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Abstract 

Measurements made by the A V H R R (Advanced Very High Resolution Ra­

diometer) on board of five N O A A polar orbiting satellites were used to retrieve cloud 

optical depth (T) and cloud droplet effective radius (rejj) for marine boundary layer 

clouds over the Pacific Ocean west of California and over the Southern Ocean near 

Tasmania. Retrievals were obtained for 21 days of data acquired between 1987 and 

1995 from which over 300 subscenes ~ 256 km x 256 km in size were extracted. On 

this spatial scale cloud fields were found to have mean r between 8 and 32 and mean 

reff between 6 and 17 (j,m. The frequency distribution of r is well approximated by 

a two parameter gamma distribution. The gamma distribution also provides a good 

fit to the observed reff distribution if the distribution is symmetric or positively 

skewed but fails for negatively skewed or bi-modal distributions of rejf which were 

also observed. 

The retrievals show a relationship between T and refj which is consistent with 

a simple "reference" cloud model with reff ~ r 1 / 5 . The proportionality constant 

depends on cloud droplet number concentration iV and cloud subadiabaticity 8 

through the parameter Nsat = N/y/]3. Departures from the reference behaviour 

occur in scenes with spatially coherent Nsat regimes, separated by a sharp boundary. 

A V H R R imagery is able to separate two Nsat regimes if they differ by at least 30% 

in most cases. 

Satellite retrievals of r and rejf were compared with in situ aircraft mea­

surement near Tasmania. The retrievals overestimated refj,by 0.7 to 3.6 fim on 

different flights, in agreement with results from earlier comparison studies. The 

reff overestimation was found to be an offset independent of r. The reference cloud 

model and the Nsat retrieval were tested on aircraft data and yield results consistent 

with direct in situ measurements of N and 8. 

Spectral and multifractal analyses of the spatial structure of cloud visible 

radiance, r and reff fields in 34 satellite scenes revealed scale breaks at 3 to 20 

n 



km in all analysed scenes in agreement with some earlier observations (Davis et al. 

(1996a)) but in contrast with other work (Lovejoy et al. (1993)). The nonstationarity 
H(l) and intermittency C(l) parameters were computed for the 34 scenes, stratified 
using the reference cloud model and according to mean r and reff . Similar values 
of H(1) and C(l) were found in all these categories. 

These measurements of the frequency distribution and spatial variability of r, 
reff, liquid water path (Iwp), and Nsat can be used to place constraints on mesoscale 
models of layer clouds. 
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Chapter 1 

Introduction 

1.1 Role of boundary layer clouds in Earth's radiation 

budget 

Boundary layer clouds, through their wide extent, persistent occurrence and ra­

diative properties are of fundamental importance to the global energy budget and 

Earth's climate. 

Warren et al. (1988) estimate the global area coverage of low level stratiform 

clouds at 29% (34% over the Earth's oceans). Low layer clouds affect the climate 

system through the net exchange of radiant energy at the top of the boundary layer. 

Over the ocean, clouds that are highly reflective in visible wavelengths (reflectivity 

~ 60%) obscure the dark ocean (reflectivity ~ 5%) contributing significantly to the 

planetary albedo, while the warm temperatures of these clouds continue to cool 

the atmosphere by emission of outgoing long wave radiation. On annual average, 

boundary layer stratiform clouds contribute 15 Wm~2 net cooling to the radiation 

balance at the top of the atmosphere (TOA) (Hartmann et al. (1992)). 

Arking (1991) distinguishes three classes of processes which determine the 

radiative effect of clouds on climate: 1) the macrophysical structure of clouds - their 

horizontal extent, cloud fraction, optical thickness, horizontal and vertical inhomo­

geneities; 2) the microphysical structure - the size distribution of cloud droplets 

1 



within the macroscale volume; 3) the cloud ambient environment - temperature and 

humidity structure of the atmosphere, atmospheric stability, and distribution of the 

atmospheric aerosols. 

These three groups of processes are tightly coupled. For example, changes 

in the aerosol population may affect cloud liquid water content by suppressing or 

promoting precipitation, while aqueous phase chemistry within the cloud droplets 

modifies the aerosol size distribution. The number of possible interactions between 

the three process categories makes estimating the sensitivity of the planetary radi­

ation budget to various changes in cloud properties problematic. 

There have been a large number of modelling studies identifying potentially 

important feedbacks between aerosols, cloud microphysics, and cloud reflectivity. I 

review several of these in section 1.2.2 below. In section 1.2.3 I review satellite and 

in-situ observations showing the impact of cloud microphysics on reflectivity and 

cloud spatial structure. These observations show that layer clouds are horizontally 

inhomogeneous. In section 1.3 I review modelling work that suggests that the inho­

mogeneous spatial distribution of cloud water may by itself have an important effect 

on cloud reflectivity. In section 1.4 I discuss several approaches to quantifying spa­

tial inhomogeneity that are applicable to satellite measurements. Finally, in section 

1.5 I review work in which two cloud properties, the cloud optical depth and cloud 

droplet effective radius (defined below in section 1.2.1) are measured using aircraft 

and satellite radiometers. 

In this thesis I focus on processes identified by Arking (1991) in points 1) 

and 2). In particular, I use satellite data to infer and quantify the variability of 

cloud optical thickness as a measure of cloud macro-structure, and cloud droplet 

size as a measure of cloud micro-structure. Furthermore, I quantify the relationship 

between these two parameters, which establishes a new observational link between 

cloud macro and microphysics. 
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1.2 Cloud optical depth and cloud droplet effective ra­

dius 

1.2.1 Basic definitions 

This thesis examines couplings between macro- and microphysical cloud properties 

and deals extensively with two cloud parameters. These parameters are: cloud vis­

ible wavelength optical depth (r), which characterises cloud extinction at visible 

wavelengths, and cloud droplet effective radius (rejf) which is a cloud microphys­

ical parameter and represents a measure of the distribution of cloud droplet sizes. 

Another cloud parameter frequently appearing in this thesis is cloud liquid water 

path (Iwp), which measures the water content in column of cloudy air. Below, I 

define these cloud parameters explicitly: 

Cloud optical depth 

Cloud optical depth determines cloud reflectivity at visible wavelengths and 

is defined as 

where the integration is over the cloud droplet radius r and height within the cloud z. 

Az is the cloud geometrical thickness, n(r) is the cloud droplet size distribution, and 

Qext(2-Kr/\) is the efficiency factor for extinction for a water droplet of radius r at 

a wavelength A. For large size parameters (2-irr/X), Qext asymptotically approaches 

2 (Stephens (1978)). For cloud droplets r ~ 10/um, and for visible radiation A « 

0.7^/m, thus the size parameter S> 1 and the approximation Qext=2 is justified. 

(1.1) 
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Cloud droplet efFective radius 

The cloud droplet effective radius is the mean radius of the cloud droplet size 

distribution n(r) [cm-3pm~l] weighted by the droplet surface area 

"eff 
JQ°° n(r)r3dr 
JQ°° n(r)r2dr 

(1.2) 

Cloud liquid water path 

The cloud liquid water path is defined as 

rAz 

Iwp = / lwc(z)dz (1.3) 
Jo 

where Iwc = J0°° ^irpn(r)r3dr is cloud liquid water content , z is height within the 

cloud layer, and Az is cloud geometrical thickness, p is the density of water. 

From (1.1), (1.2) and (1.3) one obtains 

fAz 3 Iwc 
T = / dz. 1.4 

Jo 2p reff 

I will also define cloud droplet number concentration N = J 0°° n(r)dr where 

r is the radius of cloud droplet and n(r) the size distribution of cloud droplets. 

The parameters r and rejj control the cloud reflectivity on spatial scales 

greater than 200-500 m, the photon mean free path (Cahalan and Joseph (1989)). 

They are also directly related to the physical properties of the cloud, the cloud liquid 

water path defined above in (1.3) and the drop size distribution n(r). 

1.2.2 Review of sensitivity studies 

The interaction between cloud microphysics and atmospheric aerosol has a poten­

tially significant impact on cloud radiative properties and may considerably affect 
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the earth's radiation budget and hydrological cycle. Twomey (1977) and Twomey 

et al. (1984) modelled the effect of an increased concentration of C C N on cloud 

optical thickness and found that assuming an increase in the total aerosol concen­

tration increases concentration of cloud condensation nuclei (CCN) which in turn 

activate more droplets at cloud base. The resulting reduction in cloud droplet size 

could potentially increase cloud reflectivity and thus enhance the planetary albedo. 

Charlson et al. (1987) estimated that a doubling of C C N concentration could offset 

the warming induced by doubling of the atmospheric CO2 concentration. This in­

crease in T O A planetary albedo due to the increase of cloud reflectivity in response 

to increased aerosol concentration at fixed Iwp is termed "the indirect effect" to 

distinguish it from the "direct effect" of aerosol scattering of solar radiation in a 

cloud free environment. 

A modelling study of Jones et al. (1994) concluded that modification of cloud 

droplet number distribution and concentration by anthropogenic aerosol results in an 

indirect aerosol radiative forcing (i.e. top of the atmosphere flux difference) whose 

global annual average of -1.3 Wm~2 exceeds the direct cooling effect of aerosol 

scattering of solar radiation (-0.3 to -0.9 Wm~2). 

In related studies, Global Circulation Model (GCM.) simulations indicate 

large sensitivity of climate to changes in cloud cover and cloud microphysical pa­

rameters such as cloud optical depth, cloud droplet size and cloud liquid water path. 

Several authors have shown that even small perturbations to low cloud fraction or 

cloud droplet effective radius in cloud schemes within G C M s can greatly affect the 

simulated impact of greenhouse gases on climate. For example, a 15% reduction in 

global cloud droplet size at constant Iwp offsets the predicted CO2 doubling induced 

climate warming of 4 W m~2. The same effect is achieved by increasing the cloud 

fraction by 20% while keeping droplet size and Iwp constant (Slingo (1990)) . 

Not only the droplet size but also the cloud liquid water path may be indi­

rectly affected by aerosols. Albrecht (1989) proposed that a reduction of the mean 
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cloud droplet size in response to increased aerosol concentration can act to inhibit 

precipitation and contribute to a prolonged cloud lifetime and increased cloud frac­

tion. Baker (1993) suggested that variation in cloud droplet number concentration 

may play a role in determining cloud lifetimes, cloud cover and large scale cloud 

albedo, and precipitation rates. She postulated the existence of two steady states in 

the well-mixed marine cloud-topped boundary layer which represent precipitating 

and non-precipitating clouds. These steady states are determined by distinctly dif­

ferent C C N (or cloud droplet number concentration ) concentrations. The low cloud 

droplet number concentration N state corresponds to approximately 10 c m - 3 , the 

high N state corresponds to ~ 1000 c m - 3 . The cloud droplet number concentration 

is regulated by production of droplets and removal due to droplet growth and pre­

cipitation. N also plays a role in controlling the heating profile the cloudy boundary 

layer. Net positive heating occurs in thin clouds with low cloud droplet number con­

centration which makes these clouds particularly prone to break-up (Baker (1993)). 

The modelling study of Ackerman et al. (1993) showed that if the C C N 

concentration in the cloud-topped boundary layer is depleted to very low values 

(about 10 c m - 3 ) , (due for example to droplet growth by collisions), the cloud layer 

can become so optically thin that cloud top radiative cooling will become too weak to 

drive the vertical mixing in the boundary layer and the layer collapses to a shallower 

one. Through this mechanism the marine layer clouds can limit their own lifetimes. 

In another modelling study Pincus and Baker (1994) investigated changes in 

cloud thickness and cloud albedo resulting from changes in precipitation rates and 

solar absorption due to varying cloud droplet number concentration. They found 

that the sensitivity of cloud albedo to cloud droplet number concentration is in­

creased by a factor ranging from 1.5 to 2 if cloud thickness is allowed to vary in 

response to varying cloud droplet number concentration and argued that the rela­

tionship between cloud thickness and cloud droplet number concentration needs to 

be accounted for in predictions of global albedo by climate models. Their model 
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results showed that, in the case of thin clouds with low cloud droplet number con­

centration, injection of aerosol into the boundary layer increases cloud liquid water 

and cloud albedo by suppressing precipitation. In thick clouds with high albedos 

adding new aerosols changes droplet radius but has only a small effect on albedo. 

These results are in qualitative agreement with the observation of ship tracks (Radke 

et al. (1989), Coakley et al. (1987)) discussed below in section 1.2.3. 

Boers and Mitchell (1994) proposed a feedback mechanism which modified 

the enhancement of cloud top albedo expected from an increase in the C C N concen­

tration (Twomey (1977)). The feedback was based on the effect that the change in 

droplet size and concentration has on the absorption of solar radiation within the 

cloud, which in turn modifies the mixing process between cloud and the overlaying 

dry air, and hence affects the microphysics of cloud droplets. In the limit of thin 

clouds (r < 10) this feedback mechanism partly offsets the reflectance increase due 

to the increase of droplet concentration. In optically thick clouds the reflectance is 

further enhanced due the feedback. 

Feingold et al. (1997) recognised that the onset of rain drop growth through 

collisions transforms the unimodal droplet size spectrum created in the process of 

condensation into a bimodal spectrum with a secondary mode corresponding to 

drizzle-size droplets. This transition from uni- to bimodal spectrum reduces cloud 

optical depth through 1) decrease of cloud droplet number concentration, and 2) 

increase of mean droplet size, even if cloud liquid water path is held constant. 

Using a simple box model of stochastic collection (Tzivion et al. (1987)) and an 

eddy resolving model (Stevens et al. (1996)) Feingold et al. (1997) found that the 

relation between cloud droplet number concentration and cloud optical depth differs 

between uni- and bi-modal clouds. As a result the susceptibility of cloud albedo 

to changes in cloud droplet number concentration (i.e. change in cloud albedo in 

response to changes in N, at constant cloud liquid water content , S = dA/dN ) 

can be up to 2.5 times larger in clouds with active collection than in the uni-modal 
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(non precipitating) clouds. 

The uncertainties surrounding the aerosol, cloud droplet and cloud reflec­

tivity interactions have stimulated much research in this field in recent years. The 

challenge is twofold: 1) to better understand cloud microphysical and radiative 

properties and their interactions, and 2) to develop more accurate cloud parametri-

sations for use in G C M s that capture the important interactions between cloud 

microphysical and macrophysical processes. 

1.2.3 Observations 

Modelling studies postulate numerous feedbacks between cloud properties and cli­

mate. Observations which could confirm the modelling results are fewer and often 

contradictory. 

Martin et al. (1994) observed an increase in cloud droplet number concentra­

tion with increasing aerosol concentration in warm stratocumulus clouds confirming 

the predictions of Twomey (1977). Kim and Cess (1993) reported satellite based 

observations of increased albedos in low level marine clouds near coastal boundaries 

where aerosol concentrations were large. 

The ship track phenomena, where cloud reflectivity is increased in trails of 

ship effluents which act as C C N and lead to an increase in cloud droplet number 

concentration, provides observational evidence of the modification of cloud prop­

erties by atmospheric aerosol (Radke et al. (1989), Coakley et al. (1987), Platnick 

et al. (1997)). 

Suggestions that precipitation may be an important modulator of cloud thick­

ness and cloud albedo are particularly difficult to verify observationally. Austin et al. 

(1995) observed complex spatial variations in precipitation rates and optical depth 

of marine boundary layer clouds. The observed clouds exhibited localised regions 

of intense precipitation large enough to cause cloud water depletion. These precip­

itation events did not seem to have an impact on hourly satellite retrieved cloud 
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fraction or cloud optical depth in the region, where both remained high throughout 

the day. 

Additional satellite observations of Pincus et al. (1997) also do not indicate 

that precipitation greatly affects cloud fraction or cloud optical depth variability. 

Pincus et al. (1997) used cloud optical depth retrievals from geostationary satellites 

to study the Lagrangian evolution of cloud fraction and cloud optical depth in North 

Pacific clouds in response to varying environmental parameters (sea surface temper­

ature, lower troposphere stratification and others). They found that in the principal 

component decomposition the environmental components explain only a fraction of 

the variability in cloud fraction and cloud optical depth. The cloud optical depth 

at sunrise turned out to be the best predictor of the diurnal cycle of cloud fraction 

and cloud optical depth (a threshold value seems to exists for the sunrise cloud op­

tical depth which determines whether or not the cloud breaks-up in the afternoon). 

Pincus et al. (1997) conjectured that cloud droplet number concentration can be an­

other major factor in determining cloud properties, as large concentrations increase 

cloud optical depth even in the absence of changes in the cloud liquid water, but 

had no observations of either cloud droplet number concentration or cloud droplet 

effective radius to examine this question in detail. 

Drizzle depletion of cloud water was also observed in situ by Boers et al. 

(1996), who reported aircraft observations of marine clouds over the Southern Ocean 

where horizontal variability in cloud liquid water content appeared to be driven 

primarily by variations in cloud droplet number concentration. Their calculations 

showed that on days with intense drizzle, cloud optical depth was possibly reduced 

(at the same Iwp) by as much as 50% due to a shift to larger values of cloud droplet 

effective radius associated with precipitation. 

In another study Boers et al. (1997) sampled a layer of stratocumulus clouds 

embedded with linear convective elements. They found a factor of two difference in 

cloud droplet number concentration between the convective line and the surrounding 
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stratocumulus deck. This contrast between convective and quiescent regions was also 

apparent in cloud liquid water content. 

In other in situ studies, aircraft observations (Paluch and Lenschow (1991), 

Austin et al. (1995)) revealed large variability in cloud base height in marine stra­

tocumulus and relatively less variable cloud top height in precipitating layer clouds. 

Collectively, all of these postulated feedbacks and interactions raise questions 

about the links between cloud fraction, liquid water path, cloud droplet effective 

radius , cloud optical depth and cloud reflectivity. 

1.2.4 Summary 

Both observational evidence and modelling results point to potentially complex in­

teractions between cloud processes on scales ranging from microscale (size of cloud 

droplets [fim]) to macroscale (geometrical cloud thickness ~ 100 m, cloud horizontal 

extent ~ 100 km). These interactions can affect cloud spatial structure and cloud 

radiative properties, and thus can help to determine the role of clouds in global 

energy budget and their effect on Earth's climate. 

We need to understand the couplings between cloud fraction, liquid water 

path, cloud droplet effective radius, cloud optical depth and cloud reflectivity, and 

the spatial distribution of these cloud parameters to resolve the uncertainties sur­

rounding postulated cloud-climate feedbacks, and improve cloud parametrisations 

in global circulation models. 

As I discuss next in section 1.3, the inhomogeneous distribution of liquid 

water even in fully cloudy layers has a particularly important impact on cloud 

reflectivity, and is the current focus of significant observational and theoretical work. 
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1.3 Implications of cloud inhomogeneity for radiative 

transfer calculations on G C M grid size scale 

Satellite and aircraft observations provide evidence of structural complexity and 

spatial inhomogeneity of cloud fields on scales ranging from a few centimetres (Baker 

(1992)) to 1000 km (Cahalan et al. (1982), Davies (1994) for example). This range 

of scales encompasses those of the G C M gird cell size (approximately 200 kmx 

200 km). This contrasts with the assumptions made in GCMs, which treat clouds 

as plane parallel and homogeneous (PPH). Numerous studies (Welch and Wielicki 

(1984), Davis et al. (1990) Barker (1992)) have shown that there is a significant 

difference between radiative transfer within plane parallel homogeneous clouds and 

in inhomogeneous clouds with the same mean optical properties. In view of this 

research the P P H assumption of G C M s is clearly unsatisfactory, even for marine 

stratocumulus, which of all cloud types best fit the description of plane parallel 

and homogeneous. For typical marine stratocumulus cloud optical depths (~ 10) 

the P P H assumption can generate an albedo bias (difference between the observed 

and model values of albedo) of 10-30% (Barker (1996), Cahalan et al. (1993)) when 

compared to albedos calculated by models which take into consideration the spatial 

variability of cloud optical depth . 

There are several methods for computing radiative transfer in horizontally 

inhomogeneous clouds (Stephens (1988), Evans (1993) for example) but these are too 

computationally demanding to be of use in GCMs. The alternative is to develop 

methods of accounting for the sub-grid scale variability of G C M pixels. Barker 

(1996) proposed a parametrisation for computing G C M grid averaged solar fluxes for 

inhomogeneous boundary layer clouds based on the independent pixel approximation 

(IPA) (Cahalan et al. (1993), Cahalan et al. (1994), Chambers et al. (1997b)) and 

an assumed distribution of cloud optical depth in a G C M cell. 

Motivated in part by Barker's work, Abdella and McFarlane (1997) proposed 
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a stochastic cloud scheme for use in G C M based on a statistical approach in the 

formulation of the sub-grid scale condensation process. In this approach, first used 

by Sommeria and Deardorff (1977) and Bougeault (1981) in simulations of the trade 

wind boundary layer, the liquid water content is modelled as a sum of the large 

scale mean and local fluctuations induced by sub-grid scale condensation. These 

fluctuations are expressed as a departure of the actual thermodynamic state from 

the saturation curve of the mean state and are distributed according to a prescribed 

probability density function. For a given probability distribution function the cloud 

fraction and the liquid water content are functions of the mean state departure from 

saturation and the variance of the fluctuations. The cloud fraction and the cloud 

liquid water path are then used to compute the radiative fluxes in a cloudy boundary 

layer. 

Both the methods of Abdella and McFarlane (1997) and Sommeria and Dear­

dorff (1977) require knowledge of the distribution of cloud liquid water path, and in 

future versions of the model, could benefit from the knowledge of correlations be­

tween cloud liquid water path, cloud optical depth and cloud droplet effective radius 

on scales below the G C M cell size. Satellite imagery provided by the Advanced Very 

High Resolution Radiometer (AVHRR), which has a nadir resolution of 1.1 tax 1.1 

km, can provide distributions of cloud optical depth and cloud droplet size within 

G C M cells for use with these schemes. The measurement and parametrisation of 

these distributions is the topic of section 4.2 of this thesis. 

1.4 Quantifying spatial inhomogeneity in cloud optical 

depth and cloud droplet effective radius 

A V H R R imagery provides information about the spatial distribution (spatial struc­

ture) of cloud parameters on scales from 1-1000 km , and thus provides ways of 

quantifying the inhomogeneity of the fields of cloud parameters within a typical 
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G C M grid cell. 

Given the variety of potentially important links between aerosols, cloud 

droplet size and cloud liquid water discussed above, new observations of cloud micro 

and macrophysical characteristics may provide constraints on some of the proposed 

sensitivities reported in section 1.2. 

In this thesis I report the distribution of r and reff on the scale of G C M 

cell. I also use various forms of texture analysis to address the following questions: 

• what is the minimum sample size for meaningful spatial averages of cloud 

parameters? 

• what is the scale distribution of variance (the power spectrum) of the T and 

reff fields? 

Texture analysis methods can be applied to images of cloud parameters in 

order to quantify the spatial structure of cloud fields. In a broad sense, texture is 

defined as a set of statistical measures on the spatial distribution of gray levels in an 

image. There are a number of statistical approaches to image analysis (see Welch 

et al. (1988)). In this thesis I consider two of them: 1) spectral analysis and 2) 

fractal (or multifractal) analysis. 

Spectral analysis (the decomposition of the total signal variance into con­

tributions from various scales) is the standard procedure for characterising spatial 

correlation in data sets, but this approach has serious limitations for extracting in­

formation which would aid cloud modelling. For example, signal intermittency (the 

occurrence of sudden bursts of intense variability), characteristic of many geophysi­

cal signals such as the spatial distribution of cloud reflectivity, cannot be determined 

by this type of analysis. 

For processes that are scale invariant (at least over some range of scales), 

spectral analysis can identify scales of stationary and nonstationary regimes. I will 

use this approach in this thesis to establish the scale invariant regime in fields of 
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cloud optical depth , cloud droplet effective radius and cloud radiance, and find the 

minimum averaging scale required to insure statistical stationarity of the inferred 

statistics. 

In random field theory stationarity refers to statistical invariance under trans­

lation in time and homogeneity to statistical invariance under translation in space. 

In cloud analysis and modelling literature it is conventional to use the term "station­

ary" to denote either space or time invariance while "(in)homogeneity" is reserved 

to designate (non-)constant ("(non-)triviaP) fields. 

The issue of nonstationarity is particularly important, yet rarely address 

directly. Most atmospheric fields are nonstationary, at least over some range of 

scales. When parametrisations or generalisations are based on statistical inference 

from observations it is important to establish that the observations come from the 

stationary regime otherwise the results could be artifacts of the details of the aver­

aging procedure. Therefore, it is important that distributions of T and reff which 

I measure in later chapters of this thesis come from stationary regimes. In the case 

of cloud liquid water fluctuations Marshak et al. (1997) showed that using datasets 

shorter than 20-40 km to infer statistical properties (means and variances) of clouds 

yields questionable results since the data are nonstationary on these scales. 

The concept of a "scaling fractal" (Mandelbrot (1977)) has proven useful 

in application to analysis of the structure of inhomogeneous cloud fields (Davis 

et al. (1994), Cahalan and Joseph (1989), Cahalan et al. (1993) for example). A 

scaling fractal is defined as an object or set which is very irregular on all scales, 

yet at the same time statistically invariant under certain transformations of scale. 

The fractal dimension determines the scaling properties of the fractal object. The 

simplest fractals are geometrical objects. The geometrical fractals are self-similar 

i.e. their magnified subsets look like or are identical to each other and to the 

whole object (Barnsley et al. (1989)). Non-geometrical fractals objects may scale 

differently in different coordinates. Such objects are called self-affine. The most 
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general scaling fractals are the multifractals, which exhibit a spectrum of fractal 

dimensions. Multifractals were introduced by Hentschel and Procaccia (1983) and 

Parisi and Frisch (1985) and today constitute a general framework for statistical 

analysis and stochastic modelling of natural phenomena. 

In the atmospheric sciences multifractals have been used in several areas. 

The better known applications involve rainfall analysis and modelling (Gupta and 

Waymire (1990) and Gupta and Waymire (1993)), analysis of the spatial variability 

of the earth's radiation field (Tessier et al. (1993)), interpretation of satellite im­

agery (Gabriel et al. (1988)), and analysis of cloud liquid water fluctuations from 

aircraft measurements (Marshak et al. (1997)). The energy cascade in fully devel­

oped turbulence was successfully described by a multifractal model in Meneveau and 

Sreenivasan (1987). Fractal properties of cloud fields were explored among others 

by Cahalan and Joseph (1989), Cahalan et al. (1993). Recent theoretical studies of 

cloud radiation used fractal (Barker and Davies (1992)) and multifractal (Cahalan 

et al. (1994)a,b; Marshak et al. (1995a),b) cloud models. Marshak et al. (1994) 

explored multifractal properties, nonstationarity and intermittency of bounded cas­

cade models used in simulation of cloud inhomogeneity. 

I will employ spectral analysis and multifractal analysis in my investigation 

of the spatial structure of cloud optical depth and cloud droplet effective radius in 

chapter 7. 

1.5 Previous satellite and aircraft observations of cloud 

optical depth and cloud droplet effective radius 

The connection between macro and microphysical cloud properties means that to 

interpret changes in cloud radiative processes one has to monitor many cloud charac­

teristics together. On the global scale satellite imagery provides one means by which 

such a task might be accomplished. Early satellite observations of cloud properties 
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concentrated on determination of cloud amount and cloud top temperature. Rossow 

(1989) and Rossow and Lacis (1990) extended the satellite measurements of cloud 

properties to retrievals of cloud optical depth. The inference of cloud optical depth 

from satellite observation relies on the dependence of cloud visible wavelength re­

flectivity on cloud optical depth. Extensive measurements of global cloud amount, 

cloud top temperature and cloud optical depth are the mandate of the International 

Satellite Cloud Climatology Project (ISCCP). The ISCCP analysis of satellite ra­

diances for the inference of the cloud optical depth assumes' a constant droplet size 

for all clouds (cloud droplet effective radius of 10 fim, where the effective radius 

is a parameter which characterises the distribution of cloud droplets sizes). This 

assumption leads to uncertainties of 15% - 25% in the retrieved optical depth for 

water clouds (Rossow et al. (1989), Nakajima et al. (1991)). 

Inclusion of information from the near infrared and infrared spectral bands 

permits the inference of cloud droplet size from satellite radiance measurements. 

Arking and Childs (1985), Nakajima and Nakajima (1995), and Platnick and Valero 

(1995) utilised the visible and near infrared band radiances for simultaneous retrieval 

of cloud optical depth and cloud droplet effective radius from the A V H R R flown 

on board of a series of N O A A polar orbiting satellites. Similar techniques were 

employed in the retrieval of cloud droplet size and cloud optical depth form airborne 

remote sensing platforms (Nakajima and King (1990), Rawlins and Foot (1990), 

Nakajima et al. (1991)). Han et al. (1994) used the A V H R R near-infrared channel 

measurements to produce global retrievals of cloud droplet effective radius for the 

ISCCP data and revise the ISCCP retrievals of cloud optical depth. The possibility 

of utilising other wavelengths in cloud droplet size retrievals was explored by Lin and 

Coakley (1993) who used two A V H R R thermal channels to retrieve the droplet size 

for semi-transparent clouds. The advantage of this technique is its applicability to 

nighttime observations, however its accuracy is not as good as that of the methods 

employing the visible and near infrared channels. 
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To date, the A V H R R and Landsat Thematic Mapper are the only satel­

lite instruments whose measurements allow for a simultaneous retrieval of cloud 

optical depth and cloud droplet effective radius. In field experiments, the First 

ISCCP Regional Experiment (FIRE) and the Atlantic Stratus Transition Experi­

ment (ASTEX) aircraft observations during satellite overpasses were used to validate 

the A V H R R estimates of cloud optical depth and cloud droplet effective radius by 

comparison with the in situ aircraft measurements. These studies (Nakajima and 

Nakajima (1995), F I R E and A S T E X ; Platnick and Valero (1995) A S T E X ) found 

that the remotely and in situ measured cloud optical depth agreed within 3 for most 

part in clouds with mean optical depths between 10 and 40, although Nakajima and 

Nakajima (1995) reported some large excursions of ~ 10. They attribute these large 

differences to the satellite measurements encompassing a large field of view (~ 1 x 

1 km) compared to the in situ measurements. Remote sensing consistently retrieves 

larger droplet sizes than measured in situ by about 2 /im for effective radii around 

10 fim (Nakajima and Nakajima (1995), Platnick and Valero (1995)). The cause of 

this overestimation has not been determined. However, very good spatial correla­

tions between in situ and remotely measured r and r e / / were reported in Nakajima 

and Nakajima (1995). 

1.6 Thesis outline 

In this thesis I present satellite derived observations of cloud optical depth (r) 

and cloud droplet effective radius {reff) and interpret them using a simple cloud 

model in which the relationship between r and reff is parametrised in terms of 

cloud droplet number concentration. Furthermore, I quantify the spatial variability 

of cloud optical depth, cloud droplet effective radius and cloud visible wavelength 

radiance fields within the formalism of multifractal analysis. 

The thesis will address the following questions: 
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• Are the retrievals of cloud optical depth and cloud droplet effective radius 

valid? (i.e. do they agree with in situ aircraft measurements considered in 

chapter 5.) 

• Can the observed variability in r and reff be stratified in terms of other 

cloud parameters? (cloud droplet number concentration, cloud liquid water 

path, geographical location.) To assist in this stratification, and in the in 

situ validation I will introduce a simple "reference cloud model" in chapter 3, 

and present data sets that conform to and depart from this reference model 

in chapters 3 and 4. 

• Is there a characteristic spatial structure in fields of r and r e yj? Does it depend 

on factors such as cloud droplet number concentration or cloud thickness? 

Chap te r 2 contains a description of the cloud optical depth and effective 

radius retrieval technique developed of Nakajima and Nakajima (1995) which was 

use in this study. 

C h a p t e r 3 introduces the "reference cloud model" which leads to a power 

law relationship between r and reff parameterised by cloud droplet number con­

centration and gives examples of cloud scenes which are representative of the simple 

model and examples of scenes which mark a departure form the simple behaviour. 

In Chap te r 4 the relationship between cloud optical depth and cloud 

droplet effective radius is explored with statistical methods. Bivariate linear regres­

sion with errors in both variables is used to fit a power law to the r and reff data 

for 325 cloud scenes of approximate areas of 256 km x 256 km. On this spatial 

scale, I find that the reference cloud model provides an accurate description of r 

and reff correlations for over 55% of examined cloud scenes. I also show how a 

measure of cloud droplet number concentration concentration can be derive from 

satellite retrievals with help of the reference cloud model. 

Further in Chap te r 4 I present mesoscale frequency distribution of cloud 
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optical depth and cloud droplet effective radius and parametrise these distributions 

in terms of a gamma function (Barker (1996)). I discuss the relationship between 

mean mesoscale r and reff. 

In Chapter 5 I analyse satellite and aircraft observations acquired during 

the Southern Ocean Cloud Experiment (SOCEX). The aircraft observation provide a 

validation of the remote sensing retrievals of cloud optical depth and cloud droplet 

effective radius and confirm the relationship between r and reff observed in the 

satellite data as consistent with the reference cloud model. 

Chapter 6 introduces the formalism of multifractal analysis, and the con­

cepts of nonstationarity and intermittency in geophysical data following Davis et al. 

(1994) and Marshak et al. (1997). Chapter 7 presents the results of spectral and 

multifractal analysis of 34 A V H R R fields of cloud visible wavelength radiance, cloud 

optical depth and cloud droplet effective radius. The scenes come from four differ­

ent data sets: 1) the F I R E 1987 data set, 2) Pacific Ocean 1994 data set, 3) Pacific 

Ocean 1995 data set, and 4) S O C E X 1995 data set. Also included in Chapter 7 is 

a practical guide to this spectral and multifractal analysis. 

Chapter 8 summarise the results, discusses the implication of the thesis 

findings to remote sensing and the climate modelling and outlines the possibilities 

for future research. 
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Chapter 2 

Retrieval of cloud parameters from A V H R R radiance 

measurements 

The retrievals of cloud optical depth and cloud droplet effective radius in this study 

were obtained with the technique developed by Nakajima and Nakajima (1995). 

This chapter describes radiative transfer basis and some details of this technique. 

Section 2.1 presents the principal idea behind the simultaneous retrieval of 

cloud optical depth and cloud droplet effective radius from satellite radiance mea­

surements. Sections 2.2 and 2.3 describe the details of Nakajima and Nakajima 

(1995) forward model and retrieval algorithm respectively. In section 2.4 I discuss 

sources of errors and estimates of uncertainty in retrievals of cloud optical depth 

and cloud droplet effective radius from satellite measurements. 

2.1 Basic concept 

The retrieval technique of Nakajima and Nakajima (1995) relies on the reflectance of 

solar radiation by cloud droplets. Techniques based on solar reflectance use visible 

wavelengths which are scattered by water droplets without absorption' and near-

infrared wavelengths absorbed by cloud droplets for the simultaneous retrieval of 

cloud optical depth and cloud droplet effective radius . The visible range cloud 

reflectance is sensitive primarily to cloud optical depth , while the near-infrared re-
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fleeted radiance depends mostly on cloud droplet effective radius . This wavelength 

dependent sensitivity is due to the different absorption of visible and infrared wave­

length by water droplets. 

Cloud droplets absorb strongly in infrared. As a result infrared radiation 

which emerges back from the cloud and reaches the satellite sensor consist mostly 

of photons which underwent just a few scattering events near the cloud top. These 

photons having scattered only a few times carry the 'memory' of the size of the 

droplet they interacted with. The visible wavelength radiation propagates through 

a cloud practically without absorption. It can penetrate deep into the cloud before 

it is reflected back to space in a sequence of scattering events. In the process of 

multiple scattering the photons lose the information about the size of cloud droplets 

,but being able to sample deep into the cloud they gather information of the column 

extinction (cloud optical depth ). 

The A V H R R makes measurements in 5 channels. Table 2.1 list the spectral 

band width of the A V H R R channels for the instrument on board on the NOAA9 

satellite (NOAA Polar Orbiter Data User's Guide 

http://www2.ncdc.noaa.gov/POD / podug/index.htm). 

channel band width 

[/im] 

1 0.58-0.68 

2 0.725-1.10 

3 3.55-3.93 

4 10.3-11.3 

5 11.5-12.5 

Table 2.1: Wavelength bands of the 5 channels of the A V H R R on board of N O A A 

9. 
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For my application the visible and near-infrared wavelength ranges corre­

spond to A V H R R channel 1 (visible) and 3 (near-infrared) respectively. 

At a given sun-satellite geometry, a layer cloud of cloud optical depth r and 

cloud droplet effective radius reff reflects a specific amount of solar radiation in 

A V H R R channel 1 and 3. The sun-satellite geometry can be expressed in terms 

of solar zenith angle 6>o, the satellite zenith angle 9 and the relative sun-satellite 

azimuth cj> which are all shown in Figure 2.1. Figure 2.2 defines the satellite viewing 

angle 9S. 

Sun Satellite 

Figure 2.1: Angles defining the sun-satellite geometry: OQ sun zenith angle, </>o 

sun azimuth angle, 9 satellite zenith angle, <p' satellite azimuth angle, relative sun-

satellite azimuth <j> — 4>Q — (/>'. 
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Satellite 

Zenith 

Figure 2.2: Angles defining the satellite geometry: 0 satellite zenith angle, 9S satellite 

viewing angle, RE radius of the Earth, h height of the satellite above the ground. 

Figure 2.3 shows a plot of modelled solar radiance reflected by cloud in 

AVHRR channel 3 against the radiance reflected in AVHRR channel 1 computed by 

the code of Nakajima and Nakajima (1995) (see section 2.2) for a particular sun-

satellite geometry (expressed in terms of the solar zenith angle (#o=60°), satellite 

zenith angle (#=40°) and the relative sun-satellite azimuth angle (0=50°). The 

radiances were computed for a range of values of cloud optical depth (r) arid cloud 

droplet effective radius (reff). Solid lines are lines of constant cloud optical depth 

and dash lines represent constant cloud droplet effective radius . 

23 



0.7 

0 50 100 150 200 250 
Channel 1 radiance [W m~2 sr"1 nm"1] 

Figure 2.3: Model cloud reflected solar radiance in A V H R R channel 1 and 3 as a 

function of cloud optical depth and cloud droplet effective radius calculated with the 

code of Nakajima and Nakajima (1995) . Solid and dashed lines represent radiances 

at constant r and constant reff respectively. Sun-satellite geometry is fixed at 

# 0 = 6 0 ° , 0 = 4 0 ° and 0=50° . 

Figures similar to figure 2.3 can be computed for all interesting sun-satellite 

geometries. Figure 2.3 illustrates the idea behind the simultaneous retrieval of cloud 

optical depth and cloud droplet effective radius from the visible and near-infrared 

radiance measurements. If the cloud reflected radiances in channels 1 and 3 are 

known along with the sun-satellite geometry, one can look-up the figure with the 

specified geometry, enter the values of channel 1 and 3 radiances and from the r-

ref f grid read off the corresponding values of cloud optical depth and cloud droplet 

effective radius . This approach to the retrieval of r and reff dictates a two step 
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procedure. First, the reflected radiances in channel 1 and 3 have to be simulated for 

a range of cloud optical depth and cloud droplet effective radii for all sun-satellite 

geometries in the problem. This step is often referred to as forward modelling. 

Results of the simulation are stored in tables which are used in the second phase, 

the actual retrieval, to look-up values of r and ref j corresponding to measure values 

of channel 1 and channel 3 reflected radiances at given sun-satellite geometry. 

The process of the retrieval of cloud optical depth and cloud droplet effec­

tive radius from satellite measured radiances is complicated by the presence of a 

radiatively active atmosphere and the Earth's surface. As a result, the radiance 

measured by satellite is a combination of the radiance reflected from clouds (which 

are a function of r and J"e//)> radiances contributed by the surface and atmosphere 

below and above the cloud, and by the cloud's own emission in the near-infrared 

channel. The cloud reflected radiance must be decoupled from the other radiation 

components before one can make use of the look-up tables to retrieve the values of 

cloud optical depth and cloud droplet effective radius . A large percentage of the 

channel 3 radiance is contributed by the thermal emission from the Earth's surface 

and from the cloud tops (20 - 90% depending on cloud thickness). 

Nakajima and Nakajima (1995) estimate the thermal emission in A V H R R 

channel 3 by making use of the measurements in one of the A V H R R thermal channels 

(channel 4). Effectively, measurements from three A V H R R channels are required to 

retrieve of cloud optical depth and cloud droplet effective radius with this technique. 

In the following sections I describe the forward model used in Nakajima and 

Nakajima (1995) (2.2) and the flow of the second phase of the retrieval (2.3). 

