2\x2)) y j-u2

n\&\xa)) 

[lit\pi\xk)ll ^ hiP,)-1 

in probability, since (3*k —> f3k in probability, k = 1, 2. Using this and Proposition 2.5.1, 

by Slutsky's theorem, we have 

v H 9 - 0 ) ^ i V ( O , Q ) . 

• 

To estimate Q, let 

Qki = [^(PklXk)]'1 (\±uki0k)uumT) [^lin)0i\Xi)]~\ (2.36) n \n i = 1 j n 

k, I — 1, 2, and 

Q = 
Qn Qn 

\ Q21 Q22 J 

In the next theorem we show that Q is a consistent estimate of Q. 

Theorem 2.5.3 Suppose, marginally, each of the failure times satisfies Assumptions 

(1) - (5) for k — 1, 2. Then Q is a consistent estimate of Q. 

Proof. Let /3Q be the true values of the parameter. From Theorem 2.3.1, 

llin)0k\Xk)^Ik((3ko) 

in probability, k = 1,2. Therefore, we need only prove that 

- £ K(&) r Sw (2.37) 
n i=l 
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in probability, k, I = 1, 2. By the law of large numbers, 

1 ^ 
n Y,uki(Pk0)uH(3l0)T -+ ^(u f c l(/3 f c 0)u l l()9w) : r) = S 

i=i 

in probability. Hence, to prove (2.37), it is sufficient to prove that 

j n 1 n 

- Z M / 3 f c W ^ ) T - - X>**03*oW/3«>)r o 
n i=i n i=i 

in probability. 

Let ukis(3k) be the sth component of uki(3k), i.e., 

ukis{3k) = ——\ogfkg(Xkl,Ski\3k), 
OPks 

s = 1, • • • ,pk; k — 1, 2; z = 1, • • •, n. We need to prove 
•y n 1 71 

-Yukis(Pk)uiij(Pi) ~ ~Yukis{Pko)unj(Pio) ->• 0> (2-38) 
n 1 = 1 n i=l 

in probability, for s = 1, • • • ,pk; j = 1, - • • ,pt;k,l = 1, 2. Using the mean value theorem 

applied to T,7=iukis(fak)uuj(fai) and £ ? = 1 u f c is(/3 f c 0)u ; i j(/3 / 0), we have 
j n 1 n 

-YUkis(fak)uiij{fal) ~ - YUkis((3k0)Uhj(3l0) i=i 

^ E E 
i=l m=l 5/3 fcm 

•(«*M(/3*)WMJ(A)) /3* /3fcm Z^fcOml 

-i n p; 
+ s E E 

" j=i m = l 
5/3 Im 

•(Ukis{Pk)uiij(Pl)) /3* l/3/m /3/0m 

1 n Pk 

n i=l m=l 

d 
dd km 

•iUkia{Pk)^lijW) /3* 

Pk 

Y 
m=l 
E I A m - A fcOml 

1 " P( 

+ ^ E E 
n i=i m = l 

5/3 /m 
-(Ukis{0k)uiij(Pl)) 

A I 
m=l 
E I A m — A u m 

where 3* is on a line segment between fa and (3 . Thus, since /3 ->• 3 in probability, to 

prove (2.38), it suffices to show that ± E L i £ m = i 
^h'km 

is bounded in 

probability around (3 . That means we need to find M < oo and a neighborhood of /3 
-o 

such that 

{ 1 n Pk d 
5/3 fcm 

-(Ukis{Pk)UUj(Pl)) < M 
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when n —>• oo, k, I = 1,2. 

We choose a number a > 0 such that B = {/3 : \\f3 — (3 \\ < a} is a compact 

set in the parameter space. By Lemma 2.3.4, there exist Mk and M; such that for 

3 e B,k,l = 1,2, k ^ l,m = 1, • • • ,pk, 

d 
d(3 -(Ukis(Pk)uUj(0l)) 

km 

uH]iPi)^—ukis{(3k) 
°Pkm 

d d2 

l0Sfiq(Xu, 5li\dl)————\ogfkq(Xki, 5ki\(3k)) 

< MMK^X^KtiXu). 

For k = l, 

Thus, 

d 
d(3 km 

-(Ukis(Pk)Ulij(Pl)) < 2M2

k[Kk(Xki)}2. 

{ 1 n Pk 

SUP - E E 
d 

d(3, km 
•(ukUl3k)uuj((3i)) < M 

> P^MkM^j^KkiX^KtiX^KM^ 

which will converge to 1 for M sufficiently large, since 

-> EiK^X^K^Xu)) < oo 
n t=i 

by Proposition 2.4.3. 

As in the univariate case, we have the following Corollary. 

Corollary 2.5.4 If b\ and b2 satisfy assumptions 1 through 5, then 

V^Q-"0-l3)=>N(O,I), 

• 

where I is (pi + p2) x (p± + p2) identity matrix. 
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Chapter 3 

Regression Space 

In the previous chapter we discussed the regression model for log hazard functions for 

a general regression space G. Here, we will use a family of extremely flexible functions, 

cubic splines, as the regression space. This family was used by Kooperberg, Stone, and 

Truong in 1995 for univariate log hazard regression. In this chapter we first give a brief 

introduction to cubic splines. Then we give the definition of a restricted cubic spline 

regression space B and a method to construct a cubic B-spline basis of B. In Section 3.3 

we introduce the numerical computation method that we use to calculate the estimates 

of the log hazard regression model for paired failure data. In Section 3.4 we explain our 

methods for choosing knots for the log regression model. 

Finally, in Section 3.5, we show that the log hazard regression model with the re­

gression space B can be used for hypothesis testing. In the univariate case, we can test 

the hypotheses that the failure times have an exponential or a Weibull distribution. In 

the bivariate case, we can test the hypotheses that the two failure times have the same 

distribution or that the two failures have proportional hazards. 
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3.1 Cubic Splines 

Definition 3.1.1 The function (j) is a cubic spline on [a, b] with knots ti, - • • ,tx (a < 

ti < • • • < tj( < b) if <f> is a cubic polynomial on the subintervals [a, ti], [ii, £2]; • • •, \PK, b] 

and (f) has 2 continuous derivatives on [a, b]. Denote the collection of these splines by 

Sp(ti, • • • ,tK). 

By De Boor (1978), Sp(ti, • • •, tK) is a linear space with dimension K + A. The power 

basis {pk, k = —3, • • •, K} of Sp(ti, • • •, tK) is defined as: 

Po(t) = l , p-i(t) = t, p-2 = t2, p-3 = t3, 

Pi(t) = (t-ti)l, pK(t) = (t - tK)3

+, 

where 
f (t - t')3 for t > if 

(t ~ t% = 
U for t < If. 

Therefore, a power basis representation of a cubic spline <j> € Sp(ti, • • •, t^) is 

Ht) = E ekPk(t) = E + E °k{t - tkf+. (3.1) 

k=-3 k=0 k=l 

The power basis is very easy to understand, but isn't used in computation since it 

has bad numerical properties (see De Boor, 1978). A numerically much better basis is 

the B-spline basis, which consists of functions that are zero except on some sequential 

subintervals. For more details about the B-spline basis, see De Boor (1978) and Shikin 

(1995)' We will use a restricted B-spline basis, defined in Section 3.2, for our regression. 

3.2 The Regression Space B 

In this section we will introduce the cubic spline regression spaces defined by Kooperberg 

et al. (1995) and we will give an algorithm to construct restricted B-spline bases in those 

spaces. 
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First, we assume the log hazard function a(t\3) of a failure time to be a cubic spline 

from Sp(ti, • • •, tK) satisfying 

(**) a is linear on [0,ii] and is constant on [£/<-, oo). 

If we use the power basis representation a = EfcL-3 6kPk, then (**) implies #_3 and #_2 

equal 0, and it places three constraints on 61, • • •, 9K- This leaves a i f + 4 — 2 — 3 = 

K - 1 dimensional space. More precisely, define 

V = span{p_i,p0,Pi, • • -,PK} 

and 

B = {<p £ V : (f> is linear on [0, t\] and constant on [tk, oo)}. 

Then dim(P) = K + 2 and dim(c )̂ = K - 1. 

Next, we give the definition of a restricted B-spline basis of B. We assume that 

K > 3, and place restrictions on bi, bx-i and, if K > 3, on 62, • • •, 

Definition 3.2.1 The set of functions {bi, • • •, 6^-1} ^n & is called a restricted B-spline 

basis of B if it has the following properties: 

1. b\ is linear but not constant on [0, £1] and is zero on [t3,oo); 

2. if K > 3, for 1 < j < K — 2, bj is zero on [0, £,-_i) and [tj+3, 00) but not zero on 

(tj-i-, tj); 

3. if K > 3, bj<-2 is zero on [0, £ # - 3 ) , not zero on ( ^ - 3 , ^ - 2 ) ; and a non-zero 

constant on [tK, °o); 

4- bK-\ is a non-zero constant on [0, 00). 

Clearly, any fy's satisfying 1-4 are bounded, a condition required in Section 2.2.1. 

Now we need to show that the restricted B-spline basis is well defined. That means that 
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we need to prove that b/s with the above properties exist and they are a basis of B. We 

will give an algorithm for constructing bj's (this implies the existence), but first we will 

show that any bfs satisfying 1-4 are a basis. 

Theorem 3.2.2 If b\, • • •, bx-i, K > 3, in B have properties 1 - 4 of Definition 3.2.1, 

then they are a basis of B. 

Proof. Since B is a K — 1 dimensional space, to show that {b\, • • •, bx-i} is a basis of 

B, we need only prove that b\, • • •, bx-i are linearly independent. Let 

K-l 

cj>{t) = £ a&it). 

Suppose that (f)(t) = 0. We are going to show that this implies that otj = 0,j — 

\,---,K — 1. Consider t G [0,ii). If K > 3, by properties 2 and 3, bj(t) = 0, for 

j = 2, • • •, K - 2. If K = 3, then <f>(t) = ai&i(t) + a2b2(t). Therefore, for K > 3 and 

t G [0,£x) 

<t>(t) = + ttK-i^-iW = 0. 

By property 4, bx-x is non-zero constant, and by property 1, bi is linear but not a 

constant. Hence we have 

ai = tttf-i = 0. (3.2) 

Hence, if K = 3, then &! and 62 are a basis of B. Now we assume that K > 3. Consider 

£ G (ti, t2)- If K > 4, by properties 2 and 3, = 0, j = 3, • • •, K - 2. If K = 4, then 

<K*) = + oc2b2{t) + a 3 &3(*)-

Hence, for K > 4 and i G (h,t2), using (3.2), we have 

</>{t) = tti6x(i) + a2b2(t) + otK^bK-iit) = a2b2{t) = 0. 
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So OJ2 = 0 since b2(t) ̂  0 by property 2. By induction on j , using a similar explanation, 

for t G {tj-i, tj), 

<f)(t) = ajbj(t) = 0, 

which implies that a.j = 0 for j = 3, • • • ,K — 2. Hence we have that a,- = 0,j = 

1, • • •, K — 1, which shows that {bi, • • •, bK-i} is a basis of B. • 

For the convenience of our constructing a restricted B-spline basis, we give the fol­

lowing result as a lemma. 

