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Abstract 

Mammography is used as a screening tool to detect breast cancer at 

an early stage. The process of breast cancer detection using mammography 

is modelled with a semi-Markov process composed of three states: cancer-free 

(0), preclinical cancer (1) and clinical cancer (2). It is assumed that screening 

provides the ability to detect disease while it is still in the preclinical state 

before it enters the clinical state, however screening measurement is subject to 

error. The sojourn time in the preclinical detectable phase is thus of particular 

interest and it plays an important role in the design and assessment of screening 

programmes. 

In previous work, the transition rate into the preclinical detectable 

phase has been modelled by an age-specific step function based on age at 

first screen. This does not lead to an increasing incidence of breast cancer 

with age but observations in several populations indicate that incidence in­

creases at approximately the third power of age. This relationship is induced 

in the model by introducing a smooth age dependent transition rate into the 

preclinical detectable phase. 
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The model is applied to data provided by The Screening Mammography 

Programme of British Columbia (SMPBC). A Quasi-Newton algorithm is used 

to minimize the negative log likelihood function to obtain maximum likelihood 

estimates of the model parameters. Comparisons will be made with other 

published results and the effect of various assumptions examined. 
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Chapter 1 

Introduction 

1.1 Background 

Mammography has long been advocated as a screening test for breast cancer 

which is the most commonly diagnosed cancer in women. Breast cancer is 

easiest to treat in the early stages of the disease and the most effective method 

of early detection is screening mammography. Other methods of detection 

such as breast self-examination and physical examination by a physician rely 

on touch and if a cancer is large enough to be found in this manner, it may 

be too late to effectively treat. 

A screening mammogram is a low dose x-ray of the breast. Screening 

mammography is performed periodically and consists of x-raying each breast 

from the side and from the top. The breast is compressed between two flat 

plates to spread the tissue so that any abnormalities can be more easily iden­

tified. As some of these abnormalities are difficult to characterize, a patient's 
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prior (if any) mammograms can be used as a reference to help identify sub­

tle changes over time. If the result of a patient's screening mammogram is 

abnormal (symptoms of breast problem or presence of breast lump) further 

investigation of the abnormality is conducted such as diagnostic mammogram, 

ultrasound or biopsy. 

Figure 1.1 is a schematic depicting the general progression of breast 

cancer. A patient is assumed to be born free of breast cancer. At some point 

in time a first cancer cell is created and this cell then divides until it is large 

enough to trigger a diagnosis of cancer. If a cancer is large enough to cause 

symptoms or be felt by physical touch then it is in the clinical phase. A cancer 

which is present but is not large enough to be clinical is in the preclinical phase 

which can be further broken down into preclinical detectable and preclinical 

undetectable. From this point on, we will refer to any cancer smaller than 

a preclinical detectable cancer as no cancer. The state in which a cancer is 

detectable by mammography prior to symptom development is defined as the 

preclinical detectable phase, and the length of this period is called the sojourn 

time. Note that due to the intermittent occurrence of screening, the transition 

of a cancer into the preclinical detectable phase is not directly observable. 

Several randomized clinical trials have shown screening mammography 

to be effective, alone or in combination with breast self examination or profes­

sional physical examination, in reducing the mortality rate from breast cancer. 

However, there is still controversy about the indications for and use of screen­

ing mammography. 
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The female breast undergoes changes with age, particularly around the 

time of menopause and these changes should theoretically affect the sensitivity 

of mammography to detect breast cancer. Meta-analyses of clinical trial sub­

sets, defined by age at first screen (less than or greater than 50), indicate that 

the proportional reduction in mortality from breast cancer of women undergo­

ing mammography increases with age. This, coupled with the lower incidence 

of breast cancer in women less than 50 years of age has resulted in controversy 

about recommending mammographic screening in this age group. The whole 

question of screening is further complicated by the fact that screening requires 

repeated testing so that the effect of frequency (how often a woman goes for 

screening) as well as age are important. The frequency of mammography is 

highly dependent upon the sojourn time distribution and we will now examine 

previous models which have been used to estimate this distribution. 

1.2 Previous Work 

The optimal time between screens has been a long argued issue particularly 

because it is directly related to the effectiveness of a program. If screens occur 

too frequently then mammography will not be cost efficient and there will 

also be unnecessary exposure to radiation. On the other hand, if the time 

between screens is too long, preclinical cancers may be missed, which defeats 

the purpose of screening. To account for exposure, costs and benefits, the time 

between screens should be close to the mean sojourn time (MST). Hence, we 

wish to estimate the sojourn time distribution. Before developing the model, 
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we will quickly define some notation. 

1.2.1 Definition of Continuous Time Markov Chains 

A stochastic process is a family of random variables {X(t); t € T} where T is 

called the index set of the process. The index t will be interpreted as time and 

we refer to X(t) as the state of the process at time t. We call {X(t)} a Markov 

process if, given the value of X(t), the values of X(t + s) are not influenced 

by the values of X(t — u), s > 0, u > 0, i.e., the conditional probability of 

any future state given the present state and the past states depends only on 

the current state and is independent of the past states. For our purposes, 

T will be the non-negative real numbers and the state space of X(t) will be 

discrete. This process is called a continuous time Markov chain and is written 

as {X(t); t > 0}. 

