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Abstract 

Suppose bivariate data {(ti, Yj), i — 1,..., n} are observed at times a < t\ < t2 < 

... < tn < b. Given a nonparametric regression model Yi = m(ti) + £; with i.i.d. 

mean 0, variance cr 2 , for i = 1, 2 , . . . , n, we want to estimate the number of modes of 

the underlying regression function m(-) or its derivative. We use the penalized least 

squares technique to get an estimate of m(-), i.e. the function minimizing 

A new test of multimodality is introduced and its performance is studied. Our 

idea is motivated by the test proposed by Silverman (1981) concerning the number 

of modes in the density function. He used a "critical bandwidth" as a test statistic 

in a kernel smoothing context. He noted that if the data are strongly bimodal, we 

would need a large value of a bandwidth to obtain a unimodal density estimate. In 

our case we define the "critical smoothing parameter" Xcrit as the smallest A giving 

an estimate with the specified number of modes. We use A c r ; 4 as a test statistic in 

our new test CrvSV. 

We use bootstrap techniques to assess the performance of our test. We study 

the effects of the penalty L on the quality of our test via simulation using different 

regression functions and we compare it with Bowman et.al.'s monotonicity test (1998). 

CriSV is also applied to the children's growth data in studying the number of bumps 

in the derivatives of the growth functions. In a sample of 43 boys and 50 girls, our test 

procedure gives an automatic classification rule in about 80% of the growth curves 

analyzed. 
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Chapte r 1 

I n t r o d u c t i o n 

Statisticians often want to find an underlying "true" regression function when given 

a set of noisy data. We assume, very often, that this function is of a parametric form. 

For instance, in the case of polynomial regression, we search for the "truth" in the 

class of polynomials. However once we adopt a specific parametric form of a function, 

we cannot detect features of the data beyond those found in the specified model. 

In the event we adopt the exponential parametric model, the regression function is 

monotone, i.e. implicitly we restrict the regression relationship to be of increasing or 

decreasing form. However, on a number of occasions we want to allow more flexibility 

in modeling. We can achieve that by not assuming any specific model, i.e. by taking 

advantage of nonparametric regression. This approach permits a detection of fine 

features in the function, e.g. bumps and valleys. 

Let us consider the growth data collected on children in Berkeley, California. This 

data set consists of height measurements taken at least once per year from an age 

of one t i l l age eighteen. Our main goal is to discover interesting features in the 

speed and acceleration of growth. A few parametric models for the speed of growth 

have been proposed in the literature. Gasser et.al. (1984) give a good review of the 
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existing models. However, all of the models assume the knowledge of the shape of the 

regression function. For example, we know that most children have pubertal spurts of 

growth. Therefore we include this spurt in the model. However, the studies in 1930's 

and 1940's indicated that some children experience prepubertal growth acceleration. 

Such growth spurts cannot occur in the "pubertal growth spurt only" model. A new 

parametric model would be needed. 

Thus we approach the problem from the nonparametric point of view. We allow 

ourselves the flexibility of modeling the growth curve but without prespecification 

of the number of spurts. Unfortunately, a problem arises in the nonparametric ap

proach. We are forced to choose a so called "smoothing parameter" controlling the 

balance between goodness of fit to the data and smoothness of the regression function. 

Largo et.al. (1978) pioneered the use of smoothing splines functions and Gasser et.al. 

(1984) introduced kernel estimation in the analysis of growth data. Largo et.al. se

lected the "optimal" smoothing parameter using a cross validation procedure. Gasser 

et.al. described a complicated procedure for choosing the "optimal" smoothing pa

rameter. Ramsay et.al. (1995) in their analysis chose the smoothing parameter: "in 

part by a data-driven process called generalized cross validation, and in part by ex

periments with simulated data". We can look at Figure 1.1 to see the importance 

of smoothing parameter selection. At low values of the smoothing parameter, we 

produce very wiggly estimates, and at large values we lose all the important features 

of the curve. Construction of these function estimates is discussed in Chapter 3. In 

our approach, we avoid this problem entirely. We actually use a specially defined 

smoothing parameter to test for the existence of a certain number of bumps in the 

regression function. 

We use a testing method inspired by the work of Silverman (1981, 1983). His 

interest was in testing for the number of modes of an underlying density function. He 
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Effects of a smoothing parameter 
on the function estimate 

Figure 1.1: Estimates of the speed of growth of male # 1. 



used the kernel density estimation method. This local approach produces a smooth 

histogram, with the smoothing parameter (also called a bandwidth), h, playing the 

role of bin-width. Now, if the data are strongly bimodal, we would need a large 

value of h to obtain a unimodal estimate. Silverman used this idea to test the null 

hypothesis that the density / has k modes versus the alternative that / has more 

than A; modes. 

Bowman et.al. (1997) extended Silverman's idea to regression functions. They 

were interested in testing for the monotonicity of the underlying regression function. 

Here, the nonparametric regression function estimate used is found by a local linear 

kernel method. This procedure fits a local least squares line to the data. A bandwidth 

h controls how many adjacent points to the point of interest are used in the local 

fit. Again, to have a monotone regression function estimate when the "truth" is 

non-monotone, the bandwidth would have to be very large. Both, Silverman's and 

Bowman's procedures are described in more detail in Chapter 4. 

We extend Bowman's monotonicity test to Cx'iSV (Critical Smoothing Parame

ter), a new test of 

H0 : # of bumps in m(-) < k 

vs. 