Lemma 3.2.3 Fix J = 2, • • •, K — 2, and let 
0 J+2 

b{t) = E 0kPk(t)+ E ekPk{t). 
k=-3 k=J-l 

Then b = c on [tj+2,oo) if and only if #_ 3 , #_ 2 , #o, 0j, QJ+I, 0j+2 solve the 

linear system 

ds + 4- 9j + 9j+i + 9j+2 = 0 

0_2 + 3 O _ i 0 / _ i + 3tj9j + 3tJ+10J+l + 3O+20J+2 = 0 

0_i + 3£3_i#/-i + 3£j#/ + 3t2

J+19j+i + 3r^ + 20/+ 2 = 0 

OQ + tj^Oj-i + tj9j + t J + l 9 J + i + £ j + 2 0 / + 2 = c. 

Proof. First regroup terms of b(t) by powers of t, so that 

= a0 + ait + a2t2 + a 3£ 3 , 

with a's depending on indicator functions involving the 9k 's and the £,-'s. We see that 

6 = c on [ t j + 2 , co) is equivalent to a0 = c, = a2 = a3 = 0, which is equivalent to the 

above equations. • 

Now we start our construction of a restricted B-spline basis of B. Let bj = Y,k=-i OkjPk, 

j = 1, - • • ,K — 1. We will find O^s so that the fy's satisfy properties 1 - 4 of Defini­

tion 3.2.1. 
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Step 1: Let bK-i = p0, i.e., #0(K-I) = 1 and 9k(K-i) = 0, for k = -1 ,1 , • • •, K. 

Step 2: To define bi = J2k=-i QkiPk, let 9ki = 0 if k > 3. As in the proof of Lemma 

3.2.3, we regroup terms of bi by powers of t. Then b\ = 0 on [ £ 3 , 0 0 ) implies that 

#oij $(-i)i> ^ i i ) $21 > #31 solve the following linear system 

#11 + #21 + #31 = 0 

t\9l\ + *2#21 + ^3#31 = 0 

#(-1)1 + 3£ 2#n -+• 3i2#2i + 3i3#3i = 0 

#01 + * i # l l + ^2^21 + ^2^31 = 0. 

Since the tks are not equal to each other, there is a unique solution for the linear system 

once one of the 9ki,k = — 1, • • •, 3, is fixed. We let 9n — 1 and solve the linear system. 

Note that #(-1)1 ^ 0 otherwise the linear system has only zero solution which would 

contradict #n = 1. Thus, 61 is linear but not constant on [0, £1) and b\ = 0 on ( £ 3 , 0 0 ) . 

To construct bj, 1 < j < K — 1, we first construct b* which is zero on [0, £j_i) and 

a non-zero constant on [t,+2, 0 0 ) . We will define the fr-'s as linear combinations of the 

bj's such that bj is zero on [tj+3, 0 0 ) , 1 < j < K — 2. 

Step 3 For 1 < j < K - 1, let 

Then for any constant c, by Lemma 3.2.3, bj = c on [£ J + 2,oo) and 0Sj = 0, s = 

-3, -2 , -1,0 imply that 9[j_^j,9'jj, 9[j+l^, 9[j+2^ satisfy the linear system 

9U-i)i + 6'n + 9'u+i)j + d'(j+2)j = 0 

+ t3d'jj + tJ+ld{j+i)j + ti+29{j+2)j = 0 

t)-i9{j-i)j + t2j9'jj + t2

j+19[j+1)j + t2

j+29[j+2)j = 0 

^ - i % - i b ' + + ^f+i ^ O+ib + ^ + 2 % + 2 ) j = c. 
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Let Q[j-i)j = 1- Then we can solve the first three equations for 9'^, Q'(j+2)j an<^ 

then set c to satisfy the fourth equation. We must show that c ^ 0. It is easy to see 

that, if c = 0, then the linear system in Lemma 3.2.3 has only the zero solution. Hence 

here = 1 implies that c ^ 0. Then b* is zero on [ 0 , n o n - z e r o on (tj-\,tj), 

and a non-zero constant on (£ , - + 2 ,oo) . 

Step 4: Let bx-2 — b*K_2. Then bx-2 satisfies property 3. 

Step 5: Recall that b* is a non-zero constant on [£ , - + 2 ,oo) . For 1 < j < K — 1, let 

dj be that constant on [tj+2, oo). For 1 < j < K — 2, if we let 

a J + i 

then bj is zero on [ £ j + 3 , o o ) and also on [0, r.j_i), since fr- and b*+l are zero on [0 ,£ j_ i ) . 

Also 6j is not zero on (£,•_!,£,•) since is zero but 6* is not zero on (tj-\,tj). 

Thus bi, • • •, satisfy properties 1 - 4 and are a B-spline basis of B. 

From now on, for given knots, we use B as our regression space with the restricted 

B-spline basis h, • • • ,bK-i defined as above. By a bounded basis plus log tail, we 

mean the basis is {bi, • • •, bpc-i, bK} and the regression space is span{&i, • • •, bx}, where 

bi<(t) = log(t + c), c > 0 is a constant. 

Since the basis b is bounded or bounded plus log tail, all relevant results discussed 

in Chapter 2 can be used. To simplify notation, we will denote both regression spaces 

byB. 

3.3 Numerical Implementation 

In this section we introduce the algorithm used to calculate the estimates (3 and Q in 

the log hazard regression model of paired failure times. 

By the definition of (3 from (2.33), the estimates (3X and Q2 are calculated sepa­

rately. So we need only discuss the calculation of f3x. We can use Kooperberg's heft 
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algorithm (see Kooperberg, Stone, Truong, 1995) to find r31. They use the Newton-

Raphson method for computing r31 since 31 is the unique solution of the equations 

(2.20). Specifically, they start with an initial guess J3^\ then iteratively determine 

fa[h+ ^ from according to the formula 

- (fc+1) - (fc) 
and stop the iterations when log Lq(f3x \X{) — logLq(r31 \XX) < e, where e is a given 

positive number chosen so that estimates with the desired accuracy can be obtained. 

Thus the main numerical task in calculating J3 is the computation of the log likelihood 

logLq^^Xi), score function {3X), and observed information matrix ^(d^Xi) 

for various values of 3. By the definitions of l o g L ^ / ^ j X i ) , U^^) and /{^(JSJXI) , 

see (2.17), (2.18), and (2.19), this computation involves the numerical approximation of 

E jXU mdt, (3.3) 
i=i J o 

for ip of the form 
p i 

= hm(t)bu(t) expCEPijhjlt)), 

Z,m G { l , - " , P i } -

Kooperberg et. al. do not calculate j0

Xli ip(t)dt for each i. Rather, they rewrite (3.3) 

as 

roo 

j N(t)rp(t)dt, (3.4) 

where N(t) is the number of i satisfying Xki > t. The function JV(-) is piecewise 

constant, has jumps at the observations Xkx, • • • ,Xkn, and equals zero to the right of 

the maximum observation. Then they rewrite (3.4) as 

E r N(twt)dt, 
„ Ja.v-1 
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where {a„} is a finite grid of points containing all knots. Then they calculate /N( t ) ip ( t )d t 

numerically. 

Now consider calculation of Q. By the definition of Q from (2.36), the calculation 

of Q involves the calculation of /3fc, ^(fi^Xk), and the summands uKI(J3K), k = 1,2, 

i = 1, • • •, n . As we mentioned above, we can get (3K from the heft algorithm directly. 

By slightly modifying the heft code, we can obtain IK

N\[3k\Xk) from heft as well. But 

to evaluate uki(/3K), we need to calculate f*u ip(t)dt separately. We can not get these 

integrals from heft without rewriting its entire integration program. Instead, we use 

Gaussian Quadrature (see Abramowitz and Stegun 1964, p. 916) for the integration 

ip(t)dt to calculate uKI(J3K), k = 1,2. 

3.4 Knot Selection 

In Section 3.2, we give the method to define the regression space B for given knots. In 

this section we introduce the methods that we use to choose the knots. 

For the univariate case, we use the following two methods to select the knots. 

• Choose knots by Kooperberg' heft algorithm. 

For a data set, Kooperberg's heft algorithm can choose the knots for the model 

fitting. The algorithm chooses knots by a stepwise addition and stepwise deletion pro­

cedure. See Kooperberg et. al. 1995 for details. We hoped that heft would select knots 

well. But from our simulation study we find that there are some numerical calculation 

problems with the knots chosen by heft. If the ratio of the maximum of the knots to 

the minimum of the knots is too big, then the resulting log hazard estimate and the 

calculation of the estimated standard errors may be impossible, see Section 5.2.2. So we 

should not use the knots from heft, if we receive a warning message from the heft code, 

or the calculation of the estimated standard error is not possible. 
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• Choose the knots by the quantiles. 

We choose the quantiles of the non-censored observations as the knots to define the 

regression space B. This procedure is based on ideas in Kooperberg et. al's knot selection 

for their stepwise addition method and Abrahamowicz et. al's knot selection method, 

Abrahamowicz, Ciampi, and Ramsay (1992). Choosing knots equal to quantiles may 

also result in a large ratio of maximum of the knots to the minimum of the knots. As 

noted above, this causes numerical problems. We solve this problem by truncating the 

data, that is, if there are any warnings, we use the quantiles of a truncated data set. 

We truncate the observations which are greater than 80 in our simulations. 

For paired data we use the following methods: 

• Use different knots for modeling the two log hazard functions. 

Choose knots for each failure time by the above two methods. We then use the 

two sets of knots to define the two regression spaces and marginally fit the log hazard 

regression models for the paired data. 

• Use the the same knots for modeling the two log hazard functions. 

In this method we need to choose one set of knots which defines one regression space 

for both log hazard functions. If we denote the ranges of non-censored observations 

{Xki : 5ki = 1} by Rk, k = 1, 2, then our knots must lie in RiC\ R2. There are two way 

to choose this set of knots. 

a) Use the quantiles of the non-censored observations which lie in Ri f) R2. 

b) Use the union of the knots selected for each marginal log hazard estimate. Denote 

the sets of knots selected for the two log hazards by /Ci and /C 2 . Use (K-i U /C 2) fl 

(Ri n R2) as the set of knots for the regression space. 
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3.5 Hypothesis Testing 

In this section we show how to use the restricted B-spline basis and the regression space 

B and given data to test hypotheses. 

3.5.1 Univariate Case 

In the univariate case, we can test: 

• HQ\ the failure time has an exponential distribution; 

• HQ-. the failure time has a Weibull distribution. 

By the definition of the log hazard regression model in (2.5), the log hazard function 

is 

If the failure time is exponentially distributed, then a(t\3) = constant. Therefore, for 

the restricted B-spline basis defined in Section 3.2, ({bj, j = 1, • • •, K — 1} if b is bounded 

or {bj, j = 1, • • •, K} if b is bounded plus log tail, where K is the number of knots), we 

can rewrite HQ as 

H E

0 : pj = 0iorj^K-l. 

Then we can write HQ as 

HE

0: X J B = 0 

for an appropriate matrix X E . By Corollary 2.3.3, 

[nlW(P\X)]±0-0)=>N(O,r). 

