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Abstract

This thesis develops Bayesian multivariate interpolation theories when there are: (i) data

missing-by-design; (ii) randomly missing data; (iii) monotone missing data patterns.

Case (i) is fully discussed both theoretically and empirically. A predictive distribu

tion yields a Bayesian interpolator with associated standard deviation, a simultaneous

interpolation region, and a hyperparameter estimation algorithm. These results are de

scribed in detail. The method is applied to interpolating data from Southern Ontario

Pollution. An optimal redesign of a current network is proposed. A cross-validation

study is conducted to judge the performance of our method. The method is compared

with a Co-kriging approach to which the method is meant to be an alternate.

Case (ii) is briefly discussed. An approximation of a matrix T-distribution by a normal

distribution is explored for obtaining an approximate predictive distribution. Based on

the approximate distribution, an approximate Bayesian interpolator and an approach

for estimating hyperparameters by the EM algorithm are described.

Case (iii) is only touched on. Only an iterative predictive distribution is derived. Further

study is needed for finding ways of estimating hyperparameters.
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Chapter 1

Introduction

A spatial data set consists of a collection of measurements or observations on one or more

attributes taken at specified locations. At a fixed time, those data are observed over a

restricted geographical or other region. Many models and theories have been established

for spatial data analyses. The following several paragraphs give a brief overview of this

newly established field.

Cressie (1991a) defined a general spatial model. Let s e R° be a generic sampling

site in d-dimensional Euclidean space and X(s) the response vector at s. As s varies

over the index set D C Rd, {X(s) : s D} represents a multivariate random field

(or alternatively, process). According to the form of D, spatial data analyses can be

classified into four types. When D is a fixed, non-degenerate convex subset of Rd and

X(s) is a random vector at site s D, such analysis is called geostatistical data analysis.

When D is a fixed collection of countably many points of Rd and X(s) is a random vector

at site S E D, it is called lattice data analysis. When D is a random point process and

X(s) is a random vector at site s D, it is called point pattern data analysis. When

D is a random point process and X(s) is a random set, it is called object data analysis.

Cressie (1991a) gives a comprehensive survey of spatial data analyses.
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An earlier form of spatial data occurred as a data map centuries ago (Halley 1686).

Recently spatial data have been seen in many applications. For example, the grade of

ore deposit is measured at various sites spread over a constrained geographical area. In

terms of the general spatial model, D is the constrained geographical area, d is two,

s is a two dimensional vector of the longitude and latitude of a site and X(s) is the

measured ore deposit grade at location s. Another example is the remotely sensed yield

of wheat on earth at a fixed time. In the ore grade example, the ore grade at a site is

likely similar to the grade at a nearby site. However, it will be less similar to that at a

faraway site, provided these two sites are not on the same ore deposition ridge. It means

an underlying relationship among the ore deposit grades does exist. This underlying

relationship is called “spatial correlation”. Spatial correlation plays an important role

in spatial inference.

While the ore deposition grade does not change over time, observations like humidity,

temperature and wind within a region are different from time to time. So they have to be

measured not only across sites , but also over time. Such data are called spatial-temporal

data. Another example of spatial-temporal data comes from air pollution monitoring.

There, air pollution levels, e.g. sulphate or nitrate levels, are observed at different sites

and regularly, say hourly, for a segment of time duration.

Among the four types of spatial analyses, geostatistics is most relevant to the topic of

this dissertation. Geostatistics was established in the early 1980s as a hybrid discipline

of mining engineering, geology, mathematics and statistics. Its study began with Math

eron’s early 1960’s papers on Krigiug, a name given by Matheron after D. 0. Krige,

a South African mining engineer who developed empirical methods to determine true

ore grade distribution based on sampled ore grades. In Kriging, the model of a ran

dom process X(s) generally consists of two terms: a trend and an error. The trend
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term catches large-scale variation of X(s) and is deterministic. The error term reflects

small-scale variation of X(s) and is a random process. The Kriging approach gives a

“best linear unbiased estimator” (BLUE) of the unknown ore-grade at sites in the pre

diction region using ore-grade samples from neighboring sites by exploring correlations

among ore-grades at different sites. Later, in other applications, many different forms

of Kriging are developed. Examples are ordinary Kriging; simple Kriging; universal

Kriging; Bayesian Kriging; robust Kriging and Co-Kriging. These Kriging methods also

give best linear predictors. Thus Kriging has become synonymous with optimal spatial

linear prediction.

Before exploring the family of Kriging methods further, we define some basic concepts.

In Kriging, the spatial correlation is expressed in terms of the Variogram, defined as

Var(X(si) — X(s2)), sl,s2 E D. When E(X(si) — X(s2)) = 0, E(X(si) — X(s2))2

= Var(X(si) — X(s2)). The equation says that if the mean function of a random

field is a constant, the variogram and expected mean squared difference are the same.

Sometimes, the variogram has other names. For example, it is called Dispersion in

Sampson and Guttorp (1992) (SG hereafter). Another important concept in Kriging is

intrinsic stationarity. An intrinsically statiollary process, X(s), has: (i)a constant mean

for all s D; (ii) Var(X(si) — X(s2)) = 2r(s1 — s2), where r(.) is a real, non-negative

function in Rd. In Cressie (1991a) 2r(.) is called variogram and r(.) semi-variogram.

The concept of variogram implicitly implies intrinsic stationarity. If (ii) is replaced by

Cov(X(si), X(s2)) = C(si—s2), X(s) is a second-order stationary process. The function

C(.) is called a covariogram. If further, 2r(si — s2) = 2r(H Si — s2 II) (C(si — s2) =

C Si — s2 2r(.) (C(.)) is isotropic. The cross-variogram and cross-covariogram

between the random fields X(s) and X3(s) have similar definitions.

Intrinsic stationarity is a strictly weaker assumption than second-order stationarity.

3



From 2r(h) = 2(0(0) — 0(h)), we can prove that second-order stationarity implies

intrinsic stationarity. However, the opposite is not true. For example, a Brownian

motion is an intrinsically stationary process but not a second-order stationary process.

In many applications, the variogram (covariogram) is unknown. One has to estimate

it. There are both parametric and nonparametric approaches for estimating variogram

within a constrained region. Usually a parametric approach involves two steps. First,

lags, h1, ..., h, are chosen and sample variograms (covariograms) at these lags are

estimated using observed data. Second, a proper, often an isotropic, variogram (co

variogram) model is chosen and the model parameters are determined by fitting it to

sample variograms (covariograms). Matheron (1962) proposes a natural way for the

computation of a sample variogram (covariogram) by the method of moments. His es

timator is unbiased but not robust. Cressie and Hawkins (1980) propose two robust

sample variogram estimators. For choosing a proper variogram (covariogram) model,

precautions are needed. For example, a variogram model should satisfy the condition

ally negative-definiteness condition. That is, aa3 2y(s — s) < 0 for any real

vector a E Rk Si, . . . , sk E D and any integer k. Similarly, a covariogram model must

satisfy the positive-definiteness condition. That is, aa3 C(s — s) 0 for

any real vector a E R’ , Si,. . . , sk E D and any integer k. There are other considera

tions too. For example, a variogram model should be able to reflect the sill, observed

data may present a sill being defined as a variogram’s non-zero limit at lag zero. Many

isotropic variogram models have been proposed. Examples of such models are the ra

tional quadratic model: 7(h) = a2 h 2 /(1+ h 2) ,h E R’ (Schoenberg 1938);

(the Gaussian model) 7(h) = a2{1 — exp(— h 2)}, h E Rd; the linear model; the

exponential model and the spherical model (Journel and Huijbregts 1978). A covari

ogram model is chosen similarly. A natural model fitting criterion is “least squares”.

Other possible criteria include maximum likelihood, restricted maximum likelihood and
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minimum norm quadratic. When observed data do not confirm a stationary or isotropic

condition, measures are taken to make data stationary or isotropic. For example, Hass

(1990a, 1990b, 1992, 1993) adopts a moving window approach so that all the observa

tions inside a circular window are approximately isotropic.

SG describe a nonparametric approach to estimating a spatial dispersion matrix when

the observed data are not stationary. Here a dispersion matrix has the same meaning

as a variogram matrix except that no stationarity assumption is implicitly implied.

Their method takes two steps. First, with the “nonmetric multidimensional scaling”

(MDS) algorithm (see Mardia, Kent and Bibby 1979), a two-dimensional representation

of sampling sites is sought. In this two dimensional Euclidean space, called the D—plane,

a monotonic function, g, of the distance between any two points approximates the spatial

dispersion between the two points. As a counterpart of the D-plane, the geographical

coordinates plane of the sampling sites is called the G — plane. Second, thinplate

splines, f, are found to provide smooth mappings of the G-plane representation into

the D-plane representation. Then, the composition of f and g yields a nonparametric

estimator of var(Z(xa) — Z(x6)) at any two geographic locations Xa and xb. Other

nonparametric estimation methods for a spatial covariance matrix are discussed , for

example, in Loader and Switzer (1991), Leonard and Hsu (1992), Le and Zidek (1992)

and Pilz (1991). While both adopting Bayesian approaches, Le and Zidek (1992) take

conjugate priors, inverted Wishart, on the spatial covariance matrix while Leonard and

Hsu (1992) propose a class of prior distributions, other than the inverted Wishart.

With the above preliminaries, we can now summarize ordinary Kriging as follows. As

sume a model, X(s) = u + 6(s), s E D, t E R, where D is a convex subset in Rd, 6(.)

is a stochastic process and u is an unknown, constant scalar. Kriging searches for an

optimal linear predictor of any unobserved value X(so) within a family of linear func

5



tions of X(s1), i = 1,. . . , n. Therefore the predictor takes the form p(X; SO) = Z

X(s) under the restriction, = 1. The restriction makes p(X; S) unbiased, since

E(p(X; so)) = A = = E(X(so)).

Suppose X(s) is an intrinsically stationary process. By minimizing

2

(X(so) — X(s)) + 2m(1 — A) = 0, (1.1)

optimal choices of = (Xi,. . . ,
)) and m have the forms,

= (7+11_1tr7)_i

and

m = —(1 — ltp_17)/(ltp_17),

where y = (‘y(so — Si),.. . , 7(So
— 5))t, an n x 1 matrix and 1’ is an n x n matrix whose

(j,j)th element is y(sj — sd).

When X(s) is second-order stationary, the above optimal solution can be expressed in

terms of covariograms. The solutions for ) and rn are obtained by replacing ) with c,

where c = (C(so — si),. . . , G(SO — sn)), F with = (G(s — si)) and m with -m. If the

variogram or covariogram fullction is known, ordinary Kriging stops here. If unknown,

it is estimated with either a parametric or nonparametric method.

When t has a more complicated form, other Kriging approaches are developed. In

simple Kriging (Matheron 1971), the model is X(s) = it(s) + 5s), where u(.) is known.

The best linear predictor is sought within the family p(X; so) = lX(s) + k subject

to an uribiasedness restriction. By minimizing E(X(so) — p(X; so))2 over i = {i,

i} and k, the optimal solution is, k = JL(so) — ijt(s) and i = Cti where

(7 = (C(so,s1),. . . , C(so, s))t and = (C(s,s3)).

6



Universal Kriging is introduced when a more general form of is assumed. That general

form is X(s) = f_1(s)i3_1+ 6(s), where 3 =
, /3)t R’ is an unknown

vector of parameters,f3—(•), j = 1,. . . ,p+l are known functions and 6(.) is a zero mean

intrinsically stationary process with variogram 27(.). The form of a best linear unbiased

predictor is p(X; so) )X(s), subject to, )X = x, ) = \1,. . . , .A,,), where X

is an n x (p + 1) matrix, its (,j)t1 element being f_1(s), and x = (fo(so), . . .
, f(so)).

If the variogram is known, solutions i = 1,. . . , n are easily derived. If unknown, it

needs to be estimated. One problem occurs when one estimates the variogram. Since in

universal Kriging X(s) is not intrinsically stationary, the sample variograms computed

with observed data, X(s1), i = 1 . . . , n by the formulas of Matheron (1962), and Gressi

and Hawkins (1980) are biased. To obtain unbiased variogram estimators, the residuals

of X(s) must be known; but they are unknown, since /3 is generally unknown. To bypass

this dilemma, Neuman and Jacobson (1984; see also Haas 1993) propose an iterative

method starting with ordinary least square (o.1.s.). Note that the model for the vector

Xt = (X(si), ..., X(sj) can be rewritten in a matrix form, X = Z/3 + 6, where Z is an

n x (p + 1) matrix with its (,j)t1 element, i = 1,... ,ri, j = 0,1,... ,p being f(s); /3
is regression coeficients and S is a stochatic process vector. The iterative procedure is

as follows. First, estimate /3 by /3i = (ZtZ)1Z1Xand obtain based on residuals,

X — Z/30i. Second, update /3 by /3gis = (Zt_1Z)_1Z_1_1X and E with the updated

residuals, X
— Z/3gis. Repeat the above procedure until it converges.

In previous Kriging approaches, an estimate of X(so) is computed using information

on the same process X(s1) i = 1,. . . , n. In some applications, additional information is

available. In these cases, realizations of other correlated random processes are observed.

CoKriging was developed to bring the additional information into the BLUE predictor.

More specifically, if the observed data set is X = (X(s1),. . . , X(s))t, an n x k matrix

with (j,j)th element being X3(s), i = 1,... ,n, j = 1,..., k, one needs to predict

7



Xi(so) using X. Suppose E(X3(s)) = ,,j = 1,. . . ,k, s E D and cov(X(s), X(u)) =

C(s,u), s,u E D, where /1 ([Li,. ..,[jk)t and C(s,u) is a k x k matrix. The best

linear CoKriging predictor of X1(so) takes the form p1(Z; so) =

with Z-1 A11 = 1, _i Ai = 0, j = 2,.. . , k. The remaining steps are the same as those

for other Kriging methods.

Applications of the CoKriging method in environmetrics, soil science, and hydrology

can be found in Haas (1993) , Yate and Warrick (1987), as well as Ahmed and de

Marsily (1987). Haas (1993) proposes a Moving Window Regression Residual CoKriging

(MWRRCK) method for predicting pollution carried in rainfall. There, the observed

information includes: (i) wet deposition of pollutants monitored at 200 sampling sites

in US; (ii) observations of precipitation at over 6000 sites of National Weather Service

(NWS) network. We outline MWRRCK method below.

First, a moving circular window centered at a prediction site is selected to achieve

local isotropy. A radius of the circular window is chosen so that the total number of

monitoring sites inside the window will not be less than a predetermined value. This

number is set to make sample variograms reasonably accurate. Second, the spatial trend

surface (respectively spatial covariance matrix) in the window is removed (respectively

estimated) through an iterative o.l.s-g.l.s-procedure. Third, a regular CoKriging method

is applied to the residual process for estimating the residual at the prediction site. The

final prediction is a sum of the predicted trend and the predicted residual.

In Hass’s theory, care has been taken to make the covariance matrix within a window

positive definite. However, the covariance matrix between windows need not be positive

definite. The problem arises when two prediction sites are geographically close and one

of the two sites falls inside the circular window of the other. Because different fitted
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semivariogram and cross-semivariogram models are obtained for each window, it can

happen that the covariance matrix between these two sites is negative.

Although Kriging is an appealingly simple method, it tends to understate uncertainties

of predicted values, since model uncertainty is not included. One simple example given

in Handcock and Stein (1993) shows how much effect the model uncertainty has on the

confidence interval (CI) of a predicted value. There, the above authors showed that if the

uncertainty of the unknown spatial covariance is not included, the 95% CI of a predicted

elevation based on measured elevations is (699, 707). When it is included by using a

Bayesian approach, the 95% CI becomes (694, 713). This example clearly supports the

use of Bayesian approach to Kriging. Such Kriging are described as Bayesian.

Bayesian Kriging is relatively new. Not much work has been done in geostatistics. For

a general model X(s) = n(s) + 6(s), s E D, a Bayesian approach can be adopted by

assuming it(s) to be a random process that is independent of 6(.). More specially, p(s) =

/9_1f_1(s), s e D ,where j 0,... ,p are random variables (see Nather 1985,

Kitanidis 1986, and, Omre and Halvorsen 1989). For example, Omre and Halvarsen

(1989) describe a version of Bayesian Kriging that puts prior on the mean function only.

Their method appears to be a direct extension of traditional Bayesian linear model to

case of spatial data. An empirical Bayesian predictor is obtained if the parameters of the

prior are estimated from the data and substituted into the Bayesian predictor of X(so).

Similarly, one can assume the covariogram varies in the space of all positive-definite

functions PD = {C(s, ) : s, 1tt € D} and put a (prior) distribution on PD. Or one can

assume a structural model on C(.), C(s, i; 0) and put a prior on 0. For the latter case,

the predictive density is

f(X(so) I X) =10 f(X(so) I X, 0)f(0 I X)d0.

One example of such an approach is proposed by Handcock and Stein (1993). In Hand

9



cock and Wallis (1994), the method is applied to model meteorological fields in an

attempt to assess the global warming problem from a statistical point of view.

One competitor to Kriging is the smoothing spline (Wahba 1990a, 1990b). The spline

method can be briefly summarized as follows. For observed data, X, i = 1,. . . n, the

assumed model is X = f(s) + e, where s, i = 1,.. . , n are the locations of mea

surements, f() is a smooth function and e, i = 1,. . . , n, are independently, identically

distributed (i.i.d.) errors. For each value of y, the smoothing function, f(s), is estimated

by minimizing

- f(s)}2 + f[f”(x)]2dx

over all f with continuous first and squared-integerable second derivatives. The smooth

parameter ,\ is chosen by “generalized cross-validation” (Wahba 1990b). The inter

polated value at any location s0 is taken as f(so). Oehlert (1993) shows one example

which combines a smoothing spline technique with a Bayesian approach. There, Oehlert

proposes a multiple time series model for data that have both temporal and spatial

correlations. The smoothing spline is used when the mean and trend are extended

from the rectangles where there are the monitoring sites to rectangles with no moni

tors. Many empirical comparisons have suggested that the interpolation performances

of spline methods and Kriging methods are similar (see Laslett (1994) for references to

these comparisons). Laslett (1994) demonstrates that in certain cases, Kriging surpasses

splines by a big margin.

When the observed data have a spatial-temporal form, Kriging faces another rival,

a “hierarchal Bayesian time series approach” developed by Le and Zidek (1992) (LZ

hereafter). LZ assume independent responses over time, a common unknown spatial

covariance structure at each fixed time point and conjugate priors on both trend param

eters and the spatial covariance. As an alternative to Kriging, LZ’s method has many
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advantages. For example, it incorporates the model uncertainty into its interpolator.

It uses incoming information to dynamically update estimation and gives a predictive

distribution that enables construction of a simultaneous band for interpolated values.

In its original form, the LZ method does not allow such data. In this thesis, we extend

the LZ method to include missing data.

We develop and explain the extension in the context of interpolating air pollution. Let’s

first describe this context. Assume there are s sites scattering over a constrained region.

At each site, k response values are measured. Examples of such measurements are air

pollution levels, like sulphate or nitrate levels. Among the s sites, s,, sites are ungauged

sites, where there are no observations but air pollution levels are needed. The other 8g

sites are gauged; there are observations. In the case of missing data, some values are

missing at the gauged sites. The missing data patterns discussed in the next chapter

are called randomly missing, missing-by-design and monotone missing. Here, we use the

term “randomly missing” to mean its probability of being missing is not related to its

value (see Little and Rubin 1987). The term “monotone missing” is also from Little

and Rubin (1987). The meanings of the three missing data patterns are explained in

the next chapter.

Let X denote the complete, random response vector for all sites (both gauged and

ungauged) at time t, where the first k elements represent pollution levels for k pollutants

at site one, the second k elements for site two and so on. Thus, X, is an sk-dimensional

vector. The inferential objective treated in this thesis is to interpolate unobserved

pollution levels at ungauged sites using incomplete observations at gauged sites. As

in LZ, we assume a linear, Multivariate Gaussian model and conjugate priors on its

parameters. Interpolation with missing data consists of two parts. First, by fixing

hyperparameters, we find a predictive distribution and its posterior mean along with

11



a standard error. Second, we develop an estimation procedure for hyperparameters.

Further, in two steps we estimate the hyper-covariance matrix of X,. In step one, we

adopt an EM algorithm to estimate the hypercovariance matrix at gauged sites. In step

two, we apply the OS approach to extend this hyper-covariance matrix to all sites.

This thesis consists of six chapters. In Chapter 2, we describe three different interpo

lation theories depending on the missing data patterns. The patterns are: (i) missing-

by-design; (ii) randomly missing; (iii) monotone. There, we fully develop the theory of

interpolation with data missing-by-design; we briefly discuss the theory of interpolation

with randomly missing data and only touch the theory of interpolation with monotone

missing data. In Chapter 3, we apply the theory of interpolation with data missing-

by-design to Southern Ontario pollution data; we implement it with S and C programs

and carry out residual analysis. In Chapter 4, by combining the theory developed in

Chapter 3 and the theory developed in Caselton, Kan and Zidek (1992), we show how

to apply our results to an optimal network redesign problem. In Chapter 5, we compare

the theory of “interpolation with data missing-by-design” with the general theory of LZ

and also with Hass’s CoKriging method. In Chapter 6, we drawn conclusions and list

some future research topics. All figures referred in Chapter 3 and Chapter 5 are listed

in Appendix C. We attach examples of S and C programs in Appendix A and B.
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Chapter 2

Bayesian Multivariate

Interpolation with Missing Data

2.1 Introduction

The problem of interpolating a spatial field has received a lot of attention. Kriging offers

a well-known solution, but it has deficiencies. In particular, it overstates the precision

of its interpolator because it fails to reflect the model uncertainty (LZ, Brown, Le and

Zidek 1994a, hereafter BLZ). To avoid these deficiencies, LZ propose a hierarchical

Bayesian alternative to Kriging. The LZ method takes a Bayesian time series approach

with a Gaussian linear model and conjugate priors for the model parameters. Such

a Bayesian approach incorporates model uncertainty and yields a heavier-than-normal

tailed posterior distribution, the multivariate t. LZ’s Bayesian alternative also has

the advantage of dynamically updating the predictor as more observations come in. LZ

developed their theory in a univariate case where at each of s sites, only one air pollutant

is monitored.

BLZ extend the above LZ Bayesian interpolation theory to the multivariate case. At

each site k air pollutants are monitored. BLZ adapt the original LZ Bayesian theory by

stacking rows of the s x lc response matrix into an sk xl vector, where each row represents

13



k measurements at a gauged site. To reduce the total number of hyperparameters in the

prior distributions, BLZ assume a Kronecker product structure on the hypercovariance

matrix. Then BLZ describe an algorithm for hyperparameter estimation. But the BLZ

theory has an important restriction. It does not permit missing values at gauged sites.

In this chapter, theories of Bayesian multivariate interpolation with different patterns

of missing data are discussed. These patterns are: (i) missing-by-design ; (ii) randomly

missing and (iii) monotone. In all three cases, we follow the hierarchical Bayesian ap

proach of LZ. In the case of data missing-by-design, the proposed Bayesian interpolation

method is an alternative to Co-Kriging. In a Bayesian analysis, a predictive distribu

tion plays a key role and we need to derive that predictive distribution of the unknown

pollution levels at ungauged sites given the observed at gauged sites.

Section 2 gives a brief review of the LZ theory. Section 3 serves as a technical preparation

for the following sections. There, we define a matrix T-distribution, which plays a pivotal

role in our inference, and explore its normal approximation. Section 4 spells out the

theory of Bayesian multivariate interpolation with data missing-by-design. Section 5

gives a brief discussion to interpolation theory with randomly missing data. There,

we describe an approximate predictive distribution and estimation of hyperparameters.

Section 6 is about interpolation theory with monotone missing data patterns. There,

only a recursive predictive distribution is described. We put the proofs of most theorems,

lemmas and corollaries appearing in this Chapter, in the last section.

2.2 Bayesian Interpolation

In this section, the LZ Bayesian interpolation theory is briefly summarized. Let X

be an s-dimensional random vector at time t, where the first s elements, denoted

by X, correspond to the unobserved responses at s ungauged sites. The remaining

14



8g elements, denoted by X, correspond to the observed responses at s gauged sites.

Assume:

Z, B,
indejndent

N8(Bz, ) (2.1)

where Zt is an h-dimensional vector of known covariates at time t and B is an s x h

matrix of regression coefficients,

B=

The priors of the unknown parameters B, are taken as conjugates of the normal

model,

B B°, , F N3h(B° , ® F), (2.2)

6” W3_l(,5*). (2.3)

Let At denote a matrix transpose of A. Since X is partitioned into X and X, E and

B are partitioned correspondingly as

(11 12 (B1
i and B=i

\21 E22)

Define

S = (X -E2z)(X -

B2 = CA,

C =

A =

Note D is the set of all observed data.
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With a straightforward calculation, the posterior distributions of B and Z are easily

found. Lemma 2.1 gives their forms.