Hi : # of bumps in m(-) > k 

where m(-) is the "true" regression function. We use a spline smoothing procedure in 

the estimation step. Our testing method is based on the critical value of a smoothing 

parameter which is defined as the smallest smoothing parameter yielding a regression 

curve with k bumps. The p-value of the test is calculated via bootstrapping. 

The general scenario that we follow in this thesis has three parts: 

1. Defining a bump in ra(-). 
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2. Estimating the regression function m(-). 

3. Defining a test statistic and conducting a hypothesis test. 

In Chapter 2, we discuss possible definitions of a bump, and we select the most 

practical working definition. Methods of estimation are presented in Chapter 3. We 

mainly use spline smoothing methods, but for comparison purposes kernel smoothing 

is also utilized. Chapter 4 gives an overview of existing testing procedures. There 

we also define our test CviSV , and we provide the way for calculating the p-value 

associated with it. Extensive simulation studies and the analysis of the Berkeley 

growth data are presented in Chapter 5. 
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Chapte r 2 

B u m p s : w h a t are they? 

In this chapter we outline the framework of our problem. The next section presents 

the definitions and facts about modes and bumps in densities, and section 2.2 extends 

the definitions to regression functions. 

2.1 B u m p s in Densi ty Functions 

Let us focus our attention for the moment on the distribution F(-) of a random 

variable X. Let /(•) be its density and f^(-) the A;-th derivative of the density /(•) 

when it exists. M is a mode of the distribution of X if /(•) has a local maximum 

at M. In practical applications and in the rest of the thesis, we assume /(•) to be 

continuous and at least twice continuously differentiable. Thus, we can define a mode 

as follows: 

Definition 2.1 M is a mode if and only if f'(M) = 0 and 3 e > 0 such that f'(t) > 0 

for te(M-e,M) and f'(t) < 0 for t e (M, M + e). 
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Usually, each mode has two associated antimodes ti, < M and tu > M (or local 

minima), defined by 

tL = maxr. such that f'(tL) = 0, f"(tL) > 0 (2.1) 

tv = mint such that / '(%) = 0, /"(%) > 0. (2.2) 

We want to study properties of bumps, but we have not clarified yet what we 

mean when we say that a function has a "bump". The first difficulty arises in the 

definition of a bump. There have been a few definitions proposed in the literature, 

and we discuss here the approaches taken to define a bump. Since tr, < M < tu, we 

could give the following definition of a bump. 

Defini t ion 2.2 /(•) has one bump in [tL,tu] if and only if there exists a mode M G 

(tL,tu) andtL, tu satisfy properties (2.1) and (2.2) respectively. 

However, definition 2.2 of a bump does not cover all the possibilities, since not 

every mode has two antimodes (e.g. the Gaussian density has a mode, but no anti-

modes). Another way to define a bump in /(•) is: 

Def in i t ion 2.3 /(•) has a bump in [tL,tu] if and only if 

f"(tL) = 0 = f"{tu) (2.3) 

Vte(tL,tu) f"(t) < 0 (2.4) 

and [tr,,tu] is the shortest interval with properties (2.3) and (2.4). 

Definition 2.3 extends the class of functions with bumps. According to this defi

nition, it is clear that every mode M with f"(M) ^ 0 has a surrounding bump, but 

the converse is not true. We can encounter a bump in a density function where the 
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second derivative changes sign, but the first derivative does not. In this case, we say 

that there is a shoulder in Therefore, we have to adjust the definition of a 

bump to avoid the situations when we have mere changes of concavity on the slopes 

of a "true" bump. 

Combining the features of definitions 2.2 and 2.3, we give the final definition of a 

bump. 

Defini t ion 2.4 /(•) has one bump in if and only if 

• There exists a mode M € ( £ L , % ) , 

• Vi G (tL, M) f'(t) > 0, and 

• Vte(M,tu) / ' ( * ) < 0 

The second problem is the difficulty of estimating the number of bumps in a 

density function. Let us consider a random variable X with a probability distribution 

F(-). When we take a sample from it, we get little information about the tails of the 

distribution. In a simple case of estimating the mean p of X in a nonparametric 

way, Bahadur and Savage (1956) showed that there is no effective way to get a truly 

nonparametric point estimate of p or a confidence interval for p. 

Similar problems are encountered when estimating nonlinear functionals of a den

sity function /(•) or its derivatives. Two integer-valued functionals that are commonly 

looked at are mixture complexity K(F) (the number of mixture terms needed to rep

resent a density) and M(F), number of modes in /(•). In the applied setting, it is of 

interest to estimate such functionals. However, there is a logical difficulty with this, 

since all the functionals depend on the existence of a density with some amount of 

regularity. And we cannot verify empirically that a density is well-behaved. Donoho 

(1988) showed that we can still make inferences about the values of K(F) or M(F) 
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with a non-parametric validity. We have a restriction, however, that all the state

ments are of a one-sided nature. In the M(F) example, we can make a statement: "I 

have 90% confidence that the number of modes of the underlying distribution is at 

least 2". The statement above does not depend on the assumptions about the under

lying distribution. It is totally empirical and it has at least the indicated coverage. 

Moreover, Donoho showed that using his procedure we get one-sided bounds that are 

consistent and converge at rapid rates. 

The main idea behind the non-existence of upper limits of some functionals is 

that close to any distribution of interest, there are indistinguishable distributions for 

which the functional takes on arbitrarily large values. Given a fixed sample size, it 

is not possible to put an upper bound on the functional based only on the empirical 

evidence. We would have to make some a priori assumptions that are not testable by 

data on hand. 

