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Abstract 

It is not uncommon to be faced with imprecise exposure measurements when 

dealing with case-control data. In cancer case-control studies, for instance, 

smoking histories may be unreliable. The usual methods of analysis involve 

logistic regression with different correction factors. The approach we adopt 

involves Bayesian fitting of a retrospective discriminant analysis model. The 

parameters of interest are the regression coefficients in the prospective log-

odds ratio for disease. Under a standard non-informative prior, the posterior 

means of these parameters are infinite. Posterior medians, however, perform 

reasonably relative to other estimators that adjust for covariate imprecision. 

For models with only continuous exposures, the Bayesian inference can be 

implemented with exact posterior simulation. 

The presence of binary covariates requires some elements of a covari-

ance matrix to be fixed. We develop a general approach for sampling such 

a constrained covariance matrix. The Bayesian inference in this context now 

demands the use of a Gibbs sampling algorithm. 
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Chapter 1 

Introduction 

The development of case-control methodology is of great importance to the 

field of epidemiology. A common problem which seems to arise in these types 

of studies is the mismeasurement of some of the covariates. Our objective is 

to develop, using Bayesian methods, an approach that will allow us to reach 

reasonable conclusions from case-control studies where some of the variables 

are measured imprecisely. 

Three major components are present here: Case-control studies, Errors 

in covariates and Bayesian methods. 

Case-contol studies are usually conducted to investigate the relationship 

between the presence of disease and of specific risk factors often referred to as 

the exposure. The central idea, as stated in Breslow (1996): "is the compari

son of a group having the outcome of interest to a control group with regard 

to one or more characteristics." The work of Cornfield (1951) was a great con

tribution to the development of case-control methodology. He demonstrated 
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that the exposure odds ratio for cases versus controls equals the disease odds 

ratio for exposed versus unexposed. Also, provided the disease is rare, the 

exposure odds ratio (known as the relative risk) approximates the disease rate 

ratio. Basic case-control data can be regarded as two independent samples of 

covariable vectors, {a:oi}"=i from X\D = 0 (the controls), and {xu}^ from 

X\D = 1 (the cases), where D denotes the disease status (0 for healthy and 1 

for diseased) and X is the covariable vector. The typical analysis of such data 

is done by fitting a prospective logistic regression model for D\X to the retro

spectively sampled data. This procedure is described and justified by Prentice 

and Pyke (1979). 

It is not uncommon to have binary risk factors, in which case errors can 

occur by misclassification. The approach we will introduce later on, and most 

of the methods we will review, are designed to deal with continuous exposure 

variables. These are usually covariates that are more complex to measure as 

opposed to a simple classification; in which case a surrogate exposure X* is 

observed rather than the true exposure X. 

Examples of commonly, mismeasured covariates include information 

about diet or nutrient intake, past history of cigarette or alcohol use, and 

radiation exposure. The obvious solution is better measuring instruments and 

techniques, but this is not always feasible. It is widely recognized that in epi

demiology or in studies of relationships between a response variable and a set 

of covariables, these covariates are often measured with error, which can seri

ously affect the statistical analysis. If ignored, these measurement errors may 
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lead to biased results; the usual consequence is the attenuation of the strength 

of the relationship. General discussion on classical statistical procedures for 

dealing with errors in covariates can be found in Fuller (1987) and Carroll 

(1989). Errors in covariates appear to be difficult to deal with classically; it 

seems a number of assumptions and approximations have to be introduced in 

order to proceed with the analysis. A natural alternative is the use of Bayesian 

methods. 

The key feature of the Bayesian approach is that it uses probability the

ory to describe uncertainty about both parameters and observables. Bayesians 

think of model parameters as random variables, therefore having a certain 

probability distribution which can be interpreted as belief about the possible 

values this parameter can take. This differs from the frequentists who con

sider model parameters to be fixed. In the Bayesian approach, the information 

that is available to the experimenter before data are observed and his belief 

contribute to the specification of a pior distribution. A sample is then taken 

and the data observed so that the prior distribution can be updated with this 

sample information. This updated prior distribution is called the posterior 

distribution. Inference is then made on the basis of this posterior distribution 

which is proportional to the product of the likelihood and the prior distribu

tion. The recent developments in algorithms for performing Bayesian compu

tations make this approach particularly appealing. We are referring here to 

Markov chain Monte Carlo (MCMC) methods; reviews of these methods can 

be found in both Smith and Roberts (1993) and Besag, Green, Higdon, and 
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Mergensen (1995). 

This makes the Bayesian approach to errors in covariates in case-control 

studies very sensible and reasonably simple. With the use of a measurement 

error model we will produce a distribution over the plausible values of the 

parameters of interest. Although quite natural, this approach has not received 

much attention in the literature. Richardson and Gilks (1993) and Muller 

and Roeder (1997) explore Bayesian approaches to errors in covariates in case-

control studies. Most of the papers related to this topic suggest classical 

methods, among those are Armstrong, Whittemore, and Howe (1989), Rosner, 

Willet, and Spiegelman (1989) and Carroll, Gail, and Lubin (1993). In Maffick, 

and Gelfand (1995) a Bayesian approach to errors in covariates is presented, 

but it is not specifically applicable to case-control studies. 

In the following chapter we will review the main findings from many 

of the previously mentioned papers amongst others. In Chapter 3 we will 

introduce a univariate version of our method along with a simulation study. 

Chapter 4 will exhibit the generalization to multivariate applications. Finally, 

an analysis of bladder cancer case-control data will be presented in Chapter 

5. 
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Chapter 2 

Literature Review 

In this Chapter we will review the methods that have been suggested for 

correcting for measurement errors. As it was previously mentioned, most of 

the correction methods make use of the classical theory but we did find results 

that were obtained within the Bayesian framework. 

2.1 Basic Terminology 

First, we believe a brief summary of the basic terminology could be quite help

ful. Errors can be "random" or "systematic", the key feature of random errors 

is that the law of large numbers applies; if we were to repeat the measurement 

many times the mean of these replicates would provide an unbiased estimate 

of the true quantity we are trying to measure. As opposed to random errors, 

unbiasedness does not hold for systematic errors; the mean of many repeated 

measures would not necessarily converge toward the true value. 
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Errors can also be either "differential" or "nondifferential". This de

pends on whether the errors are related to the disease outcome D. An example 

of differential errors would be if the mismeasurement or misclassification of the 

exposure was dependent on the disease status. Such errors can be the cause of 

serious bias, but fortunately good study design can help guard against these. 

A measurement error is nondifferential if it arises in the same way for cases and 

controls; the errors distribution is independent of the disease outcome. A more 

formal definition of nondifferential errors can be stated as X*\X, D = X*\X, 

or equivalently as D\X,X* = D\X, which means that when the true exposure 

is known the measured one does not add any additional information. Nondif

ferential random errors can also be the cause of biased results, and most of 

the correction methods we will present deal with this type of errors. 

Measurement error has traditionally been modeled in two different ways: 

The "classical error" model and the "Berkson error" model. In the classical 

error formulation, the conditional distribution of the surrogate X* given the 

true value X is specified, while in the Berkson formulation, it is the conditional 

distribution of X given X* which is specified. 

In order to get an assessment of the measurement error distribution 

a "validation study" is often used. In a validation study a "gold standard" 

measurement of X is obtained and compared to the surrogate measure X* 

which will be used in the main study. In this manner a direct estimate of 

the error distribution is provided, but since gold standard measurements are 

generally quite expensive, they can only be performed on a small portion of 
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the whole sample. 

This short terminology review should make the subsequent sections eas

ier to follow. Now we will present techniques suggested by different authors, 

some on which our own approach was based, and others that served as com

parison for our work. 

2.2 Correction Methods 

In this section we introduce different methods to analyse case-control data 

with imprecise exposure measurement. Two of these methods are presented 

in greater details because of the similarity of their initial setting to ours. 

2.2.1 The Armstrong, Whittemore and Howe Method 

In their 1989 paper, Armstrong, Whittemore and Howe [hereafter AWH] sug

gest a method of correcting a standard logistic regression analysis to account 

for measurement errors. In order to adjust for the effect of the measurement 

error on the logistic regression coefficients obtained from case-control data, 

a multivariate discriminant analysis model is assumed for the joint distribu

tion of the true covariate values and errors among cases and controls. Their 

approach is applicable to multiple strata designs, but for simplicity we will 

present here the one-stratum, one-dimensional case. 

They consider xp as a p-dimensional (p=l, for the present case) row 

vector of unknown true covariates for case {D=l) and control (D=0). Follow-
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ing the dicriminant analysis model: 

XD ~ N(n + DA,a), 

where JV(-, •) stands for the normal distribution with mean /z+DA and variance 

a. This notation for the normal distribution will be used throughout the thesis. 

The cases and controls have a common variance cr, / i is the common part of the 

mean for both groups and A represents by how much the case mean differs from 

the control one. The information that is available is from lp measurements of 

the flawed XD (we will consider lD = 1 here) with: 

X*D = X D + eD, 

where 

eD ~ AT(7 + D5,T). 

The e^s are the error components and are independent of each other and of 

the XDs. In their model the parameter 7 stands for the mean error common to 

cases and controls and 5 represents the systematic difference in error between 

cases and controls, therefore allowing for differential errors. The parameter r 

is the error variance. These assumptions imply the following: 

XQ ~ N{fj, + 7, a + T), X{ ~ N((JL + 7 + A + 8,O + T). 

Then using a well known relationship between discriminant analysis and lo

gistic regression, they obtain a model of the form: 

logit{P(D = 1\X = x)} = a + fx. 
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Fitting this model with x^ and x{, realizations of XQ and X* respectively, they 

get a 'naive' estimate R of R. They propose an estimator of the prospective 

log-odds ratio PAWH = P/X, where A is the correction factor which adjusts for 

measurement error. An estimate of PAWH can be obtained by the 'naive' R 

and the appropriate estimate of A. In the unidimensional case this correction 

factor is A = a/(r + cr); the estimators are A = 1 — {T/S2) if r is known, and 

A = 1 - (S2/S2) if T is unknown. Here S2

P = {SS0 + SSi)/(n 0 + nx - 2) is 

the pooled estimator of the variance r + a and SSD = 2~2i(x*Di — x*D)2, D=0,1 

and no is the sample size. While S2 = ri^ 1SS2 estimates r from a validation 

sample which would be needed when r is unknown and SS2 = Ylii^i ~ xii)2• 

In Chapter 3 a simulation study that gives a comparison of the AWH 

approach with the one proposed in this work will be presented. 

