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Abstract 

Since the advent of generalized floating exchange rates in 1973, the 

behavior of exchange rate movements has become an extremely challenging 

research area. Given the importance of a good understanding of foreign ex­

change rate dynamics in international asset pricing theories, international port­

folio management and policy-oriented questions of an open economy, it is not 

surprising that exchange rate economics has been the subject of many investi­

gations during the past two decades. Recent research indicates that standard 

linear macroeconomic models generally fail to improve upon the simple random 

walk model in out-of-sample forecasting. We present an empirical study (based 

on over 20 years of monthly data) of several models with dynamic state struc­

ture to forecast the foreign exchange rates of seven major currencies. A s part 

of our study, we also employ various measures and visualization techniques to 

evaluate the performance of our candidate models in terms of expectation and 

risk forecastability. In addition to the commonly used statistical measures, 

we compare the models in seemingly practical situations. The performance 

measurement methodology for risk management is based on the concept of 
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Value-at-Risk. The general conclusion of our study is that the performance 

of the forward rate model tends to be dominative. Our dynamic models are 

still not able to outperform the simple random walk for most of the studied 

exchange rates when performance is based upon the statistical measures; how­

ever, the simple random walk may not be unbeatable when performance is 

gauged from a practical point of view. 
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Chapter 1 

Introduction 

As the Bretton Woods system fell in the early 1970s, the direct link of cur­

rencies to a gold standard with fixed parities exploded, and the international 

monetary system progressively evolved toward a system of floating exchange 

rates. Under the current system, the price of each currency is determined by 

the market forces, and thus, macroeconomic interdependence has markedly 

increased. External events, such as oil crises, trade deficits, bank failures and 

debt defaults, often lead to excessive exchange rate movements, which in turn, 

cause substantial changes in terms of trade and international competitiveness. 

The inter-playing relationship between exchange rate movements and 

the health of an open economy makes exchange rate modeling and forecasting 

an interesting but yet challenging subject. A wide range of theoretically ap­

pealing models have arisen to explain the floating exchange rate experience. 

These models are mainly developed with the monetary theory of exchange 
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rates. Its basic rationale is that since an exchange rate is the price of one 

country's money in terms of that of another, it is essential to analyze the de­

terminants of the price in terms of the outstanding stocks of and the demand 

for the two monies. More explanation of the monetary theory wi l l be given in 

Section 2.2. However, research indicated that these popular macrofundamen-

tal models generally failed to improve upon the naive random walk model over 

out-of-sample period; for example, Meese and Rogoff (1983). Murray (1997) 

concluded in his summary report for the Bank of Canada Conference that 

the application of standard linear models, relating exchange rate movements 

to macroeconomic fundamentals, had been shown to be incapable of explain­

ing the foreign exchange dynamics, especially over short time periods. Some 

reported causes of the failure included improper functional form and time-

deformation. Meese and Rose (1991) employed a non-parametric procedure to 

study the dependence of monthly exchange rates on key macroeconomic funda­

mentals for the five major O C E D countries. Their findings suggested that poor 

performance of the models cannot be attributed to nonlinearities. Some re­

searchers adopted a linear structure for exchange rate modeling but advocated 

dynamic structure for state parameters over the floating period. They believed 

that changes in market atmosphere, such as policy regime, introduced instabil­

ity to the system of the exchange rate models, and therefore, the relationship 

may only be adequately mirrored by allowing changes in model parameters 

from time to time. Researchers worked along this direction included Wolff 

(1987), Schinasi and Swamy (1989), and L i u and Susko (1992). Wolff (1987) 
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and Schinasi and Swamy (1989) studied the "time-varying" parameter ( T V P ) 

models; L i u and Susko (1992) studied a model with "parameter-shifting" sig­

naled by an indicator variable. More detailed discussions of their studies w i l l 

be presented in Section 2.3. 

In our study, we adapt several dynamic models to forecast exchange 

rates and then compare their forecasting performance wi th those of the simple 

random walk and the forward rate model. Two of our models replicate the 

ideas from Wolff (1987) and L i u and Susko (1992). A l l of the candidate models 

are structured to deal with non-homogeneous relationships. They share a sim­

ple linear functional form as their basic equations for observations but differ 

in their setups for system equations. The linear observation equation relates 

exchange rate to its 1-month lagged rate and an interest rate index. Details 

of the model specification can be found in Section 3.2. Except for simplicity, 

one reason for narrowing down the list of many conventional macroeconomic 

fundamentals to that of only the interest rate is that, among all the variables, 

interest rate quotes are always closely observed by exchange market partici­

pants, and thus, it is often included as a factor in most of the macroeconomic 

models for explanatory purpose. In fact, this simple structure is implied in 

the forward rate model. The forward rate model, when combined wi th the 

international parity, is a model of relating foreign exchange rate to interest 

rate differential. Other reasons include poor availability and inconsistency of 

data as observed in the series of money supplies. 
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There is a subtle difference between the forward rate model and our 

models even though they al l consider the interest rate as the only determinant 

for exchange rate movements. The forward rate model looks at the interest 

rate difference between the two countries involved, while our models try to 

use the interest rate variable in a broader sense. L i u and Susko (1992) first 

suggested that exchange rate movements may be determined by more than 

the two countries under investigations as international tradings are becoming 

more frequent, and economies are globalizing. They combined the interest rate 

differentials of the major trading partners in the world, the G-7 countries 1, to 

construct an effective principal index. We follow this idea to construct an ef­

fective interest rate index to determine the foreign exchange movements. 

The purpose of our study is not simply to study the different candidate 

models but also to present the different subtleties in evaluation of models. Our 

evaluation method is divided into two aspects: the forecastability in expecta­

tion and the ability in risk management. In addition to the common statistics 

of mean error, mean absolute error and mean squared error, we compare the 

models on the basis of "buy-sell" signals generated from their forecasts of ex­

pected values. Moreover, we look at returns generated from a forward trading 

strategy guided by the forecasts. In the context of risk management, evalua­

tion is based upon two portfolios with opposing positions — long and short on 

1As a group, the G-7 countries, including Un i ted States, Canada , Un i ted K i n g d o m , 
Italy, France, Germany, and Japan, account for a large port ion of total world trade and 
international f inancial flows. 
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the US dollar against another currency, i.e., buy in and sell off the US dollar 

for another currency. The monitors are the exceedence frequency and the Lopez 

loss function. 

To demonstrate how the implementation of a dynamic system works in 

exchange rate forecasting, we analyze our candidate models for the following 

six key United States Dollar (USD) nominal bilateral exchange rates: 

Br i t i sh Pounds ( G B P ) 

French Francs ( F R F ) 

German Marks ( D E M ) 

Italian L i r a ( ITL) 

Canadian Dollar ( C A D ) 

Japanese Yen ( J P Y ) 

The exchange rate data are monthly prices for the value of 1 US Dollar . The 

first price of each of the six series refers to December 1972, the beginning of the 

floating experience, and the last price refers to December 1998. The bank rate 

is used as a proxy for the interest rate which is defined by the International 

Monetary Fund ( IMF) as "the rate at which the monetary authorities lend or 

discount eligible paper for deposit money banks." A l l of the exchange rate 

and interest rate series are obtained from the International Financial Statistic 

(IFS) released by the International Monetary Fund ( IMF) and are cited as the 

5 



end-of-month quotes. 

This thesis is organized as follows. We begin with a review of com­

mon foreign exchange parities, which is followed by an introduction of popular 

econometric models, and system equations applied in the modeling. We then 

discuss the two important modeling ideas in our study: the principal effective 

index of interest rate differentials and the dynamic state structure. The ap­

propriateness of implementing a dynamic state structure is justified through 

the use of graphical tools. A detailed specification of our models is given in 

Chapter 3 . The different subtleties in evaluation of our models and the results 

of model comparisons are presented in Chapter 4 , along with a discussion of 

the nature of each measure. In Chapter 5 , we conclude with reports of our 

general findings, and summarize some innovations and recommendations for 

our study. 
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Chapter 2 

Review of Exchange Rate 

Economics and Models 

This chapter gives a brief literature review of empirical models and dynamic 

system equations used in exchange rate determination. To be complete, we 

devote the first section to introduce common, simple parity conditions relating 

to foreign exchange rates. These relations are important in providing some of 

the basic building blocks for many of the current models. 

2.1 Foreign Exchange Parity Relations 

Given the complexity of multicurrency environment, it is useful to start under­

standing foreign exchange behavior by understanding the interlink of various 

domestic and foreign monetary variables. Before presenting some of the basic 

models for exchange rate determination in the next section, we shall recall 
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well-known international parity conditions l inking domestic and foreign mon­

etary variables: inflation rates, interest rates, and foreign exchange rates. The 

common theoretical parity relations are: 

1. the purchasing power parity relation, l inking spot exchange rates and 

inflation; 

2. the international Fisher relation, l inking interest rates and inflation; 

3. the foreign exchange expectation relation, l inking forward exchange rates 

and expected spot exchange rates; 

4 . the interest rate parity relation, l inking spot exchange rates, forward 

exchange rates and interest rates. 

These economic concepts create a useful framework in which to analyze the 

international interplay of the monetary variables. A brief review of these 

theoretical relations is given below. A t this point, it is convenient to establish 

the following notational conventions: 

• So is the spot exchange rate, expressed as the foreign price of one unit 

of the domestic currency, at the start of the period, 

• 5 i is the spot exchange rate at the end of the period, 

• s = ^ 1 ~ o

S ° ^ is the exchange rate movement, 

• IF (rF) is the inflation (interest) rate, over the period, in the foreign 

country, 
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• ID {I'D) is the inflation (interest) rate, over the period, in the domestic 

country, 

• F is the forward exchange rate, quoted at the start of the period for 

delivery at the end of the period, 

• / = ^Fg^ is the forward discount, or premium. 

P u r c h a s i n g P o w e r P a r i t y ( P P P ) states that the spot exchange rate ad­

justs perfectly to the price level or inflation difference between two countries. 

