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Abstract

This thesis is concerned with measuring and explaining the productive efficiency of

firms or organizations. In particular, the study compares three alternative methods of

measuring efficiency, namely, the deterministic frontier method, the stochastic frontier

method, and the data envelopment analysis method (DEA).

The dissertation consists of two parts. In Part I, the relative merits of the three

methods are discussed and evaluated through a Monte Carlo study under certain known

conditions. The study focuses on the effects of exogenous variables on efficiency estimates.

The results show that the stochastic frontier method generally produces better efficiency

estimates than the other two methods. The DEA, however, has a slight advantage in cases

where there are weak input substitution and large variations in input variables. In Part II,

the three methods are examined empirically through their applications to a panel of 19

railways in OECD countries and a panel of 36 international airlines. Comparison of the

three sets of efficiency estimates confirms that on average the stochastic frontier method

yields higher efficiency estimates than the other two methods, as indicated by the Monte

Carlo results. The efficiency estimates by the two parametric methods are highly correlated,

whereas there are considerable differences between the DEA estimates and those from the

parametric methods. This is also consistent with the Monte Carlo results. By comparing the

alternative efficiency estimates in the two applications, it is found that there is less

discrepancy among the three sets of efficiency estimates in the airline case than in the

railway case. This can be partly attributed to the fact that there are fewer variations in the
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operating environments in the airline case than in the railway case.

The simulation results in Part I provide some general guidelines regarding the relative

merits of the three alternative methods under certain known conditions. The two applications

of the three methods in Part II serve as examples of how these three methods can be applied

to practical problems where no a priori knowledge of either the production technology nor

the efficiency profile exists. They illustrate some of the problems that may be encountered

in empirical applications.
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1

Overview

This thesis is concerned with measuring and explaining the productive efficiency of

firms or organizations. In particular, the study compares three alternative methods to

measure technical efficiency in situations where firms operate under different operating

conditions and are subject to the effects of factors which are beyond managerial control.

The dissertation consists of two parts. In Part I, a Monte Carlo study is conducted

to compare the relative merits of three alternative methods, i.e. the deterministic frontier

method, the stochastic frontier method, and the data envelopment analysis (DEA) method,

in measuring efficiency. The study focuses on the effects of exogenous variables and outliers

on efficiency estimates. In Part II, the empirical performance of the three methods is

examined through their applications to two cases in the transportation industry. The first

application is to the passenger railways - a small sample case where the services are mostly

provided by highly regulated, nationalized firms. The effects of exogenous variables are

expected to be significant, and outliers might be present in the sample. The second

application is to the international airlines - a medium sample case where the firms operate

in a fairly competitive environment, and they have access to essentially the same technology

available even though there is a high degree of diversity in size.

Since Farrell (1957)’s work, the development and refinements of various methods for

measuring efficiency have progressed rapidly. However, there are limited studies which

compare the relative merits of the different methods. Most of these studies compare results

from the application of different methods to the same empirical data (such as Banker, Conrad

and Strass, 1986, Bjurek, Hjalmarsson and Forsund, 1990). The main motivation for these
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comparative analyses is the desire for the alternative methods to tell consistent stories about

the efficiency performance of the firms or Decision Making Units (DMUs) under study. In

this regard, these studies are applying the “methodology cross-checking” principle.

However, further insight into the relative performance of the various methods can be

obtained by applying different methods to a mixture of efficient and inefficient observations

generated using a “known” production technology model. Using this approach one can

evaluate these different methods not only relative to each other, but also relative to the

“known” underlying model.

There have been a few studies which use simulated data to evaluate the relative

performance of different methods with the knowledge of the “true” production and

inefficiency structures, such as Banker, Charnes, Cooper and Maindiratta (1988), Gong

(1987), Li (1991), Gong and Sickles (1992), and Banker, Gadh and Gorr (1993). However,

none of these comparative studies have addressed the issue of outliers and data errors

explicitly, although one of the main critiques of DEA is its sensitivity to outliers and data

errors. Improved knowledge in this aspect could help provide guidelines for the selection

of methodology in practical applications. Another issue that has not been addressed in these

previous studies is the effect of exogenous factors on efficiency measures. In most practical

applications, one would be most likely to have a group of firms (or decision making units)

which operate under different conditions. The observed productive performance of a firm

is the result of both its productive efficiency and its environment. In making efficiency

comparisons, one must separate the effects of the production environment and the effects of

the productive efficiency. The role of exogenous variables in measuring the efficiency of
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transportation firms is especially important because transportation production and cost depend

heavily on network and market characteristics of the firm. In some previous empirical

studies, researchers have attempted to take into account the effects of exogenous variables.

In general, there are two basic procedures to account for the effects of exogenous variables:

(1) an one-step procedure which includes the exogenous variables directly in estimating the

parametric frontier production functions, and (2) a two-step procedure which first estimates

the relative “gross” efficiencies using only inputs and outputs, then analyzes the effects of

the exogenous variables on the “gross” efficiency. It is necessary to examine how well each

of these methods incorporates the exogenous variables in order to provide helpful guidelines

in selecting an appropriate method for a particular practical problem.

In Part I of this thesis, Monte Carlo experiments are carried out to examine the

relative performance of the three alternative methods with respects to the effects of the

sample size, the variations in input values, the noise level, the exogenous variables, the data

outliers, and the different (underlying) production structures. The results show that the

performance of all three methods (in terms of correlations) improves with the sample size,

but deteriorates sharply with the noise level. The variations in input ranges do not appear

to have much effects on the performance of the alternative methods in the cases where input

substitution is over one, however, the performance of the two parametric methods is found

to fall noticeably in the cases where weak input substitution exists. The results also show

that the magnitude of exogenous variables does not appear to have any significant effects on

the performance of the one-step deterministic frontier method and the one-step stochastic

frontier method as long as the exogenous variables are correctly identified and accounted for.
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However, for the two-step procedure, especially for the DEA and the deterministic frontier

method, the effects of the exogenous variables are significant. The stochastic frontier

method, as expected, is quite robust with respects to outliers. By comparing their

performance in terms of mean efficiency estimates, the DEA method appears to be more

robust to the outliers than the deterministic frontier method, although both methods have

similar performance in terms of correlations. For the parameter range considered in this

study, the performance of the stochastic frontier method does not rely much on the structure

of the underlying production technology. However, it is found that the performance of the

deterministic frontier method is affected by the presence of input complementarity but not

by the returns to scale. The performance of the DEA method, on the other hand, is found

to deteriorate when the returns to scale increases and/or input complementarity exists. It is

found in general that the stochastic frontier method surpasses the other two methods in all

aspects examined.

The Monte Carlo study in Part I is an extension to the works by Gong (1987), Li

(1991), and Banker, Gadh and Gorr (1993). It provides some useful information regarding

the relative merits of the alternative methods in the presence of exogenous factors and

outliers (data errors) as well as in situations where input complementarity and non-constant

returns to scale exist.

The applications of the three alternative methods to the railways and the international

airlines in Part II of this thesis provide empirical evidence on the relative performance of

these methods. The studies of efficiency performance of the sample railways and airlines

also provide useful information on the effects of some policy variables and some other
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factors on the efficiency performance of the industries.

There are some previous studies examining the relative performance of the railways

across different countries, however, none of these studies has examined the effects of public

subsidies on the efficiency performance of the railways. In addition, there has been no

study comparing the results from applications of the DEA and the parametric methods to the

railway industry. Chapter 8 measures the productive efficiency of the railway systems in 19

OECD countries for the period of 1978-89, identifies the effects of government intervention

and subsidization on the productive efficiency of those railways, and compares the alternative

efficiency estimates from the three methods.

The empirical results from the railway study show that railway systems with high

dependence on public subsidies are significantly less efficient than similar railways with less

dependence on subsidies, and railways with high degree of managerial autonomy from

regulatory authority tend to achieve higher efficiency. Therefore, the institutional and

regulatory framework for railway industry must squarely address the question of railways’

managerial freedom, and subsidy policy must encourage railways to use normal market

mechanisms for improving their cost recovery and to use the subsidies only for improving

their services. The empirical results also indicate that efficiency measures may not be

meaningfully compared across railways without controlling for the variations in railways’

operating and market environments. Comparison of the efficiency estimates from the three

alternative methods confirms that on average the stochastic frontier method yields higher

efficiency estimates than the other two methods, as indicated by the simulation results in Part

I. The efficiency estimates by the two parametric methods are highly correlated although
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their mean values are different. There are substantial differences between the efficiency

estimates from the DEA-TOBIT and those from the parametric methods even though the

policy implications from all three methods are consistent. The main reason for the

differences is that the DEA-TOBIT is a two-step procedure whereas the paramethc methods

utilize an one-step procedure. As shown by the Monte Carlo simulation study in Part I, the

one-step procedure would produce different estimates from those using the two-step

procedure. Further, the DEA-TOBIT considers two outputs, i.e. passenger kilometers and

freight tonne-kilometers, while the one-step parametric production functions consider only

one output, i.e. total train kilometers.

The efficiency performance of 36 international airlines during the period of 1980

1992 is examined and analyzed in Chapter 9. Previous studies on the performance of

airlines are mostly based on late 1970s and early 1980s data. There has been no comparative

study on alternative efficiency estimates for international airlines. This study includes more

up-to-date data to evaluate recent changes in efficiency performance of the airlines, and

compares the alternative efficiency estimates. Some other factors which have been ignored

in the previous studies are also included in this study, such as incidental services. Incidental

services refer to catering services, ground handling services and maintenance services

performed for other airlines, etc. These services could account for up to 30 percent of total

operating revenues for some airlines1. To properly reflect the “total” output of an airlines,

1 Good, Nadiri, Roller, and Sickles (1993) does consider the incidental services as one
of airlines’ outputs. However, their studies are limited to the four largest European airlines
and their U.S. counterparts. They attempt to control for the effects of some operating
characteristics, but ignore the government ownership variable.
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the incidental services are treated as one of the outputs in this study.

The efficiency of the 36 sample airlines are measured and compared, and the effects

on efficiency of government ownership and technical progress are identified. The empirical

results show that technological progress has improved the overall performance of the

international aviation industry, especially for some of the major Asian carriers. The airlines

with majority government ownership are shown to be less efficient than other airlines with

similar operating characteristics. The results also indicate that the effects of network and

market environments should be controlled for in order to measure productive efficiency

meaningfully comparable across airlines.

Comparison of results from the alternative methods illustrates that although there are

noticeable differences in the levels of efficiency, the overall pattern of the efficiency

estimates from the two parametric methods are essentially the same, and the results by the

DEA-TOBIT are broadly similar to those from the parametric methods. The policy

implications from all three methods are consistent.

By comparing the relative performance of the alternative methods in the railway and

the airline cases, it is noted that there is much less discrepancy and hence higher correlations

among the alternative efficiency estimates in the airline case than in the railway case. This

is partly due to the better data quality for the airlines. The airlines’ operating environments

have less variations than those for the railways. In addition, the airline data set has a larger

sample size and is collected in a more consistent manner than the railway data set. The

higher correlations under these circumstances are consistent with the results from the Monte

Carlo experiments in Part I which shows that when the magnitude of the exogenous factors
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and/or the random noise level are high the efficiency estimates by the three alternative

methods may deviate considerably from the “true” efficiency. Thus, larger discrepancies

among the alternative efficiency estimates are expected for the railway case. One empirical

lesson from this study is that extra care is warranted when examining the data and the

estimation results in situations where large variations in the operating environments exist.

Although the application of the stochastic frontier method is expected to yield better results

in general, computational and data problems, such as multiple outputs, collinearity among

the inputs, and the lack of necessary price data, may leave Data Envelopment Analysis as

the only choice for certain empirical situations. There is no definite answer to the question

of which method is the best method, the answer relies on the particular situation in question.

The Monte Carlo results in Part I provide some general guidelines on the relative merits of

the three alternative methods under certain known conditions. The applications in Part II, on

the other hand, demonstrate some of the problems that may be encountered and also serve

as examples of how to deal with the practical problems where there is no prior knowledge

of either the production technology nor the efficiency profile.
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A Monte Carlo Comparison of Alternative Methods
for Efficiency Measurement
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Chapter 1

Introduction

1.1 Background

Since the pioneering work of Farrell (1957), much has been accomplished in the field

of efficiency measurement in terms of both theoretical studies and empirical applications.

Various methods, such as Data Envelopment Analysis (DEA) methods, stochastic frontier

methods, etc., have been developed to measure productive efficiency. Different methods

often yield different efficiency rankings among the firms being considered, and may lead to

different policy implications on how to improve the efficiency of a particular firm and of the

overall industry. Each method has its strengths and weaknesses. Knowledge of these

strengths and weaknesses will help researchers and policy analysts to choose the most

“suitable” method for a particular situation, and thus to make more accurate measurements

of efficiency. These in turn will help policy makers to make appropriate policy decisions.

Therefore, it is important to study the relative merits of different methods in terms of their

abilities to reveal the structure of production technology and the nature and extent of

inefficiency under different conditions.

The idea of productive efficiency proceeds from the concept of the production

function. The production function specifies the maximum quantities of realizable output,

given any level of inputs and, for any given level of output, the minimum quantities of inputs

needed for producing these outputs. That is, the production function describes a boundary,

or a frontier which sets a bound on the range of possible observations. Any production
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situation, given the definition of the frontier, is deemed inefficient if the outputs and inputs

are represented by a point below the production frontier. On the other hand, a situation will

be deemed efficient if the point is on the production frontier itself’. The amount by which

a production situation lies below its production frontier provides a measure of efficiency.

Thus, the production function acts as a criterion, or yardstick, serving as a base for assessing

efficiency. Efficiency measurement, therefore, involves two aspects. The first is to define

the production frontier and the second is to measure the efficiency using the production

frontier as a yardstick.

In practice, the true production frontier is not likely to be known, thus one needs to

construct an empirical production frontier using observations on inputs and outputs. The

subsequent measurements of efficiency vary according to the chosen functional form and

error distribution of the frontier as well as the size and composition of the sample.

Therefore, the construction of the production frontier is crucial in evaluating the relative

performance of a group of firms in an industry. There are many ways of estimating a

production frontier. The various estimation methods can be classified into two basic

approaches, parametric and nonparametric, depending on whether or not the frontier can be

specified as a function with constant parameters. The parametric approach estimates a

parametric representation of the production frontier using econometric techniques2. Within

‘Note that the idea of considering the production function as a frontier may be applied
to the cost function too. Efficiency can then be defined on the basis of the minimum cost
function.

2 Some studies use linear programming techniques to estimate a parametric frontier
function, such as Aigner and Chu (1968) and FOrsund and Hjalmarsson (1979).
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the parametric approach, the estimation of production frontiers has proceeded along two

general paths: (1) deterministic frontiers, which force all observations to be on or below the

frontier so that any deviation from the frontier is attributed to inefficiency; and (2) stochastic

frontiers, where a deviation from the frontier is decomposed into a random component

reflecting measurement error and statistical noise, and a component reflecting inefficiency.

The nonparametric approach, represented by the Data Envelopment Analysis (DEA)

method (Charnes, Cooper and Rhodes, 1978), uses mathematical programming techniques

to envelop observed input-output vectors as tightly as possible without requiring a prior

specification of functional forms for the production frontiers. That is, it does not assume

that the underlying technology “belongs to a certain class of functions of a specific functional

form which depend on a finite number of parameters, such as the well-known Cobb-Douglas

functional form” (Diewert and Parkan, 1983). It only requires the assumption of convexity

of the production possibility set and disposability of inputs and outputs. It employs a

postulated minimum extrapolation from observed input-output data in the sample. The

efficiency of a Decision Making Unit (DMU) is measured relative to all other DMUs in the

sample.

In the literature on measuring the performance of production units, the terms of

productivity and efficiency are often used interchangeably. In this dissertation, productivity

and efficiency are considered as separate but related concepts. Productivity refers to the

ratio of outputs to inputs. Efficiency involves the comparison between observed and optimal

values of outputs and inputs of a production unit, and it is a component of productivity.

With this distinction, this dissertation will not consider the methodologies for measuring
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productivity such as total factor productivity (TFP).

1.2 Research Issues

The development and refinements of the various methods for measuring efficiency

have progressed rapidly during the last two decades. However, there are limited studies

which compare the relative performance of the different methods in efficiency measurement.

Most of these studies compare results from the application of different methods to the same

empirical data (such as Banker, Conrad and Strass 1986, Bjurek, Hjalmarsson and Försund

1990). The main motivation for these comparative analyses is the desire for the alternative

methods to tell consistent stories about the efficiency performance of the firms or DMUs

under study. In this regard, these studies are applying the “methodology cross-checking”

principle. However, further insight into the relative performance of the various methods

could be obtained by applying these different methods to a mixture of efficient and inefficient

observations generated using a “known” production technology model. In this way, it will

be possible to compare these different methods in terms of their accomplishments not only

relative to each other, but also relative to the “known” underlying model. There have been

a few studies which use simulated data to evaluate the relative performance of different

methods with the knowledge of the “true” production and inefficiency structures. Banker,

Chames, Cooper and Maindiratta (1988) compares the performance of the DEA method and

a deterministic translog frontier function under two “known underlying technologies” -

piecewise loglinear and translog, first for a sample of 500 randomly generated observations

and then for the set consisting of the first 100 of the 500 observations. Banker, Gadh and
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Gorr (1993) extends the work of Banker, Charnes, Cooper and Maindiratta (1988) by

introducing measurement errors and different efficiency distributions. Li (1991) investigates

the relative performance of the DEA and the stochastic frontier method in estimating firm

specific efficiency levels with regards to three aspects: (1) different inefficiency profiles, (2)

different returns to scale, and (3) different noise levels. Gong and Sickles (1992) compares

the performance of the stochastic frontier method (with panel data) and the DEA for the

cases in which: (1) the complexity and structures of an underlying technology differ, (2) the

relative size of technical inefficiency to statistical noise in the stochastic components differs,

(3) the forms of the true structure of technical inefficiency vary, (4) input levels and

technical inefficiency are allowed to have an arbitrary degree of correlation.

One issue that is not considered in the previous comparative studies is the effect of

exogenous factors on the efficiency measures. In any realistic situation, the quantity of

output produced by a firm is determined by a large number of factors other than inputs.

Usually only a few of these factors are controlled by the firm and can be varied at the

discretion of the decision makers. Other factors, not necessarily less important, are

exogenously determined and serve as operating constraints within which production decisions

are to be made. For example, in the transportation industry, the output level, as measured

by revenue passenger kilometers and revenue tonne kilometres, is affected by shipment size,

load factor, spatial pattern of networks, the general economic condition, the population

density, and the extent of development of other transport modes etc.. Some of these factors,
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such as shipment size and load factor, are partially controllable by the carriers3. However,

other factors, such as economic condition and population density, are beyond the carriers’

control. Consider a firm whose output level is fixed4, the firm must minimize its input

consumption in producing the given level of output in order to be productively efficient.

When the actual level of input consumption exceeds the optimal level of input requirement

as specified by the production function, inefficiency occurs. However, this observed

“inefficiency” could be attributed to “bad” weather condition, which is out of the firm’s

control, or to unnecessary waste of certain inputs, which could be avoided by efficient

production. Thus, when evaluating public policies and management strategies designed to

improve performance, it is essential to separate the effects of the production environment

from the effects of productive efficiency. In making efficiency comparisons, one must take

into account differences in the firms’ environments, otherwise the efficiency measures would

reflect not merely the differences in efficiency but also the degree to which the environment

of a particular firm is favourable or unfavourable. The role of exogenous variables in

measuring the efficiency of transportation firms is especially important because transportation

production and cost depend heavily on network and market characteristics of the firm.

The parametric methods can incorporate these exogenous variables directly in

estimating the frontier function (Lee and Schmidt, 1993). This is referred to as the one-step

procedure in this dissertation. However, the DEA method cannot account for the effects of

Some of these decisions are subject to governmental control.

“In many cases output is essentially determined by the market condition, governmental
control etc., therefore it can be considered as fixed.
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exogenous variables when computing the efficiency indices5. It is necessary to use a second

stage, such as regression analysis with the DEA index as dependent variable, to account for

the variables beyond managerial control and to identify the effects of these exogenous

variables on the observed efficiency (Ray, 1991, and Oum and Yu, 1994). This two-step

procedure can also be used with the parametric methods as well (Bruning, 1991, and Loeb,

1994). In practice, one may face situations with different degrees of variations in the firms’

operating environments. For example, one may have a sample of firms operating in very

different environments in the transportation industry. Under such conditions, the two-step

procedure might be more useful to the decision makers since it relates the exogenous

variables directly to the firms’s performance. On the other hand, the differences in firms’

operating environments in a manufacturing industry are likely to be to a much lesser degree.

The production of a particular sets of products is more likely to follow a clear engineering

design where there is better information about the “true” production technology. In such

cases, the one-step procedure might work better. These arguments are mostly speculations,

as there is not yet obvious methodological and empirical support. Knowledge about the

relative merits of the alternative methods under such different situations would help the

Banker and Morey (1986) takes into account non-discretionary inputs or outputs which
are not subject to managerial control. However, in applying their model to incorporate the
effects of the exogenous variables, one has to treat these exogenous variables either as
nondiscretionary inputs or outputs, thus affecting the resulting efficiency scores. Another
problem with the Banker and Morey (1986) model is that it requires an assumption of free
disposability of the nondiscretionary inputs. That is, the decision-maker is allowed to under
utilize any available nondiscretionary inputs. This is not necessarily a realistic assumption.
For example, weather condition is a nondiscretionary input in transportation, since the
carriers have no control over the amount of “bad” weather. Thus, they can have neither
more nor less than the exogenously determined level of “bad” weather.
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researcher to select the appropriate method for a particular problem. To my knowledge,

there have not been any studies comparing the relative performance of the various methods

in measuring efficiency while taking into account the effects of exogenous factors. Chapter

6 of this thesis will attempt to investigate this issue using Monte Carlo experiments where

the underlying production technology is known.

Another issue that is not considered in the previous comparative studies is the effect

of outliers. One of the main criticisms of the DEA is its sensitivity to outliers and data

errors (Sexton, Silkman, and Hogan, 1986, and Bauer, 1990) because it is an extremal

method. However, there is no solid evidence on how sensitive the DEA is to outliers and

data errors, and how it compares to the parametric methods in this regard. Except for

Mensah and Li (1993), none of the previous comparative studies addresses the issue of

outliers explicitly. Mensah and Li (1993) attempts to evaluate the effects of outliers on

efficiency estimates by the DEA and the translog models. They first remove one efficient

observation to reestimate the efficiencies, and then compare the new estimates with the

original ones. Their study is based on observed empirical data. However, further

investigation with the knowledge of the “true” production and efficiency structure will

improve our understanding of the effects of outliers and data errors, and this will be

discussed in Chapter 6 of this thesis.

1.3 Objective of Part I

The objective of Part I is to evaluate the DEA and the parametric frontier methods

in measuring efficiency under certain less than ideal conditions, particularly, when there are
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considerable differences among the firms in question, and to provide some guidelines for the

selection of methodology in practical applications. This study focuses on the effects of

exogenous variables and the effects of outliers (and data errors) on efficiency measurement.

To accomplish this objective, the Monte Carlo technique is used. It allows for control of the

underlying production technology and the “operating environments”. In particular, we

evaluate the comparative performance of the alternative efficiency measurement methods in

terms of the sample size, different functional forms for the underlying production

technology, and in the presence of exogenous variables and outliers. The comparisons are

made among three most popularly used models: the deterministic frontier method, the

stochastic frontier methods, and the DEA method. This study serves as an extension to the

works by Li (1991), Gong and Sickles (1992), and Banker, Gadh and Gorr (1993).

1.4 Organization of Part I

The previous comparative studies are reviewed in Chapter 2. The review is limited

to comparative studies because of the large volume of theoretical and empirical literature in

the field of efficiency measurement. Chapter 3 presents the basic defmitions of efficiency

adopted in this dissertation. Chapter 4 then describes the various efficiency measurement

methods and reviews the related theoretical literature. Chapter 5 outlines the general design

of the Monte Carlo experiments. Chapter 6 discusses the experimental results. Chapter 7

summarizes the general results and provides some guidelines for practical applications.
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Chapter 2

Literature Review of Comparative Studies

On Efficiency Measurement

The objective of this chapter is to give an overview of previous comparative studies

on efficiency measurements. The studies are grouped into two categories: studies based on

empirical data and studies based on simulated data. The related literatures on the

development of various methods are reviewed in Chapter 4 where we discuss the alternative

methodologies.

2.1 Studies based on empirical data

Most of the comparative studies on efficiency measurement are based on specific

empirical data, and are ad hoc in nature, van den Broeck, Førsund, Hjalmarsson and

Meeusen (1980) compares the deterministic and stochastic methods for estimation of a

frontier production function, based on cross-section data for 28 Swedish dairy plants for the

period of 1964-73. They estimate the stochastic frontier using a maximum likelihood

estimator, and estimate the deterministic frontier using a combined linear programming and

maximum likelihood approach. Their comparison focuses on characteristics of the estimated

frontier functions, such as input elasticity and scale elasticity, as well as their relationships

to the average production function. They did not compare the firm specific efficiency

measures.

Corbo and de Melo (1986) uses the 1967 Chilean manufacturing census data to
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compare four different methods: (1) the modified linear programming approach proposed by

Aigner and Chu (1968)’; (2) the deterministic statistical frontier by corrected ordinary least

squares (COLS) method (Richmond, 1974); (3) the deterministic statistical frontier by

maximum likelihood estimation method (MLE) (Greene, 1980); and (4) the stochastic

frontier approach using COLS. They focus their comparison on the sensitivity of the results

to model selection, including the selection of functional form for the average production

function, and the selection of error structure and specific characteristics of the distribution

of error terms. The study finds that within the deterministic frontier methods, the linear

programming and the deterministic statistical model yield highly correlated measures of

technical efficiency. It also finds that the estimates are sensitive to the selection between

deterministic statistical and stochastic formulations, but the choice of error structures has a

very small impact on the measurement of inefficiency. The general result of their study is

that the different methods to measuring technical efficiency yield broadly similar results.

Although they carry out a rather comprehensive comparison of the frontier function

approaches in measuring efficiency, the nonparametric methods are not included in their

analysis.

Banker, Conrad and Strauss (1986) applies a translog frontier cost function and the

Data Envelopment Analysis method to a sample of North Carolina hospitals to examine

inferences about the hospital cost and production functions, and to compare the results from

the two different methods. The translog results indicate the presence of constant returns to

‘Schmidt (1976) shows that, in a logarithmic mode, the linear programming procedure
is equivalent to the deterministic statistical model with an exponential error structure.
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scale, while the DEA estimates suggest both increasing and decreasing returns to scale in

different segments of the production functions. The DEA efficiency estimates are found to

be closely related to the degree of capacity utilization, but no such relationship is found for

the translog estimates. The study is concerned only with the deterministic case, it does not

include stochastic frontier models.

Levitt and Joyce (1987) uses both conventional regression analysis and the DEA to

examine the relative performance of police authorities in Great Britain. They find that the

DEA efficiency rankings and those from the regression analysis, “while not identical, have

a good deal in common”. Their conclusions are derived from a direct comparison

(observation by observation) of the rankings from the two methods.

Bjurek, Hjamarsson and Forsund (1990) compares three different methods of

efficiency estimation on the basis of a sample of local social insurance offices of the Swedish

social insurance system. The three methods considered are: (1) a Cobb-Douglas

deterministic frontier production function, (2) a Quadratic deterministic frontier production

function, and (3) the Data Envelopment analysis. They find that the differences in the

efficiency estimates between the methods are very small. Stochastic frontier models are not

included in their comparison.

Ferrier and Lovell (1990) compares two methods for estimating production economies

and efficiencies. One is the stochastic frontier cost function method, and the second is a

variant of the DEA method which constructs a production frontier through a series of linear

programs. They find that the two methods yield very similar results regarding returns to

scale, but dissimilar results regarding estimated costs due to inefficiencies. Their comparison
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emphasizes the amount of increased costs due to inefficiency, rather than the firm specific

efficiency measures.

Land, Shutler and Kirthisingha (1990) conducts a comparison between the

conventional regression method and the DEA in measuring the efficiency of the post offices

in the United Kingdom. With the regression analysis, they measure the relative efficiency

using the residuals from the regressions and the “unit residuals” which are the regression

residuals divided by predicted values. Comparisons are made over two separate data sets,

the 1987 data set and 1989 data set. Simple correlation, Spearman rank correlation and

Kendall rank correlation are used to compare the efficiency rankings from regression against

the DEA efficiency rankings. The results do not show a clear pattern between the efficiency

estimates from the two methods. They believe that the two methods are complementary in

measuring efficiency and assisting management to improve efficiency.

Forsund (1992) estimates a non-parametric frontier and a deterministic parametric

frontier to seek out the most efficient firm among the observed Norwegian Ferries. The

study finds that the methods yield very similar results for individual efficiency scores. The

differences are mainly to be found at the extreme ends of the size distributions. The

estimated scale properties are different from the two methods. The study focuses on

similarities or dissimilarities of the distributions of the efficiency scores, and scale

properties. The study does not consider stochastic frontier models.

Sickles and Streitierwer (1992) estimates the firm specific levels of efficiency of the

U.S interstate natural gas transmission industry using a stochastic frontier model and the

DEA. They find that the levels and relative rankings of efficiencies from the two methods
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are often not the same. However both methods indicate a downward trend in firm efficiency

over the sample period.

Fecher, Kessler, Perelman and Pestieau (1993) examines the productive performance

of the French insurance industry using the DEA method and a stochastic frontier model

based on a Cobb-Douglas production function. They find that there is a high correlation

between estimated efficiency measures from the two methods, and the frequency distributions

of firm specific efficiency measures from the two methods also show similar pattern.

In summary, all the comparative studies based on empirical data have one thing in

common, that is, they are mainly motivated by the desire for the alternative methods to tell

consistent stories about the efficiency performance of the firms or DMUs under study. In

this regard, these studies are applying the “methodology cross-checking” principle since most

empirical work is hindered by the lack of knowledge of the true structure of production and

efficiency. From the discussions above, it is noted that in most cases the alternative methods

yield similar estimates regarding the efficiency rankings among the firms or DMUs under

consideration, but the level of estimated efficiencies often depends on the choice of method

used. Further insight into the relative performance of the various methods could be obtained

by applying these different methods to a mixture of efficient and inefficient observations

generated using a “known” production technology model. This approach would make it

possible not only to compare these different methods in terms of their accomplishments

relative to each other, but also make it possible to compare what each accomplishes relative

to the “known” underlying model. There have been a few studies which use simulated data

to compare the relative performance of different methods with the knowledge of the “true”
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production and inefficiency structures.

2.2 Studies based on simulated data

A number of studies compare the performance of different methods based on

simulated data, thus they can compare the results from each of the alternative methods with

the “true” production technology. Bowlin, Charnes, Cooper and Sherman (1985) uses

artificially generated data for a group of hypothetical hospitals to test the DEA relative to

output-input ratio analysis (including index numbers) and regression approaches (linear

regressions of cost against outputs in particular) in terms of locating sources and estimating

amounts of inefficiency in the observed inputs and outputs. Their study finds that the DEA

method generally performs better than regression analysis and ratio analysis in identifying

sources and amounts of inefficiency in all except a very few cases. They carry out the

comparison under one specific “true” production situation, and consider only a deterministic

case.

Using the same hypothetical hospitals, Thanassoulis (1993) extends Bowlin, Charnes,

Cooper and Sherman (1985) by comparing DEA and regression analysis, on estimates not

only of relative efficiencies but also of marginal input or output values and target levels.

The study concludes that DEA outperforms regression analysis on the accuracy of estimates

but regression analysis offers greater stability of accuracy. Again the results are based on

a “specific” sample, and are limited to a deterministic case.

Banker, Charnes, Cooper and Maindiratta (1988) uses simulated data to compare the

estimates of technical efficiency, returns to scale, and rates of substitution obtained by the
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DEA method and a deterministic translog frontier function. Under two known underlying

technologies -piecewise loglinear and translog, the comparison is carried out first for a

sample of 500 randomly generated observations (from an uniform distribution) and then for

the set consisting of the first 100 of the 500 observations. The study concludes that DEA

could approximate the known underlying technology better than the translog frontier function

and the accuracy of DEA estimates improves for the larger sample size. However, it is

found that the DEA method tends to misclassify inefficient “corner” points2 as efficient. The

study does not consider the stochastic models.

Banker, Gadh and Gorr (1993) extends the work of Banker, Charnes, Cooper and

Maindiratta (1988) by introducing measurement errors in comparing the performance of the

corrected ordinary least squares method and the data envelopment analysis method in

estimating efficiency. The study considers two piece-wise Cobb-Douglas technologies as the

underlying true production technology, four efficiency distributions (two half-normal and two

exponential), and four different sample sizes from 25 to 200. They use the mean absolute

deviation of true versus estimated efficiencies as the performance criterion of the two

alternative estimation methods. The study finds that COLS performs better with half-normal

efficiency distribution when sample size is over 50, but DEA performs better in other cases.

However, both methods perform poorly with high measurement errors. They also find that

COLS fails to decompose deviations into efficiency and noise components in almost all cases.

Because of the failure of the COLS procedure, the study is in fact limited to deterministic

2 A “corner” point refers to an observation with a very small or very large quantity for
at least one of the inputs or the outputs.
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methods.

Gong and Sickles (1989) investigates the relative performance of three stochastic

frontier estimators in terms of their sensitivity to the complexity and structure of the

underlying technology. The three estimators considered are: maximum likelihood,

generalized least squares and dummy variables (or the within estimator). They conclude that

the ability of the stochastic frontier models to estimate firm-level efficiency is quite sensitive

to the complexity and structure of the underlying production technology. The study is

concerned only with the stochastic frontier models.

Gong and Sickles (1992) conducts a rather comprehensive comparison of the

performance of the stochastic frontier method (with panel data) and the DEA in estimating

firm specific technical inefficiency for cases in which: (1) the complexity and structure of

the underlying technology differ, (2) the relative size of technical inefficiency to statistical

noise in the stochastic components differs, (3) the form of the true structure of technical

inefficiency varies, and (4) input levels and technical inefficiency are allowed to have an

arbitrary degree of correlation. Their results indicate that, in terms of correlation and rank

correlation coefficients between the estimated efficiency level and the “true” efficiency level,

DEA is dominated by the stochastic frontier models in most cases except for the case where

there is high correlation between inputs and technical efficiencies. However, the study

considers only the case of constant returns to scale, and does not address the issues of

exogenous variables and outliers explicitly.

Li (1991) examines the effectiveness of the DEA and the stochastic frontier model

in estimating firm specific efficiency levels with regards to three aspects: (1) different “true”
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inefficiency patterns; (2) different returns to scale specifications; and (3) various levels of

random noise. The study finds that the general performance difference between the two

methods is quite small, and both methods perform quite well. The study assumes a Cobb-

Douglas function with one output and two inputs as the underlying production technology.

The results are based on a simulated data set of 100 observation with 5 replications for each

experiment. The artificially generated data set simulates a situation where firms or DMUs

are fairly homogenous, since the allowed variations of the input variables and the random

noise are rather small. Input variables are generated from an uniform distribution over the

intervals of (10,20) and (20,30), respectively, and random noise is assumed to have a mean

of zero, standard deviations ranging from 0.01 to 0.09, which may explain the small

variations among the experimental results.

In summary, there is a limited number of comparative studies based on simulated

data where the “underlying” production technology and efficiency structure are known.

From the discussions above, it is clear that a researcher can learn more about the

performance of the alternative methods in measuring efficiency by applying the methods to

hypothetical production situations. Since the characteristics of these hypothetical production

technology and structures of efficiency are artificially controlled, the researcher is able to

achieve in depth understanding of the abilities of the alternative methods in a particular

aspect, such as the effects of the sample size, the effects of random noise, etc. These

comparative studies have provided useful information about the relative merits of different

methods in terms of their abilities to reveal the structure of production technology and the

nature and extent of inefficiency under different conditions. However, none of the studies
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has looked at the effects of exogenous variables on efficiency estimates. In any realistic

situation firms operate under different conditions, and one should not neglect differences in

these firms’ environments in making efficiency measurement and comparison. Therefore,

it is important to consider the effects of the exogenous factors on the observed productive

performance of the firms. There is another point that should be mentioned here, that is, the

problem of outliers and data errors. Most of the studies in efficiency measurement have

recognized the problem of outliers and data errors, especially for the deterministic methods.

However, there has been no explicit discussions about the magnitude of the potential effects

of outliers and data errors. It would be interesting to see some solid evidence on these

potential effects.
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Chapter 3

The Concept of Efficiency

The purpose of this chapter is to discuss the basic concept of efficiency. To measure

the relative efficiency performance of firms or organizations in an industry, we need first to

define what we mean by efficient production.

The concept of productive efficiency proceeds from the concept of production

function. A production function specifies the maximal output obtainable from a given input

vector. Thus a production function can be interpreted as a frontier, delineating the limits of

what a firm or an organization can achieve. Figure 3.1 shows the concept of production

frontier for a one-input one-output situation. The frontier production function is denoted by

f(x) where x denotes the input level. All points on or below it, such as B, C, or D, are

deemed realizable, hence can be observed, whereas points beyond it, such as E, are neither

realizable nor (in the absence of noise or measurement errors) can be observed. This

frontier interpretation of production function leads to the concept of productive efficiency.

A productive situation is inefficient if its output-input point lies below the frontier, such as

D and C in Figure 3.1, since it does not do as well as it could with the same inputs, as

specified by the production function. On the other hand, a situation is efficient if the output-

input point is on the production frontier itself, such as B in Figure 3.1. The “distance” an

observed production point deviates from the frontier provides a measure of efficiency for the

corresponding firm or organization. Therefore, the frontier production function acts as a

criterion, or norm, serving as a base for assessing efficiency.

In his path-breaking paper Farrell (1957) gives an explicit definition of efficiency, and
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Figure 3.1 A Production Function as a Frontier
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provides a computational framework for subsequent studies on productive efficiency. In the

remainder of this chapter, we first look at Farrell’s definition of efficiency, then relate the

efficiency measurement to production function.

3.1 Farrell’s Definition of Efficiency

Consider the simple case of a firm producing a single output, y, from two inputs, x1

and x2. Suppose the firm’s production function (frontier) may be written as yf(x7,x2). If

we also assume that the firm produces under conditions of constant returns to scale, then the

production function is homogeneous of degree 1 and the equation of the frontier can be

written as 1 =f(x1/y,x2/y). This means that we can represent the technical possibilities open

to the firm in terms of a unit isoquant such as ACA “A” shown in Figure 3.2. Potential or

“maximal” performance is defined along ACA ‘A11, the frontier. No firm could produce at

a point below ACA “A” because this would not be technically feasible. On the other hand,

a firm producing at any points above ACA ‘A” uses more of at least one input than that is

needed.

Suppose now that the available budget is represented by the line PP’ which is tangent

to ACA ‘A “, all points along PP’ have the same cost, that is, PP’ is the current isocost line.

Its slope reflects the ratio of input prices. Therefore, the firm producing at a point on PP’

is using the “optimal” input proportion.

According to Farrell (1957), a firm is technically efficient if it chooses an input mix
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Figure 3.2 Farrell’s Definition of Efficiency
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on the unit isoquant, and a firm is allocatively efficient (price-wise efficient) if the marginal

rate of substitution between the two inputs is equal to the input price ratio. In other words,

technical inefficiency is due to excessive input usage (given the level of output); allocative

inefficiency results from employing inputs in the wrong proportions. Allocative efficiency

is significant in that it emphasises that the frontier production per se is not sufficient to

minimize costs. Full efficiency requires simultaneous technical and allocative efficiency

which is obtained at A”. Firm C is technically efficient, but is allocatively inefficient, while

firm E is allocatively efficient but technically inefficient.

Suppose a firm is observed using (x10, x) to producey°, let D in Figure 3.2 represent

(x/y0, x20/y0) , which cannot lie below ACA ‘A” by defmition. At point D the ratio ofx1 and

x2 is identical to the ratio at all points along OD. On this OD line, C is the most technically

efficient point. That is, if one could have chosen the best technology but kept the input

proportions of D, one would have chosen the technology represented by C. Comparing the

amount of input requirements at C and D can obviously form a basis for efficiency

comparisons. Farrell (1957) defines the technical efficiency of D as:

TE=2! (3.1)
OD

TE measures the proportion of (x, x2°) actually necessary to produce y°. It is easy to see that

Farrell’s defmition of technical efficiency requires all inputs of an inefficient firm to be
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reduced by the same proportion1. TE equals 1 if the firm is on the frontier ACA A”. As

the observed performance of D worsens, the distance between C and D increases so that the

technical efficiency ratio falls towards zero. Likewise, as performance improves, the

efficiency ratio rises in value to unity. Thus in general:

OTE1 (3.2)

As mentioned above, firm C is technically efficient, but it costs too much because the

unit of output could be produced at the cost of OB by substituting x1 for x2. Therefore, firm

C has an allocative inefficiency (price inefficiency) caused by non-optimal input proportions.