2.2.2 T h e R o s n e r , W i l l e t a n d S p i e g e l m a n M e t h o d s 

Another approach is proposed by Rosner, Willet, and Spiegelman (1989) [here

after RWS]. In their paper two methods are provided to correct relative risk 

estimates obtained from logistic regression models for measurement error in 

continuous covariates. Both methods require a separate validation study to 

estimate the regression coefficient A relating the surrogate measure to the true 

exposure. 

They first assume that the model relating a single-dimensional true 

exposure X and the probability of disease D is of the logistic form: 

logit{P{D = l\X = x)} = a + 0x. 
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Then a linear relationship is assumed to exist between true exposure X and 

observed exposure X* of the form: 

X = a' + XX* + e, where e ~ N(0, a2). 

Finally, they assume nondifferential errors and that the conditional distribu

tion of X given X* and the marginal distribution of X* are the same for the 

main and validation study populations. 

Their first method is a linear approximation which yields an estimate 

of PRWSI of the same form as PAWH {P/X). Here A is obtained by regressing 

X on X* using the above linear model with ordinary least squares and the 

validation study data. 

Their second method is a likelihood approximation where a second-order 

Taylor series expansion is used to approximate the logistic function, enabling 

closed-form likelihood estimation of PRWS2-

Again, performance of these methods will be examined in the simulation 

study presented in Chapter 3. A multivariate versions of their approaches is 

presented in Rosner, Spiegelman, and Willet (1990). 

2.2.3 Other Methods 

Following the likelihood approach Carroll, Gail, and Lubin (1993) derive pseu-

dolikelihoods on which to base estimators of the parameters of a prospective 

logistic model for case-control data that are, of course, measured with error. 

They also examine computationally simpler methods where the conditional 
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expectation of the true covariate X knowing the surrogate X* is substituted 

for X in the logistic model. 

Prentice and Pyke (1979) established the equivalence of the asymptotic 

distributions of estimators based on the prospective and retrospective likeli

hoods under case-control sampling, and Breslow and Day (1980) suggested 

the use of estimators based on the conditional likelihood. Forbes and Santner 

(1995) continue in the same vein looking at the effect of measurement error on 

the conditional maximum likelihood estimator (CMLE). They then go on to 

suggest three alternative estimators correcting for the measurement error: The 

first based on a correction for the asymptotic bias of the CMLE, the second 

is a functional estimator, and the third is a "transformed" estimator obtained 

by computing the CMLE using transformed covariates. 

In Buonaccorsi (1990), he makes use of the normal discriminant analysis 

model setting and the correction for measurement error is made possible by a 

double sampling scheme in which the surrogates are collected on all units and 

true values are obtained on a random subset of units, allowing the considera

tion of a large set of measurement error models. 

Yet another approach is presented in Roeder, Carroll, and Lindsay 

(1996) , in which a semiparametric mixture method is introduced. By using a 

mixture model, the relationship between the surrogate X* and the true covari

ate X can be modeled. The likelihood depends on the marginal distribution 

X and the measurement error density; this measurement error density is para-

metrically based on a validation sample, and the marginal of X is modeled 
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using a nonparametric mixture distribution. 

Work in the classical setting has also been done on sample size calcu

lations for case-contol studies with errors in the covariates, both McKeown-

Eyssen and Thomas (1985), and McKeown-Eyssen and Tibshirani (1994) dis

cuss that matter. 

Although many problem in epidemiology can be naturally formulated in 

the Bayesian framework, the approach was not pursued due to computational 

complexities. But the introduction of Markov chain Monte Carlo sampling 

methods has really opened the way, and the literature on this subject is now 

more common. 

Richardson and Gilks (1993) take a Bayesian perspective on measure

ment error problems in epidemiology. The authors construct what they call 

a conditional independence model which is equivalent to considering nondif-

ferential errors. They also introduce a graphical representation to this type 

of model. Then they indicate how Bayesian estimation can be carried out in 

these settings using a Gibbs sampler. 

Also using the Bayesian approach is Muller and Roeder (1994), paper in 

which they present a semiparametric model for case-control studies with errors 

in variables. The approach proposed in this paper is based on a nonparametric 

model for the exposure and a parametric disease model. The model they 

present is complex in structure, but is said to be simple to implement. 

We have reviewed here the papers we think are most relevant to the 

problem we will be tackling ourselves in the subsequent Chapters. The main 
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role the material found in these articles will be playing is guiding us in building 

our own initial model, thus making comparisons possible. The methodology 

we will be presenting will combine parts of the different approaches found in 

the literature that have not been tried together. 

13 



Chapter 3 

The P M E D Approach 

To develop our own correction method we investigate the use of a retrospective 

discriminant analysis model for the unobserved real exposure, which leads 

to a Bayesian variance component model. In this chapter we present the 

basic methodology of our approach and illustrate it in the simple context 

of a univariate exposure. The method is applied to both scenarios where the 

measurement error variance is known and unknown. A simulation study is then 

carried out, and results are compared to the ones obtained with established 

methods. 

3.1 Methodology 

As for the methods we reviewed earlier we have D and X that respectively 

represent an individual's disease status and covariable vector, with D coded as 

0 (healthy) or 1 (diseased). Case-control data are obtained retrospectively and, 
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as it was mentioned in the introduction, can be regarded as two independent 

covariable vectors, {xoi}^ from X\D = 0 (the controls), and {xu}^ from 

X\D = 1 (the cases). We want to perform a fully Bayesian analysis of the 

retrospective data which demands a likelihood function based on the sampled 

distribution X\D, as opposed to the typical fitting of a prospective logistic 

regression model for D\X. Since our main objective is to learn about the 

prospective relationship D\X, we have to examine the form of the prospective 

model implied by a specified retrospective model. 

Assuming for now that all the covariables are continuous, a simple model 

to consider is one suggested by AWH, the normal discriminant analysis model: 

X\D = 0^ N(fx0,E0), X\D = l~N(n1,'Z1). (3.1) 

The logistic regression model can be rewritten as: 

P(D = l\X = x) \ 
logit{P(D = 1\X = x)} = log 

= log 

= log 

1-P(D = l\X = x) j 
'P(D = l\X = x)} 
P(D = 0\X = x)j 
P(X = x\D = 1)P(D = 1) 
P(X = x\D = 0)P(D = 0) 

. (P(X = x\D = l)\ , (P(D = 1)\ 
= lO9{p\x = xD = 0))+l°9{pJb^} 

, (f(X\D = l)} 
= lO9\f(X\D = 0 ) j + C O n S t & n t -

Plugging in the distributions suggested by the normal discriminant analysis 

model (3.1), we obtain: 

lo ff(X\D = 1)\ = l o \ C l e x p ( - H x - ^ y ^ i x - L n j ) 

°9\f(X\D = 0)i " ^ t c b e x p ^ - z i o V E o 1 ^ - ^ ) ) 
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x ~2^x ~ 1(x ~ A»i) + (x~ Aio)'S0 - no)} 

cx ( E f V i - So Vo)z + ^ ( ( E p 1 - Er 1 )^)^. 
Hence, the retrospective model implies a prospective model of the form 

logit{P(D = 1\X = x)} = a + 8Tx + xTCx, (3.2) 

where 3 = E r V i - EQVO, and C = (EQ1 - E]"1)/2, Given the fact that 8 

and C depend only on the parameters of (3.1), they can be estimated from 

case-control data. It is not the case for the intercept a. Because it also 

depends on the marginal distribution of D, a is not estimable from case-

control data alone. Information about the disease prevalence would be needed. 

The relationship between (3.1) and (3.2) is well known; it is exploited by 

Armstrong, Whittemore and Howe (1989) and Muller, Parmigiani, Schildkraut 

and Tardella (1997) amongst others. 

For the remainder of this chapter ideas will be presented in the uni

variate exposure setting, i.e. with X being a scalar. We will also assume 

a common variance v = E 0 = £i for both cases and controls. Model (3.1) 

therefore becomes: 

X | D = O~iV(0o,i/), X | D = l~JV ( /x i , i / ) , (3.3) 

which implies the prospective relationship 

logit{P(D = l\X = x)} = a + 8x, (3.4) 

with 8 = (fii — HQ)/V being the parameter of interest. Typically, the inter

pretation for 8 is that exp{/3(:r' — x)} is the disease odds ratio for exposure 
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x' compared to exposure x. Additionally, for rare diseases the relative risk of 

disease is approximately equal to this odds ratio. 

An important point that has to be considered is how much stronger an 

assumption is (3.3) compared to (3.4). If we consider /j to be the density of 

X\D = i, then we get exactly (3.4) when 

^4ocexp(/?a;). (3.5) 

(3.5) can obviously be satisfied by densities /o and / i which are not normal, 

but it does restrict their tail behavior. If we assume without loss of generality 

that f3 > 0, then (3.5) implies that the right tail of / 0 and the left tail of / i 

fall off faster than exp(—f3\x\). If these 'thinner than exponential' tails are 

in fact normal, then the other tails (the left tail of / 0 and the right tail of 

/ i) will also be normal. This suggests that (3.3) is likely to be appropriate 

in at least some situations where (3.4) holds. In practice transformations are 

often used to approximate normality. If such a transformation was used on 

the sample of control exposures for example, then in order to proceed with 

the retrospective model suggested here, the same transformation would have 

to yield approximate normality with a similar variance for the other exposure 

sample. 

We now have a model for the relationship between the exposure and 

the disease outcome. Next we have to consider the measurement error which 

will arise in that a surrogate exposure X* will be observed rather than the 

true exposure X. So we also have to model this error, we suggest the following 
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simple classical (non-Berkson) model: 

X*\X ~ N(X,r) (3.6) 

under which X* is an unbiased but noisy measurement of X. We assume the 

measurement error is nondifferential; that is, it arises in the same way for 

cases and controls. Using the formal definition of nondifferential error given 

in chapter 2, (3.3) and (3.6) can be collapsed to obtain the next model, from 

which the data arise: 

So a direct consequence of the measurement error is some extra variability in 

the data compared to (3.3). This extra variability r (the measurement error 

variance) could be known from an external validation of the measurement 

process, or it could be estimated with the use of a validation sample as it was 

illustrated in chapter 2. The following two sections will illustrate our approach 

for either situation. 