Intuitively, it says that same goods should be worth the same in different 

countries. There are two versions of P P P : absolute P P P and relative P P P . 

Absolute P P P says that the real price of a good must be the same in al l 

countries; relative P P P focuses on the general across-the-board inflation rates 

in two countries and claims that the exchange rate movement should exactly 

offset any inflation differential. In its relative form, the P P P can be expressed 

as 

Si = (l + IF) 

S0 (1 + IDV 

or, by first-order approximation, 

(Si - So) ! 

s = 5 « IF - ID-

-->o 

I n t e r n a t i o n a l F i s h e r R e l a t i o n states that the interest rate differential 

between two countries should be equal to the expected inflation rate differential 

over the term of the interest rate, under the assumption of equal real interest 

9 



rates across the world. As long as the expectations exist, the relation can be 

expressed as 

(1 + rF) = (1 + E ( / F ) ) 
(l + rD) (1 + E(ID)Y 

Again, by linear approximation, it becomes 

rF-rD^E(IF)-E(ID). 

F o r e i g n E x c h a n g e E x p e c t a t i o n s states that the forward exchange rate is 

the rational, expected value of the future spot exchange rate in a risk-neutral 

world. It is equivalent to 

F = E(Sl) or f = E(s). 

In te res t R a t e P a r i t y states that the interest rate differential must equal 

approximately to the forward discount, or premium, i.e., / « rF — ro- This 

equation is the first-order linear approximation of the exact relation, expressed 

mathematically as 

F_ _ (l + rF) 
s0~(i + rDy 

The interest rate parity is not an economic theory but rather a technical ar­

bitrage condition, which must hold under the assumption of no riskless arbi­

trage opportunity. Even though deviations from the interest rate parity can 

be quite large for the closed and less-developed countries, it is verified on free 
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money markets, and the continuing international integration of financial mar­

kets throughout the world is certain to reduce the deviations in the near future. 

Except for the interest rate parity, empirical supports for the other 

parities are poor, especially over the short term period. In spite of the em­

pirical invalidity, we sti l l gain from the parity conditions a rough idea of the 

interrelations between the monetary variables and, more importantly, several 

implications about the exchange rate movements: 

1. Interest rate differentials reflect expectations about currency movements. 

(Foreign Exchange Expectations and Interest Rate Parity) 

2 . Exchange risk reduces to inflation uncertainty. (Purchasing Power Par­

ity) 

2.2 Some Exchange Rate Models 
The behavior of foreign exchange rate and its relationship wi th macroeconomic 

fundamentals, such as the monetary variables, have been subjects of many in­

vestigations. There are two common approaches used by fundamentalists 1 in 

foreign exchange rate determination: the balance of payments approach and 

the asset market approach. 

1 S o m e researchers resort to technical analysis, wh ich bases predict ions solely on the 
identif icat ion of supposedly recurr ing patterns i n graphs of exchange rate movements, rather 
than on economic theory. 
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The "balance of payments" is a cash balance statement of a country rel­

ative to the rest of the world; it tracks al l financial flows crossing the borders 

of a country during a given period. The balance of payments approach is tra­

ditional to foreign exchange rate determination which focuses on the relations 

between 'current' statement accounts and spot exchange rates. The more re­

cent approach is the asset market approach. It has a different viewpoint from 

the traditional balance of payments approach. The proponents of the asset 

market approach argues that exchange rates are determined by expectations 

about the future, not 'current' trade flows — exchange rates are affected by 

news and expectations about future economic prospects, rather than by in­

ternational flows, which have already been expected. It is this asset market 

approach that gives the fundamentals of our models. 

The simplest model falling under the category of the asset market ap­

proach is the forward rate model. It has the usual setup as 

log $ = l o g F t _ i + e t , 

where St is the spot rate at time t, and F t _ i is the forward rate quoted at t — 1 

for delivery at t. From the interest rate parity, we can see that 

l o g F t _ i = l o g S t - i + log( l + rFt-i) - log( l + rDt_x), 

where rFt_x and rDt_i are the respective foreign and domestic interest rates 

for the period between t - 1 and t. For small r , a Taylor approximation leads 

to log( l + r) « r . Hence the forward rate model is approximately 
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log St = logSt_i + ( r F t _! - rDt_x) + et. 

Other well-known asset market models include the monetary models and 

the portfolio balance models. These econometric models are often structured 

in accordance with economic theories. The origins of the monetary theory can 

be traced back to Lord Keynes in 1924, as discussed by Frenkel (1976). The 

basic rationale of the monetary models is that an exchange rate is determined 

by the outstanding stocks of and the demand for the two monies involved 

since it is the price of one currency in terms of another. Usually, the models 

are relied on the twin assumptions of the purchasing power parity ( P P P ) and 

the existence of stable money demand functions for the domestic and foreign 

economies. The demand for money is most often assumed to be of the Cagan 

functional form, see Cagan (1956): 

M I X v — = K exp{ -7 r \ y 

where M is the stock of money demanded, P is the price level, r is the rate 

of interest, y is the level of real income, and K, 7, and rj are parameters. The 

P P P condition is usually interpreted in the absolute manner as 

where PF and PD denote the foreign and domestic price levels, respectively. 

The exchange rate can then be determined by substitution and manipulation 

of the two equations giving 
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_ Mp Kp 
MD KF 

VD 

VF 
exp{-7(r£, - rF)}. 

To distinguish between the quantities of the foreign country and those of the 

domestic country, the subscripts D and F are imposed to represent the quan­

tities of the domestic and foreign countries, respectively. A log transformation 

finally leads to 

log S = (log MF - log MD) + (log KD - log K F ) + n(log yD - log yF) + 7(rF - rD). 

Assuming Kp = KF results in the flexible-price monetary model. Other 

variants of the monetary models include the sticky-price model (see Dornbusch 

(1976)) and the real interest differential model (see Frankel (1979)). The port­

folio balance model inherits the rationale of the monetary theory, but it also 

incorporates the "current account" of the balance of payments as a principal 

determinant of the exchange rates movements. For detailed discussion, see 

Al l en and Kenen (1980), Dornbusch and Fischer (1980), and Branson (1984). 

2.3 Dynamic System Equations 
Many different system equations have been applied to the different exchange 

rate models to test for their empirical validity. In their earlier paper, Meese 

and Rogoff (1983) used the simple regression to test the exchange rate models 

corresponding to the flexible-price and the real interest rate differential ap­

proaches. They compared the out-of-sample performance of their models to 
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the performance of the simple random walk model. The general conclusion is 

that none of the models outperforms the random walk. In a later paper, Meese 

and Rogoff (1984) reworked the results by imposing coefficient constraints in 

the estimation procedures, and they st i l l obtained a similar conclusion. 

Both techniques adopted by Meese and Rogoff share a characteristic 

— relations are assumed to be structurally homogeneous. However, exchange 

rate equations are unlikely to stay constant in the recent floating exchange 

rate experience. Parameter instabilities arise when there are changes in pol­

icy regime and heterogeneous beliefs by market participants. L i u and Susko 

(1992) studied the relation between their interest rate differential index and 

the exchange rate of Germany against the United States. Their results sup­

ported a 'piece-wise' linear functional pattern of which different linear forms 

present in different subdomains of the domain of an independent variable, and 

they modeled the relation by the segmented regression; for details, see L i u , 

W u and Zidek (1997). They argued that inordinately high or low values of 

certain explanatory variables triggered different kinds of actions from market 

participants, such as governments, central banks and investors, and thereby 

led to instable state structure. Better out-of-sample forecasts were obtained 

for the period studied; however, consistency of such a model with future data 

was questionable. 

The idea of implementing "time-varying" parameter ( T V P ) models as 
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preferred method for forecasting foreign exchange rates was considered by 

Wolff (1987) and Schinasi and Swamy (1989). The motivation was that de­

formation may be due to the effect of a number of factors, such as oi l crises 

and policy changes, that could not be explicitly included as independent vari­

ables. To accommodate potential regime shifts, Wolff (1987) adopt a random 

walk coefficient structure, which is a special case of the dynamic linear models 

( D L M ) 2 , for the reduced forms of the flexible-price and the real interest differ­

ential models. His examination suggested that no improvement over the the 

simple random walk model were obtained for most of the major currencies. 

Schinasi and Swamy (1989) reworked Wolff's results by using less restrictive 

parameter patterns, but yet not much achievements were gained. 

Multiprocess mixture models, originally developed by Harrison and 

Stevens (1971) and taken further by Gordon and Smith (1988, 1990), are also 

candidates to model a relationship subject to regime shifts and outliers. Some 

researchers have argued that a simple, single D L M may be inappropriate to 

model a relationship, which involves abrupt regime changes or outliers. In the 

cases of rapid discontinuous shifts in parameters or sudden outlying values, 

the simple D L M estimates for variances are undesirable and unrepresentative 

in the sense that they reflect average variability over time. O n the other hand, 

the mixture models run multiple D L M models in parallel to provide separate 

models for accommodating outlying observations, abrupt structural shifts in 

2 T h e dynamic linear model ( D L M ) was first suggested by Harr ison and Stevens (1976) 
and later refined by West and Harr ison (1989) 
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parameters, and steady states. They are more likely to capture regime shifts 

if they are abrupt. The mixture models have been employed to model many 

econometric relations, such as the relation of interest rates to weekly monies 

by LeSage (1992), and they may be applicable to model exchange rates. 

17 



Chapter 3 

Candidate Models 

This chapter is divided into two main sections. Before providing details of our 

models of exchange rates in Section 3.2, we devote the Section 3.1 to discuss 

the two important features of our strategy in exchange rate modeling. The 

first feature is the construction of an effective index; the other feature is the 

proposal of a dynamic state structure. 

3.1 Modeling Features 
In this section, we explain the construction of the effective principal index, and 

we also justify graphically the appropriateness of implementing the dynamic 

system. 
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3.1.1 Principal Effective Index 

When studying the quarterly prices of German marks against the United States 

dollars, L i u and Susko pointed out the weak relation between the exchange rate 

and the simple "between-the-two-country" interest rate differential and urged 

the use of a summary index of the "many-country" interest rate differentials. 

