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Abstract 

A variety of both parametric and nonparametric test statistics have been employed in the 
finance literature for the purpose of conducting hypothesis tests in event studies. This thesis 
begins by formally deriving the result that these statistics may not follow their conventionally 
assumed distribution in finite samples and in some cases even asymptotically. Thus, stan­
dard event study test statistics can exhibit a statistically significant bias to size in practice, 
a result which I document extensively. The bias typically arises due to commonly observed 
stock return traits, including non-normality, which violate basic assumptions underlying the 
event study test statistics. In this thesis, I develop an unbiased and powerful alternative: 
conventional test statistics are normalized in a straightforward manner, then their distribu­
tion is estimated using the bootstrap. This bootstrap approach allows researchers to conduct 
powerful and unbiased event study inference. I adopt the approach in an event study which 
makes use of a unique data set of failed-bank acquirers in the United States. By employing 
the bootstrap approach, instead of more conventional and potentially misleading event study 
techniques, I overturn the past finding of significant gains to failed-bank acquirers. This casts 
doubt on the common belief that the federal deposit insurance agency's failed-bank auction 
procedures over-subsidize the acquisition of failed banks. 

ii 



Contents 

Authorization Form i 

Abstract ii 

List of Tables v 

List of Figures vi 

Acknowledgements vii 

1 Introduction 1 

2 Event Study Methods 2 
2.1 Some Common Event Study Methods 3 
2.2 Condition Violations 10 

3 Demonstrating Significant Bias 14 
3.1 Experiment Design 14 
3.2 Results 18 

4 Nonparametric Event Study Approaches 22 
4.1 Existing Nonparametric Methods 23 
4.2 The Bootstrap Approach for Event Studies 26 
4.3 Performance of the Bootstrap Approach 31 

5 An Application: Failed-Bank Acquisitions 36 
5.1 Data 37 
5.2 Analysis of Gains to Acquirers 39 

6 Conclusions 43 

Appendices: 48 

A Testing for Cumulative Effects 48 
A. l The Dummy Variable Approach 48 
A.2 The Standardized Residual Approach 49 
A.3 The Traditional Approach 49 

m 



B Further Details on Experiment Design 49 

C Confidence Intervals for the Monte Carlos 52 

D Results of Further Experiments 53 
D.l The Marginal Effect of Individual Factors 53 

D.2 Allowing Different DGPs Across Firms 54 

E The New Approach Based on Z T R A D or ZSR 55 

F Size-Adjustments for Power Comparisons 58 

iv 



List of Tables 

1 Z Statistics: Non-Normal Data with DGP Changes, Using Conventionally 
Assumed Distributions 59 

2 Z Statistics: Normal Data without DGP Changes, Using Conventionally As­
sumed Distributions 60 

3 Rank Test Statistic: Non-Normal Data with DGP Changes, Using Conven­
tionally Assumed Distributions 61 

4 Sign Test Statistic: Non-Normal Data with DGP Changes, Using Convention­
ally Assumed Distributions 62 

5 Normalized Z Statistics: Non-Normal Data with DGP Changes, Using the 
Bootstrap Distribution 63 

6 Power Comparisons: Z Statistics and Normalized Z Statistics 64 
7 Normalized Z Statistics: Using Conventionally Assumed Distributions (with­

out use of Bootstrap) 65 
8 Conventional (Non-Normalized) Z Statistics: Using Bootstrap Distributions 66 
9 Sample of Failed-Bank Acquirers 67 
10 Z Statistics: The Marginal Effect of Higher Event-Period Variance 68 
11 Z Statistics: Different Variance Changes Across Firms 69 

v 



List of Figures 

Figure 1: Conventional ZD Using the Standard Normal Distribution; Skew, Excess 
Kurtosis, and Changes in DGP 70 

Figure 2: Conventional Z T R A D Using the Student t Distribution; Skew, Excess 
Kurtosis, and Changes in DGP 70 

Figure 3: Conventional ZSR Using the Standard Normal Distribution; Skew, Excess 
Kurtosis, and Changes in DGP 70 

Figure 4: Conventional ZD Using the Standard Normal Distribution; Normality 
and No Changes in DGP 71 

Figure 5: Conventional Z T R A D Using the Student t Distribution; Normality and 
No Changes in DGP 71 

Figure 6: Conventional ZSR Using the Standard Normal Distribution; Normality 
and No Changes in DGP 71 

Figure 7: Normalized ZD Using the Bootstrap Distribution; Skew, Excess Kurtosis, 
and Changes in DGP 72 

Figure 8: Normalized Z T R A D Using the Bootstrap Distribution; Skew, Excess Kur­
tosis, and Changes in DGP 72 

Figure 9: Normalized ZSR Using the Bootstrap Distribution; Skew, Excess Kurto­
sis, and Changes in DGP 72 

Figure 10: The Bootstrap Approach 73 

vi 



Acknowledgements 

While the Ph.D. thesis acknowledgement are traditionally intended to bring forth the 
names of those who helped make the completion of the research possible, I also wish pay 
tribute here to important people who have helped me deal with a much more difficult chal­
lenge: living day by day with a cancer diagnosis. 

I cannot imagine having survived this long without the patience and loving support of 
my husband Mark Kamstra. He is my most important reason for fighting to live, and I am 
profoundly lucky to enjoy the unconditional love of this extraordinary man who is, among 
many other things, one of the world's most brilliant econometricians. (And I'm totally 
unbiased!) 

This thesis would have been totally impossible without my mother Randi Kramer's assis­
tance which began more than 29 years ago. I know how much she loves me, and I'm grateful 
for every moment we spend together. My father, Bela Kramer, also played a crucial role in 
the creation of this thesis, though he died the year before I commenced my Ph.D. studies. 
I know this thesis would have been a better contribution had he lived to make comments 
and help shape its evolution. I would like to think he would have been proud of me right 
now. I still think of my brother Trevor Kramer as my little curly-haired, blond, two year 
old shadow, but now that he is in his twenties, I should try to let go of that image! T thank 
him greatly for his continued love and support. Lots of other relatives have also provided 
me with strength and love, including the Michaelsens, Carol and George Kramer (and the 
rest of the Kramer gang), and the Johansens. 

Many friends came to our rescue during difficult times since my cancer diagnosis, in­
cluding Mary Kelly, Keith Freeland, Nathalie Moyen, Martin Boileau, Jim Storey, Louise 
Yako, Jan Kiss, Shannon Linegar, and many, many, many others. (I would need as many 
more pages as the length of this thesis to fully acknowledge all the people who have given 
something helpful.) I feel blessed to know such love and support. 

I wish to acknowledge the medical experts, support workers, volunteers, and fellow cancer-
fighters who have been helping me deal with Hodgkin's lymphoma. I am grateful for the 
contributions of tens of thousands of individuals who willingly suffered or died in clinical 
trials, leading to the development of viable forms of treatment for the cancer with which I 
live. 

Specific medical doctors who have helped me live this long include Dr. Barbara Melosky, 
Dr. Tamara Shenkier, Dr. Janet Franiek, and Dr. Ken Evans. The chemotherapy nurses 
on the sixth floor of the BC Cancer agency are true angels - they include Libby, Iris, Eliza­
beth, Wilkie, Barb, Cathy, and many others whose names have faded into the (temporary!) 
chemotherapy-induced numbness of my brain. The amazing support staff of the BC Cancer 
Agency are actually skilled enough to make the cancer-surviving experience bearable. They 
include Lis Smith (who has since moved on to do important work elsewhere), Katherine 
Nicholson, Sarah Sample, Mary Jean Ellis, and others. The volunteers and participants of 
the BC Cancer Agency relaxation circle have helped me feel like an important member of 
a supportive community. The unconditional love in that group is profound. I have had the 
pleasure of getting to know many people in that community, and they have all touched me 
deeply. Naming each of them would, again, create a volume longer than this thesis, but I 

vii 



thank each of them from the bottom of my heart (especially Mae Spear and Darline Miller 
who have allocated thousands and thousands of hours of their time to volunteering at the 
BC Cancer Agency). 

The facilitators of Callanish Healing Retreats helped change the way I look at cancer 
and my life. I was lucky enough to attend a Callanish retreat in March 1997, and I will 
never forget the experience. I hold a special place in my heart for each of the generous, kind, 
and soulful facilitators: Janie Brown, Daphne Lobb, Gilly Heaps, Madre Honeyman, Betsy 
Smith, Karen Barger, and Kathy Fell. The participants at the Callanish retreat I attended 
have become special friends unlike any others. They are Carmen Carberra, Shaune Holden 
(sadly, Shaune died this past summer), Dianne MacFarlane, Linda Mitchell, Patrice Shore, 
Gayle Whetstone, and Ann Woods. These are people I know I can turn to for anything. 

Dr. Bill Nelems has had a profound influence on the way I deal with illness and my life 
overall. He spent many hours working with individuals in the BC Cancer Agency relaxation 
group, and I was lucky enough to spend a great deal of time talking one-on-one with him. 
He has become a dear friend, and I take strength from his world vision, his compassion, and 
his optimism. 

Many new friends have died from cancer since I started this battle over a year ago. 
Russell, Len, Sonia, Shaune - you will live on forever through the memories you helped 
create. 

I was lucky enough to join an on-line support group for people living with Hodgkin's 
Lymphoma. The participants of that listserv helped me cope moment to moment at times. 
The provided information I couldn't have retrieved from any textbook or oncologist. They 
provided understanding that could only come from someone who has lived through similar 
experiences. My special thanks go out to Peter Guethlein who started the Hodgkin's listserv 
and who donates thousands of hours and dollars to the listserv every year. I have received 
advice and support from hundreds of people in that community, but the ones I have gotten 
to know best include Christina, Kate, Sam, Nelson, Sheri, Paul, Pam, Ross, Gene, and 
Natasha. 

Finally, I am immensely grateful to Glen Donaldson and Maurice Levi for their guidance 
and supervision on my thesis. This work has also benefited from helpful comments provided 
over the past few years by Espen Eckbo, Burton Hollifield, Mark Kamstra, Felice Martinello, 
Brendan McCabe, Ken White, and seminar participants at Simon Fraser University, the 
University of British Columbia, the University of Toronto, and the 1996 Western Finance 
Association meetings. Of course, all remaining errors are my own. The completion of this 
work would have been impossible without the financial support of the Social Sciences and 
Humanities Research Council of Canada. 

viii 



1 Introduction 

This thesis focuses on the implementation of financial event studies. In an event study, 
one analyzes the information content of corporate events, making use of stock returns for a 
collection of firms. The goal is to determine whether a particular financial event, such as an 
equity issue, debt offering, merger, or regulation change, had a significant effect on firms' 
returns, indicative of a gain or loss to shareholders. Techniques have evolved considerably 
since the seminal event study of stock splits by Fama, Fisher, Jensen, and Roll [1969]. Today, 
the use of event study methods is quite mainstream, and event study results are a common 
source of "stylized facts" which influence policy decisions and the direction of research. 

In this thesis, I consider the necessary conditions which underlie hypothesis tests in event 
studies. If conditions laid out in this thesis are satisfied, then most common event study test 
statistics asymptotically follow a standard normal distribution. However, it is typically the 
case that several of the underlying conditions are violated in practice, invalidating use of the 
distribution assumed to be appropriate for hypothesis testing. Unless tests are conducted 
with critical values from the appropriate distribution, erroneous conclusions may be reached. 

Such issues have not gone without notice in the literature. Brown and Warner [1985, 
page 14], for example, state that when evaluating their event study test statistic in the 
presence of non-normally distributed data, "stated significance levels should not be taken 
literally" in some cases. Likewise, De Jong, Kemna, and Kloek [1992, page 29] report that 
"results obtained under the usual assumptions on the error process (homoskedastic, normal 
distribution) shows that ignoring the fat tails and the heteroskedasticity may lead to spurious 
results." Campbell and Wasley [1993, page 74] find that with daily NASDAQ returns, 
conventional test statistics "depart from their theoretical unit normal distribution under 
the null hypothesis." Several recent studies have provided modifications to conventional 
techniques which successfully address some concerns that arise in practice.1 Others have 
suggested nonparametric alternatives to conventional methods.2 My study, however, aims 
to provide a feasible means of effectively dealing with all the problems under a much wider 
range of conditions than previously considered. 

The main components of the thesis are as follows. In the remainder of this section, I 
present some conventional event study test statistics and discuss the conditions under which 
they follow their assumed distribution. I establish that violating these basic conditions 

1For example, Boehmer, Musumeci, and Poulsen [1991] propose an alternative event study test statistic. 
Brockett, Chen, and Garven [1994] suggest that event study regression models should account for ARCH 
and stochastic parameters, and Corhay and Tourani Rad [1996] recommend accounting for GARCH effects. 

2For example, Brown and Warner [1980, 1985] discuss the sign test, Corrado [1989] introduces the rank 
test, and Marais [1984] uses the bootstrap. 
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can render event study hypothesis tests invalid in practice. I also provide evidence that in 
practice these conditions are often violated, resulting in a significant bias to the statistical 
size of test statistics and invalidating inference. I argue that this bias has typically been 
under-estimated until now due to the use of actual CRSP data in conducting the statistical 
size tests. Therefore, generated data is used in this study, highlighting effects which can be 
obfuscated in studies using actual data. I document the bias in Section 3 where I provide 
results of extensive Monte Carlo experiments. Then, in Section 4, I discuss nonparametric 
alternatives to conventional event study methods, including the sign test, the rank test, and 
what I call the bootstrap approach. I argue that the only approach which achieves correct 
statistical size is the bootstrap approach. It involves (a) a normalization of conventional test 
statistics and (b) use of a bootstrap-based resampling exercise to empirically estimate the 
normalized test statistic's distribution. Inference based on this procedure has desirable size 
and power properties, even in situations where some of the conditions underlying conven­
tional event study approaches are grossly violated. Thus, this bootstrap approach is robust 
to problems which plague conventional event study methods. I provide details for imple­
menting the new technique in practice, and I document its impressive performance relative 
to other techniques. In Section 5, I conduct an actual event study which considers returns 
to the acquirers of failed banks in the United States. The typical finding in such event stud­
ies is that of abnormally large gains at the time of the acquisition. Based on this finding, 
many researchers have suggested the presence of a wealth transfer, arguing that failed-bank 
acquirers gain at the expense of federal regulators (hence taxpayers). Using the bootstrap 
approach, I find little evidence of significant abnormal returns, overturning the established 
result. Conclusions follow. 

2 Event Study Methods 

There are two broad goals in conducting financial event studies: testing for a significant 
information effect in stock returns at the time of the event announcement (examples include 
Patell [1976], Schipper and Thompson [1983], Dimson and Marsh [1985], and Brown and 
Warner [1980, 1985]) and identifying factors which determine the information effect (see, for 
example, work by Eckbo, Maksimovic, and Williams [1990] and Prabhala [1997]). The first 
of these, testing for an information effect, is the focus of this study. 

In testing for an information effect, the conventional approach is to collect a series of 
consecutive stock returns for a sample of firms of interest along with the corresponding 
returns on a market portfolio. A simple market model is then estimated for each of the 
firms, and tests are conducted to see if there is evidence of an impact on firms' stock returns 
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at the time of the event. One can choose among many possible approaches in formulating 
test statistics to detect the information effect. Three of the most common event study 
test statistics are presented below, although I focus primarily on one - the Dummy Variable 
Approach - which is most frequently employed and most likely to behave well in practice (due 
to its relatively better flexibility).3,4 I provide a detailed presentation of the test statistics 
and a discussion of how each of the statistics depends on certain key conditions. I argue that 
the test statistics do not follow their assumed distribution unless these necessary conditions 
are satisfied. 

2.1 Some Common Event Study Methods 

The Dummy Variable Approach 

The first event study model I present is that which is most commonly adopted and most 
flexible in implementation. The methodology is clearly laid out by Thompson [1985], and 
the application is demonstrated by many, including Schipper and Thompson [1983], Eckbo 
[1985], Malatesta and Thompson [1985], Sefcik and Thompson [1986], and Eckbo [1992]. 
The Dummy Variable Approach involves estimating a market model by regressing returns 
for each of N firms being considered on the appropriate set of explanatory variables, including 
a dummy variable to pick up the event effect. 

Define Rn as the return on firm Vs share where i = (1, • • •, N), Mn as the return on the 
market portfolio, and ett as an error term. The point in time at which the event announcement 
potentially impacts the firms' returns is denoted t = +1, hence a dummy variable is defined 
to equal 1 for t — +1 and zero otherwise. (In addition to testing for single-day-event 
effects, it is also possible to test the significance of cumulative effects over multiple event 
days. Methods for doing so are discussed in Appendix A.) This dummy variable effectively 
allows for a change in the intercept at the time of the event, and hence can be thought of 
as picking up any unusual event effect in excess of the mean return. For each of the N 
firms being considered, a market model is estimated over a time period of length T such as 
t = (—130, • • •, +10), including the date of the event and several days following the event:5 

3 A n earlier version of this thesis included the Cross-Sectional Approach and the Boehmer, Musumeci, 
and Poulsen [1991] Standardized Cross-Sectional Method. Preliminary experiment results indicated their 
performance is qualitatively similar to the performance of the approaches documented below. Since this thesis 
is meant to be a consideration of some of the most common techniques and not an exhaustive summary of 
all existing techniques, several methods have been excluded from the investigation in the interest of brevity. 

Characteristics of returns data may render one approach more suitable than others in a particular 
application. For example, a null hypothesis which includes a change in variance at the time of the event 
should be tested with a technique that accounts for such occurrences. 

5 The notation T, would be used to allow for different length estimation periods across firms. In most 
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Rit = Ao + PnMit + PiDDit + ea. (1) 

Note that I consider this relatively simple market model specification purely for the purposes 
of demonstration and investigation. By specifying models which intentionally neglect actual 
features of the data generating process (DGP), I am able to fully explore the implications of 
various degrees of model misspecification. In practice, the model chosen to estimate should 
allow for all suspected features of the data, such as autoregressive conditional heteroskedas-
ticity in the disturbances or event-period changes in parameters other than the intercept. In 
practice, however, it is improbable that a researcher knows the true DGP underlying stock 
returns. Thus any model selected is likely to be misspecified to some extent. I explore the 
quantitative repercussions of such oversights, and in so doing I gain a better understanding of 
the robustness of the different approaches to various oversights. For example, while conven­
tional test statistics are invalidated by neglecting to model even fairly modest (and therefore 
difficult to detect and easy to overlook) increases in event period variance, the bootstrap 
approach remains valid. If I were to restrict my study to "state of the art" models, this 
important distinction would be missed. In studies using test statistics to investigate the 
significance of a particular event - unlike the study reported in this section which aims to 
consider the robustness of test statistics themselves - one should consider only sophisticated 
models that attempt to capture all features of the data. (In fact, I consider more elaborate 
models in Section 5 where an actual event study is presented.) Relatively simplistic models 
are considered in this section to examine the effect of inadvertent and sometimes unavoidable 
oversights in model specification. 

There is a t-statistic, denoted 2,-, associated with each of the N estimated dummy variable 
coefficients (3\r). These are used for testing the null hypothesis of no abnormal event day 
returns: 

ZD = U^L_ ( 2 ) 

Typically, the ZD statistic is assumed to be distributed as standard normal. However, ZD 

follows this distribution only under certain conditions. I now present the three cases under 
which the standard normal distribution may apply. Implicitly underlying these cases is 
cases, TJ- is constant across firms, in which case the use of T is unambiguous. 
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the assumption that the market model shown in Equation (1) is well specified and that 
requirements of the classical linear regression model are satisfied. A fourth case is also 
presented - the one which applies to most event studies conducted in practice - for which 
ZD cannot be expected to follow the standard normal distribution. 

Case A : S m a l l T, L a r g e N 

Consider the case where T, the length of the times series, may be short, but the number 
of firms being considered, N, is large. (Note that if T is too small, the market model may 
not be well specified.) In that case, ZD will be asymptotically normally distributed, but ZD 

will not necessarily be distributed as standard normal, even for very large N. 
Consider the ti statistics. If the are identically distributed as Student t, then each U has 

zero mean and a variance of r ^ ^ 2 , where k denotes the number of regressors in the market 
model (fc = 3 for the model shown in Equation (1)). Calculating ZD by summing the t{ and 
dividing by y/N yields an asymptotically normal random variable (its distributions denoted 
as Af(0, r^fc*2)) ky central limit theory, provided the ti are independent and identically 
Student t-distributed. While ZD is asymptotically normal in this case, it is not standard 
normal. For asymptotic standard normality, the required divisor in calculating ZD would be 
the square root of the sum of the variances for each ti, that is yjN /F~k^ instead of y/N. I 
must emphasize that the ZD statistic, as conventionally defined, does not follow its assumed 
standard normal distribution, even asymptotically. 

Now if the i , are not in fact identically distributed as Student t, one can still establish 
asymptotic normality, provided the ti are independent. Asymptotic standard normality 
requires that the denominator of ZD reflect the non-identical variances of the ti, hence if 

assumed standard normal distribution, even asymptotically. 
To summarize the case of small T and large N, the following conditions are required for 

standard normality of ZD. 

( A l ) The market model is well specified 

(A2) The ti are independent across firms 

(A3) The denominator of ZD is appropriately defined as the square root of the summed 
variances of the individual ti 
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Case B: Large T, Small N 

Consider the case of a long time series for each firm, but a small collection of firms. (Note 
that a time series which is too long may lead to an invalid market model specification unless 
changes in parameters are correctly modeled over time.) Disturbances that are independent 
and normally distributed with constant variance over time can be denoted 

e~A^(0,(72/T), 

where cr2 is the variance of the disturbances and IT is a T x T identity matrix. If the dis­
turbances satisfy this condition, then the ti statistics are identically distributed as Student 
t. For large T, the distribution of the 2, asymptotically approaches the standard normal, 
assuming no individual observation among the regressors contributes excessively to the over­
all variance of the regressors.6 Calculating ZD according to Equation (2) involves summing 
the asymptotically normal independent ti and dividing by V~N. The sum of independent 
normals is normal, hence ZD is itself approximately standard normal in this case. 

The conditions required for approximate standard normality of ZD for the case of large 
T and small N can be summarized as follows. 

(BI) The market model is well specified 

(B2) The ti are independent across firms 

(B3) The disturbances are independent and normally distributed with constant variance 
over time: 

e ~ A/*(0, o2IT) 

(B4) The Lindeberg condition is satisfied, i.e. no observation among the regressors con­
tributes excessively to the overall variance of the regressors 

Case C : Large T!, Large N 

Consider the case where both the time series is long and the number of firms is large. 
(Once again, note that a time series which is too long may lead to an invalid market model 
specification unless changes in parameters are correctly modeled over time.) This case follows 
closely the argument presented for Case B above with one minor exception. Summing the 

6 Thi s assumption is simply the Lindeberg condition. It ensures that the average contribution of the 
extreme tails to the variance of the regressors is zero in the limit. Consider for example, the market return, 
Mn- The Lindeberg Condition requires that max* — j ^ ' ' • 0 as T —• oo. 
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asymptotically normal and dividing by \/N will yield a ZD statistic which more closely 
follows the standard normal: instead of an approximately standard normal ZD, central limit 
theory leads to the standard normal asymptotically since N is large. 

The conditions required for standard normality of ZD for the case of large T and large 
N are as follows. 

(Cl) The market model is well specified 

(C2) The ti are asymptotically independent across firms 

(C3) The disturbances are independent and normally distributed with constant variance 
over time: 

t ~ Af(0, o2IT) 

(C4) The Lindeberg condition is satisfied, i.e. no observation among the regressors con­
tributes excessively to the overall variance of the regressors 

Case D : Small T, Small N 

With both a short time series and a small sample size, ZD cannot be expected to follow 
a standard normal distribution. Even if the ti are independent and identically Student t 
distributed, summing them and dividing by \/N does not generally yield a statistic which 
follows the standard normal. Large N or large T plus a variety of other conditions are 
required for standard normality of ZD, as shown in Cases A, B, and C above. 

Notice that in none of the cases presented above was finite sample standard normality 
established. Asymptotic or approximate normality was established, but only under certain 
conditions. Nonetheless, it is conventional to assume that ZD follows the standard normal 
distribution in practice - justified or not. In Section 2.2, I examine the degree to which 
properties of data used in event studies lead to violations of the various necessary conditions 
which underly standard normality, and in Section 3, I demonstrate the serious repercussions 
of violating the conditions in practice. 