3.2 Known Measurement Error Variance 

In the present section we will assume r to be known. Since we are conducting 

a Bayesian analysis, we need a prior distribution in addition to the likelihood 

based on (3.7). This will yield a posterior distribution on the unknown param

eters ( / i o , fJ-i, v) and enable us to estimate 3. The prior distribution on which 

our inference will be based is a standard noninformative prior for variance 

X*\D = 0 ~ N(U0,T + V), X*\D = 1 ~ N(tiLTT + v). (3.7) 
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component models, 

7r(jLto,jLti,i/) oc ( r + i / ) - 1 . (3.8) 

Formally, this prior is known as the reference prior (Berger and Bernardo, 

1992) when v is the parameter of interest and (/i0, Pi) are nuisance parameters. 

The reference prior for 8 as the parameter of interest was also considered, but 

the fact that it did not have a simple form made it unappealing. 

Given the prior distribution in (3.8) and the realization x* = {xl0, • • •, 
xn0o-x*ii''' ' ^ n i i l from the normal discriminant analysis model in (3.7), the 

resulting posterior is of the following form: 

prior 

ir(u,Q,(j,i,v\x*) oc (V + T) - I 

1=1 

xn(. + x ) - ^ e x P ( - ^ f ) (3.9) 
OC 

1 \ 3 

X e X H 2(„ + r) j 6 X P i 2(, + r) ) 
X e X H 2 ( , + r) ) C X H 2(„ + r) J 

Our Bayesian inference can be implemented by simulating independent draws 

from this posterior distribution. We can then integrate out /x0 and ̂  from 

(3.9) to get 

n ( u \ x * ) oc ( _ L _ ) ^ e x p ^ - £ & ( g 5 ) ~ ^ + S p i ( s ? i ~ *i)2 ĵ ( 3 1 Q ) 
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In order to make sampling easier, it is convenient to reparametrize from 

(//o,Ati,T) to (̂ 0,̂ 1,7), where 7 = r + v. The posterior distribution of ^\x* 

is then easily obtained from (3.10) and can be expressed as 

7|rc* = G\G > T, (3.11) 

where G has an inverse gamma distribution with shape parameter (n0 + n\ — 

2)/2 and scale parameter (SS0 + SSi)/2, with SSi = Ej(x*j ~ x*f- Sampling 

from G\G > r is easily implemented by repeatedly sampling G until G > r. 

Then v is taken to be the difference between the sampled G and the known r. 

Now that we have sampled 7 (or u) it is easy to see from (3.9) that we have 

frfrx* ~ Nixln^-y), (3.12) 

where //o and //1 are independent given 7 and x*. A draw from the joint 

posterior yLto? A*i>Tl̂ * c a n be obtained by sampling from ^\x* and then from 

A*o> A*i JT>x*- Thus we have a simple algorithm for exact posterior simulation 

in a variance components model. This computational approach is pursued in 

greater generality by Wolfinger and Kass (1996). 

Commonly, Bayesian parameter point estimation is done by using the 

posterior distribution's mean. It can be seen by the following that in the 

present case E(B\x*) is infinite; 

E{{fjn - / / o K V } = E{u~lE{^- ^\u,x*)} 

= E{v-l{x\ -x*0)\x*} by (3.12) 

= (xl -xl)E{v~l\x*} 
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but 

where a and u are both positive and are respectively the shape and scale 

parameter of an inverse gamma distribution, the numerator's integral blows up 

near r, therefore E{u-1\x*} = +00. Intuitively this occurs because, according 

to both the likelihood based on (3.7) and the prior (3.8), zero is a plausible 

value for v which is the denominator of (3. Since the posterior mean of/3 does 

not exist, we use the posterior median of our parameter of interest as a point 

estimator. From now on we will refer to this posterior median as PMED. 

This concludes the known measurement error variance case. We will 

come back to it in a subsequent section to reveal the procedure and the results 

of a simulation study. 

3.3 Unknown Measurement Error Variance 

We will now examine the situation where r is unknown, in which case it will 

have to be estimated along with v. The estimation of this error variance will 

be done with the use of a validation sample. In addition to the surrogate ex

posures for cases and controls, we assume an independent data set is available. 

This extra data set will consist of measurements of both the surrogate exposure 

X* and the true exposure X for each subject. We have assumed nondifferential 

measurement error, thus the subjects selection procedure for this validation 

sample does not matter; we can view the true exposure X as being sam-
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pled from an arbitrary distribution, so long as the measurement error model 

X*\X ~ N(X,r) is the same for both the main and validation samples. The 

observed validation sample is denoted {{x2i, a^i)}™^, with SS2 — J2i(^2i~'x2i)2 

defined for subsequent use. 

To conduct our analysis we can proceed in a very similar manner as in 

the known r case. We begin by doing a reparametrization similar to the one 

done in the previous case. The variance components (u, r) are reparametrized 

to (7,7"), where 7 = r + v. We again use the reference prior for a variance 

components model but this time when (7, r) are the parameters of interest 

Once more we have selected in (3.13) a noninformative prior. Combined with 

the likelihood given by the normal discriminant analysis model in (3.7), we 

can write the resulting posterior distribution from which we will be sampling: 

TT(̂ 0Î I,7.T) « 7 1T 1 (0 < T < 7 < CO) (3.13) 

prior 

x (-\ exp ( - -
n0(fi0-x*oy 

2 7 

exp 

exp 
ILL Tli(/Xi -X\f 

2 7 
x - exp 

(3-14) 

Once again we can integrate out fi0 and /xi, this time obtaining: 

(3.15) 

) 
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Hence from (3.15) the marginal posterior distribution of the variance compo

nents is 

(7,T)\X* = (G,T)\G>T, (3.16) 

where G and T are independent, with 

G „ / G ( ! ! i ± £ - * , + T ~ / G ( ! ^ i , ^ ) , (3.17) 

and the posterior conditional distribution for /XQ and fjb\ once 7 and r have 

been sampled is the same as in the known r case 

^ l ^ r ^ ^ J V ^ . n ^ ) - (3-18) 

Thus again exact posterior sampling can be implemented, by simulating (G, T) 

pairs from the distributions in (3.17) until G > T, and then sampling /i0 and u,x 

from (3.18) in order to get a set of /?'s. The posterior mean for the parameter 

of interest is infinite in this case too, so again our PMED is used as a point 

estimator. 

3.4 Simulation Study 

Situations with known and unknown measurement error variance have now 

been addressed. In both cases our approach led to exact posterior sampling, 

which should make implementation simple and sampling procedures reason

ably efficient In order to assess the performance of our approach we conduct 
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the analysis of simulated data sets and compare our results to established 

methods previously illustrated in chapter 2. 

Simulations are carried out based on samples size no = ni = 50 from 

the retrospective model (3.3) with parameter values ([JL0, u-i,u)=(0,1,1). Un

der these parameters, the prospective logistic regression coefficient is B = 1. 

The simulations are done with different values of \fr ranging from 0.0 to 2.0 

by jumps of 0.1. In one case r is assumed to be known. In the other it has 

to be estimated from a simulated validation sample of size n2 = 50. In ei

ther situation, the PMED estimate of B is computed as the median of 500 

independent and identically distributed draws from the posterior distribution. 

Here are the multiple steps of the simulation process for the r known 

case: 

1. Generate 500 samples of size n0 = 50 from a normal distribution with 

mean 0 and variance v = 1. 

2. Generate 500 samples of size n\ = 50 from a normal distribution with 

mean 0 and variance v = 1. 

3. Create a vector of y/r% (0.0, 0.1, 0.2,...1.8, 1.9, 2.0). 

4. Use the 500 samples generated in step 1. to create 500 new samples that 

will be from a normal distribution with mean /x0 — 0 and variance r (the 

controls). 

5. Use the 500 samples generated in step 2. to create 500 new samples that 

will be from a normal distribution with mean /ii = 1 and variance r (the 
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cases). 

6. Sample in turn u, U,Q and u,\. 

• Sample 7 from (3.11) to get v. 

• Use v to sample both u,0 and u,x from (3.12). 

• Compute (3 = — /x0). 

7. Repeat step 6. 500 times, which gives us 500 independent and identically 

distributed draws from the posterior distribution. 

8. Compute the PMED estimate of /?, the median of the 500 draws from 

the posterior. 

9. Repeat steps 4., 5., 6. and 7. with every value \fr was given. 

The reason for steps 1. and 2. is that initializing all the future samples with 

these (which come from standard normal distributions), makes comparison 

from one measurement error level to another easier and more precise. 

The process is very similar for the r unknown case, except one step 

is added between steps 2. and 3. and between steps 5. and 6. to create the 

validation sample, and step 6. is slightly different. Here are these two added 

steps and the correction for step 6.: 

1. Generate 500 samples of size n2 = 50 from a normal distribution with 

mean 0 and variance v = 1. 
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2. Use the 500 samples generated in the previous step to create 500 new 

samples that will be from a normal distribution with mean // 2 = 0 and 

variance r (the validation sample). 

3. Sample in turn v, and 

• Sample 7 and r from (3.16, 3.17) to get v. 

• Use v to sample both / i 0 and fj,i from (3.18). 

• Compute (3 = — //o). 

Quite obviously we did not generate both surrogate and true exposures in 

our validation sample, it actually consists in {(x*2i — x2i)}"=].> the differences 

between the surrogate and true exposures. These differences should follow a 

normal distribution with mean 0 and variance r. 

The simulation routines were coded in C, and although probably not 

using the most efficient algorithms, they compared very favorably to S-plus 

with respect to running time and memory resources needed. 

