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Abstract 

A broad class of error distributions for generalized linear models is provided by 

the class of dispersion models which was introduced by J0rgensen (1987a, 1997a) 

and a detailed study on dispersion models was made by J0rgensen (1997b). In this 

thesis we study multivariate proper dispersion models. Our aim is to do multivariate 

analysis for non-normal data, particularly data from the multivariate gamma distri

bution which is an example of a multivariate proper dispersion model, introduced by 

j0rgensen and Lauritzen (1998). This class provides a multivariate extension of the 

dispersion model density, following the spirit of the multivariate normal density. 

We consider the saddlepoint approximation for small dispersion matrices, which, in 

turn, implies that the multivariate proper dispersion model is approximately multi

variate normal for small dispersion matrices. 

We want to mimic the basic technique of testing in multivariate normal, Hotelling's 

T2. Our version of the T 2 test applies asymptotically, for either small dispersion or 

large samples. 

We also consider estimating the normalizing constant of the bivariate gamma by 

Monte Carlo simulation and we investigate the marginal density by using numerical 

integration. We also investigate the distribution of the T 2-statistic by Monte Carlo 

simulation. 
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Chapter 1 

Introduction 

The multivariate normal distribution has been studied for more extensively than any 

other multivariate distribution. Indeed, its position of preeminence among multi

variate continuous distribution is more marked than that of the normal univariate 

continuous distribution. However, in recent years there have been signs that the 

need for more usable alternatives to the multivariate normal distribution is becoming 

recognized. 

Although the bivariate normal distribution had been studied at the beginning of 

the 19th century, interest in multivariate distributions remained at a low level until 

it was stimulated by the work of Galton in the last quarter of the century. He did 

not, himself, introduce any new form of distribution, but he developed the idea of 

correlation and regression and focussed attention on the need for greater knowledge 

of possible forms of multivariate distribution. Much multivariate theory has become 

practically useful only with the advent of the electronic computer. This stimulus has 

resulted in a rapid development of multivariate theory over the past two decades. 

Investigation of non-normal distributions, or "skew frequency surfaces" (as non

symmetrical forms have been denoted) has generally followed lines suggested by previ-
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cms work on univariate distributions. Early work in this fields followed rather different 

lines, but was not very successful. It is noteworthy that, among non-normal distri

butions, methods of estimation appear to have been developed less fully than one 

might expect. Karl Pearson (1923), whose first investigations appear to have been 

prompted by noting distinctly non-normal properties of some observed joint distri

butions, initially tried to proceed by an analogy with the bivariate normal surface. 

Later, Neyman (1926) also considered methods of construction of joint distributions, 

starting from certain requirements on the regression and scedastic functions. This 

was an extension of the work initiated by Jule (1897), who showed that assuming 

multiple linear regression, the multiple regression function obtained by the method 

of least squares is identical with that of a multinomial distribution. 

The multivariate distributions were derived from other distributions through trans

formations, projections, convolutions, extreme values, mixing, compounding, truncat

ing, and censoring. Then the marginal distributions of various statistics were derived 

from them. The study of multivariate distributions is concerned mainly with distri

butions of the continuous and discrete types. Some distributions arise from multidi

mensional central limit theorems, many serve as models for random experiments, and 

others are of interest primarily as derived distributions. Prominent among limit dis

tributions and those from which others derive is the multinormal distribution. Some 

distributions derived from it are known to be the same for all parent distributions in a 

class containing symmetric multivariate stable distributions. These facts bear on ro

bustness and the validity of normal-theory procedures for use with non-normal data, 

including multivariate analysis, multivariate analysis of variance and the multivariate 

Bartlett test. 

Often multivariate data are scattered more heavily away from the center of location 

than are multinormal data. The introduction of a class of generalized linear models by 
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Nelder and Wedderburn (1972) paved the way to analyze a large variety of non-normal 

data by a simple general technique. Since there was no suitable class of multivariate 

non-normal distributions, this analysis is restricted to univariate data. Analysis of 

univariate non-normal data became simpler and accommodate more non-normal data 

types after the introduction of dispersion models, a broad class of error distributions 

for generalized linear models by J0rgensen (1987b,1997a). 

Having in mind to find a class of multivariate distributions suitable to analyze the 

multivariate non-normal responses in a generalized linear model setup and to extend 

the existing multivariate techniques to multivariate non-normal data, J0rgensen and 

Lauritzen (1998) proposed a multivariate extension to the dispersion models, the so 

called multivariate dispersion models. Since the form of the distribution is similar 

the multivariate normal distribution this distribution can handle a regression setup. 

It would be noteworthy that, unlike the other non-normal multivariate distributions 

proposed earlier, the definition of multivariate dispersion models is geared towards 

good statistical properties rather than requiring specific moments or marginals. 

As a first step towards these goals, we, in this thesis, consider a sub-class of 

multivariate dispersion models, the multivariate proper dispersion models and inves

tigate some properties of the sub-class and propose a generalization of Hotelling's 

T 2-statistic. 

In Chapter 2, we give a brief introduction to the univariate dispersion models of 

J0rgensen (1997b). In Chapter 3, we introduce the multivariate dispersion models 

and multivariate proper dispersion models. Specifically, we consider a multivariate 

gamma distribution which is an example of the multivariate proper dispersion models. 

Then we investigate the asymptotic behaviour of the multivariate proper dispersion 

models. In fact, we will show that multivariate proper dispersion models can be 

approximated by a multivariate normal distribution. 
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In chapter 4, we investigate the behaviour of the bivariate gamma distribution by 

observing the shape of the density plots and estimating the moments and marginal 

densities. In chapter 5, we generalize the Hotelling's T 2-statistic so that it can ac

commodate non-normal data. 
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Chapter 2 

Univariate dispersion models 

In this chapter, we give an introduction to the theory of the univariate dispersion 

models of J0rgensen (1997b), which is the basis of the entire theory that we develop 

in this thesis. First we give the definition of dispersion models, then we look at the 

two types of dispersion models: exponential dispersion models and proper disper

sion models, and finally we discuss the saddlepoint approximations for the dispersion 

models. 

2.1 Definition 

Nelder and Wedderburn (1972) were the first to show, by introducing the class of 

generalized linear models, that a large variety of non-normal data may be analyzed 

by a simple general technique. Generalized linear models were originally developed 

for exponential families of distributions, but the main ideas were extended to a wider 

class of models called dispersion models. Dispersion models were originally introduced 

by J0rgensen (1987b) and the models were studied in detail by J0rgensen (1997b). 

The class of dispersion models covers a comprehensive range of non-normal dis

tributions, including distributions for the following seven basic data types, where S 
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denotes the support of the distribution: 

• Data on the real line, S = 1Z. 

• Positive data, S = 1Z+ = (0,1). 

• Positive data with zeros, S = [0, oo). 

• Proportions, S = (0,1). 

• Directions, S = [0, 2TT). 

• Count data, S = {0,1, 2 , . . . } . 

• Count data with finite support, S = { 0 , . . . , m}. 

The main idea behind the dispersion model is that the notions of location and 

scale may be generalized to position and dispersion, respectively, for a l l the above 

seven data types. 

Definition 2.1 Let Q C C C TZ be intervals with Q open. A function d : C x Q —> 1Z 

is called a unit deviance if it satisfies 

A unit deviance d is called regular if d(y; fx) is twice continuously dijferentiable with 

respect to (y, y) on Q x Q and satisfies 

d (y; y) = d (/j; fj) = 0 Vy, fj, e ft (2.1) 

and 

d {y; n)>0 My ± p. (2-2) 

d2d 
(p,; p) > 0 V> G Q. (2.3) 

dy2 
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The unit variance function V : ft —> 7c+ of a regular unit deviance is defined by 

v w = w ^ y { 2 A ) 

A univariate (regular) dispersion model DM(/J,,O2) with position parameter ii € ft 

and dispersion parameter o2 > 0 is defined by a probability density function of the 

form 

f(y,V,°-2) = a ( y ; a 2 ) e x p j - ^ d ( ? / ; / i ) J , ? / e C (2.5) 

where a > 0 is a suitable function and d is a regular unit deviance. 

The important characteristics of the density are: 

1. The factor a in (2.5) is independent of the position parameter /x. 

2. The densities are often unimodal; in general, the deviance d tends to make the 

density peak near //, and the peak will become higher and sharper the smaller 

the value of o2. 

As an example, consider the gamma distribution with shape parameter A and scale 

parameter 6. The corresponding distribution is given by 

f(y,\0)= ^ ( A ) ;y>0, \ >0,9>0. (2.6) 

The mean and the variance of Y are given by E(Y) = X/9, and Var(Y) = X/62 

respectively. Now we write the above density function (2.6) as a dispersion model. 

Let E(Y) = ix and A = 1/CT2. Then we have, Var(F) = fj?o2 and 9 = l / ( / /a 2 ) , where 

IL and o2 are position and dispersion parameters, respectively. Then the density is 

given by 

f(y,V,°-2) = | ^ y - 1 e - A e x p j - ^ d ( y ; / / ) J 

= a ( y ; a 2 ) e x p | - ^ o ! ( y ; A i ) J , (2.7) 
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Figure 2.1: Some gamma densities. 

where the regular unit deviance d(y; fi) is given by 

(2.8) 

and the corresponding unit variance function is given by V(n) = \x2. Note that in the 

following we denote the a function as c(y; A) when we use A instead of a2 

For any regular unit deviance d(y;n) 

d2d . , d2d . , d2d . ' 
(2.9) 

for details see J0rgensen (1997b, p. 24). 

2.2 Exponential dispersion models 

Exponential dispersion models were originally proposed by Tweedie (1947), and later 

reintroduced by Nelder and Wedderburn (1972) as a class of error distribution for 

generalized linear models. 
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A reproductive exponential dispersion model is defined by the following density for 

a random variable Y, with respect to a suitable measure, 

f(y; 9, A) = c(y; A) exp[A{0y - K(0)}],y e 71. (2.10) 

An additive exponential dispersion model for a random variable Z is defined by the 

probability density function of the following form, with respect to a suitable measure, 

f*{z;9,\) = c*(z;\)exrj{9z-\K(9)},zen. (2.11) 

The two types are connected by the duality transformation Z = XY, so in principle, 

any exponential dispersion model has both an additive and a reproductive forms. The 

parameter 9 is called the canonical parameter and A is called the index parameter. The 

maximum possible domain for 9, denoted 0 C 71 is called the canonical parameter 

domain. The domain for A, called the index set, denoted by A, is a subset of 7Z+. 