The Standardized Residual Approach 

Another common event study approach is that of Patell [1976]. This procedure has 
been adopted in many studies, including investigations of corporate acquisitions by Bradley, 
Desai, and Kim [1988] and Gupta, LeCompte, and Misra [1993]. As before, Ra is the return 
on firm Vs share where i = (!,-•• ,N), Mn is the return on the market portfolio, and e,-t 
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is a disturbance term. The point in time at which the event announcement potentially 
impacts the firms' returns is denoted t = +1. For each firm in the sample, a market 
model is independently estimated for each firm over some period prior to the event, such as 
t — ( — 130,•••,—11). Unlike the case of the Dummy Variable Approach, the event date is 
not included in the market model estimation period. 

R,t=Ao + fciMu + ett (3) 

For each firm, daily out-of-sample forecast errors are computed for the event period, for 
example t = (—10, • • •, +10), by making use of the market model estimates for 8i0 and dn 
in conjunction with actual data for Ri and Mn: 

iit = Rit-CPio + kMit). (4) 

These forecast errors are then adjusted to incorporate out-of-sample forecast variability. As 
I explain below, this yields a series of standardized residuals, en, for each of the firms in 
the sample. Define the following variables: T,- is the number of observations for firm i in the 
market model estimation period,7 <r? = j=j.2" is the variance of residuals from the market 
model regression for firm i, Mn is the market return for day t of the event period for firm 
i, Mik is the market return for day k of the market model estimation period for firm i, and 
Mi is the mean market return over the market model estimation period for firm i. 

Then firm Vs estimated forecast variance, Sft, is given by the following expression: 

1 + 1 + (M« - M>)2 

(5) 

The standardized residual for the each of the firms in the sample is defined for each date 
t — (—10, • • •, +10) in the event period as the ratio of the forecast error to the square root 
of the estimated forecast variance: 

eu = -S=. (6) 

7Notice that 7} need not be the same across firms. However, it is typically the case that TJ = T for all i. 
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The null hypothesis of no abnormal event effect at date t 

rrSR _ 2̂ 1=1 Ctl 

\JL,t=l Ti-4 

The distribution of the ZSR statistic is conventionally assumed to be standard normal. 
However, ZSR follows the standard normal only under conditions similar to those discussed 
for the Dummy Variable Model above. ZSR may be asymptotically standard normal or 
approximately standard normal if T and/or N is large and conditions analogous to (Al) -
(A3), (BI) - (B4), or (Cl) - (C4) are satisfied. In practice, however, this is not typically 
the case. 

The Traditional Approach 

Consider now an event study approach like that outlined by Brown and Warner [1980, 
1985]. Many have adopted this procedure, including Kalay and Loewenstein [1985] in a study 
of dividend announcements, James and Wier [1987] for the case of failed-bank acquisitions, 
and O'Hara and Shaw [1990] in a study of deposit insurance. As before, Ra is the return on 
firm z's share, Mn is the return on the market portfolio, and en is an error term. The point in 
time at which the news of the event is thought to impact the firms' returns is denoted t = +1. 
As with the Standardized Residual Approach, the following market model is estimated for 
each firm over some period prior to the event, such as t.= (—130, • • • , —11): 

Rit = Pi0 + PiiMit + eit. (3) 

The number of days in the estimation period for each firm is denoted by T; T = 120 in this 
example.9 

The forecast errors are computed, making use of the market model estimates for /3to and 
and actual data for Ri and Mn'. 

Zit = Rit-0io + PiiMit). (4) 

8 Thi s test statistic pertains only to the case of testing for a single-day effect. Refer to Appendix A for 
the test statistic used to investigate the significance of cumulative returns over multiple event days. 

9 Note that this method requires each firm's estimation period to be the same length (i.e. T{ = T for all i). 
It is unclear what the appropriate degrees of freedom would be for the test statistic in the case of different 
length estimation periods across firms. 

= +1 is tested by using ZSR.S 

(7) 
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The daily fitted residuals are averaged over firms for each day in the estimation period: 

1 N . 
i v i=l 

Then the variance of the et over the estimation period is denoted <rf. Under the null hy­
pothesis of no abnormal returns at the time of the event, the expected value of et is zero at 
t = +1. This hypothesis is tested using a Z statistic for date t = +1 as follows:10,11 

7TRAD _ _/v 
0\ 

where 

V Z^J = 1 c t l 

J <8> 

The ZTRAD statistic is conventionally assumed to be distributed as Student t with T — 1 de­
grees of freedom. Unfortunately, ZTRAD does not generally follow the Student t-distribution, 
even if conditions such as (Al) - (A3) or (BI) - (B4) shown for the Dummy Variable Ap­
proach are satisfied. A known distribution for ZTRAD is obtained only if conditions like 
(Cl) - (C4) are satisfied and the number of observations in the time series identically equals 
the number of firms being considered: T = ./V.12 Under such circumstances, ZTRAD is asymp­
totically standard normal. In practice, it is inappropriate to assume ZTRAD generally follows 
the Student t-distribution - there is no finite sample case when this distribution applies. 

2.2 Condition Violations 

As discussed above, central limit theory can be used to establish asymptotic normality or 
approximate normality of the Z statistics under certain conditions. Thus, it may be tempting 

1 0 T h e variance in the denominator is calculated by some researchers, such as Brown and Warner [1980, 
1985], over the estimation period - the variance of in over t = (—130, • • •, —11) in this case. Others, such as 
James and Wier [1987], calculate them over the forecasting period - the variance of en over t = (—10, • • •, +10) 
in this case. As a further complication, those who use the latter method sometimes exclude dates t = 0 and 
t — +1 from the calculation. 

1 1 See Appendix A for the case of testing the significance of cumulative returns over multiple event days. 
1 2 T h i s result is most clearly highlighted by considering the fact that a Student t-ratio with T— 1 degrees of 

freedom is defined by a standard normal random variable divided by the ratio of an independent chi-square 
random variable to its T — 1 degrees of freedom. In order for the components of Z T R A D to satisfy the 
requirements for defining a Student t ratio, it is necessary that T — N. 
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to conclude that provided a large sample of firms or a long time series is employed for an event 
study, use of the standard normal distribution for the Z statistics is a reasonable approach 
to take. Unfortunately, it is not clear how large a sample is "large enough," hence use of the 
standard normal distribution may not be appropriate in any finite sample. Furthermore, the 
standard normal distribution may not apply even asymptotically if particular conditions are 
violated. For example, unless the ZD statistic is calculated with the appropriate standard 
deviation in the denominator, in accordance with condition (A3), ZD may not be standard 
normal. Finite sample consequences of violating the underlying conditions have not been 
formalized in the literature, and therefore it is not clear to what degree erroneous conclusions 
may be reached through use of the assumed approximate distribution (or the asymptotic 
distribution) when underlying conditions for a Z statistic are violated. 

In the next section of this thesis, I quantify the extent to which condition violations 
invalidate inference based on use of the assumed distributions for the Z statistics, even for 
fairly large samples. Violations of factors other than independence are the main focus of in­
vestigation - that is, factors other than (A2), (B2), and (C2) - since independence is largely 
satisfied in studies of events which are not clustered in time. When independence is satis­
fied, I demonstrate that the distribution of test statistics can be estimated by adopting the 
bootstrap. Procedures for doing so are outlined in Section 4 below. A detailed consideration 
of the implications of violating independence (for studies of events which are clustered in 
time) is postponed for future study. For this purpose, the bootstrap with moving blocks 
re-sampling may prove to be useful.13 

Many well-documented features of financial returns data suggest that the conditions 
underlying event study hypothesis testing are violated in practice. For example, returns 
data are known to be non-normally distributed, market model parameters have been found 
to undergo changes around the time of events, time-varying conditional heteroskedasticity is 
typically observed in returns data, and events of interest often occur at dates that coincide 
in time across firms. I discuss each of these in some detail below, with particular attention to 
explaining how they indicate violations of conditions (Al) - (A3), (BI) - (B4), and (Cl) -
(C4). In practice, these conditions are violated on many counts. Here I consider only a 
subset of the possible infractions. 

i 3 A 

moving block bootstrap is based on random re-samples of blocks of data (i.e. dependently related 
strings of observations) instead of re-samples of individual observations. Work including that of Liu and 
Singh [1992] adapts the bootstrap for use with weakly dependent data in this way. Such an approach requires 
an exact model for the form of the dependence, something which may be difficult or impossible to motivate 
across firms in an event study. 
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• Non-normality 

There is considerable evidence that returns data are not normally distributed, violat­
ing conditions (B3) and (C3). In particular, skewed and fat-tailed distributions have 
been documented extensively. For some early evidence of these characteristics in firms' 
return data, see Mandelbrot [1963], Fama [1965], and Officer [1967]. An investigation 
by Kon [1984] reveals, almost without exception, significant skewness and excess kur­
tosis (fat tails) among daily returns for 30 individual stocks and 3 standard market 
indexes. Bollerslev, Chou, and Kroner [1992, page 11] state it is "widely recognized 
that the unconditional price or return distributions tend to have fatter tails than the 
normal distribution." They also observe that even by accounting for ARCH, one may 
fail to capture all of the non-normality in returns data: "standardized residuals from 
the estimated models ... often appear to be leptokurtic." 

The work of Brown and Warner [1980, 1985] is perhaps best known among studies 
which consider the performance of event study test statistics. Among the issues they 
consider is non-normality with respect to a particular Z statistic, ZTRAD presented 
above. By simulating 250 individual event studies examining samples of 5 to 50 firms, 
they investigate the performance of ZTRAD when returns data are not normally dis­
tributed. They argue that for samples of 50 firms, the test statistic is well-behaved. 
However, they indicate that the test statistic may not be well-behaved for smaller sam­
ples - an important result which is often overlooked. In this thesis, some aspects of 
Brown and Warner's work are extended.14 

• Autoregressive Conditional Heteroskedasticity (ARCH) 

Time-varying conditional heteroskedasticity is a well documented empirical regularity 
of stock returns data, as evidenced by the voluminous literature on the ARCH family 
(much of which is cited in the survey by Bollerslev, Chou, and Kroner [1992]). Neglect­
ing the time-varying aspect of variance may lead to a violation of the requirement of 

1 4 Fi rs t , computer generated data are used instead of actual C R S P data. The merits of doing so are fully 
discussed in Section 3.1 below. Second, in addition to the ZTRAD statistic considered by Brown and Warner, 
the performance of other common test statistics is also evaluated. Under ideal conditions (for example with 
( C l ) - (C4) satisfied and large T = N) it might be the case that none of the common event study test 
statistics deviate significantly from their assumed distributions, and hence, they may all lead to similar 
conclusions in hypothesis tests in that setting. However, in the case of violating the necessary underlying 
conditions, the various test statistics may actually behave differently from one another in practice. Thus, 
even if the ZTRAD statistic performs well for some sample sizes in the presence of non-normally distributed 
data, other commonly utilized statistics like ZD and ZSR may not follow their assumed distributions under 
such conditions. By analyzing the behavior of several common Z statistics under a variety of conditions, 
fairly general conclusions can be reached. Finally, advances in computer technology facilitate a larger number 
of replications, permitting tighter confidence bounds and allowing for a rigorous performance test of the Z 
statistics. 
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constant variance implicit in conditions (B3) and (C3). The result will be a Z statistic 
which may not follow its assumed distribution, even for large samples. As discussed 
by Bollerslev, Chou, and Kroner, non-normality - also implicit in (B3) and (C3) - can 
arise by failing to account for ARCH in returns data. 

Changes in variance around the time of the event 

There is considerable evidence that the variance of the disturbances can undergo 
changes around the time of an event. For example, Boehmer, Musumeci, and Poulsen 
[1991] and Donaldson and Hathaway [1994] recognize the importance of modeling 
changes in the variance during an event period. For the firms they consider, they 
find variances can rise up to 680% around the time of events. Failure to model such 
changes violates the model specification conditions - (Al), (BI), and (Cl) - and also 
violates the constant variance requirement in conditions (B3) and (C3). Effects such 
as these can lead to Z statistics which do not follow the standard normal distribution, 
even asymptotically. 

Furthermore, estimates of the variance used in the various Z statistics embed differ­
ent assumptions about the behavior of the disturbances. This may allow for different 
conclusions to be reached with the use of different statistics, even when employing 
the same data. Consider an example which highlights the impact of variations on 
commonly employed Z statistics. If returns become more volatile during the time sur­
rounding the event, then the version of ZTRAD used by Brown and Warner [1980, 1985], 
which uses estimation period variance in the denominator, may be considerably larger 
than a version of ZTRAD which employs the event-period variance in the denominator. 
(See footnote 10 above for a discussion of the distinction between these two variants.) 
Then clearly it is possible to reach different conclusions, depending on which of the 
many available Z statistics is adopted. 

Changes in market model coefficients during the event period 

Several researchers have established that market model parameters can undergo changes 
around the time of the event or follow some distribution or some pattern over time. 
Donaldson and Hathaway [1994] demonstrate the importance of allowing for changes in 
the intercept and market return coefficient at the time of the event. De Jong, Kemna, 
and Kloek [1992] find evidence that the coefficient on the market return is not neces­
sarily constant over the estimation period in event studies (they find it often follows 
a mean-reverting AR process), and Brockett, Chen, and Garven [1994] argue for the 
importance of allowing a time-varying stochastic market return coefficient. Failure to 
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model such effects violates the condition that the market model be well-specified -
(Al), (BI), and (Cl) - resulting in Z statistics which do not follow their assumed 
distribution, even asymptotically. 

For example, suppose that for some firms in the sample the true coefficient on the 
market return is equal to one during t — (—130, • • •, —11), then equal to two dur­
ing the event period, t — (—10, • • •,+10). For the Traditional Approach and the 
Standardized Residual Approach, the market model in Equation (3) is estimated over 
t — ( — 130, • • •, —11), the period during which time the true coefficient is one for all 
the firms. Then the estimated coefficients are used to forecast into the event period, 
t = (—10, • • •, +10), during which the true coefficients have actually doubled for some 
firms. Failing to account for the increase in the true coefficient will invalidate inference 
based on the Z statistics. 

• Clustering 

Clustering arises whenever events occur simultaneously in calendar time for the firms 
in a sample. This type of cross-sectional dependence arises in many studies, including 
those which aim to determine the impact upon a collection of firms following a change 
in a particular government policy or a change in regulation pertaining to an industry. 
Such studies often find the residuals are correlated across firms, perhaps due to the 
omission of some market-wide explanatory variable. This correlation across firms would 
suggest a violation of independence - conditions (A2), (B2), and (C2). A study of the 
utility of the bootstrap in this setting is postponed for future consideration. Various 
past studies have already conducted some investigation of the impact of cross-sectional 
dependence on the performance of conventional event study test statistics. Brown and 
Warner [1985] document the fact that test statistics often do not follow their assumed 
distribution in the presence of clustering. However, they find that adjusting for the 
dependence across firms can introduce a substantial loss of power. 

3 Demonstrating Significant Bias 

3.1 Experiment Design 

It is clear from Section 2.1 that the small sample distribution of common event study statis­
tics relies critically on basic underlying conditions. It is also clear from Section 2.2 that these 
conditions are violated in practice. To date, the validity of standard event study techniques 
under circumstances commonly encountered has not been fully explored. Hence, I have con­
ducted extensive experiments to investigate further the performance of the Z statistics in 
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practice. The objective is to quantify the degree to which use of critical values from a con­
ventionally assumed distribution can lead a researcher to false conclusions when conditions 
underlying a Z statistic are violated. As briefly mentioned in the previous section, past 
researchers have typically employed actual returns data for investigating the performance of 
test statistics. In this study, instead of using actual returns data, I adopt generated data 
with properties to match closely the characteristics of actual data. Simulated data such 
as these have been used extensively in the event study literature; see Acharya [1993] and 
Prabhala [1997] for recent examples. 

There are several reasons to prefer the use of generated data for evaluating the statistical 
size of test statistics. First, because actual returns data incorporate true event effects (some 
of which may even be unknown to the researcher), and because the timing and magnitude of 
some of these event effects often cannot be determined by the researcher, it is not advisable to 
employ actual returns for conducting size investigations. Investigations of size must be done 
under the null hypothesis, in the absence of both known and unknown event effects. Hence, 
I employ data generated without event effects, permitting true investigations of statistical 
size. 

Second, if the conditions which underlie valid hypothesis tests are violated on several 
counts by the characteristics of actual data, there is a potential for the violations to appear 
to counteract one another in a given instance, leading to no perceivable evidence of significant 
bias. Thus, in using actual returns data, one might conclude a test statistic is valid even 
though it may not be valid in general. For example, positive skewness in returns would tend 
to lead to overstated test statistics, while a decrease in event-period variance could lead to 
understated test statistics. If these two factors closely offset one another in a specific set of 
CRSP data, one might fail to detect what might in fact be a general problem. Observing that 
counteracting characteristics in the data seem to "cancel each other out" in some settings -
i.e. finding what seems to be a lack of bias for some particular sample of actual CRSP data -
is not sufficient evidence for the general validity of event study test statistics. 

If one were to attempt to use actual returns data to evaluate statistical size, a variety of 
the condition-violating factors would be simultaneously present. One would have to decom­
pose the data and extract each of the factors individually in order to examine marginal effects 
of particular factors in isolation. Such a decomposition would be immensely complex and 
unreliable without prior knowledge of the true DGP. By employing generated data in this 
study, I can easily investigate both the marginal and collective impacts of factors which are 
each individually capable of invalidating event study hypothesis tests, without undertaking 
complicated and unreliable extractions. 

Third, sensitivity analysis is facilitated by the use of simulated data - for example, the 
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marginal impact of various factors can be examined by simply changing the nature of ascribed 
properties. This would not be feasible with actual data. 

In summary, although many previous Monte Carlo studies on event study test statistics 
have employed actual CRSP data, correctly specified size and power experiments require the 
use of generated data. Consequently, much of the analysis in this study is based on data 
generated with properties to match those of actual data. 

In my Monte Carlo experiments, I know the true DGP, including the distribution of stock 
returns, the degree and form of ARCH, the complete set of relevant explanatory variables, 
etc. By intentionally specifying models which ignore true aspects of the DGP, I can quan­
titatively determine the performance of event studies test statistics in circumstances where 
their underlying conditions are violated, mimicking the type of analysis undertaken in actual 
event studies. The Monte Carlo framework of this study allows the relative performance of 
the various Z statistics to be investigated under a variety of realistic conditions. 

For example, to evaluate the performance of the Z statistics for a sample of 100 firms, I 
took the following steps: 

1. Disturbances, market returns, and model parameters were generated for each firm, and 
then each firm's returns were generated according to a basic market model: 

Ra = Pio + PnMit + tit. 

The properties ascribed to the generated data closely matched those of actual financial 
returns data, leading to violations of a variety of the conditions (Al) - (A3), (BI) -
(B4), and (Cl) - (C4). In Appendix B, I document the collection of studies I consulted 
in choosing how to generate the data for the experiments. I also discuss the steps 
taken to verify others' reported parameter values, and I outline the algorithm chosen 
to generate the data. 

Although the data were generated to violate conditions underlying test statistics, the 
null hypothesis is true to the extent that there is no event effect to be detected. I 
am interested in the statistical size of the Z statistics: the probability of rejecting 
the null hypothesis of no event-day abnormal return when it is true. It may also be 
of interest how the statistics behave when there is an event effect. In this case, the 
power of the statistics becomes of interest: the probability of rejecting the null when 
it is false. Questions of power are examined in Section 4 where the performance of the 
conventional Z statistics is compared to that of the bootstrap approach. 

2. OLS was used to estimate each firm's market model, and ZD, ZSR, and ZTRAD were 
computed. 
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3. Steps 1 and 2 were repeated a total of 1000 times in this set of experiments. Each 
of these 1000 replications can be thought of as a single event study, each generating 
the three conventional Z statistics, ZD', ZSR, and Z T R A D . By simulating many event 
studies, fairly strong statistical statements can be made. 

4. The statistical size of each type of Z statistic was then evaluated. First, actual rejection 
rates were computed at various levels of significance by dividing the number of times 
the null hypothesis was rejected at a given significance level by the total number of 
replications. Then each actual rejection rate was compared to the assumed ("nominal") 
size for the test. For a hypothesis test conducted at the a = 1% level of significance, 
under the null hypothesis of no abnormal return, the test statistic should indicate 
rejection 1% of the time if the statistical size of the test is correct. Thus, the actual 
rejection rate for the 1% test would be compared to its nominal size of 0.01. Similarly, 
for a test conducted at the a = 5% level of significance, the null hypothesis would 
be rejected 5% of the time if there is no bias to size, and hence the actual rejection 
rate for the 5% test should be compared to 0.05. As explained in Appendix C, one 
can construct standard confidence intervals around the nominal size to see if actual 
rejection rates differ significantly from those expected under the null hypothesis. With 
a large number of replications, fairly strong conclusions can be reached because the 
confidence intervals around the nominal size values for each statistic are quite small. 

Results for different sample sizes can be explored by adjusting the number of firms for 
which data are generated. Data can be generated to allow the study of the effect of actual 
observed returns properties simultaneously, in subsets, or in isolation. That is, I can examine 
the marginal impact of one observed feature alone, or I can examine the total impact of 
many features incorporated in data together. Furthermore, the impact of more or less 
serious degrees of condition violations can be investigated simply by adjusting the properties 
assigned to the generated data. In fact, I have conducted several sets of experiments in this 
study, making use of data generated to reflect various violating characteristics together and 
in isolation. 

The main set of experiments, results of which are presented immediately below in Sec­
tion 3.2, considers the case of returns data which are skewed and leptokurtic and which 
undergo changes in the DGP during the event period. All of these factors were simultane­
ously incorporated in the data used for this set of experiments, and the particular parameter 
values (e.g. the exact degree of excess kurtosis) were chosen to mimic what is observed in 
actual returns. In Appendix D, I report results of experiments where each of the factors was 
studied in isolation and to various degrees, once again with properties assigned to match 
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those of actual returns data. Collectively, the results of Section 3.2 and Appendix D estab­
lish that common event study test statistics exhibit a large and significant bias to size. The 
bias arises due to characteristics displayed by actual returns data - characteristics which 
violate necessary conditions like those presented in Section 2.1 above. Furthermore, the bias 
is maintained even when the condition violations are considerably less severe than is empir­
ically observed. On account of this bias, one cannot generally rely upon inference based on 
the conventional Z statistics in practice. Therefore, in Section 4,1 present alternative non­
parametric test statistics used in event studies. I show the existing nonparametric methods 
to be prone to some of the same problems as the Z statistics. However, the nonparametric 
bootstrap approach I introduce exhibits no bias to size while still maintaining impressive 
power properties. Due to its good performance, the bootstrap approach can be adopted as 
a reliable alternative to conventional methods. 

3.2 Results 

Recall that actual returns data display properties that violate key conditions underlying 
conventional event study Z statistics. We know that, in theory, violating these assumptions 
can lead to Z statistics which do not follow their assumed distributions. The fact that this 
is the case in practice is now demonstrated: standard Z statistics exhibit significant bias to 
size, invalidating inference. 

Figures 1-3 illustrate results for the case of 1000 replications for a sample of 100 firms, 
with data generated with properties to match actual returns, and with no event effects 
present (i.e. the null hypothesis is true). Properties were chosen by consulting several 
empirical studies, as documented in Appendix B. The skewness coefficient was 0.15, the 
kurtosis coefficient was 6.2, the coefficient on M,-t rose 100% during the event period, and 
the event-period variance rose by 500%. Keep in mind that the null hypothesis is true -
there are no event effects in the data. 

Consider Figure 1, the case of ZD. Along the horizontal axis is the significance level of the 
hypothesis tests: the conventional range of testing levels, a = (0.01, • • • ,0.10), is presented. 
Along the vertical axis is the actual rejection rate for hypothesis tests. The solid line in the 
graph denotes the nominal size of tests: for a test at the a = 1% level one should reject 1% 
of the time, for a test at the a = 5% level one should reject 5% of the time, etc. The dotted 
lines surrounding this solid line represent the upper and lower 95% confidence bounds around 
the nominal size, calculated in the standard manner as described in Appendix C. The black 
dots represent the actual rejection rates for tests conducted at particular significance levels, 
appearing at intervals of 0.01 on the horizontal axis. For example, for the test at the a = 5% 
level, the dot lies close to 0.20, considerably above the upper confidence bound, indicating 
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the actual size differs significantly from the nominal size. When one conducts a test at the 
5% level, the rejection rate should be about 0.05 under the null hypothesis. However, what 
we observe in this figure is an actual rejection rate considerably larger than what is expected. 
Since the rejection rate lies outside the plotted 95% confidence interval, we conclude the test 
statistic is significantly biased. The dots for tests at all conventional significance levels are 
quite clearly outside the 95% confidence bounds - in no cases are the rejection rates within 
the range expected under the null. The implication is that with violations of the underlying 
conditions, the actual size of ZD is significantly biased. In using this statistic under these 
conditions - conditions which match those observed in practice - the elevated rejection rates 
might lead one to conclude at a high level of significance that an event effect is present when 
in fact there may be none. Figures 2 and 3 present similar results for ZSR and ZTRAD. At all 
conventional testing levels, the rejection rates greatly exceed what would be expected under 
the null, implying the statistical size of these test statistics is also significantly biased. In 
fact, they seem to be even more biased than ZD - rejection rates for ZSR and ZTRAD seem 
to be greater than those observed for ZD. 