Farrell (1957) defines the allocative efficiency (price efficiency) of C as:

PE = (3.3)
OC

As C moves closer to A”, PE rises towards one. That is, PE also lies between zero and

unity. Since D has the same input proportion as C, it has an allocative inefficiency of the

same amount PE=OB/OC. It is noted that measuring allocative efficiency requires

information on input prices which is not required for measuring technical efficiency.

Combining the technical and allocative efficiency measures gives an overall measure

of the efficiency of D. Following Farrell (1957), the productive efficiency (or economic

efficiency) of D is defined as:

1 This could cause mis-identifying an inefficient firm as efficient when the isoquant is
not everywhere downward sloping. An alternative efficiency measure, the “Russell
measure”, was proposed to remedy this problem (see Fare, Grosskopf and Lovell, 1985 for
more discussions). However this “Russell Measure” is not very easy to implement.
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EE = TE*PE = (3.4)
OD

It should be noted that the above analysis does not consider the optimality of the level

of production, since the optimal scale of production is indeterminate in the case of constant

returns to scale. However, if the technology has nonconstant returns to scale, then the scale

of production will be optimal if and only if at the chosen level of output, price is equal to

marginal cost. A firm is said to be scale efficient if it chooses a profit maximizing level of

production. Extensions to Farrell’s original approach to accommodate non-constant returns

to scale technologies appear to be cumbersome and without much success (Farrell and

Fieldhouse, 1962, and Seitz, 1971).

In empirical studies, one often relies only on information on output and input

quantities, thus cannot measure allocative inefficiency. In those cases, both firms A” and

C are considered as efficient, while firm E is considered as inefficient even though it is

allocatively efficient and achieves the same degree of productive (overall) efficiency as firm

C. This dissertation focuses on the technical efficiency as defined by Farrell (1957) although

the allocative efficiency is a very important aspect of efficiency analysis. The reason for

doing this is that (1) technical efficiency is always desired in any circumstances, and

understanding of the structure of technical efficiency may serve as a starting point for further

study of a production process including allocative efficiency2;and (2) in many sectors of the

economy such as the public service sector, information on prices is either unavailable or

2 Allocative efficiency has been investigated in numerous studies, including Schmidt and
Lovell (1979), Kopp and Diewert (1982), Kumbhakar (1987, 1989), Kalirajan (1990).
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unreliable, thus studies of allocative efficiency are difficult if not impossible, while

enhancing technical efficiency appears to be the main avenue to improve production

performance.

3.2 Efficiency and Production Function

The technical efficiency (TE) can be defined directly in terms of the production

function3. When inefficiency is present, the production function may be written as an

inequality:

y f(X) (3.5)

where y is observed output level of firm j, X is a vector of inputs of firm j, and f(.) is the

production function and has the interpretation of a frontier, or At inefficient

operations, potential output (Ymax) will exceed observed performance y. Hence, technical

inefficiency implies e = y — y, a residual in the production function, is negative. To

preserve the frontier interpretation of f(.), the c are always non-positive and truncated at

zero such that deviations are only possible below the production frontier. This ensures that

observed output cannot exceed potential and that the distribution of the residuals is one-sided.

Cost functions can also be used to estimate technical efficiency as well as allocative
efficiency. The estimation of cost functions requires data on input prices which may not
always available. For reasons mentioned in section 3.1, this dissertation is focused on
technical efficiency estimated in relation to production frontier. However, the basic concept
is equally applicable to cost functions.
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The addition of the efficiency residuals “balances” the production function4:

y =fx3) — e,O for alif (3.6)

This could be illustrated by Figure 3.3 where f(x) represents the production frontier.

Firm j produces output y using input xj, denoted by point D, which is less than the frontier

output ym for input x. The difference between actual and optimal output, €, is negative and

hence production at firm j is relatively inefficient. The degree of technical efficiency at firm

j may be measured by the ratio of observed to optimal output defined by the production

frontier, and written as:

TE. = (3.7)
J Ax)

Notice that efficient production implies that observed and frontier attainments coincide and

that the residual equals zero thus TE equals to unity. Equation (3.7) is the econometric

version of the Farrell’s measure of technical efficiency. The most notable difference

between the Farrell efficient isoquant and the frontier functions is the assumption of a

specific functional form5.

Assume that all the firms have access to the same technology, the deviations of

points, B, C, and D in Figure 3.3 from the efficient frontier could be interpreted in two

ways. The first interpretation is that some firms are more successful in utilizing the available

For now it is assumed that there are no statistical noises in the observed production
performance.

Kopp (1981) discusses how Farrell’s concept of efficiency measurement related to the
frontier functions.
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technology than others, that is, all deviation from the frontier is attributed to inefficiency.

Equation (3.7) is based on this interpretation, and it corresponds to the deterministic frontier

method to be discussed in Chapter 4. The second interpretation is that all firms face the

same technology up to a random factor that takes into account the effects on production of

measurement errors in the output and input variables and other random shocks outside the

firm’s control. Thus, the resulting production frontier is stochastic and the departure from

this frontier reflects technical inefficiency. This is the rationale for the stochastic frontier

method described in the following Chapter.
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Chapter 4

Alternative Methods for Efficiency Measurement

As stated in Chapter 1, there are two aspects in efficiency measurement: estimation

of the production frontier and measurement of efficiency relative to the frontier. In

discussing the basic concept of efficiency in Chapter 3, it is implicitly assumed that the

production frontier is known. In practice, however, one has only data - a set of observations

corresponding to achieved output levels and input consumption. Thus, the initial problem

is to construct an empirical production function or frontier based on the observed data.

Then, the relative efficiency of the firms or organizations in question can be measured in

relation to this empirical frontier. The purpose of this chapter, therefore, is to describe a

number of alternative methods used for the estimation of frontiers and the subsequent

measurement of efficiency.

There are many ways of estimating a production frontier. The various methods can

be classified according to the assumptions made on the form of the production frontier. A

distinction is often made between the parametric and non-parametric methods, depending on

whether or not the frontier function can be specified by a particular functional form with

constant parameters, such as the Cobb-Douglas function, or the translog function and etc.

4.1 Parametric Approaches

Aigner and Chu (1968) made the first attempt to impose a parametric functional form

on production frontier within the framework provided by Farrell. They specify a
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homogeneous Cobb-Douglas production frontier. In estimating this frontier production

function, they force all observations to be on or beneath the frontier through the introduction

of an one-sided error term. Aigner and Chu’s work introduces explicitly the concept of

“frontier” production function into the production theory. Although the frontier production

function seems clearly to be in accord with the theoretical definition of a production function,

standard statistical techniques had been used to estimate “average” production functions prior

to Aigner and Chu’s work.

To estimate the parametric production frontiers, Aigner and Chu (1968) suggests

minimizing the sum of absolute residuals from the logarithm of the production function (a

linear programming problem), or alternatively minimizing the sum of squared residuals (a

quadratic programming problem), while constraining all residuals to be non-negative. If we

write the production function for the j-th firm as = f(x, ) - Cj, here f(x,f3) is the

maximum output obtainable from xj, a vector of (non-stochastic) inputs, y is the observed

output, c is the one-sided (non-negative) error term, and f is an unknown parameter vector

to be estimated. Then Aigner and Chu’s method can be expressed, in mathematical terms,

as following:

m Iy—f(x,P)I, s.t. y i=1,...,n (4.1.1)

or
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nun s.t. yf(x1,[3), i=1,...,n (4.1.2)

If f(x) is linear in /, then equation (4.1.1) is a linear programming problem and equation

(4.1.2) is a quadratic programming problem. This approach assumes all deviations from the

production frontier to be the result of technical inefficiency and thereby constrains the

residuals to be of one sign. Their measure of technical efficiency can be specified as

y1 I f(x3). With such mathematical programming techniques the choice of the functional

form for the production function has a strong influence on the conclusions reached about the

degree of technical inefficiency. This is clear from the consideration that the number of

observed units that appear to be fully efficient technically is generally only as large as the

number of parameters of the production function to be estimated. Another problem with this

approach is that the estimated frontier is supported by a subset of the data and thus is

sensitive to outliers and data errors. This leads to the development of so-called

“probabilistic” frontiers by Timmer (1971) which proposes a modified linear programming

problem allowing a certain percentage (arbitrarily determined) of observations to lie above

the frontier. The third problem with this mathematical programming approach is that the

estimators lack identifiable statistical properties. This third problem could be solved by

making further distributional assumptions about the one-sided errors and estimating the

production frontier using statistical methods.

Afriat (1972) was the first to impose a statistical assumption on the one-sided errors,
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and to introduce the concept of “distribution of technical inefficiency”, which makes

statistical estimation of frontier functions possible. Since Afriat’s work most of the studies

of the parametric frontiers have been focused on the statistical approach. In fact, Schmidt

(1976) shows that if is exponential, then Aigner and Chu’s linear programming procedure

is maximum likelihood, while their quadratic programming procedure is maximum likelihood

if c is half-normal. Therefore, this dissertation considers only the parametric frontier models

using econometric/statistical techniques. For more discussions on the various parametric

frontier models, readers are referred to the survey papers by Forsund, Lovell and Schmidt

(1980), Lovell and Schmidt (1988), Bauer (1990), and Greene (1993).

Within the parametric approach, a distinction is made between two different methods:

the deterministic frontier method and the stochastic frontier method. The main difference

between the two methods is that the deterministic method attributes all deviations from the

frontier to inefficiency while the stochastic method distinguishes the deviations into a random

component capturing statistical noise and an inefficiency component. These two methods

are discussed in the following subsections.

4.1.1 Deterministic Frontier Methods

The deterministic frontier methods assume that the discrepancies between the

estimated frontier function and the observed production situations exclusively capture

technical inefficiencies, that is, the discrepancies are one-sided. In estimating the

deterministic frontiers, all observations are forced to be on or below the frontier so that all

deviation from the frontier is attributed to inefficiency. A basic model of the deterministic
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frontier is specified as:

y =f(x)e_1’ (4.1.3)

where y is observed output, f(x) is the production frontier, and uO thus 0 e -u 1

which captures the degree of inefficiency. This frontier function may be estimated by either

the maximum likelihood method (MLE) or the “corrected” ordinary least squares method

(COLS).

The maximum likelihood method was first suggested by Afriat (1972) and first used

by Greene (1980a) and Stevenson (1980). MLE requires the specification of a particular

distribution for the one-sided residual u, and it is then implemented by estimating all of the

production parameters and the parameters of the distribution of u. The MLE frontier

envelops all observations, and the MLE residuals can then be used to provide a measure of

estimated efficiency:

e. = —— = e (4.1.4)
‘ fix)

It should be noted that the choice of a distribution for u is important since the maximum

likelihood estimates depend on it in a fundamental way - different distributional assumptions

lead to different estimates. There do not appear to be good a priori arguments for any

particular distribution. Afriat (1972) assumes a two-parameter beta distribution for e” (a
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gamma distribution for u). Greene (1980a) shows that a gamma distribution for u satisfies

the conditions for the maximum likelihood estimators to be consistent and asymptotically

efficient. Other distributions have also been assumed in the literature, such as the half-

normal and exponential distributions (Aigner, Lovell, and Schmidt, 1977), truncated normal

distribution (Stevenson, 1980), and the two parameter gamma distribution by Greene (1990).

Another way to estimate the parameters of the frontier function is by the corrected

ordinary least squares method (COLS). COLS was first proposed by Richmond (1974) and

improved by Greene (1980a,b). COLS first estimates the technology parameters of equation

(4.1.3) by OLS, which gives unbiased and consistent estimates of the parameters except for

the constant term in log-linear form. The OLS intercept can be corrected by either of two

ways. The first way1 to “correct” the OLS intercept requires the assumption of a specific

functional form for the one-sided error term u. The OLS intercept is corrected by shifting

it up by adding the sample mean of u which can be estimated consistently from the second

or higher moments of the OLS residuals. The OLS residuals are consequently modified in

the opposite direction. There is no guarantee that this technique shifts the estimated intercept

up far enough to cover all the observations, and if an observation has a sufficiently large

positive OLS residual, it is possible that e > 1.

A second way to “correct” the OLS intercept is simply shifting it upward until all

corrected residuals are nonpositive and at least one is zero. With this method there is no

need to assume a specific distribution function for the one-sided error term, one needs only

1 This technique is termed as “modified” ordinary least squares by Lovell (1993).
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assume that u is independently and identically distributed from an unspecified one-sided

distribution. This dissertation adopts this method in the estimation of the deterministic

frontier models because it is the easiest one to estimate and less restrictive.

The basic procedure of the second variant of COLS is as follows: first, one estimates

an average production function through OLS estimation, then the constant term is “corrected”

by shifting it up until no residual is positive and at least one is zero. This corrected

production function is considered as the production frontier, and used as reference point in

efficiency measurement. This method provides a consistent estimate of all the parameters

of the frontier function. The efficiency is measured by the ratio of the actual output value

Y divided by the “optimal” output value YJF obtained from the estimated production frontier,

given a certain level of input. The firm (observation) which has the highest positive residual

from the OLS regression is by definition 100% efficient.

If we take the logarithm of both sides of equation (4.1.3), then an OLS estimation

gives the following equation:

lily. Infix)
+ .

(4.1.5)

where cx is a vector of regression coefficients. Letting E = Max(s), one obtains the

following frontier function:

hi
F = fl) + E (4.1.6)
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which allows for measuring the efficiency of the firms (observations) as:

F c.-E (4.1.7)
e=yJy =e 1

The deterministic frontier method has two major drawbacks. The first one is that this

method is entirely deterministic with no allowance for noise, measurement error and the like,

thus the estimated frontier depends on a small number of observations that might be

inaccurately measured or otherwise abnormal. That is, it tends to be sensitive to outliers and

data errors. The second drawback is its inability to deal easily with multiple outputs unless

the dual cost frontier can be estimated directly2.

The deterministic frontier methods assume that all firms share a common production

frontier, and all variations in firm performance are attributed to variations in firms

efficiencies relative to this common frontier. This assumption ignores the very real

possibility that a firm’s performance may be affected by factors entirely outside its control,

such as bad weather, labour dispute, and so on, as well as by factors under its control

(inefficiency). To distinguish the effects of “noise”, including exogenous random shocks,

measurement errors, misspecification of production functions, and so on, from inefficiency,

Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck (1977) introduce the

stochastic frontier model which is discussed in the following section.

2 All deviation from the cost frontier is attributed to cost inefficiency. Kopp and Diewert
(1982) and Zieschang (1983) show how to decompose cost efficiency into its technical and
allocative components.
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4.1.2 Stochastic Frontier Methods

The basic idea behind the stochastic frontier method is that the deviation from the

frontier is composed of two parts. A symmetric component permits random variation of the

frontier across firms and captures the effects of measurement error, statistical “noise”, and

exogenous random shocks outside the firm’s control. An one-sided component captures the

effects of inefficiency. This method was first proposed by Aigner, Lovell and Schmidt

(1977) and Meeusen and van den Broeck (1977), and has been extended by Jondrow, Lovell,

Materov, and Schmidt (1982), and Battese and Coelli (1991) among others. Specific

distributional assumptions about the disturbance terms must be made in order to obtain

estimates of individual firm efficiencies3. The statistical noise is generally assumed to be

identically independently distributed (iid) normal, while a number of distributions have been

assumed for the one-sided (inefficiency) term. Aigner, Lovell and Schmidt (1977) proposes

half-normal and exponential distributions which have been widely used. Stevenson (1980)

proposes a truncated normal distribution, while Greene (1990) proposes a two-parameter

Gamma distribution4. Further, other distributions could be constructed following Greene’s

(1990) methodology.

The basic stochastic frontier model is given by:

When panel data are available, estimates of the inefficiency disturbances can be
obtained without assuming a particular distribution for these terms (Schmidt and Sickles,
1984). However, one must specify how efficiency changes over time instead. Most of these
studies assume that inefficiency is time-invariant.

‘ There are a number of survey papers which cover alternative frontier procedures, such
as Greene (1993), Bauer (1990), Lovell and Schmidt (1988), Schmidt (1986) and Forsund,
Lovell and Schmidt (1980).
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y =f(x,)e1’e”, u 0 (4.1.8)

where y represents output,f(x,j3) is the deterministic core of the frontier production function,

f3 are the parameters to be estimated, v is a random variable that takes values over the range

(-oo , + Go) and represents the effects of measurement errors, non-observable explanatory

variables and random shocks, and u is a random variable that takes nonnegative values which

captures inefficiency. In other words, f(x,f3)e” is the stochastic frontier while e is the

inefficiency. The condition u 0 ensures that all observations lie on or below the

stochastic production frontier.

The stochastic frontier method allows room for errors of observations, thus avoids

the deterministic techniques’ high sensitivity to errors in the data. However, the problem

remains of what distribution to assign to the residual components v and U5.

Direct estimates of the stochastic frontier functions may be obtained by either

maximum likelihood (MLE) or corrected least square (COLS). Olson, Schmidt and

Waldman (1980) presents Monte Carlo evidence which indicates that COLS generally

performs as well as MLE for the normal/half-normal case. Whether the model is estimated

by MLE or COLS, the distribution of u must be specified.

The central limit theorem can be invoked to warrant assuming a normal distribution for
v. However, no such consideration stands out to support any particular assumption about
the one-sided residuals u, and thus statistical convenience and general plausibility continue
to rule the roost. Half normal and exponential distributions have often been used. There
are limited evidence which suggests that these two assumptions give rise to quite similar
parameters for the estimated production frontier (Aigner, Lovell, and Schmidt, 1977).
Corbo and de Melo (1986) indicates that the estimated inefficiency levels based on the two
assumptions are highly correlated.



Chapter 4 Alternative Methods 50

The COLS is similar to the deterministic COLS as described earlier. We first

estimate the parameters, 13, in f(x,13) through OLS. We can then estimate the variance

and o.2 by:

I 2
2_r I it, it (4.1.9)
0uLI — )P3J

N 2 it-4

2 ../ it—22 (4.1.10)
it

where and are the second and third moments of the OLS residuals. Next, we

“correct” the intercept by adding to the OLS intercept the negative of the estimated bias

which is the sample mean of e=v-u, I.L = Note that the COLS estimator of all

elements of 13 except the intercept is the same as the OLS estimator. These estimates are

consistent and unbiased but not asymptotically efficient.

The COLS is simpler in terms of computation. However, there is one problem with

COLS, that is, the estimates may not exist in some samples. If the third moment of the OLS

residuals turns out to be positive, then ô < 0, the estimation procedure breaks down. The

probability of this occurrence depends on the value of the third moment of the

disturbance. When IL3 is near zero, the probability of being positive may be substantial.
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This is a problem mainly when ). = o, is small. According to Olson, Schmidt, and

Waldman (1980), as X - 0 (cru2
— 0) the probability of being positive approaches

(approximately) 1/2. There is another possibility when the estimation procedure may break

down. This occurs when < ((it -2)/it)ô, which implies â < 0, This may occur with

non-negligible probability when X is large. Banker, Gadh, and Gorr (1993) finds that the

two failure types are complementary, there is almost always one present. In their Monte

Carlo experiments, only two out of 640 estimates have no failure. Because of these

problems, COLS procedure is not used in this study.

The maximum likelihood estimator is obtained by the (numerical) maximization of

the log likelihood function of equation (4.1.8) with respect to the parameters in f(.) and the

distribution functions of v and u, after specific assumptions being made about the

distributions of the two error terms.

Assume that the elements of v are identically independently distributed (lid) as

N(0,o2), the elements of u are half-normal taking absolute values from variables which are

iid as N(0,u2), and v and u are independent of each other and are also independent of x.

Let o-2 = u + o2 X = u/u. The density function of u is given by:

Au) = “ exp[———] U 0 (4.1.11)
2a

Suppose that after taking logarithms, equation (4.1.8) becomes linear in parameters and can
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be specified as6:

‘ =xp + (4.1.12)

where c = v-u. Aigner, Lovell and Schmidt (1977) shows that the log likelihood function

of equation (4.1.12) is:

N N
L=!!In(2/it) —Nina +EIn[1 —F(e A a1)]_’EE (4.1.13)

2 J=1 2ci2j=1

where N is the total number of observations, j indexes the observations, and F is the

cumulative distribution function of the standard normal distribution. Details may be found

in Aigner, Lovell, and Schmidt (1977). Note that the parameter X embodies the model of

inefficiency. The simple OLS regression model results from X = 0. The implication would

be that every firm operates on its frontier. The MLE estimates are obtained by the

maximization of equation (4.1.13) with respect to the parameters (/3, X, o). The MLE

estimates are consistent and asymptotically efficient.

Several alternative distributional assumptions have been suggested in the literature.

The log-likelihood function and associated results under some of these alternative

distributional assumptions, for example, may be found in Aigner, Lovell, and Schmidt

(1977) for exponentially distributed inefficiency, Stevenson (1980) for truncated normal

distribution, and Greene (1980), Greene (1990) for gamma distributions among others.

6 In nearly all applications, after transformation, the functional form of the model to be
estimated is linear in the logs of output and a set of independent variables, so equation (4.12)
is assumed as the general form of the production frontier.
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Since half-normal distribution is the most popular function among empirical works, this study

considers the normal/half normal situation.

As mentioned at the beginning of this chapter, efficiency measurement involves two

aspects: estimation of the “empirical” production frontier and the measurement of efficiency

relative to the estimated frontier. The COLS and MLE procedures described in the previous

paragraphs accomplish the first aspect, that is, the estimation of the production frontier from

the observed data. The next step is to measure the efficiency level of each observation in

relation to this estimated production frontier.

Since the residuals from equation (4.1.12) or equation (4.1.8) estimate Ej = v -

not u, the efficiency component of the composed error terms has to be estimated indirectly.

Jondrow, Lovell, Materov and Schmidt (1982) suggests the use of either the mean or the

mode of the efficiency term, u, conditional on the estimate of E as a measure of observation

specific estimates of efficiency. They derive an explicit form for the half-normal model7as:

ao fe.5/o) j (4.1.14)
E(uJe.)= [ .‘ —s.—]‘ a2 1—F(Ja) a

where f(.) is the standard normal density function.

In Chapter 3 the efficiency is defined as the ratio of observed output over frontier

output for a given level of input consumption. Therefore, exp(-u) should be considered as

the efficiency measure instead of u. Again, in practice one needs to estimate the exp(-u.)

Jondrow, Lovell, Materov and Schmidt (1982) also derives the expression for the
exponential case. Greene (1993) presents the expressions for gamma models and truncated
normal model as well.
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given the residuals from equation (4.1.12). Battese and Coelli (1988) suggests the use of

conditional expectations of exp(-u), given c = as the firm specific efficiency estimate,

where e is the residual from equation (4.1.12). With the half normal assumption, this

efficiency measure can be derived as follows.

The density function of u is given by equation (4.1.11). As e = v - u, the joint

density of u and c is given by:

1 12122exp ——u ——(u ÷e +2ue) (4.1.15)
2a 2a

and the density function of c is given by:

2
(1—F(e)./a)) exp [_!2] (4.1.16)

2a

Therefore, the conditional density of u given c is the ratio of equations (4.1.15) to (4.1.16),

which can be written as:

1 1 1 1
L 1 .L 2 1 ‘ 2f(u/e) = exp —U ——ue——e uO (4.1.17)

/°*
1-F(eA/a) 2a 202

where Note that equation (4.1.17) is the density of a a) variable

truncated at zero, where = _GC/O2. Then the conditional expectation of exp (-u), given

=e, is defined by:
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E(exp( —u)/e) =fexp( -u)f(u/e)du

2 2
(4.1.18)

1—F(a—e/a) a,,,
= exp I.L+—

1-F(-qa) 2

The operational estimator of equation (4.1.18) may be obtained by substituting the

relevant parameters by their maximum likelihood estimators (or COLS estimators) as in

equation (4.1.14).

There are some problems with both COLS and MLE estimators as described above.

The first problem is associated with the distributional assumptions of the error terms.

Different distributional assumptions may lead to different efficiency measures. The second

problem is that inefficiency and input levels are assumed to be independent which may not

always be the case. The third problem is that the estimator used to compute the firm specific

inefficiency is not consistent although it is unbiased.

To avoid assuming a particular distribution for the error terms, Schmidt and Sickles

(1984) proposes a number of methods of estimating individual firm efficiency level given that

panel data is available on sample firms. However, inefficiency is assumed to be time

invariant in their panel data model while statistical noise is assumed to vary over firms and

time. In particular, they consider three estimators: (1) A “fixed effects” model, or the

“within” model, which assumes that the inefficiency error term u is firm specific constant.

The frontier function is estimated by using dummy variables in OLS. This model does not

assume the independence between inefficiency and inputs, and it does not require the
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normality assumption. Further, the estimated efficiency is consistent over the time period.

(2) A generalized least squares (GLS) estimator, which makes no distributional assumption

on the inefficiency term, but assumes that the efficiency and inputs are independent. This

model allows for the inclusion of time-invariant firm specific attributes, such as the capital

stock of a firm which is not growing, location, or some other characteristics. (3) A MLE

estimator, which makes both distributional and independent assumptions. Gong and Sickles

(1989) compares the three estimators in a Monte Carlo study, and finds that efficiency

estimates from the three estimators are very similar.

The time-invariant assumption may be plausible for short panels8. However, it would

be desirable to examine how the performance of a particular firm changes over time. Thus

the time-invariant assumption would appear to be restrictive. To allow efficiency to vary

over time, Comwell, Schmidt and Sickles (1990) extends the models by Schmidt and Sickles

(1984) to relax the time-invariant assumption by imposing certain structure on how

inefficiency varies over time. Their model assumes that the one-sided firm effects are a

quadratic function of time in which the coefficients vary over firms according to the

specification of a multivariate distribution. For large N, this model presents a fairly

cumbersome problem of estimation since the number of additional variables to capture the

time-varying firm specific effects would be substantial.

Battese and Coelli (1992) proposes a time-varying model for unbalanced panel data

in which the efficiency is assumed to be distributed as truncated normal. This generalizes

8 By short panel, we mean that production performance is observed over a short period
of time.



Chapter 4 Alternative Methods 57

a number of previous stochastic frontier models such as Aigner, Lovell and Schmidt (1977),

Stevenson (1980), Pitt and Lee (1981), among others. This model assumes that the

efficiency is an exponential function of time. This assumption appears to be restrictive.

From the foregoing discussions, we can see that there is a trade-off between imposing

a specific distributional assumption on the error terms and imposing an explicit functional

assumption on how the efficiency of a particular firm varies over time, while both bringing

the potential effects of misspecification. The choice of a specific model in any empirical

study will depend on the particular situation in question and the availability of necessary

data.

For the Monte Carlo study in this dissertation, we consider the basic model proposed

by Aigner, Schmidt and Lovell (1977) with the assumptions of normally distributed statistical

noise and an efficiency term following a half-normal distribution. This model is chosen,

because it is the most popular one used in empirical applications. The firm specific (or

observation specific) efficiency is measured by the conditional expectation of exp(u1), given

the residuals from the estimated frontier function, as defined by equation (4.1.18).

4.2 Nonparametric Approach - The Data Envelopment Analysis Method

The nonparametric approach, represented by the Data Envelopment Analysis method,

uses mathematical programming techniques to construct production frontiers. The Data

Envelopment Analysis (DEA) method, introduced in Charnes, Cooper and Rhodes (1978),

involves an application of linear programming to observed data to locate frontiers which can

then be used to evaluate the efficiency of each of the firms or organizations responsible for
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the observed output and input quantities. In DEA, the entities responsible for converting

inputs into outputs are referred to as decision making units (DMUs) which may represent any

kind of firms and organizations or their subdivisions as long as they perform the same or

similar tasks. DEA utilizes a sequence of linear programs, one for each DMU, to construct

a piecewise linear production frontier, and to compute an efficiency index relative to the

frontier. Units that lie on the production frontier are deemed efficient. Units that do not lie

on the production frontier are termed inefficient and the analysis provides a measure of their

relative efficiency.

DEA is non-parametric in the sense that it does not assume that the underlying

technology has a specific functional form with a finite number of parameters, such as Cobb-

Douglas functional form. It only requires the convexity assumption about the production

frontier. Note that DEA is also “non-statistical” because it makes no explicit assumption on

the probability distribution of the “errors” in the production function.

DEA can accommodate multiple outputs and multiple inputs with each being stated

in different units of measurement. The relative efficiency of a DMU is defined as the ratio

of its total weighted output (virtual output) to its total weighted input (virtual input). The

weights (virtual multiplier) required to incorporate the multiple outputs and multiple inputs

are determined by linear programming optimization. DEA assumes that each DMU will

select the weights that maximize its own efficiency score, that is, it will evaluate each input

and each output in such a way as to maximize the ratio of its own weighted output to its own

weighted input. Because different DMUs use different combinations of inputs to produce

different combinations of outputs, they are expected to select sets of weights that reflect this
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variety. Generally, DMUs will place higher weights on the inputs that they use least and

on the outputs they produce most. In this sense DEA shows each DMU in its best possible

light. The efficiency ratio generated by DEA is consistent with a frontier interpretation of

performance. A ratio of unity implies that observed and potential performance coincide in

which case the corresponding DMU is said to be efficient or “best practice”. Where

observed performance is lower than potential a DMU receives an efficiency ratio of less than

unity which implies that its performance is poorer than that of a combination of some of its

peer DMUs and so it is relatively inefficient.

Extensions to the original Charnes, Cooper and Rhodes (CCR) model have resulted

in a variety of alternative formulations all sharing the principle of envelopment. In this study,

we consider two of these models9, the CCR ratio model (Charnes, Cooper and Rhodes,

1978) and the BCC model (Banker, Charnes and Cooper, 1984). These two formulations

have been widely used in empirical applications. The CCR model yields an index of overall

efficiency, it points out the observable differences in performance among DMUs’°. The BCC

model takes into account the effect of “returns to scale” within the analyzed group of DMUs.

It distinguishes between technical and scale inefficiencies by estimating pure technical

efficiency at a given scale of operation.

For more discussions on the various DEA models, please refer to Charnes and Cooper
(1985), Banker, Charnes, Cooper, Swarts and Thomas (1989), Seiford and Thrall (1990),
and Ali and Seiford (1993).

‘° Some of the subsequent models incorporate some of the explanations to the observed
efficiency differences into models themselves.
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4.2.1 The CCR ratio

Assuming convexity of production possibility sets, Charnes, Cooper and Rhodes

(1978) defines the DEA efficiency measure as the maximum of a ratio of weighted outputs

to weighted inputs subject to the condition that similar ratios for every DMU be less than

or equal to unity. In mathematical form, the efficiency of the k-th DMU is

UY

h = Max r=1

vx

s (4.2.1)
>UrYrj

St.
r=1 1 j=1,2...n

vixi

UrVi 6 r=1,...,s; i=1,...,m

where the Y, X are the known outputs and inputs of the j-th DMU, the u, v are the

weights (virtual multipliers) to be determined by the solution of the problem, andc

represents a small positive non-Archimedean quantity introduced to ensure that all of the

observed inputs and outputs will have “some” positive value assigned to them. This value

serves as a lower limit for the values that can be assigned to the weights u,. and v as shown

by the final constraints in equation (4.2.1). In this model, h’ = 1 if and only if the k-th

DMU is efficient relative to the other DMUs.

Note that the above model is a fractional programming problem. This fractional

program is not used for actual computation of the efficiency scores because it has intractable
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non-linear and non-convex properties (Charnes, Cooper and Rhodes, 1978). However, it can

be converted into a linear programming problem by using a simple transformation (Charnes

and Cooper, 1962, 1973). Since > 0, and the problem is invariant under positive

scalar multiplier, we may let m1=1v,X1k 1, the problem can then be replaced by the

following linear programming problem:

= Max

St. - v1X, 0 j=1,...,n (4.2.2)

= 1

Ur v € r=1,...,s; i=1...,m

and hence solutions can be obtained by repeated application of a linear programming

software to each of the observations in the sample data.

The dual for formulation (4.2.2) constructs a piecewise linear approximation to the

true frontier by minimising the quantities of the m inputs required to meet stated levels of

the r outputs. The dual program is formulated as:

= Miii 0k - Or + s)

s.t. Yrj’j -
Gr = Yrk

- + S1 =0 (4.2.3)

0, j-DMUs,j=1,...n
0, r-outputs, r=1,...,s

1
0, i—inputS, i=1,...,m

Note that the choices of € > 0 are defined so that the optimal value of °k will not be
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affected by any value that may be assigned to the slack variables associated with € in the

objective function of the dual. The dual problem has one variable X for each DMU in the

sample. Variable 0k is unconstrained. It indicates the potential of a proportional reduction

in all the inputs of the k-th DMU. Variables r,. are output slacks, and variables s, are input

slacks. If the k-th DMU is efficient, then the optimal dual solution will have all X, cry, and

s equal to zero except for Xk, and 6 is equal to 1. When the k-th DMU is inefficient, there

is a hypothetical DMU on the empirical production frontier which serves as the reference

point for the measurement of the inefficiency for the k-th DMU. The input and output levels

of this hypothetical DMU are linear combinations of the input and output levels of the DMUs

in the efficient reference set of the k-th DMU. The optimal X from the dual problem are

used as the coefficients for these linear combinations. To become efficient, all of the inputs

of the inefficient DMUk must be reduced to where Ok* is less than 1. If, in addition,

any input slack s, is not zero for DMUk then a further reduction by the amount of this slack

must also be made from the i-th input used by DMUk without altering any other inputs or

outputs.

The DEA efficiency measures depend on the number of degrees of freedom that are

available. There are m + s constraints to be satisfied in the dual formulation and n

observations, one for each of the j = 1,..., n DMUs, that form the possible combinations

from which efficiency estimation can be secured. From degrees of freedom considerations,

the number of variables X used for the solutions in the problem on the left should be at least

as great as the number of constraints. Thus, the number of DMUs for which there are
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observations should be greater than the number of constraints. According to Banker,

Charnes, Cooper, Swarts and Thomas (1989), it is generally advisable to have n 3(m+s).

The name Data Envelopment Analysis is obtained from the dual formulation in the

following manner. An optimal solution will envelop outputs of DMUk from above via

constraints of the form Yrk Yrj”j with at least one of these r =1, ..., s constraints

satisfied as an equation. Thus, there will be at least one “touching” of an observed output

for DMUk by the solution associated with an optimal choice of X* values. Similarly, the

inputs of DMUk are enveloped from below via the constraints 6,x with at least

one of these input constraints satisfied as an equation. Thus, the term Data Envelopment

Analysis is used because the output and input data of DMUk are enveloped from above and

below in the manner just described.

An analogous linear programming formulation of equation (4.2.2) can be obtained by

setting the numerator of the objective function of fractional program equal to unity, and

minimizing the weighted inputs for DMU k:
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MIN v1X

St.
—

UY,, 0 j=1,...,n (424)

EUTY,.k = 1

u, v € r=1,...,s; i=1,...,m

This formulation determines the output efficiency of a DMU for a given set of inputs.

The corresponding dual is

h = MAX + e(Ec, + Es1)

S.t.
425

)j, CJ 0

where Zk is unconstrained.

In many circumstances outputs are partly determined by the market condition and

governmental control. It may therefore not make much sense to suggest that output be raised

to increase efficiency. On the other hand, efficient use of inputs is desirable in any case.

Therefore in this study we use the input minimization formulation given by equations (4.2.2)

and (4.2.3). To have a better understanding of the basic idea underlying DEA, a

diagrammatic interpretation of the dual for input minimization is provided.

The estimated dual technology is not smooth but constructed out of a series of

intersecting linear facets. Each of these facets represents a constraint in the optimal solution

to the dual. Collectively they intersect to form a convex production set which is closed and
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bounded from above. The frontier for efficiency comparisons is the lower convex hull of

the possibility set which is shown in Figure 4.1. Figure 4.1 illustrates a hypothetical frontier

technology based on 5 firms producing a single output, Y, from 2 inputs, X1 and X2. Firms

G, F and E, lying on the frontier, are the “best practice”. Thus, no other firms or linear

combination of firms in this sample can be identified which is producing the same level of

output for less of either or both inputs. These firms have unity efficiency scores and zero

slacks in the solution to the dual. For example, the solution of the dual for firm F:

hF* = 1

and the constraints are:

input 1 X1PJZF -o
- X1F).;

input 2 X2FIZF* -o = X2)

and on the output 1F + 0
= 171F

The left- hand side of the constraints defmes the “target”, which in this case is equal

to actual performance on the right-hand side of the constraints because best-practice implies

= 1. The peer group11 drops out of the RHS of the constraints and for an efficient firm

is none other than that firm itself since ) = 1 and ç = 0, j * F.

Firms B and D are inefficient relative to frontier performance. That is, for the same

“ The peers are defined by those firms that have non-zero weights in the optimal
solution in the dual.
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G

D

X1

Figure 4.1 Diagrammatic Interpretation of DEA



Chapter 4 Alternative Methods 67

level of output it is possible to find a firm, or a linear combination of firms, which is using

less of at least one of the inputs. Consider firm B, for example, with an efficiency ratio

OA/OB which is less than unity. This reflects the fact that a linear combination of firms E

and F is producing at least as much output as B with less of X1 and X2. That is, the existing

input consumption at firm B can be adjusted by the efficiency ratio to X’1 and X’2 in figure

4.1 while maintaining its current level of output. Therefore, the peer group (or the reference

firms) for firm B are firms E and F. For firm B, the optimal solution in the dual is:

h = OA/OB < 1

and the constraints are:

input 1 XlBhn -o = XlE)+ X.1•;

input 2 Xh -o X2E) + X2F2

and on output Y1B+O 171E”E
+

Target performance for B, X.B.h, i=1,2, is equal to a linear combination of

performance at firms E and F where , ) > 0 and the weights on the other firms are all

zero: = 0, j E, F.

One can see that the solution for firm B has all input and output slacks equal to zero.

However, firm D has a non-zero slack on input X1. The efficiency ratio for D is OC/OD

which defines an initial radial contraction in both inputs. However at point C, firm E is
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producing the same output for less of X1 and the same amount of X2. Hence D is not fully

efficient until it reduces its consumption of X1 by the horizontal distance C to E. This

distance is given by a non-zero slack s in the final solution of the dual for firm D:

= OC/OD

and the input constraints are

input 1 Xh s1’ = XlE)

input 2 X2DJi - 0 =X2EA

and on output 1D + 0 = 1’1EE

The target for D is radial contraction in both inputs given by h plus the additional

reduction in X1, given by s1. Its peer group is firm E alone since its target coincides exactly

with performance observed at this best-practice firm. Thus A = 1 and = 0 for j * E.

From the above discussions, we can see that there are two aspects to the target in the

dual. The input constraints define a radial (or equi-proportionate) reduction in inputs given

by the efficiency ratio, h, plus any further reductions in inputs suggested by non-zero

slacks. In addition, however, the presence of non-zero output slacks may require

adjustments to outputs.
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4.2.2 The BCC model

The basic CCR model assumes constant returns to scale. That is, proportional

changes in all input levels result in changes of equal proportion in output level. In practice,

one may find this assumption too restrictive. Banker, Charnes and Cooper (1984) extends

the original CCR formulation to incorporate the effect of returns to scale on the efficiency.

The BCC model adds an additional restriction to the envelopment requirements. It requires

that the reference point on the production frontier for DMUk be a convex combination of the

observed efficient DMUs. It is formulated as:

hk = Max uY -

St. UrYr — — U0 0 j=1,...,n (4.2.6)

= 1

Ur v c r=1,...,s; i=1,...,m

The corresponding dual problem is formulated as:

hk=Min Ok€(Gr+Si)

S.t.
- = Yrk

-

0kik + S —0
i (4.2.7)
2j =1

0, j-DMUs,j=1,...n

=0, r-outputs, r=1,...,s

0, i—inputs, i=1,...,m
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Comparing formulation (4.2.3) with formulation (4.2.7), we can see that the only difference

between the two formulations is the additional constraint in formulation (4.2.7). This

additional constraint ensures that a DMU is evaluated only by reference to original data

points and their “convex combinations” on the efficiency frontier. The new variable, u0, in

the primal problem is unconstrained in sign, and is interpreted by BCC as an indicator of

returns to scale. Banker, Charnes and Cooper (1984) shows that the returns to scale at the

referent efficient point are estimated by the sign of the variable u0: u0 < 0 indicates

increasing returns to scale; u0 > 0 indicates decreasing returns to scale; u0 = 0 indicates

constant returns to scale12.

It should be noted that the returns to scale indicated by u0 are “local” in the sense that

they are applicable only to the facet on the efficiency frontier where the reference point for

the efficiency evaluation is positioned.

From the discussions above, a number of features of DEA become apparent. First,

the DEA efficiency ratios are solely dependent on observed best practice in the sample. One

of the consequences of measuring efficiency relative to observed best practice is that DEA

is usually considered to be sensitive to extreme outliers and measurement errors. Secondly,

since the weights for each DMU are chosen so as to give the most favourable efficiency ratio

possible subject to the specified constraints, DEA evaluates a DMU as efficient if it has the

best ratio of any one output to any one input. Therefore, the DEA efficiency ratios could

be sensitive to the selection of inputs and outputs included in the analysis.