The function K is called the cumulant function. 

The reproductive form (2.10) is denoted by Y ~ ED(n,o2), where // = T{9) — 

K'(9) is the mean and o2 = A - 1 is the dispersion parameter. The variance of Y is 

o2V(ii) = o2r'{T~1(fj,)}, where V is the variance function. 

The additive form (2.11) is denoted by Z ~ ED*(9,X), and the mean and the 

variance of Z are 

E(Z) = C = XT{9) and Var(Z) = XV((/X) = XV(LI). (2.12) 

We define the unit deviance for the above exponential dispersion models (see J0rgensen 

(1997b) for details) as follows, 

Then the density (2.10) can be rewritten in the form (2.5) in terms of d of (2.13), and 

10 
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the a function is given by 

a"2 sup{y6 - K(6)} 

This proves that the reproductive model (2.10) is indeed a dispersion model (2.5). 

However, the additive model (2.11) is not, in general, of the form (2.5). 

Both types of exponential dispersion models satisfy a convolution property ( see 

J0rgensen (1997b) for details) given as follows. Let Y\,... ,Yn be independent and 

Yi ~ ED(p,o2/wi) with weights W{. Then 

1 n { a 2 \ 
— ^WiY-EDlLi, — ) (2.14) 
w+ t i \ W + J 

where w+ = X)™ Wi- • 

If Z i , . . . , Zn are independent and Zi ~ ED*(6, Xi), then 

Z+ = '£iZi~ED*(d,\1 + --- + \n). (2.15) 
I 

Furthermore, we have A = TZ+ if and only if (2.11) is infinitely divisible (J0rgensen, 

1997b). Note that the gamma distribution (2.6) can be written as 

fir, A, 0) = e x p [ A { ( - % - ( - log(-0))}], (2.16) 

which is of the form (2.10). Hence the gamma distribution is a reproductive expo

nential dispersion model. 

One of the shortcomings of the exponential dispersion models is that there are 

no adequate exponential dispersion models available for data with bounded support, 

such as angles or proportions. 

2.3 Proper dispersion models 

In this section, we discuss another class of dispersion models, proper dispersion models, 

introduced by J0rgensen (1997a). The introduction of proper dispersion models pave 
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the way to accommodate distributions suitable for angles and proportions, namely 

the von Mises and simplex distributions, respectively. 

Def ini t ion 2.2 If d is a regular unit deviance with unit variance function V, a reg

ular proper dispersion model, denoted by PD(LI,O2), is defined by 

f (y; //, A) = c(X)V-Hy) exp ^~d(y; //) j , y G O. (2.17) 

where A = l/o2. That is, the term a in (2.5) is factorized as c(\)V~^(y). 

A crucial property of this model is that the integral 

cJX) = jn

V~Hy)^^-\d{y-^dy (2.18) 

does not depend on LI. 

Since the term a in the gamma density (2.7) factorizes as c(X)V~^(y) it is a 

proper dispersion model. Exactly three exponential dispersion models are also proper 

dispersion models, namely the normal, gamma and inverse Gaussian families. Other 

examples of proper dispersion models are the von Mises distribution and the simplex 

distribution of Barndorff-Nielsen and J0rgensen (1991). The von Mises distribution, 

for example, is given by 

f ^ ^ =

 2 J o ( a - 2 ) 6 X P [" 2 ^ 2 { 1 ~ C ° S ( y " ' 

for 0 < y < 2TV, where position parameter LI G [0,27r), dispersion parameter o2 

1/A > 0 and I0 denotes the modified Bessel function given by 

(2.19) 

/•2TT 
(A) = / exp (X cos y)dy. 

Jo 

2.4 Saddlepoint approximat ion 

In this section, we briefly discuss three methods of approximations that give an ap

proximation to a(y;o2). 

12 



2.4.1 Barndorff-Nielsen's p*-formula 

Barndorff-Nielsen's p*-formula provides an approximation to the conditional distri

bution of the maximum likelihood estimator for a given statistical model, given an 

ancillary statistic. Here we apply the formula in the case of a single observation from 

a proper dispersion model (2.17) with A known, in which case an ancillary statistic is 

degenerate, and the formula provides an approximation to the marginal distribution 

of the maximum likelihood estimator. 

Since the maximum likelihood estimate of fj, for A fixed is y, Barndorff-Nielsen's 

formula hence provides an approximation to the marginal distribution of Y. The 

approximation is defined by 

where f0 is the renormalized saddlepoint approximation corresponding to unit de

viance d , which we will discuss in the next section. 

Now let us define the multivariate version (Barndorff-Nielsen and Cox, 1994, 

p. 172) of the p*-formula. 

Definition 2.3 For a given ancillary statistic a, the log-likelihood can be considered 

as a function of ii and data. Let there be a one-to-one correspondence between the 

data y and (/2, a). Then we can write the log-likelihood £ as £ (/z; p., a) and the normed 

form £ as 

f{v\P, A ) ~ fo(y,fi,X), (2.20) 

£ (p; %a)=i (fi; ft, a) - £ ( £ ; a). (2.21) 

The p*-formula (or saddlepoint approximation) is defined by 

p* (£ ;M|a) = ( 2 7 r ) - p / 2 | j | V V (2.22) 

where, \j\ is the determinant of the observed information matrix for it evaluated at 

11 = IL. 
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This formula (renormalized) determines a probability density, with respect to Lebesgue 

measure, if the range space of /z is an open subset of W. Note that we deal with con

tinuous distribution. The question of Lebesgue measure will not arise in our problem. 

In fact, formula (2.22) is called the pt-formula by Barndorff-Nielsen and Cox (1994). 

As compared to , the p*-formula which is originally defined as c|j |1/2e^, gives at 

least one degree higher accuracy but at the cost of having to calculate the normalizing 

constant c. So it is feasible to use pt-formula and we still call this formula the p*-

formula. We use the formula (2.22) in the Section 3.3.1 to develop an asymptotic 

distribution for multivariate proper dispersion models.. 

2.4.2 Saddlepoint and Laplace approximations 

In this section, we briefly discuss three methods of approximations that give an ap

proximation to a(y;o2). We now briefly discuss the saddlepoint approximation for 

dispersion models; a detailed discussion can be found in J0rgensen (1997b) . The sad

dlepoint approximation is important for the asymptotic theory of generalized linear 

models. 

The saddlepoint approximation for a dispersion model with regular unit deviance 

d is defined for y e ft by 

/ ( y ; / x , a 2 ) - { 2 7 r a V ( | / ) } - 1 / 2 e x p | - ^ d ( y ; / x ) } as o2 -)• 0, (2.23) 

meaning that the ratio of the two sides goes to 1 as o2 —>• 0. The saddlepoint 

approximation is exact in a few very special cases, such as the normal and simplex 

distributions. 

The saddlepoint approximation may be interpreted as being half way to a normal 

approximation for the density. Thus, if we replace V(y) by V(ii) in (2.23) and intro

duce a quadratic approximation to the unit deviance in the exponent of the density, 
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we get the normal approximation. 

Note that the saddlepoint approximation on the right hand side of (2.23), while 

positive, is not in general a density function on fl. However, it may be rescaled to 

become a density function. 

The corresponding renormalized saddlepoint approximation is the density function 

defined for y G f2 by 

fo (y,^,a2) = a0 (^,<7 2 ) y-i/2(y)exp{-̂ Ld(y;/x)} , (2.24) 

where a0 (fj,, a2) is a normalizing constant defined by 

j ^ [ v ) ^ { - ^ i M ) i y . (2.25) 

Note that, in the case of proper dispersion models, ao in (2.25) does not depend on 

We now present the important Laplace approximation, as described in, for exam

ple, Barndorff-Nielsen and Cox (1989, p.59). 

Proposition 2.1 (Laplace approximation) Define 

/ ( A ) = f b(y)ext^dy, 

where Cl is an open interval. Suppose that b is positive, and continuous at y = JJL, that 

t is twice differentiable, has global maximum for y = \i G ft and that 

K(JJ) = -t"(p) > 0. 

Then 

/ ( A ) ~ \ j T j ^ j A ^ y ^ a s A -+ °°- (2-26) 
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The ordinary and renormalized saddlepoint approximations agree asymptotically 

for o2 small; this can be shown by using the Laplace approximation. We now present 

this important saddlepoint approximation result, for a proof see J0rgensen (1997b, p. 

28). 

Propos i t ion 2.2 Let d be a given regular unit deviance defined on C x ft and define 

aQ (LI,O2) by (2.25). Then, as a2 ->• 0, 

The essence of the saddlepoint approximation is the approximation of the function 

a(y;o2). Specifically, the saddlepoint approximation is equivalent to 

Def ini t ion 2.4 The saddlepoint approximation is said to be uniform on compacts 

if the convergence in (2.27) is uniform in y on compact subsets of ft. 

Propos i t ion 2.3 In the case of a proper dispersion model, the saddlepoint approx

imation is uniform on compacts, and the renormalized saddlepoint approximation is 

exact. 

The proof of this proposition contains the following arguments: For proper dispersion 

model we have a 0 (LI, o2) = a(o2) making the renormalized saddlepoint approximation 

exact. The continuity of the unit variance function V implies that the saddlepoint 

approximation is uniform on compacts. For details, see J0rgensen (1997b). 

oa(y;o2) -> {2-nV(y)}* as o2 0. (2.27) 
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Chapter 3 

Multivariate dispersion models 

In this chapter, we discuss multivariate dispersion models. In the first section, we 

discuss the definition of multivariate dispersion models. Basically, in the first section, 

we discuss the multivariate dispersion models defined by J0rgensen and Lauritzen 

(1998) which opened a new field in statistics that has a lot of problems to investigate. 

It is the basis for this whole thesis. In subsequent sections we develop and discuss some 

statistical properties of the multivariate proper dispersion models and in particular 

the multivariate gamma distribution. Note that the order in which we discuss the 

multivariate dispersion models is related to its univariate counterpart in the preceding 

section. 