For comparison, Figures 4 - 6 present results for Z statistics computed when the data 
are well behaved, without skewness, fat tails, changes in event-period variance, or shifts 
in market model parameters around the time of the event. Notice that for all the testing 
significance levels, the rejection rates are within a 95% confidence interval. Evidently, the 
Z statistics are unbiased under these conditions. This result may be somewhat surprising, 
given the fact that the Z statistics are expected to follow their assumed distributions only 
asymptotically. These experiments establish that the asymptotic distributions apply - even 
for fairly small samples - provided the data are fairly well behaved. 

While Figures 1-6 provide a diagrammatic representation of the performance of actual 
rejection rates relative to nominal size, Tables 1 and 2 contain actual statistics for various 
sample sizes. Consider first Table 1 which contains rejection rates for skewed and leptokurtic 
data incorporating shifts in both the market return coefficient and the variance around the 
event time. The first column, labeled "Size", denotes the significance level of tests conducted. 
Since it corresponds to the horizontal axes in Figures 1-6, the values range increasingly 
from.0.01 to 0.10. The first set of three columns pertain to ZD, ZSR, and ZTRAD for the 
case of 30 firms. The remaining sets of three columns contain results for samples of 50, 100, 
and 200 firms respectively. The top value listed in each cell is the actual rejection rate for 
the Z statistic at the particular significance level. The bottom value in each cell is the right-
tail probability value (henceforth denoted "p-value") associated with the Z statistic at the 
particular significance level. The p-value indicates the probability of obtaining a rejection 
rate greater than that actually observed, and it is calculated using the conventionally assumed 
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distribution for a given Z statistic (standard normal for ZD and ZSR; Student t for ZTRAD). 
The statistics which correspond directly to Figure 1 (i.e. ZD for the case of 100 firms 

with non-normal data undergoing DGP changes) appear in the Table 1 column labeled 
"100 Firms" and "ZD". The values in the columns labeled UZSR" and «ZTRAD" under the 
"100 Firms" heading correspond to Figures 2 and 3. To evaluate the statistical size of the 
5% test for the ZD statistic, for example, the relevant information is found along the row 
labeled "0.05." For this statistic, the actual rejection rate for the 5% test is 0.187, a value 
which is certainly qualitatively larger than the rate of 0.05 expected under the null. More 
importantly from a statistical point of view, the p-value associated with such a rejection 
rate is indistinguishable from zero at three decimal places. If a given p-value is below 0.025 
or above 0.975, then the associated rejection rate lies outside of the 95% confidence interval 
shown in the Figure l . 1 5 Thus, the rejection rate for a 5% test for ZD with a sample of 
100 firms exceeds the upper cut-off value shown in Figure 1. The rejection rates for the 
remaining tests at a = (0.01, • • •, 0.10) are also outside any reasonable confidence interval, 
indicative of a significant bias to the size of the ZD statistic. 

Inspection of Table 1 reveals that significant over-rejection is also observed for all three of 
the Z statistics with samples of 30 or 50 firms (as might be expected given the over-rejection 
with 100 firms). For tests at any common significance level, the rejection rates are anywhere 
from 100% to 2000% higher than they are expected to be under the null. In fact, even with a 
fairly large sample of 200 firms, the degree of over-rejection is qualitatively unchanged. That 
is, the significant bias documented in this thesis is not necessarily eliminated by gathering 
data for more firms. As argued in Section 2 above, there are cases where the conventional 
Z statistics follow a non-standard normal distribution asymptotically - i.e. the asymptotic 
distribution may be normal, but the variance may not be unity even in the limit. 

Consider now Table 2 which reports statistics for the case where data are normally 
distributed with no changes in DGP, as shown in Figures 4 - 6 . The layout of this table 
is identical to that of Table 1. Notice that the rejection rates for all of the statistics with 
normally distributed data are not qualitatively different from what would be expected under 
the null. Furthermore, all the p-values are within the 95% confidence interval. Thus, with 
well-behaved data, the Z statistics are all unbiased, even in small samples. 

Discussion 

The experiment results presented above and in Appendix D provide striking evidence 
that valid inference cannot be conducted by applying standard event study methods to 

1 5 Notice that in considering the p-values in Table 1, one is not restricted to a 95% confidence interval around 
the nominal size. For example, p-values below 0.005 or above 0.995 would indicate an actual rejection rate 
which lies outside a 99% confidence interval. 
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data which exhibit commonly observed characteristics. Significant over-rejection takes place 
under a wide range of circumstances, even when very large samples are employed. This 
over-rejection can be explained as follows. 

First, when the data exhibit excess kurtosis, the normality conditions embedded in the 
null hypothesis are violated - conditions (B3) and (C3). This is indicative of disturbances 
which are distributed with greater mass in both the upper and lower tails than would be 
observed under the null. The incidence of positive skew places even greater mass in the 
upper tail. A Z statistic based on such data is of course drawn from a distribution which has 
a fatter right tail than would be observed under the null hypothesis. Comparing such a Z 
statistic to the conventional critical value (a critical value which implicitly assumes there is 
no skew or excess kurtosis), often results in rejection of the null hypothesis. If the Z statistic 
were instead compared to a critical value from the appropriate distribution, rejection of the 
null hypothesis would not be indicated as frequently. 

Furthermore, when the data incorporate an increase in the market return coefficient 
during the event period, but the market model does not account for this factor, conditions 
underlying the conventionally assumed distribution are violated - in particular the well 
specified model conditions are violated - (Al), (BI), and (Cl). The event-period disturbance 
in such a model incorporates the part of the market return which should have been picked 
up by a larger coefficient. Because market returns are themselves skewed and leptokurtic, 
the result is a Z statistic drawn from a distribution with increased right-tail mass relative to 
the standard normal. As explained above, comparing such a Z statistic to the conventional 
critical value can lead to an overstated rejection of the null hypothesis. 

Finally, when there is an unmodeled rise in variance during the event period, the conven­
tionally assumed distribution can be further invalidated, due to a violation of the conditions 
that the market model is well specified - conditions (Al), (BI), and (Cl) - and that the 
variance is constant - conditions (B3) and (C3). Failure to model a change in variance makes 
it more likely that the null hypothesis will be rejected. That is, an event day disturbance 
drawn from a distribution with higher variance is more likely to result in a Z statistic which 
exceeds a critical value based on the assumption of constant variance. 

All of these effects individually imply over-rejection. When they are combined, the ten­
dency to over-reject is quite dramatic, as shown in Figures 1-3. Experiments documented 
in Appendix D investigate these factors individually to demonstrate that the statistical size 
of Z statistics can be significantly biased even in very simple cases. 

The experiments have focused on a few specific categories of violations of the conditions 
underlying event studies. Other types of violations, such as those involving ARCH or the 
omission of relevant explanatory variables, may also be of interest. However, they have not 
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been examined directly in this study. Note that the experiments have also focused on factors 
which tended to elicit a positive bias to size, particularly at low significance levels. That 
is, excess kurtosis, positive skew, event-period variance increases, and increases in event-
period coefficients all tend to lead to over-rejection of the null hypothesis. By introducing 
counteracting effects which individually lead to biases of different sign, for example negative 
skewness and a decrease in event-period variance simultaneously incorporated in the data 
with excess kurtosis, the overall sign of the bias to size can become ambiguous. However it 
is important to keep in mind that there is no reason to believe the effects will "cancel each 
other out". That is, ambiguity in the sign of the bias does not imply that conclusions based 
on event study hypothesis tests are reliable. Inability to determine the bias direction would 
just imply that a researcher would not know whether he is over-rejecting, under-rejecting, 
or rejecting appropriately. 

It is important to emphasize that many of the problems documented above are not ad­
dressed by simply increasing the size of the sample. When the essential underlying conditions 
are all satisfied, the Z statistics should be asymptotically standard normal in distribution. 
The approximation tends to be reasonable for a variety of sample sizes when the data are 
well behaved. However, it is not typically the case that all the necessary conditions are 
satisfied when we do an event study. In some cases, depending on the conditions violated, 
central limit theory may establish the asymptotic normality of the Z statistics. However 
the statistics may not be asymptotically standard normal. The conventional test statistics 
are incorrectly defined with an inappropriate standard deviation in the denominator in some 
contexts.. Thus, even if one considered samples as large as 10 000 or 100 000, large and 
significant size biases would still be maintained. Hence assuming the standard normal dis­
tribution applies for any particular sample size - even a very large sample size - can easily 
lead to invalid conclusions. 

4 Nonparametric Event Study Approaches 

The aim of the above Monte Carlo analysis has been to demonstrate that common event 
study Z statistics often fail to follow their assumed distributions in practice. In light of 
this fact, there is clearly a need for an alternative, generally unbiased procedure. Since the 
conditions underlying the conventional parametric tests are often violated in practice, it is 
conceivable that nonparametric testing procedures might perform comparatively better. In 
this section I discuss existing nonparametric tests used in event studies, and I also propose 
a new approach which I argue has better statistical properties than any existing parametric 
or nonparametric approach. 
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The new method, which I call the bootstrap approach, is quite simple to adopt. It involves 
(a) a normalization of a conventional Z test statistic and (b) use of a bootstrap-based 
resampling exercise to empirically estimate the normalized test statistic's distribution.16 

Later in this section, detailed steps are laid out for implementing the new procedure in event 
studies. Its unbiased size is documented, and its power is shown to be comparable to that 
of standard techniques. 

4.1 Existing Nonparametric Methods 

Two nonparametric tests which have been used occasionally in event studies are the rank 
test, introduced by Corrado [1989], and the sign test. Both of these tests require that a 
market model such as that shown in Equation (3) above is estimated for each firm, over a 
period which precedes the time of the event such as t = (—130,..., —11). Abnormal returns 
are forecasted into the event period, making use of the market model estimates, yielding en 
for an event period such as t — (—10,... ,+10), as shown in Equation (4) above. A single 
time series of abnormal returns is then formed for each firm by combining the non-event-
period residuals, en for t = (—130,..., —11), with the forecasted event-period abnormal 
returns, in for t = (—10,..., +10). The total number of non-event-period observations (T) 
plus event-period observations is denoted T". 

Rank Test 

For each firm, the time series of event-period and non-event-period abnormal returns is 
ranked by magnitude, from smallest to largest. This yields the times series of ranks, denoted 
Kit, for each firm, where t = ( — 130,..., +10). 

Kn = rank(en) (9) 

The following standard deviation is calculated using the Kn time series for of all the firms 
collectively. 

S(K) = (10) 

16Recent research on event studies, such as that of Kothari and Warner [1995], indicates that conventional 
tests on long-horizon (multiyear, for example) abnormal returns may demonstrate significant bias. In order 
to avoid bias, Ikenberry, Lakonishok, and Vermaelen [1995] conduct inference in a long-horizon event study 
using an approach based on the bootstrap. The Ikenberry et. al. method is quite different from the bootstrap 
approach I propose in this thesis, and it may exhibit biased size due to the fact that actual CRSP data for 
a sample of matched firms is used to build an empirical distribution, rather than using the sample data 
directly. (See the discussion in Section 3.1 regarding problems which may plague the use of actual data.) 
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Then the event-day rank test statistic is defined as follows: 

rpRANK _ 

y/N 

1 
(11) 

The rank test statistic TRANK is typically assumed to follow the standard normal distri­
bution. In practice, however, this may not be the case.17 Underlying the rank test is the 
presumption that each observation in a particular firm's time series of abnormal returns 
follows the identical distribution as the other abnormal returns for that firm. In Section 2.2 
I discussed many well-documented features of stock return data that can violate this re­
quirement, including ARCH, event-period changes in variance, and event-period changes in 
model coefficients. Asymptotic results imply that the rank test will be well-defined even in 
the presence of heterogeneities such as these. For finite samples, however, it is unknown to 
what extent the test statistic might deviate from its assumed standard normal distribution. 

To explore the extent to which the rank test might differ from its assumed distribution, I 
conducted experiments similar in nature to those presented for the Z statistics in Section 3.1 
above. Table 3 presents the results for 1000 replications with various sample sizes. Data 
were generated with properties identical to those used for the Z test experiments shown 
in Table 1 above, with properties chosen to match those of actual returns and with no 
abnormal event-period returns present (i.e. the null hypothesis of no event effect is true). 
The skewness coefficient was 0.15, the kurtosis coefficient was 6.2, the coefficient on Mn 
rose 100% during the event period, and the event-period variance rose by 500%. While the 
rank test demonstrates less bias than the parametric Z statistics under these conditions, 
significant bias is nonetheless observed. Hence, one cannot reasonably expect the rank test 
to follow its asymptotic standard normal distribution in practice. For example, examining 
the first row of Table 3 reveals that for a test at the 5% level with a sample of 30 firms, the 
rank test rejects 10.9% of the time. (For comparison, with the same sample size and with 
data displaying similar characteristics, the 5% Z statistics rejected 18.3% to 23.7% of the 
time, as shown in Table 1.) 

1 7Studies which have found the rank test to be well-behaved in event studies, such as that by Corrado 
[1989] and Corrado and Zivney [1992], have used actual C R S P data for conducting statistical size and power 
experiments. While it is intuitive that the rank test should behave better than its parametric counterparts, 
the Monte Carlo results of these studies may not be definitive. As discussed in Section 3.1 above, the use of 
C R S P data can mask the true biases of a test statistic. Hence it is worthwhile to reconsider the rank test 
in an study that uses generated data and avoids the aforementioned problems inherent in the use of C R S P 
data. 
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It is important to observe that the rank test remains significantly biased even for con­
siderably larger sample sizes. In fact, for the data characteristics used in this example, the 
rank test demonstrates bias until a sample size of 1000 is adopted; 1000 firms is the smallest 
sample for which the majority of the rejection rates presented are acceptably close to what 
is expected under the null hypothesis. With this large sample size, rank tests at the 1% level 
do not reject significantly differently from 1% of the time, rank tests at the 5% level do not 
reject significantly differently from 5% of the time, and so on. It is very important to keep 
in mind that data with more extreme characteristics (greater skew, kurtosis, or event-period 
changes, for example, all of which are commonly exhibited by actual returns data) would 
require considerably larger sample sizes to ensure the rank test has proper statistical size. 
Because in practice one does not know to what extent the model is mis-specified, one cannot 
say with any degree of certainty what sample size is required for the rank test to have proper 
statistical size in a particular application. The fact that the rank test is significantly biased 
for even fairly large samples with data displaying fairly modest violating characteristics is 
cause for concern. 

The sign test employed in some event studies is based on the number of firms which have 
a positive event-day abnormal return, denoted by N+. The total number of firms is denoted 
by N. 

The sign test statistic is typically assumed to follow a standard normal distribution. Unfor­
tunately, this distribution will apply only in the case of symmetrically distributed returns, 
and stock returns are known to be skewed to the right. Some researchers have defined sign 
tests which are claimed to be reliable for asymmetric distributions. While such statistics 
may be reliable for the case of skewness, they will be invalidated by other factors that also 
invalidate Z tests and the rank test (such as changes in event-period model parameters). 

I conducted experiments to investigate the performance of the sign test under conditions 
identical to those for which the rank test experiments were conducted. Results are presented 
in Table 4. In accordance with previous experiments, I conducted 1000 replications for 
various sample sizes, and the data were generated with properties chosen to match those of 
actual returns without the additional presence of abnormal event-period returns. Comparing 
the figures shown in Table 4 for the sign test with figures shown in Table 3 for the rank test 
indicates that there is little qualitative difference in the performance of these test statistics. 

Sign Test 

N+ - (N/2) 
(12) 
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Like the rank test, the sign test shows significant bias for various sample sizes. For example, 
for a sign test at a 5% level of significance with a sample of 30 firms, the sign test rejects 
7.8% of the time (which is significantly outside any reasonable confidence interval). A study 
by Corrado and Zivney [1992] suggested that under some conditions, sign tests can behave 
more poorly than the rank test. Results in Tables 3 and 4 reveal some cases where the 
performance of the sign test is better than that of the rank test and some cases where it 
is worse. However, given that the sign test can show significant bias (even for very large 
sample sizes), it may be unreliable for general use. In fact, use of the sign test on data with 
more extreme characteristics than adopted for this particular exercise could reasonably be 
expected to lead to even greater bias than shown here. 

4.2 The Bootstrap Approach for Event Studies 

As an alternative to existing parametric and nonparametric methods, one can adopt a tech­
nique based on bootstrap resampling. Marais [1984] uses bootstrap p-values to conduct 
inference in conjunction with the Standardized Residual Approach. In this thesis, I demon­
strate how the bootstrap can be used in conjunction with any of the conventional event 
study methods, and I rigorously demonstrate the improved size properties of the bootstrap 
approach relative to other methods. 

Unlike the bootstrap approach used by Marais, there are two components to the boot­
strap approach I outline. The first of these requires the normalization of conventional test 
statistics - a new innovation in the use of the bootstrap. Because the violation of underlying 
conditions can lead to event study test statistics with variances different from unity (even 
asymptotically), it is inappropriate to compare conventional test statistics to their assumed 
distribution. With the appropriate normalization, however, it is possible to obtain test 
statistics with unit variance. This normalization is quite straightforward, involving nothing 
more than dividing the conventional test statistic by an appropriate standard deviation -
the standard deviation of the N t-statistics for the case of the Dummy Variable Approach.18 

The second component of my bootstrap procedure makes use of the empirical distribution 
of the normalized test statistic. This involves repeatedly sampling from the actual data in 
order to empirically estimate the true distribution. 

The bootstrap was initially introduced by Efron [1979] as a robust procedure for estimat­
ing the distribution of independent and identically distributed data. Since its inception, the 

1 8 I n principle one should normalize the ZD statistic by the exact value required to impose unit variance. 
If the ti were identically distributed as Student t, this value would be \J^^L^, the standard deviation 
of a Student t-statistic with T — k degrees of freedom. Because the t,- are unlikely to be exactly Student 
t-distributed in practice, the normalization I propose is based on the sample standard deviation of the t s 

statistics - the best approximation available. 

26 



bootstrap's performance under a variety of conditions has been examined in depth in the 
statistics literature. Work by Liu [1988] establishes the suitability of adopting the bootstrap 
under conditions most applicable to this setting: that of independent but not necessar­
ily identically distributed observations. Provided the random observations are drawn from 
distributions with essentially similar means (but not necessarily identical variances) and 
provided the first two moments are bounded, use of the bootstrap is valid.19 Several recent 
books on the subject provide a good overview of the bootstrap, including Hall [1992], LePage 
and Billard [1992], Efron and Tibshirani [1993], and Hjorth [1994]. 

In recent years, the bootstrap has come into common use for empirical work in many 
fields. A small sub-set of the many recent applications includes Malliaropulos' [1996] study 
of the predictability of long-horizon stock returns using the bootstrap, Liang, Myer and 
Webb's [1996] bootstrap estimation of the efficient frontier for mixed-asset portfolios, Li and 
Maddala's [1996] survey of developments in using bootstrap methods for time series models, 
Mooney's [1996] study of political science applications using the bootstrap, and Bullock's 
[1995] test of the efficient redistribution hypothesis using the bootstrap. 

Implementation 

Consider conducting an event study on a sample of N firms. One option would be to fol­
low the conventional Dummy Variable Approach, introduced in Section 2. This would involve 
estimating the market model in Equation (1) for each firm, yielding N individual Student t-
statistics (denoted ti for i = (1, • • •, N)). Standard practice is to compute ZD = E ^ L i V^V 
and to compare the resulting value to a critical value from the standard normal - a distribu­
tion which may not in fact be appropriate. Inference based on the bootstrap requires instead 
that (a) ZD is normalized by the standard deviation of the rj,-, and then (b) the empirical 
distribution is estimated by repeatedly sampling from the original data. 

In Figure 10, I provide a diagrammatic representation of the bootstrap approach for 
conducting inference in event studies. Each of the six steps shown is also discussed in detail 
below. While the procedure makes use of the conventional ZD statistic which emerges from 
the Dummy Variable Approach, the steps can be modified in a straightforward manner to 
enable inference based on any common event study test statistic. In Appendix E, I explain 

19Technically, the conditions are as stated in Liu's Theorem 1. Let Xi, • • •, be independent ran­
dom observations. The mean and variance of Xi are denoted /i,- and of for i = (1,---,N). If (i) 
\imN^(l/N) Z?=M ~¥N? = 0. (») l i m i n f ^ o o ((l/#) £ L °2) > 0, and (iii) E\Xi\2+6 < K < oo for 
some 8 > 0 and for all i, then lim/v-»oo \\P* (^/N(YN — XN) < xj - P (VN(XN — FAT) < ||oo = 0 a.s., 
where P* stands for the bootstrap probability, YN is the mean of a bootstrap sample Y\, • • •, Y^ drawn with 
iid samples from the empirical distribution based on X\, • • - ,XN, and || ||oo stands for the sup-norm over x. 
That is, given the above conditions, the bootstrap consistently estimates the distribution of interest. 
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the modifications required for bootstrap inference based on the Traditional Approach and 
the Standardized Residual Approach. 

1. Estimate the appropriate event study market model for each of the Â  firms in the 
sample. The simplest possibility is as follows: 

Rit = Pio + Pu Mit + PiDDit + eit. (1) 

The estimation yields N t-statistics: one for each firm's estimated dummy variable 
coefficient. As shown in Figure 10, this collection of t-statistics forms the pool of data 
upon which the conventional ZD statistic is based. 

VN 

A researcher interested in conducting conventional inference would stop at this point 
and compare the value of ZD to a critical value from the assumed standard normal 
distribution. As indicated earlier, such inference may not be valid. 

2. Normalize the ZD statistic obtained in Step 1 to account for the fact that its variance 
differs from unity in practice. First, compute the standard deviation of the actual ti, 
denoted at. Then, divide ZD by at to yield the normalized version of ZD which will 
be used to conduct event study inference with the aid of the bootstrap. Denote the 
normalized test statistic with a tilde: 

ZD = 

J2iLi U/VN 

Z»_ 
(13) 

Clearly, the normalized test statistic ZD is just the original ZD statistic divided by 
the standard deviation of the individual firms' t-statistics. In the remaining steps, the 
empirical distribution of ZD will be constructed, facilitating reliable inference. 
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3. Under the null hypothesis, the distribution of ZD is centered about zero, and hence the 
empirical distribution is constructed such that it is also centered about zero. Notice 
that the N actual t-statistics calculated in Step 1 have a mean, 

i = E £ i U/N, which 
generally differs from zero. If these t-statistics were used directly to build the empirical 
distribution, the result would be a distribution centered about the actual value of 
ZD. This would occur because in the absence of imposing the null distribution, the 
distribution of the sample would be replicated, with the sample mean exactly in the 
middle. Therefore, prior to constructing the empirical distribution, the t-statistics 
must be adjusted to impose the null hypothesis of no event day abnormal returns 
(i.e. zero mean). Accordingly, a collection of mean-adjusted t-statistics, denoted t* is 
assembled by deducting t from each of the individual t-statistics: 

t* = U-t. (14) 

The N mean-adjusted t-statistics are, of course, mean zero, and they constitute the 
collection of statistics - the population - from which bootstrap samples are drawn in 
the next step. Having mean-adjusted the t-statistics, the empirical distribution will be 
centered about zero, allowing one to conduct inference in a straightforward manner. 

4. The mean-adjusted data are used to construct an empirical distribution for ZD. This 
involves drawing many random samples, called "bootstrap samples," from the popula­
tion of t* statistics. As shown in Figure 10, a single bootstrap sample is constructed by 
randomly drawing with replacement N observations from the collection of t* statistics. 
A total of 1000 such bootstrap samples, individually denoted b = (1, • • •, 1000), are 
constructed, with each bootstrap sample containing Â  observations.20 The particular 
composition of each bootstrap sample varies randomly. For example, the first sample 
might contain duplicate occurrences of some of the t* statistics and no occurrences of 
other t* statistics; the second sample might contain duplicate occurrences of some dif­
ferent ti statistics; the third sample might contain two occurrences of some statistics, 
three occurrences of some other statistics, four occurrences of a few statistics, and no 
occurrences of the remaining statistics. The make-up of each of the 1000 constructed 
bootstrap samples would be determined purely by random chance. 