12 Note that u0 is added to correct for the effect of non-constant returns to scale, but the
magnitude of this parameter is not directly interpretable as a measure of returns to scale.
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4.3 The Effects of Exogenous Variables

There are mainly two motivations for studying the frontier techniques: (1) the desire

to measure inefficiency; and (2) the desire to see how efficiency is related to observable

characteristics of the firm and production environment. Both the parametric approach and

the non-parametric approach discussed in this chapter focus on how to construct a production

frontier and how to measure efficiency relative to the estimated frontier. The resulting

efficiency measures are based on observed units of outputs and inputs, and thus ignore the

effects of variations (except for the statistical noise with the stochastic frontier models) in

the market, operating, institutional and regulatory policy environments, and other specific

factors which may affect the observed production of the DMUs. Therefore, these efficiency

scores may represent factors other than efficiency. In order to make meaningful comparisons

about the relative performance of the firms (DMUs), and to identify the sources of observed

efficiency differentials, additional analysis would be necessary in order to purge these

efficiency scores of influences of these “exogenous variables”.

As pointed out by Nerlove (1965), the observed differences in production

performance among a group of firms may be attributed to three general sources: (1) ability

to maximize short-run profits, given a particular production function and in a given

environment; (2) the production function itself which summarizes the state of technical

knowledge and the possession of fixed factors; and (3) the environment. Within the

framework of efficiency measurement discussed earlier we assume that the firms have the

same production technology, thus we can ignore the second source while the first source may

be broadly thought of as inefficiency. As for the environmental factors, some efforts must
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be made to standardize environment, ideally through the use of some meaningful quantitative

variables, in order to permit measurement of relative efficiency since firms cannot physically

be transferred from one environment to another.

The observed inefficiency may be related to various factors that could explain them,

such as environmental conditions, administrative structures, social constraints, the quality of

production factors, etc. These factors are referred to as exogenous variables in this

dissertation since they are mostly beyond the control of the firms (DMUs) in question. The

relation between the observed efficiency level and the exogenous variables may be estimated

after having assessed the production frontier and measured the observed efficiency. This

approach is often associated with the non-parametric methods such as in Ray (1991),

McCarty and Yaisawarng (1993) and Oum and Yu (1994), but has also been used with the

parametric methods as well such as in Bruning (1991) and Loeb (1994). This approach of

incorporating exogenous variables is referred to as the two-step procedure in this

dissertation. Alternatively, the relation may be estimated while assessing the production

frontier in which case the frontier and the functional relationship explaining efficiency

differences are simultaneously estimated. This approach is often associated with the

parametric efficiency estimation methods for obvious reasons. An example of using this

second approach, referred to as the one-step procedure, can be found in Lee and Schmidt

(1993). Since with the one-step parametric methods, the exogenous variables can be

incorporated directly in the estimation of the production function simply by introducing

additional variables, it is not necessary to make any methodological modifications with

frontier models described in section 4.1. Therefore, this section focuses on how to account
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for the effects of exogenous variables through the use of the two-step procedure, particularly

with the nonparametric methods. The two-step parametric methods follow the same

procedure as the two-step DEA-regression procedure described below.

Both CCR and BCC methods measure efficiency based on units of outputs and inputs,

but ignore variations in the market, operating, institutional and regulatory policy

environments, and other factors which may affect the observed performance of the DMUs.

Therefore, the DEA efficiency indices from CCR and BCC models may represent factors

other than efficiency. To derive meaningful inferences about the relative performance of the

DMUs, additional analysis is necessary to purge the DEA efficiency indices of influences

of these “exogenous variables”. A second stage regression analysis can be used to identify

the effects of these variables and to measure the “residual” efficiency’3which is a closer

indicator of relative performance of the DMUs than the gross DEA efficiency index. A

number of studies have used this DEA-regression procedure in empirical applications

including Ray (1991), Fizel and Nunnikhoven (1992), and McCarty and Yaisawarng (1993).

In the second stage, the DEA efficiency scores are used as dependent variable in a

regression on the exogenous variables. There is a methodological problem with such a

regression. As defined in sections 4.2.1 and 4.2.2, the DEA efficiency index falls between

O and 1 (0 h*k 1), making it a limited dependent variable. Consequently, an OLS

regression of h*k would produce biased and inconsistent parameter estimates. In order to

‘ The term residual efficiency is used here instead of “true” efficiency, because in
practice one may not be able to identify all potential influential factors thus the efficiency
measures from the regression analysis may still reflect the influences of some neglected
factors.
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treat the limited dependent variable properly, the following form of the Tobit model

(Tobin, 1958; Amemiya, 1985) is adopted 14:

Lii = I ZJPJ
+

rj if Lii, < 0, fl,...,fl (4.3.1)
i 1 0 otherwise

where Lh is the logarithm of the DEA efficiency index for firm j, Z is a vector of the

logarithms of the variables potentially influencing the DEA efficiency scores, j3 is a vector

of coefficients to be estimated, and {} are assumed to be independently identically

distributed error terms which can take on negative, zero, or positive values. The residual

efficiency is defined as:

Eff = EXP(-i.) (4.3.2)

where E is the residual efficiency score for the j-th DMU, and max is the maximum of

{m}• Note that the DMU with the largest positive will be considered as the most efficient

DMU, and given a residual efficiency score of one. By definition, Efj also falls between

zero and one.

This two-step procedure accomplishes two tasks. First, it identifies the effects of

potential influential factors on the DEA efficiency index. Second, it allows one to compute

the “residual” efficiency index from the residuals of the Tobit regression.

14 The Tobit Model allows one to incorporate only one bound on the dependent variable
while the DEA efficiency index is constrained between zero and one. By taking the
logarithm of the DEA efficiency index, one can convert the dependent variable to have only
one (upper) bound, zero.
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4.4 Summary

This section summarizes the comparative merits of the three alternative methods

based on their theoretical and methodological differences.

• The parametric methods use econometric techniques to estimate the frontier function,

thus the estimators have identifiable statistical properties. However, they impose

a particular functional form on the estimated frontier function and confounds the

effects of misspecification of functional form with inefficiency. On the other hand,

the data envelopment analysis method does not impose an explicit functional form on

the frontier and is less prone to misspecification error in this regard. Therefore,

DEA may have a comparative advantage over the parametric methods in situations

where the underlying production technology does not meet the classical assumptions.

The parametric methods are likely to have a comparative advantage when the

classical assumptions are met. Further, the DEA method assumes that the production

possibility set is convex. This assumption is violated in the case of increasing returns

to scale. Therefore, the DEA method has an inherit disadvantage in situations with

increasing returns to scale.

• The parametric methods are statistical methods, they normally require a relatively

large sample size (depending on the particular functional form being estimated).

DEA on the other hand is less restrictive in terms of the sample size since the

feasibility of the DEA analysis depends on only whether there are enough

observations to span the convex cones in input and output space. However, all three

methods are expected to yield better estimates as the sample size increases.
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• The deterministic frontier method and the data envelopment analysis are both

deterministic, and attribute all deviation from the frontier to inefficiency. No

allowance is made for noise, measurement error, and the like. Therefore, a single

errant observation (efficient outlier) can have profound effects on the estimates.

There is no a priori answer for which method is more sensitive to the effects of

outliers and data errors. Any conclusion regarding the relative merits of these two

methods in this aspect would be drawn from empirical evidence. Unlike the two

deterministic methods, the stochastic frontier method attempts to distinguish the

effects of random noise from the effects of efficiency and is less sensitive to potential

outliers or other extraordinary behaviour of observations. However, additional

structure is imposed on the distribution of inefficiency. Thus, specification error of

the efficiency term may affect the accuracy of the efficiency estimates. Nonetheless,

the stochastic frontier method is expected to yield more robust efficiency estimates

than the other two methods especially when there are large variations in the firms’

operating environments.

• The DEA method is designed to deal with production technologies with multiple

inputs and multiple outputs. On the other hand, the parametric methods may have

difficulty estimating production frontier functions in situations involving multiple

outputs unless the dual cost frontier functions could be estimated.

• The deterministic frontier method appears to combine the bad features of the

econometric and programming approaches to frontier construction: it is deterministic

and parametric. It is still used in practical applications because it is simple and easy
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to apply. The DEA method requires repeated solutions of linear programming

problems, thus usually incurs more computational costs than the parametric methods

especially for large samples. The stochastic frontier method involves complex

estimation procedures and may not be easy to use. However, special computer

software is available for estimating all three methods.

• The one-step procedure for incorporating the effects of exogenous variables is

expected to produce efficiency estimates closer to the “true” values if the exogenous

variables can be correctly identified and accounted for, and specification errors

(related to the exogenous variables) are not very serious. The two-step procedure

is intuitively more appealing to decision makers since it relates firms’ performance

directly to the potentially influential factors. However, cumulative specification

errors from both steps are likely to have a negative effect on the accuracy of

efficiency estimates.

The foregoing discussions indicate that one cannot always draw solid conclusions

regarding how well each of the methods performs in comparison with the other alternative

methods under different scenarios on the basis of their conceptual and methodological

differences. Therefore, empirical evidence is necessary to help provide useful guidelines

for selecting the appropriate methodology in practical applications. The Monte Carlo

experiments described in the following chapter are intended to provide such information.
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Chapter 5

Design of the Monte Carlo Experiments

The Monte Carlo experiments are often used to “solve” those analytical problems that

are technically intractable. Monte Carlo experimentation solves these problems by

substituting an equivalent stochastic problem and solving this simulated problem. As

described in Chapter 1, Monte Carlo experiments are used herein to examine the relative

performance of the three alternative efficiency measurement methods with respects to the

sample size, the variations in input values, the noise level, the exogenous variables, the data

outliers, and the different (underlying) production structures. This chapter outlines the basics

of the Monte Carlo experiments.

For each Monte Carlo experiment, we need to specify: (1) the “true” underlying

production technology y = fix), (2) a sample size N, and (3) values for g2 and cr2, the

variances of the two error terms, and we also need to generate a N x j input data matrix

in which I is the number of inputs specified in the “true” production technology.

5.1 Specification of the “truet’ underlying production technology

The first step in conducting the Monte Carlo experiments is to specify the “true”

underlying production technology. This “true” technology must satisfy the following

regularity conditions:

(1) The production of an output always requires the use of at least one input.

(2) Outputs are finite for all finite inputs.

(3) An increase in inputs can not lead to a reduction in outputs.



ChapterS Design of Experiments 79

(4) A reduction in outputs remains producible with no change in inputs.

(5) The production possibility set is closed.

In practical situations, the choice of a particular functional form depends largely on

a priori information about the underlying technology. Without such information, the choice

of functional form is usually based on its flexibility. In this study, we assume the CRESH

(Constant Ratio of Elasticity of Substitution, Ilomothetic) production function as the

underlying production technology. The CRESH function was developed by Hanoch (1971).

The well-known CES (Constant Elasticity of Substitution) function as well as its limiting

forms (the Cobb-Douglas, Leontief, and linear functions) are special cases of CRESH. That

is, CRESH function nests a number of commonly used functional forms. Moreover, the

CRESH function allows different patterns of substitution or complementarity among three

or more inputs, and different returns to scales for changing input proportions. This makes

it possible to examine the performance of the alternative methods under different degrees of

input substitution and returns to scale. Because of these advantages, this functional form has

been used in a number of previous Monte Carlo studies as the underlying production

technology, including Guilkey and Lovell (1980), Guilkey, Lovell and Sickles (1983), Gong

and Sickles (1989), and Gong and Sickles (1992). CRESH function is thus selected as the

underlying true production technology in this study. The CRESH production function is

specified as follows:

ye° = ( )YIP (5.1)

where U 0, ‘y > 0, > 0, for all i, and = 1. Function (5.1) has variable returns
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to scale r(x), and variable Allen-Uzawa partial elasticities of substitution o-(x), which are

given by:

n
— Pt

r(x) = ( fri (5.2)
1+oyn -

P1
Ep8
1=1

iD PkokX;Pk

a..(x)
1 k=1 ij (5.3)

U (1+n)(1+n) n
‘‘ ‘J l’k”k Pk

k=1 1Pk
k

Under certain parametric restrictions function (5.1) becomes one of a number of well

known production functions. For example, if 0 = 0 then equation (5.1) is an almost

homogeneous CRES (Constant Ratio of Elasticity of Substitution) function; if Pi = = p,

it is a homothetic CES (Constant Elasticity of Substitution) function; if 0 = 0 and Pi

= p,, it is a homogeneous CES function, and it has the homothetic Cobb-Douglas function

as a limiting form as (Pi = ...
= p) — 0.

The discussions above consider simply the relation between inputs and output. In

practice, firms operate under different conditions. The observed productions are influenced

by factors outside firms’ control. To simulate closer to a real situation, therefore, the effects

of operating environments should be incorporated into the “known” underlying production
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situation. Let us assume that all firms in an industry have the same underlying production

function, but operate in different environments with different levels of efficiency1. Thus the

observed production of a representative firm may be described by the following functions:

Y = fix) exp() (5.4)

= g(z) + V +p (5.5)

where Y is output, x is a vector of inputs, f(x) is the industry’s underlying production

technology, represents the aggregate deviation from the deterministic core of the

production frontier as specified by f(x), z is a vector of exogenous variables reflecting firm

characteristics and operating environments, g(z) is the firm specific effects on the observed

production2,v is a random disturbance which captures the statistical noises, and represents

the efficiency level of an individual firm.

The industry underlying production technology f(x) is assumed to take the functional

form specified by function (5.1). An appropriate form for g(z) is not obvious. Herein we

assume g(.) is a linear function of z. The disturbance v is typically assumed to be normally

1 In this study, we focus only on technical efficiency thus assume that the firm is
allocatively efficient. The definitions of allocative efficiency and technical efficiency are
given in Chapter 3. See Farrell (1957) for more discussions on these concepts.

2 Reifschneider and Stevenson (1989) consider g(z) as the systematic influences on the
firm’s inefficiency level. We assume here that the firm does not have direct control over
the variables z and we want to examine how the changes in z affect the estimated efficiency
scores while the “true” efficiency levels unchanged. Therefore, we choose to separate g(z)
from the efficiency term u.



Chapter 5 Design of Experiments 82

distributed and represents the statistical noise which is not captured by g(z). The disturbance

is assumed to be a nonpositive error term reflecting technical inefficiency and follow the

half normal distribution. The half-normal distribution is the most popular distributional

assumption for the efficiency component in the empirical literature on efficiency

measurements (Lovell, 1993).

5.2 Determination of Sample Size and Number of Replications

As a general principle, the larger the sample size and the more the replications, the

better the results. However, computation cost increases rapidly as the sample size and

number of replications increase especially for the DEA models. The DEA method requires

the solution of one linear programming problem for EACH observation point. For example,

for a sample with 100 observations, DEA needs solving 100 different linear programming

problems to produce a set of efficiency scores. In addition, each additional observation

introduces another variable into the dual formulation of the DEA model which further

reduces the computation speed of the LP problem3. Due to these reasons, for most of the

experiments, the sample size is set at 250 observations which reflects the “real” sample size

often found in the empirical literature. However, a set of experiments are conducted to

examine the effects of sample size on the relative performance of the three alternative

methods. Each experiment is repeated 25 times. Appendix B tests the hypotheses whether

Each additional observation will add one more constraint in the primal formulation,
which will have even greater effect on the computation speed of the LP program. See
Appendix A for more discussions. Appendix A also lists a sample computer code for
computing DEA efficiency index.
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or not there are any significant differences between the results with 25 replications and the

results with 50 and 100 replications. The test results indicate that there is no significant

difference. Therefore, 25 replications are adequate for this study.

5.3 Generation of Inputs, Exogenous Variables and the Two-component Errors

For the sake of simplicity, we consider an one-output three-input production

technology as specified by equations (5.1), (5.4) and (5.5). The inputs are drawn randomly

and independently from a log-normal distribution, and fixed throughout an experiment. The

log-normal assumption is considered as a reasonable approximation to reality when a random

variable is regarded as representing the joint effects of a number of factors. It also has the

advantage that the possibility of generating negative values is avoided. It has been used for

input generation in previous simulation studies such as Wales (1977), Guilkey and Lovell

(1980), and Gong and Sickles (1992). The procedure used to generate the log-normal

random variables and the summary statistics of the inputs are given in Appendix B.

One exogenous variable is assumed. The generality of the results will not be lost,

since this variable may be considered as an aggregate indicator reflecting all identifiable

exogenous factors. The exogenous variable is generated by z z where z is drawn from

N(0, 1), and the value for a varies according to the requirement of a particular experiment.

Consequently, the effects of the exogenous variables on the observed production output, as

reflected by exp(g(z)), follow a log-normal distribution. There have been very limited

simulation studies which incorporate exogenous variables in the production or cost functions.

Nerlove (1971) includes an uniformly distributed exogenous variable in his Monte Carlo
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study. Normal distribution is preferred to the uniform distribution here because of the same

reasons as discussed for the input variables.

The noise component of the error term is drawn randomly and independently from

a normal distribution N(0,) over the range (-oo,+oo). The variance u2 varies across

experiments according to the requirement of a particular experiment. Normality is routinely

assumed for the statistical noise, and it is considered as a reasonable approximation to reality

when the sample size is large enough to rely on the Central Limit Theorem. The

inefficiency component of the error term is drawn randomly and independently from a half-

normal distribution which takes absolute values from N(0, 0.36). The half-normal

distribution is used here because it is the most popular distributional assumption for the

inefficiency term in empirical studies. The values for this inefficiency term are fixed

throughout experiments. The choice of this particular value for cr2 would not likely to affect

the inferences from the experimental results in any significant way. This is examined by

conducting additional experiments assuming u2= 1. The results show slight increases in the

correlations between the “true” and the estimated efficiencies for all three methods (the mean

efficiency estimates fall as expected). However, the relative performance of the alternative

methods does not appear to be affected by the changes in o2. This is also confirmed by

Gong and Sickles (1992). They show that the correlations between the true and estimated

efficiency rise as o increases (for given u2) for both the stochastic frontier method and the

DEA method with the stochastic frontier method dominating DEA for all values of

examined.
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5.4 Generation of the output observations

We have fixed 0 = 0, -y =1, = = 0.3, and ô3 = 0.4 in equation (5.1) throughout the

experiments. These values are assigned to the parameters mainly due to computational

convenience. Other parameters are given different values for different experiments so that

the underlying production technologies exhibit various degrees of factor substitution and

returns to scale. Therefore, it is adequate to fix 0, y, ô, at this particular set of values. This

is done mainly to keep the amount of computation requirements within a manageable range.

It should not have any dramatic effect on the generality of the experiment results.

After the inputs, exogenous variable, and the two error terms are generated, the

corresponding values for the “observed” output can be generated by means of equations (5.4)

and (5.5). This provides us with a sample data base with 250 observations on output, three

inputs and one exogenous variable.

5.5 Conduct of the Experiments

Six sets of experiments are conducted to examine the relative merits of the three

alternative methods from different aspects. In the first five sets of experiments, we limit the

range of technologies to those which exhibit constant returns to scale in order that the

comparison between the alternative methods is not distorted by the treatment of scale

economies. In particular, three production technologies are assumed with input substitution

at 3.03, 1.03 and 0.333 respectively. The BCC model is not included in these experiments

since this variant of the DEA methods is intended to deal with the problem of non-constant

returns to scale. In experiment six, non-constant returns to scale and input complementarity
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are introduced into the underlying production technology to examine how each of the three

alternative methods performs under complex technologies. In this last set of experiments,

the BCC model is compared with the other three models. The experiments are described as

follows.

Set 1: The Effects of Sample Size

The first set of experiments examines whether sample size (N) has any effect on the

performance of the three alternative methods. In practice, people may encounter small

samples with less than 100 observations, or large samples with over 500 observations. If

the relative performance of the alternative methods depends heavily on the sample size, then

people working with empirical data would need to take this into consideration in selecting

the appropriate method for their particular problems.

In these experiments, the standard deviation for the noise term (cry ) is set at 0.15.

To avoid the distortion caused by the effects of exogenous variables and to simplify the

computation, the effects of exogenous variables are assumed to be negligible, that is, a is

set to 0. Three sets of sample data are generated with sample size of 100, 250, and 500,

respectively. The alternative methods are then applied to each of the three data sets.

Set 2: The Effects of Input Range

This set of experiments is intended to examine how sensitive the alternative methods

are to the homogeneity of the DMUs or observations in the sample. The less variations in

inputs, the more homogenous the observations will be. In some data sets there are very
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small variations in the values of input variables among the sample firms, while in other data

sets one may face observations with input levels varying over a wide range. If a method is

very sensitive to the homogeneity assumption, one may need to choose an alternative method

in situations where there are large variations among the DM1Js or observations. This set of

experiments is also intended to verify whether the input specifications used in other sets of

experiments are reasonable since the input variables are fixed throughout all the experiments

except for SET 2.

Inputs (X) are assumed to follow a log-normal distribution. X are generated as X =

e’, where w = 3 + rx0, and x0 is drawn from N(0, 1). The values of input variables for all

other sets of experiments are generated assuming r equal to i. In this set of experiments,

r is given the values of 0.1, 1, 1.5. Thus, three sets of sample data are generated. In all

three data sets, sample size (N) is fixed at 250, and the standard deviation for the noise term

(u) is set at 0.15, and the exogenous variable is ignored by setting a equal to 0.

Set 3: The Effects of Noise Level

Set 3 of the experiments examines the effects of noise level on the relative

performance of the alternative methods. The more robust the method, the less the effects

of noise level on its performance. In situations where there are large variations in the

operating environments, one would probably need to use a method which is less sensitive

to the level of noise.

‘ See Appendix B for more discussions and summary statistics for the input variables.
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Throughout set 3, the sample size (N) is fixed at 250, and as in SET 1, a is fixed at

0 assuming the effect of quantifiable exogenous factors is negligible. By varying the

standard deviation of the noise term (u) at 0.03, 0.15, 0.25, 0.50, and 0.75, five sets of

sample data, with different levels of noise, are generated. The three alternative methods

are then applied to each of these data sets.

Set 4: The Effects of Exogenous Variables

In most practical situations, there is a large number of exogenous factors5 affecting

the productive performance of the firms or organizations. Some of these exogenous factors

can be quantitatively identified, some cannot. The statistical noise reflects the aggregate

effects of the exogenous factors which cannot be quantitatively identified. Experiment 4 is

intended to examine how well each of the alternative methods deals with those exogenous

factors which can be quantitatively identified.

In these experiments, sample size (N) is again fixed at 250, and the standard deviation

for noise (u) is set at 0.15. The extent of the effects of exogenous factors is reflected by

the values of a which is set at 0.05, 0.10, 0.25, 0.50, 0.75, 1.00, and 2.00.

Set 5: The Effects of Outliers

This set of experiments examines how sensitive each of the three alternative methods

is to the “efficient” outliers or the measurement errors in the sample data. In measuring the

For the sake of computational convenience, it is assumed that productive performance
has no effects on those exogenous variables.
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relative efficiencies of the DMUs or organizations, the “best practice” DMUs are used as

the reference points for other DMUs. If one of the “best practice” DMUs happens to be

an “efficient” outlier, then all the other DMUs whose performance is evaluated relative to

this “efficient” outlier would have a misleading performance rating. On the other hand, an

“inefficient” outlier would only lead to an under-estimated performance rating for itself.

An “efficient” outlier may be an indicator of using inappropriate input and output

variables or model misspecification, or may be evidence of an extraordinary event or

condition, or may simply be due to data errors. There are two general strategies for dealing

with outliers. The first strategy requires that outliers be detected and their causes

investigated. The offending observation can then often be corrected, deleted for good

reason, or otherwise given individual attention. The second strategy is to use robust methods

so that outliers have little influence over any inferences or conclusions. If the second

strategy is chosen, it is necessary to know how robust the alternative methods are in order

to select the appropriate method. Both the DEA and the deterministic frontier method have

been criticized as being sensitive to outliers. This set of experiments is intended to find out

how sensitive these methods actually are to the outliers.

Again the sample size (N) is fixed at 250 in these experiments, and the standard

deviation of noise (o,) is set at 0.15. The exogenous variables are assumed to be negligible,

thus a is set at 0. To minimize computational requirements, it is assumed that there is only

one outlier in the data set. To create an “efficient” outlier, the output level of an efficient
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observation is then increased by 5%, 25%, 50%, 75% and 100%6.

Set 6: The Effects of the Underlying Production Technology

The first five sets of experiments consider only technologies of constant returns to

scale, so that the relative performance of the alternative methods is not distorted by different

treatments of returns to scale. This restriction is relaxed in this set of experiments. The

parameters of the underlying production technology are chosen such that the returns to scale,

r(x), and the Allen-Uzawa partial elasticities of substitution, o(x), fall within the ranges of

0.92 < ‘y < 1.57, and -0.27 < a;, < 0.54. These ranges for returns to scale and input

substitutions are determined from reviews of empirical studies on production and cost

characteristics in transportation industry. See, for example, Borger (1991) and McGeehan

(1993) for railways, Gillen, Oum and Tretheway (1985) and Keeler and Formby (1994) for

airlines. The transportation industry is considered here because in the second part of this

dissertation the alternative methods are applied to a railway data set and an airline data set

to examine the efficiency performance of railways and international airlines.

As in the other sets of experiments, the sample size N is fixed at 250, the standard

deviation of the noise term (o) is set at 0.15, a is set at 0 assuming the absence of the

effects of exogenous factors.

6 Note that the observed “efficient” outlier may actually be inefficient.
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5.6 Evaluation Criteria

The performance of the three alternative methods is evaluated using the following

statistics: the mean efficiency estimates, the mean absolute deviations (MAD) of the

efficiency estimates from the true values, the correlation coefficient, and the rank correlation

coefficient between the estimated level of efficiency and the “true” level of efficiency.

The mean efficiency estimates and the MAD examine the ability of the alternative

methods to approximate the actual level of efficiency. The MAD measures the degree of

deviations, and the mean efficiency estimates provide an indicator as to which direction the

estimates deviate from their true values, eg. overestimation vs underestimation.

Pearson product-moment correlation coefficient is used here to measure the strength

of relatedness between the estimated and “true” efficiency levels. It is a number that varies

from -l to + 1. A correlation of + 1 denotes a perfect positive relationship. A correlation

of -1 denotes an inverse relationship. A zero value of correlation means that there is no

linear relationship. The Pearson correlation coefficient for the estimated efficiency ee and

the “true” efficiency EE is measured as:

= Y(ee - )(EE - EE)
(5.6)

- &)2E(EE - EL)2

where the a and EE are the average of ee and EE respectively.

The rank correlation coefficient measures the correlation between the rankings of the

estimated efficiency level and the “true’ efficiency level. In this study, the Spearman’s rank



Chapter 5 Design of &periments 92

correlation coefficient is used, it is derived from the Pearson product-moment correlation by

using the ranks of the two variables considered instead of the raw data. The Spearman’s

rank correlation also falls within the interval of (-1, +1). A value of +1 indicates a strong

positive association between the rankings in which case the rankings of both groups are

similar. A value of -1 indicates a strong negative association between the rankings where

the rankings of the two groups would seem opposite. If the value is zero, one will observe

no pattern between the rankings. The formula for calculating a Spearman’s rank correlation

is as follows:

Y =1—
UL44 (5.7)
n(n2-1)

where n is the number of pairs being correlated, and d is the difference in the ranks of each

pair.
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Chapter 6

The Experiment Results

This chapter reports and discusses the results from the Monte Carlo experiments.

The sample data for the experiments are generated by SHAZAM 6.2 (White, Wong,

Whistler, and Haun, 1990) on a P.C. The deterministic frontier models are estimated using

SHAZAM on a UNIX computer. The DEA methods are also implemented on UNIX. The

stochastic frontier models are estimated on a P.C. using the program FRONTIER developed

by Coelli (1991). Appendix A gives a more detailed discussion on the computer program

for the DEA and the stochastic frontier models. Appendix B gives a detailed description of

the data generated.

As mentioned in Chapter 5, the choice of a particular functional form mostly depends

on its flexibility when there is no prior information on the true production technology1. For

the deterministic frontier function and the deterministic core of the stochastic frontier

function, therefore, we assume the following translog functional form:

lily = pO+Eplnx.JEEP.lnxinx.+Eykhlzk (6.1)
1=1 2=1j=1 ‘ k=1

where y is the output, x, are the inputs, Zk are the exogenous variables, and i3, ‘y are the

coefficients to be estimated. The translog function has been shown to be quite flexible, and

has been widely used in empirical applications. In this study, we use a second order

1 The simulated data sets in the Monte Carlo experiments are treated as “real world” data
sets where information on the underlying production technology and error distributions is
unknown.
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approximation on inputs and a first order approximation on exogenous variables2.

6.1 The Effects of Sample Size

The first set of experiments is concerned with how well the three methods perform

when applied to samples of different sizes. Three sample sizes are examined: 100, 250, and

500. For each of the three sample sizes, three sets of data are generated by assuming three

different underlying production technologies. The three technologies are specified by setting

p in equation (5.1) equal to -0.67, -0.25, and +2.0, with the corresponding input substitution

at 3.03, 1.33, and 0.33, respectively. Thus, nine sets of sample data are generated, and the

three methods are applied to each of these nine data sets.

The mean efficiency estimates are listed in Table 6.1.1 while the mean absolute

deviations (MAD) of the efficiency estimates are listed in Table 6.1.2. By comparing the

mean efficiency estimates by the stochastic frontier method and the true means in Table 6.1.1

and looking at the corresponding MAD values in Table 6.1.2, we can see that the efficiency

estimates by the stochastic frontier method approximate the true efficiency levels very well,

and remain quite stable over different sample sizes. By comparing the MAD values for the

DEA and the deterministic frontier method (Table 6.1.2), it is found that the DEA efficiency

estimates are closer to the true efficiency values than those by the deterministic frontier

method. It is also noted that the deterministic frontier method appears to underestimate the

efficiency level for all three sample sizes, while the DEA method appears to overestimate

2 Note that equation (6.1) specifies the frontier function to be estimated by the one-step
procedure. As for the first stage of the two-step procedure, we simply ignore the exogenous
variables.
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Table 6.1.1

The Effects of Sample Size

The Means of Estimated Efficiency

Sample Size N=l00 N250 N=500

1. o12=c113=o23=3.03. 0.6567 0.6561 0.6563
True Mean (0.0186) (0.0157) (0.0092)

Deterministic 0.5295 0.4983 0.4851
(0.0469) (0.0281) (0.0281)

Stochastic 0.6586 0.6566 0.6549
(0.0330) (0.0218) (0.0129)

DEA 0.6898 0.6257 0.59 13
(0.0279) (0.0190) (0.0146)

2. 1213r23—1.33 0.6567 0.6561 0.6563
True Mean (0.0186) (0.0157) (0.0092)

Deterministic 0.5293 0.5041 0.4861
(0.0456) (0.0275) (0.0292)

Stochastic 0.6639 0.6569 0.6556
(0.0305) (0.0219) (0.0132)

DEA 0.7141 0.6502 0.6138
(0.0234) (0.0188) (0.0131)

3.Or12=o13=T,=O.33: 0.6567 0.6561 0.6563
True Mean (0.0186) (0.0157) (0.0092)

Deterministic 0.4899 0.4149 0.3853
(0.0526) (0.07 15) (0.0562)

Stochastic 0.6599 0.659 1 0.6574
(0.0755) (0.0259) (0.0179)

DEA 0.7219 0.6582 0.6197
(0.0238) (0.0221) (0.0142)

Note that standard deviations are in parenthesis.
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Table 6.1.2

The Effects of Sample Size

The Mean Absolute Deviations

Sample Size N=lO0 N250 N==500

1. 02=dhi3—023=3.03.

Deterministic 0.1435 0.1628 0.1737
(0.0340) (0.0275) (0.0248)

Stochastic 0.0836 0.0755 0.0695
(0.0125) (0.0045) (0.0030)

DEA 0.1113 0.1075 0.1097
(0.0012) (0.0102) (0.0081)

2.12=oi3=r=1.33

Deterministic 0.1431 0.1576 0.1726
(0.0322) (0.0275) (0.0266)

Stochastic 0.0808 0.0745 0.0685
(0.0103) (0.0043) (0.0028)

DEA 0.1164 0.1026 0.1004
(0.0111) (0.0083) (0.0073)

3.or12=u13_o23_0.33:

Deterministic 0.1807 0.2453 0.2727
(0.0469) (0.0679) (0.0564)

Stochastic 0.1047 0.0905 0.0833
(0.0477) (0.0067) (0.0055)

DEA 0.1143 0.0959 0.0941
(0.0093) (0.0074) (0.0064)

Note that standard deviations are in parenthesis.
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the efficiency level for the sample size of 100 but underestimate it for the sample size of

500.

As the sample size increases, the mean efficiency levels estimated by all three

methods tend to fall as shown in Table 6.1.1. The most noticeable drop is observed in the

estimates by the DEA method. This is because that the percentage of efficient observations

in the sample would decrease as the sample size increases, and thus results in a decrease in

the mean efficiency level. In terms of the MAD values, both the DEA and the stochastic

frontier method show a slight improvement in their performance as the sample size increases.

However, the opposite is true for the deterministic frontier method.

By comparing the mean efficiency estimates and the MAD values under the three

different production technologies, it is noted that the performance of a particular method

does vary with the underlying production technology. The stochastic frontier method is the

least sensitive to the underlying production technology, it does not show any significant

changes when the underlying technology is changed. However, when the elasticity of input

substitution is less than unity the performance of the deterministic frontier method

deteriorates substantially in terms of the MADs with the sample size. On the other hand,

the performance of the DEA appears to improve slightly in terms of the MAD values as the

elasticity of input substitution of the underlying production technology decreases. However,

the relative performance of the three methods is not critically affected by assuming different

underlying production technologies.

The correlation coefficients between the estimated and the true efficiencies are listed

in Table 6.1.3 while the rank correlations between the true and estimated efficiency levels
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Table 6.1.3

The Effects of Sample Size

Correlation Between the True and Estimated Efficiency

Sample Size N=100 N=250 N=500

1. 12—13-23—3M3

Deterministic 0.8357 0.8609 0.8781
(0.0271) (0.0195) (0.0119)

Stochastic 0.8657 0.8900 0.9028
(0.0353) (0.0128) (0.0087)

DEA 0.7394 0.7818 0.8228
(0.0619) (0.0451) (0.0234)

2. (112 l3123—1.33

Deterministic 0.8381 0.8644 0.8820
(0.0253) (0.0193) (0.01 16)

Stochastic 0.8718 0.8935 0.9066
(0.0314) (0.0128) (0.0077)

DEA 0.7464 0.7884 0.8281
(0.0587) (0.0412) (0.0208)

3. 12 13 230.33

Deterministic 0.7845 0.7989 0.8201
(0.0341) (0.0234) (0.0195)

Stochastic 0.8304 0.8453 0.8610
(0.0411) (0.0178) (0.0154)

DEA 0.7659 0.8080 0.8407
(0.0520) (0.0384) (0.0202)

Note that standard deviations are in parenthesis.
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Table 6.1.4

The Effects of Sample Size

Rank Correlation Between the True and Estimated Efficiency

Sample Size N= 100 N=250 N=500

1. I2 13 23—3.03

Deterministic 0.8385 0.8714 0.8892
(0.0365) (0.0223) (0.0111)

Stochastic 0.8496 0.8764 0.8913
(0.0372) (0.0168) (0.0095)

DEA 0.7087 0.7889 0.8384
(0.0765) (0.0427) (0.0212)

2. 1213T231.33

Deterministic 0.8415 0.8742 0.8929
(0.0347) (0.0220) (0.0104)

Stochastic 0.8545 0.8804 0.8952
(0.0348) (0.0171) (0.0083)

DEA 0.7042 0.7855 0.8354
(0.0743) (0.0395) (0.0195)

3. uj2=o13=o=O.33

Deterministic 0.7972 0.8290 0.8471
(0.043 1) (0.0266) (0.0165)

Stochastic 0.8147 0.8453 0.8459
(0.0461) (0.0178) (0.0161)

DEA 0.7208 0.8015 0.8458
(0.0689) (0.0385) (0.0193)

Note that standard deviations are in parenthesis.
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are listed in Table 6.1.4. Since we are more interested in the relative efficiency rankings

among the DMUs, we rely more on the rank correlation coefficients in evaluating the

relative performance of the three methods. The results in Table 6.1.3 and Table 6.1.4

clearly show that in terms of correlation and rank correlations all three methods perform

better with a larger sample. The rank correlations for the stochastic frontier method and the

deterministic frontier method are very close. That is, the stochastic frontier method and the

deterministic frontier method would give very similar efficiency rankings of the DMUs. The

rank correlations (and the correlation coefficients) for the DEA method are noticeably lower

than those for the parametric methods, indicating that the two parametric frontier methods

perform better than the DEA method. However, the gaps in their performance become

smaller as sample size increases. A closer look at the results in Table 6.1.3 and Table 6.1.4

also shows that the performance of the two parametric methods deteriorates as the elasticity

of input substitution of the underlying production technology departs from unity, but the

performance of the DEA method improves as the elasticity of input substitution decreases.

6.2 The Effects of Input Range

In this section, the relative performance of the three methods is examined in relation

to the variations in input variables. The input variables, X, are generated as X= e”, where

w=3+rx0,and x0 is drawn from N(0,1). By varying the values of r, one can vary the

ranges over which input variables are taking values. In this set of experiments, r is given

the values of 0.1, 1, and 1.5. The summary statistics for input variables are listed in Table

6.2.1. All three input variables are assumed to vary over the same value ranges. Note that



Chapter 6 Experiment Results 101

the entries in Table 6.2.1 are the averages over 25 replications of the respective statistics.

Table 6.2.1
The Effects of Input Range

The Statistics of Input Variables

r=0.1 r=1.0 Tl.S

Mean of X 20.17 33.51 60.82

Standard Deviation of X 2.02 43.27 149.45

Maximum of X 26.63 382.84 1674.0

Minimum of X 15.08 1.28 0.40

The mean efficiency estimates are listed in Table 6.2.2. For the deterministic frontier

method, it can be seen that the mean efficiency level tends to decrease as r increases. This

is because the efficiency estimates by the deterministic frontier method are measured against

the largest OLS residual, and the OLS residuals are affected by the input variations. The

larger the variations in the input variables, the larger the variations in the OLS residuals, and

thus results in a lower average efficiency estimates by the deterministic frontier. On the

other hand, the results in Table 6.2.2 shows that the mean efficiency estimates by the DEA

method tend to rise with the increasing variations in input variables. This is because that in

maximizing the ratio of weighted output over weighted input for a particular observation, the

DEA method might give higher efficiency ratings to those observations which have inputs

with very small values even when there are excess consumptions of other inputs. Therefore,

the average efficiency estimates by the DEA could be higher when there are large variations

in input variables. The mean efficiency estimates by the stochastic frontier method is
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Table 6.2.2
The Effects of Input Range

The Means of Estimated Efficiency

r0.1 r=1.0 r=1.5

1. 12—I3—23—3.03 0.6561 0.6561 0.6561
True Mean (00157) (0.0157) (0.0157)

Deterministic 0.5071 0.4983 0.4699
(0.0364) (0.0281) (0.041 1)

Stochastic 0.6528 0.6566 0.6597
(0.0218) (0.0218) (0.0214)

DEA 0.5962 0.6257 0.6407
(0.0252) (0.0190) (0.0191)

2. o2=o13=o23=1.33 0.6561 0.6561 0.6561
True Mean (0.0157) (0.0157) (0.0157)

Deterministic 0.5071 0.5041 0.499 1
(0.0364) (0.0275) (0.0271)

Stochastic 0.6528 0.6569 0.6614
(0.0217) (0.0219) (0.0192)

DEA 0.5968 0.6502 0.678 1
(0.0251) (0.0188) (0.0185)

3.o2=o13=a3=0.33 0.6561 0.6561 0.6561
True Mean (0.0157) (0.0157) (0.0157)

Deterministic 0.5071 0.4149 0.3 135
(0.0363) (0.0715) (0.0721)

Stochastic 0.6528 0.6591 0.6678
(0.0218) (0.0259) (0.0789)

DEA 0.5995 0.6582 0.6653
(0.0249) (0.0221) (0.0199)

Note that the standard deviations are in the parenthesis.
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relatively stable compared with those by the DEA and the deterministic frontier method.

However, Table 6.2.2 indicates a slight increase in the mean efficiency estimates by the

stochastic frontier method. One explanation for the slight increase in the mean efficiency

estimates by the stochastic frontier method is that when there are large variations in the

inputs the production possibility set is scattered over a larger area (or space). As a result,

the stochastic production frontier may have a wider “band”, and the resulting average

efficiency level would hence be higher.