2.2 The forward model 

The forward model is built on a 4 layer plane parallel atmosphere with interfaces at 

z — Az , z , and 12 km and the top at 120 km, where z is the top of the cloud layer and 

Az is the geometrical thickness of the cloud (see table 2.2 page29 for the grid values 
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of z and Az other model parameters). A homogeneous cloud layer is assumed that 

consists of Mie scattering water droplets whose sizes follow a lognormal distribution 

i s , N r (Inr — Inrn)2 , , . 
n ( r ) = ~7^7reXP[ 2a2 ] ( } 

where r is the droplet radius, n(r)dr is the number of droplets with radii between 

[r, r+dr] per unit volume, TV is the total number of droplets per unit volume, r# is the 

mode radius which is related to the effective radius by reff — r o e 3 5 < j 2 , and a is the 

log standard deviation of the droplet size distribution. For the marine stratocumulus 

the model assumes a=0.35. The effect of assuming vertical homogeneity in the cloud 

droplet distribution is discussed in section 2.4. 

The underlying surface is assumed to be a Lambertian reflector. After Naka­

jima and Nakajima (1995) I assume a ground albedo Ag of 0.05 for the ocean surface. 

The L O W T R A N - 7 midlatitude summer atmosphere (MLS) (Kneizys et al. (1988)) 

is assumed in our version of the model as representative of the climatic regions 

considered in this study. The profiles of atmospheric gases which include 7 princi­

pal gases and 21 trace gases come from L O W T R A N - 7 atmospheric absorption and 

transmission package (Kneizys et al. (1988)). 

The radiative transfer theory for plane parallel layers with an underlying 

Lambertian surface leads to the following equations for the the satellite received 

radiance in the visible (AVHRR channel 1) and near-infrared (AVHRR channel 3) 

spectral range 

1. visible wavelengths 

L0bs(T,reff;iJ,,no,(f)) = L{T,reff,fj,,fj.o,(p) 
Mo-Fb + ^ ^ / ; M ) 1 _ r a ( T | ; e / / ) A B t ( r > r e / / ; W , ) 

7T 

(2.2) 
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2. near infrared wavelengths 

L0bs(T,reff,fj,,iJ,o,(f)) = L(r,r e//;//,/x0 )</ )) 

+t(Tu,/j,)[l -t{Tc,reff,iJ.) -r(Tc,reff;n)]B(Tc) 

(2.3) 

where L(T,reff] [i, noi4>) IS the cloud reflected radiance, L0bs(T, reff\ /j,, noi4>) IS the 

satellite received radiance, \i and /io are cosines of the satellite zenith angle 8, and 

the solar zenith angle 9Q respectively, Fo is extraterrestrial solar flux, and Ag is the 

ground albedo, r, r c , and r u are the total optical depth of the atmosphere, cloud 

optical depth and optical depth of the atmosphere above the cloud. B(T) is the 

Planck function, Tg is the ground temperature and Tc is the cloud top tempera­

ture. The variables t, r and rs are respectively the transmissivity, plane albedo and 

spherical albedo of the cloud layer defined as 

where T ( r , r e y j ; //,//o>0) a n d R(r,reff, fi', fi,(f>) are bidirectional transmission and 

reflection functions 

(2.4) 

(2.5) 

and 

T{T,reff-n,fi0,(f) = L(T,reff; -fj,,fj.0,4>)/F0 (2.7) 
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R{T,reff,fx',/!,(/)) = L{T,reff,n',ti,<f>)/Fo. (2.8) 

In (2.2) the second term on the RHS and in (2.3) and in the fourth term on the 

RHS represent the ground-reflected radiance in channels 1 and 3 respectively. The 

second term on the RHS of equation (2.3) is the ground emitted thermal radiation 

and the third term the cloud top emitted thermal radiation. 

To decouple the cloud refected radiance L and the satellite observed radi­

ance L0bs in (2.2) and (2.3) the transmissivities t and albedos r and rs in A V H R R 

channels 1, 3 and 4 are needed. These terms are computed in the forward part of 

the retrieval. The forward model calculates the cloud top reflected radiance compo­

nents of the A V H R R signal in channel 1 and 3 L(T, rejj; /x, noi4>)i a n d transmissivities 

t(r,reff, (j,), plane albedos r(r c, r e / /) and spherical albedo rs(rc,reff) of the cloudy 

model atmosphere in A V H R R channels 1, 3 and 4 using the radiative scheme of 

Nakajima and Tanaka (1988) based on the discrete ordinate method and extended 

by Nakajima and King (1992) to include thermal radiative transfer as proposed by 

Stamnes et al. (1988). The computation of atmospheric absorption and transmissiv-

ity uses the A;-band method with the k distribution of absorption coefficients taken 

from L O W T R A N - 7 . The computation accounts for 41 line absorption bands and 

12 continuum bands. 

The radiative transfer computations are carried out for 10 sub-bands in each 

A V H R R channel then averaged with the channel response function according to 

where yn(i) stands for one of the radiative transfer output fields for channel n at 

subchannel wavelength % and ipn is the channel n response at wavelength i. 

The forward model produces four look-up tables: I) A V H R R channel 1 cloud 

reflected radiance; II) A V H R R channel 3 cloud reflected radiance; III) transmissivi­

ties and reflectivities in channels 1 and 3; and IV) transmissivity in channel 4. The 

E i = i <Pn(i)yn{i) (2.9) 
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look-up tables have up to 7 dimensions: the cloud top height z, cloud geometrical 

thickness Az, angles determining sun-satellite geometry 9Q, 9 and <fi, cloud optical 

depth r, and cloud droplet effective radius reff. Table 2.2 shows the grid system of 

the look-up tables. 

quantity gridpoints 

z(km) 
Az(km) 
*o(°) 
on 
<t>n 
T 

reff{fj,m) 

1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 
0.1, 0.2, 0.5, 1.0, 2.0 
0, 5, 10, 20, 30, 35, 40, 45, 50, 55, 60, 65, 70 
0, 5, 10, 20, 30, 35, 40, 45, 50, 55, 60 
0-180 (every 10°) 
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 50, 70 
4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 30 

Table 2.2: The grid system of the look-up tables. 

2.3 The retrieval 

The retrieval routine employs (2.2) and (2.3), and the look-up tables from the for­

ward model to isolate the cloud reflected radiance in A V H R R channel 1 and 3 from 

other radiance contributions then looks up in the tables values of r and reff which 

correspond to the recovered values of channel 1 and 3 cloud reflected radiance. 

The ground (Tg) and cloud top (T c ) emitting temperature needed to solve 

equations (2.2) and (2.3) are obtained from the brightness temperature of clear and 

cloudy pixels measured in channel 4 of the A V H R R through the following relations 

1. ground temperature 

T g = B-l(Lobs,clear^ ( 2 1 Q ) 

1 — An 
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2. cloud top temperature 

j . _ g-1 ^Lobs,cloudy tc(l Ag)B(Tg)^ (2 11) 

where tc is the transmissivity of the cloud layer in channel 4 and B~l represents the 

inverse of the Planck function at channel 4 wavelength. The retrieval process is an 

iteration on r and reff. Figure 2.4 shows the flow chart of this iteration. 

The iteration process starts with an initial guess for r c = 35, reff = 10 /im 

and z = 2 km. The cloud geometrical thickness Az is calculated from the relation 

Az = (2.12) 
Iwc 

where live is the cloud liquid water content, and Iwp cloud liquid water path calcu­

lated as 

l w p = ^ L L (2.13) 
2p 

For stratocumulus, Iwc = 1.28 gm~3 is assumed following the cloud classifi­

cation proposed by Liou (1976). With the known values of TC, reff, z and Az the 

transmissivity of the cloud layer in channel 4 tc, is retrieved from table IV and used 

in (2.11) which is also supplied with channel 4 pixel radiance L0bsj and the pixel 

ground temperature Tg. Tg is obtained from (2.10) and channel 4 radiance of clear 

pixels Lf^. Equation (2.11) returns the cloud top temperature Tc. The value of 

z (cloud top height) is updated based on the relation 

T — T 
z = (2.14) 

7 

where 7 is the lapse rate, assumed constant at 6.5 Kkm-1. Knowing TC, reff, z and 

Az, and the geometry 6Q, 6 and </>, I find the values of the cloud reflected radiances 

in channel 1 and 3 from Tables I and II respectively. In Table III I find 
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Figure 2.4: Flow chart of the iteration in the retrieval process. 



the transmissivity t(r,ref/;fi), plane albedo r{rc,reff), and the spherical albedo 

rs(Tc,reff) and with, Tc, Tg and ^49, compute the surface reflected radiance Lsr in 

channels 1 and 3 (terms 2 and 4 in equations (2.2) and (2.3) respectively), and the 

ground and cloud top thermal emission in channel 3, Lth (terms 2 and 3 in (2.3)). 

The next step is to remove the undesirable radiance components (Lsr and 

Lth) from the satellite observed radiances in channels 1 and 3 (iJ 06s , i a n d £ 0 6 s , 3 ) 

in order to recover the measured cloud reflected radiance Li and L3. Channel 

1 model and measured values of cloud-top reflected radiance are compared. The 

value of T c is varied until the difference between model and measured values is less 

than 0.1%. That value of r c is fixed and reff is varied till the difference between 

channel 3 measured and model values is less than 0.1%. The iteration proceeds 

interchangeably in both variables until channel 1 and channel 3 differences are both 

less than 0.1% or a maximum number of 10 iterative loops is reached. Typically 

convergence is achieved after about 4 iteration loops. When the routine does not 

converge r c and reff are assigned default values of 1 and 4 pm which mark bad 

retrievals. The lack of convergence occurs typically for optically thin clouds when 

the removed radiation significantly dominates over the signal. 

2.4 Theoretical estimates of errors 

2.4.1 Errors due to approximations in the retrieval method 

Nakajima and Nakajima (1995) estimate that the largest error of this retrieval tech­

nique arises from neglecting the thermal radiation of the atmosphere. Compared 

to this error, the error introduced by averaging over the channel response function 

is small. Nakajima and Nakajima (1995) find that the approximations of equation 

(2.2) and (2.3) introduce an error of 1% or less to the retrieved cloud optical depth. 

Error introduced by the approximations of the radiative transfer equations (2.2 and 

(2.3) to the retrieved cloud droplet effective radius can be large if r c is small and 
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reff is small, especially at low solar angles and high ground reflectivity (error can 

reach up to 60%). This error decreases quickly with increasing optical depth and 

decreasing cloud droplet effective radius and for typical clouds (r c > 5, reff ~ 10 

/ i m ) in most realistic conditions (9Q < 50 °, Ag < 0.3), the error is usually less than 

10%. 

2.4.2 E r r o r s due t o m o d e l a s s u m p t i o n s 

Model assumptions refer to: 1) the cloud layer, and 2) the atmosphere in which the 

cloud layer is embedded (profiles of the atmospheric gases specifically). 

1) Cloud Model. Nakajima and King (1990) considered the effect of verti­

cal inhomogeneity in cloud droplet effective radius and cloud liquid water path on 

the retrieval of T and reff with measurements in 0.75 fxm, 2.16 pan and 3.70 pm 

channels. They found that approximating "real clouds" (vertical profiles of Iwc and 

reff observation based) by clouds that are vertically homogeneous leads to overes-

timation of the retrieved r by no more than 3% for effective radii at the cloud top 

greater than about 6 p. At 3.70 pm the retrieved cloud droplet effective radius was 

found to be within 90% of the reff at the top of the inhomogeneous cloud for r > 

5. 

2) Atmospheric Model. Pincus et al. (1995) estimated uncertainty in cloud 

optical depth retrievals due to 15% perturbations in the atmospheric profiles of 

ozone amount and aerosol optical depth at less than 5% for most solar zenith angles 

and cloud optical depths. Rossow et al. (1989) also reported less than 5% error in 

cloud optical depth estimates due to atmospheric effects. 

The atmospheric model neglects absorption by in cloud water vapour. This 

was once thought to be responsible for the systematic overestimate (approximately 

2 pm) of remotely measured cloud droplet effective radius with respect to in situ 

values. However, Platnick and Valero (1995) showed that the bias in cloud droplet 

effective radius due to in cloud water vapour absorption is only ~ + 3% for a typical 
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cloud (T > 6, reff ~ 10). On the other hand, uncertainties in size distribution can 

amount to an error of (~ ± 10%). 

2.4.3 E r r o r s due t o m e a s u r e m e n t u n c e r t a i n t y 

The errors reported above are due to the approximation of the retrieval method 

only. Retrieval errors arising from uncertainty of measurements are a separate issue. 

Nakajima and King (1990) assumed 5% error in the measured visible (0.75 fj,m) and 

near infrared (2.16 fj,m) radiance and estimated retrieval errors in r and reff. They 

found the error in cloud optical depth increasing with r from about 6% for small 

r to about 30% for r ~ 30 and error in cloud droplet effective radius about 30% 

for small radii (~ 6/um) and decreasing to about 7% for ref f ~ 30 and large optical 

depths. 

Han et al. (1994) tested the sensitivity of the retrieved cloud droplet effective 

radius to the uncertainty in the thermal emission contribution to channel 3 radi­

ance and found that for clouds with ref/ < 20 \xm a 10% variation (which roughly 

corresponds to 4 K uncertainty in the channel 4 brightness temperature) leads to 

changes in the retrieved value of reff < 0.7 \xm. They also find that a 5% variation 

in surface reflectance alters the retrieved values of reff by less than 0.3 \im for r ~ 

1. This effect becomes completely negligible for r > 3. 

Pincus et al. (1995) investigated the uncertainties of the cloud optical depth 

retrievals due to instrument calibration and discretization error and uncertainties of 

the atmospheric profiles used in the forward modelling stage of the retrieval. They 

found the uncertainty of r to be dominated by the uncertainties in the calibration 

of the radiometers for both A V H R R and the Vertical Atmospheric Sounder (VAS) 

of the G O E S satellites. Their estimate of the uncertainty in r due to calibration 

error is about 10% for r < 10 and small solar angles. This uncertainty increases 

with both r and the solar angle to reach about 30% for r ~ 30 and solar angle of ~ 

60°. 
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Platnick and Valero (1995) modelled errors in the retrieved values of r and 

reff assuming uncertainties in A V H R R channel 1 surface albedo, and channel 1 and 

channel 3 reflected radiance. The uncertainty in surface albedo introduces large 

error in the retrieved value of r for thin clouds. This error decreases rapidly as r 

increases above 3. Error in cloud optical depth due the uncertainty in channel 1 

reflected radiance also decreases sharply as T goes from 1 to 3 but increases steadily 

with r with after that. Errors in cloud droplet effective radius are large for small 

reff and decrease with increasing refj until it reaches about 8 pm. For cloud droplet 

effective radius greater than about 8 pm the retrieval error becomes independent of 

reff-

2.4.4 E r r o r s i n t r o d u c e d b y t he i n d e p e n d e n t p i x e l a p p r o x i m a t i o n 

Another type of error is introduced by the assumption of the independent pixel 

approximation (IPA ). The independent pixel approximation introduces a bias in 

retrievals of r. This bias is due to the neglect of the horizontal radiative transfer 

between neighbouring pixels. Chambers et al. (1997a) estimate that this bias for the 

retrieval of r can range between 6-45% depending on geometry and cloud fraction. 

The effect of the IPA on the retrieval of r e j / has not yet been investigated. 

In case of the A V H R R stratocumulus field the IPA is considered well justi­

fied on the ground that the A V H R R pixel size (1.1 x 1.1 km) is greater than the 

photon mean free path in a stratocumulus cloud, thus horizontal transfer between 

A V H R R pixels is small. In fact, Marshak et al. (1995a) and Marshak et al. (1995b) 

demonstrated that the IPA performs well for pixels sizes greater than 100 m but 

recommend using only channels with strong absorption for pixel sizes less than 100 

m. Cahalan et al. (1994) showed that tha IPA are accurate to within 1% when 

power spectra of r behave like k~s, where k is frequency and s > approximately 1.5 

. This is indeed the case for the marine stratocumulus (Barker and Davies (1992), 

Barker (1996), this thesis chapter 7). 
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Summarising, for most realistic clouds I can anticipate retrieval errors in the 

range of 10 - 30% for the cloud optical depth and cloud droplet effective radius 

inferred form A V H R R radiance measurements. 

Validation of the satellite retrievals by in situ measurements will be discussed 

in chapter 5. 
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Chapter 3 

The relationship between cloud optical depth and cloud 

droplet effective radius 

I begin this chapter with a presentation of a conceptual model of a layer cloud with 

a particularly simple relationship between cloud optical depth and cloud droplet 

effective radius (section 3.1). In section 3.2 I review previous simultaneous mea­

surements of cloud droplet effective radius and cloud optical depth or cloud liquid 

water path (Iwp). In section 3.3 I present observations of r and reff for which the 

relationship between the two parameters corresponds to the one derived from the 

simple model. Departures from the model are discussed in section 3.3.2. A more de­

tailed treatment of the statistical relationship between r and refy follows in chapter 

4. 

In this thesis I am primarily concern with variability of T and ref j on spatial 

scales of 256 kmx 256 km. I delay the justification of focusing of these scales to the 

summary of this chapter (section 3.3.5) as it will refer to the results presented here. 

The analysis will be restricted to fully cloudy pixels only. The identification of fully 

cloudy pixels was based on the spatial coherence analysis Coakley and Bretherton 

(1982) and is described in more detail in section 3.3. 
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3.1 A simple model of boundary layer cloud 

I sketch a diagram of an idealised layer cloud in Figure 3.1 on page 38. This simple 

model assumes that the cloud liquid water content increases linearly with height, 

as indicated by the heavy dashed lines in Figure 3.1, either adiabatically or at 

some fraction of the adiabatic. Al l droplets are activated (begin growth) at cloud 

base, and entrainment and precipitation act to reduce the cloud droplet number 

concentration uniformly throughout the depth of the layer. 

0 -V 

Figure 3.1: Sketch of a cloud layer: zt0p cloud top height, 2&0t cloud base height, 

Az cloud geometrical thickness, rvoi cloud droplet volume radius, N cloud droplet 

number concentration , Naer sub-cloud aerosol concetration which detrmines N. 

Heavy dashed lines show Iwc profile with identical slope 0 = dlwc/dz. Light dashed 

line is the profile of cloud droplet radius. 

Under these conditions the size of cloud droplets increases with height within 
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the cloud as 

reff oc rvot cc zl/3 (3.1) 

where rvoi the cloud droplet volume radius is proportional to reff (see Appendix A 

for a detailed discussion). In Figure 3.1 the light dashed line represents the vertical 

profile of cloud droplet radius given by (3.1). 

Aircraft observations (Paluch and Lenschow (1991), Austin et al. (1995)) 

show that in F I R E and A S T E X , cloud variability in geometrical thickness on hor­

izontal scales of 10-100 km is due primarily to variations in cloud base as depicted 

in figure 3.1. Horizontal variations in cloud thickness will produce fluctuations in r, 

Iwp and reff at cloud top that can be observed by either aircraft or satellite sensors. 

In Appendix A, I show that, for the simple model described above, reff is given by 

reff = ao0sN-hs (3.2) 

Alternatively, r can be written as a function of Iwp (oc Az2) (defined in (1.3)) 

T = ajwp r~jj. (3.3) 

In the simplest case, with only Az varying while both 3 and N are held 

constant, we expect to see reff oc r 1 / 5 in scatter plots of reff vs. r. 

Figure 3.2 shows the model relationship for r and r eyy for two values of 

cloud subadiabaticity 8 = 0.5 and 1.0 and several values of cloud droplet number 

concentration N. For fixed 8 and N, r and reff are distributed along a curve 

reff oc T 1 / 5 . 

In the following sections I examine measurements of cloud optical depth, 

cloud droplet effective radius and cloud liquid water path made in previous work, 

and my own satellite data for evidence that (3.2) and (3.3) describe real cloud layers. 
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Figure 3.2: Lines of constant cloud droplet concentration in parameterisation ac­

cording to (3.2). For each indicated cloud droplet concentration (a — d) solid and 

dotted lines are drawn for an adiabatic 3 = 1.0, and sub-adiabatic cloud of 3 = 0.5 

respectively. Constant concentration lines are plotted for cloud droplet concentra­

tions of: a) 30 cm" 3 , b) 60 cm" 3 , c) 120 cm" 3 , d) 240 cm" 3 . 

3.2 Previous observations of reff and r or r e / / and Iwp 

Stephens (1978) and Stephens et al. (1978) compiled a summary of regional aircraft 

observations and suggested that cloud optical properties (albedo, emissivity and 

absorption) could be modelled in terms of integrated cloud liquid water content 

without further information about cloud microphysics. Stephens (1978) proposed 

parametrisation of r as function oilwp for the conservative (non-absorbing) and non-

40 



conservative (absorbing) wavelengths respectively. This parametrisation is based on 

assumption that rej/ is a function of Iwp but neglects the dependence of refy on 

cloud droplet number concentration . 

Stephens (1978) model was extended by Curry and Herman (1985) who com­

pared aircraft observations of cloud microphysics and infrared radiances to the re­

sults of radiative models and argued that single parameter representations of cloud 

optical properties using variables such as the liquid water path did not work, due to 

the variability of cloud particle size. They proposed a parametrisation of the cloud 

absorption coefficient in terms of cloud liquid water content and cloud droplet ef­

fective radius. Piatt (1989) also argued that cloud particle size changes could offset 

the radiative effects of cloud liquid water path variations. 

Satellite multi-channel observations allow for simultaneous monitoring of r 

and reff (see chapter 2) and thus can provide a means of investigating and devel­

oping the parametrisation of the dependence between cloud microphysical T and 

microphysical r e / / . Arking and Childs (1985) and Nakajima and King (1990) devel­

oped techniques for simultaneous retrieval of cloud optical depth and cloud droplet 

effective radius from multi-spectral reflected solar radiance measurements. This 

technique was applied by Nakajima et al. (1991) to measurements of cloud reflected 

solar radiance obtained by the Multi-spectral Cloud radiometer (MCR) flown on 

the N A S A ER-2 aircraft during the marine stratocumulus intensive field observa­

tion (IFO) phase of the First ISCCP Regional Experiment (FIRE) (Albrecht et al. 

(1988)). The authors analysed four days of data. They plotted values of r and reff 

retrieved for 35 km x 140 km cloudy scenes and observed a positive correlation 

between the retrieved cloud optical depth (and liquid water path) and the retrieved 

cloud droplet effective radius on optically thin (mean optical depth) days (July 7 

and 13). In contrast, they observed weak negative correlation on optically thick days 

(July 10 and 16). These results were confirmed by effective radii and liquid water 

path measurements obtained from simultaneous in flight observations made within 
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cloud by the University of Washington C-131A aircraft. Good agreement was found 

between the in situ and remotely sensed cloud optical depth . The remotely mea­

sured cloud droplet effective radius was consistently greater the the in situ values 

by 3-5 \im. 

Using a different M C R (with different spectral channels) Rawlins and Foot 

(1990) retrieved optical depth and effective radius on five F I R E days and observed 

that larger effective radii were associated with greater optical thickness. 

Nakajima and Nakajima (1995) (see also chapter 2) extended the method of 

Nakajima and King (1990) to infer cloud optical depth and cloud droplet radius from 

the radiance measurements in three channels of the Advanced Very High Resolution 

Radiometer (AVHRR) flown on board of the N O A A polar orbiting satellites. They 

applied the technique to retrieve optical depth and effective radius for one F I R E 

scene and one Atlantic Stratocumulus Transition Experiment (ASTEX) scene. I 

show their r and reff scatter plots in Figures 3.3 (FIRE region) and 3.4 ( A S T E X 

region) (Figures 17 and 18 in Nakajima and Nakajima (1995)). Each panel represents 

an area of 100 km x 100 km. 

We note the similarity between (3.2) as plotted in Figure 3.2 and the lower 

boundary of the r-reff clusters in Figure 3.3 CA, D2 and 7J3 and almost all boxes of 

Figure 3.4. Lines similar to (3.2) delineate also the upper boundary of the clusters 

in Figure 3.3 C3, C4, D2 and D3 and 3.4 Bl, C2. I discuss these envelopes in my 

own aircraft and satellite data in the next chapter. Figures 3.3 and 3.4 also show 

that mean effective radius may actually decrease with increasing optical depth in 

some clouds (Figures 3.3 B3, C2 for example). 

Nakajima and Nakajima (1995) postulated that such a strong negative corre­

lation between r and reff is an indicator of a transition in the microphysical state of 

a cloud induced by cloud-aerosol interaction (decrease of cloud droplet effective ra­

dius due to increased aerosol concentration). An example of such transition in cloud 

microphysical state would be large scale modifications due to intrusion of aerosol 
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rich continental air into the clean marine environment. On smaller scales, cloud 

microphysical properties can be modified by aerosol from ship stacks emission. 

0 10 30 30 40 50 60 
Cloud Optical Thick 

0 10 20 30 40 SO *0 
Cloud Optical ThlckitM* 

0 10 20 30 40 SO (0 
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O 10 20 30 40 50 40 
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Figure 3.3: Scatter plots of reff and r from F I R E scene for July 10 1987 after 

Nakajima. and Nakajima (1995) 
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Figure 3.4: Scatter plots of reff and r from A S T E X scene for June 13 1992 after 

Nakajima and Nakajima (1995) 

In other work, Zuidema and Hartmann (1995) used the Special Sensor Mi-

crowave/Imager (SSMI) on board of the F-8 satellite of the Defense Meteorological 

Satellite Program to infer cloud liquid water path together with the Earth Radia­

tion Budget Experiment (ERBE) albedo data set to study microphysical of stratus 

clouds. They derived cloud droplet effective radius from the L W P and cloud albedo 

measurements using the plane-parallel cloud albedo model of Slingo (1989). At their 

pixels size of 70x24 km for SSMI and 37x28 km for E R B E , they find no correlation 
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between cloud effective radius and cloud liquid water path. 

Han et al. (1994) carried out large scale retrievals of cloud droplet effective 

radius based on A V H R R data sampled to a spacing of about 30 km and inferred 

correlation between T and reff on global spatial and annual time scales. They found 

positive correlations between r and r e / / at small optical depths and negative at large 

optical depth, both over land and ocean confirming the observations of Nakajima 

et al. (1991). The relationship between monthly means of cloud optical depth and 

cloud liquid water path seemed to follow the parametrisation of Stephens (1978) in 

some instances for midlatitude continental and subtropical marine clouds but more 

generally the relationship varied within the range suggested by Curry and Herman 

(1985). They attributed the variability of the relationship between r and Iwp to the 

fact that cloud droplet effective radius and r vary "somewhat independently". This 

thesis will argue that the "independent" aspect of the variability of r and rejj stems 

mostly from the variability of cloud droplet number concentration through (3.2). 

3.3 Observations of r and r e / / 

I used the retrieval technique of Nakajima and Nakajima (1995) described in chap­

ter 2 to infer cloud optical depth and cloud droplet effective radius from A V H R R 

radiance measurements. The observational basis of this study are about 600 cloudy 

sectors 256 km x 256 km in size extracted from a total of 50 days of A V H R R im­

agery of Northern Pacific Ocean (three different years: 1987, 1994 and 1995) and 

the Indian Ocean (1995). The A V H R R data is described in detail in Appendix B 

which also identifies scenes used in this chapter as examples. For each scene overcast 

pixels were identified with the spatial coherence analysis technique of Coakley and 

Bretherton (1982). I limited my retrievals to the "cold foot" of the [mean(ch4), 

standard deviation (ch4)] scatter plot, where ch4 denotes the A V H R R channel 4 

temperature. The mean and standard deviation where computed for 2 x 2 pixel 

subregions. 
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I will begin by showing r-ref f scatter plots for 14 cloud scenes listed in Table 

B . l . I focus on a qualitative interpretation of the data in this chapter and return to 

it in more detail in chapter 4. 

3.3.1 Examples of power law dependence between r and r e / / 

Equation (3.2) gives us a relationship between cloud optical depth and cloud droplet 

effective radius in a simple cloud. I now ask: is it possible to find horizontally exten­

sive cloud regimes in which (3.2) provides an accurate description of the observed 

correlations between r and reff? 

Figure 3.5 (page 47) shows, as an example, six (out of 325) such regimes 

found in clouds over Pacific Ocean. The image scale is between 128 km x 256 km 

and 256 km x 256 km. The figures are labeled with values of Nsat 

Nsat = (3-4) 

which slightly simplifies (3.2). Nsat has units of number concentration [cm~3] and 

can serve as a scaled measure of cloud droplet number concentration . For adiabatic 

clouds Nsat = N. 

Nsat can be inferred from satellite observations (see chapter 4). If we can find 

estimates of /3, from simultaneous in situ measurements or climatology for example, 

then the "absolute" cloud droplet number concentration TV can be found from (3.4). 

I do this in chapter 5 where I discuss simultaneous satellite and in situ aircraft 

measurements. 

In the examples presented in figure 3.5 the Nsat lines, which were fit to the 

data as a general power law (this will be discussed in detail in chapter 4), appear to 

accurately represent the relationship between r and reff. If cloud subadiabaticity 

does not vary significantly over the sample area then the width of the scatter plot 

corresponds to the range of cloud droplet number concentration in the background 

air. 
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Scene no 1 Scene no 2 

Scene no 3 Scene no 4 

optical depth optical depth 

Figure 3.5: Scatter plots of reff and r from 6 cloudy scenes of approximate areas 

ranging from 128x256 to 256x256 km. Solid lines are constant Nsat lines of (3.2) 

fitted to the data. Dashed lines represent one standard deviation departure from 

the best fit value of Nsat for the sample. 
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3.3.2 D e p a r t u r e s f r o m a p o w e r l a w b e h a v i o u r 

Figure 3.6 (page 49) shows examples of scatter plots for scenes 7-10 of Table B . l 

where the distribution of r and rejy does not follow the simple model relationship 

but rather the cluster of data is encompassed by two lines corresponding to (3.2) with 

different Nsat (solid lines) and a dashed line corresponding to constant geometrical 

cloud thickness or equivalently cloud liquid water path . These scatter plots are 

comparable to the observations of Nakajima and Nakajima (1995) (see Figures 3.3 

and 3.4 (pp 43 and 44)). 

In the model (3.2), for a given amount of available cloud liquid water the 

attained cloud optical depth and cloud droplet effective radius depend on the cloud 

droplet number concentration, which is determined by the C C N concentration of 

the subcloud air and diabatic processes such as precipitation and entrainment. If as 

before I assume a linear increase of liquid water content with height then for a given 

cloud liquid water path (Iwp) the cloud optical depth dependence on cloud droplet 

number concentration can be shown to follow (see Appendix A for the details of the 

derivation) 

The cloud droplet effective radius of a cloud with cloud liquid water path 

Iwp and cloud droplet number concentration N is given by 

I also find the relationship between cloud optical depth and cloud droplet 

effective radius under the condition of constant cloud liquid water path (conservation 

of cloud liquid water) which is given by (3.3). 

According to (3.2) clouds that are homogeneous with respect to cloud droplet 

number concentration and cloud subadiabaticity form clusters in (r, rejf) space 

along a line of constant Nsat corresponding to that of the cloud. 

sat (3.5) 

(3.6) 
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Scene no 7 Scene no 8 

optical depth optical depth 

Figure 3.6: Scatter plots of rejj and r from 4 cloudy scenes of approximate areas of 

256x256 km. Solid lines are constant Nsat lines of (3.2) which envelope the range of 

data. Dashed lines represent the envelopes of constant cloud liquid water path A) 

180 \g m-% B) 160 [g m~2] C) 130 \g m - 2 ] , and D) 300 \g m~2]. A)-D) correspond 

to scenes 7-10 in Table B.l Appendix B. 
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Figure 3.7: Lines of constant cloud droplet concentration 30, 60, 120 and 240 cm 

in parameterisation according to (3.2) at cloud subadiabaticity (3 =0.5 (solid lines) 

and lines of constant cloud liquid water path 30, 60, 120 and 240 g cm~2 according 

to (3.3) (dash lines). Thick lines follow trajectories in the (T, r e / / ) space of two 

clouds, low cloud droplet number concentration of 30 c m - 3 and high cloud droplet 

number concentration of 240 c m - 3 to the intersection with the cloud liquid water 

path line of 120 g cm~2. 

In the figure, I assume that both clouds are in the same thermodynamic state 

(cloud subadiabaticity (3=0.5) but have different cloud droplet number concentra-
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tion (low N cloud at 30 [cm - 3 ] , high N cloud 240 [cm - 3]). The dashed lines are 

the isolines of constant cloud liquid water path according to (3.3). If cloud subadia­

baticity 0 is constant, then constant Iwp is equivalent to constant cloud geometrical 

thickness. The isolines of Iwp (Az) (labeled with Iwp in [g m - 2 ] show possible com­

binations of r and reff for the given cloud Iwp (Az). Intersections of these contours 

with lines of constant cloud droplet number concentration indicate what maximum 

cloud optical depth and cloud droplet effective radius is attainable for given cloud 

Iwp and-given cloud droplet number concentration . Figure 3.7 shows, that for the 

same cloud Iwp, clouds with low cloud droplet number concentration attain smaller 

maximum optical depth and larger maximum effective radius than cloud with high 

cloud droplet number concentration. 

It can be deduced from Figure 3.7 that a cloud with variable N and Az will 

produce a distribution of r and reff similar to those shown in Figure 3.6 enveloped by 

(3.2) for maximum and minimum Nsat (solid lines) and maximum attainable r and 

ref f at each Nsat for given maximum cloud liquid water path (or cloud geometrical 

thickness Az equivalently). 

The excursion from a constant Iwp envelope will indicate different maximum 

Iwp at different N. In Figure 3.6 lines of constant Iwp represents the trend of the 

maxima of T and reff quite well. There are, however, some excursions from constant 

Iwp envelopes especially in Figure 3.6 B and D. 

In Figure 3.8 I show contours of the joint probability distributions of T and 

reff corresponding to the scatter plots of Figure 3.6. The multiple Nsat structure 

of the cloud field is clearly visible in the Figure 3.8. Al l probability distributions 

have multiple maxima (at least two) which represent clouds of the low and high and 

sometimes intermediate Nsat . 

51 



F i g u r e 3.8: C o n t o u r s o f a j o i n t p r o b a b i l i t y d i s t r i b u t i o n o f r a n d reff c o r r e s p o n d i n g 

t o t h e sca t te r p l o t s o f figure 3.6. T h e c o n t o u r p l o t is e n c l o s e d b y t h e c o n s t a n t Nsat 

l ines . T h e v a l u e s o f Nsat o n t h e c o n s t a n t Nsat l ines a re i n d i c a t e d i n t h e figure. 

D a s h e d l ines represen t t h e e n v e l o p e s o f c o n s t a n t c l o u d l i q u i d wa te r p a t h A ) 160 

\g mT% B ) 130 \g m~2] C ) 110 \g m'2}, a n d D ) 180 \g m~2]. 

L a t e r i n c h a p t e r 4 I w i l l a r g u e t h a t t h e m u l t i p l e m o d e s o f Nsat r ep resen t 

c l o u d s w i t h di f ferent c l o u d n u m b e r c o n c e n t r a t i o n s ( in o t h e r w o r d s v a r i a b i l i t y i n 0 is 

n o t la rge e n o u g h t o e x p l a i n the o c c u r r e n c e o f m u l t i p l e Nsat m o d e s i f N is a s s u m e d 
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constant). We can expect to encounter highly varying Nsat (cloud droplet number 

concentration ) in two regimes: 

1. in frontal zones between two air masses of distinctly different aerosol proper­

ties (CCN concentration) each air mass producing cloud with different cloud 

droplet number concentration . Cloud modification due to C C N concentra­

tion changes occurs on a large scale when clouds which were formed in a clean 

marine air approach land and encounter an increasing C C N concentration of 

the continental air. On a smaller scale and example of cloud droplet number 

concentration modification due to increase in aerosol concentration is the 'ship 

track' phenomena (Coakley et al. (1987), Radke et al. (1989), Platnick et al. 

(1997)). 

2. when cloud processes lead to a change in cloud droplet number concentration . 

For example, precipitation and cloud droplet growth by collection can reduce 

cloud droplet number concentration . 

3.3.3 Special case: thick clouds 

Figure 3.9 shows contours of the joint probability distribution of cloud optical depth 

and cloud droplet effective radius in thick clouds (r > 10 ). I found scenes of thick 

clouds that exhibit either uni-modal (Figure 3.9A and C) or bi-modal (Figure 3.9B 

and D) distributions of r and refj similarly as for the moderately thick clouds I 

discussed before. However, in thick clouds the mode where reff increases with r is 

typically not observed. Thick clouds (r > 10 ) have a wide range of optical depths 

with similar values of r e j j . This is a consequence of the asymptotic behaviour of (3.2) 

at large T, and in case of r retrieved from radiance measurements the consequence 

of the saturation of cloud visible reflectance with cloud optical depth for r greater 

than about 30. . 
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Figure 3.9: Contours of a joint probability distribution of r and reff for thick clouds. 

The contour are enclosed by the constant Nsat lines (solid lines). The values of Nsat 

on the constant Nsat lines are indicated in the figure. Also drawn are lines of the 

constant cloud liquid water path (dash lines). The values of Iwp labels are: 1-3, a) 

45, 65 and 100 [g m~2]; b) 50, 95 and 150 \g m~2]; c) 10, 70, 110 [5 m~2]; and d) 

35, 70 and 200 [g m~ 2]; Each plot represents data from an area of approximately 

200 x 300 km. A)-D) correspond to scenes 11-14 in Table B.l Appendix B. 

Although the range of the detected Nsat values is often large (max Naat - min 

54 



Nsat ~ 600 cm - 3) some of the distributions of r and rejj in the cases presented in 

Figure 3.9 lack a strong bi-modal character representative of distinct cloud popu­

lations with different Nsat . Instead, the elongated maxima of the joint probability 

distribution appear to closely follow the lines of constant cloud liquid water path 

(see Figure 3.9C for example). This behaviour may indicate a modification to cloud 

droplet number concentration which is followed by changes in cloud optical depth 

and cloud droplet effective radius . 

3.3.4 B i - m o d a l j o i n t p r o b a b i l i t y d i s t r i b u t i o n s o f r a n d r e / / 

In this section I focus on cases where the joint probability distribution of r and 

reff exhibits two-maxima. In terms of (3.2), the two maxima structure in (r ,r e / / ) 

space (bi-modal distribution) can be interpreted as evidence of two cloud regimes 

with distinct Nsat existing next to each other. If this interpretation is correct then.I 

expect that distinct clusters (branches) in scatter plots of r and reff correspond to 

distinct regions in the physical space defined by the two cloud regimes of different 

Nsat • I examine two bi-modal cases labeled scene 7 and 8 in Table B . l of Appendix 

B. 

Figures 3.10a and 3.10b page 56 show the separation of the branches in 

scatter plots of the cloud optical depth an cloud droplet effective radius in scenes 

7 and 8 respectively. Figures 3.10c and 3.10d show the spatial location of the two 

branches in the scene. 

I used the '1/5' power curve (3.2) to separate the clusters in the scatter plots 

of r and rejf. There is no need for great precision in this operation as it serves 

mostly an illustrative purpose. It is only important that the two maxima of the 

joint probability distribution of r and ref j lay on the opposite side of the separating 

line (in Figures 3.10a and b). 
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Scene no 7 Scene no 8 

0 10 20 30 0 10 20 30 
x x 

50 100 150 200 250 50 100 150 200 250 
km km 

Figure 3.10: A) separation of the two clusters in the scatter plot of cloud optical 

depth and cloud droplet effective radius in scene 7; B) separation of the two clusters 

in the scatter plot of cloud optical depth and cloud droplet effective radius in scene 8; 

C) spatial location of the two clusters in the image for scene 7; D) spatial location 

of the two clusters in the image for scene 8. Blue colour indicates bad retrieval 

(usually clear pixels). 

In Figures 3. IOC and 3.10D pixels belonging to the same branch are the 

same colour. One can see that clusters of the T and refj scatter plots (branches) 

are spatially separated (come from distinct regions in the scene). This supports my 

interpretation of the different clusters in r and rejf scatter plots representing cloud 

fields of different properties (different cloud droplet number concentration ). 
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The distinct modes of the bi-modal distributions of r and reff presented 

in Figure 3.8 separate spatially in a similar way. In contrast, attempts to separate 

pixels in uni-modal scenes along a "1/5" curve drawn through the center of a cluster 

resulted in green and red patches uniformly distributed over the scene. 

The spatial separation of Nsat modes offers a physical explanation for the 

departure of maximum r and refj envelopes from constant Iwp lines for bi-modal 

clouds (section 3.3.2). In section 3.3T2 I noted that the excursion from a constant 

Iwp envelope indicates different maximum Iwp at different N. In this last section 

I found that different Ns are spatially separated. It is reasonable to expect that 

different spatial regions of a cloud will have different maximum Iwp. The difference 

in maximum Iwp between regions may be due to: 1) different range of geometrical 

cloud thickness, 2) different cloud subadiabaticity 0 in different parts of the cloud 

field. 