There is an ambiguity arising in the definition of the functional M(F) counting the 

number of modes. When a distribution is flat on some interval, we can argue that it 

has infinitely many or just one mode there. Donoho gave a definition which yields only 

one mode in such a situation. He used Silverman's idea (1981) of a convolution $^ *F 

of a normal distribution function $ / j with variance h and an arbitrary distribution 

function F. G = $ / i * F is a smooth distribution function with derivatives of all 

orders. Therefore, Donoho defined the number of modes of G, M(G), as the number 

of downcrossings in G". Using Silverman's result (Theorem 4.1) about monotonicity 

of M(G) with respect to h, M(F) was defined as 

M(F) — lim M ( $ / l * F) (2.5) 

In the light of Definition 2.5, we can make statements of the form: the correct number 

of modes (bumps) may be larger than a certain number, but I have a high confidence 
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that it is not smaller. In general, the data can invalidate simple models, e.g. a 

distribution with one mode. However, data cannot usually rule out complex models. 

Therefore, inference about most measures of complexity pertain to lower bounds, but 

not upper ones. 

2.2 B u m p s i n Regression Functions 

Let us turn our attention to the regression problem. We define m(-) to be the true 

(smooth) regression function and we denote its k-ih derivative by m^(-). We assume 

m(-) is defined on an open interval (a, b) where either a can be —oo or b can be + 0 0 . 

We define a mode in m^(-) for k — 0,1,2,... by 

Definition 2.5 m^(-) has a mode M if and only if M is a local maximum ofm^(-). 

Following the definition 2.4 for a bump in a density function, we define a bump in 

the regression function m(-) or in its fc-th derivative m^(-) by 

Definition 2.6 mW{-) has one bump in [tL,tu] if and onty if 

• there exists a mode M £ (ti,tu), 

• V i G (tL,M) m( f c + 1)(t) > 0, and 

• V i e (M,tu) m( f c + 1)(i) < 0. 

In section 4.3, we discuss ways to estimate the number of bumps in regression 

functions and their derivatives. 

2.3 Testing i n Densi ty versus Regression 

In the last two sections, we defined modes and bumps as well as presented some 

results pertaining to them. So far, we have looked at the similarities between density 
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and regression functions. However, the questions asked in the two mentioned contexts 

are usually different. In the density framework, the main questions arising are "Is the 

density function unimodal?" or "Should we make use of the bimodal mixture?". In 

the regression setting, we are more interested in the monotonicity, or possibly in the 

existence of a few local maxima in the function. Therefore, we can test for 0 bumps 

in the regression context, but not in the density function environment. Besides, very 

often we are interested in the number of bumps in the derivatives of the regression 

function. For example, in the growth data analyzed in section 5.3 we inquire about 

possible spurts of growth, requiring the estimation or testing for the number of bumps 

in the speed of growth. We can be concerned as well with the change in the speed of 

growth, i.e. with acceleration. We will show in Chapter 4 how our testing procedure 

can be applied in tests for regression functions or their derivatives. 
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Chapte r 3 

M e t h o d s o f E s t i m a t i o n 

In this chapter, we give a brief summary of the nonparametric techniques used in 

univariate regression estimation. Some of the most popular methods are based on 

kernel functions, spline functions and wavelets. The first two of these methods have 

become commonly used in recent years. In section 3.1, we give a review of prevalent 

kernel smoothing methods with special emphasis on the local linear approach. Spline 

smoothing is reviewed in section 3.2. We concentrate mostly on smoothing splines. 

Before giving an overview of kernel-based nonparametric regression, we will introduce 

some relevant terminology and notation. We focus on the fixed design context with 

equally spaced non-random numbers (t\,...,tn) € [a, b\. The response variable is 

assumed to satisfy 

3.1 K e r n e l Smoothing 

Yi = m(ti) + £i, i-l,...,n (3.1) 

where ei, en are independent random variables with 

E{£i) = 0 and Var(e*) = a2. 
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We call m(-) the mean (or true) regression function. 

The fundamental idea behind kernel smoothing lies in the following premise: data 

points far away from t carry little information about the value of m(t). Thus, the 

intuitive estimator for the mean regression function is the running local average. A n 

improved version of it is the locally weighted average. Let K(-) be a function which 

will be used to assign weights. Usually K(-) is a probability density symmetric about 

0 and is called a kernel function. Let h be a bandwidth (sometimes called a smoothing 

parameter), which is a nonnegative number controlling the size of a window around 

the point of interest t. With notation Kh(-) = K(-/h)/h, the Nadaraya-Watson kernel 

regression estimator is given by 

m k ( t ) = & , * » < « . - * ) ' ( 3 ' 2 ) 

Most commonly used kernel functions include the normal kernel 

K(t) = (v / 2^) _ 1 exp( - t 2 /2 ) , 

and the "symmetric Beta family" 

^ ) = B e t a ( 1 / 2 , 7 + l ) ( 1 - t 2 ) X - 7 = < U " " ' ( 3 ' 3 ) 

where the subscript + denotes the positive part taken before the exponentiation. The 

choices 7 = 0,1,2, and 3 in (3.3) lead respectively to the uniform, the Epanechnikov, 

the biweight and the triweight kernel function. The selection of the kernel function is 

not very important in general. However, we choose to work with the normal kernel, 

since it enables us to use convolution theorems true only in the normal case (see 

Silverman (1981) and Babaud et.al. (1986)). On the other hand, the choice of the 

bandwidth h is crucial for the estimation. Small values of h give us an undersmoothed 

estimate, and large values of h give us an oversmoothed estimate. 
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Gasser and Muller (1979) proposed another way to introduce weights. Their 

estimator (also called the convolution weighted estimator) is given by: 

mh{t) =YjYi fSl Kh{t - u)du, (3.4) 

where s 0 = — o o , sn = o o , ti < Sj < for j = 1, ...,n — 1 and K(-) is a density 

function. 