Lemma 2.1 The posterior distributions of B and are:

B D,B°,F2

22 D, 22,
5* W(22,6* + n

—

D, 1I2,
6* l47(1I2, 6),

.,N339(12,112

where

={22,r12,112},

‘c’ ‘c’—i
T12 = ZJi2L22

v’ c’ v—iv
= LJfl L.Ii2ZI22 L21

B* = B° + ( T12 ) (E2 — B)Et,
139 X Sg

= EØF
— [(z) (E22r2,Z22)]Ø(EF),

E = F’(A + F’),

22 = ‘22 + S + (E2 — B°)t(A’ + Fj(B2— B°),

,+
712 ‘‘i222

LZ show that the predictive distribution of a future unknown realization Xf consists of

two multivariate t distributions. These distributions are given in Theorem 2.1. For com

pleteness, the definition of a multivariate t-distribution is repeated here. A multivariate

t-distribution, denoted as tr(jt, H, 9), is defined to have a density function,

f(x) H I- [ + (x —)tH(x
— )]

+r)
(2.4)
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Theorem 2.1 Let the posterior distribution of B and be defined as in Lemma 2.1.

The predictive distribution of X = ((x))t, (X)t), given covariate vector Zf and the

hyperparameters B°, , 6, F, consists of

X D t9 (a(i) + b,
c — d22

and

X X = D t (ao + 12(x — a(i)),
c + (a(i) —x)t’(a(l) — x)12

q),

where

1*

= * +
— — 5g + 1,

q =
—
s + 1,

(ao’\
a=I J=Bzf,

\a(1)J

b (E2 — B)Ezf,

c = 1 + 4F1zf,

d = zEF1zf.

With the predictive distributions, the Bayesian predictor is simplely taken as the pos

terior mean.

Corollary 2.1 Given the predictive distributions of Theorem 2.1 and Zf, the predictive

means of X) and X are

= E(X) = a1 + qi2b,

112 E(X) = a2 + b.
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2.3 Matrix T-Distribution

A representation of normal distribution given as a lemma in Lindley (1972) is summa

rized here. For any given constant matrices A, B, assume

X N(AY,E1)

and

Y N(B, 2).

If two normal distributions are independent, Lindley’s result asserts

X AB + N(O, +A2At).

The above fact will be repeatedly used in the sequel without explicit mention.

Besides the normal distribution, the matrix T-distribution plays a pivotal role in the

theories developed in this chapter. Its definition and some properties are discussed next.

Definition 2.1 A random matrix T : p x q is said to follow the matrix T-distribution,

if its density is expressible as

= I p(rn-qQp
F1 + tQ’tt Im, (2.5)

where > 0, Qqxq > 0, m > p + q — 1,

KPFq ((m
—

k[m,p,q]
= fi \

T’q m)

and F()
= l)f()f(

— ) . . .
F( — + ).

In the above theorem, the notation, “P > 0” means that P is positive-definite. An

alternative form of f(t) is

Q (m-p) p q
1

= +tp m (2.6)
k[rn,p,q]
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Using the notation of Dickey (1967), Press(1982) , we express the matrix T-distribution

by T -‘ T(P, Q, 0, m) or more generally T + C “ T(F, Q, C, m), where C is a constant

matrix.

Lemma 2.2 When q = 1 and Q is a scalar, T(F, Q, 0, m) is equivalent to a multivariate

t(0, c’,m_p).

Proof: By Equation (2.6),

f(t) (Q + tt[ph]1t)m

[(m
— ) + t

(QP1)-1

rn—p

By (2.5) and (2.6), it is easy to see that

Tt r’. T(Q1,P’,O,m). (2.7)

In Dickey (1967), a representation of a matrix T is given. The result is copied here.

Lemma 2.3 Suppose that U7,, F,m W(P,m—q), Xpxq Q ‘‘ N(0,I®Q), P >0,

Q > 0 ,m > p + q — 1 and that X, U are independent. Let T be a random p x q matrix

and T = (u_4)tx. Then T has the distribution given in (p.5).

In the Lemma, 0 denotes the Kronecker product. A direct application of the above

representation yields the mean of a matrix T.

Corollary 2.2 If T ‘- T(P, Q, 0, m), the mean of T + C is C, where C is any constant

matrix.

Proof: By Lemma 2.3, E(T) = E([U1t)E(X) = 0.1

Below, some properties of a matrix T distribution given in Press (1982) are listed without

proof. Partition T as
IT1

T=(
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T: being a p x q matrix, i = 1, 2, and conformably,

\P21 122

for a matrix P11 of dimensions P1 x p. Let P211 = P22 —P21P’P12 > 0 be positive

definite.

Lemma 2.4 Suppose T T(P,Q,0,m). Then:

1. conditionally T1 T2 = t2 ‘—‘ T(Pn, Q + tPii2t2,—PPi2t2,m);

2. marginally 7’2 T(F211,Q, 0, m
—

p);

3. 0 T(P,CQCi,0,m) where Opxr = TC1 and C1 is any q x r matrix.

Dawid (1981) replaces the notation T(P, Q, 0, m) with T(8, F, Q). His notation differs

from that of Dickey in the choice of the “degrees of freedom” parameter, that is, rn—p =

6+q—i.

Dawid (1981) has another representation of a matrix T-distribution T T(I, ‘q, 0, rn)

that can be defined as the marginal distribution of Tpxq with T I E ‘s-’ N(0, I, 0 E)

and W(I, m
—

p). In a general form, if Tpxq N(0, P’ 0 E) and >Z Q
W’(Q,m—p) then

T T(P, Q, 0, m), (2.8)

where F, Q are invertible symmetric square matrices.

Proof:
f(t P,Q) = ff(t I P,)f( Q)dS

f —(m++1) e_4tT[_1 (ttPt )] dZ

I Q +ttpt

The last step is true by integrating with respect to a partial Wishart density function.I
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Definition 2.2 Let be a matrix with column vectors, a1, ..., a,,, define:

a1

vec(A) =

a

Let tr(A) denote the trace of matrix A, which is the sum of diagonal elements of A.

Here are some useful facts:

Lemma 2.5 When the dimensions are proper:

1. vec(A + B) = vec(A) + vec(B);

2. (Bt 0 A) vec(Z) vec(AZB);

3. tr(AB) = tr(BA)

,4. tr(AB) = (vec(At))tvec(B);

5. (AOB)(COD)=(AC)Ø(BD);

6. (AØB)t=AØBt;

7. (A ® B)-’ = A’ ® B’;

8. if X is a random matrix, E(vec(X)) = vec(E(X)).

The proof is straightforward and omitted.

Definition 2.3 Assume Y = (Yj) is an m x q random matrix, elements of Y are

independently, identically distributed as N(O, 1), M : n x p, A : p x q, B : n x m are

constant matrices and

X=M+BYAt.

Then X follows a matrix normal distribution, i.e. X NXP(M, (BBt) ® (AAt)).
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The density function of a matrix normal X is

f(x) = (2r)4 W V i’ e_tr[W_1_M)V_1(_M)t1, (2.9)

where W = BBt >0, V = AAt >0.

By Lemma 2.5,
[vec(X — M)t]t(W 0 V)’vec(X — M)t

= [vec(X —M)t]tvec[V’(X —
M)tWh]

tr[(X — M)V1(X — M)tW’]

= tr[W’(X — M)V’(X —

M)t].

Thus, the following fact is proved.

Lemma 2.6 T’Vhen the dimensions are proper and W, V are invertible, symmetric ma

trices, the following is true,

[vec(X — M)t]t(W 0 V)1vec(X — M)t = tr[W’(X — M)V’(X — M)t].

By a direct application of Lemma 2.6 to Equation (2.9), an equivalent relation between

multivariate normality and matrix normality is established.

Lemma 2.7 Assume X be an n x p random matrix, then

X N(M, W 0 V) if and only if vec(Xt)‘ N(vec(Mt),W ® V).

As one can see, the covariance matrix of a matrix normal distribution is a Kronecker

product of two matrices. Sometimes, for notational simplicity, a notation Xpxq ‘ .A1(W,

V) +M due to Dawid (1981) replaces Xpxq ‘ N(Mpxq,Wpxq 0 Vqxq). With this new

notation, some facts about the matrix normal distribution are given without proof:
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Lemma 2.8 If Xpxq f(W,V)+M,

1.XtV(V,W)+Mt;

2. CXD Jf(CWCt, DtVD), where C, D are two nonrandom matrices with

proper dimensions.

Next, a normal approximation of a matrix T is derived. Suppose T follows a matrix T

distribution Tpxq ‘‘ T(P, Q, 0, 6). Define a scaled matrix T* = 6T. By Lemma 2.3,

1 u’ —r
T* =

g (-_) x, (2.10)

where = means equal in distribution. T* is a matrix analogue of the univariate t8.

Let = 6 — q. By the definition of a Wishart distribution, there are , p dimensional

random vectors, Y1 N(0, F), such that

UtU.YtYt. (2.11)

By the multivariate strong law of large numbers (SLLN),

vec(Ut) vec(yiyjt) E(vec(YiY1t)) a.s. as

where, a.s. represents convergence almost surely with respect to fy1().

Note that E(vec(Y1Y1t))= vec(E(Y1Y1t))= vec(P). Hence,

Ut
—* P a.s. as —* oc or 6 —* oc.

Since when p is fixed, tS’ —f oc is equivalent to 6 —* oc. Applying Slutsky’s theorem,

we have

UtT*=[-]

—* P X = .A/(P , Q) in distribution, as —* oc.
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Thus the following theorem is proved.

Theorem 2.2 WIzen n, p are fixed, as —* cc

T* J/(P’, Q) in distribution.

Theorem 2.2 is an extension of a similar asymptotic result in the univariate case, that

is t5 —* N(O, 1) as S —* cc. The fact has been noted in Dickey (1967).

Lemma 2.9 Let U W(P,’9). Then

( - p) (2P, F), ,as cc,

where in the lemma, __,d denotes convergence in distribution.

The above lemma is applied in the proof of the following theorem that gives an asymp

totic distribution of a matrix T-distribution in higher order.

Theorem 2.3 Let T* be defined by (2.10), and F > 0, Q > 0. Then

-P4X)--U * V, as —* cc,

where U Jf(P,F1), V .A/(P’,Q) and given the hyperparameters F, Q, U is

independent of V.

Corollary 2.3 When z9 is big,

T*(1+=Y*)X*

where given F, Q, U, V are independent and

U(P1,Q),

24



2.4 Interpolation with Data Missing-by-design

In this section, the theory of Bayesian spatial interpolation with data missing-by-design

is established for the multivariate case in which there are s,. ungauged sites, s gauged

sites and k monitored pollutants at each site.

Suppose, now, that observations at gauged sites are pooled from different air pollution

monitoring network. Since by design each gauged site does not monitor the same subset

of pollutants, some pollutants, concerned by us, may not be monitored at a site. Hence,

these pollutants are missing because of design. Therefore, we call these “missing” val

ues missing-by-design. More specifically, Let X = ((X)t, (x(l))t), where (X9)kl

represents the response vector at ungauged sites at time t and (X1)sgkx1 represents the

response vector at gauged sites at time t. After a proper rearrangement of its elements,

is further partitioned into (X’)11, and (X)(sgk_1)x1 that respectively correspond

to the vector of missing-by-design pollutants and to the vector of observed pollutants at

gauged sites. Since the same 1 pollutants are missing during the whole monitoring pe

riod and they comprise 1 columns in matrix X, they are sometimes referred as missing

columns in the sequel.

Like LZ, a normal model for the conditional sampling distribution is adopted. In terms

of a matrix normal distribution, the model can be written as,

X Z, B, -N3kX(BZ, E ® Ia), (2.12)

where X = (X1,. . .,X)3kXfl is the response matrix; Z = (Z1, ..., Z)h is the matrix

of covariates;

B=

/9sk,1 . /3sk,h skxh

is the coefficient matrix; is the unknown spatial covariance matrix of X and I is an
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n x n identity matrix. The conjugate priors of , B are,

B I B°, E, F N3kh(B°, D ® F’) (2.13)

and

F,6* W(,6*). (2.14)

The random field interpolation theory developed in this section has two steps. In the

first step, while the hyperparameters B°, F, 1’ and 5’ are assumed to be fixed, predictive

distributions derived. In the second step, estimation procedure of hyperparameters is

discussed.

2.4.1 Predictive Distributions and Interpolation

In this subsection, all hyperparameters B°, F, and 6 fixed and are suppressed in the

derivations. The estimation of these hyperparameters is left to the next subsection.

If indices of missing columns in are i1, ..., i1 and indices of observed columns are

ZgJ let R1 = (r1, . . ., r) and R2 = (r1+1,. . ., r3,) where r, j = 1,..., .gk,

is an.s9k-dimensional vector with th element being one and the remainder being zero.

Thus R1 and R2 “mark” the position of missing columns. Now let R = (R1,R2). Observe

that (X’)t = (X(l))tR1 consists of the missing columns. Similarly (X2)t = (X(1))tR2

consists of the observed columns. Because vector X is partitioned into three parts, B,

E, B° and 4 are partitioned accordingly. For example, is partitioned as

( oo Eo(1)

E(i)o E()

where oo and (11) are .sJc x .sk, sgk x .s9k matrices respectively; Rt(ll)R is further

partitioned as

Rt R—
E12” (R(ll)Rl R(ll)R2’\

(11)
— 21 E22) = R(ll)Rl RE(ll)R2)’
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where 11 and En are 1 X 1, (sgk — 1) X (sgk — 1) matrices respectively and in general if

Et = (E,E,E)t, E(1) means (E,E)t. The partitions of B, B° have a meaning

analogous to that of E11). Further, denote

/T T \ /rt D DtT D
t ( v11 W \ ( tL1’1’(ll)ILl 1L1’&’(11)1U2

(11) = (11)
= k\l12l ‘P22) = kR(ll)Rl R(ll)R2

with ‘I’rn being 1 x 1 and JJ22 being (s9k — 1) x (sgk — 1) . Let “P112
— “121’22121

and ‘IJ12’J! for use in the sequel. Let,

/ t o\ / o
ritr,o _

1 (1) \ _1 1

— RtB° — B°\ 2 (i)J \ 2

When a mean squared loss function is taken, the Bayesian interpolator is simply E(X°

X2). To find the posterior mean, one needs the predictive distribution function, f(X° I
X2). That predictive distribution function plays a pivotal role in our Bayesian interpo

lation theory. As an indirect approach, since E(X° X2) = E(E(X° X’,X2) X1),

one can instead find the predictive distributions of f(X° X(’)) and f(X’ X2). Those

two predictive distributions are given in the following two theorems.

Theorem 2.4

x° = ‘-‘ T(1), + ZtF_1Z+ (x(1)
— Bl)Z)t — B°l)Z),

B00Z + O(l)(1j)(X(’) — B(°l)Z), 6* + n).

From Corollary 2.2 we obtain the next corollary.

Corollary 2.4

E(X° = x(1)) = BZ + — Brl)Z).
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Theorem 2.5

X’ X2 = x2 T(’,I + ZtF_1Z+ (x2 —RB1)Z)t2l(x2
—

RB(°)Z + ‘y(x2 — RB°l)Z), 6*
— sk + n).

Corollary 2.5

E (x’ I = 2)
= RBrl)Z + 7(x2 — RB°1)Z).

With the above two corollaries, the Bayesian interpolator is found.

Corollary 2.6

E(X° X2 = x2) = B00Z + o(l)R2I1’(X2
— RB°l)Z).

The above corollary shows that the interpolated value E(X° X2) depends only on the

observed vector, X, provided the hyperparameters are fixed. Later it will be seen that

our estimator of the hyperparameters depends on all observed values X2, therefore the

interpolated values, E(X° X2), do depend on all observed values.

Although it is difficult to find an analytical form of Var(X° X2), it is possible to find

a closed form for Var(X° X2). The following theorem gives that closed form. Before

the variance formula is presented, an useful fact, needed in the derivation of variance

formula, is given.
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Lemma 2.10 Let S be an invertible matrix

(a A12”
I At A I
\12 h122J

where a is a scalar and A22 is an n — 1 by n — 1 matrix. A1 is denoted as

A1=( ::)•
Then (b —B12B’B2)= a.

Theorem 2.6 Fort=1,...,n,

Var(X° X2)
= m 2

[A11I2A+

where

(A1,A2) = Io(l)’I’(J’flR = (o(l)j)Rl, ?o(l)’I’(j)R2);

cj = 1 + ZFZ + (X —
— B20Zt);

m = 8*
— sk 1 + 1.

Obviously when there are no missing columns, the variance iso1(l)ct/(m — 2). When

there are missing columns, the variance is roughly increased by a factor Ai’I’i12Act/(m—

2).

As indicated earlier, if the predictive distribution of f(X° X2) is found, the Bayesian

interpolator can easily be obtained. That approach is pursued here as a way of checking

the formulas for the interpolator and its variance. Note that if hyperparameters are

given, by Model (2.12)-(2.14) and Lemma 2.20 of Section 2.6:

fyO\ / v’
( ‘kt I I I -‘--‘0 ( ‘-OO £-20(1)1t2

X} B2) RE(l)o R(ll)R2
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(B0
N

((Boo ( OO
® F-’

\B2) ‘ \RE(,)o RE(,,)R2J

( E Eo(l)R2 ‘\ (( oo 0(1)R2”\
* i

RlO R(ll)R2) 22 } —

By following the same way as the proof of Theorem 2.4, the predictive distribution of

f(X° X2) is easily obtained.

Theorem 2.7

X° X2 T (,ct,Bo°Zt + o(l)R22(X
—

B20Zt),m + sk)

where Ct, m are defined in Theorem 2.6 and oI2 = oo — o(i)R2 ‘I’ R(,)o.

From the above predictive distribution, the same Bayesian interpolator as that of Corol

lary 2.6 is obtained. By Lemma 2.2 and Press (1982), it is easy to see that the variance

is

Var(Xt° I X)
= m— 20I2 (2.15)

It is not difficult to prove that Equation (2.15) is equivalent to the variance formula of

Theorem 2.6.

Lemma 2.11 If A, is defined in Theorem 2.6 and oI2 is defined in Theorem 2.7, the

following equation is true.

A iTi At
‘OI2 — 11l2111 + “oI(l)•

That verifies the variance formula of Theorem 2.6.

With the variance, only a pairwise confidence interval can be derived. With the posterior

distribution of X° X2, we can derive a simultaneous region. The next lemma is

Theorem 3.2.12 of Muirhead (1982 p913) and it is copied here.
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Lemma 2.12 If A is W(,6*). So 5* is a positive integer, > p 1, and Y is

any p x 1 random vector distributed independently of A with P(A = 0) = 0 then

YtEY/YtA_lY is and is independent of Y.

By that lemma, the distribution of the quadratic form of matrix T is easily found.

Theorem 2.8 IfT1 T(I,1,0,6*),

(6*
— p)TtT

‘-.-

Let I = B00Z + o(l)R221(X— B20Z), where I is the Bayesian interpolator of X°

when there are missing-by-design data. Then a simultaneous region of X° is given in

Theorem 2.9.

Theorem 2.9 The 1 — a, where 0 < a < 1, simultaneously posterior region of the

Bayesian interpolator is a hyper-ellipsoid, defined by the set

{X : (X —)t(X
— ) <b X2},

where,

b
— sk * Ct * F1_a,suk,3*_l_suk+1
— 6*_lsk+1

and Ct is defined in Theorem 2.6.

2.4.2 Estimation of Hyperparameters

In the previous subsection, the hyperparameters , 8, F, B° are assumed to be known.

Often, they are unknown. To finish the interpolation procedure, they must be specified

in some way. In a complete Bayesian hierarchical approach, another level of priors

is usually laid on these hyperparameters. An alternative approach, suitable when the

parameters are not sensitive to their prior specification, entails the use of empirical
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Bayesian method. In an empirical method, the hyperparameters are estimated with the

observed data.

In BLZ, 1 and 6 are estimated through a maximum likelihood estimator (MLE) and

B°, F’ are assumed to be zero. While it is difficult to estimate all of hyperparameters,

, 6, B°, F’ by MLE, in this subsection we propose two unbiased estimators for the

estimation of B°, F—’ and apply the MLE method to estimate , 6. For the moment,

the MLE of , 6’ is discussed. The two unbiased estimators of B°, F’ are described

at the end of this subsection.

Even with B°, F’ being fixed, the direct maximization of the marginal distribution

f(X2 I , 6*) is difficult. With the help of EM algorithm proposed by Dempster, Laird

and Rubin (1977), one can instead maximize the distribution of f(X2,E22,B2 , 6)

(Chen 1979). Let the complete data set be x and assume only part of x is observed. That

observed part is denoted as y. If the sampling density f(x = b(x)exp(qt(x)t)/a(q5)

is from a regular exponential-family, the p iteration of EM algorithm consists of:

(E-step) estimating the complete data sufficient statistics, t(x), by finding (P) = E(t(x)

y, q));and

(M-step) determining q(P+1) as the solution of the equation E(t(x) q) =

It is proved, in C.F.J. Wu(1983), that the limit point does maximize the marginal

likelihood function l(q I 1).

To apply the above EM algorithm, we need to find the sufficient statistics of F and 6*.

Following the approach of LZ, let

B2 = (X2)tZt(ZZt)1
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and

S2 = (X(I —Zt(ZZt)-’Z)X2.

Anderson (1984 p291) shows that given B(,) and

B2 B(,) - N(RB(l), 22 ® (ZZt)—’), (2.16)

52 I (11) WS9k_1(22, n — h) (2.17)

and that B2, S2 are independent.

Since,

f(X2,B(,), E() B°,), F’, ,, 6)

= f(X2 B(,), (ii))f((ii) I 6*)f(B I F’,

f(S2 (fl)
6*)f(E(,) B(,), (,,))f(B(i) B(°,), ,, F-’),

where the last step is true, because of Equations (2.16) and (2.17).

When B° and F’ are assumed to be known, the above likelihood function of (11) and

6* is proportional to f((ii) (,,),6*). Because, by Lemma 2.20 of Section 2.6,

6*
— sk).

Therefore, the likelihood function is proportional to,

f(X2,B(,), i) (ii),
6*) oc f(Eii) (H),

6*)

(—sk) 6+sgk+1—suk

CC CJ1 2 2

exp [_tr((l,)E))] (2.18)

where

=2sgk(6*suk)/2(8gk1)sgk/4 — sk — i + 1)
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With the likelihood Equation (2.18), the pair log ) is readily identified as

the sufficient statistics of 6 (Chen 1979).

To reduce number of parameters that need to be estimated, BLZ adopt a Kronecker

structure, = A®, where A the between-sites-hypercovariance matrix and between

pollutants-hypercovariance matrix. Since (11) = Ag 0 , where Ag is the hypercovari

ance matrix between the gauged sites, by the likelihood function (2.18), only Ag and

could be estimated. Hence, the estimation of c1 takes two steps. In Step one, Ag, and

8* are estimated by MLE through an EM algorithm. In Step two, the SG method is

applied to extend Ag to A.

Expectation Step

At E-step, the posterior expectations of and log I are of interest. The

next lemma, due to Chen (1979, Theorem 2.1, p237), is used in the derivation of the

expectations of these sufficient statistics. The lemma is copied without proof.

Lemma 2.13 Given hyperparameters , 6, B° and F,

x(1)) = ( 8*1) _6*)

\\_6?7t d

where,

,T
71 ‘4’O(1)P(fl),

A=ZZt,

0(1) = x(l)Zt,

B(1) =

S(i) = x’ (I — Z(ZZt)1Z) ()((1) ),

(11) = (11) + S(i) + (E — Brl))(A’ + F’) (E(i) — Btl))t,
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d = (6* + n
— sk — h)’j) + 6?74?7 +

Note that ‘J/ = R(ll)R.

Lemma 2.14 If W W(A’,n), then given A, n,

E(log W ) = n * A1

and

where ‘P(.) represents a digamma function. A digamma function is defined to be the

derivative of a log-gamma function.

With the above lemma, the following lemma is true.

The expectation of is,

Theorem 2.10

E E’ x2 — B ( (6*
— sk)’IJ (6*

— sk)I,*
“ Rt(11) — (8 — suk)(*)t d1 )

where

= I — Zt(ZZt)_1Z,

G2 = MZt(ZZt)’— B,

*_ T T—l
— ‘“1222

S = MG1M2+G2((ZZt)’+F1)’G,

= ‘22 + 5,

d1 = (6*
— sk + fl — 1 — h)’ + (6*

— suk)(,l*)tI17l* + lT!.
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The expectation of log I is,

Lemma 2.15

E(iog (11) I X2, ,) = —sgkiog(2) —

— — + 1_

Sgkl
— k—i—h— .+1

2
) + log 1I2 +log 22 I.

Maximization Step

When the expectations of sufficient statistics are found, at M-step, the current values

of the hyperparameters are updated with the values that maximize the “likelihood”

function. Here, the “likelihood” function is obtained by plugging the expectations of the

sufficient statistics into Equation (2.18). However maximizing the “likelihood” function

over = Ag 0 is not easy. When there is more than one parameter involved in the

maximization step, the following lemma leads to an iterated procedure. An advantage

of the iterated procedure is that at each iterated step, only the maximization of a

function over a single-parameter is required. That is generally easier than maximizing

over several parameters simultaneously.