3.1 Def in i t ion 

A class of multivariate dispersion models suitable as error distributions for generalized 

linear models with multivariate non-normal responses was introduced by J0rgensen 

and Lauritzen (1998). The main concern, in their paper, is with suitable distributions 

for generalized linear models with a multivariate response vector. The definition of 

multivariate dispersion models is geared towards good statistical properties similar to 
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that are possessed by multivariate normal distribution, rather than requiring specific 

moments or marginals. 

Let the sample space be an open subset of W. A multivariate dispersion model 

is defined by the following probability density function on W\ 

where LI £ Q (an open region in 7ZP), £ is a symmetric positive-definite p x p matrix 

and t (y; LI) is suitably defined vector of deviance residuals satisfying t (LI; LI) = 0 for 

LI € Q. The parameter LI, called the position vector, and S , called the dispersion 

matrix, may be interpreted as analogies of respectively the mean vector and variance-

covariance matrix of the multivariate normal distribution. 

As an example, J0rgensen and Lauritzen (1998) defined the multivariate Laplace 

distribution by the following density with respect to Lebesgue measure on IV: 

and ± = sgn(?/j — Lij) denotes the sign of i/j — Lij for each j . Note that when the 

dispersion matrix £ is diagonal, the components of Y follow independent univariate 

Laplace distributions. 

For a detailed discussion on generalization of the definition (3.1) and geomet

ric construction of multivariate dispersion models refer to J0rgensen and Lauritzen 

(3.1) 

/ (y ; LI, S) = o(S) exp j ~tT (y - LI) S" 1 * (y - LI) } , 

where a(S) is a normalizing constant, t is defined by 

(3.2) 

(1998). 
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3.2 Mul t ivar ia te proper dispersion models 

Following the spirit of the univariate proper dispersion models J0rgensen and Lau-

ritzen (1998) called (3.1) a multivariate proper dispersion models if a(y; S) in (3.1) 

factorizes as a(£)6(y) for suitable functions a and b. That is, we define the multi

variate proper dispersion models as follows 

where V(fJt) = d i a g - f V ^ ) , . . . , V(/xp)}. The distribution (3.3) is denoted by PDp(fi, E). 

In the following we often use A = S _ 1 instead of 

As an example, consider the von Mises distribution given by (2.19). Define the 

deviance residual by 

where the sign ± denotes the sign of sin(y — fj,). Since r(y; fj,) is a pivot, a function of 

Y and n whose distribution under p, does not depend on the value of p, the standard 

construction proposed by J0rgensen and Lauritzen (1998) leads to a multivariate von 

Mises distribution of the form 

on [0, 27r) p, where t(y; fx) is the vector of deviance residuals. This is clearly a multi

variate proper dispersion model. 

j0rgensen and Lauritzen (1998) discussed a standard construction that takes al

most any univariate proper dispersion model and gives a multivariate proper disper

sion model as a result. They noted, however, that this standard construction does 

not work for the Inverse Gaussian distribution which is a univariate proper dispersion 

model. 

/(y; pi- £ ) = a p ( E ) | V ( / i ) | - i exp {-^ T(y; Ai)E _ 1*(y; » ) } , (3.3) 

/ ( Y ; M , s) = a(S) exp [-^0T(y;/*)£_1*(y;/*)} 
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3.2.1 Multivariate gamma distribution 

In this section, we construct the multivariate gamma distribution which was described 

by J0rgensen and Lauritzen (1998). Consider the univariate gamma density (2.7) 

f(v, H, A) = ci (X)y 1 exp ( - ^d(y; LL) \ , y > 0 (3.4) 

where the regular unit deviance d is given by (2.8), the unit variance function V(LI) 

LL2 and 

C l (A) = A e 

r ( A ) " 
Note that the geometric measure is v(dy) = V~1^2(y)dy = y~ldy, where the geometric 

measure is defined as follows, see J0rgensen and Lauritzen (1998) for more details. 

Suppose G\(y) = {gJ\(y)} is a matrix with entries 

1 d2 

9 xiv) 
2 duj/ifc 

tr{AT(y;/x)} 
fj-=y 

then the geometric measure is defined by 

^ A ( % ) = | G A ( y ) | 1 / 2 ^ . 

The deviance residual is 

r(y; LL) = ±yJd(y,Li) = ± , / 2 { ^ - log V- - 1}, 
y A* A4 

where ± denotes the sign of (y — LL). Clearly r(Y; LL) is a pivot. For more details 

about pivot refer to J0rgensen (1997b). Let 

*(y; At) = {r{yi, L i i ) , r ( y p ; LIP)}T 

denote the vector of residuals for a p-vector of data. Then the yoke 

r ( F i ; M l ) 

T(Y-Li) = t(Y-Lx)tT(Y-Li) = \ 

r { Y p ; L i p ) 
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is also a pivot with respect to the product measure 

u(dyu.. .,dyp) v(dyi) ® • • • <g) v(dyp) 

p n{rt}- (3.6) 

A multivariate version of the univariate gamma therefore appears as 

/ (y ; ti, £ ) = ap(Y,){yi... yPYl exp [ - ^ { E ^ y ; » ) } (3.7) 

We denote this model Gap(ii, £). 

The new model (3.7) is clearly a multivariate proper dispersion model and in the 

case of A being diagonal, it has gamma marginals distributed independently. So 

we call this model a multivariate gamma distribution. The main problem in this 

multivariate model is determining the normalizing constant ap(A). This normalizer 

can be estimated by numerical integration or by Monte Carlo simulation. We defer 

the discussion of this problem until Chapter 4. 

This multivariate gamma distribution seems to be new and different from other 

multivariate gamma distributions proposed in the literature cf. Krishnaiah (1985). 

In particular, its marginals are not gamma except.when A is diagonal. Several 

procedures exist for constructing a multivariate gamma distribution given that the 

marginal distributions are gamma. For example Johnson and Kotz (1972, p. 216) 

proceeds as follows: Suppose that X0,Xi,... ,Xm are independent random vari

ables and that Xj has a standard gamma distribution. The joint distribution of 

Yj = X0 + Xj (j = 1,2,... ,m) is called a multivariate gamma distribution and the 

marginal of Yj is a standard gamma distribution. 
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Krishnamoorthy and Parthasarathy (1951) denned a multivariate gamma as fol-

identically as a multivariate normal with mean vector 0 and covariance matrix £ . 

Also, let Zi — \ Y!j=\ Xfj for i = 1, 2 , . . . , p. Then the joint distribution of (Zi,..., Zp) 

is a central multivariate gamma distribution with n/2 as shape parameter and £ as 

the covariance parameter. 

The main application of the proposed multivariate gamma distributions has so 

far been in the study of reliability. Since the forms of the densities are quite com

plicated, it is difficult to accommodate a multivariate regression set up. The form 

of multivariate gamma model, in general multivariate proper dispersion model, pro

posed by J0rgensen and Lauritzen (1998) is very similar to that of a multivariate 

normal model. This will enable us to accommodate a multivariate regression setup. 

The problems related to the inference on the position vector is very much similar to 

that of a multivariate normal model. 

We now introduce some properties of the multivariate gamma distribution. 

Theorem 3.1 The Multivariate gamma model is closed with respect to scale trans

formations. 

Proof: Let Y ~ Gap(n, £ ) and C be a diagonal matrix with elements c i , . . . , cp, 

Ci 7̂  0 Vi . Consider the transformation X = CY. The Jacobian matrix is given by 

Hence the density is given by 

lows: Let X j = (Xij,..., XPj), (j = 1, 2 , . . . , n) be distributed independently and 

0(x;/x,E) I J I - V C C - ^ J M . S ) 

C\-lap{Y.) 
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= a. 

Now let us consider the deviance 

log 

(3.9) 

Hence, it follows from (3.9) that t(C *x; LI) = t ( x ; C ^ ) . Hence we may write (3.8) 

as 

Therefore, we have X ~ Ga p (C/x, £ ) . Hence the theorem. • 

3.2.2 Max imum likelihood estimate of the position vector LI 

One of the main advantages of the multivariate dispersion model defined by J0rgensen 

and Lauritzen (1998), as in the univariate dispersion models defined by J0rgensen 

(1997b), is that the normalizer a p (S) does not involve the position vector LL and 

therefore it allows us to make inferences about LL without knowing the exact formula 

From now on, in this chapter, we use quite a number of techniques for matrix 

derivatives. We give an overview of these formulas in Appendix A.4- For more details 

cf. Dwyer (1962). 

Theorem 3.2 Let Y i , . . . , Y n be n random vectors, in W, from a multivariate 

proper dispersion model PDp(LI,TI). Then, for arbitrary S , the score function for 

for a p (S) . 
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Lij based on the full sample is 

<>ft HiS h r(Yif, ft) J 

where Xjk = (A)jfc and d'(y; LI) denotes the derivative of d with respect to LL. 

Proof . The log-likelihood function of LL is given by 

n 1 n 

£ (LL) = n log ap(A) + TJ log b(Yi) - - J ] t T (y i ; LI) At (y,; LL) . (3.11) 
i = l Z i = l 

Differentiating (3.11) with respect to LL gives 

0*M = i p T (YjjAx) A t (Y i ;/x) 

1 " P fat T (Y < ; / i)At(Y i ; / i ) ] 9{t (Y i ; / / ) } m 

2 S i l l 9 * ( Y i ; / i ) J m 9M 

= - E E { ^ ( Y » ; M ) L a { t ( ^ ) } m 

i = l m = l ^ 

Z j = l m = l 

where em is a p x 1 vector with 1 at the mth position and zero elsewhere and we define 

D ' ( Y ; ^ ) = d i a g { ! ^ , . . . , ^ 4 
[r^Y^fn) r(Yp;Lip) 

Therefore, from (3.12) it follows that 

^ . 2 ^ 

Matrix multiplication of diagonal matrix D' with A gives 

A . d'{Yi:j-LLj) 
3 k r(Yij\ Uj) 

(3.13) 

^ = ~ \ t D ' (Y , ; LL)M (Yi- LI) . (3.14) 
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as the (j, k)th element. Now the multiplication of the resulting matrix from the above 

with the vector t(Yjj /x) gives a vector with 

as jth element. Now (3.10) follows immediately from (3.14). • 

Lemma 3.1 For a multivariate gamma model, for arbitrary X, the score function 

for Hj based on a full sample given by 

d^=P4>Mk)r(Y^] (3-lB) 

Proof . For a multivariate gamma model the D'(yjj ii) in (3.12) can be written as 

D ' ( Y i ; / x ) - - 2 A ( Y i , M ) V - 1 ( M ) 

where 

and 

A ( Y , / * ) = diag f Y l ~ ^ Yp~^p 

V(/z ) = diagj / i 2 , . . . , / / 2 ,} 

Now by using the fact that d(y; p) = 2(^ — log ̂  — 1) and by using Theorem 3.2, 

it is easy to show that (3.15) holds. • 

Note that, if we make a small-dispersion approximation to d' at Y = /j,, we have 

(J0rgensen, 1997 p. 25), 

d\Y-y) « 2r(Y^)V-l/\p). (3.16) 

Thus, 

D ' (Y; fi) « 2 V - 1 / 2 (/x). (3.17) 

We will use the approximations (3.16) and (3.17) frequently in the next section. 
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There is no closed form solution to M ^ = 0 except for the case where we have a single 

observation vector. But this can be solved by numerical techniques; for example, we 

may use optimization technique such as quasi-Newton to find numerical values. 