5. As shown in Figure 10, a Z^ statistic is computed for each of the 1000 bootstrap 
samples. (The b = (1, • • •, 1000) subscript is used to specify the particular bootstrap 

2 0Sources such as Efron and Tibshirani [1993] indicate that 1000 bootstrap samples are sufficient for 
constructing confidence intervals. I verified this result through extensive experimentation. Increasing the 
number of bootstrap samples above 1000 leads to no marked change in results. 
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sample.) Unit variance is imposed by a straightforward normalization which employs 
the standard deviation of the N mean-adjusted t-statistics in each bootstrap sample, 
denoted crt». (The b subscript is used to specify the bootstrap sample - because the 
particular set of t* statistics varies by bootstrap sample, the value of ot* also varies by 
bootstrap sample. Note that below, I label the t* statistics in a particular bootstrap 
with the subscript b and with the subscript j = (1,---,JV) to distinguish between 
particular observations within a given bootstrap sample.) 

A normalized statistic, ZP, is calculated for each bootstrap sample as follows: 

lb 

"6 

f . (15) 
zb 

That is, for each of the bootstrap samples, the mean of the TV randomly selected i£-
is multiplied by y/N and divided by at», the standard deviation of the TV individual 
t*b- in the bth bootstrap sample. Notice that computing Zb

D is equivalent to computing 
Zh

D based on the tl- in that bootstrap sample and then dividing by at*. 

6. Ordering the collection of 1000 Zb

D statistics from smallest to largest defines the empir­
ical distribution. The histogram depicted at the bottom of Figure 10 is an example of 
such an empirical distribution. Inference is conducted by comparing the ZD statistic 
from Step 2 to critical values from the empirical distribution. For example, with 1000 
bootstrap samples, a 5% left-tail critical value, 27 0 5 , is the 50th largest value of the Zb

D 

statistics and a 5% right-tail critical value, Z ' 9 5 , is the 950th largest of the Zb

D statis­
tics. If the value of the ZD statistic happens to be larger than 95% of the bootstrap 
Zb

D statistics (i.e. exceeding Z'95) or smaller than 5% of the bootstrap Z® statistics 
(i.e. falling below zT05), one rejects at the 10% level of significance the two-sided null 
hypothesis of no abnormal returns.21 

2 1 T h i s type of confidence interval for the bootstrap is the percentile interval, and I apply it using normal­
ized data. Alternative methods of constructing confidence intervals exist, including the percentile interval 
using non-normalized data, the standard normal interval, the bias-corrected and accelerated interval, and the 
approximate bootstrap confidence interval. Consult Efron and Tibshirani [1993] for a detailed exposition of 
these alternatives. In this particular application, the basic percentile interval using non-normalized data was 
found to perform inadequately relative to the percentile interval with normalized data. The bias-corrected 
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To summarize, applying Steps 1 - 6 of the bootstrap approach based on the Dummy 
Variable Approach basically involves computing the conventional ZD using the actual ti 
statistics and normalizing it with the variance of the ti to impose unit variance. This yields 
ZD. The ti statistics are then mean-adjusted to form a population of statistics, the r*, from 
which random re-samples are drawn. 1000 bootstrap samples are formed, each containing 
N observations, and Z® is computed for each bootstrap sample. The collection of all the 
Z;P statistics defines the empirical distribution. Finally, event study inference is conducted 
by comparing ZD to critical values from the empirical distribution.22 2 3 

4.3 Performance of the Bootstrap Approach 

In this section, I report results of Monte Carlo experiments conducted to compare commonly 
used event study techniques with procedures based on the bootstrap approach when data 
exhibit properties matching those of real data. Recall that with existing parametric and 
nonparametric methods, the statistical size of test statistics was shown to demonstrate sig­
nificant bias. When the alternative approach is adopted, the bias is eliminated. Fortunately, 
the elimination of the bias comes at little or no expense. Investigations of statistical power 
indicate that the normalization and bootstrap approach has power comparable to conven­
tional approaches. Furthermore, the computations for a single event study require little 
additional CPU time relative to conventional methods, and they can be undertaken with 
any standard statistical package. 

Size 

Independent data were generated to match properties of actual financial returns data, 
with studies documented in Section 2.2 guiding my choice of parameter values. Adopting 
the steps outlined in Section 4.2 above, 1000 replications were conducted for a variety of 
sample sizes. Data were generated with skewness of 0.15, kurtosis of 6.2, an increase in 
event period variance of 500% and an increase in the event period market return coefficient 
of 100%. ZD, ZSR, and ZTRAD were computed for. each replication, and the statistics 

and accelerated interval and the approximate bootstrap confidence interval both lead to significantly in­
creased demands on computer resources. In light of the fact that the percentile interval already performs 
quite well in this setting, alternative intervals are not explored in this study. 

2 2 I t is worth emphasising that use of the bootstrap in this setting requires that the ti statistics be in­
dependently distributed. For applications where cross-firm correlation may be present (or for applications 
where time-series correlation may be present in the case of a multi-day event-period), use of the bootstrap 
may not be advisable. 

2 3 T h e bootstrap procedure has no advantage over conventional methods when applied to a non-pivotal 
test statistic. When applied to a pivotal test statistic, the bootstrap achieves second-order asymptotic 
efficiency like that achieved with the use of Edgeworth expansions. (Edgeworth expansions, however, require 
substantially more analytic effort, and in fact the analytics of such expansions are sometimes intractible). 
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were normalized (yielding ZD, ZSR, and ZTRAD) and compared to critical values from their 
empirical distributions. I drew 1000 bootstrap samples for each replication, and I employed 
the percentile interval for conducting inference. 

Figures 7 - 9 illustrate the results for the case of 50 firms. Rejection rates for ZD are 
shown in Figure 7, while rejection rates for ZSR and ZTRAD appear in Figures 8 and 9 
respectively. The striking result to draw from these figures is that all of the rejection rates 
lie within a 95% confidence interval. Even though the underlying data display characteristics 
which grossly invalidate conventional event study techniques (as shown in Figures 1, 2, and 
3), the statistical size of the bootstrap approach shows no significant bias. 

The values of the rejection rates and the right-tail p-values which correspond to the 
figures appear in Table 5 along with results for other sample sizes. The rejection rates 
lie within a 95% confidence interval in almost every cell.24 Thus, the bootstrap approach 
exhibits unbiased size, even for very small samples. Extensive sensitivity analysis (similar 
to that reported for conventional techniques in Appendix D) indicates that the excellent 
performance of the technique is robust even to perturbations in the properties ascribed to 
the generated data. The bootstrap approach maintains its unbiased size when applied to 
data displaying any commonly observed properties. 

Power 

The power of the event study test statistics is evaluated by employing data generated 
to have a positive abnormal return at the time of the event. With many replications, the 
overall rejection rate should approach unity for a powerful test. However, evaluating the 
power of a biased test statistic is uninformative - obviously a test statistic which tends to 
over-reject will seem more powerful than one which is unbiased. Thus, prior to comput­
ing the rejection rates in the presence of a positive abnormal return, all of the event study 
test statistics must be size-adjusted. These adjustments have little impact on the power 
experiments for the bootstrap approach, since the approach is, of course, unbiased. How­
ever, the size-adjustments are absolutely critical for evaluating the power of conventional, 
biased approaches. Appendix F provides further details on size-adjustments for the power 
comparisons. 

In this case, 1000 replications are conducted for computing the rejection rates for the 
test statistics. For each replication, identical data are used to evaluate the conventional 
statistics and the normalized statistics. Hence, differences in rejection rates can arise only 
randomly or due to differences in the computation of the statistics and the critical values 

2 4 Three of the 120 statistics are outside a 95% confidence interval, however since this is not statistically 
unusual, there is no indication of biased size. 
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used to evaluate them. The main result is that inference based on the bootstrap approach 
is just as powerful as that based on standard methods. 

Table 6 presents results for the case of 50 firms, 1000 replications, 1000 bootstrap samples, 
and data with characteristics which match actual data (skewness of 0.15, kurtosis of 6.2, an 
event period variance increase of 500%, and an increase in the event period market return 
coefficient of 100%). An abnormal return of a given magnitude is added to the event day 
errors in order to facilitate a comparison of power. Abnormal returns of 0.5%, 0.7%, and 0.9% 
are considered here. Rejection rates of 100% are observed for both conventional techniques 
and the bootstrap methods with abnormal returns of 1% and greater. 

The first set of three columns reports the rejection rates based on comparing ZD, ZSR, 
and Z T R A D to their commonly assumed distributions. The next set of three columns reports 
rejection rates based on comparing ZD, ZSR, and Z T R A D to their bootstrap distributions. 
The first case considered is that of adding abnormal returns of 0.9% on the event day. As 
shown in the top panel of Table 6, all the test statistics reject almost 100% of the time in 
this case. When abnormal returns of 0.7% are added on the event day, shown in the middle 
panel of the table, results are qualitatively similar. Rejection rates for both conventional 
inference and the inference based on the bootstrap approach remain very close to 100%. 
With abnormal returns of 0.5%, shown in the bottom panel, both the conventional rejection 
rates and the rejection rates for the bootstrap approach fall slightly, but the performance 
is qualitatively similar across methods. The overall conclusion to draw is that power under 
the bootstrap approach is quite comparable to that of conventional methods. Rejection 
rates are almost identical for all cases considered. Similar results are obtained under various 
conditions. 

Discussion 

Results of the experiments conducted in this study indicate that the bootstrap approach 
is very robust to features observed in actual data which invalidate the use of standard event 
study methods. At least two reasons can be cited to explain the good results. Both reasons 
allude to use of the appropriate distribution when conducting inference with a given test 
statistic. 

First, recall that the bootstrap approach involves a normalization of the conventional Z 
statistics - dividing by the standard deviation of the t( statistics for the case of ZD. (See 
Step 2 in Figure 10.) The distribution of the conventional ZD statistic is assumed to be 
standard normal; in practice, however, ZD may have a variance which differs from one, even 
asymptotically. Normalizing ZD by the standard deviation of the £; addresses that problem 
by imposing unit variance. This is one factor which helps explain the performance of my 
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new method. 
The second reason for the improved performance of this technique relative to conventional 

approaches has to do with the fact that it involves estimating the distribution of the Z 
statistic empirically rather than imposing some assumed distribution which may apply only 
asymptotically. In so doing, the actual firms' data are employed. To the extent that the 
sample data accurately reflect the population, the empirical distribution constructed will be 
a good approximation of the true distribution followed by Z, even in finite samples. 

One might wonder whether alternative event study approaches more simple than mine 
might also successfully address problems in standard event study methods. For example, 
one reasonable strategy might be simply to adopt the first part of my proposed method, 
comparing the normalized Z statistics to the conventionally assumed distributions. Perhaps 
adjusting the Z statistic to have unit variance would be sufficient to enable valid inference, 
thereby making use of the bootstrap unnecessary. 

Table 7 provides details on such an experiment for a variety of sample sizes. Experiments 
were conducted for samples of 30, 50, 100, and 200 firms with data incorporating character­
istics to match those of actual returns. The figures in the table reveal that while the simpler 
approach does reduce the magnitude of the bias relative to the standard approaches, it does 
not reduce the bias nearly as much as both normalizing and employing the bootstrap. That 
is, the test statistics under such an approach still exhibit significant bias. 

For example, consider the dummy variable approach for a sample of 50 firms. When the 
conventional ZD was compared to the assumed standard normal distribution for the case of 
50 firms (see Table 1), a rejection rate of 12.3% was observed although a rejection rate of 1% 
was expected under the null hypothesis. To evaluate the performance of the simpler approach 
under similar conditions, refer to the 50 firms column of Table 7: comparing the normalized 
ZD to the standard normal distribution leads to a rejection rate of 6.0% when a rejection 
rate of 1% is expected under the null hypothesis. For comparison, when the normalized ZD 

was compared to its bootstrap distribution (instead of the standard normal) a rejection rate 
of 1.4% was observed when 1% was expected under the null (see Table 5). Note that the 
first two rejection rates indicate'significant bias, while the final one does not. That is, the 
two-step bootstrap approach is the only one which successfully eliminates significant bias. 

Glancing at the rest of Table 7 reveals that the simple approach shows significant bias 
under all cases considered. The magnitude of the bias appears to diminish for larger sample 
sizes, but there is no quantitative change in the p-values which reflect the significance of the 
bias. P-values indistinguishable from zero at three decimal places are observed uniformly 
throughout the table. 

For samples with very large numbers of firms - perhaps in the tens of thousands or the 
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hundreds of thousands - one may wonder whether calculating ZD and comparing it to the 
standard normal distribution might be valid, possibly by appealing to Case A outlined in 
Section 2.1 above. Normalizing ZD works toward satisfying condition (A3), that the test 
statistic is defined with the appropriate denominator. Considering non-synchronous events 
will avoid a violation of (A2), that the firms' t-statistics be cross-sectionally independent. 
However, whether or not the market model is satisfied - condition (Al) - is difficult to 
ascertain in practice. Something as seemingly innocuous as a change in model parameters 
over the span of firms' data sets would be sufficient to violate this condition. Furthermore, 
whether or not the number of firms in the sample is "large enough" to appeal to Case A 
is also unknown in practice. In light of the fact that some of the conditions underlying 
standard normality for Case A may not be met, it is not advisable to adopt the strategy of 
comparing the normalized ZD to the standard normal distribution rather than estimating its 
distribution empirically. One faces significant bias in using either conventional test statistics 
or normalized test statistics with their conventionally assumed distributions. 

Another alternative one might consider as a potentially useful simpler approach might 
take the conventional Z statistics and compare them to distributions constructed using the 
bootstrap procedure (without conducting any normalizations for non-unit variance). Results 
from these experiments are shown in Table 8. Once again, experiments were conducted for 
samples of 30, 50, 100, and 200 firms using data generated with characteristics to match 
those observed in actual returns. While this second simple approach reduces biases more 
markedly than the previously discussed simple approach, it still does not reduce the bias 
nearly as much as both normalizing and employing the bootstrap. That is, the test statistics 
under this simple approach still exhibit significant bias in most cases. For example, consulting 
Table 8 reveals that with a sample of 50 firms with a test conducted at the 1% level, the 
rejection rate for the conventionally computed ZD statistic is 2.6% when compared to a 
bootstrap distribution. This appears qualitatively less biased than the rejection rate for 
comparing the conventional ZD to a standard normal distribution (12.3%) and for comparing 
the normalized ZD to a standard normal distribution (6.0%). However the 2.6% rejection 
rate for this approach is still significantly biased, with a p-value indistinguishable from zero 
at three decimal places. Table 8 reveals similar results for other test statistics and other 
sample sizes. There are some cells in Table 8 where the rejection rates are within a 95% 
confidence interval around the rejection rate expected under the null hypothesis. However, 
in some cases the rejection rate is above what would be expected under the null, and in 
other cases it is below. There does not appear to be any systematic pattern to these isolated 
cases. The important result in this table is that severe and significant bias is observed for 
most cases. While the rejection rates under this approach are certainly closer to the values 
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expected under the null hypothesis than for some other approaches, the best performance 
yet observed comes from the use of both normalization and the bootstrap. 

In general, I advocate the approach based jointly upon normalizing the conventional Zv 

statistic and estimating its distribution empirically. The outstanding performance of this 
approach applied to data exhibiting a wide range of the characteristics of actual returns is 
testament to its robustness. Valid and powerful inference is facilitated, even in situations 
where conventional methods fail. In the next section, I demonstrate by example that es­
tablished financial event study results can be overturned when the bootstrap approach is 
employed. 

5 An Application: Failed-Bank Acquisitions 

When a bank fails in the United States, the Federal Deposit Insurance Corporation (FDIC) 
aims to find the most cost effective resolution possible, while still fulfilling its obligations 
as a deposit insurer.25 One means of resolution available to the FDIC is to pay off insured 
deposits and liquidate the bank. Alternatively, the FDIC may arrange for an auction, known 
as a purchase and assumption, to find a new financial institution to assume operations of the 
failed bank. In the event of an auction, no public announcement is made, in the interest of 
minimizing the potential for panic among investors. Instead, potential bidders are privately 
contacted by the FDIC and invited to submit bids.26 Because a failed bank's assets are 
insufficient to cover its liabilities, there are often substantial subsidies from the FDIC in 
order to make the takeover worthwhile for the acquirer. The winning bid is selected not 
only on the basis of bid magnitude, but also by considering characteristics of the individual 
bidders which might influence the successful operation of the failed bank and which may 
have effects on competition or soundness of the banking industry. Thus, it is not always the 
highest bid that wins. In light of this fact, some researchers have speculated that regulators 
over-compensate in the failed-bank acquisition process. 

The consensus of past empirical research on failed-bank acquisitions is indeed that bank­
ing regulators provide more financial assistance to acquiring firms than is strictly required. 
Several researchers have made this suggestion, including Pettway and Trifts [1985], James 

2 5 I n the past, the Federal Savings and Loans Insurance Corporation (FSLIC) and the F D I C jointly insured 
depositors' holding at US financial institutions: FSLIC insured deposits at thrifts while the F D I C insured 
holdings at commercial banks. Under legislation introduced in 1989, FSLIC was essentially dismantled, with 
the F D I C assuming their former responsibilities. 

2 6 T h e invited banks are selected on the basis of meeting certain requirements: they must be rated as 
low-risk banks, they must be at least double the size of the failed bank in terms of total assets, and they 
must comply with state and federal bank acquisition laws and a few additional F D I C requirements. Also, it 
has often been a requirement that the invited banks operate in the same county as the failed bank. 
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and Wier [1987], Bertin, Ghazanfari, and Torabzadeh [1989], Balbirer, Jud, and Lindahl 
[1992], and Gupta, LeCompte, and Misra [1993]. Common event study methods such as 
those presented in Section 2 above are adopted in these studies, and the nearly unanimous 
finding is that failed-bank acquirers earn significantly positive abnormal returns. Therefore, 
these researchers conclude that wealth transfers routinely occur from regulators to firms that 
purchase failed banks.27 2 8 

The theoretical and empirical evidence I presented in previous sections suggests conven­
tional event study test statistics are significantly biased, hence concluding a wealth transfer 
routinely takes place in failed-bank acquisitions may be premature. I therefore re-examine 
the the question of gains to failed-bank acquirers employing the bootstrap approach. In so 
doing, I assemble one of the largest collections of data on failed-bank acquirers yet investi­
gated. 

5.1 Data 

Each year, the FDIC Annual Report lists all FDIC-insured banks which have failed. In the 
case of an auction, the name of the successful bidder (the acquiring firm) is also provided. 
In order for a failure to be included in my sample, the acquirer must have publicly traded 
shares. Sometimes, the acquirer listed in the FDIC Annual Report is a subsidiary of a larger 
company, for which shares may or may not be traded. By making use of Moody's Banking 
and Finance manual and The S&P Security Owner's Stock Guide, I was able to trace the 
ownership of the successful bidder firms and isolate those which were themselves publicly 
traded or which were wholly-owned subsidiaries of other publicly traded banks. Upon finding 
a publicly traded acquirer, I ensured that the firm's shares were traded for at least 130 days 
prior to and 10 days following the date of the bank failure, in order to facilitate estimation 
of the market model for each firm.29 

2 7 Those who claim to find evidence of the gains to acquirers offer several explanations to support their find­
ings. Some authors point to evidence of gains to acquirers in takeovers of non-financial firms as motivation 
for the existence of gains to firms that acquire failed banks. For example, Dodd and Ruback [1977], Bradley 
[1980], and Bradley, Desai, and K i m [1988] have all found empirical evidence that acquiring firms benefit in 
the event of tender offers. Other researchers refer to legislation in the US designed to reduce the total mon­
etary outlay of federal banking regulators. The Financial Institutions Reform, Recovery, and Enforcement 
Act ( F I R R E A ) of 1989 and the Federal Deposit Insurance Corporation Improvement Act (FDICIA) of 1991 
are two such pieces of legislation. Others still make reference to theoretical models that suggest features of 
the regulators' auction procedures result in gains to acquirers of failed banks. See the models of Johnson 
[1979] and French and McCormick [1984], for example. 

2 8 A n investigation by Cochran, Rose, and Fraser [1995] seems to be the only one which does not support 
the wealth transfer view. Their findings suggest that positive abnormal returns tend to be concentrated 
among acquirers of large failed banks and that buyers of small failed banks do not realize significantly 
positive abnormal returns. 

2 9 Individual share returns and market returns data were obtained from the C R S P Daily Returns File. 
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Past failed-bank takeover studies have typically excluded acquisitions for which the date 
of the auction announcement could not be found in The Wall Street Journal Index. This 
severely limits the number of firms considered in a failed bank study since a large portion of 
failed bank auctions are never announced in The Wall Street Journal (WSJ). The WSJ tends 
to announce details related to the affairs of large banks, resulting in a greater likelihood that 
the results of an auction for a small failed bank will go unreported and thus be excluded 
from a sample. In fact, with the increased incidence of bank failures over the 1980's, the 
WSJ adopted an explicit policy of announcing failures of only those banks for which the 
asset base exceeded a minimum threshold. Hence, a sample that only includes acquisitions 
announced in the WSJ will be limited in size. 

By including all publicly traded acquirers of failed banks in my sample regardless of 
whether or not announcement in the WSJ took place, and by obtaining the date of the 
acquisition and the date of the announcement from the original official news releases obtained 
directly from the FDIC, I am able to construct a much larger sample than other studies of 
failed banks have considered, making use of a larger proportion of the total population of 
failed-bank acquirers.30 

During the period from mid-1989 to the end of 1991, a total of 347 bank failures required 
FDIC assistance, 208 of which were resolved by auction. Of these, 45 bank closures met 
my sample selection requirements listed above. As in many event studies, failure to meet 
the public trading requirement is the factor which most severely restricted the sample size. 
However, my use of FDIC news releases enabled the inclusion of acquirers which would 
normally be excluded from a failed-bank event study. Thus, my sample includes a much 
higher proportion of the population of auctions than has been conventional.31 

The sample of 45 failed-bank acquirers used in this study is listed in Table 9. The first 
column, labeled "Firm", lists the number assigned to each acquisition in the sample, based 
on the chronological order of the failed-banks' closures. The second column lists the date 
of the closure, while the name and state of the failed bank are listed in the third column. 
The ticker symbol of the acquirer (or the bank that wholly owns the acquirer) is listed in 

3 0 Note that even in the absence of obtaining the actual press releases, it would still be possible to reasonably 
approximate the date of the acquisition by using the failed bank closure date information available in the 
FDIC Annual Report. It is usually the case that the acquisition takes place within a few days of the bank 
closure; in fact, the acquisition almost always takes place the business day immediately following the closure. 
Brown and Warner [1985] suggest greater power in event studies is achieved by knowing the event date with 
certainty. For my sample, obtaining the FDIC press releases ensures the event date is known with certainty. 

3 1 F o r example, while James and Wier [1987] assemble 19 acquirers over 11 years (representing about 13% 
of the population of auctions during that time), my sample consists of 45 acquirers over two and a half years 
(representing about 22% of the population). Any attempts to further increase the population of acquirers 
would be hindered by the fact that most of the acquiring firms are not publicly traded. 
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the final column.32 For each acquirer, the date of the failed bank closure reported in the 
FDIC Annual Report is taken as t — 0 in event time. The FDIC news release is made after 
markets close on that date, hence t = +1 is the time when announcement is expected to 
have an impact on the acquirer's share price. 

5.2 Analysis of Gains to Acquirers 

In this section I present evidence that use of the bootstrap event study procedure overturns 
past findings of gains to failed-bank acquirers. In order to motivate the fact that my results 
do not arise due to idiosyncratic features of my data relative to data used by others, I 
discuss results of both conventional event study approaches and the bootstrap approach. As 
explained below, I explored a variety of sensible specifications for the market model. 