1.2.2 Markov Modelling 

Several published articles have used Markov modelling (under various assump­

tions) on breast cancer screening data. The general model is a continuous time 

Markov chain with state space {0, 1, 2} (refer to Figure 1.1). At time t = 0, 

it starts in state 0 (no cancer). As time progresses it will move through state 

0 to state 1 (preclinical detectable cancer) and is eventually absorbed in state 

2 (clinical cancer). The process is specified by the parameters A0(i) and Ai(t) 

where X0(t) is the rate of transition from 0 to 1 at time t and Ai(£) is the rate 

of transition from 1 to 2 at time t. Pictorially, we have 
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0 ^ x 2 

In 1995, Duffy et al. [1] used the simplest model of this class which has 

transition rates from 0 to 1 and from 1 to 2 constant over time for all ages, 

i.e., 

A0(t) = Ao 

Ai(t) = A L 

This is an unrealistic assumption for breast cancer as incidence of breast cancer 

is known to increase with age [2]. The estimation of transition rates was 

also made by Duffy et al. assuming 100% sensitivity and 100% specificity of 

mammography, i.e., the observed state at screen is the true state. They used an 

estimation algorithm in which once transition rate estimates were found, they 

are assumed to be fixed and then the sensitivity is estimated. This two-step 

method of estimation is not optimal. 

The following year, the same authors [3] improved on their model by 

simultaneously estimating transition rates, sensitivity and specificity. Their 

approach was to analyze the data in accordance to age at first screen, i.e., 

patients are assigned to one of the age groups 40-49, 50-59, 60-69, 70-74 based 

on their age at first screen, and the model was fitted to each of these data sets 

separately. A result of this splitting of the data into subsets is a smaller number 

of preclinically and clinically diagnosed cancers which may lead to unstable 

estimates [3]. The model in which X0(t) = A 0, Ai(£) = Ai and the sensitivity 

and specificity are assumed constant within age groups will be referred to as 

the Duffy model. 
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1.2.3 Data in Previous Work 

Two sets of data are analyzed in [1], [3] and [4]. The Swedish Two-county 

Trial, appearing in all three articles, is a randomized trial that began in 1977. 

It consists of 133065 participants between the ages of 40 and 74 randomized 

to: 

• invitation for screening with mammography every 2-3 years for approx­

imately 8 years (active study population), or 

• no screening during this period until the end of the 8 years (passive study 

population). 

77080 women were invited for screening while 55985 were not invited. The 

other data set is from the screening programme in Florence from 1975 to 1986 

where the screening interval was approximately 2 years for the 40-49 year age 

group [4]. 

1.2.4 Results of Previous Works 

The results of fitting the Duffy model for the active study population in the 

Swedish Two-county Trial [3] are displayed in Table 1.1. Note that sensitivity is 

the complement of (3, the false negative rate, and specificity is the complement 

of 7, the false positive rate. 

In the next chapter, we present a more general model which simultane­

ously estimates transition rates, sensitivity and specificity where the transition 

rate into the preclinical detectable phase is a function of time. 
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Parameter Results for the following age groups: 
40-49 years 50-59 years 60-69 years 

A 0 (xlO 2) 0.089 0.155 0.236 
(0.084-0.095) (0.148-0.163) (0.227-0.244) 

Ai 0.407 0.267 0.236 
(0.350-0.472) (0.245-0.291) (0.223-0.250) 

MST(= 1/Ai) 2.459 3.745 4.234 
(2.120-2.854) (3.441-4.077) (3.997-4.485) 

P, false 0.168 0.000 0.000 
negative rate (0.107-0.264) (0-0.000) (0-0.000) 

7, false 0.0002 0.0000 0.0000 
positive rate 

Table 1.1: Duffy's results of estimation for parameters from the Swedish Two-
county Trial, (Respective 95% Confidence Intervals in parentheses). 
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Chapter 2 

Model and Techniques 

2.1 Introduction 

Our model development will be done in two parts. The first part is to define 

transition probabilities for the 'true' state {T(a)} of cancer where a is age. The 

second part is to define probabilities for the 'observed' state {0(a)} of cancer. 

We will also describe the data provided by the SMPBC and the construction 

of the associated likelihood function. 

2.2 True State Process 

The model for the true state process was described briefly in Section 1.2.2. 

We continue with the description of the process. 

At age a, the true state process is in one of three states: 
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C 0, if no cancer at age a; 

T(a) = 1, if preclinical detectable cancer at a; 

{ 2, if clinical cancer at a . 

It is impossible to regress to a less severe cancer state and 2 is an absorbing 

state. We have the following properties: 

1. P{T{a + Aa) = k\T(a) = k} = 1 - Xk(a)Aa + o(Aa), k = 0, 1 

2. P{T(a + Aa) = k + l\T(a) = k} = Xk(a)Aa + o(Aa), k = 0, 1 

3. P{T(a + Aa) = j\T{a) = k} = 0, j < k. 

For age a, we will assume that the rates of transition may be approximated 

by polynomials so that for state 0 to 1 we have A0(a) = A 0 a n > 0 and, for 

state 1 to 2, Xi(a) = \iam > 0, where A 0 , A l 5 m and n are positive unknown 

parameters. 