Both kernel estimators mentioned so far use a local constant approximation. We 

can see that by applying a local least squares regression when approximating m(-) by 

a constant 6. We obtain an estimate 

n n n 

6 - a r g m i n ^ ( l i - 6)2Wi = J2wiYi/Y,w^ 
i=l i = l i=l 

where u>i = Kh(ti — t) in the case of the Nadaraya-Watson estimator 

and uii = Kh(t — u)du in the case of Gasser-Miiller estimator. 

Local constant approximation gives us a large bias in estimation of m(t) when t is 

close to either a or b. A local linear or a higher order local polynomial fit does not have 

this problem, and so is recommended. Higher order polynomials are preferable when 

we want to accurately fit finer features of the data, e.g. peaks and valleys. The main 

drawbacks of higher order local polynomial fitting are its computational complexity 

and higher degree of sample variability. 

Let p be the degree of the local polynomial being fit. We estimate m(t) by rhh(t; p) 

obtained by fitting the polynomial 

pQ + Pi(--t) + ... + (3p(--ty 

to the (U, Y^'s using weighted least squares with kernel function K(-). The estimator 

rhh(t;p) is fio where 0 = (/30, •••,/5p)' is the minimizer of 

-fa- ... - 0p(ti - t)p}2Kh(ti - t). 
i = i 
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The general solution to the minimization problem is given by 

3 = (T^WtTtY^WtY 

where Y = (Y\,..., Yn)' is the response vector, 

1 h - t ••• (h-ty 

Tt= j : : 

i tn-t ••• (tn-ty 

is an n x (p + 1) design matrix and 

Wt = diag{tf h(ti - t),..., Kh(tn - t)} 

is an n x n diagonal matrix of weights. 

We can derive explicit formulae for the Nadaraya-Watson (p = 0) and the local 

linear (p — 1) estimators. In the latter case, we obtain 

mh(t; 1) = n " 1 £ — ^ k ) " _ t ) } K f l { t i ~ t ) Y i 

s 2(<; h)sQ(t; h) - §i(t; h)2 
(3.5) 

where 

sr{t; h) = n-1^2(ti-t)rKh(ti-t). 
i=l 

A n important problem in estimation is the choice of the degree p of the polynomial 

to be locally fitted. For sufficiently smooth regression functions, rhh(t;p) has better 

asymptotic performance for larger values of p. In practice, however, we would need 

a very large sample size to see the substantial performance improvement. Since odd 

degree fits have good bias and boundary properties, it is recommended that p = 1 or 

p = 3 be used (see Wand and Jones (1995)). In our work, we use p = 1, i.e. a local 

linear kernel regression estimator. 

Our interest extends beyond the estimation of the regression functions themselves. 

In some problems, the estimation of the derivatives of the regression function is more 
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important than estimation of the function itself. For example, in analyzing human 

growth curves, the first two derivatives of height as a function of age have significant 

biological meaning. Estimation of the derivatives is also needed for plug-in bandwidth 

selection procedures (see Wand and Jones (1995)). We can easily use local polynomial 

fitting to estimate the rth derivative of the regression function. We use the coefficient 

of the rth derivative of the local polynomial being fitted at t to estimate m(r\t). For 

instance, m'h(t\p) = 0i, and in general, the local pth degree estimate of m^(t) is 

m^(t ;p) = r!/? r. It should be noted that m^\t;p) ^ (m^(t;p))(r) in general. The 

preferred selection of the degree p of the local polynomial fit is such that (p — r) is 

odd. In the case of (p — r) even, we obtain a more complicated expression for the bias 

of m^\t;p). More seriously, the bias for t close to the boundary of (a, b) is of higher 

order than the bias for the t in the interior of (a, b). 

As mentioned before, the value of the bandwidth h plays an important role in 

kernel regression estimation. In many situations a satisfactory choice can be made 

subjectively by eye. This involves looking at several regression estimates over a range 

of bandwidths and choosing the "best" in some sense. However, it is also desirable 

to have an automatic procedure for the bandwidth selection. Currently available 

methods can be divided into two categories: plug-in and cross-validation. The for

mer technique has many attractive theoretical and practical properties (see Ruppert, 

Sheather, Wand (1995)), and can be easily implemented in S-PLUS. 

M.P. Wand developed a function locpoly using a plug-in procedure in the band

width choice. We use locpoly in our simulation study, discussed in detail in Chapter 

5. 
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3.2 Spline Es t imat ion 

We turn our attention to another method of nonparametric estimation: splines. In

tuitively, we can think about splines as piecewise polynomial functions. The name 

"spline" comes from the similarity of a spline fit to the curve obtained by a draftsman 

using a mechanical spline - a thin flexible rod with weights, used to fix the rod at 

points through which one draws a smooth interpolating curve. 