They proposed a way to construct an effective principal index for the summa­

rizing purpose. 

Similar to the index used by L i u and Susko (1992), our effective inter­

est rate index is a weighted average of the interest rate differences between 

the United States and the other six major industrial countries. We employ 

principal component analysis ( P C A ) to determine the weights assigned to the 

individual differentials. The procedure goes as follows. A t any given month t, 

we run a P C A on the 60 x 6 data matrix of the six interest rate differences 

corresponding to the period of the five most recent years from t. Then the 

loadings of the first principal component are treated as the weights for time 

t. The resulting index is a lively variable in the sense of having high variabil­

ity. Notice that the P C A is used as an explanatory tool, and the assumptions 

behind it are ignored. 

3.1.2 Dynamic State Structure 

In the paper of L i u and Susko (1992), a segmented regression, with the in­

terest rate index as the segmentation variable, was suggested to model the 
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observed V-shaped relationship between the exchange rate and the index. A s 

have mentioned in Section 2.3, this setup indicates that there is a shift in the 

coefficients, and the shift is signaled by extraordinary change in the interest 

rate index. W i t h our monthly data, we st i l l obtain a similar V-shape for the 

same studied period; however, the segmented form does not seem to confirm 

with the new updated data. We believe that there could be some factors other 

than the index triggering the shifting, and these factors might be difficult to be 

incorporate as explanatory variables. Moreover, we believe that the dynamics 

of the parameters may be accommodated v ia time-series. 

To explore the time series structure of the state parameters, we esti­

mate a sequence of coefficients from a sequence of successive data sets across 

time. To construct the sequence of data sets, we start with a fixed window 

size, in which sample is presumably structurally homogeneous, and extract a 

sample of that size to become the first element of the data sequence; then we 

successively slide the fixed window, one month at a time, across the time hori­

zon to form the whole sequence. Sequences of ordinary least square estimates 

of the coefficients are obtained from these successive samples. Several values 

for the window sizes have been tried. We provide the time-series plots for the 

5-year and 10-year windows in Appendix A . For the 5-year window, the first 

data element is the sample corresponding to the period between December 

1972 and December 1977; for the 10-year window, the first data element is the 

sample corresponding to the period between December 1972 and December 
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1982. From the plots, we could see that the dynamics of the state parameters 

are unlikely to be constant and in fact likely to be changing in some specific 

ways, possibly linearly or discontinuously, over time. The 5-year plots may 

suggest a random walk fashion for the state structure while the 10-year plots 

may suggest discontinuous shifts. There may be abrupt structural shifts in 

the coefficients, occurring in early-nineteenth century, for almost al l of the six 

exchange rate series. 

3.2 Model Specification 
3.2.1 Introduction 

A s implied in the exploratory analysis, the relationship between the exchange 

rate and the interest rate index tends to be non-homogeneous over time. In 

our study, we investigate five models with different dynamic state structure. 

Along with two yardstick models, we analyze the following seven models: 

1. Random walk model 

2. Forward rate model 

3. Simple regression 

4. Stone's formulation for linear dynamic functional form 

5. Threshold dynamic functional form/Segmented regression 

6. Random coefficient regression wi th random walk system function 
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7. Multiprocess mixture model of random coefficient regression with ran­

dom walk system function 

Models 1 and 2 are two simple, common models for exchange rate determi­

nation. The serve as yardsticks for comparisons. The other models share a 

simple linear functional form for their observation equations — 

log St = Po + Pi log St-i + irt_x + et, 

where St is the price of the foreign currency per 1 US dollar at time t, irt 

is, as those constructed in Section 3.1.1, the principal index of interest rate 

differential at time t, and {et} is the error sequence. Notice that the log trans­

formation on St is a common practice to guarantee that there wi l l always be 

a zero probability of negative prices. Different setups of the system equations 

are assumed for the last five models. Model 3 is the simple regression model, 

which has constant coefficients. In models 4 and 5, the regression coefficients 

/5's change systematically with the calender time and the index, respectively. 

Models 6 and 7 assume a random walk structure for each of the coefficients. 

Details of the models wi l l be given later in this chapter. 

For each model, our primary focus is to predict the log price in terms 

of a conditional probability distribution in a univariate context; that is, can­

didate models are applied to each of the six exchange rate series separately 

to produce forecast distributions. The last 108 (9 years) observations of each 

of the exchange rate series are reserved to construct the out-of-sample predic­

tions, which are then analyzed in different ways to evaluate the performance 
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of the models. We compute our forecasts as follows. First , candidate models 

are estimated using the in-sample data from the beginning of the sample, De­

cember 1972, to December 1989, and forecasts are made for 1-month ahead. 

The data for January 1990 are then added to make a new in-sample data set, 

the models are re-estimated, and a further set of forecasts is made for the 

next period. This "rolling estimation and prediction" process is then repeated 

continually. 

3.2.2 Detailed Description 

We present below a detailed specification for the construction of the forecast 

probability distribution as prescribed by each of the seven models . Before the 

presentations, we establish the following nomenclature and notational guide­

lines for this and subsequent chapters. 

• Exchange rate quotations and interest rate differential indices are num­

bered from -204 to 108 so that t = 0 refers to the month of December 

1989. 

• Forward rate quotations are numbered similarly. But they are not avail­

able from the beginning of the period. The earliest non-missing quotes 

belong to January 1986. 

• St and Ft represent the exchange rate and forward rate at time t, respec­

tively. 

• st = log St is the log transformed exchange rate at t, and ft = log Ft is 
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the log transformed 1-month forward rate at t. Be careful not to confuse 

these new notations with those from previous chapters — the letters 's' 

and ' / D O N O T represent the the exchange rate movements and forward 

premiums, respectively. 

• irt is the index of interest rate differentials at t. 

• (3t = (/?0, 3i,82)'t is the state vector at time t; Xt = (1, st-i, irt-\)' is the 

vector of explanatory data at time t. 

• The nomenclature prediction-realization pairs refer to the ordered math­

ematical objects (pt-i, st) and (Pt-i, St), where pt-i and Pt-\ are defined 

to be the forecast distributions, which depend only on data unti l t — 1, 

for the realizations St and St, respectively. 

• A typewriter type style t - 1 is imposed to subscript any updating dif­

ference in the estimates of the parameters for pt_i or Pt_i due to the 

rolling-over procedure. 

Simple Random Walk Mode l 

This model basically serves as a yardstick based upon which the other models 

are compared. The model takes the form of 

st - st-i + et, 

where {et} is assumed to be independent, identically and normally distributed 

with mean 0 and variance o2 (abbreviated as IID N(0 ,<7 2 ) ) . The diagnos­

tic checking of the independence and normality assumptions are provided 
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in Appendix B . For each t r ia l of the rolling-over process, the successive es­

timates d\_x are generated from the sample variance of the noise sequence 

{ej = Si — Si_i} in the in-sample period: 

1 ^ ~2 1 V"̂  2 
a * - l - 203 + t i h ^ 1 ' 

Therefore, the conditional forecast distribution yt-\ for st is a Gaussian dis­

tr ibution wi th mean st-x and variance o^- i -

Forward Rate Mode l 

This is another yardstick model. It has a similar structure as the random walk, 

st = ft_i +et, and it also inherits the same assumptions for the noise sequence; 

refer to Appendix B for diagnostic justification. The successive estimates for 

a2 can be defined, with some adjustments to the missing data, analogously as 

e i = IeT7 J 4 7
( S l _ / l - l ) 2 -

Simple Regression 

This is a constant coefficient model represented by 

st = {3'tXt + et. 

The constant coefficient vector (3t = (3 is estimated by the ordinary least 

square (OLS) method to minimize the sum of squared error. Diagnostic plots 

for autocorrelation of the estimated residuals et = st — /3 Xt suggest white 

noise for the residual sequence, and the qq-plots suggest l i t t le deviations from 
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normal distribution (refer to Appendix B ) . Therefore, {et} is assumed to be 

IID N(0 ,c r 2 ) . The variance of the noise sequence is estimated by the sample 

variance of the estimated residuals. A s a result, yt-\ is a normal distribution 

with mean / 3 t _ ! Xt and variance d2_x, where 0t_t and a2_x are estimates 

based on the in-sample period. 

Linear Dynamic Functional Form 

In this model, we take account of the systematic changes in structural param­

eters by using the calendar time as a surrogate for the underlying economic 

causal factors. The general form of the trend for the parameters is assumed 

to be linear. The model is defined by 1 : 

observation equation: st = (3't Xt + et, 

system equation: (3t = cto + cxx t. 

When combining with the system equation, the observation equation can be 

expressed as 

st = @tXt + et, 

where J3t = ( a o , a i ) ' , and Xt = ( i , s«-i , irt~i, t, t st-i, tirt-\)'. Notice that it 

reduces to the constant coefficient model i f we assume that Q i is a zero vector. 

W i t h this representation, we can see that the model is restored to a simple 

regression model wi th five explanatory variables. The estimations for the /5's 

and a2 are the same as those for the simple regression. 

1 S ingh, Nagar , Choudhry and Raj (1976) add a disturbance term to the system equation, 
leading to a more general class of models called the variable mean response ( V M R ) model . 
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Threshold Dynamic Functional Form — Segmented Regression 

This is a replication of L i u and Susko's model. It considers the effective interest 

rate index as a signaling indicator of structural changes in the parameters and 

believes that the changes are abrupt. The model can be expressed as 

observation equation: st = (3't Xt + et, 

system equation: (3t = if irt-\ £ ( T J _ I , T ; ] , i = 1 , . . . , / + 1, 

where —oo = r 0 < • • • < rL+i = oo. In the case where Z = 0, it is the simple 

regression model. Given an integer value for I, the estimation procedure for 

the /3j's and r^'s goes as follows. We estimate the coefficients on each interval 

(ri_i,Ti] by the O L S method over al l possible vectors ( r 0 , r i , . . . , T ; + I ) , where 

r 0 < ri < . . . < T 1 + 1 , T E 9 , and 0 is the set consisting of al l of the values of 

the interest rate differential index. For each (r0, T i , . . . , r/ + i ) , we calculate the 

total sum of squared error over the I + 1 intervals. This iterative procedure is 

implemented in C language. The estimate ( f i , f j ) is the vector giving the 

minimum total sum of squared error, and the corresponding O L S estimated 

coefficients are the estimates for the /3j's. 