42 



n(Xjfa)T(Xj[I^0\X)rXe)-\XTf3) => 

Hence, under HQ, 

( 

XK-2 ^ & i s bounded; 

xk-i ^ & 1S bounded plus log tail. 

Therefore, n(XTfa)T{XT[I^\fa\X)]-1Xe)-1(XT

r3) can be used as a test statistic. 

To test HQ, we need to use the restricted B-spline basis plus log tail 6^(i) = log(i). 

Thus, if the failure time has a Weibull distribution, then 

a(t\a) = pK_1bK-1{t) + pKbK{t). 

Hence, testing H™ is equivalent to testing Pj = 0 for j < K — 1. By a similar procedure 

as for testing HQ, we can find a matrix Xw such that 

n{Xlfa)T{Xl[&\fa\X)]-'Xw)-\Xlfa) => X

2

K_2 

and we can use n(X^fa)T(X^[I^(r3\X)]-1Xw)-1(X^r3) as our test statistic. 

3.5.2 Bivariate Case 

In bivariate case, we can test: 

• H0: the two failure times have the same distribution; 

• HQ-. the two failure times have proportional hazards. 

For given paired data (Xn, 5u, X2i, S2i), i = 1, • • • ,n, to test Ho and Hp, we model 

the log hazard functions of the two failure times with the same regression space B. Then 

the log hazard regressions are 

3 = 1 

3 = 1 
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If the two failure times have the same distribution, then 

a i M f t ) - a2(t\(32) = J2(foj ~ fajMt) = 0. 
3=1 

Therefore, testing H0 is equivalent to testing 

H*Q: Plj-r32j = 0fovj = l,---,p. 

Then we can rewrite H$ as 

H* : XTB = 0 

for an appropriate matrix X. For bases described in Section 3.2, by Corollary 2.5.4, 

^Q-^{f3-f3)=>N({)J). 

Then under H0, 

XK-I ^ ° i s bounded; 

XK if b is bounded plus log tail. 

So, we use n(XT

r3)T{XTQX)-1(XTP) as test statistic. 

If the two hazards are proportional, then 

p 
ai(*l/5i) - ot2(t\(32) = £ ( / ? y ~ r%j)bj(t) = constant. 

3 = 1 

Hence, for the regression spaces and bfs defined in Section 3.2, the test for Hi 

equivalent to the test for Pij — p2j = 0 for j ^ K — 1. Then we can rewrite Hi as 

Hi : XTB = 0 

for an appropriate matrix X. By Corollary 2.5.4, 

v ^ g - * G 9 - £ ) = > J V ( o , / ) . 
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n(XT0)T(XTQXr\XTi3) => { 

Then under HQ, 

( 

XK-2 ^ ° 1S bounded; 

XK-I ^ 0 1S bounded plus log tail. 

Therefore, n(XT'(3)T(XTQX)-l(XTp) can be used as test statistic. 

Note: When T^'s and T2;'s are independent, the Cox proportional hazards model 

hc(t) = M*)exp(7) (3.5) 

provides an estimate of the relative risk 7 . Thus under independence assumption, 

we can also test H0 by testing HQ : 7 = 0. To our knowledge, there is no non-

parametric test for proportional hazards for dependent paired data as we defined 

in Chapter 2. We might use the usual Cox proportional model, assuming the 

two failure times are independent. However, while the usual estimate of 7 may 

be good, the standard errors are probably biased. 
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Chapter 4 

Application to the Diabetic 

Retinopathy Study 

In this chapter we apply the log hazard regression model to data collected to study 

the effect of laser treatment on diabetic retinopathy (see Diabetic Retinopathy Study 

Research Group, 1981). We give a description of this study in Section 4.1, and analyze 

the data in Section 4.2. Finally, in Section 4.3, we discuss analysis of this data set using 

other models. 

4.1 Data Description 

Diabetic retinopathy is a complication associated with diabetes mellitus, which consists 

of abnormalities in the microvasculature within the retina of the eye. It is the major 

cause of visual loss in many industrialized countries (Murphy and Patz, 1978). 

The Diabetic Retinopathy Study (DRS) was funded by the National Eye Institute 

in 1971 to investigate the effectiveness of laser photocoagulation in delaying the onset 
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of blindness for diabetic retinopathy patients. One eye of each patient was randomly 

chosen to receive photocoagulation and the other eye was observed without treatment. 

A total of 1,742 patients was followed over several years. The endpoint used to 

assess the treatment effect was the occurrence of visual acuity less than 5/200 at two 

consecutively completed 4-month follow-ups. The only data available are from the 197 

patients defined as high-risk by DRS criteria. 

Of the 197 pairs of observations, approximately one-half (101/197) of the untreated 

eyes and one-quarter (54/197) of the treated eyes achieved the outcome after 5 years 

of follow-up. The histograms of the censored and uncensored data for treatment and 

control (Figure 4.1) show that more untreated eyes than treated eyes failed during the 

study and many patients left the study after about 3 years (36 months) or more from 

the start time. 

The correlation between the uncensored observations of the treatment group and the 

control group is 0.28. This indicates possible dependence between the two failure times. 

We show the scatter plots in Figure 4.2. For this data set, the two censoring times are 

identical, that is, Cn = Cc%-

The primary goal of the DRS study was to assess the effectiveness of the laser 

photocoagulation treatment. A secondary goal was to assess the relative risk of blindness 

of the untreated and the treated eyes as a function of time. 

4.2 Data Analysis 

In this section we will address the following questions: 

1. Do the failure times of the treated and the untreated eyes have the same distri­

bution? That is, is there a treatment effect? 

47 



Trea tment 

20 40 60 

Uncensored Times 

20 40 60 80 

Censored Times 

Control 

20 40 60 

Uncensored Times 

20 40 60 

Censored Times 

Figure 4.1: Histograms of observed times of the eye data. 
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Figure 4.2: Scatter plots of the observations of the eye data. 
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2. What is the log hazards ratio? That is, what is the relative risk of blindness of 

the untreated eyes and treated eyes? 

We carry out two analyses of the eye data. First, as described in Section 3.4 on 

knot selection, we let Kooperberg's heft algorithm choose the knots for the log hazard 

regression model (Model 1). This allows different knots to be used for the log hazards 

estimates of the failure times of the treated and the untreated eyes. In our second 

analysis (Model 2), we use the same regression space for the log hazards of the two failure 

times. The set of knots used is the union of the knots chosen by the heft algorithm for 

each failure time. With both models we can get an estimate of the log hazards ratio 

with 95% pointwise conference intervals. We then test if there is a treatment effect, and 

if the two hazards are proportional with Model 2, as described in Section 3.5. 

4.2.1 Model 1 

To estimate each failure time's log hazard, we use Kooperberg's heft algorithm with log 

tail (3p(t) = log(t) (c = 0), and without specifying knots. The heft algorithm selects 

1.5,6.17, and 63.33 as knots for the regression model of the treated eyes and chooses 

no knots for the untreated eyes, which means that heft chooses a Weibull model for the 

failure time of the untreated eye. Then the log hazard regression model, Model 1, is: 

aT{t\3T) = /3TlbTl(t)+pT2bT2(t)+PT3bTz{t), (4.1) 

ac{t\3c) = Pcibci(t) + Pc2bC2(t). (4.2) 

As defined in Section 3.2, bT1 is linear on [0,1.5), cubic on [1.5,6.17) and [6.17,63.33), 

constant on [63.33, oo), br2 and ba are constant functions, and bT3(t) = bc2(t) = log(t). 

The estimates of 3T and 3C from heft are 

(3T = (0.00017,-8.13,0.69)T 
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Time to Blindness (Months) 

Figure 4.3: The estimated density functions of the eye data for Model 1. 

and 

£ c = (-3.68,-0.18)T, 

respectively. The estimates of the marginal densities, survival functions, hazard func­

tions, and the log hazards ratio are in Figures 4.3 to 4.6. 

From the plot in Figure 4.3, we find that both estimated densities have a high value 

in the first twenty months. But the density corresponding to the untreated eye is higher 

than that of the treated eye during the observed time period. The estimated density 

of the failure time of the untreated eyes has its maximum at time zero, while the other 

density achieves its maximum at about month six. Since the regression model is for the 

log hazard, we calculate the estimated densities based on the estimate of log hazards 

as in equation (2.8). A pointwise confidence interval for the estimated densities would 

require integration of the upper and lower bounds of confidence intervals for the hazard 

function. This is difficult, so these confidence intervals have not been calculated. 
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Treatment 
Control 

Time to Blindness (Months) 

Figure 4.4: The estimated survival functions of the eye data for Model 1. 

The estimated survival curves, in Figure 4.4, show that the estimated survival func­

tion of the treated eyes is always greater than that of the untreated eyes. Therefore, 

there appears to be a large treatment effect. 

From the plots of the estimated hazard functions in Figure 4.5, we see that the risk 

of blindness in the untreated eye is much higher than that of the treated eye. The risk 

of blindness in the untreated eyes decreases with time while the treated eyes may have 

a maximal risk at t = 6. Based on the estimated hazard functions, we can see that the 

treatment may have delayed the onset of blindness for the patients for the first couple 

of months after the operation. 

Figure 4.6 shows the estimated log hazards ratio with pointwise 95% confidence 

intervals. Values greater than zero indicate a higher risk of the control group and so 

it seems that the treatment has a beneficial effect. The estimate of log relative risk of 

blindness of the untreated eye to the treated eye is equal to 1.15 at t = 1, and decreases 

to 0.34 at about month six, then increases smoothly. After attaining its maximum value 
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Figure 4.5: The estimated hazard functions of the eye data for Model 1 with pointwise 

95% confidence intervals. 
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Figure 4.6: The estimated log ratio of the hazard functions of the eye data with pointwise 

95% confidence intervals for Model 1. 

of 1.186 at month 42, it decreases slowly. 

Thus, based on Figure 4.6, the estimated log ratio of the two hazards gives an answer 

to questions 1 and 2 asked in the beginning of Section 4.2. 

4.2.2 Model 2 

To test if there is a treatment effect, we assume the log hazard functions of the treated 

eye and the untreated eye are from the same regression space B. So we will use the 

same restricted B-spline basis plus a log tail for the two regressions. To choose knots 

that define B, we refer to the knots used for Model 1. As heft uses 1.5,6.17, and 63.33 

for the treatment group and no knots for the controls, we use 1.5,6.17, and 63.33, the 
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union of the knots used for the two groups, as the knots to define our regression space 

B. Then B is a three dimensional space and the log hazard regression, Model 2, is: 

aT(t\BT) = frMt) + fahit) + PTM*), (4-3) 

ac(t\Bc) = 3cMt)+Pc2b2(t)+PcMt), (4-4) 

where 61 = bn, b2 = 6T2, and 63 = 6̂ 3 as defined in Section 4.2.1. Using the heft 

algorithm with fixed knots, we get the estimates 

J3T = (0.00017, -8.13,0.69) r, 

Pc = (0.00007,-5.15,0.16)T. 

As in Section 4.2.1, we calculate the estimates of the densities, survival, hazard 

functions, and the log hazards ratio. We give the plots in Figures 4.7 to 4.10. The 

results are similar to those from Model 1. 