For simplicity, we assume our true regression function m(-) is defined on a closed 

interval [0,1]. Of course, any closed interval can be chosen. 

We first define a general polynomial spline of degree D: 

Defini t ion 3.1 A general polynomial spline g is a function on [0,1] with the following 

properties: Given an integer D > 1, and J points 0 < t\ < t2 < .. • < tj < 1, called 

"knots" 

g G TTd, t G [U,ti+i], for i = 0,...,J, 

where t0 = 0, and tj+\ = 1 

and g G CD~\ t G [0,1], 

where nD is the class of polynomials of degree at most D and CD is the class of 

functions with D continuous derivatives. 

Thus, g is a Dth degree piecewise polynomial with the pieces joined at the knots in 

such a way that g has D — 1 continuous derivatives. This general idea of polynomial 

splines was of interest to numerical analysts for over 30 years. Many interpolation 

results have been proved about the convergence of general splines, as well as their 

derivatives and integrals, as the number of knots becomes dense in [0,1]. Because 

of these properties as well as good features in smoothing noisy data, splines are of 

interest to statisticians. The two principal classes of splines used in statistics are 
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regression splines and smoothing splines. We will present the former briefly in the 

next section, and the latter in more detail in section 3.2.2. 

3.2.1 Regression Splines 

We could define regression splines in general, but to be more concrete, we present a 

cubic regression spline. Let ti,...,tj be a knot sequence such that 0 < ti < ... < 

tj < 1. A cubic spline function g satisfies the two following properties: 

• g is a cubic polynomial on each of the intervals [0, ti], [ti,t2],..., [tj-i, tj], [tj, 1]. 

• It is twice continuously differentiable. 

The collection of cubic spline functions is a ( J + 4)-dimensional linear space. The two 

most popular bases used for this space are: 

• power basis: (t — (j = 1,..., J) , 1, t, t2, t3; 

• B-spline basis: Let B\D^ denote the ith B-spline basis function of degree D. 

Therefore, the basis functions for a cubic spline are {B^l,..., B^}. We can 

define B^'s using a recursive formula. Let 

... = t-i = t0 = 0 < ti < ... < tj < 1 = tj+i = ... 

We start with the degree 0 local polynomial, i.e. local constant, 

B^it) = I{t G [k, ti+l)} for i = 0 , . . . , J - 1 

and 

B^(x)=I{t e[tj,l}}. 

Now, given B\ , i = — (D — 1 ) , . . . , J, define 

t-U ti+D+l — t 

ti+D+l ~ ti+l 
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where we take 0/0=0 and undefined/0=0. 

We can observe that B\D\t) is equal to 0 for t ^ [ti,ti+D+i\. Thus, design matrices 

based on 5-splines are sparser than those using the power basis, and so we achieve a 

better numerical stability with the 73-spline basis. This fact plays an important role 

in the estimation procedure described below. 

Using the S-spline basis we can express a cubic spline function as 

g(t) = E OjBfit). 
i = - 3 

For given knots ti,... ,tj, the spline regression method finds the best spline approxi

mation by the following least squares regression: 

m i n . £ { * - E ^ f ^ ) } 2 -

Using this approach, we obtain an estimate of m(-) (unique if J > D) of the form 

m(t) = E OMt). 
j=-3 

The procedure just described is very sensitive to the choice of knots as well as to 

their location. Knots are usually placed in the spots where curvature of m(-) changes 

rapidly. One can find in the literature a few methods to deal with knot selection. 

Most of them are based on the knot deletion idea (see Fan and Gijbels (1996)). 

3.2.2 Smoothing Splines 

Our goal is to estimate the regression function m(-) using the least squares fit, but 

with the restriction that m(-) is not too rough or wiggly. Smoothing splines provide 

one of the ways to find such an estimate. We want to find a minimizer rh\(-) over an 

appropriate space of functions of 

E(y4 - m{U))2 + X f\Lm(t)]2dt, (3.6) 
i=l , ' 0 
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where A > 0 is called a smoothing parameter, and L is a linear differential operator 

of order k > 1 defined as 

The minimization is carried out over all m(-) in the Sobolev space 

9ik[0,1] = {m : [0,1] —>• IR : m^\j — 0 , . . . , k - 1 are absolutely continuous 

Going back to the expression (3.6), we can see that the first part of it penalizes for 

the lack of fit, and the second part penalizes for m when Lm is far from 0. We can 

see clearly from (3.6) that setting A = 0 would give us an interpolation to the data. 

For large A, one is, essentially, minimizing the second term, and as A —t +oo, our 

estimate converges to m with Lm{t) = 0 almost everywhere t 6 [0,1]. We say that 

rridef is a default model if and only if Lmdef{t) — 0 almost everywhere t. 

Before looking at the general solution to the minimization problem, let us look 

at a few examples of the linear differential operator L. The most popular one is 

Lm = m" with the default model mdef(t) = a 0 + ait, (a0,a>i e IR). The function 

rh\(-) minimizing (3.6) is known as a natural cubic spline function, a general cubic 

spline with knots t\,... ,tn, with rh\ linear on [0,ti] U [tn, 1]. Using m"[t) in (3.6) 

corresponds to penalizing visual roughness. It is very difficult for us to see by eye 

the behaviour of third or higher derivatives. Penalizing by the second derivative is 

adequate to enable us to exclude rough and wiggly functions. However, the drawback 

of this approach is in assuming the default model is a line. In many situations, we 

can gain considerably in estimation if we use other linear differential operators. One 

of the classes of L, which includes Lm = m", is Lm = for k = 1,2,3,... with the 

k-l 
(Lm)(t) = mk(t) + J2 Wjm^t) (3-7) 

3=0 
where Wj G IR for j — 0 , . . . , k — 1. 
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default model mdef(t) = a0+ait+.. .+ak-itk~~1 (a0, a i , . . . , ctk-i £ IR). The functions 

minimizing (3.6) with Lm = are known as natural splines (general splines of 

degree 2k-l, with knots ti,...,tn, but with zero kth derivative on [0,ti] U [in>l])-

In another example, used in the growth data analysis (described in chapter 5), the 

default model is commonly assumed to be of the form m<fef(£) = an + aiexp(—7^) 

with the corresponding Lm = m" + 7m . 