L e m m a 3.2 Let Y be a random vector, in W, from a multivariate proper dispersion 

model PDp(ix, £ ) . Then, for arbitrary S , the maximum likelihood estimator of pi is 

y-

Proof. We prove this by the following arguments. The log-likelihood function of fx 

is given by 

Let t = t(y;pb). Since £ is positive-definite so is S _ 1 = A . Hence tTAt > 0 and 

clearly we have t(y; y) = 0. Now if y ^ pi we have t(y; ii) ^ 0 and hence tTAt > 0 

again by A being positive-definitive. Hence, tTAt is minimum for ii = y. Therefore 

it follows from (3.18) that the maximum likelihood estimator of is y. • 

We now give the second derivative of the log likelihood (3.18) with respect to fx, 

which will be used in the next section 

3.3 Saddlepoint approximations 

We now introduce the saddlepoint approximations for the multivariate proper disper

sion model. The term 'saddlepoint approximation' was used by J0rgensen (1997b) in 

(3.18) 

dH{Ll) 
dpidiiT 

1 \dB'(y-Li) 
2 [ diiT 

1 [f lD ' (y ; f i ) 
2 [ dvT 
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univariate dispersion models and we keep this term for the multivariate cases also. 

The saddlepoint approximation in multivariate dispersion models, as in the univariate 

case, fortuitously avoids approximation of the term in the exponent. This is useful 

because the position vector LL enters the density only via the exponent, so that the 

saddlepoint approximations preserves the statistical properties regarding the inference 

on LL. 

In the following sections we investigate the limiting behaviour of the multivari

ate proper dispersion model when | | £ | | —> 0, that is, | | A | | —>• oo where || • || is the 

Euclidean norm of the matrix. 

3.3.1 Barndorff-Nielsen's p*-formula 

In this section, we develop a saddlepoint approximation for multivariate proper dis

persion model by using the p*-formula (2.22): 

Theorem 3.3 Let the multivariate proper dispersion model be given by 

f (y; LI, £ ) = a ( S ) | V ( y ) | - 1 / 2 exp | - ± t T (y; LL) E"1* (y; //)} . (3.20) 

Then the saddlepoint approximation for the multivariate proper dispersion model is 

given by 

/(y;/x,E) ~ (27r)-"|EH|V(y)|^exp{-^T(y;/x)E-1t(y;/x)}, 

yenp
 (3.21) 

Proof. Let Y ~ PDP(LL, E). For one observation, we have by Lemma 3.2 that the 

maximum likelihood estimator of fx is p, = y. Note that for a single observation the 

ancillary statistic is degenerate. Using (3.17) and (3.19), the observation matrix of LL 
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at y is given by 

d2£{fi) 
3 = - dfxdiJ,1 

= V - 1 / 2 (y) S ^ V " 1 / 2 (y) . (3.22) 

Therefore, by using the p*-formula (2.22) the saddlepoint approximation for the mul

tivariate proper dispersion model is given by 

/ ( y ; / * , E ) ~ ( 2 7 r ) - " | V ^ ( y ) S V ^ ( y ) | ^ e x p { - ^ T ( y ; z x ) S - 1 t ( y ; / x ) } 

= (27r)-f | E | - i | V (y) | " i exp { - i * T (y; ,x) E " 1 * (y; /x) j , (3.23) 

Hence the result. • 

We show below, by a Laplace approximation that the above approximation holds 

for ||5]|| —¥ 0. That is, the saddlepoint approximation is equivalent to 

| £ | 1 / 2 a p ( y ; s ) ~> ( 2 T ) " § | V ( y ) | " 2 as | | E | | -+ 0 

or, equivalently, in multivariate proper dispersion models 

| £ | 1 / 2 a p ( E ) -> (27r)^ as | | E | | ->• 0 

and this approximation is clearly uniform on compacts. 

3.3.2 The Laplace method 

The Laplace method provides a proof of the saddlepoint approximation. The Laplace 

method for multidimensional case is direct generalization of the corresponding uni

variate discussion in (2.1). The key argument in the univariate case was to produce 

in the integrand a factor close to a normal density of small variance. Essentially the 

same argument applies in p dimensions. 
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We now present the important Laplace approximation, as described in, e.g., 

Barndorff-Nielsen and Cox (1989, p.169). Before we give the Laplace approxima

tion, note that for any matrix A , we can write A = A A 0 where Ao is a fixed constant 

matrix and A is a constant. 

P ropos i t ion 3.1 (Laplace approximation) Define 

where the functions r(y) and q(y) are defined over the region Q of integration, Q C 

W. Suppose that r(y) has a unique minimum in the interior o / D at y = LL, then 

where r" is the second derivative of r(y) evaluated at y = LI and | r"(/i)| > 0. 

Theorem 3.4 Let the multivariate proper dispersion model be given by 

7(A) 
e - A r ( A X ) g ( A A ) ( 2 7 r ) P / 2 

| r " ( / x ) | 1 / 2 

, as A —> oo, (3.24) 

/ (y ; LL, £) = a (E) | V ( y ) | - * exp | - ^ T (y; LL) YrH (y; A*)} , y G CP 

where 

a (E) - l 

Jn 

Then as | | £ | | —>• 0, 

a (E) ~ ( 2 7 r ) - p / 2 | E | - 1 / 2 . (3.25) 

Proof. Define 

r ( y ) = ^ T ( y ; / * ) s - 1 

* (y; M) • 

and 
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where d! is the differentiation of d with respect to y. Differentiating r(y) twice with 

respect to y gives, 

= l A ' ( y ^ ) S - 4 ( y ; / . ) 
oy 2 

= ^ ^ ^ { s - ^ C y i ^ ^ I p J + U X y j ^ E ^ A ' C y ; ^ ) . (3.26) 

Note that by using (3.16), we have A'(/it; n) = 2 V - 1 / 2 ( ^ t ) . We have shown in Lemma 

3.2 that r(y) has unique minimum at y = /x. At y = /z the first term on the right-

hand side of (3.26) vanishes and we have 

g & = v - v ( l . ) S - . v - / ' W . 
J y=fj. 

Now by applying this to (3.24), with the fact that r{y) = 0, we obtain 

a ( E ) - 1 V ~ ^ ) ( 2 f =(2 , )* |S |*. 

Now by taking the inverse of the above, we get (3.25). Hence the theorem. • 

Suppose we think of the approximation obtained by using the p*-formula as a sad

dlepoint approximation, then the approximation obtained by Laplace's method can 

be regarded as renormalized saddlepoint approximation. Therefore the ordinary and 

renormalized saddlepoint approximation agree asymptotically in the case of multivari

ate proper dispersion model. That is, in the case of a multivariate proper dispersion 

model the renormalized saddlepoint approximation is exact. In fact, this is one of the 

main results for the univariate proper dispersion models. 
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3.4 Mul t ivar ia te normal approximat ion 

We now consider a multivariate normal approximation to the multivariate proper 

dispersion model. This will pave the way to mimic some basic multivariate techniques 

in the multivariate proper dispersion model with small dispersion matrix. 

Theorem 3 . 5 Let the multivariate proper dispersion model be given by 

/ (y ; LL; £ ) - a (E ) |V(y ) | -* exp { - ^ T ( y ; ^ E " 1 ^ ; /*)} • (3-27) 

Then 

Z 4 (0,I P) as | | £ | | 0, (3.28) 

where Z is a linear transformation given by 

Z = s - ^ V - 1 / 2 (/x) ( Y - LL) . (3.29) 

Proof. For small dispersion y gets closer to LI. SO we prove this by introducing a 

second-order Taylor series approximation to the term in the exponent of (3.27) at y = 

LI and saddlepoint approximation (uniformly convergent saddlepoint approximation) 

to the normalizing constant. Let 

<fe (y;Li) = tT ( y ; A t ) E - 4 ( y ; A t ) 

dd-z (y; LI) I 
dy 

d2d-z (y; LI) 

= 0 

d y d y T 

= 2 V " 1 / 2 (LI) Y,~lV~ll2 (LL) . (3.30) 
y=A« 

Therefore the second-order Taylor series approximation to cfe (y;./z) at y = LL is given 

by 

du (y; y) « (y - n)T V " 1 / 2 (») s ^ V " 1 / 2 (LL) (y - /x) . (3.31) 
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The Jacobian matrix is given by 

j{„) = -^ = *-^v-^{»). 

Hence the density of Z is 

/ ( z ; / i , E ) = | J ( / i )| - 1 /(v 1 / 2 ( f i )S 1 / 2 z + M;/i,s) 

« | S - 2 V - 5 (/x) ^ ^ ( S ^ V {V^(//)S5z + /z} | - 5 exp {z Tz}(3.32) 

= | S - 1 / 2 V - 1 / 2 ( / i)|- 1(27r ) - p / 2 | S | - 1 / 2 | V ( / x ) r 1 / 2 e x p { z T z } (3.33) 

- (27r ) - p / 2 e x p { z T z } . (3.34) 

where the term in the exponent of (3.32) was obtained by using the second-order 

Taylor approximation and the normalizing constant in (3.34) was obtained by the 

saddlepoint approximation for small-dispersion. Hence the results follows. • 

Note that we may write (3.28) as follows 

for small dispersion matrix. 