Define Pij(t; a) = P{T(t + a) = j\T(a) = i}. Differential equations for 

these transition probabilities are derived from Kolmogorov's Forward Equa­

tions (Appendix A): 

• dJ^ = -\o(a + trP00(t;a) 

• ^ ^ = Ao(a + i)"P c ' oo fca ) -Ai (a -M) m P c oi (t; a) 

• ^ ^ = \x{a + t)mPi oi (*; a) 

• ^ i p ^ = -X^a + t^P, \i(t;a) 
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• ^f^ = X1(a + trPn(t;a). 

and we also have Pij(t; a) = 0 for j < i, 2̂2(̂ 5 a) = I for all a > 0, t > 0. 

We do not need to completely solve these equations as we only need some of 

the quantities for use with observed data. In particular, we obtain: 

P 0 0 ( i ; a) = exp{-\0 C (a + u)ndu) (2.1) 
Jo 

P o i ( t . fl) = So exp{X, Jo" (a + v)mdv}X0{a + u)nexp{-X0 J0" (a + v)ndv}du 
' exp{Xi So (a + u)mdu) 

(2.2) 

P u (*; a) = exp{-X1 C (a + «) m du} (2.3) 
^0 

with boundary conditions Poo(0; a) = 1, Poi(0; a) = 0 and Pn(0; a) = 1. 

2.2.1 Selection of Functional Form of Transition Rates 

The general estimation of m and n using expressions such as (2.2) is not easily 

performed. It is thus necessary to simplify the model. From Table 1.1, the rate 

of transition from 0 to 1 increases with age while the rate of transition from 1 

to 2 decreases with age. If we assume these trends to be the truth, we will have 

n > 0 and m < 0. Cancer is believed to be a multi-step process so that there 

is more likely to be greater age variation prior to the preclinical state rather 

than after. Furthermore examination of Table 1.1 shows that when A 0 and 

Ai are assumed constant within age ranges, AQ varies more across age groups 
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than Ai, i.e., 0.236/0.089 > 0.407/0.236, suggesting that this quantity is more 

age dependent. We therefore follow Duffy and assume m = 0. 

The incidence rate of breast cancer at age a is defined as 

= rfP02(a;0) 1 
[ a ) da 1 - P 0 2 ( a ; 0 ) 

but PO2(G; 0) < 0.1 for all ages of interest and hence 

dP02{a;0) 
1(a) 

da 

= A 1 P 0 1 M ) . 

In [1], [3] and [4], m = 0 and n = 0 which give constant transition 

rates that are independent of age. The above relationship and the solution of 

equation (2.2) shows that the Duffy model implicitly implies a non-increasing 

incidence rate, i.e., 

. s _ AiA0(ea:p{-Aoa} - ea;p{-Aia}) 
{ a ) ~ A 1 - A 0 

which is not a realistic assumption for breast cancer as incidence of breast 

cancer is known to increase with age. 

The data sets by age group are based on age at first screen and not age 

at current screen. The Duffy model thus "freezes" incidence rates based on 

age at first screen. It is possible for a patient in one age group to be diagnosed 

in the next age group. This is anomalous and we would like to have a common 

n and a common Ao across all age groups. 

The observed incidence of breast cancer in British Columbia from 1988-

1996 is shown in Table 2.1. Rate of Incidence versus age for n = 0 ,1 , 2,3 are 
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plotted in Figure 2.1 to determine the integer value of n that gives incidence 

rates close to the observed incidence of breast cancer. The values for n = 2 

appear to be best suited for our purposes. 

Age Group Number B.C. Average Incidence 
(years) of Cases Population Rate per Year 

0-4 0 1008666 0.00000 
5-9 1 1027940 0.00000 

15-19 1 997574 0.00000 
20-24 11 1113083 0.00001 
25-29 93 1276730 0.00007 
30-34 283 1391295 0.00020 
35-39 680 1341207 0.00051 
40-44 1368 1209928 0.00113 
45-49 1814 996669 0.00182 
50-54 1616 775611 0.00208 
55-59 1734 684900 0.00253 
60-64 2034 671334 0.00303 
65-69 2462 666514 0.00369 
70-74 2449 587576 0.00417 
75-79 1940 447535 0.00433 
80-84 1260 296150 0.00425 
85-89 628 155574 0.00405 
90+ 335 84832 0.00395 

Table 2.1: Observed Incidence of Breast Cancer in British Columbia by five 
year age groups from 1988-1996. 

Therefore, the solution to the true state process for general n is: 

P00(t] a) = exp < —-j-^ '- \ (2.4) 



Figure 2.1: Observed Incidence versus Age overlaid by Incidence Rates for 
various n, Ai = 0.4, A045" sa 0.002. 

P0i(t;a) = X0exp 
X0d n+l 

n + 1 
Ax* j jT' (a + u)neap | A i U - ^^^^j du 

(2.5) 

Pn(t; a) = P n ( t ) = exp{-Xlt}. (2.6) 

Based on these probabilities, the model infers that a cancer's sojourn time 

in state 0 with a = 0, So, has a Weibull distribution function P(S0 < t) = 

1 — exp | — A ° ^ X | , while the sojourn time distribution in state 1, Si, is Ex-
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ponential, i.e., P(S\ < t) = 1 — exp{—\xt}. The structure of the model also 

implies that all cancers start in state 0 and pass through state 1 before entering 

state 2. 

2.3 Observed State Process 

The difference between the observed state process and the true state process 

occurs as a result of screening errors. If screening was perfect, i.e., a true 

no cancer is identified as no cancer detected and a true preclinical cancer is 

identified as a screen detected cancer, then the observed state process would 

be equivalent to the true state process. In reality, this is not the case and must 

be accounted for. 