In our work, we use Lm = m" and Lm = m" + 7 m as penalty terms in (3.6). For 

both L's, the default models are monotone. Therefore, when the smoothing parameter 

A —> + 0 0 we obtain estimated functions with 0 bumps. 

The general solution to the minimization problem (3.6) involves the theory of 

reproducing kernel Hilbert spaces. The details and proofs of the main results can be 

found in Wahba (1990) or in Heckman (1997). We present here the most important 

points. The minimizer of (3.6) is of the form 

k n 
m = T, &M t) + T,Pii'j(t)- (3-8) 

i = l j=l 

where the UiS (i = 1,..., k) form a basis for the default model space, and fj(t) can be 

calculated by the integration of the Green's function G(-, •) associated with L. The 

Green's function satisfies 

f(t) = f G(t,u)(Lf)(u)du 

V / eHk with /W(0) = 0, i = 0 , . . . , k - 1. 

G is easily computed, given ui,..., u^. Then 

"j® = K(tj,t), 

K(s,t) = f G(s,u)G(t,u)du = K(t,s). 
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The only remaining task is to choose a smoothing parameter A in such a way 

that we obtain a "good" fit. As mentioned in the last section, our estimate will go 

from interpolating the data (when A —> 0) to taking the form of the default model 

(when A —> + 0 0 ) . Therefore, we would like to find an optimum smoothing parameter, 

that allows us flexibility in the modeling, but does not let the model dominate the 

estimation procedure. 

A few methods for estimating the optimum smoothing parameter have been pro

posed in the literature on smoothing, but there is no general agreement on one method 

being superior to the others. Two possibilities are cross validation (CV) and general

ized cross validation (GCV). Both ideas are based on minimizing the prediction error 

MSPE. Let rh\(-) denote the regression function fitted to the data {^i}"- We would 

like to choose A in such a way as to minimize 

MSPEX = £(Y; - mxiU))2, (3.9) 
i=i 

where the Y-'s are new observations at each U respectively. The difficulty with this 

approach is that the Y- 's are unknown, so we have to replace them with the observed 

values { l i } " . However, minimizing (3.9) with direct substitution of Y{ for Y- would 

result in the choice of A = 0, since we fit the regression model to the "old" data, 

thus overfitting the data on hand. To adjust for that unpleasant feature, we divide 

our data set into a training sample (n — 1 observations) and a testing sample (1 

observation) in every possible way, i.e. we estimate the regression function with case 

i removed, and we compare the fit with the original data point. Therefore, we define 

the cross-validation function as 

Def in i t ion 3.2 

C V ^ - ^ - m ^ i U ) ) 2 , (3.10) 
n i=i 
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where m A

 l\ti) is the estimate of the regression function with case (U,Yi) removed. 

We select A according to the CV criterion by 

XCv = argminCVA- (3.11) 
AelR 

In practice, this procedure looks very time-consuming, since it seems that we would 

have to fit n separate curves. However we can use a shortcut making use of only one 

fit for each value of A. It can be shown that the solution to the minimization problem 

(3.6) can be written as a linear combination of the observed values Yi 

rhA(t) = 5(A)Y (3.12) 

where m A ( t) = ( m A ( £ i ) , m A ( £ „ ) ) ' and Y = ( Y i , . . . , Yn)'. We call 5(A) a hat 

matrix, because it maps the vector of observed values Yi into fitted values rh\(ti). 

The following result 

Y, - *!-"(*,) = (3.13) 

and the theorem using it can be found in Green and Silverman (1994). 

Theorem 3.1 The cross-validation function CV\ satisfies 

where mA(-) is calculated from the full data set using a smoothing parameter A. 

Using Theorem 3.1, we can write an efficient computer program to calculate CV\ on 

a grid of A values. We do not have a guarantee that the function CV\ is convex in 

A, so it can have many local minima. Therefore a grid search is the safest method of 

correctly calculating the smoothing parameter \cv-

Another method used frequently in smoothing parameter choice is generalized 

cross validation, abbreviated by G C V . It is a modified version of cross validation 
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described above. In G C V the factor 1 — ^ ( A ) in the denominator of (3.14) is replaced 

by the average value of 1 — Su(Xys, i.e. by 1 — n~1tvS(X). The generalized cross 

validation function is 

G C V * = n ( l - n - t r S ( A ) ) 2 • ( 3 - 1 5 ) 

We choose the smoothing parameter XQCV by minimizing (3.15) over values of A. One 

of the reasons G C V was introduced was computational. We can find the trace of the 

hat matrix without finding its diagonal elements. Nowadays, however there is little 

difference between computing time for C V and G C V . 