The PMED estimator of (3 is compared to other estimators suggested in 

the literature. For the known r case, the comparison is done with a method by 

AWH, illustrated in chapter 2, in which a correction factor A is used to adjust 

the (3 estimate obtained from a 'naive' logistic regression. For the r unknown 

case, the AWH method is still applicable and two others by RWS, also discussed 

in chapter 2, are performed on our simulated data for comparison. The first by 

RWS, which we refer to as RSW1, takes the form of the AWH estimator, except 

that the correction factor A is estimated by the fitted slope of a regression of 

26 



X on X* using the validation sample. The second estimator, referred to as 

RWS2, is based on an approximate likelihood function. The RWS method 

needs to fulfill more assumptions then the PMED approach in order to be 

applicable. It requires that the variance of X be the same for the validation 

sample as for the case and control samples. If this requirement is not met, 

the fitted slope will no longer estimate A correctly. This assumption is not 

needed for the PMED method to work, it is applicable to any distribution of 

X in the validation sample. This seems more sensible as it is parameters of 

the conditional distribution for X*\X which must be estimated. 

The AWH estimator has a definite disadvantage in that it performs 

poorly when faced with substantial measurement error. The estimate A of the 

correction factor can sometimes take on a negative value, in fact, P(A < 0) 

can be quite high when r is sufficiently large. We can obtain A's distribution 

and derive the following: 

where Fk is the chi-square distribution function with k degrees of freedom. The 

derivation of this probability is done using information on the AWH approach 

presented in Chapter 2. We illustrated there that in the known r scenario A 

(3.19) 

can be estimated by A = 1 — (T/S2), where 

From there we can write: 

P ( A < 0 ) = P ( l - {T/SD < 0) 
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= P{r/Sl>l) 

= P{Sl<r) 

VV V + T J P V V + T 

r \ A n o + n i - 2 ^ 1 + V/T 

Similarly, in the unknown r case, 

P ( A < 0 ) = F „ 0 + N I _ 2 , N 2 (7 ^ 7 7 7 ) (3.20) 

where is the F distribution function with k and / degrees of freedom. This 

time the probability was derived given that in the unknown r scenario A is 

estimated by A = 1 — S2/ S2, and 

S2

p/(V + T) = ( 1 \ Sl 

S2/r {l + u/r)s2 

Again we can write: 

P(A<O) = P (1 - sl/s2

p < 0) 

= P(S2JS2

p>l) 

= P(S2

P/S2

V<I) 

no+ni— 2,712 • 

•P ('Pno+ni—2,ri2 ^ 

1 + U/TJS* \1 + U/T/ 

1 \ \ ' 
1 + ̂ / 7 

Because of this the the AWH estimator is implemented in our simulation study 

only when the measurement error r is small enough to ensure that either (3.19) 

or (3.20) does not exceed 0.05. 
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Results of the simulations for r known and r unknown are illustrated 

respectively in Figure 3.1 and Figure 3.2, which can be found at the end 

of the present chapter. In the first case, for each value of r 500 indepen

dent data sets are simulated, for each data set PMED and AWH estimates 

are computed. Using the sampling methods presented above in the different 

steps of the simulation we obtain samples of these estimates. The empirical 

(0.1,0.3,0.5,0.7,0.9) quantiles of each estimator are displayed as functions of 

y/r in the first two panels of Figure 3.1. We can see from these two panels 

that for small measurement error both methods yield sampling distributions 

of the estimators that are very similar, but as r gets larger the PMED esti

mator is more tightly centered about the true value 3 = 1. Even when (3.19) 

becomes non-negligeable and the AWH estimate is considered inappropriate, 

the PMED estimator keeps performing quite reasonably. 

We also proceed to construct Bayesian credible intervals for 3. If we 

take the a/2 and 1 — a/2 quantiles of the posterior distribution of'/?, the 

interval between these constitutes an equal-tailed (1 — a) credible interval for 

/?. These posterior quantiles can be estimated by empirical quantiles from the 

simulated posterior sample. Based on the 500 data sets, empirical coverage 

probabilities of 80% credible intervals are displayed in the third panel of Figure 

3.1. The associated 'error bars' (plus and minus two standard errors) indicate 

that the credible intervals can be reasonably interpreted as 80% frequentist 

confidence intervals. 

For the unknown r case, Figure 3.2 compares the PMED, AWH, RWS1 
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and RWS2 estimators. The format is the same as in Figure 3.1. In the first 

four panels the sampling distributions of the estimators are presented by five 

empirical quantiles. The comparison between the PMED and AWH estima

tors is similar to that in the known r case, but the AWH estimate becomes 

inappropriate because (3.20) becomes non-negligeable even faster than in the 

previous case. The RWS estimators behave quite similarly to the PMED es

timator, and in fact have slightly better performance for large measurement 

error variance r. However, as noted previously, the PMED estimator works 

under less restrictive assumptions than the RWS estimators. In the last panel 

are displayed the empirical coverage probabilities of 80% credible intervals. 

Again these seem consistent with the confidence interval interpretation. 

3.5 Discussion 

We have now introduced methodology in a general setting up to a certain 

point after which we have illustrated our approach in the simple context of 

a univariate exposure for two particular cases. The simulations seem to indi

cate the equivalent or superior performance of the posterior median estimator 

compared to the others that were studied here in the analysis of case-control 

data with imprecise exposure measurements. We have discussed the fact that 

the assumption of a normal retrospective model compared to the assump

tion of a prospective logistic regression model is somewhat stronger, though 

in an applied situation it should be reasonably easy to verify the retrospec

tive assumptions. Also, transformations on exposure variable to approximate 
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normality may often satisfy the retrospective model. 

Given the promising results of this simple case, the next step will be to 

make this Bayesian approach more practical by incorporating the realities of 

complex data sets. Thus in the next chapter we will generalize our methodol

ogy to deal with multiple covariates, some of which could be binary. 
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PMED 

1.0 
Measurement error SD 

AWH 

1.0 
Measurement error SD 

Coverage Probability 

1.0 
Measurement error SD 

Figure 3.1: Comparison of the PMED and the AWH estimators in the known r 
case. The first two panels give (0.1, 0.3,0.5, 0.7, 0.9) quantiles of the estimators 
as a function of y/r. The median is displayed with the solid line. The long-
dashed line indicate true value of (3. The AWH estimator is only considered 
when r is sufficiently small that P(X < 0) does not exceed 0.05. The third 
panel gives empirical coverage probabilities of 80% credible intervals, with 
error bars corresponding to plus and minus two standard errors. 
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PMED AWH 

1.0 
Measurement error SD 

RWS1 

o.o 1.0 
Measurement error SD 

2.0 

RWS2 

0.5 1.0 1.5 
Measurement error SD 

Coverage Probability 

2.0 1.0 
Measurement error SD 

0.5 1.0 
Measurement error SD 

Figure 3.2: Comparison of the PMED, AWH, RWS1 and RWS2 estimators in 
the unknown r case. The format is as per Figure 3.1 
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Chapter 4 

Multivariate Exposure 

The previous chapter established the validity of our work in a simple setting. 

The next logical step is to consider the more realistic situation in which we 

would be faced with multiple covariates. Developing this multivariate method

ology will undoubtedly mean an increase in the level of complexity of the 

algebraic manipulations, the distribution identification and the sampling pro

cedures from these distributions. 

The present chapter will illustrate the development of this multivariate 

approach, first with the general multivariate exposure methodology, then with 

the introduction in the model of binary covariates, and finally with the de

velopment of a sampling method for covariance matrices with partially fixed 

diagonal elements. 
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4.1 Methodology 

The initial setting will not be much different from the univariate exposure 

one. We are still dealing with case-control data for which the cases and the 

controls can be regarded as independent samples. The difference is that we are 

now faced with covariable matrices; {x0ij}"=ij=i from X\D = 0 (the controls), 

and {xuj}™l'ij=1 from X\D = 1 (the cases), where d is the dimension of 

the exposure covariate. Our inferential objective remains the same, that is, 

to learn about the prospective relationship D\X. But again, to conduct a 

Bayesian analysis, we will need a likelihood based on the sampled distribution 

X\D. Therefore, assuming all the covariables are continuous, we consider once 

more the normal discriminant analysis model: 

X\D = 0 ~ N(fio, £ 0 ) , X\D = 1~ N(uu E x ) . (4.1) 

which still 'implies' the prospective model of the form 

logit{P(D = 1\X = x)} = a + 8Tx + xTCx, (4.2) 

where 8 = E f Vi — EQ VO-

Up until now, this is exactly as in chapter 3 with the exception that 

we do not restrict X to be unidimentional. Let's assume we have a common 

covariance matrix for the cases and the controls, E = E 0 = £ i , (4.1) becomes 

X\D = 0 ~ N(fio, E), X\D = 1~ N(fiU E). (4.3) 

Leading us once more to a standard logistic regression for the prospective 

relationship 

logit{P{D = 1\X = x)} = a + 8x, (4.4) 
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where this time the parameter of interest 3 = (p,\ — /x 0 )E _ 1 . 