3.3.5 Summary 

In a simple cloud model whose variability in r and ref j is governed by fluctuations 

in the height of cloud base, cloud optical depth and cloud droplet effective radius 

are related by a "1/5" power law. I found that many clouds exhibit a power law 

relationship between T and refj on scales of 256 km x 256 km. 

Departures from the simple power law behaviour indicate additional variabil­

ity in cloud droplet number concentration N or cloud subadiabaticity 0 (or Nsat ). 

In a sense, the adherence of the r and rejj relationship to the "1/5" power law as 

scene size increases establishes the scale of variability of Nsat . Scenes larger than 

the typical 256 km x 256 km are usually too inhomogeneous in Nsat to show the 

power law behaviour attributed to simple clouds. This explains the focus on this 

work on scales of 256 km x 256 km (besides of it being a typical scale of G C M 

grids). The exact size of 256 km (power of 2) was chosen in anticipation of Fourier 

analysis of the scenes (to follow in chapter (7)). 
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I showed that a limiting envelope at large cloud optical depth in scatter plots 
of T and reff ("negative correlation" of Nakajima and Nakajima (1995)) emerges as 
a result of variable Nsat and different maximum attainable cloud optical depth and 
cloud droplet effective radius depending on Nsat . 

I distinguished between thin and thick clouds noted that clouds thicker than 
about 10 frequently lack the mode of reff increasing with r due to the asymptotic 
behaviour of (3.2) at large optical depths. 
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C h a p t e r 4 

Quant i ta t ive treatment of the relat ionship between 

c loud opt ica l d e p t h a n d c loud droplet effective radius 

In chapter 3 I showed that on scales of 256 km x 256 km distributions of cloud 

optical depth and cloud droplet effective radius conform frequently to the simple 

cloud model of (3.2). I now extend this analysis by: 

1. showing that in uni-modal clouds r and ref f are correlated and the correlation 

is statistically significant, 

2. showing that the statistical analysis confirms the model r e / / ( r ) relationship 

proposed in Chapter 3 section 3.3 by finding parameters of a general power 

law fit to r and ref j in uni-modal clouds using bivariate regression, 

3. presenting frequency distributions of r and reff, with fits to gamma distribu­

tions along with a summary of mean r and reff, 

4. estimating the value and the confidence limits of Nsat (and N) from the mea­

surements of cloud optical depth and cloud droplet effective radius . 

As examples I reexamine the scenes discussed previously in chapter 3 (see 

Table B . l in Appendix B). 
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4.1 General power law fit to the observations of r and 

reff 

4.1.1 Scene selection for the general power law fit 

The example scatter plots of T and reff presented in chapter 3 (see Figure 3.5) 

suggest a power law dependence between cloud optical depth and cloud droplet 

effective radius . Theoretical consideration presented in section 3.3 led to a model 

of this relationship in the form of (3.2), a power law with the exponent "1/5". 

In this chapter I seek an independent confirmation of that power law by 

letting the power law exponent be a free parameter and fitting a general power law 

in form of 

r = arb

eff (4.1) 

to r and reff from 256 km x 256 km scenes, rather than forcing the b = 1/5 

relationship. Obtaining 6=1/5 from the general power law fit will be considered a 

strong argument in favour of the model (3.2). 

For the analysis I select cloudy scenes 256 km x 256 km in size. For each 

approximately 1km x 1km pixel in the satellite scene I have a simultaneous mea­

surement of r and ref f. 

The scatter of data points around the fitted curve can come several sources: 

random measurements errors, vertical inhomogeneity, nonlinear Iwc profiles, or vari­

ations due to the range of values of Nsat (N and 0) present in the measurement area 

which leads to scatter in a.- For the purpose of fitting a curve to the data points I 

assume that the scatter of data is due to the random measurement errors only. Of 

course, if the variability in a in a sample is large, due to variability in ./V or 0 then 

we cannot expect to obtain a meaningful fit. Therefore, I imposed the following 

requirements (or guidelines) on the distributions of r and ref f in the scene which 

have to be satisfied for the scene to be considered suitable for fitting: 
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(I) Single maximum, in the joint probability distribution of r and reff (this re­

quirement restricts the variability in Nsat ). 

(II) Pearson's linear correlation coefficient between log(r) and log(reff) greater 

than at least 0.60 . This value has been determined experimentally to select 

scenes with a broad enough range of r and reff, and a narrow distribution of 

a. 

The first (I) requirement tests for scene homogeneity in Nsat . I require 

that all scatter in Nsat comes from a fluctuation around one value. The second (II) 

requirement establishes that the variables are indeed correlated and effectively limits 

the fluctuations around mean Nsat so the scatter remains low. Both requirements 

together select scatter plots of r and r e / / in form of a single narrow elongated cluster. 

At the same time I will require that the data have a broad range of variability in T 

and reff. This is necessary to assure that the fit parameters are meaningful. Figure 

4.1 illustrates how a limited range in either of the variables can result in the power 

law fit returning erroneous parameters. 

There is a power law relationship between the variables x and y in Figure 

4.1. Clearly, if all observations available are confined to one of the rectangles 1 

or 2 the power law fit based on those values will not reflect the true character of 

the relationship between x and y. We need the full range of values to obtain a 

meaningful fit. Scenes with scatter plots corresponding to the situation of rectangle 

2 fail to satisfy the requirement II (correlation coefficient in rectangle 2 is ~ 0) 

and are easily eliminated. Scatter plots corresponding to rectangle 1 have high 

correlation coefficients and are not eliminated by II. To eliminate such cases I 

imposed additional constrain: if f < 10 I reject cases with large variance in reff 

i°reff ~ 1). 

Summarising, to obtain meaningful estimates of the power law parameters I 

require the data to cover a wide range the r values, and constitute a set homogeneous 

in a (Nsat )• For scatter plots of r and reff it means that the sample data should 
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form a single, narrow cluster which spans a range of r from 1-4 to at least 25-30. 

Other data scenes might well have the '1/5' power law dependence (in fact, I 

think they do) but we might not be able to detect it by fitting a general power law. 

In the next several paragraphs I outline the strategy for the power law test taking 

into consideration the problems listed above. 

x-axis 

Figure 4.1: Pitfalls of fitting a power law curve to data points from a narrow range. 

As an example I selected a sample of ten cloud scenes (256 km x 256 km) 

in size. Six of these scenes (1-6) contain sectors at least (150 km x 150 km) which 

satisfy the requirements for a meaningful fit (wide range of r, homogeneous a i.e. 

low scatter oireff values around long line of r). Two scenes (7-8) exhibit a bi-modal 

structure. I will show that each mode separately is described by the '1/5' power law 

and obtain estimates the cloud droplet number concentration for each cluster. I also 

show two examples of cloud scenes corresponding to the situations of rectangles 1 

(scene 15) and 2 (scene 11) in figure 4.1 where the conditions of the corresponding 
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to meaningful fit are not satisfied. Scenes 1-6, 7-8 and 11 are familiar to the reader 

form chapter 3 Figures 3.5 (uni-modal scenes), 3.6 (bi-modal scenes) and 3.9 (thick 

clouds) respectively, where they bear the same numbers. 

It is important to establish that regression variables are indeed correlated 

and that the correlation is significant. For uni-modal scenes (1-6) which satisfied the 

requirements of a meaningful fit I found Pearson's correlation coefficients between 

0.63 and 0.80 for the log-transformed variables and Spearman's rank correlation 

coefficient between 0.63 and 0.81. The bi-modal distributions (7-8) also have high 

correlation coefficients (0.57 and 0.65) and so does scene 15 (0.71). Correlation 

coefficients are discussed in details in Appendix D. 

Figure 4.2 (page 64) shows scatter plots of r and refj for four of the test 

scenes. The scatter plot in figure 4.2a (scene 2) is a single relatively narrow cluster 

which extents over a broad range of r values. The Spearman rank correlation 

coefficient between r and reff (see Appendix D) is high (0.81). This is an example 

of a scene for which it makes sense to fit a model to the data as we can expect to 

obtain meaningful regression parameters. Figure 4.2b (scene 8) is a bi-modal case. 

The lower cluster appears to be suitable for fitting with correlation coefficient of 

0.65. The upper cluster clearly is not suitable for fitting. The correlation coefficient 

is practically zero. This corresponds to the situation of the rectangle 2 in figure 4.1. 

Figure 4.2c (scene 11) is another example of the case of rectangle 2 of figure 4.1. The 

correlation between the variables is only 0.09. There are no data points below r of 

around 15. Again, fit of a power curve to this data will not yield meaningful results. 

In figure 4.2d I show an example of the rectangle 1 case of figure 4.1. Although the 

correlation between variables appears to be strong (rs=0.71) a narrow range of r 

(f=9.7 ± 3.9) and o v e / / — 0.9 indicate that fit to this data might be biased towards 

large slopes. 

63 



4.1.2 Transformation of variables 

The power law nature of the modelled relationship dictates the logarithmic trans­

formation of the variables to a linear model. I introduce new variables t = log(r), 

r = log(reff). The general power law model of (4.1) transforms to 

t = log(a) + br = a + br. (4.2) 

Scene no 2 Scene no 8 

Figure 4.2: Scatter plots of cloud optical depth and cloud droplet effective radius for 

4 test scenes; a) scene 2: single maximum, rp = 0.87, scene suitable for a fitting; b) 

scene 8: two maxima in the joint probability distribution of r and reff, the entire 

scene is not suitable for fitting but the lower cluster is (rp = 0.65); c) scene 11: 

rp = 0.09 , scene not suitable for fitting; d) scene 15: rp = 0.71 but f < 10 and 

large variance in rejj will bias the fit towards large values of the slope parameter b. 

64 



Linear least squares regression on log-transformed variables is considered a 

standard approach for a power law fitting and is used frequently in many areas of 

science. However, caution should be exercised when using this technique. 

Generally, a least squares regression of log-transformed data is not the same 

as a least squares regression of the non-transformed data (original model). The best 

fit regression is based on the assumption of normal distribution of the regression 

residuals around the line of the best fit. Solution to the regression problem in the log-

transformed variables results in log-normally distributed residual when the model 

is detransformed. Thus the best fit, in a least squares sense, to the log-transformed 

data is not necessarily the best fit to the original data. The consequences of this 

disagreement to the estimates of the parameters of the original model can be twofold 

(Jansson (1985)): 

1. The estimate of the intercept (a) can be biased towards low values. 

2. The estimate of the slope (b) can be too small. 

Miller (1984) proposed a correction factor to reduce the transformation bias 

in the intercept that arises when regressions of natural logarithms are detransformed. 

With Miller's correction 

a = eae^ (4.3) 

where a\ is the variance of the regression residuals of the log-transformed variables. 

Jansson (1985) notes that the effect of the transformation on the estimate of 

the slope is significant if the number of low t values is large in comparison with the 

number of high t values . Moreover, if the scatter of the independent variable is low 

and there are few low t values the biases in the intercept and slope are low. 

The conditions of minimal bias could, in principle, impose further restrictions 

on the scene selection for fitting the power law. 
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I computed the Miller's correction factor for the regression on the data from 

scene 2 (figure 4.2a) and found it be less 0.2% . Several other scenes which I classified 

as suitable for fitting showed similarly small bias. This leads us to the conclusion 

that the requirements I impose on scenes to be eligible for fitting already select 

scenes with small transformation biases. 

4.1.3 B i v a r i a t e l i nea r r eg res s ion w i t h e r ro r s i n b o t h v a r i a b l e s 

The classical linear regression problem assumes that all of the deviation from the 

regression line is due to the error in the predicted variable whereas the predictor 

variable is error free. If, as it is a case in many experimental designs, both variables 

are subject to error then the results of classical linear regression depend on the 

choice of the independent (predictor) variable. Methods of structural regression 

(major axis and reduced major axis) have been designed to work in cases when 

errors in both variables are unknown. 

If we know or can estimate the uncertainties of each variable then it is most 

advantageous to use the method of linear regression with known errors in both 

variables. The merit function for fitting y(x) = a + bx is in this case given by 

where Xi and j/j represent measurements, aXi and ayi are the standard deviation of 

x and y for point i, and N is number of measurement points. 

This method is capable of achieving much greater precision of the estimates 

of regression coefficients than the classical or the structural linear regression. The 

greater precision comes at the cost of a more complicated computational problem. 

The complication arise due to a nonlinearity in the equation for the maximum 

likehood estimator for the slope 6 of the linear model. 

The cloud optical depth and cloud droplet effective radius measured from 

satellites are both subject to the retrieval errors. I estimate the retrieval uncertain-

(4.4) 
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ties for r and rejj and employ the method of linear regression with known errors 

in both variables (approach of Press et al. (1992)) to find the maximum likehood 

estimators and their uncertainties for the slope (b) and intercept a of the model 

(4.2). 

Estimation of the uncertainties in r and reff 

In estimating the uncertainty of the retrieved values of cloud optical depth and cloud 

droplet effective radius I considered three source of errors: 

1. the approximation error - error introduced by the approximation to the radia­

tive transfer model. This error is estimated Nakajima et al. (1991)) to be ~ 

1% for r, and 10% for reff for most typical values of r and reff. 

2. the independent pixel approximation (IPA ) error is introduced by neglecting 

the horizontal radiative transfer between pixels. Chambers et al. (1997a) esti­

mate that this error for the retrieval of r can range between 6-45% . For the 

range of values the solar angle and cloud fraction in our data sets the 6% error 

appears to be appropriate. However, this is not a random error. The inde­

pendent pixel approximation introduces a bias in retrievals of r. The effect of 

IPA on reff is unknown. Since I am mostly concerned with comparing pixel 

values in the same scene it appears that all pixels will be affected by using the 

IPA in the same way and the bias will not change the relationship between 

pixel values. 

3. the measurement (retrieval) error is dominated by the uncertainty of sensor 

calibration and digitisation, estimated for r at about 15% for our range of T 

and solar angle values (Pincus et al. (1995). 

4. for a typical cloud (r > 6, reff ~ 10) Platnick and Valero (1995) estimated 

the worst net uncertainty in A V H R R retrieved ref f at -20% to 25% accounting 

for: measurement error of channel 3 radiance (assumed at 15%) (~ ± 13%), in 

cloud water vapour absorption (~ + 3%), size distribution uncertainties (~ ± 
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10%). 

5. I assume average values of the errors listed above and estimate the total pixel 

error at 15% for r and 20% for rejf (root of sum of squares). 

This estimates of the uncertainties in r and reff propagate to uncertainties 

of the transformed variables t and r. Typical values of the transformed variables 

uncertainties are 5% for t and 8% for r. 

Results of the linear regression for the test scenes 

I performed linear regression on the transformed variables t and r with uncertainties 

of 5% in t and 8% in r for the eleven test scenes introduced in 4.1.1 For each scene 

the linear regression model parameters were obtained for each of the 100 realisation 

of the sampling procedure and the realisation average was computed. Table 4.1 

summarising the results of the general power law fit for the eleven test scenes. It 

shows the values of the regression coefficients a and b for each scene and their 

uncertainties aa and cr& together with scene characteristics (solar and view angles, 

description of the scene texture). 

The goodness of fit is 1 in all cases presented in table 4.1. This number 

might seem suspiciously high. It is possible that our estimates of the T and reff 

uncertainties are too high for the cases I consider. On the other hand, we know 

from Appendix D that r and r e / / are highly correlated (see table D.l) so we can 

expect highly significant statistical results of the linear regression. Another factor 

which helps in achieving highly statistical results significant is the large number of 

data points I use in our analysis (typically over 300 data point per scene after sub-

sampling) . The standard deviation of the estimates of the regression parameters a 

and b is between 3-5% for a and between 10-20% for b. 

In table 4.1 scenes 1-6 which satisfy the meaningful fit requirements all yield 

the power law exponent within the error bars of 0.2 . For the bi-modal cases 7 and 8, 

the separate clusters which conform to the meaningful fit requirements also yield b 

= 0.2. In three cases, scene 11, 15 and the upper cluster in scene 8), b is significantly 
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different than 0.2. These are the cases where requirements for the meaningful fit are 

not satisfied. Refer again to figure 4.1. Cases 8 and 11 correspond to the situation 

of rectangle 2, and case 15 corresponds the situation of rectangle 1. 

scene no. solar 

angle 

view 

angle 

texture a 0~a b 

1 55 0-10 long cells (10x20) 1.58 0.03 0.19 0.01 

2 57 12-28 long cells (10x50) 1.60 0.04 0.19 0.01 

3 55 0-15 small and larger 

cells 

1.56 0.04 0.19 0.01 

4 55 13-30 dense close cells 1.72 0.04 0.19 0.02 

5 52 7-22 very large cells 1.87 0.05 0.20 0.02 

6 65 16-33 open cells 1.40 0.05 0.20 0.02 

7 50 7-22 

1st cluster medium, elongated cells' 2.17 0.09 0.20 0.04 

2nd cluster 

8 54 7-22 

large, elongated cells 1.88 0.06 0.21 0.02 

1st cluster thick, dense 

elongated small cells 

- - 0.11 0.07 

2nd cluster small cells 

less dense 

1.65 0.07 0.18 0.03 

11 57 0-14 very thick, dense - - 0.09 0.01 

15 60 4-20 small open cells 

small cells, 100% 

cloud fraction 

0.31 0.01 

Table 4.1: Parameters intercept a and slope b and their uncertainties from the linear 

regression for 10 test scenes (see Table B.l) . 
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F i g u r e 4.3 s h o w s t h e g e n e r a l p o w e r law fit t o s ing le r e a l i s a t i o n s o f t h e s a m ­

p l i n g p r o c e d u r e for f o u r tes t scenes (1,2,3 a n d 5 o f t a b l e 4.1) i n l o g - l o g s p a c e o f 

r a n d reff. F o r e a c h scene the m o d e l is fitted t o 100 s a m p l e r e a l i s a t i o n s a n d t h e 

average va lues o f t h e r e g r e s s i o n p a r a m e t e r s are o b t a i n e d . T h e s e are t h e v a l u e s o f 

a, b g i v e n i n the figure. T h e P e a r s o n ' s l i n e a r c o r r e l a t i o n coeff ic ient rp is a l s o t h e 

average for 100 rea l i sa t ions o f the s a m p l i n g p r o c e d u r e . 

Scene no 1 Scene no 2 

2 
log(x) 

Scene no 3 

2 
log(x) 

2 6 

2.4 

— 2.2 
JS 

j ? 2 

1.8 

1.6 

b-0.19 
• a=1.60 

r =0.80 s 

+ 
+ J 

2 

log(x) 

Scene no 4 

2 
log(x) 

F i g u r e 4.3: S c a t t e r p l o t s o f c l o u d o p t i c a l d e p t h a n d c l o u d d r o p l e t ef fect ive r a d i u s 

( in t h e l o g - l o g scale) for a s i n g l e r e a l i s a t i o n o f t h e s a m p l i n g p r o c e d u r e a n d t h e l ine 

o f l i n e a r r e g r e s s i o n f o r 4 test scenes: a) scene 1; b ) scene 2; c) scene 3; a n d d) scene 

4. A l s o g i v e n are va lues o f t h e l inear r e g r e s s i o n p a r a m e t e r s o f i n t e r c e p t a, a n d s l o p e 

b, a n d t h e P e a r s o n ' s l i n e a r c o r r e l a t i o n coeff ic ient rp. A l l f o u r d a t a sets sa t is f ied t h e 

r e q u i r e m e n t s for a m e a n i n g f u l fit. 
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I have analysed 325 cloud scenes of approximate areas of 256km x 256km 

which exhibited a single cluster structure of r and reff scatter plot and presented 

the potential of obtaining a meaningful fit. For 55% of those scenes I obtained a 

power law exponent of 0.2 within error bars. For another 25% of scenes 6=0.2 was 

contained in the range between 6 ±07, but the estimated errors at,, were greater than 

0.06 (30%) or b±ab was less than 0.02 away from 6 =0.2 with errors less than 30%. 

within error bars, was b ±07, less than 0.02 away b =0.2 or within the error 

bars of b which were however greater than 0.06 (30%). Of the remaining 20% of the 

scenes the majority returned b between 0.1 and 0.3. 

Collectively, the results of this section provide a strong argument in favour 

of the '1/5' power law relationship between the cloud optical depth and the cloud 

droplet effective radius in low layer clouds and validation of the model of the (3.2). 

4.2 Mesoscale frequency distributions of r and r e// 

Mesoscale mean cloud albedo can be approximated by computing (Barker (1996)) 

where rpp is an albedo of a subregion (pixel) computed with the assumption of plane 

parallel homogenoeus cloud over the area of the pixel, and p(r) is the mesoscale 

distribution of r. 

In an effort to quantify the variability of cloud optical depth and cloud droplet 

effective radius on scales of approximately 256 km x 256 km we computed frequency 

distributions of r and reff for scenes 1) representative of the model (3.2), and 2) 

exhibiting bi-modal joint distribution of r and r e / / , 3) thick clouds (T > 10). 

Once again I reexamine the 15 scenes (uni-modal, bi-modal and thick clouds) 

previously discussed in chapter 3 and section 4.1.3 of this chapter (see also Table 

B . l in Appendix B). In addition, I expand the set of uni-modal scenes by 10 scenes 

(4.5) 
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drawn randomly from our data base of 170 uni-modal cloud scenes. The random 

scenes are listed in Table B.2 in Appendix B. 

Figure 4.4 shows the geographical location of the sample 25 scenes. The 

sample densely covers the North Pacific stratus region and appears representative 

of the area. 

2 0 ° N 

1 ° l | s o W 1 6 0 u W 150 U W 140 U W 130 U W 120"W TT2°W 

Figure 4.4: The geographical location of the scenes listed in Tables B. l and B.2, 

and discussed in chapters 3 and 4: 1) uni-modal scenes 1-6, 15 and 16-25 (random) 

(•); 2) bi-modal scenes 7-10 (o); 3) thick clouds 10-14 (A). 

Barker (1996) has shown that if p(r) follows a gamma distribution then (4.5) 

can be integrated analytically for rpp given by a two stream approximation (Meador 

and Weaver (1980)). 
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I find the parametrisation of the distributions of r and reff in terms of 

gamma distribution given below 

p(r) = - ± - £ ) » T " - 1 e - ' ' - r ' f , r > 0,v > 0, (4.6) 
T[l>) T 

where v = ( f / c r ) 2 in which f and a are mean and standard deviation of r . T(u) is 

the gamma function. The gamma distribution was fitted to the observations using 

the maximum likehood method (MLE) as described in Barker et al. (1996). 

Barker et al. (1996) succeeded in showing that the gamma distribution is a 

good fit to the frequency distribution of cloud optical depth on 58 km x 58 km 

scales retrieved from Landsat measurements at resolution of 57 m . I confirm this 

for r retrieved with 1 km resolution from 256 km x 256 km AVHRR scenes with 

uni-modal and bi-modal joint distributions of r and reff and extend the analysis to 

cloud droplet effective radius . 

4.2.1 C l o u d s w i t h p o w e r l a w r e l a t i o n s h i p b e t w e e n r a n d reff 

Figures 4.5 and 4.6 show the frequency distributions of T and reff for the uni-modal 

scenes 1-6 of Table B . l (and Figure 3.5a — /) and three of the randomly selected 

uni-modal scenes 16-18 Table B.2 (Figure 3.5<? — i). I discussed scenes 1-6 previously 

in chapter 3 and section 4.1.3 of this chapter and showed that the distributions of 

r and reff in these scenes are related by a power law with an exponent 6=1/5. In 

Figures 4.5 and 4.6 solid lines represent the data and dashed lines are the fit to the 

gamma distribution. 

Mean, standard deviation and the parameter v of the fitted gamma distri­

bution are given for all scenes in Table 4.2 (page 80) and will be discussed later in 

section 4.2.4. 

The gamma distribution is a very close fit for the frequency distribution of 

cloud optical depth on 256 km x 256 km scales with the 1 km AVHRR resolution. 

The gamma fit is good in case of ref j if the frequency distribution of cloud droplet 
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Figure 4.5: Frequency distribution of cloud optical depth for 9 uni-modal scenes 

(scenes 1 to 6 from Table B . l and 1 to 3 from Table B.2). Solid and dashed lines 

represent data and the fitted gamma distribution respectively. T h e mean, standard 

deviation and parameter v of the gamma distribution are listed in Table 4.2. 
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Figure 4.6: Frequency distribution of cloud droplet effective radius for 9 uni-modal 

scenes (scenes 1 to 6 from Table B.l and 1 to 3 from Table B.2). Solid and dashed 

lines represent data and the fitted gamma distribution respectively. The mean, 

standard deviation and parameter v of the gamma distribution are listed in Table 



effective radius is symmetric or positively skewed. There are however cases 

where the reff distribution is negatively skewed (Figure 4.6d,e) and as such cannot 

be well represented by gamma function. 

In Figure 4.7 I plotted the mean cloud droplet effective radius (f e//) against 

the mean cloud optical depth (f) for all uni-modal scenes scenes discussed in this 

chapter. The error bars in Figure 4.7 indicate the standard deviation of reff. The 

number near each data point is the number of the scene the data point represents. 

Figure 4.7: Scatter plot of mean cloud optical depth and mean cloud droplet effective 

radius for uni-modal scenes in Tables B . l (1 to 6) and B.2 (16 to 25). The error 

bars represent the standard deviation of reff. The number near each data points 

denotes the number of the scene this data point represents. 

Points in Figure 4.7 represent mean properties of uni-modal clouds. These 
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points form an elongated cluster describing an increase of mean reff with mean T . 

4.2.2 C l o u d s w i t h a b i - m o d a l j o i n t d i s t r i b u t i o n o f r a n d reff 

Figure 4.8 (page 78) shows the frequency distributions of r (a — d) and reff (e — h) 

for the bi-modal scenes 7-10 of Table B . l (and Figure 3.8). As before, the gamma 

distribution provides a good fit to the frequency distribution of r but obviously 

fails to reproduce the bi-modal structure of the r e y/ distribution. In scene 7, where 

the separation of modes is least pronounced, the difference between the fit and 

the data appears small. Although, the gamma approximation cannot resolve the 

bimodal structure of the histograms it does provide an estimate of the width of the 

frequency distribution. In this sense the gamma approximation is representative of 

the bimodal frequency distributions. 

4.2.3 S p e c i a l case: t h i c k c louds 

Figure 4.9 (page 79) shows the frequency distributions of r (a) — d)) and reff 

(e) — h)) for the thick cloud scenes 11-14 of Table B . l (and Figure 3.9). The gamma 

distribution provides a good fit to the frequency distribution of r in scenes a) and 

b). In scenes c) and d) the fit is not as good. In chapter 3 I interpreted these two 

cases as scenes where Nsat varies significantly across the scene and where r and 

reff change along lines of constant cloud liquid water path . The distribution of 

reff is well represented by gamma function only in case e) where the distribution is 

symmetric. 

4.2.4 P a r a m e t e r s o f the fit g a m m a d i s t r i b u t i o n 

In table 4.2 I show the mean, standard deviation and the parameter v of the gamma 

fit to the frequency distributions of cloud optical depth and cloud droplet effective 

radius of all uni-modal (1-6, 15, and 16-25), bi-modal (7-10) and thick cloud (11-14) 

scenes discussed din this chapter (and listed in Tables B . l and B.2 in Appendix B). 
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Figure 4.8: Frequency distribution of cloud optical depth (o — d) and cloud droplet 

effective radius (e — h) for bi-modal scenes 7 to 10 in Table B.l). Solid and dashed 

lines represent data and the fitted gamma distribution respectively. The mean, 

standard deviation and parameter v of the gamma distribution are listed in table 

4.2. 7 8 



Figure 4.9: Frequency distribution of cloud optical depth (o — d) and cloud droplet 

efFective radius (e — h) for thick cloud scenes 11 to 14 in Table B. l . Solid and 

dashed lines represent data and the fitted gamma distribution respectively. The 

mean, standard deviation and parameter v of the gamma distribution are listed in 

table 4.2. 7 Q 



scene no. T aT vT 

[pm] [pm] 

'eff Ac 

1 14.75 7.06 4.33 9.29 1.11 64.83 0.94 

2 15.55 6.42 5.87 8.26 0.89 86.40 0.98 

3 15.35 7.42 4.28 8.02 1.24 41.84 0.93 

4 15.25 7.27 4.40 9.49 1.40 45.79 0.99 

5 17.19 9.58 3.22 11.29 1.68 45.14 0.95 

6 10.17 4.14 6.02 6.25 0.69 81.18 0.92 

7 11.37 4.40 6.68 12.46 1.65 57.18 1.00 

8 14.53 5.02 8.37 9.32 1.44 42.02 0.98 

9 8.30 3.14 7.81 10.82 2.53 18.87 0.94 

10 10.67 4.10 7.48 17.36 4.63 13.48 0.99 

11 26.83 7.51 12.71 10.10 0.74 187.79 1.00 

12 20.76 5.27 20.84 8.44 1.14 52.71 1.00 

13 21.06 7.24 7.24 10.00 1.96 28.73 1.00 

14 24.67 11.99 14.73 10.46 1.59 44.74 1.00 

15 9.67 3.87 6.49 6.44 0.90 49.12 0.92 

16 19.96 7.11 7.88 13.21 1.72 59.01 0.99 

17 10.38 5.38 3.72 7.44 1.05 50.28 0.82 

18 8.50 2.17 15.27 7.43 0.75 99.66 0.83 

19 12.06 6.19 3.79 7.99 1.16 47.33 0.82 

, 20 15.20 4.86 9.36 10.19 0.94 116.23 0.98 

21 10.35 3.56 8.43 9.73 1.23 62.69 1.0 

22 18.87 7.10 7.20 12.08 1.72 . 51.45 0.99 

23 11.81 4.12 8.22 7.34 0.90 66.11 0.99 

24 12.31 7.39 2.78 10.74 1.77 36.61 0.61 

25 11.57 4.99 5.67 10.42 1.22 69.22 0.59 

Table 4.2: Parameters of gamma distribution fitted to cloud optical depth and cloud 

droplet effective radius frequency distributions in 256 km x 256 km A V H R R scenes 

of cloud fraction Ac. Scenes 1-11 were discussed in 4.1.3 (see Table 4.1). 
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Also included in Table 4.2 are estimates of cloud fraction (Ac). The majority 

of the scenes in Table 4.2 represent the class of overcast or broken stratocumulus. 

The range of values off, o>, and vT in Table 4.2 corresponds closely to that obtained 

by Barker et al. (1996) for r of overcast and broken stratocumulus retrieved from 

Landsat imagery. 

The greatest difference between the fields of cloud optical depth and cloud 

droplet effective radius is in the parameter v which quantifies variance of the mea­

sured (approximated) distribution. Values of 

^Vef j are 2-10 times greater than the 

corresponding values of uT. This is an indication of much greater mesoscale vari­

ability of T over ref /. 

The weaker relative variability of reff reflects the reff oc T 1 / 5 relationship 

predicted by model (3.2). We will see more evidence of this weaker variability of 

rejj with respect to r in chapter 7. 

From (3.2) one can find variance of log(reff) 

r l / 5 
var[log(reff)] = var[log(—^r)] + e = 0.04 var[log(r)] + 0.16 var[log(Nsat)} + e. 

(4-7) 

where e accounts for correlations between variables. 

I computed var(log(ref j)) and var(log(r)) for the uni-modal scenes 1-6 and 

two bi-modal scenes 7 and 8 (Table 4.2). The variability of r accounts for approxi­

mately 70 to 80% of reff variability in uni-modal scenes and about 30% for in the 

bi-modal scenes. The residual variance (20 to 30% and ~ 70% respectively) would 

be attributed to variability of Nsat and the correlation term e in (4.7). 

The greatest reff variance was found in bi-modal scenes with large reff and 

small r (scenes 9 and 10). Surprisingly, two other bi-modal scenes (8 and 9) exhibit 

only moderate variance in reff. Optically thick clouds or clouds with small droplets 

have least variance in refj (2, 6 and 11). 

In figure 4.10 I plotted the mean cloud droplet effective radius (reff) against 

81 



the mean cloud optical depth (f) for all scenes in Table 4.2. In effect I added all 

bi-modal and thick clouds scenes to the Figure 4.7 which comprised only the uni-

modal scenes. As in Figure 4.7 the error bars in Figure 4.10 indicate the standard 

deviation of rejj. The number near each data points is the number of the scene this 

data point represents. 

"0 5 10 15 20 25 30 
mean x 

Figure 4.10: Scatter plot of mean cloud optical depth and mean cloud droplet 

effective radius for: 1) uni-modal scenes (1-6 and 15) in Table B . l and (16-25) in 

Table B.2 (•); 2) bi-modal scenes (7-10) in Table B . l (o); 3) thick clouds (11-14) in 

Table B . l (A). The error bars represent the standard deviation of r e / / . The,number 

near each data points denotes the number of the scene this data point represents. 

I can now distinguish three regions in figure 4.10. Beside the central line 

cluster of uni-modal scenes (•) we find a region of large f e / / and small f occupied 
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by scenes (o) (7,9 and 10), and a region of very thick clouds with a relatively small 

reff (A) (11-14). 

Collectively, figure 4.10 points to different properties of very thick and very 

thin layer clouds. In light of the results of this and the previous chapter, this 

difference between thick and thin clouds can be related to respectively high and low 

cloud droplet number concentration in those clouds. 

4.3 Inference of the N s a t based on the relationship be­

tween cloud optical depth and cloud droplet effec­

tive radius 

In the previous sections I was primarily concerned with the slope of the linear 

regression b. Now I turn my attention to the intercept parameter a. The intercept of 

the linear regression is a physically interesting parameter since it carries information 

about cloud droplet number concentration . 

It follows from (3.2) and (4.2) that if b in (4.2) equals 0.2 then 

a = log(a) (4.8) 

In section 4.1.3 I have shown empirically that in stratocumulus clouds the 

relationship between r and reff follows a power law with the exponent 6=0.2 . 

Thus, b in (4.2) can now for all purposes be replaced by 0.2 . 

Substituting in equation (4.8) for a (see (3.2)) one can derive a formula for 

Nsat 

= <"> 
I estimate the uncertainty in N given the uncertainty of the regression in­

tercept a. I employ the method of propagation of errors (Bevington and Robinson 
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(1992)) to evaluate the uncertainty of Nsat due to the error of the estimate of a. I as­

sume small changes in variables and retain only the linear terms of the propagation 

expansion. The uncertainty of Nsat , A.Nsat is given by 

A i V S Q 4 = ^ ± a a = \Nsataa. (4.10) 
da 2 

From table 4.1 a typical value of aa is about 0.06. If A ^ ^ l O O c m - 3 then 

according to the (4.10) the uncertainty interval around Nsat is 100 ± 15cm - 3 that 

is ± 1 5 % . 

In the case of a bi-modal scatter plots one would like to know if the two 

clusters correspond to two distinctly different Nsat values or whether the difference 

between Nsat of the two clusters is fully explainable by the statistical uncertainty of 

Nsat • 

With the ± 1 5 % uncertainty of Nsat estimates I anticipate that a positive 

distinction between clusters in a bi-modal case can be made if the difference between 

the Nsat of the two clusters is greater then about 30% of the average Nsat of the two 

clusters. 

I examine the the bi-model cases introduced in section 4.1.1, scene 7 and 8. 

Contour plots of the joint probability distribution of r and reff for scene 7 and 8 

were shown in Figure 3.8a,b respectively. The contour plots reveal double maxima 

in the distributions for both scenes. 

As we saw in section 4.1.3 the two clusters of scene 7 separately satisfied the 

requirements of the meaningful fit and I obtained the estimates of the regression 

parameters a and b for each cluster. In scene 8 only one cluster was suitable for 

fitting. Again, I used the general power law fit to obtain the values of the parameters 

a and b for this cluster. I used (4.9) to invert the values of the intercept a for 

Nsat- Through the (4.10) I obtained the estimates of the uncertainty in Nsat due 

to uncertainty of the estimate of the regression parameter a. Table 4.3 on page 85 

shows the estimate of Nsat , and Nsat uncertainty interval for each cluster in scenes 
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7 and 8. 

The upper cluster of scene 8 (see figure 4.2) lacks data points at low values 

of r and is not expected to yield a meaningful regression parameter. However, I am 

now confident that the model (3.2) correctly describes the relationship between the 

cloud optical depth and the cloud droplet effective radius . Thus, I expect that the 

upper cluster follows the '1/5' power law (3.2) even though this cannot be proved 

through the power law fit in this case . 

scene no. 7 

1st cluster 

'7 
2nd cluster 

8 . 

1st cluster 

8 

2nd cluster 

Nsat 
57 117 144 208 

[cm - 3] 

NSati NSat 45-72 100-136 122-172 174-247 

[cm - 3] 

Table 4.3: Estimates of Nsat and the Nsat uncertainty intervals for each cluster in 

scenes 8 and 9. 

I still need an estimate of a for the upper cluster. Again, in this case one 

cannot relay on the general power law fit to return a meaningful estimate of a . I 

can however fit the specific '1/5' power law to the data points in which case I expect 

to obtain a valid estimate of the intercept parameter a . The specific '1/5' power 

law fit can be accomplished in several ways. At this point I only present one of 

these methods which I term 'an easy fit' due to its simplicity and quick results. I 

introduce the following transformation of variables 

r'eff = 

T/ — T 

reff 

T 1 / 5 

(4.11) 

(4.12) 
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If the model (3.2) holds then rlejf is independent of r and moreover 

r'eff = a (4.13) 

The scatter in T and reff is now reflected in the new variable r/eff. I compute 

the mean value of riefj to obtain an estimate of a for the data set (or cluster), and 

invert a for Nsat . 

For the upper cluster of scene 8 the above procedure yields Nsat = 208 c m - 3 . 

I compute the uncertainty of this estimate of Nsat using the formula (4.10) and 

assuming aa of the lower cluster (see the results in table 4.3). 

Examination of the results given in table 4.3 reveals that the uncertainty in 

Nsat increases with cloud droplet number concentration and two clusters with high 

Nsat will be more difficult to detect than two clusters with lower Nsat . Scene 7 

corresponds to a situation where two clusters are both at a relatively low Nsat (57 

and 117). Scene 8 represents cloud field with two clusters are a relatively high Nsat 

(144 and 208). In both scenes the two clusters are distinct, their standard error 

uncertainty intervals do not overlap. I can attempt to generalise that in the case 

of low Nsat (57 to 117 cm" 3) one can distinguish between cloud areas which differ 

in Nsat by about 30 c m - 3 and more. At higher Nsat the threshold for detection 

of different Nsat areas increases to « 60 c m - 3 at the range of 144 to 208 c m - 3 . 

Notice, that should both scenes 7 and 8 occupy tangent regions in space and be 

captured in satellite image the combine scene would exhibit three distinguishable 

clusters! In the more robust scenario the combination of the two lower clusters of 

both images 57(45,72) c m - 3 and 144(122,172) c m - 3 is clearly separated and so is 

the combination of the two upper clusters of the two scenes 117(100,136) c m - 3 and 

208(174,247) c m - 3 . 

The question I ask now is: what contributor to the Nsat variability generates 

the bi-modal structure of the r - r e / / scatter plots? In other words, how is the 

variability of Nsat partitioned between the variability of cloud subadiabaticity Q 
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and the cloud droplet number concentration TV? In particular, I ask if the range of 

observed cloud subadiabaticity (3 is large enough to generate the bi-modal structure 

observed in scenes 7 and 8. 

Applying the propagation of errors (Bevington and Robinson (1992)) to (3.4) 

and keeping the first order terms only gives 

A i V s

2

a i = [ ( ^ ) 2 A / ? 2 + ( ^ f ) 2 AiV 2 ] (4.14) 

where AN and Af3 are the range of variability of N and (3 respectively. ANsat 

represents the range of Nsat . I define rp the percentage of Nsat variability explained 

by the variability of (3 as the ratio of the first term of RHS of (4.14) to the LHS 

of (4.14). Similarly, r^ the percentage of Nsat variability explained by the cloud 

droplet number concentration N is defined as the ratio of the second term of RHS 

of (4.14) to the LHS. In final form 

rN = 100 -rp. (4.16) 

I take ANsat to be difference of Nsat between the two clusters of the scatter 

plot. Observations show a range of (3 between 0.6-1.0 in North Pacific stratocumulus 

(see discussion in chapter 3 section 3.3), the cloud regime in scenes 7 and 8. If (3 

varies in this range in scenes 7 and 8 it explains only about 10% of the difference in 

Ngat between the two clusters in scene 7 and 47% in scene 8. This result suggests 

that multiple clusters in the scatter plots of T and reff are manifestation of cloud 

droplet number concentration varying throughout the cloud field. 