The slight advantage of using G C V can be seen when we think, analogously to 

standard regression, of the diagonal elements of the matrix S(X), the 5ij(A)'s, as the 

leverage values. We know that at the points with high leverage the predicted values 

are very sensitive to the observations made at these points. Using (3.13) we can 

rewrite G C V function in the form 

GCVX = „ - ± { ( ( , - , ^ A ) ) , ) ' « - **-"<*))'} • (3-16) 

We observe from (3.16) that GCV when compared to the CV criterion (Definition 

3.2), downweighs the deleted residuals at points with large leverage values. 

Another way of looking at GCV is possible when we invoke classical least squares 

regression, and its idea of the number of model parameters. For a parametric model, 

the least squares vector of fitted values is Y = HY with H the so-called hat matrix. 

The number of parameters is the sum of the diagonal elements of the hat matrix, 

i.e. for a model with k parameters, we have k — tr(H). We can introduce a similar 

concept in nonparametric regression. The degrees of freedom of the model can be 

defined by analogy to standard regression as the tr(5(A)) (see Hastie and Tibshirani 

(1990) or Green and Silverman (1994)). Therefore, we can define the equivalent 
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degrees of freedom for noise as 

EDF = tv ( / - 5 ( A ) ) . 

The EDF goes from 0 when A = 0 (interpolation to the data), to (n — k) when 

A —> +00 (k is the dimension of the default model). The following expression for 

GCV\ can be easily derived 

E D F 2 

In our simulation studies we use the GCV function to choose the A value. We 

selected this method because it has more favorable properties than CV (see Wahba 

(1990)). However, the preference for one or the other criterion is not crucial in our 

work, since we deal with hypothesis testing and not the true regression function 

estimation. We use two S-PLUS modules Lsp l ine and Pspl ine written by J.O. 

Ramsay. Lsp l ine enables us to use the penalties L that are linear combinations 

of the derivatives of m(-), e.g. in our study we use Lm = m" + 7m ' . Pspl ine allows 

us to fit a smoothing spline associated with the penalty Lm = m^ for k E IN. 
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Chapte r 4 

Test ing for B u m p s 

As mentioned in section 2.3, we have to look separately at the density estimation and 

the regression estimation problems. The differences between them carry through to 

hypotheses testing. In the next section I describe the methods used in bump-hunting 

in the density context. Review of bump testing in regression follows in section 4.2, 

and our method is presented in section 4.3. 

4 . 1 D e n s i t y F u n c t i o n 

Consider a data set {X±, ...,Xn} coming from a population with a density function 

/(•). Firstly, we want to estimate the density /(•) using one of the available methods. 

Secondly, we wish to make inferences about the features of the true density. We 

are interested in the existence of modes and associated bumps. There have been 

different approaches proposed to the bump-hunting problem, starting from the early 

parametric approach in the 1960's through nonparametric methods developed mainly 

in the 1980's and 1990's. 

Cox (1966) has suggested constructing a histogram from the data choosing a bin 

width broad enough to smooth over spurious bumps, but not so broad as to obscure 
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the effects under study. Let fi denote the number of observations falling in cell i, i.e. 

fi = YJj=i € Ci). Therefore fi ~ Binomial (n,p = fc. f(x) dx) and 

fi I fi-i + fi + fi+i ~ Binomial (n = / j _ i + fi + fi+i,p) 

with p = P(X <E d\X e Ci-i U Ci U C i + i ) 

E(/Q 
E ( / i _ 1 ) + E ( / i ) + E ( / i + 1 ) -

We can define a test statistic 

y/2(fi-i + fi + fi+i)' 

Using the normal approximation to the binomial distribution, it can be shown that 

Tj has an approximately normal distribution. Values of Ti significantly different from 

zero will indicate either convexity (Tj < 0) or concavity (Tj > 0) of the true density 

function around cell i. When we examine the sequence of Tj's, we can get some 

evidence on the number of bumps in / . 

There were two approaches proposed to test the hypothesis 

H0 : # bumps = 1 versus Ha : # bumps = 2 

using normal models. Wolfe (1970) used the likelihood ratio to test the normal 

null hypothesis against the alternative of a two-component normal mixture. The 

proposed test, however, is very sensitive to the normality assumption, and it may 

decide with a high probability that a long-tailed unimodal distribution has two modes. 

Engelman and Hartigan (1969) proposed dividing the sample into the two subsets 

which maximize the likelihood ratio that the two subsets are sampled from normal 

distributions with different means, against the null hypothesis that the means are 

equal. 

In the 1980's nonparametric methods in bump-hunting started gaining popularity 

due to greater availability of computing resources. 

27 



Good and Gaskins (1980) compared density estimation and bump hunting. Their 

notion was that bump-hunting differed from density estimation, since the former 

involved significance testing, and the latter estimation. They used the maximum 

penalized-likelihood (MPL) method for estimating the probability density and for the 

bump-hunting. Let / be the estimated density using M P L . They then used iterative 

surgery to construct another estimate /* in which the bump is absent. The difference 

between the penalized log likelihood of / and /* gave log-odds ratio in favour of the 

bump. 

Silverman (1981) proposes a test statistic for hypotheses concerning the number 

of modes in the density. His statistic is calculated by application of a kernel density 

estimator defined at a point x as 

where K(-) is known as a kernel function. Using this definition, we can say the window 

width h controls the amount of data used to calculate the estimate of f(x). Now, if 

the data are strongly bimodal, we would need a large value of h to obtain a unimodal 

estimate. Using this idea, we can test the null hypothesis that the density / has at 

most k modes versus the alternative that / has more than k modes. 