Let {0(a)} be the observed state process where at age a, a patient is 

in one of three states: 

( 0, if no cancer detected at age < a 

and no mammography performed at a; 

0(a) = < 1, if screen detected cancer at age < a; 

2, if clinical cancer detected at age < a 

with no preceding screen detected cancer. 

A no cancer detection occurs when the screen result is normal or if the screen 

result is abnormal and work-up does not lead to a cancer diagnosis. A screen 

detected cancer occurs when the screen result is abnormal and work-up leads 

to a cancer diagnosis. A clinically diagnosed cancer is one which is made as 
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a result of signs and symptoms. Note that the monitoring of preclinical and 

clinical cancer are done on different time scales. Each patient is constantly 

monitored for clinical cancer and it is assumed that this is done without error, 

i.e., P(0(a) = 2\T(a) = 2) = 1 and P(0(a) = 2\T(a) ^ 2) = 0. Periodically, 

each patient is monitored for preclinical cancer by screening mammography 

which is done with error. The error can be one of two types. For age a, 

P(0(a) = l\T(a) = 0) = 7 (false positive rate) 

P(0(a) = 0\T(a) = 1) = 3 (false negative rate) 

A false positive is defined as a definitively diagnosed cancer that would never 

have arisen clinically in the absence of screening. A false negative occurs when 

a preclinical detectable cancer is present and mammography does not identify 

it. The complement of the false negative rate is sensitivity and that of the 

false positive rate is specificity. 

Now suppose the study runs over a certain period of time t* which will 

be called the end of the study period. For a subject aged a* at t* we define a 

new state as 

0(a*) = 3, if no screen detected cancer or clinical cancer prior 

to a* and no mammography performed at a*. 

A description of the data provided by the SMPBC will be given in the next 

section. This, in addition to the two sections after it, will relate the true state 

process to the observed state process. 
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2.4 Description of Observational Data 

The SMPBC is a routine service screening programme that started in 1988 

where the data available is up to the end of 1996. A woman is eligible to 

enter the study if she resides in British Columbia in this period of time and 

has never had a prior clinically diagnosed breast cancer. Suppose we call this 

woman the ith patient. Every patient is assumed to be born breast cancer free 

and will first go for screening at age an- If no cancer is detected at an they 

will continue to go for screening until one of the following events occur: 

1. screen detected cancer 

2. clinical cancer 

3. end of the study period (1996/12/31). 

Every patient starts with an observation period from birth to 1996/12/31. If 

a patient has a screen detected cancer or a clinically diagnosed cancer prior to 

the end of the study period then their observation period is truncated to the 

time of diagnosis. 

Suppose the ith patient goes for screening at ages an, ai2, a^, 

where the event at aiK. may not be the result of a screen but may be a clinical 

cancer or the end of the study period. By definition, every event but the last 

will result in a no cancer observation. Let O* be their observed state at the 

last event. Then the ith patient's contribution to the likelihood will be 

L(0*) = P{0(an) = 0,.. -M^-i) = 0,O(aiKi) = 0*\T{an) ^ 2} 
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where is age at event j and K is the number of events. The conditioning 

event is {T(an) ^ 2} because patients who have a no cancer result or a screen 

detected cancer at first screen are from a cohort of women followed from birth 

who have never had a prior clinical breast cancer. Hence, a clinical cancer 

diagnosis is only observed after one or more screens. 

2.5 Patient History with One Screen 

Suppose K{=1. Then the ith patient's contribution to the likelihood will be 

• If O*=0 (no cancer detected at the end of observation period) then 

This situation will only arise if the i patient enters the study at exactly 

the end of the study period. 

• If 0*=1 (screen detected cancer at the end of observation period) then 

2.6 Patient History with Multiple Screens 

Suppose Ki > 1. Then the ith patient's contribution to the likelihood becomes 

quite complicated. To aid discussion consider the following example. 

L(0*)=P{0(ail)=0*\T(ail)^2}. 

Poo(Qii;0)(l-7)+Poi(flii;0)/? 
PoofeO) +P 0i(oii;0) 

Poo(aii;0)7 + ^ o i ( Q i i ; 0 ) ( l - / 3 ) 
PoofeO) + P 0i(a ii;0) 
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2.6.1 Example. 

If Ki=b then the observed sequence is: 

Time (age) aiX ai2 ai3 ai4 ai5 

Observed 0 0 0 0 O* 

Table 2.2: Observed Sequence, Ki = 5. 

For events prior to the last, the true state process {T(t)} can only take values 0 

or 1, where possible values can only be consecutive O's followed by consecutive 

l's. To simplify the notation, drop the i subscript and let ao = 0, tj = a,- — O j _ i 

for j > 1, and define 

^ a j , U j ~ P o o ( a i ; 0 ) + P o i ( a i ; 0 ) 

for j > 0, k = 0,1. 

Now consider all screens but the last. 