Table 6.2.3 presents the mean absolute deviations (MAD) of the efficiency estimates

for different values of r. There are very small fluctuations in the MAD values for the DEA

when T increases. Therefore, the DEA is considered as being rather robust to the variations

in input variables in terms of the MADs. Under the first two production technologies where

the elasticity of input substitution is over one, the stochastic frontier method shows very little

changes in its MAD values as the variations in input variables change, but the deterministic

frontier method sees slight rises in its MAD values as r increases. Under the third

production technology where the elasticity of input substitution is less than one, however,

the performance of the two parametric methods deteriorates noticeably when the variations

in input variables become larger.

Examination of the correlation coefficients in Table 6.2.4 and the rank correlations

in Table 6.2.5 draws similar conclusions: (1) the DEA method does not appear to be very

sensitive to variations in the input variables; (2) the two parametric methods yield relatively

stable estimates when the elasticity of input substitution of the underlying production function

is over one; and (3) when the elasticity of input substitution is set at 0.33, the degree of
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Table 6.2.3
The Effects of Input Range

The Mean Absolute Deviations

r0.1 r=1.0

1.

Deterministic 0.1545 0.1628 0.1902
(0.0287) (0.0275) (0.0366)

Stochastic 0.0714 0.0755 0.0793
(0.0049) (0.0045) (0.0054)

DEA 0.1169 0.1075 0.1024
(0.0149) (0.0102) (0.0097)

2.u1213231.33

Deterministic 0.1545 0.1576 0.1613
(0.0287) (0.0276) (0.0222)

Stochastic 0.0720 0.0745 0.0725
(0.0055) (0.0043) (0.0051)

DEA 0.1166 0.1026 0.1001
(0.0148) (0.0083) (0.0095)

3. 1213230.33

Deterministic 0.1545 0.2453 0.3455
(0.0286) (0.0679) (0.0703)

Stochastic 0.0721 0.0905 0. 1214
(0.0054) (0.0067) (0.0442)

DEA 0.1150 0.0959 0.0987
(0.0144) (0.0074) (0.0070)

Note that the standard deviations are in the parenthesis.
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Table 6.2.4

The Effects of Input Ranges

Correlation Between the True and Estimated Efficiency

Sample Size r = 0.1 r = 1.0 = 1.5

1. o12=r13=r23=3.03

Deterministic 0.8777 0.8609 0.8434
(0.0167) (0.0195) (0.0222)

Stochastic 0.9005 0.8900 0.8754
(0.0145) (0.0128) (0.0193)

DEA 0.7865 0.7818 0.7909
(0.0449) (0.0451) (0.0362)

2. o12=o13=o23=1.33

Deterministic 0.8777 0.8644 0.8701
(0.0167) (0.0193) (0.0173)

Stochastic 0.9005 0.8935 0.8984
(0.0146) (0.0128) (0.0153)

DEA 0.7869 0.7884 0.7992
(0.0448) (0.0412) (0.0370)

3. o12=o13=o23=0.33

Deterministic 0.8777 0.7989 0.6914
(0.0167) (0.0234) (0.0449)

Stochastic 0.9005 0.8453 0.7443
(0.0146) (0.0178) (0.0320)

DEA 0.7886 0.8080 0.8022
(0.0447) (0.0384) (0.0300)

Note that standard deviations are in parenthesis.
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Table 6.2.5
The Effects of Input Ranges

Rank Correlation Between the True and Estimated Efficiency

Sample Size r =0.1 r 1.0 T = 1.5

1. 12T13233M3

Deterministic 0.8835 0.8714 0.8553
(0.0201) (0.0223) (0.0250)

Stochastic 0.8872 0.8764 0.8601
(0.0180) (0.0168) (0.0238)

DEA 0.8046 0.7889 0.7891
(0.0386) (0.0427) (0.0432)

2. 12 13 23—1.33

Deterministic 0.8835 0.8742 0.8778
(0.0201) (0.0220) (0.0218)

Stochastic 0.8872 0.8804 0.8838
(0.0181) (0.0171) (0.0213)

DEA 0.8047 0.7855 0.7817
(0.0387) (0.0395) (0.0466)

3. 12=l3=0.33

Deterministic 0.8835 0.8290 0.7544
(0.0201) (0.0266) (0.0342)

Stochastic 0.8873 0.8453 0.7444
(0.0181) (0.0178) (0.0362)

DEA 0.8051 0.8015 0.7905
(0.0385) (0.0385) (0.033 1)

Note that standard deviations are in parenthesis.
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input variations has considerable negative effects on the performance of the two parametric

methods. In particular, at r = 1.5, the DEA method even outperforms the stochastic

frontier method under the third production technology whereas in all other cases the DEA

is dominated by the stochastic frontier method.

6.3 The Effects of Noise

This section examines the effects of statistical noise on the relative performance of

the three methods. As stated in Chapter 5, the noise term is generated from a normal

distribution with zero mean. By giving the noise term different standard deviations, we are

able to create different noise levels. In particular, the standard deviation is given the values

of 0.03, 0.15, 0.25, 0.50, and 0.75. The corresponding statistics for the noise term are

listed in Table 6.3.1. The entries in Table 6.3.1 are the averages over 25 replications of the

mean statistics from each replication. Note that the means of ev are sample means, thus they

are not necessarily equal to one.

Table 6.3.1
The Effects of Noise

The Statistics of Noise Term

r=O.O3 oO.15 Or=O.25 =O.5O o=O.75

Meanofev 1.001 1.013 1.036 1.136 1.310

St.Dev. of ev 0.030 0.154 0.267 0.594 1.080

Maximum of ev 1.089 1.542 2.068 4.121 7.722

Minimum of 0.915 0.670 0.512 0.249 0.126

The mean efficiency estimates are shown in Table 6.3.2. As the noise level



Chapter 6 Experiment Results 108

Table 6.3.2
The Effects of Noise

The Means of Estimated Efficiency

y=0.03 o=0.15 O=0.25 o,,=0.50 o=0.75

l.O213T23—3.03 0.6561 0.6561 0.6561 0.6561 0.6561

True Mean (0.0157) (0.0157) (0.0157) (0.0157) (0.0157)

Deterministic 0.5818 0.4983 0.4005 0.2471 0.1627
(0.0355) (0.0281) (0.0454) (0.0513) (0.0410)

Stochastic 0.6674 0.6566 0.6720 0.6895 0.6804
(0.0155) (0.0218) (0.0284) (0.1185) (0.1621)

DEA 0.7051 0.6257 0.5403 0.3970 0.3032
(0.0160) (0.0190) (0.03 14) (0.0362) (0.0377)

2. l2I3= 1.33 0.656 1 0.656 1 0.656 1 0.6561 0.656 1

True Mean (0.0157) (0.0157) (0.0157) (0.0157) (0.0157)

Deterministic 0.5928 0.5041 0.4011 0.2497 0. 1624
(0.0307) (0.0275) (0.0437) (0.0504) (0.0419)

Stochastic 0.6715 0.6569 0.6717 0.6833 0.6829
(0.0115) (0.0219) (0.0278) (0.1151) (0. 1668)

DEA 0.7225 0.6502 0.5643 0.4153 0.3 162
(0.0154) (0.0188) (0.0290) (0.0367) (0.0376)

3.o12=o13=g23=0.33 0.6561 0.6561 0.6561 0.6561 0.6561

True Mean (0.0157) (0.0157) (0.0157) (0.0157) (0.0157)

Deterministic 0.4458 0.4149 0.3652 0.2391 0. 1596
(0.0722) (0.0715) (0.0566) (0.0568) (0.0405)

Stochastic 0.6465 0.659 1 0.6780 0.7024 0.6824
(0.0197) (0.0259) (0.0498) (0. 1345) (0. 1601)

DEA 0.7273 0.6582 0.5724 0.4185 0.3154
(0.0149) (0.0221) (0.0298) (0.0390) (0.0401)

Note that standard deviations are in parenthesis.
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increases, the mean efficiency estimates by the DEA and the deterministic frontier method

fall dramatically, but the mean efficiency estimates by the stochastic frontier method remain

relatively stable. This is expected since both the DEA and the deterministic frontier method

treat all the deviation from the “best practice” frontier as inefficiency, thus the average

efficiency level will fall as the noise level rise. On the other hand, the stochastic frontier

method allows random variation of the frontier across the observations, thus it is much less

sensitive to the noise level than the DEA and the deterministic frontier method. Another

observation from Table 6.3.2 is that the deterministic frontier method tends to underestimate

the “true” efficiency level in all cases. The DEA method appears to overestimate the “true”

efficiency level when the noise level is low due to inner envelope property of the DEA’s

linear frontier3,whereas it tends to underestimate the efficiency level when the noise level

is increased. The stochastic frontier method appears to overestimate the “true” efficiency

level in almost all cases, however, the actual levels of mean efficiency estimates slightly

fluctuate as the noise level changes and do not follow a clear upward or downward pattern.

As shown in Table 6.3.3, high noise level causes large MAD values for all three

methods, that is, the high noise level is shown to impose considerable negative effects on the

accuracy of the efficiency estimates, especially for the DEA and the deterministic frontier

method. For all noise levels, the efficiency estimates by the stochastic frontier method have

the least absolute deviation from the “true” efficiency level, whereas those by the

deterministic frontier method have the largest absolute deviation.

It is only relevant when the noise level is very low.
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Table 6.3.3
The Effects of Noise

The Mean Absolute Deviations

tr=0.03 o=0.15 =0.25 o=0.50 o=0.75

1 I2—0i3—023—3.03

Deterministic 0.0807 0.1628 0.2600 0.4130 0.4973
(0.0336) (0.0275) (0.0455) (0.0508) (0.0429)

Stochastic 0.0319 0.0755 0.1055 0.1681 0.2042
(0.0049) (0.0045) (0.0065) (0.0501) (0.0562)

DEA 0.0534 0.1075 0.1806 0.3 178 0.4089
(0.0088) (0.0102) (0.0251) (0.0297) (0.0339)

2. 12 13 = 23 =1.33

Deterministic 0.0695 0.1576 0.2592 0.4104 0.4976
(0.0297) (0.0276) (0.0437) (0.0495) (0.0439)

Stochastic 0.0282 0.0745 0.1049 0.1656 0.2068
(0.0048) (0.0043) (0.0070) (0.0483) (0.0586)

DEA 0.0682 0. 1026 0.1678 0.3042 0.3990
(0.0089) (0.0083) (0.0221) (0.0283) (0.0333)

3.I2=13=23=O.33

Deterministic 0.2142 0.2453 0.2949 0.4210 0.5003
(0.0681) (0.0679) (0.0565) (0.0561) (0.0418)

Stochastic 0.0656 0.0905 0.1175 0.1778 0.2036
(0.0056) (0.0067) (0.0187) (0.0589) (0.0547)

DEA 0.0723 0.0959 0. 1594 0.2972 0.3965
(0.0099) (0.0074) (0.0213) (0.0294) (0.0331)

Note that standard deviations are in parenthesis.
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The correlation coefficients under different noise levels are listed in Table 6.3.4 while

the rank correlations are list in Table 6.3.5. In terms of the correlations and the rank

correlations, the two parametric methods perform marginally better than the DEA method.

The stochastic frontier method shows slight advantage over the deterministic frontier method

in terms of the correlation coefficients, however, their performances are very close in terms

of the rank correlations. The DEA appears to be a rather competitive alternative to the two

parametric methods in terms of the rank correlations especially when the noise level is high.

In general, the performances of all three methods deteriorate noticeably as the noise

level increases. When the statistical noise level is relatively low ( u < 0.25), all three

methods perform reasonably well, and can be considered as reliable in estimating firm (or

observation) specific efficiencies. However, in the presence of high noise levels, the results

from any one of the three methods would need careful examination to prevent misleading

results.
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Table 6.3.4
The Effects of Noise

Correlation Between The True and Estimated Efficiency

cr=0.03 o=0.15 o=0.25 o=0.50 oc,,=0.75

1.12—Oj3—O23—3.03

Deterministic 0.9576 0.8609 0.7352 0.4894 0.3 189
(0.0156) (0.0195) (0.0299) (0.0558) (0.0514)

Stochastic 0.9786 0.8900 0.7943 0.5724 0.3985
(0.0051) (0.0128) (0.0278) (0.0562) (0.0599)

DEA 0.9156 0.7818 0.6422 0.4018 0.2547
(0.0355) (0.0451) (0.063 1) (0.0755) (0.0707)

2.o12=r13=o23=1.33

Deterministic 0.9642 0.8644 0.7383 0.4917 0.3199
(0.0157) (0.0193) (0.0288) (0.0552) (0.0516)

Stochastic 0.9853 0.8935 0.7968 0.5737 0.3997
(0.0045) (0.0128) (0.0267) (0.0545) (0.0594)

DEA 0.9136 0.7884 0.6522 0.4133 0.2617
(0.0321) (0.0412) (0.0614) (0.0735) (0.0704)

3.or12=o13=i23=0.33

Deterministic 0.8769 0.7989 0.6977 0.4736 0.3 129
(0.0235) (0.0234) (0.03 12) (0.0571) (0.0487)

Stochastic 0.9088 0.8453 0.7638 0.5582 0.3926
(0.0165) (0.0178) (0.0302) (0.0582) (0.0610)

DEA 0.9210 0.8080 0.6685 0.4285 0.2710
(0.0319) (0.0384) (0.0560) (0.0768) (0.0704)

Note that standard deviations are in parenthesis.
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Table 6.3.5
The Effects of Noise

Rank Correlation Between The True and Estimated Efficiency

i=0.O3 o=0.l5 u=0.25 o=0.50 o=0.75

1.j2—Oj3—O3—3.03

Deterministic 0.9579 0.8714 0.7680 0.5460 0.3756
(0.0171) (0.0223) (0.0367) (0.0660) (0.0587)

Stochastic 0.9750 0.8764 0.7707 0.5471 0.3756
(0.0058) (0.0168) (0.0362) (0.0656) (0.0582)

DEA 0.9006 0.7889 0.6817 0.4748 0.3304
(0.0391) (0.0427) (0.0575) (0.0735) (0.0636)

2.12=o3=o23=1.33

Deterministic 0.9630 0.8742 0.7703 0.5472 0.3768
(0.0167) (0.0220) (0.0357) (0.0650) (0.0585)

Stochastic 0.9824 0.8804 0.7736 0.548 1 0.3767
(0.0056) (0.0171) (0.0350) (0.0644) (0.0579)

DEA 0.8954 0.7855 0.6798 0.4767 0.3324
(0.0347) (0.0395) (0.0564) (0.0720) (0.0625)

3.12=o13=o23=0.33

Deterministic 0.899 1 0.8290 0.7372 0.5336 0.3700
(0.0206) (0.0266) (0.0399) (0.0665) (0.0594)

Stochastic 0.8995 0.8284 0.7383 0.5339 0.3701
(0.0188) (0.0222) (0.0400) (0.0665) (0.0589)

DEA 0.9038 0.8015 0.6918 0.4887 0.3411
(0.0373) (0.0385) (0.0515) (0.0703) (0.0623)

Note that standard deviations are in parenthesis.
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6.4 The Effects of Exogenous Variables

In the presence of exogenous variables, the observed productive performance reflects

the combined outcome of both efficiency and environments. The usefulness of a particular

efficiency measurement method depends on its ability to distinguish the effects of

environments from the effects of efficiency.

This section examines the relative performance of the two-step DEA-TOBIT

procedure and the parametric methods in measuring efficiency in the presence of exogenous

variables. The exogenous variable is generated as az where z is from N(0, 1). In this set

of experiments, a is given the values of 0.05, 0.10, 0.25, 0.50, 0.75, 1.0, and 2.0. Some

of these cases, such as when a =1, 2, are probably not realistic, they are included here just

to show how dramatically the results might be affected. The statistics of the exogenous

variable are given in Table 6.4.1.

Table 6.4.1
The Effects of Exogenous Variables

The Statistics of the Exogenous Variables

c=O.O5 y=O.1O a=O.25 a0.50 a0.75 a1.OO 2.OO

1.003 1.005 1.035 1.238 1.320 1.615 7.658

0.050 0.101 0.262 0.613 1.136 2.036 34.68

1.148 1.316 2.000 4.203 8.245 17.59 447.9

0.873 0.749 0.501 0.247 0.127 0.062 0.004

First, we look at the one-step parametric methods in comparison with the DEA-Tobit

procedure. The mean efficiency estimates are presented in Table 6.4.2 and the mean
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Table 6.4.2
The Effects of Exogenous Variables
The Meinc of Efrwenev tmiteQ

ft=O.OS ft=O.10 o=0.25 a=0.50 v0.75 a=1

1. j=3.03 0.6561 0.6561 0.6561 0.6561 0.6561 0.6561 0.6561
True Mean (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

Determ 0.5006 0.4974 0.4946 0.4990 0.4959 0.4960 0.5004
(0.03 1) (0.029) (0.026) (0.030) (0.028) (0.026) (0.027)

Stoch 0.6563 0.6556 0.6546 0.6570 0.6551 0.6561 0.6575
(0.025) (0.024) (0.023) (0.023) (0.024) (0.022) (0.022)

DEAl 0.6194 0.6004 0.5317 0.3850 0.2864 0.2181 0.1026
(0.020) (0.021) (0.029) (0.034) (0.036) (0.040) (0.026)

DEA2 0.5751 0.5198 0.3715 0.1757 0.0889 0.0958 0.0488
(0.040) (0.046) (0.050) (0.044) (0.033) (0.022) (0.094)

2.o1.33 0.6561 0.6561 0.6561 0.6561 0.6561 0.6561 0.6561
True Mean (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

Determ 0.5029 0.5040 0.5008 0.5046 0.5032 0.5030 0.5049
(0.029) (0.028) (0.025) (0.029) (0.027) (0.025) (0.026)

Stoch 0.6556 0.6552 0.6546 0.6572 0.6547 0.6565 0.6576
(0.024) (0.023) (0.023) (0.022) (0.024) (0.022) (0.022)

DEAl 0.6449 0.6268 0.5560 0.4028 0.2977 0.2243 0. 1033
(0.020) (0.022) (0.029) (0.034) (0.034) (0.041) (0.027)

DEA2 0.5971 0.5389 0.3882 0.1841 0.0926 0.0962 0.0495
(0.040) (0.044) (0.054) (0.046) (0.035) (0.021) (0.010)

3.orrO.33 0.6561 0.6561 0.6561 0.6561 0.6561 0.6561 0.6561
True Mean (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

Determ 0.4145 0.4140 0.4138 0.4166 0.4132 0.4132 0.4169
(0.071) (0.072) (0.072) (0.072) (0.070) (0.070) (0.071)

Stoch 0.6603 0.6604 0.6589 0.6604 0.6596 0.6574 0.6583
(0.031) (0.030) (0.028) (0.031) (0.030) (0.026) (0.026)

DEAl 0.6538 0.6353 0.5667 0.4066 0.2989 0.2174 0.1009
(0.023) (0.022) (0.035) (0.037) (0.031) (0.043) (0.027)

DEA2 0.6058 0.5496 0.3965 0.1832 0.0918 0.0917 0.0473
(0.040) (0.043) (0.055) (0.044) (0.034) (0.018) (0.010)

Note that the standard deviations are in the parenthesis.
DEAl -- Gross DEA efficiency measures
DEA2 -- Residual DEA efficiency measures from DEA-TOBIT
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Table 6.4.3
The Effects of Exogenous Variables

The Mein T)pviqtinnc
— . £J3JILL —

a=0.05 a=0.10 cz=0.25 a0.50 0.75 1

1. o,=3.03

Determ 0.1612 0.1639 0.1662 0.1625 0.1650 0.1647 0.1613
(0.029) (0.028) (0.027) (0.028) (0.026) (0.027) (0.027)

Stoch 0.0760 0.0761 0.0757 0.0755 0.0760 0.0764 0.0757
(0.005) (0.004) (0.004) (0.004) (0.005) (0.004) (0.005)

DEAl 0.1126 0.1300 0.1952 0.3302 0.4245 0.4874 0.5940
(0.011) (0.014) (0.023) (0.030) (0.033) (0.034) (0.026)

DEA2 0.1293 0.1680 0.2974 0.4861 0.5733 0.6112 0.6479
(0.022) (0.036) (0.052) (0.042) (0.040) (0.036 (0.020)

2. = 1.33

Determ 0.1588 0. 1578 0.1605 0. 1576 0. 1586 0. 1584 0. 1572
(0.027) (0.028) (0.027) (0.028) (0.026) (0.025) (0.027)

Stoch 0.075 1 0.0749 0.0749 0.0747 0.0750 0.0753 0.0746
(0.005) (0.004) (0.004) (0.004) (0.005) (0.004) (0.005)

DEAl 0.1068 0.1212 0.1823 0.3175 0.4154 0.4824 0.5930
(0.009) (0.011) (0.020) (0.029) (0.031) (0.034) (0.027)

DEA2 0.1182 0.1536 0.2813 0.4777 0.5697 0.6100 0.6502
(0.018) (0.032) (0.056) (0.043) (0.041) (0.034) (0.014)

3.01=0.33

Determ 0.2458 0.2463 0.2466 0.2438 0.2471 0.2468 0.2435
(0,067) (0.068) (0.067) (0.068) (0.065) (0.067) (0.068)

Stoch 0.0911 0.0909 0.0901 0.0911 0,0907 0.0907 0.0907
(0.007) (0.007) (0.006) (0.001) (0.007) (0.006) (0.007)

DEAl 0.1000 0.1123 0.1746 0.3107 0.4107 0.4846 0.5935
(0.008) (0.009) (0.020) (0.029) (0.030) (0.035) (0.028)

DEA2 0.1088 0. 1418 0.2728 0.4786 0.5704 0.6126 0.6503
(0.016) (0.030) (0.057) (0.042) (0.041) (0.030) (0.014)

Note that the standard deviations are in the parenthesis.
DEA 1 -- Gross DEA efficiency measures
DEA2 -- Residual DEA efficiency measures from DEA-TOBIT
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absolute deviations are presented in Table 6.4.3. Recall from Chapter 4, the DEA-TOBIT

procedure first estimates a gross efficiency index using the DEA method, and then uses the

TOBIT regression to identify the effects of exogenous variables on this gross efficiency index

and to compute a residual efficiency index. The gross efficiency estimates and the MADs

from the first stage are denoted by DEAl in Table 6.4.2 and Table 6.4.3, and the residual

efficiency estimates and the MADs from the second stage are denoted by DEA2. Determ and

Stoch denote the one-step deterministic and stochastic frontier methods, respectively. In

particular, the one-step procedure estimates the production frontier function specified by

equation (6.1), and the influence of exogenous variables are controlled for while measuring

efficiency.

The results in these two tables draw essentially the same conclusion. They indicate

that the magnitude of exogenous variables does not have any significant effects on the

efficiency estimates by the two parametric methods as long as the exogenous variables are

correctly identified and are accounted for in the estimation. In such cases, there is no

misspecification related to those identifiable exogenous variables, hence, they do not

contribute to additional disturbance in measuring efficiency. On the other hand, the mean

gross efficiency estimates from the DEA-Tobit procedure (DEAl) fall dramatically as the

magnitude of exogenous variable increases especially when cy > 0.25. The residual

efficiency estimates from the DEA-TOBIT procedure (DEA2) is even more underestimated

than the gross DEA efficiency measures (DEAl). This could partly be explained by the fact

that in the second stage of the DEA-TOBIT procedure, only the observation with the largest

positive residual from the TOBIT regression is considered as efficient, and consequently
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average efficiency estimates would be lower. However, the DEA-Tobit procedure performs

slightly better than the deterministic frontier when the magnitude of exogenous variables is

low (a < 0.10).

Table 6.4.4 lists the correlation coefficients and Table 6.4.5 lists the rank correlations

for different magnitudes of exogenous variables. For the two parametric methods, there is

essentially no change in the correlations and the rank correlations over the range of a

examined. That is, the exogenous variables have little effects on the efficiency estimates by

the two parametric methods. However, the performance of the DEA deteriorates rapidly in

terms of the correlations and the rank correlations as a increases, especially when a is larger

than 0.25. The second stage regression does not appear to be effective in improving the

performance of the DEA in terms of correlation coefficient when a is over 0.75, but it does

improve the DEA’s performance considerably in terms of rank correlation. When the

magnitude of exogenous variables is modest, the residual efficiency estimates from the

second stage of the DEA-TOBIT procedure do approximate the “tru&’ efficiencies better than

the gross DEA efficiency estimates. Overall, the DEA-Tobit procedure performs reasonably

well in terms of the rank correlations except for the cases where the magnitude of exogenous

variables is set unrealistically high (a =1, 2).

In summary, if the exogenous variables can be correctly identified and incorporated

in estimating the production frontiers, the parametric methods have a natural advantage over

the DEA-TOBIT procedure in dealing with the effects of exogenous variables. The DEA

TOBIT procedure appears to be a reasonable competitor when the effects of the exogenous

variable are modest. When the magnitude of exogenous variables is high, the DEA-TOBIT



Chapter 6 Experiment Results 119

Table 6.4.4
The Effects of Exogenous Variables

Correlation Between The True and Estimated Efficiency

o=0.05 =0.10 a0.25 cr0.50 cv 0 .75 cv1

1.o =303

Determ 0.8586 0.8582 0.8585 0.8587 0.8584 0.8589 0.8578
(0.019) (0.020) (0.019) (0.020) (0.019) (0.019) (0.021)

Stoch 0.8884 0.8877 0.8885 0.8888 0.8884 0.8880 0.8889
(0.015) (0.015) (0.014) (0.013) (0.014) (0.013) (0.014)

DEAl 0.7701 0.7348 0.5938 0.3705 0.2433 0.1812 0.0551
(0.046) (0.053) (0.051) (0.073) (0.062) (0.064) (0.084)

DEA2 0.7731 0.7527 0.6597 0.4051 0.2027 0.1677 0.0277
(0.046) (0.055) (0.065) (0.108) (0.102) (0.087) (0.078)

2.o,= 1.33

Determ 0.8621 0.8617 0.8619 0.8622 0.8619 0.8623 0.8611
(0.019) (0.020) (0.019) (0.019) (0.019) (0.019) (0.021)

Stoch 0.8911 0.8907 0.8912 0.8908 0.8915 0.8917 0.8926
(0.016) (0.015) (0.015) (0.013) (0.014) (0.013) (0.014)

DEAl 0.7774 0.7432 0.6064 0.3816 0.2510 0.1864 0.0573
(0.043) (0.049) (0.047) (0.069) (0.061) (0.063) (0.083)

DEA2 0.7801 0.7610 0.6762 0.4239 0.2135 0. 1723 0.0298
(0.043) (0.051) (0.058) (0.105) (0.105) (0.087) (0.076)

3.uO.33

Determ 0.7967 0.7959 0.7966 0.7969 0.7969 0.7975 0.7966
(0.023) (0.023) (0.023) (0.024) (0.022) (0.023) (0.023)

Stoch 0.8432 0.8436 0.8437 0.8438 0.8435 0.8439 0.8436
(0.021) (0.021) (0.020) (0.020) (0.021) (0.018) (0.018)

DEAl 0.7975 0.7655 0.6229 0.3999 0.2608 0.1899 0.0607
(0.039) (0.045) (0.043) (0.061) (0.061) (0.064) (0.083)

DEA2 0.8004 0.7837 0.6999 0.4470 0.2204 0. 1685 0.0282
(0.039) (0.046) (0.056) (0.097) (0.112) (0.085) (0.075)

Note that the standard deviations are in the parenthesis.
DEAl -- Gross DEA efficiency measure
DEA2 -- Residual efficiency measure from DEA-TOBIT
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Table 6.4.5
The Effects of Exogenous Variables

Rank Correlation Between The True and Estimated Efficiency

a0.05 a=0.10 a0.25 a=O.50 a=0.75 a1 a=2

1 =3.03

Detnn 0.8693 0.8688 0.8695 0.8693 0.8697 0.8694 0.8684
(0.022) (0.022) (0.023) (0.022) (0.023) (0.022) (0.024)

Stoch 0.8751 0.8742 0.8747 0.8753 0.8750 0.8745 0.8753
(0.018) (0.019) (0.018) (0.017) (0.019) (0.017) (0018)

DEAl 0.7808 0.7524 0.6320 0.4383 0.3271 0.2735 0. 1507
(0.042) (0.047) (0.042) (0.065) (0.047) (0.064) (0.067)

DEA2 0.7860 0.7775 0.7489 0.6653 0.6012 0.4478 0.2057
(0.042) (0.046) (0.044) (0.073) (0.083) (0.085) (0.078)

2. = 1.33

Determ 0.8724 0.8717 0,8724 0.8723 0.8724 0.8720 0.8714
(0.021) (0.022) (0.022) (0.022) (0.022) (0.022) (0.023)

Stoch 0.8776 0.8773 0.8776 0.8772 0.8783 0.8784 0.8795
(0.019) (0.019) (0.019) (0.017) (0.019) (0.017) (0.018)

DEAl 0.7776 0.7495 0.6320 0.4420 0.3295 0.2757 0. 1515
(0.041) (0.045) (0.039) (0.063) (0.047) (0.064) (0.066)

DEA2 0.7821 0.7739 0.7477 0.6708 0.6111 0.4606 0.2057
(0.041) (0.045) (0.040) (0.067) (0.082) (0.082) (0.075)

3. u =0.33

Determ 0.8270 0.8266 0.8269 0.8267 0.8271 0.8275 0.8260
(0.027) (0.027) (0.027) (0.026) (0.027) (0.025) (0.027)

Stoch 0.8266 0.8268 0.8267 0.8272 0.8271 0.8270 0.8268
(0.024) (0.024) (0.023) (0.024) (0.025) (0.022) (0.023)

DEAl 0.7932 0.7661 0.6418 0.4551 0.3367 0.2827 0. 1543
(0.039) (0.043) (0.039) (0.059) (0.048) (0.064) (0.064)

DEA2 0.7982 0.7923 0.7652 0.7099 0.6659 0.4949 0.2137
(0.038) (0.042) (0.040) (0.063) (0.087) (0.071) (0.075)

Note that the standard deviations are in the parenthesis.
DEAl -- Gross DEA efficiency measure
DEA2 -- Residual efficiency measure from DEA-TOBIT
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procedure performs poorly. One explanation for this is that when the effects of exogenous

variables are significant, the DEA gross efficiency scores are distorted so seriously’ that the

second stage Tobit analysis could not adequately account for the effects of the exogenous

variables. Therefore, if it is necessary to use the DEA-TOBIT procedure in situations

where there might be large variations in exogenous factors, one must be very cautious in

making any inferences from the results.

The one-step parametric methods clearly have a dominating advantage over the two -

step DEA-TOBIT procedure for obvious reasons. The two-step procedure has also been used

with the parametric methods. With the two-step parametric procedure, the variations in

efficiency measures from the first stage are attributed to variations in the exogenous variables

in the second stage (see Kalirajan, 1990 for an example). This two-step parametric method

first estimates a frontier production function considering only output and input variables2,and

then uses the TOBIT regression to identify the effects of exogenous variables and to compute

the residual efficiencies as in the second stage of the DEA-TOBIT procedure. This two-step

procedure may be more appealing to policy and decision makers who are interested in

improving efficiency since it relates the exogenous factors (and other explanatory variables)

directly to the efficiency performance. It would be interesting to see how the two-step

procedure, when applied to the parametric methods, performs in comparison with the one

step parametric procedure discussed above.

1 This can be confirmed by the extremely low average DEA scores from the DEA
estimation.

2 As specified by equation (6.1) after removing the exogenous variables.
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For the sake of simplicity, the performance of the two-step parametric methods is

examined only under the second production function in previous tables where oij = 1.33

(i j). This will not bias the comparative results since the results in Table 6.4.2 through

Table 6.4.5 indicate that the performance of all three methods in relation to the magnitude

of exogenous variables does not depend much on the underlying production structures, at

least not in the parameter range considered here.

Table 6.4.6 lists the mean efficiency estimates and Table 6.4.8 lists the MAD values

from the two-step methods. In both tables, DET1 denotes the first stage of the deterministic

frontier method, and DET2 refers to the second stage. Similarly, STOCH1 (Stoch2) denotes

the first stage (second stage) of the stochastic frontier method. DEAl and DEA2 are the

same as those in Table 6.4.2 and Table 6.4.3. Again, the stochastic frontier method is able

to filter out the effects of exogenous variables in the first stage fairly well and yield

efficiency estimates very close to their true values as indicated by its small MAD values.

The residual efficiency estimates from the second stage of the stochastic frontier method tend

to overestimate the mean efficiency level, especially when the effects of exogenous variables

are becoming larger. On the other hand, both the DEA and the deterministic frontier method

underestimate the mean efficiency level in the first stage, and their abilities to reveal the real

picture of efficiencies in the first stage fall substantially as a increases. The incorporation

of exogenous variables in the second stage helps improve the efficiency estimates by the

deterministic frontier method but not those by the DEA. In terms of the MADs, the DEA

method performs better than the deterministic frontier method in the first stage, and also in

the second stage when a is small. However, when the magnitude of exogenous variables
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Table 6.4.6
The Effects of Exogenous Variables

Mean Efficiency Estimates by Two Stage Procedure

=0.05 a0.10 a0.25 0.50 y0.75 o1

2.u=1.33 0.6561 0.6561 0.6561 0.6561 0.6561 0.6561 0.6561
True Mean (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

DetI 0.4989 0.4776 0.3897 0.2432 0.1430 0.1018 0.0251
(0.025) (0.030) (0.039) (0.041) (0.038) (0.037) (0.011)

Det2 0.5030 0.5040 0.4923 0.4679 0.4304 0.3958 0.2719
(0.028) (0.030) (0.037) (0.033) (0.068) (0.070) (0.094)

Stochi 0.6553 0.6594 0.6674 0.7001 0.6785 0.6783 0.5758
(0.024) (0.027) (0.050) (0.123) (0.144) (0.155) (0.227)

Stoch2 0.6786 0.6804 0.7016 0.8005 0.8341 0.8640 0.8247
(0.036) (0.045) (0.081) (0.113) (0.109) (0.114) (0.179)

DEAl 0.6449 0.6268 0.5560 0.4028 0.2977 0.2243 0. 1033
(0.020) (0.022) (0.029) (0.034) (0,034) (0.041) (0.027)

DEA2 0.5971 0.5389 0.3882 0.1841 0.0926 0.0962 0.0495
(0.040) (0.044) (0.054) (0.046) (0.035) (0.021) (0.010)

Note that standard deviations are in the parenthesis.
DET 1 -- efficiency estimates from first stage by deterministic frontier method
DET2 -- residual efficiency estimates from second stage by deterministic method
Stoch 1 -- efficiency estimates from first stage by stochastic frontier method

Stoch2 -- residual efficiency estimates from second stage by stochastic frontier
DEAl -- gross DEA efficiency estimates
DEA2 -- residual efficiency estimates from DEA-TOBIT
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Table 6.4.7
The Effects of Exogenous Variables

The Mean Absolute Deviations by Two Stage Procedure

r=0.05 a0.lO crO.25 0.5O a=0.75 a1

2.u= 1.33

Detl 0.1627 0.1842 0.2716 0.4175 0.5163 0.5579 0.6344
(0.025) (0.025) (0.042) (0.041) (0.038) (0.038) (0.019)

Det2 0.1587 0.1580 0.1694 0.1930 0.2302 0.2639 0.3875
(0.026) (0.030) (0.037) (0.033) (0.068) (0.068) (0.096)

Stochl 0.0765 0.0848 0.1166 0.1754 0.1922 0.2056 0.2584
(0.043) (0.077) (0.021) (0.059) (0.050) (0.048) (0.058)

Stoch2 0.0799 0.0843 0.1100 0.1831 0.2094 0.2387 0.2468
(0.010) (0.017) (0.042) (0.087) (0.083) (0.084) (0.083)

DEAl 0.1068 0.1212 0.1823 0.3175 0.4154 0.4824 0.5930
(0.009) (0.011) (0.020) (0.029) (0.031) (0.034) (0.027)

DEA2 0.1182 0.1536 0.2813 0.4777 0.5697 0.6100 0.6502
(0.018) (0.032) (0.056) (0.043) (0.041) (0.034) (0.014)

Note that standard deviations are in the parenthesis.
DET 1 -- efficiency estimates from first stage by deterministic frontier method
DET2 -- residual efficiency estimates from second stage by deterministic method
Stoch 1 -- efficiency estimates from first stage by stochastic frontier method
Stoch2 -- residual efficiency estimates from second stage by stochastic frontier
DEAl -- gross DEA efficiency estimates
DEA2 -- residual efficiency estimates from DEA-TOBIT
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becomes large, the two-step deterministic frontier method appears to have a slight advantage

over the DEA. Comparing the results in Table 6.4.2 and Table 6.4.3 with those in Table

6.4.6 and Table 6.4.7, it is clear that technically it would be desirable to employ the one-

step parametric methods since they produce more accurate efficiency estimates.

The performance of the two-step models is also examined in terms of correlation and

rank correlation (Table 6.4.8 and Table 6.4.9). The results confirm that the efficiency

estimates would not reflect the true picture of the relative efficiency performance of the

sample firms if the effects of exogenous variables are ignored. This is indicated by the

observation that as a increases the correlations and the rank correlations from the first stage

fall dramatically for all three methods. The residual efficiency estimates from the second

stage, on the other hand, approximate the true efficiency levels fairly well with the two

parametric methods as indicated by the fairly high correlation and rank correlation

coefficients. Furthermore, it is noted that although the stochastic frontier method performs

better than the deterministic frontier method in the first stage, the opposite is true for the

residual efficiency estimates from the second stage when a is large. One explanation for this

is that the stochastic frontier method filters out some of the effects of exogenous variables

as noise in the first stage so that the first stage performs better. However, this leaves it with

less explanatory power for the exogenous variables in the second stage regression, thus

results in the less satisfactory performance in the second stage.

The DEA-TOBIT procedure does not do as well as the parametric methods over the

values of a considered. However, it performs reasonably well in terms of rank correlation

when the magnitude of exogenous variables is small, i.e. a 0.25.
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Table 6.4.8
The Effects of Exogenous Variables

Correlation Coefficients by Two Stage Procedure

o=0.05 a=0.10 a=0.25 0.50 a=0.75 1 a2

2.ql.33

Deti 0.8556 0.8268 0.6867 0.4546 0.3026 0.2302 0.0560
(0.019) (0.022) (0.038) (0.037) (0.045) (0.052) (0.073)

Det2 0.8620 0.8616 0,8519 0.8202 0.7880 0.7537 0.5606
(0.018) (0.019) (0.023) (0.034) (0.049) (0.068) (0.127)

Stochi 0.8867 0.8620 0.7440 0.5418 0.4014 0.3325 0.1744
(0.014) (0.020) (0.032) (0.046) (0.053) (0.062) (0.071)

Stoch2 0.8909 0.8848 0.8599 0.8090 0.7656 0.7351 0.5524
(0.014) (0.018) (0.016) (0.038) (0.042) (0.066) (0.119)

DEAl 0.7774 0.7432 0.6064 0.3816 0.2510 0.1864 0.0573
(0.043) (0.049) (0.047) (0.069) (0.061) (0.063) (0.083)

DEA2 0.7801 0.7610 0.6762 0.4239 0.2135 0.1723 0.0298
(0.043) (0.051) (0.058) (0.105) (0.105) (0.087) (0.076)

Note that standard deviations are in the parenthesis.
DET 1 -- efficiency estimates from first stage by deterministic frontier method
DET2 -- residual efficiency estimates from second stage by deterministic method
Stoch 1 -- efficiency estimates from first stage by stochastic frontier method
Stoch2 -- residual efficiency estimates from second stage by stochastic frontier
DEAl -- gross DEA efficiency estimates
DEA2 -- residual efficiency estimates from DEA-TOBIT
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Table 6.4.9
The Effects of Exogenous Variables

Rank Correlation by Two Stage Procedure

cz=0.0S c0.10 cr=0.2S a0.50 0.75 1 c=2

2. = 1.33

Deti 0.8669 0.8414 0.7175 0.5072 0.3735 0.3139 0.1728
(0.022) (0.028) (0.037) (0.047) (0.050) (0.064) (0.063)

Det2 0.8721 0.8724 0.8650 0.8362 0.8151 0.7851 0.6518
(0.021) (0.022) (0.027) (0.034) (0.03 1) (0.062) (0.068)

Stochi 0.8728 0.8450 0.7177 0.5076 0.3738 0.3138 0.1732
(0.018) (0.024) (0.035) (0.047) (0.049) (0.063) (0.063)

Stoch2 0.8774 0.8716 0.8507 0.8074 0.7690 0.7321 0.5644
(0.017) (0.020) (0.020) (0.040) (0.034) (0.070) (0.105)

DEAl 0.7776 0.7495 0.6320 0.4420 0.3295 0.2757 0. 1515
(0.041) (0.045) (0.039) (0.063) (0.047) (0.064) (0.066)

DEA2 0.7821 0.7739 0.7477 0.6708 0.6111 0.4606 0.2057
(0.041) (0.045) (0.040) (0.067) (0.082) (0.082) (0.075)

Note that standard deviations are in the parenthesis.
DET 1 -- efficiency estimates from first stage by deterministic frontier method
DET2 -- residual efficiency estimates from second stage by deterministic method
Stoch 1 -- efficiency estimates from first stage by stochastic frontier method
Stoch2 -- residual efficiency estimates from second stage by stochastic frontier
DEAl -- gross DEA efficiency estimates
DEA2 -- residual efficiency estimates from DEA-TOBIT
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Comparing the residual efficiency estimates from the second stage with those from

the one-step procedure reported in Table 6.4.2 to Table 6.4.5, it is clear that the two-step

procedure is inferior to the one-step procedure except for the cases where a is small. Since

the two-step procedure relates the exogenous variables directly to the observed efficiency

performance of the sample firms, it sometimes might be more helpful to policy analyst and

decision makers in identifying the effects of exogenous variables on productive performance.