From the point of view of satellite retrievals of Nsat and the construction of 

climatology of cloud subadiabaticity (3 it is instructive to examine the dependencies 

between /?, Nsat and N. Figure 4.11 shows contour plots of N as a function of (3 

and Nsat . 
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0 50 100 150 200 250 300 
N s a , [cm-3] 

Figure 4.11: Contours of cloud droplet number concentration N labeled in [cm - 3] 

as a function of Nsat and 0. 

For small Nsat (or iV) and 0 > 0.6 N is almost orthogonal to 0. In this 

regime Nsat N. As Nsat and iV increase effect of varying 0 becomes stronger. 

In chapter 5 I discuss aircraft observation which provide independent estimates of 

Nsat , TV and 0. In Appendix E I discuss the possible dependence of 0 on N. This 

dependence if confirmed could eliminate the ambiguity of Nsat with respect to 0. 

4.4 Summary 

I showed in this chapter that scenes with a power law dependence between r and 

reff can commonly be found on scales of 256 km x 256 km. This can be interpreted 

as an indication that on this range of scales many cloud fields fit the description of 

model (3.2). That is, clouds on these scales are fairly homogeneous with respect to 
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Nsat and the variability of their optical depth and effective radius is determined by 

the variability in cloud geometrical thickness (cloud base). 

I found that the mesoscale frequency distribution of cloud optical depth can 

be accurately approximated by a gamma distribution in uni-modal and bi-modal 

scenes, and in thick clouds (with some exceptions). The gamma distribution is 

also a good approximation for reff distribution if this distribution is symmetric or 

positively skewed. However, I often find negatively skewed or bi-modal distributions 

of reff. The gamma distribution does not work in those cases for obvious reasons. 

Mean properties of simple clouds (mean T and reff) are well localised in the 

(f,fe//) space where they form a cluster along a line representing an increase offeff 

with f. Departures from the simple model (bi-modality of the joint distribution 

of r and reff) or large cloud optical depth divert from the line established by the 

uni-modal scenes and occupy distinct regions of the (?,feff) space. 

In section 4.3 I showed how to retrieve Nsat from satellite measurements 

of cloud optical depth and cloud droplet effective radius . In the next chapter I 

decouple N and 8 in Nsat through in situ (aircraft) observations. 
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Chapter 5 

Validation of the satellite retrievals by in situ aircraft 

measurements 

This chapter compares satellite retrievals and aircraft in situ measurements of cloud 

optical depth and cloud droplet effective radius acquired during the S O C E X II 

experiment and validates the cloud parametrisation of equation (3.2) using aircraft 

data. Using the in situ aircraft data I estimate cloud subadiabaticity 0, and decouple 

N and 0 in Nsat • In section 5.11 discuss previous satellite-in situ comparison studies. 

Section 5.2 outlines the analysis plan followed in this chapter. The aircraft data sets 

are described in section 5.3. In section 5.4 I estimate cloud subadiabaticity 0 and 

aircraft r using the flight data. In section 5.5 the satellite and aircraft observations 

are compared in the r e / / — r plane and the general power law is fitted to the aircraft 

r and reff . I find cloud droplet number concentration ./V through Nsat and 0 for 

aircraft and satellite observations and compare with the direct in flight measurement. 

I summarise the results of this chapter in section 5.6. 

5.1 Previous studies comparing satellite retrievals and 

in situ measurements of r and reff 

Part of a development of every remote sensing measuring technique is its validation 

by comparison with in situ data. For the cloud optical depth and cloud droplet 
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effective radius retrieval techniques based on the solar reflectance method there are 

relatively few studies comparing remote sensing results with the in situ observations. 

Validation for satellite born sensors is complicated by the necessity of spa­

tially and temporally coordinating the in situ measurements (aircraft missions) with 

the satellite overpass. Two comparison protocols can be employed: along a flight 

track comparison, and area comparison. The choice of the specific protocol depends 

often on the time lapse between the satellite and the in situ measurements. 

Along a flight track pixel-by-pixel comparisons are meaningful if the time 

difference between measurements is small. Platnick and Twomey (1994), Nakajima 

and Nakajima (1995) compared pixel-by-pixel aircraft and satellite measurements 

taken within a 1 hour time window. Large time gaps between measurements affect 

the accuracy of comparison twofold: 1) navigation errors increase with time separa­

tion (couple of kilometres); 2) cloud undergoes changes in time. Area comparisons 

involve computing and comparing mean statistic or frequency distributions of cloud 

properties measured in situ and by satellite over the region of operation. This is the 

preferred strategy in case of longer time gaps between measurements. 

Three studies analysed and compared A V H R R retrievals of cloud optical 

depth and cloud droplet effective radius with aircraft in flight measurements (Plat­

nick and Twomey (1994), Nakajima and Nakajima (1995), Platnick and Valero 

(1995)). 

Platnick and Twomey (1994) compared their A V H R R retrievals of cloud 

droplet effective radius for two F I R E (Californian stratus 1987) days to aircraft 

measurements of Rawlins and Foot (1990) and Radke et al. (1989). On June 30 

1987 the A V H R R image was acquired within an hour of the in situ measurements 

and on July 10 1987 20 min prior to the aircraft measurement. Along a flight track 

comparison made for the June 30 case found the A V H R R overestimating reff by 1 

pm compared to the in situ value. The flight on July 10 intersected two ship tracks 

in the stratocumulus layer (Radke et al. (1989)). Platnick and Twomey (1994) found 
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the average retrieved cloud droplet effective radius to be greater by 3-6 pm than 

the in situ values both in and out of the ship track. They attributed the difference 

to larger droplet sizes near the cloud top seen'by satellite than in the middle of the 

cloud where the aircraft measurement was taken. 

Nakajima and Nakajima (1995) compared A V H R R derived cloud optical 

depth and cloud droplet effective radius with in situ and remote aircraft measure­

ments for two cloud scenes, one from F I R E (California, 1987) and one from the 

A S T E X (Azores, 1992) experiment. On the F I R E day a two-aircraft mission was 

coordinated with the N O A A satellite overpass. The University of Washington C-

131A aircraft made microphysical measurements within the cloud using a Particle 

Measuring System (PMS) (Knollenberg (1981)) to acquire cloud droplet size dis­

tribution and a Johnson-Williams (Cloud Technologies) hot wire probe to measure 

the cloud liquid water content. The N A S A ER-2 aircraft, equipped with the Multi-

Channel Radiometer (MCR) flew above the cloud at the altitude of 18 km and 

measured cloud reflected radiances. Channels 1 (0.75 pm) and 6 (2.16 pm) of M C R 

were used to retrieve cloud optical depth and cloud droplet effective radius . On the 

A S T E X day the in cloud measurements were made by N C A R Electra FSSP probe 

and the Gerber probe (Gerber (1991)) flown on the C-131A. 

For the F I R E day Nakajima and Nakajima (1995) adjusted the remote sens­

ing values of the cloud droplet effective radius to the values at cloud geometrical 

centre (Nakajima and King (1990)) and compared these values with the in situ mea­

surements. The A V H R R overestimated r e / / by about 1 pm . The overestimation 

by the M C R was larger (3-5) pm. Nakajima and Nakajima (1995) attributed the 

better performance of A V H R R to its use of the 3.7 pm wavelength rather than the 

2.2 pm channel in M C R . The light absorption coefficient of water vapour and the 

imaginary index of refraction of liquid water have larger values at 3.7 pm and thus 

can be measured more accurately at this wavelength than at 2.2 pm. Additionally, 

the calibration of the 3.7 pm channel uses a blackbody standard which achieves 
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better accuracy than the less stable lamp used to calibrate the 2.2 pm channel on 

M C R . 

Nakajima and Nakajima (1995) reported a very good spatial correlation along 

the fight path between A V H R R , M C R and in situ cloud optical depth , except for 

sharp dips in the in situ measurement which are less pronounced in the A V H R R data. 

This discrepancy is attributed to the large field of view of the A V H R R instruments 

(1 km ) as compared to M C R (120 m) and 10 Hz sampling rate of the aircraft 

probes. 

On the A S T E X day the cloud droplet effective radius measured by FSSP 

at the cloud top was within 1 pm of the A V H R R estimate. There was also good 

agreement between averaged values of ref j measured by A V H R R and the Gerber 

probe. In this case, the 2 hours difference between the satellite overpass and the 

Gerber probe flight precludes more meaningful comparisons. 

Another A S T E X day was studied by Platnick and Valero (1995) who com­

pared A V H R R retrievals of cloud optical depth and cloud droplet effective radius 

and the in situ measurements with the Gerber probe and the FSSP during the C-

131A flight. The A V H R R estimates of r and r eyy fall between the values obtained 

by the two in situ instruments. For the area of approximately 11 km2 ( 3 x 3 pixels) 

where the in situ measurement was taken during the satellite over pass A V H R R 

overestimated reff by 2.4 pm and underestimated r by 2.2 compared to FSSP and 

underestimated reff by 1.7 pm and overestimated T by 1.8 when compared to the 

Gerber probe measurements. For a large scale region of approximately 40 km x 100 

km the mean A V H R R reff was greater the FSSP value by 2.5 pm and smaller than 

the Gerber probe measurement by 2.9 pm. 

The systematic overestimation of cloud droplet effective radius by remote 

sensing measurements is a manifestation of anomalous cloud absorption (Twomey 

and Cocks (1989), Stephens and Tsay (1990)) and has not yet been explained. My 

comparison of satellite and in situ measurements of cloud droplet effective radius 
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confirms the remote sensing tendency to overestimate reff by 1-3.6 [im for single 

layer clouds. 

In my analysis I compare the distributions of cloud optical depth and cloud 

droplet effective radius inferred from satellite observations over the region of aircraft 

operation with the aircraft measured flight average cloud properties (area compar­

ison). This strategy was dictated by our goal of testing the model (3.2) on large 

scales (100 km). 

5.2 Outline of the analysis 

The goal of this chapter is to test the model (3.2) and compare the A V H R R retrievals 

of cloud optical depth , cloud droplet effective radius and Nsat with aircraft in situ 

measurements obtained during the S O C E X experiment. The test consists of the 

following steps: 

1. I use the FSSP measured liquid water content and effective radius data to 

compute estimates of cloud optical depth at several levels in the cloud layer 

according to equation 

2. I compare the aircraft derived cloud top values of r and rejj with the satellite 

retrievals of r and reff for the area of aircraft operation. 

3. I establish whether the relationship between r and reff obtained from air­

craft measurements follows (3.2) by fitting a general power law to the aircraft 

measured r and reff, 

4. if (3.2) is valid, an estimate of Nsat can be obtained from aircraft measurements 

of T and reff, 

5. aircraft measurements of cloud liquid water content vertical profile allow us to 

obtain an independent estimate of cloud subadiabaticity 0 and thus decouple 

(5.1) 
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cloud droplet number concentration N from 0 in Nsat ; 

6. I compare N inferred from Nsat and 0 with N measured directly by FSSP 

mounted on the aircraft; 

7. I obtain estimates of Nsat from satellite measurements and use aircraft esti­

mated 0 to decouple Nsat and 7Y; 

8. I compare satellite and aircraft estimates of cloud droplet number concentra­

tion N. 

5.3 Aircraft cloud sampling during SOCEX 

The C-130 aircraft made microphysical measurements (liquid water mixing ratio, 

cloud droplet number concentration , droplet size distribution), with the FSSP 

probe, the Gerber probe, and the King probe (King et al. (1981)) and the PMS 

2D-C imager (Boers et al. (1997)). FSSP was the only instrument from which Iwc, 

reff and iV were consistently available for all flights thus the analysis presented in 

this chapter is based on the FSSP data. The 6 analysed S O C E X flights are listed 

in table 5.1 (page 96) with their date and time and the time of the closes satellite 

overpass. 

Figure 5.1 (page 96) shows a flight path of a typical S O C E X flight mission 

(flight 10). The flight path is drawn over the channel 1 A V H R R image. Figure 5.1 

shows a flight path of a typical S O C E X flight mission (flight 10). The flight path is 

drown over the channel 1 A V H R R image. 

S O C E X flight missions consisted of several horizontal stacks flown at different 

levels within a cloud layer. Figure 5.2 (page 97) shows the vertical stratification of 

the horizontal stacks in flight 10. Time is in minutes from the start of the flight. The 

time series corresponds to 1 Hz instrument sampling rate (averaged from original 

10 Hz data). 
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Flight No. Day Flight Time Satellite Satellite Flight No. Day 
(local) orbit No. time (local) 

6 February 1 09:41-14:10 NOAA 9 10:07 February 1 
52266 

7 February 1 15:37-19:08 NOAA 14 15:49 February 1 
00462 

8 February 6 15:11-18:40 NOAA 14 14:55 February 6 
00532 

9 February 8 09:45-13:30 NOAA 9 10:17 February 8 
52365 

10 February 8 15:15-19:02 NOAA 14 16:14 February 8 
00561 

11 February 9 10:03-13:48 NOAA 9 10:04 February 9 
52379 

Table 5.1: SOCEX flight missions and coordinated satellite overpasses. 

Figure 5.1: Flight path of SOCEX flight no. 10 overlayed on channel 1 AVHRR 

image. 
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The entire flight took about 3 | hours. The horizontal in cloud sampling 

legs were flown for approximately 10 minutes each, corresponding to about 48 km. 

Similar flight patterns were executed in all flights. 

O 50 100. 150 200 2SO 

Figure 5.2: Aircraft vertical cloud sampling pattern (horizontal stacks) in S O C E X 

flight no. 10. Time is in minutes from the start of the flight. Flight average cloud 

top and cloud base are indicated by the dashed lines. 

Such a sampling strategy is not ideal from the point of view of the analysis 

attempted in this chapter. A number of constant rate ascent/descent sounding 

flights, when many altitudes are sampled with the same weight, would be preferable. 

Since no sounding flights are available I use the stack flight data to produce an flight 

average sounding for each of 6 flights considered. Every flight average represents an 

area of approximately 50 km x 100 km. This area is sampled over a time of 1̂  

hours. 
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5 . 4 Flight average soundings, estimation of j3 and r. 

Figures 5.3a-f show the flight average FSSP liquid water content (Iwc) soundings 

computed for the 6 S O C E X flights. Only the cloud sampling part of each flight 

was included in the average. Samples with FSSP measured Iwc < 0.005 gkg"1 were 

considered noise (Paul Krummel private communication) and were excluded from 

the average. The data were sorted according to altitude and averaged over intervals 

corresponding to 2 minutes of sampling time. The dashed line in figures 5.3a-f 

represents the adiabatic liquid water profile starting at cloud base. 

Figure 5.3: Flight average liquid water profiles. a)-f) flights 6-11 respectively. 

Dashed lines indicate the adiabatic liquid water profile. 
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Figure 5.3 continued. 

In figures 5.4a-f I show flight average profiles of cloud droplet number con­

centration (N) i n the 6 S O C E X flights. 

The flight average cloud profiles reveal a complex mult i layer structure i n the 
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sampled clouds. Flight notes (Paul Krummel private communication) describe the 

cloud system on all flight days as clearly decoupled stratus layer with penetrating 

convective turrets or convective lines. The multilayer cloud structure was most 

apparent in flight 8 where at least two cloud layers were separated from each other 

by discontinuities in thermodynamic variables. Al l flights with the exception of 

flight 7, reported drizzle. Flights 8 and 11 had the highest drizzle (rain) rates up to 

160 mm day-1 and 70 mm day^1 respectively. The occurrence of drizzle and rain 

suggests the presence of strongly non-adiabatic clouds in the area of measurements. 

I found the lowest values of cloud subadiabaticity 0 for flights 8 and 11 which also 

reported the highest drizzle (rain) rates of the experiments. 

The cloud subadiabaticity was found as the ratio of the actual and adiabatic 

rate of increase of the cloud liquid water content with height within the cloud layer. 

For each flight the adiabatic rate of increase was computed for the pressure and 

temperature conditions at cloud base and the actual rate of increase of the cloud 

liquid water content with height was found from the linear least square fit to the 

flight average Iwc profile as function of altitude over the range from cloud base to the 

height where Iwc begins decreasing with height. Table 5.2 contains the estimates 

of cloud subadiabaticity 0 and its uncertainty ap for the 6 S O C E X flights. The 

uncertainty ap in table 5.2 is the uncertainty of the parameter estimation from the 

least square regression of the cloud liquid water content data on height. 

Higher level clouds were occasionally present. High level cirrus was reported 

for flight 8, satellite imagery shows streaks cirrus clouds on flights 9 and 11 although 

not directly over the flight area. 

Aircraft sampling was usually confined to the stratus layer between 700 to 

1800 m and only occasionally were the convective lines sampled. This biases the 

aircraft data towards smaller optical depths when compared with the satellite re­

trievals of cloud optical depth for the aircraft operation region. In fact, the satellite 

retrievals often indicate a presence of very thick clouds in the vicinity of the aircraft. 
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The bias will be most apparent in flight 7 which did not transect any convective 

elements. 

4 0 6 0 
N [ c m " 3 ] 

8 0 1 0 0 

4 0 6 0 
N [ c m - 3 ] 

Figure 5.4: Flight average cloud droplet number concentration profiles. a)-f) flights 

6-11 respectively. 
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Figure 5.4 continued. 

The aircraft flight average cloud optical depth profiles are shown in figure 

5.5a-f. The highest observed T was about 28 on flight 10 and the smallest one 

was about 5 on flight 7 which did not cross any convective turrets. In section 5.5 I 

compare the satellite and aircraft estimates of cloud optical depth and cloud droplet 

effective radius . 
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o p t i c a l d e p t h o p t i c a l d e p t h 

5> 900 h 

1 0 1 5 
o p t i c a l d e p t h 

Figure 5.5: Flight average cloud optical depth profiles. a)-f) flights 6-11 respectively. 
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o p t i c a l d e p t h 

F l i g h t 11 
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o p t i c a l d e p t h 

Figure 5.5 continued. 

5.5 Comparison of satellite and aircraft observations in 

the reff — T plane. 

The comparison of the satellite and aircraft derived cloud opt ical depth and cloud 

droplet effective radius i n the ref/ — r plane allows for simultaneous comparison of 

the measurements of these two parameters and at the same t ime tests the cloud 

parametrisation 3.2. 

We have seen i n chapters 3 and 4 that the model (3.2) accurately describes the 

character of the correlation between cloud opt ical depth and cloud droplet effective 

radius i n satellite data. However, since neither cloud subadiabatici ty nor cloud 

droplet number concentration are available direct ly from satellite measurements, 

a more stringent test of the model , based solely on satellite data is not possible. 

Aircraf t i n s i tu cloud observation can provide measurements of cloud droplet number 

concentration , c loud droplet effective radius , c loud opt ical depth and estimates 
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of cloud subadiabaticity , and thus are ideal for testing the validity of (3.2) and 

assumptions leading to it. 

In figure 5.6a-f I plotted, in the reff — r plane, the satellite (blue points) 

and aircraft (red stars) measurements of cloud optical depth and cloud droplet 

effective radius for the 6 S O C E X days respectively. The aircraft measured r and 

refj represent cloud optical depth from the mean cloud base to the altitude of the 

aircraft and cloud droplet effective radius at that altitude. This is what the satellite 

would see if the part of the cloud above the aircraft was stripped away. 

The solid red line represents the "1/5" power curve of equation (3.2) with the 

cloud subadiabaticity (5 estimated form aircraft averaged cloud liquid water content 

sounding in section 5.4 and cloud droplet number concentration found from the 

general power law fit to flight average r and r e / / data of each flight and the estimated 

value of (5. These values of the cloud droplet number concentration are listed in 

table 5.2 together with their range iV_ — N+ corresponding to the uncertainty of 

the intercept estimated by the least square method. 

The general power law fit (r = a r^y) to the flight average aircraft r and 

reff data yield the exponent of "1/5" within 20-50% error bars estimated by the 

least squares method on all but one flight (flight 7). Table 5.2 contains the results 

of the general power law fit to the aircraft data for all flights. 

Data points at the cloud base with cloud liquid water content less 0.005 

g c m - 3 and data points at the cloud top above the level where cloud liquid water 

content begins to decrease with height (entrainment layer) were excluded from the 

fit. The log-transformed linear least square method with errors in both variables was 

used in fitting the power law to the data. The standard deviation of the 2 minute 

averages used to compute the flight average profiles of r and ref f was assumed as 

the errors of r and r e / / (see 5.4). 

In case of the very thin cloud in flight 7, retaining for the fit the very low 

cloud liquid water content samples near cloud base brings down the exponent b from 
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0.60 ( ± 0 . 3 0 ) to 0 .18(±0 .03) and changes the intercept value significantly (from 1.37 

to 2.01 which corresponds to cloud droplet number concentration change from 261 

to 53 c m - 3 ) . The second value, N =53 c m - 3 is used to plot the "1/5" power curve 

in figure 5.6b and appears to represent the data well. 

The examination of Figure 5.6 reveals: 

1. The aircraft data are likely biased towards the smaller cloud optical depth due 

to the sampling strategy. 

2. Both, the satellite and the aircraft measured r and reff appear to follow the 

"1/5" power law. 

3. In 5.6a, d and / the cluster of satellite data lays clearly above the curve of air­

craft measurements indicating an overestimation of reff by satellite retrievals. 

To assess the size of the satellite overestimation of r e / / I plotted in Figure 

5.7 the aircraft data (same as in Figure 5.6, red (*)) and satellite retrieved reff 

averaged over intervals of A r = l (blue line). In view of (3.2) I will compare aircraft 

and satellite reff only for the same r. In Figures 5.7a, d and / the line representing 

satellite date is shifted by approximately 0 to 5 \xm towards larger values of reff 

than those observed by aircraft at the same cloud optical depth. I computed the 

RMSD (root mean square deviation) between the aircraft and satellite reff for 

r > 1 and indicated the values in Figure 5.7. The average RMSD for all flights 

is 2.88 \xm. The RMSD is greatest in case 5.7d (flight 9) where there are sections 

in aircraft data where reff decreases with increasing r. Such behaviour may be 

expected in multilayer clouds. The Iwp profile for flight 9 was shown in Figure 

5.3d on page 98. Large fluctuations of Iwp with height support the argument of 

multilayer structure of clouds encountered on that day. For clouds with single layer 

structure the overestimate of reff by remote sensing is between 0 and 3.6 \xm and 

is not a function of T . 
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Strictly speaking, since the satellite sees only top of the cloud values one 

should compare reff at r corresponding to the cloud optical depth measured by 

aircraft near the cloud top. 

Unusually good agreement is observed for flight 10 (Figure 5.7e). For flight 

7 and 8 (Figures 5.76) and c the agreement is poor. In case of flight 7 the selec­

tive aircraft sampling (in thin cloud only) may contribute to the different picture 

emerging from the aircraft and satellite data. In flight 8, the satellite data seem 

to indicate a variable cloud droplet number concentration ( r e / / decreasing with T). 

However, this structure is not resolved by the aircraft measurement. 

To make a stronger argument in favour of the model expressed by (3.2) I ap­

ply this equation to aircraft measured cloud optical depth and cloud droplet effective 

radius data to infer the cloud droplet number concentration according to (4.9) (see 

section 4.3) and compare these values with those actually measured during the air­

craft mission by the FSSP probe. The values of cloud droplet number concentration 

N and the range of uncertainty iV_ — N+ inferred based on (3.2) are given in table 

5.2. Comparing these values of N and A L — N+ with the actual measurements 

(see figure 5.4) I find that the inferred cloud droplet number concentration well 

represents the range of the observed N. 

Values of cloud droplet number concentration inferred from A V H R R esti­

mates of Nsat and estimates of cloud subadiabaticity (5 from corresponding in flight 

measurements are given in column N* of Table 5.2. Since the satellite retrievals tend 

to overestimate the cloud droplet effective radius we expect that the cloud droplet 

number concentration inferred from satellite measured r and ref f will underestimate 

AT with respect to the in situ value. 
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Figure 5.6: Scatter plots of satellite retrieved T and r c / / (blue points) and in situ 

aircraft measurements (red stars) for 6 SOCEX days, a)-f) flights 6-11 respectively. 

Solid red lines is the "1/5" power law curve with cloud droplet number concentration 

(N) obtained from the least square fit to the aircraft data and cloud subadiabaticity 

/3 estimated from the flight averaged cloud liquid water profile (Iwc). In figure a) 

the dashed lines indicate the uncertainty in N estimated by the least square method 

(see table 5.2). 



20 

15 
r—t 

E 
^ 1 0 

m 

5 10 15 20 
optical depth 

e) 
1 1 

RMSD=0.67 

5 10 15 20 
optical depth 

5 10 15 20 
optical depth 

5 10 15 20 
optical depth 

Figure 5.7: Plots of satellite retrieved r and reff averaged over intervals AT—I (blue 

lines) and in situ aircraft measurements (red stars) for 6 SOCEX days, a)-f) flights 

6-11 respectively. 
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This can be best seen in flights 6 and 9 where the cluster of satellite data 

lies clearly above the line fitting the aircraft data. In figure 5.6d for flight 9 the 

fitted line does not appear to be the best fit to the data. There are few data points 

clearly below the best fit line suggesting that the best fit line should lie lower than 

it does. However, these data points are burdened with large uncertainties and thus 

contribute little weight to the regression. 

The satellite underestimate of N for flight 9 is almost 60 c m - 3 . It is less 

severe for flight 6, only 25 c m - 3 which is within the uncertainty of N estimates from 

satellites (see section 4.3). For flight 10 the agreement between satellite retrievals 

and aircraft in situ measurements is very good. The line fitted to aircraft measure­

ments represents well both aircraft and satellite data. The good agreement in this 

case is likely due to a relatively uniform cloud layer sampled during this flight. 

Flight 
No. 

r a b Ob P N 
[cm - 3 ] 

7Y_ - N+ 

[cm - 3] 

N* 
[cm - 3] 

6 17 1.91 0.12 0.22 0.05 0.67 0.11 78 58 - 105 59 

7 5 1.37 0.58 0.60 0.30 0.50 0.11 

(2.01) (0.05) (0.18) (0.03) 53 46 '- 60 155 

8 13 2.10 0.25 0.18 0.10 0.37 0.06 34 18 - 64 34 

9 13 1.68 0.09 0.19 0.04 0.50 0.12 114 91 - 143 58 

10 28 1.69 0.12 0.21 0.05 0.65 0.06 130 96 - 176 154 

11 15 1.84 0.15 0.25 0.06 0.41 0.12 71 49 - 104 51 

Table 5.2: Validation of the cloud parametrisation given by equation (3.2): results 
of the general power law fit to the S O C E X aircraft data, estimates of cloud suba­
diabaticity 0 from aircraft in situ cloud liquid water content profiles, estimates of 
cloud droplet number concentration N (and range of uncertainty N+ — N- based 
on equation (3.2) and aircraft measurements. N* are estimates of cloud droplet 
number concentration based on satellite measurement of Nsat and aircraft estimate 
of 0. 
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5.6 Summary 

During the Australian S O C E X II experiment January/February 1995 aircraft in 

situ cloud sampling missions were flown within 3 hours of polar orbiters overpasses. 

This provided an opportunity for a validation of the satellite retrievals and the cloud 

parametrisation based on (3.2) by comparison with the aircraft in situ data. 

I have found that the occurence of very thick pixels in satellite data is not 

always confirmed by aircraft observations. This might be the effect of the complex 

multiple layer structure of sampled clouds, the sampling strategy of avoiding the 

convective cores, or large time lag between the aircraft and satellite observations. 

Typically, both the aircraft and satellite data are well described by the 

parametrisation of equation (3.2). An exception is the case of flight 8 where the 

cloud layer was very nonuniform. This is reflected in both the aircraft soundings 

and in the satellite data where the scatter plot of r and reff indicates high inhomo­

geneity in cloud droplet number concentration.. 

The cloud droplet number concentration N inferred from aircraft estimates 

of r and ref / and cloud subadiabaticity (3 agrees well with the range of N measure 

in situ. This constitutes a strong argument in favour of the cloud reference model 

(3.2). 

The cloud droplet number concentration infer from satellite measurements 

of cloud optical depth and cloud droplet effective radius typically underestimate the 

actual values of N. This tendency is related directly to the satellites overestimation 

of reff. 
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Chapter 6 

Spatial structure of stratocumulus clouds I: 

Basic concepts and definitions 

In previous chapters I have been concerned almost exclusively with one point statis­

tics. In this chapter I extend the analysis to include two point statistics and inves­

tigate the spatial structure of fields of cloud parameters. I employ a combination of 

spectral and multifractal analysis (section 6.4) to quantify the stationarity and inter­

mittency of cloud fields. I state the problems I will address through this analysis in 

section 6.1. In section 6.2 I introduce the concepts of scale invariance, stationarity, 

and singularity in stochastic processes. I discuss earlier observations of the spatial 

structure of clouds in section 6.3 obtained with a traditional spectral analysis ap­

proach. In section 6.4 I present the formalism of multifractal analysis (as proposed 

by Davis et al. (1994)) which I employ in analysis of my data. In section 6.5 I discuss 

results obtained with the multifractal approach in earlier studies of cloud structure. 

The results of the analysis for my own data are presented in the chapter 7. 

6.1 Questions 

In previous chapters I have shown that 

1. I can find mesoscale cloud fields with a uni-modal distribution of T and reff 

obeying the reference cloud model; 
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2. bi-modal distributions of r and reff occur due to spatial variability of Nsat on 

scales approaching the scene size; departures from (3.2) are caused by spatially 

variable Nsat in these scenes; 

3. a two parameter gamma function accurately describes frequency distributions 

of r for all types of scenes, but the frequency distribution of r e / / is often 

negatively skewed even in uni-modal scenes and cannot be well approximated 

by a gamma function. 

In this chapter I ask: How is the variance of r and reff distributed as a 

function of scale? 

I will show, as others have (see section 6.3), that over a limited range of 

spatial scales, the variance of r, reff and the visible wavelength cloud radiance is 

described by a power law. The power law dependence on scale is called scaling and 

the domain in which it holds is called the scaling regime. 

Scaling behaviour may reflect an underlying physical mechanism that is re­

cursive and internally generated and thus representative across a wide range of 

conditions. Its presence also permits a particularly simple representation of fluc­

tuating fields in models. The scaling range determines a minimum averaging scale 

of the process. Therefore, it is important to understand the spatial properties of 

cloud parameters, especially the scaling behaviour of these fields and factors which 

determine the scaling regime. 

In addition, from the point of view of cloud processes, it is interesting to 

ask whether cloud spatial and scaling properties are universal. Such universality 

would point to the common nature of the non-linear processes that determine cloud 

internal structure. 

With these concerns in mind I define the terms employed in this analysis 

and proceed to review some recent work which has focused on spatial structure of 

clouds. 
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6.2 Stochastic processes and geophysical data sets 

Multifractal analysis considers three properties of variable fields: scale invariance, 

statistical stationarity and stochastic continuity. This section introduces the con­

cepts of statistical stationarity, continuity and scale invariance and explores depen­

dencies between them in physical and Fourier space. 

6.2.1 Sca le i n v a r i a n c e i n s tochas t i c processes 

Let ip(x) denote a real-valued random process defined on finite interval (0 < x < L). 

Process cp(x) is said to be stochastically self-similar (scale-invariant or scaling) if the 

probability distribution of ip(x) satisfies the equation 

{<p{Xx)} = {\H<p(x)}, A > 0, H 6 R (6.1) 

Scaling in this distribution sense is known as strict — sense scaling as opposed to 

wide — sense scaling which refers to scaling in the covariance function (moments of 

the distribution). 

The process in (6.1) represents simple scaling (monoscaling) where variability 

of the process is scale independent. It follows from (6.1) that the moments E((pq) 

of the process, where q is the order of the moment, if they exist, satisfy 

E[<p«(\)] = \<ME[tp«(l)] (6.2) 

here E[-] denotes the expected value and ((g) = qH. Thus, in case of simple scaling 

one exponent determines the scaling of all moments of the distribution. 

Another class of processes scale as (6.2) but with ((g) that is a nonlinear, 

concave function of q. Processes which exhibit such behaviour are known as wide 

sense multiscaling. One also finds processes that are strict sense multiscaling (see 

Gupta and Waymire (1990) for definition and discussion). Many geophysical fields 
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belong to the category of the wide sense multiscaling processes (see for example 

Gupta and Waymire (1990), Davis et al. (1994)). 

6.2.2 Statistical stationarity and stochastic continuity 

Statistical stationarity (statistical invariance under translation in time or space) is 

crucial for obtaining meaningful statistics from data sets of geophysical measure­

ments. Yet, this issue is rarely addressed in the analysis of geophysical data sets. 

The automatic assumption of stationarity is a common but potentially dangerous 

practice as the statistical properties are usually not well defined for nonstationary 

processes. 

In the analysis of a geophysical data sets we are interested in the statistically 

well-defined properties of a particular realization of some geophysical process <f{x). 

To focus our attention we can imagine tp(x) to represent a transect of cloud liquid 

water path field. Let [ipi] = <p(xi) represent a measurement on the process (p(x) 

(satellite retrieval of Iwp for example), which produces a discrete series of data 

equally spaced in x at points Xi = = 1,...,N) where / is the sampling scale 

and N is the total number of points. In this example {x^ correspond to satellite 

pixels. If the process <p(x) is stationary then all n-point statistics computed for <p(x) 

(or its particular realization {fi}) are independent of position x. In particular, the 

autocorrelation function, a two-point statistics defined as 

G(r,x) =< tp{x)<p{x + r) >= G{r) (6.3) 

where < • > denotes ensemble average, is independent of the position x depending 

only on the distance r between two points. 

Equation (6.3) is the so-called broad sense definition of stationarity based on 

only two-point statistics. The narrow sense definition uses all n-point statistics. 
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Stochasic continuity relates to correlations between neighbouring points. If 

for a small separation r, (p(x + r) and tp(x) are highly correlated then the increment 

\ip(x + r) — ip(x)\ is usually small and the data is stochastically continuous. If this 

increment is large then the data is discontinuous. In short, stochastic continuity 

requires that (Papoulis (1965)) 

< [ip(x + r) - ip(x)]2 > ->• 0 as \r\ -> 0 (6.4) 

For stationary processes 

< [<p(x + r) - <p(x)}2 >= 2[G(0) - G(r)] (6.5) 

thus ip(x) is stochastically continuous if G(r) is continuous at r = 0. Processes 

which are not continuous are intermittent (or singular). 

The following three processes are often presented to illustrate the concepts 

of (non)stationarity, (dis)continuity and scaling (scale invariance) and nonscaling 

(Davis et al. (1996)). 

1. White noise. White noise is a sequence of independent random numbers. Its 

autocorrelation function is 

G{r) oc 5{r) (6.6) 

where 6(r) is the Dirac 6. It can be seen from (6.6) that white noise is sta­

tionary (satisfies condition of (6.3)) but discontinues process (does not satisfy 

condition of (6.4)). 

2. Brownian motion. Brownian motion is the integral of white noise. The one-

point variance of Brownian motion depends on position (is proportional to \x\) 

and the two-point autocorrelation function depends on both x and r and has 

the form: 
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G(x,r) oc \x\ + \x + r\ — \r\. (6.7) 

It follows from (6.7) that Brownian motion is a nonstationary process. At the 

same time it is a stochastically continuous process since < [(p(x+r)—<p(x)]2 > < x 

r. 

3. Ornstein-Uhlenbeck processes. Contrary to white noise and Brownian motion 

Ornstein-Uhlenbeck process has a nonscaling autocorrelation function 

G(r) oc exp(-^) (6.8) 

where R is the integral scale of the process. Although not scale invariant, 

Ornstein-Uhlenbeck processes are both stochastically stationary and continu­

ous (< [<p(x + r) — <p(x)]2 >cx [1 — exp(-^j-)] which goes to zero with |r| —> 0). 

6.2.3 Scale invariance and stationarity in Fourier space 

Let (p(k),—oo < k = 1/r < oo be the Fourier transform of the stochastic process 

ip(x) introduced in section 6.2.1. The energy spectrum E(k) (wavenumber spectrum, 

power spectrum, variance spectrum and power spectral density are equivalent terms) 

of the process (p(x) is defined as 

E(k) = j < \y{k)\2+ \(p{-k)\2 >, A;>0 (6.9) 
Li 

where < • > denotes ensemble average (average over all possible realizations of 

ip{x)). 

The Wiener-Khinchine theorem (Monin and Yaglom (1965)) guarantees that 

the autocorrelation function of stationary process G(r) (defined in (6.3)) and the 

power spectrum E(k) (defined in (6.9)) are Fourier transforms of each other. The 
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autocorrelation function of a stationary, scale invariant process is given by a power 

law 

G(r) oc | r | - " (6.10) 

where the exponent p has to be positive since the autocorrelation is expected to de­

crease as \r\ increases. Notice, that the singularity at r = 0 implies that stationary, 

scale invariant processes are necessarily stochastically discontinuous. 

The Fourier transform of (6.10) leads to a power spectrum E(k) in form of 

E(k)ock~f) (6.11) 

where 

O<0=l-p<l (6.12) 

Equation (6.12) states a spectral criterion for stationarity: 0 < 1. It is 

interesting to consider the limiting cases: 0 —> 0 and, 0 —> 1. When 8 —> 0 we 

approach a flat power spectrum which correspond to G(r) oc S(r) (white noise) not 

G(r) oc | r | _ i (/i = 1). In the limit 0 —> 1 (1 /f noise) (6.12) does not apply neither 

since the autocorrelation function (6.10) obtained in this limit (0=1, p = 0) gives 

G(r) = constant which is not a power law and its power spectrum does not have 

the required form (6.11). \i —> 0 indicates very long range correlations (longer than 

any power law such as (6.10) that is still integrable). 

Summarising, if in a certain range of scales rj < r < R the power spectrum 

of a stochastic process tp(x) follows a power law E(k) oc k~$ then the process 

ip(x) is scale invariant in the range r\ < r < R. If, additionally, the exponent 

8 < 1 then the process (p(x) is stationary and discontinuous. If 0 > 1, then the 

process ip(x) is nonstationary but can be continuous. Generally, process ip(x) can 

be stationary at some scales and nonstationary at other. Typically, in atmospheric 

data on scales larger than the Kolmogorov dissipation range (typically mm to cm 
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in the atmosphere), the integral scale R separates the regions where (3 « 0 (large 

scales r > R) and regions where (3 > 1 (at small scales r < R). Thus, the integral 

scale constitutes a threshold between the small scale nonstationary regime and large 

scale stationarity. From the continuity point of view, data are highly correlated at 

scales < R and essentially uncorrelated at scales > R. 

The upper bound R of the scaling range has to exist for all physical processes 

with P > 1. These processes have finite variance in all wavenumbers k but as 

k —> 0 arbitrary amounts on energy (variance) accumulate in the large scales. Since 

variance cannot be infinite, E(k) has to approach a constant value as we move 

towards small k. 

This has important implications for modellers. Parametrisations used in 

models should be based on inference from data which are stationary (extent over a 

range r > R). Observational averages restricted to scales < R are missing important 

portion of the variability of the field. 

6.2.4 Scale invariant nonstationary process with stationary incre­

ments 

The nonstationarity of the process ((3 > 1) does not preclude the existence of sta­

tionary features in the data set. Mandelbrot and Ness (1968) introduced a class of 

scale invariant processes whose increments A<p satisfy the equation 

{A</>} = {tp{x0 + Ar) - <p(xQ)} = {\H[<p(x0 + r) - <p{x0)]} (6.13) 

for any XQ £ R and A > 0. Equation (6.13) defines a process whose increments 

are scale invariant and stationary. Notice that obtaining increments of a process in 

physical space (taking a gradient or nearest neighbour differences) is equivalent to 

changing the slope of the power spectrum by 2 in the Fourier space (f3 —> (3 — 2). 

Thus, the spectral criterion for a nonstationary process with stationary increments 
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is 1 < 0 < 3 . Conversely, one can obtain a nonstationary process with stationary 

increments by an integration of a regular stationary process (0 < 1). 

Many geophysical fields are, over some range of scales, nonstationary with 

stationary increments. For example, the turbulent velocity field in the inertial sub­

range is nonstationary (0 « 5/3) but the squared velocity gradients which represent 

energy dissipation filed are stationary although highly intermittent. In the next 

section I discuss observations which indicate that the spectral exponents for one 

dimensional transects of cloud liquid water content (live) fluctuation generally fall 

within the range 0 = 1.3 - 2.0. From the standpoint of the stationarity analysis 

Iwc fluctuations constitute moderately nonstationary process with stationary incre­

ments. This moderate nonstationarity in the Iwc field can be a disadvantage when 

gradient fields are to be considered. Processes with 0 < 2 yield irregular gradient 

fields with 0 < 0. The cloud optical depth and cloud radiance fields considered 

in this study corresponds to vertically integrated Iwc. In a sense, r is a smoothed 

version of Iwc. With spectral exponents between 2 and 3 (see Barker and Davies 

(1992), section 7 of this thesis) transects of cloud optical depth (cloud radiance) 

should be better suited for the analysis involving gradient fields than transects of 

Iwc. 