The number of segments / + 1 can be determined by graphical means or 

by minimizing the information criterion MIC (I) modified from the Schwartz's 

criterion: 

where S(fi,fj) is the minimum total sum of squared error when the number 

of segments is I + 1, n is the number of observations, and c and 5 are con-

MIC(l) := log( S(f i , . . . , f t ) 
n + 1 

c(\ogn)2+5 

n 
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stant parameters. Notice that the second term assigns more penalty to more 

number of segments. From some graphical investigations, we believe that the 

2-segmented and 3-segmented models may be appropriate, and we consider 

both of them in our study. This selection is further confirmed by the MIC 

criterion for some reasonable values of c and 5. Diagnostic checking on the 

estimated residual sequences for both models approves their independence and 

normality; see Appendix B . 

Random Coefficient Regression with Random Walk System Function 

This model is a dynamic generalization of standard, static regression model in 

which the state vector evolves only through the addition of a noise term. It 

can be expressed as 

observation equation: st = f3't Xt + et, 

system equation: (3t = (3t_x + u> t. 

The usual assumption of mutual independence for the error sequences is ap­

plied. The system noise u>t provides an additive increase in uncertainty, or, 

equivalently, a loss of information, about the state vector between time t — 1 

and t. Setting u>t = 0 leads to the specialization of static regression. The dis­

tr ibution assumptions for the noises are et ~ N(0, V Re) and ct>t ~ N ( 0 , V Rw), 

where N and N denote univariate and multivariate normal distribution, respec­

tively, and 

(Rp0 o o ^ 
Rr = 1 and Ru 0 R01 0 

^ 0 0 R02 ) 
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The extra term R£ = 1 in the observation variance is not necessary for the 

parameterization here, but it is included to provide some convenience when 

specifying the next model. The inclusion of the observation variance V in the 

state evolution variance is a common parameterization practice adopted for the 

constant model, in which both of the observational and evolution variances are 

constant in time. The observation variance V is assumed to be constant but 

unknown. Implementing an unknown V exempts us from specifying precise 

values for the observation variance, and allows the estimation procedure to 

provide and to update an estimate for it when new information arrives through 

time. Denote by (f> the reciprocal of the unknown variance <fr = V~l, and 

assume the following ini t ia l conditions: 

( /3_ 2 0 4 | D _ 2 0 4 , 0 ) ~ N ( m _ 2 0 4 , ^ C * 2 0 4 ) , 

((/>|£>_2o4) ~ G(n_ 2 0 4 / 2 ,d_204 / 2 ) , 

where G stands for the gamma distribution so that E(0 | D_204) = ^-204/^-204 

is the reciprocal of a prior point estimate of the observation variance V: V = 

5-204 = ^-204/^-204- For notational convenience, we assume that the informa­

tion set .D_204 contains al l the future values of ir so that Dt = {st, A - i } - The 

two ini t ia l , conditional variables and the two error sequences are again assumed 

to be mutually independent. Based on standard Bayesian theory, the distribu­

tion o f / 3 _ 2 0 4 , conditional on £ > _ 2 o 4 but unconditional on <f>, is a multivariate 

T-distr ibution wi th mean m _ 2 0 4 and covariance matrix C _ 2 o 4 = 5*_204 C-204-

W i t h the defined model structure, we can apply a conjugate sequential 
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updating procedure, an extended Ka lman filter, to use the updated system 

from one time to provide a prior distribution for the next, which is revised 

using the observation equation to obtain a posterior distribution when new 

information arrives. Theorem 4.3 in West and Harrison (1989) states the 

following conjugate distributional analysis: 

((f) | Dt-i) ~ G(n t_i/2 ,dt_i/2) with St-i = dt-i/nt_i, 

(ft-i I A- i ) ~ T V ^ m t - i . C V i ) , 

( / 3 t | A - i ) ~ V ^ m ^ , ^ ) , 

(s, | A - i ) ~ T n t_ x(/t,Q t), 

(<f>\ A ) ~ G(nt/2,dt/2) wi th St = dt/nu 

(A | A ) ~ T n t ( m t , C t ) , 

where 

-Rt = C t - i + St_i i ^ u , 

Qt = -X"* -Rt -X^ + St-i R£, 

et = Yt- ft, 

nt = n t _ j + 1 , 

rft = dt-i + St-ie2/Qt, 

At = RtXt/Qt, 

mt = mt-i + Atet, 

Ct = -^(Rt-AtA'tQt). 
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The symbol T and T represent univariate and multivariate t-distribution, re­

spectively. The forecast distribution pt_i for st is a T-distr ibution with n<_i 

degree of freedom. The iteration across time is implemented in C language. 

To complete the specification of the model, we need to assign some 

values for the ini t ia l quantities m_ 2 o4 , C * 2 O 4 J
 n - 2 0 4 and oL 2o4, as well as for the 

matrix Ru. To initialize state parameters m_ 2 04 and C i 2 0 4 , and observational 

variance parameters ro_204 and GL 2 04 , prior or historical information can be 

used. Whi le lacking such information, we can get rough estimates from the 

sample data. We use the moving-window method to provide a reasonable set of 

prior values. B y running ordinary least squares on a series of data sets formed 

by sliding, one observation at a time, a window of a certain size over the in-

sample period, sequences of sample estimates for coefficients and variance are 

obtained. A window of size of five years, or, equivalently, 60 observations is 

applied to mimic the usual five-year business cycle. We set m_ 2 04 to be the 

mean and C i 2 0 4 to be the variance-adjusted covariance matrix of the sequence 

of coefficients; we also set n_ 204 = 4 and r_ 204 in the way such that the prior 

variance estimate S-20A is equal to the mean of variance estimates. Since the 

effect of the ini t ia l prior decays quite rapidly, the amount of our data is large 

enough to make its impact fairly unimportant in our reserved forecast period. 

The variance matrix of the system evolution is finally approximated. Values 

for the diagonal elements of R^ are obtained by optimizing a likelihood criteria 

based on the accuracy of the one-step-ahead predictions, as suggested by West 
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and Harrison, over the in-sample period: 

5>g(Pr (* | A - i ) ) -
t 

The maximum likelihood estimates of the variance parameters are obtained 

using the quasi-newton routine in C language. 

M u l t i p r o c e s s M i x t u r e M o d e l o f R a n d o m Coef f i c i en t R e g r e s s i o n w i t h 

R a n d o m W a l k S y s t e m F u n c t i o n 

The mixture model runs, in parallel, wi th multiple D L M models, which are 

change-point models derived from a single basic D L M . Our basic model is the 

random walk coefficient model as specified previously. Wi thout altering the 

underlying model structure, five changepoint models are derived from it by 

adjusting the variances of the observation and system evolutions: 

var(e t) = V Rt and var(cL» t) = V = V 

The five specifications are derived as follows: 

( RpQ 0 0 ^ 

0 Rfr 0 

0 0 Ra, 

• M - l S t e a d y - S t a t e D L M : Let Re = 1 and = RPl = Rp2 = 0. This 

specification creates a model in which there is no variation i n coefficients 

over time, except those from the updating estimation due to addition of 

new observations. 

• M - 2 O u t l i e r D L M : Let Re = 16 and R0O = RPl = R»2 = 0. This 

model assigns a higher probability of large et than the steady-state model 

and intends to capture an outlying observation at time t. 
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• M - 3 L e v e l - S h i f t i n g D L M : Let Re = 1, Rp0 > 0, and RPL = Rp2 = 0. 

A non-zero value for the disturbance to the intercept parameter reflects 

a shift in the level of the model. 

• M - 4 S l o p e - S h i f t i n g D L M i n Lag-1 E x c h a n g e R a t e : Let Re = 1, 

Rpi > 0, and Rp0 = Rp2 = 0. A non-zero value for the disturbance to 3X 

reflects a shift in the slope term of the model. 

• M - 5 S l o p e - S h i f t i n g D L M i n In te res t R a t e I n d e x : Let Re = 1, 

Rp2 > 0, and Rp0 = Rpx = 0. Similarly, it reflects a shift in the slope 

term fa for a non-zero disturbance. 

Notice that a zero for the Rpi reflects a steady state model as M - l . The 

parameterization for the single random walk coefficient model is applicable for 

the above five models. However, to distinguish between them, we impose a 

superscript denoting the different observation and system evolution structure 

stated previously, for i — 1 , . . . , 5: 

st = P'tXt + 4l\ 

(3t = 

var(e| i )) - VR®, 

var(wSi)) = VR .̂ 
When moving from a model at time t — 1 to another model at time t, the 

recursive procedure for the single D L M can be easily modified to handle the 

transition, differing only in the choice of the elements for R€ and R^. Using 
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the same ini t ia l settings and same independence assumptions as the single 

D L M , we have: 

( j 3 t _ 1 | M t _ 1 = t , A - i ) ~ T B t_ 1(mi!l 1 >cS!l 1) > 

( 0 | M M = J , A - i ) ~ 0^/2,01^/2) wi th Si% = d^ljrH-i, 

The above distributions for (3t_x and (j) depend on the model applying at t — 1. 

Evolving to time t, they become 

( / 3 t | M t = j , M t _ 1 = i , A - i ) ~ T ^ m g x , / * ? ' 0 ) , 

( 0 | M f = j , M t _ 1 = z , A - i ) ~ G ( n t _ i / 2 , 4 ! l i / 2 ) with S & = 

where i l ^ ' ^ = + . R ^ . Now, these distributions depend on the 

combinations of possible models applying at t — 1 and t. 