Time to Blindness (Months) 

Figure 4.7: The estimated density functions of the eye data for Model 2. 
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Figure 4.8: The estimated survival functions of the eye data for Model 2. 

Figure 4.9: The estimated hazard function of the untreated eye for Model 2. 
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Figure 4.10: The estimated log ratio of the hazard functions of the eye data with 

pointwise 95% confidence intervals for Model 2. 

Since Model 1 and Model 2 use the same regression space for the log hazard of 

the failure times of the treated eyes, the two models produce the same estimates for the 

failure times of the treated eyes. Thus we do not repeat the plots of these estimates. We 

compare the estimates from Model 1 and Model 2 for the untreated eyes in Figures 4.11 

to 4.13. 

From Figures 4.11 to 4.13 we see that Model 1 and Model 2 give almost the same 

estimates of the survival function of the untreated eyes. But the estimated densities 

and hazards look a little different. 

Next we use Model 2 to test the hypothesis that the failure times of the treated eye 

and the untreated eye have the same distribution. By the definition of Model 2 from 

(4.3) and (4.4), this hypothesis is equivalent to 

Ho : PTJ - P C J = 0, j = 1,2,3. 
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T i m e t o B l i n d n e s s ( M o n t h s ) 

Figure 4.11: The estimated density functions of the failure times of the untreated eyes. 

M o d a l 1 
M o d e l 2 

T i m e t o B l i n d n e s s ( M o n t h s ) 

Figure 4.12: The estimated survival functions of the untreated eyes. 
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M o d e l 1 
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Figure 4.13: The estimated hazard functions of the failure times of the untreated eyes. 

Using the test described in Section 3.5, we obtain the test statistics and p-values shown 

in Table 4.1. 

Table 4.1: Test statistic and p-value for testing that the failure times of the treated eyes 

and the untreated eyes have the same distribution. 

Test xl p-value 

P T J - P C J = 0,j = 1,2,3 48.56 0 

Hence we may reject H0 and conclude that the two distributions are different. From 

our plots of the log hazards ratios in Figures 4.6 and 4.10, we conclude that the laser 

photocoagulation treatment had a significant effect in delaying the onset of blindness in 

patients with diabetic retinopathy. 
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4.3 Other Models Used to fit the Eye Data 

Huster et. al. (1989), considered modeling the marginal distributions for the eye data as 

exponential and as Weibull or modeling the data via the Cox proportional hazards. We 

show the estimated marginal survival curves from fitting different models in Figures 4.14 

and 4.15. The Kaplan-Meier estimate is also given. Note that for the treatment Model 1 

and Model 2 are the same and for the control Model 1 is the Weibull. We see that all fit 

inside the confidence intervals of the Kaplan-Meier estimates except the estimates from 

the exponential model. But the estimated survival functions from our log hazard regres­

sion models are closer to the Kaplan-Meier estimates than those from the parametric 

models. 

In this section we use Model 2, defined in Section 4.2.2, to decide which model(s) 

are appropriate to the eye data. Then, based on the test results, if we can choose a 

standard parametric model, say exponential, Weibull, or proportional hazards, we will 

use the selected model to test if there is a treatment effect. 

4.3.1 Exponential Model 

Since Model 2 from (4.3) and (4.4) includes the exponential distribution, we can use the 

model to test if the marginal distributions are exponential. As we discussed in Section 

3.5, we test the two null hypotheses: 

fr3 = 0J = l,3 

and 

Pcj = 0,j = l,3. 

Table 4.2 presents our test results. 

Hence we reject the hypotheses that the failure times of the treated eye and the 

untreated eye are exponentially distributed. 
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Figure 4.14: The estimated survival curves of the treated eye. 
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Figure 4.15: The estimated survival curves of the untreated eye. 
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Table 4.2: x2 test statistics and p-values for testing that failure times are exponentially 

distributed. 

Test x\ p-value 

= 0,j = 1,3 11.26 0.004 

= 0,3 = 1,3 8.14 0.017 

4.3.2 Weibull Model 

To test the hypotheses that the marginal distributions are Weibull, we test the two 

hypotheses: 

PTI =0 

and 

Pci = 0. 

We show the test results in Table 4.3. 

Table 4.3: z statistics and p-values for testing that failure times have Weibull distribu­

tions. 

Test se z p-value 

PTI = 0 1.73 x 10"4 6.28 x 10"5 2.75 0.006 

PCI = 0 6.94 x 10~5 3.59 x 10"5 1.93 0.053 

Thus we reject the hypothesis that the failure time of the treated eye has a Weibull 

distribution and we can not accept the hypothesis that the failure time of the untreated 

eye has a Weibull distribution. 
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4.3.3 Cox Proportional Hazard Model 

Now we use Model 2 to test the hypothesis that the two hazards are proportional. As 

mentioned in Section 3.5, we need to test 

H0: P T j - P C j = 0, i = 1,3, 

since b2 is constant. The test statistics and p-values are shown in Table 4.4. 

Table 4.4: Test statistic and p-value for testing that the two hazards of the treated eyes 

and the untreated eyes are proportional. 

Test x\ p-value 

PTJ-PCJ = 0,3 = 1,3 2.81 0.25 

Thus we may assume that the two groups have proportional hazards, that is, we may 

assume that the relative risk of blindness of the untreated eye versus the treated eye is 

a constant. 

Now we assume that the two failure times are independent and fit the Cox propor­

tional hazards model (3.5) for the eye data. To test the treatment effect, we test 7 = 0. 

The results are given in Table 4.5. 

Table 4.5: Test results from the Cox proportional hazards model for the eye data. 

Test 7 se z-value p-value 

7 = 0 0.777 0.169 4.6 4.2 x 10~6 

The Cox proportional hazards model also indicates that there is a treatment effect. 

Figures 4.16 to 4.19 compare the pointwise 95% confidence intervals of the log hazards 
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ratio from Models 1 and 2 and the Cox proportional hazards model, which assumes the 

two failure times are independent. We can see that the confidence interval from Model 

2 is narrower than the confidence interval from the Cox proportional hazards model 

during the months 4 through 23, when the most failures in the both groups occurred. 
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Figure 4.16: The estimated log hazards ratio from Model 1 and the Cox proportional 

hazards model with the pointwise 95% confidence intervals from the Cox proportional 

hazards model. 

i 
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T i m e t o B l i n d n e s s ( M o n t h s ) 

Figure 4.17: The estimated log hazards ratio from Model 1 and the Cox proportional 

hazards model with the pointwise 95% confidence intervals from Model 1. 
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4 0 

Time to Blindness (Months) 

Figure 4.18: The estimated log hazards ratio from Model 2 and the Cox proportional 

hazards model with the pointwise 95% confidence intervals from the Cox proportional 

hazards model. 

Figure 4.19: The estimated log hazards ratio from Model 2 and the Cox proportional 

hazards model with the pointwise 95% confidence intervals from Model 2. 
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Chapter 5 

Simulation 

This chapter contains discussion of a simulation study of estimates in the log hazard 

regression model. Our main aim is to check the bias and variability of our estimates for 

the log regression model. We consider different censoring rates and different correlation 

levels of the paired failure times. We also investigate the three test procedures: for 

exponential or Weibull marginal distributions and for proportional hazards, see Section 

3.5. 

Our study consists of two parts: the univariate case and the bivariate case. In the 

univariate case, presented in Section 5.2, we investigate the estimates of the marginal 

log hazard functions and the pointwise standard errors. We also test that the marginals 

follow exponential or Weibull distributions. In the bivariate case, presented in Section 

5.3, we examine the estimated log hazards ratios and their estimated standard errors. 

We also test that the paired failure times follow the proportional hazards model. 

In Section 5.1 we give a brief description of our data generation and model fitting. 

We present the simulation results in Sections 5.2 and 5.3 for the marginal and bivariate 

data, respectively. 
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In this simulation study we find that, in general, the estimates for the log hazards 

perform well except in the tails of the failure time distribution or when the censoring is 

high. The estimated standard errors slightly underestimate the true variability, which 

is fairly small. The estimated standard errors for the log hazards ratios do not depend 

on the correlation level too much. Al l of the estimates depend on the censoring rate. 

The lower the censoring, the better the results. We will give a summary of this study 

in Section 5.4. 

5.1 Description of the Simulation Study 

In this study for each distribution of T considered, we generate 200 pairs Ts and Cs in 

each simulation, where the Ts are failure times, the Cs are censoring times, and the Ts 

and Cs are independent. We choose two censoring rates c = 0.25 or 0.50, i.e., 

P(T > C) = 0.25 or P(T > C) = 0.50. 

We generate the failure time T from distributions with log hazards of the form 

where {bi, • • • ,6p_i} is a B-spline basis and bp(i) = log(t). We use three distributions 

for the marginal failure time T: 

Exponential : 

<x{t\l3)=PMt) + --- + Ppbp(t), (5.1) 

aT(t) log(20). (5.2) 

In this case, we choose the censoring time C with 

ac(t) log(20) 
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for a 50% censoring rate or 

ac{t) = - log(60) 

for 25% censoring. 

Weibull : 

aT(t) = -3.68 - 0.18log(t). (5.3) 

The corresponding censoring time C has the log hazard 

ac(t) = - 3 . 6 8 - 0 . 1 8 log(t) 

for 50% censoring or 

ac(t) = -4.69 - 0.181og(i) 

for 25% censoring. 

B-spline : 

aT(t) = 0.00017 - 8.13 +0.69 log(i), (5.4) 

where bx is linear on [0,1.5), cubic on [1.5,6.17) and [6.17,63.33), and zero on 

[63.33, oo). See Sections 3.2 and 4.2 for the exact definition of bx. The censoring 

time follows a Weibull with log hazard 

ac(t) = -13.39 + 2 log(*) 

for 50% censoring or 

ac(t) = -25.24 + 41og(i) 

for a 25% censoring rate. 
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In all three cases, we choose the parameters for T's distribution to fit the eye data 

in Chapter 4. We choose the exponential distribution with mean close to the empirical 

mean of the non-censored failure times of the treated eyes; the Weibull which is the 

distribution of the estimated distribution of the failure time of the untreated eye based 

on the given data. The B-spline model (5.4) is the estimated distribution of the failure 

times of the treated eye as calculated in Section 4.2. We use S-plus to generate data 

from an exponential or Weibull distribution. For the data as in the B-spline model (5.4), 

we first generate a random variable u ~ ?7(0,1) then solve S(t) = u for t numerically. 

Since t is the (1 — u)th quantile of T's distribution, t can be calculated via heft's quantile 

function. 

We use the following three methods to estimate the log hazard function. 

True Model : Fit the data assuming it follows the true model. That is, estimate the 

parameters in (5.1) using the true b/s. In this case both the number and the 

locations of the knots do not depend on the data set. 

Quantile Knots : Use the quantiles of the non-censored observations as the knots that 

define the b/s in (5.1). We consider two cases: three knots and six knots. In the 

three knots case, our knots are the quartiles. In the six knots case, our knots are 

the 1/6, • • •, 5/6 quantiles. Thus, the locations of the knots depend on the data 

set, but the number of the knots does not. 