I should mention that there are ways of circumventing the difficulties of 

dealing with 0 < 0 gradient fields (Schmitt et al. (1992)) by carrying out a fractional 

differentiation. This, of course, complicates the analysis. 

6.3 Previous work: Fourier analysis approach 

In the traditional approach one investigates the scaling behaviour of cloud fields by 

means of Fourier analysis with an objective to find the scaling range, the power law 

exponent (0 in (6.11)) and possible scale breaks. 

Scale invariance has been observed in the A V H R R fields of cloud radiance 

120 



visible and thermal channels by Barker and Davies (1992). They found two scaling 

regions in the AVHRR images of shallow cumuliform clouds off the east cast of North 

America. For the smallest scales (less than about 5 km) the wave number spectra 

of visible and infra-red radiances followed the -3 power law. At larger scales the 

spectral slope varied between scenes but was in the range of-1 to -5/3. This change 

in scaling (spectral slope) was similar to that observed by Cahalan and Snider (1989) 

in Landsat Thematic Mapper images of California stratocumulus although the scale 

break (-3 to -5/3) occurred at about 200 m in this case. Whereas Cahalan and 

Snider (1989) related the scale break at 200 m to the scale of cloud geometrical 

thickness, Barker and Davies (1992) relate the scale break at 5 km to the size of 

typical cloud cells in their images. The 200 m scale break observed by Cahalan 

and Snider (1989) in Landsat radiance fields was not confirmed by in situ aircraft 

observations of cloud Iwc (Davis et al. (1996)). Recently, Davis et al. (1997a) have 

shown, using fractal cloud models and Monte Carlo radiative transfer simulations, 

that the 200 m scale break in Landsat cloud scenes is caused by radiative smoothing 

due to horizontal photon transport. The scale break which occurs at 5-20 kilometres 

is however seen in aircraft Iwc measurements and (Davis et al. (1996), Davis et al. 

(1997a) and marks the integral scale for cloud variability. 

Barker and Davies (1992) applied Monte Carlo techniques to photon trans­

port to show the similarities between the spectral slopes of cloud vertically integrated 

optical depth and the corresponding reflected and emitted radiation fields. They 

found that a the power spectrum slope of -3 for the cloud radiance field also implies 

a -3 slope for cloud optical depth or the vertically integrated cloud liquid water 

content. This, in turn, implies that transects of Iwc should have spectral slope 

close to -2 (under the assumption of isotropic variability of Iwc). Many observa­

tions indeed find the nearly -2 (-1.3 to -2) scaling for Iwc transects in cumulus and 

stratocumulus-like clouds (see King et al. (1981), Marshak et al. (1997)). 

Serio and Tramutoli (1995) used infrared AVHRR imagery and combined 

121 



spectral and variogram analysis to study the scaling laws in a cloud system gener­

ated by strong baroclinic instability. They found two distinct scaling regions, one 

extending from 1 km to 15 km with the power slope close to -2, the other stretching 

from 20 km to 100 km with the slope close to -1.33. 

Davis et al. (1996) investigated spatial fluctuations of cloud liquid water 

content in marine stratocumulus measured by the Gerber probe (Gerber (1991)) 

on board of the C-131A aircraft during the Atlantic Stratocumulus Transition Ex­

periment (ASTEX) and the King (King et al. (1981)) probe on the N C A R Electra 

aircraft in marine stratocumulus over the Pacific Ocean off the coast of California 

during FIRE. They found scaling regimes of 60 m-60 km in the A S T E X data and 

20 m-20 km in FIRE, and scaling exponents between -1.08 and -1.68. 

Lovejoy et al. (1993) analysed 15 A V H R R images of cloud fields (512 km x 

512 km) over the Atlantic Ocean and reported scaling in all five A V H R R channels 

with no breaks over the entire available range (2 to 512 km) with spectral exponents 

-1.67 (channels 1 and 2), -1.49 (channel 3) and -1.91 and -1.85 for channels 4 and 

5 respectively. They supplemented the ~ 1.1 km resolution A V H R R observations 

with Landsat MSS data obtained with the resolution of 160 m found that scaling 

continued through to scales P S 300 m. 

The above studies indicate that there is no general consensus on the extent 

of the scaling regime in cloud fields. In particular, the occurrence of scale break 

between 5 to 60 km is disputed. Scaling regimes can be determined for the A V H R R 

imagery as it is presented in this thesis. Moreover, the range of scales resolved by 

the A V H R R captures the interesting scale of the transition (scale break) between 

nonstationary scaling region and the stationary. In chapter 7 I present results of my 

analysis of 34 satellite scenes where I observed transitions between stationary and 

nonstationary regimes occurring at distances between 3 to 20 km. 
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6.4 Multifractal analysis 

6.4.1 Motivation 

The traditional approach to the investigation of the spatial (temporal) variability 

of geophysical signals employs spectral analysis to determine the scale invariant 

regimes where the wavenumber spectra follow power laws. Spectral analysis is ap­

plicable to both stationary and nonstationary data (Davis et al. (1996), see Flandrin 

(1989) and Wornell (1990) for the extension of the power spectra formalism to non-

stationary processes). In the presence of scaling, the stationary and nonstationary 

regimes can be empirically detected in the power spectrum of the process. This is 

of a critical importance since stationarity is a prerequisite to obtaining meaningful 

spatial statistics. Scale invariance describes the statistical symmetry of the system 

and is a valuable information for models of the system which should reproduce this 

symmetry. There are however some unresolved ambiguities which plague conven­

tional spectral analysis. Very different stochastic processes can yield very similar 

wavenumber spectra. For example, Gaussian white noise and randomly positioned 

Dirac S functions both have flat power spectra S(k) ~ k~@ with 3 = 0. Pure Brow­

nian motion and randomly positioned Heaviside functions both have power spectra 

with 0 = 2. The spectrum of fractional Brownian motion (Mandelbrot (1977)) can 

be made to coincide with that of the cloud liquid water content (Iwc) fluctuations, 

although fractional Brownian motion is symmetrical while the fluctuations of Iwc 

have a negatively skewed probability density function. This ambiguity suggests that, 

for the accurate modelling of the cloud liquid water distribution, more information 

is needed than can be obtained through spectral analysis alone. A multifractal 

analysis finds information about the stochastic process which provides additional 

constrains on the behaviour of the system. In particular, it quantifies the degrees of 

stationarity intermittency of the process. 
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Davis et al. (1996a) give two examples of circumstances where two signals 

with radically different spatial properties but identical power spectra remain unre­

solved: 1) in seismic signals the background noise (white) and the interesting events 

(Dirac ^-functions) both have flat wavenumber spectra; 2) temporal fluctuations of 

air temperature (Brownian motion-like) and a passage of a front (Heaviside func­

tion) both have the same power spectrum (E(k) oc k~2). These intermittent signals 

do have however unique multifractal statistics. 

6.4.2 Concept of multifractals 

The concept of multifractals was introduced by Parisi and Frisch (1985) to describe 

the scaling behaviour of the velocity field in fully developed turbulence. Their 

turbulent velocity example can be translated to an approximately passive scalar 

such as the cloud reflectivity field R(x), where x denotes horizontal position. Parisi 

and Frisch (1985) considered scaling oiqth order increments < AR(r)Q >=< (R(x + 

r) — R{x))Q > over a distance r (this relation formally defines the qth structure 

function). They determined that different orders of structure function obey scaling 

laws (6.2) with different exponents, and related this behaviour to the intermittent 

nature of R(x) field. 

The intermittent (singular) character of cloud reflectivity fluctuations is re­

lated to cloud internal structure. On scales accessible to satellites, structures (cells) 

as small as few kilometres in size (AVHRR) or 100s of meters (Landsat) are eas­

ily resolved in cloud fields. Aircraft observations reveal intermittent fluctuations of 

cloud liquid water path down to centimeter scales (Davis et al. (1997b)). 

These intermittent fields possess singularities defined as points (x) such that 

lirna;-^ \R(x) — R(y)\/\x — y\a ^ 0. Here, a > 0 is the order of the singularity. In 

terms of a satellite image singularity describes a rapid jump in reflectivity between 

adjacent pixels. If S(a) is a set of points where the field has a singularity of order a 

then one can find a fractal (Hausdorff) dimension D#(a) of that set (see Appendix 
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F for definitions concerning fractals). Parisi and Frisch (1985) postulated the set 

Df{(a) can have a nontrivial dependence on a. In the limit of \x — y\ —» 0 the 

probability of having a singularity of order a in the field R(x) behaves as \x — 

y \ E - D H { a ) w h e r e pj i s the Euclidean dimension of space embedding the process R(x) 

(see Appendix F for more detailed treatment). The qth order structure function can 

now be written as 

where dfi(a) is a measure on S(a). It follows from (6.14) that ( q is a function 

(generally nonlinear) of the order q of structure function and the order a of the 

singularity. This corresponds to the case of multiscaling in definition (6.2). 

The numeric technique for computing the dimensions DH{Q) is described in 

the next section. 

6.4.3 Formalism of multifractal analysis 

The multifractal analysis of nonstationary and intermittent geophysical fields is 

based on two concepts: structure functions and singular measures ( Davis et al. 

(1994), Marshak et al. (1997)). In the frame of the multifractal analysis, structure 

functions quantify and qualify nonstationarity while singular measures quantify and 

qualify intermittency. Alternatively, in a geometrical sense, structure functions pro­

vide a measure of roughness while singular measures quantify sparseness of the field. 

In this section we introduce the concepts of structure functions and singular mea­

sures and their interpretation as quantifiers and qualifiers of nonstationarity and 

intermittency. 

Since the process of interest, the cloud optical depth, cloud droplet effective 

radius or cloud radiance in transects of stratocumulus fields, belong to the class of 

scale invariant (over a limited spatial scale), nonstationary processes with stationary 

increments 1 < 0 < 3, they are suited to this type of analysis. 

(6.14) 
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a. S t ruc ture functions 

Consider again the random process tp(x) introduced in section 6.2.1. We will re­

quire now that the process is scale invariant over some range of scales [77, < R] and 

nonstationary with stationary increments. Such process matches the description of 

the cloud liquid water path fluctuation in linear transects through a stratocumulus 

cloud field. 

The power spectrum of scale invariant, nonstationary process ip(x) with sta­

tionary increments is given by (6.11) with 1 < (3 < 3. The structure function of 

order q of the process <p(x) is defined as 

gg{r,x)=<\A<p(r,x)\«>, q>0 (6.15) 

where < • > is again the ensemble average and A<p(r, x) are increments of the process 

at points x over a distance r 

Aip(r, x) = (p(x + r) — (p(x) (6.16) 

0<r<L, 0<x < L - r 

Since the increments of this process are stationary their statistical properties 

are independent of the position x. In particular 

gq(r,x) =< \A<p(r,x)\* >=< \A<p(r)\* >= gq(r) (6.17) 

Due to the scale invariance of the increments we expect (recall (6.2)) 

gq(r) =< \A(p{r)\q >cxr c (" ) , q>0 (6.18) 

in the scaling regime [rj, < R]. In (6.18) proper normalisation requires £(0) = 0. It 

can also be shown that the function ((q) is concave (Davis et al. (1994), Parisi and 

Frisch (1985)) and nondecreasing if the increments Aip(r,x) in (6.15) are bounded 
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(Marshak et al. (1994). For a concave function ((g) one can define a hierarchy (a 

monotonic function) of the exponents 

H(q) = C(q) (6.19) 

which in this case is nonincreasing (Marshak et al. (1994). We have a case of 

monoscaling if ((g) is linear in g and multiscaling if ((g) is nonlinear (recall the 

discussion following equation (6.2)). 

Two special cases of structure functions are usually considered: 

1. q =1. The first order structure function is related to the fractal structure of 

the graph g(ip) of the process (f(x) viewed as a scale invariant geometrical 

object in the two dimensional Euclidean space (see for example Davis et al. 

(1994), Mandelbrot (1977) ) . There exist the following relationship between 

the exponent ((1) and the fractal dimension Dg of graph g(y>) (Holder or 

roughness dimension) (see Appendix F for definitions of fractals and fractal 

dimensions) 

In two dimensional Euclidean space the range of values attainable by Dg ex­

tends from 1 (for almost everywhere differentiable functions), to 2 (two di­

mensional space filling graphs). 

2. q=2. The extension of the Wiener-Khinchine theorem to processes with sta­

tionary increments states that for such processes the Fourier duality exists 

between the second order structure function and the energy spectrum (recall 

that the duality is between the autocorrelation function and the energy spec­

trum for stationary processes). This duality leads to the following relationship 

between the slope of the power spectrum and ((2) 

((1) =H{1) =2-Dg >0 (6.20) 
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0 = ((2) + 1 = 2H{2) + 1 > 1 (6.21) 

I now discuss how the structure function is related to (non)stationarity. 

Stationary processes have stationary increments thus (6.21) applies also to 

stationary processes. From the spectral criterion for stationarity 0 < 1 for a sta­

tionary process. The limit 0 —> 1 + implies ((2) —> 0 + in equation (6.21) thus ((g) = 

0 (since ((0) =0 and ((g) is nondecreasing, concave function) and H(q) = 0. For 

stationary processes ((g) = 0 we have a case of trivial scaling (the increments are 

scale independent). A nontrivial structure function implies a degree of nonstation­

arity. (In practice, due to the effects of finite spatial resolution, all measurements 

and even theoretical models have some small ((g) > 0 (Marshak et al. (1994)). ) 

It can be seen from the (6.18) that the complete description of nonstationarity 

of a scale invariant data set is contained in the exponents ((g), or the hierarchy H(q) 

equivalently. Davis et al. (1994) adopt the H(l) (0 < H(l) < 1) to quantify to first 

order the degree of nonstationarity of the data. Yet, the entire H(q) function is 

required to qualify the nonstationarity i.e. determine the type of scaling (mono or 

multiscaling). 

If the increments of a process are narrowly (Gaussian-like) distributed then 

in (6.18) < \Aip(r)\q >^< \A<p(r)\ >q which immediately implies ((g) = g((l) = 

qH(l), or equivalently H(q) = constant. Thus processes with narrowly distributed 

increments (also known as 'short-tailed' processes (Waymire and Gupta (1981)) 

are monoscaling. The r and reff reported in chapter 4 like typical passive tracer 

distributions in turbulent flows, have large tails. The extreme located in these tails 

may produce multiscaling behaviour as we will see below. 

For a process with stationary increments the autocorrelation function can be 

computed for the increments of the process (the increments field is stationary so 

the autocorrelation function is well denned). In can be shown that the correlation 

coefficient between two successive r increments is 
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r, x + r)Aip(r, x) > = 2^~l - 1 (6.22) 
A</?(r, x)2 

Equation (6.22) yields positive correlations for (1 < £(2) < 2) or equivalently 

(1/2 < H(2) < 1) or (2 < (3 < 3) and negative correlations for (0 < ((2) < 1) or 

(0 < H(2) < 1/2) or (1 < /3 < 2). Processes with positively (negatively) correlated 

increments are sometimes termed as persistent (antipersistent) (Waymire and Gupta 

(1981)). For pure Brownian motion £(2) = 1, which means uncorrelated increments 

(i.e. the right hand side of (6.22) vanishes). 

For q=l , it follows from (6.18) that as long as C(l) > 0 the process is stochas­

tically continuous (compare equation (6.4)). Thus only stationary processes (C(l) = 

0) can be stochastically discontinuous. 

b. Singular measures 

Given the nonstationary random process cp(x) (0 < x < L) with stationary incre­

ments ((3 < 3) which is scale invariant over the range of scales [r], < R] we can 

derive a scale invariant, nonnegative stationary process by taking an absolute value 

of small scale (i.e. 77) differences in the field (f(x) 

Equation (6.23) takes the following form for the nearest neighbour differences 

of a discrete series of measurements 

\Aip(rj,x)\ = \ip(x + rj) - (p{x)\, 0 < x < L - rj. (6.23) 

\Aip(l,Xi)\ = \<p{xi+i) - ip{x)\ = ifi+i - (fi, 0 < i < L - 1. (6.24) 

One can define a nonnegative measure of the 7/ scale gradient field as 

e{rj,x) = 
A<p{ri,x)\ 

(6.25) 
< \&<p{ri,x)\ > 
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where < \ Atp(rj, x)\ > is the mean of the nonnegative gradient field. Inthe discrete 

measurement representation 

1 L - 1 

< | A ¥ 3 ( l , x ) | > = - ^ | A ^ ( l , 2 ; l ) | . (6.26) 

The e(r), x) defined by (6.25) are called singular measures. 

Davis et al. (1994) cite other procedures for deriving a stationary nonnega­

tive field. These methods include taking fractional derivatives (Schmitt et al. (1992), 

second derivatives Tessier et al. (1993), squares rather than absolute values (Mene-

veau and Sreenivasan (1987)). However, work of Lavallee et al. (1993) indicates the 

details of the procedure do not influence the final results of the singularity analysis. 

In our discrete measurement representation I make an implicit assumption 

that the smallest scale of interest (??) coincides with the resolution of the measure­

ment. This is not necessarily true. If the resolution of the instrument is better than 

r? the transition to the scaling regime will be observed in the power spectrum and 

in the physical space in structure functions. In this case one should take the rj scale 

gradients. If the spatial sampling / is insufficient to resolve this transition (/ > rj) 

one can take the nearest neighbour differences. 

After the nonnegative measures e(r?, x) of the gradient field have been defined, 

the next step in the singularity analysis is to determine the spatial behaviour of these 

measures. The scale dependence of the measures e(rj, x) is explored through their 

spatial averages over increasing scales r (the spatial degradation or coarse graining of 

the measures). The spatially degraded version of the measures at scale r is obtained 

by computing the average measure on the interval [x, x + r] 

e(r,x) = - e(M')> 0 < x < L - r (6.27) 
x'£[x,x+r — 1] 

The multiscaling properties of the measures are accessed through the moments < 

e(r, x)q > of the spatially degraded measures with respect to the scale r. Since we 
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are dealing with a stationary field of measures taking spatial averages of e(r, x) is 

well defined. 

In the scaling range (if it exists) we can write (recall equation (6.2)) 

< e(r, x)q >cx r~KiQ\ q>0, 0 < x < L - r (6.28) 

From the normalisation requirement on the probability density distribution 

of measures e(r, x) we immediately have K(0) = 0. It follows from the definition of 

measures given in (6.25) that < e(r,x) >= 1 thus K(l) = 0. By analogy to (6.18) 

(K(q) corresponds to -£(<?)) K(q) has to be a convex function. From the above, it 

can be inferred that K(q) < 0 for 0 < q < 1 and K(q) > 0 elsewhere. Furthermore 

K'(l) > 0 where the prime denotes the first derivative. 

Similarly as for the structure function one can define a hierarchy C(q) of the 

exponents K(q) 

C(q) = ^ (6.29) 

For q —>• 1 equation (6.29) and the l'Hospital's rule yield 

C(l ) = K'(l) (6.30) 

This time the hierarchy C(q) is nondecreasing for q > 1. C(q) is related to 

the nonincreasing hierarchy of 'generalised dimensions' D(q) (Appendix F) 

D(q) = l-C(q) = l-j^ (6.31) 

introduced by Grassberger (1983) and Hentschel and Procaccia (1983) in an investi­

gation of strange attractors. As before D(q) = constant corresponds to a monoscal-

ing measure while D(q) which varies with q corresponds to a multiscaling measure. 

D(l) is related to the mean of e(r,x) distribution and is known as the information 

dimension. Events which contribute most to the mean of e(r,x) (singularities) occur 

on a set with fractal dimension D(l). 
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Intermittency plays the same role for singular measures as nonstationarity 

does for structure functions. C(l) is again designated as a quantifier of the in­

termittency whereas the entire function C(q) is required to qualify it (mono- or 

multiscaling). In terms of C(l), if C(l) = 0 the data is nonintermittent whereas 

any C(l) > 0 implies some degree of intermittency.. 

It is instructive to consider two examples of intermittency: 

1. Weakly intermittent data. In case of weakly variable fields < |e(r,x)\q >«< 

\e{r,x)\ >q. It follows from (6.28) and (6.29) that in this case K{q) = qK(l) = 

0 thus D(q) = 1 and monoscaling prevails in its 'trivial' form. If D(q) < 1 for 

q > 0 the distribution of measures is singular (skewed). At small scales the 

most frequent values are small but occasionally spikes with high values occur. 

2. Extreme intermittency. A n example of an extreme case of intermittency is a 

delta function randomly positioned in the interval 0 < x < L. Let xc denote 

the location of the delta function in the interval 0 < x < L. In limit rj —> 0 + 

we have e(x) = lim^Q+e^^x) = 5(x — xc) . The spatial averaging over an 

interval [x, x + r] yields 

1 rx+r \ if xc 6 \x, x + rl 
s(r,x) = - e(x')dx' = I r

 L J (6.32) 
r J x I 0 otherwise 

If xc is uniformly distributed over the interval [0 L] then for the spatially 

averaged moments one obtains 

< e(r, x)q
 > = -jr e(r, x)qdxc = -^—q oc rl~q

 (6.33) 
rL 

10 

implying K(q) = q — 1 hence C(q) = 1 and D(q) = 0 for q > 0 which indicates 

that all activity in concentrated in a single point. 
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6.5 Previous work: multifractal approach 

Davis et al. (1994) postulated the use of two multifractal statistics, the singularity 

measures and gth order structure functions to describe the spatial variability and 

scale dependence in geophysical fields. These measures seek to quantify the degrees 

of nonstationarity and intermittency in a geophysical signal by comparing their 

statistical properties to those of known random processes. 

Davis et al. (1994) investigated spatial fluctuations of cloud liquid water 

content in marine stratocumulus measured by the Gerber probe (Gerber (1991)) on 

board of the C-131A aircraft during the Atlantic Stratocumulus Transition Experi­

ment (ASTEX) . Their analysis yield the ensemble average (H(l), C(l)) w (0.29,0.08) 

in range of 60 m-60 km. Marshak et al. (1997) found 5 nights ensemble average 

(#(1),C(1)) PS (0.28,0.10) over the scales 20 m-20 km for the L W C fluctuation 

measured by the King (King et al. (1981)) probe on the N C A R Electra aircraft 

in marine stratocumulus over the Pacific Ocean off the coast of California during 

FIRE. Marshak et al. (1997) point to the close proximity of the A S T E X and F I R E 

data sets in the bifractal plane and interpret this proximity as a consequence of 

the common nature of the nonlinear physical processes that determine the internal 

structure of the marine stratocumulus. The authors link the different scaling range 

of these two data sets (60 m-60 km for A S T E X and 20 m-20 km for FIRE) to the 

different boundary layer depth (1.5 km for A S T E X and 0.5 km for FIRE). 

Davis et al. (1996a) reported (iJ(l) ,C(l)) = (0.28,0.09) and scaling range 5 

m to 5 km for an ensemble of aircraft measurements of Iwc (Gerber probe) obtained 

during S O C E X . 

The location of both data sets in the bifractal plane indicates that the LWC 

fluctuation in marine stratocumulus are both nonstationary and intermittent and 

calls for hybrid stochastic models which combine both the nonstationarity and the 

intermittency to adequately describe the processes governing the L W C fluctuation 

in clouds and likely other geophysical fields. 
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Marshak et al. (1997) note a large scatter of the individual spatial averages 

around the ensemble averages which suggests ergodicity violation and argues in 

favour of non-ergodic models. They stress the need for data to test their findings. 

So far, the A S T E X , FIRE and S O C E X Iwc flight data, and one F I R E Landsat 

Thematic Mapper (channel 2) scene [ (#(1), C(l)) = (0.54,0.06) ] (Davis et al. 

(1996a)) are the only data sets placed in the bifractal plane. Satellite data are much 

easier accessible and provide much grater spatial and temporal coverage than any 

aircraft data. They have the disadvantage of limited resolution towards the small 

scales (1 km for the AVHRR) thus necessarily shorter cascades of the scaling range. 

In chapter 7 of my dissertation I find the multifractal characteristics of the 

A V H R R data sets of cloud radiances, cloud optical depth and cloud droplet effective 

radius and in particular their location in the bifractal plane. I apply the analysis 

to four sets of satellite data: 1) F87 - Pacific Ocean the F I R E 1987 data set, 2) 

P94 - Pacific Ocean 1994 data set acquired by U B C satellite Lab, 3) P95 - Pacific 

Ocean 1995 data set acquired by U B C satellite Lab and, 4) 595 - Southern Ocean 

Experiment (SOCEX) 1995 data set acquired over the Indian Ocean. 

6.6 Summary 

The goal of multifractal analysis is to find the scaling behaviour ((g) of the structure 

functions in (6.18) and the scaling behaviour K(q) of the singular measures in (6.28). 

The analysis establishes the mono- or multifractal character of the scaling . The 

scaling exponents of the first order moments of the structure functions H(l) and 

the singular measures C(l) quantify respectively the degree of nonstationarity and 

intermittency in the data. 

Marshak et al. (1997) argue that close proximity the mean multifractal pa­

rameters of [7J(1),C(1)] for both their data sets (FIRE and A S T E X ) could be a 

manifestation of a universal character of the processes determining the structure of 
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marine stratocumulus. Arguing against such universal behaviour is the large num­

ber of physical processes that lie between the characteristic scaling behaviour of 

inertial range turbulence and cloud variables such as r and reff. As the review in 

section 1.2 indicated, the aerosol population in particular may be injecting its own 

characteristic scale on r and reff which has nothing to do with the variability of 

passive tracers in turbulent flow. 

I have assembled a large number (34) of A V H R R images of cloud optical 

depth, cloud droplet effective radius and visible cloud radiance corresponding to 

different micro and macrophysical marine stratocumulus regimes. My scenes corre­

spond to uni-modal, bi-modal, and optically thick clouds as discussed in chapters 

3 and 4. If the universality argument holds all these regimes should yield similar 

values of [if (1), C(l)]. 

In the next chapter I show that this is indeed the case. There is no clear 

difference in neither H(l) nor C(l) parameters for any of these regimes. There is 

however a considerable scatter between ensemble averages of H(l) and C(l) for the 

four major data sets I considered. A trivial dividing line runs between fully cloudy 

and broken cloud fields which have markedly larger values of C(l) and are often 

multiscaling in ((q). 

The [H(l), C(l)\ set constitutes a test for structural compatibility of cloud 

models with real clouds. When mapped into the [H(l), C(l)] space, realistic cloud 

models, whether dynamic or stochastic, should lie as close as possible to the point 

which represents real data. 

In another application, the [H(l), C(l)] reference frame provides a test 

for assumptions about subpixel scale homogeneity made in retrievals of geophysical 

fields from a remote sensing imagery. The remotely sensed fields can be compared 

with the in situ measurements in the [H(l), C(l)} plane. The agreement between 

the remote and in situ [H(l), C(l)] points can serve as a validation of the assump­

tions of retrieval technique. Examples of the application of multifractal techniques 
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to evaluation of turbulent cascade models, cloud inhomogeneity models, the validity 

of remote sensing approximations for retrieval of cloud properties can be found in 

Meneveau and Sreenivasan (1987), Marshak et al. (1995a), Marshak et al. (1995b) 

among others. 

From a satellite and image analysis perspective the parameters H(l) and 

C(l) may find another application as measures of texture, if it can be established 

that different cloud types (stratocumulus, cumulus, cirrus, etc.) or different sur­

faces (clouds, sea surface, land) are characterised by different sets of [H(l), C(l)\. 

However, I do not explore this possibility in this thesis. 

Chapter 7 of this thesis presents the application of the combined spectral 

and multifractal analysis to A V H R R imagery fields of cloud radiance, cloud optical 

depth and cloud droplet effective radius . 
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Chapter 7 

Spatial structure of stratocumulus clouds II: 

Results from multifractal analysis 

This chapter presents the application of the multifractal analysis technique of chap­

ter 6 to the satellite fields of cloud visible radiance, cloud optical depth and cloud 

droplet effective radius obtained from A V H R R measurements. In earlier chapters 

I have discussed observational and modelling results which pointed to complex in­

teractions between cloud processes on scales ranging from the microscale (size of 

cloud droplets [fj,m]) to the macroscale (geometrical cloud thickness ~ 300 m, cloud 

horizontal extent ~ 100 km). My observations in chapters 3 and 4 indicate that 

many cloud fields can be described in terms of the reference cloud model (3.2) as 

uni-modal or bi-modal where bi-modality involves variability in Nsat on scales com­

parable to the size of the scenes (256 km x 256 km). The goal of the analysis in this 

chapter is to investigate how (or if) these interactions affect cloud spatial structure. 

In particular, I will compute and compare: 

1. spatial and multifractal properties (nonstationarity and intermittency) of the 

uni-modal, bi-modal, and thick cloud scenes described in chapters 3 and 4; 

2. the ensemble averaged nonstationarity and intermittency parameters for the 

four data sets (-F87, P94, P95 and <S95) of cloud visible radiance, cloud optical 

depth and cloud droplet effective radius . 
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For the purpose of the comparison in 2) I have expanded the initial data base 

(15 example scenes discussed in chapter 4 and listed in Table 4.1) by an additional 

20 scenes representing all four data sets: 1) F87, 2) P94, 3) P95, and 4) 595 (listed 

in Tables B.3-B.6 Appendix B). 

I compare results of the analysis for the uni-modal, bi-modal, and thick cloud 

scenes described in chapters 3 and 4. In section 7.1 I discuss scene averages, ensemble 

averages and individual transects of the satellite scenes. Section 7.2 demonstrates 

the step by step flow of the analysis. The results of the analysis are presented in 

section 7.3. A summary of this chapter is given in section 7.4. 

7.1 Transects of satellite fields and ensemble averages 

The subject of the spectral and multifractal analysis are one dimensional transects 

of the satellite fields of cloud radiation and cloud optical depth and cloud droplet 

effective radius. The decision to use one dimensional transects was dictated by 

1) the geometrical properties of the A V H R R images (discussed below), and 2) the 

desire to assure comparability with one dimensional in situ measurements (Marshak 

et al. (1997) in situ aircraft observations) and earlier studies which considered one 

dimensional transects of satellite fields (Barker and Davies (1992)). 

The viewing geometry and the pixel size of the A V H R R instrument cause a 

substantial overlap of pixels in the scanning direction (i.e. direction perpendicular 

to satellite orbit). Near nadir, the size of the A V H R R pixel is about 1.1 x 1.1 km 

while pixel centres are about 0.8 km apart. As a result of the overlap, only about 

70% of each pixel is unique to that pixel. In the tracking direction (parallel to the 

satellite orbit) there is much less overlap, especially if the satellite viewing angle is 

less than about 30°. (Barker and Davies (1992)). The overlapping of pixels causes 

an artificial smoothing of the A V H R R images in the scanning direction. 

Another artifact of satellite imagery is pixel distortion in the scanning direc-
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tion. As viewing angle increases the satellite footprint is stretched along the scanline 

direction from 1.1 km at nadir to about 6 km at the maximum A V H R R viewing 

angle. 

These two effects related to the satellite viewing geometry lead to distorted 

spectral representations of the cloud field in the scanning direction. To circumvent 

this problem Barker and Davies (1992) advocate using only the tracking direction 

transects of A V H R R images in spectral analyses. Furthermore Barker and Davies 

(1992) introduce an ensemble averaged wavenumber spectrum for the tracking lines 

where E(i)t is the power spectrum along the «th tracking line, n is the total number 

of tracking lines used and < • > denotes a ensemble average for the scene. To 

eliminate problems related to tracking lines overlapping Barker and Davies (1992) 

use only every other line to compute the ensemble average < E >t-

I follow the approach of Barker and Davies (1992) and consider only along 

tracking direction transects of the satellite cloud field. I introduce one slight modi­

fication. Rather than including in the scene ensemble average every second tracking 

line in the image I opt for a more sparse sampling and include only every 5th line. 

The review of variograms for many satellite images indicates (see Appendix C) that 

many cloud fields are autocorrelated over distances of at least 3 to 5 km . Use 

of autocorrelated data in the computation of the scene ensemble average spectrum 

could likely lead to underestimation of the spectrum confidence interval. Autocor­

relation can be eliminated from a data set through suitable subsampling (see again 

Appendix C and references therein). Thus the 5 line subsampling interval for the 

tracking lines which corresponds to approximately 5 km. With the image size of 

256 x 256 pixels this subsampling rate contributes 51 lines to the ensemble average 

narrowing the 95% confidence interval of the power spectrum by approximately 60% 

on average. 

n- l 
(7.1) 

i=0 
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The reduction of noise obtained in the ensemble average power spectrum 

has a side effect. When estimating the slope of the power spectrum with the least 

square fit to the log transformed equation (6.11) the greatest contribution comes 

from the smallest scales, whereas the contribution of the more sparsely sampled 

larger scales is almost negligible. To make all scales contribute equally, Davis et al. 

(1996) proposed octave averaging of E(k), that is, computing averages of E(k) over 

bins of increasing size 2m (where m = 0,[log2 N] — 2 and N is the total number of 

measurement points, and [•] designates the integer part). Thus, the average power 

spectral density in bin m is given by 

j=2M+1—1 

and corresponds to average wavenumber 

• _ o m + l _ i 

1 3 1 
k m = ™ Y ki = o 2 ™ ~~ 2 ^ 7 ' 3 ^ 

I compute the estimates of spectral slope using both the ensemble averaged 

power spectrum obtained according to (7.1) and the scene average octave binned 

power spectrum. With 256 data points along a tracking line the small scale resolu­

tion is lost in the octave averaged spectrum. If I want a closer look at the smallest 

scales the ensemble averaged power spectrum allows me to zoom into them. On the 

other hand, if I consider larger scales the octave binned spectrum provides a less 

biased estimation of the power spectrum slope. 

Similarly, I compute the along-track scene ensemble average of the struc­

ture functions and singularity measures in the multifractal analysis and find the 

hierarchies H(q) and C(q) and including the nonstationarity and intermittency pa­

rameters H(l) and C(l) for the scene ensemble average. I then compute ensemble 

averages of H(l) and C(l) for each of the four data sets under consideration by 

taking averages of scene ensemble average H(l) and C(l) of the scenes in the data 

set. 
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To simplify the terminology, I will refer to the scene ensemble averages as 

simply the scene averages and reserve the name ensemble average for the ensemble 

averages of the four data sets I am investigating. 

7.2 Flow of the analysis 

This section is designed to serve as a practical guide to the spectral and multifractal 

analysis presented below. I describe the steps of the analysis and illustrate them 

with an analysis of an actual scene. The scene in the example is the channel 1 

radiance field for scene no 1 of Table B . l (page 218) (F87 data set) shown in Figure 

7.1. 

100 150 200 250 

pixel in scan direction (- km) 

Figure 7.1: A V H R R channel 1 radiance field for scene no 1 in Table B . l (page 218). 
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Flow of the analysis: 

Step 1: Compute the scene average energy spectrum E(k) (6.9)and the second order 

structure function g2 (r) (6.15) in the manner outlined in 7.1. Figures 7.2 and 

7.3 show the plots of E(k) and g2(r) respectively. Also shown in Figure 7.2 

are the 5% confidence intervals of the power spectrum estimate. 

wavenumber [1/km] 

Figure 7.2: Power spectrum for channel 1 radiance field of scene no 1.(Table B . l 

page 218). 

Based on these two measures I estimate the scaling regimes in the data set. 

Both methods should yield consistent results. I expect the scaling region to 

originate at the smallest scale resolvable (satellite pixel size of approximately 1 

x 1 km) (see Marshak et al. (1997)). In practice, however the smallest scale is 

strongly affected by the instrument resolution and may not be representative 
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of the fluctuation in the measured field. Also, the windowing of the Fourier 

transform affects the high frequency end of the spectrum and may obscure 

scaling at these frequencies. Thus, in establishing the extent of the scaling 

regime I tend to rely more on the structure function. I do however cross-check 

the results with the outcome of the power spectrum analysis. 

10° 101 102 

distance lag r [km] 

Figure 7.3: Second order structure functions for channel 1 radiance field of scene 1. 

(Table B . l (page 218). 

From Figure 7.3 the scaling region is found as the range of r values where the 

structure function is roughly linear with r in log-log coordinates. In this case, 

the scaling range [rj, R] is approximately between 1 and at least 8 kilometres. 

The structure function reveals a transition between the nonstationary scaling 

region and the stationary region at around 10 km. Transition at these scales 
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is not very well marked in the power spectrum which seems to continue along 

a straight line up to « 25 km. The smaller range ([1, 8] km) is accepted as 

the scaling region of the radiance field in the scene of figure 7.1. 

Step 2: Compute g-order scene average structure functions for q G [1,5] using (6.15). 

I follow Davis et al. (1994) in this choice of q values. Structure functions of 

orders 1 to 5 are plotted in Figure 7.4. 

r[km] 

Figure 7.4: Structure functions of order 1 to 5 for channel 1 radiance field of scene 

1. (Table B . l (page 218). 
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The scaling region is approximately [1, 8] km consistently for all orders of the 

structure function considered. In the next step I consider the effect of the 

inaccuracy of the scaling range estimate on the values ({q)-

Step 3: To compute the function ((q) I have to find the scaling region slope of the 

structure function gq(r) for all q. I use linear least squares to fit a straight 

line to the log-log representation of the g-order structure function in the scaling 

region. For the least square fit I assume that both the structure function gq(r) 

and r are known exactly. The function Q(q) is plotted in Figure 7.5. Error 

bars in the plot are the uncertainties oc{q) ° f slope estimates from the least 

square fit. Table 7.1 lists the values of ((q) and <7^(g) returned by the least 

squares fit for scaling range [1,8] km and ± 1 km departure from this estimate. 

The differences in £(g) for all three estimates of the scaling range lay within 

the uncertainties of ((q) from the least squares fit. 

q 1 2 3 4 5 

range 

8 km 
C(?) 

aC(q) 

0.48 
0.02 

0.94 

0.03 

1.36 
0.04 

1.75 

0.05 

2.11 

0.06 

range 

7 km 
C(q) 0.49 

0.02 
0.96 

0.03 

1.39 
0.04 

1.79 

0.05 

2.16 

0.06 

range 
9 km 

C(9) 0.47 
0.02 

0.91 
0.03 

1.33 
0.05 

1.72 

0.06 

2.07 

0.06 

Table 7.1: Least square estimates of ((q) an it uncertainties o-C[q) calculated for 3 
different assumptions of the scaling. 

In Table 7.1 I note the nonstationarity parameter H(l) = ((1) = 0.48 and 

C(2) = 2H(2) = 0.94. Through the relationship (6.21) I compute the power 

145 



spectrum scaling exponent (see (6.11) 8 = 1.94 . 

Figure 7.5: Scaling exponent ((g) of the moments of structure function as a function 

of the moment order for channel 1 radiance of scene no 1. (Table B . l (page 218). 

Step 4: From the plot of the scaling exponent function ((g) (Figure 7.5) I determine 

the type of scaling (mono- vs multiscaling). In Figure 7.5 the relationship 

between ((g) and q is linear within the error bars which suggests monoscaling 

or a very weak multiscaling. 

Step 5: I obtain a second estimate of the power spectrum slope 8 directly from the 

linear least squares fit to the power spectrum in log-log space. For the least 

square fit I assume the 95% confidence interval of the power spectrum estimate 

as the uncertainty of the power spectrum with no error in the wavenumber k. 

For 3 from the power spectrum fit Davis et al. (1996) showed that the choice 

of a particular least squares variant (i.e with no errors in any of the variables, 

errors only in E(k) or errors in E(k) and k) does not affect the estimates of the 
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power spectrum slope in a significant way. I found this to be true in my cases 

too. I opted for the variant with errors in E(k) for more realistic estimates 

of the uncertainty of the slope estimate. The data in this example yield 0 = 

1.90 ± 0.06 for the ensemble average power spectrum and 1.93 ± 0.02 for the 

octave binned power spectrum which are both in an excellent agreement with 

the value of 0 obtained through the structure function analysis (see Step 3:). 

Step 6: I compute the smallest scale gradient field and scene average singular measures 

< e(r, x)q > of order q € [0,5] as function of the degradation scale r (see 

equation (6.28)). 

wavenumber [1/km] 

Figure 7.6: Power spectrum of the channel 1 radiance gradient field in scene no 1. 

(Table B . l (page 218). 0 < 1 indicates a stationary process. 

Figure 7.6 shows the power spectrum of the gradient field. The least square 

fit to the power spectrum in the scaling range returns 0 = 0.28 ± 0.08, thus 

0 < 1 and the field of increments is indeed stationary. 
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Step 7: In Figure 7.7 I plot < e(r, x)q > as a function of r for integer orders of q £ [0, 5] 

in log-log coordinates . I obtain < e(r, x) > — 1 for all scales r and < e(r, L)q > 

= 1 for all q which is consistent with the definition of the singular measures 

and their scaling properties, as discussed in section 6.4.3 (see equations (6.25) 

to (6.28) and the discussion thereafter). < e(r, x) > is roughly linear between 2 

to 16 km for all q. This range is interpreted as the scaling range for < e(r, x) >. 