Given the models at t — 1 and t, the forecast distribution for st is 

(st | M t = j, Mt-X = i, A - i ) ~ T „ ( _ ! ( / « , 

where = X ^ m J ^ , and Q p ' i } = X j i l p ' 0 X t + S & f l W . The forecast 

distribution for st, which is based on information up to time t — 1 but 

unconditional on the possible model combinations, is therefore the combination 

of the twenty-five T-distributed components. The combining is effected using 

discrete probability mixture: 

5 5 
Pt-i(st) = Y,z2Pt-i(st I Mt =J,Mt_x = i)pt_x(j,i), 

i=i j=i 
5 5 

= E E P ' - I ( S ( I Mt = j, Mt-i = i) n{j) pt-i{i), 
i=l j=l 
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where pt-i(j,i) = P r ( M t = j, Mt-i = i | A - i ) , Pt-itf) = P r ( M t _ i = z | 

A - i ) , and 7r(j) = P r ( M t = j \ Mt-\ = i,Dt-i). Updat ing the parameter 

distributions for newly arrived information gives 

((3t\Mt = j,Mt_1 = i,Dt) ~ T ^ m ^ C ? ' 0 ) , 

(<j>\Mt = j1Mt-1=i,Dt) ~ G(nt/2,d^V2) wi th Sp> = 4 " ' /^ , 

where 

— Yt — Jt , 

fit = nt-i + 1, 

Ap> = Bij>l) Xt/Qij>\ 

cy,o = ^ ( f i P - A p U P ' g P ) 
-St-i Notice that the estimated residual et for st depends only upon the possi­

ble models applying at t — 1 since the expected coefficients E((3t \ Mt = 

j,Mt-i = i,Dt-i) and, thereby, the expected values for the conditional fore­

casts E(st | Mt = j,Mt-i = i, A - i ) do not differ across the models applying 

at t. Moreover, the degree of freedom is independent of models applying at 

both t — 1 and t. 

Running the five models in parallel could lead to a five-fold increase in 

the number of models through time. Considering that we have a joint model 
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of five possible states at time t — 1. Each model in the joint set leads to 

another set of the five models for time t, resulting in a joint model of twenty-

five states. Proceeding to time t + 1, the five models are again produced from 

each model. The transition of the combinatorial possible states continues 

repeatedly as we go through time. To avoid the expansion of the models, we 

invoke an approximation to collapse 25 models back to 5 models at each stage. 

The principle of approximating the mixtures is to assume that the effects of 

different models at t — 1 are negligible for t +1. In other words, the mixture of 

25 components are to be reduced over the possible models at t — 1 as follows: 

^ ) ( - | M t = i , A ) 
5 

= £ FM)i- I Mt = h Mt-i = i, A) P r ( M t _ ! =i\Mt=j, A) 

= E ^ ) ( - l ^ = i .M- i = i , A ) ^ 
i=l Pt\J) 

Under the assumption of f(st | A-i) > 0, the relevant probabilities are cal­

culated as 

pt(j,i) = P r ( M t = j, M t _ i = i | A) 

= P r ( M t = j, M t _ i =i\st, A-i) 

1 ' f(st | Mt = j, M t _ ! = i, A-i) pt-i(j, i) 
f(st\ A-i)' 

1 f(st | Mt = j, Mt-, = i, A-i) pt-i(i), 
f(st | A-i) 

pt(j) = P r ( M t = j |A ) 

= 51 A CM)-
I=I 

The exact mixture for (/3 t, <j> \ Mt = j , A) is then approximated by a single 
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"Normal /Gamma" joint distribution to give back the required distributional 

form to start over the recursion. The approximation, which is designed to min­

imize the Kullback-Leibler divergence 2 (see Titterington, Smith, and Makov 

(1985)), leads to 

(0t\Mt = j,Dt) ~ T ^ m ^ . C f ) , 

((j)\Mt = j,Dt) ~ G ( n 4 / 2 , 4 J ) / 2 ) with 5? ' } = d[j)/nt, 

where 

J _ _ J _ f P P 

1 -3* 

0') 5 , , „(j,0 O W 5 J . 

Pt i = l ° t 

\ £ { C P + (m?> - m P ) (m?> - m h ' } ^ . 
Pt i=l St 

To complete the specification of the model, we initialize m 0 , CQ, n0 

and do the same way we do for the random walk coefficient model. We also 

set 7T = (.875, .025, .025, .025, .05)', reflecting the belief of steady-state for 90% 

of time, outlier for 5% of time, and intercept and slope shifts for equal shar­

ing of the remaining proportion. Since we initialize only one model at the 

beginning, p0 = . ( P r ( M 0 = i | D0), i = 1 , . . . ,5 ) ' can be defined to be any 

probability vector as long as it is normalized to one. Finally, the values for 

2 T h e Kul lback-Leibler directed divergence is a distance measure between densities, or 
distr ibution. Let p(6) be a mixture of densities, and p*(0) is the approximat ion for p(0). 

T h e divergence is defined by 
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the diagonal elements of in the five derived models are chosen to opti­

mize the likelihood of one-step-ahead predictions over the in-sample period. 

The iterative procedure and the optimization are again performed with C code. 

There is a final point to be drawn about this model: the mixture estima­

tion procedure provides information on the posterior probabilities of outliers 

and structural shifts in the intercept and slope parameters. We could use 

these posterior probabilities to draw ex-post inferences regarding abrupt shifts 

in the parameters during the floating period. The posterior probabilities could 

be one-step-back or smoothed probabilities so that the probabilities over the 

possible models one-step back in time, at t — 1 is 

P r ( M t _ ! = i | A) = ^2 Pr(Mt = j , Mt_i = i | A ) 

5 

These probabilities are plotted across time on the entire sample for each series 

to detect for any structural changes; see Appendix C . A shift away from the 

steady-state Model-1 toward another model would be indicated by an increase 

in the posterior probability for that model. We can observe that there are 

numerous shifts away from the steady-state model to the outlier model for al l 

of the series. Confirming to our preliminary analysis, the probabilities of the 

steady-state model drop suddenly some time around the year of 1992. 
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Chapter 4 

Performance Measures 

4.1 Introduction 
In our study, we measure the performance of each model by means of two as­

pects: the forecast performance in terms of expectation and risk management. 

The first aspect refers to how well the expected values of the forecast distri­

butions capture the realizations of the exchange rates, and the quantification 

of risk is in terms of Value-at-Risk (VaR). The measurements are al l based on 

the originally scaled exchange rates, not the log transformed ones; that is, we 

focus on the prediction-realization pair (Pt^i,St), where Pt-\ is the forecast 

distribution for St. 
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4.2 Forecastability in Expectation 
W i t h i n the context of measuring forecast performance in expectation, we em­

ploy two approaches to gauge the accuracy of the models: the statistical ap­

proach and the return on portfolio approach. 

4.2.1 By Means of Statistics 

The accuracy of each forecast is measured by the percentage forecast error. 

Denote the forecast formulated in t — 1 for time t or, equivalently, the expected 

value of the distribution function Pt-i, by E ( S t | A - i ) - The percentage error 

is computed as 

_ S f - E ( , S t l A - i ) 
£ t ~ 9 

Average forecasting accuracy is then measured by the mean error (ME), the 

mean absolute error (MAE), and the root mean-squared error (RMSE) of the 

percentage error. As suggested by their names, they average the errors in real 

terms, absolute terms and squared terms, respectively. Each of these statistics 

has its usefulness and weakness. The mean error considers both direction and 

magnitude of the error, while the mean absolute error and the root mean-

squared error consider only magnitude. However, the M E cancels out positive 

and negative errors; on the other hand, the M A E and R M S E consider positive 

and negative errors as equally important. The R M S E is more sensitive to large 

errors in either positive and negative directions than the M A E . 
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We summarize the above statistics for the six US dollar bilateral ex­

change rates in Table D . l . Along with the M E , M A E and R M S E , we have 

appended estimates of the variance of the pure percent error, the absolute 

percent error and the squared percent error. 

The forecasting ability of the forward rate model is superior out-of-

sample compared to the other models for al l the studied currencies — the 

average forecast errors and the variance of them are smaller than those of the 

other models. O n the basis of these measures, one could perhaps reject the 

segmented regression since they perform worst for five cases. However, it is 

interesting to note that for the G B P / U S D series the 2-segmented regression 

seems to work well, while the 3-segmented regression works very badly. There 

is not much to choose between the other models. 

A l l of the above measures are not useful to some market participants 

for whom the main contribution of a forecast is the generation of a correct buy 

and sell signal, even if the magnitude of the expected move is inaccurate. In 

this case, a measure counting the frequency of correct signaling is what these 

people are interested in. A natural standard that comes to mind immediately 

is to count the number of times the forecasts turn out to be on the correct 

sides of the realizations. We define the set of correctly signaled events as 

* E = {t\ (St - S « - i ) ( E ( $ | A - i ) - St.!) > 0, t G [1,T]}. 

The percentage frequency can be calculated as 
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where T = 108 is the length of the out-of-sample forecast period. Investors, 

especially speculators, do not always buy and sell currencies directly; some­

times, they use the forward trading vehicles. Therefore, another standard is 

a frequency, which counts the number of times the forecasts turn out to be 

on the correct sides of the forward rates. Using similar notations, we have 

$F = {t | (St - F t _ x ) ( E ( 5 t | A - i ) - Ft-i) >0,te [1,T]} and XF = # $ F / T . 

The frequency statistics are summarized in Table D.2 (see Appendix D) . If a 

model has no forecasting ability, the percent frequency would be 0.5. 

The forward rate model performs reasonably well in the concept of 

correct "buy-sell" signaling as defined by $ E for most of the cases. It is in fact 

quite outstanding in the cases of trading Br i t i sh pounds and German marks 

for US dollars. However, the forward rate model is deficient in providing any 

signals for forward traders since it believes that the expected exchange rate 

is the forward rate. Therefore, these is no reason to compare the forward 

rate model to the other models based on the cardinality of <&F. A similar 

situation can be found in the random walk model when the investing vehicle 

is direct trading of the currencies. In Table D.2, the corresponding entries 

are left as blanks meaning that the models tell nothing about "to buy" or "to 

sell" in those situations. O n the basis of the cardinality of $ F , there is no one 

consistently good model for all six cases; therefore, we would probably not rely 
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on a particular model if we are forward traders of the currencies. 