I first estimated a market model independently for each of the 45 firms in my sample. One 
of the market models adopted is the most basic Dummy Variable model discussed extensively 
above: 

Then I collected the 45 t{ statistics, the test statistics on the individual firms' estimated 
dummy variable coefficients Pip. Using these statistics, I calculated the conventional ZD 

statistic: 

A researcher adopting conventional event study methods would stop here and compare the 
value of ZD to the assumed standard normal distribution to determine whether or not the 

3 2 Note that in Table 9 multiple entries appear for some of the acquiring firms. Multiple acquisitions by a 
single firm may be included in the sample provided the timing of one acquisition does not fall in the market 
model estimation period for another acquisition by the same firm. In cases where a firm made several failed 
bank acquisitions, I ensured that the acquisitions included in the sample were sufficiently separated in time 
to ensure the estimation periods for the events did not overlap. In order to avoid estimation complications, 
I excluded from my sample all cases in which the estimation periods overlapped for a firm undertaking more 
than one FDIC-assisted acquisition - unless the acquisitions took place on the same calendar date (which I 
treated as a single large acquisition). Four multiple-acquirers remain in the sample of 45 firms, each having 
successfully acquired either two or three failed banks at sufficiently spaced dates during the years 1989 to 

Rit = Ao + PHMU + PioDit + tit. (1) 

(2) 

failed-bank acquirers realized significant gains. Following this approach requires that the 

1991. 
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necessary conditions for Cases A, B, or C be satisfied by the data - conditions (Al) - (A3), 
(BI) - (B4), and (Cl) - (C4) presented in Section 2. 

For this particular application, Cases A and C are ruled out since the sample size is 
small. If the length of the time series, T = 130, is considered small, then Case B is also ruled 
out. That would suggest Case D applies: ZD would not be expected to follow the standard 
normal distribution and conventional analysis would be invalidated. 

If one were to presume T — 130 is sufficiently large to invoke asymptotic theory, then 
conditions (BI) - (B4) must be satisfied to enable valid inference. Specification tests (for 
example, Lagrange Multiplier tests for normality and for ARCH) using the residuals from 
estimating each firm's market model provided statistically significant evidence that these 
necessary conditions are in fact violated here. In light of the presence of a variety of factors 
discussed in Section 2.2, the conditions underlying conventional analysis are unlikely to be 
satisfied in this application. 

Thus, I adopted my alternative procedure, following the steps shown in Figure 10. This 
procedure does not require the data to satisfy conditions which are in fact violated by the 
data. The first step, calculation of ZD has already been completed. Thus, I proceeded to 
compute the value of ZD, dividing the conventional ZD statistic by at, the standard deviation 
of the original ti statistics: 

ZD = 

Z^_ . 

The value of ZD differs from ZD to the extent that at differs from unity. In the present 
application, the value of at is 1.61. 

Next, I mean-adjusted the iV individual ti statistics obtained from estimating the market 
model. These Â  mean-adjusted statistics, denoted t*, were obtained by deducting the mean 
t from each of the ti. This imposed the null hypothesis of no event-day gains to acquirers 
and ensured the empirical distribution would be centered about zero. I proceeded to draw 
1000 bootstrap samples from this collection of mean-adjusted data. For each bootstrap 
sample, I randomly drew with replacement 45 times from the collection of mean-adjusted 
statistics. The t* statistic associated with a particular firm might have appeared in a given 
bootstrap sample many times, once, or not at all, as determined by random chance. The 
45 mean-adjusted statistics drawn for a particular bootstrap sample are denoted t\j, with 
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b= (1, • • •, 1000) designating the bootstrap sample with which they are associated. The 
standard deviation of the 45 values of for a given bootstrap sample is denoted at*. 

For each bootstrap sample, I then computed a Z® statistic: 

yD _ N V i V 

b ~ Ir 

= 

Ordering the collection of all B of the Zfc

D statistics from smallest to largest then defined the 
empirical distribution used to conduct inference. The p-value of a particular ZD statistic 
was given by the area of the empirical distribution located to its right, i.e., the proportion 
of the 1000 Z(P statistics greater than ZD. 

Much recent work suggests that more parameterized models lead to more reliable infer­
ence in event studies. For example, Brockett, Chen, and Garven [1994] allow for stochastic 
betas and account for GARCH, and they claim this removes bias in conventional event study 
tests. Adopting a more sophisticated model that attempts to account for known aspects of 
the DGP is less likely to violate the necessary conditions which underlie the conventional 
methods, improving the likelihood that inference will be valid. Because the Dummy Vari­
able market model specified in Equation (1) is rather simplistic, I investigated a variety of 
enhancements to explore differences in results obtained using commonly employed methods 
versus the bootstrap approach. For example, I explored inclusion of dummy variables to 
pick up changes in the market return coefficient around the time of the event or anticipation 
effects prior to the event. I also investigated factors such as allowing for variance changes 
around the event time and accounting for ARCH. 

For example, when the basic Dummy Variable of Equation (1) was adopted, the conven­
tional ZD statistic indicated strong rejection of the null hypothesis of no abnormal gains 
to acquirers - the p-value based on the assumed standard normal was 0.007.33 In contrast, 
comparing the ZD statistic to the empirical distribution failed to indicate rejection of the 
null at any conventional significance level. 

With more sophisticated market model specifications, the right-tail p-values for both 
conventional approaches and the bootstrap approach became somewhat larger. However, p-
values for the bootstrap approach were consistently insignificant (under some specifications, 

3 3 Note that p-values in this range were also obtained when Z T R A D and ZSR were calculated. The con­
ventional Z statistics all led to similar conclusions in this study. 
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the p-value for ZD was as high as 0.15), while the standard approach p-values remained 
significant almost without exception. That is, regardless of model specification, a researcher 
adopting conventional methods would conclude there was evidence of gains to acquirers, 
while one adopting the bootstrap approach would not. 

There is clearly merit to specifying the event study market model with attention to 
economic forces driving the return generating process. For example, if there is reason to 
believe risk changes around the time of the event, an allowance for changes in the market 
return coefficient or the variance should be considered. However, one can never be sure that 
a chosen specification is close enough to the truth. Even a highly parameterized model will 
inevitably invalidate some of the underlying conditions given what we know to be true about 
the properties of actual returns. An advantage of the bootstrap approach is that it permits 
inference without requiring that all of these conditions be satisfied. Thus, while one should 
certainly aim to specify the most sensible market model possible, an inadvertent failure to 
capture some aspect of the data generating process does not invalidate inference under the 
bootstrap event study approach. 

Discussion 

Results of experiments documented in the above sections establish that the deviation 
from the standard normal approximation for ZD can be highly significant in finite samples -
over-rejection in the order of hundreds of percent are not uncommon. The data used in this 
study are quite typical of financial returns data, exhibiting several of the commonly observed 
features extensively documented in Section 2.2. These features lead to violations of the 
conditions which underlie conventional analysis, hence simply employing the conventional 
ZD and comparing the resulting value to the standard normal distribution may be quite 
misleading. 

When instead one adopts the bootstrap method, the necessary conditions which underlie 
conventional approaches need not be satisfied. Valid inference is facilitated whether or not 
the conditions are satisfied. In carrying out analysis, the individual ti statistics form a 
population from which random re-samples are drawn. The particular composition of these 
bootstrap samples will vary randomly, thus some samples will contain the more extreme 
values (indeed, some of the firms may be represented in a given bootstrap sample several 
times) while other samples may not. When analysis is based on the empirical distribution, 
the extreme nature of some ti statistics relative to others is accounted for, without making 
inappropriate distributional assumptions. Hence, an accurate estimate of the appropriate 
distribution for ZD is achieved. To the extent that the empirical distribution differs from 
the assumed distribution, conflicting results can be obtained using the bootstrap approach 
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versus conventional methods, and indeed are obtained in this example. 

6 Conclusions 

There are several different analytic techniques commonly used in event studies - both para­
metric and nonparametric. These approaches differ in market model specification and esti­
mation or differ in the calculation of the statistics used for hypothesis testing. A common 
feature of all of the approaches, however, is that basic underlying conditions must be satisfied 
for test statistics to have their assumed distribution. These conditions are typically violated 
in practice, invalidating inference based on conventional analysis. Monte Carlo results pre­
sented above indicate the statistical size of commonly employed test statistics is significantly 
biased when data exhibit characteristics identical to those observed in actual stock returns. 

Researchers attempting to conduct event studies with small samples typically recognize 
that conventionally assumed distributions may be inappropriate for conducting hypothesis 
tests, and hence they may attempt to collect data for a larger set of firms. (Event studies 
on samples of 15 or 20 firms are, nonetheless, fairly common.) In the past, the rationale for 
such an increase in sample size may have been based on appeals to asymptotic theory. In 
this thesis, however, I have argued that for the asymptotic distribution of the test statistics 
to be valid, characteristics of the data must satisfy basic necessary conditions which are 
commonly violated by the data used in event studies. That is, test statistics may be biased 
regardless of how large a sample is assembled. 

As a solution to this problem, I have proposed an alternative testing procedure based on 
normalizing conventional Z statistics and empirically estimating their distribution with the 
bootstrap. I presented theoretical evidence to establish the validity of using this bootstrap 
approach on data with properties like those of actual stock returns, and I demonstrated the 
empirical performance of the bootstrap approach. The technique is not prone to exhibit 
biased size in common situations which render bias in conventional techniques - with no 
sacrifice of power - hence I recommend its use for hypothesis testing in event studies. 

When I conducted an actual event study using stock returns data for real firms, the 
difference between approaches became even more evident. While conventional event study 
test statistics implied that failed-bank acquirers gained at the expense of the FDIC, that 
result was overturned by adopting the bootstrap approach. This brings to question the 
validity of other well-known event study results in finance, and suggests a very broad range 
of topics for future research. 

43 



References 
Acharya, S., 1988, "A generalized econometric model and tests of a signalling hypothesis 

with two discrete signals," Journal of Finance, 43, 413-429. 
Acharya, S., 1993, "Value of latent information: Alternative event study methods," Journal 

of Finance, 48, 363-385. 

Balbirer, S.D., G.D. Jud, and F.W. Lindahl, 1992, "Regulation, competition, and abnormal 
returns in the market for failed thrifts," Journal of Financial Economics, 31, 107-131. 

Bertin, W.J., F. Ghazanfari, and K.M. Torabzadeh, 1989, "Failed bank acquisitions and 
successful bidders' returns," Financial Management, Summer, 93-100. 

Boehmer, E., J. Musumeci, and A. B. Poulsen, 1991, "Event-study methodology under 
conditions of event-induced variance," Journal of Financial Economics, 30, 253-273. 

Bollerslev, T., R.Y. Chou, and K.F. Kroner, 1992, "ARCH modeling in finance," Journal of 
Econometrics, 52, 5-59. 

Bradley, M., 1980, "Interfirm tender offers and the market for corporate control," Journal 
of Business, 53, 345-376. 

Bradley, M., A. Desai, and E.H. Kim, 1988, "Synergistic gains from corporate acquisitions 
and their division between the stockholders of target and acquiring firms," Journal 
of Financial Economics, 21, 3-40. 

Brockett, P.L, H.M. Chen, and J.R. Garven, 1994, "Event study methodology: A new and 
stochastically flexible approach," University of Texas manuscript. 

Brown, S.J. and J.B. Warner, 1980, "Measuring security price performance," Journal of 
Financial Economics, 8, 205-258. 

Brown, S.J. and J.B. Warner, 1985, "Using daily stock returns: The case of event studies," 
Journal of Financial Economics, 14, 3-31. 

Bullock, D.S., 1995, "Are government transfers efficient? An alternative test of the efficient 
redistribution hypothesis," Journal of Political Economy, 103, 1236 - 1274. 

Campbell, Cynthia J. and Charles E. Wasley, 1993, "Measuring security price performance 
using daily NASDAQ returns," Journal of Financial Economics, 33, 73-92. 

Cochran, B., L.C. Rose, and D.R. Fraser, 1995, "A market evaluation of FDIC assisted 
transactions," Journal of Banking and Finance, 19, 261-279. 

Corhay, A. and A. Tourani Rad, 1996, "Conditional heteroskedasticity adjusted market 
model and an event study," The Quarterly Journal of Economics and Finance, 36, 4, 
529-538. 

Corrado, Charles J., 1989, "A nonparametric test for abnormal security-price performance 
in event studies," Journal of Financial Economics, 23, 385-395. 

Corrado, Charles J. and Terry L. Zivney, 1992, "The specification and power of the sign test 
in event study hypothesis tests using daily stock returns," Journal of Financial and 
Quantitative Analysis, 27, 465-478. 

44 



de Jong, F., A. Kemna, and T. Kloek, 1992, "A contribution to event study methodology 
with an application to the Dutch stock market," Journal of Banking and Finance, 16, 
11-36. 

Dimson, E. and P. Marsh, 1985, "Event study methodology and the size effect: The case of 
UK press recommendations," Journal of Financial Economics, 17, 113-142. 

Dodd, P., and R. Ruback, 1977, "Tender offers and stockholder returns," Journal of Financial 
Economics, 5, 351-373. 

Donaldson, R.G., and F. Hathaway, 1994, "An expanded approach to the empirical analysis 
of illegal insider trading and stock prices, " University of British Columbia manuscript. 

Eckbo, B.E., 1985, "Mergers and the market concentration doctrine: Evidence from the 
capital market," Journal of Business, 58, 325-349. 

Eckbo, B.E., 1992, "Mergers and the value of antitrust deterrence," Journal of Finance, 47, 
1005-1029. 

Eckbo, B.E., V. Maksimovic, and J. Williams, 1990, "Consistent estimation of cross-sectional 
models in event studies," The Review of Financial Studies, 3, 343-365. 

Efron, B., 1979, "Bootstrap methods: Another look at the jackknife," Annals of Statistics, 
7, 1-26. 

Efron, B. and R.J. Tibshirani, 1993. An introduction to the bootstrap (Chapman & Hall, 
New York). 

Fama, E.F., 1965, "The behavior of stock market prices," Journal of Business, 34, 420-429. 
Fama, E.F., L . Fisher, M. Jensen, and R. Roll, 1969, "The adjustment of stock prices to new 

information," International Economic Review, 10, 1-21. 
Fama, E.F., and K.R. French, 1993, "Common risk factors in the returns on stocks and 

bonds," Journal of Financial Economics, 33, 3-56. 
French, K. and R. McCormick, 1984, "Sealed bids, sunk costs and the process of competi­

tion," Journal of Business, 57, 417-441. 
Glosten, L.R., R. Jagannathan, and D.E. Runkle, 1993, "On the relation between the ex­

pected value and the volatility of the nominal excess return on stocks," Journal of 
Finance, 48, 1779-1801. 

Gupta, A., R.L.B. LeCompte, and L. Misra, 1993, "FSLIC assistance and the wealth effects 
of savings and loans acquisitions," Journal of Monetary Economics, 31, 117-128. 

Hall, P., 1992. The bootstrap and Edgeworth expansion (Springer-Verlag, New York). 
Hjorth, J.S.U., 1994. Computer intensive statistical methods: Validation, model selection 

and bootstrap (Chapman & Hall, New York). 
Ikenberry, D., J. Lakonishok, and T. Vermaelen, 1995, "Market underreaction to open market 

share repurchases," Journal of Financial Economics, 39, 181-208. 
James, C. and P. Wier, 1987, "An analysis of FDIC failed bank auctions," Journal of Mon­

etary Economics, 20, 141-153. 

45 



Johnson, 1979, "Auction markets, bid preparation costs and entrance fees," Journal of Law 
and Economics, 55, 313-318. 

Kalay, A. and U. Loewenstein, 1985, "Predictable events and excess returns: The case of 
dividend announcements," Journal of Financial Economics, 14, 423-449. 

King, B.F., 1966, "Market and industry factors in stock price behavior," Journal of Business, 
39, Part 2, 139-190. 

Kon, S.J., 1984, "Models of stock returns - a comparison," Journal of Finance, 34, 147-165. 
Kothari, S.P. and J.B. Warner, 1997, "Measuring long-horizon security price performance," 

Journal of Financial Economics, March, 43, 301-340. 
Lamoureux, C.G. and W.D. Lastrapes, 1990, "Heteroskedasticity in stock return data: vol­

ume versus GARCH effects," Journal of Finance, 45, 221-229. 
Larsen, R.J. and M.L. Marx, 1981, An Introduction to Mathematical Statistics and its 

Applications, (Prentice-Hall, Inc., New Jersey). 
LePage, R. and L. Billard, 1992. Exploring the limits of bootstrap (John Wiley & Sons, 

Inc., New York). 
Li, H., and G.S. Maddala, 1996, "Bootstrapping time series models," Econometric Reviews, 

15, 115-158. 
Liang, Y., F.C.N. Myer, and J.R. Webb, 1996, "The bootstrap efficient frontier for mixed-

asset'portfolios," Real Estate Economics, 24, 247-256. 

Liu, R.Y., 1988, "Bootstrap procedures under some non-iid models," Annais of Statistics, 
16, 1696-1708. 

Liu, R.Y. and K. Singh, 1992, "Moving blocks jackknife and bootstrap capture weak depen­
dence," in R. LePage and L. Billard, eds, Exploring the Limits of Bootstrap (John 
Wiley & Sons, Inc., New York). 

Malatesta, P.H. and R. Thompson, 1985, "Partially anticipated events: A model of stock 
price reactions with an application to corporate acquisitions," Journal of Financial 
Economics, 14, 237-250. 

Malliaropulos, D., 1996, "Are long-horizon stock returns predictable? A bootstrap analysis," 
Journal of Business Finance and Accounting, 23, 93-106. 

Mandelbrot, B., 1963, "The variation of certain speculative prices," Journal of Business, 36, 
394-419. 

Marais, M. Laurentius, 1984, "An application of the bootstrap method to the analysis of 
squared standardized market model prediction errors," Journal of Accounting Re­
search, 22 Supplement, 34-54. 

McCabe, B., 1989, "Misspecification tests in econometrics based on ranks," Journal of Econo­
metrics, 40, 261-278. 

Mooney, C.Z., 1996, "Bootstrap statistical inference: examples and evaluations for political 
science," American Journal of Political Science, 40, 570-602. 

46 



Nelson, D.B., 1990, "Conditional heteroskedasticity in asset returns: A new approach," 
Econometrica, 59, 347-370. 

Officer, R.R., 1967, "The distribution of stock returns," Journal of the American Statistical 
Association, 67, 807-812. 

O'Hara, M. and W. Shaw, 1990, "Deposit insurance and wealth effects: The value of being 
'Too Big to Fail'," Journal of Finance, 45, 1587-1600. 

Patell, J.M., 1976, "Corporate forecasts of earnings per share and stock price behavior: 
empirical tests," Journal of Accounting Research, 14, 246-276. 

Pettway, R.H. and J.W. Trifts, 1985, "Do banks overbid when acquiring failed banks?" 
Financial Management, Summer, 5-15. 

Prabhala, N.R., 1997, "Conditional methods in event-studies and an equilibrium justification 
for standard event-study procedures," The Review of Financial Studies, Spring, 1-38. 

Ramberg, J.S., P.R. Tadikamalla, E.J. Dudewicz, and E.F. Mykytka, 1979, "A probability 
distribution and its uses in fitting data," Technometrics, 21, May. 

Ramberg, J.S. and B.W. Schmeiser, 1972, "An approximate method for generating symmetric 
random variables," Communications of the Association for Computing Machinery, 15, 
987-990. 

Ramberg, J.S. and B.W. Schmeiser, 1974, "An approximate method for generating symmetric 
random variables," Communications of the Association for Computing Machinery, 17, 
78-82. 

Schipper, K. and R. Thompson, 1983, "The impact of merger-related regulations on the 
shareholders of acquiring firms," Journal of Accounting Research, 21, 184-221. 

Sefcik, S.E. and R. Thompson, 1986, "An approach to statistical inference in cross-sectional 
models with security abnormal returns as dependent variables," Journal of Accounting 
Research, 24, 316-334. 

Thompson, R., 1985, "Conditioning the return-generating process on firm-specific events: A 
discussion of event study methods," Journal of Financial and Quantitative Analysis, 
20, 151-168. 

47 



A Testing for Cumulative Effects 

The main text focuses on single-day event study test statistics. One may also be interested in 
tests designed to detect significant cumulative effects over multiple event days. For example, 
instead of testing for a significant effect at t = +1 which may have resulted directly from 
a particular announcement, one may wish to test for an effect over a multiple-day period 
like t — — 3 through t = — 1, perhaps in order to determine whether or not there was an 
information leak prior to the announcement of the event. All three of the common event 
study test statistics discussed in the main body of the text can be simply modified to allow 
for multiple day tests. 

A . l The Dummy Variable Approach 

Instead of using a single dummy variable in each firm's market model, one would define a 
dummy variable for each day in the multiple-day period of interest, denoting the first of the 
multiple days as a and the last of the multiple days as b. For example, in the case of testing 
for information leak during t = —3 through t = — 1, one would set a = —3 and b = — 1. 
Then (making use of the index variable r to facilitate summation over the multiple-event-day 
testing period) the market model for firm i would become: 

6 
Rtt = Pio + PaMit + ^BiDrDTit + eit. (16) 

In testing for a cumulative effect over the period starting at t = a and ending at t = 6, 
each firm's market model would have b — a + 1 dummy variables: one for every day in the 
multiple-event-day period of interest. Thus, DTU would be set to equal one for t = r and 
zero otherwise. 

There would be a t-statistic for each of the dummy variable coefficients for each firm, 
and all of these would be used to test the significance of cumulative effects over the multiple 
event days starting with t — a and ending with t = b: 

Et=6 T ^ J V A 
ZJ~ = t=a ^1=1 / i r A 

Vb-a + lVN' 

Of course, just as the distribution of the single-day ZD test statistic depends on basic as­
sumptions discussed in Section 2.1 of the main text, the multiple-day Z®um test statistic's 
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distribution would depend upon satisfying similar assumptions. Note that a well-specified 
market model is a critical component of these assumptions. This includes, among other 
features, the absence of autocorrelation in the disturbances for a firm's market model. 

A.2 The Standardized Residual Approach 

A ZSR statistic can also be defined to test for cumulative effects over multiple days, starting 
with t — a and ending with t = b: 

ySR _ Et=o ^it 

Of course, the distribution pf this test statistic would rely critically on assumptions like those 
laid out in Section 2.1 above. 

A.3 The Traditional Approach 

To test for cumulative effects over multiple days within the event period, starting with t = a 
and ending with t = b, ZTRAD would be defined as follows: 

Z. TRAD 2~2t=a
 et 

The distribution of this test statistic would rely upon conditions like those discussed in 
Section 2.1 of the text. 

B Further Details on Experiment Design 

For the 4-step Monte Carlo approach outlined in Section 3.1 above, non-normality and DGP 
changes were incorporated in the generated data for each firm. Several empirical studies were 
consulted in order to choose parameter values that would accurately reflect the properties of 
actual returns data. The choice of particular parameter values for generating data and the 
choice of the algorithms employed are motivated below. 

• Non-Normality 

As discussed in Section 2.2, there is considerable evidence that market returns and 
individual firms' returns are highly skewed and leptokurtic. Thus, past studies such as 
those by Kon [1984] and Lamoureux and Lastrapes [1990] were consulted regarding the 
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statistical properties of actual stock returns and market returns data,34 including mean, 
variance, skewness, and kurtosis, as well as conditional heteroskedasticity parameters. 
The intention was to simulate stock returns and market returns data with specific 
statistical properties that closely match actual data. Kon documents the first four 
moments over a particular sample period for 30 individual firms traded on the NYSE 
and for several market indices. His results for the moments are as follows. Positive 
skew for individual firms was observed in twenty-eight of the thirty cases considered. 
Of these positive cases, the skewness ranged between 0.0678 and 0.9080. The median 
of all thirty cases was about 0.32, and most values were between 0.30 and 0.40. Excess 
kurtosis was observed in all 30 stocks considered by Kon. The range in the kurtosis 
coefficient was 4.8022 to 13.9385, with a median of about 6.3, and with most values 
between 5 and 7. The standard deviation of returns exceeded 0.77 for all firms and was 
observed as high as 2.89. For the experiments conducted in this study, skewness up to 
0.15, kurtosis up to 6.2, and a standard deviation of 0.77 were adopted in generating 
data for firms' disturbances. 

• Changes in the DGP 

There is considerable evidence that the data generating process for returns can change 
dramatically during the time of an event. For example, Boehmer, Musumeci, and 
Poulsen [1991] report that most researchers who have investigated event-induced vari­
ance changes have found variances can increase anywhere from 44% to 1100% during 
event periods. Donaldson and Hathaway [1994] also find evidence of variance changes -
both increases and decreases - during periods of insider trading. Of their cases where a 
rise in variance is observed during the event period, the amount of the increase ranges 
from about 4% to 680%. Likewise, De Jong, Kemna and Kloek [1992] Brockett, Chen, 
and Garven [1994], and Donaldson and Hathaway [1994] show that the coefficient on 
market returns in the market model is not necessarily constant over time. Donaldson 
and Hathaway find that the market return coefficient can fall by as much as 106% or 
rise by as much as 4238% in the collection of firms they consider. For the experiments 
conducted in this thesis, the values chosen are conservative. The event period variance 
can increase by as much as 500% and the event period market return coefficient can 
rise by as much as 100%. 