In the next step I will show that the value of scaling exponents K(q) is not 

greatly affected by the exact specification of the scaling range (Figure 7.8). 

iog2(r) 

Figure 7.7: Singular measures moments plotted against the scale r for channel 1 

radiance in scene no 1 (Table B . l (page 218). 

Step 8: I find the scaling exponents K(q) (see (6.28)) as the slope of the linear least 

square fit to < e(r)q > as function of r in the log-log space. Figure 7.8 shows 
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the plot of K(q). As in Step 3: I explore the effect of the uncertainties of the 

scaling range determination on the estimates of K(q) . Two curves in Figure 

7.8 represent K(q) computed for (1) scaling range [2, 8] km, (2) scaling range 

[2, 16] km. The error bars represent the uncertainty of the estimates in the 

least square fit. The effect of the scaling range uncertainty is negligible for q < 

2 and even for q = 5 the two lines are within error estimates of each other. 

ih 

0.8 h 

0.6 h 

0.4k 

0.2 h 

Oh 

_0 2' 1 1 1 1 1 1 1 

-1 0 1 2 3 4 5 6 
q 

Figure 7.8: Exponent function K(q) for channel 1 radiance in scene no 1 (Table 

B. l (page 218). Red curve corresponds to the scaling range [2,8] km. Blue curve 

corresponds to the scaling range [2,16] km. 

Step 9: I compute the derivative oi K(q) and find its value for q = 1 which determines 

the intermittency parameter C(l). In this case I obtain K'(q) = C(l) = 0.06 

± 0.02. The estimate of uncertainty is computed according to 
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ACm = AK'm = A {

K ^ - K ^ ) ~ V 2 ^ m (7.4) 
oq dq 

where AK(1) is the uncertainty of the K(l) estimate obtained as the uncer­

tainty of the slope estimate in the least square fit to < e(r)q > as a function 

of q. 5q is the increment of singular measures order used in the computation 

of K(q). There is no restriction on orders to be integers. I have used 5q =0.2 

Step 10: I compute D(q) using (6.31) and plot it in Figure 7.9. D(q) ^ const which 

reveals a multiscaling character of the singular measures as discussed in section 

6.4.3. 

' 0 0.5 1 . 1.5 2 2.5 3 3.5 4 4.5 5 
q 

Figure 7.9: Information dimension D(q) for channel 1 radiance in scene no 1 

The analysis outlined above is repeated for the visible channel radiance field, 

150 



cloud optical depth field and the cloud droplet effective radius field for every scene 

of the four data sets in the consideration. For each observable in every data set 

I compute ensemble averages of H(l) and C(l) and find their location in the bi­

fractal plane (Marshak et al. (1997)) for comparison with other data sets. 

7.3 Analysis results 

I analysed a total of 34 A V H R R cloud scenes from 4 separate data sets: 17 F I R E 

scenes F87, 8 scenes from the P94 data set, 5 scenes from P95 data set, and 4 

595 scenes from the S O C E X experiment covering Indian Ocean west of Tasmania. 

The complete list of scenes analysed in this chapter is given in Tables B.3-B.6 of 

Appendix B with their orbit numbers and times of overpass. 

Following the steps described in section 7.2 I find the nonstationarity and 

intermittency parameters (H(l), C(l)) of the cloud visible radiance field, cloud 

optical depth and cloud droplet effective radius for each scene and ensemble averages 

of the multifractal parameters for each data set. I present the results of the spectral 

and multifractal analysis of these scenes in the following order: 

1. In tables G.1-G.3 (Appendix G) I show the estimates of the nonstationarity 

and intermittency parameters for cloud visible radiance field, cloud optical 

depth and cloud droplet effective radius for the uni-modal, bi-modal and thick 

cloud scenes discussed in chapters 3 and 4 (Figures 3.5 page 47, 3.8 page 52 

and 3.9 page 54). The mean cloud optical depth and cloud droplet effective 

radius for these scenes were listed in Table 4.2 on page 80 and shown in Figure 

4.10 on page 82. I examine the consistency of the spectral and multifractal 

approach to the estimation of the slope of the power spectrum. 

2. I plot the second order structure functions 52(r), the exponent function ((g) 

(structure function scaling) and the information dimension D(q) (singular 

measures scaling) as a function of moment order q for the uni-modal, bi-modal 
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and thick cloud scenes. I examine the behaviour of the structure functions and 

the type of scaling in the analysed fields (mono vs multiscaling). 

3. In tables Tables G.4-G.13 of Appendix G I show the estimates of the nonsta­

tionarity and intermittency parameters for cloud visible radiance field, cloud 

optical depth and cloud droplet effective radius for all scenes of the extended 

data base (34 scenes). The mean cloud optical depth in the analysed scenes 

ranged approximately between 8 to 32 and the mean cloud droplet effective 

radius between 6 and 17 /im. 

4. For the largest data set (F87) I show the location of all scenes in the bifractal 

plane for cloud visible radiance, cloud optical depth and cloud droplet effective 

radius separately. 

5. For each data set (F87, P94, P95, and 595) I compute ensemble averaged 

nonstationarity and intermittency parameters for cloud visible radiance, cloud 

optical depth and cloud droplet effective radius and plot their location in the 

bifractal plane. 

6. I summarise and discuss the results of this chapter. 

7.3.1 Nonstationarity and intermittency parameters. 

In tables G.1-G.3 in Appendix G) I present the estimates of the nonstationarity 

H(l) and intermittency C{1) parameters and spectral slope estimates obtained 

through the structure function analysis ((2) + 1 = 2H(2) + 1, estimated from the 

least squares fit to the ensemble averaged power spectrum j3 and, estimated from 

the least squares fit to the octave binned power spectrum /3s for the fields of cloud 

visible radiance, cloud optical depth and cloud droplet effective radius for scenes 1 

to 6 (uni-modal), 7 to 10 (bi-modal), and 11 to 14 (thick clouds) (see Table B.l) . 
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Scene 10 is missing from this analysis since the view angle for this scene exceeds 

40°. 

The scaling range for each scene and field is given in the tables as is the 

scene cloud fraction estimated using the spatial coherence method of Coakley and 

Bretherton (1982). The values in brackets (•) are the uncertainties of the estimates 

from the least squares fit. The uncertainties of the singular measures estimates were 

computed using 7.4 and found to be between 0.01 to 0.02 in all cases. 

Examination of the results assembled in tables G.4-G.13 reveals the following. 

1) Transition between nonstationarity and stationarity, available scaling range 

Tables G.1-G.3 indicate the range of scales over which the multifractal parameter 

of cloud fields were estimated. With the spatial resolution of the A V H R R approxi­

mately 1 kmx 1 km I can access only a upper region of the scaling range. It is known 

from the high spatial resolution ground based, aircraft and satellite measurements 

(see for example King et al. (1981), Cahalan and Snider (1989), Davis et al. (1996)) 

that the scaling range of cloud liquid water path extends over several decades from 

about 10 m to tens of kilometres. The A V H R R instrument makes measurements 

over the last decade of the scaling range. This is however the most interesting part 

of the spectrum since it is near 10 km where the transition between nonstationarity 

and stationarity takes place. In many scenes I observe the transition at 3 or 4 km. 

This limits the number of points used in the analysis to just 3 or 4. In other cases 

the scaling range extends to 10 or even 20 km. I expect better precision and likely 

better accuracy of the estimates of multifractal parameters in these cases. 

2) The consistency between the three methods of the spectral slope estimation 

The estimates of the spectral slope based on the structure function analysis ( 2H{2) + 

1) are generally consistent (within typical error bars of 3 to 5%) with the slope 

estimated directly from the power spectrum whether it is the ensemble average 

153 



spectrum (3) or the octave binned spectrum (3%). There are few exceptions when 

the three slope estimates are further apart than the indicated error bars (the cloud 

visible radiance in scene no 5 for example (Table G . l , page 242) has 2H(2) + 1 = 

1.84 ( ± 0 . 0 3 ) , 3 = 2.18 ( ± 0 . 0 4 ) , and 88 = 2.07 (±0 .10) ) however my estimates of 

errors in this analysis are rather conservative, being the uncertainties of the least 

squares fit with no errors in the variables. There are a few cases of clear disagreement 

between the structure function approach and direct estimate of slope from the power 

spectrum (e.g. cloud visible radiance and cloud optical depth in scenes no 13 and 

14). In these scenes 3 is close to or even greater than 3, which is indicative of 

processes with nonstationary increments where 3 = 2H(2) + 1 does not necessarily 

hold. 

When the scaling range is short (less than 5 km) the slope of the ensemble 

averaged spectrum is in a better agreement with the slope estimated from the struc­

ture function for cloud radiance and cloud optical depth than is the slope estimated 

from the octave binned spectrum. This typically reverses for longer scaling ranges 

when the octave binned spectrum slope and the structure function based slope are 

closer. This reflects the octave binned spectrum is better representation of larger 

scales and the loss of small scale resolution in this method of noise reduction. Con­

versely, the ensemble averaging provides a good representation of small scales but 

fails when longer scales become important. 

The spectra of cloud droplet effective radius at small scales are often domi­

nated by white noise. This leads to underestimation of the spectral slope at small 

scales when using the ensemble average spectrum compared to the slope of the oc­

tave binned spectrum. To illustrate this point I show in Figure 7.10 an example of 

spectra of cloud radiance, cloud optical depth and cloud droplet effective radius for 

scene no 11. 
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10~3 10"! 10"' 10° 
wavenumber [1/km] 

Figure 7.10: Power spectra of cloud visible radiance (chl), cloud optical depth (r) 

and cloud droplet effective radius reff for scene no 11. The solid lines without 

without symbols are the ensemble average spectra. The (+) marked lines are the 

octave binned power spectra. Note the noise in E(k) for reff at wavenumbers > 0.3 

1/km. 

When estimating the power spectrum slope I excluded the white noise dom­

inated region from the computations. 

Typically, I found the same scaling range for all cloud parameters fields. In 

several scenes (8 and 12 most notably) I observed longer scaling range for reff than 

for either cloud radiance or r or a second scaling region at larger scales. I discuss the 

similarities and dissimilarities of the multifractal properties of cloud visible radiance, 

T and reff below. 
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3) Agreement between the spectral and multifractal parameters of cloud visible range 

radiance and cloud optical depth 

The comparison of the multifractal parameters and the spectral slope of the cloud 

visible radiance and cloud optical depth fields points to very similar spatial behaviour 

and multifractal properties of these two fields. In Figure 7.11 (page 157) I plot the 

second order structure functions for fields of cloud radiance, cloud optical depth 

and cloud droplet effective radius for the uni-modal scenes 1 to 6. For all scenes the 

cloud optical depth structure function follows closely the structure function of cloud 

radiance field. This is not always the case with the cloud droplet effective radius in 

scene 3 and 5. For small scales the behaviour of all three fields of cloud parameters 

is similar but at larger scales cloud droplet effective radius sometimes diverges from 

the path established by cloud radiance or cloud optical depth and exhibits a long 

range correlations not present in fields of cloud radiance or T. 

These long range correlations in field of cloud droplet effective radius are more 

pronounced in scenes with bi-modal joint distributions of r and reff. In Figure 7.12 

(page 158) I plotted second order structure functions for fields of cloud radiance, 

cloud optical depth and cloud droplet effective radius for the bi-modal scenes 7 to 

10. In scene 8 there is a range between 4 to 20 km where fields of cloud radiance 

and r appear stationary while rejj exhibits a secondary nonstationary regime. A 

similar case is represented by scene 10. 

In Figure 7.13 (page 159) I show the second order structure functions for 

fields of cloud radiance, cloud optical depth end cloud droplet effective radius for 

thick clouds in scenes 11 to 14. 
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Scene no 1 Scene no 2 

distance lag r [km] distance lag r [km] 

Figure 7.11: Second order structure functions of cloud visible radiance (chl), cloud 

optical depth (r) and cloud droplet effective radius reff for the uni-modal scenes 1 

to 6 (see Figure 3.5 for scatter plots of T and reff). 
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Scene no 7 Scene no 8 

distance lag r [km] 

Scene no 9 

distance lag r [km] 

distance lag r [km] 

Scene no 10 

distance lag r [km] 

Figure 7.12: Second order structure functions of cloud visible radiance (c/ti), cloud 

optical depth (r) and cloud droplet effective radius reff for the bi-modal scenes 7 

to 10 (see Figure 3.6 for scatter plots of r and reff). 
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Scene no 11 Scene no 12 

10" 10' 10' 
distance lag r [km] 

10u 10 10 
distance lag r [km] 

Figure 7.13: Second order structure functions of cloud visible radiance (chl), cloud 

optical depth (r) and cloud droplet effective radius reff for thick clouds in scenes 

11 to 14 (see Figure 3.9 for contour plots of T and reff). 

159 



In chapter 3 (Figure 3.9) I found that scene 12 had a bi-modal joint distri­

bution of r and reff while scenes 13 and 14 were uni-modal but exhibited a wide 

range of Nsat . The behaviour of structure functions for scene 12 indeed resembles 

the bi-modal cases of moderately thick clouds in Figure 7.12, scenes 8 and 10 in 

particular. Scenes with a wide range of Nsat (13 and 14) also exhibit long range 

correlations in reff not observed for cloud radiance or r. Scene 11 (uni-modal) 

exhibits the least contrast in the behaviour of all three structure functions (T, reff 

and cloud radiance) in the group of thick clouds. 

The similarity between the multifractal properties of the radiance field and 

cloud optical depth justifies the use of the visible channel radiance as a surrogate 

for cloud optical thickness in studies of cloud field spatial variability when the re­

trievals of cloud optical depth are not available. Since cloud radiance is more readily 

available than cloud optical depth or cloud liquid water path, many satellite studies 

of spatial variability of clouds are based on fields of cloud radiance and the corre­

spondence between the radiance and cloud optical depth is often 'silently' assumed. 

I make use of this result when we analyse the 595 data set. Clouds of that data set 

are very thick. Pixel values of T frequently exceed the range of the lookup table used 

in the retrieval of cloud optical depth and cloud droplet effective radius , which leads 

to convergence gaps in the retrieved fields of r and reff. Such fields are not suitable 

for spatial analysis. My analysis of the S O C E X data will thus be limited to the 

cloud radiance field, but in view of the correspondence between the cloud radiance 

field and the cloud optical depth field seen section 7.3.1, I consider the multifractal 

parameters of the radiance field to be representative of the cloud optical depth field 

as well. 

4) Long range (> 10 km) variability of cloud droplet effective radius 

In chapter 3 I related the occurrence of two clusters in the scatter plots of rejf and 

r to coherent regions with markedly different Nsat in the cloud scenes. The reader is 
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referred to Figure 3.10c and 3.10d of chapter 4 which show the spatial separation of 

the two branches in the image. I postulate that the variability in Nsat which leads 

to the two-branch structure of r — reff scatter plots is also linked to the long range 

variability of cloud droplet effective radius in these cases. I consider scene 8 as an 

example. 

Figure 7.14 shows the false colour image of the cloud droplet effective radius 

for a subscene of scene 8 (the fully cloudy part of the scene has been selected). 

[km] 

Figure 7.14: False colour image of cloud droplet effective radius [/xm] in scene 8. 

There is a marked difference, with a maximum of 9 /xm, in reff between the 

lower and upper parts of the image. I compute the second order structure function 

for a subimage ("A") of scene 8 which intentionally contains the transition between 
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the two refj regimes i.e. two modes of the scatter plot of T and reff and one for a 

subimage ("B") intentionally entirely within one regime (mode). As the subimage 

"A" I designated the rectangle between [100,250] in vertical and [1,150] in horizontal 

(encompassed by black solid lines). As the subimage "B" I designated the rectangle 

between [1,150] in vertical and [1,150] in horizontal (encompassed by blue dashed 

lines). Figure 7.15 shows the structure function for regions "A" and "B". 

10° 101 102 

distance lag r [km] 

Figure 7.15: Second order structure functions for regions "A" [100:250,1:150] and 

"B" [1:150,1:150] of cloud droplet effective radius in scene 8. 

Figure 7.15 demonstrates the emergence of the second nonstationary scaling 

region at larger scales in response to the transition between two reff regimes. The 

scaling is very similar for at small scales. 

162 



7.3.2 Type of scaling. 

1) Scaling of the structure function 

To examine the type of scaling of the cloud field properties I plot the exponent func­

tion ((g) and the information dimension D(q) as functions of the order q. In Figure 

7.16 (page 164) I show the exponent function ((g) for the cloud visible radiance, 

cloud optical depth and cloud droplet effective radius for uni-modal scenes 1 to 6. 

Figure 7.17 (page 165) shows ((g) for cloud radiance, r and reff for the bi-modal 

scenes 7 to 9 and and Figure 7.18 (page 166) shows ((g) for the same fields for the 

thick cloud scenes 11 to 12. I excluded scenes 13 and 14 from further analysis due 

to the disagreement between (2H(2) + 1) and 3 (see Tables G.1-G.3). 

The cloud visible radiance field exhibits predominantly monofractal behaviour 

(i.e. linear dependence of the exponent function ((g) on g) for all types of scenes. 

Only 3 (nos 2, 5 and 9) scenes in all the data sets show multifractal scaling in cloud 

visible radiance although in two of these cases the multifractality is weak. Scaling 

of the cloud optical depth corresponds closely to that of the cloud radiance. In 

contrast, multiscaling is frequent in the cloud droplet effective radius retrievals. 

I find multiscaling to be primarily associated with broken cloudiness. Al l 

scenes with cloud fraction less than 1.0 exhibit (1, 5, 6 and 7) exhibit multiscaling 

in cloud droplet effective radius but not always in cloud optical depth or cloud 

radiance field. Scaling of cloud droplet effective radius appears to be most sensitive 

to breaks in cloud cover. Lower cloud fraction is usually associated with stronger 

multiscaling and can more readily cause multiscaling in cloud optical depth and 

cloud radiance. 

In Table G.3 (and G.6 and G.9) I marked with a "*" partly cloudy scenes 

for which only fully cloudy sectors were used in the computation of the exponent 

function ((g). Al l these sectors exhibit monoscaling in all parameters, cloud radi­

ance, r, and reff whereas the entire scene have multiscaling structure functions at 

least in reff. 
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Figure 7.16: Exponent function ((q) of a) cloud visible radiance field, b) cloud 

optical depth , and c) cloud droplet effective radius for uni-modal scenes 1 to 6 of 

Table B.l: 1 (+), 2 (o), 3(*), 4(x), 5(A), 6(D). 
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0 0.5 1 1.5 2 2.5 3 3,5 4 4.5 5 
q 

0 0.5 1 1,5 . 2 2.5 3 3.5 4 4,5 5 
q 

Figure 7.17: Exponent function ((q) of a) cloud visible radiance field, b) cloud 

optical depth , and c) cloud droplet effective radius for bi-modal scenes 7 to 9 of 

Table B. l : 7 (+), 8 (o), 9(*). 
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Figure 7.18: Exponent function ((g) of a) cloud visible radiance field, b) cloud 

optical depth , and c) cloud droplet effective radius for thick clouds, scenes 11 to 14 

of Table B . l : 11 (+), 12 (o), 13(*), 14(x). 
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2) A conceptual model of multiscaling in broken cloud fields 

The multiscaling character of broken clouds fields can be understood in terms of a 

simple conceptual model where a transition between cloudy and no-cloudy pixels 

is modelled by a Heaviside step function. Let the fully cloudy sector of the field 

be variable and monoscaling (resembling the scaling in fully cloudy scenes). By 

superimposing a step function with a variable monoscaling field one can build a 

nonstationary multifractal whose strength will depend on the ratio of the variability 

of the monoscaling field and the height of the Heaviside function. 

I illustrate this with an example. I selected ordinary Brownian motion as 

the nonstationary monoscaling variable field {H(q) =0.5 for all q, ((q) = qH(l)). 

The exponent function £(g) for Heaviside function equals 1 for all q > 0. Figure 

7.19 (page 168) shows how the superposition of Heaviside function and ordinary 

Brownian motion leads to a multiscaling signal. In the left panel of figure 7.19 I 

show the signals, Heaviside function h(x) (a), Brownian motion B(x) (c) and the 

superposition of B(x) on the h(x)=l section of the Heaviside function (e). The 

right panel of Figure 7.19 shows the exponent function ((q) corresponding to the 

signals of the left panel, (/i(a) (b), (B{O) (d), and CBHQ) (/) f ° r the superimposed 

signals. 

Figure 7.20 (page 169) shows that by changing the relative strength of the 

two original signals the degree of multiscaling in the signal resulting from their 

superposition can be controlled. Here I increased the step of the Heaviside function 

by a factor of 2 (7.20a) compared to Figure 7.19 and obtained a stronger multiscaling 

in the resulting signal (7.20b). 
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Figure 7.19: Multiscaling signal build by superimposing Heaviside function h(x) 

and ordinary Brownian motion B(x): a) Heaviside step function h(x), b) (h(q) the 

exponent function of h(x), c) Brownian motion B(x), d) CB ( ° ) the exponent function 

of B(x), e) h(x) + B(x) the superposition of c) and the second half of a), f) (5/1(0) 

the exponent function of h(x) + B(x) given in e). 
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Figure 7.20: Strongly multiscaling signal build by superimposing Heaviside function 

h(x) and ordinary Brownian motion B(x). Smaller B/h ratio (larger jump in the 

step function) results in a stronger multiscaling signal: a) to f) as in Figure 7.19. 
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3) Multiscaling in cloud droplet effective radius field 

I find that it is the difference between the relative strength of the variability in the 

fully cloudy sections of the cloud field to the height of step-like change at the tran­

sition between cloudy and non-cloudy pixels that leads to different type of scaling 

for fields of cloud optical depth and cloud droplet effective radius . In Figure 7.21 

I show demeaned and mean normalised transects of T and reff from scene Fg716 

(see Table B.3 in Appendix B and Tables G.4-G.6 in Appendix G). This scene has 

cloud fraction of 0.82 (G.4) and exhibits monoscaling in cloud optical depth and 

multiscaling in cloud droplet effective radius . 

0 50 100 ' 150 200 250 
x [km] 

Figure 7.21: Demeaned and mean normalised transects of cloud optical depth and 

cloud droplet effective radius taken from scene F 8 7 I 6 : a) cloud optical depth , b) 

cloud droplet effective radius . 
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In Figure 7.21 the begining of the record corresponds to broken cloud (values 

of '-1' represent clear pixels). There is a striking difference between the r and rejf 

transects. For cloud optical depth the variability due to transitions between cloudy 

and clear pixels is of the same range or even smaller than the variability of r in the 

fully cloudy sector. This case corresponds to large ratio of field variability to the 

step-like transitions between cloudy and clear pixels. One can expect the resulting 

signal to be dominated by the monoscaling variable field. 

In contrast, to the cloud optical depth variability the cloud droplet efFec­

tive radius field is only weakly variable in the fully cloudy sector and the step-like 

transition between clear and cloudy pixel is determinant to the multiscaling of the 

resulting signal (compare Figures 7.19e-f and figure 7.20). In Figure 7.22a-b on page 

172 I show the exponent functions CT(Q) and (reff{q) computed for the transects of 

r and reff shown in Figure 7.21. 

As expected, the cloud optical depth in Figure 7.22 scales as a monofractal 

and cloud droplet effective radius as multifractal. In the fully cloudy sector of the 

field the cloud droplet effective radius is monoscaling (not shown). 

The lower variability of reff is consistent with the reference cloud model 

given by (3.2). Since 

a(bx) = ba{x) (7.5) 

where a denotes the standard variation, x is a random variable and b a numerical 

factor, we can expect 

a(log(reff)) = a(rl^) = 0.2a(r) (7.6) 

or 

k = ^ < ^ ) = 5 ( 7 7 ) 

if N s a t is held constant. In practice, measurement uncertainty and the finite range 

of Nsat , even in scenes nearly homogeneous in N s a t , add to the variability of reff 
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resulting in K < 5 . For the majority of uni-modal scenes I find K = 2-4. In other 

words, assuming no errors in retrievals, for a single branch case 40 to 80% of the 

observed variability of reff can be attributed to varying r. The other 20 to 60% 

will be attributed to variable Nsat . 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
q 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
q 

Figure 7.22: Exponent functions for the transects of cloud optical depth and cloud 

droplet effective radius shown figure 7.21: a) (T(g), b) (re//(?)• 

Scene 8 again deserves special attention. The scene is fully cloudy yet exhibits 

strong multiscaling in cloud droplet effective radius (to the point of breaking where 

((g) begins to decrease) and monoscaling in cloud optical depth and cloud radiance. 

In this case it is the steep transition between two reff regimes which acts as the 

step function. Figure 7.23 shows transects of r and reff across the transition line in 

scene 8 and Figure 7.24 (page 174) shows the exponent functions (T(g) and C,rejJ{q) 
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along these transects. 

i 1 1 r 

0 50 100 150 200 250 
x[km] 

• 1 1 1 1 r -

0.5 - b) -

-0.5 -
I i i i i _ 

0 50 100 150 200 250 
x [km] 

Figure 7.23: Demeaned and mean normalised transects of cloud optical depth and 

cloud droplet effective radius taken from scene 8: a) cloud optical depth , b) cloud 

droplet effective radius . 

This simple example demonstrate that multiscaling occurs in signals which 

are composed of a weakly variable monoscaling field superimposed on a step-like 

transition. I found such signals in cloud parameter fields, especially cloud droplet 

effective radius . They are associated with 

1. broken clouds 

2. solid clouds in a transition zone between two very different reff regimes which 

in chapter 4 I linked to two air masses of distinctly different Nsat 
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This multiscaling behaviour is revealed only for q > 1 and does not affect 

the values of the nonstationarity parameter H(l) (compare ((1) for mono and mul­

tiscaling scenes in Figures 7.16 to 7.18), and thus bears no effect on the bifractal 

plane location of the data. 

3.5 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
q 

I I I 

b) 

i i i i i 

i i i 

. i 

i i i 

1 _ 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
q 

Figure 7.24: Exponent functions for the transects of cloud optical depth and cloud 

droplet effective radius shown Figure 7.23: a) (T(q), b) (reff(q)-

Davis et al. (1996a) observed multiscaling structure functions for cloud liquid 

water content (Iwc) fluctuations in aircraft measurements and Marshak et al. (1997) 

observed both multiscaling and monoscaling in aircraft measured Iwc. Davis et al. 

(1996a) computed multifractal statistics for cloud radiance in one Landsat scene and 

found the structure function to be weakly multiscaling. However, 7% of the Landsat 

scene was saturated. Saturated pixels represent bad retrievals and as such fell into 
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the same category as clear pixels. As I found in my analysis 93% cloud fraction 

(equivalent to 7% bad pixels) was enough to generate multiscaling in structure 

function. 

4) Scaling of singular measures 

In Figure 7.25 on page 176 I show the information dimension D(q) as the function of 

moment order q for cloud radiance, cloud optical depth and cloud droplet effective 

radius for uni-modal scenes 1 to 6. The multiscaling of singular measures {D(q) 

dependent on q) is evident in all scenes and all cloud parameters. 

The D(q) plots for the remaining scenes of the (bi-modal and thick) are all 

similar to those in Figures 7.25 and are not shown here. This multiscaling of singular 

measures is also an intrinsic feature of fully developed turbulence. The spectrum of 

D(q) was measured by Meneveau and Sreenivasan (1987a) for q between [-20,20]. 

Meneveau and Sreenivasan (1987)) found that this D(q) spectrum was within the 

experimental accuracy identical to a spectrum generated by a simple multifractal 

cascade model. 
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Figure 7.25: Information dimension D(q) of a) cloud visible radiance field, b) cloud 

optical depth , and c) cloud droplet efFective radius for scenes uni-modal scenes 1 

to 6 of Table B . l : 1 (+), 2 (o), 3(*), 4(x), 5(A), 6(D). 
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7.3.3 Nonstationarity and intermittency in the bifractal plane. 

Individual scenes 

In tables G.4-G.13 in Appendix G I present the nonstationarity H(l) and intermit­

tency C(l) parameters and spectral slope estimates obtained through the structure 

function analysis ((2) + 1 = 2H(2) + 1, estimated from the least squares fit to the 

ensemble averaged power spectrum 3 and, estimated from the least squares fit to 

the octave binned power spectrum 3% for the fields of cloud visible radiance, cloud 

optical depth and cloud droplet effective radius of the analysed scenes. Scenes in 

Tables G.4-G.13 are labeled with the name of data set (F$j, P94, P 9 5 or 5gs) and 

a scene number with the data set. Additionally, scenes which appeared before in 

chapters 3 and 4 (1 to 15 in Table B.l) have their original numbers indicated in 

brackets. 

The results for the F87 data set are presented in Tables G.4-G.6 for cloud 

visible radiance, cloud optical depth and cloud droplet effective radius respectively. 

Tables G.7-G.9 contain the results of analysis of cloud visible radiance, r and reff 

fields for the scenes of the P94 data set and Tables G.10-G.12 the results of analysis 

for the scenes of the P95 data set. Finally, Table G.13 contains the results of 

analyses of cloud visible radiance fields for scenes from the 595 data set. 

In Figure 7.26 I show the bifractal plane location of cloud radiance (<0) , 

cloud optical depth (A) and cloud droplet effective radius (o) of the F87 data set 

ensemble averages and individual scenes. For reff fields with two nonstationary 

regimes only the the first (starting at smallest scales) is considered. Full symbols in 

Figure 7.26 indicate the ensemble averages and open symbols the individual scenes. 

The mean r ranges between [8,32] and the mean reff between [7 pm ,12 /im ] for 

scenes in this plot. Scenes no ^ 7 6 , 7, 9, andl2iol5 were taken on F I R E days when 

drizzle was observed during aircraft missions. 
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Figure 7.26: FIRE cloud field visible radiance, cloud optical depth and cloud droplet 

effective radius multifractal parameters in the bifractal plane. Full symbols indicate 

ensemble averages for the F87 data set. Open symbols indicated individual scenes: 

0 - cloud visible radiance, A - cloud optical depth , and o - cloud droplet effective 

radius . Individual scenes have mean r between[8,32] and mean reff between [7 \im 

,12 fim ]. 

The bulk of data points lies between H(l) of (0.4,0.6) and C(l) of (0.04,0.07). 

The range of values of the intermittency parameter C(l) (0.04,0.07) for the radiance 

field, (0.04,0.09) for the optical depth and (0.4,0.09) for the cloud droplet effective 

radius is not unlike the scatter reported by Marshak et al. (1997) for the intermit­

tency parameter of LWC (0.03,0.15). The values of the nonstationarity parameter 

H(l) are generally larger for the fields of cloud radiance, optical depth and cloud 

droplet effective radius than those observed by Marshak et al. (1997) for the LWC 

fluctuations. The scatter of the nonstationarity parameter is (0.40,0.64) for the 
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cloud radiance field, (0.42,0.65) for cloud optical depth and (0.22,0.63) for cloud 

droplet effective radius compared to (0.22,0.34) for the Iwc data of Marshak et al. 

(1997). The greater range of H(l) values for cloud droplet effective radius is due 

mainly to the one point at low value of H(l)= 0.22. 

My observables, cloud visible wavelength radiance field, cloud optical depth 

and cloud droplet effective radius are not the same as in Marshak et al. (1997) (LWC) 

and I cannot make a direct comparison between our results and those of Marshak 

et al. (1997). However, if the universality of the thermo-dynamical processes shap­

ing marine stratocumulus holds as postulated by Davis et al. (1996) and Marshak 

et al. (1997) one would expect each observable to cluster in the bifractal plane of 

nonstationarity and intermittency parameters, although not necessarily around the 

same point. I find this to be the case for fields of cloud radiance, cloud optical depth 

and cloud droplet effective radius of the F87 data set. 

Ensemble averages 

In Figure 7.27 on page 180 I show the location of F87, P94, P95 and 595 ensemble 

averages of the nonstationarity and intermittency parameters (H(l), C(l)) for the 

fields of cloud visible radiance, optical depth and cloud droplet effective radius. 

I also indicated the location of multifractal parameters of L W C data from 

FIRE, A S T E X and S O C E X experiments (ensemble averages) from Marshak et al. 

(1997), and results for one scene of Landsat Thematic Mapper channel 2 cloud 

radiance data from F I R E reported in Davis et al. (1996a). 

The nonstationarity parameter is contained between (0.43,0.59) for all fields 

and all data sets which is less than the scatter between the nonstationarity parame­

ters of the individual scenes in the F87 data set. Al l three fields of the .F87 data set, 

cloud radiance, cloud optical depth and cloud droplet effective radius lie very close 

to each other in the bifractal plane. Al l fields P94 and P95 data sets are less than 

0.1 apart in H(l) but the cloud radiance field and r and reff are widely separated in 
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the intermittency parameter. This is increased scatter is correlated with decreasing 

cloud fraction. 
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Figure 7.27: The bifractal plane location of ensemble averages of F87, P94, P95 

and S95 data sets for cloud visible wavelength radiance field (*), cloud optical depth 

(A) and cloud droplet effective radius (o). Also indicated is the location of the cloud 

liquid water content data sets from FIRE, ASTEX and SOCEX experiments (•) 

(after Marshak et al. (1997)) and Landsat cloud radiance ( 0) (channel 2 of the 

Thematic Mapper) after Davis et al. (1996a). 

The intermittency of the retrieved fields is necessarily greater than the in­

termittency of cloud radiance if clouds are broken. The fairly continuous radiance 

signal is overlayed with the cloud-clear mask in the retrieved field. F87 scenes are 

all almost fully cloudy and the intermittency of all fields is very close and low. P94 

and P95 data sets contain scenes with low cloud fraction and this is reflected in 

enhanced intermittency of cloud optical depth and cloud droplet effective radius 
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fields as compared to the cloud radiance field in this data sets. 

7.4 Summary of the results of multifractal analysis. 

I used the formalism of multifractal analysis (Davis et al. (1994)) to quantify the 

spatial behaviour of marine stratocumulus cloud fields. I analysed a total of 34 

A V H R R scenes of cloud visible radiance field, optical depth and cloud droplet effec­

tive radius from four different data sets: 1) the F I R E 1987 experiment, 2) Pacific 

Ocean 1994 data set, 3) Pacific Ocean 1995 data set and 4) the S O C E X experi­

ment (Indian Ocean). The goal of this analysis was to quantify spatial properties of 

fields of cloud radiance, cloud optical depth and cloud droplet effective radius and 

determine spatial characteristics of uni-modal, bi-modal and thick cloud scenes. 

I found: 

• a similar range of nonstationarity and intermittency parameters for all type 

of scenes (uni-modal, bi-modal, and thick clouds) despite different structure 

function behaviour (i.e. observed scaling range) and sometimes different type 

of scaling of structure function (quality of nonstationarity) (see Table G . l 

Appendix G). 

• a similar behaviour of the second order structure functions of cloud radiance 

and cloud optical depth and distinctly different long range behaviour of cloud 

droplet effective radius second order structure function especially in scenes 

with bi-modal distribution of r and reff or thick clouds with wide range of 

Nsat scenes. I postulated that the long range correlations in fields of refj are 

associated with the coexistence of spatially distinct reff (or Nsat ) regimes 

within a scene. 

• monoscaling in cloud radiance and cloud optical depth and cloud droplet effec­

tive radius in fully cloudy scenes with the exception of rejj fields with sharp 

(step-like) transitions between two reff regimes (Figures 7.23 and 7.24). 
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• multiscaling in broken clouds, most notable in field of reff. 

• bifractal plane location of important cloud parameters: cloud radiance, cloud 

optical depth and cloud droplet effective radius . 

• no systematic dependence of H(l) and C(l ) on cloud optical depth . 

The multifractal analysis quantifies and qualifies two aspects of atmospheric 

processes: nonstationarity and intermittency. Values obtained in this section can 

be compared directly to the synthetic cloud fields begining to be generated by large 

eddy simulations. A n alternative is to employ stochastic methods to generate non-

stationary and intermittent signals with H(l) and C(l ) taken from the data pre­

sented here. Davis et al. (1996a) and Marshak et al. (1997) found the location in the 

bifractal plane cloud liquid water content (Iwc) fluctuations measured by aircraft in 

F I R E and A S T E X experiments. Additionally, Davis et al. (1996a) obtained H(l) 

and C(l ) for aircraft measured fluctuations of Iwc in S O C E X and for one scene of 

Landsat measured cloud visible radiance during FIRE. I have added three new pa­

rameters to the bifractal plane: 1) cloud visible wavelength radiance, 2) cloud optical 

depth and 3) cloud droplet effective radius, all derived from satellite observations 

with the A V H R R . 

I found the multifractal properties of cloud visible wavelength radiance field 

and cloud optical depth to be very similar in the fully cloudy scenes. For the F87 

data set which consists of scenes which are all fully cloudy or almost fully cloudy 

the bifractal location of cloud radiance field is (0.49,0.05) whereas the cloud optical 

depth field has coordinates (0.50,0.05) and the cloud droplet effective radius has 

(0.48,0.06). The close proximity of the cloud radiance and cloud optical depth fields 

in the bifractal plane justifies using cloud visible radiance as surrogate of cloud 

optical depth field in studies of spatial distribution of cloud liquid water, when 

retrievals of cloud optical depth are not available. The close location of all three 

points is another indication that variability in r and refj is tightly coupled in these 
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data sets. 

Most of the cloud radiance fields and cloud optical depth fields I analysed 

exhibited monofractal or weakly multifractal scaling in structure function. In con­

trast, many of the cloud droplet effective radius fields exhibit strong multiscaling 

behaviour. I attribute this difference in type of scaling between cloud radiance or 

cloud optical depth and cloud droplet effective radius to the weak small scale vari­

ability of reff as compared to the small scale variability of r or cloud radiance. 

The singular measures exhibit multiscaling behaviour in all cloud parameter fields 

as expected for turbulent flows. 

The strong coupling between cloud optical depth, cloud droplet effective 

radius and cloud droplet number concentration and cloud reflectivity discussed in 

chapter 1 is reflected in similar spatial structure of r, reff and cloud radiance fields. 

This is expected given the success of the reference model in explaining r, reff 

correlations. Variability in Nsat on scales comparable to the size of scenes affects 

some characteristics of r e / / field. In particular, bi-modal scenes may exhibit second 

nonstationary scaling regime in r e / / and multiscaling in reff structure function. 

The values of [H(l),C(l)] remain however unaffected by variability of Nsat . 
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Chapter 8 

Conclusions 

8.1 Summary 

In this dissertation I investigated the mesoscale variability of cloud optical depth 

and cloud droplet effective radius in marine boundary layer clouds. The cloud op­

tical depth and cloud droplet effective radius determine cloud radiative properties, 

and understanding their variability is important to understanding the complex in­

teractions between clouds and climate. 

The cloud optical depth and cloud droplet effective radius fields used in this 

study were retrieved from polar orbiting satellite A V H R R radiance measurements 

with the technique of Nakajima and Nakajima (1995). The data was acquired during 

four experimental periods: F I R E 1987 (ISCPP), Pacific Ocean 1994 (UBC), Pacific 

Ocean 1995 (UBC), and S O C E X 1995 (CSIRO). 

For these data sets I reported the observation of a relationship between cloud 

optical depth and cloud droplet effective radius (chapters 3 and 4). In chapter 3 

I proposed a simple "reference" cloud model (3.2) based on the assumption of a 

vertical profile of cloud liquid water content that is linear with height and a vertical 

profile of cloud droplet number concentration that is constant with height. I derived 

the relation rejf oc T 1 / 5 for this model, where the proportionality includes the cloud 

droplet number concentration N and cloud subadiabaticity 0 (or alternatively Nsat 
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=N/VP). 
In the framework of this simple model I was able to provide an explanation 

for the observed correlation of cloud optical depth and cloud droplet effective radius 
as reported first by Nakajima and Nakajima (1995) and later in this work (chapters 
3 and 4). I distinguished between uni-modal and bi-modal joint distributions of r 
and reff and considered the special case of thick clouds (r > 5 for every pixel in the 
scene). The uni-modal scenes are well described by the simple "reference model" 
where the variability in r and rejj results primarily from the variability of cloud 
geometrical thickness. Bi-modal scenes mark a departure from the simple model 
caused by the variability of Nsat (e.g. due the coexistence of two distinct populations 
of Nsat in the scene). Thick clouds, treated as a special case because they do not 
regress to a power law (they fail to satisfy condition II for fitting suitability, see 
page 60), can have uni-modal or bi-modal joint distributions of r and refj. In fact, 
in section 3, I observed thick clouds with one maximum in the distribution of r and 
ref f which extends across a wide range of Nsat • 

In chapter 4 I used bivariate linear regression on log transformed coordinates 
to fit a general power law to r and r e// data for over three hundred cloud scenes 
classified as homogeneous with respect to cloud droplet number concentration (i.e. 
uni-modal) and of the approximate size of a GCM grid cell. For 55% of these scenes 
I found a power law dependence between r and reff with an exponent consistent 
with the reference model (with error bars of less than 30%). Another 25% the scenes 
provided a 'marginally successful' fit (agreement with error bars greater than 30% 
but less than 50%). 