4 .2 .2 By Means of Portfolio Returns 

Other than the descriptive statistics, another measurement method is to as­

sume that certain strategic actions are taken systematically across time, and 

the ex-post financial return on the strategy is then computed. The forecasta­

bil i ty is judged on the basis of the return on the capital invested. Assuming 

that we are US dollar based investors, we formulate our strategy as follows. For 

each month, if the forward rate of the foreign currency against the US dollar 

is above our forecast, we wi l l buy a contract of the foreign currency for $1 US 

Dollar; if it is below, we wi l l sell the contract. The cumulative returns in US 

dollars are then calculated and are summarized in Table 4.1. The returns of 

contracts with size of $N US dollar can be obtained by mult iplying the results 

by N . One should notice that returns cannot be computed for the forward rate 

model due to its lack of signaling power as discussed in the previous section. 

When viewed in terms of returns of the forward trading portfolio, the 

model with random walk coefficients appears to be an unfavorable model which 

provides poor negative returns for three cases. The 1-segmented or the simple 

regression, and the 2-segmented regression models are reasonable in spite of 

the case that the 2-segmented model performs poorly in the German market. 

The 3-segmented model and the mixture model are probably the best because 

they both give positive returns for al l cases. It is clear that the simple random 
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Table 4.1: Return Table (in U S D $). 

G B P / $ F R F / $ D E M / $ I T L / $ C A D / $ J P Y / $ 
Random Walk 0.057 0.201 0.026 0.076 0.108 -0.229 
Forward Rate 
Simple Regression 0.229 0.378 0.129 0.159 0.031 -0.025 
Linear System 0.093 0.013 0.237 -0.093 -0.064 0.237 
Threshold System 

2-segment 0.206 0.034 -0.274 0.214 0.134 0.306 
3-segment 0.076 0.022 0.056 0.029 0.187 0.210 

R - W Coefficients -0.186 0.149 -0.103 -0.166 0.106 0.281 
Mixture Model 0.000 0.056 0.230 0.056 0.082 0.440 

walk model does not guide us to decent returns. 

4.3 Risk Control — Value-at-Risk (VaR) 
To measure how well the models capture the risk component, we can employ 

the idea of V a R . V a R is the maximum potential loss inherent to a portfolio 

position with a certain probability over a pre-set horizon. A t a given level 

of confidence 1 — a, we wi l l expect that realizations wi l l lie beyond the V a R 

a x 100% of time. V a R forecast can be generated easily from the forecast 

distribution Pt-\ based on the following relation: 

Pt_i(VaRt_i) = l - a ! . 

We wi l l monitor these V a R forecasts to judge the models in terms of their 

ability in controlling risk. 
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4.3.1 Exceedence Frequency 

When monitoring the V a R forecasts at a given level of confidence, we are 

faced wi th the difficulty that any realized V a R values are not observed af­

ter the event. Therefore, we can only carry out the monitoring by checking 

whether the forecasts are consistent wi th subsequently realized values. The 

most obvious way is to investigate how frequently losses are realized in ex­

cess of the V a R forecasts over a certain period to time. If a confidence level 

of 1 — a is chosen, excessive losses are expected to occur a x 100% of time. 

We summarize the frequency of the exceedence events for a = .05 over the 

out-of-sample forecast period in Table 4.2. We look at pairs of portfolios wi th 

opposing positions, long (L) U S dollar and short (S) U S dollar against the 

other currency, to get r id of any bias due to selection of a particular portfolio 

position. 

To tell whether the realized frequency of excessive losses is sufficiently 

different from the chosen frequency, we can apply the likelihood ratio (LR) test 

suggested by Kupiec (1995). The construction of the test statistic is based on 

the point that the probability of observing N failures in a sample of size T is 

governed by a binomial process. Denote the length of the forecast period by 

T and the frequency of losses in excess of V a R over the T periods by N , the 

test statistic is simply 

-21og[(l - a f - V ] + 21og[(l - N/T)T-N(N/T)N], 

which follows a chi-squared distribution with one degree of freedom. The re-

45 



Table 4.2: Frequency Table of Excessive Losses. 

G B P F R F D E M I T L C A D J P Y 

L S L S L S L S L S L S 
Random Walk o2 4 3 3 o2 4 5 8 4 7 7 5 
Forward Rate •1 4 o2 4 •1 4 3 3 o2 8 5 5 
Simple Regression o2 4 3 3 o2 4 5 7 4 7 6 4 
Linear System o2 5 4 3 •1 5 4 14» 3 10o 6 4 
Threshold System 

2-segment o2 5 o2 6 3 4 6 8 5 8 7 4 
3-segment o2 6 3 6 4 5 6 9 5 7 7 4 

R - W Coefficients 3 4 3 4 o2 4 3 7 4 7 9 4 
Mixture Model 3 7 3 7 3 5 6 8 5 8 9 3 

suit of testing the null hypothesis H 0 : p = a is given in Table 4.2. The 

significance of rejection is represented by "o" for 90% confidence and a "•" for 

95%. Notice that this likelihood ratio test depend on the assumption of inde­

pendence of the failure events across time. There are other tests designed to 

monitor V a R forecasts; for example, the Crnkovic-Drachman VaR Percentile 

Test (Crnkovic and Drachman (1995)), the Christoffersen's Interval Forecast 

Test (Christoffersen (1996)) and the Size of Excessive Losses Test (Zangari 

(1995)). We should point out that the hypothesis testing guides the validity of 

a model but not the choice between models, i.e., we may not be able to choose 

among models that are al l accepted in the tests. 

The occurrence of the exceedence events is more severe in the short 

position than in the long position for al l models and for al l series, except for 

the Japanese Yens which is the reverse of the situation. This means that 
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our models are more capable to estimate risk when investors are in the short 

position of US dollars. One would reject the model with the linear state system 

as being under-estimating the risk, at least for the situations of long Italian 

Liras and long Canadian dollars. Most of the rejections of the hypothesis 

are due to conservative in the sense of always over-estimating risk — fewer 

exceedence counts than expected. The Mixture model is the only model which 

is not rejected in any cases. 

4.3.2 Lopez Loss Function 

A l l the statistical tests have a common drawback: due to the fact that we 

are looking at classes of extreme observations when talking about risk man­

agement, the tests tend to have low power in classifying a bad model as bad, 

especially when the data set is small. Lopez (1996) suggests getting around 

the problem of low power by using a forecast evaluation standard, rather than 

by testing hypotheses. In his criterion, the accuracy of a model in terms of 

risk control is gauged by how well it scores on a loss function. 

In the formulation of the loss function, instead of looking at the events 

above a certain confidence level, we look at the events wherein the predicted 

movement exceeds a certain absolute size, parameterized by a percentage 

change in the prices of the foreign currency per 1 US dollar. In other words, 

we start by specifying a tolerance percentage change in the prices of the for­

eign currency per 1 US Dollar, which is taken as the V a R , and then predict 
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the probability of a loss in excess of the V a R from the forecast distribution 

Pt-i- The loss function is set up to evaluate the goodness of these probability 

forecasts against realized outcomes in the following way: 

QPs = 2Y,{p^-h)\ 
t=l 1 

where P/_x = P ( _ i ( V a R ) is the forecasted probability that an excessive loss 

over the V a R wi l l happen at time t, It is the indicator variable that takes 

the value of one i f the event actually occurs and zero otherwise, and T is the 

length of the forecast period. The loss function is so named as Q P S since it is 

the quadratic probability score due originally to Brier (1950). It is expected 

that a better model would generate lower score. It should be clear that the 

Lopez score function directly evaluates the performance of a model for large 

price changes. 

For better visualization of performance, the above scoring measure is 

plotted for each model and each exchange rate series as a function of increas­

ingly percentage change in prices. We have one further variation in the presen­

tation of this performance measure — the long position in US dollar, the short 

position in US dollar and the average of them. To account for loss events, a 

change means a drop in the price of US dollar for the long position, and it refers 

to a rise for the short position. The plots can be found in Appendix E . There is 

a serious caveat wi th regard to low number of exceedence events when focusing 

on high percent price changes; therefore, we have only plotted the percentile 

levels when there is at least five exceedence events beyond a certain V a R value. 
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Based on the Lopez score lines, we define the following criterion for 

comparing two models: 

D e f i n i t i o n : If the Lopez scores of Model 1 are higher than those of Model 2 

for all percentile levels, Model 2 is better than Model 1 under the Lopez 

loss measure. 

Therefore, the acceptance of a model is based on performance of the model 

over the entire range of percentile levels. 

When looking at the cases of long US dollars, we observe that the for­

ward rate model dominates the other models. However, when considering 

those of the short position, the Lopez score lines corresponding to the forward 

rate model tangle wi th those of the other models. In the cases of selling US 

dollars for Br i t i sh pounds and Italian Liras, it twists wi th the score lines of 

the 2-segmented model and the 3-segmented model, respectively. In the case 

of German marks, it twists with the score line of the linear system model. In 

other cases, the score lines seem to be al l tangled up. However, the forward 

rate model is s t i l l dominating in average sense because it is too outstanding 

in the cases of the long position. 
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4.4 Discussion 
In this section we discuss the details of what the drawbacks of the various 

performance measures are and how they complement each other. The mea­

sures we consider in our study are: the means of pure, absolute and squared 

percentage error, the "buy-sell" signaling frequency, the returns of a forward 

trading portfolio, the frequency of excessive loss, and the Lopez loss scores. 

It is obvious that counting the number of correct "buy-sell" signals is 

not very informative in the sense of ignoring the size of losses and gains. In 

fact this is always the drawback of frequency measures. Al though the M E , 

M A E and R M S E do capture the size of errors in different respects, they a l l 

consider the positive and negative errors as equally important. Their useful­

ness as a performance measure arises a lot of controversy since it is believed 

that investors tend to be more concerned about the amount of losses than 

gains. When computing returns on portfolios guided by the forecasts of the 

models, we have considered both "side" and "size" at the same time. Bu t 

conclusions drawn from comparing the returns may depend on the particular 

choice of portfolio structure. One could probably need to consider a lot of 

portfolios to make a general conclusion. 