Lemma 2.16 If a function g(x, y) is upper bounded, the iteration procedure described

below leads to the pair (xo, yo) that maximizes g(,) locally. At the pt iteration, update

the current value with a value that maximizes the function g(x, y(”) y(P)) and denote

the updated x value as xl); update the current value (°) with a value that maximizes

the function g(x(’),y x(’)) and denote the updated value y as (‘). (xo,yo) is the

limit of (x(’), y(P)).

Proof: g(x,y) is bounded up and

g(x,y) g(x’’,y)
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Besides the above lemma, another lemma is used in the maximizing procedure. The

lemma is Lemma 3.2.2 of Anderson (1984 p62). It is copied for convenience.

Lemma 2.17 If > 0, the maximum of

f(G) — —flog G —tr(G1D),

with respect to positive definite matrices G exists, occurs at G = (1/n)D, and has the

value

f[(1/n)D] —_p*n*log(n)—n*log D —p*n.

With Lemma 2.16, an iterated procedure is adopted to find F(1i) = A9 0 Q, 6* that

maximize Equation (2.18). Since Rt(ll)R = I(ii) and R is orthogonal, maximizing

Equation (2.18) over is equivalent to maximizing the same equation over

When 5 is fixed, the log-likelihood of Equation (2.18) is proportional to

L(Ag, c) = (S — sk)log —tr ((11)))

= (6* — sk)klog A’ _(6* — sk)s9 —tr [(A9 0

Again, an iterated procedure is applied to maximize L(Ag, ft). When Q is fixed, rewrite

tr (411)) as tr(A9Q). By Lemma 2.17, Ag = k(6*
— sk)Q’ maximizes L(A9j).

Similarly, when Ag is fixed, = s(6* — sk)G, where tr((11) = tr(QG),

maximizes L(Ag, 1).

When 4() is fixed, 6* is updated by maximizing Equation (2.18) over 6*. By taking

the first derivative of Equation (2.18) with respect to 6*, it becomes

sgk 6* k 1
—s9klog(2) — log E(11) I +log I — 2

= 0. (2.19)
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When A9, are fixed, finding t that maximizes Equation (2.18) is equivalent to finding

a solution in Equation (2.19). For showing the existence of a solution of Equation (2.19),

replace log j with E(log Ei) II M,(ll),6*) in Lemma 2.15 to Equation (2.19)

and use the relationship log J) log R’P(ll)Rt log ‘P112 +log ‘P22 ,
Equation (2.19) becomes,

___________________

6—sk—z+1

i=1 1=1+1

—log ‘P221 +log I ‘P22=0

or equivalently

—
sk— h

—
1) ‘P(6 — sk— i + 1)]

i=l+1

=log22—log’P22.

Since the gamma function is convex, the digamma function is monotonically increasing.

Thus, the left side of the above equation is always positive whenever n — h > 0 and

it goes to zero when t increases to infinity. The right side of the equation is positive.

Therefore, a unique solution does exist.

2.4.3 EM Algorithm

By summarizing the above discussion, our EM algorithm becomes:

E-STEP. Given the current values of ‘P(11), 6*,

E ‘ Mt — R ( (6*
— k)’P (6* — sk)’P,*

Rt(11) 2) — _(6* — sk)(*)t’P d1 )
where

d1 = (6*
— sk + fl — 1— h) + (6* — sUk)(7l*)tW,7*+ lP
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and

E(log II M(,,),6*) = —s9klog(2)
— 6 — sk— i +

6 +n—sk—l—h _i+
) +log 1I2 +log I I;

M-STEP: Given the current values of and log , find the MLE of = A9 0 l,

6* by repeating the following steps until it converges.

Step 1:

Given the current A) and Q(’), represent tr[(A ® as tr(1(P)G) and set

= s(6*
— sk)G;

Step 2.

Given current and P+1), represent tr[(AO’1))j)] as ir(A’)Q) and set

= k(6*
— sk)Q1.

Step 3.

Given the current estimate 6* by solving the following equation:

{(6*+n_suk_h_i+1)(6*_suk_i+1)]

j=1+1

= log I 22 —log 22 I. (2.20)

Estimation of B° and F1.

The estimation of the hyperparameters B° and F are based on two unbiased estima

tors. Suppose that the k air pollutants are labeled from 1 to k. The measurements

of the same air pollutant at different sites are usually similar but the measurements

among different pollutants are not similar. Based on this fact, we assume that B° has

an exchangeability structure, that is, the hypermean coefficients of th air pollutant at

all gauged sites are the same and equal to u, i = 1,. . . , k.
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Since,

X2 I BZ + N(O, a Ia),

then the following lemma is true.

Lemma 2.18 Given Be,) and E(), B2 and S2 are independent.

Proof:

f(E2,S2 Br,), (ii))
— J f(E, 52 I B(1), Br,), (n))f(B(,) Br,), E(,,)) dB(,)

= J f(E B(i), (,,))f(B(,) Br,), E(,l))f(S2 I 11) dB(,)

= f(E2 B(°,), (,,f(S2 (11)). I

The next theorem gives unbiased estimators of B0 and F1. Let

12=
isgk—L

fs9k—l

wherej E {1,.. . ,k}, v 1,.. .,sgkl. Obviously (/3jt = (ZZt)_lZtX andj marks

the pollutant type of X.

Let %i be the means of all J3 with v = 1,... , k. Therefore, under the exchange

ability assumption, is the estimator of uz. Let,

= n — h — 2 S9k1 (v — %iv)t($iv
—

— (ZZt)’
— v=1 2a

where /3 — = a E2.

Theorem 2.11 Given X2 and the exchangeability of B°, , i = 1,.. . , k and F’ are

unbiased estimators of u, i = 1,..., k and F—’ respectively.

2.5 Interpolation with Randomly Missing Data

We refer the term randomly missing to the same meaning as missing at random defined

mathematically by Rubin (1976), Little and Rubin (1987). More precisely, let Y denote
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the data that would occur in the absence of missing values. Further, we assume Y =

(Yobs, Ymis), where Y0 represents the observed values and Ymis, missing values. Assume

f(Y 0) denotes the joint probability density of Yobs, Ymis. We define for each component

of Y a missing data indicator, taking value 1 if the component is observed and 0 if

missing. For example, if Y (Y1), an (n x K) matrix of n observations measured for

K variables, define the response indicator R = (R), such that

— f 1 if Yij observed,
1Itj —

0 if Yij missing.

When we treat R as a random variable and specify the joint distribution of R and Y,

the conditional distribution R given Y indexed by an unknown parameter i/ is called

the distribution for the missing data mechanism.

Rubin (1976) defines the missing data to be missing at random when the distribution

of the missing data mechanism does not depend on the missing value Ymis, that is, if

f(R I Yobs,Ymis,i/)) = f(R Y0b3,i,b).

Little and Rubin (1987) point out that when data are missing at random, likelihood

based inferences can ignore the missing data mechanism. In other words, likelihood

based inferences can only base on the marginal distribution, f(Yob5 0).

Let M1 represent the randomly missing subset of data from x’ and M2 the observed

subset of data from Let 1* denote the total number of elements in M1. Again, the

predictive distribution f(X° M2) leads to a Bayesian interpolator. Given the hyper

parameters, when there are data missing-by-design or no missing data, the predictive

distribution follows a matrix T-distribution or a multivariate t-distribution. With ran

domly missing data, will the predictive distribution f(X° M2) still follow some form

of t-distribution? The following simple example gives a negative answer.

41



Consider a simple case, where there are two gauged sites and n = 2. Let T denote the

random matrix at the gauged sites. That is,

(X1 y’\
T22 Y1,Y2 = I I

\Y2 X21

where the upper case characters represent the missing values and lower case characters

represent the observed values. Assume,

T -‘.A[(I2x2,), E W (12x2,6+2).

Then,

II+TtT=
X+y+1 y1X1+y2X2

y1X1+y2X2 X+y+1

= (X+ 1)X+ (—2yiy2X1)X2+ + yy+1+ X

= (aix2+)2+a4;

2

where a1 = (X? + 1), a2 = —y1y2X1,a3 = y + y + y?y + 1 + X? and a4 = a3 —

Note,

a4=y+y+y+X+i-

Thus
-±

II+TtT_=[(aiX2+)+a4]
2

since

j°° f(Xj,x2,yi,y2)
=1 dx2

J—oo f(y1,y2)

Lf(xi,x2,yi,y2)dx2
L f(T)dx2.
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Use (2.5) to substitute for f(T), and obtain

f(X1 IY’ =yl,Y2=y2)LlI+TtT2 dx2

-±
/ 2

±i fX’ (aix2 + 2)
2 a1

xa4 I 1+ dx2
a4

-±
oo t2 2

cxa4 2 a’J 1+— dt
a4

-±
X a4 2 a1

2 [i+x] 2

The last step is completed by integrating with respect to a partial t density.

Consider the special case, Ui = Y2 = 1. Then

f(X1 = ‘,Y2 = 1) (X +2)(1 +X),

f(X1 I 1, 1) is clearly not a t-distribution. Therefore f(X1,X2 y, y2) does not follow a

multivariate t-distribution. If it did, its marginal f(X1 I y’, y2) would follow a univariate

t-distribution.

Since the search for an exact predictive distribution proves difficult, an alternative ap

proach is to derive an approximate predictive distribution. Note that given hyperparam

eters, f(X°,M1,M2)follows a matrix T-distribution. By Theorem 2.2, f(X°,X(’)) is

approximately normal and then by Lemma 2.7, f(vec(X°), vec(Mi), vec(M2))is approxi

mately multivariate normal. General normal theory implies that f(vec(X°) vec(M2)) is

approximately normal. Theorem 2.3 shows that the order of approximation is O((6*)_).

The theorem below states an approximate predictive distribution of f(vec(X°) I vec(M2)).

Let

R* — (Iskxs0k 0

- 0

where R = (R11R2)and Rvec((X(l))t) = vec(Mi), Rvec((X(l))t) = vec(M2).
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Theorem 2.12 f(vec((X°)t) vec(M2)) is approximately normal with mean

vec((B0°Z)t)-f- ExoM2(M2M2) (vec(M2) — Rvec((B(°l)Z)t))

and covariance

— X0M2(EM2M2)x0M2,

where

Exx = [(ZtF’Z + I) 0
]/(*

+ n);

XOX0 = (‘sujcxs 0) Zxx o)
(0(39k_1*)x(S9k_1j’\

EXOM2 = I 0) Exx j
J

M2M2 = (0 R)Exx
(2)

If the loss function is “mean squared error”, the approximately Bayesian interpolator is

simply the mean of the above approximate predictive distribution.

Following the same approach of the previous section, an empirical Bayesian method is

obtained. In other words, all the hyperparameters are estimated using the observations.

Since no unbiased estimators of B°, F—’ has yet been found, the estimation of these

hyperparameters will not be discussed here. In applications, they will be specified as

plausible values. Hence, in the following discussion, these two hyperparameters are

assumed to be known. Again, the estimation of hyperparameters requires two steps. In

step one, an EM algorithm is applied to estimate 6, = A9 0 ft In step two, the

SG method is applied to extend A9 so as to obtain A.

In the EM algorithm, the likelihood function is f(X(’) 6). By the same argument

as that of the proof of Theorem 2.12,

f(vec((X)t) I ,(ii)) + vec((B,)Z)t).
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So by Equation (2.9), f(X(’) 11), 6) is approximately proportional to

Ag
_bk1 ç (6*

— sk +

where

A a*(X
— B(°l)Z)(ZtF’Z+ I)’(X1— B1)Z)t

and a* = 6*
— .sk + n.

For the E-step, E(M1 I M2) is given by the following lemma.

Lemma 2.19 Given hyperparameters, f(vec(Mi) vec(M2), 6) is approximately

normal with mean

f4vec((Brl)Z)t)+ M1M2M2(vec(M2)— Rvec((B(°l)Z)t)

and covariance

EM1M1 —EM1M2EM2M2M2M1,

where

= [(ii) a (ZtF’Z + I)]/(6*
— sk + n);

= REx(l)x(l)Rj,i,j = 1,2.

The M-step is similar to that in the previous section. Its discussion will lot be repeated

here.

The EM algorithm is summarized below.

E-STEP: Given the current values of 6*, B),

E(vec(Mi) I vec(M2)) = Rvec(B1)Z) + MlM2EIj2M2(vec(M2) — Rvec(Brl)Z))
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M-STEP: Given the current values of vec(Mi), update (11) = Ag 0 Q, 6K by repeating the

following steps until it converges.

Step 1:

Given the current (A’)() and (1_1)(7), represent tr[((A;’)P 0 (1—1)())A] as

tr((f’)(”)G) and set (c_1)(P+1) = hsgG’;

Step 2:

Given the current (A’)() and (1)(i+1), represent tr[((A)PO (Q_1)(P+1)) A] as

and set (A;’)(’) = hkQ’.

Step 3:

Given the current = Ag 0 , update a* by

a* = sgkh/tr[ — B(l)Z)(ZtF1+i)1(X’ — B(l)Z)t]

The estimated 6 is max{sk, a*
—

—

2.6 Interpolation with Monotone Missing Data Pat

terns

Let X be generally partitioned as ((X)t,(X)t,. . .
, (Xfl’) and (X)t = ((X)t,...,

(Xflt), i = 0,. . . , r. E is partitioned correspondingly as

I
1’ z=O,1,...,r—1.

\ (i+i)i L4([i+1][j+1]) J

In the above, are the covariance matrices of X and j = o,... , r respec

tively. Note that = >D. A reparameterization is recursively taken as

{P1, ([i+i][i+i])}, 0,.. . , r — 1,
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where Pj = {ici+i’ i(i+1)}=o and

Ti(i+l) i(i+l)E([+l][+ll), iI(i+1) = ii — Tj(j+l)([+lJ[i+lj)Tjt(j+l), = 0,. . . , r — 1.

B is partitioned as Bt = (B, B,. . . , B) accordingly.

The lemma below gives the intuition behind the reparameterization. In the lemma, ‘I

is partitioned in the same fashion as

Lemma 2.20 If has the prior distribution of (2.14), the following are true:

1. is independent of 1’,,j = 0, 1,. . . , i.

2. [i+1][i+1fl ‘- TV’(([j+i][+i]), — sk + l(i+1)), where l(i+1) is the dimension

of

3. E11i W_l(1(+l),6*
— sk + l()), where i(i) is the dimension of X and

—

4. Tq1) E1(+1) E1(1)0

This result is called Generalized Inverted Wishart Distribution by Brown, Le and Zidek

(1994b) (see Caselton, Kan and Zidek (1990), LZ for its earlier forms).

Suppose (X))t = (U, G), i = 1,. . . , n, where U! : 1 x d is missing, G : 1 x (sgk — d)

is observed and X’ is the matrix of response vectors at the gauged sites. When

d1 d2 ... d,, the pattern of the missing data {U!}1 resembles an upside down

staircase. An example of such missing data occurs when at gauged Site 1 the pollutants

are measured up to time T1, at gauged Site 2 up to T2, . .., at gauged Site n up to T,-,

and when T1 < T2 < ... < T; the missing data of [X(1)]t have the shape of staircase.

Such a missing pattern is called “monotone”; in Little and Rubin (1987).

The following theorem gives a recursively predictive distribution.
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Theorem 2.13 Suppose X, t = 1,... ,n follow the model of (2.12) and B, E follow

the prior of (2.13), (2.14). Then, given all hyperparameters,

Uj {G1},D T((1(2))’, a, 6 + j — s)k, j 1,. .. ,

where:

fl —
jj y(1)j.-1

— lVki fi=1J

a (Bfl*Z
—1(2)((22)) (B(2))ZJ +l(2)((22))Gj;

a = 1 + (G —(B2))*Zj)t(22))_1(Gj — (B2))*Zj) + ZZ;

(Bi))* B1) + (B(1) —

(B1))* = (1)) (B)* : d x h, (B2))*: (s9k — d) x h;
((2))

B(1) = CA7’;

Si
=

—

C, = A’ =

F1(A’ + F)’; F = (I —

ii) = (11) + Si + (E1)
— B°l))t(AT’ + F’)(E1)—

= ( : d x d, 22) : (sgk — d3) X (sgk — di).
(2)1 (22)

For the case of a monotone missing data pattern, finding an EM algorithm estimation

procedure for hyperparameters is difficult. As a make-shift measure, we can treat it as

a randomly missing data problem; the EM algorithm proposed in the previous section

may then be applied.
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2.7 Proofs of Theorems, Corollaries and Lemmas

Proof of Lemma 2.9

Proof: By (2.11), U = 1’’ and }çyt i.i.d. N(O, F). Proposition 8.3 (ii) (cf. Eaton

1983 p305) implies Cov(vec(YYt)) = Cov(YYt)= 2P 0 P. With the multivariate

central limit theorem,

(vec(U)
vec(P))(2P, F).

Since vec(Ut) and Ut are only notationally different and a matrix normal distribution

is distributionally equivalent to a multivariate normal distribution, by the definition of

convergence in distribution (Billingsley 1968), it is easy to see that

- P)--A1(2P, F).I

Proof of Theorem 2.3

Since

- FX) = (T* - F x) + (() _i) p-x

and
1

v1(T*_P ()x)

(x

=

-

(ç) -) (ç) ()
= ( - (1+ () -) ‘ () ()

By Lemma 2.9:

as
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By LLN and Slutsky Theorem, as —* o

1 —1

(1+
()r4)

—* a.s.;

-—* P 2 a.s.;

—+1.

So by Slusky theorem

(T* - F- ()x) Ar(2P,P)F’F4Ar(I,Q)

or

(T* - () - x) F’)A1(F1,Q).

Given F, Q, the two normal distributions are independent, since U and X are indepen

dent.

Further, since

6 )[()r+i]

-

—+ 0 as —* co.

The above is true, since = 6 — q and q is fixed.

Reapply Slusky theorem. The conclusion is followed. I

Proof of Theorem 2.4

Given B°, F, , 6*, (2.12), (2.13) imply

and

BI > B°+N(0,®F’).

50



In turn,

X EB0Z+N(O,®P)

where P = ZtF’Z + I. So

Xt Zt(B0)t+N(O,P®).

Equation (2.14) and (2.8) imply,

Xt — Zt(B’)t T(P1,, 0, + n).

By Bartlett’s decomposition, = where

= (I
A= (oI(1) 0

\0 I) ‘ \ 0 (11)

and = o(1)i). Now apply Lemma 2.4 part 3 to get

(Xt —Zt(B0)t)(t)_l ‘-‘ T(P_l,A, 0, 6* + n).

Then by (2.7)

( )x=(t1 t2)T((rj1)
)(BO)

where X° = t1 and X’ = t2. By Lemma 2.4

tl — — B0°Z +?7B(°1)Z I t2 -‘ T(1),P + (t2 — Bl)Z)tj)(t2— B1)Z),

0,6* +n).

The theorem is proved by reapplying the same lemma. I

Proof of Theorem 2.5

By (2.12)-(2.14) and Lemma 2.20

(X(’))t I Zt(B1))t+ N(0, P ® W (ii),
6*

— k)
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where P = ZtF’Z + Ij)(fl. Thus

(X1)t— (Bl)Z)t ‘-- T(P’, (11), 0, — sk + n).

Apply Lemma 2.4 part 3:

(X’)tR— (B(01)Z)tR T(P’,Rt(ll)R, 0, — .sk + n).

The remaining is the same as in the proof of Theorem 2.4. I

Proof of Corollary 2.6

E(X° X2) = E(E(X° X2)

= BZ + O(l)1)(E(XU I X2) — B’l)Z)

= B00Z + o(1)(i)
[R1E(x1 I X2) + R2X2

— Brl)Z].

The last equation is true since I = RRt R1R+R2R,X’ = RX(1)and X2 =

By Corollary 2.5

E(X’ X2) = B00Z + o(l)jj){Rl (RB(°l)Z + y(X2
— RBrl)Z))

+ R2X2 — Bl)Z}

= BZ + — R1’yR — I)Bl)Z

+ (R2 +R1-y)X2}

= BZ +
—R2R)Brl)Z

+ (R2 +R1)X2}

= BZ + + R2)(X2— RBl)Z)

= BZ + O(l)R222(X2— RBl)Z).

The third last step is true because RRt = R1R + R2R = I and the last step is true

since

Rt(ll)R
= 1’(11)
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implies

Rt(ll)R2
= 1’22)

So

/‘12
= R

I122)
= R111112 + R2’I’22.

That is

R — + R2) =1)(Rl7+ R2).I2 22 —

Proof of Lemma 2.10

By using Bartlett decomposition, it is easy to see that

b = (a —A12A_lAt ‘—1.
22 12?

B12 = —A12Ab;

B22 = A’ + A’A2bA A’12 22

For notational simplicity, let d = = a —A12AA2which is a scalar. Then

b — B blBt = d’ —A12A’d’(A’ +12 22 12

= d2[d — A12(A22 +A2d1A12)’A2J

= d’[l —A12(A22d+A2A12)’At1 (2.21)12i

For showing the lemma, note thatA12AA2is a scalar and

A12 A12 —a1Ai2(Ai2AA2)+a’Ai2(Ai2AA2)

= A12a’[a —A12A21A2]+aA12(Ai2A’At“22 12)

= A12a’d + a’(Ai2AA2)Ai2

= a’Ai2A(A22d+A2A12).

Equivalently,

A12(A22d+A2A22)1= a’A12A.
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Then,

1 —A12(A22d+A2A12)’A2= 1 — a’A12A’A2= a’d.

Combined with (2.21), the lemma is proved. I

Proof of Theorem 2.6

Given all the hyperparameters,

Var(X° X2) = Var(E(Xt° X(1)) X2)

+E[Var(Xt° x(1)) X2].

If t = n, by (2.7), Lemma 2.4, Theorem 2.4 and Lemma 2.10, it is obvious that

x° I x(’) T(’I (l),gt,BO0Zt+ — B(Ol)Z),6* + 1), (2.22)

where

gi = 1 + ZF’Z + (X’ — Brl)Zt)t j)(Xt — B(°l)Zt).

For t € {1,. . . ,n — 1}, let C be the orthogonal matrix such that

By Lemma 2.4 (III) and Theorem 2.4,

x°c I x(’) T(1),I. + CtZtF_1ZC

— Bl)ZC)tj)(X(l)C
— Bl)ZC),

B00ZC + o(l)’)(X(’)C — B(°l)ZC), + n).

Note that the last column of ZC is Z, the last diagonal element of CtZtF_1ZC is

ZF’Z and the last column of X’C is So it shows that (2.22) is true for any t.

By Lemma 2.2 and Press (1982 p128),

E(X I X(’)) = BZ + (I)o(l)(ll)(X — Bl)Zt)
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and

= Var(o(l) )(Xt — Bl)Zt) X2)

= AiVar(X’ X2)A
A iT At

— J1lCtVlI2f1i

m—2
of Lemma 2.2 and Press (1982 p128). To find

with

E — Brl)Zt)tJj)(Xl)
— Bl)Zt) x]

= E [(RtX1)
— — RtBl)Zt) I x]

-E
0

- X
-

BZ I 0

((Xe’ —B’Zt)—r(X? — BZ) 2

X—BZ )
= E{[(X

— BZ) — r(X
— BZ)]t[(X — B’Z)

—r(X — BZ)] I X} + (X
— BZ)t(X— BZ).
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Var(X I
= g

oI(1).m+l—2

Further,

— B(°l)Zt) =
0(1)(J!j)RRt(XU

— B(°l)Zt)

IX’ — B’Z
= (A1,A2)

— BZ)

= A1(X’ — BZ) + A2(X — BZ).

By Theorem 2.5 and a similar argument as the case of X°

X IX —BZt),m+l).

So

(2.23)

Var(E(X° I X2)

The last equation is true, because

E[Var(X° X}, let us start

Rt)R= (
-

(I -r( 0 (I -r

‘\0 I) \ 0 ,1\o

So



Let Y = i1’[(X’ — B10Z) — r(X — B20Z)]. By (2.23) and Lemma 2.4,

Y X T(I,ct,O,m+ 1).

Lemma 2.2 and Equation 2.4 imply

___

-

f(Y = y I X) = C?(Ct + yty) 2

7r2F()

Then

E(YtY)=E(YtY+ct)_ct

— (m —2 + l)ct p (m_2+1)
m—2-H

dy — Ct
— m — 2 o p (!!iza)

C(Ct + ,, y) 2

m-2+l
= Ct—Ct.

m—2

That implies

— Bl)Zt)tj)(Xl)
— Bl)Zt)

m—2+l
= Ct — Ct + (X —

— B°Z).
m—2

And
1 m—2+l

E[Var(X I X’) XJ
= m + 1—

2[Ct +
m — 2

Ct Ct]O1(l)

Ct
= oI(1).m—2

Finally,

Var(Xt X)
= A1c’I’112A

+
m—2 m—2
Ct

= [A11T,112A+ oI(1)].Im—2

Proof of Lemma 2.11

By Rt(ll)R
=

‘IJ, the following are true:

(11)R2= R
(12

= R112 + R222, (2.24)
122)

= RI’11R +R2’I’21R+R1’J!12R+R2122R. (2.25)
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By (2.24) and (2.25)

2 22 2 (11) (R1’T’12 +R2’22)I’21(R1’T112+R2’122)t(11)R ‘P’Rt

=R112’I’I’21R+ —R1’P11R

=
—

Hence,

RI!112R = (11) — (ll)R2P2R(ll)

which implies

t-1 —(ll)RlIhlI2Rl (11) —

(I)(fl)
—R221R.