Time (age) 
Observed 

ai a2 a 3 a 4 

0 0 0 0 

Possible 

True (T) 

Sequences 

Probability of True Sequence 

0 0 0 0 P0*o{^;0) 
0 0 0 1 PSo(a3;0)P01{U;a3) 
0 0 1 1 Po*o(a2;0)Poi{t3;a2)Pn(a4-a3) 
0 1 1 1 P 0*o(ai;0)Poi(t2;ai)Pii(a 4-o 2) 
1 1 1 1 Poi(ai;0)Pn(a 4 -ai) 

Table 2.3: Probabilities of True Sequences. 
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Time (age) 
Observed 

ai a 2 a 3 a 4 

0 0 0 0 

Possible 

True (T) 

Sequences 

Probability of Observing the True Sequence 

0 0 0 0 ( l - 7 ) 4 P 0 * 0 ( o 4 ; 0 ) 
0 0 0 1 (l-j)3P0*0(a3;0)P01(U;a3)(3 
0 0 1 1 (l-7)2Poo(«2;0)Poi(t3;a2)/?2P11(a4-a3) 
0 1 1 1 ( l - 7 )^oo (a i ; 0 )Po i ( i 2 ; a 1 ) / 3 3 P 1 1 ( a 4 - a 2 ) 
1 1 1 1 P 0 * 1 (a 1 ;0) /? 4 P 1 1 (a 4 -a 1 ) 

Table 2.4: Probabilities of Observing the True Sequences. 

2.6.2 Genera l iza t ion from Example . 

For an observed sequence of 0's we have two types of true sequences; one that 

has 0 as the true state at age a^-i and one that has 1. For T ( a ^ _ i ) = 0, 

define 

F o K ; - i ) = P{0(ai) = 0 , 0 ( a K i - i ) = 0, T(aKi-i) = 0} 

= ( l - ^ - ^ o o K ^ i i O ) , 

and for T(aK{-i) = 1, 

Fl(aKi_l) = P{O(a1)=0,...,O(aKi_1)=0,T(aKi_1) = l} 

= £ n*o(%; 0)(1 - 7)'>oi(*i+i; a3)(3K^-lPn(aKl-i - aj+1). 
j=0 

Therefore the ith patient's contribution to the likelihood is: 

• if O*=0 (no cancer detected at the end of observation period), 

L(0*) = F o f e - O l P o o ^ s a ^ - i j a - T j + P o i f e j a ^ O ^ - r -

.^ (a^-OPn 
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This situation will only occur if the i patient has multiple screens and 

a no cancer resulting screen at exactly the end of the study period. 

• if 0*=1 (screen detected cancer at the end of observation period), 

L(0*) = F 0 (a K i _ 1 ) [Poo(^;a^_ 1 ) 7 + Po i (^ ; a^_ 1 ) ( l-/? ) ] + 

i ^ - O P n ^ X l - / ? ) . 

• if 0*=2 (clinical cancer at the end of observation period), 

L(0*) = F o ^ - O A i P o i ^ s a ^ - O +F 1 (a^ i _ 1 )A 1 P 1 1 (^ i ) . 

We assume a patient transitions from state 0 to state 1 (or from state 

1 to state 1) in time and then instantaneously transitions from 1 to 

2. This assumption follows from the error-free constant monitoring of 

clinical cancer. 

• if 0*=3 (no screen detected cancer or clinical cancer prior to the end of 

study period), 

L(0*) = PoK, - i ) [Poo(^ ; aKi-X) + P0i{tKi; aKi-i)] + Fl(aKi_1)Pll{tKi). 

This situation arises if the ith patient's last screen detects no cancer and 

it occurs prior to the end of the study period. 

As usual the likelihood function is given by 

L ( ^ 7 j A 0 j A 1 , n | a ) = nL(O;) 
i=i 

where N is the number of patients. 
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Chapter 3 

Data Generation for Simulation 

and Results 

The parameters are estimated via minimization of the negative log likelihood 

function which will be accomplished using a Quasi-Newton algorithm [5]. In 

order to test that this routine works properly and that ,the likelihood is 'well 

behaved', simulations on generated data from known distributions were carried 

out. The distributions that will be important for generating data are the 

Uniform, Exponential, Weibull and Bernoulli distributions. 

3.1 Review of Distributions 

A random variable X has a Bernoulli distribution with probability of success 

p > 0 if 

p(x = x) = P

x { i - P y - x , x = o,i. 
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A random variable X has a uniform distribution on (0,1) if 

f 1, 0 < x < 1; 
fx(x) = 

{0, otherwise. 

A random variable X has an Exponential distribution with scale ^ > 0 if 

fx(x) = Xiexp^Xxx), x>0. 

A random variable X has a Weibull distribution with scale b > 0 and shape 

a > 0 if 
axa~1 

fx(x) = -^-exp{-(x/b)a}, x>0. 

Another form of the Weibull distribution is arrived at by letting ba — j^, i.e., 
fx{x) = X0xa-1exp{-X0xa/a}. 

3.2 True State Model Sojourn Times 

For data generation and simulation purposes, let n = 2. The history of every 

patient starts at T(0)=0. Let be the sojourn time in state 0. Then for time 

t > 0, 

p{s0 > t) = p{T(t) = o|r(o) = o) 

= exp{-X0t3/3}, 

i.e., S0 has distribution function FSo(t) = 1 - exp{-X0t3/3}. Note that this 

distribution function is Weibull. Now, if u is a random sample from a Uniform 

(0,1) distribution, then sojourn times in state 0 can be generated by setting 

FSo(t) = u and solving for t which gives t = {-31n(l - « ) /A 0 } 1 / 3 . 
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Similarly, let Si be the sojourn time in state 1. Then for time t > 0 

and age a > 0, 

P(Si > *) = P{T(t + a) = l\T(a) = 1) 

= exp{—Ait}, 

i.e., Si has distribution function Fs1(i) = 1 — exp{—Ait} which is that of an 

Exponential. 