The need for monitoring losses leads to the concept of Value-at-Risk. 

Various measures have been derived to help investors to choose between mod­

els when they are adverse to risk of big losses. The exceedence frequency is 
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one of the candidates. However, it is a relatively coarse measure since it is not 

sensitive in distinguishing models which have the same exceedence count but 

a different degree of exceedence. To overcome this problem, some researchers 

have resorted to express exceedence as a function of the probability density of 

the event. Whi le incorporation of the likelihood does help in establishing the 

degree of exceedence of the events, it s t i l l fails as a valid comparative measure 

between models. This is because the set of exceedence events is model depen­

dent — the exceedence events referred to by a specific choice of confidence level 

do not correspond to the same set of events for different models. Therefore, 

differing sets of exceedence events at the same confidence level imply differing 

theoretical likelihood of exceedence, making direct comparison fallacious. A s 

a result, researchers can only test the expected losses wi th realized losses to 

assess the validity of the model. - However, the validity of a model does not 

infer the order of the model in comparison with the others. Moreover, the 

hypothesis test for validation has low power in classifying out bad models, 

especially if sample size is small. 

A s already remarked, the Lopez loss measure presents a score of al l 

movements exceeding a certain percentile level rather than al l movements ex­

ceeding a certain confidence level, and it is exempt from any statistical testing. 

The X-axis of our score plots depends only on the data and the corresponding 

scores refer to the same set of events, making comparison of models meaningful. 

Moreover, its formulation encourages good forecasts since the score depends on 
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the forecasted probability of both the exceedence and non-exceedence events. 
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Chapter 5 

Conclusions 

Our concerns about the effect of changes in policy and market atmosphere on 

the relation between exchange rates and interest rate indices initiate a moti­

vation to model the dynamics of the state structure. In our study, we propose 

several models with different dynamic state structure to determine the behav­

ior of monthly bilateral nominal exchange rates between the United States 

and six major economies for the period from January 1973 to December 1998. 

A s part of our study, we also present various measurement methodology in 

evaluation of the models. 

In general, the simple forward rate model performs outstandingly better 

than our candidate models under most of the measurements. It is even bet­

ter than the simple random walk. Perhaps this can be attributed to market 

efficiency in some manner: the forward exchange rates have already incorpo­

rated al l relevant information available at the time of quotations, at least in 
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the chosen forecast period — this century. However, this is in contradiction 

with many of the recent research in market rationality. A common finding of 

autocorrelation of forecast errors in the regression between the exchange rate 

movement and the forward premium is not consistent with the properties of 

an efficient market. A justification brought out by some researchers for this 

finding is that exchange rates tend to exhibit jumps. However, the segmented 

regression and the mixture model, which try to find out when the jumps take 

place, perform worse than the forward rate model in forecasting. This may 

perhaps be due to the fact that they are not capable to identify the jumps cor­

rectly since the nature of the event is identified only after further realizations 

are observed. 

For market practitioners who do forward trading, the forward rate 

model however is deficient in informing them because it implicitly assumes 

that the forward exchange rate is the best predictor of the future spot rate. 

Therefore, traders who want to do well over the forward market may need to 

look for other models. 

In views of the statistical measures, the mean error, the mean absolute 

error and the root mean-squared error, we conclude that not much improve­

ments over the random walk could be achieved from our dynamic models. 

However, the ex-post returns of the simulated forward trading portfolio are 

not good if investors follow the signals generated from the random walk model. 
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The random walk seems to be beaten in this sense. 

Even when the dynamic macroeconomic models fail to forecast better 

than a random walk, the dynamics of the state parameters of the models is 

unlikely to stay constantly over the floating experience. Prel iminary analysis 

has already suggested sudden changes in relation in early-nineteenth centuries, 

and the non-homogeneous relation is further supported by the one-step-back 

or smoothed probabilities provided from the mixture model. Certainly, fol­

lowing up testing into the future is necessary to make any statements with a 

degree of uncertainty. 

It is a difficult task to choose a consistently best model with the variety 

of measurement methods. The Lopez score lines tend to provide a good basis 

for comparisons for three reasons. First , it allows for visualization of model 

performance over an adequately large range of price movements and discrim­

ination of model behavior for both large and small movements. Second, it is 

sensitive to degree of loss amount. Th i rd , it is exempt from any hypothesis 

testing with usually low power. However, we do not admit to any particular 

measure to guide investors to choose among models, and we believe the selec­

tion should be somehow dependent on the objectives of the investments. 

Final ly, we would like to end our thesis with a discussion of some fur­

ther research that could be done. It should be note that the principal compo-

55 



nent analysis is not the only way to summarize information, another possible 

method is the canonical correlation analysis. The resulting canonical index 

would be highly correlated with the exchange rates, leading to possibly better 

forecasts if used in place of the principal index. Another extension would be 

to analyze our models in a multivariate context;.that is, one could generalize 

the models to handle multivariate data, and measure the multivariate models 

statistically and, in conjunction, on a portfolio of the risk factors weighted 

equally. 
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Appendix A 

Exploratory Graphs for 

Dynamic State Structure 

The graphs are intended to assist in exploring the structure of 

the coefficients for the exchange rate to the interest rate index re­

lation over time. Series of sample coefficients are estimated from 

the moving-window method with window sizes of five years and ten 

years for the six key USD exchange rates; see Section 3.1.2. In 

each figure, the graphs on the left-handed column correspond to the 

5-year window in which the time span is from December 1977 to 

December 1998 (252 months), while the right-handed column refers 

to the 10-year window in which the time span is from December 

1982 to December 1998 (194 months). The slope parameters for 

the lag-1 exchange rate and the interest rate index are denoted by 

Pi and fo, respectively. 
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Figure A . l : Time Series Plots of Sample Coefficients for the Series G B P / U S D . 
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Figure A . 2 : T ime Series Plots of Sample Coefficients for the Series F R F / U S D . 
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Figure A . 3 : T ime Series Plots of Sample Coefficients for the Series D E M / U S D . 
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Figure A . 4 : T ime Series Plots of Sample Coefficients for the Series I T L / U S D . 
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Figure A . 5 : T ime Series Plots of Sample Coefficients for the Series C A D / U S D . 
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Figure A . 6 : T ime Series Plots of Sample Coefficients for the Series J P Y / U S D . 
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Appendix B 

Diagnostic Checking on 

Residuals 

The diagnostic plots justify the independence and normality as­

sumptions of the estimated error sequences for the models. The 

autocorrelation (acf) and partial autocorrelation (pacf) plots check 

whether the sequences are white noises, and the qq-plots check the 

normality of the sequences. For each model, we perform the di­

agnostics up to the second moment. There seems to be no strong 

evidence against the two assumptions. 
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Figure B . l : Diagnostic Plots for the Noises of the Simple Random Walk 
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GBP Series : Squared Noise GBP Series : Squared Noise QQ-plot of Squared-Noise 
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Figure B.2: Diagnostic Plots for the Noises of the Forward Rate Model 

GBP Series : Noise GBP Series : Noise QQ-plot of Noise 
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GBP Series : Squared Noise GBP Series : Squared Noise QQ-plot of Squared-Noise 
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Figure B .3 : Diagnostic Plots for the Residuals of the Simple Regression Model 
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GBP Series : Squared Residual GBP Series : Squared Residual QQ-plot of Squared-Residual 
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Figure B . 4 : Diagnostic Plots for the Residuals of the Linear System Model 

GBP Series : Residual GBP Series: Residual QQ-plot of Residual 
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GBP Series : Squared Residual GBP Series : Squared Residual QQ-plot of Squared-Residual 

i-:-h-
0 5 10 15 20 

Lag 

u. o 
n I 
0- o 

5 

J _ _ l . i 
I I I 

5 10 15 20 
Lag Quantiles of Chi-square with 1-df 

FRF Series : Squared Residual FRF Series : Squared Residual QQ-plot of Squared-Residual 

0 5 10 15 20 
Lag 

5 10 15 20 
Lag 

0 1 2 3 
Quantiles of Chi-square with 1-df 

DEM Series : Squared Residual DEM Series : Squared Residual QQ-plot of Squared-Residual 

0 5 10 15 20 
Lag 

5 ° I « 
a. o 

5 5 10 15 20 
Lag 

0 1 2 3 
Quantiles of Chi-square with 1-df 

ITL Series : Squared Residual ITL Series : Squared Residual QQ-plot of Squared-Residual 

0 5 10 15 20 
Lag 

38 « ° 
B 
CO 

o_ o 
9 

ll ll 1 I 11 1 I 
I • • 111 11 111 

5 10 15 20 
Lag 

0 1 2 3 
Quantiles of Chi-square with 1-df 

CAD Series : Squared Residual CAD Series : Squared Residual QQ-plot of Squared-Residual 

0 5 10 15 20 
Lag 

o8 
_ O 
"I 
CL O 
9 

" F T I | ' • i " ' ' ' i 

5 10 15 20 
Lag 

0 1 2 3 
Quantiles of Chi-square with 1-df 

JPY Series : Squared Residual JPY Series : Squared Residual QQ-plot of Squared-Residual 

0 5 10 15 20 
Lag 

&8 
< 6 

e 
rj o 

I I 11' 11' 
I.I. 