So

= O(1)(i1j)o(1) —

or
A1I’112A = —[o —

+ —

= oI(1) + OI2•

It proves that

A1W112A+ oI(1) = OI2’

Proof of Theorem 2.8:

By Lemma 2.3, there exists U r’.I W(I 5*
— 1) and N(O, I> 0 1) such thatpxp,

T = (U_)tY. By Lemma 2.12 ‘‘ is independent of YtY x• Therefore,, YtU-1Y

— p)TtT = YtY/p
F ,..IYty I

ytU_1y/(*_p)

Proof of Theorem 2.9:

By Equation (2.7), Lemma 2.4 and Theorem 2.7,

I

2(XO —012
/ T(I,1,O,6*_l+1).

Ct2
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Then by Theorem 2.8,

(6*
— 1— sk + 1)(X — 0t—l(xO — O)

t/ 012
F5k, 6—l—sk+1

.sk * ct

So,

1 — a = —

—

< b).I012\ t

Proof of Lemma 2.13

By Bartlett’s decomposition, = TAT, where

(°I(1) 0
, T=

Ii \

0 E(11)j o )
and r = 0(1)(1’1). Thus

=

/ I 0\ 1>:0:1) 0 /1 —r\
=

i) )
— / (1)
—

E(11) +Tt1)T)

Given , 6”, Lemma 2.1 implies

1 6*)I x(’) WSk((l),

I x(’) WS9k(!j), 6* + n
— sk — h)

and

(1)’ N(3k)(89k)(,E01(1)0

So

= 6oI(1)

X) = E(1)E(r 0I(1)) x(’))

= I x(’))
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and

+Tt,)T x(’)) =

(6* + n — sk — + E(E(Tt (1)T OI(1)) x(’)).

Note that,TtEl)T = (E)T)tE)r. Let Y )T_1. Obviously by definition

of a Wishart distribution,

Y E01,x1 N(sk)(s9k)(O, ‘skxsk 0

Then,

yty
oI(1), x’ - WS9k(j), .sk).

Thus

E(E(ll) +TtE,)T xc’)) = (6* + n — sk —

+ sUk’j) x(’))

= (6* + n — sk — h)j) + 6q(1)77 + sUkF(ll).I

Proof of Theorem 2.10

Note that since,

RtX’ Z, B, E RtB(l)Z + N(O,RtZ(,i)R 0 Ia),

RtB(,) Br,), , F RtBrl) + N(o, Rt(,,)R ®

RtE(ii)R (11),6* W(Rt(ll)R,6*
— sk)

and

x2, 6*) = RE((RtE(,,)R)’ X2, 6*)1?t.

The theorem follows from Lemma 2.13. I

Proof of Lemma 2.15
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Since
E(log II X2, 6) = E(log I RtE(ll)R I X2,

,
6)

= E(log( 1I2 E22 I) X2, 6*)

Note that

E112 I X2, (11), 6* W1’(’P112,6*
— sk)

and that

X2, (11),
6* r, W_1(22,6* + n — sk — 1— h).

Now apply Lemma 2.14 to finish the proof. I

Proof of Theorem 2.11

In the following proof, we assume F1 fixed. By (2.16),

E(3 I1))f, v1,...,sgkl.

So

E(/IBl))= i=1,...,k.

To prove the other half of the Theorem, by (2.17) and Theorem 3.2.8 of Muirhead 1982

(p93),
at S2aJv Jv 2

L “JV
ta3 22a

implying

E(
a3S2aj =x2,22)’

= 1
(2.26)

aE22a n — h —2

and

— jt( — i) X2 = x2,B1), 22] = Var(Ba X2 = x2,B°1), 22)•

By (2.16) and the fact that aE22aj is a scalar,

= x2,B, 22 “ N([B1)]tR2,((ZZt)’ +F1)a22a).

60



Hence,

Var(Baj I = x2 ,B(°,), E22) =(a22a)(F’ + (ZZt)’). (2.27)

When X2 x2, B(,), 22 are fixed, S2 and B2 are independent. If we replace B(,) with

B(°,), they are still independent (Lemma 2.18). Therefore, given X2 = x2, B(°,) and Z22,

by Lemma 2.18,

s9k—1 a S2aE(fr_1)
= — h —2

Esgk — 1
=,

(aE22aj)}’E[($ —

v)t(u — v)j

— (ZZt)1

1 s9k—l

sgk — 1
(F-’ + (ZZt)’) — (ZZt)’

=

Proof of Theorem 2.12

By (2.7), (2.8) and (2.12)-(2.14), given the hyperparameters , 6’, B°, F,

X T(’,ZtF’Z + B°Z, 6* + ii).

By Theorem 2.2,

1 1 approx, _1

X — B°Z = a(a’(X — B°Z)) ‘-‘-‘ a ZtF’Z + I),

where a = 6* + n. Then by Lemma 2.7,

approx. —

vec(X) a4Jf(ZtF1Z + I, ) + vec((B°Z)t).

So,
vec[(X°)t}\

(R*)tvec(Xt)

= ( vec(M,) J approx.

v ec(M2)

/ vec[(BZ)t]

Rvec[(Brl)Z)t] + (R*)ta_Ar(ZtF_1Z + I, ).
Rvec[(B,)Z)t])

61



By the general normal theory, the theorem is proved. I

Proof of Lemma 2.19

By the same argument of the proof of Theorem 2.12, one has

vec(Xl))aocalAf(ZtF_lZ+ I, +

where a1 = 8*
— sk + n. So,

(vec(Mi)) aiRtJ\1(ZtF_1Z + I, +Rtvec[(B(°1)Z)t].
vec(M2)

By the general normal theory, the lemma is proved. I

Proof of Theorem 2.13

For notational simplicity, the superscript j is suppressed in the following derivation.

Let X, j = 1,... ,n, be partitioned into ((X5)1X3k), (UJ)lxd3, ((G)1x(sgk_dj) ). B =

(B, B, B) and are partitioned confirmablely. is reparameterizedas {oI(1), To(i),
f*}

where P = {1I(2), Ti(2),E(22)}. B1) represents {B, B}. B(1) is also reparameterized

as

= B1 — Tl(2)B(2), b(2) = B(2).

Note,

f (U {G},D)

Jf(U,{G} Dj,bl,b(2),f*)f(bl,b(2),F* Dj)dbldb(2)dF*

Jf(U,G Dj,bl,b(2),F*)f({G}+l

.f(b, b(2) F D3)f(f* D) db1 db(2) dF* (2.28)

To find the distribution of f(b1,b(2) D, f*), note by lemma (2.1)

B(i) D, f B + N(O, (ii))
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where B1) = B1) + (B(i) — B(01))Et, E = En 0 F, F* = (I — E)F-’. By Lemma

2.7,

vec(Bl)) D f vec((Bl))t)+ N(O, 0 F).—

By a general normal theory,

vec(B) Dj,vec(B2)),I*

vec( (B)t) + vec(B )vec(B2))vec(B))vec(B (vec(B2)) — v ec((B2))t))
2))

+ .1V(O,2vec(B)Ivec(Bt2)))

vec((B)t)+ (ri(2) 0 I)(vec(B2))— vec((B2))t))+ N(O, 1I(2) 0 F*)

vec((B + Tl(2)(B(2)— B2))t) + N(O, 1I(2) 0 F*).

In the above derivation, it is assumed that (F*)_l exists and the last step is true because

of Lemma 2.5. Again by Lemma 2.7,

_B*B1 I B(2) D f B + Tl(2)(B(2) (2)) + N(O, 1I(2) 0 F*),
, 3’

it implies

— (B1 —Tl(2)B(2)) I3’ —

d b + N(O, 1I(2) 0 F*),

where b* — —

1 — ‘-‘l rl(2)B). Since the distribution of b1 b(2) does not depend on b(2), b1

and b(2) are independent. So

f(b1,b(2) D, f*)
= f(b1 I D, F*)f(b(2) D, f*)

= f(bi , 1I(2), rl(2))f(b(2)I D3). (2.29)

Further since

f(U, G I b1, b(2), f*) oc f(U I G, b1, b(2), f*)f(Gt b1, b(2), f*)
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and
UJ I G, b1, b(2), p [B1Z + TI(2)(G — B(2)Z)]t+ N(0, 1I(2))

= [b1Z + Tl(2)Gj]t + N(0,E11(2)).

So

f(U,, G b1, b(2), F) cx f(U G, b1, Ti(2),11(2))f(G b(2), (22)). (2.30)

Also, by Model (2.12)-(2.14),

f({G} D, b1, b(2), f*) = f({G}1 I (22), b(2)). (2.31)t t=3+

By (2.28)-(2.31) and Lemma 2.20

f(UJ {G},D)

cx I f(Ut I t b1, Ti(2),E11(2))f(bl I D, Ti(2), 1I(2))jI’Yj,

f(r1(2),E11(2) I D) db1 drl(2)dl!(2)

f f({G b,E(22))f(b(2)I (22), D)f(E(22) D) db(2)d(22)if i=j

cx J f(Ut b1, Ti(2),i1(2))f(bi D, Ti(2),E11(2))jI’j’

f(71(2), >1I(2) D,) db1 drl(2)d11(2).

For summary, we have,

U G, b1, F b1Z + Tl(2)G + N(0,E11(2)); (2.32)

dD, Ti(2), 1I(2) = b1 + N(0, 1I(2) 0 F), (2.33)

where
= B — Tl(2)B(2)

= B1° + (B1 — B)E — Tl(2)[B2)+ (E(2)
—B2))Et].

Since, by Lemma 2.1,

W(ii), + (j — 1) — sk).

Then by Lemma 2.20,

Ti(2) D, 1I(2) “ N(l(2)),1I(2) 0 (2.34)
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1I(2) D W1(i1(2),6*
— sk + (j — 1)). (2.35)

By (2.32)-(2.34),

U G, E11(2) a1 + N(O,i1(2)a2),

where

1 B* Z + 1(2) Ga1 = BZ
— 1(2)2) (2) 3 (22) 3

and

a2 = 1 + ZF*Z + (G —B2)Zj)tF)(G — B’2)Zj).

Combined with Equation (2.8) and (2.35),

U U G T(2),a2,al,6*
— sk +j).I
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Chapter 3

Application to Air Pollution Data

In this chapter, the theory of interpolation for data missing-by-design developed in

Chapter 2 is applied to obtain interpolated data.

The daily maximum hourly levels of nitrogen dioxide (NO2), ozone (03) , sulphur dioxide

(SO2) and the daily mean levels of nitrate (NO3), sulfate (SO4) were recorded from

January 1 of 1983 to December 31 of 1988 in Ontario and its surrounding areas. These

data come from several monitoring networks in the province, including the Environment

Air Quality Monitoring Network (OME), Air Pollution in Ontario Study (APIOS), the

Canadian Acid and Participation Monitoring Network (CAPMON) (see Burnett et al

(1992) for more description of the data set). Also available are some climatic data:

daily maximum, minimum and mean temperature; daily maximum, minimum and mean

humidity, and, mean pressure and mean wind speed, measured at other locations. In

total, there are 37 different monitoring locations (sites), but not all sites monitor all of

the five air pollutants. In the application below, we assume that the variation caused

by networks to the observations at 37 sites is negligible. Therefore we can pool the

observed pollution levels without worrying about that variation.

In general, there are two kinds of air pollutants: (i) a primary pollutant, which is
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directly emitted by identifiable sources; (ii) a secondary pollutant, which is produced

by chemical reactions within the atmosphere between pollutants and other constituents.

SO2 is a primary pollutant while NO2, NO3, 03 and 504 are secondary pollutants.

SO2 is produced by burning fuels containing sulphur. Its level depends on local emission

sources, like burning fuel oil or smelting.

The secondary pollutants studied here are all produced by oxidation of primary pollu

tants. This oxidation is driven by ultra-violet radiation from sunlight and comprises

chemical reactions that are temperature dependent. Since the chemical reactions pro

ceed while the polluted air is being adverted by winds, secondary pollutants are generally

more widespread than primary pollutants. We thus refer to secondary pollutants as re

gional. Because of temperature dependence of the governing chemical reaction, NO2,

NO3 and 03 are high in early afternoon and midsummer, low overnight and in winter.

The oxidation of 802 to 504 is dominated by photochemical processes in dry, warm

atmospheres.

Monthly pollution data are interpolated down to the level of a Public Health Unit

(PHU), the daily pollution data down to the level of a census subdivision (CSD). Both

interpolation problems originate from environmental health studies not discussed in this

thesis. In both cases, the relevance of the assumptions in Chapter 2 is investigated and

the interpolated residuals are checked.

In Section 3.1, our interpolation theory is applied to monthly data and in Section 3.2,

to daily data.
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3.1 Application to Monthly Pollution Data

A monthly pollution level is simply computed as the mean of the observed daily levels in

that month. Hence, a time series of observed monthly mean levels consists of 72 values.

Since some of these time series contain excessively many randomly missing values, to

control the quality of data all time series are screened and those with more than one-

third of its values missing are deleted. Thus, the number of gauged sites is reduced

from 37 to 31. Here, we assume that the probability of a time series having more than

one-third of its values missing is not related to those values. Therefore, such a strategy

for dropping time series from our study does not cause bias.

The locations of the remaining 31 sites, except two outlying sites, are plotted in Figure

3.1. The whole of the Province of Ontario divides into thirty-seven PHUs or districts

(Duddek et al 1994). A PHU resembles a Census Division, the difference being marginal

disagreements in boundaries. Some PHUs, for example, are aggregates of two Census

Divisions. Figure 3.2 displays the locations of some approximate centroids of these

PHU’s in Southern Ontario. Our ungauged sites consist of the 37 approximate centroids.

Heilce, the total number of gauged sites, 5g, is 31 and that of ungauged sites, .s, is 37.

For the monthly interpolation, four air pollutants are included. They are NO2, SO4,

03 and SO2. Table 3.1 lists the observed pollutants at each of gauged sites, where a, b,

d and e represent NO2, SO4, 03 and SO2 respectively. From the table, we can see that

at all gauged sites, there are 64 observed time series aild 60 missing time series. In the

sequel, the term “time series” is replaced with “column”.

Among the 64 observed columils, about two percent are missing. The missing data

include the randomly missing data aild those censored from below. Here, censored below

means that the actual air pollution level is below the detection limit of a monitor.
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Table 3.1: Pollutants Measured at Each Gauged Site, Where a, b, d And e Represent

NO2, SO4, 03 And SO2 Respectively.

Sites 1 2 3 4 5 6 7 8 9 10 11 12

Pollutants b b b b abde d be ade d d ade de

Sites 13 14 15 16 17 18 19 20 21 22 23 24

Pollutants ade ade ade b abde b ade ade ade d e ade

Sites 25 26 27 28 29 30 31

Pollutants de ade ade de b e de

In statistics, the procedure for filling in missing data is called imputation. There are

many existing imputation methods (c.f. Sarndel 1992, Little and Rubin 1987). Examples

of these methods are: overall mean imputation; class mean imputation; hot-deck and

cold-deck imputation; random overall imputation; random imputation within classes;

sequential hot-deck imputation; distance function matching; regression imputation; EM

algorithm based imputation and multiple imputation.

The imputation methods mentioned above, produce a single imputed value for each

missing value except for the multiple imputation approach. Many authors used these

methods. Afifi et al. (1961) suggested filling in the missing observations for each variable

by that variable’s mean. Buck (1960) and Stein et al. (1991) discussed imputing the

missing values by regression models. Komungoma (1992) adopted a modified regression

strategy. Johnson et al. (1994) combined a stepwise linear regression and a time series

model to fill in missing values. Miller (1994) employed a nearest-neighbor hot-deck

imputation procedure to fill in missing data. While the multiple imputation is appealing,

it has a disadvantage of requiring more work for data handling and computation of

estimates. Moreover, the multiple imputation method was designed for survey sampling.

It is not suitable for a spatial application.
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We may apply Theorem 2.12 to impute our missing data. However, that method has not

been well tested yet. Further more, Theorem 2.12 bases on the normal approximation to

a matrix T. As showed by the “empirical coverage percentage” at the end of this section,

in the current scenario the matrix T cannot be replaced by its normal approximation.

For our monthly data, with such a small proportion of missing data, the choice of a

procedure for filling in missing values is not critical. We filled in a value missing from

the jth column in the th month with the mean of the observed values of the same column

in the month of other years. In case, all six measurements of the same month of

1983 to 1988 are missing, the grand mean of the observed values of the column is used.

However, with our data set, no such a case obtained. The above ad hoc filled-in method

allows us to preserve the periodic property of the columns shown in Figure 3.3, where

ozone is seen to have a strong periodic pattern. Again, because only a small percentage

of the data are missing, our ad hoc fill-in method will cause negligible bias.

Our theory of Bayesian multivariate interpolation with data missing-by-design is devel

oped under two important assumptions. One assumption is that the detrended residuals

should spatially follow a multivariate normal distribution. The other is that each resid

ual time series is a white noise process; in other words, the residuals are temporally

independent. Checking multivariate normality is not easy since we lose hundreds of

degrees of freedom to parameter estimation. In this chapter, only univariate marginal

normality is checked. Temporal independence is checked with autocorrelation and par

tial autocorrelation plots.

The normal quantile-quantile plots of the detrended residuals of the original observed

data do not show straight lines, suggesting the observed data be transformed. With a

logarithmic transformation of the observed data, the residuals appear to be marginally

70



normal. A typical example of a normal q-q plot of the original and log-transformed

data is shown in Figure 3.4. Autocorrelation and partial autocorrelation plots of the

detrended residuals of log-transformed data are shown in Figure 3.5. The correlation

plots do not show evidence of temporal correlation. By repeating the above initial

data analysis for observations at all gauged sites, we are led to conclude that the log-

transformed data do meet the assumptions of our interpolation theory. In the sequel,

unless specify otherwise, we always refer observations on their log-scale.

For determining the linear and seasonal trends of our Gaussian model, time series plots

are made. Based on the plots, Z is taken to be 1, t, cos(W), .sin(W) ,where t = 1,. . . 72.

Here t = 1 represents the January of 1983, t = 2 represents February of 1983 and so

on, until t = 72 which represents December of 1988. The coefficients of the linear and

seasonal trends are estimated with ordinary least squares. Figure 3.3 displays the time

series plots and their least squares fitted curves for the four observed pollutants at Site

5. The fitted curve of log(O3) is far better than that of the other three because of its

periodicity. The strong yearly pattern of ozone is partially explained by the fact that

the creation of ozone is highly related to solar radiation.

For the environmental health study referred to earlier, the one which required interpola

tion of monthly means, the air pollution level in summer is of special interest. Therefore

the pollution data of winter and summer are interpolated separately. In the following,

only the interpolation for summer data is described. The procedure for winter data is

similar. Here, the summer of a year is defined to be from May 1 to August 31 and “win

ter” the remainder of the year. Thus there are 24 values (24 months) in each summer

column. The purpose of the analysis is to interpolate monthly NO2, SO4, 03 and SO2

levels in the summers of 1983 1988 at 37 ungauged sites.

71



Table 3.2: The Estimated Between-pollutants-hypercovariance Matrix of the Log-

transformed, Summer Monthly Data.

N02 S04 03 S02

N02 1.00000000 -0.2854130 0.03476434 0.1364513

S04 -0.28541295 1.0000000 0.79402064 -0.3379370

03 0.03476434 0.7940206 1.00000000 -0.1457342

S02 0.13645127 -0.3379370 -0.14573424 1.0000000

The interpolation procedure follows the following order: first, the unbiased estimators of

F—’ and Br,) are computed; second, the EM algorithm for the estimation of and Ag, Q

is invoked; third, the SG method is applied to extend Ag to A; then, with the exchange

able assumption on B°, Br,) is extended to B°; finally, with all the hyperparameters

estimated, the interpolated values are computed by the Bayesian interpolator.

We use S macros to carry out the interpolation and call a C program to perform the EM

algorithm. An example of the S macros and C program are attached in the Appendices.

By running S macros and the C program, we get the estimated prior degrees of freedom

to be 610; the estimated between-pollutants-hypercorrelation matrix, which is listed in

Table 3.2 and the estimated hyper-covariances of NO2,SO4, 03 and SO2 are 0.6582724,

1.6263357, 0.2166192, 1.8503741, respectively. The biggest positive correlation among

the four pollutants occurs between 03 and SO4. Since both 03 and SO4 are regional air

pollutants and both are related to sunlight, a higher correlation between 03 and SO4

is expected. Meanwhile 802 is a primary pollutant, it has a lower correlation with the

other pollutants.

The result of the SG step is summarized in Figures 3.6 ‘-- 3.8. The right hand plot

of Figure 3.6 is a twisted 30 by 30 checkerboard in the D-plane. The original 30 by

30 checkerboard is in the 0-plane. The coordinates of its lower left corner are the
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minimum latitude and longitude of gauged sites. The coordinates of its upper right

corner are the maximum latitude and longitude of gauged sites. The left hand plot of

Figure 3.6 shows an exponential fit between dispersions and the D-plane distances (refer

to Chapter 1 for a brief summary of the SG method). The smoothness of the twisted

checkerboard is controlled by parameter ). A smoother checkerboard in D-plane is

achieved by sacrificing the fit between the dispersions and D-plane distances. Figure 3.7

shows a smoother checkerboard in the D-plane but a rougher fit between the dispersions

and D-plane distances when the smoothing parameter value is increased from 0 to 2500.

A linear pattern in Figure 3.8 shows that the estimated covariance and the observed

covariance are conformable.

By applying Corollary 2.6 and using the above estimated hyperparameter values, after

SG step it is straightforward to compute the interpolated, summer monthly air pollution

levels at ungauged sites over six years. As a way of checking the interpolated values, the

overall average ozone levels the in summers of 1983 to 1988 at gauged sites are plotted

in Figure 3.9. Those of interpolated ozone levels at ungauged sites are plotted in Figure

3.10. The two plots affirm our interpolation procedure. When a high mean 03 level is

observed at a gauged site, our interpolator gives a high 03 values at nearby ungauged

sites. Corresponding results obtain for lower observed 03 levels.

Another way of checking the interpolation procedure is to look at the correlation be

tween the observed and estimated data by cross-validation (CV hereafter). CV is a

procedure which deletes observed datum one at a time and estimates these datum from

the remaining data as if that datum were never observed. It is a popular diagnostic

tool. In our CV study, we deleted one gauged site at a time and interpolated pollutant

levels at that same site using observed levels at other sites. To avoid spuriously high

computed correlations between the estimated and observed levels of pollutants, we first
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removed the trends from both the estimated and observed columns, and then calculated

the correlations among the residuals.

The correlations between the detrended, estimated and observed levels of each pollutant

aggregating across sites and over time are:

Summer Winter

N02 0.243 0.242

S04 0.494 0.438

03 0.534 0.429

502 0.238 0.200.

The correlations between the estimated and observed levels at each gauged site and for

each observed pollutant are given in Table 3.3.

In Table 3.3, the correlations of SO4 and 03 in both summer and winter are generally

higher than those of 502 with other pollutants. In other words, the predictions of SO4

and 03 are more accurate than those of 302. Figure 3.11 displays the plot residuals

of log-transformed, monthly observed and estimated pollutant levels in both summer

and winter. Figure 3.12 shows the scatteplots of log-transformed observed pollutants

against estimated pollutant levels for each pollutant in summer and willter, respectively.

In the plots a linear pattern means accurate interpolation. The plots confirm conclusions

suggested by the tables; these results are consistent with the fact that 03 and SO4 are

regional pollutants. It is easy to predict them with the observed data from other sites.

In contrast SO2 is a local pollutant and so more difficult to predict.

Can a simpler to use, normal distribution be substituted for the multivariate T pre

dictive distribution? That might naively seem possible since the univariate normal

approximates its longer tailed relative very well. However, our results suggest this
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Table 3.3: Correlations Between Residuals of Log-Transformed, Observed and Estimated

Pollution Levels at Gauged Sites.