We note that 

d2dy (y; / i ) = , 9{2A' (y ; /x )S -H (y ;^ )} 
dydfxT dfiT 

d2d-z (y; p) 

dydLiT 
2 V - 1 / 2 (y) E ^ V " 1 ' 2 (y). (3.35) 

Hence we have, generalizing (2.13), 

d2dv , , d2d^ , s d2dv 

dydyT (y; y ) d/j,dnT (y; y ) dydnr (y'y)' 
We now consider a normal approximation to another transformation of Y which is 

approximately equal to (3.29). 

32 



Theorem 3.6 The normal approximation to the multivariate proper dispersion model 

(3.27) with the transformation 

Z - Y,-l'H (Y; LL) (3.36) 

is given by 

zAj\f(0,Ip) as | | £ | | -»• 0. (3.37) 

Proof. For the transformation (3.36), the Jacobian matrix is given by 

J(Y, i . ) = ^ r = i E - ^ A ' ( Y ; A . ) . 

Now by using a second-order Taylor series approximation for small dispersion at 

H = y, we get A ' (Y; it) « 2 V ~ 1 / 2 ( Y ) and thus 

J (Y) « s - ^ V " 1 / 2 (Y). 

Hence, the density of Z is given by 

/ ( z j / i . E ) « | J ( y ) | - 1 a ( E ) | V ( y ) | - 1 / 2 e x p { z T z } 

= E - ^ V - ^ ^ p ' ^ ^ l V ^ r ^ e x p f z ^ } 

~ V 1 / 2 (y ) E V 1 / 2 ( y ) | " 1 / 2 ( 2 T T ) - ^ 2 | E | - 1 / 2 | V (y ) I" 1/2 exp { z T z } 

~ (27r ) - p / 2 exp{z T z} . (3.38) 

The normalizing constant in Equation (3.38) is obtained by the saddlepoint approxi

mation. Therefore (3.37) follows immediately. • 

Note that we may write (3.37) as follows 

t (Y; LI) ~NP (0 , E ) . 

It is noted that since t (Y; LL) « V - 1 / 2 (LL) (Y — LI) we have the normal approxima

tions (3.28), and (3.37) are approximately equal, as we expected. 
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Chapter 4 

Bivariate gamma distribution 

In this chapter, we discuss the bivariate gamma distribution. In Section 1, we discuss 

the normalizing constant in the case of the multivariate gamma model and study the 

normalizer numerically. In fact, we employ two methods to estimate the normalizer. 

Although in their construction of multivariate dispersion models, J0rgensen and Lau

ritzen (1998) did not require the definition of multivariate dispersion models to have 

specific moments or marginals, we, in Section 3, investigate the moments up to order 

two in a bivariate situation. And finally, in Section 4, we investigate the marginals 

numerically. 

4.1 Numer ical s tudy of normal iz ing constant 

Let the multivariate proper dispersion model be given by 

J0rgensen and Lauritzen (1998) have shown the following derivations to calculate the 

normalizing constant. 

/ (y ; / i ; A) = a p (A) |V(y)|-5 exp [ - ^ T ( y ; M)A*(y; A*)} (4.1) 

< ( A ) = / . . . / { V-*{yi) • • • V-HVP)} ^ P { - ^ T ( y ; /*)A*(y; A*)} dy (4-2) 
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= J -J{V *(yi)...V 2(y p )}exp j ^ A ^ O / i ; ^ ) 

1 
e x p j - 2 !C A ^ R A * 0 r | dy 

n ^ ^ - ^ A j j ) y . . . y"exp|-^5ZA 0T (yi] ta) r {yj\fij) 

i ( 1 p 

n i = i {c(Ajj)^"^(?/j)dyj} exp ^ - - ^ A^d (y*; ^ ) 

n ^ c - ^ A ^ O E l e x p 

i+3 

- ^ T ( y ; / / ) A 0 t ( y ; fx)} (4.3) 

where A 0 has zeroes on the diagonal, and off-diagonal elements equal to A , c is the 

normalizer of the marginal univariate proper dispersion model, and the expectation 

is with respect to the distribution with independent marginals corresponding to the 

diagonal of A . 

In fact, Song (1996) used a derivation same as the above to estimate the normal

izing constant for the multivariate gamma model. By using (4.3), the normalizing 

constant for multivariate gamma model is given by 

(nTA*')exp{-E?A«} 
- i 

n? r (A«) 
E e x p { - £ V ( * i ; l ) r ( X , - ; l ) 

(4.4) 

The expectation is taken under the probability measure generated by p-independent 

univariate gamma random variables Xi ~ Ga (l, A^1) , i = 1,... ,p. This expectation 

in (4.4) can be calculated by using Monte Carlo simulation. Note that we may 

estimate the normalizer by using numerical integration directly applied to (4.2). Note 

that this approach may not be a good one to estimate the normalizer in the case of 

higher dimensions. 
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In the case of Monte Carlo simulation, we have to estimate the following for the 

bivariate gamma: 

(n jA^expj -E?^} !" 1 . 

nir(A«) 
E [ e x p { - A 1 2 r ( X i ; l ) r ( X 2 ; l ) } ] , 

where the expectation is taken over two independent gamma random variables with 

mean 1 and dispersion parameter A ^ 1 . Before estimating the normalizer, let us define 

the following as a measure of association between two variables 

<7l2 
P = i 

where (E)^ = Oij. We consider the following dispersion matrices ( £ ) and the measure 

of association (p) to study the normalizing constants . 

Table 4.1: Dispersion Matrix. 

0.75 

0.3 

0.1 

-0.1 

-0.3 

-0.75 

S i = 

So = 

s, = 

s 4 = 

E s = 

E f i = 

An S-Plus program interfaced with C was written to estimate the normalizing 

constant by using Monte Carlo (MC) simulation. In fact, S-Plus was used to generate 
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Table 4.2: Estimation of normalizing constant by using M C method. 

p S n 

1000 10000 50000 100000 

0.75 S i 6.25 6.02 6.13 5.99 

(0.21) (0.14) (0.05) (0.01) 

0.3 s 2 0.3814 0.37869 0.37874 0.37905 

(1.3 x 10"3) (5.3 x 10~4) (2.3 x lO" 4 ) (1.3 x 10~4) 

0.1 s 3 0.11263 0.112513 0.112507 0.112498 

(1.2 x 10~4) (4.4 x 10~5) (1.9 x 10"5) (1.09 x 10~5) 

Table 4.3: A comparison of estimations of normalizing constant. 

p S M C method Saddlepoint approximation 

0.75 S x 5.99 (0.01) 6.02 

0.3 s 2 0.37905 (1.3 x 10~4) 0.41709 

0.1 s 3 0.112498 (1.09 x 10"5) 0.14307 

the gamma random variables and C was used to do the calculation. Since C was used 

to do the calculation, the time taken to complete a simulation was very small. For 

example, for a simulation study on 100000 random numbers, the average time was 

8 sec. using an HP C200 machine. In Tables 4.2 and 4.3, the estimates are given 

with their corresponding standard errors (given in brackets). Each simulation was 

repeated 10 times to get the standard errors. 

It is observed from Table 4.2 that as we increase the number of simulations (n) 

from 1000 to 100000, we obtain almost the same values of the estimate but with 

higher precision. 

In Table 4.3, we compared the estimate obtained by using M C methods with ns 

100000 and the estimate obtained by using saddlepoint approximation. For small 
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dispersion ( | | £ | | small) both estimates are very close to each other. Then as | | £ | | 

increases saddlepoint estimates tends to over estimate the normalizing constant. 

Another interesting and potentially important empirical observation was that 

when a similar simulation study was done to estimate the normalizing constant in the 

cases of £ 4 , £ 5 and £ 6 the values obtained were almost equal to that of £ 1 , £ 2 and 

£ 3 , respectively. This situation is similar to a bivariate normal where the values of 

normalizing constant in the cases of £ 4 , £ 5 and £ 6 are equal to that of £ 1 , £ 2 and 

£ 3 , respectively. 

4 . 2 Density plots 

In this section, we give some density plots of the bivariate gamma. First we shall 

investigate the behaviour of contour plots and perspective plots when we have two 

independent gamma margins. That is, the dispersion matrix is diagonal. In this case, 

we consider the position vectors and dispersion matrices given in Tables 4.4 and 4.5. 

Table 4.4: Position vectors. 

I1) (3) 
V 1 / I 2 / \5) 

Table 4.5; Dispersion matrices. 

0.04 0 \ / 0.2 0 \ / 2 °1 £ 7 = £ 8 = £ 9 = 

I 0 0.04 / I 0 0.3 / I 0 2 J 

Figure 4.1 shows some contour plots of independent bivariate gamma densities and 

Figure 4.2 shows the corresponding perspective plots. The main reason for plotting 

the contour plots of independent bivariate gamma densities is to investigate the role 
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E 7 

S 8 

S 9 

Figure 4.2: Perspective plots of independent bivariate gamma densities. 
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of the position vector LL on the shape of the densities. In the first row of Figure 

4.1 the dispersion matrix is small and thus we can observe clearly that as position 

varies the peak of the density varies accordingly. When we have large dispersion 

matrix (in row 3) the peak becomes blurred, essentially because the large value of 

the dispersion squeezes a lot of probability mass down towards the origin. Large 

values of the dispersion, as explained by J0rgensen (1997b), corresponds to a value 

of the Euclidean-norm of the dispersion matrix for which the non-normality of the 

distribution becomes evident. 

Contour plots and perspective plots for bivariate gamma densities when the two 

variables have some dependence structure were discussed in three cases: 1) dispersion 

matrix with small dispersion; 2) dispersion matrix with moderately large dispersion; 

3) dispersion matrix with large dispersion. 

Small dispersion: The dispersion matrices used in this case are given in Table 4.6. 

And the contour plots and perspective plots corresponds to this case are given in 

Figures 4.3 and 4.4. 

Table 4.6: Small dispersion matrices. 
0.04 0.03 
0.03 0.04 

0.04 -0.03 
-0.03 0.04 

0.03 
0.015 

0.015 
0.09 

0.03 
-.015 

-0.015 
0.09 

Moderately large dispersion: The dispersion matrices used in this case are given 

in Table 4.7. And the contour plots and perspective plots corresponds to this case 

are given in Figures 4.5 and 4.6. 