3.3 Data Generation 

S t e p 1. Choose A 0 and Ai and generate So and Si for patient history. 

S t e p 2. Specify screening and end of study times and generate true states at 

screening times based on patient history. 

S t e p 3. Generate observed states at screening times. This is done in the 

following way: 

• if the true state at some time t is 0, then P(0(t) — 0\T(t) = 0) = 1 — 7. 

A random sample of size 1 from a Bernoulli distribution with p = 7 is 

taken to get an observed state at t of 0 or 1. 

• if the true state at some time t is 1, then P(0(t) = l\T(t) = 1) = 1 — (3. 

A random sample of size 1 from a Bernoulli distribution with p = 1 — (3 

is taken to get an observed state at t of 0 or 1. 

S t e p 4. The observed state sequence for each patient will be a sequence of 

0's, l's and 2's but we only want the observed sequence up to the first 1 or 
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2. A 'valid' observed screening history is created by truncating the observed 

sequence at the earliest 1 or 2. 

An end of study period will also be defined. If a patient has not entered 

state 1 or 2 by the end of the study period, then their observed history will 

end in a 3. This implies that their true state at this time is either 0 or 1. 

3.4 Examples 

Let the screen times = {40,45,50,55,60} and the end of study period = 59. 

1. If the generated sojourn times are 50=47, 5i=7 then the true state sequence 

would be {0,0,1,2,2}. 

• Suppose an observed sequence of {0,1,0,2,2} is generated. Then we would 

truncate the sequence to {0,1} with time={40,45}. 

• Suppose an observed sequence of {0,0,0,2,2} is generated. Then we would 

truncate the sequence to {0,0,0,2} with time={40,45,50,54}. 

• Suppose an observed sequence of {0,0,1,2,2} is generated. Then we would 

truncate the sequence to {0,0,1} with time={40,45,50}. 

2. If the generated sojourn times were 5o=54, S\=7 then the true state 

sequence would be {0,0,0,1,1}. 

• Suppose an observed sequence of {0,0,0,0,0} is generated. Then we would 

truncate the sequence to {0,0,0,0,3} with time={40,45,50,55,59}. 
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• Suppose an observed sequence of {0,0,0,1,0} is generated. Then we would 

truncate the sequence to {0,0,0,1} with time={40,45,50,55}. 

• Suppose an observed sequence of {0,0,0,0,1} is generated. Then we would 

truncate the sequence to {0,0,0,0,3} with time={40,45,50,55,59}. 

3. If the generated sojourn times were 50=54, 51=4 then the true state 

sequence would be {0,0,0,1,2}. 

• Suppose an observed sequence of {0,0,0,0,2} is generated. Then we would 

truncate the sequence to {0,0,0,0,2} with time={40,45,50,55,58}. 

• Suppose an observed sequence of {0,0,0,1,2} is generated. Then we would 

truncate the sequence to {0,0,0,1} with time={40,45,50,55}. 

Therefore, all observed screening histories will end in a 1, 2 or 3. An observed 

history ending in 0 will only occur if there is a no cancer resulting screen at 

exactly the end of study period. For the above example, if SQ + SI < 40, which 

is the age at first screen, then we do not consider this sojourn time pair in the 

analysis as state 2 is only observed subsequent to one or more screens. 

3.5 Simulation Results 

The maximum likelihood estimates of the model parameters are obtained using 

a Quasi-Newton algorithm which is an iterative procedure and hence starting 

values must be specified. 
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We did several simulations each consisting of generating 1000 samples of 

size 500. Each sample consisted of 500 observed sequences created as described 

in Section 3.3 and Section 3.4. The parameters are set to specific values for 

data generation and starting values. The first simulation was the simplest 

situation of error-free screening. This occurs when the observed states are the 

true states, i.e., ft = 0 and 7 = 0. Hence, rather than minimizing the negative 

log likelihood with respect to four parameters, it is minimized with respect to 

just A 0 and Ai. The starting values were set at A 0 = 0.00001 and Ai = 0.3. 

Parameter True Value mean(MLE) SD(MLE) 

Ao 0.00001 0.00000953 0.00000046 
Ai 0.3 0.29890707 0.00444783 

Table 3.1: Simple Model Simulation Results for 1000 Samples of Size 500, 
0 = 0,7 = 0. 

The next simulations involved minimizing the negative log likelihood 

function with respect to all four parameters. We set ft, 7, A 0 and Ai to several 

different values for data generation and starting values. It should be noted 

that sparse number of screen detected cancers and clinical cancers lead to 

estimates with higher variability. 

In conclusion, the algorithm produced appropriate parameter estimates 

and appeared satisfactorily robust. We have applied it to SMPBC data as 

detailed in the next chapter. 
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Parameter True Value mean(MLE) SD(MLE) 

(3 0.2 0.2000 0.0001 
7 0.1 0.1001 0.0004 

Ao (xlO 3) 0.01 0.0094 0.0006 
Ai 0.3 0.3001 0.0003 

P 0.1 0.1050 0.1277 
7 0.01 0.0104 0.0104 

Ao (xlO 6) 6.0 5.9454 1.0281 
Ai 0.3 0.3439 0.1740 

Table 3.2: Full Model Simulation Results for 1000 Samples of Size 500. 
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Chapter 4 

Results for SMPBC Data 

Summaries of the SMPBC data by age groups specified by age at first screen 

are presented in Tables 4.1, 4.2 and 4.3. A summary of the frequency of 

events at the end of observation period and average time between screens is 

contained in Table 4.1. The frequency of type of transition is in Table 4.2 and 

the frequency of number of screens per patient is in Table 4.3. 