I applied the model (3.2) to satellite data of r and r e// to infer Nsat , and 
showed that AVHRR imagery can differentiate between two Nsat modes if they differ 
by 40 cm - 3 or more, given estimated errors of r (15%), and reff (20%). I reported 
frequency distributions of r and ref / on scale of 256 km x 256 km and found that the 
gamma distribution is a good fit to the distribution of r which is always positively 
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skewed, and reff when it is both uni-modal and positively skewed or symmetric. 

In chapter 5 I inferred cloud optical depth and cloud droplet effective radius 

from 6 in cloud aircraft flights and co-located satellite measurements acquired during 

SOCEX 1995, and found that both the aircraft and the satellite data were well 

described by the cloud model of equation 3.2. Aircraft measurements also allow 

for direct estimation of cloud subadiabaticity /3. As a test of the reference cloud 

model I inferred cloud droplet number concentration from aircraft estimates of T 

and reff and compared it to the in situ values. The inferred cloud droplet number 

concentrations, fall within the range of the cloud droplet number concentration 

measured in situ. I also used the aircraft estimate of j5 to infer N from satellite 

measurements of Nsat . 

Comparing satellite and aircraft in situ measurements I found, as others have, 

(Nakajima and Nakajima (1995), Platnick and Valero (1995)) that the AVHRR 

retrievals overestimated the cloud droplet effective radius in comparison with the in 

situ measurements by 1 to 3.6 \im for single layer clouds. This in turn, leads to an 

underestimation of cloud droplet number concentration from satellite in comparison 

to in situ values. For a given scene this offset appears to be independent of the cloud 

optical depth. 

Spatial variability of cloud optical depth and cloud droplet effective radius, 

and cloud visible wavelength reflectivity is the focus of chapters 6 and 7. I com­

pared spatial behaviour of uni-modal, bi-modal and thick clouds and found that 

bi-modal scenes and thick clouds with a wide range of Nsat show different long 

range behaviour in ref f than in cloud radiance or r as evidence by the second order 

structure function. The behaviour of the structure function within the scaling range 

is similar for all parameters. In addition, all types of clouds exhibit similar values 

of the nonstationarity (H(l) and intermittency (C(l)) parameters. 

In 34 scenes in four data sets I observed breaks in scaling at 3 to 20 km in 

fields of cloud visible radiance and T and up to 40 km in reff. I found nonstationarity 
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and intermittency parameters of cloud visible radiance, r and reff for these scenes, 

computed ensemble averages for each field and each data set and marked their 

location in the bifractal plane. The nonstationarity parameter is contained between 

0.43-0.59 for ensemble averages of all fields and all data sets. The scatter in H(l) 

is greatest for the cloud radiance field due mainly to the addition of the optically 

thick and highly variable SOCEX data set, which contains the largest value of the 

nonstationarity parameter. Even excluding this data point, the scatter of H(l) 

values is still significantly larger than that observed by Marshak et al. (1997) and 

Davis et al. (1996a) between three data sets of cloud liquid water content from FIRE 

and ASTEX and SOCEX. 

Al l fields have very similar values of the nonstationarity and intermittency 

parameters in fully cloudy conditions. The intermittency parameter is typically less 

than 0.07 for all fields in fully cloudy scenes but rises dramatically for r and reff if 

the cloud in the scene is broken. 

I found structure functions for cloud visible radiance and cloud optical depth 

to scale predominantly as monofractals or at most weak multifractals. In contrast, 

multiscaling is frequent in fields of cloud droplet effective radius and is almost always 

associated with broken cloudiness but can also occur in the presence of a sharp 

transition between two cloud masses of distinctly different reff. This different type 

of scaling in cloud droplet effective radius field is a signature of much weaker small 

scale variability of this field as compared to fields of cloud optical depth or cloud 

radiance. Singular measures obey multiscaling for all fields in all scenes. 

Thus, after exploring selected aspects of mesoscale variability of cloud op­

tical depth and cloud droplet effective radius and cloud visible radiance, I found 

the variables to be strictly correlated and exhibit similar patterns of variability in 

scenes representative of the "reference model" (homogeneous with respect to Nsat). 

Inhomogeneity in Nsat can lead to quantitatively (extent of scaling range) and quali­

tatively (type of scaling) different spatial behaviour of cloud optical depth and cloud 
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droplet effective radius . However, the nonstationarity and intermittency param­

eters remain within the same range for all types of scenes, those which follow the 

simple model and those which mark departures from the reference behaviour. 

8.2 Discussion 

The cloud regimes I analysed in this thesis represent summer time marine stratocu­

mulus at two geographical locations: the eastern Pacific Ocean of California, and 

the Southern Ocean near Tasmania, where this type of cloudiness frequently occurs. 

I examined cloud sectors (scenes) 256 km x 256 km in size which, with few excep­

tions, were fully cloudy or nearly fully cloudy (cloud fraction > 0.90). The range 

of observed mean cloud optical depth was approximately 8 to 32 and the observed 

mean cloud droplet effective radius ranged between 6 and 17 fim. In some cases 

(FIRE, SOCEX), aircraft measurements were made in clouds within hours of satel­

lite overpass and both precipitating and non-precipitating clouds were encountered. 

Collectively, this data set includes complicated clouds with a range of thick­

nesses. Both non-precipitating clouds and precipitating clouds in which microphys­

ical processes postulated to produce important macrophysical feedbacks are repre­

sented. 

8.2.1 The success of the simple "reference" cloud model 

The reference cloud model (3.2) was derived with the assumptions of constant cloud 

droplet number concentration and constant cloud subadiabaticity 0. Considering 

the restrictive nature of these assumptions a surprisingly large percentage (55%) of 

the uni-modal clouds fit relationship (3.2). This result may indicate that Nsat is 

frequently nearly homogeneous on scales 256 km x 256 km. 

On the other hand, sharp transitions in Nsat between spatially coherent re­

gions can be encountered in cloud scenes of this size off the California coast. Such 

scenes exhibit bi-modal distributions of r and reff. Typically, to observe a bi-modal 
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structure in r and reff scatter plots the difference in Nsat between the two modes 

has to be greater than 30% of the mean Nsat . The technique of retrieving Nsat 

has the potential to be useful in remotely detecting aerosol fronts in cloud-topped 

boundary layer. In this study I found sharp transitions in Nsat as much as 500 km 

off the coast. A larger, more diverse data set would permit a construction of a cli­

matology of those aerosol fronts, as well as an investigation of how they eventually 

homogenise. 

In the framework of the reference model the maximum attainable r and reff 

at a given Nsat are constrained by available cloud liquid water path . This constraint 

is reflected in the characteristic shape of the clusters in scatter plots of r and reff 

for clouds scenes with variable Nsat (see Figure 3.6). 

Similar spatial properties of r and refj fields for uni-modal clouds confirm the 

close coupling between these two cloud parameters as postulated by the reference 

model. Departure from the reference behaviour (bi-modality) can sometimes be 

detected in the difference between the spatial behaviour of r and reff, manifested 

for example by different scaling ranges or different multifractal character of these 

two fields. The reference cloud model is also supported by in situ measurements 

and was found to retrieve values of Nsat and cloud droplet number concentration 

(N) (based on aircraft measurements of r and reff) consistent with those measured 

directly by aircraft probes. 

8.2.2 O v e r e s t i m a t i o n o f c l o u d d r o p l e t effective r a d i u s b y r e m o t e 

sens ing 

I compared satellite and aircraft measurements of cloud droplet effective radius for 

six S O C E X flights. For these cases I found that satellite retrievals overestimated 

reff by approximately 0.7 to 3.6 fj,m for single layer clouds, which is consistent will 

earlier observations as discussed in section 5.1. The aircraft data in S O C E X were 

collected during 2 to 4 hour long flights which in their early phase coincided with 
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the satellite overpass . These long aircraft sampling times could affect the accuracy 

of the comparisons with satellite measurements. 

The satellite overestimation of reff appears to be independent of r (see 

Figure 5.7) for r > 1 and thus can be described as an constant offset. This is good 

news for the analysis of the spatial distribution of ref j and Iwp, meaning that the 

spatial structure of these fields will not be affected by this error in the retrievals but 

simply shifted, by a constant value, to higher effective radii and lower Iwp. 

From the point of view of N s a t retrievals, the overestimation o£refj will result 

in underestimation of N s a t • The worst case reff overestimation observed in this 

study is an offset of 3.6 pm which resulted in approximately 32% underestimation 

of N s a t . So far there is no satisfactory explanation for this remote sensing offset 

overestimation of reff (recall the discussion in section 5.1). Possibly, more insight 

into this problem will be gained with the introduction of new satellites (NOAA 

K / L / M , MODIS, Landsat 7) which make available spectral bands sensitive to cloud 

radiation in the weakly absorbing 2 pm wavelength region, which is less affected by 

emission than the 3.7 pm A V H R R channel. 

8.2.3 S p a t i a l s t r u c t u r e o f c l o u d fields 

With the 1.1 km A V H R R resolution I was able to access only the upper region 

of a (presumed) scaling range that extends to mm scales in turbulent cloud fields. 

I was, however, able to see the marked transition between nonstationary scaling 

regime and stationary nonscaling regime (scale break) in all scenes I analysed. I 

encountered scale breaks at 3 to 20 km in fields of cloud visible radiance and r and 

up to 40 km in reff. These scaling ranges are consistent with the observations of 

Davis et al. (1996) who saw a scaling range of approximately 20 km for cloud liquid 

water content ( Iwc) in F I R E clouds and Davis et al. (1996a) who reported a scaling 

range of 10 km for F I R E visible cloud radiance measured by Landsat and 5 km for 

Iwc in S O C E X . Davis et al. (1996) and Marshak et al. (1997) also reported scaling 
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range of 60 km for Iwc fluctuations in A S T E X . Barker and Davies (1992) observed 

a scale break at around 5 km in A V H R R measurements of cloud visible and thermal 

radiances for fields of shallow cumuli. They suggested that the extent of the scaling 

regime might be related to the size of cloud elements (i.e. cells) and mark different 

scaling within and between cloud cells. 

The measurements seem to disagree with the observations of Lovejoy et al. 

(1993) who analysed 15 A V H R R images of cloud fields (512 km x 512 km) over 

the Atlantic Ocean east of Florida and reported scaling in all five A V H R R channels 

with no breaks over the entire available range (2 to 512 km). However, whereas my 

observations, and those of Davis et al. (1996), Davis et al. (1996a) and Marshak 

et al. (1997) refer to a "fairly uniform" marine stratocumulus those of Lovejoy et al. 

(1993) deal with a different cloud regime. The clouds in Lovejoy et al. (1993) appear 

much more inhomogeneous. Selecting a "meteorologically homogeneous" subregion 

from one of their scenes, Lovejoy et al. (1993) obtained a power spectrum radically 

different from the power spectrum for the entire scene. 

I examined scenes with mean r approximately between 8 and 32 and mean 

reff between 6 and 17 \xm but found no stratification in the multifractal parameters 

[H(l), C(l)] with respect to r or reff. This result could be used as an argument of 

the universality of cloud processes governing the marine stratocumulus postulated 

in Marshak et al. (1997) for example, and discussed here in chapter 1. A better un­

derstanding of errors associated with estimates for these parameters combined with 

more measurements is clearly needed before any conclusion can be made regarding 

characteristic values of the stationarity and intermittency in cloud fields. 
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8.3 Future Considerations and new research 

8.3.1 Spatial structure of marine stratocumulus 

1. Accessing smaller spatial scales 

In the analysis of A V H R R data fields the accessible scaling range is limited by the 

resolution of the instrument (~ 1 km). If the scaling range is indeed a fundamen­

tal property of boundary layer clouds fields, the estimates of [JH"(1), C(l)] should 

not change with instrumental platforms or as the observation range is extended to 

smaller scales. In some scenes the scaling range ends at 3 or 4 km which leaves us 

with large uncertainties of the estimated nonstationarity parameter. It would be 

desirable to extend the available scaling range by using an instrument with a better 

resolution. 

A n immediate candidate is the Landsat Thematic Mapper (TM) with reso­

lution of 28 m. However, due to radiative smoothing (Marshak et al. (1995a), Davis 

et al. (1997a)) probably only scales greater than about 200 m could be used in the 

multifractal analysis. The usefulness of the current T M is limited to measuring thin 

clouds due to the saturation of the visible spectral bands at higher radiances. This 

limitation will be alleviated with the launch of Landsat 7 equipped with the Ex­

tended T M (ETM+) where a low gain option can be set to prevent the saturation 

in channel 1. 

The launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) 

will put into an orbit an instrument with the resolution of 500 m. This will not 

results in a great extension of the scaling range compared to A V H R R but will 

double the number of measurement points in the available scaling range thus provide 

estimates of H(l) with greater accuracy. 

One great advantage of satellite data over aircraft measurements is their two 

dimensionality. I did not explore the two dimensional aspect of satellite data in this 

work for three reasons: 1) to assure comparability with earlier studies which consid-
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ered transects of satellite fields (Barker and Davies (1992)), 2) stay within the one 

dimensional formalism of the multifractal analysis (Davis et al. (1994), 3) distor­

tions in the AVHRR images which undermine their suitability for two dimensional 

analysis. Ultimately, the two dimensionality of satellite data is a valuable asset and 

should be explored. The distortion of images is less of a problem for Landsat data 

(because of smaller viewing angles) so Landsat 7 data sets should be suited to two 

dimensional multifractal analysis. 

2. Internal structure of layer clouds : is it a universal property or notl 

Marshak et al. (1997) note the close proximity of FIRE and ASTEX ensemble av­

erages of the cloud liquid water content multifractal parameters and interpret this 

as a consequence of the common nature of the nonlinear physical processes that 

determine the internal structure of marine stratocumulus. In my observations, the 

ensemble averages of multifractal parameters of cloud visible radiance, cloud optical 

depth and cloud droplet effective radius for four data sets fall further apart. The 

high values of the intermittency parameter can be attributed to broken cloudiness. 

The scatter of the nonstationarity parameter is more difficult to explain. 

Clearly, more data is needed to substantiate (or disprove) the proposed uni­

versality and explain the observed scatter in H(l). To avoid ambiguities and addi­

tional complications introduced by broken cloudiness I would suggest to first restrict 

the analysis to fully cloudy scenes only. 

3. Monte Carlo simulation of cloud reflectivity in channels 1 and 3 

A Monte Carlo radiative transfer model can be built based on the spatial distribution 

of cloud optical depth and cloud droplet effective radius discussed in chapters 4 and 

7 and the model relationship (3.2). Such model could be an important tool to 

study the effects of spatial variability of T, reff and Nsat on cloud radiances at 

visible (channel 1) and near-infrared (channel 3) wavelengths, and to confirm the 

approximations in the Nakajima and Nakajima (1995) plane parallel code. 
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8.3.2 G C M scale c l o u d r e f l e c t i v i t y a n d c l o u d d r o p l e t effect ive r a ­

d iu s 

It is well known (Barker (1996), Cahalan et al. (1993)) that in real inhomogeneous 

cloud a mean optical depth f produces a very different albedo than its plane parallel 

homogeneous (PPH) counterpart. The negative albedo bias (inhomogeneous minus 

PPH) is between 5 to 30% depending on the degree of cloud inhomogeneity. 

To account for the sub-grid scale variability of cloud optical depth in G C M 

pixels Cahalan et al. (1993) proposed to use the effective optical theckiness ( T e / / ) 

in P P H computations where rejj = XT a n d X is a reduction factor inferred from 

the standard deviation of cloud optical depth . Barker (1996) proposed the gamma 

independent pixel approximation (F IPA) where G C M albedos are computed as fol­

lows 

POO 

r(po)= p(r)rPP{T, fj.0)dr (8.1) 
Jo 

where a(/j,o) is the TIP A albedo, app(r,/io) is the P P H albedo and p(r) is the fre­

quency distribution of r in the G C M pixel approximated by the normalised gamma 

distribution given by (4.6). Both the above methods account for the sub-grid scale 

variability of cloud optical depth but neglect any sub-grid scale variability in cloud 

droplet effective radius, despite a potentially significant effect of r e / / on cloud albedo 

reflectivity. 

Cloud properties in most GCMs, practically all of which use plane parallel 

homogeneous cloud models, are tuned so that the model monthly mean top of the 

atmosphere (TOA) broadband albedo matches the values inferred from satellite ob­

servations (Barker (1996)). Accounting for subgrid scale variability in cloud optical 

depth , by introducing to G C M either the effective optical depth approximation of 

Cahalan et al. (1993) or the F IPA of Barker (1996) or any other scheme would 

result in reduced droplet absorptance and T O A albedo at the expense of increased 

transmittance. The recovery of the match between the model and satellite albedos 
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will require an adjustment of the model mean cloud parameters (cloud liquid water 

path , cloud droplet effective radius ). Barker (1996) showed that introducing F 

IPA to G C M to account for the subgrid scale variability will require raising the 

cloud liquid water path by 20-1000% to equalise the T O A albedos, depending on 

the parameter v of the gamma distribution (which can be regarded as a measure of 

the extent of cloud inhomogeneity, see equation 4.6). The equivalent adjustment in 

cloud droplet effective radius while keeping cloud liquid water path constant would 

require 7-80% decrease in reff. Success of the reference cloud model offers a third 

alternative: use the cloud optical depth distribution in combination with a cloud 

droplet effective radius distribution given by (3.2). More work is clearly needed on 

the impact of the inhomogeneities in both reff and r on cloud albedo. 

8.3.3 Cloud subadiabaticity 

The parametrisation of the relationship between cloud optical depth and cloud 

droplet effective radius given in equation 3.2 depends on cloud subadiabaticity 3. 

We cannot infer cloud subadiabaticity from satellite measurements and have to rely 

on climatologies to resolve the Nsat and 3 ambiguity. 

There have not been many measurements of cloud subadiabaticity . Those 

known to me are discussed in section 4.3 and in more detail in Appendix E . From 

the point of view of the parametrisation in (3.2) it would be interesting to extend 

my investigation of a possible dependence between 3 and cloud droplet number 

concentration as presented in Appendix E to other clouds. Couplings between 3 

and other cloud and climatological parameters are also possible. In particular, the 

depth of the boundary layer comes to mind as Boers et al. (1991) argue that 3 < 0.5 

(or inversely 3B > 0.5, see Appendix E) corresponds to strong decoupling between 

the surface and the upper part of the boundary layer, which in turn is typical for 

deepening boundary layers. It would be worthwhile to investigate the dependence 

of the depth of the boundary layer on cloud subadiabaticity . 
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A climatology of 8 could prove very useful for estimation of cloud droplet 

number concentration from satellite measurements and in climate modelling. Ef­

forts are already underway to measure cloud subadiabaticity in fair weather cumu­

lus (Bruce Albrecht 1997, private communication). I would advocate that these 

measurements be extended to layer clouds, both marine and continental. 
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Appendix A 

Parametrisation of the relationship between cloud 

optical depth and cloud droplet effective radius 

For simplicity assume uniform distribution of cloud droplet radius from 0 at cloud 

base to r^ol at cloud top. This assumption does not affect the functional dependence 

between r and rvoi (or reff ) changing only the coefficient of proportionality. I 

further assume a linear increase of the adiabatic cloud liquid water content (qadiab) 

with height within a cloud (z). Following Austin et al. (1995) I have 

Qadiab(z) = CadiabZ (A. l ) 

The rate c of the increase of the cloud adiabatic liquid water with height 

is a function of the temperature and pressure in the cloud layer. Typical values 

of cq for stratocumulus conditions are range between 1.7 x 10~e[kgm~A] for higher 

level cool stratocumulus to 2.3 x 10~6[kgm~4] for low and warm clouds. For for 

non adiabatic clouds I modify (A. l ) by introducing a coefficient 8 (subadiabaticity) 

which ranges between 0 and 1 and represents the departure from the adiabatic cloud. 

(A. l ) becomes 

q{z) = Cadiabfiz (A.2) 

where 3 = c/cadiab-
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Following Stephens (1978) I write the cloud optical thickness in short wave­

lengths as 

rAz roo 

T= 2n[ n(rvoi)r2

oldrvoi]dz (A.3) 
Jo Jo 

where n(r) is the distribution of cloud droplet radii, and Az is the cloud 

geometrical thickness. With the assumed uniform droplet size distribution (A.3) 

becomes 

rAz 

T = 2TT Nr2

vol(z)dz (AA) 
Jo 

where N is the total number concentration of cloud droplets assumed to be 

independent of height within the cloud. 

In (A.2) the cloud liquid water content can be written as 

q(z) = ^pNrll(z) (A.5) 

From (A.2) and (A.5) follows the dependence of rvo\ on z 

rvoi(z) = a 0 ( p ^ (A.6) 

where the constant 

a3

0 = ^ (A.7) 

al « 0.41 — 0.55 x 1 0 _ 9 m _ 1 for the range of pressure and temperature encountered 

in stratocumulus clouds. Differentiating (A.6) yields 

d z = "~11inrdrvoi (A.8) 

Substituting (A.8) to (A.4) and integrating from cloud base to cloud top one 

obtains 

67riV2 

5^M1'vo1 r = -^^rlol (A.9) 

211 



or 

. 1 2 1 

rvol = ±l3tN-tTi (A.10) 

where rvo\ in microns is the droplet radius at the top of the cloud and N is 

in c m - 3 . 

Martin et al. (1994) showed that in marine stratocumulus clouds cloud droplet 

effective radius ref f can be parametrise in terms of the volume radius according to 

reff = 1.08rvol. (A.11) 

It follows from (A. 10) and (A. 11) that 

r e / r = 44/3-5 i V - M . (A.12) 

Total cloud liquid water can be expressed in terms of liquid water path (Iwp). 

The Iwp is given by 

rAz 

lwp= / q(z)dz (A.13) 
Jo 

rAz 

10 

where q is liquid water content at height z in the cloud given by (A.2). From (A.8) 

and (A.9) one finds 

dz = (2n)-1N-lr;0
2
ldT. (A.14) 

Integration of (A.13) with (A.14) yields 

5 ,5an/3. 1 A 2 6 
fa>p = - / o - r ^ »iV (A.15) 

y DTT 

where I substituted for rj,0; from A.9 . Equation (A.15) can be rewritten in the 

following way 

r = (-p) 6 ( - ^ - ) slwpeNs (A.16) 
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or in terms of rvoi and Iwp as 

rV0l = (^)lslwphN-h. (A.17) 
Z7T/9 

For a given supply of cloud liquid water (Iwp) the maximum obtainable 

cloud optical thickness in proportional to the total number concentration of of cloud 

droplets. It follows from (A. 16) and (A. 10) that 

r = 9-lwp r;0\ (A.18) 

or alternatively 

r = ^arlwp r~}f = a\lwp r~h (A.19) 

for Iwp in [gm~2] and r in microns and ar = reff/rvoi = 1.07 (Martin et al. (1994)). 

(A. 19) specifies what combination of optical depth and effective radius are allowed 

for given liquid water path. 
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Appendix B 

Data 

My investigation into the relationship between cloud optical depth and cloud droplet 

effective radius is based on the retrievals of cloud properties from the A V H R R 

radiance measurements using the method of Nakajima and Nakajima (1995). I use 

four sets of satellite data, three come from the Northeastern Pacific region (FIRE 

data set, U B C summer 1994 and U B C summer 1995 data sets) and one data set 

from southern Indian Ocean near Tasmania acquired during the Australian Southern 

Ocean Cloud Experiment II (SOCEX II). Total of 50 satellite days were retrieved 

from which about 600 cloudy sectors 256 km x 256 km in size were extracted for 

further analysis. 

For the S O C E X II experiment in situ cloud data from aircraft measurements 

closely coordinated with the satellite overpasses are available in addition to the 

A V H R R satellite data. The aircraft data are used to validate the parametrisation of 

the relationship between cloud optical depth and the cloud droplet effective radius 

and asses the accuracy of the results based on satellite data. Aircraft data are also 

available for F I R E but they are not as closely coincident with satellite overpasses. 

B . l Synoptic conditions 

The predominant feature of the summer synoptic scale circulation over Northern 

Pacific is the subtropical high, centred near 45° N and 140° W (see Figure B.l) . 
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Figure B.l: North Pacific summer. Solid lines indicate pressure [mb], dashed lines 

are isotherms of the sea surface temperature [°K], arrows represent the wind at 1000 

mb level. Standard wind vector magnitude (lower left corner) is 25 m s"1 (NMC 

analysis July 15, 1994). 
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Stratiform clouds frequently occur on the east side of the anticyclone and 

are advected towards the Equator along the coast of North America. The depth of 

the boundary layer in this region is about 1 km but it increases steadily as the air 

is advected over the warmer water. The average stratiform cloud fraction in June, 

July and August in this region is 60 to 70% (Klein and Hartmann (1993)). The 

observed monthly-averaged optical depth ranges between 5 to 14 (ISCCP Monthly 

Cloud Products). Typical cloud droplet effective radius for clouds of this region is 

about 10 fj,m (Han et al. (1994), chapter 4 of this thesis). 

The summer circulation over the Indian Ocean south of Australia is more 

variable. Highs dominate east of Tasmania (see Figure B.2 page 217) but passages 

of cold fronts associated with transitory lows further south are frequent. Klein and 

Hartmann (1993) estimate for this region annual average stratiform cloud amount 

of 40%. The conditions during the S O C E X II experiment were conductive to for­

mation of a decoupled cloud layer with strong convective elements embedded in the 

otherwise homogeneous cloud layer (Boers et al. (1997)). In the experiment area the 

typical observed cloud optical depth varied between 3-36 and cloud droplet effective 

radius between 7-14 \xm. 
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Figure B.2: Austral ian summer. Solid lines indicate pressure [mb], dashed lines are 

isotherms of the sea surface temperature [°K], arrows represent the wind at 1000 

mb level. Standard wind vector magnitude (lower left corner) is 20 m s~] ( N M C 

analysis January 31, 1995). 
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B.2 Lists of scenes analysed in the thesis 

In Table B . l I list scenes presented as examples in chapter 3 and 4. The table 

contains scene ID number, date, satellite and orbit number and sector coordinates. 

Scenes 1-6 exhibit a uni-modal distribution of r and reff. Scenes 7-10 represent 

scenes with bi-modal distribution r and reff. Scenes 11-14 represent thick clouds 

(r > 10). Scene 15 is an example of scene unsuitable for fitting to a power low due 

to an insufficient range of r (see chapter 4 section 4.1.1). 

Scene No Date/orbit ID lat [°N] Ion [°W] 

1 87/07/16 N10-218.5 35.03 -132.46 

2 87/07/09 N10-275.5 28.66 -124.62 

3 87/07/12 N10-505.3 34.89 -129.88 

4 94/07/17 Nll-29943 35.38 -127.93 

5 87/06/23 N10-314.2 30.61 -131.16 

6 94/07/16 Nll-29929 24.40 -121.11 

7 87/06/23 N10-314.2 38.40 -128.62 

8 87/07/14 N10-277.2 28.19 -117.65 

9 95/06/15 N12-21220 24.86 -131.89 

10 87/07/14 N09-277.3 29.23 -126.94 

11 94/07/17 Nll-29943 38.27 -124.20 

12 94/07/17 Nll-29943 37.93 -124.93 

13 87/07/14 N09-277.3 33.84 -123.84 

14 87/07/13 N09-268.4 33.60 -126.16 

15 94/07/16 Nll-29929 23.63 -126.02 

Table B . l : List of uni-modal (1-6), bimodal (7-10) and thick cloud (11-14) scenes 

discussed in chapter 3 and chapter 4 Table 4.1 (1-8, 11 and 15). Scene 15 is given as 

an example of scene unsuitable for power law fit. Latitude and longitude are given 

for scene centres. 
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In Table B.2 I list the 10 randomly selected uni-modal scenes for which 

gamma distribution was fit to cloud optical depth and cloud droplet effective radius 

frequency distribution in chapter 4. 

Scene No Date/orbit ID lat [°N] Ion [°W] 

16 87/07/12 N10-505.3 33.53 -124.71 

17 87/07/16 N10-218.5 32.11 -133.30 

18 94/07/12 Nll-29802 34.89 -129.88 

19 87/07/31 N10-323.6 29.29 -126.12 

20 94/06/23 Nll-29802 25.54 -128.83 

21 94/07/16 Nll-29830 40.32 -132.12 

22 94/06/23 Nll-29717 38.20 -132.30 

23 95/07/14 N14-20266 34.11 -124.34 

24 87/07/07 N10-217.5 29.62 -124.81 

25 87/07/04 N10-217.4 31.52 -121.42 

Table B.2: List of 10 randomly chosen uni-modal scenes included in Table 4.2, and 

Figures 4.7 and 4.10 in chapter 4. Latitude and longitude are given for scene centres. 
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Table B.3 lists scenes of F87 data set used in the multifractal analysis to 

compute the ensemble average of nonstationarity and intermittency parameters for 

fields of cloud visible radiance, cloud optical depth and cloud droplet effective radius. 

Scene No Date/orbit ID lat [°N] Ion [°W] view 
angle 

1(1) 87/07/16 N10-218.5 35.03 -132.46 0-10 
^87 2(2) 87/07/09 N10-275.5 28.66 -124.62 12-28 
F87 3(3) 87/07/12 N10-505.3 34.89 -129.88 0-15 
^87 4(5) 87/06/23 N10-314.2 30.61 -131.16 7-22 

^87 5(7) 87/06/23 N10-314.2 38.40 -128.62 7-22 
-P87 6(8) 87/07/14 N10-277.2 28.19 -117.65 7 22 

^87 7(13) 87/07/14 N09-277.3 50.65 -126.89 0-7 
F87 8(14) 87/07/13 N09-268.4 33.60 -126.16 0-10 
F87 9 87/06/30 N10-264.1 32.79 -118.97 0-11 
-̂ 87 10 87/07/02 N10-217.2 34.38 -135.52 7-22 
-̂ 87 11 87/07/02 N10-217.2 37.42 -131.45 0-14 
F87 12 87/07/14 N09-277.3 33.81 -121.94 0-10 
F87 13 87/07/14 N09-277.3 36.16 -123.46 0-15 
F87 14 87/07/14 N10-277.2 29.37 -123.29 19-35 
-̂ 87 15 87/07/14 N10-277.2 29.57 -120.90 4-19 

-̂ 87 16 87/07/16 N10-218.5 32.11 -133.30 0-10 

F87 17 87/07/09 N10-275.5 33.39 -122.10 4-19 

Table B.3: Scenes of F87 data set analysed in chapter 7 and included in the F87 
ensemble average H(l) and C(l ) for cloud visible radiance, cloud optical depth and 
cloud droplet effective radius". Scenes . F l — F9 were discussed previously in chapters 
3 and 4. Their numbers from Table B . l are given in brackets. 
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Table B.4 lists scenes of P94 data set used in the multifractal analysis to 

compute the ensemble average of nonstationarity and intermittency parameters for 

fields of cloud visible radiance, cloud optical depth and cloud droplet effective radius. 

Scene No Date/orbit ID lat [°N] Ion [°W] view 
angle 

P94 1(4) 94/07/17 Nll-29943 35.38 -127.93 14-29 
P 9 4 2(6) 94/07/16 Nll-29929 24.40 -121.11 16-33 
P 9 4 3(11) 94/07/17 Nll-29943 38.27 -124.20 0-10 
P 9 4 4(12) 94/07/17 Nll-29943 37.93 -124.93 0-10 
P 9 4 5(15) 94/07/16 Nll-29929 23.63 -126.02 4-20 
P 9 4 6 94/06/28 Nll-29675 24.07 -131.32 0-16 
P 9 4 7 94/07/09 Nll-29830 26.16 -119.98 4-20 
Pm 8 94/07/18 Nll-29957 36.95 -124.96 10-26 

Table B.4: Scenes of P94 data set analysed in chapter 7 and included in the P94 
ensemble average H(l) and C(l ) for cloud visible radiance, cloud optical depth and 
cloud droplet effective radius . Scenes P o 4 l — P945 were discussed previously in 
chapters 3 and 4. Their numbers from Table B . l are given in brackets. 
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Table B.5 lists scenes of P95 data set used in the multifractal analysis to 

compute the ensemble average of nonstationarity and intermittency parameters for 

fields of cloud visible radiance, cloud optical depth and cloud droplet effective radius. 

Scene No Date/orbit ID lat [°N] Ion [°W] view 

angle 

P95 1(9) 95/06/15 N12-21220 24.86 -131.89 4-20 

P95 2 95/07/14 N14-21780 24.85 -124.83 0-14 

P95 3 95/07/14 N14-21780 24.03 -129.07 17-34 

P95 4 95/07/15 N12-21220 34.45 -130.14 10-25 

P95 5 95/06/24 N14-28373 27.03 -119.32 0-14 

Table B.5: Scenes of P95 data set analysed in chapter 7 and included in the P95 

ensemble average H(l) and C(l ) for cloud visible radiance, cloud optical depth and 

cloud droplet effective radius . Scene P95I was discussed previously in chapters 3 

and 4. Scene P95I number number from Table B . l are given in brackets. 
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Table B.6 lists scenes of 595 data set used in the multifractal analysis to 

compute the ensemble average of nonstationarity and intermittency parameters for 

fields of cloud visible radiance. 

Scene No Date/orbit ID lat [°N] Ion [°W] view 

angle 

5*95 1 95/01/31 N14-00448 -41.84 135.29 12-29 

£95 2 95/02/07 N09-52365 -42.03 140.63 0-16 

S 9 5 3 95/02/08 N14-00561 -39.33 132.65 0-13 

5 9 5 4 95/02/08 N09-52379 -40.97 141.50 1-17 

Table B.6: Scenes of 595 data set analysed in chapter 7 and included in the 595 

ensemble average H(l) and C(l ) for cloud visible radiance. 
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Appendix C 

Removing auto-correlation in spatial data 

Observations find integral scales for spatial variability of cloud parameters in range 

of 3-60 km for fields of marine stratocumulus (Barker and Davies (1992), Marshak 

et al. (1997)). The integral scale is often interpreted as distance over which a 

time or space series is autocorrelated (Marshak et al. (1997)). Spatial patterns 

such as open and closed cellular structures and cloud streets are manifestation of a 

localised spatial dependence within cloud fields. Barker and Davies (1992) links the 

autocorrelation distance in cloud fields to the size of typical cloud elements (cells). 

The presence of spatial autocorrelation in a variable presents a difficulty for 

traditional statistical methods because proximate samples may not be independent. 

Goodchild (1986), McGwire et al. (1993) state that presence of autocorrelation in 

data sets can affect results of regression. The clustering of samples within autocor­

related areas biases a regression line towards a precise fit of localised relationships 

rather than defining an accurate overall relationship. 

In view of the above, I decided to address the problem of spatial auto­

correlation in the r and reff data before proceeding with the regression fit of the 

relationship between r and reff. I will want to use the least square method to find 

the best fit to the relationship between cloud optical depth and cloud droplet effec­

tive radius in log(-r), log(r e//)) space. The least squares technique requires that the 

observations of the predictor variable are independent. This is clearly not the case 

224 



in the autocorrelated field of cloud optical depth . What are the dangers of using 

the least square fitting on an auto-correlated data? 

A n auto-correlated sample is affected by a type of implicit blocking. Consider 

for example a satellite scene with strong cellular structure. Values of cloud optical 

depth within individual cells are strongly correlated and there is little in-cell vari­

ability compared to the overall variability of the r filed. In other words, cells form 

blocks in the r space. Values of cloud droplet effective radius obtained for pixels of 

an individual cell (or block) will also be less variable than the overall variability of 

the sample and since they correspond to strongly correlated T values they are not 

truly independent. 

There are many replicated values of r (from a cell), and the variation between 

reff at these replicated values is much smaller than the overall residual variance. 

This results in a too small estimate of the variance of the linear regression slope, 

making the test of whether the slope is 0 (and, equivalently, the test of the goodness 

of linear fit) anti conservative (more likely than the stated significance level to reject 

the null hypothesis, even when it is true). 

One way of dealing with blocked samples is to replace blocks of values with 

single values of block averages in both variables and then perform the regression 

analysis with the new data set. Another approach is to sub-sample the data set 

so to avoid auto-correlation (Goodchild (1986), McGwire et al. (1993)). A possible 

drawback both methods is that by reducing the number of data points, the degrees 

of freedom associated with the residual error is reduced, thus potentially reducing 

the power of the test. This however should not be a problem in our case. Our 

number of observation is very large (256 x 256) and even 1% of the total number 

of observation (655) still constitutes a large statistical sample. 

In order to avoid the auto-correlation in the sample data and satisfy the 

requirement of independent observation I employ a selective sampling. The idea 

behind this sub-sampling is to only use in the analysis those pixels which are far 
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enough from each other that they are unlikely to be spatially correlated (Goodchild 

(1986), McGwire et al. (1993) ). 

I adopt the following sub-sampling strategy: 

1. find the sample range of auto-correlation I for the independent variable. I 

define the sample range of auto-correlation as the shortest pixel separation 

distance for which two pixels can be consider independent. 

2. sub-sample the scene taking only pixels that are I apart (in both directions) 

starting from a randomly selected pixel (we call it drawing a random lattice) 

3. take a random sub-sample from the lattice (the lattice sample can still have 

some residual spatial structure, I sub-sample the lattice to reduce the impact 

of that structure on the results) 

4. perform the analysis on the random sample taken form the lattice 

5. repeat points 2-4 for a large number of randomly selected lattices (at least 

100) and compute averages of the analysis results of each lattice 

The range of autocorrelation / is estimated using semivariograms (Isaaks 

and Srivastava (1989)). This statistics is equivalent to second order structure func­

tion and is well suited to extract spatial information from remotely sensed imagery 

(Curran (1988)). The semivariogram 7(h) is defined as an average squared difference 

between pairs of values separated by lag vector h 

where (v{, (VJ) are sample values at the locations i and j, h is the lag vector, the 

sum is over all pairs of data points separated by vector h and N(h) is the number 

of all such pairs. 

Generally, as the separation distance between pairs increases so does the 

value of the semivariogram. However, above a certain lag an increase in separation 

(C.l) 
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distance no longer causes a corresponding increase in the average squared difference 

between pairs of values and the semivariogram reaches a plateau. Figure C . l shows 

a schematic semivariogram. The lag at which the semivariogram reaches the plateau 

is called the range. The sill is the value of the semivariogram at the range. The 

fact that the semivariogram has a value greater than zero at zero distance lag is 

known as the nugget effect. The nugget effect can be a manifestation of a purely 

random variation in population density (white noise) or it may be associated with 

sampling errors. The range of the semivariogram can be interpreted as the distance 

over which the sample data are spatially correlated. Observation which are more 

then the range apart are considered independent. 

nugget 

lag 

Figure C . l : Schematic semivariogram 

Figure C.2 demonstrates the steps of the sampling procedure. The scatter 
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plot of cloud optical depth and cloud droplet effective radius for a complete sample 

is shown in figure C.2a. I compute semivariograms for the complete sample data 

in four directions (N-S, NE-SW, W - E , and NW-SE) shown in figure C.2b. The 

sample in this example appears to be isotropic having very similar semivariograms 

in all four directions. From the semivariogram I assess the range of autocorrelation, 

7-10 km in this case. Our estimate of the semivariogram range does not need to 

be very accurate. I am limited by the pixel size (1 km) but am satisfied with 2-

3 pixel accuracy opting for the overestimate rather than an underestimate of the 

range. Thus, I will not attempt to fit model semivariograms to the data but will 

relay on the visual examination of the experimental semivariogram. (As a check of 

the success of the sampling procedure in eliminating the autocorrelation in a sample 

we examine the residual of the linear regression fit, see figure C.2d). Figure C.2c 

shows a scatter plot of cloud optical depth and cloud droplet effective radius for one 

realisation of the sampling (random sample of 1000 pixels drawn from a random 

lattice of range=5 km ). 

A linear least square fit to the log(-r), log(r e//) data with errors in both 

variables was performed for each realisation of the sampling procedure and the 

averaged slope and intercept were computed. (A detailed discussion of the general 

power law fitting to r-reff data will follow in section 4.1.3). Figure C.2d shows the 

residual (observed - fitted) value of the log(re^/) as a function of r. Such plots serve 

as an initial test of how successful the sampling procedure was in eliminating the 

effects of autocorrelation. If I succeeded in removing autocorrelation then the least 

square fit residuals should be normally distributed with zero mean and therefore, 

the plot of residuals versus the independent variable should show no trend nor bias. 