Table 4.7: Moderately large dispersion matrices. 
0.1 

0.138 
0.138 
0.3 

0.1 
-0.138 

-0.138 
0.3 

0.2 0.085 
0.085 0.4 

0.2 
-.085 

-0.085 
0.4 

Large dispersion: The dispersion matrices used in this case are given in Table 4.8. 
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p = 0.75 S u 

Figure 4.3: Contour plots of bivariate gamma densities with small dispersion. 
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A*i A*2 A*3 

p = 0 . 7 5 S n 

p = - 0 . 7 5 £ i 2 

p = 0.3 E 1 3 

p = -0.3 S u 

Figure 4.4: Perspective plots of bivariate gamma densities with small dispersion. 
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Figure 4 . 5 : Contour plots of bivariate gamma densities with moderately large disper

sion. 
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Mi M 2 M 3 

p = 0.80 Sis 

p = -0 .80Si 6 

p = 0.3 S17 

p = -0.3 Sig 

Figure 4.6: Perspective plots of bivariate gamma densities with moderately large 

dispersion. 
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Figure 4.7: Contour plots of bivariate gamma densities with large dispersion. 

And the contour plots and perspective plots corresponds to this case are given in 

Figures 4.7 and 4.8. 

Table 4.8: Large Dispersion matrices. 

Discussion: 

In the independence case, (Figure 4.1) the contour plots are almost ellipsoid like 

bivariate normal distribution where the axes (major and minor) of the contours are 

parallel to the xy-axes. 

When the two variables have some dependence structure, for small dispersion ( Figure 

4.3), we considered two cases of dispersion matrices: one with diagonal elements equal: 

and the other with diagonal elements of ratio 3 and with large and small measure of 
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p = - 0 . 8 0 S 2 0 

Figure 4.8: Perspective plots of bivariate gamma densities with large dispersion. 

association. In the first case of dispersion matrix, for positive measure of association, 

the major axis of the contour plot ( almost ellipsoid) is almost along the 4 5 ° line 

through LL. When the measure is negative the major axis of the contour plot lie along 

a line at right angle to the 4 5 ° line through LL. That is, for small dispersion, the 

bivariate gamma behaves like bivariate normal. We may also note how the larger 

measure of association causes the probability to concentrate along a line. 

When we dealt with moderately large dispersion matrices (Figure 4.5), this large 

dispersion causes some deviation from normality but still preserve the fact that ac

cording to the sign of the dependency measure the major axis is either along the 4 5 ° 

line or perpendicular to it. 

Since a large dispersion in gamma density squeezes lot of probability mass down to

wards the origin the corresponding plots (Figures 4.7 and 4.8) are no longer ellipsoids. 
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4.3 Est imat ion of moments 

In this section, we estimate the moments up to order two. The estimation, for dimen

sion p , can be done by using Monte Carlo simulation. The formula for this simulation 

can be obtained by employing the same kind of derivation that was used to obtain a 

formula for the normalizer (4.4). We give the equation in the case of two variables Y\ 

and Y2. 

( (Vp xxA exp ( - T2 X-] 1 _ 1 

E (Yi) = ap (S) | 1 ulTiXii) 1 } E [ Y i 6 X P { ~ A l 2 r { Y l ] ^ r { Y 2 ] P 2 ) } ] • 

(4.5) 

E (Y2) = ap (£) { ( m A ^ ^ E ' A r i } } 1 E [Y2 exp { - A 1 2 r (*; M l ) r (Y2; »)}] . 

(4.6) 

The expectation is taken under the probability measure generated by two independent 

univariate gamma random variables Yi ~ Ga (^i, A^ 1 ) , i = 1,2. This expectation can 

be calculated by using Monte Carlo simulation. In the case of small dimensions we 

may also use numerical integration to estimate the moments. In Tables 4.9 and 

4.10, we give estimates of moments, using Monte Carlo simulation, for two dispersion 

matrices. The first one with p = 0.75 and the second with p = 0.3. We compare the 

estimated values with reference values (Ref. Val.) obtained by using the marginals 

Yi ~ Ga(pi,ou) i = 1,2. 

A C program interfaced with S-Plus was used to estimate the moments. A set 

of 100000 random numbers was generated from corresponding gamma distributions 

to estimate the moments and this was repeated ten times to estimate the standard 

error. It was noticed from Tables 4.9 and 4.10, that although the estimates are almost 

equal for large and small measures of association, the corresponding standard errors 

are small for small measures of association. This implies that the off-diagonal term 
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in the dispersion matrix plays an important role, along with the diagonal elements, 

in estimating the moments. 

Table 4.9: Estimation of moments. 

E = 
( 0.04 0.03 N 

^ 0.03 0.04 j 
fj, = C) fj, = 

w 
Ref. Val. Estimated Ref. Val. Estimated 

1 0.9893 

(0.0019) 

3 2.9879 

(0.0044) 

E(Y2) 1 0.9894 

(0.0017) 

4 4.0083 

(0.0426) 

Var(Yx) 0.04 0.0404 0.36 0.3122 

(0.0019) (0.0578) 

Var(Y2) 0.04 0.0341 0.64 0.62 

(0.0115) (0.26) 

4 . 4 Numer ica l s tudy of marginal density 

In this section, we investigate marginals from the bi-variate gamma. For this study, 

we considered the position vector and dispersion matrices given in Table 4.4. 

A numerical integration routine in C was used to integrate out the second variable 

at some specified points of the first variable. The reference density and the estimated 

density are given in Figure 4.9. The first plot is for small dispersion, the second and 

third are for moderately large dispersions and the last is for large dispersion. It is 

noted, from the first plot, that the estimated and the reference marginal densities 

are almost exactly the same. In the second and third plots the estimated and the 

reference marginal densities are very similar. But for the large dispersion, in the last 

49 



Ga(3,0.04) 

Ga(3,0.5) 

Ga(3,l) 

Figure 4.9: A comparison between true and estimated marginal densities (estimated 

density is given in solid lines). 
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Table 4.10: Estimation of moments. 

•E = 
' 0.03 0.015 \ 

v 0.015 0.09 ) 
fx = C) fi = {31 

Ref. Val. Estimated Ref. Val. Estimated 

E(Y,) 1 0.9949 

(0.0003) 

3 2.9841 

(0.0006) 

E(Y2) 1 0.9953 

(0.0003) 

4 3.9784 

(0.0001) 

Var{Yx) 0.03 0.0298 0.27 0.2717 

(0.00001) (0.00001) 

Var(Y2) 0.09 0.0951 1.44 1.4326 

(0.0008) (0.0093) 

Table 4.11: Dispersion matrices. 
0.04 

0.03 

0.03 

0.04 

0.2 

0.12 

0.12 

0.8 

0.5 

0.112 

0.112 

2.5 

1 0.735 

0.735 1.5 

plot, there is a marked difference between the estimated and the reference marginal 

densities. 
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Chapter 5 

A generalization of Hotelling's 

T 2 -statist ic 

5.1 In t roduc t ion 

One of the most important test problems in univariate statistics is the test of the mean 

of a given distribution when the variance of the distribution is unknown. The statistic 

usually used in univariate statistics is the difference between the sample mean, x, and 

the hypothetical population mean, divided by the sample standard deviation, s. If 

the population sampled is iV(/i, cr2), then 

t = ^ r i ^ ^ (5.1) 
s 

has the well-known ^-distribution with n — 1 degrees of freedom, where n is the sample 

size. On the basis of this fact, one can test the hypothesis HQ : p = po, where JIQ is 

specified. 

The statistic (5.1) was generalized for non-normal distributions in the framework 

of generalized linear models, cf. J0rgensen (1997a). J0rgensen used the corresponding 

estimated dispersion parameter in the denominator of (5.1). He, in fact, showed 
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that the statistic follows asymptotically a ^-distribution for large samples and small 

dispersions. 

The multivariate analogue of the square of t given in (5.1) is 

T 2 = n ( X - A t o ) T S - 1 ( X - M o ) (5.2) 

where X is the mean vector of a sample of size n and S is the sample covariance 

matrix. (5.2) is referred to as the Hotelling T2-statistic in the multivariate normal 

model. 

In the following sections, first we discuss the general likelihood ratio method in 

the multivariate normal model which will be used to derive (5.2). Then we generalize 

the T 2-statistic to the multivariate proper dispersion model. 

5.2 General l ikel ihood rat io method in mul t ivar i 

ate normal model 

Let 6 be a vector consisting of all the unknown population parameters, and let L (6) be 

the likelihood function function obtained by evaluating the joint density of X l 5 . . . , X n 

at their observed values xx,..., x„. The parameter 0 takes its values in the parameter 

set 0 . 

Let us consider the p-dimensional multivariate case, where the X^s are independent 

and identically distributed as JVp(LL, £ ) . Then 0 consists of the product of the 

p-dimensional space for means and the p(p + l)/2-dimensional space of variances 

and covariances such that £ positive-definite. Therefore, 0 has dimension v = 

V + P(P + l ) /2 . Under the null hypothesis H0 : LI = fx0, LL0 is restricted to lie in a 

subset 0 O of 0 . So 0 O has dimension v0 = p(p + l ) /2 (mean vector is known). 
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The likelihood ratio test of H0 : /x = fi0 rejects H0 in favour of Hi : LI ^ ^t 0 if 

A = m a x ^ = A t o L ( A t , S ) ^ 

m a x ^ ^ L (tx, S) 

where c is a suitably chosen constant. 

When the sample size is large and under certain regularity conditions, the sampling 

distribution of —2 log A is well approximated by the chi-squared distribution with 

degrees freedom v — v0. That is, —2 log A ~ xl-Vo-

5.2.1 T2-statistic in multivariate normal 

Before we make a connection between likelihood ratio test for the hypothesis H0 : 

tx = tx0 and Hotelling's T 2-statistic, we first give the general definition of the Hotelling's 

T 2-statistic and its distribution. 

Def in i t ion 5.1 Let Z ~ jV (0,IP), W ~ W (Ip,n — 1) (Wishart distribution), and 

let the two random variables be mutually independently distributed. Then the random 

variable 

T2 = {n- l)ZTVf-lZ (5.3) 

is called Hotelling's T 2-statistic. The distribution of T2 is called Hotelling's T2-

distribution with n d.f. 

The T 2-statistic and its distribution were originally developed by Hotelling (1931). 