Sites summer winter

NO2 S04 03 502 N02 S04 03 SO2

1 0.96 0.81

2 0.96 0.85

3 0.87 0.74

4 0.93 0.81

5 0.39 0.82 0.75 0.57 0.09 0.67 0.70 0.40

6 0.92 0.74

7 0.90 0.67 0.71 0.14

8 0.42 0.81 0.76 0.56 0.74 0.58

9 0.87 0.78

10 0.85 0.41

11 0.57 0.97 0.66 0.61 0.75 0.32

12 0.87 0.65 0.59 0.30

13 0.44 0.75 0.54 0.11 0.57 0.04

14 0.11 0.88 0.53 0.13 0.69 0.33

15 0.66 0.93 0.69 0.52 0.79 0.24

16 0.90 0.87

17 0.66 0.91 0.80 0.78 0.25 0.68 0.55 0.18

18 0.85 0.75

19 0.63 0.77 0.80 0.34 0.59 0.38

20 0.36 0.72 0.61 0.57 0.72 0.40

21 0.67 0.80 0.63 0.47 0.63 0.40

22 0.86 0.49

23 0.78 0.25

24 0.48 0.74 0.68 0.56 0.65 0.56

25 0.80 0.52 0.44 0.26

26 0.71 0.82 0.81 0.24 0.47 0.23

27 0.55 0.77 0.66 0.44 0.59 0.50

28 0.87 0.83 0.40 0.49

29 0.97 0.49

30 0.78 0.10

31 0.82 0.62 0.23 0.52
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substitution cannot be recommended without additional study. Our initial impression

comes from an evaluation we did of the empirical coverage percentage of three-standard-

deviation confidence intervals (CI). If the predictive distribution were normal, all the

three-standard-deviation CIs would include the true values about 100 percent of the

time. As the percentages by pollutants presented below indicate, this high coverage

probability is not achieved here. The heavier tailed predictive matrix T distribution

seems to be required.

By pollutants the percentages are,

Summer Winter

N02 1000!. 94.27.

S04 1007. 99.27.

03 98.67. 98.87.

S02 94.57. 1007.

The unbiasedness of residuals is also checked. In the top plot of Figure 3.13 are the

boxplots of the prediction errors for four pollutants, these being defined as the difference

between the predicted and observed values. Except for SO2, the mean prediction errors

for the other three pollutants are almost zero. In other words, the predictor is unbiased.

In the same figure, the other two plots indicate that observed values and the boxplots of

the predicted values have similar patterns except that the predicted values have bigger

variances.

3.2 Application to Daily Pollution Data

For one of the environmental health studies mentioned above we needed to interpolate

daily air pollution levels down to the centroids of CSD’s. In Southern Ontario, 733 such

76



centroids are chosen and all five pollutants NO2,NO3, 03, SO2 and SO4, are included.

The general interpolation procedure and many intermediate results are similar to those

for the monthly data. Thus, in the following, only the results which differ from those in

Section 1 are discussed. Again, only the interpolation of summer air pollution levels at

the CSD centroids is discussed.

The observed data come from daily measurements at 37 sites. By removing the time

series (columns) where there are excessively many missing data, the number of sites is

reduced from 37 to 27 and the number of observed columns to 55. Then the number

of missing columns is 80 (= 27 * 5 — 55). Figure 3.14 displays the locations of the 27

gauged sites, except for two outlying sites.

As in Section 3.1, an ad hoc method is used to fill-in the missing data. However, in this

section, a different ad hoc method is used. Since in the daily observed columns, eleven

percent are missing, a more delicate approach is needed. The new ad hoc method replys

on multivariate normal theory. With the new method, missing data are filled in by

xiii = + ij,

where X is the missing value for the jth pollutant (i = 1,. . . , 5) at j gauged site

(j = . . ,27) at time t; B is estimated by the ordinary least squares method using

observed values for the jth pollutant at the ih gauged site and jj is the estimated

residual. The estimated residual is computed by using well known normal theory. That

is,

E(X Y = y) = E(X) + xY’y(y —

where X and Y are jointly normal, is the covariance matrix between random

variables U and V and E(U) is the mean of U. By letting Y represent the set of all

observed data at time t, replacing X with X, and taking both E(X) and E(Y) to be
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zero, we apply the above formula to calculate
.

However, the formula is not directly

applicable, since the joint covariance matrix of X is unknown. A method of moments

is used to estimate the covariance matrix in a pairwise manner. In other words, the

covariance of Ximt and Xhkt is estimated by Zt(Ximt — Xlm)(Xhkt — Xhk), where f is

the total number of observed pairs of Ximt and Xhkt. The estimated covariance matrix

has to be checked for positive definiteness. If the estimated matrix is not positive

definite, it cannot be used to obtain If so, other imputation methods mentioned

in the previous section would need to be investigated. However, in this application,

the estimated matrix is indeed positive definite. Compared with the method used in

Section 1, the advantage of new method is that it brings less autocorrelation into each

time series when the missing values are fill-in. We assume such a filled-in procedure will

not cause serious bias, because of the small percentage of missing data.

Figure 3.15 shows that a logarithmic transformation of daily data is also necessary. Since

the time series plots of the daily summer data do not have obviously periodic patterns,

the linear trend of the Model (2.12) is instead taken to be the grand mean effect; time

t effect; weekday effect (from Monday to Thursday); monthly effect (May, June, July);

yearly effect (from 1983 to 1987) and the mean daily temperature. The mean daily

temperature is the mean of observed daily mean temperatures in Southern Ontario.

Such an arrangement is due to the fact that Model (2.12) only allows covariates with

spatially equal measurements. Other variables, for instances, the daily mean humidity,

mean pressure etc. are investigated too. They are not included in the final model

because their ordinary-least-squares fit coefficients are not significantly different from

zero.

We checked the autocorrelation and partial autocorrelation plots of daily, detrended

summer observations. Figure 3.16 shows an example of such a plot. We find that
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Table 3.4: The Estimated Between-pollutants-hypercovariance Matrix of the Log-

transformed Daily Summer Pollution Levels in Southern Ontario.

N02 $04 N03 03 S02

N02 1.0000000 0.1224039 0.24357919 0.11314233 0.20852698

S04 0.1224039 1.0000000 0.41186592 0.26680085 0.12408473

N03 0.2435792 0.4118659 1.00000000 0.24745489 0.05080721

03 0.1131423 0.2668008 0.24745489 1.00000000 0.09569043

S02 0.2085270 0.1240847 0.05080721 0.09569043 1.00000000

they are lag-i correlated. For removing the lag-i correlation of the residuals, an AR(1)

transformation of the observed values is applied, that is, = — for

t = 2,. . . , 738, where qjj is estimated based on the observed values of i’ pollutant

at gauged site. Such a transformation removes the lag-i correlation among the

residuals. For comparison, the autocorrelation and partial autocorrelation plots of the

AR(1)-transformed residuals of 03 at Gauged Site 6 are shown in Figure 3.17.

When the normal and independence assumptions are satisfied, the EM algorithm can

be applied to the residuals to estimate the hyperparameters. The between-pollutants

hypercorrelation matrix is given in Table 3.4 and the hypervariances of the N02, S04,

N03, 03, S02 are 0.8093218, 1.8325046, 1.3923836, 0.4061250, 1.9200310, respectively.

The estimated number of degrees of freedom is 4365 for nearest integer. A big number

reflects a lot of prior information about the covariance matrix E. That large number

stems from the fact that there are only 27 gauged sites with 55 observed columns while

733 ungauged sites with 3665 columns missing-by-design need to be interpolated.

The SG and interpolation steps are similar to those of the monthly data application

above. One remaining problem needs to be solved. Since the interpolation is based

on the AR(1)-transformed data, the interpolated values are in the form of AR(1)-

transformed residuals. To obtain the true interpolated residuals, the following fact
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is must be used.

Lemma 3.1 If Uk — cUk_1 = Vk and q < 1, then Uk k=2 fl_kVk provided n is big

enough.

Proof: Since

U2-çU1=V2

Un_i — c/;Ufl_2 = V_1

U — çbU1 = V,

multiply both sides of the first equation by q2, the next equation by , etc and

then add all equations. It becomes,

Uk — ‘Ui
= k=2

n_kVk

When n is big enough, is almost zero. I

To apply the above fact, the ‘s at ungauged sites are needed. These values are not

available. Let us assume the ‘s are the same for the same pollutant at all sites. Then

in all, only 5 different coefficients are needed. The five coefficients can be estimated

by ordinary linear regression subject to the above assumption. By checking the ob

served data, we know that the assumption is valid. Now with the new assumption, the

interpolation procedure is repeated.
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Table 3.5: Correlations Between the Residual of Log-transformed, Summer Daily Ob

served and Estimated pollutants at Gauged Sites.

Sites AR(1)_Summer

N02 S04 NO3 03 S02 NO2 S04 N03 03 S02

1 0.68 0.56 0.63 0.52

2 0.79 0.65 0.76 0.63

3 0.56 0.55 0.48 0.50

4 0.72 0.64 0.70 0.63

5 0.44 0.62 0.45 0.67 0.12 0.44 0.60 0.48 0.65 0.12

6 0.69 0.69

7 0.65 0.49 0.10 0.64 0.50 0.10

8 0.49 0.87 0.51 0.88

9 0.90 0.90

10 0.55 0.82 0.55 0.83

11 0.82 0.83

12 0.18 0.78 0.17 0.78

13 0.72 0.73

14 0.41 0.75 0.38 0.73

15 0.74 0.68 0.71 0.67

16 0.69 0.50 0.58 0.86 0.68 0.50 0.59 0.85

17 0.70 0.53 0.68 0.52

18 0.63 0.78 0.63 0.79

19 0.63 0.84 0.62 0.86

20 0.71 0.88 0.02 0.69 0.88 0.03
21 0.82 0.82
22 0.54 0.82 0.56 0.83

23 0.79 0.78

24 0.45 0.68 0.44 0.64

25 0.34 0.65 0.04 0.32 0.61 0.05
26 0.60 0.58 0.52 0.54

27 0.15 0.14
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As before, a CV study of the residuals for both the observed and predicted values

is carried out. The pollutant-wise correlations between the residuals of observed and

predicted summer daily pollution levels at gauged sites are:

Summer AR(1) Sununer

N02 0.49128973 0.48457402

S04 0.66564685 0.63188994

N03 0.58376676 0.56927091

03 0.78495848 0.78477716

S02 0.08807141 0.08978648.

In the above table, the predicted values used for computing the correlations in Column

one are obtained using the original observed values and the predicted values, and for

those in Column two obtained using the AR(l)-transformed data. From the same table,

it can be seen that the correlations of the same pollutant in both columns are close.

We interpret this result positively, as saying that our interpolation procedure is robust

to the assumption of temporal independence. In other words, in terms of the above

correlations, by taking an AR(l) transformation, the prediction of observed values has

not been improved. From the same table, the correlation for SO2 is much lower than

those of the other pollutants. This is explained as follows. First, from Table 3.4, we see

that the hypercorrelations of SO2 with other pollutants are very low. This fact indicates

that by including other pollutants, the predictions on SO2 levels are not improved much.

Second, from Table 3.5 it is seen that 502 was only observed at only 5 gauged sites.

So in the CV analysis, the prediction of SO2 levels at one of its gauged sites are based

only on the observations at the other four sites gauged for SO2. For monthly data,

the problems associated with SO2 do not exist. Therefore, the computed correlations

between the predicted and observed 802 values are higher.
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The correlations of the observed and estimated residuals at each gauged site for each

pollutant are given in Table 3.5. From Table 3.5, it can be seen that it is easier to

predict 03 and SO4, because they are regional pollutants and more difficult to SO2,

because it is a local pollutant.
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Chapter 4

Application to Environmental

Monitoring Network Redesign

Another application of the “Bayesian interpolation with missing-by-design data” theory

developed in Chapter 2 is to the problem of redesigning an environmental monitoring

network. The term “redesigning” means adding or deleting sites from a current existing

monitoring network. Guttorp, Le, Sampson and Zidek (1992), Caselton, Kan and Zidek

(1992), Wu and Zidek (1992) have discussed the above redesign problem. These authors

derived their optimally redesigning strategy based on following reasoning. Maintaining

and collecting data from an environmental monitoring network is quite expensive, there

fore the network is set up and maintained by a nation wide institute. Thus the collected

data may be used by different users for different purposes. This fact implies that an

optimal redesign of an environmental monitoring network should be based on certain

common and fundamental purposes of the users of monitoring networks. They choose

“reducing uncertainty about some aspect of the world, regardless of how that need may

be expressed in any particular situation” (Guttorp, Le, Sampson and Zidek 1992) as

the redesign goal. They developed a general network redesign theory by combing the

entropy optimal criteria and the Bayesian paradigm.

84



In Section 1, the general theory of network redesign in univariate case, which is dis

cussed in Guttorp, Le, Sampson and Zidek (1992), is summarized. In Section 2, it is

demonstrated that how our theory can be applied to the redesign problem.

4.1 Theory of Network Redesign with Entropy

In this section, the theory of network redesign with the entropy is summarized in the

univariate case, which means that there is one pollutant at each site. Although the

theory deals only with an augmentation of a network, the reduction of a network is

handled in a similar fashion and the conclusion is similar.

Suppose that currently there are g gauged sites in a environmental monitoring net

work and it is planned to add u1 more sites to the network in future. These u1

sites are chosen among u candidate sites. Call all the u candidate sites “ungauged

sites”. Let Xf represent a future realization at gauged and ungauged sites. Decom

pose Xinto((X)t,(X)t), where X is a realization at gauged sites and X7 at un

gauged. By properly rearranging the coordinates, (Xy)t is further decomposed into

((Xrd)t, (xrem))t). is the response vector at ungauged sites that will be added

into the network and xrm) is the vector at sites that are not chosen. We assume the

same Gaussian linear model of (2.12) -.‘ (2.14).

As to a measurement of uncertainty, one natural choice is the entropy, which is defined

as

H(X) = E [_log]

where h(X) is a reference density, h(x) makes H(X) be invariant to scale transformation

of X. From the definition, it is easy to see that

H(X, Y) = H(Y) + H(X Y), provided h(X, Y) =h1(X)h2(Y).
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Let D be the set of all observed data at gauged sites in the past, 0 = (, B) be the set

of parameters in our Guassian model. Then, given D, the total uncertainty of a future

realization Xf and unknown parameter, 0, is H(Xf, 0 D). Since,

H(Xf, 0 D) = H(U G, 0, D) + H(0 I G, D) + H(G D), (4.1)

where G = ((X)t,(X)t), U = xrm and

H(U G,0,D) = E[—log(f(U I G,0,D)/h11(U))

H(8 G,D) = E[—log(f(0 G,D)/h2(0)) D],

H(G I D) = E[—log(f(G D)/h12(G)) I Dj.

In the above, it is assumed that h(X,0) =h1(X)h2(0) and h1(X) =h11(U)h12(G).

Note that adding or deleting any site to or from the current network will not change

the total uncertainty H(Xf, 0 D). When in future, the response vector at gauged sites

and added sites is observed and if the measurement errors are negligible, the uncertainty

represented by H(G D) becomes known. By Equation (4.1), one can see that a fixed

total present uncertainty is decomposed into two parts, one part will become absolutely

known by taking observation in future and the other part is still unknown. Therefore

minimizing the future uncertainty by taking additional sites is equivalent to minimizing

the unknown future uncertainty, is in turn equivalent to maximizing the uncertainty of

what will be known in future. So the problem is equivalent to adding sites to maximize

H(GID).

For finding expression, H(G D), the entropy of a multivariate t-distribution needs to

be computed, since f(G D) consists of two multivariate t-distributions.

Now assume, for a random vector Y,

I E
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W;1(,6),

by (2.8),

I t(O,(6* —g + 1),6* —g + 1).

Note that

H(Y, E , 6) = H(Y 6’) + H(E , 6) H(E Y , 6*) + H(Y , 6w).

To find the multivariate t-distribution’s entropy, H(Y , 6’), we only need compute

H(Y I , 6’, ), H(> I , 6*) and H(E Y, , 6*) respectively. Since Y E, , 6* is

multivariate normal , , 6* and E I Y, , 6* are inverse Wishart. By using the result

presented in Caselton, Kan and Zidek (1992), the entropies of the multivariate normal

and the inverse Wishart. Thus, after a straightforward calculation, the entropy of a

multivariate t-distribution is,

H(Y ,6*)
= log +c(g,6*), (4.2)

where c(g, 6*) is a function of g and 6* only.

Since by Theorem 2.1, the distributions of D and Xd X, D are multivariate

t-distributions and

H(G I D) = H(X I D) + H(X I X,D).

By applying (4.2), it is easy to see that

H(G D) = log addIg +c(22,22, c, d, 1, g).

Where ddg is the residual covariance matrix of Xa conditional on and 22 S

defined in Lemma 2.1. Because only the term log is related to a choice of the

newly added sites, maximizing H(G I D) is the same as maximizing I.
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4.2 Network Redesign with Data Missing-by-design

The result presented in the previous section can be easily extended to the multivariate

case by assuming k pollutants at each site. The value of (Faddlg comes from (F that is

estimated with the method described in BLZ. Similarly the result can be extended to

the case when there is missing-by-design data. To justify this extension, one needs to

notice that, given hyperparameters,

() B = R*Xt

(R*)tR* T47_l((R*)t(FR*, 6*
— 1)

R*B I N(R*BO, (R*)tER* ® F-’),

where

= (1skxsk 0

\ 0

and R2 is defined the same as that in Section 2.4.1 of Chapter 2. Then applying the

above model and a similar argument as in the previous section, an optimal criteria for

redesign of a current network is maximizing log 1addI2 , where‘T’addl2 is the conditional

hypercovariance matrix of the future realization at added pollutants and sites given the

observed pollutants at gauged sites. The matrix ‘I’addl2 can be obtained from matrix (F

that is estimated in Chapter 2. In an application, the added sites need not monitor all air

pollutants. This relaxation may be useful when the optimal network redesign is required

for multiple networks that were set to monitor different pollutants. A hypothetical

example is that there are three networks, labeled 1, 2, 3. Network 1 measures ozone

only, network 2 nitrate only and network 3 both pollutants. The above discussed optimal

redesign enables us, say, to optimally add one site to network 1 and another site to

network 2, in terms of maximally reducing uncertainty of a future realization in these

three networks.
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As an example of implementing the above discussion, the monthly air pollution data in

Chapter 3 is used. Thus, there are 31 gauged sites and their latitudes range from 42.246

to 49.800 and longitudes range from 74.736 to 94.400. Suppose in future two sites will be

added to these monitoring networks in Southern Ontario. One added site will monitor

ozone only and the other nitrate only. Further suppose the possible site locations for

the two would-be added sites are constrained to the grids of 10 by 10 checkerboard with

the latitudes and longitudes of the four corners being (42.246, 74.736), (42.246, 94.400),

(49.800, 74.736) and (49.800, 94.400). By taking the estimated 1 from Section 3.1 and

applying the above optimal redesign criteria, the following answer is reached.

We should add the measuring-ozone only site at latitude 43.92467 and longitude 85.66044

and add the site measuring-nitrate-only site at latitude 44.76400 and longitude 87.84533.

However, further simulation study on the sensitivity of to the locations of added sites

need be done.

89



Chapter 5

Cross-validation Study

In this chapter, we describe three CV studies designed to judge performance of the

newly developed theory of interpolation with data missing-by-design. The first study is

to justify the necessity of developing a new theory, in situation where the LZ method

could be applied to solve the same problem. In the second study, an artificial example is

made for studying the trend of adjusted mean squared predicted error(AMSPE), where,

starting from a complete data set, columns are deleted one-by-one and the AMSPE

computed. The third is a comparison of our theory against Hass’s CoKriging method,

since both methods can handle data missing-by-design.

5.1 Simultaneous Interpolation Versus Univariate

Interpolation

By interpolating one pollutant at a time, one can apply LZ theory to the Southern

Ontario pollution interpolation problem. Why then is a new theory needed when an

old theory is available? The answer lies in the difference of two methods. With the LZ

method, only partial data is used for the interpolatioll, while the ew method includes all

available data in the procedure. Take the monthly pollution data in Southern Olltario,

for example. When ozone levels are interpolated at ungauged sites by the LZ theory, only
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the observed 03 levels at gauged sites are included in the analysis. The new method

uses all the observed values of NO2, SO4, 03 and SO2. For distinguishing between

these two methods, that of LZ will be called univariate interpolation and that of the

new method, simultaneous interpolation.

One way of showing the superiority of the simultaneous interpolation over the univariate

interpolation is to prove that its interpolator leads to a smaller mean square error. That

fact is shown below.

Theorem 5.1 Let X0, 1’ be any two random vectors and X a random variable. Then

E(X — E(X Xo, Y0))2 <E(X — E(X I (5.1)

Proof: Observe that

E(X — E(X = E(X2 — 2XE(X X0) + E2(X X0))

= E(X2)— 2E(XE(X X0)) + E(E2(X I Xe))

= E(X2)— 2E(E(XE(X I X) X0)) + E(E2(X I X0))

= E(X2)- E(E2(X

Similarly,

E(X - E(X X0,Y0))2= E(X2)- E(E2(X

Further, by Jensen’s inequality, for any random variable Z,

E(Z2) > (E(Z))2.

Apply it,
E(E2(X X0,Y0)) = E(E(E2(X X0,Y0)

E([E(E(X X0,Y0) X0)]2)

= E(E2(X I
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So equivalently,

E(X — E(X I X0,Y0))2 E(X — E(X K0))2.

Returning to the ozone example, we take X0 to be the observed levels of 03 at gauged

sites, Y0 the observed levels of the other pollutants and X, the unobserved pollution

level at an ungauged site. Then the univariate Bayesian interpolator is E(X X0) and

the simultaneous interpolator E(X X0,Ye). When the model is correctly specified and

the hyperparameters are known, Theorem 5.1 implies that the simultaneous interpolator

does no worse than the univariate interpolator.

The following CV study supports the above claim empirically. Again, monthly air pollu

tion data in Southern Ontario is used. At each gauged site, the observed pollutants are

deleted as if they were not observed. Then both univariate and simultaneous Bayesian

interpolators are applied to obtain the predicted values of the “deleted” values based

on the data at the other gauged sites. When the predicted values by both methods are

computed for all 31 gauged sites, the mean squared predicted error (MSPE) is calcu

lated for the univariate interpolator and the simultaneous interpolator respectively. The

results for the monthly summer data and monthly winter data are listed below.

Simultaneous Univariate

summer winter summer winter

N02 0.18543849 0.14342632 0.2829322 0.1292677

S04 0.13848447 0.21311221 1.274841 0.7310782

03 0.04369236 0.05382523 0.12536 0.2367643

S02 0.62173407 0.28098323 0.758635 0.4344104

The values confirm our theoretical result, except the case of NO2 in winter, where the
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MSPE of the univariate interpolator is smaller than that of the simultaneous interpola

tor. One interesting point is worth mentioning here. The above numbers show that the

relative reduction in the MSPE’s achieved by simultaneous interpolation over univariate

interpolation, is much higher for 804 and 03 than for 802. For 504 and O3 the relative

reduction is from 300% to 900%. For 302, the reduction is under 50%. This is because

504 , 0 are regional pollutants and 802 is a local pollutant. Intuitively, a regional

air pollutant intuitively has a higher correlation with the other pollutants than a local

pollutant, as indicated by the estimated between-pollutants-hypercorrelation in Section

3.1. By including the other correlated pollutants in the analysis, we would expect to

enhance the interpolation. For a local pollutant, since it has little or no correlation with

other pollutants, the inclusion of additional pollutants in the analysis will not improve

the interpolator as much. Therefore, we can conclude that the interpolator with data

missing-by-design does better than that of LZ on regional pollutants. It does not do

much better than LZ on local pollutants. The conclusion has theoretical support: if X0

are X are independent equality in Equation (5.1) obtains.

5.2 Trends in Adjusted Mean Squared Prediction

Error (AMSPE)

We now check the performance of the Bayesian interpolator (2.6) in terms of the AMSPE.

Here the adjusted prediction error is defined to be (Xpred — Xobs)fstd(Xpred), that is, the

difference between the predicted value and the observed value divided by the standard

deviation of the predicted value. AMSPE is the mean of all squared adjusted predicted

errors. We prefer AMSPE over the mean squared error (MSE) because different pollu

tants have different units of measurement, hence different variability. Therefore, mean

prediction errors of different pollutants must be normalized to make them comparable.
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The data set for our study comes from the monthly Southern Ontario pollutant data

used earlier. Among 31 gauged sites 13 sites where NO2, 03 and SO2 are all observed,

are chosen. So the original data set consists of thirty-nine columns (three observed

pollutants at each of thirteen sites). In our study, a randomly chosen column at a

randomly chosen site among the 13 sites is deleted. A CV study is performed on the

remaining data set that has data missing-by-design. An AMSPE is computed. Next, in

a similar way, a randomly chosen column from the remaining data is deleted and the CV

process is repeated on the new data set, which has two columns less than the complete

data set. So a new AMSPE is computed. By repeating this and plotting AMSPEs, a

trend in AMSPE is obtained.

One example of AMSPE trends is shown in Figure 5.1. There are twenty-four AMSPE’s

in the plot. The first AMSPE is computed after the column of observed NO2 at Site

2 is deleted from the original data set, the second AMSPE while the previously chosen

column and the column of observed SO2 at Site 3 are deleted. By repeating the same

procedure, the 24 AMSPE is computed after 24 randomly chosen columns are deleted.

Below we show the order of the deleted columns.