If the effects of exogenous variables are not very strong, it may be desirable to employ the

two-step procedure because of its intuitive appeal.

In summary, the parametric methods have an obvious advantage over the DEA

method in terms of correlations and rank correlations. However, the mean efficiency

estimates from the DEA are very close to the “true” efficiency level when the effects of

exogenous variables are not very strong. The abilities of the one-step parametric methods

do not appear to be affected by the presence of exogenous variables as long as these

variables can be correctly identified and accounted for. Omission and misspecification of

the exogenous variables, however, would seriously affect the accuracy of the efficiency

estimates. The two-step procedure is able to yield reliable efficiency estimates when the

effects of exogenous variables are modest, but it is not reliable for cases where the

magnitude of exogenous variables is high. However, they are logically and intuitively more

appealing for policy analysis and decision making. Before closing this section, one must

note that some of the scenarios considered here are not realistic as mentioned in the

beginning of this section. Therefore, one should be careful in referring to the poor

performance of certain method when a is large which is intended to illustrate the significance
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of the effects of exogenous variables.

6.5 The Effects of Outliers

This section examines the effects of outliers on the efficiency estimates. As stated

in Chapter 5, only one outlier is considered to minimize computational requirements. The

“efficient” outlier is generated by increasing the output level of an efficient observation3.

The efficiency levels are then reestimated in order to see to what degree the outliers make

the efficiency estimates deviate from the true efficiency level. In particular, the output level

of an efficient observation is increased by 5%, 25%, 50%, 75%, and 100%.

The results from earlier sets of experiments indicate that the relative performance of

the three methods exhibits similar pattern with the three underlying production functions

Table 6.5.1
The Effects of Outliers

The Mean Efficiency Estimates

5% 25% 50% 75% 100%

True Mean 0.6514 0.6514 0.6514 0.6514 0.6514
(0.0157) (0.0157) (0.0157) (0.0157) (0.0157)

Deterministic 0.4815 0.4086 0.3444 0.2981 0.2632
(0.0259) (0.0215) (0.0188) (0.0176) (0.0171)

Stochastic 0.6582 0.6686 0.6790 0.6881 0.6964
(0.0237) (0.0225) (0.0230) (0.0242) (0.0256)

DEA 0.6494 0.6441 0.6344 0.6225 0.6101
(0.0187) (0.0184) (0.0220) (0.0294) (0.0375)

Note that the standard deviations are in the parenthesis.

The “efficient” outlier could in fact be inefficient. However, this should not affect the
results dramatically.
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considered. Therefore, this section considers only the case where p = -0.25, that is, 2=

= = 1.33 (the second production function).

Table 6.5.2
The Effects of Outliers

The Mean Absolute Deviations

5% 25% 50% 75% 100%

Deterministic 0.1584 0.1628 0.1725 0.1886 0.2103
(0.0288) (0.0362) (0.0470) (0.0608) (0.0749)

Stochastic 0.0744 0.0753 0.0790 0.0840 0.0897
(0.0048) (0.0069) (0.0093) (0.0115) (0.0137)

DEA 0.1027 0.1046 0.1099 0.1179 0.1265
(0.0083) (0.0093) (0.0141) (0.0214) (0.0291)

Note that the standard deviations are in the parenthesis.

The mean efficiency estimates are reported in Table 6.5.1 and the MAD values are

reported in Table 6.5.2. The results show that the efficiency estimates by the DEA are

relatively stable, changing from 0.649 at 5% to 0.6 10 at 100%. However, the mean

efficiency estimates by the deterministic frontier method fall sharply from 0.482 at 5% to

0.263 at 100% as the scale of outliers rises. This seems to be contradictory to the

presumption that the DEA is more sensitive to outliers as stated by many authors in

reviewing the various methodologies for efficiency measurements. However, these results

are justifiable when we examine how each of the three methods compute efficiency

measures. The deterministic frontier method evaluates the efficiency levels based on ONE

single efficient” observation. If this observation is an (efficient) outlier or there is data

error, e.g. inflated output level or deflated input level, associated with this observation, the
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efficiency estimates for all other observations would be reduced and the mean efficiency

estimates would be lower. The more inflated the output level, the lower the mean efficiency

estimates. On the other hand, the DEA method evaluates the efficiencies of the firms or

observations based on more than one “best practice” points. If one of the “best practice”

points happens to be an outlier or has data error, only those observations which are evaluated

based on this particular point will be affected. It would have little effects on the efficiency

estimates of other observations. Therefore, the DEA method is more flexible, in terms of

the mean efficiency estimates, with regards to outliers and data errors than the deterministic

frontier method. This result confirms Mensah and Li (1993)’s conclusion that the DEA is

relatively more impervious to deletion of outliers than a deterministic frontier translog

model. The efficiency estimates by stochastic frontier method are, as expected, rather stable

because of its “built in” ability to buffer exogenous shocks.

Both the DEA and the deterministic frontier method underestimate the efficiency

levels because the outliers inflate the output level of the reference point with which the

productive performance of other observations is compared. The stochastic frontier method

appears to overestimate the efficiencies, especially when the scale of outliers rises. This is

because the estimated stochastic production frontier would have a wider “band” when the

scale of outliers is higher, thus the average efficiency estimate would be higher.

The correlation coefficients are presented in Table 6.5.3. The stochastic frontier

method is again shown to be rather robust to the outliers. In terms of correlations, the

outliers have similar effects on the performances of the DEA and the deterministic frontier

method, as indicated by the similar changing patterns of their correlation coefficients.
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Table 6.5.3
The Effects of Outliers

Correlation between True and Estimated Efficiencies

5% 25% 50% 75% 100%

Deterministic 0.8631 0.8559 0.8424 0.8249 0.8046
(0.0194) (0.0201) (0.0212) (0.0227) (0.0245)

Stochastic 0.8933 0.8943 0.8933 0.8913 0.8889
(0.0145) (0.0155) (0.0160) (0.0163) (0.0165)

DEA 0.7881 0.7843 0.7727 0.7568 0.7395
(0.0412) (0.0425) (0.0505) (0.0626) (0.0755)

Table 6.5.4
The Effects of Outliers

Rank Correlation between True and Estimated Efficiencies

5% 25% 50% 75% 100%

Deterministic 0.8742 0.8745 0. 8745 0.8747 0.8748
(0.0219) (0.0219) (0.0217) (0.0217) (0.0217)

Stochastic 0.8795 0.8800 0.8799 0.8796 0.8793
(0.0188) (0.0194) (0.0197) (0.0200) (0.0202)

DEA 0.7856 0.7840 0.7763 0.7649 0.7514
(0.0396) (0.0411) (0.0483) (0.0573) (0.0669)

Note that the standard deviations are in the parenthesis.

The rank correlations are presented in Table 6.5.4. In terms of the rank correlations,

the two parametric methods appear to be rather flexible to the scale of outliers, while the

performance of the DEA tends to deteriorate as the scale of outliers increases. The

explanation for the stochastic frontier method is obvious. However, some discussions on the

deterministic frontier method and DEA are warranted. With the deterministic frontier
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method, the scale of the outliers would affect the actual levels of efficiency estimates of other

observations (relative to the efficient outlier) but would have less effects on their relative

rankings since these observations are evaluated on the basis of the same reference

observation - the efficient outlier in this case. This partly explains the higher rank

correlations enjoyed by the deterministic frontier method. On the other hand, the efficient

outlier would only affect the efficiency estimates of some of the observations with the DEA

method, thus relative efficiency rankings of the observations would change. The larger the

scale of outliers, the more significant the changes would be, thus the rank correlation for

DEA fall noticeably as the scale of outliers rises.

In summary, the stochastic frontier method is rather robust to the problem of outliers

in terms of both the mean efficiency estimates (and the MADs) and the rank correlations

(and the correlation coefficients). The presence of outliers does not have much effects on

the deterministic frontier method in terms of correlations and rank correlations, but does

have significant effects in terms of the mean efficiency estimates. On the contrary, outliers

have less effects on the DEA in terms of the mean efficiency estimates, but have

considerable effects in terms of the relative efficiency rankings.

6.6 The Effects of the Underlying Production Technology

In the previous five sections, the constant returns to scale production technology is

assumed in order not to distort the results of experiments by different treatment of returns

to scale. In this section, non-constant returns to scale and input complementarity are allowed

into the underlying production technology in order to examine how well the three alternative
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methods deal with possible misspecification of functional forms of the production technology.

Since the BCC model takes into account of non-constant returns to scale in the DEA

context, it is decided to include the BCC model in the comparison together with the CCR

model. Ten production functional forms with different degrees of returns to scale and input

complementarity are specified, consequently ten sample data sets are generated based on

these functions. The functions are labelled 4 to 13 in sequence to the three production

functions assumed earlier. The parameter values of these functions are listed in Appendix

B. Table 6.6.1 presents the mean efficiency estimates and Table 6.6.2 presents the MAD

values from the four alternative methods. The stochastic frontier method is able to yield

stable and accurate efficiency estimates across all the functions considered. Therefore, the

returns to scale and input complementarity do not appear to have any significant effects on

the performance of the stochastic frontier method in terms of the mean efficiency estimates.

The efficiency estimates by the deterministic frontier method underestimate the true

efficiency level in all the scenarios. The CCR model produces lower average efficiency

estimates than the BCC model. This is expected since the CCR ratios reflect the combined

effects of technical efficiency and scale effects, and the BCC efficiency ratios are estimated

after removing the effects of scale efficiency. Both models tend to underestimate the true

efficiency when input complementarity is present. When input complementarity is absent,

the BCC model appears to overestimate the true efficiency level. The mean efficiency

estimates by both CCR ratio model and BCC model fall dramatically as the returns to scale

rise. The results suggest that the BCC is not able to account adequately for the effects of

returns to scale.
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Table 6.6.1
The Effects of Underlying Production Technology

Mean Efficiency Estimates

DET STOCH CCR BCC

Tnie 0.6561 0.6561 0.6561 0.6561
(0.0157) (0.0157) (0.0157) (0.0157)

4. y=O.92l 0.5048 0.6557 0.5894 0.6465
o12—4L277 (0.0279) (0.0232) (0.0251) (0.0216)

g130.540
u12—0.512

5. ‘y=O.927 0.5045 0.6556 0.5968 0.6515
a12=0.399 (0.0280) (0.0229) (0.0223) (0.0190)
U13 =0.454
u12—-0. 182

6. -y=O.929 0.4611 0.6558 0.6478 0.7221

12—0.356 (0.0437) (0.0286) (0.0235) (0.0190)

a13=0.447

u12—0.508

7. ‘y=O.934 0.5046 0.6557 0.5892 0.6460

12-O.2O9 (0.0280) (0.0231) (0.0252) (0.0216)

a13=0.399
g12—0.454

8. yO.934 0.5047 0.6556 0.5886 0.6452

a12—-0.091 (0.0279) (0.0231) (0.0252) (0.0216)

U13 =0.399

a12 = 0.453

(a) and oij are the returns to scale and elasticities of substitution as defined by

(5.2) and (5.3)
(b) DET - Deterministic Frontier Method

(c) STOCH - Stochastic Frontier Method

(d) BCC - the BCC Model

(e) CCR - the CCR ratio

(f) The standard deviations are in the parenthesis
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Table 6.6.1(Cont.)
The Effects of Underlying Production Technology

Mean Efficiency Estimates

DET STOCH CCR BCC

True 0.6561 0.6561 0.6561 0.6561
(0.0 157) (0.0157) (0.0157) (0.0 157)

9. yl.2O9 0.5045 0.6556 0.4723 0.5452
0120,399 (0.0280) (0.0229) (0.0390) (0.0423)
j13 = 0.454

012 =-0. 182

10. ‘yl.22’7 0.5047 0.6557 0.4379 0.5152
012-0,209 (0.0280) (0.0231) (0.0519) (0.0509)
013=0.399
012 = 0.454

11. -y=l.2139 0.4285 0.6562 0.6070 0.6924
g=O.356 (0.0594) (0.0232) (0.0263) (0.0225)
O3—0.447

012—0.508

12. y=l.286 0.5050 0.6557 0.3951 0.4736
012—”’0.277 (0,0280) (0.0232) (0.0555) (0.0557)
a13 =0. 540
0120.5 12

13. yl.573 0.5048 0.6556 0.2438 0.3188
03”0.091 (0.0277) (0.0230) (0.0549) (0.0587)
03=0.399
012 = 0.453

(a) -y and oij are the returns to scale and elasticities of substitution as defined by
(5.2) and (5.3)

(b) DET - Deterministic Frontier Method

(c) STOCH - Stochastic Frontier Method

(d) BCC - the BCC Model
(e) CCR - the CCR ratio
(f) The standard deviations are in the parenthesis
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Table 6.6.2
The Effects of Underlying Production Technology

The Mean Absolute Deviations

DET STOCH CCR BCC

4. yO.927 0.1570 0.0744 0.1239 0.1278
012—-0.277 (0.0277) (0.0044) (0.0153) (0.01 10)
U3=0.540
G12 —0.512

5. 7=0.927 0. 1573 0.0743 0. 1222 0. 1276
012—0.399 (0.0278) (0.0043) (0.0137) (0.01 10)
a3=0.454
012—-0. 182

6. 7=0.929 0.1995 0.0826 0. 1083 0. 1227

012—0.356 (0.0444) (0.0067) (0.0087) (0.0075)

03 = 0.447
0120,508

7. 70.934 0.1572 0.0744 0.1237 0.1280

012—-0.209 (0.0279) (0.0043) (0.0154) (0.0111)
g13 0.399

I2 =0.454

8. 7=0.934 0.1571 0.0744 0. 1240 0. 1283

0120.091 (0.0276) (0.0044) (0.0156) (0.01 12)

013 —0.399
0120.453

(a) and uij are the returns to scale and elasticities of substitution as defined by
(5.2) and (5.3)

(b) DET - Deterministic Frontier Method
(c) STOCH - Stochastic Frontier Method
(d) BCC - the BCC Model
(e) CCR - the CCR ratio
(f) The standard deviations are in the parenthesis
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Table 6.6.2(Cont.)

The Effects of Underlying Production Technology

The Mean Absolute Deviations

DET STOCH CCR BCC

9. yl.2O9 0.1573 0.0743 0.2239 0.2016
u12—0.3 (0.0278) (0.0043) (0.0360) (0.0328)
q13 =0.454
u12 —-0. 182

10. 7=1.227 0.1572 0.0744 0.2544 0.2278
12—-0.209 (0.0278) (0.0043) (0.0506) (0.0476)
u13—O.399
012—0.454

11. 71.239 0.2315 0.0855 0.1304 0.1248

012—0.356 (0.0565) (0.0057) (0.0142) (0.0092)

03 =0.447
012—0.508

12. 7=1.286 0.1569 0.0744 0.2959 0.2666

012—-0.277 (0.0275) (0.0044) (0.0545) (0.0526)
u=0.540
012—0.5 12

13. 7=1.573 0.1570 0.0744 0.4443 0.4154

012—-0.091 (0.0273) (0.0044) (0.0549) (0.0567)
U3 =0.399

12 = 0.453

(a) -y and uij are the returns to scale and elasticities of substitution as defined by
(5.2) and (5.3)

(1,) DET - Deterministic Frontier Method
(c) STOCH - Stochastic Frontier Method
(d) BCC - the BCC Model
(e) CCR - the CCR ratio
(f) The standard deviations are in the parenthesis
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In summary, when inputs are all substitutes, and when there are decreasing returns

to scale, the deterministic frontier method produces the most conservative efficiency

estimates which underestimate the true efficiency level. However, when the underlying

production technology shows increasing returns to scale and there exists complementarity

among inputs, the DEA models would be more likely to produce the lowest efficiency

estimates. The poor performance of the DEA models in the cases where there are increasing

returns to scales is due to the fact that DEA assumes a convex production possibility set, and

increasing returns to scale technology is inconsistent with this convexity assumption

(Petersen, 1990). Therefore, discretion is necessary in applying the DEA models where

there is evidence suggesting increasing returns to scale.

Regarding the correlations in Table 6.6.3 and the rank correlations in Table 6.6.4,

we find that the stochastic frontier method dominates the competition among the four models

with its high correlation and rank correlation coefficients. The performance of the

deterministic frontier method is very close to that of the stochastic frontier especially in

terms of rank correlations. The performance, in terms of correlations, of the two parametric

methods do not appear to be affected by the returns to scale. However, it is noticed that the

correlation and rank correlation coefficients are slightly lower for cases where all inputs are

substitutes (function 6 and 11). As for the two DEA models, the CCR model appears to

perform better than the BCC model in all cases examined. The performance of the two DEA

models deteriorates as the returns to scale increases (for the reasons given in the previous

paragraph). Unlike the parametric methods, the two DEA models perform slightly better

when input complementarity is absent. In general, the parametric approach clearly has an
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Table 6.6.3

The Effects of Underlying Production Technology

Correlation Between True and Estimated Efficiencies

DET STOCH CCR BCC

4. y=O.9Z1 0.8644 0.8927 0.7951 0.6785
ai = -0.277 (0.0192) (0.0145) (0.0478) (0.0427)
O3 =0.540
012—M.512

5. y=0.927 0.8644 0.8928 0.7621 0.6802
oi=O.399 (0.0192) (0.0147) (0.0498) (0.0454)
O3 =0.454
012 —-0. 182

6. y0.929 0.8327 0.8672 0.7734 0.7227
012—0.356 (0.0175) (0.0177) (0.0399) (0.0359)

j3 =0.447

o12=0.508

7. y=O.934 0.8643 0.8928 0.7662 0.6780

12 = -0.209 (0.0192) (0.0146) (0.0479) (0.0429)
013—0.399

o2=0.454

8. y=O.934 0.8644 0.8927 0.7660 0.6774
120.091 (0.0192) (0.0146) (0.0480) (0.0431)
0130.399

120.453

(a) -y and are the returns to scale and elasticities of substitution as defined by (5.2) and (5.3)
(b) DET - Deterministic Frontier Method
(c) STOCH - Stochastic Frontier Method
(d) BCC - the BCC Model
(e) CCR - the CCR ratio
(f The standard deviations are in the parenthesis
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Table 6.6.3(Cont.)

The Effects of Underlying Production Technology

Correlation between True and Estimated Efficiencies

DET STOCH CCR BCC

9. yl.209 0.8644 0.8928 0.6238 0.5551
l2—0.399 (0.0192) (0.0147) (0.0647) (0.0576)

13 =0.454

z=°182

10. y=1.227 0.8644 0.8928 0.5908 0.5120

12—0.209 (0.0192) (0.0146) (0.0790) (0.0801)

=0.399

012—0.454

11. ‘y=l.239 0.8096 0.8520 0.7192 0.6940
012—0.356 (0.0192) (0.0208) (0.0465) (0.0456)

13 =0.447
12—0.508

12. yl.286 0.8643 0.8927 0.5258 0.4511
I2”.0.277 (0.0192) (0.0146) (0.0832) (0.0850)
0j3 =0.540
I2—0.512

13. y1.S73 0.8643 0.8927 0.2919 0.2336
I2”0.091 (0.0192) (0.0147) (0.0837) (0.0838)
Oj3 =0.399
I20.453

(a) -y and are the returns to scale and elasticities of substitution as defined by (5.2) and (5.3)
(b) DET - Deterministic Frontier Method
(c) STOCH - Stochastic Frontier Method
(d) BCC - the BCC Model
(e) CCR - the CCR ratio
(f) The standard deviations are in the parenthesis
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Table 6.6.4

The Effects of Underlying Production Technology

Rank Correlation Between True and Estimated Efficiencies

DET STOCH CCR BCC

4. ‘y0.92’l 0.8742 0.8790 0.7926 0.6837
012 -0.277 (0.0219) (0.0188) (0.0420) (0.0447)
c713—0.540
012—0.512

5. y=O.927 0.8743 0.8792 0.7837 0.6804

i2—0.399 (0.0219) (0.0188) (0.0447) (0.0474)
o3=0.454
012— -0. 182

6. y=O.929 0.8502 0.8537 0.7693 0.6832

012=0.356 (0.0204) (0.0194) (0.0385) (0.0382)

013 =0.447
012—0.508

7. y0.934 0.8742 0.8791 0.7939 0.6836

012—0.209 (0.0218) (0.0187) (0.0421) (0.0448)

013 =0.399
012—0.454

8. y=O.934 0.8743 0.8791 0.7939 0.6837
012=0.091 (0.0219) (0.0188) (0.0422) (0.0447)
0j3 =0.399

2—0.453

(a) ‘y and o are the returns to scale and elasticities of substitution as defined by (5.2) and (5.3)
(b) DET - Deterministic Frontier Method
(c) STOCH - Stochastic Frontier Method
(d) BCC - the BCC Model
(e) CCR - the CCR ratio
(f) The standard deviations are in the parenthesis
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Table 6.64(Cont.)

The Effects of Underlying Production Technology

Rank Correlation between True and Estimated Efficiencies

DET STOCH CCR BCC

9. y=l.209 0.8742 0.8792 0.7141 0.6467
012—0.399 (0.0218) (0.0187) (0.0535) (0.0540)

13 =0.454

120 182

10. y1.22’7 0.8742 0.8791 0.7059 0.6367

12 = -0.209 (0.0218) (0.0187) (0.0502) (0.0535)

13 =0.399
12—0.454

11. y 1.239 0.8339 0.8349 0.7284 0.6673
012—0.356 (0.0204) (0.0236) (0.0414) (0.0416)

013 =0.447
012—0.508

12. y=l.286 0.8743 0.8789 0.6637 0.6109
012-”0.277 (0.0219) (0.0188) (0.0532) (0.0557)

=0.540
012—0.512

13. y=l.S’73 0.8742 0.8790 0.4747 0.4650
012—-0.091 (0.0219) (0.0188) (0.0597) (0.0606)

013 =0.399
012—0.453

(a) y and are the returns to scale and elasticities of substitution as defined by (5.2) and (5.3)
(b) DET - Deterministic Frontier Method
(c) STOCH - Stochastic Frontier Method
(d) BCC - the BCC Model
(e) CCR - the CCR ratio
(1 The standard deviations are in the parenthesis
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advantage over the DEA method in distinguishing the effects of efficiency from the effects

of returns to scale. Both the parametric and the DEA methods are affected by the presence

of input complementarity, but the potential effects are in the opposite directions.
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Chapter 7

A Summary of Part I

In Part I of this dissertation, three alternative methods for efficiency measurements,

namely, the deterministic frontier method, the stochastic frontier method, and the data

envelopment analysis method, are first reviewed in relation to the basic definition of

productive efficiency. A Monte Carlo study is then carried out to evaluate the relative

merits of the three methods in measuring efficiency under certain known conditions. The

results are summarized as follows:

• The performance of all three methods, in terms of correlations and rank correlations

between the true and the simulated efficiency estimates, improves as the sample size

increases. However, the mean efficiency estimates fall when the sample size

increases.

• Non-homogeneity in inputs does not appear to have much effect on the performance

of the three methods in terms of correlations and rank correlations in cases where the

elasticity of input substitution is greater than one. However, in the case of weak

input substitution the performance of the two parametric methods, in terms of

correlations and rank correlations, fall considerably as the degree of “non

homogeneity” in inputs increases. The mean efficiency estimates by the DEA appear

to increase with the variations in input values, but the opposite is true for the

deterministic frontier method. The mean efficiency estimates by the stochastic

frontier method meanwhile remain relatively stable regardless the variations in input
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variables.

• Higher noise level reduces the efficiency estimates by the deterministic frontier

method and the DEA, but tends to increase those by the stochastic frontier method.

In terms of correlations and rank correlations, the performance of all three

alternatives deteriorate sharply as the noise level rises.

• The one-step parametric methods, both deterministic and stochastic, can adequately

account for the effects of exogenous variables as long as the exogenous variables are

correctly identified. On the other hand, the two-step procedure performs reasonably

well when the effects of exogenous variables are modest. However, when the

magnitude of exogenous variables is large, the two-step procedure performs poorly

with all three methods.

• The experiment results confirm that the stochastic frontier method is rather robust

with respects to outliers. In terms of mean efficiency estimates, the DEA appears to

be more flexible to outliers than the deterministic frontier method. However, their

performances are quite similar in terms of correlations and rank correlations.

Although both the DEA method and the deterministic frontier method are affected by

the presence of outliers, the extent of these effects is modest.

• The performance of the stochastic frontier method does not depend much on the

structure of the underlying production technology over the parameter range

considered. The deterministic frontier method appears to perform slightly better in

the presence of input complementarity, but its performance does not seem to be

affected by the returns to scale. The DEA method performs poorly when there are
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increasing returns to scale, and when input complementarity is present.

In general, the stochastic frontier method dominates the competition among the three

alternative methods in all aspects examined. The deterministic frontier method performs

better than the DEA method in most cases in terms of correlations and rank correlations,

while the DEA method often outperforms the deterministic frontier method in terms of mean

efficiency estimates and the MAD values. In drawing any conclusions from the Monte Carlo

results, one must not ignore the fact that the production data are generated from a parametric

production function which is expected to give the DEA method a comparative disadvantage.

However, the DEA performs reasonably well in most situations where potential disturbance

is not very serious.

It should be noted that the results summarized above, like results from other

experimental studies, are based on a specific experimental design. Although it is believed

that the experimental design, as described in Chapter 5, is based on reasonable assumptions

about possible empirical situations, at least for the transportation industry, there still exists

the possibility that the fmdings might be changed if the experimental design is altered.

However, it is clear that the stochastic frontier method has an inherent advantage in

measuring efficiency over the DEA and the deterministic frontier method in most cases.

Therefore, it would probably be preferred to the other methods if data permit. The

estimation of stochastic frontier production functions might encounter difficulty in situations

involving multiple outputs, and the estimation of stochastic frontier cost functions would

require multi-lateral price index for inputs which may be difficult, if not impossible, to

obtain. In such cases, the DEA method would have a competitive advantage since it is
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designed to deal with multiple inputs and outputs, and it does not require information on

prices. In light of the Monte Carlo results, however, discretion would be necessary in

applying the DEA method in situations where there are large variations in the firms’

operating environments and in firms’ production characteristics, and where there is evidence

suggesting possible increasing returns to scale. The following lists some specific guidelines

that may be useful to empirical researchers in selecting an appropriate method for the

particular case on hand.

• In situations where there is evidence indicating weak input substitution, and where

large variations in sample firms’ input variables are observed, the DEA method may

be a good choice. It is shown to perform well in terms of both rank correlations and

the actual level of efficiency estimates. Further, it requires less data than the two

parametric methods. However, if the sample size is very large, the computational

costs of DEA might be higher compared to the other two methods.

• When there are large differences in the operating environments of the sample firms,

the stochastic frontier method is obviously the best choice. However, if the situation

involves multiple outputs, and there is no consistent price data available, such as in

studies involving cross-country comparisons, the application of the stochastic frontier

method may not be practical.

• The deterministic frontier method has the drawbacks of both the DEA method and

the stochastic frontier method: it is deterministic and parametric. However, it is the

easiest one to apply. If one is mainly interested in the relative efficiency rankings

rather than the actual efficiency levels, the deterministic frontier method is probably
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sufficient.

• One should avoid the use of the DEA methods as much as possible in situations

where there are increasing returns to scale in the production. Although the BCC

model is developed to account for the effects of returns to scale, the Monte Carlo

results show that the BCC model can not effectively deal with the increasing returns

to scale condition. Further, in situations where input complementarity is present,

one should also try to use the parametric methods if data permit.

• In dealing with the identifiable exogenous variables, technically it is desirable to use

the one-step stochastic frontier method. If the two-step procedure is preferred for its

intuitive appeal, the deterministic frontier method is a better choice if one is mainly

interested in the relative efficiency rankings, while the stochastic frontier method is

more appropriate if the main concern is in the actual level of efficiency estimates.

The DEA-TOBIT method is a reasonably good alternative in situations where the

effects of exogenous variables are not too strong.

In the Monte Carlo experiments, the efficiency estimates are compared to the known

efficiency profile. In empirical situations, it is not possible to have an accurate picture about

the true efficiency performance of the sample firms. In Part II of this dissertation, the three

alternative methods are applied to two real world data sets, namely, a railways data set, and

an international airlines data set. These two data sets depict two fairly different situations.

With the railways data, services are mostly provided by highly regulated, nationalized firms

thus the effects of exogenous variables are expected to be significant, and it is very likely

to have outliers in the sample. With the airline data set, firms operate in a fairly competitive
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environment, and they have access to essentially the same technology available even though

there is a high degree of diversity in size. The results from the empirical case studies are

examined to see if they are consistent with the observations from the Monte Carlo

experiments. Moreover, the empirical results would also be useful in providing policy

implications for the industries examined.
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Applications in the Transportation Industry
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Chapter 8

The Efficiency of Railway Systems in OECD Countries

In this chapter, the three alternative methods are applied to a sample of 19 passenger

railways in OECD countries to examine the productive efficiency of the sample railways over

the period of 1978-1989. The first section provides an introduction to the problem and the

motivation for the study. The second section describes the data and the model specification.

The empirical results are reported and discussed in section 3. Section 4 compares the

relative merits of the alternative methods in this application, and finally summary and

concluding remarks are given in Section 5.

8.1 Introduction

In recent years, the financial and economic performance of the passenger railway

system has attracted a great deal of attention due primarily to the mounting subsidies and

alleged inefficiencies imbedded in the system. The economic efficiency of railways is

believed to be influenced heavily by the degree of government intervention and subsidization

(or taxation), and the institutional and regulatory setting within which the railways operate.

The productive efficiency measured from observable data is also heavily influenced by the

market and operating environments to which the railways are subjected. These include

factors largely beyond managerial control such as topography and climate of the region, the

extent of development of other transport modes, traffic density, average load, average

distance of haul, the economic development stage of the nation, etc.

The differences in policy adopted by different countries provide an excellent
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opportunity to investigate the effects of policy choices on the economic efficiency of the

industry. Nash (1981) seeks to discover how much of the variation in the performance of

Western European railways, measured by market share, traffic trends and support (subsidy)

requirements, may be accounted for by government policies. He finds that, in the passenger

sector, the significant factors determining both market share and support requirements are

the prices charged and the mix of services offered. These decisions regarding prices and

services are almost entirely determined by government policy. Schwier, Jones and Pignal

(1990) compares the performance and policy environment of regional rail passenger services

operated by VIA Rail Canada, British Railways (BR), French National Railways (SNCF) and

Amtrak, with respect to the way they organize regional services, frequency and utilization

of services, and financial performance of the railways. Perelman and Pestieau (1988) and

Compagnie, Gathon and Pestieau (1991) have analyzed the efficiency of railways, with

respect to their differences in the operating environments. Gathon and Perelman (1990) and

Compagnie, Gathon and Pestieau (1991) introduce an index of regulatory and institutional

autonomy to correct for inefficiency caused by a lack of managerial autonomy.

Different methodologies have been employed in studies on the performance of

railways. Nash (1981) and Schwier, Jones and Pignal (1990) base their analysis mainly on

simple financial and performance indicators. Nash (1985), Jackson (1991), Thompson,

Wood and Lures (1991), Jackson (1992), and Thompson and Fraser (1993) examine the

performance of railways through the use of some simple productivity measures, such as

labour, fuel, and rolling stock productivities. Caves, Christensen and Swanson (1980, 1981)

and McGeehan (1993) measure railways’ productivities by estimating cost functions.
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Freeman, Oum, Tretheway and Waters (1987) uses the multilateral TFP index to examine

the performance of the two largest Canadian railways during the period of 1956-198 1.

Perelman and Pestieau (1988), Deprins and Simar (1989), and Grabowski and Mehdian

(1990) apply the deterministic frontier method to measure the efficiency of railways’.

Gathon and Perelman (1990) and Compagnie, Gathon and Pestieau (1991) estimate stochastic

frontier functions to evaluate the productive performance of the European railways, and Jha

and Singh (1994) estimates zone specific technical efficiency in the Indian railways using a

stochastic frontier model. Bookbinder and Qu (1993) compares the performance of seven

Class I North-American railroads using the data envelopment analysis method.

Some of these studies have considered the effects of exogenous variables, e.g.

average trip length, average load, etc., on measuring the railways’ efficiency, such as

Perelman and Pestieau (1988), Deprins and Simar (1989), and Gathon and Perelman (1990).

However, none of the studies has examined the effects of public subsidies on the efficiency

performance of the railways. There has been no study comparing the results from

applications of the DEA and the parametric methods to the railway industry. Simar (1992)

compares the deterministic frontier method, the stochastic frontier models with panel data

and a non-parametric method, the so-called Free Disposal Hull (FDH) method (Deprins,

Simar, and Tulkens, 1984), in estimating railways’ efficiencies. However, he did not

consider the effects of the output attribute variables in applying the non-parametric approach

which rated 50 percent of the observations as efficient.

Grabowski and Mehdian (1990) is concerned with revenue efficiency where railroad
revenue is used as the output measure.
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This chapter attempts to measure productive efficiency of the railway systems of

nineteen OECD countries and analyze it in order to identify effects on efficiency of the

public subsidy and degree of managerial autonomy. In the process, the study also attempts

to compare and reconcile the results of productive efficiency obtained by using the three

alternative methods.

8.2 Data and Model Specification

In this study, each observation in the data set, that is, combination of railway and

year, is regarded as an individual “decision-making unit” (DMTJ) in the terminology of the

data envelopment analysis. In total, there are 208 DMUs. The sample firms and their

characteristics as well as the data sources are presented in Appendix C. More discussions

can be found in Oum and Yu (1991) and Oum and Yu (1994).

For the DEA model, each DMU is assumed to produce two outputs: passenger

services and freight services. Two alternative sets of output measures are considered: (1)

revenue output measures, as measured by passenger kilometres and freight tonne-kilometres,

and (2) available output measures, as measured by passenger train kilometres and freight

train kilometres. The available output measures indicate the level of capacity supplied, while

the revenue output measures indicate the level of output consumed by users and the value

they derive from them.

For the parametric methods, there are problems in estimating multiple output

production functions due to the presence of more than one dependent variables (outputs).

Estimation of the dual cost functions would require data on the railways’ input prices, for
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which there is no reliable data which is consistent across firms in different countries and over

time. Further, information on revenue shares is not available to aggregate passenger

kilometres and freight kilometres, or to aggregate the train kilometres in a more sensible

way. Therefore, total train kilometres2is used as the output measure with the parametric

methods. This variable is certainly a crude measure of the production of a railway, but it

offers an aggregate measure of a railway’s activity. An attempt is made to account for the

potential effects of different service orientations by incorporating the percentage of passenger

train kilometres in total train kilometres, and to account for the degree of train utilization by

incorporating the average load per train as additional explanatory variables.

For both the DEA model and the parametric methods, seven inputs are considered:

(1) labour, (2) energy consumption, (3) ways and structures, (4) materials, (5) the number

of passenger cars, (6) the number of freight wagons, and (7) the number of locomotives (see

Appendix C for more details).

The observed productive performance of the railways are influenced by variations in

the market, operating, institutional and regulatory policy environment, on which railways

have very limited control. The effects of these variables should be accounted for in making

efficiency comparison among the railways. Table 8.1 lists the definitions of such variables

examined in this study.

2 Deprins and Simar (1989) also uses total train kilometres as the output measure.
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Table 8.1
Definition of Policy and Uncontrollable Variables

Variables II Description

Uncontrollable Factors

PDENSITY(KM) Passenger-km per route-km
FDENSITY(KM) Freight Tonne-km per route-km
PDENSITY(TR) Passenger Train Density: Passenger train-km per route-km
FDENSITY(TR) Freight Train Density: Freight train-km per route-km
%PASSENGER Percentage of passenger train-km in total train-km
TRIP Average length of passenger trip (km)
HAUL Average length of Haul of freight traffic (km)
PLOAD Average passenger load per train
FLOAD Average freight load per train
TIME Time Trend

Controllable Factors

SUBSIDY/C Percentage of subsidy to total operating costs
%ELECTRIC Percentage of Electrified Route Miles
AUTONOMY Degree of managerial autonomy measured by Compagnie,

Gathon and Pestieau (1991)*

* Since the information on the degree of management autonomy for the
European railways was available only at a single point in time (measured by
Compagnie, Gathon and Pestieau, 1991), it was necessary to assume that the
railways’ autonomy ratings remain unchanged during the study period. In
addition, JNR is given the lowest autonomy rating.
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The CCR model3 is applied to the data set, using the formulation (4.2.2), and the

second stage regression analysis is accomplished using equations (4.3.1) and (4.3.2). Both

the deterministic frontier and the deterministic core of the stochastic frontier are specified

as follows:

lfly
=

+ E cL1flX1+E Pklnzkf (8.1)

where y is the output in train kilometres for the j-th DMU, x, is the i-th input of DMU j,

ZkJ are the variables listed in Table 8.1, and a, 13 are the coefficients to be estimated. The

deterministic frontier function is estimated using the COLS, described by equations (4.1.5)

to (4.1.7), and the stochastic frontier function is estimated using the Battese and Coelli

procedure as described in section 4.1.2 of Chapter 4.

8.3 The Results

The study proceeds first with the DEA-TOBIT analysis. Then the deterministic

frontier method is used to measure the residual efficiencies of the railways, and to identify

the effects of the exogenous variables on the efficiency. Finally, the stochastic frontier

method is applied to the sample data. The results from the deterministic frontier method and

the stochastic frontier method are briefly discussed in comparison with the DEA-TOBIT

results.

The BCC model is not used here, since the results in Chapter 6 indicate that it does not
perform better than the CCR ratio even in cases of non-constant returns to scale.
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8.3.1 The DEA Results

With the DEA-TOBIT procedure, we first estimate a gross efficiency index using the

CCR ratio model, then use the TOBIT analysis to identify the effects of the exogenous

variables on the gross efficiency and to compute a residual efficiency index.

8.3.1.1 The Computation and Comparison of Gross DEA Efficiency Index

The DEA gross efficiency estimates are computed using a computer code slightly

modified from the one listed in Appendix A, and executed on a UNIX computer. As

mentioned in previous chapters, the LP problem in equation (4.2.2) has to be solved once

for each DMU (observation) to compute the DEA gross efficiency ratings.

Table 8.2 presents the gross efficiency estimates from the CCR model. These DEA

indices reflect the combined outcome of true managerial and operational efficiency and the

effects of constraints imposed by the institutional, regulatory, market and operating

environment. Therefore, one cannot make inferences about true managerial and operational

efficiency from these indices without accounting for the variations caused by the variables

beyond a firm’s control.

There are some significant differences between the two sets of DEA gross efficiency

indices: the case of using revenue outputs versus the case of using available outputs. NSB

(Norway) has one of the lowest DEA ratings when passenger-kilometres and tonne

kilometres are used as outputs, while it has one of the highest DEA ratings when train

kilometres are used as outputs. This may be partiy explained by the fact that NSB’s

(Norway) average loads per train are on the lower end for both passenger and freight trains.
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Table 8.2

DEA Gross Efficiency Index

Output Measure

Railways Countries Revenue Outputs (I) Available Outputs (II)
Passenger. -Km Passenger Train-Km &

& Tonne-Km Freight Train-Km

1978 1989 1978 1989

BR U.K. 0.89 1.00 1.00 1.00
CFF-SBB Switzerland 0.69 0.73 0.94 0.89
CFL Luxembourg 0.93 0.70 0.95 0.76
CR Greece 0.52 0.50a 0.62 0.44a
CIE Ireland - 1.00 - 1.00
CP Portugal 0.89 1.00 0.72 0.85
DB Germany 0.63 0.65 0.81 0.91
DSB Denmark 0.54 0.75 0.66 0.82
FS Italy 0.82 0.82 0.71 0.76
JNR Japan 1.00 1 .OOb 0.96 1 .OOb
NS Netherlands 0.88 0.94 1.00 1.00
NSB Norway 0.74 0.67 1.00 0.94
OBB Austria 0.60 0.62 0.84 0.85
RENFE Spain 0.76 0.77 0.97 1.00
SJ Sweden 0.90 1.00 1.00 1.00
SNCB Belgium 0.61 0.71 0.66 0.73
SNCF France 0.77 0.84 0.95 0.99
TCDD Turkey 0.88 0.94 0.91 0.64
VR Finland 0.79 1.00 0.80 0.96

a. for 1987;
b. for 1986.
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Similarly, TCDD (Turkey) has a quite high rating in terms of passenger-kilometres and

tonne-kilometres, while it is rated low in terms of train-kilometres. This may be partly

explained by the fact that TCDD (Turkey) has relatively higher average loads per train for

both freight and passenger services.