Now let us consider the likelihood ratio test for the hypothesis H0 : /j, = LI0 vs. 

H i : /x ^ /x0 on the basis of the random sample ( x i , . . . , x n ) drawn from J\fp (fi, S ) , T, 

positive-definite , where n > p , fi0 is a given vector, and (//, S) is unknown. Let 

0 = {(/x, S) : —oo < pi < oo, i — 1 , . . . ,p, £ positive-definite} , 

©o = {(/x, S) : pt = /x0, £ positive-definite} . 
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The likelihood ratio criterion A is given by 

A =

 m a x 6 > 6 0 o L ( 6 > ) 

m a x 0 6 0 L (0) 

/ T2 \ ~n^2 

ra - 1 

where T 2 = n ( x — LI0 ) S 1 ( X — LI0^ . Note that this T2 can be written in the form 

of (5.3) by letting Z = V ^ T 1 7 2 ( X - Mo) and V = nSn and W = E ^ V E " 1 ^ . 

Since A is a monotonically decreasing function of T 2 , the likelihood ratio test 

based on A is equivalent to the following: 

Accept H0 if T2 < T2 (a), 

Reject/^ if T2 > T 2 (a), 

where T2 (a) is the upper a-point of the distribution of T2 for a specified significance 

level a. Note that when p = 1, T 2 reduces to the square of Student's t-statistic. 

Der iva t ion of d i s t r ibu t ion of T 2 -s ta t is t ic 

Consider the statistic T2 = (n — 1 ) Z T W _ 1 Z . Since T2 is invariant under any non-

singular transformation, we make use of a random orthogonal transformation 

Z * = H Z , W * = H W H T , 

where H P X P is an orthogonal matrix such that its first row is z

 l / 2 . Noting that 

H Z = | ( Z T Z ) , 0,. . . , oj , T2 reduces to the following simple form: 

T2 = (n- 1) ( H Z ) T ( H W H T ) _ 1 ( H Z ) = (n - 1 ) ^ ; 
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where w~iX is the (1, l)th element of W " 1 . 

Now we have (zTz) ~ x 2 . By the property of the Wishart distribution, we have 

the distribution of W* condition on H is W (I p, n — 1). Suppose we partition the W* 

as follows: 
^ wn W 1 2 

V W 2 i W 2 2 

then we can write w+n — w\\ — Wi 2 W 2 " 2

1 W 2 i and this has a chi-squared distribution 

of n — p degrees of freedom independent of H and hence of Z. Hence the distribution 

of T 2 is given by 

X2

P P 
r>j — — 

( n - 1 ) Xl-P ( n - P y p ' n - p -

The above method of derivation of the T 2-distribution by making use of a random 

orthogonal transformation is due to Wijsman (1957). 

5.3 M a x i m u m l ikel ihood estimators of LL and E 

In this section, we discuss the small-dispersion asymptotic maximum likelihood esti

mators of LI and X . 

Theorem 5 . 1 Let Y x , . . . ,Yn, be a random sample from PDP (fi, S ) (multivariate 

proper dispersion model with p-dimension) where fi and X are the position vector 

and dispersion matrix, respectively. Then asymptotically, the maximum likelihood 

estimators of fi and S are given by 

fi « Y as | | S | | -> 0, (5.4) 

E ~ - E { * ( Y i ; Y ) t T ( Y i ; Y ) } as | | S | | ^ 0. (5.5) 
n i=i 
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Proof. We have, from (3.14) in Theorem 3.2, that 

^ = -^ED ' (Y i ; M)At(Y , ; A x) . (5.6) 

For small-dispersion, we have 

D ' ( Y l ; A t ) « 2 V - 1 / 2 ( M ) , 

and 

t ( Y l ; A t ) « V - 1 / 2 ( A t ) ( Y i - A t ) . 

Hence, we have 

^ « ± V - 1 / 2 ( A i ) A V - 1 / 2 ( M ) ( Y i - /*). (5.7) 
a M i=i 

Hence (5.4) follows immediately from (5.7) by taking 9 Q J ^ = 0. 

For small-dispersion, by the saddlepoint approximation, we obtain 

/ (y; /x, £) » (27T)-* | E | " * | V (y) | "* exp { -^ t T (y; /z) £ " 4 (y; jx)} . (5.8) 

Hence the log-likelihood function is given by 

£(LI, E) « log {(27T)-? ft | V (y 4) | - 1 / 2 | - £ log | E | - \ ± tT(yi; / i J E " 1 ^ ; / i ) . 

(5.9) 

We now differentiate (5.9) with respect to E . 

= - T ^ - 1 + ^ t s _ 1 {* n) tT M)} S " 1 . (5.10) 

i=l 

Now taking = 0 and inserting the estimator /x = y gives a maximization 

problem similar to that for the multivariate normal and we obtain (5.5). • 

5.4 T 2 i n multivariate proper dispersion model 

In the general setup of the T 2-statistic, we consider the likelihood ratio test for the hy

pothesis H0 : /x = (j,0 vs. Hi : LI ^ /x0, where /z0 is known and the dispersion matrix 
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X is unknown. For the discussion of T 2-statistic, we consider two types of asymptotic 

theory, namely standard large-sample theory (n —>• oo) and small-dispersion asymp-

totics. But since we use the estimator of X in the likelihood ratio test, we cannot 

make | | X | | —> 0. So we introduce a known weight matrix A for each observation vector 

such that A is symmetric and regular and consider | | A j | | —>• oo for each i = 1,..., n. 

The limit | | A j | | —>• oo is the theoretically simplest way of expressing small-dispersion 

asymptotics; in practice the results may be applied for | | X | | —)• 0 or more generally 

| | A ~ 1 / 2 S A ~ 1 / 2 | | 0 for all i. 

Consider the likelihood ratio test for the hypothesis H0 : fx = fx0 vs. Hi : LL ̂  LL0 on 

the basis of the random sample Y i , . . . , Y n , with distribution Y^ ~ PDP [LL, A ^ ^ X A ^ 

i = 1,..., n, where X is positive-definite, n > p and (fx, X ) is unknown. Let 

0 = {(fx, X) : ^ e f i , i = l , . . . , p , S positive-definite} , 

0o = {(A*> X) : fx = fx0, X positive-definite} . 

We know from Theorem 3.6 that 

S - 1 / 2 A j / 2 t ( Y i ; fx) ~ JVP(0,IP) as | | A ; | | -> oo 

1 /2 

that is, A / t (Yf, fi) ~ J\fp (0, X) as | | A ; | | —> oo. 

L e m m a 5.1 Let Y i , . . . , Y n be a random sample from PDP [fx, A ~ 1 / , 2 X A ~ 1 7 2 ) . Then, 

for 11 A^l | —> oo the maximum likelihood estimate of X is approximated by 

s « ^EAj / a*(yi;y)*T(y*;y)Aj / 2. (5.11) 
n i=i 

Suppose fi is known and equals to fx0. Then, for \ \Ai\ \ —>• oo the maximum likelihood 

estimate of X is given by 

S o ~ - E A , 1 7 2 * (yt; fx0) tT (y,; fi0) A]/2. (5.12) 
n i-l 
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Proof. The results (5.11) and (5.12) follow immediately from Theorem 5.1. • 

L e m m a 5.2 Let Z{ = A\'2t ( Y f ; fx0) and S = ^ £ ? = 1 A.]/2t (y i ; y) t T (y i ; y) A\'2. 

Then S and Z are asymptotically independent for | | A j | | —>• oo /or a// i , where Z = 

1/n XI Z i , and furthermore 

Z - A / ^ O , ^ (5.13) 

and 

(n - 1)S ~ W n _ ! ( £ ) . (5.14) 

where W„_i (S) is £/ie Wishart distribution with n — 1 degrees of freedom. 

Proof. Since Y i , . . . , Y„ are independent, so are Z i , . . . , Z n . We have by 

Theorem 3.6 

Zi ~ A/p ( 0 , S ) as 11Aj|| -r oo (5.15) 

and hence 

Z~J\fp(o, ^ as 11Ai|| oo for a l i i . , (5.16) 

Now by applying a second-order Taylor series approximation to Zi we obtain 

A]/2t ( Y ; LI0) « A ^ V " 1 / 2 (At0) ( Y - At0) 

= A j / 2 { V - V 2

 ( / i f l ) ( Y - Y ) + ( M o ) (Y - M o ) } 

« A j / 2 t ( Y i ; Y ) + i f : A j / 2 t ( Y , ; / i 0 ) . 

Hence 

A j / 2 * ( Y i ; Y ) ~ Z i - Z . (5.17) 

Let Zpxn = ( Z i , . . . , Z„), and X = Z H , where H n X 7 1 is an orthogonal matrix and nth 

column is n 1 / 2 l n x l so that X„ = n : / 2 Z . Now 

X ~ Afp (0, E ® I „ ) , (5.18) 
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so, the columns of X are independently normally distributed with the same covari-

ance matrix X . Now let X ' = ( X i , . . . , X n _ i ) , then we have that X ' and X„ are 

asymptotically independent. Now consider 

( n - l ) S = ^ Z i Z 7 - n Z Z T 

i=i 

= Z Z T — X n X n 

= X X T — X n X n 

= E X . X T . ' (5.19) 
i=i 

Hence we have that S and Z are asymptotically independent for | | A j | | —» oo for all i. 

The result (5.15) now follows immediately from (5.18) and (5.19). • 

Note that S is an asymptotically unbiased estimator of X for | | A , | | —» oo for all i. 

We define the T 2-statistic for testing H0 : LL = Li0 vs. Hi : LL ̂  LL0 with X unknown 

by the following monotone transformation of the likelihood ratio test A, 

T 2 = (n - 1) ( A " 2 / " - l ) . (5.20) 

H0 is rejected for small values of A or, equivalently, for large values of T 2 . Note 

that in the case of multivariate normal the Equation (5.20) is exactly the Hotelling's 

T 2-statistic. 

Theorem 5.2 Consider the test of the hypothesis Ho : LL = /x0 vs. Hi : LL ̂  LL0 

on the basis of the random sample Y 1 ; . . . , Y„ drawn from PDP [LL, A l ~ 1 / / 2 X A ~ 1 ^ 2 ) . 