Order: 1 2 3 4 5 6 7 8 9 10 11 12

Pollutant: N02 S02 N02 03 03 502 03 03 N02 S02 N02 S02

Site: 2 3 4 1 7 4 10 6 12 7 10 12

Order: 13 14 15 16 17 18 19 20 21 22 23 24

Pollutant: N02 03 03 S02 S02 S02 N02 S02 N02 S02 03 S02

Site: 3 2 11 9 6 1 5 5 9 11 8 8
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The AMSPE trend plot in Figure 5.1 shows a generally increasing pattern with some

bumps along the way. The incremental changes in AMSPE are not very dramatic.

This perhaps indicates good performance of the simultaneous interpolator. However,

the result must be interpreted cautiously, since the AMSPE is not a robust index.

When the standard deviation of a predicted value is relatively small, it could explode

the corresponding adjusted prediction error so much that an AMSPE value will be

dominated by a particular term. If a common term plays a dominant role among all the

AMSPE values, the trend will be a flat line. Such a plot does not imply superiority of

the simultaneous interpolator.

5.3 Comparison with CoKriging

Both Bayesian multivariate interpolation with data missing-by-design (referred to below

as the new method) and Hass’s CoKriging method can handle data missing-by-design.

Here are some direct contrasts of the two methods. The new method gives a predictive

distribution, therefore a simultaneous interpolation region, while Hass’s method only

gives the interpolated value and its standard deviation. The new method easily handles

any number of variables (pollutants), ignoring for the limitation of computer capacity,

while Hass’s method only allows two variables in order to retain mathematical tractabil

ity. The new method includes all available data in the interpolation process, while Hass’s

method only uses only partial data. However, when sk is big, Hass’s method has a sub

stantial computing advantage over the new method, since the convergence of the EM

algorithm used in the new method is slow.

A detailed comparison follows. Generally speaking, our simulation study shows that

Hass’s method enjoys computational advantages over the new method when there are

95



many sites. When there are not enough sites, Hass’s method encounters difficulty. Since

in each moving window, Hass’s method requires a minimal number of sites in the window

for the purpose of variogram estimation. When gauged sites are widely spread out or

there are not enough sites, that requirement cannot be met. This affects the accuracy

of the estimated variogram. On the other hand, since the new method involves a lot

of matrix operations, when there are too many sites, the dimensions of the matrix can

be so big that computation becomes excessively slow. In the case of a small number of

gauged sites, the new method works fine. Another difference between Hass’s method

and the new method is in the models they use. While Hass’s method models only a

“snapshot” of a spatial trend, the new method incorporates the temporal trend for each

pollutant at each site. Therefore, the new method can handle spatial-temporal data,

but may have problems with spatial data alone. In the case of spatial data alone, it is

hard to model a temporal trend with one datum for each observed pollutant at each

gauged site.

Because of the complexity of the cross-variogram formulas, Hass’s method cannot take

more than two variables (e.g., two air pollutants) in practice and it is hard to expand

beyond that. The new method can handle any number of variables (pollutants). As

shown in Chapter 2, a simultaneous prediction region is derivable when a predictive

distribution is available. Hass’s method only gives a pairwise confidence interval for the

interpolated value.

A fundamental distinction between the two methods lies in their Bayesian against non

Bayesian distinction. We do not take up that issue here.

For an empirical comparison of the two methods, we use a real data set. The data

come from selected sites in the National Acidic Deposition (NADP) Network and the
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National Trends Network (NTN) in United States. Refer to Wu and Zidek (1992),

Watson and Olsen (1984) for more details. Forty-five gauged sites, the latitudes and

longitudes of which are in Table 5.1, are randomly chosen. Since both sulfate and nitrate

are regional pollutants, they should be highly correlated. That guess is confirmed by an

analysis of the data, where the estimated hypercorrelation between sulfate and nitrate is

higher than 0.70. The high correlation enables both methods to fully demonstrate their

strength and weakness, making their comparison more reliable. At the forty-five sites,

both sulfate and nitrate are observed monthly from 1983 to 1986. In terms of Hass’s

method, one pollutant is treated as a response variable and the other as a covariate.

The covariate is included in the analysis to improve the interpolation precision. We

arbitrarily chose nitrate as the response variable and sulfate as the covariate. To agree

with the form of a CV study provided by Dr. Tim Hass, both observed levels of nitrate

and sulfate at the first 35 sites of Table 5.1 are used for our study and only the monthly

sulfate observations at the remaining 10 sites are used for the study. The number, 35,

is chosen because according to Hass’s method, in each moving window there must be a

minimum of 30 gauged sites.

For each month of the four years, a CV study of Hass’s method is done and the MSPE is

computed for the original and log-transformed data respectively. The same study is done

for the new method. The MSPE, for both methods on the two cases are listed in Table

5.2. In terms of MSPE, with the original data, the new method beats Hass’s method in

32 out of 48 months and in terms of the grand mean of MSPE, the new method also wins

by 0.4437143 against 1.25524. Figure 5.2 displays the monthly MSPE’s of both methods

on the original data. In the figure, “Bayesian” means the new method and CoKriging

means Hass’s method. With the log-transformed data, the ranking is reversed. The new

method loses to Hass’s method in 39 out of 48 months and 0.3813128 against 0.2347863

of the mean MSPE. See Figure 5.3 for a graphical comparison of the MSPE’s at each
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month on the log-transformed data.

By checking the MSPE’s of the new method used on the log-transformed data at each

site, we found that among 35 MSPE’s, the MSPE value at Site 35 (i.e, Site 075a) is

much higher than those at other sites. At Site 35, the MSPE value is 7.48, while at

other sites, all the MSPE values are below 0.493 (except that at Site 21). Observations

at Site 35 are unnaturally compressed into a small interval near zero, making their

logarithm extraordinarily large in magnitude. Thus in Table 5.2, we observe MSPE’s

for transformed data larger than those for the original because of this outlying site.

As well, the poor performance at Site 35 makes the monthly MSPE values of the new

method applied to the log-transformed data systematically higher than those of Hass’s

method. Figure 5.4 shows that the boxplot of log-transformed nitrate levels at Site 35

is well below other boxplots as noted above.

Recall, in Chapter 2, we assumed that the hyperparameter B° has an exchangeable

structure. From our simulation study, we know that if that assumption is violated, the

proposed new method will not do well. For example, if B° were taken to be identical over

sites for each pollutant while the actual data shows that it is not true, the performance

of our interpolator would be poor. So one explanation of the poor performance of the

new method on the log-transformed data is that the exchangeability assumption on B°

is violated because of Site 35. That is, the actual hyperparameter B° at that site is not

the same as that of the same pollutant at other sites. To check this conjecture, Sites

21, 35, 36, 44, 46, where either observed sulfate levels or nitrate levels are unusual, are

removed from the data set and five new sites are added in (the codes are 076a, 077a,

078a, 160a, 161a). CV studies of both Hass’s method and the new method are then

carried out on the new log-transformed data. In terms of MSPE, over 48 months the

new method beats Hass’s method in 35 out of 48 months and in terms of the mean
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MSPE, the new method gains an edge by 0.2087363 against 0.3676921. These results

support our conjecture.

However, the diagnosis of the exchangeability assumption is difficult. The following

theory offers a way to make a rough check.

Note, by Model (2.12)-(2.14) and Equation (2.16),

B2° N((B20)t,((ZZt)’ + F-’) 0 22).

Equation (2.8) implies,

B2 B r’- T(’1’, (ZZt)_1 + F’, B, 6*
— sk — 1 + h).

By Lemma 2.4, the marginal distribution of /9r (i = 1,. . . , .Sgk — 1), the row of B2,

has distribution

T(d, (ZZt)’ + F’, 3° 6*
— sk + h + 1),

where 3° is the rth row of B. To define d, let

D= (f” f::)=22Cr,

where Cr is an orthogonal matrix that exchanges the r column of J! with its last

column, D,, is (s9k— 1— 1) by (sgk — 1— 1) and d22 is 1 by 1. Then d is d22 — D2,D,,’ D,2.

By applying Theorem 2.8, the following theorem is proved.

Theorem 5.2

F
= 6* —sk+ 1($

_)
[(zzt)1+F1]( o)t Fh,ss_3k÷1. (5.2)

Then by the above theorem, the p-value for /335 at Site 35 can be computed as

1 — [1
— PF(F > F0b8)]35,
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because /335 is the extreme value among the 35 /3r5 j = 1,. . . , 35. F0,,3 can be computed

by plugging in the estimated hyperparameters and into Equation (5.2). With the

above p-value formula, unless PF(F > F03) is extremely small, it is very unlikely we

would reject the exchangeability assumption at Site 35. Therefore, the power of the

above test is low. An application of the above test to our data shows that we failed to

reject it. However, the boxplots of Figure 5.4 make us believe that the observed levels

of nitrate at Site 35 are abnormal.

Theoretically, Hass’s method is optimal only when the processes of pollutants are mul

tivariate normal with a flat prior on the parameters. That explains why the MSPE

values of Hass’s method drop a lot when it is applied to the log-transformed data. (See

Table 5.2.) A log-transformation made the observed levels of the pollutants follow a

multivariate normal more closely, although it is not necessarily the most appropriate

transformation. The new method is also sensitive to the normality assumption. From

Table 5.2, it can be seen that the MSPE values were reduced in 31 out of 48 months

when the new method was applied to the log-transformed data.
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Table 5.1: Latitudes and Longitudes of the Gauged Sites.

Sites Lat. Long.

004a 36.1006 94.1733

OlOa 40.3644 105.56

Olla 39.1011 105.092

012a 40.8064 104.754

017a 33.1778 84.4061

020a 40.0533 88.3719

021a 41.7011 87.9953

022a 37.71 89.2689

023a 37.4356 88.6719

024a 41.8414 88.8511

025a 41 .6325 87.0878

028a 35.6644 83.5903

029a 37.1989 108.491

030a 45.4897 69.6644

031a 45.5611 84.6783

032a 42.4103 85.3928

033a 44.2244 85.8186

034a 47.5311 93.4686

035a 44.2372 95.3006

036a 32.3344 88.745

037a 48.5103 113.996

038a 41.1531 96.4928

039a 43.9431 71.7033

040a 42.7339 76.6597

041a 42.2994 79.3964

046a 43.5261 75.9472

047a 42.1061 77.5356

049a 36.1278 77.175

051a 35.6967 80,6228

052a 35.0239 78.2792

053a 35.7286 78.6811

055a 40.3553 83.0661

056a 39.7928 81.5311

058a 40.78 81 .9253

059a 44.3869 123.623

061a 44.2231 122.242

063a 41.5978 78.7678

064a 40.6589 77.9361

065b 40.7883 77.9464

068a 36.0717 112.153

070a 29.3019 103.177

071a 28.8453 96.92

073a 37.335 80.5578

074a 47.86 123.933

075a 39.0897 79.6622
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Table 5.2: MSPEs by Both Methods.

month L original_data log-transformed_data

II CoKriging new method CoKriging new method

1983.1 3.28392 0.52072 0.341134 0.323611

2 5.652717 0.366484 0.549418 0.357877

3 0.950273 0.321812 0.165156 0.303732

4 0.617414 0.396189 0.115926 0.27441

5 0.232695 0.509551 0.083971 0.320196

6 0.914407 0.881811 0.183823 0.407721

7 0.668226 0.786001 0.290934 0.405173

8 1.347384 0.592036 0.263396 0.183026

9 0.300603 0.543329 0.092434 0.332301

10 0.521691 0.375799 0.166289 0.226903

11 0.238963 0.25169 0.079822 0.394561

12 0.320864 0.332461 0.095796 0.389354

1984.1 3.209043 0.402137 0.339717 0.392407

2 0.817165 0.539348 0.234923 0.453388

3 0.469469 0.18821 0.079713 0.394719

4 0.517674 0.288131 0.28535 0.781333

5 0.143388 0.334989 0.047676 0.253829

6 1.500481 0.787056 0.23976 0.400371

7 0.987726 0.775919 0.34463 0.340348

8 0.457944 0.60891 0.208633 0.606851

9 0.210432 0.354206 0.082369 0.290468

10 0.499223 0.502362 0.163754 0.427758

11 0.808873 0.234341 0.146061 0.405709

12 0.254086 0.356278 0.089412 0.501983

1985.1 1.876528 0.238328 0.51466 0.265733

2 1.821478 0.36958 0.181693 0.427747

3 0.398158 0.244937 0.13868 0.267305

4 2.397513 0.430129 0.326478 0.326975

5 0.570281 0.307239 0.13937 0.26641

6 1.89153 0.37827 0.405738 0.461921

7 0.509808 0.51783 0.153515 0.297702

8 0.758525 0.733556 0.215295 0.545632
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month original_data log-transformed_data

CoKriging new method CoKriging 1_new method

1985.9 0.302321 0.470564 0.200713 0.58109

10 1.559379 0.484305 0.314374 0.291196

11 0.24711 0.165849 0.188169 0.265927

12 9.080794 0.585204 1.434542 0.395802

1986.1 6.937748 0.553377 0.685439 0.346247

2 1.717417 0.32262 0.29135 0.261732

3 1.376672 0.194057 0.217498 0.315148

4 0.410942 0.32283 0.116953 0.5226

5 0.240855 0.568083 0.069861 0.380813

6 0.270805 0.755552 0.09048 0.36987

7 0.377201 0.637667 0.08781 0.598339

8 0.664169 0.411857 0.226513 0.28267

9 0.492622 0.570382 0.14715 0.43719

10 0.363747 0.310728 0.118633 0.417164

11 0.199882 0.194151 0.109205 0.307664

12 0.861362 0.281423 0.205528 0.502112

Mean 1.25524 0.4437143 0.234786 0.381312
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Chapter 6

Concluding Remarks and Future

Studies

In this thesis, the theories of Bayesian multivariate interpolation with missing data

are discussed. The proposed interpolation theories have two main characteristics, a

hierarchical Bayesian method and a multivariate method.

Some obvious advantages of a Bayesian method: with a Bayesian paradigm, the prior

information is easily incorporated into an interpolation procedure, if such prior informa

tion is indeed available; with a Bayesian approach, one can include the model uncertainty

into the confidence interval of interpolated values, while traditional CoKriging fails to

do so. Thus, the confidence intervals computed with traditional CoKriging methods are

narrower they should be. With a hierarchical Bayesian approach, the specification of the

spatial covariance structure can be pushed up to a higher level in the hierarchy. That is,

the covariance structure can be specified at Stage 2 of the modeling. Under this setup, if

there is any mistake in the specification of the covariance structure, future observations

can modify the wrongly specified structure. Eventually if enough data are observed,

the mistake will be corrected. Therefore, Bayesian modeling provides robustness. An

other benefit of the Bayesian approach is that it provides predictive distribution, while
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CoKriging only provides an interpolated value with its standard deviation. By knowing

the predictive distribution, one can do more things, e.g., constructing a simultaneous

confidence region, creating random numbers for a simulation study and so on.

Another characteristic of the theories in this thesis is their multivariate nature. The

general theory of BLZ also yields a multivariate interpolator. However when there are

missing data, as when data are missing-by-design, with the BLZ theory, interpolation

can only be done pollutant-by-pollutant. That reduces the method to a univariate

method. The advantage of a multivariate approach is that it allows the interpolation

to be carried out by including all the available information. Theorem 5.1 of Chapter

3 concludes that in terms of mean squared error, when hyperparameters are known, a

Bayesian interpolator based on all available information performs at least as well as a

Bayesian interpolator based on partial information. With that theorem, the extension

of the general BLZ theory to the new theory is intuitively justified. As an empirical

check, a CV study in Chapter 5 shows that the quantitative gains of the new method

over the LZ method are significant.

The theories developed in this thesis are by no means complete. There is much room

for further study. For example, a general estimation method of the unknown hyperpa

rameters is needed for the theory of interpolation with monotone missing data. Other

future research topics are listed below.

In Chapter 5, while the theory of interpolation with data missing-by-design is compared

with Hass’s CoKriging theory, we pointed out that if the observed data is a spatial data

set only, the theory in this thesis is not directly applicable. That is because the model of

our Bayesian interpolation consists of a temporal trend, which can not be estimated by a

single datum. Therefore, hierarchical Bayesian CoKriging is of interest. Here hierarchal
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Bayesian CoKriging means putting a prior on the unknown coefficients of the trend

and spatial covariance matrix. One possible approach is as follows. When there are

many sites involved, the dimensions of the spatial covariance matrix can be very big.

To reduce the number of random variables in the spatial covariance matrix, one may

divide all related sites into m clusters, with n sites in each cluster. When the means are

assumed to be zero, a model of the random process at the jth cluster is set to be,

X=R1+L,

where the random variable R reflects the correlations of Cluster i with other clusters,

1 is a 1 x n, vector of l’s and L reflects the local spatial correlation at cluster i. Let

R represents a m x 1 random vector that takes care of the between-clusters spatial

correlation. Conjugate priors of inverted Wishart distribution are assumed on Var(R)

and Var(L), i = 1,. . . , m. Details of interpolation theory remain to be filled in.

A Gaussian model is assumed for all interpolation theories discussed in this thesis.

In some applications, the observed data may not be Gaussian and they cannot be

transformed to be Gaussian. An interpolation theory with non-Gaussian data is needed.

With a Gaussian model, the interpolator with data missing-by-design has an analytical

form. With a general distribution model, an interpolator may not have closed form. In

that case, some Bayesian computing tools, like Gibbs’ importance sampling may need

to be brought in for a numerical answer.

The prior distribution of the unknown spatial covariance matrix, , in this thesis, is

taken to be an inverted Wishart, a conjugate distribution of the Gaussian model. Since

many authors criticize the Wishart distribution (c.f. Press 1982, Brown, Le and Zidek

1993b), an extension of the inverted Wishart may be needed. On possible choice, which

keeps the conjugate property of the priors, therefore, retains mathematical tractability,

and at the same time, provides more parameters to offset one deficiency of the Wishart,
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is proposed in Brown, Le and Zidek (1993b). The proposed prior is called a Generalized

Inverted Wishart Distribution. However, the following is worth mentioning. Based on

our application and simulation studies in Chapter 3 and 5, our method works well with

the inverted Wishart prior.

In Chapter 3, we see that the daily air pollution levels in Southern Ontario show sig

nificant lag-i correlation. There, an AR(i) transformed is adopted to remove the cor

relation. A better method is to extend the interpolation theory of LZ to include a

lag-i correlated time series, or more generally, to remove the assumption of temporal

independence. That extension will have immediate applications.

From the same Southern Ontario study, we see that among the observed data, some are

censored below. In Chapter 3, the censored data are simply treated as missing and filled

with an ad hoc method. Therefore, a new theory that can handle the censored data will

be needed for applications.

A last remark goes to the optimal redesign of a current monitoring network. In Chapter

4, an example demonstrates how to add two sites to a current monitoring network.

An interesting question may be raised. Instead of adding a new monitoring site, that

measures ozone only, an alternative approach would put an ozone monitor at one of the

currently gauged sites where ozone is not monitored. The question is which is optimal?

While this can be done with the same entropy approach given in Chapter 4, there are

some problems. Normally it is true that the cost of maintaining a separate monitoring

site will cost more than putting a meter at a current operating site. The entropy

approach does not take that into consideration. Therefore, to solve such a problem, we

have to bring additional factors like cost into the objective function.

107



Bibliography

Afifi, A. A. and Elashoff, R. M. (1961). “Missing Observations in Multivariate Statis

tics.” J. Amer. Statist. Assoc. Vol. 61, 595-604.

Ahmed, S. and de Marsily, G., (1987). “Comparison of Geostatistical Methods for

Estimating Transmissivity Using Data on Transmissivity and Specific Capacity”.

Water Resources Research, 23, 1717-1737.

Anderson, T.W., (1984). “An Introduction to Multivariate Statistical Analysis”. New

York: Wiley.

Berndtsson, R., (1988). “Temporal Variability in Spatial Correlation of Daily Rainfall”.

Water Resources Research, Vol. 24, 1511-1517.

Billingsley, P., (1968). “Convergence of Probability Measures.” New York: Wiley.

Brown, P.J., Le, N. D. and Zidek, J.V. (1994a). “Multivariate Spatial Interpolation

and Exposure to Air Pollutants” . Canadian Journal of Statistics. To appear.

Brown P.J., Le, N. D. and Zidek, J.V. (1994b). “Inference for A Covariance Matrix”.

Aspects of Uncertainty: A Tribute to D.V. Lindley. Ed. A.F.M. Smith and P.R.

Freeman. John Wiley & Sons.

Buck, S. F. (1960). “A Method of Estimation of Missing Values in Multivariate Data

Suitable for Use with an Electronic Computer.” J. of the Royal Statistical Society,

Ser. B, 22, 302-307.

Burnett, R. T., Dales R. E., Rainenne M. D. and Krewski D. (1992). “The Relationship

Between Hospital Admissions and Ambient Air Pollution in Ontario, Canada: A

Preliminary Report”. Unpublished Report.

Caselton, W.F., Kan, L. and Zidek, J. V. (1992) “Quality Data Networks that Minimize

Entropy”. Statistics in the Environmental and Earth Sciences. Eds. P. Guttorp

and Walden. Griffin, London.

108



Chen, C.F., (1979). “Bayesian Inference for a Normal Dispersion Matrix and its Ap

plication to Stochastic Multiple Regression Analysis”. J. Roy. Statist. Soc., B,

41, 235-248.

Cressie, N. and Hawkins, D.M.(1980). “Robust Estimation of the Variogram, I.” J. of

the International Association for Mathematical Geology, 12, 115-125.

Cressie, N. (1986). “Kriging Nonstationary Data”. JASA, 81, 625-634.

Cressie, N. (1989). “Geostatistics”. The American Statistician, 43, 197-202.

Cressie, N., (1991a). “Statistics for Spatial Data”. New York: Wiley.

Cressie, N., (1991b). “Modeling Growth with Random Sets.” In Spatial Statistics

and Imaging (Proceedings of the AMS-IMS-SIAM Joint Summer Research Con

ference), A. Possolo, ed. Institute of Mathematical Statistics, Hayward, CA.

Dawid, A.P., (1978). “Extendibility of Spherical Matrix Distribution”. J. Mult. Anal.

8, 559-66.

Dawid, A.P., (1981). “Some Matrix—variate Distribution Theory”. Biometrika, 68,

265-74.

Dempster, A.P., Laird, N.M. and Rubin, D.B., (1977). “Maximum Likelihood from

Incomplete Data via the EM Algorithm (with discussion)”. J. Roy. Statist. Soc

B, 39, 1-38.

Delhomme, J.P. (1978). “Kriging in the Hydrosciences” Advances in Water Resources,

1, 251-266.

Dickey, J.M, (1967). “Matricvariate Generalizations of the Multivariate t Distribution

and the Inverted Multivariate t—distribution”. Ann. Math. Statist. 38, 511-8.

Dickey, J.M., Lindley, D.V. and Press, S.J. (1985). “Bayesian Estimation of the Disper

sion Matrix of a Multivariate Normal Distribution “. Communication in Statistics

A, 14:1019-1034.

109



Duddek, C., Le N. D., Sun W., White R., Wong H., Zidek J.V. (P1) (1994). “Assessing

the Impact of Ambient Air Pollution on Hospital Admissions Using Interpolated

Exposure Estimates in Both Space and Time: Final Report to Health Canada

under DSS Contract h4078-3-C059/01-SS”. Unpublished Report.

Dunnett, C. W. and Sobel, (1954) . “A Bivariate Generalization of Student’s t

distribution with Tables for Certain Special Cases”. JASA, 50, 1096-1121

Eaton, M.L., (1983). “Multivariate Statistics: A Vector Space Approach”. Wiley, New

York.

Guttorp, P., Le N. D., Sampson P.D. and Zidek, J.V., (1993) “Using Entropy in the

Redesign of an Environmental Monitoring Network”. Multivariate Environmental

Statistics; edited by G.P. Patil and C.R. Rao. North Holland/Elsevier Science,

NY.

Harrison, P. J. and Stevens, C. F.(1976) “Bayesian Forecasting” (with discussion) J.

of the Royal Statistical Society, Ser. B, .38, 205-247.

Hass, T. C., (1993). “Cokriging Variables That Are First and Second Order Nonsta

tionary “. Paper presented at the annual meeting of the Statistical Society of

Canada, Wolfville, Nova Scotia, June, 1993.

Hass, T. C., (1992). “Redesigning Continental-Scale Monitoring Networks”. Atmo

spheric Environment Vol.26A, No.18, 3323-3333.

Hass, T. C., (1990a). “Lognormal and Moving Window Methods of Estimating Acid

Deposition”. J. Amer. Statist. Assoc. 85(412), 950-963.

Hass, T. C., (1990b). “Kringing and Automated Variogram Modeling within a Moving

Window”. Atmospheric Environment Vol.24A, No.7, 1759-1769.

Halley, E. (1686). “An Historical Account of the Trade Winds, and Monsoons Observ

able in the Seas between and near the Tropics: With an Attempt to Assign the

Physical Cause of Said Winds”. Philosophical Transactions 183, 153-168.