Table 4.4 shows the results of simultaneous estimation of transition 

rates, sensitivity and specificity under Duffy's assumptions for transition rates. 

Table 4.5 shows the results of simultaneous estimation of transition 

rates, sensitivity and specificity for our model with common n and Ao across 

age groups. The maximum likelihood estimates of 7 for the 40-49 and 50-59 

year age groups was of the order 10~10 and was not significantly different from 

0. Hence, the optimization was done with 7 — 0 for these two age groups. 
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Event at 
last screen 

Frequencies for the following age groups: 
40-49 years 50-59 years 60-69 years 70-74 years 
(N=116526) (N=76403) (N=59022) (N=18425) 

No Cancer 
(O*=0) 

41 
(0.0004) 

22 
(0.0003) 

17 
(0.0003) 

6 
(0.0003) 

Screen Detected 
Cancer (0*=1) 

506 
(0.0043) 

640 
(0.0084) 

840 
(0.0142) 

312 
(0.0169) 

Clinical Cancer 
(0*=2) 

353 
(0.0030) 

264 
(0.0035) 

223 
(0.0038) 

79 
(0.0043) 

End of Study 
Period (0*=3) 

115626 
(0.9923) 

75477 
(0.9879) 

57942 
(0.9817) 

18028 
(0.9785) 

Average Time 
Between Screens 
(Years) 

1.365 1.291 1.256 1.240 

Table 4.1: Event Frequencies at last screen and Average Time Between Screens 
by Age Group, SMPBC (Respective proportions in parentheses). 

Transition To State 
Age Group From State 0 1 2 3 Total 

40-49 years 0 274221 506 353 115626 390706 

50-59 years 0 200898 640 264 75477 277279 

60-69 years 0 160284 840 223 57942 219289 

70-74 years 0 46865 312 79 18028 65284 

Table 4.2: Frequency of Transitions by Age Group, SMPBC. 
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Number of 
Screens 

Frequencies for the following age groups: 
40-49 years 50-59 years 60-69 years 70-74 years 

1 275 348 442 185 

2 48206 26932 19294 6495 

3 26192 16366 12565 4024 

4 16387 11231 8869 2784 

5 11599 8923 7195 2149 

6 7798 6624 5639 1675 

7 4145 3972 3498 880 

8 1292 1276 980 163 

9 559 636 447 58 

10 73 95 93 12 

Table 4.3: Frequency of Number of Screens by Age Group, SMPBC. 
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Parameter Results for the following age groups: 
40-49 years 50-59 years 60-69 years 70-74 years 

A 0 (xlO 2) 0.171 
(0.150-0.191) 

0.259 
(0.229-0.290) 

0.310 
(0.268-0.352) 

0.378 
(0.308-0.448) 

Ai 0.879 
(0.649-1.110) 

0.587 
(0.512-0.661) 

0.453 
(0.359-0.547) 

0.377 
(0.271-0.483) 

MST(= 1/Ai) 1.137 
(0.901-1.542) 

1.705 
(1.513-1.954) 

2.206 
(1.828-2.783) 

2.653 
(2.070-3.693) 

8, false 
negative rate 

0.110 
(0-0.220) 

0.015 
(0-0.064) 

0.067 
(0-0.179) 

0.096 
(0-0.258) 

7, false 
positive rate 

0.0004 
(0-0.001) 

0.0001 
(0-0.001) 

0.0010 
(0-0.002) 

0.0008 
(0-0.002) 

-logL(.) 6478.94 6322.81 6922.83 2445.90 

Table 4.4: Results of estimation for parameters from SMPBC, Duffy assump­
tions, n = 0 (Respective 95% Confidence Intervals in parentheses). 
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Parameter Results for the following age groups: 
40-49 years 50-59 years 60-69 years 70-74 years 

n 1.861 (1.613-2.109) 

A 0 (xl0 6 ) 1.499 (1.239-1.759) 

Ai 0.623 
(0.479-0.767) 

0.531 
(0.461-0.602) 

0.413 
(0.337-0.489) 

0.356 
(0.259-0.453) 

MST(= 1/Ai) 1.604 
(1.304-2.085) 

1.882 
(1.660-2.171) 

2.422 
(2.046-2.966) 

2.810 
(2.207-3.866) 

3, false 
negative rate 

0.175 
(0.047-0.303) 

0.027 
(0-0.093) 

0.062 
(0-0.158) 

0.090 
(0-0.223) 

7, false 
positive rate 

0 0 0.0003 
(0-0.0008) 

0.0001 
(0-0.0010) 

-logL(.) 22135.75 

Table 4.5: Results of estimation for parameters from SMPBC, common n and 
A 0 across all age groups (Respective 95% Confidence Intervals in parentheses). 

33 



Chapter 5 

Discussion 

The advancement of the model we introduce is a smooth age-dependent tran­

sition rate into the preclinical detectable phase. The likelihood becomes ex­

tremely complicated as it is composed of many integrals that do not have a 

closed form and must be calculated using numerical methods [6]. Our model 

indicated that women who go for their first screen prior to fifty years of age 

not only have a shorter mean sojourn time but also poorer sensitivity of the 

screening tool than women who go for their first screen subsequent to fifty years 

of age. The screening interval should be shorter for younger age groups and 

longer for older age groups. In general, our maximum likelihood estimates for 

Ai increase with age which follows the same trend as previously documented 

rates. 