The measurement error arises in a similar fashion. It is still assumed to 

be nondifferential and follows the same model 

X*\X ~ N{X,T) (4.5) 

where r is now a d x d covariance matrix. Consequently, the observed data 

arise from 

X*\D = 0 ~ N(fi0,T + £), X * | D = l ~ J V ( / i i , r + E). (4.6) 

We assume the error covariance matrix r to be known from an external 

validation of the measurement process. As in the univariate case we base our 

inference on the noninformative prior 

7 r ^ 0 ^ i , E ) o c | ( r + E) | -( d + 1 ) / 2 . (4.7) 

This is a standard noninformative prior for variance component models. Our 

prior in (4.7) and our likelihood obtained from (4.6) yield the following poste

rior distribution: 

7r(^,^\x*) oc |(E + r) | -( d + 1 )/ 2 

no , i ' >. 

x II K S + ^ ) l " 1 / 2 ^ P (-j(x*0 - /*)'(£ + r)-\x*0 - /io)j 

x II K E + T)\-1/2 exp ( - - ( ^ - M l ) ' (E + T)-\x*n - M l ) j 
cx |(E + r ) | - ( n o + n i + d + 1 ) / 2 

( -̂  no \ 
- « £ « o - A*o)'(S + r ) " 1 ^ - //0) 

( 1 7 1 1 N 

x e x p - 9 5><i - + TY\<i -

V z i=i / 
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cx |(E + r ) | - ( " 0 + n i + d + 1 ) / 2 

x exp{-(l/2) trace((E + r) _ 1 5 0 )} 

x exp{-(l/2) trace((E + r ) - 1 ^ ) } (4.8) 

where for c = 0 or 1 (controls or cases) 

E 
(/41}-*:(1))2 

( 04 (1) - *; ( 1 )) 2 

\ 

+ E 
i=l 

V 
(T*W _ T*W)(x*(d) - X<dh • • • (X*W - T*^)2 

where x*^ is a scalar representing the mean of the realizations of the jth 

covariate. We can integrate out JJLQ and \i\ from (4.8) which gives us the 

marginal posterior distribution of the variance components 

TT((Z + T)\X*) oc |(E + r)|-(no+m+d+i)/2 

x exp{-(l/2) trace((E + r) _ 1 5)} (4.9) 

where 

S = 
1 nc 

E E ( 2 ' i c —

 Xc)iXic ~ Xc) 
c=0 i=l 

( 
1 nc 

E E 
c=0 i = l 

( 4 ( 1 ) - K{l)f 

(x*W -x*W)(x*W -x*^) 
\ K-^ic x c JK^ic x c ) 

(4.10) 

i *(i) _ =»(i)w *(<o _ =*co) 

( 4 W - ^ ( D ) ) 2 
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So we have 

(S + T)\X* = G\[{G - T) positive definite], (4.11) 

where G has an inverse Wishart distribution with n 0 + ni degrees of freedom 

and scale matrix S. Sampling from G|[(G — r) positive definite] can be imple

mented by repeatedly sampling G and subtracting the known error covariance 

matrix from it until we get one that is positive definite. 

The posterior conditional distribution for /x0 and Hi once E has been 

sampled is easily obtained from (4.8), both follow multivariate normals of 

dimension d 

Using (4.11) to sample E and (4.12) to get u,0 and pi gives a reasonably simple 

algorithm for exact posterior simulation in a variance components model. From 

this algorithm we can get a sample of our <i-dimensional parameter of interest 

/5 = (>L*I — /xo)E - 1. This multivariate exposure setting will also call on our 

PMED estimator, in this case the sample of /?'s will be split in d subsamples 

for each exposure variable and a median will be computed for each of these 

subsamples. 

4.2 Binary Covariates 

Our approach is now applicable to multidimensional exposure variable, but an 

important assumption that we have made is that all variables are continuous. 

Mo|E,r,x* ~N{x*0,n0-1(?: + T)), 

(4.12) 
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However, in applied situations it is common to be faced with binary exposure 

variables, for which individuals are classified to be either exposed or unexposed. 

Even more common is a combination of both continuous and binary exposures. 

For this reason, it should be a priority for us to integrate this type of variable 

in our model. 

Since our methodology has so far been developed for continuous vari

ables, we will try to find a continuous representation of these binary covariates. 

A method that could be used to obtain such a representation is described in 

Albert and Chib (1993), where they regress a unidimensional binary response 

variable on a set of covariates. 

They suppose N independent binary random unidimensional variables 

Yi, • • • > YN are observed, where Yi has a Bernouilli distribution with probability 

of success pi. These pi are related to a set of covariates that may be continuous 

or discrete. They define a binary regression model as 

P i = H(xl8),i = l,.-.,N, 

where 3 is a k x 1 vector of unknown parameters, xj = (xn, • • •, Xik) is a vector 

of known covariates, and H( ) is a known function linking the probabilities 

Pi with the linear structure of 3. Taking H to be the standard normal cdf 

$( ) yields what is called the probit model. In order to get this continuous 

representation they introduce N latent variables Z\, • • •, ZN, where these Zi 

are independent N(xj8,1), and define Yi = 1 if Zi > 0 and Yi — 0 otherwise. 

It can easily be shown that the Yi are independent Bernoulli random variables 

with & = P(Yi = l) = $(xJ3). 
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The joint posterior density of (3 and Z = (Zi, • • •, ZN) given the data 

V = (yi, • • • ,VN) is given by 

n{P,Z\y) = Cn(P)f[{I(Zi>0)I(yi = l) + I(Zi<0)I{yi = 0)} 
i=l 

x<f>(Zi;xjB,l), 

where 7r(/3) is a prior on 3, ;/J.,a2) is the N(fi,a2) pdf, I(X G A) is an 

indicator function that is equal to 1 if the random variable X is contained 

in the set A, and here and henceforth C is a proportionality constant. It is 

very difficult to sample directly from this distribution. But computation of 

the marginal posterior distribution of (3 using the Gibbs sampling algorithm 

requires only the posterior distribution of (3 conditional on Z and the poste

rior distribution of Z conditional on (3, and fortunately these full conditional 

distribution are of standard forms. The posterior density of (3 conditioned on 

Z is given by 

T T ( / % , Z) = Cn(f3) f 4>(Zu xjB, 1), (4.13) 
i=l 

and the posterior density of Z conditioned on (3 results in the random variables 

Z i , • • •, ZN being independent with 

z*|z;>o , i f j / i = i Zi= < where Z* ~ N(xf(3,l). (4.14) 
Z*\Z*<0 , if ^ = 0 

4.2.1 The Gibbs Sampler 

We mentioned above the Gibbs sampling algorithm. Here is a brief review of 

this useful technique. Suppose one is interested in simulating from the poste

rior distribution of 6 partitioned into the vector components 6 = (#1; • • •, 9P). 
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Although it may be difficult to sample from the joint posterior, suppose that 

it is easy to sample from the conditional distributions n(9k\{9j, j ^ k}). To 

implement the Gibbs sampler, one starts with initial guesses of the 8i: say 

8^, • • •, 8^ and then simulates in turn 

9? from *{0i\{6f\j±\}) 

from *(e2\0[1\{9?\j>2}) 
(4.15) 

eW from n(9p\{9f\j <p}). 

The cycle in (4.15) is iterated t times, generating the sample 9^> = (0i \ • • •, 9f>) 

As t approaches infinity, it can be shown that the joint distribution of 8® ap

proaches the joint distribution of 8, in practice this convergence is usually quite 

fast. So for sufficiently large t, say t*, can be regarded as one simulated 

value from the posterior distribution of 8. Repeating this process m times 

yields the sample {(#[* \ 8^-,\- • •, 8 p j j = 1, • • •, m}, which can be used for 

statistical inference. In practice, instead of restarting the algorithm once the 

convergence is obtained we will just keep for our posterior sample the 0\f for 

t = t*, • • •, t* + m. This concludes the review of the Gibbs sampler. 

Returning to the method suggested by Albert and Chib, now given a 

previous value of 3, one cycle of the Gibbs algorithm would produce Z and 3 

from the distributions (4.14) and (4.13). 

Advances developed from this approach are presented in Chib and 

Greenberg (1998), in which they construct a multivariate probit model; the 

binary response variable is allowed to be multidimentional. This generaliza-
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tion to multidimensional response makes this technique applicable to our own 

analysis. 

4.2.2 A p p l i c a t i o n 

We are faced with ^-dimensional binary data Y ^ = 0 or 1, i = 1, • • •, rij, where 

j is either 0 or 1 for controls or cases and k = 1, • • •, b, where b is the dimension 

of the binary covariate we want to include in our model. We must introduce the 

latent variables Z\jk, • • •, Znjjk, where the Zij are independent multinormal 

N(r)j, £ 2 2 ) . We are using 77 and not xj(3 as the mean because our application is 

not in a regression context. The reason for the £ 2 2 notation of the covariance 

matrix will be explained later on. It is necessary for identifiability reasons 

to fix as l's the diagonal elements of this covariance matrix. This way the 

variance of Z^ is 1 as in the univariate case from the Albert and Chib method 

presented earlier, but the covariance parameters are free. In their multivariate 

development Chib and Greenberg simply refer to this as the necessity of £ 2 2 

to be in correlation form. 

Then we define = 1 if Z^k > 0 and Y^ = 0 otherwise. The are 

independent vectors of O's and l's with pjk = P(Yijk = 1) = ^(Vjk), where <$>( ) 

is the standard normal cdf, which gives us the model known as the probit link 

model. Since the yi are observed we can estimate the pjk and using the probit 

link obtain estimates for the r}jk as starting values for our Gibbs sampler. As 

a starting value for £ 2 2 we can use l's for the variance (on the diagonal) and 

O's for the covariance elements (off the diagonal). 
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So the next step is to go ahead and implement our Gibbs sampler. First 

by sampling Z from its posterior distribution conditioned on 77, £ 2 2 and Y, then 

by sampling £ 2 2 conditioned on 77 and Z, finally by sampling 77 conditioned on 

£ 2 2 and Z. Repeating this enough times will at some point be equivalent to 

sampling from the joint posterior. 

In order to proceed with this sampling scheme we have to determine 

these conditional densities. The random variables Zij, • • •, Znjj will be inde

pendent with f>dimensional "truncated multinomial" distributions 

Zij\y,r], E22 ~ A r ( 7 7 j , £ 2 2 ) (4-16) 

with Zijk > 0 if yijk = 1, 

and Zijk < 0 if yijk = 0. 

This way the initial binary covariates are represented by continuous variables 

following a multinormal distribution. It is therefore possible to include binary 

exposures in our model, and their connection to the normal distribution will 

make covariance estimation feasible. The rjj, which are vectors of size b, will 

also follow a multinormal distribution just like /x0 and Hi in (4.12). In fact, 

when we will juxtapose the Z's to the observed continuous X*'s to deal with 

both the continuous and binary variables simultaneously, the 77^ will simply 

be the last b components of the \ij vectors. So we can sample 77, from the 

following 

r]j\Zj, £ 2 2 ~ N{Zj^22n-1) (4.17) 

Finally we need to determine the conditional distribution of £ 2 2 • We know 
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from (4.11) that its distribution will somehow be related to an inverse Wishart, 

but we don't know yet how the correlation form condition (l's on the diagonal) 

will influence the actual distribution from which our sample has to be drawn. 

The next section will concentrate on determining this distribution and 

will present an approach for sampling such a covariance matrix. 