110



Handcock, M. S. and Stein, M. L.(1993) “A Bayesian Analysis of Kriging” Technomet

rics, Vol.35, No.4, 403-410.

Handcock, M. S. and Wallis, J. R.(1994) “An Approach to Statistical Spatial-Temporal

Modeling of Meteorological Fields” JASA, Vol.89, No.426, 368-390.

Huijibregts, C. J. and Matheron, G. (1971) “Universal Kriging (An Optimal Method

for Estimating and Contouring in Trend Surface Analysis).” In Proceedings of

Ninth International Symposium on Techniques for Decision-Making and Metal

lurgy, Social Volume, 12, 159-169.

Johnson, T., Capel, J., McCoy, M. and Warnasch, J. (1994) “Estimation of Carbon

Monoxide Exposures and Associated Carboxyhemoglobin Levels Experienced by

Residents of Toronto, Ontario Using a Probabilistic Version of NEM.” Unpublished

Report.

Journel, A. G. (1980) “The Lognormal Approach to Predicting Local Distributions

of Selective Mining Unit Grades.” Journal of the International Association for

Mathematical Geology, Vol.12, 285-303.

Kannan, D. (1979). “An Introduction to Stochastic Processes “. New York: North

Holland.

Kitanidis, P. K.(1986) “Parameter Uncertainty in Estimation of Spatial Functions:

Bayesian Analysis.” Water Resources Research,22,499-507.

Komungoma, S. (1992) “Assessment of the Quality for the NADP/NTN Data Based

on Their Predictability.” M.Sc. Thesis, Department of Statistics, University of

British Columbia, Vancouver, Canada.

Laslett, G. M.(1994) “Kriging and Splines: An Empirical Comparison of Their Predic

tive Performance in Some Applications.” JASA,Vol.89, No.426, 391-409.

Le, N. D. and Zidek, J.V. (1992). “Interpolation with Uncertain Spatial Covariance:

A Bayesian Alternative to Kriging”. J. Mult. Anal, 43, 351-74.

111



Leonard, T. and Hsu, S.J.H. (1992). “Bayesian Inference for a Covariance Matrix”.

Annals of Statistics , 20, 1669-1696.

Lindley, D. V. and Smith, A.F.M. (1972). “Bayes Estimates for the Linear Model”. J.

Roy. Statist. Soc. B, 34, 1-32.

Little, R. J. A. and Rubin, D.B. (1987). “Statistical Analysis with Missing Data”.

John Wiley & Sons.

Loader, C. and Switzer, P. (1992). “Spatial Covariance Estimation for Monitoring

Data”. In Statistics in the Environmental and Earth Sciences, eds. A. T. Walden

and P. Guttorp, London: Edward Arnold, pp.52-7O.

Mardia, K. V., Kent, J.T. and Bibby, J.M. (1979). “Multivariate Analysis”. Academic

Press, New York.

Mardia, K.V. and Marshall, R.J. (1984). “Maximum Likelihood Estimation of Models

for Residual Covariance in Spatial Regression”. Biometrika , 71, 135-146.

Matheron, C. (1962). “Traite de Geostatistique, Tome I.”Memoires du Bureau de

Recherches Geologiques et Minieres, No. 14. Editions Technip, Paris.

Matheron, G. (1969). “Le Kriegeage Universel.” Cahiers du Centre de Morphologic

Mathematique , No. 1. Fontainebleau, France.

Matheron, 0. (1971). “The Theory of Regionalized Variables and Its Applications”.

Cahiers du Centre de Morphologic Mathematique, No. 5. Fontainebleau, France.

Miller, A. A. and Sager, T. W. (1994). “Site Redundancy in Urban Ozone Monitoring.”

J. Air é1 Waste Manage. Assoc., 44, 1097-1102.

Muirhead, R. J. (1982). “Aspects of Multivariate Statistical Theory”. John Wiley,

New York.

Nather, W. (1985). “Effective Observations of Random Fields.” Teubner-Texte zur

Mathematik, Band 72. Teubner, Leigzig.

112



Neuman S. P. and Jacobson, E.A. (1984). “Analysis of Nonintrinsic Spatial Variability

Be Residual Kriging with Application to Regional Groundwater Levels”. J. of the

International Association for Mathematical Geology 16, 499-521.

Olea, R.A. (1984). “Sampling Design Optimization for Spatial Functions “. Journal

of Geophysical Research, 79, 695-702.

Oehlert, G. W. (1993). “Regional Trends in Sulfate Wet Deposition”. JASA, 88,

390.3599.

Omre, H. (1987). “Bayesian Kriging—Merging Observations and Qualified Guesses in

Kriging “. Mathematical Geology, 19, 25-39.

Omre, H. and Halvorsen, K.B. (1989a). “the Bayesian Bridge between Simple and

Universal Kriging “. Mathematical Geology, 21, 767-786.

Omre, H. and Halvorsen, KB. (1989b). “A Bayesian Approach to Kriging “. In

Proceedings of the Third International Geostatistics Congress I ed. M. Armstrong,

Dordrecht: Academic Publishers, pp. 49-68.

Pilz, J., (1991). “Bayesian Estimation and Experimental Design in Linear Regression

Models.” John Wiley, New York. . New York: Holt, Rinehart & Winston

Press, S. J., (1982). “Applied Multivariate Analysis-Using Bayesian and Frequentist

Methods of Inference”. Holt, Rinehart & Winston, New York.

Rubin, D. B. (1976). “Comparing Regressions When Some Predictor Variables Are

Missing”. Technometrics 18, 201-206.

Sampson, P. and Guttorp, P., (1992). “Nonparametric Estimation of Nonstationary

Spatial Covariance Structure”. J. Amer. Statist. Assoc. Vol.87 No. 417, 108-119.

Sarndel, C. E. and Swensson, B. and Wretman, J. (1992). “Model Assisted Survey

Sampling”. Springer-Verlag, New York, Inc.

Stein, A. and Corsten, L.C.A., (1991). “Universal Kriging and Cokriging as a Regres

113



sion Procedure”. Biometrics 47, 575-587.

Sten, M. L., Shen, X. and Styer, P.E. (1991). “Applications of a Simple Regression

Model to Acid Rain Data.” Technical Report No. 276. Department of Statistics,

University of Chicago, Chicago, IL., USA.

Taylor, A. E. and Lay, D.C. (1980). “Introduction to Functional Analysis”. Wiley,

New York.

Tanner, M.A. and Wong, W.H., (1987). “The Calculation of Posterior Distribution by

Data Augmentation”. JASA 82, 528-550.

Wahba, 0., (1990a). “Comment on Cressie,” The American Statistician, 44, 255-256.

Wahba, 0., (1990b). “Spline Models for Observational Data,” Philadelphia: Society

for Industrial and Applied Mathematics.

West, M. and Harrison, P.J., (1986). “Monitoring and Adaptation in Bayesian Fore

casting Models”. JASA 81, 741-750.

Woodbury, A.D. (1989). “Bayesian Updating Revisited,”. Mathematical Geology 21,

285-308.

Wu, C.F.J., (1983). “On the Convergence Properties of the EM Algorithm,” Ann.

Statist. 11, 95-103.

Wu, S. and Zidek, J.V. (1992). “An Entropy Based Review of Selected NADP/NTN

Network Sits for 1983-1986”. Atmospheric Environment.

Yates, S. and Warrick, A.W. (1987). “Estimating Soil Water Content Using Cokriging.”

Soil Science Society of America Journal,51, 23-30.

Zellner, A. (1971). “An Introduction to Bayesian Inference in Econometrics.” New

York: John Wiley.

Watson, C.R. and Olsen A. R. (1984). “Acid Deposition System (ADS) for Statis

114



tical Reporting—System Design and User’s Code Manual”. U.S. Environmental

Protection Agency.

115



Appendix A:

In this Appendix, the S function, iwm(m,cn,p,flag=1,sl,M2,misindx, Tint), and its S

help file is listed. The iwm S function is designed to perform spatial interpolation and

estimation of Ag, , with an EM algorithm that is described at the end of Chapter

2. “iwm” calls a C program, the source file of which is listed in Appendix B.

iwm S funtion help file:

Returns a list of estimated hypercovariance matrices and prior degrees of freedom.

USAGE: iwm(m, cn, p, flag = 1, si, M2, mi.sindx, Tint)

ARGUMENTS:

m: number of measured or non-measured air pollutants at a site

cn: when flag=O, cn is the known degrees of freedom in the prior distribution, “inverse

Wishart”, of the unknown spatial covariance matrix. When flag=i, cn is unknown

and the input is an initial value. That value must be greater than m times the

total number of sites, p+si.

p: number of gauged sites.

flag: a value indicates whether cn is known or not.

Si: number of ungauged sites.

M2: a response matrix. The rows are the observations at gauged sites over the time.

The columns are “snapshot” air pollutant levels observed at gauged sites.

misindx: an index vector of missing columns and observed columns.

Tint: a p column matrix with each column being a mean of all columns at a gauged

site. In iwm, Tint is used for getting an initial estimation of the between-sites

hypercovariance matrix Ti

VALUE:
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Ti: the estimated between—gauged-sites-hypercovariance matrix.

B 1: the estimated between-air-pollutants-hypercovariance matrix.

cn: if flag=O, cn is the same as the input value. If fiag=1, cn is the estimated degrees

of freedom.

C OBJECT FILE:

The C objective file “Phill.o” is supposed to be under your S working directory that

normally is at position 1 of your S search list. Use S function “searchO” to check it.

If that is not true, you may need to customize “iwm” function to your own version by

replacing the following S commands in your copy of iwm function,

filename_search() [1]

filename_paste(c(filename,”/Phill.o”) ,collapse=”)

dyn. load(filename)

with

dyn.load(”pathname/Phill .0”)

where “pathname” is the complete pathname under which “Phill.o” locates.

DETAILS:

IWM, standing for “Interpolation With Data Missing-by-design”, implements the theory

of interpolation with data missing-by-design. The theory is developed under a normal

distribution model when there are data missing-by-design. The other hyperparameters

B°, F—’ are estimated by unbiased estimators. The output Ti of iwm is used later

as an input for the Sampson and Guttorp nonparametric approach for extending Ti

to including all sites. The structure of iwm is that: first, iwm does some initial data

manipulation and second, it calls “Phiil.o”. It is in the C program where the EM

algorithm of the interpolation theory is implemented.

As a warning, iwm adopts an EM algorithm, which is notoriously slow. Sometime when

the dimensions of the observed data matrix are big, it could take hours, even days to

finish. So first of all, be patient! Secondly, either submit it as a batch job or lower the

precision value at line 70 of file “Phiii.c”. When you change the source code file, be
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sure that you recompile the file with unix command “cc -c Phill.c” and copy the new

object file to your S working directory. The current value is set to be 0.0005. You may

set it to a different number. Also you can try various transformations of the data matrix

to make it close to normal. By doing those, the convergence is hopefully faster.

EXAMPLES:

Consider an artificial example for an explanation of how to use “iwm”. Suppose there

are four Sites 1, 2, 3 and 4. Site 1 is an ungauged site (sl=1), Sites 2, 3 and 4 are gauged

sites (p=3). Three air pollutants: 504, 03, NO3 are measured at all sites. Only SO4

is measured at Site 2, 03 at Site 3, and, SO4, 03 and NO3 at Site 4. Now label 1 to 3

for SO4, 03, NO3 at Site 2; 4 to 6 for SO4, O3 NO3 at Site 3 and 7 to 9 for 504, 03,

NO3 at Site 4. Since the columns of air pollutants labeled with 2, 3, 4, 6 are missed,

and the columns labeled with 1, 5, 7, 8, 9 are observed, misindx=(2,3,4,6,1,5,7,8,9). If

further, the observed data matrix is:

Site #2 Site #3 Site #4

SO4 03 5O4,03,NO3

t=1 1.2 3.4 1.6 4.0 2.7

t=2 1.7 3.1 1.1 3.9 2.5

then

M2
= (1.2 3.4 1.6 4.0 2.7

\1.7 3.1 1.1 3.9 2.5

and
/1,2 3.4 2.667

Tint = I
\ 1.7 3.1 2.5

where the third column of Tint is the mean of the columns 4,5,6 of M2.

Macros of IWM:

function(m,cn,p,flagl,sl,M2,misindx,Tint)

{

f_dim(M2) [1]
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1_p*m—dim(M2) [2]

tmlO_c(1 :f)

Z_c(rep(1,f),tmlO,cos(2*pi*tmlO/12),sin(2*pi*tmlO/12))

k_length(Z) If

Z_matrix(Z,k,f ,byrowT)

Bhat_t (M2)7.*%t (Z)%*°hsolve(Z°h*%t (Z))

MuO_apply(Bhat ,2 ,mean)

S_t (M2) 7*7M2-Bhat70*70Z%*70M2

tmpi_as integer(p*m-1)

F1_matrix(O,k,k)

for (i in 1:tmpi) {
a.rep(-1/tmpi ,tnipi)

a[i] _1+a[i]

a_matrix(a, tmpi,1)

F1_F1+t (Bhat) 7.*7.a%*7.t (a) °h*’/.Bhat/c (t (a) *7,S7.*7.a)

}

F1_ (n+f-k-2)*F1/tmpi

B02_matrix(1 ,tmpi ,1)70*%matrix(MuO , 1 ,k)

tmp_Bhat-B02

Ssim_S+tmp%*Y.solve(F1) %*Y.t (tmp)

B1_diag(rep(1 ,m))

Bhat2_t (TintYh*’ht (Z)Y.*Y0so1ve(Zh*Y0t(Z))

T1_t (Tint)7*Y0Tint-Bhat2%*Y.Z%*7.Tint

nO

filename_search() [1]

filename_paste(c(filename,”IPhill.o),collapse””)

dyn. load (filename)

rvalues_ .CQ’Phill”, as.double(T1), as.double((B1)),

as.integer(misindx), as.double((Ssim)),as.integer(flag),

as.integer(n), as.integer(f), as.integer(p), as.integer(m),

as.integer(k), as.integer(l), as.double(cn), as.integer(sl))
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list (Tlrvalues[[1]] ,Blrvalues[[2]] ,degree=rvalues[[12]])

}
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Appendix B:

Source file of C program Phill.o:

#include <math.h>

#include <stdio .h>

void Phill(T1, Bi, misindxl, Ssiml ,flagl,nl,fl ,pl ,ml ,kl ,ll ,cnl, sli)

mt *flagl, *nl,*fl,*pl,*ml,*kl,*ll, *misindxl, *sll;

double *T1, *B1, *Ssiml, *cnl;

{

mt flag, n,f,p,m,k,l,sl;

double **T, **B, **Ssim,cn;

double **,**matrixQ;

double ma,tO,tl,t2,detQ,snQ,t3,t4;

mt i,j,*ivectorQ, *misindx, tmpi2;

void maxlQ, 1Q,f_matQ, detlogO;

/* flag = 0 degrees of freedom is known

(ie. m is constant in the paper)

= 1 estimate the df as well

n = number of observations in the past

f = number of observations in the future

1 = number of missing columns

p = number of (gauged) stations

s1 number of (ungauged) stations

m = number of ions

k = number of coefficients in the linear model

(i.e. 4 in the paper)

cn= initial estimate of m;
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that is, if flag =0 then df =cn else if

flagl then use the algorithm in the paper with

cn as initial value

SsimS”{”}

misindx = the index matrix for the missing columns and

the not missing cls.

*1

/* T is Lambda, B is Omega *1

flagflag1;

nflnl;

f=*f 1;

p*pl;

m*ml;

k=*kl;

l=*l1;

cn*cnl;

s1*sll;

Tmatrix(p,p);

Bmatrix(m,m);

misindxivector(m*p);

matrix(m*p ,m*p);

Ssimmatrix(p*m-l,p*m-l);

/*******************/

for (j0;j<m*p;++j)

misindx[j]=*(misindxl+j);

for (i0; i<p*m—l;+-i-i)

for (j0;j<p*m—l;++j)

Ssim[i] [j]*(Ssiml+i*(p*m—1)+j);

for (i0;i<p;++i)

for (j0;j<p;++j)

T[i] [j]*(T1+i*p+j);
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for (i0;i<m;++i)

for (j0;j<m;++j)

B[i] [j]*(B1+i*m+j);

printf(”The program will finish when ma < O.0005\n”);

while (1) {

1* printf (“step 1\n”); */

1(sigma, misindx, T, B, cn, p,f,l, m,n,k,Ssim,sl);

1* printf(”step 2\n”); */

while (1) {

tldet(T,p);

t2det(B,m);

if ( fabs(tl) < le—50) t11.O;

if ( fabs(t2) < le—50) t21.O;

/* printf(”step 3\n”); *1

maxl(cn,T,B,,p,m,sl);

1* printf (“step 4\n”); *1

t3=det(T,p);

t4det(B,m);

if ( fabs(t3) < le—50) t31O;

if ( fabs(t4) < le—50) t4=1O;

if ((fabs(log(tl)—log(t3))<le-4)&&

(fabs(log(t2)—log(t4))<le-4)) break;

}

macn;

tmpi2p*m;

/* printf (“step 5\n”); */

detlog(T,B,&t2,&t3,p,m,l,misindx, Ssim);

/* printf (“step 6\n”); */

if (flag>O) cn=sn(cn,n,p,m,sl,f,k,l,t2,t3);

1* printf(”step 7\n”); */

123



ma=fabs(ma-cn)/cn;

printf(”ma is h1f\n”,ma);

if (ma<O.0005) break;

}
for (i0;i<p;++i)

for (j0;j<p;-i-+j)

*(T1+i*p+j)T[i] [j]
for (i0;i<m;++i)

for (j0;j<m;++j)

*(B1+i*m-I-j)=B[i] [j]
*cnlcn;

}
/**********************************************/

void maxl(c,T,B,L,p,m,sl)

double **T,**B,**L,c;

mt p,m,sl;

{
mt i,j,k,l;

double xO,xl,detQ;

void invert_matrixQ;

for (k0;k<p;-f+k)

for (l=O;l<p;++l)

for (i0,T[k] [l]0.O;i<m;++i)

for (j0;j<m;++j)

T[k] [l]+L[m*k+i] [m*l+j]*B[i] U]!
(c— (double) (sl*m))/(double)m;

invert_matrix(T,p);

for (k=O;k<m;-i-+k)

for (10;l<m;++l)

for (i0,B[k][1]0.O;i<p;++i)
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for (j0;j<p;-f+j)

B Ek] [1] +=L [in*i+k] [m*j+l] *T [i] Ci] /

(c—(double)(sl*m))/(double)p;

invert_matrix(B,m);

}
/**********************************************/

double sn(cl,n,p,m,sl,f,k,1,t2,t3)

double cl,t2,t3;

mt n,p,m,sl,f,k,l;

{

double kl,k2,c2,funclQ,trigarnmaQ;

mt i, tmpi;

while (1) {
tmpip*m-l;

kl=funcl(cl,n,p,m,sl,f,k,l,t2,t3);

c2c1;

for (il,k20.0;i<p*m;++i)

k2=k2+trigamma((cl+(double) (n+f-i—k—sl*m))/2 .0)

—trigainma((cl—(double)(i+sl*m))/2.0);

k2k2/2.0;

c1c2-kl/k2;

1* printf(”kl,k2,cl,c2 is %1f 701f °hlf °hlf\n”,kl,k2,cl,c2); *1

if (fabs(kl)<1.e-08) break;

if (cl<(double) (m*(p+sl)))

{

if (c2/2>(double)(m*(p+sl)+1)) c1c2/2;

else

ci (double) (m*(p+si)+i);

}

}
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return ci;

}

double funcl(c,n,p,m,sl,f,k,l,t2,t3)

double c,t2,t3;

mt p,m,n,k,si,f,l;

{

double tl,digamma() ,**matrix() ,de-tQ;

mt i;

void f_matQ;

for (i1,t10.0;i<p*m;-i-+i)

titi+digamma((c+(double) (n+f—i—k—si*m)) /2.0)

—digamma((c— (double) (i+si*m))/2 .0);

/* printf(”ti,t2,t3 °hlf °hlf701f\n”,ti,t2,t3);

return ti—t2+t3;

}

void detlog(T,B,t2,t3,p,m,l,mismndx,ssim)

double **T, **B, *t2,*t3,**ssim;

mt p,m,l, *misindx;

{

double **Psi22, **tmi, **tm2, **R, **matrixQ,detQ

double **Phiii, **Psi;

mt tmpi2,tmpi,i,j ,ii,i2,i3,tpi;

tmpip*m-l;

tmpi2p*m;

Rmatrix(p*m, p*m);

Phiiimatrix(tmpi2, tmpi2);
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for (i10;±1<tmp±2;++i1)

for (i20;±2<tmpi2;++i2)

R[±1] [±21=0.0;

for (i0; ±<p*m; i++) {

tpimis±ndx[i] —1;

R[tp±] [±1=1.0;

}

for (i0;i<tmp±2;++i)

for (j0;j<tmp±2;++j)

Ph±11[i] [j]T[±/m] [j/m]*B[±°hm] [j°hm];

tmlmatr±x(tmp±2, tmp±2);

tm2=matr±x(tmp±2, tmp±2);

for (±1=O;±1<tmp±2;++±1)

for (±2=0; ±2<tmp±2 ;

tml[±1] [±2]R[±2] [±1];

for (±1=0;±1<tmp±2;++±1)

for (±2=0; ±2<tmp±2 ;

for (±3=0,tm2[±1] [±2]=0.0;±3<tmp±2;++±3)

tm2 [±1] [±2] =tm2 [±1] [±2] +tml [±1] [±3] *ph±11 [±3] [±2]

f_mat (Ph±11 ,tmp±2);

f_mat (tml ,tmp±2);

Ps±matr±x(tmp±2, tmp±2);

for (±1=0;±1<tmp±2;+i-±1)

for (±2=0,Ps±[±1][±2]=0.0;±2<tmp±2;++±2)

for (±3=0; ±3<tmp±2 ; ++±3)

Ps±[±1] [±2]Ps±[±1] [±2]+tm2[±1] [±3]*R[±3] [±2];

f_mat (tm2,tmp±2);

f_mat(R, tmp±2);

Ps±22matr±x(tmp±, tmp±);

for (±1=0; ±1<tmp±; ±1++)

for (±2=0; ±2<tmp±; ±2++) {
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Psi22 [ii] [i2] =Psi [il+l] [i2+l] +ssim[il] [i2];

}
*t2=log(det(Psi22,tmpi));

for (i10; il<tmpi; il++)

for (i2O; i2<tmpi; i2++) {

Psi22[il] [i2]=Psi[il+l] [i2+l]

}
*t3=log(det(Psi22,tmpi));

f_mat(Psi, tmpi2);

f_mat(Psi22, tmpi);

}
/******i*****************************************************/

#include <stdio .h>

#include <math.h>

/*****************************************************************/

/*

/* This module gives E(\_{(11)} I M_{2}, \Phi, \cn{*})

1* and E(log I\J(ii)}I I m_{2}, \Phi, \cn{*}) for the

1* systematic pattern with whole column missing *1
/* is \Sigma..{(11)}

1* log is log I\Sigma_{(11)} I *1

1* phi is the hyperparameter \Phi_{(11)}=

1* \Lambda_{g} \otimes \Omega *1

1* cn is the degrees of freedom, another hyperparameter

1* s2 is number of gauged stations, si is number of ungauged

/* stations *1

1* 1 is number of missing columns, misindx is the index of

1* missing columns

1* k is number of responses at each station *1
1* n is number time spots in the past, f is that in the future */
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/* h is number of covariates

void 1(sigma, misindx, Lambda, Omega,

delta, s2,f,l, k,n,h,Ssim,sl)

double **, **Lambda, **Omega, **Ssim,delta;

mt 1, k,h,n, s2,f, *misindx,sl;

{

double **Psillstar, **Psill, **Psil2, **Psi22, **matrixQ, **Psi;

double **R, **Rt, **tml, **tm2, **tm3, **tm4,**tm5, **1;

double **Psi22in, **Phi22, **Psillstarin, **Phill, cont,contl;

double **etal2, **etal2star;

mt ii, i2, i3,tmpi, tmpi2, tpi;

void mat_inverseQ, f_matQ;

FILE *out;

tmpis2*k -l

Rmatrix(s2*k, s2*k);

for (i10;il<s2*k;++il)

for (i20;i2<s2*k;++i2)

R[il] [i2]0.O;

for (i10; il<s2*k; il++) {
tpi=misindxEil]—1;

R[tpi] [il]=1.O;

}

tmp i 2 = s2 *k;

Phillmatrix(tmpi2, tmpi2);

Psimatrix(tmpi2, tmpi2);

for (i10;il<tmpi2;++il)

for (i2=O; i2<tmpi2;++i2)