The most drastic difference in parameter estimates occurs at age 60. 

The 95% confidence intervals for Ax from the 40-49 and 50-59 year age groups 

do not contain the estimates of Ai from the 60-69 and 70-74 age groups and 

34 



vice versa. 

For our model, the estimates of specificity in age groups 40-49 and 50-59 

were not significantly different from 1, i.e., there is little to no over diagnosis 

in 40-59 year old women being screened. The estimates of specificity in the 

60-69 and 70-74 year age groups are close to 1 as well. The sensitivity does 

not seem to follow any sort of trend from age group to age group. 

The difference between the results of our model and Duffy's model can 

be seen by comparing Table 4.4 and Table 4.5. Our model has longer mean 

sojourn times, smaller false positive rates and larger false negative rates (except 

for the 70-74 year age group). This can partly be explained by the following. 

Suppose the time between screens is fixed and Ai is allowed to vary. If the 

mean sojourn time increases then the probability that a patient is screened 

at an age for which T(a) = 1 increases, i.e., a longer mean sojourn time 

implies a higher number of screen detected cancers, but the number of observed 

screen detected cancers is fixed. This quantity can remain fixed if the mean 

sojourn time increases and the false negative rate increases so that more screen 

detected cancers occur due to the mean sojourn time increasing but a drop in 

the number of screen detected cancers will occur due to the false negative rate 

increasing. In all age groups, the false positive rate, 7, is so small that it can 

be effectively set to be zero. 

The sum of negative log likelihood's across age groups is smaller for 

our model (22135.75) compared to that of Duffy's model (22170.48) which 

is an indicator of a better fitting model. In addition to this, we also have 
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fewer parameters across all age groups, 12 parameters vs. 16 parameters. An 

incidence by age plot based on the parameters from both models is shown in 

Figure 5.1. Our model clearly gives incidence rates more closely related to the 

observed incidence in the general British Columbia population than Duffy's 

model. 
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Figure 5.1: Observed Incidence versus Age overlaid by Incidence Rates calcu­
lated from Parameter Estimates for Our Model and for Duffy's Model. 

By comparing Table 1.1 with Table 4.4 , it appears that women attend­

ing the SMPBC in the 90's differ from women in Sweden in the 80's. The 

difference in all the parameter estimates may be attributed to several things. 

It may be due to improvements in the screening tool over the years and it may 
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have to do with Duffy's assumption of same time between screens for each 

patient. 

The current policy for the SMPBC is women less than 50 years of age 

are invited for screening with mammography annually while women greater 

than 50 years of age are invited for screening with mammography every two 

years. Based on our results, the time between screens could be lengthened 

several months for women less than 50 years of age and shortened several 

months for women 50 to 60 years of age. 
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Appendix A 

Kolmogorov's Forward 

Equations 

The following is an illustration of how the differential equations were derived 

from Kolmogorov's Forward Equations. 

Definition A . l For all states i, j and times a > 0, s > 0, t > 0, the 

Chapman-Kolmogorov equations are: 

oo 
Pij(t + s; a) = £ Pik(t; a)Pkj{s; a + t). (A. l ) 

fc=0 

From (A. l ) , we get 

oo 
Pij(t + At; a) - Pij(t; a) = P ^ a)Pkj(At; a + t)- P^t; a) 

fc=0 

Pij(t; a^l-Pjji^a + t)] 
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and thus 

lim m + = l i m E P t t { ^VXa + t) 
At^o At At^°k^j A t 

1 - PjjiA^a + t) lim Pa (t: a) 
At^o i n ' ' At 

As the limit and the summation can be interchanged [7] we obtain 

dPijf a ) = £ + *) - Kite a)vM +1) (A.2) 

where 
P f c j(At;t) 

^fc7' (*) = hm — - \ -

k n ' At->0 At 

and 
,. 1 - Pn(At;t) 

a At) = lim ^ — ^ . 
n y ' At^o At 

We refer to (A.2) for all states i,j and times a > 0, t > 0 as Kolmogorov's 

Forward Equations. 

A . l Example 

Kolmogorov's Forward Equation when i = 0 and j = 1 is 

dPoli*; G) = Epo*(*;o)i/fci(o + t ) - P 0 1 ( t ; 0 ) ^ ( 0 + 0 

= P 0 0 ( i ; a)fv0i(o +1) - Poi(*; a)/ux(a +1). 
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Now from properties 1, 2 and 3 of Section 2.2 with Ao(a) = A 0a" and Ax (a) 

A i a m , we have 

v01 la + t) = hm — 
K ' At->o At 

- lim A o( a + t ) " A t + 0 ( A i ) 
A t - * 0 At 

= A0(a + t)" 

and 

, _ ^ ,• l - - P n ( A t ; g + t) /xWa + t) = hm —̂ -
v y At->o At 

,. Ai(a + t ) m At + o(At) 
= hm — — — -

Ai->0 At 

= A!(a + t ) m 

and hence 

dP0i(t; a) 
= Poo(i;a)Ao(a + t ) " - P 0 1 ( t ; a ) A 1 ( a + t) r 
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