This indeed appears to be the case in this example. After this initial inspection 

of the performance of the sampling procedure I test the null hypothesis that the 

residuals are normally distributed and have mean of zero. At the 10% significance 

level the critical interval for the Z-test is (-1.645,1.645). 
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Figure C.2: The sampling procedure, a) the scatter plot of cloud optical depth and 

cloud droplet effective radius of the full data set; b) semivariograms of r in four 

directions (N-S, NE-SW, W - E , and NW-SE) showing autocorrelation range 7-10 

km; c) scatter plot of r and reff of an autocorrelation free sample; d) plot of the 

residuals of the linear least square fit to log(r e//) and log(r) as a function of T. 

I performed the Z test for 500 realisations of the sampling procedure and in 

every case the value of the Z statistic was within the critical interval for the 10% 

significance level. The average mean of the 500 realisations was 0.005. The results 

of the Z-test indicate that at the 10% significance level null hypothesis that the 

residuals are normally distributed with the mean of zero should not be rejected. I 

accept that the sampling procedure was successful in selecting an autocorrelation 

free sample. 
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Appendix D 

Correlation coefficient between r and r e// 

Before proceeding with regression to establish a functional dependence between two 

variables one should check if the variables are indeed correlated and whether the 

correlation is significant. A bivariate regression will always return a set of regression 

parameters but these parameters are meaningless unless the correlation between the 

two variables is significant. Since I expect a linear dependence between t = log(r) 

and r — log(reg) I use the Pearson's linear correlation coefficient to test the strength 

and significance of the correlation between the cloud optical depth and cloud droplet 

efFective radius in the test scenes of chapter 4. 

Pearson's linear correlation coefficient between two variables t and r is de­

fined as 

where the 'bar' denotes the mean value of the variable. For the null hypothesis of 

no correlation between t and r (rp = 0) the test statistics 

n - 2 

has the Student-t distribution with v = n — 2 degree of freedom (n is the number 

of observations). The first raw of table D . l shows the Pearson's linear correlation 

coefficients for the test scene. Each coefficient is an average from 100 realisations 
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of the sampling procedure. With the exception of scene 11 and the upper branch 

of scene 9 all correlation coefficients are are significant at zero level. For both 

scene 11 and the upper branch of scene 9 the null hypothesis cannot be rejected at 

approximately 40% significance level. 

scene no. rp rs 
scene no. rp rs 

1 0.87 0.85 6 0.57(0.73) 0.67(0.73) 
2 0.78 0.80 7 0.57(0.73,0.80) 0.50(0.70,0.72) 
3 0.65 0.70 8 0.65(0.23,0.65) 0.60(0.26,0.61) 
4 0.79(0.78) 0.79(0.70) 11 0.09 0.09 
5 0.80(0.83) 0.75(0.81) 15 0.71 0.71 

Table D . l : Pearson's (rp) and Spearman's (rs) linear correlation coefficients for 10 
test scenes. 

For scenes 1-7 values in brackets are the correlation coefficients in the scene 

sectors which satisfy the meaningful fit requirements (where no values in brackets 

are given the entire scene satisfies the fitting requirements). Scenes 7 and 8 are the 

scenes with the two branch structure. The bracket values for scenes 7 and 8 show 

the correlation coefficients for each branch separately. In scene 7 both branches 

have high values of of the correlation coefficient. I also find that each branch in 

scene 7 satisfies the conditions of a meaningful fit. In scene 8 only these conditions 

are fulfilled only by the branch with high correlation coefficient (0.66). The second 

branch the represents to the situation of the rectangle 2 of figure 4.1 where all 

data points correspond to high values of the predictor variable. Scene 11 represents 

a similar situation. Here again there is no observations at the low values of T . 

This scene does not conform to the meaningful fit requirements and the value of 

correlation coefficient in this scene is low. 

There appears to be a correlation between the high value of the correlation 

coefficient and the scene suitability for fitting. This is not surprising, I would expect 

two variables whose scatter plots take a form of a single, narrow and long branch to 
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be strongly correlated. The Pearson's correlation coefficient can be a good predictor 

of scene's suitability for fitting. However, caution is advised. In some cases, and 

scene 8 is the case in point, the correlation coefficient can be high yet the scene 

might not be suitable for fitting. The correlation coefficient for scene 8 is high but 

the scene data does not fulfilled the requirements for a meaningful fit. It represents 

the situation of the rectangle 1 in figure 4.1 where the available range of the predictor 

is very narrow and all confined to small values. 

The Pearson's linear correlation coefficient does not come without warnings 

and limitations (Swan and Sandilands (1995)). 

1. it only has a meaning for variables whose probability distribution is not too dif­

ferent from normal (I made the necessary assumptions about the distributions 

of t and r) 

2. is liable to spurious high values if outliers are present 

3. log-transform in two variables can raise the value of the correlation coefficient 

The non-parametric statistics offers an alternative to the Pearson's mea­

sure of correlation which is much more general and robust. First of all, in the 

non-parametric statistics it is not necessary to make any assumption about the dis­

tribution of the variables. The non-parametric measures of correlation which relay 

on rank ordering are also less susceptible to outliers and are not affected by trans­

formation of variables. To confirm the correlation results of Pearson's correlation 

coefficient I compute the non-parametric Spearman's rank correlation coefficient for 

the 11 test scenes. If Ti is the rank of ij among other i's and Ri is the rank of rj 

among other r's then the Spearman rank order correlation coefficient is defined as 

the linear correlation coefficient of the ranks 

Zim-fpy/ZiiRi-R)* 
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where as before the 'bar' denotes the mean value of the variable. For the null 

hypothesis of no correlation between t and r (rrs = 0) the test statistics 

has the Student-t distribution with v = n — 2 degree of freedom (n is the number 

of observations). The values of the Spearman correlation coefficient for the 11 test 

scenes are given in the second row of table D . l . Al l correlation coefficients are sig­

nificant at zero level except scene 11 and the upper branch of scene 9 where the null 

hypothesis of no correlation between t and r cannot be rejected even at the level 

of 35%. There is a very good agreement between the Pearson and the Spearman 

correlation coefficients. The non-parametric test validates the results of the Pearson 

test. This is an important result. A high rank order correlation coefficient does not 

by itself imply a good linear relationship between two variables. A high Pearson's 

correlation coefficient does imply a strong linear relationship between two variables 

provided it is not biased by one of it's limitations. Good agreement between the 

Pearson and the Spearman correlation coefficients indicate that the Pearson's coef­

ficients are bias free. 

With the good linear correlation between t and r I expect the power law fit 

to be good. This does not mean that we expect the power exponent to turn out 

"1/5" but whatever the value of the regression parameters they will be meaningful 

and representative of the relationship between cloud optical depth and cloud droplet 

effective radius in the data set. 

(D.4) 
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Appendix E 

Cioud subadiabaticity (5 

Cloud subadiabaticity 6 which occurs in equation 3.2 is bulk cloud property which 

measures the rate of increase of cloud liquid water with height with respect to the 

rate of increase in an adiabatic cloud and is defined in (A.2) of Appendix A). This 

3 is related to Betts' mixing parameter (3B) (Betts (1982)) by 3 = 1 — PB where 

3B = 8p*/8p, p is pressure and p* the saturation level pressure. The available 

observations locate P in the range between 0.4 and 1.0. 

For tropical oceans Betts and Albrecht (1982) inferred /3e=0.3 from thermo­

dynamic averages over a large number of radiosonde profiles. Betts and Boers (1990) 

showed a case study of a stratocumulus layer where PB=0.3. Boers and Betts (1988) 

and Boers et al. (1991) found PB for boundary layer clouds in the range between 

0.3-0.4. Boers et al. (1996) observed P of 0.3-0.6 in winter time stratocumulus near 

Tasmania (SOCEX I). Observations of cloud liquid water content in stratus clouds 

(Nicholls (1984) and Nicholls and Leighton (1986)) reveal somewhat smaller values 

ot PB- Austin et al. (1995) analysed 6 F I R E fights and found P between 0.60 and 1. 

Our estimates of cloud subadiabaticity for the 6 S O C E X flights find P at somewhat 

lower values between 0.37-0.67 (pB = 0.33-0.63). Boers et al. (1991) argue that 

PB > 0.5 corresponds to strong decoupling between the surface and the upper part 

of the boundary layer. The S O C E X boundary layer was 2-3 times deeper than that 

during F I R E and the cloud layers were reported to be decoupled during S O C E X 
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flights. It would be interesting to investigate the dependence between the depth of 

the boundary layer and cloud subadiabaticity . 

In chapter 5 I estimated 0 from the cloud liquid water content measure­

ments made by aircraft in clouds over the Indian Ocean east of Tasmania during 

the S O C E X II experiment. In Figure E . l I plot the cloud subadiabaticity 0 versus 

the cloud layer average cloud droplet number concentration ./V observed during 6 

S O C E X nights (*) (see Table 5.2 on page 110). In addition I plotted the measure­

ments for F I R E clouds reported in Austin et al. (1995) (o). 

200 
cloud droplet number concentration N [cm 

Figure E . l : Scatter plot of cloud subadiabaticity 0 and cloud droplet number con­

centration : (*) S O C E X II data (see chapter 5); (o) F I R E measurements after Austin 

et al. (1995). 

There is a noticeable tendency for high 0 to occur with high ./V. However, 
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the observed scatter is quite large. N can be one of the factors which determine the 

variability of 3 but there probably other factors which contribute to that variability. 

Nicholls and Leighton (1986) measured the deviation of the observed liquid 

water content from the adiabatic value (1-3) as a function of height in stratiform 

clouds. Their results seem to indicate that the deviation is greatest in clouds with 

lowest cloud droplet number concentration which qualitatively agrees with the re­

sults shown in Figure E . l . 
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Appendix F 

Concepts related to fractal sets and fractal measures 

Fractals (or fractal sets) are geometrical objects which possess nontrivial structure 

on arbitrary scales (Mandelbrot (1977)). A classical example of fractal is the Koch 

curve whose construction is illustrated in Figure F . l . In consecutive steps each 

linear segment of the curve is replaced by four segments as shown in Figure F . l . 

Each new segment is is one third the length of the previous one. After an infinitive 

number of steps one obtains the Koch curve. 

1) Fractal dimension 

To define dimensions of fractal objects one refers to the procedure known as box 

counting. In a <i-dimensional Euclidean space (d =1, 2, 3) the number N(r) of boxes 

of size rd needed to to cover an object of dimension do < d is 

N(r)~r-do. (F.l) 

The dimension of an object is defined by (F.l) in the limit of r —>• 0 (Beck 

and Schlogl (1993)). The same method can be applied to determine dimension of 

fractal objects. The fractal dimesion, also known as the box or capacity dimension, 

is defined as 
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n=0 

1 

Figure F . l : Construction of the classical Koch curve. 

Dc = — lim 
logN(r) 

(F.2) 
>6 logr 

For some simple fractals the fractal dimension can be determined by a simple 

theoretical arguments. For the Koch curve for example, the number of "boxes" 

required to cover the curve increases with each step n as 4" while the size of the box 

(or yardstick in this case) decreases as 3~ n . Thus, from (F.2) Dc = j ^ l = 1.2619.... 

2) Other fractal dimensions 

a) Hausdorff dimension 

In definition (F.2) it is assumed that boxes which cover a fractal object A are all 
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the same size rd and the dimension obtained in the limit r —> 0 is independent of 

the shape of boxes. Rigorous mathematical treatment shows that for complicated 

fractal objects the limit in (F.2) does not always exist. A mathematically well 

defined quantity is the Hausdorff dimension DH whose definition utilises boxes of 

variable sizes (a formal definitions of Hausdorff dimension is not given here but can 

be found in Mandelbrot (1977) or Beck and Schlogl (1993) for example). It turns 

out that in all cases of practical interest DH = DC. 

b) Generalised dimensions 

Definition (F.2) can be generalised in the following way: if (by analogy to (F.l)) a 

quantity M(r) attributed to a fractal object scales as 

M ( r ) ~ r D . (F.3) 

for r —> 0 then D can be consider a dimension of the fractal with respect to the 

property M. 

c) Information dimension 

The box counting procedure which defines capacity dimension assigns equal weights 

to all boxes needed to cover the object. However, the fraction of the object covered 

by a box can vary significantly from one box to another. In a sense, some boxes are 

more important (cover larger sections of the object) than others. To account for the 

different "importance" of the boxes Grassberger (1983) and Hentschel and Procaccia 

(1983) introduced a generalised dimension D(q) which depends on a continuous 

index q, 

D ( , ) = l im^iM (F.4) 
r->o logr 

with 

/,(p) = - i I ! 0 S ^ p J = ^ I i o ! ? % r ) (F.5) 
i N(r) 1 

r . v *, n r 

i=l 
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where N(r) is number of boxes of size r needed to cover the object, and pi is the 

probability of finding the object in box i. Iq(p) are called Renyi informations and 

dimensions Dq are sometimes referred to as Renyi dimensions. In (F.5) Z(q,r) is a 

partition function of the probability distribution p. 

Special cases: 

1. q=0: D(0) = — l im^o l°9iog^ which is a definition of the capacity dimension, 

thus D(0) = Dc. 

2. q=l: in the limit of q —>• 1 Renyi information approaches the well known in the 

information theory Shannon information I(p) = Y^=i Pd°dPi- Correspond­

ingly, -D(l) is termed information dimension. 

c) Holder (roughness) dimension 

The fractal dimension is a local property which in case of a graph of a con­

tinuous function, is related to other local property, the Holder exponent (a) of the 

function. Function ip(x) is Holder function of order a if ip(x) — ip{xo) ~ \x — xo\a 

near x = XQ, where 0 < a < 1 (Weinberger (1965)). The number of boxes of 

needed to cover the graph g(ip) of ip(x) locally between x and x + r is roughly ra~l 

((Mandelbrot (1977)). The total number of boxes needed to cover the graph is 

N ~ ra~l/r~l = ra~2. 

If the curve within each box is a reduced image of the whole curve (self-

similarity) then from the definition of fractal .dimension 

Dg = - ^ ^ = 2 - a . (F.6) 
logN(r) 

logr 

Dg is called the Holder (or roughness) dimension of the graph. 
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3) From singularity to multiscaling of structure function 

Singularity of order a > 0 in field R(x) can be defined as a point where 

lun\R(x)-R(y)\/\x-y\a^O (F.7) 

Let S(a) denote a set of points where the field has a singularity of order a 

and DH{O) a Hausdorff dimension of that set. Denote by f(a) the probability of 

field R(x) having a singularity of order a. By box counting 

/ ( « ) - ' , i f f , as |a; -2/ | - » 0 (F.8) 
F — y| 

where i£ is the dimension of the Euclidean space. (£7 — D# is often called co-

dimesion.) 

From (F.7) it follows that 

\R(x)-R(y)\~\x-y\a (F.9) 

Recall now the definition of q order structure function (6.15). With (F.9) 

the increments of the field can be replace by \x — y\a and thus 

< \R(x) - R{y)\q >~< |a; - y\aq >= J dn{a)raq+E-DH^ ~ (F.10) 

where r = \x — y\, da(a) is a measure on S(a) and ( q is a function (generally 

nonlinear) of the order q of structure function and the order a of the singularity. 

Integral (F.10) integrated using the saddle point method yields (Parisi and Frisch 

(1985)) 

(q = mina[qa + E-DH{a)]. (F. l l ) 
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Appendix G 

Tables of nonstationarity and intermittency parameters. 

1) Scenes 1-15 

Scene 

No 

H(l) 2 H(2) + 1 0 0B C(l) K(2) range 

[km] 

cloud 

fraction Ac 

1 0.48 (0.02) 1.94 (0.03) 1.90 (0.06) 1.93 (0.02) 0.05 0.10 1-8 0.99 
2 0.53 (0.03) 2.02 (0.05) 2.17 (0.12) 2.24 (0.07) 0.06 0.10 1-5 0.98 
3 0.48 (0.04) 1.93 (0.09) 1.92 (0.16) 2.19 (0.15) 0.05 0.08 1-4 0.99 
4 0.59 (0.03) 2.13 (0.05) 2.22 (0.13) 2.39 (0.01) 0.06 0.11 1-6 0.97 
5 0.46 (0.01) 1.84 (0.03) 2.18 (0.04) 2.07 (0.10) 0.05 0.09 1-20 0.96 
6 0.38 (0.03) 1.76 (0.05) 1.97 (0.09) 1.87 (0.08) 0.05 0.09 1-8 0.94 
7 0.49 (0.03) 1.95 (0.05) 2.29 (U08) 2.13 (0.15) 0.05 0.09 1-8 0.99 
8 0.40 (0.04) 1.79 (0.08) 1.82 (0.21) 1.84 (0.15) 0.04 0.08 1-4 1.0 

9 
i n 

0.46 (0.01) 1.84 (0.02) 1.94 (0.05) 1.96 (0.07) 0.09 0.18 1-20 0.95 
1U 

11 0.60 (0.03) 2.16 (0.07) 2.10 (0.33) 2.29 (0.05) 0.05 0.08 1-3 1.0 

12 0.37 (0.02) 1.71 (0.04) 1.66 (0.12) 1.69 (0.02) 0.05 0.10 1-6 1.0 

13 0.57 (0.04) 2.14 (0.08) 2.77 (0.16) 2.63 (0.15) 0.05 0.08 1-4 1.0 

14 0.64 (0.04) 2.26 (0.08) 3.26 (0.20) 2.91 (0.11) 0.06 0.11 1-4 1.0 

15 0.39 (0.03) 1.80 (0.06) 2.05 (0.10) 1.57 (0.14) 0.05 0.09 1-6 0.92 

Table G . l : Multifractal parameters of cloud visible wavelength radiance field for the 

15 example scenes: (1-6, and 15) uni-modal, (7-10) bi-modal, (11-14) thick clouds. 
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Scene 
No 

H(l) 2 H(2) + 1 0 0s C(l) K(2) range 
[km] 

cloud 
fraction Ac 

1 0.49 (0.02) 1.96 (0.04) 2.02 (0.06) 2 02 (0.01) 0.05 0.10 1-8 0.99 
2 0.54 (0.03) 2.07 (0.05) 2.07 (0.05) 2 17 (0.01) 0.05 0.10 1-5 0.98 
3 0.52 (0.04) 2.06 (0.07) 2.14 (0.23) 2 32 (0.18) 0.07 0.13 1-4 0.99 
4 0.61 (0.03) 2.18 (0.05) 2.40 (0.17) 2 48 (0.04) 0.06 0.10 1-6 0.97 

5 0.48 (0.01) 1.93 (0.03) 2.10 (0.04) 2 00 (0.11) 0.05 0.09 1-20 0.96 
6 0.40 (0.03) 1.81 (0.04) 2.06 (0.10) 1 91 (0.08) 0.06 0.10 1-8 0.94 
7 0.50 (0.03) 2.02 (0.05) 2.32 (0.08) 2 17 (0.11) 0.04 0.07 1-7 0.99 
8 0.42 (0.04) 1.84 (0.07) 1.81 (0.21) 1 85 (0.13) 0.05 0.09 1-4 1.0 
9 
i n 

0.46 (0.01) 1.85 (0.01) 1.89 (0.05) 2 14 (0.11) 0.07 0.14 1-20 0.95 

IU 

11 0.62 (0.03) 2.20 (0.07) 2.22 (0.40) 2 34 (0.02) 0.06 0.11 1-3 1.0 
12 0.38 (0.02) 1.72 (0.05) 1.75 (0.12) 1 70 (0.02) 0.05 0.09 1-6 1.0 
13 0.57 (0.04) 2.13 (0.09) 2.79 (0.19) 2 68 (0.20) 0.06 0.10 1-4 1.0 
14 0.65 (0.04) 2.23 (0.09) 3.20 (0.19) 2 87 (0.08) 0.09 0.16 1-4 1.0 
15 0.42 (0.03) 1.81 (0.05) 1.83 (0.10) 1 60 (0.11) 0.06 0.11 1-6 0.92 

Table G.2: Multifractal parameters of cloud optical depth field for the 15 example 

scenes: (1-6, and 15) uni-modal, (7-10) bi-modal, (11-14) thick clouds. 
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Scene 
No 

H(l) 2 H(2) + 1 P f% C(l) K(2) range 
[km] 

cloud 
fraction Ac 

1 0.55 (0.01) 2.01 (0.01) 1.95 (0.13) 2.00 (0.18) 0.06 0.14 1-8 0.99 
2 0.53 (0.02) 2.07 (0.03) 1.90 (0.17) 1.91 (0.16) 0.05 0.09 1-7 0.98* 
3 0.48 (0.03) 1.92 (0.05) 2.06 (0.25) 2.17 (0.02) 0.07 0.12 1-4 0.99* 
4 0.59 (0.01) 2.13 (0.02) 1.96 (0.15) 2.14 (0.08 0.09 0.16 1-8 0.97* 
5 0.53 (0.01) 1.96 (0.03) 1.84 (0.11) 1.92 (0.12) 0.05 0.11 1-10 0.96 
6 0.61 (0.01) 1.83 (0.02) 1.82 (0.11) 1.77 (0.02) 0.08 0.22 1-10 0.94 
7 0.49 (0.01) 1.92 (0.03) 1.84 (0.11) 1.84 (0.02) 0.05 0.10 1-8 0.99 
8 0.34 (0.01) 1.61 (0.01) 1.42 (0.15) 1.26 (0.13) 0.06 0.14 1-10 1.0 
8 0.63 (0.01) 2.24 (0.01) 1.85 (0.23) 2.34 (0.28) 0.06 0.14 20-80 1.0 
9 
i n 

0.45 (0.01) 1.75 (0.02) 1.77 (0.06) 1.89 (0.02) 0.07 0.15 1-20 0.95 

1U 

11 0.56 (0.02) 2.06 (0.02) 2.68 (0.82) 2.03 (0.01) 0.06 0.11 1-3 1.0 
12 0.40 (0.01) 1.78 (0.01) 1.47 (0.06) 1.45 (0.02) 0.05 0.09 1-20 1.0 
12 0.38 (0.01) 1.76 (0.01) 1.69 (0.13) 1.52 (0.03) 0.05 0.09 1-6 1.0 
13 0.53 (0.02) 2.07 (0.03) 1.86 (0.26) 1.90 (0.06) 0.06 0.10 1-4 1.0 
14 0.55 (0.03) 1.63 (0.04) 1.61 (0.33) 1.61 (0.10) 0.12 0.31 1-4 1.0 
15 0.58 (0.03) 1.80 (0.03) 1.26 (0.32) 1.84 (0.01) 0.15 0.28 1-5 0.92 

Table G.3: Multifractal parameters cloud droplet effective radius field for the 15 

example scenes: (1-6, and 15) uni-modal, (7-10) bi-modal, (11-14) thick clouds. *) 

marks scenes of which only fully cloudy sectors were used in the analysis. 
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2) FIRE 1987 data set 

Scene 

No 

H(l) 2 H(2) + 1 0 08 C(l) K(2) range 

[km] 

cloud 

fraction Ac 

-2*87 1(1) 0.48 (0.02) 1.94 (0.03) 1 90 (0 06) 1.93 (0.02) 0.05 0.10 1-8 0.99 

•^87 2(2) 0.53 (0.03) 2.02 (0.05) 2 17 (0 12) 2.24 (0.07) 0.06 0.10 1-5 0.98 

-^87 3(3) 0.48 (0.04) 1.93 (0.09) 1 92 (0 16) 2.19 (0.15) 0.05 0.08 1-4 0.99 

^ 8 7 4(5) 0.46 (0.01) 1.84 (0.03) 2 18 (0 04) 2.07 (0.10) 0.05 0.09 1-20 0.96 

^ 8 7 5(7) 0.49 (0.03) 1.95 (0.05) 2 29 (0 08) 2.13 (0.15) 0.05 0.09 1-8 0.99 

-^87 6(8) 0.40 (0.04) 1.79 (0.08) 1 82 (0 21) 1.84 (0.15) 0.04 0.08 1-4 1.0 
-^87 7(13) 0.57 (0.04) 2.14 (0.08) 2 77 (0 16) 2.63 (0.15) 0.05 0.08 1-4 1.0 
F87 8(14) 0.64 (0.04) 2.26 (0.08) 3 26 (0 20) 2.91 (0.11) 0.06 0.11 1-4 1.0 

Fs7 9 0.46 (0.02) 1.90 (0.04) 1 98 (0 07) 1.86 (0.15) 0.07 0.13 1-10 0.98 

F87 10 0.46 (0.02) 1.87 (0.06) 2 00 (0 13) 2.05 (0.09) 0.05 0.10 1-7 0.90 

Fs7 11 0.57 (0.03) 2.10 (0.07) 2 47 (0 18) 2.29 (0.05) 0.06 0.12 1-4 0.95 

F&7 12 0.58 (0.05) 2.15 (0.10) 2 27 (0. 36) 2.68 (0.29) 0.05 0.09 1-3 1.0 
F87 13 0.50 (0.06) 2.02 (0.12) 1 89 (0 38) 2.48 (0.30) 0.05 0.08 1-3 1.0 
Fs7 14 0.51 (0.04) 2.00 (0.08) 2 26 (0 19) 2.30 (0.09) 0.06 0.11 1-4 1.0 
F87 15 0.41 (0.03) 1.81 (0.06) 1 92 (0 12) 1.89 (0.01) 0.05 0.09 1-5 1.0 
F87 16 0.49 (0.03) 1.95 (0.06) 2 15 (0 17) 2.07 (0.01) 0.06 0.10 1-4 0.82 

F87 17 0.54 (0.05) 2.05 (0.10) 1 88 (0 37) 2.34 (0.14) 0.06 0.11 1-3 0.97 

Table G.4: Multifractal parameters of cloud visible wavelength radiance field for 

F87 data set. 
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Scene 

No 

H(l) 2 H(2) + 1 ft C(l) K(2) range 

[km] 

cloud 

fraction Ac 

•̂ 87 1(1) 0.49 (0.02) 1.96 (0.04) 2 02 (0.06) 2.02 (0.01) 0.05 0.10 1-8 0.99 

F&7 2(2) 0.54 (0.03) 2.07 (0.05) 2 07 (0.05) 2.17 (0.01) 0.05 0.10 1-5 0.98 

-̂ 87 3(3) 0.52 (0.04) 2.06 (0.07) 2 14 (0.23) 2.32 (0.18) 0.07 0.13 1-4 0.99 

Fs7 4(5) 0.48 (0.01) 1.93 (0.03) 2 10 (0.04) 2.00 (0.11) 0.05 0.09 1-20 0.96 

-?87 5(7) 0.50 (0.03) 2.02 (0.05) 2 32 (0.08) 2.17 (0.11) 0.04 0.07 1-7 0.99 

^87 6(8) 0.42 (0.04) 1.84 (0.07) 1 81 (0.21) 1.85 (0.13) 0.05 0.09 1-4 1.0 

^87 7(13) 0.57 (0.04) 2.13 (0.09) 2 79 (0.19) 2.68 (0.20) 0.06 0.10 1-4 1.0 

Fg7 8(14) 0.65 (0.04) 2.23 (0.09) 3 20 (0.19) 2.87 (0.08) 0.09 0.16 1-4 1.0 

^87 9 0.47 (0.02) 1.91 (0.04) 2 11 (0.12) 2.12 (0.18) 0.06 0.11 1-10 0.98 

•̂ 87 10 0.51 (0.02) 2.00 (0.06) 2 06 (0.13) 1.96 (0.06) 0.05 0.09 1-7 0.90 

^87 11 0.52 (0.02) 1.98 (0.05) 2 42 (0.09) 2.34 (0.02) 0.09 0.17 1-8 0.95 

F&7 12 0.55 (0.06) 2.09 (0.11) 3 13 (0.46) 1.93 (0.34) 0.04 0.08 1-3 1.0 

F87 13 0.52 (0.06) 2.06 (0.11) 1 85 (0.36) 2.61 (0.30) 0.05 0.08 1-3 1.0 

F87 14 0.48 (0.03) 1.96 (0.06) 2 45 (0.11) 2.34 (0.10) 0.04 0.06 1-5 1.0 

F87 15 0.43 (0.04) 1.88 (0.06) 2 00 (0.12) 1.98 (0.02) 0.04 0.08 1-5 1.0 

Fs7 16 0.47 (0.03) 1.96 (0.05) 2 04 (0.12) 2.08 (0.06) 0.05 0.08 1-5 0.82 

F87 17 0.56 (0.05) 2.07 (0.11) 2 18 (0.49) 2.42 (0.27) 0.06 0.11 1-3 0.97 

Table G.5: Multifractal parameters of cloud optical depth field for the F I R E data 

set. 
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Scene 

No 

H(l) 2 H(2) + 1 0 08 C(l) K(2) range 

[km] 

cloud 

fraction Ac 

^87 1 (1) 0.55 (0.01) 2.01 (0.01) 1 95 (0.13) 2 00 (0.18) 0.06 0.14 1-8 0.99 

F87 2(2) 0.53 (0.02) 2.07 (0.03) 1 90 (0.17) 1 91 (0.16) 0.05 0.09 1-7 0.98* 

F87 3(3) 0.48 (0.03) 1.92 (0.05) 2 06 (0.25) 2 17 (0.02) 0.07 0.12 1-4 0.99* 

F 8 7 4(5) 0.53 (0.01) 1.96 (0.03) 1 84 (0.11) 1 92 (0.12) 0.05 0.11 1-10 0.96 

^87 5(7) 0.49 (0.01) 1.92 (0.03) 1 84 (0.11) 1 84 (0.02) 0.05 0.10 1-8 0.99 

^87 6 (8) 0.34 (0.01) 1.61 (0.01) 1 42 (0.15) 1 26 (0.13) 0.06 0.14 1-10 1.0 

^87 6 (8) 0.63 (0.01) 2.24 (0.01) 1 85 (0.23) 2 34 (0.28) 0.06 0.14 20-80 1.0 

^87 7(13) 0.53 (0.02) 2.07 (0.03) 1 86 (0.26) 1 90 (0.06) 0.06 0.10 1-4 1.0 

F87 8(14) 0.55 (0.03) 1.63 (0.04) 1 61 (0.33) 1 61 (0.10) 0.12 0.31 1-4 1.0 

F87 9 0.57 (0.01) 2.13 (0.01) 2 03 (0.08) 2 24 (0.10) 0.06 0.11 1-40 0.98* 

^87 10 0.60 (0.01) 2.15 (0.02) 1 96 (0.20) 1 83 (0.18) 0.08 0.13 1-7 0.90* 

F87 11 0.50 (0.02) 1.89 (0.05) 1 95 (0.17) 2 03 (0.01) 0.05 0.10 1-7 0.95 

F87 12 0.49 (0.04) 1.99 (0.09) 2 22 (0.29) 2 17 (0.28) 0.04 0.08 1-3 1.0 

F87 13 0.45 (0.02) 1.96 (0.05) 1 67 (0.39) 2 00 (0.20) 0.05 0.09 1-3 1.0 

^87 13 0.19 (0.01) 1.37 (0.01) 1 44 (0.14) 1 44 (0.15) 0.05 0.09 4-20 1.0 

F87 14 0.46 (0.01) 1.91 (0.01) 1 65 (0.08) 1 81 (0.14) 0.05 0.10 1-30 1.0 

F87 15 0.34 (0.01) 1.67 (0.01) 1 00 (0.10) 1 09 (0.11) 0.05 0.10 1-10 1.0 

^87 15 0.41 (0.01) 1.85 (0.01) 1 60 (0.12) 1 73 (0.14) 0.05 0.10 10-50 1.0 

î 87 16 0.47 (0.02) 1.76 (0.02) 1 75 (0.25) 1 53 (0.18) 0.09 0.18 1-6 0.82 

^87 17 0.22 (0.01) 1.43 (0.01) 1 33 (0.38) 1 22 (0.05) 0.05 0.09 1-9 0.97* 

Table G.6: Multifractal parameters cloud droplet effective radius field for the F I R E 

data set. (*) marks scenes of which only fully cloudy sectors were used in the 

analysis. 
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3 Pacific summer 1994 data set 

Scene 
No 

H(l) 2 H(2) + 1 0 08 C(l) K (2 ) range 
[km] 

cloud 
fraction Ac 

P 9 4 1(4) 0.59 (0.03) 2.13 (0.05) 2.22 (0.13) 2.39 (0.01) 0.06 0.11 1-6 0.97 
P 9 4 2(6) 0.38 (0.03) 1.76 (0.05) 1.97 (0.09) 1.87 (0.08) 0.05 0.09 1-8 0.94 " 
P 9 4 3(11) 0.62 (0.04) 2.21 (0.08) 2.32 (0.19) 2.71 (0.12) 0.05 0.08 1-3 1.0 
P 9 4 4(12) 0.37 (0.02) 1.71 (0.04) 1.66 (0.12) 1.69 (0.02) 0.05 0.10 1-6 1.0 
P 9 4 5(15) 0.39 (0.03) 1.80 (0.06) 2.05 (0.10) 1.57 (0.14) 0.05 0.09 1-6 0.92 

P 9 4 6 0.30 (0.05) 1.62 (0.12) 1.54 (0.21) 1.27 (0.35) 0.05 0.08 1-3 0.45 

P 9 4 7 0:33 (0.02) 1.65 (0.04) 1.85 (0.07) 1.67 (0.03) 0.05 0.09 1-8 0.94 

P 9 4 8 0.44 (0.06) 1.89 (0.12) 2.45 (0.22) 1.90 (0.34) 0.04 0.08 1-4 0.78 

Table G.7: Multifractal parameters of cloud visible wavelength radiance field for the 

Pacific Ocean 1994 data set. 

Scene 
No 

H(l) 2 H(2) + 1 0 08 C(l) K (2 ) range 
[km] 

cloud 
fraction Ac 

P 9 4 1(4) 0.61 (0.03) 2.18 (0.05) 2.40 (0.17) 2.48 (0.04) 0.06 0.10 1-6 0.97 

P 9 4 2(6) 0.40 (0.03) 1.81 (0.04) 2.06 (0.10) 1.91 (0.08) 0.06 0.10 1-8 0.94 

P 9 4 3(11) 0.62 (0.04) 2.21 (0.08) 2.43 (0.17) 2.77 (0.15) 0.06 0.11 1-3 1.0 
P 9 4 4(12) 0.38 (0.02) 1.72 (0.05) 1.75 (0.12) 1.70 (0.02) 0.05 0.09 1-6 1.0 
P 9 4 5(15) 0.42 (0.03) 1.81 (0.05) 1.83 (0.10) 1.60 (0.11) 0.06 0.11 1-6 0.92 

P 9 4 6 0.39 (0.05) 1.63 (0.08) 1.64 (0.39) 1.62 (0.16) 0.18 0.23 1-3 0.45 

P 9 4 7 0.35 (0.02) 1.66 (0.03) 1.63 (0.08) 1.61 (0.01) 0.07 0.11 1-8 0.94 

P 9 4 8 0.43 (0.06) 1.84 (0.11) 2.43 (0.20) 1.85 (0.34) 0.06 0.10 1-4 0.78 

Table G.8: Multifractal parameters of cloud optical depth field for the Pacific Ocean 

1994 data set. 

248 



Scene 
No 

H(l) 2 H(2) + 1 P ft C(l) K(2) range 
[km] 

cloud 
fraction Ac 

P 9 4 1(4) 0.59 (0.01) 2.13 (0.02) 1.96 (0.15) 2.14 (0.08 0.09 0.16 1-8 0.97* 

P94 2(6) 0.61 (0.01) 1.83 (0.02) 1.82 (0.11) 1.77 (0.02) 0.08 0.22 1-10 0.94 

P94 3(11) 0.46 (0.01) 1.93 (0.02) 1.63 (0.44) 1.71 (0.05) 0.06 0.11 1-4 1.0 
P94 4(12) 0.40 (0.01) 1.78 (0.01) 1.47 (0.06) 1.45 (0.02) 0.05 0.09 1-20 1.0 
P94 5(15) 0.38 (0.01) 1.76 (0.01) 1.69 (0.13) 1.52 (0.03) 0.05 0.09 1-6 1.0 
P94 6 0.58 (0.03) 1.80 (0.03) 1.26 (0.32) 1.84 (0.01) 0.15 0.28 1-5 0.92 

P94 7 0.39 (0.04) 1.54 (0.06) 1.29 (0.31) 1.37 (0.08) 0.21 0.28 1-3 0.45 

P94 8 0.42 (0.02) 1.77 (0.03) 1.67 (0.10) 1.79 (0.11) 0.07 0.13 1-8 0.94 

Table G.9: Multifractal parameters of cloud droplet effective radius field for the the 

Pacific Ocean 1994 data set.(*) marks scenes of which only fully cloudy sectors were 

used in the analysis. 

4) Pacific summer 1995 data set 

Scene 
No 

H(l) 2 H(2) + 1 P ft C(l) K(2) range 
[km] 

cloud 
fraction Ac 

P 9 5 1(9) 0.46 (0.01) 1.84 (0.02) 1.94 (0.05) 1.96 (0.07) 0.09 0.18 1-20 0.95 

P 9 5 2 0.43 (0.02) 1.86 (0.03) 1.99 (0.06) 1.89 (0.01) 0.05 0.09 1-9 0.96 

P 9 5 3 0.56 (0.01) 2.05 (0.02) 2.07 (0.06) 2.05 (0.01) 0.07 0.15 1-20 0.97 

P 9 5 4 0.52 (0.02) 1.97 (0.04) 2.25 (0.06) 2.12 (0.08 0.07 0.11 1-8 0.80 

P 9 5 5 0.45 (0.02) 1.89 (0.05) 1.92 (0.07) 1.88 (0.05) 0.05 0.08 1-6 0.84 

Table G.10: Multifractal parameters of cloud visible wavelength radiance field for 

the Pacific Ocean 1995 data set. 
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Scene 
No 

H(l) 2 H(2) + 1 P Ps C(l) K(2) range 
[km] 

cloud 
fraction A c 

P95 1(9) 0.46 (0.01) 1.85 (0.01) 1.89 (0.05) 2.14 (0.11) 0.07 0.14 1-20 0.95 
P95 2 0.47 (0.02) 1.71 (0.02) 1.52 (0.07) 1.64 (0.11) 0.19 0.27 1-10 0.96 
P95 3 0.56 (0.01) 2.03 (0.02) 2.14 (0.05) 2.12 (0.05) 0.10 0.18 1-20 0.97 
P95 4 0.49 (0.01) 1.76 (0.02) 1.73 (0.12) 1.80 (0.14) 0.26 0.36 1-10 0.80 
P95 5 0.52 (0.02) 1.78 (0.03) 1.42 (0.19) 1.51 (0.11) 0.16 0.24 1-6 0.84 

Table G . l l : Multifractal parameters of cloud optical depth field for the Pacific 

Ocean 1995 data set. 

Scene 
No 

H(l) 2 H(2) + 1 P Ps C(l) K(2) range 
[km] 

cloud 
fraction A c 

P 9 5 1(9) 0.45 (0.01) 1.75 (0.02) 1.77 (0.06) 1.89 (0.02) 0.07 0.15 1-20 0.95 
P95 2 0.58 (0.02) 2.03 (0.03) 2.23 (0.09) 2.25 (0.06) 0.15 0.20 1-10 0.96 
P 9 5 3 0.59 (0.01) 1.96 (0.01) 1.87 (0.06) 1.84 (0.07) 0.11 0.23 1-25 0.97 
P 9 5 4 0.47 (0.01) 1.56 (0.01) 1.29 (0.12) 1.54 (0.18) 0.37 0.47 1-15 0.80 
P 9 5 5 0.58 (0.02) 1.83 (0.02) 1.44 (0.23) 1.73 (0.09) 0.20 0.30 1-6 0.84 

Table G.12: Multifractal parameters of cloud droplet efFective radius field for the 

Pacific Ocean 1995 data set. 
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5) Indian Ocean (SOCEX 1995) data set 

Scene H(l) 2 H(2) + 1 & ft C(l) K(2) range cloud 
No [km] fraction Ac 

1 0.59 (0.01) 2.17 (0.03) 2.46 (0.06) 2.30 (0.12) 0.06 0.11 1-10 0.90 

S95 2 0.60 (0.01) 2.13 (0.03) 2.47 (0.08) 2.20 (0.08) 0.06 0.11 1-15 0.83 

S95 3 0.53 (0.02) 2.00 (0.03) 2.43 (0.05) 2.08 (0.11) 0.06 0.12 1-15 0.95 

S95 4 0.64 (0.02) 2.12 (0.04) 2.56 (0.07) 2.18 (0.08) 0.08 0.14 1-10 0.84 

Table G.13: Multifractal parameters of cloud visible wavelength radiance field for 

the SOCEX 1995 data set. 

251 