Flexible Knots : Choose the knots that define the fy's in (5.1) by Kooperberg's heft 

algorithm. In this case both the number and locations of the knots depend on 

the data set. 

Thus we have six models for (T, C), from the three distributions for the failure times 

and the two censoring times for each distribution. For each of these six models we run 

500 simulations and calculate the above four estimates of the log hazard functions. 
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In the bivariate case, we will use the Clayton method to generate (Ti,T2) from 

marginals for Ti and T2 and with a parameter 9, (see Section 5.3.1). We consider two 

types of paired data: 

Proportional Hazards : The failure time Ti and censoring time Ci, say for the treat­

ment, are as in the univariate B-spline model. Then the censoring rates for T\ 

are 0.5 and 0.25. The failure time T 2, say for the control, is from the distribution 

with the log hazard 

a2(t) = 0.00017 bi(t) - 7.13 + 0.691og(t). (5.5) 

Then T\ and T2 have the proportional hazards. We assume that the treatment 

and control have the same censoring time C = C\ — C2. 

Non-proportional Hazards : The failure time X, and censoring time C\ of the treat­

ment are as in the univariate B-spline model. The failure time T2 of the control 

is from the exponential model (5.2). Thus T\ and T2 do not have proportional 

hazards. Again we also assume that the treatment and the control have the same 

censoring time C. So the censoring rates of T\ are 0.5 and 0.25. 

The correlation level of Xi and T2 is determined by a parameter 9. We will give 

more details about 9 in Section 5.3.1. In this study we consider three correlation levels 

between Xi and X 2 : 9 = 1, in which case Xi and X 2 are independent; 9 = 1.5 and 9 — 2.5. 

The bigger 9, the more Xi and X 2 are correlated. 

We use the following three methods to estimate the log hazards ratios of the paired 

data. 

Cox : Assume Xi and X 2 are independent and have proportional hazards. Use the Cox 

proportional hazards model, as implemented in Splus's coxph. 
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Same Knots : Use the Quantile Knots method with the same six knots for Ti and T 2 

to estimate each marginal log hazard. The knots are the 1/7, 2/7,3/7,4/7, 5/7, 

6/7 quantiles of the union of the non-censored observations of Ti and T 2 which 

are less than 80. See our explanation in Section 3.4. 

Different Knots : Use the Quantile Knots method with six knots for estimating Xi's 

log hazard and six knots for T2's when Ti and T 2 have proportional hazards, and 

three knots for T2's when Tx and T 2 do not have proportional hazard. Then the 

knots are different for Ty and T 2 in each simulation. 

Hence in the bivariate case we have 12 models for (Ti, T 2, C): two pairs of marginals 

for TX,T2, two censoring rates, and three correlation levels. For each of the 12 models 

we run 500 simulations and use the above three methods to estimate the log hazards 

ratios. 

In all of these simulations, we will look at: 

• plots of the pointwise averages and quantiles of the estimates to study the bias 

and variability of the estimates. 

• plots of the pointwise standard deviations of the estimates to study the variability 

of the estimates. 

• plots of the quantiles of the pointwise z values of the estimates to assess the 

reliability of the estimates. The pointwise z values are constructed as 

estimate - true 
estimated SE 

• plots of the empirical distribution of the p-values for testing that the failure times 

have exponential or Weibull marginal distributions and for testing that the two 

failure times have proportional hazards. 

Plots appear at the end of this chapter and in the appendix. 
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5.2 The Univariate Case 

We present our simulation results for the models (5.2), (5.3), and (5.4) below in Sections 

5.2.1, 5.2.2, and 5.2.3, respectively. 

5.2.1 Exponential Model 

In this section we apply the True Model, Quantile Knots, and Flexible Knots estimation 

methods to the data generated from the exponential distribution (5.2). Figure 5.1 

shows the histograms of the failure times, the censoring times, the non-censored data 

and the censored data for those distributions. Since 60 is the 98th percentile of non-

censored observations under 25% censoring and the 99.7th percentile of the non-censored 

observations under 50% censoring, we only plot estimates for values of t between 0 and 

60. See Figures 5.2 to 5.4. 

Note that in the Flexible Knots estimation method, if no knots are chosen and the 

coefficient of the log tail is zero, then an exponential model is fit. This occurs 468 out 

of 500 times for 25% censoring and 481 out of 500 times for 50% censoring. Hence the 

estimates from the Flexible Knots method are usually the same as from the True Model. 

So we do not include the results from the Flexible Knots estimation method in these 

figures. 

Figure 5.2 shows the quartiles and empirical mean of the estimated log hazards 

from the True Model, Quantile Knots, and Flexible Knots methods and the true log 

hazard function for the exponential model (5.2). As expected, we find that the estimates 

from the True Model method are the closest to the true log hazard. For the Quantile 

Knots method, using three knots seems better than using six knots, which is somewhat 

surprising. In general, we expect that the more knots are used, the smaller the bias of 

the estimates but the larger the variability. The six knots estimates are more variable 
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but they are also more biased. This may be since the true distribution is exponential 

and so no knots are needed. Using more knots would not reduce the bias but it would 

increase the variability of the estimates. It is not surprising that the higher the censoring 

rate, the higher the bias of the estimates. 

Figure 5.3 shows the pointwise standard deviations of the estimated log hazards and 

the quartiles and the empirical mean of the estimated standard errors of the estimated 

log hazards. It is normal that the True Model method has the smallest pointwise 

standard deviations. The standard deviations using six knots are bigger than when 

using three knots. The higher the censoring rate, the bigger the standard deviations. 

Comparing the the pointwise standard deviations of the estimated log hazards with 

the pointwise quantiles of the estimated standard errors, we find that the bias of the 

estimated standard errors is the smallest with True Model method and the largest when 

using six knots. The higher censoring rate causes a bigger bias of the estimated standard 

errors except with the True Model method. 

We give the 97.5 and 2.5 percentiles and the quartiles of the pointwise z-values of 

the 500 estimated log hazards in Figure 5.4. We expect that they are between —2 and 2. 

We find that they are not out of this range too much for all estimates. Thus, pointwise 

confidence intervals based on the estimates would be reliable. 

Figure 5.5 presents the histograms and the qq-plots of 

Pi- Pi 
Zi = — , 

sef t 

i = 1,2,3, the standardized estimates of 3 with the Quantile method using three knots. 

Those figures show that the estimated 3s are approximately normal. For the method 

using six knots, the graphs look the same. We do not show them here. 

We also check three test procedures that the failure times follow an exponential 

distribution. Each procedure involves fitting the log hazard by same regression model 

and then using a x2 test that some regression parameters are equal to zero. First we fit 
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the data from model 5.2 to a Weibull model, that is, 

a{t\d) = falogit) + fo. 

Then we use (Pi / se(Px))2 as the test statistic to test Pi = 0. This is the usual para­

metric test of exponential versus Weibull. When using the Quantile Knots method, 

equation (5.1) can be written as 

a{t\B) = p\h (<) + fohit) + PM*) 

when using three knots and 

a(t\0) = PMt) + ••• + PM*) + Peh(t) 

when using six knots. As discussed in Section 3.5.1, the test is equivalent to test that 

Pi = P3 = 0 

when using three knots and 

Pi = • • • = P4 = Pe = 0 

when using six knots. Using the x2 statistics discussed in Section 3.5.1, we can calculate 

p-values of the test for each simulation. 

In Figure 5.6, we give plots of the empirical distributions of the p-value to test the 

hypothesis that the failure times have an exponential distribution. The plots in the top 

row in Figure 5.6 show the p-values for the test of exponential versus Weibull, and those 

in the second and third rows are the p-values for the test of exponential versus B-spline 

model as in (5.4) when using three and six knots, respectively. Since the null hypothesis 

is true, the p-value should be uniformly distributed. Thus we expect that each plot 

would be a straight line. We find that the test works well and it does not depend on 

the knot selection or the censoring rates too much. However, the test rejects a little too 

often when the censoring rate is high. 

76 



5.2.2 Weibull Model 

As in Section 5.2.1, we first present the histograms of the data in Figure 5.7. From the 

histograms we can see that, for both censoring rates, most non-censored failure times 

were less than 150. In fact 150 is about the 98th percentile for 50% censoring and the 

95th percentile for 25% censoring of the observations. So in Figures 5.8 to 5.10, we end 

our plots at time 150. 

As we mentioned in Section 3.4, the large range of the distribution of non-censored 

failure times may cause numerical problems for the Quantiles Knots and the Flexible 

Knots methods. This happens in our simulations for model (5.3) when we use the 

Flexible Knots method. Using the knots chosen by the heft algorithm we get four 

warning messages under 25% censoring and ten warning messages under 50% censoring. 

Moreover, we can not carry out the calculation for the estimated standard error for any 

simulated data sets due to the big ranges of the knots. Hence with the Flexible Knots 

methods we can only get the results of the estimated log hazards for simulated data 

sets that did not produce warning messages. We can not get any results related to the 

estimated standard errors. However, the Quantile Knots Method works well for the data 

as in model (5.3). 

Figure 5.8 shows summary plots of the estimated log hazards compared to the true 

log hazard of the model (5.3). We find that under 25% censoring the True Model and 

Quantile Knots estimation methods perform well. The estimates with the Flexible Knots 

method are highly biased when time is large, especially for high censoring. 

When we look at the pointwise standard deviations in Figure 5.9, as expected, the 

True Model method gives the smallest standard deviations. The Quantile Knots method 

using six knots has the largest standard deviations. 

When we compare the pointwise quartiles of our estimated standard error with the 

pointwise standard deviations of the estimated log hazards, we find that all the estimates 
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look fine, except that the estimates are a little bit too small after time 40. The censoring 

rate effect is the same as in the exponential model: the higher the censoring rate, the 

bigger the bias and variability of the estimates of the standard errors, particularly for 

small values of time. 

Figure 5.10 shows the pointwise 2.5 and 97.5 percentiles and quartiles of the empirical 

z values of the estimated log hazards. They are as expected for standard normal random 

variables. 

In Figure 5.11, we give the histograms and qq-plots of the estimates of 3 from the 

Quantile Knots method with six knots under 50% censoring. From the plots we can see 

that the estimates of 3 are approximately normal. For the True Model and three knots 

estimates, the graphs look the same. We do not present them here. 

For test procedures, we check not only the tests that data follow an exponential 

distribution as in Section 5.2.1, but also test that data follow a Weibull distribution. 

For the Weibull test we fit the data using bfs from the Quantile Knots estimation 

method. We use the test statistics discussed in Section 3.5.1 to test the hypothesis that 

the data follow a Weibull distribution. The test is equivalent to testing that /?i = 0 when 

using three knots and that (5\ = • • • = (3$ = 0 when using six knots. Figures 5.12 and 

5.13 show the plots of the empirical distribution functions of the p-values for testing the 

null hypotheses that the distribution is exponential and that the distribution is Weibull, 

respectively. We expect a high proportion of small p-values in Figure 5.12 and a straight 

line in Figure 5.13. 

From Figure 5.12, we see that under 25% censoring the True Model method and the 

Quantile Knots method with six knots has the lowest power. Increasing censoring to 

50% results in lower power for all methods. 