The T2 in (5.20) then follows approximately the Hotelling T2-distribution. Hence, 

furthermore, we can show that 

T ~ F p n _ „ as A J —> oo for all i. (5.21) 
n — p ' 
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Proof. It can easily be shown that the likelihood criterion for the above hypothesis, 

under multivariate normal approximation, is given by 

A 2 / " « 

Now by taking 

we have 

Hence 

E + ( E 0 - S ) | 

Isl 

B 

( -1) s + zz 

s + zz 

A2/r, 

s + zz 

s z 
z T - 1 

s - i - z T s - 1 z 

( l + Z T E " 1 z ) 

V n - 1 I 

1 + 
T2 ' 

ra - 1 

T2 « (n - 1) ( A " 2 / " - l ) 

and we have 

T2 « raZTS-1Z (5.22) 

Since 

fnZ • ~ JVP (0, S ) , 
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S ~ W n _ i ( S ) 

and Z and S are asymptotically independent, by Definition 5.1, T2 is approximately 

the Hotelling T 2-distribution. Hence 

T)(TI — 1 J 
T2 ~ Fnr,-r, as ||A,|| —» co for all i. n — p 

Hence the theorem. • 

Theorem 5.3 For large sample, Equation (5.21) still holds. That is, 

-,2 .. P(n ~ 1) T ~ Fvn_vas n —> oo /or all i. 
n — p 

Proof. By large sample theory, we have 

v = — 2 log A —>• x 2 as n —> oo. 

Using (5.20), we have 

T 2 = ( n - l ) ( e - - l ) 

( n - l ^ P f r - 1 ) ^ 
n n p 

p(n - 1) 
n — p 

Hence T 2 ~ as n ->• oo. • 

•Pp.oo as n —> oo. 
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Tree Data (Diameter) Tree Data (height) 

tO 12 14 16 
(in inches) 

70 75 60 85 
{in In!) 

Figure 5.1: Histograms of diameter and height of the trees. 

5.4.1 Numerical study on the T2-statistic 

In this section, we investigate the density of the generalized T2 statistic via two ways; 

1. by using data, 2. by simulating random numbers from the bivariate gamma model. 

B y using data: The data set used in this analysis was obtained from Ryan, Jointer 

and Ryan (1985). The Trees data contains three variables. The variables are diameter 

(d), height (h) and volume (v) for 31 black cherry trees in Allegheny National Forest, 

Pennsylvania. The variables are clearly strong candidates for a multivariate gamma 

model. We consider the first two variables in our density estimation problem. The 

histograms of these two variables are given in Figure 5.1. 

Asymptotic estimates for the position vector and dispersion matrix is given as 

follows 
^ 13.25 ^ 

76.00 
and X = 

0.05 0.01 

0.01 0.007 

and | |E | | = 0.05. 

To estimate the density of T2, we bootstrap 1000 samples from the data and the 

values were calculated for both the classical T 2-statistic (5.2) and the generalized T 2 -
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statistic (5.22). A non-parametric density estimation was obtained by using kernel 

smoother (with Silverman's band width). The estimated density is compared with 

the true density, F p > n _ p = F 2 ) 2 9 . The plots are given in Figure 5.2. 

From the Figure 5.2, we observe that our generalized T 2-statistic behave almost 

exactly the same as the classical T 2-statistic for this data set. The main reason may 

be that the dispersion matrix is small. Even there is some discrepancy at the upper 

part of the distribution, the approximation is very accurate around the critical region. 

Note that ^ 2 , 2 9 , 5 %
 = 3.33 and i*2,29, i% = 5.02 Although our generalized T 2-statistic 

obtained from asymptotic theory, we may use this when we have a non-normal data, 

data from multivariate gamma, in this case. 

B y S imula t ion study: One of the hardest part in this thesis was to find a suit

able method or procedure to generate random numbers from the multivariate gamma 

distribution, bivariate gamma distribution in this case. The main problem in em

ploying the well known Markov chain Monte Carlo methods such as Gibbs sampling 

and Metropolis algorithm, is that it is hard to find the conditional distributions in 

the multivariate gamma. Neal (1997) proposed a Markov chain Monte Carlo method 

based on 'Slicing' the density function. The method does not require the whole den

sity function, only requires a function that is proportional to the density. Therefore, 

it is feasible to use this method in the multivariate gamma where the normalizing 

constant is unknown. 

The idea is that suppose we need to sample from a distribution over some subset of 

lZn, with density function proportional to some function f(x). One simple idea is to 

sample uniformly from n +1 dimensional region that lies under the plot of f(x). This 

idea can be formalized by introducing an auxiliary real variable, y, and defining a joint 

distribution over x and y that is uniform over region U = {(x,y) : 0 < y < f(x)} 
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Classical T 2-statistic 
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below the curve defined by f(x). 

The algorithm for a single variable (x) is briefly as follows: 

We sample alternately from the conditional distribution for y given the current x -

which is uniform over the interval (0, f(x)) - and from the conditional distribution for 

x given y - which is uniform over the region S = {x : y < f(x)}, which is called the 

'slice' defined by y. For multivariables: each real-valued variable, be updated 

by a single-variable slice sampling procedure. 

A S-plus program interfaced with C routine was used to generate the random numbers 

from Ga2(Li, S),where 

Five hundred samples each with 50 random numbers were generated and the classi

cal T 2-statistic (5.2) and the generalized T 2-statistic (5.22) were calculated and the 

corresponding estimated densities were compared with true density, F2>48 (see Figure 

5.3). 

From the Figure 5.3, we observe that the generalized T 2-statistic behave a little 

bit better than classical one. The discrepancy between the estimated and the true 

densities is more in the classical case than in generalized case. Although there is a 

discrepancy between the estimated and the true densities in the upper part of the 

plot, there is pretty close agreement between the estimated and the true densities in 

the tail area in both cases. That is, the approximation is very close around the critical 

region. This is a very important observation because we are interested in hypothesis 

testing. Note that F2^8^% = 3.19 and i*2,48,i% = 5.08. 

V 0.015 

0.04 

and IISII = 0.1. 
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Discussion: Bo th in the simulation study and in the data analysis, we observed that 

the generalized T 2 -s tat is t ic behave almost as the same as the classical T 2 -s tat is t ic . 

Then the following question arises here: what is the usefulness of the generalized 

T 2 -s tat is t ic? The one answer for this question is that in most situations gamma data 

behave almost like normal data. That is why we could not observe a marked differ

ence between the generalized T 2 -s tat is t ic (gamma case) and the classical T 2 -s ta t is t ic 

(normal case, of course). Another answer may be that we simulated data from gamma 

with small dispersion matrix, in the case of small dispersion, the multivariate proper 

dispersion model is very similar to the multivariate normal model. 

Most of the results in non-normal data analysis have developed by using asymptotic 

theory. But this does not mean that we have to apply the results only when we have 

small-dispersion or large sample. A s we do in generalized linear model, we can apply 

in any situation. The main point here is that we feel quite comfortable and satisfied 

when we do the data analysis of non-normal data with the relevant non-normal dis

tr ibution rather than wi th the normal distribution. 

A s a final note to the non-normal data analysis, we quote the following from j0rgensen 

(1997b): "While normal distribution is useful for many types of data the normal dis

tribution is the exception, rather than the rule, except for data with small dispersion. 

There is an importance of describing data in their natural habitat. Analysis of non-

normal data should hence take into account the actual form of the sample space for 

each type of data". 
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A p p e n d i x A 

Some results on matrices 

Here we give basic results on matrices. For more details, see for eg. Dwyer (1962), 

Johnson and Wichern (1992) and Rao (1985). 

A . l Determinant 

1. Let A : p x p,B : p x q,C : q x p,D : q x q. Then 

A B 
— < 

' |A| |D - CA^BI if A is nonsingular 

C D |D| |A - B D ^ C I if D is nonsingular 

2. Let A : p x q, B : q x p. Then 

|IP + AB| = |I + BA|. 

A . 2 Inverse 

1. Let A be an n x n nonsingular matrix that is partitioned as 



where A^ : rii x rij, i, j = 1, 2 and rii + n 2 = n. Then 

( A n - Ai 2 A22 1 A 2 i ) 

is the upper left-hand block of A - 1 . 

A.3 Kronecker product (Direct product) 

Definition A . l Let A = (â ) be an m x n matrix and B = (bij) be a p x q matrix. 

Then the (mp) x (nq) matrix 

f auB ai 2 B . . . a i n B ^ 

a 2 i B a 2 2B . . . a 2 nB 

\ a m i B a m 2 B . . . a m n B j 

is called the Kronecker product or the direct product of A and B and is denoted by 

A <g> B. 

Some elementary properties 

1. (cA) <g>B = A ® (cB), 

2. (A ® B) <g> C = A <g> (B ® C), 

3. (A <g) B) T = A T <g) B T , 

4. (A (g) B ) _ 1 = A - 1 (g) B _ 1 for nonsingular A and B, 

5. (A <g> B)(G (g) D) = (AC) <g> (BD), 

6. |A (g) B| = |B ® A| = | A | p | B | m for A : m x m and B : p x p. 

Definition A.2 F o r a #n;en A : p x q, we denote by VecA the vector obtained by 

writing the columns of A one below the other starting with the first. 
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A . 4 M a t r i x derivatives and Jacobians 

Defini t ion A .3 For a scalar function f of a matrix variable X = (xij) : m x n we 

define its matrix derivative by 

df f df 
<9X \dxij 

: (m x n). 

When n = 1, X is a column vector x and the corresponding vector df /cbc is called 

the vector derivative. 

Table A . l : Vector Derivatives ( x : j ) X 1) 

/ df/dx 

a T x (a is constant) a 

x T x 2x 

x T A x , A:pxp (A + A T ) x 

x T A x , (A = A T ) 2Ax 

Matrix Derivatives 

• Let w = w(Y) be a scalar valued function of a matrix Y which is a function of 

matrix X then 

• The derivative of an element with respect to the matrix 

d ( C X T D ) 
D K T C , 

where C X T D is a p x q matrix and K is p x q matrix with zero in every position 

except for kij = 1. 
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• Let U(X) : p x q and V(X) : q x r be matrix functions of a matrix X. Then 

the Vec derivative of U(X)V(X) respect to X is given by 

T , T aVec(U) . T T . aVec(V) 
aVecT(X) 1 v ^ ~ ; « 9 V e c T ( X ) 
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