5 10 15 20 
Lag 

0 1 2 3 
Quantiles of Chi-square with 1-df 

77 



Figure B.5: Diagnostic Plots for the Residuals of 2-Segmented Regression 
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GBP Series : Squared Residual GBP Series : Squared Residual QQ-plot of Squared-Residual 
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Figure B.6: Diagnostic Plots for the Residuals of 3-Segmented Regression 

GBP Series : Residual GBP Series : Residual QQ-plot of Residual 
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GBP : Squared Residual GBP Series : Squared Residual QQ-plot of Squared-Residual 

FRF Series : Squared Residual FRF Series : Squared Residual QQ-plot of Squared-Residual 
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Appendix C 

Plots of Posterior Probabilities 

of the Models 

The graphs plot the one-step-back or smoothed probabilities of 

the models across time for the six exchange rate series. Notice 

that the probabilities for the model of slope shifting in the interest 

index (M-5) are missing for all six series because the optimization 

procedure of the mixture model does not suggest any chance of its 

occurrence. There are other missing models in some of the series 

for the same reason. 
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Figure C . l : One-Step-Back Probabilities of the Models for the Series 
G B P / U S D . 
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Figure C.2: One-Step-Back Probabilities of the Models for the Series 
F R F / U S D . 
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1980 1990 

Time 

Posterior Probabilites of the Level-Shift Model FX Across Time 

1980 1990 

Time 

Posterior Probabilites of the Slope-Shift in Lag-1 FX Across Time 

1980 1990 

Time 

Posterior Probabilites of the Outlier Model Across Time 

1980 1990 

Time 

84 



Figure C .3 : One-Step-Back Probabilities of the Models for the Series 
D E M / U S D . 
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Figure C.4: One-Step-Back Probabilities of the Models for the Series 
I T L / U S D . 
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Figure C.5: One-Step-Back Probabilities of the Models for the Series 
C A D / U S D . 

Posterior Probabilites of the Steady-State Model Across Time 
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Figure C.6: One-Step-Back Probabilities of the Models for the Series 
J P Y / U S D . 

Posterior Probabilites of the Steady-State Model Across Time 
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Appendix D 

M E , M A E , RMSE and 

Frequency Tables 

89 



Table D . l : Out-of-Sample Performance in terms of M E , M A E , R M S E of Per­
centage Errors. 

M E M A E R M S E 
G B P / U S D 

Random Walk 0.01301 (3.08552) 2.093 (2.258) 3.071 (4.941) 
Forward Rate -0.2154 (2.8118) 1.943 (2.035) 2.807 (4.315) 
Simple Regression 0.05633 (3.05781) 2.082 (2.231) 3.044 (4.845) 
Linear System 0.1740 (3.0948) 2.015 (2.267) 3.085 (4.921) 
Threshold System 

2-segment 0.03298 (2.92039) 2.052 (2.069) 2.907 (4.247) 
3-segment 0.5678 (6.4695) 2.600 (5.946) 6.464 (18.414) 

R - W Coefficients 0.02974 (3.1069) 2.108 (2.273) 3.093 (4.977) 
Mixture Model 0.2325 (3.2032) 2.175 (2.354) 3.197 (5.205) 

F R F / U S D 
Random Walk 0.01915 (3.07602) 2.320 (2.007) 3.062 (4.333) 
Forward Rate -0.1578 (2.9387) 2.282 (1.846) 2.929 (3.860) 
Simple Regression -0.007013 (3.077480) 2.326 (2.002) 3.063 (4.363) 
Linear System 0.04012 (3.11576) 2.346 (2.038) 3.102 (4.221) 
Threshold System 

2-segment 0.2541 (3.2025) 2.424 (2.095) 3.198 (4.392) 
3-segment 0.1008 (3.1523) 2.396 (2.038) 3.139 (4.371) 

R - W Coefficients 0.08085 (3.10218) 2.323 (2.046) 3.089 (4.440) 
Mixture Model 0.1504 (3.1317) 2.353 (2.059) 3.121 (4.477) 

D E M / U S D 
Random Walk 0.0328 (3.0876) 2.296 (2.052) 3.073 (4.435) 
Forward Rate -0.07737 (2.94462) 2.181 (1.968) 2.932 (4.036) 
Simple Regression -0.1982 (3.0973) 2.334 (2.034) 3.089 (4.372) 
Linear System 0.5362 (3.1462) 2.355 (2.143) 3.177 (4.746) 
Threshold System 

2-segment -0.1110 (3.2600) 2.499 (2.083) 3.247 (4.517) 
3-segment -0.1566 (3.2242) 2.442 (2.098) 3.213 (4.557) 

R - W Coefficients 0.03059 (3.08326) 2.323 (2.015) 3.069 (4.354) 
Mixture Model 0.1366 (3.0937) 2.332 (2.026) 3.082 (4.394) 
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M E M A E R M S E 
I T L / U S D 

Random Walk 0.2957 (3.2689) 2.266 (2.364) 3.267 (5.041) 
Forward Rate 0.01759 (3.10106) 2.180 (2.196) 3.087 (4.825) 
Simple Regression 0.2221 (3.2698) 2.277 (2.347) 3.262 (5.003) 
Linear System 0.8054 (3.2693) 2.290 (2.460) 3.352 (5.074) 
Threshold System 

2-segment 0.1502 (3.5048) 2.335 (2.609) 3.492 (5.595) 
3-segment 0.2989 (3.5821) 2.446 (2.624) 3.578 (5.591) 

R - W Coefficients 0.1995 (3.3161) 2.297 (2.390) 3.307 (5.272) 
Mixture Model 0.03843 (3.48126) 2.407 (2.505) 3.465 (5.522) 

C A D / U S D 
Random Walk 0.2672 (1.3101) 1.017 (0.863) 1.331 (1.772) 
Forward Rate 0.2138 (1.2954) 0.9984 (0.847) 1.307 (1.719) 
Simple Regression 0.2086 (1.3167) 1.018 (0.855) 1.327 (1.728) 
Linear System 0.3869 (1.3342) 1.061 (0.892) 1.383 (1.807) 
Threshold System 

2-segment 0.2111 (1.3147) 1.011 (0.859) 1.325 (1.740) 
3-segment 0.1817 (1.3196) 1.012 (0.861) 1.326 (1.756) 

R - W Coefficients 0.1962 (1.3341) 1.023 (0.873) 1.342 (1.753) 
Mixture Model 0.2227 (1.3484) 1.031 (0.891) 1.360 (1.798) 

J P Y / U S D 
Random Walk -0.1371 (3.5317) 2.573 (2.410) 3.518 (5.080) 
Forward Rate 0.01848 (3.38960) 2.445 (2.336) 3.374 (5.113) 
Simple Regression 0.1151 (3.5125) 2.544 (2.412) 3.498 (5.153) 
Linear System 0.2862 (3.5077) 2.534 (2.431) 3.503 (5.161) 
Threshold System 

2-segment -0.1738 (3.5992) 2.592 (2.491) 3.587 (5.372) 
3-segment 0.06024 (3.66427) 2.610 (2.560) 3.648 (5.437) 

R - W Coefficients -0.1154 (3.529) 2.546 (2.435) 3.515 (5.147) 
Mixture Model -0.1490 (3.531) 2.551 (2.434) 3.518 (5.146) 
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Table D.2: Percent Frequency of Correct B u y and Sell Signals. 

XE XF XE XF XE Xp 
G B P / U S D F R F / U S D D E M / U S D 

Random Walk 49.1 53.7 52.8 
Forward Rate 64.8 53.7 62.0 
Simple Regression 51.9 55.6 47.2 56.5 44.4 53.7 
Linear System 56.5 50.9 50.9 49.1 54.6 55.6 
Threshold System 

2-segment 51.9 54.6 56.5 52.8 38.0 46.3 
3-segment 49.1 53.7 58.3 51.9 44.4 52.8 

R - W Coefficients 54.6 48.1 56.5 52.8 49.1 50.9. 
Mixture Model 47.2 52.8 52.8 51.9 49.1 54.6 

I T L / U S D C A D / U S D J P Y / U S D 
Random Walk 56.5 56.5 50.9 
Forward Rate 56.5 54.6 59.3 
Simple Regression 48.1 57.4 50.0 50.9 59.3 52.8 
Linear System 55.6 60.2 42.6 51.9 58.3 57.4 
Threshold System 

2-segment 54.6 60.2 51.9 54.6 60.2 56.5 
3-segment 54.6 57.4 57.4 55.6 59.3 57.4 

R - W Coefficients 50.9 56.5 51.9 50.9 57.4 58.3 
Mixture Model 48.1 56.5 48.1 53.7 59.3 61.1 
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Appendix E 

Plots of Lopez Loss Scores 

against Percentage Changes 

Prices 

The labels in the legend represent: 

• R W — Simple Random Walk 

• F R — Forward Rate Model 

• S R — Simple Regression 

• L S Y — Linear System Model 

• T S R 2 — Threshold 2-Segmented Regression 

• T S R 3 — Threshold 3-Segmented Regression 

• R W C — Random Walk Coefficient Model 

• M R W C — Mixture of Random Walk Coefficient Models 
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Figure E . l : Lopez Scores for Short U S D against G B P . 
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Figure E.2: Lopez Scores for Long U S D against G B P . 
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Figure E.3: Average Lopez Scores over Opposing Positions in U S D against 
G B P . 
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Figure E.4: Lopez Scores for Short U S D against F R F . 
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Figure E.5: Lopez Scores for Long U S D against F R F . 
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Figure E .6 : Average Lopez Scores over Opposing Positions in U S D against 
F R F . 
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Figure E.7: Lopez Scores for Short USD against DEM. 
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Figure E.8: Lopez Scores for Long U S D against D E M . 
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Figure E.9: Average Lopez Scores over Opposing Positions in U S D against 
D E M . 
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Figure E.10: Lopez Scores for Short U S D against I T L . 
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Figure E . l l : Lopez Scores for Long U S D against I T L . 



Figure E.12: Average Lopez Scores over Opposing Positions in U S D against 
I T L . 
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Figure E.13: Lopez Scores for Short U S D against C A D . 
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Figure E.14: Lopez Scores for Long U S D against C A D . 



Figure E.15: Average Lopez Scores over Opposing Positions in U S D against 
C A D . 
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Figure E.16: Lopez Scores for Short U S D against J P Y . 



Figure E.17: Lopez Scores for Long U S D against J P Y . 
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Figure E.18: Average Lopez Scores over Opposing Positions in U S D against 
J P Y . 