From Figure 5.13, we find that the test for Weibull works very well and it depends 

on neither the number of the knots nor the censoring rates. 
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5.2.3 The B-spline Model 

We first look at the histograms of the failure and censoring distributions, the censored 

failure times, and the non-censored failure times presented in Figure 5.14. From the 

histograms for the non-censored failure times, we see a high proportion of times on the 

interval [0,20], with the remaining times almost uniformly distributed on [20,150] for 

censoring rate 25% and on [20,100] for censoring rate 50%. 

As in the Weibull model (5.3) case, the large range of the distribution of non-censored 

failure times causes some numerical problems for the B-spline model when we use the 

Quantiles Knots and the Flexible Knots methods. Using the Flexible Knots method, 

that is, using the knots chosen by the heft algorithm, we can calculate only 113 esti­

mated standard errors out of 500 simulations under 25% censoring and 306 under 50% 

censoring. The same problem occurs when we use six knots with the Quantile Knots 

method. To avoid those problems, when we use six knots we choose the knots which are 

the quantiles of the non-censored failure times less than 80. We present the simulation 

results in Figures 5.2.15 to 5.2.19. The results for the Flexible Knots method are based 

on the estimates that we can get. 

By comparing the estimated log hazards with the true hazard function in Figure 5.15, 

we fined that the biases of all estimates are fairly small when time is less than 70 under 

25% censoring and when time is less than 40 under 50% censoring. We also find that 

those two numbers, 70 and 40, are close to the medians, 70.82 and 36.89, of the non-

censored failure times in the two models. The estimates with the Flexible method 

perform well until time 100 under 25% censoring. We expect that using larger knots 

would get better estimates at tail part if there were not numerical calculation problems. 

Figure 5.16 gives the pointwise standard deviations of the estimated log hazards and 

the quantiles and the empirical mean of estimated standard errors. From those plots 

we find that the True Model method and using three knots give the similar pointwise 
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standard deviations which are smaller than the pointwise standard deviations with using 

six knots. But the the difference between using six knots and using three knots is no as 

big as with data generated according to the Exponential and Weibull models. Al l of the 

estimates have the biggest variability at time zero. The censoring rate effect is as the 

same as for data generated as in models (5.2) and (5.3). The biases of the estimated 

standard error are very small except with the Flexible Knots method. 

Next we look at the plot of the 2.5 and 97.5 quantiles and the quartiles of the 

pointwise z values of the estimated log hazards from the True Model and Quantile Knots 

methods in Figure 5.17. We find that under 25% censoring the estimates look reliable 

for time is less than 70. Under 50% censoring the reliability of the estimates is not too 

bad as the time is less than 40, which match what we see from Figure 5.2.14. Different 

from in the Exponential model and Weibull model cases, for the B-spline model, the 

estimates with using six knots look more reliable than those with three knots. It does 

not surprise us since we expect using six knots would obtain better estimates than using 

three knots. To see if we can rely on the number of knots used by heft algorithm, we 

also check the numbers of knots used by heft algorithm. The average of the numbers of 

knots used by heft in the 500 simulations is 5.18, which is close to 6. 

The histograms and the qq-plots of the estimated parameters fa, fa and fa, in Fig­

ure 5.18, show that these estimates look normally distributed but not with mean zero. 

We also test the hypothesis that the data follow a Weibull distribution. For the 

Quantile Knots estimation method, the test procedures are the same to those we used 

for the data from the Weibull distribution (5.3) in Section 5.2.2. For the True Model 

method, we test fa = 0. For the Flexible Knots method we test fa = • • • = (3K_2 = 0, 

where K is the number of the knots chosen by the heft for each simulation. The test 

statistics are the same as we discussed in Section 3.5.1. Figure 5.19 shows that, under 

25% censoring, by all the four estimation methods the test procedures for that the failure 
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times have a Weibull distribution have a high power except that by using six knots. 

5.3 The Bivariate Case 

In this section we generate the paired data (T\, C\, T2, C 2 ) . T\ and T 2 are from (5.2), 

(5.3) or (5.4). We assume C\ = C2, and the censoring times are defined according to 

the distribution of Ti from (5.2), (5.3) or (5.4). We are interested in investigating our 

estimated log hazards ratios and the estimates of their standard errors. We will also 

test for proportional hazards. 

In Section 5.3.1 we introduce the method we use to generate dependent data for 

given marginal distributions. Then we present the simulation results in Sections 5.3.2 

to 5.3.4. 

5.3.1 Generation of Paired Dependent Data 

Clayton (1978) proposed a family of bivariate distributions for survival times. Let S\ 

and S2 denote the marginal survivor functions for each member of a pair of failure times 

(Ti,T 2). The joint survivor function for the Clayton model with parameter 9 is 

S(tut2,B) = { 

i 
" e-i tut2 > 0, 9 > 1 

ti,t2 > 0.9 = 1 
(5.6) 

Si(*i)S2(t2), 

When 9 = 1, the failure times are independent. 

The parameter 9 can be written in terms of two conditional hazard functions. If we 

denote the hazard for the conditional distribution of T\ given T2 = t2 and the hazard 

for Ti given T 2 > t2 by hTl\T2=lt2(ti) and hTl\T2>t2(ti), respectively, then in this model 

hTl\T2=t2{ti)/hTl\T2>M = 9. See Clayton (1978). 
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For given Si,S2 and 9 we generate bivariate data (Ti,T 2) satisfying the Clayton 

model using the following: 

(A) Generate Ti = ti according to Si, 

(B) Generate T 2 = t2 according to the conditional distribution of T 2 given Ti = tx. 

(A) can be carried out as in the univariate case. For (B), when 9 > 1, the conditional 

probability is (abusing notation slightly), 

pfrp ^ , , x P(T 2 > t2 and Tj = fr) dS(tu t2, 9)/dh 
P(Ti>t2\Ti-ti) - - ^ 

-eh [Sijti)1-9 + S2(t2y~d - l ] " ^ " 1 (1 - 9)Si(ti)-eS[(ti) 

S[{ti) 

= [Siiti)1'9 + s2(t2)l-e - l ] 1 ^ Si(ti)-e 

= 1 - FT2\Tl=tl(t2). 

We will generate U = u, a uniform [0,1], and solve u = i*T 2 | 7 i = t i ( £ 2 ) f° r ^2: 

u = l - P ( T 1 > t 2 | T i = i 1 ) 

= 1 - [5 1 ( t 1 ) 1 - e + 5 2 ( t 2 ) 1 - e - l ] T ^ 5 1 ( t 1 ) - e . 

Solving for S2(t2), we have 

5 2(i 2) = {[(1 - u)1^ - l]Si{ti)l-e + l } 1 ^ . (5.7) 

Now solve Equation 5.7 for t2. Let p2 denote 1 minus the right part of Equation 5.7 

equal p2. Then t2 is the p 2th quantile of the distribution function 1 — 5 2 . If S2 has 

a standard distribution say mean one exponential, then t2 =qexp (p2) in Splus. For 

nonstandard distributions, solve S2(t2) = 1 — p2 for t2 numerically. 

Thus, for given marginal survivor functions Si and S2 and the parameter 9, we can 

generate a random bivariate variable (Ti,T 2) = (ti,t2) satisfying the Clayton model by 

the following procedure. 
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1. Generate a random variable Ti = t\ according to Si, 

2. Calculate Si(ti); 

3. Generate a random variable U = it ~ f/(0,1) ; 

4. Calculate 

P2 = 1 - {[(1 - U)1-^ - l]Si{tif-6 + l } ^ ' j 

5. Solve S2(t2) = 1 — p2 for t2. 

Our choices of marginal distributions Si and S2 follow the proportional hazards and 

non-proportional hazards model as defined in Section 5.1. Figure 5.20 presents the 

plots of the correlation coefficients of Ti and T2 vs 9, where Tk has survivor function Sk, 

k = 1,2 In our simulation studies, we consider these models with 9 = 1,9 = 1.5, and 

2.5. When 9 = 1, Ti and T2 are independent. 

5.3.2 Proportional Hazards Model 

We present our simulation results for the proportional hazards model in this section. 

We address the effect of the correlation level and the comparisons of the Cox, Same 

Knots, and Different Knots estimates of the log hazards ratio. Recall that the Cox 

estimate assumes that 9 = 1. Since we had studied the effect of the censoring rate on 

the estimates of log hazards in the univariate case, we only present the results for 25% 

censoring here and give the results for 50% censoring in the Appendix. 

Figure 5.21 shows the histograms of the two marginals and the non-censored failure 

times. We can see that there are very few non-censored observations larger than 150. 

For the same reason as in the univariate case, we only plot results in the the Proportional 

Hazards model up to time 150. 
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First we look at the plots of the pointwise quartiles and average of the 500 estimated 

log hazards ratios in Figure 5.22. Comparing them with the true log ratio, we find that 

the estimates from the Cox method have the smallest bias, as we expected. The plots 

show that at time values within the range of knots, the biases of the estimates from the 

Same Knots method and the Different Knots method are almost the same except that 

the estimates from the Different Knots method have bigger bias at time zero. It looks 

like the correlation level does not affect the Same Knots and Different Knots estimates 

too much. But it is interesting to see that the estimates from the Cox method have the 

smallest bias when 9 = 1.5. 

Then we look at the plots of the pointwise standard deviations of the 500 estimated 

log hazards ratios in Figure 5.23. We see that the estimates of the log hazards ratio 

from the Cox method have the smallest variability. There is no big difference between 

the variabilities of the estimated log hazards ratio from the other two methods. We 

compare Figure 5.23 with Figure 5.16, which shows the variability of the marginal log 

hazards. It seems that near time 0 the variabilities of the estimated log hazards ratio 

with the Same Knots and Different Knots methods are similar to the variabilities of the 

estimated marginal log hazards. 

When we compare the estimated standard errors with the pointwise standard de­

viations in Figure 5.23, we find that the estimates of the standard error from the Cox 

methods have the smallest bias when 9 is 1 and 1.5, that is when the paired data are 

independent or only slightly correlated. But when 9 is 2.5, the estimated standard errors 

from the other two methods have smaller bias than the Cox method. The reason for 

the increasing bias of the estimated standard errors from the Cox method might be the 

violation of the assumption of independence of the two failure times. Over all three cor­

relation levels, the biases of the estimated standard errors from the Same Knots method 

and the Different Knots method are very close to each other. 
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When we look at the plots of the quantiles of the pointwise z values of the estimated 

log hazards ratios, Figure 5.24, we note that the estimated log hazards ratios from the 

Cox method are more reliable than the estimates from the other two methods, and the 

best case for the Cox method is when 9 = 1.5. For the Same Knots and Different Knots 

methods, the reliability of the estimates of the log hazards ratio is fairly good when time 

t is between 5 and 70, which is about the range of the knots. Once more the reliability 

of the estimates from the Same Knots and Different Knots methods does not depend on 

the correlation levels, which does not surprise us because our estimated standard errors 

take the correlation into account. 

Finally, we test the hypothesis that the failure times have proportional hazards 

by first estimating the two log hazards using the Same Knots method. We then test 

Pij ~ 02j = 0, j = 1, 2, 3,4, 6, as indicated in Section 3.5.2. Using the x 2 test statistics 

discussed in Section 3.5.2, we can calculate p-values for the test. 