4.3 Covariance M a t r i x W i t h Partial ly F ixed 

Diagonal 

The addition of these binary covariates in a continuous form will not change 

model (4.6) from which the data arise. The Z mentioned in the previous 

section will just have to be juxtaposed to X*, forming a new X* consisting of 

c continuous exposure variables and b binary exposure variables in a continuous 

form, where c + b = d the total dimension of the exposure. For later use, the 

binary covariates will always be placed at the end of the exposure vector; so 

we will have first the c continuous X* and then the b binary ones. This will 

yield a covariance matrix E splitted in the following way 

E = 
^ 1 1 ^ 1 2 

(4.18) 

y 2^21 ^ 2 2 J 

where E n is c x c, E i 2 is c x b, E 2 i is of course the transpose of E i 2 and E 2 2 

is b x b. 

We also make the important assumption that there is no misclassifi-

cation for the binary covariates, therefore the errors in variables will only 
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be occurring for continuous variables. Also, with no influence on our previous 

work, some of the continuous exposures could be measured without error. This 

disposition of the continuous variables followed by the binary ones combined 

with the no-misclassifications assumption means that the lower diagonal of the 

covariance matrix E (the diagonal of £22) w i U consist in a series of b l's, as 

will the lower diagonal of (£ + r), since the lower diagonal of r will consist of 

a series of b O's. 

The major change comes from the new prior we will have to use. In (4.7) 

we suggested Jeffrey's noninformative prior, but now part of the covariance 

matrix is known. Thus we try the prior 

T T ( ^ I , £ ) oc |(£ + r ) | - ( d + 1 ) / 2 / (d iag(£ 2 2 +r 2 2 ) = 1), (4.19) 

where 7( ) is an indicator function equal to 1 if the diagonal elements of £22 

are l's and equal to 0 otherwise. Do note that r22 is a matrix of O's since 

we have assumed no misclassification for the binary covariates. The addition 

of this new prior will operate a slight change in equation (4.9), the marginal 

posterior of the variance components now becomes 

7r((£ + r)|X*) oc |(E + T ) | - ( N O + N I + D + 1 ) / 2 

x exp{-(l/2) trace((£ + r)'^)} 

x/(diag(£ 22) = 1), (4.20) 

where S is as defined in (4.10), thereby transforming (4.11) to 

(£ + T)\X* = G\[(G - T) positive definite and diag(G22) = 1)], (4.21) 
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Where G still has an inverse Wishart distribution with n 0 + ri\ degrees of 

freedom and scale matrix S. 

Sampling (S + r) from (4.21) is not a trivial task anymore. We need to 

introduce a matrix decomposition presented in Le and Zidek (1992). Take a 

covariance matrix E which follows an inverse Wishart distribution with m de

grees of freedom and scale matrix which can be partitioned in the following 

way 

E = 
( H E 

V -*21 ^22 

where E n is u x u and E22 is g x g. Through the Bartlett decomposition E 

can be written as 

^ E i | 2 + '0E 2 2 V' T '0^22 ^ 

V 

(4.22) 
E22'0'/ ^22 

where E i | 2 = E n — E ^ E ^ ^ i , a uxu matrix and ip = E12E221, auxg matrix. 

The inverse Wishart distribution of E can be equivalently presented in terms 

of the new parameters (E22, Ei|2, ip) as 

E 2 2 | * , m ~ IW(ty22, m-u) 

E i | 2 | * , m ~ /W(*i | 2 ,m) 

^ | E ! | 2 > ~ N{V12*£, E! | 2 <g> * 2 - 2

1 ) , 

(4.23) 

where IW(A, B) stands for inverse Wishart with scale matrix A and degrees 

of freedom B, E22 is independent of (EX | 2, ip), and <g> symbolizes the Kroneker 

product. 
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This decomposition can obviously be applied to our own covariance 

matrix £ + r which has to be sampled from (4.21), and the partitioning will 

be the one suggested earlier in (4.18) 

\ ^ En + Til E i2+Ti2^ ^ 
T = 

y £2l + r21 £ 2 2 + T22 J 

(£ + r ) u (£ + r) i 2 

^ (£ + r) 2 i (£ + r ) 2 2 j 

where £22 + T 2 2 = £22 since we assume there is no misclassification for the 

binary covariates. Therefore u will be equal to our number of continuous 

variables c, g equal to the number of binary variables 6, m equal to the degrees 

of freedom n0 + ni of our covariance matrix's inverse Wishart distribution and 

\I/ equal to the scale matrix S of this same inverse Wishart distribution. Based 

on (4.22) £ + r can be reparametrized, leading to 

( + T)M2 + IPZ22IPT VE22 ^ 
T = 

£ 2 2 ^ 2̂2 J 

However, £ + r does not follow exactly an inverse Wishart distribution, since it 

has the extra conditions that it must be positive definite once r is subtracted 

from it and the elements of the lower diagonal (diag(£22)) have to be all l's. 

Work has to be done to see how these conditions influence the distributions 

suggested in (4.23). 

First, the positive definite condition can be verified once the sampling 

is done, so this condition will not affect the distributions we will be sampling 

from. The diagonal elements set to be 1 will however make the sampling 

procedure more complex. For later use let us introduce the following notation 
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IW*(Scale, df) = G|diag(G) = 1, where G ~ IW{Scale, df). 

Given the independence between £ 2 2 and ((E + r)i|2, ,0), sampling (E + 

r) i | 2 and ip will always be trivial once the non-diagonal elements of E 2 2 are 

identified. The case where we have only one binary variable is quite simple. 

E 2 2 would be a scalar set to be 1, independent of ( £ + T ) I | 2 and ip which could 

be sampled from the distributions given in (4.23) without being affected by 

£ 2 2 = 1. Once these are sampled, E + r can be computed from (4.22), then 

r subtracted so that the positive definite condition can be verified. If the 

condition is not met we need to resample these parameters. 

The process becomes more complex when we are faced with more then 

one binary covariate, in which case b > 1 and E 2 2 is not a simple scalar equal 

to 1, it has off-diagonal elements. In such a case an iterative process will have 

to be used. The initial step will be to perform the decomposition as it was 

done in the "1 binary covariate" case. This time the decomposition gives us 

a matrix E 2 2 of dimension b > 1. From (4.23) we know that E 2 2 follows an 

inverse Wishart with n0 + n\ — c degrees of freedom and scale matrix 5 2 2 , and 

its diagonal elements are all l's. To keep the notation as simple as we can we 

will now take E* = E 2 2 and S* — 5 2 2 . Given E*'s distribution, the next step 

is to perform the same decomposition on E*, in which case the split has to be 

done in the following manner 

^ v* v* ^ 
E* = 2 

\ ^ 2 1 ^ 2 2 / 
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so that E n = 1 and E 2 2 is a (b - 1) x (b - 1) matrix still with l's on its 

diagonal. From (4.22) E 2 2 (now E*) can be written differently as 

E* = 
-1* I 
J22 J 

where E* | 2 = E n - E ^ E ^ E ^ , but E? | 2 + ^ 2 0 T = 1, and 0 = E * ^ 1 , a 

vector of dimension 6—1. We have to keep using the decomposition until the 

bottom right corner, E 2 2 for the above decomposition, is a scalar set to be 1. 

So if b = 2, two iteration are needed; the decomposition has to be performed 

twice in order to get E 2 2 = 1, once to split the continuous and binary variables 

and once more to obtain the scalar form of the bottom right corner. 

We saw in (4.23) that the decomposition specifies the distributions of 

the different parameters obtained from the decomposition. These distributions 

will be slightly different from the second iteration and onward. 

4.3.1 A Simple Case 

We will first deal with a fairly simple situation, that is the case where the 

number of binary covariates b is 2. In such a case the initial decomposition 

would lead us to 

E + T = 

/ (E + r) 1 | 2 + V E 2 2 V ' r V S 2 2 ^ 

V 

(4.24) 

2̂2 S 22^ T 

where (E + r ) i | 2 + -0E 2 2f/ ' T is a c x c matrix (remember that c is the number 

of continuous variables), and E 2 2 is a 2 x 2 matrix with l's on its diagonal. 
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From (4.23) we know that 

E 2 2 |S ,n 0 ,n i ~ IW*(S22,n0 + n x - c) 

(£ +i-MS, n0>ni ~ i W ( % , n0 + nx) (4.25) 

V>|(£ + r ) ^ , 5 - N(S12S£, (S + r)!| 2 ® S^1), 

where E 2 2 is independent of ( ( £ - I - r)i\2,ip). 

For simplicity we will again use E* = E 2 2 and S* = S22. We now 

perform the decomposition on £*, this time resulting in 

£* = 
( E t | 2 + < / > £ ^ T 0E$2 ̂  

V 

(4.26) 
E22^> E 2 2 J 

where both £ 2 2 and £*|2 + 0 E 2 2 ^ T a r e equal to 1. Once again we use (4.23) 

to obtain 

E 2 2 = 1 

E* | 2 |S*, n0, m, c ~ IW(S*l]2, n0 + nx - c) (4.27) 

</»|Et|2, s* ~ N(S*12S;2\ E; | 2 ® ^ v 1 ) , 

the last two distributions are subject to the condition, E * | 2 + </>£220T = 1, 

which can be reduced to E * | 2 + (f>2 = 1, making the condition independent of 

E 2 2 which will not be the case for situations with more than 2 binary covariates. 

E^ 2 ' s distribution is also simplified, given the fact that it is a scalar the inverse 

Wishart distribution now becomes an inverse gamma, and its shape and scale 

parameters respectively are (n0 + n\ — c)/2 and S*\2/2. 

In order to find the distribution for E ^ 2 and <f) under this condition we 
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use the following reparametrization: Z\ = E ^ - h ^ 2 and Z2 = (j). The Jacobian 

for this transformation is J = 1. 

We already have the joint distribution for E*| 2 and 4> 

/s; | a ,*(£I|2 ,0) = / ( ^ l s i | 2 ) / ( s i | 2 ) i 

from which we can derive the joint distribution of our new variables Zx and 

Z2 

fzltz2(zi, z2) = / E J | 2 , * ( * I - 4, z2)J. 