3 4 I verified these researchers' findings myself using actual C R S P data. The reported values appear to be 
correct with the exception of minor typographical errors. I also verified the magnitude of Kon's reported 
moment values on other sample periods and found the values to be quite similar with the exception of the 
time around the crash of 1987. 
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The change in event period variance was incorporated in the data by re-scaling event 
period disturbances to have a variance up to 500% larger than that of non-event period 
disturbances. The change in the market return coefficient during the event period 
was incorporated as follows. During the non-event period, t = ( — 130,•••,—11), the 
coefficient of market returns was set to equal one, while during the event period, 
t = (-10, • • •, +10), the coefficient doubled.35 

• Generating the Data 

There are many reasonable options for generating non-normal returns data, including 
the following. Returns can be modeled to incorporate excess kurtosis by using a Stu­
dent t-distribution with low degrees of freedom. (Bollerslev and Wooldridge [1992], for 
example, use a Student t with 5 degrees of freedom to generate fat-tailed data for their 
Monte Carlo simulations.) Skewness can be incorporated by making use of asymmetric 
models of conditional variance, such as the EG ARCH model of Nelson [1990] or the 
Modified GARCH model of Glosten, Jagannathan, and Runkle [1993]. Alternatively, 
both skewness and excess kurtosis can be simultaneously incorporated by making use 
of an algorithm described in Ramberg, Dudewicz, Tadikamalla, and Mykytka [1979]. 
(This algorithm is a generalization of Tukey's lambda distribution, and it was devel­
oped by Ramberg and Schmeiser [1974, 1975]. For an application in the context of a 
simulation study, see McCabe [1989].) Basically, the Ramberg et al. algorithm allows 
one to select particular values for the first four moments of a distribution in generating 
random variates. For experiments reported in this thesis, I adopted the Ramberg et 
al. algorithm to generate returns data with the first four moments matching those 
of actual data. Results of experiments based on use of the Student t-distribution to 
generate leptokurtic but symmetric data are qualitatively similar. 

In this study, parameters for the Ramberg et al. algorithm were selected by consulting 
various studies (including Kon [1984]) and by examining actual returns data. In this set of 
experiments, disturbance terms for all firms were conservatively generated with kurtosis of 

3 5 I n these experiments, data were generated for all firms assuming a market model intercept of zero and 
a baseline market return coefficient of one. Allowing different firms to have different parameter values or 
selecting parameter values to match values observed in practice would leave the experiment results completely 
unchanged. (Marais [1984] refers to this fact on page 42 of his study.) The explanation for this invariance 
with respect to choice of parameter value relies on the fact that OLS is unbiased. As explained in Section 3.1, 
the market returns, Mn, and the disturbances, eu, are generated with particular properties to match actual 
data. Then setting /?,o = 0 and /3n = 1, firms' returns, Rn, are generated according to the basic market 
model Rn = /?,o + fii\Mn + en- When Rn is regressed on Mn and a constant, the OLS estimators for /3,-Q 
and fin = 1 are unbiased. That is the estimated intercept and market return coefficient are equal to the 
chosen values on average. Thus, restricting the chosen values to be zero and one for all firms is a harmless 
simplification. 
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6.2, skewness of 0.15, standard deviation of 0.77, and zero mean. Notice that the properties 
given to the disturbances were set in accord with moments estimated on actual returns. I 
verified that the properties of market model residuals are in fact indistinguishable from those 
of firms' returns by estimating the market model for a collection of 45 financial firms. Since 
the value of R2 in the estimation of the market model is typically less than 10% and is 
occasionally even less than 1%, the fact that the large residual component displays similar 
characteristics to the returns is not surprising. Thus, for the Monte Carlo experiments it is 
entirely reasonable to ascribe the variance of firms' returns to the generated disturbances.36 

C Confidence Intervals for the Monte Carlos 

The confidence intervals around the nominal size values are constructed as follows. Each 
replication can be considered a binomial experiment under the null hypothesis, where re­
jecting the null is considered a success and failing to reject is considered a failure. Define n 
as the number of replications, po as the nominal size or the theoretical rejection rate under 
the null hypothesis (e.g. 0.05 for a 5% level of significance), and Y as the actual number 
of rejections. With n independent replications resulting in Y rejections and hence an actual 
rejection rate of ^, we can construct a confidence interval around the assumed probability 
of rejection p0. Under the null hypothesis, the actual rejection rate ^ is distributed with 
mean p0 and variance ^Po(l ~ Po)- Thus, the expression 

behaves like a standard normal. For a given significance level, a, it is the case that 

where z a / 2 denotes the appropriate critical value from the normal distribution for a two-sided 
hypothesis test (i.e. Pr(Z < —2^/2) = Pr(2T > +zQ/2) = a/2). 

Making use of these results, a confidence interval for a given a level can be constructed 
around the nominal size po- The 100(1 — a)% confidence interval is given by: 

3 6 I n any case, the magnitude of the variance does not affect the quantitative results in these experiments. 
Since all of the Z statistics involve a normalization based on variance, the magnitude of the disturbances' 
variability completely drops out in the absence of event period variance changes. In the presence of event 
period variance changes, the absolute magnitude of the change is also irrelevant - in such cases it is the 
proportional change in variance that drives results. Sensitivity checks supported these statements. 

(19) 

Pr « 1 - a (20) 
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/ / p o ( l -Po) , / p p ( l -Po)\ /on 
I Po - za/2\j , po + * „ / 2 y " I • (21) 

If the value of ^ falls outside of this interval, then the null hypothesis that the actual size 
equals the stated size is rejected, indicating a bias to size. 

D Results of Further Experiments 

In Section 3, I demonstrated that common event study test statistics exhibit significantly 
biased size when applied to data with characteristics which violate underlying conditions. 
These characteristics, carefully chosen to mirror properties exhibited by actual returns, in­
cluded excess kurtosis, positive skewness, an increase in variance around the event time, 
and an increase in the market return coefficient around the event time. In this appendix, I 
demonstrate that the significant bias remains even when the condition violations are mod­
eled to be less severe. The effects of characteristics individually at various levels of intensity 
are examined, and the impact of allowing different characteristics for different firms is inves­
tigated. 

D . l The Marginal Effect of Individual Factors 

For the experiments documented in Section 3 above, I generated data to incorporate several 
violating characteristics simultaneously. This led to significant bias in the statistical size of 
event study Z statistics. When the violating characteristics are each considered in isolation, 
hypothesis tests based on the conventional Z statistics continue to over-reject, indicating that 
even the presence of individual factors in isolation is sufficient for biased size. A consideration 
of one factor - event period variance changes - is presented below.37 

Event-induced variance of a much smaller magnitude than found by past researchers -
proportional increases as low as 5% - can lead to significant bias in the statistical size of Z 
statistics. The market returns and the disturbances were generated as standard normal, then 
non-event period disturbances were given a variance consistent with actual CRSP data.38 

During the event period t = (—10, • • •,+10), the disturbances were increased by a factor 
3 7 T h i s factor is examined in detail because it has the most profound impact in leading to bias in con­

ventional test statistics. Factors such as skewness, excess kurtosis, or event period changes in the market 
return coefficient have a smaller role in causing the bias, though their effects are still statistically significant 
in many cases. 

3 8 Note that the magnitude of the variance does not influence results. It is the proportional difference 
between event period and non-event period disturbances which drives the result in these experiments. 
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ranging from 5% to 500%. In all cases, there was considerable over-reject ion of the null 
hypothesis, despite the fact that there was no event effect present. 

Table 10 contains the results based on an event study of 50 firms39 and 1000 replications. 
The first column presents the nominal size. The remaining columns report information on 
the cases of 500%, 100%, 20%, and 5% increases in variance respectively. For the 500% 
case, the rejection rates are large in magnitude, ranging from 11% to 17% when they are 
expected to be 1%. All of the right-tail p-values for all of the statistics are indistinguishable 
from zero for this case. For the cases of 100% and 20% proportional rises in variance, all 
of the Z statistics significantly over-reject once again. The p-values are all indistinguishable 
from zero at three decimal places. With a 5% increase in variance, all three Z statistics 
over-reject at low significance levels, but rejection rates are within the confidence bounds for 
tests conducted at higher significance levels. 

The degree of over-rejection documented in Table 10 is quite remarkable given the con­
servative nature of this experiment. The data was generated with no skewness or excess 
kurtosis, and firms' true market return coefficients did not undergo any changes during the 
event period. Furthermore, the values chosen for the variance increases are quite moderate 
relative to what is actually observed. Recall that much greater increases in event period 
variance have been documented in past studies such as Donaldson and Hathaway [1994] 
where variance is observed to rise by as much as 1100%. 

As explained in Section 3, the intuition for the incidence of over-rejection is based on 
the fact that in the presence of event period increases in variance, the event day disturbance 
is drawn from a wider distribution than assumed under the null. As a result, it is more 
likely that a Z statistic larger than the critical value will be observed, and hence significant 
over-rejection takes place. In the case of an unmodeled decrease in event period variance, 
the opposite result may obtain. The event day disturbance will be drawn from a less disperse 
distribution than assumed under the null, and hence the Z statistics will tend to under-reject. 

D.2 Allowing Different DGPs Across Firms 

In previous experiments, while data for each firm were generated randomly, overall properties 
like variance, skewness, kurtosis, and model coefficients were constrained to be identical for 
each firm in the sample. In this section, the constraint is relaxed, and these properties are 
permitted to vary across firms. While the results presented below pertain specifically to the 

3 9 W i t h a greater number of firms in the sample, there is still evidence that erroneous conclusions can be 
reached - rejection rates are statistically larger than they should be. Experiments were also conducted with 
a 10% proportional increase in variance at the time of the event for samples of 100, and 200 firms. In all 
cases, almost all of the rejection rates for all the statistics at all levels of significance were outside the 95% 
confidence interval. 
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case of changes in event period variance which differ across firms, the results for varying 
other aspects of the experiment are qualitatively similar. In all cases, the statistical size of 

i 

event study Z statistics is significantly biased. 
Data were initially generated with skewness of 0.15, kurtosis of 6.2, an event period jump 

of 100% in the market return coefficient, and an increase in event period variance which varies 
across firms. Rejection rates and right-tail p-values for the experiment appear in Table 11. 
The first set of three columns presents rejection rates and p-values for the case case where 
the variance increase is uniformly distributed between 400% and 500% across firms, and the 
second set of columns is for the case of a uniformly distributed increase between 100% and 
500%. Under both these sets of conditions, the rejection rates are considerably larger than 
they should be under the null. Rejection rates are anywhere from 100% to 700% higher than 
expected under the null, and all right-tail p-values are indistinguishable from zero at three 
decimal places. 

In order to consider the marginal effect of changes in event-period variance which differs 
across firms, data were also generated without skewness, excess kurtosis, or an increase in the 
true market return parameter. Even in the absence of these actual features of returns data, 
event-period variance increases are sufficient to significantly bias the size of test statistics. 
The final two sets of columns contain these results. Whether the event-period increase is 
uniformly distributed between 400% and 500% across firms or between 100% and 500% across 
firms, the over-rejections are highly significant. Right-tail p-values for tests at significance 
levels 0.01 - 0.10 are indistinguishable from zero. 

E The New Approach Based on 
ZTRAD Q r ZSR 

In Section 4.2, I presented detailed steps for employing the bootstrap to conduct valid 
inference based on the conventional test statistic used in the Dummy Variable Approach, 
ZD. In this appendix, I suggest simple modifications to those steps to enable bootstrap 
inference based on the other conventional event study test statistics considered in this thesis, 
ZTRAD and ZSR. In fact, the steps can be modified to allow the use of the bootstrap with 
any normalized conventional event study test statistic. The modifications to Steps 1-6 are 
as follows. 

1. Instead of estimating the Dummy Variable market model shown in Equation (1), es­
timate the market model shown in Equation (3). Instead of calculating ZD, calculate 
ZTRAD Q R ZSR^ a g app r 0p ri ate. 
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'2: Instead of normalizing the original ZD statistic, ZTRAD or ZSR is normalized. Recall 
that for the case of ZD, the standard deviation of the t-statistics is used to normal­
ize. Neither the Traditional Approach nor the Standardized Residual Approach yield 
t-statistics, thus each of ZTRAD and ZSR must be normalized by some analogous stan­
dard deviation. For the Traditional Approach, one takes the standard deviation of 
the event day forecast errors divided by y/Na^. For the Standardized Residual Ap­
proach, the standard deviation of the event day standardized residuals multiplied by 
y/N and divided by \Jj^ is used. These random variables are denoted XJRAD and 
xfR respectively: 

^TRAD _ e « i 

egy/N 

yz^=i T , -4 

Then, defining the standard deviation of the xfRAD as CFXTRAD and the standard devi­
ation of the xfR as CTXSR, the normalized Z statistics are computed as follows: 

SR _ xj = 

7TRAD _ N 

7TRAD 

yN

 TTRAD ; 

(22) 

?SR 

Z S R 

(T-SR 
(23) 
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3. Now, instead of mean-adjusting the actual t-statistics to form the population from 
which bootstrap samples are randomly drawn, the mean-adjusted xfRAD and xfR are 
used. Define the mean of xfRAD and xfR as xTRAD and xSR respectively. Then the 
mean-adjusted statistics from which the bootstrap sample are randomly drawn are 
defined as follows. For the Traditional Approach 

XTRAD* _ XTRAD _^TRAD 

and for the Standardized Residual Approach, 

x 
SR* SR -SR 

X: — x 

4. Instead of randomly re-sampling from the population of t*, the random re-samples are 
drawn from the xfRAD* or the xfR* defined above. 

5. Instead of forming a normalized version of for each bootstrap sample, a normalized 
version of Z?RAD or Z f R is formed. Z?RAD is normalized by the standard deviation of 
the xfRAD* in the bootstrap sample, or Z£R is normalized by the standard deviation 
of the X(jR* in the bootstrap sample. 

yTRAD 
Lsj=\ Xbj 

N 
(J-TRAD* 

£TRAD 

(TETRAD* 
(24) 

ZSR N •y/N 

<J„SR* 

Zb

SR 

(T-SR* 
Xb 

(25) 

6. Finally, critical values from the empirical distribution defined by the Z?RAD or the 
are used to evaluate the normalized statistic computed in Step 2. ZfR 
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F Size-Adjustments for Power Comparisons 

As discussed in Section 4.3 above, each test statistic must be size-adjusted prior to conducting 
the power comparisons. Consider, for example, a biased test statistic which has a rejection 
rate of 25% for a test at the a = 5% significance level (like ZD for a sample of 100 firms, as 
considered in Figure 1). This rejection rate would have been obtained using a critical p-value 
of 0.05 for the a = 5% test. One size-adjusts to determine the actual p-value for which 5% of 
the statistics are rejected with a test at a 5% significance level. Since using a p-value of 0.05 
led to a rejection rate of 25%, the size-adjusted p-value would be much smaller than 0.05. 
Once the size-adjusted 5% critical p-value has been determined (by Monte Carlo simulation), 
it is used for conducting tests at the 5% significance level in the power experiments. Proper 
critical values are determined in this fashion for all of the relevant testing levels, 0.01 - 0.10, 
for a given statistic. Then these size-adjusted critical values are used to evaluate the test 
statistic in the power experiments. 

Unfortunately, the set of actual critical values extracted for a particular test statistic 
under a particular DGP are not applicable to other test statistics or to settings where different 
features of the data (such as skewness or event-period variance changes) are observed. To 
evaluate the power of statistics under different conditions, a new set of appropriate critical 
values must be extracted. Computer programs to extract the critical values require 1000 
or more replications, each replication involving data generation and model estimation for a 
given number of firms and the computation of event study test statistics, and each replication 
also requiring 1000 bootstrap fe-sampling exercises. After the appropriate critical values are 
extracted, the power comparisons must be undertaken, an exercise which again involves 
many replications, computations, and re-samples. 
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Table 1: Z Statistics: Non-Normal Data with DGP Changes, Using Conventionally Assumed 
Distributions 

A c t u a l R e j e c t i o n R a t e s a n d 
R i g h t - T a i l P r o b a b i l i t y V a l u e s 

f o r T e s t s at C o m m o n S i g n i f i c a n c e L e v e l s 

1 0 0 0 R e p l i c a t i o n s , V a r i o u s N u m b e r s o f F i r m s 

30 F i r m s 50 F i r m s 100 F i r m s 200 F i r m s 

S i z e ZD 
ZSR ZTRAD ZD 

ZSR ZTRAD ZD 
ZSR ZTRAD ZD 

ZSR ZTRAD 

0.01 0 . 0 99 * 
0.000 

0 . 1 5 2 * 
0.000 

0 . 154 * 

0.000 
0 . 1 2 3 * 
0.000 

0 . 168 * 

0.000 
0 . 164 * 

0.000 

0 . 1 20 * 

0.000 

0 . 1 6 3 * 

0.000 

0 . 1 5 8 * 

0.000 

0 . 1 3 5 * 

0.000 
0 . 1 8 4 * 

0.000 
0 . 188 * 

0.000 
0.02 0 . 1 20 * 

0.000 

0 . 1 8 2 * 

0.000 
0 . 1 8 1 * 

0.000 

0 . 148 * 

0.000 

0 . 1 9 5 * 

0.000 

0 . 1 9 1 * 

0.000 
0 . 1 3 5 * 

0.000 

0 . 1 9 2 * 

0.000 

0 . 1 9 6 * 

0.000 

0 . 1 5 4 * 

0.000 
0 . 2 20 * 
0.000 

0 . 2 09 * 

0.000 
0.03 0 . 1 50 * 

0.000 

0 . 2 0 3 * 

0.000 
0 . 203 * 

0.000 
0 . 166 * 
0.000 

0 . 2 0 2 * 

0.000 
0 . 202 * 

0.000 

0 . 154 * 

0.000 

0 . 2 1 5 * 

0.000 

0 . 2 1 5 * 

0.000 

0 . 1 79 * 

0.000 

0 . 2 3 5 * 

0.000 
0 . 228 * 

0.000 
0.04 0 . 1 69 * 

0.000 

0 . 2 2 2 * 

0.000 

0 . 216 * 

0.000 

0 . 1 7 3 * 

0.000 

0 . 214 * 

0.000 

0 . 2 2 2 * 

0.000 

0 . 1 7 3 * 

0.000 

0 . 2 3 5 * 

0.000 

0 . 2 3 1 * 

0.000 

0 . 1 9 5 * 

0.000 

0 . 2 5 1 * 

0.000 

0 . 2 4 5 * 

0.000 
0.05 0 . 1 8 3 * 

0.000 

0 . 2 37 * 

0.000 
0 . 2 3 1 * 
0.000 

0 . 1 8 1 * 

0.000 

0 . 226 * 

6.000 
0 . 230 * 
0.000 

0 .187 * -

0.000 

0 . 2 4 4 * 
0.000 

0 . 2 4 3 * 

0.000 

0 . 2 1 0 * 

0.000 
0 . 258 * 
0.000 

0 . 2 5 3 * 

0.000 
0.06 0 . 1 9 8 * 

0.000 

0 . 254 * 

0.000 
0 . 248 * 

0.000 

0 . 1 97 * 

0.000 

0 . 237 * 

0.000 
0 . 2 4 1 * 

0.000 

0 . 204 * 

0.000 

0 . 258 * 

0.000 

0 . 2 57 * 

0.000 

0 . 2 3 5 * 

0.000 
0 . 2 70 * 

0.000 

0 . 2 70 * 

0.000 
0.07 0 . 2 08 * 

0.000 
0 . 2 7 2 * 
0.000 

0 . 2 59 * 
0.000 

0 . 210 * 
0.000 

0 . 246 * 
0.000 

0 . 2 5 2 * 

0.000 
0 . 2 1 2 * 
0.000 

0 . 2 67 * 

0.000 
0 . 2 6 6 * 
0.000 

0 . 2 4 1 * 
0.000 

0 . 2 8 1 * 

0.000 
0 . 274 * 
0.000 

0.08 0 . 2 1 5 * 

0.000 

0 . 284 * 

0.000 

0 . 266 * 

0.000 

0 . 216 * 

0.000 

0 . 256 * 

0.000 

0 . 2 60 * 

0.000 

0 . 224 * 

0.000 

0 . 2 79 * 

0.000 

0 . 2 7 9 * 

0.000 

0 . 248 * 

0.000 

0 . 2 9 2 * 

0.000 

0 . 2 8 7 * 

0.000 
0.09 0 . 2 3 3 * 

0.000 
0 . 2 90 * 
0.000 

0 . 2 77 * 
0.000 

0 .224 * 
0.000 

0 . 266 * 
0.000 

0 . 272 * 
0.000 

0 . 238 * 
0.000 

0 . 286 * 
0.000 

0 . 2 8 2 * 
0.000 

0 . 2 60 * 
0.000 

0 . 2 97 * 

0.000 
0 . 2 9 2 * 
0.000 

0.1 0 . 2 4 2 * 

0.000 

0 . 298 * 

0.000 

0 . 288 * 

0.000 

0 . 233 * 

0.000 

0 . 276 * 

0.000 

0 . 282 * 

0.000 

0 . 248 * 

0.000 

0 . 2 9 2 * 

0.000 

0 . 2 9 1 * 

0.000 

0 . 2 69 * 

0.000 

0 . 304 * 

0.000 

0 . 2 99 * 

0.000 

T h i s t a b l e p r e s e n t s a c t u a l r e j e c t i o n r a t e s a n d t h e a s s o c i a t e d r i g h t - t a i l p r o b a b i l i t y v a l u e s f o r Z s t a t i s t i c s c o m p u t e d o n 

n o n - n o r m a l l y d i s t r i b u t e d d a t a w h i c h i n c o r p o r a t e c hange s i n t h e d a t a g e n e r a t i n g p r o c e s s d u r i n g t h e e v e n t p e r i o d . T h e R a m b e r g 

et al. [1979] a l g o r i t h m was u s e d t o g e n e r a t e d a t a w i t h a s kewnes s coe f f i c i en t o f 0.15 a n d a k u r t o s i s c oe f f i c i e n t o f 6.2. T h e t r u e 

m a r k e t m o d e l c o e f f i c i e n t d o u b l e s a r o u n d t h e t i m e o f t h e e v e n t , a n d t h e v a r i a n c e o f t h e d i s t u r b a n c e s j u m p s b y 5 0 0 % d u r i n g t h e 

e v e n t p e r i o d . 

T h e Z s t a t i s t i c s a re c a l c u l a t e d f o r te s t s a t s i g n i f i c a n c e l eve l s r a n g i n g f r o m 0.01 t o 0.10, as s h o w n i n t h e f i r s t c o l u m n . E a c h 

o f t h e r e m a i n i n g c o l u m n s r e p o r t s t a t i s t i c s b a s e d o n t h e v a r i o u s Z s t a t i s t i c s f o r v a r i o u s s a m p l e s i zes ( i . e. n u m b e r o f firms). ZD 

i s c a l c u l a t e d a c c o r d i n g t o E q u a t i o n (2) a n d is a s s u m e d t o f o l l o w a s t a n d a r d n o r m a l d i s t r i b u t i o n . ZSR i s c a l c u l a t e d a c c o r d i n g 

t o E q u a t i o n (7) a n d i s a l s o a s s u m e d t o f o l l o w a s t a n d a r d n o r m a l d i s t r i b u t i o n . ZTRAD i s c a l c u l a t e d a c c o r d i n g t o E q u a t i o n (8) 

a n d is a s s u m e d t o f o l l o w a S t u d e n t t - d i s t r i b u t i o n w i t h 119 degrees o f f r e e d o m . 