Both sets of the DEA gross efficiency indices show that by 1989 BR (U.K.), SI

(Sweden), JNR (Japan), CIE (Ireland), NS (Netherlands) and VR (Finland) have attained a

position close to the efficient production frontier. DSB (Denmark) and yR (Finland) have

achieved significant improvement during the period: 0.54 and 0.66 in 1978 to 0.75 and 0.82

in 1989 for DSB (Denmark), and 0.79 and 0.80 in 1978 to 1.00 and 0.96 in 1989 for VR

(Finland). CH (Greece) and SNCB (Belgium) are indicated as the least efficient railways by

both sets of the DEA gross efficiency indices. CFL (Luxembourg) and NSB (Norway) are

the two railways which exhibit a noticeable decline in their DEA gross efficiency index

during the sample period.

Overall, the two sets of the DEA gross efficiency indices are comparable. The

correlation coefficient between the two DEA gross efficiency indices is 0.624 while their

Spearman’s rank correlation coefficient is 0.6 15. These DEA gross efficiency results are

generally consistent with the findings of Jackson’s surveys of European railway performance

(Jackson, 1991 and 1992), the world bank surveys of railway performance (Thompson,

Wood, and Lures, 1991, and Thompson and Fraser, 1993), and Compagnie, Gathon and

Pestieau, 1991.
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8.3.1.2 The Effects of Exogenous Variables

As mentioned earlier, the DEA gross efficiency indices are influenced by variations

in the market, operating, institutional and regulatory policy environment, variations over

which railways have limited control. The effects of these variables are identified by

analyzing the DEA gross efficiency index. Subsequently, after controlling for the effects of

these variables, the residual efficiency indices are computed and analyzed. This residual

efficiency index is a closer indicator of managerial and technical efficiency than the DEA

gross efficiency index.

TOBIT regression as specified by equation (4.3.1) is used to identify the effects of

policy and other variables, and to measure the “residual” efficiency4of the railways. The

variables listed in Table 8.1 are examined in the TOBIT analysis. Some of these variables

are considered controllable by government and/or regulatory agencies while others are not.

Note that two policy variables are considered: SUBSIDY and AUTONOMY. SUBSIDY is

measured by the ratio of subsidy to operating costs. Subsidy policy should ideally be

examined according to the types of subsidies and the ways in which they are provided (e.g.

loss/balancing subsidy vs. a fixed sum subsidy, unconditional subsidy vs. payment

conditional on meeting a certain performance standards, etc.), which are likely to have

substantial impacts on a firm’s efficiency. However, due to limited information, this study

‘ We use the term “ residual efficiency” because there are some important factors left
out in our analysis, such as weather and climate, topography of the land, the general
economic condition of the country, the extent of development of other transport modes, and
quality of services, etc. The presence of these factors (which are left out mainly due to the
lack of data) makes it difficult to interpret the residual efficiency index as an indicator for
true managerial and operational efficiency.
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examines the effects of subsidization with respect to the level of aggregate subsidy only. The

AUTONOMY variable is an index of regulatory and institutional environments, based on

1988-1989 figures, which was constructed by Perelman and Gathon (1990) using the

information collected through a survey of railways’ management. Its values range between

40 and 100. The more autonomous management is, the higher the value of the

AUTONOMY index. The degree of managerial autonomy is affected by a large number of

factors including ownership form and managerial mandate. It is therefore very difficult to

quantify managerial autonomy consistently across railways even with the best of efforts.

Another problem with this variable is that this variable was based on only one year’s

observations. In using this variable it is therefore assumed that the institutional environment

of the railways had varied only minimally over our sample period, an assumption which is

not realistic for most railways. Although it is realized that the AUTONOMY variable is not

ideally defined, this variable is used in the analysis as it is the only information of its kind

which had been collected systematically.

Table 8.3 reports the two best log-linear TOBIT regressions: one with the passenger

kilometres and freight tonne-kilometres as outputs (henceforth referred to as Model I), and

the other with the train-kilometres as outputs (henceforth referred to as Model II). The

results can be interpreted as follows:

(a) Effects of Uncontrollable Variables: Four of the variables used in the TOBIT

model (for both freight and passenger services) are largely beyond managerial or

governmental control, i.e. traffic density (DENSITY: passenger and freight), average

distance of the trip (TRIP or HAUL), load per train (LOAD: passenger and freight)
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Dependent Variable

Table 8.3
Tobit Regression Results

Log (DEA Efficiency Indices)

Model (fl Model (IT)
Passenger-Km & Passenger and Freight

Tonne-Km as Outputs Train-Kms as Outputs

Independent Variables Coef. (t-stat.) Coef. (t-stat.)

DENSITY-Freight - - - -

DENSITY-Pax - - - -

HAUL - - - -

TRIP - - - -

%PASS - - - 0.567 (6.04)
LOAD-Pax 0.26 (7.30) - 0.062 (1.96)
LOAD-Freight - - - 0.418 (8.21)
% ELECTRIC 0.018 (2.54) 0.043 (7.28)
SUBSIDY -0.088 (6.27) -0.052 (5.20)
AUTONOMY 0.452 (6.78) 0.163 (3.55)
TIME 0.008 (2.04) 0.007 (2.71)
CONSTANT -3.49 (9.81) 1.524 (4.82)

No.ofObserv. 208 208
LOG-Likelihood 27.8568 86.3713
R2 0.4196 0.6067

Note that all variables are in their logarithms, except for TIME. In this way,
the coefficient for the variable lIME indicates the constant growth rate directly.
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and percentage of passenger train-kilometres in the total train-kilometres

(%PASSENGER).

The DENSITY and TRIP (HAUL) variables turn out to be statistically

insignificant in both models. The insignificance of the DENSITY variables may be

explained by the fact that: (i) railways with higher passenger traffic density do not

necessarily perform well in their freight services, and vice versa; and (ii) substantial

correlations exist between traffic density and load per train (0.33 for passenger

services and 0.58 for freight services).

Both LOAD variables, Passenger LOAD and Freight LOAD, are statistically

significant in the Model (II) while only Passenger LOAD is significant in Model (I).

These results indicate that railways with higher average LOADs tend to attain a

higher DEA gross efficiency index when passenger-kilometres and freight tonne

kilometres, rather than train-kilometres, are used as the output. These results

confirmed our hypotheses that: (i) the cost per train-kilometer increases as the load

per train increases; and (ii) the cost per passenger-kilometer (or tonne-kilometer)

decreases as the load per train increases.

The %PASSENGER variable has a significant negative coefficient in Model

(II) while the same variable is statistically insignificant in Model (I). The negative

coefficient in Model (II) can be interpreted as meaning that railways with heavy

concentration in passenger services are at a disadvantage when their output is

measured in terms of train-kilometres. Gathon and Perelman (1990) draws a similar

conclusion.
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(b) Effects of Electrification: The %ELECTRIC variable has a statistically significant,

positive coefficient in both Models (I) and (II). This indicates that electrification

improves the performance of the railways. This may be due to the positive effect

electrification has on reducing energy consumption and the amount of labour

required. The positive effect on labour productivity is also shown by Gathon and

Perelman (1990).

(c) Effects of Subsidy: The ratio of subsidy to the total operating expenses has a

statistically significant negative coefficient in both models. This implies that heavily

subsidized railways tend to be less efficient than other railways5.

The subsidization of a particular firm (or mode) puts its rivals in a weaker

competitive position, that is, the subsidized firm is protected from the pressure of

competition by the subsidy. As a result, these firms have little incentive to improve

their productivities or minimize costs, thus becoming less innovative and efficient.

The extent of those potential subsidy effects depends on how the subsidies are

provided. However, as stated earlier, our analysis does not distinguish amongst the

types of subsidies and how they are provided due to the lack of information required

At first glance, the small coefficients for the SUBSIDY variable appear to indicate that
the negative effect of subsidy on the efficiency is not that high. However, in terms of the
magnitude of the effect on cost efficiency relative to the change in subsidy amount can be
relatively large. For example, the Model (1) in Table 8.3 shows that doubling of the subsidy
would reduce efficiency of the subsidized railway system (the freight and passenger services
together) by 8.8%. Suppose that the total size of a company of our interest is $2 billion and
the current subsidy level is $100 million. Then, doubling the subsidy to $200 million would
cost the firm about $176 million (8.8% of $2 billion) due to the increased inefficiency.
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for such an analysis6.

(d) Effects of Managerial Autonomy: The managerial autonomy index constructed by

Gathon and Perelman (1990) has a statistically significant positive coefficient in both

models. This shows that efficiency is expected to improve if management is given

more autonomy in making strategic and operational decisions. Higher degrees of

managerial autonomy enable management to response quickly to new opportunities

and circumstances, thus keeping the firm competitive in the ever changing market.

Managerial autonomy on the choice of the markets to serve (or abandon) and

frequency of services would heavily influence the productive efficiency of the

railway. Moreover, higher degrees of managerial autonomy would require

management to be more accountable for the firm’s performance, thus giving them

greater incentive to improve productive efficiency.

(e) Effects of TIME: The TIME trend variable is intended to assess the overall

improvement of the industry’s technological progress and managerial efficiency (i.e.

the efficiency improvement common across all of the railways in the sample). This

variable has a statistically significant positive coefficient, indicating that the industry

experienced technological progress at a rate of about 0.7% 0.8% each year during

the study period from 1978 to 1989.

Although there are some differences between the two TOBIT models, the overall

6 It should be noted that subsidization and inefficiency are in fact inter-dependent.
Subsidization causes inefficiency, and inefficiency is very likely to result in larger
requirements for subsidy. Since the main interest of this study is the comparative
performance of the alternative methods, subsidy is assumed as an exogenous variable.
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results are consistent with our expectations. Certainly the differences in the signs of

regression coefficients are reconcilable. The regression results indicate that a railway’s

efficiency performance may be significantly enhanced by an institutional and regulatory

framework which would provide railway management with greater freedom in decision

making. This is evident from the statistically significant positive coefficients for the

AUTONOMY variable and the negative coefficients for SUBSIDY. These results are also

consistent with the general belief that a high degree of direct government intervention and

high subsidy levels interfere with market mechanisms and encourage inefficiency to remain

in railways’ operation.

8.3.1.3 The Residual Efficiencies

The statistical significance of some of the variables beyond managerial control implies

that these variables do influence the DEA gross efficiency index. This confirms our earlier

statement that the DEA gross efficiency index does not reflect true managerial and

operational efficiency. The results will be closer to the real level of efficiency only after

the effects of these variables are removed from the DEA gross efficiency index.

Residual efficiencies are computed from the residuals of the Tobit regressions.

However, the reader is cautioned once again that these residual efficiency indicators may not

reflect the true picture of the railways’ efficiency performance. The lack of adequate data

makes it impossible to control for such factors as quality of service, weather and climate,

topography of the land, etc. However, the residual efficiency index is much closer to a

railway’s true efficiency than the DEA gross efficiency index.
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Table 8.4

Residual Efficiency Index

Output Measure

Railways Countries Revenue Outputs (1) Available Outputs (II)
Passenger-Km & Tonne- Passenger Train-Km &

Km Freight Train-Km

1978 1989 1978 1989

BR U.K. 0.76 0.79 0.80 0.80
CFF-SBB Switzerland 0.53 0.55 0.73 0.72
CFL Luxembourg 1.00 0.72 1.00 0.71
CH Greece 0.63 0.56a 0.82 0.61a
CIE Ireland - 0.84 - 0.77
CP Portugal 0.73 0.75 0.61 0.76
DB Germany 0.59 0.55 0.69 0.76
DSB Denmark 0.63 0.79 0.67 0.77
FS Italy 0.65 0.64 0.66 0.67
JNR Japan 0.74 0.71b 0.90 0.89b
NS Netherlands 0.83 0.80 0.86 0.89
NSB Norway 0.80 0.67 0.82 0.80
OBB Austria 0.59 0.62 0.70 0.73
RENFE Spain 0.69 0.69 0.83 0.85
SJ Sweden 0.73 0.77 0.81 0.83
SNCB Belgium 0.59 0.64 0.66 0.74
SNCF France 0.60 0.61 0.80 0.82
TCDD Turkey 0.68 0.68 0.84 0.64
VR Finland 0.54 0.78 0.62 0.82

a. for 1987;
b. for 1986.
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The residual efficiency indices are listed in Table 8.4. The variation of the residual

efficiency index values are smaller than the DEA gross efficiency index values. This is

because some of the variations in the DEA gross efficiency indices have been explained by

the variables included in the TOBIT regression model. The residual indices from Models

(I) and (II) show that in 1989, BR (UK), NS (Netherlands), SJ (Sweden) and VR (Finland)

were among the most efficient performers; CH (Greece) and OBB (Austria) were among the

least efficient performers.

It is noteworthy to observe that the performance of CP (Portugal) and JNR (Japan),

which are among the top performers in terms of the DEA gross efficiency index, are reduced

to that of the “mid-range” performers when using the residual efficiency. On the other hand,

the efficiency rating of DSB (Denmark), using the residual efficiency, is improved as

compared to its rating in terms of the DEA gross efficiency index. Furthermore, a greater

number of railways join the ‘mid-range’ performers group when the residual efficiency index

is used. Finally, the performance of DSB (Denmark) and SNCB (Belgium) improves over

the years, in terms of residual efficiency, while the ratings of CFL (Luxembourg), CR

(Greece), NSB (Norway), and TCDD (Turkey) noticeably deteriorate.

8.3.2 The Deterministic Frontier Method Results

In this subsection, the results from the deterministic frontier method is examined.

As stated in section 2 of this chapter, the total train-kilometer is used as the output measure.

This is because it is difficult to deal with multiple outputs with the parametric production

function methods, and there is no consistent price data for estimating the alternative cost
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function. The input variables are the same as those used in the DEA analysis.

The estimated “best practice” production function and resulting efficiency estimates

from the one-step deterministic frontier method are presented in Table 8.5 and Table 8.6,

respectively. Recall from Chapter 6 that the one-step procedure includes the exogenous

variables directly in the estimation of the production frontier. Among the policy and

uncontrollable variables, TRIP has a statistically significant positive coefficient, implying that

the railways with longer average trip distance are expected to enjoy consistently higher

efficiency ratings than other railways. As expected, %ELECTRIC has a statistically

significant positive coefficient reflecting its positive effects on labour and energy

productivities. The two LOAD variables have statistically significant negative coefficients.

This is the case because the output is measured in train-kilometres, thus cost per train-

kilometer increase as the average load per train goes up. %PASSENGER has a statistically

significant negative coefficient. This indicates that railways with larger portion of their

business in passenger traffic are likely to have a lower efficiency rating when train

kilometers is used as the output measure. SUBSIDY has a significantly negative coefficient

implying that government financial support tends to decrease the railways’ efficiency. The

degree of managerial freedom appears to have significant positive effects on the railways’

performance as indicated by its statistically significant positive coefficient. As expected, the

TIME trend variable is also statistically significant, indicating that technological progress has

improved the overall efficiency performance of the industry. The results in Table 8.5

essentially confirm those from the DEA-TOBIT analysis.

Table 8.6 lists the efficiency estimates from the deterministic frontier method. There
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Table 8.5
Deterministic Production Frontier Function

Dependent Variable

Log (Train-Kilometres)

Independent Variables Coef. (t-stat.)

LABOUR 0.062 (1.11)
ENERGY 0.590 (17.63)
WAYS AND STRUCTURAL 0.186 (12.91)
FREIGHT CAR 0.131 (3.21)
DENSITY-Freight - -

DENSITY-Pax - -

HAUL - -

TRIP 0.258 (11.38)
%PASS -0.791 (7.33)
LOAD-Pax -0.232 (6.78)
LOAD-Freight -0.603 (12.17)
%ELECTRIC 0.116 (15.08)
SUBSIDY -0.076 (8.55)
AUTONOMY 0.299 (5.51)
TIME 0.001 (3.45)
CONSTANT 3.049 (7.86)

No.of Observ. 208
LOG-Likelihood 153.904
R2 0.9919

Note that all variables are in their logarithms, except for TIME.
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Table 8.6
Efficiency Estimates by Deterministic Frontier

Railways Countries Train-Kilometres as Output

1978 1989

BR U.K. 0.71 0.80
CFF-SBB Switzerland 0.62 0.66
CFL Luxembourg 0.89 0.64
CH Greece 0.83 0.74a
CIE Ireland - 0.76
CP Portugal 0.65 0.83
DB Germany 0.74 0.74
DSB Denmark 0.73 0.73
FS Italy 0.63 0.60
JNR Japan 0.99 0.81b
NS Netherlands 0.77 0.76
NSB Norway 0.77 0.74
OBB Austria 0.73 0.70
RENFE Spain 0.74 0.70
SI Sweden 0.86 0.90
SNCB Belgium 0.74 0.72
SNCF France 0.86 0.78
TCDD Turkey 0.52 0.67
VR Finland 0.54 0.82

a. for 1987;
b. for 1986.
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are some noticeable differences between the results in Table 8.6 and those in Table 8.4 from

the DEA-TOBIT analysis. For example, the results by deterministic frontier method indicate

that the performance of CP (Portugal) is among the top performers in 1989 while the DEA

TOBIT7results put it in the group of “mid-range” performers. In addition, the deterministic

frontier method also shows that there is significant improvement in BR’s performance in

1989 from 1978, but the DEA-TOBIT results indicate that there is essentially no change in

BR’s performance. Also, the deterministic frontier method indicates that JNR’s performance

deteriorates over time while the DEA-TOBIT results show that there is little change in JNR’s

performance between 1978 and 1986. One possible explanation for the difference is that the

deterministic frontier method follows an one-step procedure, while the DEA-TOBIT analysis

is a two-step procedure, and the Monte Carlo results show that the two procedures yield

different efficiency estimates. Further, the DEA-TOBIT method considers two separate

outputs, but the deterministic frontier method consider only one aggregate output. However,

both methods indicate that BR, JNR, SJ, and VR are among the most efficient performers,

while CFL, FS and TCDD are among the least efficient performers in 1989.

8.3.3 The Stochastic Frontier Results

The results from the application of the stochastic frontier method are reported and

examined in this section. As with the deterministic frontier method, total train-kilometer is

In comparing the results of the parametric methods and DEA, all references to the
residual efficiencies are directed to the second set of efficiency index in Table 8.4 using the
available output measures so that they are consistent with the output measure used in the
parametric methods.
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used as the output measure. Again, seven input variables are considered.

The estimated deterministic core of the stochastic frontier production function, using

the one-step procedure, is listed in Table 8.7. As one can see, the estimated frontier

function is essentially the same as the one-step deterministic frontier production function

presented in Table 8.5 except for the intercept term. This is not unexpected since the

estimation procedure employed in the FRONTIER program starts with OLS estimates of the

coefficients which are all unbiased except for the intercept term (Coelli, 1991), the procedure

then proceeds with a two-phase grid search and an iterative process using a Quasi-Newton

method to obtain the final (approximate) maximum-likelihood estimates.

The efficiency estimates by the one-step stochastic frontier method are presented in

Table 8.8. The stochastic frontier efficiency estimates are considerably higher than both the

residual efficiencies from the DEA-TOBIT procedure (Table 8.4) and the deterministic

frontier efficiency estimates (Table 8.6). It is noteworthy to observe that some results in

Table 8.8 are noticeably different from the earlier results: CH appears to be among the

“upper-middle” group in terms of the stochastic frontier efficiency estimates, while it appears

to be among the “mid-range” group in terms of the deterministic frontier efficiency

estimates, and among the least efficient performers in terms of the DEA residual efficiency

estimates. JNR is among the efficient performers in terms of both the DEA residual

efficiencies and the deterministic frontier efficiency estimates, however, it is shown to be

among the “mid-range” performer in terms of the stochastic frontier efficiency estimates.

CP is ranked among the top performers by the two parametric methods but it is placed

among the mid-range group in terms of the DEA residual efficiency index in Table 8.4.
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Table 8.7
Stochastic Production Frontier Function

Dependent Variable

Log (Train-Kilometres)

Independent Variables Coef. (t-stat.)

LABOUR 0.062 (1.27)
ENERGY 0.602 (17.55)
WAYS AND STRUCTURAL 0.183 (14.60)
FREIGHT CAR 0.111 (3.60)
DENSITY-Freight - -

DENSITY-Pax - -

HAUL - -

TRIP 0.238 (11.82)
%PASS -0.751 (7.93)
LOAD-Pax -0.139 (4.63)
LOAD-Freight -0.508 (11.43)
%ELECTRIC 0.112 (17.33)
SUBSIDY -0.094 (9.18)
AUTONOMY 0.409 (9.22)
TIME 0.003 (1.39)
CONSTANT 1.911 (5.23)

No.ofObserv. 208
LOG-Likelihood 167.99

Note that all variables are in their logarithms, except for TIME.
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Table 8.8
Efficiency Estimates by Stochastic Frontier

Railways Countries Train-Kilometers as Output

1978 1989

BR U.K. 0.84 0.97
CFF-SBB Switzerland 0.71 0.79
CFL Luxembourg 0.97 0.78
CH Greece 0.96 0.91a
CIE Ireland - 0.94
CP Portugal 0.74 0.94
DB Germany 0.90 0.94
DSB Denmark 0.88 0.92
FS Italy 0.73 0.75
JNR Japan 0.99 0.88b
NS Netherlands 0.91 0.92
NSB Norway 0.95 0.95
OBB Austria 0.88 0.92
RENFE Spain 0.87 0.90
SJ Sweden 0.97 0.99
SNCB Belgium 0.87 0.89
SNCF France 0.96 0.92
TCDD Turkey 0.55 0.73
VR Finland 0.56 0.96

a. for 1987;
b. for 1986.
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Similar to the results by the other methods, BR, SJ, and VR are again ranked among the

most efficient railways in terms of the stochastic frontier efficiency estimates, while CFL,

FS, and TCDD are among the least efficient performers in 1989.

8.4 Comparison of the Alternative Efficiency Estimates

In the previous section, comparison of the efficiency estimates from the three methods

is focused on the performance of some specific railways. In this section, however, the focus

is on comparison of overall pattern of the alternative efficiency estimates.

Table 8.9
Means of the Railways’ Efficiency Estimates

Deterministic Stochastic DEA-TOBIT1

Mean 0.7366 0.8729 0.7731

Standard Deviation. 0.0835 0.0943 0.0759

Minimum 0.5247 0.5529 0.5521

Maximum 1.0000 0.9875 1.0000

1. With passenger and freight train kilometres as the output measures.

Table 8.9 lists the mean efficiency estimates by the three alternative methods. The

deterministic frontier method produces the most conservative average efficiency estimate,

while the stochastic frontier method yields the highest average efficiency estimate. This

result is consistent with the results from the Monte Carlo experiments in Chapter 6.

Furthermore, the difference between the stochastic frontier mean efficiency estimate and the
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mean of the DEA-TOBIT residual efficiencies is rather significant. The Monte Carlo results

indicate that the gaps between the alternative efficiency estimates become larger when the

effects of the exogenous variables are significant. Therefore, the differences among the three

sets of efficiency estimates confirm the initial hypothesis that exogenous factors have

substantial effects on the observed productive performance of the railways. However, the

ranges of the efficiency estimates by the three methods are quite similar, with the railways

Table 8.10
Correlation and Rank Correlation Coefficients

Between the Efficiency Estimates

Correlation Coefficient

Deterministic Stochastic DEA-TOBIT

Deterministic 1

Stochastic 0.8859 1

DEA-TOBIT 0.5204 0.4 150 1

Rank Correlation Coefficient

Deterministic 1

Stochastic 0.8996 1

DEA-TOBIT 0.5486 0.5152 1

ranging from efficient performers to about 45 percent less efficient.

Table 8.10 lists the correlation and rank correlation coefficients among the alternative

efficiency estimates. It is noted that the efficiency estimates from the two parametric

methods are highly correlated in terms of both the correlation coefficient and the rank
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correlation coefficient. However, the residual efficiencies from the DEA-TOBIT are only

marginally correlated with the residual efficiency estimates from the other two methods.

This happens partly because the parametric methods employ an one-step procedure while the

DEA-TOBIT is a two-step procedure, and the two procedures are shown by the Monte Carlo

experiments to produce different efficiency estimates. In addition, the parametric methods

consider only one output variable, while DEA considers two outputs.

An examination of the efficiency estimates from the two-step parametric methods8

shows that there are higher correlations between corresponding efficiency estimates: the rank

correlation coefficient is 0.81 between the gross efficiency estimates by the stochastic frontier

method and the gross DEA efficiency estimates, and 0.64 between the corresponding residual

efficiency estimates; and is 0.83 between the gross efficiency estimates from the

deterministic frontier method and the gross DEA efficiency estimates, and 0.71 between the

corresponding residual efficiency estimates. This is also consistent with the simulation

results in Chapter 6 where the efficiency estimates from the two-step parametric methods are

closer to the DEA-TOBIT estimates than those using the one-step procedure.

In general, the basic pattern of the efficiency estimates from the two parametric

methods are very similar, although there are noticeable differences in the actual levels of

estimated efficiency between the two sets of efficiency estimates. On the other hand, the

efficiency estimates from the DEA-TOBIT analysis exhibit some significant differences from

those obtained from the parametric methods. The main reason for this appears to be due to

S The results from the two-step parametric methods are not reported in this chapter, they
are available from the author upon request.
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the uses of one-step vs two-step procedure, and the use of different output measures.

However, the policy implications from all three methods are consistent.

8.5 Summary and Concluding Remarks

This chapter attempts to identify the effects of government intervention and

subsidization on productive efficiency of those railways which derive a high proportion of

their business from passenger services. In particular, the productive efficiency of the railway

systems in 19 OECD countries are measured and analyzed in order to identify the effects of

both public subsidies and degree of managerial autonomy on efficiency. A two-step DEA

TOBIT procedure is used along with two one-step parametric methods: the deterministic

frontier method and the stochastic frontier method. With the DEA-TOBIT procedure, the

Data Envelopment Analysis (DEA) method is first used to measure the gross efficiency index

from the panel data of the 19 railways over the 1978-89 period, and then the Tobit

regression is used to identify the effects of the public subsidies and the extent of managerial

autonomy after controlling for the effects of various operating characteristics and market

environments such as traffic density, average load per train, average distance hauled and

percentage of electrified route network, which are largely beyond managerial control. With

the parametric methods, the policy and uncontrollable variables are incorporated directly in

estimating the frontier production functions.

The empirical results from all three methods show that railway systems with high

dependence on public subsidies are significantly less efficient than similar railways with less

dependence on subsidies, and railways with high degree of managerial autonomy from
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regulatory authority tend to achieve higher efficiency. These two results together imply that

productive efficiency of railway systems may be significantly enhanced by an institutional

and regulatory framework which provides a greater freedom for managerial decision making.

Therefore, the institutional and regulatory framework for railway industry must squarely

address the question of railways’ managerial autonomy. Subsidy policies must encourage

railways to use normal market mechanisms to improve their cost recovery and to use the

subsidies only for improving services.

In addition, the empirical results indicate that efficiency measures may not be

meaningfully compared across railways without controlling for the differences in operating

and market environments.

Due to limited information and knowledge, this study examines the effects of

government intervention and subsidization in a broad sense only. There are many alternative

and complementary means by which governments intervene in railway business. These

include a partial or full ownership by a government, operation of railways by a government

branch, regulation of prices and service frequencies, and use of taxation and subsidy. Each

of these means of intervention has a distinct effect on the firm’s efficiency. Also, not only

the amount of subsidy but also the method of subsidization affect management’s incentive

to improve efficiency. For example, a predetermined amount of subsidy is considered to be

more effective than subsidizing 100% of the financial loss. Therefore, an informed policy

making would require detailed studies for measuring the effects of various means of

government intervention and alternative methods of subsidization on economic efficiency.

In comparing the efficiency estimates from the three alternative methods, it is found
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that the mean efficiency estimate by the deterministic frontier method is the lowest among

the three sets of efficiency estimates while the stochastic frontier method produces the

highest average efficiency estimate. This is consistent with the Monte Carlo results in

Chapter 6. The study also shows that the efficiency estimates from the two parametric

methods exhibit essentially the same pattern. However, there exist noticeable differences

between the DEA-TOBIT efficiency estimates and those of the parametric methods although

the policy implications from all three methods are consistent. The main reason for the

difference between the DEA and the parametric methods is that the DEA-TOBIT is a two-

step procedure while the parametric methods follow a one-step procedure which produces

different estimates as shown by the simulation results in Chapter 6. Further, the DEA

TOBIT considers two output variables whereas the parametric methods consider only one

aggregate output variable. The results from Monte Carlo experiments indicate that the

efficiency estimates from the stochastic frontier method are closer to the “true” efficiency

than the DEA method if the inputs and exogenous variables are correctly identified and

accounted for. However, in this case study, we encounter the problem of collinearity among

inputs and exogenous variables in estimating the stochastic frontier production function (and

the deterministic frontier function). This is a rather common problem associated with

estimating production functions. This may have caused misspecification of the “best

practice” production function, consequently may have affected the accuracy of the efficiency

estimates. Therefore, the differences between the DEA-TOBIT estimates and the parametric

estimates may be partly attributable to the potential mis-specification of the model as well.
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Chapter 9

The Efficiency of International Airlines

In this chapter, the three alternative methods are applied to the international airline

industry to examine the productive efficiency of 36 major international airlines over the

period of 1980-1992. Section 1 gives a brief introduction and reviews selected literature on

airline productivity and efficiency. Section 2 describes the variables and the model

specifications. The efficiency estimates are reported and discussed in Section 3, and the

relative merits of the three methods are compared in Section 4. Finally, a summary and

some concluding remarks are given in Section 5. Detailed descriptions of the sample airlines

can be found in Appendix D.

9.1 Introduction

The airline industry is characterized by failing unit costs and a growing demand,

however, the profitability of the airline industry world wide has been marginal. Since the

1978 deregulation of the U.S. domestic market, major institutional changes have been

introduced in the world’s commercial air transport industry resulting in increased competition

in international aviation. As the market becomes more competitive, the ultimate ability of

a carrier to survive and prosper depends greatly on improvement in its efficiency and

productivity. The issue of efficiency and productivity will become increasingly important

for airline industry since the differences in labour costs are likely to diminish over time as

more and more airlines practice global sourcing of their flight crews and maintenance work.
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There have been numerous studies on airline productivity and efficiency. Caves,

Christensen and Tretheway (1981) compares 11 U.S. trunk air carriers on the basis of levels

and rates of growth of outputs, inputs, and total factor productivity for the period of 1972-

1977. They also examine the relationships between productivity and differences in outputs,

average stage length, and load factor. Caves, Christensen, Tretheway and Windle (1987)

compares the productive performance of a sample of U.S. and non-U.S. airlines over the

1970-1983 period in terms of the growth rate of total factor productivity, focusing on the

effects of the U.S. deregulation. Gillen, Oum and Tretheway (1985, 1990) measure and

compare the productive performance of seven Canadian airlines in terms of total factor

productivity and unit cost. The study is conducted for the period of 1964 to 1981. Windle

(1991) measures the productivity and unit costs of a set of U.S. and non-U.S. airlines and

attempts to identify the factors which are most influential in explaining the observed

differences in the airlines productivity. The study is based mainly on the 1983 data.

Encaoua (1991) examines cost and productivity differences among European carriers, and

finds that the gap in productivity measures between the carriers are shrinking during the

1981-1986 period.

Barla and Perelman (1989) adopts the stochastic frontier method to measure the

efficiency performance of 26 airlines from OECD countries during 1976 to 1986. They

estimate the production frontier function using the one-step procedure, and use available

tonne-kilometre as output measure and consider two inputs, labour and capital, and four

exogenous variables. Their study compares the efficiency performance of American carriers

operating in deregulated markets with those of European and other airlines still subject to
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regulatory control, and finds that the deregulated airlines do not perform better than

regulated airlines. Bruning (1991) applies the two-step stochastic frontier (cost) function

method to a sample of 73 international airlines in 1987 to assess the relationship between

operating efficiency and measures of market competition. The study does not find any

positive effects of competition on airlines’ efficiency. Jha and Sahni (1992) applies the panel

data approach proposed by Cornwell, Schmidt and Sickles (1989) to the case of six Canadian

airlines to measure these airlines’ technical inefficiency for the period of 1970 to 1986.

They estimate two separate frontier production functions with available passenger kilometres

(seat kilometres) and available tonne-kilometres as the output measures, respectively, using

the same set of input variables in both estimations. Good, Nadiri, ROller, and Sickles (1993)

compares the technical efficiency and productivity growth among the four largest European

carriers and eight U.S carriers using the stochastic frontier method. They estimate the

potential efficiency gains of the European aviation liberalization by comparing efficiency

differences between the two carrier groups. The study is carried out for the period of 1976

to 1986. Loeb, Bruning and Ru (1994) estimates a Cobb-Douglas total cost frontier function

to measure airlines’ relative inefficiency levels for the years 1982, 1985, 1988, and 1990.

The inefficiency estimates are then compared across market groups and years using ANOVA

analysis. The study finds that the Pacific Rim carriers group is the least inefficient while

the Northern European carriers are the most inefficient.

Good and Rhodes (1991) uses the data envelopment analysis method to examine the

productive performance of 37 airlines from the Pacific region over the period of 1976 to

1986, and finds that there is a strong correlation between the productive efficiency of a
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country’s national carrier and the restrictiveness of the country’s bilateral agreement with the

U.S. Cooper and Gallegos (1991) employs a combination of the DEA method, the

conventional regression analysis, and the frontier methods to examine the performance of

Latin American airlines, in particular, the effects of ownership and international competition

on airlines’ performance. Based on the same data set as in Cooper and Gallegos (1991),

Ray and Ru (1993) examines the annual productivity growth rate for the airlines during 1981

to 1988 using the data envelopment analysis method, and finds that the U.S. carriers

experience faster growth in productivity than the Latin American carriers mainly due to

technical progress. Distexhe and Perelman (1993) uses the data envelopment analysis

method to measure the technical efficiency and productivity gains for 33 airlines during

1977-1988. They also find technological progress as a major source of productivity growth.

Most of the previous studies are based on the data prior to mid-1980s. Significant

changes have occurred in the industry during the last few years such as consolidation of the

airlines in the U.S. and Europe, regulatory liberalization of the industry in Europe and other

countries, continued liberalization of international air transportation, and privatization of

many airlines. It would be interesting to examine if there are any significant changes in the

airlines’ productive performance following the regulatory and institutional development in

the international aviation industry.

In examining the efficiency performance of the airlines, most of the studies have

taken into consideration of the effects of some output attribute variables, mostly load factor

and stage length. Although being considered as important in most studies the effects of

government ownership are examined analytically only in Bruning (1991) and Loeb (1994).
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Their results appear to indicate, in contrast to common arguments, possible positive effects

of government ownership on airlines’s efficiency. Further examination of this issue is

necessary.

People usually distinguish airlines’ outputs as passenger, cargo and charter services.

However, a closer examination of airlines’s revenue shares (see Table D.2 in Appendix D)

shows that the so-called incidental services, including catering services, ground handling

services and maintenance services performed for other airlines, account for up to 30 percent

of total operating revenues for some airlines with an average of about 8 percent for the

sample airlines in this study. It therefore is an important component of the airlines’

business. However, this component of the airlines’ business has been largely ignored in

previous studies on airline performance. This study considers the incidental services as one

of the airlines’ output in order to properly reflect the total output of airlines.

This chapter attempts to measure and compare the efficiency of 36 airlines over the

1980-1992 period and analyze it in order to identify the effects on efficiency of government

ownership and technical progress. The study also attempts to control for the effects of other

factors such as load factor, stage length, and output composition. The efficiency

performance of the airlines is compared between airlines in different continents. In addition,

the efficiency estimates from the three methods are compared.
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9.2 The Data and Model Specification

Each observation in the sample is treated as an individual “decision-making-unit”

(DMU). There are 447 DMUs in total. The sample carriers and data sources are described

in Appendix D.

Airlines produce several distinct outputs, including scheduled passenger, scheduled

freight, mail, non-scheduled, and incidental services. The DEA method is designed to deal

with multiple output problems. However, there are problems in estimating parametric

frontier production function’ with multiple outputs. In order to have consistent results

comparable across the three alternative methods, the outputs are aggregated into output index

using the translog multilateral index procedure proposed by Caves, Christensen and Diewert

(1982). Revenue shares are used as the weights in computing the output index since there

is empirical evidence indicating the existence of constant returns to scale in the airline

industry (Caves, Christensen, and Tretheway, 1984, Gillen, Oum and Tretheway, 1990,

Cornwell, Schmidt, and Sickles, 1990).

Five categories of inputs are considered: (1) labour, (2) fuel, (3) materials, (4) flight

capital, and (5) ground property and equipment. Appendix D provides details on definition

and construction of these input variables.

Airlines operate over routes of varying size and length and in markets with different

traffic densities. Therefore, a realistic characterization of the industry’s productive

The Monte Carlo study in Part I considers only frontier production functions.
Therefore, production frontier functions are estimated here instead of the frontier cost
functions in order to be consistent with Part I.
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Table 9.1
Definition of Exogenous Variables

Variables Description

LOAD Weight Load Factor for all traffic

STAGE Stage Length: average flight distance

%PASS Percentage of Passenger RTK in total RTK

%INTL Percentage of International RTK in total RTK

MAJ A Dummy for majority government ownership

MIN A Dummy for minority government ownership

TIME Time trend

performance requires not only the incorporation of multiple outputs and multiple inputs, but

also the special characteristics of the route networks, output attributes, and technological

changes over time. Table 9.1 lists a number of variables which reflect some special

characteristics of airlines’ operation. Note that the variable MAJ is a dummy variable which

equals to 1 if government owns 50 percent or more of the airline. Similarly, the variable

MIN is a dummy variable which equals to 1 if government’s ownership of the airline is less

than 50 percent.

The CCR ratio model of the DEA method, specified by equation 4.2.2, is used here.

It is appropriate since earlier studies have found that there are roughly constant returns to

scale for airlines over a rather broad ranges of network sizes. The CCR ratio model

estimates a gross efficiency index using the output index and the five input variables. The

TOBIT analysis is then used to examine the effects of the exogenous variables on the DEA
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gross efficiency index and compute a residual efficiency index using equations (4.3.1) and

(4.3.2).

The estimation of the parametric frontier functions assumes a Cobb-Douglas

production technology with five inputs producing a single output2. The deterministic frontier

production function is estimated by COLS (see Chapter 4 ), and the stochastic frontier

production function is estimated using the Battese and Coelli (1988) procedure. In

particular, the deterministic core of the production frontiers is specified as:

lny =%+EcL.1nX+EPkInZ (9.1)

where y is the output index for observation j, x1 are the input variables, Zkj are the

exogenous variables listed in Table 9.1, and a, (3 are the coefficients to be estimated.

9.3 The Results

This section reports and discusses the empirical results. The study proceeds first with

the DEA-TOBIT analysis. Then the one-step deterministic frontier method is used to

examine the airlines’ productive performance. Finally, the one-step stochastic frontier

method is applied to the sample data.

2 Madala (1979) noted that measurement of technological change and efficiency are quite
insensitive to the choice of functional form of production since these measures are related
to shifts of the isoquants rather than their shapes.
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9.3.1 The DEA Results

We first discuss the DEA gross efficiency estimates, and then examine the results

from the TOBIT regression. A residual efficiency index is computed after removing the

effects of the exogenous variables, and then compared with the DEA gross efficiency index.

9.3.1.1 The Gross Efficiency Estimates

The DEA gross efficiency estimates are computed using the CCR ratio model on a

UNIX computer. The linear programming problem has to be solved once for each DMU

(observation) in the sample, that is, a total of 447 linear programming solutions are required

in order to compute the DEA gross efficiency index.

The DEA efficiency estimates are given in Table 9.2g. As pointed out in the earlier

chapters, these DEA indices measure the “observed” productive performance, thus they

reflect the combined effects of true managerial and operational efficiency and of the

exogenous factors which are beyond the airlines’ managerial control. One can only make

meaningful inferences about the true efficiency performance of the airlines after controlling

for the effects of the potentially influential factors.