We now want to obtain the distribution of Z2 given Z\ = 1, we can not 

get this exactly but do work out a function proportional to this conditional 

distribution: 

fz2\zl=\{z2\zl = l) = fZl,z2(zi,z2)/fZl(zi = 1) (4.28) 

oc fZl=i,z2(l,z2) 

OC (1 - z 2

2 ) - ( ™ + 3 ) / 2 

x exp 
v 2 ( l - ^ 2 ) / m j 

where m = n0 + ni — c. This is not a standard distribution, but still we want 

to sample from it. In order to do so we use the rejection sampling technique 

as presented in Ross(1997), to sample Z from a certain density proportional 

t o / ( ) : 

1. Generate Y from a density proportional to g( ), where g( ) is a function 

that bounds /( ). 
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2. Generate U from a standard uniform distribution. 

3. If U < f(Y)/g(Y), take Z = Y, else go back to 1. 

Therefore we need to find a bound for (4.28). We proceed in doing so by 

splitting (4.28) into two parts 

A = (1 - Z 2)- (m+3) /2 e x p 

To obtain an upper bound for A we note that 

argmax (x~a exp(6/o;)) = b/a, (4.29) 

the resulting bound is a constant obtained by plugging in A 

777 

(1 - 4) = —^(S*n/m + S22/m - 1 - {Symf). 

The bound for B is 

which is proportional to a normal density with mean S*2/m and variance 1/m, 

making it easy to sample from the bounding function. 

Once Z2 is sampled, this means we have an estimate for </>, therefore we 

can complete E* or E22 in (4.26). Then use the distributions given in (4.25) 

to sample the necessary parameters to complete E + r in (4.24). Following 

carefully all of the previous steps we are able to obtain an estimate of the 

covariance matrix with parts of it being fixed, then all that needs to be done 

is to subtract r and verify the positive definite condition. 

52 

/m + S*22/m-l-(S*l2/m)2 

(1 - zl)/m 



4.3.2 More than Two Binary Covariates 

We must now be able to deal with a greater number of binary covariates, 

this will increase the number of iterations and will again slightly alter the 

distributions. Let's assume we still have c continuous variables and 6 binary 

ones, but this time b is greater than 2. 

We proceed as in the previous simple case and operate the initial de

composition and obtain a matrix just like in (4.24) except E 2 2 is now 6 x 6 , 

6 > 2. The distributions in (4.25) still stand, therefore we can go ahead with 

the second decomposition as in the simple case and obtain £* just like in 

(4.26) with the exception that even with this second iteration E 2 2 is not yet a 

scalar equal to 1, it is now a (6 — 1) x (6 — 1) matrix. There is now a slight 

transformation to the distributions we had obtained in (4.27) 

£; 2 | S* ,m~ IW*(S*22,m-l) 

E I | 2 | 5 * , m ~ / W ^ , m) (4.30) 

<̂ |Et|2, s* ~ N(S*12S*22-\ E ; , 2 ® ^ v 1 ) , 

where m = n 0 4- n\ — c, E 2 2 is independent of (E*|2, 4>) and these are this still 

subject to the condition £*|2 + (f>T,22

(t>T = 1- Since this time E^ 2 is not yet a 

scalar equal to 1, the condition EJ| 2 + (pT,22(f}T — 1 can not be simplified and 

therefore depends on E^ 2 which will once more influence our sampling. 

We now want to sample from a density proportional to 

/(E; 2)/(Et | 2)/(^|E* | 2)/(diag ( s y = I ) / (E; | 2 + 0E^20T = 1). 

First we will consider the distribution of (E 2 2 , E*| 2, (/»|diag(E22) = 1) to be 
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g(£2 2)/(£i| 2)/(0 |£i | 2), where #(£22) i s n o t t n e same as / ( £ 2 2 ) . Thus we want 

to sample from the density proportional to 

2 ( £ y / ( £ i | 2 ) / M £ t | 2 ) / ( £ t | 2 + ^ * 2 2 < t > T = 1), (4-31) 

where both /(£*| 2) and /(<^|E^2) are known. We now reparametrize by in

troducing Z\ = E*| 2 + ^ E 2 2 0 r and Z2 = <j>, once again the Jacobian for this 

transformation is J = 1. From this (4.31) becomes 

0(E^)/(zi - z2L*22z2)f(z2\z1 - z2T,*22z2)I(z! = 1), 

therefore we want to sample from a density proportional to 

< 7 ( £ y / ( l - Z 2 E 2 2 4 ) / ( z 2 | l - z2\?22zT

2). (4.32) 

By putting in (4.32) the respective distribution functions and doing a little 

algebra we get that (4.32) is proportional to 

2(1 — z 2 E 2 2 z 2

r ) 
( {z2 - S\2S*22

 x)S*22{z2 - S*12S*22

1)r\ 
H 2 ( 1 - z 2 £ ^ ) j' ( 4 - 3 3 ) 

v v ' 

B 

To sample from this distribution we can apply the rejection sampling tech

nique, therefore we need to bound (4.33). To find an upper bound for A we 

use (4.29). The resulting bound is a constant obtained by plugging in A 

1-z^zT = S*l2/(m + 3). 

B can easily be bounded by 

exp (-l-(z2 - S{2S*22

l)S*22{z2 - S{2S*22

l)T) , 
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which is to a near constant a multinomial distribution of dimension b — (i — l) 

with mean vector S*2S22

l a n d covariance matrix S22~l, where i is the number 

of iterations performed to this point. This will again make it easy to sample 

from the bounding distribution. 

The whole bound is 

thus in both the bound and the distribution we want to sample from in (4.33) 

we have </(E22). These will cancel out in the third stage of the rejection 

sampling, avoiding the task of determining them. However we see that in 

(4.33) we need E 2 2 , therefore we need to iterate the process and apply the 

decomposition on £ 2 2 until we have reached its bottom right corner which 

is 1. Once this is done we can move up one dimension at a time and use 

the preceding technique to sample the off-diagonal elements of the covariance 

matrix. 

As an example, suppose the number of continuous variables c is 1, and 

that the number of binary covariates b is 3. We apply the decomposition once 

to split the continuous part of the covariance matrix from the binary one. We 

apply the decomposition once more resulting in a 2 x 2 Ej^ matrix, then apply 

the decomposition one last time to obtain (E 2 2 ) 2 2 = 1- Once this is done we 

can work our way back up. Knowing (££2)22 = 1 we can sample from (4.33) 

with m = UQ + ni — c — 2 using the rejection sampler. This will give us the 

off-diagonal elements of E22 which we can use again in (4.33) with this time 

x exp ^—— s{2s22

X) £22(32 — s*2s22

 X)T^ > 

55 



m = n0 + n1 — c—1 giving us the off-diagonal elements of E 22, and now that 

we have £22 we can use it to sample from the last two distributions of (4.25). 

It is now possible for us to run our Gibbs sampling algorithm of Section 

4.2.2 since all the conditional distribution needed have been determined. 

4.4 Discussion 

We have seen that in the generalization of our approach to a multivariate 

setting it is feasible to incorporate binary variables to our model. The use 

of a variation of the probit regression model enables us to get a continuous 

representation of these binary covariates. This continuous representation is 

obtained by generating values from truncated normal distributions which have 

their variance set to 1. Then an iterative process which makes it possible 

to estimate a covariance matrix with a partially fixed diagonal allows us to 

compute estimates of our parameter of interest which is B = — y u 0 ) £ _ 1 the 

main parameter of a standard logistic regression. 
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Chapter 5 

An Application to Real Data 

The work presented in the previous chapters has resulted in an approach that 

should be generally applicable to actual data. One of the generalizations al

lowed for multivariate exposures and another made the addition of binary 

covariates to the analysis possible. We will now verify via the analysis of real 

case-control data if our methodology is suitable to applied situations and how 

results are influenced by our correction for error. 

The present chapter will first describe the data we will be working on 

and expose the results obtained in a previously conducted analysis. We will 

also verify if the basic assumptions of our method are met and if so, will 

proceed with the analysis using our own approach. 
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5.1 Bladder Cancer Case-Control Data 

The data we will be conducting our analysis on is a fraction of a dataset which 

was obtained for a large-scale study. The objective of this study was to identify 

occupational cancer risk factors. Information on occupation, smoking and 

alcohol consumption histories was collected by means of a self-administered 

questionnaire from male cancer patients aged 20 years and over ascertained 

from the British Columbia population-based cancer registry from 1983 to 1990. 

To estimate smoking relationships for types of cancer known to be 

strongly associated with cigarette smoking, patients suffering from cancer 

types with no such associations were used as controls. So the control group 

consisted of all cancer types with the exception of those known to be associated 

with smoking. The analysis was performed by matching cases and controls on 

exact age and diagnosis year. The patients smoking histories were measured in 

pack-years (number of years of smoking 20 cigarettes a day). Odds ratios for 

different stratifications of these pack-years were estimated using conditional lo

gistic regression. Based on this analysis, a statistically significant relationship 

was found between bladder cancer and cigarette smoking; the odds ratio would 

get bigger as the pack-years increased. This analysis was conducted assuming 

no measurement error was present. The details of this study are presented 

in Band et al. (to appear in the Journal of Occupational and Environmental 

Medicine). 

In this large-scale study many types of cancer were considered, but the 

fraction we focus on deals with bladder cancer and contains information on the 
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disease status (case or control), the age, the smoking history and the diagnosis 

year. 

Here we apply the Bayesian approach to re-examine the relationship 

between cigarette smoking and the risk of developing bladder cancer, taking 

into consideration measurement error of the smoking history information. 

5.1.1 A Closer Look at the Data 

In light of these results we are interested in seeing if our method would lead 

to similar conclusions. A first step in doing so is to take a closer look at the 

data and see if the assumptions required by our approach are met. 

Our dataset consists of 1038 cases and 7006 controls. We have, for 

each individual, their bladder cancer status (healthy:0, diseased: 1), their age 

(in years), their smoking history (in pack-years) and their year of diagnosis 

(from 1983 to 1990). We initially get histograms for the age and the smoking 

history variables. The one for age has a longer and thicker left tail, but a 

transformation could probably approximate normality. The histogram for the 

smoking history, however, reveals a problem of greater consequence. There is 

an important concentration of 'never-smokers' or of individuals whose smoking 

history is 0 pack-years. In fact there are 1782 'never-smokers', of which 1658 

are controls and 124 are cases, together they represent close to 20% of the 

whole group. Therefore, no transformations could lead us to an approximately 

normal distribution for the smoking history. 