We look at Figure 5.25, the plots of the empirical distributions of the p-value for 

testing that the failure times have proportional hazards. The null hypothesis is rejected 

far more than we expected. We expected each plot would be a straight line since the 

null hypothesis is true and the p-value should be uniformly distributed. An interesting 

result is that the distribution curve is closest to the line y = x when the data are highly 

correlated (9 = 2.5). 

Through the simulation results, we would like to say that for the data as in the 

proportional hazards model, the Cox method works well. The performance of the Same 

Knots and Different Knots methods is reasonable. The estimated standard errors from 

all three methods are good but those from the Cox model deteriorate as 9 increases. 
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5.3.3 Non-proportional Hazards Model 

Figure 5.26 shows the histograms of the two marginals and the non-censored failure 

times for the data from the non-proportional hazards model. As with the proportional 

hazard model, we only plot results in the the non-proportional hazards model up to 

time 150. 

First we look at Figure 5.27, the plots of the true log ratio and the pointwise quantiles 

and average of the 500 estimated log hazards ratios. As we expected, the Cox method 

does not work. The estimates from the other two methods are very close. These es­

timates have smallest bias when the data are independent. But it is hard to see any 

difference between 9 = 1.5 and 9 = 2.5. 

Next we look at Figure 5.28, the plot of the pointwise standard deviations of the 500 

estimated log hazards ratios and the pointwise quartiles and mean of the 500 estimated 

standard errors. Since the Cox method does not work for estimating log hazards ratios 

for the non-proportional hazards data, we only discuss the results from the other two 

methods here. We find that the pointwise standard deviations from the Same Knots 

method are a little bit bigger than those from the Different Knots method. But the 

standard deviation from the Different Knots method has a bigger jump at t — 0. When 

we look at the variability of the estimated standard errors, we find that the bias difference 

between the Same Knots method and the Different Knots method is very small within 

the range of knots. The standard errors from the Same Knots and Different Knots 

methods are too small for t > 70. The Different Knots method performs slightly better 

in this range. The bias and the variability of the estimated standard errors do not 

depend on the correlation level of the paired data. 

We also check the plots of the quantiles of the pointwise z values of the estimated log 

hazards ratios from the three methods, Figure 5.29. Those plots show that the quantile 

curves for the Same Knots and Different Knots methods mainly lie in the range (—2, 2) 
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with the best performance when the data are independent. It is not surprising that the 

Cox method performs poorly since the failure times do not have proportional hazards. 

Now we consider testing the hypothesis that the failure times have proportional 

hazards. The test procedures are the same as those we used for the data sets from 

the proportional model in Section 5.3.2 When we look at the plot of the empirical 

distributions of the p-values, Figure 5.30, we find that the test power is not high but 

the lowest power is when 6 = 1. 

5.3.4 Effect of the Number of Knots 

In this section we study how the number of knots used in each simulation affects the 

estimates of the log hazards ratios and the standard errors. The data sets are generated 

as in the proportional hazards model and the non-proportional hazards model. For the 

data set from proportional hazards model, we use three, six, and nine knots to estimate 

the marginal hazards of T\ and T 2. For the data generated from the non-proportional 

hazards model, we use three, six, and nine knots for failure time T\ but only three knots 

for T 2. For the data from proportional hazards model, the true hazard of T 2 has three 

knots, see (5.5). In contrast, for the data from non-proportional hazards model, T 2 is 

exponentially distributed. As we found in the univariate simulation (Section 5.2), heft 

will rarely choose more than three knots to fit this exponential. Therefore, we do not 

need to study fits with more than three knots. 

The simulation results are as we expected, that is, the more knots, the smaller the 

bias of the estimates but the bigger the variability of the estimates. We show the results 

in Figures 5.31 to 5.37. From those graphs we find that the estimates of the log hazard 

ratio by using three knots have the smallest variability but the biggest bias. There is 

no big difference in bias between using six knots and using nine knots but the estimates 

using nine knots have the biggest variability. 
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When we look at the estimated standard errors, we find that the estimates using six 

knots have the smallest bias and variability. 

Figures 5.39 to 5.42 show the plots of the quantiles of the pointwise z values of the 

estimated log hazards ratios from the three methods. It can be seen that the performance 

of the estimates using six knots is similar to those with nine knots and superior to those 

using three knots. 

Figures 5.43 and 5.44 present the p-values to test that the two failure times have 

proportional hazards for the data as in the proportional model and non-proportional 

model, respectively. We find that, for both data sets, the number of knots does not 

effect the test too much but the test performs better when Ti and T 2 are dependent 

than when Ti and T 2 are independent. 

Overall, for the data generated as in the proportional hazards and non-proportional 

hazards models, using six knots seems better than using three knots or using nine 

knots. Of course, the value of six may also depend on the sample size and the true data 

distribution. 

5.4 Summary of Simulations 

Through this simulation study, we find the following. 

In the univariate case: 

1. With all the estimation methods, the estimates of the log hazard perform well 

within the range of knots used. However, if the range of knots is large, the Flexi­

ble Knots method might cause some numerical calculation problems in estimating 

the log hazards and in calculating standard errors. 

2. With the Quantile Knots method, the estimates of standard errors perform well 
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except that they slightly underestimate the variability of the estimated log haz­

ards when the censoring rate is high. 

3. The censoring rate affects the bias and variability of the estimated log hazards. 

The smaller the censoring rate, the better the estimates. 

4. For all marginal models, the True Model method gives the best estimates for the 

log hazards. 

5. The estimates using three knots look a little bit better than those using six knots 

for the data generated as in the exponential distribution (5.2) and the Weibull 

distribution (5.3). But for the data generated as in the B-spline model (5.4), the 

estimates with six knots look more reliable. 

6. The Flexible Knots method gives better estimated log hazards than other meth­

ods when the ratio of the largest knot to the smallest knot is not too big. Other­

wise calculation of the estimated standard errors and the estimated log hazards 

causes numerical problems. 

7. The test procedures for testing that the failure times follow an exponential and 

Weibull distribution perform well. 

In the bivariate case: 

1. With the Same Knots and Different Knots estimation methods, the estimates of 

the log hazards ratio perform well within the range of knots used. There is not 

a big difference between the estimates from the two estimation methods. 

2. For the data with proportional hazards, the Cox method gives the least-biased 

estimates of the log hazards ratios when the failure times are independent. For 

the data from the non-proportional hazards model, the Cox proportional model 

does not work at all. 

89 



3. The test that the failure times have proportional hazards does not perform well. 

We expect a bigger sample size might improve the test procedure. 

4. The correlation levels do not affect the estimated log hazards ratios too much. 

But they affect the test that the failure times have proportional hazards. The 

test has the lowest power when the two failure times are independent. Further 

simulations are required to better understand the effects of correlation. 

In this simulation we also check the test procedures for the hypothesis that the two 

failure times have the same distribution. But there are some numerical problems when 

we calculate p-values. We do not present the result here. 

One more thing we would like to point out is that our estimated formulae for the 

standard errors assume for non-random knots. The procedures used in our simulations 

have random knots except for the True Model method in the univariate case. So this 

might be a reason that the estimated standard errors are a bit small. 
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Figure 5.1: The histograms of the simulated failure times, censoring times, non-censored 

failure times, and observed censoring times for exponential data as in model (5.2). 
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Figure 5.2: Log hazard of the exponential distribution (5.2) and the pointwise quartiles 

and empirical mean of the 500 estimated log hazards. 
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Figure 5.3: The pointwise standard deviations of the estimated log hazard for the expo­

nential model (5.2) and the pointwise quartiles and empirical mean of the 500 estimated 

standard errors. 
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Figure 5.4: The quantiles of the pointwise z values of the estimated log hazards for the 

exponential distribution (5.2). 
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Figure 5.5: Histograms and qq-plots of the normalized estimate of 3 from the Quantile 

Knots methods with three knots for the exponential model (5.2). 
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Figure 5.6: Empirical distribution functions of the p-values for testing that the failure 

times are exponentially distributed. 
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Figure 5.7: The histograms of the simulated failure times, censoring times, non-cen 

failure times, and observed censoring times for Weibull data as in model (5.3). 
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Figure 5.8: Log hazard of the Weibull distribution (5.3) and the pointwise quartiles and 

empirical mean of the estimated log hazards. 
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Figure 5.9: The pointwise standard deviations of the estimated log hazards for the 

Weibull distribution (5.3) and the pointwise quartiles and empirical mean of the 500 

estimated standard errors. 
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Figure 5.10: The quantiles of the pointwise z values of the estimated log hazards for the 

Weibull model (5.3). 

100 



8 , s 
s • s 
8 • S 

-3 -2 - 1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 - 1 0 1 2 3 

&4 (5 f6 

Figure 5.11: The histograms and the qq-plots of the standardized estimates of the 

parameter 3 from the method 5.1 with six knots for the Weibull model (5.3). 
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Figure 5.12: Empirical distribution functions of the p-values for testing the hypothesis 

that the failure time distribution is exponential. 

102 



c = 0.25 c = 0.5 

p-values 

y = x 

Figure 5.13: Empirical distribution functions of the p-values for testing that the failure 

times have a Weibull distribution. 
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Figure 5.14: The histograms of the simulated failure times, censoring times, non-

censored failure times, and observed censoring times for the data as in the B-spline 

model (5.4). 
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Figure 5.15: Log hazard of the the B-spline data as in model (5.4) and the pointwise 

quartiles and empirical mean of the estimated log hazards. 
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Figure 5.16: The pointwise standard deviations of the estimated log hazards for the 

B-spline model (5.4) and the pointwise quartiles and empirical mean of the estimated 

standard errors. 
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Figure 5.17: The quantiles of the pointwise z values of the estimated log hazards for the 

B-spline model (5.4). 
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Figure 5.19: Empirical distribution functions of the p-values for testing the hypothesis 

that the failure times have a Weibull distribution. 
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Figure 5.20: The plots of the correlation coefficients versus 6 for the data as in the 

proportional hazards and non-proportional hazards models 
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Figure 5.21: The histograms of the marginal failure times, and non-censored marginal 

failure times for the data generated according to the proportional hazards model in 

Section 5.1. The censoring rate for the "treatment" is 25%. 
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Figure 5.22: The true log hazards ratio of the data from the proportional hazards 

model defined in Section 5.1 and the pointwise quartiles and empirical mean of the 500 

estimated log hazards ratios. 
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Figure 5.23: The standard deviations of the estimated log hazards ratio for data gen­

erated according to the proportional hazards model. The censoring rate is 25% for the 