T h e first t h r e e c o l u m n s r e p o r t r e s u l t s f o r Z s t a t i s t i c s c o m p u t e d o n a s a m p l e o f 3 0 f i r m s . T h e r e m a i n i n g sets o f t h r e e 

c o l u m n s p e r t a i n t o s a m p l e s izes o f 50, 100, a n d 200 f i r m s r e s p e c t i v e l y . T h e t o p v a l u e i n e a c h c e l l i s t h e a c t u a l r e j e c t i o n r a t e f o r 

a p a r t i c u l a r Z s t a t i s t i c c o m p u t e d a t a p a r t i c u l a r s i g n i f i c a n c e l e v e l . T h e s e c o n d v a l u e i s t h e r i g h t - t a i l p r o b a b i l i t y v a l u e ( p - v a l u e ) 

a s s o c i a t e d w i t h t h a t r e j e c t i o n r a t e . T h e p - v a l u e i s c a l c u l a t e d u s i n g t h e te s t s t a t i s t i c ' s c o n v e n t i o n a l l y a s s u m e d d i s t r i b u t i o n , a n d 

i t d e n o t e s t h e p r o b a b i l i t y o f o b s e r v i n g a v a l u e g r e a t e r t h a n t h e a c t u a l r e j e c t i o n r a t e . A p - v a l u e g r e a t e r t h a n 0.975 o r less t h a n 

0.025 i n d i c a t e s t h a t t h e r e j e c t i o n r a t e i s o u t s i d e a 9 5 % c o n f i d e n c e i n t e r v a l a n d h e n c e sugges t s a b i a s t o s i ze . R e j e c t i o n r a t e s 

w h i c h f a l l o u t s i d e a 9 5 % c o n f i d e n c e i n t e r v a l a r e m a r k e d w i t h a n a s t e r i s k t o d e n o t e s i g n i f i c a n c e . 
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Table 2: Z Statistics: Normal Data without DGP Changes, Using Conventionally Assumed 
Distributions 

A c t u a l Rejection Rates and 
Right-Tai l Probabil i ty Values 

for Tests at C o m m o n Significance Levels 

1000 Replications, Various Numbers of F i r m s 

30 Firms 50 Firms 100 Firms 200 Firms 

Size ZD. ZSR ZTRAD ZD 
ZSR ZTRAD ZD ZSR gTRAD ZD 

ZSR ZTRAD 

0.01 0.012 
0.263 

0.011 
0.375 

0.011 
0.375 

0.006 
0.898 

0.006 
0.898 

0.006 
0.898 

0.010 
0.500 

0.010 
0.500 

0.011 
0.375 

0.008 
0.737 

0.006 
0.898 

0.006 
0.898 

0.02 0.021 
0.411 

0.019 
0.589 

0.020 
0.500 

0.019 
0.589 

0.018 
0.674 

0.022 
0.326 

0.020 
0.500 

0.019 
0.589 

0.020 
0.500 

0.022 
0.326 

0.019 
0.589 

0.019 
0.589 

0.03 0.030 
0.500 

0.025 
0.823 

0.030 
0.500 

0.037 
0.097 

0.035 
0.177 

0.037 
0.097 

0.028 
0.645 

0.027 
0.711 

0.027 
0.711 

0.028 
0.645 

0.028 
0.645 

0.030 
0.500 

0.04 0.041 
0.436 

0.038 
0.627 

0.041 
0.436 

0.047 
0.129 

0.046 
0.166 

0.045 
0.210 

0.034 
0.834 

0.033 
0.871 

0.041 
0.436 

0.039 
0.564 

0.038 
0.627 

0.042 
0.373 

0.05 0.055 
0.234 

0.052 
0.386 

0.052 
0.386 

0.058 
0.123 

0.055 
0.234 

0.055 
0.234 

0.046 
0.719 

0.044 
0.808 

0.053 
0.332 

0.044 
0.808 

0.044 
0.808 

0.047 
0.668 

0.06 0.062 
0.395 

0.061 
0.447 

0.061 
0.447 

0.065 
0.253 

0.065 
0.253 

0.065 
0.253 

0.058 
0.605 

0.055 
0.747 

0.062 
0.395 

0.054 
0.788 

0.050 
0.908 

0.059 
0.553 

0.07 0.068 
0.598 

0.067 
0.645 

0.066 
0.690 

0.080 
0.108 

0.073 
0.355 

0.078 
0.161 

0.069 
0.549 

0.070 
0.500 

0.077 
0.193 

0.068 
0.598 

0.067 
0.645 

0.069 
0.549 

0.08 0.072 
0.824 

0.074 
0.758 

0.078 
0.592 

0.091 
0.100 

0.087 
0.207 

0.093 
0.065 

0.082 
0.408 

0.076 
0.679 

0.086 
0.242 

0.076 
0.679 

0.077 
0.637 

0.080 
0.500 

0.09 0.085 
0.710 

0.082 
0.812 

0.086 
0.671 

0.101 
0.112 

0.099 
0.160 

0.103 
0.075 

0.092 
0.413 

0.087 
0.630 

0.093 
0.370 

0.089 
0.544 

0.088 
0.587 

0.088 
0.587 

0.1 0.095 
0.701 

0.090 
0.854 

0.097 
0.624 

0.112 
0.103 

0.111 
0.123 

0.113 
0.085 

0.101 
0.458 

0.099 
0.542 

0.107 
0.230 

0.103 
0.376 

0.101 
0.458 

0.100 
0.500 

This table presents actual rejection rates and the associated right-tail probability values for Z statistics computed on 
normally distributed data which do not incorporate any changes in the D G P at the time of the event. 

The Z statistics are calculated for tests at significance levels ranging from 0.01 to 0.10, as shown in the first column. Each 
of the remaining columns report statistics based on the various Z statistics for various sample sizes (j. e. number of firms). ZD 

is calculated according to Equation (2) and is assumed to follow a standard normal distribution. ZSR is calculated according 
to Equation (7) and is also assumed to follow a standard normal distribution. ZTRAD is calculated according to Equation (8) 
and is assumed to follow a Student t-distribution with 119 degrees of freedom. 

The first three columns report results for Z statistics computed on a sample of 30 firms. The remaining sets of three 
columns pertain to sample sizes of 50, 100, and 200 firms respectively. The top value in each cell is the actual rejection rate for 
a particular Z statistic computed at a particular significance level. The second value is the right-tail probability value (p-value) 
associated with that rejection rate. The p-value is calculated using the test statistic's conventionally assumed distribution, and 
it denotes the probability of observing a value greater than the actual rejection rate. A p-value greater than 0.975 or less than 
0.025 indicates that the rejection rate is outside a 95% confidence interval and hence suggests a bias to size. Rejection rates 
which fall outside a 95% confidence interval are marked with an asterisk to denote significance. 
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Table 3: Rank Test Statistic: Non-Normal Data with DGP Changes, Using Conventionally 
Assumed Distributions 

A c t u a l R e j e c t i o n R a t e s a n d 
R i g h t - T a i l P r o b a b i l i t y V a l u e s 

f o r T e s t s a t C o m m o n S i g n i f i c a n c e L e v e l s 

1000 R e p l i c a t i o n s , V a r i o u s N u m b e r s o f F i r m s 

Size 30 Firms 50 Firms 100 Firms 200 Firms 400 Firms 500 Firms 600 Firms 800 Firms 1000 Firms 

0.01 0.027* 0.022* 0.022* 0.019* 0.023* 0.015 0.017* 0.020* 0.012 
0.000 0.000 0.000 0.002 0.000 0.056 0.013 0.001 0.263 

0.02 0.044* 0.033* 0.031* 0.032* 0.036* 0.031* 0.025 0.036* 0.026 
0.000 0.002 0.006 0.003 0.000 0.006 0.129 0.000 0.088 

0.03 0.057* 0.047* 0.049* 0.051* 0.044* 0.044* 0.037 0.048* 0.038 
0.000 0.001 0.000 0.000 0.005 0.005 0.097 0.000 0.069 

0.04 0.080* 0.057* 0.065* 0.062* 0.057* 0.061* 0.055* 0.056* 0.048 
0.000 0.003 0.000 0.000 0.003 0.000 0.008 0.005 0.098 

0.05 0.094* 0.072* 0.080* 0.072* 0.067* 0.074* 0.065* 0.069* 0.055 
0.000 0.001 0.000 0.001 0.007 0.000 0.015 0.003 0.234 

0.06 0.102* 0.086* 0.097* 0.086* 0.074 0.079* 0.078* 0.081* 0.063 
0.000 0.000 0.000 0.000 0.031 0.006 0.008 0.003 0.345 

0.07 0.114* 0.103* 0.102* 0.094* 0.081 0.093* 0.086* 0.088* 0.070 
0.000 0.000 0.000 0.001 0.086 0.002 0.024 0.013 0.500 

0.08 0.130* 0.120* 0.111* 0.112* 0.090 0.098* 0.094 0.098* 0.082 
0.000 0.000 0.000 0.000 0.122 0.018 0.051 0.018 0.408 

0.09 0.144* 0.128* 0.115* 0.128* 0.098 0.107 0.103 0.103 0.090 
0.000 0.000 0.003 0.000 0.188 0.030 0.075 0.075 0.500 

0.1 0.157* 0.139* 0.122* 0.137* 0.111 0.114 0.116 0.112 0.100 
0.000 0.000 0.010 0.000 0.123 0.070 0.046 0.103 0.500 

This table presents actual rejection rates and the associated right-tail probability values for the rank statistic computed on 
non-normally distributed data which incorporate changes in the data generating process during the event period. The Ramberg 
et al. [1979] algorithm was used to generate data with a skewness coefficient of 0.15 and a kurtosis coefficient of 6.2. The true 
market model coefficient doubles around the time of the event, and the variance of the disturbances jumps by 500% during the 
event period. 

The rank statistic is calculated for tests at significance levels ranging from 0.01 to 0.10, as shown in the first column. 
Each of the remaining columns report statistics based on various sample sizes (i.e. number of firms). Equation (11) is used to 
compute the rank test statistic and it is assumed to follow a standard normal distribution. 

The first column reports results for a sample of 30 firms, and remaining columns pertain to successively larger sample 
sizes. The top value in each cell is the actual rejection rate for the test statistic computed at a particular significance level. 
The second value is the right-tail probability value (p-value) associated with that rejection rate. The p-value is calculated using 
the conventionally assumed standard normal distribution, and it denotes the probability of observing a value greater than the 
actual rejection rate. A p-value greater than 0.975 or less than 0.025 indicates that the rejection rate is outside a 95% confidence 
interval and hence suggests a bias to size. Rejection rates which fall outside a 95% confidence interval are marked with an 
asterisk to denote significance. 

61 



Table 4: Sign Test Statistic: Non-Normal Data with DGP Changes, Using Conventionally 
Assumed Distributions 

A c t u a l R e j e c t i o n R a t e s a n d 
R i g h t - T a i l P r o b a b i l i t y V a l u e s 

for T e s t s a t C o m m o n S i g n i f i c a n c e L e v e l s 

1000 R e p l i c a t i o n s , V a r i o u s N u m b e r s o f F i r m s 

Size 30 Firms 50 Firms 100 Firms 200 Firms 400 Firms 500 Firms 600 Firms 800 Firms 1000 Firms 

0.01 0.036* 0.032* 0.022* 0.021* 0.021* 0.019* 0.012 0.014 0.018* 
0.000 0.000 0.000 0.000 0.000 0.002 0.263 0.102 0.001 

0.02 0.045* 0.038* 0.031* 0.030* 0.032* 0.024 0.026 0.025 0.021 
0.000 0.000 0.006 0.012 0.003 0.183 0.088 0.130 0.411 

0.03 0.054* 0.047* 0.038 0.049* 0.042* 0.045* 0.044* 0.043* 0.041* 
0.000 0.001 0.069 0.000 0.013 0.003 0.004 0.008 0.021 

0.04 0.063* 0.057* 0.059* 0.058* 0.055* 0.053* 0.055* 0.052 0.053* 
0.000 0.003 0.001 0.002 0.008 0.018 0.007 0.026 0.018 

0.05 0.078* 0.064* 0.069* 0.061* 0.057 0.065 0.066* 0.064* 0.054 
0.000 0.021 0.002 0.055 0.154 0.148 0.010 0.021 0.281 

0.06 0.092* 0.087* 0.081* 0.078* 0.076* 0.076* 0.071 0.073 0.075* 
0.000 0.000 0.003 0.008 0.017 .0.017 0.071 0.042 0.023 

0.07 0.105* 0.095* 0.088* 0.087* 0.092* 0.089* 0.088* 0.086* 0.085 
0.000 0.001 0.013 0.018 0.003 0.010 0.012 0.024 0.031 

0.08 0.104* 0.098* 0.099* 0.100* 0.099* 0.096 0.097* 0.094 0.095 
0.003 0.018 0.013 0.010 0.013 0.031 0.024 0.051 0.040 

0.09 0.115* 0.111* 0.110* 0.112* 0.109* 0.107 0.109* 0.108* 0.107 
0.002 0.010 0.014 0.008 0.018 0.030 0.018 0.023 0.030 

0.10 0.127* 0.124* 0.120* 0.121* 0.119* 0.122* 0.121* 0.123* 0.117 
0.002 0.006 0.018 0.013 0.023 0.010 0.013 0.008 0.037 

This table presents actual rejection rates and the associated right-tail probability values for the sign test statistic computed 
on non-normally distributed data which incorporate changes in the data generating process during the event period. The 
Ramberg et al. [1979] algorithm was used to generate data with a skewness coefficient of 0.15 and a kurtosis coefficient of 6.2. 
The true market model coefficient doubles around the time of the event, and the variance of the disturbances jumps by 500% 
during the event period. 

The sign test statistic is calculated for tests at significance levels ranging from 0.01 to 0.10, as shown in the first column. 
Each of the remaining columns report statistics based on various sample sizes (i.e. number of firms). Equation (12) is used to 
compute the rank test statistic and it is assumed to follow a standard normal distribution. 

The first column reports results for a sample of 30 firms, and remaining columns pertain to successively larger sample 
sizes. The top value in each cell is the actual rejection rate for the test statistic computed at a particular significance level. 
The second value is the right-tail probability value (p-value) associated with that rejection rate. The p-value is calculated using 
the conventionally assumed standard normal distribution, and it denotes the probability of observing a value greater than the 
actual rejection rate. A p-value greater than 0.975 or less than 0.025 indicates that the rejection rate is outside a 95% confidence 
interval and hence suggests a bias to size. Rejection rates which fall outside a 95% confidence interval are marked with an 
asterisk to denote significance. 
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Table 5: Normalized Z Statistics: Non-Normal Data with DGP Changes, Using the Boot­
strap Distribution 

A c t u a l R e j e c t i o n R a t e s a n d 
R i g h t - T a i l P r o b a b i l i t y V a l u e s 

f o r T e s t s at C o m m o n S i g n i f i c a n c e L e v e l s 

1000 R e p l i c a t i o n s , V a r i o u s N u m b e r s o f F i r m s 

30 Firms 50 Firms 100 Firms 200 Firms 

Size ZD 
ZSR ZTRAD ZD ZSR ZTRAD ZD 

ZSR ZTRAD ZD 
ZSR gTRAD 

0.01 0.014 
0.102 

0.014 
0.102 

0.009 
0.625 

0.014 
0.102 

0.011 
0.375 

0.012 
0.263 

0.013 
0.170 

0.011 
0.375 

0.015 
0.056 

0.017* 
0.013 

0.015 
0.056 

0.015 
0.056 

0.02 0.024 
0.183 

0.024 
0.183 

0.023 
0.249 

0.028 
0.035 

0.025 
0.129 

0.023 
0.249 

0.024 
0.183 

0.023 
0.249 

0.024 
0.183 

0.023 
0.249 

0.025 
0.129 

0.026 
0.088 

0.03 0.033 
0.289 

0.029 
0.574 

0.028 
0.645 

0.040 
0.032 

0.037 
0.097 

0.038 
0.069 

0.038 
0.069 

0.033 
0.289 

0.033 
0.289 

0.032 
0.355 

0.035 
0.177 

0.033 
0.289 

0.04 0.044 
0.259 

0.038 
0.627 

0.036 
0.741 

0.049 
0.073 

0.045 
0.210 

0.047 
0.129 

0.051 
0.038 

0.046 
0.166 

0.040 
0.500 

0.043 
0.314 

0.044 
0.259 

0.041 
0.436 

0.05 0.055 
0.234 

0.047 
0.668 

0.048 
0.614 

0.057 
0.155 

0.055 
0.234 

0.056 
0.192 

0.061 
0.055 

0.054 
0.281 

0.054 
0.281 

0.054 
0.281 

0.053 
0.332 

0.052 
0.386 

0.06 0.060 
0.500 

0.060 
0.500 

0.056 
0.703 

0.071 
0.071 

0.069 
0.115 

0.065 
0.253 

0.069 
0.115 

0.067 
0.176 

0.067 
0.176 

0.069 
0.115 

0.061 
0.447 

0.067 
0.176 

0.07 0.068 
0.598 

0.065 
0.732 

0.064 
0.771 

0.081 
0.086 

0.081 
0.086 

0.076 
0.229 

0.078 
0.161 

0.082 
0.068 

0.077 
0.193 

0.080 
0.108 

0.073 
0.355 

0.078 
0.161 

0.08 0.077 
0.637 

0.072 
0.824 

0.074 
0.758 

0.089 
0.147 

0.091 
0.100 

0.090 
0.122 

0.096 
0.031 

0.095 
0.040 

0.091 
0.100 

0.089 
0.147 

0.085 
0.280 

0.084 
0.321 

0.09 0.084 
0.746 

0.082 
0.812 

0.084 
0.746 

0.103 
0.075 

0.100 
0.135 

0.095 
0.290 

0.107 
0.030 

0.104 
0.061 

0.106 
0.039 

0.101 
0.112 

0.095 
0.290 

0.091 
0.456 

0.1 0.094 
0.736 

0.090 
0.854 

0.090 
0.854 

0.114 
0.070 

0.109 
0.171 

0.104 
0.337 

0.121* 
0.013 

0.118 
0.029 

0.119* 
0.023 

0.108 
0.200 

0.109 
0.171 

0.097 
0.624 

This table presents actual rejection rates and the associated right-tail probability values for Z statistics based on the 
bootstrap approach. The data are non-normally distributed and incorporate changes in the DGP during the event period. The 
Ramberg et al. [1979] algorithm was used to generate data with a skewness coefficient of 0.15 and a kurtosis coefficient of 6.2. 
The true market model coefficient doubles around the time of the event, and the variance of the disturbances jumps by 500% 
during the event period. 

The Z statistics are calculated for tests at significance levels ranging from 0.01 to 0.10, as shown in the first column. Each 
of the remaining columns reports statistics based on the various Z statistics for various sample sizes (i. t. number of firms). ZD 

is calculated according to Equation (13), ZSR is calculated according to Equation (23), and Z T R A D is calculated according to 
Equation (22). Confidence intervals are constructed using Student t intervals and'1 000 bootstrap samples as explained in the 
text. 

The first three columns report results for Z statistics computed on a sample of 30 firms. The remaining sets of three 
columns pertain to sample sizes of 50, 100, and 200 firms respectively. The top value in each cell is the actual rejection rate for 
a particular Z statistic computed at a particular significance level. The second value is the right-tail probability value (p-value) 
associated with that rejection rate. The p-value is calculated using the test statistic's conventionally assumed distribution, and 
it denotes the probability of observing a value greater than the actual rejection rate. A p-value greater than 0.975 or less than 
0.025 indicates that the rejection rate is outside a 95% confidence interval and hence suggests a bias to size. Rejection rates 
which fall outside a 95% confidence interval are marked with an asterisk to denote significance. 
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Table 6: Power Comparisons: Z Statistics and Normalized Z Statistics 

A c t u a l R e j e c t i o n R a t e s 
for T e s t s a t C o m m o n S i g n i f i c a n c e L e v e l s 

1000 R e p l i c a t i o n s , 50 F i r m s 

Abnormal 
Return 

Size ZSR ZTRAD ZD 
ZSR ZTRAD 

0.009 0.01 1.000 1.000 1.000 0.998 0.999 0.999 
0.02 1.000 1.000 1.000 1.000 0.999 1.000 
0.03 1.000 1.000 1.000 1.000 1.000 1.000 
0.04 1.000 1.000 1.000 1.000 1.000 1.000 
0.05 1.000 1.000 1.000 1.000 1.000 1.000 
0.06 1.000 1.000 1.000 1.000 1.000 1.000 
0.07 1.000 1.000 1.000 1.000 1.000 1.000 
0.08 1.000 1.000 1.000 1.000 1.000 1.000 
0.09 1.000 1.000 1.000 1.000 1.000 1.000 
0.1 1.000 1.000 1.000 1.000 1.000 1.000 

0.007 0.01 0.982 0.987 0.987 0.958 0.969 0.967 
0.02 0.990 0.991 0.990 0.972 0.980 0.988 
0.03 0.996 0.996 0.995 0.984 0.988 0.991 
0.04 0.997 0.998 0.996 0.989 0.993 0.993 
0.05 0.998 0.998 0.998 0.995 0.994 0.994 
0.06 0.998 0.998 0.998 0.997 0.998 0.996 
0.07 0.999 0.999 0.998 0.997 0.998 0.996 
0.08 1.000 0.999 0.998 0.999 0.999 0.996 
0.09 1.000 0.999 0.999 0.999 0.999 0.998 
0.1 1.000 1.000 0.999 0.999 0.999 0.999 

0.005 0.01 0.790 0.832 0.829 0.761 0.781 0.781 
0.02 0.854 0.866 0.849 0.829 0.825 0.851 
0.03 0.903 0.913 0.906 0.870 0.872 0.878 
0.04 0.931 0.929 0.926 0.890 0.907 0.900 
0.05 0.943 0.945 0.946 0.914 0.928 0.929 
0.06 0.951 0.951 0.952 0.942 0.942 0.941 
0.07 0.960 0.960 0.958 0.946 0.947 0.952 
0.08 0.968 0.962 0.964 0.955 0.951 0.957 
0.09 0.969 0.971 0.971 0.956 0.958 0.960 
0.1 0.972 0.974 0.974 0.960 0.964 0.963 

This table presents actual rejection rates for Z statistics based on conventional approaches and for normalized Z statistics 
evaluated using the bootstrap. An abnormal return (shown in the far left column) is added at the time of the event in order 
to facilitate a comparison of power. The data are non-normally distributed and incorporate changes in the D G P during the 
event period. The Ramberg et al. [1979] algorithm was used to generate data with a skewness coefficient of 0.15 and a kurtosis 
coefficient of 6.2. The market model slope coefficient increases by 100% around the time of the event, and the variance of the 
disturbances jumps by 500% during the event period. 