Since the data in the present format fail to meet the normality as-
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sumption, we need to consider a slightly different objective. We now consider 

'smokers' only, or the individuals that did not have 0 pack-years for their smok

ing history. We examine the dose-response, that is, how the risk of bladder 

cancer is influenced by the amount of smoking a person has done throughout 

her life. Since we ignore the 'non-smokers' we are now left with 914 cases and 

5348 controls. Once more we proceed to construct histograms for the age and 

the smoking history variables, these are shown in Figure 5.1. Based on these 

histograms, it seems age is quite close to normality, however smoking history 

will obviously require a transformation in order to approximate normality. 

The two bottom graphs of Figure 5.2 indicate that although it is not perfect, 

a logarithmic transformation of the smoking history could be considered to be 

approximately normal. To see if the age and the logarithmic transformation of 

the smoking history can both be used as continuous variables, we proceed with 

a logistic regression of the disease status on different stratifications of these two 

variables. The parameters obtained for these regressions are plotted against 

the increasing stratifications in Figure 5.3. We notice that for the regression 

on age the coefficients seem to follow a curvilinear trend, perhaps a logarith

mic transformation of the age would correct for that. The coefficients for the 

logistic regression on the logarithmic transformation of the smoking history 

however increase in a relatively linear fashion, indicating that the logarithm of 

the pack-years can be used as a continuous variable. Given the non-linearity of 

the coefficients for the age, we try the logarithmic transformation of the age. 

We 'logistically' regress on stratifications of the logarithm of the age, a plot of 
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the obtained parameters shown in Figure 5.4 increases in a slightly more linear 

fashion than for the untransformed age, indicating that it is reasonable to use 

the logarithm of the age as a continuous variable. We also need to verify the 

normality assumption for this transformation of the age. The upper panels 

of Figure 5.2 indicate that normality of the logarithmic transformation of the 

age is reasonably acceptable. 

5.2 The Analysis 

Based on the verification of assumptions done in the previous section we can 

now proceed to do an analysis of this bladder cancer case-control data us

ing the methodology presented in the earlier chapters. The variables we use 

are the following: The logarithmic transformation of both the age and the 

smoking history, that we respectively name X\ and X2, and a binary variable 

indicating if the cancer patient was diagnosed before 1987 that we name I 3 . 

That last variable mainly serves as a check to see if diagnostic methods have 

changed between these two four years periods from 1983 to 1986 and 1987 to 

1990. Using an indicator for each year from 1983 to 1990 would have given 

us eight binary variables, which our approach can handle, however a normal 

representation of these variables would not have been appropriate given that a 

1 for one of them means 0 for all the others, setting the sum to 1. The normal 

representation which sets the sign of the normal given the binary response can 

deal with correlation but not so much as to fix the sum. The analysis is thus 
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performed following the model: 

logit{P{D = 1\X = x)} = a + faXi + B2X2 + BZYZ (5.1) 

where X = (Xi,X2, Y3) and a is not estimable from case-control data alone. 

Remember that the original analysis was performed assuming no mea

surement error was present. However, it is important to note that the in

formation on the smoking history of these patients was obtained from a self-

administered questionnaire. For this reason smoking history is believed to 

be reported with some uncertainty. Some people convinced that smoking is 

undoubtedly the cause of their cancer may tend to overestimate it. Others 

who put the blame on different factors like pollution or work environment 

could tend to undermined the effect of their smoking habits on their illness 

and thereby underestimate it. We are interested in examining how different 

error levels in this variable would influence the results. In order to see how the 

parameter estimates would be affected, we conduct the analysis three times, 

each time assuming a different level of error on the smoking history variable. 

In the first case we assume no error is present, in the second case we assume 

a 10% error and finally we assume a 25% error. Note that the error when 

assumed known was incorporated in our method by assuming that the true 

data covariance matrix E was inflated with the addition of the errors' covari

ance matrix r, leading to the observed data covariance matrix E + r. We are 

considering the smoking history data to be arising from the following: 

log(X*) = log(Z)+log(X 2), (5.2) 
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where X2 is the observed pack-years, X2 is the true pack-years and log(Z) is 

the error component, which is equivalent to: 

X* = Z x X2. (5.3) 

In (5.3) the error component Z is now a multiplicative factor of the true pack-

years, so obtaining the desired error levels can be done in the following way: 

No error: r 2 2 = 0 

10% error: 1.1 = exp(.l) and 0.9 = exp(-.l) r 2 2 = (.l) 2 

25% error: 1.25 S exp(.25) and 0.75 ^ exp(-.25) => r 2 2 = (.25)2 

Note that only the (2,2) element of r is affected by the error since we assume 

error only for the smoking history and that this error is not correlated to 

the other variables. Our correction therefore consists in subtracting from the 

estimated observed data covariance matrix £ + r the covariance matrix r 

we have assumed for the error, all this within runs of our Gibbs sampling 

algorithm because of the presence of a binary variable. 

Results of the analysis for each of these error level assumptions are 

summarized in Figure 5.5, in which can be found histograms of the posterior 

distribution of the parameters BX,B2 and 83. We can see from the histograms 

that the parameters Bx and /33, respectively related to the logarithm of the 

age and the diagnosis period, do not seem to be influenced by the different 

error levels we have assumed for the pack-years. The range and the centrality 

measures of the posteriors for both B\ and B^ remain relatively constant while 

the error level is changing. Now what happens to the parameter B21 It is the 
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one we expect should be mainly affected by the assumed error on the reported 

pack-years and in fact it is. Based on the histograms of Figure 5.5 and some 

summary statistics for each of these posteriors we can detect an increase in fl2 

as the error is increasing. This is exactly what was expected since the esti

mated parameters are obtained from the difference between the estimated case 

mean and control mean multiplied by the inverse of the estimated covariance 

matrix (fl = E _ 1 ( / i i — fj,0)). When this covariance matrix is estimated from 

the observed data, it will be overestimated if there is error in the data. There

fore when correcting for the error the estimate of the covariance matrix will 

be reduced, which means division by a smaller value leading to an increased 

estimate of the parameter fl. 

As it was mentioned earlier, the interpretation of the parameter fl is that 

it is the coefficient in the prospective log-odds ratio and that for rare disease 

the relative risk of disease can be approximated by the odds ratio. Thus, the 

basic conclusion that can be drawn from the obtained results is that the risk 

of getting bladder cancer given the smoking history is underestimated if there 

is in fact error in the observed data. Meaning that an analysis performed 

assuming no error to be present gives conservative estimates of the relative 

risk of disease. 

It should be noted that in the present analysis it was impossible, as it 

is for many exposures, to get a validation sample in which we would have had 

both the true smoking history and the observed one. We could only guess on 

what the error was. Thus, our approach here was mainly used as a validation, 
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but the potential of the methodology should not be overlooked. 
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Figure 5.1: Histograms for the distribution of the age and smoking history 
variables 
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Figure 5.2: Diagnostic plots to verify the normality of the logarithmic trans
formation of the age and smoking history variables 
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Figure 5.3: Plots of the coefficients from the logistic regression of the disease 
status on increasing stratificaions of both the age and logarithmic transforma
tion of the smoking history variables 
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Figure 5.4: Plot of the coefficients from the logistic regression of the disease 
status on increasing stratificaions of the logarithmic transformation of the 
smoking history variable 

69 



No Error 

0.4 0.6 0.8 1.0 1.2 1.4 0.10 0.15 0.20 0.25 0.30 0.35 -0.1 0.0 0.1 0.2 0.3 
betal beta2 beta3 

Error: 10% 

0.4 0.6 0.8 1.0 1.2 1.4 0.10 0.15 0.20 0.25 0.30 0.35 -0.1 0.0 0.1 0.2 0.3 
betal beta2 beta3 

Error: 25% 

0.4 0.6 0.8 1.0 1.2 1.4 0.10 0.15 0.20 0.25 0.30 0.35 -0.1 0.0 0.1 0.2 0.3 
betal beta2 beta3 

Figure 5.5: Histograms of the posterior distributions of the parameter esti
mates for Pi, 82 and /?3 obtained with the assumption there was no measure
ment error, 10% and finally 25% measurement error in the smoking history 
variable. 
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Chapter 6 

Conclusion 

At the risk of repeating ourselves, imprecise exposure measurements are com

mon in case-control studies. Since perfecting measuring instruments is not 

always a feasible option, accepting the errors and developing methodology 

that accounts for them in the analysis has generated a fair amount of litera

ture. Chapter 2 reviewed and summarized some of the work that had been 

done on the subject. Prospective logistic regression being the typical approach 

for analyzing case-control data, most of the methods that offered a correction 

for these errors were based on this methodology which fits a prospective model 

to the retrospectively sampled data. The alternative we adopted called on the 

Bayesian approach which revealed to be a fairly natural way of incorporating 

uncertainty about the unobserved true exposure. 

The simulations and comparisons to known procedures carried out in 

Chapter 3 found our method to perform reasonably. Although the assumptions 

of the normal discriminant analysis model may be somewhat stronger than 
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those of the prospective logistic regression model they should be met fairly 

easily in an applied situation. In light of these encouraging results, we pursued 

our work to make this approach more adaptable to the realities of complex 

datasets. 

In the generalization to multivariate exposure all the basic elements 

from the univariate setting carried over, allowing the simplicity of the proce

dure to be kept intact. Simple yet efficient, for models with only continuous 

exposures the Bayesian inference could be performed with exact posterior sam

pling. The addition to the model of binary covariates presented a challenging 

problem. Fortunately, the use of a variation of the probit regression model 

enabled us to get a continuous representation of these binary covariates. This 

required some elements of a covariance matrix to be fixed, which led to the de

velopment of a general algorithm for sampling such a constrained covariance 

matrix. The Bayesian inference in this context required the use of a Gibbs 

sampling algorithm. 

Analyzing real case-control data showed the method could be applied 

fairly easily, and produced results that were in line with what was theoretically 

expected. 

Finally, although we could not explore these in the scope of this thesis, 

the following suggestions could be considered for further development of the 

presented methodology. One would be to generalize the approach to make it 

applicable to matched case-control studies. The other, to explore other appli

cations of the algorithm for sampling covariance matrices with partially fixed 
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diagonal elements, for example multivariate or multinomial probit models. 
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