"treatment". 
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Figure 5.24: The quantiles of the pointwise z values of the estimated log hazards ratio 

for the data generated according to the proportional hazards model. The censoring rate 

is 25% for the "treatment". 
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Figure 5.25: Empirical distribution functions of the p-values for testing the hypothesis 

that the two failure times of the data generated as in the proportional hazards model 

in Section 5.1 have proportional hazards. 
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Figure 5.26: The histograms of the marginal failure times, and the non-censored 

marginal failure times for the data from the non-proportional hazards model in Sec­

tion 5.1. The censoring rate for the "treatment" is 25%. 
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Figure 5.27: The true log hazards ratio of the data from the non-proportional hazards 

model defined in Section 5.1 and the pointwise quartiles and empirical mean of the 

estimated log hazards ratios. 
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Figure 5.28: The standard deviations of the estimated log hazards ratio for data gen­

erated according to the non-proportional hazards model. The censoring rate is 25% for 

the "treatment". 
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Figure 5.29: The quantiles of the pointwise z values of the estimated log hazards ratio 

for the data generated according to the non-proportional hazards model. The censoring 

rate is 25% for the "treatment". 
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Figure 5.30: Empirical distribution functions of the p-values for testing the hypothesis 

that the two failure times of the data generated as in the non-proportional hazards 

model in Section 5.1 have proportional hazards. 
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Figure 5.31: The true log hazards ratio of the data from the proportional hazards model 

defined in Section 5.1 and the pointwise quartiles and empirical mean of the estimated 

log hazards ratios by the Same Knots method. 
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Figure 5.32: The true log hazards ratio of the data from the proportional hazards model 

defined in Section 5.1 and the pointwise quartiles and empirical mean of the estimated 

log hazards ratios by the Different Knots method. 
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Figure 5.33: The true log hazards ratio of the data from the non-proportional hazards 

model defined in Section 5.1 and the pointwise quartiles and empirical mean of the 

estimated log hazards ratios by the Same Knots method. 
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Figure 5.34: The true log hazards ratio of the data from the non-proportional hazards 

model defined in Section 5.1 and the pointwise quartiles and empirical mean of the 

estimated log hazards ratios by the Different Knots method. 
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Figure 5.35: The standard deviations of the estimated log hazards ratio by the Same 

Knots method for data generated according to the proportional hazards model. The 

censoring rate is 25% for the "treatment". 
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Figure 5.36: The standard deviations of the estimated log hazards ratio by the Different 

Knots method for data generated according to the proportional hazards model. The 

censoring rate is 25% for the "treatment". 
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Figure 5.37: The standard deviations of the estimated log hazards ratio by the Same 

Knots method for data generated according to the non-proportional hazards model. The 

censoring rate is 25% for the "treatment". 
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Figure 5.38: The standard deviations of the estimated log hazards ratio by the DifFerent 

Knots method for data generated according to the non-proportional hazards model. The 

censoring rate is 25% for the "treatment". 
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Figure 5.39: The quantiles of the pointwise z values of the estimated log hazards ratio 

by the Same Knots method for the data generated according to the proportional hazards 

model. The censoring rate is 25% for the "treatment". 
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Figure 5.40: The quantiles of the pointwise z values of the estimated log hazards ratio 

by the Different Knots method for the data generated according to the proportional 

hazards model. The censoring rate is 25% for the "treatment". 
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Figure 5.41: The quantiles of the pointwise z values of the estimated log hazards ratio 

by the Same Knots method for the data generated according to the non-proportional 

hazards model. The censoring rate is 25% for the "treatment". 
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Figure 5.42: The quantiles of the pointwise z values of the estimated log hazards ratio 

by the Different Knots method for the data generated according to the non-proportional 

hazards model. The censoring rate is 25% for the "treatment". 
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Figure 5.43: By the Same Knots method empirical distribution functions of the 

values for testing the hypothesis that the two failure times of the data generated as 

the proportional hazards model in Section 5.1 have proportional hazards. 
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Figure 5.44: By the Same Knots method empirical distribution functions of the p-values 

for testing the hypothesis that the two failure times of the data generated as in the non-

proportional hazards model in Section 5.1 have proportional hazards. 
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Chapter 6 

Conclusion 

In this thesis a flexible parametric model, log hazard regression model for paired censored 

failure times, is proposed. In this model B-splines are used to estimate the log hazards 

of marginal failure times and the log hazards ratio of the two failure times. Consistent 

estimates of the standard errors for the estimated marginal log hazards and the log 

hazards ratio are presented as well. Based on this model we propose test procedures for 

the four hypotheses that the marginals follow an exponential or Weibul l distributions 

and that the two failure times have the same distribution or have proportional hazards. 

A simulation study indicates that when the censoring rate is not too high, the esti­

mates of the log hazards and the log hazards ratio perform well wi thin the range of the 

knots used and the estimates of standard errors for the estimated log hazards ratio are 

good, but a little bit small. This underestimation is bigger at time zero. 

The simulation study also shows that the tests that the marginal failure times follow 

an exponential or Weibul l distribution perform very well. B u t the test for the hypotheses 

that the two failure times have proportional hazards or have the same distribution tend 

to over-reject the null hypothesis when the null hypothesis is true. Also, the test is not 
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powerful. 

The model was applied to the Diabetic Retinopathy Study data to assess the ef­

fectiveness of laser photocoagulation in delaying the onset of blindness for diabetic 

retinopathy patients. The conclusion of the analysis with the log hazard regression 

model agrees with those from the standard parametric models fitted by Huster et. al 

(1989), that is, there is a significant laser photocoagulation treatment effect. We use 

the log hazard model to test the hypothesis that the failure times of the treated eye 

and untreated eye have an exponential or a Weibull distribution. The test results indi­

cate that there is significant evidence to reject the hypotheses that the failure time of 

the treated eye follows either exponential or Weibull distribution. The test results also 

show that there is significant evidence to reject that the failure time of the untreated eye 

follows an exponential distribution. But the test that the failure time of the untreated 

eye follows a Weibull yields a marginal result. The p-value is 0.053. The p-value for 

testing the hypothesis that the failure times of the treated eye and the untreated are 

proportional hazards is very high, 0.25. This, along with the tendency of the test to 

over-reject (see Section 5.3), indicates that it is reasonable to assume that the failure 

times of the treated eye and the untreated eye have proportional hazards. This result 

supports the analysis of Huster et. al. (1989). 

We note that knot selection is a basic step to use the log hazard regression model. 

The simulation study shows that our Quantile Knots procedure performs well when 

the censoring rate is not too high. Even when we restrict the range of the knots, the 

estimates are fairly reliable within the range of the knots used. 

We can not always choose knots using Kooperberg et. al's stepwise addition and 

stepwise deletion method, since the chosen knots often cause numerical problems (see 

Section 5.2). However, the knots they selected will give us some indication of the number 

and the location of the knots that should be used. From the experience of our simulation, 
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we give the following suggestions for using the log hazard regression models to analyze 

paired data: 

1. Use the heft algorithm to choose a set of knots for each failure time as we men­

tioned in Section 3.4. If there is no warning message from the heft code and the 

calculation of estimated standard errors can be performed, then use the Different 

Knots method to estimate the log hazards ratio with the two sets of knots. If 

there is any warning message or the calculation of the estimated standard errors 

is impossible for one or both failure times, choose the knots for the one or both 

failure times by the quantiles method as we discussed in Section 3.4. Use the 

number of knots used by heft. 

2. Test for exponential or Weibull. Fit the data with the log hazards model decided 

by the selected knots above. Then use the methods we mentioned in Section 3.5, 

to test if the marginals have exponential or Weibull distributions. If they do have 

those standard parametric distributions, use those distributions for modeling the 

marginal failure times. 

3. To test proportional hazards, choose one set of knots for the two failure times. 

Use the quantiles of the non-censored failure times as discussed in Section 3.4. 

The number of knots should be between max{iT1, K2} and Kx + K2, where Kx 

and K2 are the numbers of of knots selected by heft for Ti and T 2, respectively. 

Then use the method given in Section 3.5 to test whether the two failure times 

have proportional hazards. 

From the definition of our log hazard regression model, we can generalize the model to 

multivariate censored survival data easily. We also can include covariates in this model. 

If we assume that the effects of covariates are independent of time, then the calculation 

of the estimates is straightforward based on the heft algorithm. We can model the 
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log hazard as a function of time plus a function of the covariate. If the effects of the 

covariates are dependent on time, then the log hazard would be modeled as a bivariate 

function of time and the covariate. However, the calculations of the estimates would be 

more complicated. To simplify calculations somewhat, Kooperberg et. al. modeled this 

bivariate function using linear B-spline and their tensor products. 

There are some unanswered questions. First, why is the variability of the estimate 

of log hazard or log hazards ratio big at time zero? We might reduce the problem if 

we restrict the B-spline functions to be constant between zero and the smallest knot. 

Second, how do we choose the range of knots? As we see from our simulations, the 

estimates perform better within the range of the knots than outside of the range. We 

need more simulations to find a better way to determine the range of knots. Third, why 

do the test procedures for testing that the failure times have proportional hazard or have 

the same distribution work poorly, while the test procedures for testing that marginal 

failure times follows an exponential or Weibull distribution work well? We expect that 

a big sample size might improve the behavior of the test procedure. Finally, why does a 

high correlation level yield a better test for testing that failure times have proportional 

hazards? We need more simulations to understand the effect of the correlation level. 
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Appendix A 

Simulation Results for Bivariate 

Data with 50% Censoring 

Figures A . l to A . 10 show the simulation results for the proportional and nor-proportional 

data generated as in the Section 5.1 with 50% censoring. 
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Figure A . l : The histograms of the marginal failure times, and non-censored marginal 

failure times for the data generated according to the proportional hazards model in 

Section 5.1. The censoring rate for the "treatment" is 50%. 
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Cox Same Knots Different Knots 
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Figure A.2: The true log hazards ratio of the data as in the proportional hazards 

model defined in Section 5.1 and the pointwise quartiles and empirical mean of the 500 

estimated log hazards ratios. 
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Cox Same Knots Different Knots 
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Figure A.3: The standard deviations of the estimated log hazards ratio for data gener­

ated according to the proportional hazards model. The censoring rate is 50% for the 

"treatment". 
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Cox Same Knots Different Knots 

Median 

Upper and lower quartiles 
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Figure A.4: The quantiles of the pointwise z values of the estimated log hazards ratio 

for the data generated according to the proportional hazards model. The censoring rate 

is 50% for the "treatment". 
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p-values 

y = x 

Figure A.5: Empirical distribution functions of the p-values for testing the hypothesis 

that the two failure times of the data generated as in the proportional hazards model 

in Section 5.1 have proportional hazards. 
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Figure A.6: The histograms of the marginal failure times, and the non-censored marginal 

failure times for the data from the non-proportional hazards model in Section 5.1. The 

censoring rate for the "treatment" is 50%. 
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Cox Same Knots Different Knots 
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Figure A.7: The true log hazards ratio of the data as in the non-proportional hazards 

model defined in Section 5.1 and the pointwise quartiles and empirical mean of the 500 

estimated log hazards ratios. 
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Cox Same Knots Different Knots 
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Figure A.8: The standard deviations of the estimated log hazards ratio for data gener­

ated according to the non-proportional hazards model. The censoring rate is 50% for 

the "treatment". 
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Figure A.9: The quantiles of the pointwise z values of the estimated log hazards ratio 

for the data generated according to the non-proportional hazards model. The censoring 

rate is 50% for the "treatment". 
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Figure A. 10: Empirical distribution functions of the p-values for testing the hypothesis 

that the two failure times of the data generated as in the non-proportional hazards 

model in Section 5.1 have proportional hazards. 

152 