In terms of the DEA gross efficiency index, Finnair, KLM, Singapore Airlines,

Continental, TWA, JAL, and Cathay Pacific have achieved a position close to the production

frontier in 1989-1991. Sabena, Finnair, Singapore Airlines, and Continental have

experienced the most significant improvement in their performance during the sample period:

The 1992 data are not very reliable, therefore, the discussions on the results are
focused on earlier years.
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Table 9.2
Gross DEA Efficiency Index5

1980-82 1983-85 1986-88 1989-91 1992

Qantas 0.808 0.818 0.820 0.812 1.000

AUA 0.364 0.385 0.419 0.456 0.463

Sabena 0.776 0.882 0.806 0.927 0.913

Air Canada 0.759 0.743 0.738 0.729 0.691

Canadian 0.959 0.946 0.781 0.779 0.734

Fiimair 0.734 0.741 0.831 0.944 1.000

Air France 0.712 0.757 0.728 0.691 0.676

UTA 0.932 0.984 0.990 0.964 -

Lufthansa 0.730 0.773 0.804 0.772 0.815

Air India 0.567 0.633 0.581 0.579 -

Alitalia 0.640 0.776 0.732 0.759 0.832

JAL 0.811 0.865 0.914 0.963 0.894

MAS 0.634 0.618 0.619 0.465 -

Mexicana 0.890 0.796 0.596 0.575 0.482

KLM 0.916 0.886 0.907 0.985 0.994

PTA 0.483 0.476 0.455 0.540 0.517

PAL 0.490 0.754 0.688 0.639 0.562

Tap Air 0.760 0.849 0.869 0.807 0.687

KAL 0.767 0.744 0.722 0.733 0.726

Saudia 0.768 0.896 0.838 0.827

SAS 0.659 0.691 0.610 0.682 0.690

SIA 0.783 0.856 0.947 0.986 1.000

Iberia 0.584 0.669 0.774 0.744 0.630

Swiss Air 0.811 0.818 0.874 0.872 1.000

British Airways 0.636 0.602 0.561 0.635 0.728

Cathay - .
1.000z 0.944 1.000

American 0.848 0.842 0.854 0.844 0.898

US Air 0.573 0.606 0.656 0.633 0.683

Continental 0.745 0.806 0.927 0.910 0.978

Delta 0.776 0.744 0.801 0.807 0.794

Northwest 0.955 0.992 0.812 0.867 0.914

TWA 0.844 0.870 0.820 0.948 1.000

United 0.967 0.912 0.889 0.873 0.893

American W - 0.833 0.795 0.918 1.000

Eastern 0.739 0.746 0.804 0.810 -

Pan Am 0.824 0.894 0.852 0.967 -

1. Table entries are all three-year average unless otherwise noted.
2. for 1988. 3 for 1985.
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0.776 in 1980-82 to 0.927 in 1989-91 for Sabena, 0.734 in 1980-82 to 0.944 in 1989-91 for

Finnair, 0.783 in 1980-82 to 0.986 in 1989-91 for Singapore Airlines, and 0.745 in 1980-82

to 0.9 10 in 1989-9 1 for Continental. The DEA gross efficiency index of British Airways

improved consistently after its privatization in December 1986. On the other hand,

Mexicana has experienced noticeable decrease in its performance during the same period.

The DEA gross efficiency index of Canadian Airlines International (formally Canadian

Pacific) has also declined considerably after 1986, the year in which PWA purchased CP

Air and created CAT. In terms of these gross efficiency index, Austrian Airlines, Air India,

and Pakistan Airlines appear to be among the least efficient carriers in this sample.

Table 9.3 compares mean values of the DEA gross efficiency estimates by continents

of the airlines’ registry. Major Asian carriers, including JAL, KAL, Singapore Airlines, and

Cathay Pacific, are rated as the most efficient. Other Asian carriers, namely, Air India,

Pakistan International Airlines, Philippines Airlines, and Malaysia Airlines, are rated as the

least efficient ones. The U.S. carriers are very close to the major Asian Carriers in terms

of the DEA gross efficiency index while the Canadian carriers are rated slightly better than

the European Carriers. There is apparently no significant difference between the major

European carriers and other European carriers in the sample.
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Table 9.3
The Means of flEA Gross Efficiency Index

Europe Europe Asia Asia U.S. Canada
Major other Major other

Mean 0.756 0.752 0.860 0.581 0.834 0.797

St. Dev 0.116 0.193 0.100 0.099 0.110 0.093

Ob. No 91 77 44 50 121 26

9.3.1.2 The Effects of Exogenous Variables

The DEA gross efficiency estimates are affected by the differences in the airlines’

operating environments. A number of factors have been identified as potentially having

influences on the airlines’ observed performance. They are listed in Table 9.1 and are

discussed earlier. In the next step, we attempt to attribute the differences among the DEA

gross efficiency estimates to the variations in these exogenous variables. A residual

efficiency index is consequently computed after removing the effects of these variables.

The Tobit analysis is used to examine the effects on the DEA gross efficiency of

these exogenous variables. Table 9.4 reports the TOBIT regression results. The main

results are discussed below:

(a) The Effects of Output Characteristics: The weight load factor (LOAD) is a measure

of output performance (or service quality). It has a marginally significant positive

coefficient, indicating that airlines with high load factor tend to achieve high DEA

gross efficiency index. This occurs because when the load factor is high, more

outputs are produced for a given level of input. That is, cost per unit output falls as
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the load factor increases.

It should be noted that in the deregulated domestic markets, such as in the U.S.,

Canada, Australia, New Zealand, etc., airlines can manage load factor by choosing

flight frequency and aircraft size for specific routes. In these markets, therefore, the

load factor is not an “exogenous variable”, but rather a policy variable. However,

in regulated domestic markets, such as in Japan, China, India, etc, and many of the

international markets governed by restrictive bilateral agreements between countries,

airlines do not have direct control of the “load factor”. Since most of the airlines in

Table 9.4
Tobit Regression Results

Dependent Variable: LOG (DEA Index)

Coefficient T-Value

LOAD 0.137 1.551

STAGE 0.196 9.271

%PASS -0.333 5.740

%INTL -0.069 5.824

MAJ -0.127 6.305

T 0.003 1.323

CONSTANT -2.370 6.147

No. of Observations 447

Log-Likelihood 94. 863

R2 0.381

Note that the first four variables are in logarithm form.
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our sample operate in both markets, a part of the effect of load factor is attributable

to good management while the rest of the effect are beyond managerial control.

(b) The Effects of Network Characteristics: The stage length (STAGE) measures the

average flight distance, and is an important dimension of an airline’s network.

STAGE has a statistically significant positive coefficient, meaning that airlines flying

longer routes are expected to achieve higher DEA gross efficiency index. This is

expected because unit cost per passenger kilometer or per revenue tonne-kilometer

decrease with average stage length. Since airport charges, station costs and other

ground expenses do not vary with stage length, the costs spread over more passenger

kilometers (or revenue tonne-kilometers) the longer the stage length is.

(c) The Effects of Output Composition: Two variables describing the composition of

airline output, %PASS and %INTL, are included in the Tobit regression in order to

determine the direction and magnitude of their effects on the observed efficiency

performance of the airlines. The variable %PASS is the percentage of passenger

RTK in total RTK, and has a statistically significant negative coefficient. The

negative coefficient indicates that, ceteris paribus, the airlines with larger share of

their traffic in passenger services are likely to have a lower DEA efficiency rating.

This is expected because passenger services are more input-intensive than freight

services. Therefore, an airline with smaller %PASS would be able to produce more

outputs with a given level of inputs than an airline with higher %PASS. The variable

%INTL is the share of international traffic in total traffic. It has a significant

negative coefficient indicating that an airline with a higher proportion of international
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services tends to have a lower DEA gross efficiency index. For a given load factor

and stage length, international services may incur additional costs such as crew

stopovers due to lower frequencies, costs associated with sales, ticketing and handling

of passengers, etc. Another reason for the negative coefficient of %INTL is that

restrictions on airlines’ operations imposed by bilateral air services agreements cause

inefficiency.

(d) The Effects of Government Ownership: Two dummy variables are used to indicate

the extent of government ownership: MAJority and MINority. Since variable

MINority is not statistically significant, it is not included in the final regression. This

implies that a minority government ownership would not have any significant positive

or negative effect on the productive performance of the airlines. On the other hand,

variable MAJority has a statistically significant negative coefficient indicating airlines

with government majority ownership are likely to be less efficient. These airlines

often have less managerial freedom for making strategic and operational changes in

order to improve efficiency. In addition, existence of subsidized services required

by government makes airlines less efficient by reducing incentives to improve

efficiency.

(e) The Effects of Time: TIME variable is used to estimate the residual technical (or

managerial) efficiency over time. TIME has a (marginally) statistically significant

positive coefficient, indicating that the airline industry experienced technological

progress at an annual rate of about 0.3% during the sample period, 1980-1992.
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9.3.1.3 The Residual Efficiency

As seen from the forgoing discussions, the exogenous factors do have a significant

effect on the DEA gross efficiency index. Therefore, it is necessary to purge the effects of

these factors from the airlines’ observed efficiency levels in order to have a better picture

about the “true” relative efficiency performance of the airlines.

Table 9.5 presents the airlines’ residual efficiencies computed from the TOBIT

regression after removing the effects of the exogenous variables. It should be noted that

these residual efficiencies may still be distorted by factors which are left out of the

regression because of lack of information. However, it is overall a better indicator of the

airlines’ productive performance than the DEA gross index.

From Table 9.5, we can see that the differences in the residual efficiencies among

the airlines are much smaller than the DEA gross efficiency index. Some of the variations

in the observed efficiency performance as measured by the DEA gross efficiency index are

caused by variations in the exogenous variables which are controlled for in the TOBIT

regression.

Finnair, KLM, SIA, Continental, and TWA are still rated among the most efficient

carriers in 1989-91 in terms of the residual efficiency index, while the performance of

Cathay Pacific and JAL have been reduced from the top performers in terms of the DEA

gross efficiency index to that of slightly above average performers in terms of residual

efficiency. The relative efficiency rankings of UTA, KAL, and American Airlines are also

reduced considerably in terms of the residual efficiency index. On the other hand, Malaysia

Airlines, Saudia, SAS, and Iberia are given relatively higher ratings by the residual
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Table 9.5
Residual Efficiency Index’

1980-82 1983-85 1986-88 1989-91 1992

Qantas 0.665 0.647 0.636 0.620 0.756

AUA 0.432 0.452 0.488 0.501 0.493

Sabena 0.611 0.674 0.613 0.718 0.760

Air Canada 0.764 0.713 0.691 0.586 0.555

Canadian 0.792 0.771 0.661 0.651 0.599

Finnair 0.784 0.749 0.778 0.837 0.887

Air France 0.644 0.648 0.607 0.572 0.556

UTA 0.713 0.73 1 0.729 0.704 -

Lufthansa 0.689 0.692 0.693 0.662 0.718

Air India 0.471 0.529 0.470 0.456 -

Alitalia 0.638 0.741 0.683 0.685 0.763

JAL 0.603 0.625 0.648 0.684 0.644

MAS 0.753 0.720 0.679 0.483 -

Mexicana 0.854 0.779 0.564 0.531 0.448

KLM 0.716 0.665 0.670 0.715 0.724

PIA 0.490 0.479 0.454 0.533 0.513

PAL 0.470 0.706 0.650 0.590 0.505

Tap Air 0.742 0.803 0.825 0.765 0.656

KAL 0.565 0.540 0.520 0.551 0.518

Saudia 0.819 0.992 0.856 0.813 -

SAS 0.712 0.742 0.656 0.727 0.738

SL4 0.683 0.716 0.754 0.745 0.742

Iberia 0.625 0.689 0.785 0.734 0.623

Swiss Air 0.731 0.703 0.734 0.718 0.801

British Airways 0.641 0.590 0.498 0.527 0.593

Cathay -
- 0.7272 0.679 0.711

American 0.664 0.677 0.717 0.701 0.739

US Air 0.521 0.522 0.532 0.536 0.596

Continental 0.607 0.672 0.783 0.770 0.819

Delta 0.683 0.646 0.688 0.688 0.683

Northwest 0.814 0.806 0.680 0.714 0.745

TWA 0.729 0.740 0.786 0.799 0.836

United 0.688 0.693 0.721 0.716 0.732

American W - O.699 0.658 0.718 0.774

Eastern 0.635 0.639 0.684 0.699 -

Pan Am 0.644 0.730 0.709 0.789

1. Table entries are all three-year average unless otherwise noted.
2. for 1988. 3. for 1985.
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efficiency index. However, Air India, Pakistan International Airlines, and Austrian Airlines

are still rated as the least efficient carriers among the sample airlines.

Continental and Sabena have had the most significant improvement in their

performance over the 13-year time period, while the performance of Air Canada, Canadian

Airlines International, Air France, Malaysia Airlines, and Mexicana have experienced

noticeable declines. Another observation from the results is related to British Airways: the

efficiency ratings for British Airways declined consistently during the earlier 1980s, then

improved consistently to the end of 1980s and earlier 1990s. This reflects the sluggish

performance of BA prior to 1986, and its ambitious restructuring process following its

privatization in 1986.

The mean DEA residual efficiency estimates by regions are shown in Table 9.6. As

one can see, there are very small differences in the mean residual efficiency estimates

between regions. Recall from Table 9.3 the regional mean DEA gross efficiency estimates

range from 0.58 1 to 0.860 which is considerably reduced in terms of the DEA residual

efficiency index to ranging from 0.565 to 0.7 19. The Major Asian airlines have the highest

mean DEA gross efficiency rating, however, in terms of the DEA residual efficiency, their

performance is reduced to that close to the lower end. The Other Asian carriers are still the

least efficient carrier group. It is also noted that the relative performance of European

Majors and Other European Carriers, and the relative performance of Canadian carriers and

U.S. carriers are reversed as compared to the DEA gross efficiency estimates.



Chapter 9 Airline Efficiency 202

Table 9.6
Mean DEA Residual Efficiency Estimates by Region

Europe Europe Asia Asia U.S. Canada
Major other major other

[v1ean 0.669 0.688 0.643 0.565 0.692 0.694

St. Dev. 0.075 0.122 0.081 0.110 0.083 0.079

Obs No. 91 77 44 50 121 26

9.3.2 The Deterministic Frontier Method

The deterministic frontier method is applied to the airline data set with the same set

of output and input variables as used in the DEA-TOBIT analysis. The estimation of the

frontier production function follows the one-step procedure which includes the exogenous

variables directly in the estimation.

The estimated “best practice” production function is reported in Table 9.7. The four

input variables are all statistically significant and, as expected, have the positive coefficients.

Except for dummy variable MIN, all the exogenous variables appear to be statistically

significant4. LOAD factor has a positive coefficient implying that airlines with high load

factor achieve high efficiency ratings when their output is measured in terms of revenue

generating output such as RPK, RTK, etc. STAGE length also has a significant positive

coefficient implying that airlines with longer average stage length are expected to achieve

‘ Actually %INTL is not significant at the traditional 5%. However, it is included since
it serves to confirm the results from the DEA-TOBIT procedure.
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Table 9.7
Deterministic Frontier Production Function

Dependent Variable: LOG (OUTPUT INDEX)

Variables Coefficient T-Value

LABOUR 0.268 8.195

FUEL 0.309 9.369

MATERIALS 0.048 1.714

FLIGHT EQUIPMENT 0.386 12.63

LOAD 0.682 8.100

STAGE LENGTH 0.218 11.18

%PASS -0.239 4.834

%INTL -0.014 1.292

MAJORITY -0.118 6.475

TIME 0.004 1.796

CONSTANT -1.064 2.506

R2 0.9719

Log-likelihood Function 2 16.526

No. of Observations 447

Note that all variables are in logarithm form except for MAJ and TIME.



Chapter 9 Airline Efficiency 204

higher observed efficiency. On the other hand, a carrier with a large proportion of

passenger traffic or a large proportion of international traffic is expected to achieve a lower

efficiency rating. The ownership variable MAJ has a negative coefficient of -0.12 which is

very similar to the DEA-TOBIT results. This indicates that airlines with government

majority ownership are about 11 to 12 % less efficient. The coefficient for the TIME is

statistically significant, and again similar to the DEA-TOBIT results, indicating that the

annual technological progress in the international airline industry is about 0.3 to 0.4 %. In

summary, the results in Table 9.7 essentially confirm the DEA-TOBIT results.

By following the procedure described in equations (4.1.5) to (4.1.7), the observation

specific efficiency estimates are estimated using the production function shown in Table 9.7.

Table 9.8 lists the efficiency estimates from the deterministic frontier method. Since the

exogenous variables are included in the estimation of the frontier production function, and

their effects are removed in computing the efficiency estimates, these efficiency estimates

in Table 9.8 are closer to the DEA residual efficiency index than the DEA gross efficiency

index. SIA, Continental, and TWA are still among the most efficient carriers in 1989-91,

however, the performance of Finnair is reduced to that of mid-range. Air India, Pakistan

International Airlines, and Austrian Airlines are still among the least efficient carriers as

indicated before by the DEA residual efficiency, but the performance of Philippines Airlines

is given a better rating. Sabena and Continental are shown to have experienced considerably

improvement during the sample period, while the performance of Air Canada and Canadian

Airlines International have declined during the same period.

The mean efficiency estimates from the deterministic frontier method by regions are
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Table 9.8
Efficiency Estimates by Deterministic Frontier Method1

1980-82 1983-85 1986-88 1989-91 1992

Qantas 0.624 0.628 0.643 0.609 0.686

AUA 0.568 0.518 0.528 0.525 0.579

Sabena 0.682 0.689 0.670 0.830 0.853

Air Canada 0.776 0.725 0.735 0.599 0.528

Canadian 0.767 0.803 0.692 0.689 0.623

Finnair 0.687 0.727 0.784 0.753 0.663

Air France 0.621 0.596 0.589 0.556 0.717

UTA 0.829 0.846 0.895 0.814 -

Lufthansa 0.705 0.774 0.768 0.698 0.734

Air India 0.551 0.532 0.489 0.475 -

Alitalia 0.701 0.747 0.583 0.721 0.847

JAL 0.590 0.586 0.552 0.585 0.569

MAS 0.790 0.731 0.713 0.535 -

Mexicana 0.773 0.842 0.651 0.647 0.654

KLM 0.722 0.648 0.682 0.658 0.649

PIA 0.527 0.495 0.518 0.582 0.565

PAL 0.583 0.755 0.706 0.697 0.620

Tap Air 0.803 0.773 0.873 0.837 0.730

KAL 0.624 0.651 0.626 0.660 0.578

Saudia 0.883 0.875 0.762 0.783 -

SAS 0.616 0.787 0.722 0.724 0.737

S1A 0.702 0.831 0.877 0.837 0.794

Iberia 0.626 0.746 0.816 0.730 0.659

Swiss Air 0.639 0.612 0.749 0.704 0.816

British Airways 0.664 0.639 0.558 0.581 0.637

Cathay -

- 0.8132 0.706 0.691

American 0.717 0.732 0.747 0.702 0.689

US Air 0.586 0.629 0.600 0.570 0.612

Continental 0.668 0.706 0.802 0.799 0.817

Delta 0.698 0.751 0.727 0.691 0.692

Northwest 0.692 0.741 0.651 0.718 0.726

TWA 0.718 0.753 0.803 0.805 0.856

United 0.704 0.706 0.738 0.708 0.700

AmericanW - 0.685 0.617 0.689 0.682

Eastern 0.644 0.655 0.717 0.592 -

Pan Am 0.616 0.702 0.732 0.757 -

1. Table entries are all three-year average unless otherwise noted. 2. for 1988. 3 for 1985.
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given in Table 9.9. The average efficiency level is slightly higher than those of the DEA

residual efficiency index. Carriers in the “other Asia” group are again the least efficient

carriers. The average performance of major Asian carriers and major European carriers are

similar at group level. Canadian carriers appear to perform slightly better than the US

carriers on average. The relative performance between the regions are similar to that in

terms of the DEA residual efficiency index. The efficiency gaps among the sample airlines

are fairly small as in the case of DEA residual efficiency estimates.

Table 9.9
Mean Efficiency Estimates by Deterministic Frontier

Europe Europe Asia Asia US Canada
Major other Major other

Mean 0.677 0.727 0.680 0.612 0.701 0.712

St. Dev 0.078 0.117 0.110 0.113 0.072 0.077

Obs. 91 77 44 50 121 26

9.3.3 The Stochastic Frontier Method

This section reports and discusses the results from the stochastic frontier method.

Again the same set of input and output variables are considered, and the estimation of the

frontier production function follows the one step procedure which includes the exogenous

variables directly in the estimation.

Table 9.10 presents the deterministic core of the stochastic frontier function. This

function is very close to the deterministic frontier production function (Table 9.7) except that
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Table 9.10
Stochastic Frontier Production Function

Dependent Variable: LOG (OUTPUT INDEX)

Variables Coefficient T-Value

LABOUR 0.263 9.043

FUEL 0.253 10.79

MATERIALS 0.113 4.056

FLIGHT EQUIPMENT 0.342 13.35

GROUND EQUIPMENT 0.019 1.647

LOAD 0.574 8.539

STAGE LENGTH 0.264 16.12

%PASS -0.187 4.777

%INTL -0.011 1.012

MAJORITY -0.117 5.077

MINORITY -0.042 1.511

TIME 0.007 3.645

CONSTANT -0.773 1.987

Log-likelihood Function 239.966

No. of Observations 447

Note that all variables are in logarithm form except for MAJ and TIME.
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the GPE and MINORITY variables here are statistically significant while they are not in the

deterministic model, and the variable %INTL is not statistically significant here while it is

marginally significant in the deterministic model.

Similar to the results from previous production functions, the stochastic frontier

results indicate that airlines with higher load factor and longer stage length are expected to

have higher gross efficiency ratings, while airlines which have a larger percentage of

passenger traffic and/or international traffic are expected to have lower gross efficiency

ratings. Government ownership in airlines will have negative effects on the productive

efficiency of the airlines. Technological progress has improved the overall performance of

the industry during the sample time period. This is particularly the case for some of the

major Asian carriers. They exhibit considerable improvement in terms of the gross

efficiency measures5,but after removing the effects of the exogenous variables their “net”

efficiency improvements over time appear to be reduced substantially. However, it is noted

that the annual rate of technological progress indicated by the stochastic frontier method is

higher than that from the deterministic frontier method or the DEA-TOBIT analysis. This

may be partly due to the fact that the stochastic frontier method attempts to filter out the

statistical noise, thus attribute some of the “left over” positive variations in the efficiency

estimates to technological progress.

The efficiency estimates from the stochastic frontier model are given in Table 9.11.

Overall, these efficiency estimates are higher than those from the other two methods. This

The efficiency estimates from first stage of the two-step parametric (both deterministic
and stochastic) procedure also show similar pattern.
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Table 9.11
Efficiency Estimates by Stochastic Frontier Method’

1980-82 1983-85 1986-88 1989-91 1992

Qantas 0.730 0.734 0.740 0.707 0.802

AUA 0.626 0.584 0.588 0.593 0.651

Sabena 0.851 0.854 0.820 0.954 0.967

Air Canada 0.944 0.884 0.891 0.722 0.643

Canadian 0.934 0.941 0.834 0.829 0.748

Finnair 0.874 0.907 0.850 0.926 0.796

Air France 0.785 0.762 0.750 0.707 0.846

UTA 0.944 0.948 0.963 0.903 -

Lufthansa 0.890 0.951 0.944 0.873 0.913

Air India 0.572 0.595 0.549 0.524 -

Alitália 0.848 0.910 0.939 0.876 0.970

JAL 0.773 0.770 0.712 0.732 0.699

MAS 0.936 0.875 0.856 0.678 -

Mexicana 0.916 0.920 0.751 0.734 0.737

KLM 0.922 0.834 0.856 0.833 0.826

PIA 0.599 0.572 0.607 0.661 0.659

PAL 0.715 0.914 0.837 0.836 0.734

Tap Air 0.887 0.873 0.932 0.889 0.776

KAL 0.761 0.784 0.750 0.797 0.711

Saudia 0.965 0.955 0.895 0.910 -

SAS 0.796 0.945 0.871 0.873 0.882

SIA 0.845 0.953 0.964 0.937 0.909

Iberia 0.772 0.906 0.955 0.863 0.770

Swiss Air 0.830 0.796 0.913 0.885 0.966

British Airways 0.820 0.788 0.685 0.706 0.768

Cathay -
- 0.9622 0.868 0.855

American 0.891 0.910 0.931 0.875 0.860

US Air 0.760 0.805 0.776 0.734 0.777

Continental 0.836 0.872 0.964 0.959 0.966

Delta 0.907 0.937 0.918 0.877 0.870

Northwest 0.907 0.941 0.841 0.908 0.912

TWA 0.896 0.921 0.963 0.961 0.977

United 0.913 0.904 0.931 0.891 0.880

American W - Ø•7553 0.786 0.867 0.853

Eastern 0.841 0.846 0.903 0.774

Pan Am 0.778 0.873 0.892 0.922

1. Table entries are all three-year average unless otherwise noted
2. for 1988. 3 for 1985.
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observation is consistent with the results from Monte Carlo study in Chapter 6.

Sabena, Finnair, SIA, Continental, and TWA are among the most efficient carriers

in 1989-9 1 according to these efficiency estimates. Air India, Austrian Airlines and Pakistan

International Airlines are still among the least efficient carriers. Sabena and Continental are

shown to have experienced substantial improvement in efficiency performance over the 13-

year time period. Singapore Airlines, Iberia, and American Airlines had exhibited

considerable efficiency improvement during the first half of the 1980s, however, their

performance show a downward trend since the mid-1980. The performance of Air Canada,

Canadian Airlines International, and Malaysia Airlines appear to deteriorate throughout the

sample period.

Table 9.12
Mean Efficiency Estimates Using Stochastic Frontier

Europe Europe Asia Asia US Canada
Major other major other

Mean 0.876 0.846 0.820 0.718 0.877 0.859

St. Dev 0.083 0.124 0.092 0.144 0.074 0.091

Obs 91 77 44 50 121 26

Table 9.12 lists the mean efficiency estimates by region. According to these results

the US carriers are the most efficient airlines on average followed by the Canadian carriers

and the carriers in the “other European” group. The “other Asian” carriers are the least

efficient carriers.
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9.4 Comparison of Efficiency Estimates by Alternative Methods

In the previous section, the three alternative methods are applied to the same airline

data set to examine the efficiency performance of the airlines. Earlier discussions about the

results are focused on the general policy implications and the performance of individual

airlines. In this section, the three sets of efficiency estimates are compared in terms of the

means and correlations.

Table 9.13
Means of Airlines’ Efficiency Estimates

Deterministic Stochastic DEA-TOBIT

Mean 0.690 0.834 0.669

St. Dev 0.100 0.112 0.108

Maximum 1.000 0.987 1.000

Minimum 0.434 0.484 0.415

Table 9.13 lists the means of the residual efficiency estimates by the three methods.

The mean of the efficiency estimates by the stochastic frontier method is considerably higher

than those by the deterministic frontier method and the data envelopment analysis method.

This observation is expected in view of the Monte Carlo results in Part I, which consistently

show higher mean efficiency estimates by the stochastic frontier method than the other two

methods. The lower means of the deterministic frontier method and the DEA are due to the

fact that both methods attribute deviations from the frontier as inefficiency. Some of the

inefficiencies indicated by these two methods are in fact due to the effects of some

unidentifiable exogenous variables which are accounted for by the stochastic frontier method.
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Table 9.14
Correlation and Rank Correlation Coefficients

Between the Alternative Efficiency Estimates of Airlines

Correlation Coefficients

Deterministic I Stochastic DEA-TOBIT

Deterministic 1

Stochastic 0.9262 1

DEA-TOBIT 0.7945 0.8282 1

Rank Correlations

Deterministic 1

Stochastic 0.9562 1

DEA-TOBIT 0.7936 0.8277 1

The correlations among the three sets of residual efficiency estimates are investigated

using both Pearson correlation coefficients and Spearman’ rank correlation coefficients. The

results aie reported in Table 9.14. Although there are some significant differences in terms

of individual airlines’ efficiency estimates as mentioned in the previous section, there is a

very high correlation between the residual efficiency estimates from the two parametric

methods, and the correlation between the DEA results and those from the two parametric

methods are also reasonably high. This indicates that for the present airline case the results

are not very sensitive to the choice between the stochastic frontier method and the

deterministic frontier method, and the choice between the parametric methods and the DEA

does not make any dramatic differences in the results either. The high rank correlations

indicate that the choice of different methods does not impinge much on the ranking of firm
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(observation) specific efficiency estimates among the airlines. Thus, the results in Table

9.14 suggest that the three different methods yield broadly similar results in measuring

airlines’ efficiency, at least for the functional form considered in this chapter. The Monte

Carlo results in Part I indicate that when the variations in the firms’ environments are not

very large, the three alternative methods are expected to yield similar efficiency estimates.

The high correlations and rank correlations in Table 9.14 are essentially consistent with the

Monte Carlo results.

9.5 Summary and Concluding Remarks

This chapter provides some empirical evidence on the comparative performance of

the three alternative efficiency measurement methods, namely, the deterministic frontier

method, the stochastic frontier method, and the data envelopment analysis method. The

three methods are applied to a sample of 36 international airlines during the period of 1980

to 1992 to measure the observation specific efficiency of the carriers and to identify the

effects on the efficiency performance of government ownership, operating characteristics,

and technological progress.

The two parametric frontier methods are estimated following an one-step procedure

which incorporates the exogenous variables directly in the estimation of the frontier

functions. The data envelopment analysis method utilizes a two-step procedure. At the first

stage, the CCR ratio model is used to estimate a gross efficiency index of the airlines. At

the second stage, the gross efficiency estimates are analyzed using the TOBIT regression to

identify the effects of exogenous variables and to compute a residual efficiency index. The
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empirical results from all three models indicate that: (1) airlines with high load factor and/or

long stage length are expected to achieve higher gross efficiency ratings, (2) airlines with a

large proportion of passenger services and/or international traffic are likely to have lower

efficiency ratings, (3) airlines with majority government ownership are significantly less

efficient, implying that a greater degree of managerial freedom may enhance an airline’s

productive efficiency substantially, and (4) technological progress has significantly improved

the overall performance of the industry during the sample period, especially for some of the

major Asian carriers. In addition, the discrepancy between the “gross” efficiency index and

the “residual” efficiency index indicates that the exogenous variables do have considerable

effects on the efficiency performance of the airlines.

The comparison of the results from the three methods illustrates that although there

are noticeable differences in the actual levels of estimated efficiency, the overall pattern of

the efficiency estimates from the two parametric methods are essentially the same, and the

results by the DEA-TOBIT are broadly similar to those from the parametric methods. The

policy implications from all three methods are consistent.

By comparing the results from Chapter 8 and Chapter 9, it is found that the three

alternative methods give more consistent results in the airline case than in the railway case.

This is because that the airline data set is considered as a ‘better” data set for application of

the three methods for the following reasons: (1) the data are fairly consistent across the

airlines, (3) there are more observations, and (3) there is less degree of variations in the

carriers’ operating environments. This is consistent with the Monte Carlo results in Part I

which indicate that the three alternative methods are expected to yield similar efficiency
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estimates when the variations in firms’ environments are not very large. The empirical

lesson from this is that in situations where there are large variations in the DMUs’ operating

environments and production characteristics the results would be sensitive to the choice of

method, therefore, careful examination of the situation and the estimation results is

necessary.



216

Chapter 10

Summary and Conclusions

Productive efficiency is a performance measure to evaluate production units, and is

all indicator of success. Measuring efficiency and identifying the sources of efficiency

differentials are essential for designing public and corporate policies to improve performance.

During the last three decades, various methods have been developed to measure productive

efficiency. Different methods often yield different efficiency rankings among the firms being

considered, and may lead to different policy implications on how to improve the efficiency

of a particular firm and of the overall industry. Each method has its strengths and

weaknesses. Knowledge of these strengths and weaknesses will help researchers and policy

analysts to choose the most “suitable” method for a particular situation, and thus to make

accurate measurements of efficiency. These in turn will help policy makers to make

appropriate policy decisions. Therefore, it is important to study the relative merits of

different methods in terms of their abilities to reveal the structure of production technology

and the nature and extent of inefficiency under different conditions. This study compares

three alternative methods in measuring firm specific efficiency, namely the deterministic

frontier method, the stochastic frontier method, and the data envelopment analysis method.

In Part I, Monte Carlo experiments are carried out to examine the relative merits of

the three methods where the underlying production technology and efficiency profile are

known. The Monte Carlo results and their methodological implications are summarized as

follows:
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• The performance of all three methods improve as the sample size increases.

Therefore, it is desirable to have a large sample whenever possible. However, it

should be noted that when the sample size is too large computational cost of the DEA

method becomes high.

• The variations in inputs do not appear to have much effect on the performance of the

three methods in cases where the elasticity of input substitution is greater than one.

However, in the case of weak input substitution, the performance of the deterministic

frontier method and the stochastic frontier method fall noticeably with the variations

in input variables. Therefore, the DEA method would be a good choice in situations

where there are evidences indicating weak input substitution, and where large

variations in sample firms’ input variables are observed.

• The performance of all three methods deteriorates sharply as the level of noise rises,

especially the DEA and the deterministic frontier method. The stochastic frontier

method is expected to produce better estimates than the other two methods when the

noise level is high.

• The magnitude of exogenous variables does not appear to have any significant effects

on the performance of the one-step parametric methods as long as the exogenous

variables can be correctly identified and accounted for. On the other hand, the

performance of the two-step procedure, especially for the DEA and the deterministic

frontier method, is very sensitive to the magnitude of the exogenous variables.

Technically, it is desirable to use the one-step stochastic frontier method. However,

the two-step procedure relates the exogenous variables directly to efficiency
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performance, and thus may be appealing to the policy and decision makers. The

DEA-Tobit method is a reasonably good alternative in situations where variations in

the firms’ operating environments are not very large.

• The stochastic frontier method is rather robust with respects to outliers. Both the

DEA method and the deterministic frontier method are affected by the presence of

outliers, but the extent of the effects are not as significant as expected. If it is

possible, one should try to identify and investigate the causes of any potentially

influential outliers before applying the DEA method and the deterministic frontier

method to a particular data set.

• The performance of the stochastic frontier method is not heavily influenced by the

structure of the underlying production technology, while that of the deterministic

frontier method is affected by the presence of input complementarity, but not by the

returns to scale. The performance of the DEA method deteriorates as the returns to

scale increases, and in the presence of input complementarity. The use of DEA

methods should be avoided as much as possible in situations where there are

increasing returns to scale, and/or high complementarity among inputs. Although the

BCC model is developed to account for the effects of returns to scale, our Monte

Carlo results show that it can not effectively deal with the increasing returns to scale

condition.

The simulation results in Part I provide some general guidelines regarding the

performance of the three alternative methods under certain known conditions. Since in

practice the “true” underlying production technology is not likely to be known, the choice
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of methods would depend on careful examination of available information and a good

understanding of the production situation. The two case studies in Part II serve as examples

of how the three methods can be applied to a real world problem. Further, researchers may

encounter problems which are not considered in simulation studies. The two case studies

also illustrate some of the problems one may encounter in empirical situations where there

is no prior knowledge of either the production technology nor the efficiency profile.

Chapter 8 reports on a case study of efficiency performance of railways from 19

OECD countries during the period of 1978-89. The three alternative methods are applied

to the sample data to measure the productive efficiency of the railways and to identify the

effects of government intervention and subsidization on the productive efficiency. The

results show that: (1) railway systems with high dependence on public subsidies are

significantly less efficient than similar railways with less dependence on subsidies, and (2)

railways with high degree of managerial autonomy from regulatory authority tend to achieve

higher efficiency. The empirical results also confirm that efficiency measures may not be

meaningfully compared across railways without controlling for the variations in railways’

operating and market environments. In addition, comparison of the efficiency estimates from

the three alternative methods confirms the Monte Carlo result in Part I that the stochastic

frontier method yields higher efficiency estimates, on average, than the other two methods.

The efficiency estimates by the two parametric methods are highly correlated although their

mean values are different. There are substantial differences between the efficiency estimates

obtained from the DEA-TOBIT analysis and those obtained by the parametric methods.

However, the policy implications from all three methods are consistent. The main reason
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for the differences is that the DEA-TOBIT analysis is a two-step procedure while the

parametric frontier production functions are estimated using an one-step procedure. The

Monte Carlo study in Part I has shown that these two procedures often produce different

efficiency estimates. Further, the DEA-TOBIT analysis considers two output variables,

while the parametric methods consider only one output variable.

The second case study is reported in Chapter 9. It measures and compares the

efficiency of 36 international airlines during the period of 1980-1992, and identifies the

effects on efficiency of government ownership and technical progress. The empirical results

show that technological progress has improved the productive efficiency of the airline

industry over time, especially for some of the major Asian carriers. The airlines with

majority government ownership are shown to be less efficient than other airlines with similar

operating characteristics. The results also indicate that the effects of network and market

environments should be controlled for in order to measure productive efficiency meaningfully

comparable across airlines.

These two cases represent two rather different situations. In the railway case, the

services are mostly provided by highly regulated, nationalized firms. The firms operate in

very different environments. The noise level and the effects of exogenous variables are

expected to be high, and it is very likely to have outliers in the sample. In the case of

international airlines, firms operate in a fairly competitive environment. Although there is

a high degree of diversity in size, the firms have access to essentially the same technologies.

They acquire basic capital inputs (aircrafts), fuel and other inputs from the international

market. The noise level and the magnitude of the effects of exogenous variables are likely
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to be lower than those in the railway case. Also, the sample size in the airline case is larger

than that in the railway case. Therefore, in view of the Monte Carlo results in Part I we

expect more consistent results from the three alternative methods in the airline case. There

is much less discrepancy and higher correlations among the alternative efficiency estimates

in the airline case than in the railway case. This is consistent with the results of the Monte

Carlo study in Part I.

Both cases are affected by statistical noise and identifiable exogenous variables.

According to the Monte Carlo results, the one-step stochastic frontier method would produce

best estimates if one has a clear picture of the production situation and the environment such

that the model can be correctly specified. However, there are some practical limitations to

the parametric methods. First, data on input and output prices are often required to apply

the parametric methods, especially for the cases involving multiple outputs. However,

consistent price data across sample firms may not be available. Further, the intrinsic

collinearities among the explanatory variables pose another problem for estimation of the

parametric frontier functions. When these problems cannot be overcome, the Data

Envelopment Analysis method may be the only choice available.

It is worth noting some of the limitations of this study. (1) The results from the

Monte Carlo experiments in Part I are based on a specific experimental design. Although

it is believed that the experimental design as described in Chapter 5 is based on reasonable

assumptions about possible empirical situations, at least for the transportation industry, there

still exists a possibility that the findings may change if the experimental design, such as the

ranges of exogenous variables and outliers, is altered. (2) Total train kilometres is used as
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the output measure in estimating the parametric frontier productions in the railway case

because data required to aggregate the multiple outputs into a more sensible single output

measure are not available. (3) The number of employees is used as the labour input in both

applications, because of the lack of better data such as number of labour hours by job

categories. (4) For convenience, all exogenous variables are assumed to affect only the

observed production output level, thus are treated in the same manner. Further study can

be conducted to address this issue under the assumption that some of these variables would

affect only the observed production level (input consumption and output level), while others

would affect the “true” efficiency level and consequently affect the observed production

level. Furthermore, exogenous variables are assumed to be independent of the efficiency

performance. In practice, however, there may exist certain causal relationship between some

“exogenous variables” and efficiency, such as efficiency and subsidization. How to treat

such causal relationship properly in making efficiency measurement requires further research.

This thesis is concerned only with technical efficiency. Allocative efficiency and

profitability are not considered in the thesis. Technical efficiency measures only the relation

between output and input quantities, it does not consider the costs of the inputs nor the

(monetary) values of the outputs. That is, there is no obvious relationship between efficiency

and profitability. This is confirmed by examining the efficiency performance of the railways

and airlines and their financial performance in terms of operating ratios. For example,

British Airways is considered as a successful example by the international aviation industry,

it has made profits when most airlines have been losing money. However, its efficiency

rating is relatively low among the sample airlines. Although high technical efficiency is
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desirable in any circumstances, the survival of a business depends on its profitability as

well. Therefore, one area for further research is the evaluation of the overall performance

of a firm or organization in terms of technical efficiency, allocative efficiency and

profitability. Goal programming techniques may be useful in this aspect. Goal programming

is often used in situations where a firm wishes to simultaneously achieve a number of

objectives. Goal programming refers to these potential objectives as goals. The goal

programming procedure places all the goals into the constraint set, and imposes a new

objective function equal to a weighted sum of the deviations (from the goals). The solution

will achieve a compromise among the goals based on the weights attached to the deviations.

To apply the goal programming techniques to evaluate the overall performance of a firm or

organization, we could treat technical efficiency, allocative efficiency, and profitability as

three separate but related goals. The questions then are how to determine the appropriate

weights to each of these goals, and how to relate these goals together.
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Appendix A

Description of Computer Programs

A.1 Computer Program for DEA

In actual computation, the dual formulation of the DEA method is more tractable than

the primal. In the primal formulation, the constraints are indexed on all DMUs, while in

the dual formulation the constraints are indexed on inputs and outputs and sum over DMUs.

For the problems in this thesis, the number of inputs and outputs is far less than the number

of DMUs. Phillips, Ravindran and Solberg (1987) have shown that the computational

efficiency of the simplex method falls with increases in the size of the constraint set. Hence

the dual program with only (m + s) constraints on inputs and outputs is computed in

preference to its primal with n+ 1 constraints.

Implementation of the DEA method in the Monte Carlo experiments is illustrated by

the following sample FORTRAN program1 which follows the one step non-Archimedean

model procedure where E, the non-Archimedean scalar, is given the value of 106. The

DEA method requires the solution of linear programming problems. The user-callable

subroutines from the XMP Mathematical Programming Library (Marsten, 1981) are used.