The test statistics are calculated for tests at significance levels ranging from 0.01 to 0.10, as shown in the first column. Each 
of the remaining columns report statistics based on the various statistics. ZD is calculated according to Equation (2) and is 
assumed to follow a standard normal distribution. ZSR is calculated according to Equation (7) and is also assumed to follow a 
standard normal distribution. ZTRAD is calculated according to Equation (8) and is assumed to follow a Student t-distribution 
with 119 degrees of freedom. ZD is calculated according to Equation (13), ZSR is calculated according to Equation (23), and 
ZTRAD j s c a l c u l a t e d according to Equation (22). Bootstrap confidence intervals are constructed using percentile intervals and 
1000 bootstrap samples as explained in the text. The value in each of the cells is the actual rejection rates for a particular Z 
statistic or Z statistic computed at particular significance level. 
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Table 7: Normalized Z Statistics: Using Conventionally Assumed Distributions (without 
use of Bootstrap) 

A c t u a l R e j e c t i o n R a t e s a n d 
R i g h t - T a i l P r o b a b i l i t y V a l u e s 

for T e s t s at C o m m o n S i g n i f i c a n c e L e v e l s 

1000 R e p l i c a t i o n s , V a r i o u s N u m b e r s o f F i r m s 

30 Firms 50 Firms 100 Firms 200 Firms 

Size ZD 

ZSR ZTRAD ZD 

ZSR ZTRAD ZD 

ZSR ZTRAD ZD 

ZSR ZTRAD 
0.01 0.077* 

0.000 
0.078* 
0.000 

0.051* 
0.000 

0.079* 
0.000 

0.079* 
0.000 

0.060* 
0.000 

0.077* 
0.000 

0.079* 
0.000 

0.059* 
0.000 

0.060* 
0.000 

0.059* 
0.000 

0.049* 
0.000 

0.02 0.087* 
0.000 

0.091* 
0.000 

0.059* 
0.000 

0.087* 
0.000 

0.093* 
0.000 

0.062* 
0.000 

0.088* 
0.000 

0.091* 
0.000 

0.062* 
0.000 

0.078* 
0.000 

0.079* 
0.000 

0.057* 
0.000 

0.03 0.091* 
0.000 

0.095* 
0.000 

0.062* 
0.000 

0.092* 
0.000 

0.095* 
0.000 

0.065* 
0.000 

0.093* 
0.000 

0.093* 
0.000 

0.063* 
0.000 

0.086* 
0.000 

0.087* 
0.000 

0.057* 
0.000 

0.04 0.103* 
0.000 

0.098* 
0.000 

0.069* 
0.000 

0.105* 
0.000 

0.097* 
0.000 

0.071* 
0.000 

0.100* 
0.000 

0.098* 
0.000 

0.070* 
0.000 

0.097* 
0.000 

0.088* 
0.000 

0.061* 
0.000 

0.05 0.111* 
0.000 

0.110* 
0.000 

0.078* 
0.000 

0.108* 
0.000 

0.107* 
0.000 

0.079* 
0.000 

0.101* 
0.000 

0.101* 
0.000 

0.075* 
0.000 

0.099* 
0.000 

0.097* 
0.000 

0.064* 
0.021 

0.06 0.129* 
0.000 

0.120* 
0.000 

0.093* 
0.000 

0.125* 
0.000 

0.118* 
0.000 

0.092* 
0.000 

0.122* 
0.000 

0.110* 
0.000 

0.092* 
0.000 

0.102* 
0.000 

0.104* 
0.000 

0.083* 
0.001 

0.07 0.143* 
0.000 

0.141* 
0.000 

0.114* 
0.000 

0.142* 
0.000 

0.138* 
0.000 

0.116* 
0.000 

0.136* 
0.000 

0.129* 
0.000 

0.111* 
0.000 

0.126* 
0.000 

0.119* 
0.000 

0.105* 
0.000 

0.08 0.153* 
0.000 

0.150* 
0.000 

0.135* 
0.000 

0.150* 
0.000 

0.147* 
0.000 

0.134* 
0.000 

0.142* 
0.000 

0.143* 
0.000 

0.135* 
0.000 

0.128* 
0.000 

0.123* 
0.000 

0.126* 
0.000 

0.09 0.159* 
0.000 

0.161* 
0.000 

0.143* 
0.000 

0.157* 
0.000 

0.157* 
0.000 

0.141* 
0.000 

0.153* 
0.000 

0.151* 
0.000 

0.137* 
0.000 

0.136* 
0.000 

0.135* 
0.000 

0.132* 
0.000 

0.1 0.183* 
0.000 

0.181* 
0.000 

0.170* 
0.000 

0.180* 
0.000 

0.176* 
0.000 

0.168* 
0.000 

0.174* 
0.000 

0.168* 
0.000 

0.159* 
0.000 

0.146* 
0.000 

0.147* 
0.000 

0.148* 
0.000 

This table presents actual rejection rates and the associated right-tail probability values for normalized Z statistics com­
puted on non-normally distributed data which incorporate changes in the data generating process during the event period. The 
Ramberg et al. [1979] algorithm was used to generate data with a skewness coefficient of 0.15 and a kurtosis coefficient of 6.2. 
The true market model coefficient doubles around the time of the event, and the variance of the disturbances jumps by 500% 
during the event period. 

The test statistics are calculated for significance levels ranging from 0.01 to 0.10, as shown in the first column. Each of 
the remaining columns report statistics based on the various Z statistics for various sample sizes (i.e. number of firms). ZD 

is calculated according to Equation (2) and is assumed to follow a standard normal distribution. ZSR is calculated according 
to Equation (7) and is also assumed to follow a standard normal distribution. Z T R A D is calculated according to Equation (8) 
and is assumed to follow a Student t-distribution with 119 degrees of freedom. 

The first three columns report results for Z statistics computed on a sample of 30 firms. The remaining sets of three 
columns pertain to sample sizes of 50, 100, and 200 firms respectively. The top value in each cell is the actual rejection rate for 
a particular Z statistic computed at a particular significance level. The second value is the right-tail probability value (p-value) 
associated with that rejection rate. The p-value is calculated using the test statistic's conventionally assumed distribution, and 
it denotes the probability of observing a value greater than the actual rejection rate. A p-value greater than 0.975 or less than 
0.025 indicates that the rejection rate is outside a 95% confidence interval and hence suggests a bias to size. Rejection rates 
which fall outside a 95% confidence interval are marked with an asterisk to denote significance. 
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Table 8: Conventional (Non-Normalized) Z Statistics: Using Bootstrap Distributions 

A c t u a l R e j e c t i o n R a t e s a n d 
R i g h t - T a i l P r o b a b i l i t y V a l u e s 

for T e s t s at C o m m o n S i g n i f i c a n c e L e v e l s 

1000 R e p l i c a t i o n s , V a r i o u s N u m b e r s o f F i r m s 

30 Firms 50 Firms 100 Firms 200 Firms 

Size ZD 
ZSR ZTRAD ZD 

ZSR ZTRAD ZD 
ZSR ZTRAD ZD 

ZSR ZTRAD 

0.01 0.021* 
0.000 

0.021* 
0.000 

0.022* 
0.000 

0.026* 
0.000 

0.029* 
0.000 

0.031* 
0.000 

0.023* 
0.000 

0.021* 
0.000 

0.024* 
0.000 

0.031* 
0.000 

0.028* 
0.000 

0.030* 
0.000 

0.02 0.033* 
0.002 

0.031* 
0.006 

0.033* 
0.002 

0.046* 
0.000 

0.040* 
0.000 

0.046* 
0.000 

0.034* 
0.001 

0.034* 
0.001 

0.034* 
0.001 

0.040* 
0.000 

0.038* 
0.000 

0.038* 
0.000 

0.03 0.046* 
0.002 

0.044* 
0.005 

0.045* 
0.003 

0.060* 
0.000 

0.061* 
0.000 

0.059* 
0.000 

0.048* 
0.000 

0.048* 
0.000 

0.049* 
0.000 

0.047* 
0.001 

0.046* 
0.002 

0.047* 
0.001 

0.04 0.061* 
0.000 

0.052 
0.026 

0.053* 
0.018 

0.072* 
0.000 

0.068* 
0.000 

0.069* 
0.000 

0.066* 
0.000 

0.059* 
0.001 

0.060* 
0.001 

0.062* 
0.000 

0.057* 
0.003 

0.057* 
0.003 

0.05 0.066* 
0.010 

0.064* 
0.021 

0.064* 
0.021 

0.083* 
0.000 

0.081* 
0.000 

0.078* 
• 0.000 

0.076* 
0.000 

0.067* 
0.007 

0.067* 
0.007 

0.068* 
0.005 

0.066* 
0.010 

0.063 
0.030 

0.06 0.077* 
0.012 

0.078* 
0.008 

0.077* 
0.012 

0.093* 
0.000 

0.089* 
0.000 

0.092* 
0.000 

0.082* 
0.002 

0.073 
0.042 

0.080* 
0.004 

0.081* 
0.003 

0.080* 
0.004 

0.079* 
0.006 

0.07 0.087* 
0.018 

0.088* 
0.013 

0.085 
0.032 

0.100* 
0.000 

0.103* 
0.000 

0.104* 
0.000 

0.091* 
0.005 

0.084 
0.041 

0.082 
0.068 

0.090* 
0.007 

0.090* 
0.007 

0.087* 
0.018 

0.08 0.095 
0.040 

0.099* 
0.013 

0.096 
0.031 

0.112* 
0.000 

0.117* 
0.000 

0.118* 
0.000 

0.105* 
0.002 

0.093 
0.065 

0.093 
0.065 

0.100* 
0.010 

0.102* 
0.005 

0.104* 
0.003 

0.09 0.103 
0.075 

0.106 
0.039 

0.102 
0.092 

0.124* 
0.000 

0.130* 
0.000 

0.126* 
0.000 

0.115* 
0.003 

0.105 
0.049 

0.103 
0.075 

0.115* 
0.003 

0.114* 
0.004 

0.109* 
0.018 

0.1 0.112 
0.103 

0.115 
0.057 

0.115 
0.057 

0.138* 
0.000 

0.146* 
0.000 

0.141* 
0.000 

0.123* 
0.008 

0.111 
0.123 

0.116 
0.046 

0.128* 
0.002 

0.121* 
0.013 

0.120* 
0.018 

This table presents actual rejection rates and the associated right-tail probability values for Z statistics computed on 
non-normally distributed data which incorporate changes in the data generating process during the event period. The Ramberg 
et al. [1979] algorithm was used to generate data with a skewness coefficient of 0.15 and a kurtosis coefficient of 6.2. The true 
market model coefficient doubles around the time of the event, and the variance of the disturbances jumps by 500% during the 
event period. 

The test statistics are calculated for significance levels ranging from 0.01 to 0.10, as shown in the first column. Each of 
the remaining columns report statistics based on the various Z statistics for various sample sizes (i.e. number of firms). ZD 

is calculated according to Equation (13), ZSR is calculated according to Equation (23), and Z T R is calculated according to 
Equation (22). Confidence intervals are constructed using Student t intervals and 1000 bootstrap samples as explained in the 
text. 

The first three columns report results for Z statistics computed on a sample of 30 firms. The remaining sets of three 
columns pertain to sample sizes of 50, 100, and 200 firms respectively. The top value in each cell is the actual rejection rate for 
a particular Z statistic computed at a particular significance level. The second value is the right-tail probability value (p-value) 
associated with that rejection rate. The p-value is calculated using the test statistic's conventionally assumed distribution, and 
it denotes the probability of observing a value greater than the actual rejection rate. A p-value greater than 0.975 or less than 
0.025 indicates that the rejection rate is outside a 95% confidence interval and hence suggests a bias to size. Rejection rates 
which fall outside a 95% confidence interval are marked with an asterisk to denote significance. 
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Table 9: Sample of Failed-Bank Acquirers 

Closure Ticker Symbol 
Firm Date Failed Bank, State of Acquirer 

1 08/17/89 First State Bank, Texas F B T 
2 10/06/89 First Bank, Colorado C O L C 
3 11/09/89 City National Bank of Piano, Texas CBSS 
4 12/08/89 Westheimer Memorial Bank, Texas HIB 
5 12/14/89 Canyon Lake Bank, Texas V I C T 
6 01/26/90 Monroe Savings Bank, New York FES 
7 02/01/90 Tyler National Bank, Texas NCB 
8 02/15/90 Gateway National Bank, Arizona HIB 
9 03/22/90 Miami National Bank, Florida C O B A 
10 03/30/90 Everman National Bank of Fort Worth, Texas O N E 
11 04/18/90 The Seamen's Bank for Savings, New York C M B 
12 04/26/90 Central Arizona Bank, Arizona SPC 
13 05/03/90 Richardson National Bank, Texas C M C A 
14 05/04/90 Tucker State Bank of Jacksonville, Florida BBI 
15 06/01/90 The Home National Bank of Milford, Mass. B B N K 
16 06/07/90 Texas National Bank, Texas C H L 
17 07/06/90 Milford Savings Bank, Mass. P E B W 
18 07/13/90 Permanent Savings Bank, New York K E Y 
19 08/10/90 National Bank of Washington, Washington D C RIGS 
20 08/16/90 Capitol Bank and Trust, Oklahoma F F B 
21 08/30/90 American Bank of Commerce, Texas D V L 
22 10/25/90 First National Bank of Jackson, Tennessee F T E N 
23 01/11/91 Community National Bank, C T F N G 
24 02/22/91 The McKinley Bank, Ohio O H B C 
25 03/08/91 Manilabank, California U S T C 
26 03/14/91 Crossroads Bank, Texas V I C T 
27 03/28/91 The Landmark Bank, C T P B C T 
28 04/12/91 Arizona Commerce Bank, Arizona V A L C 
29 05/10/91 Madison National Bank; Washington D C and Virginia SBK 
30 05/22/91 The First National Bank of Toms River, New Jersey F F B 
31 05/31/91 Goldome, New York K E Y 
32 06/07/91 Woburn Five Cents Savings Bank, Mass. F S C B 
33 06/21/91 Beacon Co-operative Bank, Mass. G R O V 
34 06/28/91 First Mutual Bank for Savings, Mass. B K B 
35 07/19/91 Community Guardian Bank, New Jersey ISB 
36 07/19/91 Pontchartrain State Bank, Louisiana F C O M 
37 07/26/91 The Housatonic Bank and Trust Company, C T SSBC 
38 08/09/91 City trust, C T 

and Mechanics and Farmers Savings Bank, C T C M B 
39 08/30/91 Lowell Institution for Savings, Mass. F M L Y 
40 09/13/91 Valley Bank, Vermont V F S C 
41 09/19/91 Southeast Bank, Florida F T U 
42 10/18/91 Central Bank, C T C T B X 
43 10/25/91 First Hanover Bank, North Carolina C C B F 
44 12/13/91 Merchants National Bank, Mass. B N K W 
45 12/20/91 North Ridge Bank, Florida ICBK 
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Table 10: Z Statistics: The Marginal Effect of Higher Event-Period Variance 

A c t u a l R e j e c t i o n R a t e s a n d 
R i g h t - T a i l P r o b a b i l i t y V a l u e s 

for T e s t s a t C o m m o n S i g n i f i c a n c e L e v e l s 

1000 R e p l i c a t i o n s , 50 F i r m s 

Percentage Increase in Variance During the Event Period 

500% 100% 20% 5% 

Size ZD ZSR ZTRAD ZD ZSR ZTRAD Z° ZSR ZTRAD ZD 
ZSR ZTRAD 

0.01 0.110* 
0.000 

0.168* 
0.000 

0.169* 
0.000 

0.041* 
0.000 

0.048* 
0.000 

0.048* 
0.000 

0.016* 
0.000 

0.017* 
0.000 

0.017* 
0.000 

0.012* 
0.017 

0.012* 
0.022 

0.012* 
0.008 

0.02 0.141* 
0.000 

0.198* 
0.000 

0.200* 
0.000 

0.059* 
0.000 

0.067* 
0.000 

0.068* 
0.000 

0.030* 
0.000 

0.030* 
0.000 

0.031* 
0.000 

0.023* 
0.023 

0.023* 
0.016 

0.024* 
0.005 

0.03 0.162* 
0.000 

0.218* 
0.000 

0.221* 
0.000 

0.075* 
0.000 

0.088* 
0.000 

0.088* 
0.000 

0.041* 
0.000 

0.041* 
0.000 

0.043* 
0.000 

0.033 
0.027 

0.033 
0.050 

0.034* 
0.010 

0.04 0.180* 
0.000 

0.233* 
0.000 

0.234* 
0.000 

0.091* 
0.000 

0.102* 
0.000 

0.103* 
0.000 

0.051* 
0.000 

0.053* 
0.000 

0.053* 
0.000 

0.043 
0.077 

0.043 
0.092 

0.044* 
0.012 

0.05 0.195* 
0.000 

0.246* 
0.000 

0.247* 
0.000 

0.105* 
0.000 

0.116* 
0.000 

0.117* 
0.000 

0.062* 
0.000 

0.062* 
0,000 

0.064* 
0.000 

0.053 
0.071 

0.053 
0.099 

0.053 
0.071 

0.06 0.210* 
0.000 

0.256* 
0.000 

0.260* 
0.000 

0.118* 
0.000 

0.130* 
0.000 

0.131* 
0.000 

0.072* 
0.000 

0.073* 
0.000 

0.076* 
0.000 

0.062 
0.177 

0.062 
0.264 

0.064 
0.060 

0.07 0.221* 
0.000 

0.267* 
0.000 

0.270* 
0.000 

0.130* 
0.000 

0.142* 
0.000 

0.146* 
0.000 

0.084* 
0.000 

0.086* 
0.000 

0.086* 
0.000 

0.072 
0.228 

0.071 
0.377 

0.073 
0.128 

0.08 0.231* 
0.000 

0.276* 
0.000 

0.278* 
0.000 

0.143* 
0.000 

0.155* 
0.000 

0.159* 
0.000 

0.093* 
0.000 

0.095* 
0.000 

0.096* 
0.000 

0.083 
0.105 

0.083 
0.169 

0.084 
0.065 

0.09 0.240* 
0.000 

0.284* 
0.000 

0.287* 
0.000 

0.155* 
0.000 

0.167* 
0.000 

0.171* 
0.000 

0.103* 
0.000 

0.104* 
0.000 

0.105* 
0.000 

0.093 
0.182 

0.093 
0.191 

0.093 
0.139 

0.1 0.250* 
0.000 

0.293* 
0.000 

0.294* 
0.000 

0.167* 
0.000 

0.179* 
0.000 

0.182* 
0.000 

0.114* 
0.000 

0.114* 
0.000 

0.117* 
0.000 

0.101 
0.421 

0.100 
0.447 

0.102 
0.242 

This table presents actual rejection rates and the associated right-tail probability values for Z statistics computed on 
normally distributed data which exhibit proportionally higher variance during the event period t = (—10,..., +10). There is 
no excess kurtosis or skewness incorporated in the data, and the true market model coefficient does not change around the time 
of the event. 

The Z statistics are calculated at significance levels ranging from 0.01 to 0.10, as shown in the first column. Each of 
the remaining columns report statistics based on the various Z statistics for various magnitudes of variance changes. ZD is 
calculated according to Equation (2) and is assumed to follow a standard normal distribution. ZSR is calculated according to 
Equation (7) and is also assumed to follow a standard normal distribution. Z T R A D is calculated according to Equation (8) 
and is assumed to follow a Student t-distribution with 119 degrees of freedom. 

The second through fourth columns of the table report results for an increase in event-period variance of 500%. The next 
set of three columns report results for an increase of 100%. Results for a 20% increase appear next, and results for a 5% increase 
appear in the final three columns. The top value in each cell is the actual rejection rate for a particular Z statistic computed 
at a particular significance level. The second value is the right-tail probability value (p-value) associated with that rejection 
rate. The p-value is calculated using the test statistic's conventionally assumed distribution, and it denotes the probability 
of observing a value greater than the actual rejection rate. A p-value greater than 0.975 or less than 0.025 indicates that the 
rejection rate is outside a 95% confidence interval and hence suggests a bias to size. Rejection rates which fall outside a 95% 
confidence interval are marked with an asterisk to denote significance. 
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Table 11: Z Statistics: Different Variance Changes Across Firms 

A c t u a l R e j e c t i o n R a t e s a n d 
R i g h t - T a i l P r o b a b i l i t y V a l u e s 

for T e s t s at C o m m o n S i g n i f i c a n c e L e v e l s 

1000 R e p l i c a t i o n s , 50 F i r m s 

Other Effects Present: 
Skewness, Kurtosis, and Slope Change 

No Other Effects Present 

400% to 500% 
Jump in Variance 

100% to 500% 
Jump in Variance 

400% to 500% 
Jump in Variance 

100% to 500% 
Jump in Variance 

Size ZD 
ZSR ZTRAD ZD 

ZSR ZTRAD ZD 
ZSR ZTRAD ZD 

ZSR ZTRAD 

0.01 0.119* 
0.000 

0.129* 
0.000 

0.183* 
0.000 

0.085* 
0.000 

0.088* 
0.000 

0.142* 
0.000 

0.116* 
0.000 

0.162* 
0.000 

0.170* 
0.000 

0.091* 
0.000 

0.129* 
0.000 

0.127* 
0.000 

0.02 0.154* 
0.000 

0.161* 
0.000 

0.212* 
0.000 

0.117* 
0.000 

0.118* 
0.000 

0.177* 
0.000 

0.145* 
0.000 

0.190* 
0.000 

0.199* 
0.000 

0.119* 
0.000 

0.155* 
0.000 

0.153* 
0.000 

0.03 0.178* 
0.000 

0.181* 
0.000 

0.237* 
0.000 

0.141* 
0.000 

0.136* 
0.000 

0.202* 
0.000 

0.163* 
0.000 

0.218* 
0.000 

0.220* 
0.000 

0.140* 
0.000 

0.176* 
0.000 

0.181* 
0.000 

0.04 0.195* 
0.000 

0.203* 
0.000 

0.256* 
0.000 

0.161* 
0.000 

0.161* 
0.000 

0.213* 
0.000 

0.181* 
0.000 

0.229* 
0.000 

0.238* 
0.000 

0.155* 
0.000 

0.190* 
0.000 

0.196* 
0.000 

0.05 0.209* 
0.000 

0.221* 
0.000 

0.272* 
0.000 

0.179* 
0.000 

0.182* 
0.000 

0.223* 
0.000 

0.197* 
0.000 

0.247* 
0.000 

0.251* 
0.000 

0.167* 
0.000 

0.204* 
0.000 

0.216* 
0.000 

0.06 0.220* 
0.000 

0.238* 
0.000 

0.282* 
0.000 

0.194* 
0.000 

0.200* 
0.000 

0.246* 
0.000 

0.213* 
0.000 

0.261* 
0.000 

0.265* 
0.000 

0.182* 
0.000 

0.214* 
0.000 

0.223* 
0.000 

0.07 0.232* 
0.000 

0.251* 
0.000 

0.292* 
0.000 

0.205* 
0.000 

0.212* 
0.000 

0.263* 
0.000 

0.220* 
0.000 

0.269* 
0.000 

0.277* 
0.000 

0.191* 
0.000 

0.228* 
0.000 

0.233* 
0.000 

0.08 0.247* 
0.000 

0.264* 
0.000 

0.305* 
0.000 

0.214* 
0.000 

0.221* 
0.000 

0.273* 
0.000 

0.232* 
0.000 

0.282* 
0.000 

0.281* 
0.000 

0.204* 
0.000 

0.240* 
0.000 

0.247* 
0.000 

0.09 0.256* 
0.000 

0.270* 
0.000 

0.318* 
0.000 

0.226* 
0.000 

0.230* 
0.000 

0.285* 
0.000 

0.240* 
0.000 

0.293* 
0.000 

0.289* 
0.000 

0.222* 
0.000 

0.248* 
0.000 

0.257* 
0.000 

0.1 0.263* 
0.000 

0.278* 
0.000 

0.327* 
0.000 

0.236* 
0.000 

0.240* 
0.000 

0.292* 
0.000 

0.254* 
0.000 

0.300* 
0.000 

0.300* 
0.000 

0.228* 
0.000 

0.265* 
0.000 

0.268* 
0.000 

This table presents actual rejection rates and the associated right-tail probability values for Z statistics computed on data 
which incorporate changes in the data generating process during the event period. The degree of change is permitted to vary 
across firms. A sample size of 50 firms is employed. 

The first set of three columns reports results for Z statistics computed on data which incorporate an increase in variance 
ranging from 400% to 500%. The next set of three columns is for a variance increase ranging from 100% to 500%. Data for 
both these sets of columns were generated using the Ramberg ti al. [1979] algorithm. Skewness of 0.15 and kurtosis of 6.2 
were incorporated in the data, as was a jump of 100% in the true market model parameter. The final two sets of three columns 
contain results for the Z statistics computed on data which again incorporate variance increases of 400% to 500% and 100% to 
500% respectively, without excess kurtosis, skewness, or a change in the true market model parameter. 

The Z statistics are calculated for tests at significance levels ranging from 0.01 to 0.10, as shown in the first column. Each 
of the remaining columns report statistics based on the various Z statistics for various sample sizes (i.e. number of firms). ZD 

is calculated according to Equation (2) and is assumed to follow a standard normal distribution. ZSR is calculated according 
to Equation (7) and is also assumed to follow a standard normal distribution. Z T R A D is calculated according to Equation (8) 
and is assumed to follow a Student t-distribution with 119 degrees of freedom. 

The top value in each cell is the actual rejection rate for a particular Z statistic computed at a particular significance 
level. The second value is the right-tail probability value (p-value) associated with that rejection rate. The p-value is calculated 
using the test statistic's conventionally assumed distribution, and it denotes the probability of observing a value greater than 
the actual rejection rate. A p-value greater than 0.975 or less than 0.025 indicates that the rejection rate is outside a 95% 
confidence interval and hence suggests a bias to size. Rejection rates which fall outside a 95% confidence interval are marked 
with an asterisk to denote significance. 
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F I G U R E 10: The Bootstrap Approach 

1. Compute the conventional ZD statistic 

2. Normalize the conventional ZD statistic using 
at = standard deviation of the ti 

3. Mean-adjust the ti statistics 

•/* -t* 

t* =u-t 

4. Construct 1000 bootstrap 
samples denoted 
b = (!,•••, 1000) 

Randomly resample 
TV values 

Compute Z;P for each sample 
using <3>: 

^ . 7 = 1 

b= 1 6 = 2 

6. Build the empirical distribution from the 1000 
values of Zf and conduct inference 

Z05 = critical value denned by the 50 t h largest value of the ZP 

Z95 = critical value denned by the 950 t h largest value of the 2P 

.05 

If ZD < Z05 or ZD > Z-95, then reject the two-tailed 
null hypothesis of no abnormal event effect at a 10% level of significance. 
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