Phill[il] Ei2]LambdaEil/k] [i2/k]*Omega[il%k] [i2%k];
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tmlmatrix(tmpi2, tmpi2);

tm2matrix(tmpi2, tmpi2);

for (i10;il<tmpi2;++il)

for (i20;i2<tmpi2;-H-i2)

tml[il] [i2]R[i2] [ii];

for (il=O;il<tmpi2;++il)

for (i20; i2<tmpi2 ; ++i2)

for (i30,tm2[il][i2]0.O;i3<tmpi2;++i3)

tm2[il] [i2]=tm2[il] [i2]+tml[il] [i3]*Phill[i3] [i2]

for (110;il<tmpi2;++il)

for (i20,Psi[il][i2]0.O;i2<tmpi2;++i2)

for (i3O; i3<tmpi2 ;++i3)

Psi[il] [i2]=Psi[il] [i2]+tm2[il] [i3]*R[i3] [i2]

f_mat (tml, tmpi2);

f_mat(tm2, tmpi2);

Psillmatrix(1,1);

for (i10; il<1; il++)

for (i2=O; i2<1; i2++) {
Psill[il] [i2]Psi[il] [i2]

}
Psil2matrix(1 ,tmpi);

for (i10; il<1; il-H-)

for (i2O; i2<tmpi; i2++) {
Psil2 [ii] [i2]Psi[il] [i2+1]

3-

Psi22matrix(tmpi,tmpi);

for (il=O; il<tmpi; il++)

for (i2=O; i2<tmpi; i2++) {
Psi22[il] [i2]Psi[il+1] [i2+1]

3-
etal2matrix(1,tmpi);
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Psi22inmatrix(tmpi, tmpi);

mat_inverse(Psi22, tmpi, Psi22in);

f_mat(Psi22, tmpi);

Psi22matrix(tmpi, tmpi);

for (i10; il<tmpi; il++)

for (i20; i2<tmpi; i2++) {

Psi22[il] [i2]Psi[il+1] [i2+1]

}

f_mat (Psi ,tmpi2);

for (i10;il<1;++il)

for (i20 ; i2<tmpi ; ++i2)

for (i30,etal2[il] [i2]0.O;i3<tmpi;++i3)

etal2[il] [i2]etal2[il] [i2]+Psil2[il] [i3]*Psi22in[i3] [i2];

tml=matrix(tmpi, 1);

for (i10;il<tmpi;++il)

for (i2O ; i2<1 ; ++i2)

tml[il] [i2]Psil2[i2] [ii];

tm2matrix(1, 1);

for (i10;il<1;++il)

for (i20;i2<1;++i2)

for (i30,tm2[il][i2]=O.O;i3<tmpi;+-t-i3)

tm2[il] [i2]tm2[il] [i2]+etal2[il] [i3]*tml[i3] [i2J

Psillstar=iuatrix(1,1);

for (i10; il<1; il++)

for (i20; i2<1; i2++)

Psillstar[il] [i2]Psill[il] [i2]—tm2[il] [i2]

Psillstarinmatrix(1,1);

/*outfopen(”jmik”,”w”); */

/*for (i10;il<1;il++) {*/

1* for (i20;i2<1;++i2) {*/

1* fprintf(out,”°h5.21f “,Psillstar[il][i2]);*/
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1* if (ilY.1O==9) fprintf(out,”\n”); }*/

/*fprintf(”\n\n”); }*/

/*fclose(out) ;*/

/*exjt(0) ;*/

if (1 0) mat_inverse(Psillstar, 1, Psilistarin);

if (1 ‘=0) {

f_mat (Psillstar,l);

f_mat (Psill,l);

f_mat(tm2, 1);

f_mat(Psil2,1);

}

f_mat(tml, tmpi);

contdelta— (double) (sl*k);

1=matrix(tmpi2,tmpi2);

for (i10; il<1; il++)

for (i20; i2<l; i2++)

1[il] [i2]cont*Psillstarin[il] [i2];

tmlmatrix(l,tmpi);

for (i10;il<l;++il)

for (i2=0;i2<tmpi;++i2)

for (i30,tml[il][i2]=0.0;i3<l;++i3)

tml [ii] [i2] =tml [ii] [i2] +Psillstarin [ii] [i3] *etal2 [i3] [i2]

for (i10; il<1; il-H-)

for (i20; i2<tmpi; i2++) {

1[il] [i2+l]—1.0*cont*tml[il] [i2]

l[i2+l] [ii] sigmal [ii] [i2+l];

}

contldelta-(double) (sl*k-n-f+l-t-h);

tm2matrix(tmpi , 1);

for (i10;il<tmpi;++il)

for (i20;i2<l;+-i-i2)
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tm2[il] [i2]=etal2[i2] [ii];

tm3=matrix(tmpi ,tmpi);

for (il=O;il<tmpi;++il)

for (i2=O;i2<tmpi;++i2)

for (i30,tm3[il][i2]0.O;i3<1;++i3)

tm3[il] [i2]tm3[il] [i2]+tm2[il] [i3]*tml[i3] [i2J

if (1 ‘=0) f_mat(tml,1);

f_mat(tm2, tmpi);

tm4=matrix(tmpi,tmpi);

for (il=O;il<tmpi;++il)

for (i2=0; i2<tmpi ; ++i2)

tm4 [ii] [i2] Psi22 [ii] [i2] +Ssim [ii] [i2]

tm5matrix(tmpi,tmpi);

mat_inverse(tm4, tmpi, tm5);

tml=matrix(tmpi,tmpi);

for (il=0; il<tmpi; il++)

for (i20; i2<tmpi; i2++) {

1[il+1] [i2+1]contl*tm5[il] [i2]+cont*tm3 [ii] [i2]

+(double)1*Psi22in[il] [i2];

f_mat (tml ,tmpi);

f_mat(tm4, tmpi);

f_mat (Phill ,tmpi2);

f_mat(tm5, tmpi);

f_mat(Psi22, tmpi);

f_mat(tm3, tmpi);

f_mat(Psi22in, tmpi);

if (1 =0) {
f_mat (etal2,1);

f_mat (Psillstarin,1);

}
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tml=matrix(tnpi2,tmpi2);

Rt=matrix(tmpi2, tmpi2);

for (il=O;il<tmpi2;++il)

for (i2=O; i2<tmpi2 ; ++i2)

Rt[il] [i2]R[i2] [ii];

for (il=O;il<s2*k;++il)

for (i20;i2<s2*k;++i2) {

tml[il] [i2]0.O;

for (i30;i3<s2*k;++i3) tml[il] [i2]=

tml[il] [i2]+1[il] [j3]*Rt[j3] [i2]

}

for (i10;il<s2*k;++il)

for (i20;i2<s2*k;++i2) {

[ii] [i2]0.O;

for (i30;i3<s2*k;++i3) [ii] [i2]=

[ii] [i2]+R[il] [j3]*tml[j3] [i2]

}

f_mat(tml, tmpi2);

f_mat(Rt, tmpi2);

f_nat (R,tmpi2);

f_mat(1,tmpi2);

}
/**********************************************************/

#include <math.h>

#define SIGN(a,b) ((b)<O.O 7 -fabs(a) fabs(a))

void ord_mat(nvr,eig,mat)

mt nvr;

double *eig, **nat;

{
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mt i=O,j=O,k=O;

double tmp=O.O;

for (i=0;j<nvr;i++)

for (ji;j<nvr;j++)

if (eig[j]<eig[i]) {
tmpeig[j];

eig[j]eig[i]

eig[i] tmp;

for (k0;k<nvr;k++) {
tmpmat[k] [ji;
iuat[k] [j]matEk] [ii;

matEk] [i]tmp;

}

}

}

void tred2(a,n,d,e)

double **a,d[] ,e[];

mt n;

{

mt 10,k0,j0,i0;

double scale0 .0,hhO .0,h=0 .0,g0 .0,f0 .0;

for (i=n—1;i>1;i——) {
1i—1;

hscale=0.0;

if (1 > 0) {
for (k0 ; k<1 ; k++)

scale + fabs(a[i][k]);

if (scale == 0.0)
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e[i]a[i] [1];

else {

for (k0;k<1;k++) {

a[i] [k] / scale;

h +za[i] [k]*a[i] [k];

}

fa[i] [1];

g = f>O.O ? —sqrt(h) : sqrt(h);

e [ii scale*g;

h -= f*g;

a[i] [l]f—g;

f0.O;

for (j0;j<1;j++) {

a[j] [i]aEi] [j]/h;

g0.O;

for (k0;k<j ;k++)

g +a[j] [k]*a[i] [k];

for (kj+1 ;k<1;k++)

g +a[k] [j]*a[i] [k];

e[j]g/h;

f + e[j]*a[i][j];

}

hh±/(h+h);

for (jO;j<l;j++) {

fa[i] [j]
e[j]=g=e[j]-hh*f;

for (kO;k<j ;k++)

a[j] [k] —= (f*e[k]+g*a[i] [k]);

}

}

} else
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e[i]a[i] [1];

d[i]h;

}

d [0] =0 . 0;

e [0] =0 0;

for (i0;i<n;i++) {

1i—1;

if (d[i]) {

for (j0;j<1;j++) {
g0.0;

for (k0 ;k<1 ;k++)

g +=a[i] [k]*a[k] [j];
for (k0 ;k<1 ;k++)

a[k] [j] —= g*a[k] [i];

}

}

d[i]a[i] [ii;

a[i] [i]1.O;

for (jO;j<1;j++)

a[i] [j]=a[j] [i]0.0;

}

}

/*********************************************************/

void tqli(d,e,n,z)

double d[] ,e[] ,**z;

mt n;

{

mt m0,10,iter0,i0,k0;

double s0.0,r0.0,p0.0,g0.0,f0.0,ddO.0,c0.0,b0.0;

void nrerrorQ;
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for (i1;i<n;i++)

e[i—1]e[i]

e[n—1]0.O;

for (l=iter=O;l<n;1++)

do {

for (ml;m<n-1;m++) {
dd=f abs (d Em] ) +f abs (d [m+1] )

if (fabs(e[m])+dd == dd) break;

}

if (m 1) {

if ((iter++) == 10000)

nrerror(”Too many iterations in TQLI”);

g=(d[l+1]—d[l])/(2.0*e[l]);

rsqrt((g*g)+1.0);

g=d [ml —dEl] +e El] / (g+SIGN (r ,

sc1.O;

p0.O;

for (im—1;i>1;i——) {
f=s*e[j];

bc*e[i];

if (fabs(f) >= fabs(g)) {

cg/f;

rsqrt((c*c)+1.0);

e Ei+1] =f*r;

c *= (s1.0/r);

} else {

sf/g;

rsqrt((s*s)+1.0);

eEi+1]g*r;

s *= (c1.0/r);

}
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gd[i+1] -p;

rCd [i] —g)*s+2. O*c*b;

ps*r;

d[i+1]g+p;

gc*r-b;

for (k0;k<n;k++) {

fz[k] [i+1];

z[k] [j+1]s*z[k] [i]+c*f;

z[k] [i]c*z[k] [i]—s*f;

}

}

d[l]d[l]—p;

e[m]0.O;

}

} while Cm 1);

1* printf(”Number iterations in tqli = ‘/.d\n”,iter); */

}

#include <malloc .h>

#include <stdio .h>

/*******************************************************/

void nrerror(error_text)

char error.text[];

{

fprintfCstderr,”Numerical Recipes run-time error..

fprintfCstderr,”°hs\n” ,errortext);

fprintfCstderr,”. . .now exiting to system..

exit Ci)

3.
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double *vector(nh)

mt nh;

{

double *v;

v(double *)calloc(nh,sizeof (double));

if (v) nrerror(”allocation failure in dvectorQ”);

return v;

}

/*******************************************************/

mt *ivector(nh)

mt nh;

{

mt *v;

v=(int *)calloc(nh,sizeof(int));

if (!v) nrerror(”allocation failure in ivectorO”);

return v;

}
/*******************************************************/

double **matrix(nrh,nch)

mt nrh,nch;

{

mt i,j;

double **m;

m(double **) calloc(nrh,sizeof(double*));

if (!m) nrerror(”allocation failure 1 in matrixO”);

for(i0; i<nrh; i++) {

m[i]=(double *)calloc(nch,sizeof (double));

if (m[i]) nrerror(”allocation failure 2 in matrixQj;
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}

return m;

}
/******************************************************/

void f_mat (m,nrh)

double **m;

mt nrh;

{

mt i0;

for(i=nrh—1;i>0;i——) free((char*) (m[i]));

free((char*) (m));

}

double **dmatrix(nrh,nch)

mt nrh,nch;

{

mt i;

double **m;

m(double **) calloc(nch,sizeof(double*));

if (m) nrerror(”allocation failure 1 in dmatrixQ”);

for(i=O;i<nch;i++) {

m[i]=(double *)calloc(nrh,sizeof (double));

if (!m[iJ) nrerror(”allocation failure 2 in dmatrixQ”);

}

return m;

/**********************************************************/

#include <math.h>

double det(h,m)
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double **h;

mt m;

{

double *dv,*er,tmp,**temp;

double *vector() ,**matrixQ;

void tqli() ,tred2() ,f_matQ;

mt i,j;

temp=matrix(m,m);

for (i0;i<m;++i)

for (j0;j<m;++j)

temp[i] [j]h[i] [j]

ervector(m);

dv=vector(m);

tred2(temp,m,dv,er);

tqli(dv,er,m,temp);

for (i0,tmpl.O;i<m;-t--t-i)

tmp*=dv[i];

free((char*)(dv));

free((char*)(er));

f_mat (temp,m);

return tmp;

}
/**********************************************************/

void mat_inverse(h,m,invh)

double **h, **invh;

mt m;

{

double **hs ,*dv,*er,**lam;

double *vector() ,**matrixO;

void tqliO,tred2O,f_matQ,m_matO,nrerrorQ;
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mt i,j;

er=vector(m);

lam=matrix(m,m);

hs=matrix(m,m);

dv=vector(m);

tred2(h,m,dv,er);

tqli(dv,er,m,h);

for (i=O;i<m;++i)

if (dv[i]’O.O)

lam[i] [i]=1.O/dv[i]

else nrerrorQ’trying to invert a singular matrix”);

m_mat(hs,h,lam,m,m,m);

for (i0;i<m;++i)

for (j0;j<m;++j)

lam[i] [j]=h[j] [ii;

m_mat(invh,hs,lam,m,m,m);

f_mat (hs,m);

f_mat(lam,m);

free((char*)(dv));

free((char*)(er));

}

/**********************************************************/

void invert_matrix(h,m)

double **h;

mt m;

{

double **hs , *dv , *er , **lata;

double *vector() ,**matrixQ;

void tqli() ,tred2() ,f_mat() ,m_mat() ,nrerrorQ;

mt i,j;
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ervector(m);

lam=matrix(m,m);

hs=matrix(m,m);

dvvector(m);

tred2(h,m,dv,er);

tqli(dv,er,m,h);

for (i0;i<m;++i)

if (dv[i] !=O.O)

lam[i] [i]1.O/dv[i]

else nrerror(”trying to invert a singular matrix”);

m_mat(hs,h,lam,m,m,m);

for (i0;i<m;++i)

for (j=O;j<m;+-fj)

lam[i] [j]=h[j] [ii;

m_mat(h,hs,lam,m,m,m);

f_mat (hs,m);

f_mat(lam,m);

free((char*)(dv));

free((char*)(er));

}
/***********************************************************/

void m_mat(mO,ml,m2,n,p,m)

double **mO , **mj. , **m2;

mt n,p,m;

{

mt i,j,k;

for (i0;i<n;++i)

for (j0;j<m;+-i-j)

for (k0,mO[i] Ej]=O.O;k<p;++k)
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mO[i] [j]+m1[i] [k]*m2[k] U];

}
/**********************************************************/

void s_mat(mO,ml,m2,n,m,k)

double **mO , , **rn2;

mt n,m,k;

{

mt i,j;

if (k==o)

for (i0;i<n;++i)

for (j=O;j<m;-I--fj)

mOLi] [j]m1[i] [j]—m2[i] [j];

else

for (i0;i<n;++i)

for (j0;j<m;++j)

iuO[i] [j]m1[i] [j]-i-m2[i] [ii;

}

#include <math.h>

double trigamma(z)

double z;

{

double retval,rl,d,w,x,ww;

mt il,i2,j;

i2(int) (z);

if (i2>20) {

rlz;

wwrl*rl;
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x1—(O .2—1/(ww*7))/ww;

d=1/z+(x/(z*3)+1)/(ww*2);

}

else {

i220—i2;

wz+i2;

rlw;

wwrl*rl;

x1—(O .2—1/(ww*7))/ww;

d=1/w+(x/(w*3)+1)/(ww*2);

i1i2;

for (j0;j<il;+-i-j) {

rlw;

d+1/(rl*rl);

}

3.

retval=d;

return retval;

3.

double digamma(x)

double x;

{

double y,retval,s3,s4,s5,dl,r,gammaQ;

s31.0/12;

s41 .0/120;

s50 .003968253968;

d1—0 .5772156649;

retval0 .0;
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yx;

if (y<=O.O) return retval;

if (y<1e—5) return (dl—1.O/y);

while (y<8.5) {

retvalretval-1
.
O/y;

yy+1.O;

}

r=1 .O/y;

retvalretval+log(y)-r/2;

retval=retval—r* (s3—r* (s4-r*s5));

return retval;

}

double gamma(x)

double x;

{

double gcs[24],pi,sq2pil,xmin,xmax,dxrel,y,sinpiy,gamiri;

double r9lgmc() ,csevlQ,gamlinQ;

mt ngcs,i,n,initsO;

gcs[1] O.008571195590989331e0;

gcs [2] = 0.00441538 1324841007e0;

gcs [3] = 0. 05685043681599363e0;

gcs [4] = —0.0042 19835396418561e0;

gcs [5] = 0. 001326808181212460e0;

gcs [6] = —0. 0001893024529798880e0;

gcs [7] = 0 . 0000360692532744124e0;

gcs [8] —0. 0000060567619044608e0;

gcs [9] = 0 . 0000010558295463022e0;

gcs [10] = —0. 0000001811967365542e0;
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gcs [11] 0. 0000000311772496471e0;

gcs [12] = —o . 0000000053542196390e0;

gcs [13] = 0. 0000000009193275519e0;

gcs [14] = —0. 0000000001577941280e0;

gcs [15] = 0. 0000000000270798062e0;

gcs [16] = —0. 0000000000046468186e0;

gcs [17] = 0. 0000000000007973350e0;

gcs [18] —0.000000000000 1368078e0;

gcs [19] = 0 . 0000000000000234731e0;

gcs [20] = —0. 0000000000000040274e0;

gcs [21] = 0. 0000000000000006910e0;

gcs [22] = —0. 0000000000000001185e0;

gcs[23] 0.0000000000000000203e0;

pi=3. 14159265358979324e0;

sq2pilo . 91893853320467274e0;

ngcs = inits(gcs,23,5.9604645e—8);

gainlim(&xmin,Scxmax);

dxrel = sqrt(1.1920929e—6);

y = fabs(x);

if (y>1O.O) {

gamin = exp((y—0.5)*log(y)—y+sq2pil+r9lgmc(y));

if (x<0.) {

sinpiy = sin(pi*y);

gamm = -pi/(y*sinpiy*gamm);

}

}

else {

n = x/1;

if (x<0.)

n = n-i;

y = x—n/1.0;
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n = n-i;

ganim = O.9375+csevl(2.*y-i. ,gcs,ngcs);

if (n>0)

for (i1;i<n;i++)

gamm = (y+i/i.O)*ganun;

else {

n = -n;

for (ii;i<n;i++)

gamin = gamm/(x+(i-i)/i.O);

return(ganuu);

}

gaml im(xmin , xmax)

double *xmin, *xmax;

{

double alnsml,alnbig,xln,xold,log() ,fabsQ;

mt i;

alnsmllog(2. 9387359e-37);

*xmjn= -alnsml;

for (ii;i<10;i++)

{

xold= *xmin;

xln=log(*xmin);

*xmjn *xmjn- *xmjn* ( (*xmjn+O 5) *xln

*xmin-0 . 2258+alnsml) / (*xmin*xln+0 . 5);

if (fabs(*xmin—xold)<0 .005) break;

*fljjfl - *xmjn+0.Oi;

alnbiglog(i .70i4117e38);

*xmaxalnbig;
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for (i1;i<10;i++)

{

xold *xmax;

xln=log(*xmax);

*xmax *xmax— *xmax* ( (*xmax-0 .5) *xln—

*xmax+0 . 9189—alnbig) / (*xmax*xln-0 .5);

if (fabs(*xmax-xold)<0 .005) break;

*xmax *xmax-0 .01;

*xmjn(*xmjn>1 .0- *xmax)? *xmin: 1.0- *xmax;

}

double r9lgmc(x)

double x;

{

double algmcs[7],xbig,xmax,y,z,csevlQ,sqrtQ,expO,logQ;

mt nalgm,initsO;

algmcs [1] = 0. 166638948045186;

algmcs [2] = —0 .0000138494817606;

algmcs [3] = 0.0000000098108256;

algmcs [4] = —0.0000000000180912;

algmcs [5] = 0.0000000000000622;

algmcs [6] = —0.0000000000000003;

nalgminits(algmcs ,6,5. 9604645e—7);

xbigl . 0/sqrt (5. 9604645e—7);

ylog(1 .7014117e38/12.0);

z= —log(12.0*2.9387359e—37);

xmax(y<z)? exp(y) :exp(z);

if (x<xbig) return(csevl(2.0*(10.0/x)*(10.0/x)—

1.0, algmcs ,nalgm)/x);

else return(1.0/(12.0*x));

}
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double csevl(x,cs ,n)

mt n;

double x,cs[201];

{

double bO,bl,b2,twox;

mt i,ni;

b10.O;

b00.O;

twox2 . Q*x;

for (i1;i<n;i++)

{

b2b1;

blbO;

nin+1-i;

bOtwox*bl-b2+cs [ni];

return(O.5*(bO-b2));

}

mt inits(os,nos,eta)

mt nos;

double os[201] ,eta;

mt i,ii;

double err,fabsQ;

errO.O;

iil;

while (ii<=nos && err<eta)

{

inos+1—ii;

errerr+fabs(os [i]);
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return (i);

}
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Appendix C: Figures
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Figure 3.1: Locations of gauged sites in Southern Ontario plotted with Census Subdivi
sion boundaries, where monthly pollution levels are observed and Sites 3, 29 (outliers)
are not plotted.
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Figure 3.2: Locations of selected sites in Southern Ontario plotted with Census Subdi
vision boundaries, where monthly interpolated pollution levels are needed.
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Figure 3.3: Plots for monthly observed and fitted, log-transformed levels of 03 in ppb,
SO2, NO2 and SO4 in g/m3,at Gauged Site 5.
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Quantiles of Standard Norma)

Figure 3.4: Normal quantile-quantile plots for original and log-transformed monthly
levels of SO4 in ug/m3 at Gauged Site 4.
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Figure 3.5: Plots for autocorrelation and partial autocorrelation of monthly, log

transformed levels of SO4 in g/m3 at Gauged Site 4.
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the GS approach.
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Figure 3.9: Means of monthly levels of 03 in ppb, in summers of 1983 1988 at gauged
sites in Southern Ontario plotted with CSD boundaries.

Figure 3.10: Means of monthly levels of 03 in ppb, in summers of 1983 1988 at selected
sites in Southern Ontario plotted with CSD boundaries.
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Figure 3.11: Scatter plots for residuals of monthly observed pollutant levels against
residuals of interpolated levels at the log-scale in winter and summer respectively, where
levels of 03 are in ppb, SO2, NO2 and SO4 in pg/m3.
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Figure 3.12: Pollutant-wise scatter plots for residuals of monthly observed pollutant
levels against residuals of interpolated levels at the log-scale in winter and summer
respectively, where levels of 03 are in ppb; SO2, NO2 and 504 in tg/m3.
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Figure 3.13: Boxplots for predicted, observed and residual levels of log-transformed,
monthly concentrations of 03 in ppb, 802, NO2 and 804 in1ug/m3,respectively.
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Figure 3.14: Locations of gauged sites in Southern Ontario plotted with Census Sub
division boundaries, where daily pollution levels are observed and Sites 3, 26 (outliers)
are not plotted.
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Figure 3.15: Normal quantile-quantile plots for original and log-transformed daily levels
of SO4 in [Lg/m3 at Gauged Site 1.
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Figure 3.16: Plots for autocorrelation and partial autocorrelation of daily, log-
transformed levels of 03 in ppb at Gauged Site 6, before an AR(1) transformation is
taken.
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Figure 3.17: Plots for autocorrelation and partial autocorrelation of daily, log-
transformed levels of 03 in ppb at Gauged Site 6, after an AR(1) transformation is
taken.
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Figure 5.1: Plot for trends in AMSPE.
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Months, 1=Jan. 1983; 48=Dec. 1986

Figure 5.2: MSPEs obtained by Hass’s interpolator and the Bayesian interpolator with
original acid rain data.

Figure 5.3: MSPEs obtained by Hass’s interpolator and the Bayesian interpolator with
log-transformed acid rain data.
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in US.

169

0

co

CD

Cd

0

01

0

1 2345678

sites from 1 to 35

:

1 2345678 91112 3141 516 T122a72s3c81323s3435

sites from 1 to 35