Note that the linear programming problem is solved for each of the n DMUs.

The computer codes for BCC model and for railway application requires only minor
changes, so they are not listed here.
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C
C THIS IS THE SAMPLE FORTRAN CODE FOR THE DEA METHOD
C USING THE DUAL FORMULATION OF THE CCR MODEL(1978)
C For use on a P.C.
C

IMPLICIT REAL*8 (A—H,O-Z)
CHARACTER*24 FIN, FOUT, INX

WRITE(*,999)
READ(*,998) FIN
WRITE(*, 997)
READ(*,998) FOUT

WRITE (*, 996)
READ(*,998) INX

999 FORMAT(1OX,’ INPUT DATA FILE NAME=’)
997 FORMAT (lOX,’ OUTPUT FILE NANE=’)
996 FORMAT(lOX,’ INDEX FILE NANE=’)
998 FORMAT(A24)

OPEN(5, FILE=FIN, STATUS=’OLD’)
OPEN(6, FILE=FOUT)
OPEN(7, FILE=INX)

C
CALL MATRX
STOP
END

C
C

SUBROUTINE MATRX
C
C
C THE PURPOSE OF THIS SUBROUTINE IS TO GENERATE XMP MATRIX
C FROM THE ORIGINAL DATA FILE WHICH IS ORGANIZED VARIABLE BY
C VARIABLE,
C
C DEFINITION OF VARIABLES
C THE OBSERVED OUTPUT LEVEL
C Xl: INPUT 1
C X2: INPUT 2
C X3: INPUT 3
C
C
C DECLARATIONS FOR THE PROBLEM DATA.
C

REAL DATA(4,250)
REAL RATIO(250)
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REAL WEIGHT(4,250)
C
C
C DECLARATIONS FOR THE XMP VARIABLES AND ARRAYS.
C

DOUBLE PRECISION B(4) ,BASCB(4) ,BASLB(4) ,BASUB(4),
X BOUND,CANDA(4,6),CANDCJ(6),CJ,COLA(4),
X LJ,MEMORY(20000),UJ,UZERO(4),XBZERO(4),YQ(4),
X Z,ZTEMP,UTEMP

DOUBLE PRECISION BLOW(4)
INTEGER BNDTYP, COLLEN, COLMAX,

X ERROR, FACTOR, IOERR, IOLOG, ITER,
X ITER1,ITER2,LENMA,LENMI,LENMY,LOOK,M,MAPA(20),
X MAPI(20) ,MAXA,MAXN,MAXN,N,NTYPE2,PICK,PRINT,TERMIN,
X UNBDDQ

C THE NEXT STATEMENT SHOULD SPECIFY HALF-WORDS IF POSSIBLE.
INTEGER*2 CAND(6) ,CANDI(4,6) ,CANDL(4) ,BS(4),

X COLI(4),ROWTYP(4),STATUS(259),MINMAX,BASIS(4)
C
C MINMAX = -1 MEANS MINIMIZATION
C +1 MEANS MAXIMIZATION
C
C Note that the convention in XMP is maximization
C
C

INTEGER IDNO,K,I,J
C
C SET VALUES FOR I/O UNITS
C

IOIN=5
IOLOG=6
IOERR=6

C
C
C INITIALIZE XMP PARAMETERS.
C

MINMAX= 1
MAXA=1O11
MAXM=4
MAXN=2 59
COLMAX=4
PICK=6
LOOK=5 0
FACTOR=5 0
LENNY=2 0000

C
DO 310 I=1,N

310 STATUS(I)=0
C



Appendix A Computer Programs 239

C UP TO HERE WE FINISH DEFINING THE DATA STRUCTURE
C

C
C THE FOLLOWING SUBROUTINE IS TO SET UP A STARTING BASIS
C

CALL XSLACK (B, BASCB,, BASLB, BASUB, BLOW,
X BNDTYP, BOUND, COLA, COLI, COLMAX, IOERR,
X LENNA,LENMI,LENNY,M,MAPA,MAPI,MAXM,MAXN,MEMORY,
X N,ROWTYP, STATUS,UZERO,XBZERO, Z)

C
C THE FOLLOWING SUBROUTINE IS TO SOLVE THE LP BY THE
C PRIMAL SIMPLEX METHOD
C

CALL XPRIML (B, BASCB, , BASLB, BASUB, BNDTYP,BOUND,
X CAND, CANDA, CANDCJ, CANDI, CANDL, COLA, COLI, COLMAX,
X FACTOR, IOERR, IOLOG, ITER1, ITER2 , LENMA,LENMI ,LENNY,
X LOOK,M,MAPA,MAPI,MAXM,MAXN,MEMORY,N,NTYPE2,PICK,
X PRINT,STATUS,TERMIN,UNBDDQ,UZERO,XBZERO,YQ, Z)

WRITE (6 , 650)
650 FOPMAT(5X, ‘XPRIMAL’)

C
C
C “Z” IS THE VALUE OF THE OBJECTIVE FUNCTION.
C

ZTEMP=Z
IF (MINMAX .EQ. -1) ZTEMP=-ZTEMP
RATIO (K) =1/ZTEMP

C
C PRINT OUT SOLUTIONS: IT INCLUDES THE CURRENT BASIC
C SOLUTION AND THE OBJECTIVE FUNCTION VALUE
C

CALL XPRINT(BASIS,BNDTYP, BOUND, IOERR, IOLOG,
X LENMA,LENNY,M,MAPA,MAXN,MAXN,MEMORY,N,NTYPE2,
X STATUS,XBZERO, ZTEMP)

C
C PRINT OUT THE VALUES OF THE DUAL VARIABLES
C

WRITE(6 ,910)
910 FORMAT(1HO///5X,28HVALUES OF THE DUAL VARIABLES)

WRITE(6,911)
911 FORMAT(1H0, 5X, 1OHCONSTRAINT, 12X, 14H DUAL VARIABLE)

C FLIP THE SIGN IF WE ARE MINIMIZING

WEIGHT (1, K) =-UZERO ( 1)
DO 300 I=2,M
UTENP=UZERO (I)
WEIGHT(I,K)=UTEMP

IF(MINMAX.EQ.-1) WEIGHT(I,K)=-UTENP
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300 CONTINUE
WRITE(7, 799) K, RATIO(K) ,WEIGHT(1,K), WEIGHT(2 ,K),

X WEIGHT(3,K), WEIGHT(4,K)
799 FORMAT(2X,18,5F12.6)

C
C
C END OF ONE ROUND
C

800 CONTINUE
C

WRITE(*,803) KN
803 FORMAT(2X,” NUMBER OF SAMPLE”, F8.0)
999 CONTINUE

C
C END OF THE SUBROUTINE
C

RETURN
END

A.2 The Program for Stochastic Frontier Model

The stochastic frontier models are estimated using the program FRONTIER version

2.0 developed by Coelli (1991). The program provides maximum likelihood estimation of

a wide variety of stochastic frontier production function model formulations. The program

follows a three-step procedure in estimating the maximum likelihood estimates of the

parameters of a stochastic frontier production function. The first step obtains the OLS

estimates of the production function; then the second step conducts a two-phase grid search

of the parameters in the log likelihood function with the OLS estimators excepting the

intercept; finally the values selected in the grid search are used as starting values in an

iterative procedure using Davidon-Fletcher-Powell Quasi-Newton method to obtain the final

(approximate) maximum-likelihood estimates.
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Appendix B

Data in Monte Carlo Experiments

B.1 Data Generation

The inputs, the exogenous variable and the error terms are generated using the

random number generators in SHAZAM version 6.2.

The inputs X are drawn from lognormal distributions with the following p.d.f.:

1
exp[-’], Oxoo

f(x) = 2t2
B.1

otherwise

=3, t=1

Since SHAZAM version 6.2 has only uniform random number generator and normal random

number generator, the lognormal random numbers are generated using the following

algorithm2:

1. Generate x0 from N(O,1)

2. W - j + T X0

3. X E— e’’

4. Deliver X.

The error term for inefficiency u is from a half-normal distribution which takes

absolute values from N(O, 0.36).

2 Rubinstein (1981) gives a very good description about the methods for generating
random variables and random vectors from different probability distributions.
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The values for inputs and inefficiency term are fixed throughout the experimentation.

Table B. 1 lists the summary statistics for X and e”. Note that the values listed here are the

averages from 25 replications.

Table B.1

Summary Statistics for Variables in Monte Carlo Experiments

Means St.dev. Minimum Maximum

Xl 34.04 42.675 1.2851 358.48

X2 33.45 44.948 1.1938 410.64

X3 33.02 42.172 1.3541 379.39

e 0.6561 0.2034 0.1641 0.9979

The values for exogenous variables and the noise term vary from experiment to

experiment, and given in Chapter 6.

B. 2 Determination of the Number of Replications

As mentioned in Chapter 5, the more replications, the better the results. However,

computation costs increase significantly with the number of replications. Therefore, it is

necessary to examine whether or not it makes any significant differences in the simulation

results to use different number of replications. In particular, we test the hypothesis that
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there are no significant differences among the results with 25, 50, and 100 replications, for

each of the three alternative methods, in terms of mean efficiency levels and correlation

coefficients. This is accomplished by doing three sets of experiments, with 25, 50 and 1(X)

replications respectively, and comparing the results between the different sets of experiments.

Here the underlying production technology is specified by functions (5.1), (5.4) and (5.5)

with 0=0, ‘y=l,ô1=ô2=0.3, 3—0.4, cx=O, and u = 0.15. With each experiment, the

sample size is set at 100, and p is set at -0.25.

In comparing the results from different sets of the experiments, we consider each set

of experiments as simulating a sample representing a particular population. Consequently,

hypotheses tests are conducted about the differences among the means of three populations.

Each replication is considered as a sample observation from that particular population, thus

we have three separate samples with 25, 50 and 100 observations respectively, represeilting

three different populations.

B.2. 1 Stochastic Frontier Method

First we look at the average efficiency estimates. The following lists the results

from three sets of experiments with 25, 50 and 100 replications, respectively.

I25 = 0.53614 = 0.020749

I5O = 0.54150 = 0.025803 B.2

= 0.5423 1 s1 = 0.034441

where is the mean of average efficiency estimates with n replications, s, is the

corresponding standard deviations. To determine whether the number of replications makes
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any significant differences in the simulation results, we test the following hypothesis:

Hi0: = P’50 B.3
H20: = I.L100

using the test statistic z:

(--(-)
B4

12i
i’ /n1+s In2

- P25 P’s0 - 0.53614-0.54150 - -

zstol-

_______

-

______________

-

1/s/25+s2°/50 1/0.0207492/25+0.0258032/50

- P2sP’ioo - 0.53614-0.54231 - -
zst02-

________

-

_______________

-
1/s/25 +s 21/i00 1/0.0207492/25+0.0344412/100

since -1.96 < z01 < 1.96, and -1.96 < z < 1.96, we can not reject either Hi0 or

H20. That is, there is no significant differences in mean efficiency estimates between 25

replications and 50 replications, and between 25 replications and 100 replications.

Next we look at correlation coefficients and rank correlation coefficients. The means

of average correlation coefficients and rank correlation coefficients (between the estimated

efficiency levels and the true efficiency levels) and the corresponding standard deviations are

as follows:
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= 0.76653 s = 0.34063

C50 = 0.77842 = 0.31610

ioo = 0.79202 c1OO = 0.30153

= 0.76761 s = 0.33988

= 0.77763 = 0.3 1725

= 0.79273 SRl = 0.30202

Following the same procedure used for the mean efficiency estimates, the following

hypotheses are tested:

Hi0: C = C50 = R50 B.5
H20: C = C1 =

Using B.4 , the test statistics are computed as:

z1 = -0.1459, z2 = -0.342

zRl = -0.123, z = -0.3377

All of the four test statistics fall within the interval of (-1.96, + 1.96), thus the hypotheses

stated in B.5 can not be rejected. There is no significant differences, in terms of average

correlation coefficients and rank coefficients, between 25 replications and 50 replications,

and between 25 replications and 100 replications.

From the above test results, we can conclude that it is sufficient to use 25 replications

for the stochastic frontier models.

Similar hypothesis tests are conducted for the deterministic frontier method and the

DEA. These tests are summarized in the following tables.
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B.2.1 Deterministic Frontier Method

Table B.2

Determination of Number of Replication

Experiment Results by Deterministic Frontier Method

No. of Replications Sample Mean Standard Deviation

Average Efficiency 25 0.4203 1 0.041606

50 0.41362 0.063023

100 0.40822 0.058574

Correlation 25 0.87340 0.032179

50 0.87312 0.034146

100 0.87182 0.039585

Rank Correlation 25 0.89287 0.033548

50 0.89845 0.028357

100 0.89767 0.032981

Table B.3
Hypothesis Test for Deterministic Frontier Method

Null Hypothesis Test Statistic

Average Efficiency t25 = z1 = 0.5487

P25 = z2=1.1881

Correlation C25 = C50 z1 =0.0348

C25 = C1 z_=0.2091

Rank Correlation R25 = R50 ZR1 = -0.7139

R25 = Rico z1=-0.6420



Appendix B Monte Carlo Experiments 247

As one can see from Table B.3, all test statistics are within the interval of (-1.96,

+ 1.96), that is the null hypotheses can not be rejected. Therefore, the use of 25 replications

for the deterministic frontier methods will not give different results from using 50

replications, or 100 replications.

B.2.1 Data Envelopment Analysis Method

Table B.4
Determination of Number of Replications

Experiment Results by Data Envelopment Analysis

No. of Replications Sample Mean Standard Deviation

Average Efficiency 25 0.61645 0.028649

50 0.61954 0.032030

100 0.62000 0.030646

Correlation 25 0.79608 0.05 1961

50 0.79139 0.067507

100 0.79254 0.060102

Rank Correlation 25 0.77979 0.05923 1

50 0.77669 0.073567

100 0.77907 0.065774
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Table B.5
Hypothesis Test for Data Envelopment Analysis

Null Hypothesis Test Statistic

Average Efficiency IL25 = A5 z1 = -0.4231

1L25 = ILioo z2=-O.5463

Correlation C25 = C50 z1 =0.3323

C25 = C1 z =0.2949

Rank Correlation R25 = R50 ZR1 = -0.1966

R25 = R10 z=-0.0531

Again all test statistics fall within the interval of (-1.96, + 1.96). Therefore, it is

sufficient to use 25 replications for the DEA method.

In summary, the sample results indicate that there is no significant difference between

the results using 25 replications and 50 or 100 replications. Therefore, it is sufficient to

conduct 25 replications for all three alternative methods.

B. 3 Specification of Functional Forms of Underlying Production Technology

In the first five sets of Monte Carlo experiments, the underlying production

technology is assumed to be constant returns to scale. In the last set of Monte Carlo

experiments, non-constant returns to scale and input complementarity are allowed for the

underlying production function. Table B.7 lists the related parameter values of the

production function. The basic functional form is the CRESH function as specified by

equation (5.1). The first three functions are the constant returns to scale technologies used



Appendix B Monte Carlo Experiments 249

in the first five sets of experiments. Function 4 to 13 are the functions considered in the last

set of experiments.

Table B.6
Parameter Values for Underlying Production Function

‘Y 12 013 023 P Pi P2 P3

1 1 3.03 3.03 3.03 -0.67 -0.67 -0.67 -0.67

2 1 1.33 1.33 1.33 -0.25 -0.25 -0.25 -0.25

3 1 0.33 0.33 0.33 +2.00 +2.00 +2.00 +2.00

4 0.927 -0.277 0.540 0.512 -2.15 +0.85 +0.95 -2.00

5 0.927 0.399 0.454 -0.182 -2.15 -2.00 +1.50 1.20

6 0.929 0.356 0.447 0.508 +1.00 +1.50 +1.20 +0.75

7 0.934 -0.209 0.400 0.454 -2.30 +1.50 +1.20 -2.15

8 0.934 -0.091 0.399 0.453 -1.60 +1.50 +1.20 -1.50

9 1.209 0.399 0.454 -0.182 -1.65 -2.00 +1.50 +1.20

10 1.227 -0.209 0.400 0.454 -1.75 +1.50 +1.20 -2.15

11 1.239 0.356 0.447 0.508 -0.75 +1.50 +1.20 +0.75

12 1.286 -0.277 0.540 0.512 -1.55 +0.85 +0.95 -2.00

13 1.573 -0.091 0.399 0.453 -0.95 +1.50 +1.20 -1.50

-y , and o are the returns to scale and Allen-Uzawa partial elasticities of substitution
as specified by equation (5.2) and equation (5.3) in Chapter 5.
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Appendix C

Railway Sample Data

C. 1 Sample Firms and Their Characteristics

An annual panel of 19 selected railways for the period of 1978-1989 forms the

primary data base for the case study of railways. The sample railways are selected because

their data are available in relatively consistent form over the sample period. The sample

firms represent different institutional settings and operate in a variety of environments. The

names of these railways and the years for which data are collected for this study are listed

in Table C.13.

The management of some of the railways such as British Rail (BR), and Netherlands

Railways (NS) enjoy substantial freedom for making strategic and operational decisions

without government intervention, provided that the predetermined minimum performance

criteria are met. On the other hand, some of the railways such as the Finnish State Railways

(VR), Austrian Federal Railways (OBB), and Norwegian State Railways (NSB) are subject

to strict governmental control. Of the sample railways, only German Federal Railways

(DB), Italian State Railways (FS prior to 1985 only) and Danish State Railways (DSB prior

to 1986) are run by governmental agencies while French National Railways (SNCF prior to

1982 only) is organized as quasi-public firms4. The rest of the railways are organized as

public firms (crown corporations).

More discussions for some of the railways can be found in Oum and Yu (1991).

‘ The term uquasipublic firm11 is used to indicate mixed ownership by public and
private interests.
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There are large variations in operating environments across the selected railways.

Japanese National Railways (JNR, however since 1987 it is known as IR) enjoys very high

Table C.1

List of Sample Railways, Abbreviations, & Years Used

BR : British Railways (UK) 1978-1989
CFF: Swiss Federal Railways (Switzerland) 1978-1989
CFL: Luxembourg National Railway Company 1978-1989
CH: Hellenic Railways Organization (Greece) 1978-1987
CIE: Irish Transport Company 1988-1989
CP: Portuguese Railways 1978-1989
DB: Deutsche Bundesbahn-German Federal Railways 1978-1989
DSB: Danish State Railways (Denmark) 1978-1989
FS: Italian State Railways 1978-1989
JNR: Japanese National Railways 1978-1986
NS: Netherlands Railways 1978-1989
NSB: Norwegian State Railways 1978-1989
OBB: Austrian Federal Railways 1978-1989
RENFE: National System of Spanish Railways 1978-1989
SJ: Swedish State Railways 1978-1989
SNCB: Belgium National Railways 1978-1989
SNCF: French National Railways 1978-1989
TCDD: Turkish Republic State Railways 1978-1989
VR: Finnish State Railways 1978-1989

passenger traffic density5 (9.6 million passengers as an average density in 1987) while NSB

has much lower passenger traffic density (528,000 in 1989). Hellenic Railways (CH) of

Greece serves relatively long distance passenger traffic, while most other railways have high

Traffic density is measured in passenger-kilometers per route-kilometers.
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percentage of their passenger services in short suburban and commuter traffic (see the

average passenger trip length in Table C.2). JNR (Japan) and TCDD (Turkey) enjoy much

higher average passenger load per train than the other railways. SNCF (France), VR

(Finland) and TCDD (Turkey) exhibit a fair balance between passenger and freight services,

while NS (Netherlands) and DSB (Danish State Railways) provide primarily passenger

services. CFF-SBB (Swiss) is fully electrified while CH (Greece), CIE (Ireland), DSB

(Denmark), and TCDD (Turkey) still operate fuel traction over nearly their entire network.

The sizes of the railways as indicated by length of route range from a 270 kilometer

(Table C.3) network of the Luxembourg Railway (CFL) to larger firms such as the French

National Railway (SNCF) that serves rail lines of over 30,000 kilometers. Traffic volumes

as measured by passenger kilometers, freight tonne kilometers and train kilometers also vary

over a wide range. JNR produces over 200 billion passenger kilometers each year while

CFL produces only a little over 200 million passenger-kilometers (Table C.3).

Cost recovery conditions vary greatly among the sample railways. Table C.4

presents the overall operating cost recovery ratios and the ratio of direct subsidy to total

operating cost. It is noted that the subsidy ratio is not necessarily equal to:

(1 - operating cost recovery ratio)

This is because most countries do not provide balancing subsidies to their railways6. Other

railways, such as JNR (Japan), before its reorganization, and DB (Germany), finance part

of their deficits by raising debt. Among the 19 OECD railways, the Italian State Railways

6 Most of the railways receive payments from governments for specific services. Some
railways, such as CH, DSB and NSB, get their operating losses subsidized from the state.
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Table C. 3
Railways Route Length and Traffic Volume*

Railway Country Route Train-Km Train-Km Pax-Km Ton-Km
(KM) (Pax) (Freight) (000000) (000000)

(000) (000)

BR UK 16588 362430 77232 33323 16742

CFF Switzerland 2994 91063 27366 11021 8161

CFL Luxembourg 272 3083 1402 224 669

CH Greece 2479 13711 2313 2011 657

CIE Ireland 1944 9541 4136 1220 560

CP Portugal 3064 29559 6939 5908 1719

DB Germany 27045 397437 196029 41144 61109

DSB Denmark 2344 42410 7350 4649 1677

FS Italy 16030 236451 65660 44443 18650

JNR Japan 20341 655095 91164 222670 24752

NS Netherlands 2828 106664 11479 10164 3108

NSB Norway 4044 21461 9561 2136 2749

OBB Austria 5641 71297 37562 8445 11849

RENFE Spain 12565 109853 48214 14715 14048

SJ Sweden 11022 59171 40620 6060 18532

SNCB Belgium 3513 71285 21041 6400 9275

SNCF France 34322 312348 167964 64256 52449

TCDD Turkey 8430 26959 16690 6844 7564

VR Finland 5884 22027 17239 3208 7958

* 1989 data
Source: International Railway Statistics
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(FS) has the lowest revenue-cost ratio (24% in 1989) while the operating revenue of the JR

system (Japan) exceeded costs in 1988. It is worth noting that the most heavily subsidized

railways including FS (Italy), SNCB (Belgium), and CR (Greece) provide primarily

passenger services with passenger train-kilometers accounting for over 75% of their total

train-kilometers.

Table C.4
Cost Recovery Indicators

Railways Countries Revenue/Costs Subsidy/Costs
1980 1989 1980 1989

BR U.K. 0.74 0.90 0.24 0.18
CFF Switzerland 0.74 0.73a 0.08 0. 12a
CFL Luxembourg 0.31 0.23 0.66 0.75
CH Greece 0.54 0.28b 0.47 0.72b
CIE Ireland 0.68 0.76 0.31 0.25
CP Portugal 0.46 0.46 0.45 0.29
DB Germany 0.58 0.60 0.30 0.28
DSB Denmark 0.68 0.62 0.32 0.38
FS Italy 0.29 0.24 0.45 0.71
JNR Japan 0.70 1.10 0.07 0.01
NS Netherlands 0.56 0.57 0.43 0.45
NSB Norway 0.72 0.60 0.28 0.40
OBB Austria 0.67 0.64 0.14 0.40
RENFE Spain 0.55 0.47 0.45 0.48
SJ Sweden 0.83 0.81c 0.13 0.15c
SNCB Belgium 0.44 0.42 0.55 0.58
SNCF France 0.66 0.68 0.30 0.29
TCDD Turkey 0.45 0.73 0.41 0.13
VR Finland 0.77 0.72 0.02 0.02

a. The Government has been paying the infrastructure costs of CFF since 1987, on the other hand, CFF
pay the government a contribution towards the infrastructure expenses. To be consistent with the earlier
data, government payment for infrastructure and CFF’s contribution towards infrastructure expenditure
are excluded in calculating the financial ratios.

b. for 1988.
c. for 1988. SJ was separated into two organizations SJ and BV in 1989.
Sources: UIC: International Railway Statistics; EC: COM(88) 12, Com(89) 364, 564
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C. 2 Source of Data and Description of Variables

The annual data are compiled from the International Railway Statistics, railways’

annual reports, and the (statistical) Yearbooks of the respective countries as well as

publications by the Commissions for the European Community.

There are two sets of variables collected for the railways in order to measure the

productive performance of the railways: (1) outputs and inputs, and (2) the variables

describing the operating environment and production characteristics of the railways.

Two alternate sets of output measures are considered: (i) revenue output measures

(passenger-kilometers and freight tonne-kilometers); and (ii) available output measures

(passenger train kilometres and freight train-kilometres). The available output measures

indicate essentially the level of capacity supplied while the revenue output measures indicate

the level of output consumed by users, and the value they derive from them. These output

data are collected from International Railways Statistics.

Seven input measures are used: (i) labour; (ii) energy consumption; (iii) ways and

structures; (iv) materials; (v) the number of passenger cars; (vi) the number of freight

wagons; and (vii) the number of locomotives.

The number of employees from International Railways Statistics is used as the

measure of labour input as uniform statistics on labour hours are not available for all firms

in the sample. Energy input is measured by the total BTU consumed, using the following

conversion factors:

Diesel oil : 0.1657 million Btu I imperial gallons
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Fuel oil: 0.1801 million Btu/ imperial gallons

Electricity: 3412 BtuIKWH

Coal: 26.2 million Btu/ton

1 ton of diesel oil = 1.571 tons of coal

Railways’ energy consumption for 1978-1984 are obtained from International

Railways Statistics. Energy data of the European railways for 1985-1987 are obtained from

Statistical Trends in Transport 1965-1989. JNR’s energy consumption for 1985-1986 are

obtained from Japan Statistical Yearbook.

The ways and structures input is determined, using the perpetual inventory method

(Christensen and Jorgenson, 1969), by the amount of land and infrastructure capital stock

reported by International Railways Statistics. The land and infrastructure assets are first

converted into U.S. currency using the Purchasing Power Parity (PPP) index for GDP

(OECD, 1992), and then the following perpetual inventory method is applied to construct

the ways and structures capital stock:

K = I + (1—8)K_1 C-i

where K is the capital stock at year t, 1 is the real value of the net investment in year t.

3 is the depreciation rate. The U.S. GDP deflator and 3% annual depreciation rate are used

to create the real capital stock series for each railway.

Finally, the railways’ expenditures on services provided by third parties and

OECD publication prepared by the European Conference of Ministers of Transport
(ECMT).
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purchased materials are used as a measure of materials input. These expenditures are first

converted into U.S. currency using the Purchasing Power Parity (PPP) index for GDP

(OECD, 1992) and are then deflated to constant 1985 value using the U.S. GDP deflator.

The environmental and production characteristics variables include: (1) passenger and

freight traffic densities, measured by passenger kilometers (freight tonne-kilometers) per

route kilometer and train-kilometers per route kilometers (Table C.2), these variables reflects

in part the market demand condition of the railways; (2) average load per train, it indicates

the level of vehicle utilization; (3) average length of trip and average length of haul, they

indicate the type of traffic, e.g. long distance vs short distance commuter traffic; (4)

percentage of passenger train kilometers in total train kilometers, this variable is considered

as an indicator of the importance of passenger services in the railways’ overall operation;

(5) electrification rate, as measured by the percentage of electrified lines in total rail lines

operated, is intended to reflect the state of technology being employed and the extent of

infrastructure investment.

In addition, two policy variables are considered: SUBSIDY and AUTONOMY.

SUBSIDY is measured by the ratio of subsidy to operating costs. Subsidy policy should

ideally be examined according to the types of subsidies and the ways in which they are

provided (e.g. loss/balancing subsidy vs. a fixed sum subsidy, unconditional subsidy vs.

payment conditional on meeting a certain performance standards, etc.), which are likely to

have substantial impacts on a firm’s efficiency. However, due to limited information, this

study considers only the aggregate subsidy. The AUTONOMY variable is an index of

regulatory and institutional environments, based on 1988-1989 figures, which was
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constructed by Perelman and Gathon (1990) using the information collected through a survey

of railways’ management. Its values range between 40 and 100. The more autonomous

management was, the higher the value of the AUTONOMY index. The degree of

managerial autonomy is affected by a large number of factors including ownership form and

managerial mandate. It is therefore very difficult to quantify managerial autonomy

consistently across railways even with the best of efforts. Another problem with this

variable is that it was based on only one year’s worth of observations. In using this variable,

it is assumed that the institutional environment of the railways had varied only minimally

over the sample period, an assumption which is not realistic for most railways. Moreover,

there is no index available for JNR, it is given the lowest autonomy rating in light of JNR

was under strict governmental control for the sample period. Although it is realized that the

AUTONOMY variable is not ideally defined, it is used here as it was the only information

of its kind which had been collected systematically.
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Appendix D

Airline Sample Data

D.1 The Sample Airlines and Data Sources

The airline data base contains 36 airlines observed over the period 1980-1992. The

airlines are selected mainly due to data availability, however, they must be international air

carriers, and have a significant involvement in scheduled passenger services. That is, carriers

that are mainly engaged in cargo or charter services are excluded. The data are mainly

collected from Digest of Statistics published by the International Civil Aviation Organization

(ICAO), in particular, the annual series on Traffic, Fleet-Personnel and Financial

Statistics. A primary advantage of using the ICAO statistics lies in the fact that, for the

most part, they are complied in a consistent manner across airlines. Additional data are

obtained from airlines’ annual reports, AVMARK and directly from airlines. The names of

the airlines, their countries of origin, and the years for which the data are collected are listed

in Table D.1.

The sample includes airlines from Europe, North America and Asia-Pacific. Some

of the airlines are 100 percent stated owned, some are private companies, while others have

mixed ownership. For example, Air France, Air India, Pakistan International Airlines are

100 percent government owned, while the US carriers are all private companies. There are

large variations in size, traffic mix, and other operating characteristics among the sample

airlines (Table D.2). The size of the airlines as measured by the length of the route network

range from 92 thousand kilometers for Finnair to over 940 thousand kilometers for Lufthansa
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Table D.1

List of Airlines & Years Used

Qantas (Australia) 1980-1992
AUA (Austrian Airlines) 1980-1992
SABENA (Belgium) 1980-1992
Air Canada (Canada) 1980- 1992
CP (Canadian Airlines International) 1980- 1992
Finnair (Finland) 1980- 1992
Air France (France) 1980-199 1
UTA (France) 1980- 1991
Lufthansa (Germany) 1980- 1992
Air India (India) 1980-199 1
Alitalia (Italy) 1980-1992
JAL (Japan Airlines) 1980- 1992
MAS (Malaysia Airlines) 1980-199 1
Mexicana (Mexico) 1980-1992
KLM (Netherlands) 1980-1992
PTA (Pakistan International Airlines) 1980-1992
PAL (Philippines Airlines) 1980-1992
Tap Air (Tap Air Portugal) 1980-1992
KAL (Korean Air) 1980-1992
SAS (Scandinavian Airlines Systems) 1980-1992
SAUDIA (Saudi Arabian Airline) 1980-199 1
SIA (Singapore Airlines) 1980-1992
Iberia (Spain) 1980-1992
Swiss Air (Switzerland) 1980-1992
British Airways (U.K.) 1980-1992
Cathay Pacific (Hong Kong) 1988-1992
American Airlines (U.S.) 1980-1992
US Air (U.S.) 1980-1992
American West (U.S.) 1985-1992
Continental (U.S.) 1980-1992
Delta (U.S.) 1980-1992
Eastern (U.S.) 1980-1990
Northwest (U.S.) 1980-1992
Pan American (U.S.) 1980-1990
TWA (Trans-World Airlines, U.S.) 1980-1992
United (U.S.) 1980-1992
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Table D2
Airline Characteristics’

Route Stage Length Load %PASS2 %INT’L3
(000’km) (km) (%) (%) (%)

Qantas 452 4368 65 67 99.95

AUA 95 1051 50 78 100

Sabena 190 988 62 58 100

Air Canada 329 1485 54 73 60

Canadian 268 1514 54 77 68

Finnair 92 1072 57 85 93

Air France 858 1585 61 49 89

UTA 224 3841 68 48 100

Lufthansa 942 1063 65 48 95

Air India 292 2712 58 69 96

Alitalia 486 1173 66 63 94

JAL 492 2476 64 60 85

MAS - 672 64 67 87

Mexicana - 1131 48 96 61

KLM 492 1919 70 53 100

PIA 263 978 57 68 80

PAL 117 1045 63 73 88

Tap Air 136 1504 59 80 87

KAL - 1292 75 41 94

Saudia 310 1103 49 72 75

SAS 212 786 59 77 85

SIA 719 4039 67 58 100

Iberia 326 1191 55 78 74

Swiss Air 309 1243 61 55 99

British Airways 581 1564 66 70 98

Cathay 243 2901 67 58 100

American 798 1493 54 86 30

USAir - 832 49 93 9

Continental 484 1370 51 86 30

Delta 849 1184 52 87 27

Northwest 735 1397 55 74 49

TWA 304 1338 57 85 35

United 778 1551 57 84 39

American W 140 1015 53 92 2

Eastern - 1009 51 92 9

Pan Am 289 1735 63 78 77

1. The most recent year’s (in the sample) data; 2. Percentage of passenger RTK including non-scheduled service.
3. Percentage of international traffic in terms of RTK (including non-scheduled services)
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of Germany8. Aside from the US carriers, most of the airlines in the sample provide mainly

international services, some do not provide domestic services at all. Qantas, Singapore

Airlines, Cathay Pacific, and JAL serve mostly inter-continental traffic as indicated by the

long stage length, while other airlines have a large proportion of their business in intra

continental traffic. KLM achieved the highest average (weight) load factor at 70 % , on the

other hand, the average loads for Mexicana, Saudia and US Air are below 50%. Air France

and Lufthansa have a rather significant proportion of their business in cargo services, while

the U.S. carriers, Finnair, and Mexicana provide primarily passenger services.

The size of the airlines in terms of annual total operating revenue ranges from 780

million US dollars for Austrian Airlines to over 13,000 million US dollars for American

Airlines (Table D.3). There are also large variations in terms of revenue shares. Passenger

revenue accounts for over 90 percent of operating revenues for Austrian Airlines, US Air,

and Delta, while accounts for less than 60 percent for Sabena and Korean Air. Air France,

Korean Air, and Singapore Airlines’ cargo services contribute about 18 percent of their

operating revenues. The revenue shares of incidental services range from 0.3 percent for

British Airways to 41 percent for UTA and 30 percent for Sabena.

Cost recovery conditions vary greatly among airlines (Table D.3). In 1992, about

one third of the airlines were able to recover their operating expense. On the other hand,

none of the North American carriers had a revenue cost ratio over 1.00. Iberia incurred the

lowest revenue cost ratio of 79 percent compared to 119 percent achieved by Sabena,

S Airlines’ route kilometers are obtained from World Air Transport Statistics published
by International Air Transport Association (IATA).
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Table D.3
Airline Financial Performance1

Revenue %Pax Rev2 %Fre Rev2 %Inc Rev2 Rev/ Exp3

__________________

(Mill.US$) (%) (%) (%)

Qantas 2614 77 10 6 1.08

AUA 787 90 6 3 0.94

Sabena 1424 58 11 30 1.19

Air Canada 2226 83 9 3 0.92

Canadian 2011 84 8 3 0.89

Fmnair 982 70 5 9 1.19

Air France4 5284 77 18 3 0.98

UTA4 1399 42 16 41 0.99

Lufthansa 9433 67 14 17 0.99

Air India 799 76 14 7 1.09

Alitalia 4105 72 8 19 1.02

JAL 7858 78 14 5 0.95

MAS 1390 76 13 7 0.98

Mexicana 1044 86 6 6 0.87

KLM 3402 67 16 16 0.84

PIA 824 85 11 3 1.08

PAL 1204 84 11 3 1.08

Tap Air 1123 74 7 18 0.83

KAL 2966 58 23 15 0.99

Saudia4 2093 68 7 13 0.98

SAS 3756 74 5 20 1.05

SIA 3153 78 18 3 1.12

Iberia 3298 86 7 6 0.79

Swiss Air 3392 66 10 23 0.97

British Airways 8444 89 7 0.3 1.07

Cathay 2902 77 16 5 1.19

American 13581 88 3 8 0.99

US Air 6236 93 1 4 0,94

Continental 5210 89 3 5 0.96

Delta 11639 92 4 2 0.93

Northwest 7964 87 7 3 0.96

TWA 3570 83 3 12 0.91

United 12725 88 5 5 0.96

American W 1303 92 2 3 0.95

Eastern5 2182 89 1 7 0.80

Pan Am5 3931 86 5 6 0.89

1. all entries are 1992 data except for noted otherwise; 2. revenue shares for passenger, freight and incidental;
5.3. ratio of operating revenue over operating expenses; 4. 1991 data 1990 data
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Finnair, and Cathay Pacific.

D.2 Description of Variables

There are two sets of variables collected for the airlines: (1) inputs and outputs; and

(2) the variables describing the operating environments and production characteristics of the

airlines.

The outputs are distinguished by the following five categories: scheduled passenger

service, scheduled freight service, mail service, non-scheduled (charter) services, and

incidental services. Incidental services include, among other things, equipment leasing,

maintenance provided to other carriers’ equipment, and catering. They have been ignored

in most of previous studies9,even though they account for upto 30 to 40 percent of revenues

for some airlines such as UTA and Sabena (see Table D.3). The first four outputs are

measured by revenue tonne-kilometers (RTK), while incidental output is measured by a

quantity index which is constructed by deflating the incidental revenue using the Purchasing

Power Parity index for consumption obtained from Summers and Heston (1991) and U.S.

consumer price index.

Five categories of inputs are used: labour, fuel, material, flight equipment, and

ground property and equipment (GPE). Labour input is measured by total number of

employees, since labour compensation data required for constructing multilateral index is not

available for some airlines in the sample. Fuel input is measured by number of gallons (US

Good, Nadiri, Roller, and Sickles (1993) includes incidental service output.
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gallons) of fuel consumed. ICAO reports fuel expense data, but does not report fuel price

or quantity. The data on fuel quantity for some airlines are provided by the airlines directly,

those of other airlines are estimated on the basis of fuel expense data and estimated fuel

prices.

Flight equipment is a multilateral index of 14 types of aircraft constructed using the

following translog multilateral index procedure proposed by Caves, Christensen, and Diewert

(1982):

LnQPLJh = &(W+Wk)(LnQ-LnQk) D-l

where Q, is number of type k aircraft, W1’ is the weight for aircraft of type k for j-the

observation, the bar indicates the arithmetic mean over all the observations, and QPLJk is the

multilateral index in comparison with a hypothetical representative observation (h) with

aircraft number vector LnQk, and weights Wk. Aircrafts’ leasing values are used as the

weights. The data on leasing prices for the period of 1986-1992 is provided by AVMARK,

the leasing prices for earlier years are obtained from Professor Tretheway for some of the

aircraft types and rest are estimated based on similar aircrafts.

GPE input is estimated following the Christensen and Jorgenson (1969) procedure.

The method assumes that the flow of capital services is proportional to the stock. The net

GPE investment series for the airlines are collected from ICAO account data. The 1980’s

GPE stock is considered as the initial GPE stock. Both the initial GPE stock and net

investment series are delated by the PPP investment price index (Summers and Heston, 1991)
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in order to convert them into real quantity series comparable across countries and over time.

The following perpetual inventory method is used to create the real GPE capital stock series

for each firm:

K = + (1—8)K1 (D-2)

where K1 is the GPE capital stock at year t, I, is the real value of the net investment in year

t, and (5is the depreciation which is assumed to be 7%.

The last category of input is materials. The materials input is an catch-all-expense

category, it includes all other inputs or material costs which are not included in the other

input categories. Material cost is defined as the part of total operating cost which is not

attributable to labour, fuel or capital, and is computed as follows: materials cost = carrier’s

operating cost (reported in ICAO pub.) - labour cost - fuel cost - reported rental and

depreciation of flight equipment - depreciation of GPE. The materials input is a quantity

index constructed by deflating the materials cost with PPP Consumption Price Index

(Summers and Heston, 1991).

The second sets of variables describe the operating environment and production

characteristics. They include that: (1) average stage length which is the average distance

between takeoffs and landings, and serves as an indicator how wide an airline’s network is;

(2) average load factor which indicates the level of aircraft utilization; (3) revenue shares of

freight, mail, non-scheduled services, and incidental services which are to reflect service mix

of a particular airline; (4) government ownership dummy variables, one for majority

government ownership where government ownership is over 50 percent, one for minority
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government ownership where government ownership is between 20 and 50 percent, and

default is private ownership; (5) geographic dummy variables, distinguishing the airlines

according to their home counthes geographic locations, and their importance in that region,

in particular, seven groups are classified: Europe, Europe Major, Asia, Asia Major, Canada,

other, and the default is U.S. carriers; (6) technical changes over time: yearly dummy

variables are used to reflect any potential technical changes occurring over time.