Formally, we define the k-critical window width hcru by 

hcrit = mf{h : /(•, h) has at most k modes} (4.3) 

Large values of hcrit will lead to rejection of the null hypothesis that /(•) has at most 

k modes. The existence of hcrit is guaranteed, if the kernel used in estimation is 

normal. Silverman proved 

Theorem 4.1 Given any fixed {Xi,Xn}, define f(x; h) as above, using the normal 

kernel K(x) = (\/27r)_1 exp(—x2/2). For each integer m > 0, the number of local 
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maxima in dmf(x; h)/dxm as a function of x is a right continuous decreasing function 

ofh. 

The following corollary can be used to simplify computation of hcrit. 

Corollary 4.1 Using the definition of hCTn as above and f(-,h) calculated using the 

same data set, /(•, h) has more than k modes if and only if h < hcrit. 

Thus we can use a simple binary search procedure to find hcrit. For any value h 

we can tell if h < hcra by counting the number of modes in f(-;h). However some 

caution should be exercised, since the cited result does not apply to other kernels or 

to other smoothing techniques. Babaud, Witkin, Baudei, and Duda (1986) examined 

different kernels used in kernel density estimation. They proved that in the class of 

symmetric, infinitely differentiable kernels with tails vanishing faster than an inverse 

of any polynomial, the normal kernel is unique in guaranteeing the conclusion of 

Theorem 4.1. 

Hartigan and Hartigan (1985) have proposed a technique called the dip test. They 

defined a statistic DH by 

DH = min sup \Fn(x) - F(x)\ (4.4) 

where F(-) is a cumulative distribution function, Fn(-) is the empirical cumulative 

distribution function of the data and U is the class of all distribution functions with 

unimodal densities. They define a unimodal distribution function F(-) with mode at 

x = m as F(-) being convex in (—oo,m] and concave in [m, oo). Additionally, for 

comparison purposes, the depth test and the likelihood ratio test are specified. The 

depth test identifies three intervals of equal length such that the middle interval has 

low empirical probability relative to both the outside intervals. The likelihood ratio 
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test statistic is denned as 

sup £ log/(*<)/ sup f > g / p Q (4.5) 
/ £ UIC i=i / € ̂ 2 C i=i 

where U\c is the class of unimodal densities and U2C is the class of bimodal densities, 

constrained by max/(-) < C. The dip test performed slightly better than the depth 

test, and much better than the likelihood ratio test. 

Hartigan (1987) generalized his dip test to higher dimensions. He proposed a 

SPAN statistic, which used an analogue of the empirical distribution function on 

the minimum spanning tree. However, the SPAN statistic is computationally and 

conceptually complex. 

Hartigan and Mohanty (1992) offered yet another test called R U N T , which is based 

on single linkage clusters of {Xi, ...,Xn} (the maximal connected subgraphs formed 

by a clustering method based on a distance matrix model). The test is defined as 

follows. We consider all the single linkage clusters. They form a hierarchical tree 

with each nonsingleton cluster dividing into a few subclusters. Each cluster C has a 

smallest subcluster (or "runt"). Let n(C) be the number of points in this subcluster. 

We define the R U N T statistic as the maxcn(C). Hartigan (1981) justified the R U N T 

test statistic by the asymptotics of the single linkage clusters. If there are at least two 

modes in the population density, then asymptotically, just one of the single linkage 

clusters will split into two clusters of points corresponding to the different modes, with 

the smaller of the clusters being the runt. A large number of points in the smaller 

cluster would indicate bimodality. On the other hand, if there is a single mode, we 

expect each cluster to divide into two clusters, the smaller of which contains very few 

points. Therefore, a large value of the R U N T statistic should indicate multimodality. 

Muller and Sawitzki (1991) proposed a method for analyzing the modality of a 

possibly multivariate distribution based on the excess mass functional. This func-
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tional measures excessive empirical mass defined by a comparison of the empirical 

distribution to multiples of a uniform distribution. In one dimension the resulting 

test is equivalent to Hartigan's dip test. 

Minnotte (1993, 1997) introduced a whole new class of tests. He used kernel 

density estimation with varying bandwidths h. Due to the fact that data-driven choice 

of the bandwidth h is difficult, he proposed a new graphical method, a mode tree, to 

assist in bandwidth selection. A mode tree is a graphical tool relating the locations 

of modes in density estimates with the bandwidths of those estimates. For each value 

of the bandwidth, a density estimate and location of the mode are calculated. The 

mode locations are then plotted against the logarithm of the bandwidth. The usual 

scale is not appropriate here, since large changes in a bandwidth when the bandwidth 

is large have less of an effect on the density estimate than smaller changes in h when 

h is small. Additional functionality can be added to a simple mode tree. Firstly, we 

can draw lines to show the connections between the new modes and the old ones from 

which they split. Minotte suggested a second enhancement which helps us visualize 

the presence and the importance of the bumps by drawing the widths of mode traces. 

It may be more appropriate to consider the mode tree idea as an exploratory device 

useful in indicating modes being worth further study. It is therefore unclear how we 

can apply this approach to testing, since we make multiple comparisons at different 

bandwidths. 

Chaudhuri and Marron (1997) offered us a method based on scale space ideas 

developed first in computer vision literature. Here "scale" means "level of resolution" 

or in a kernel density context a bandwidth - h. Their proposal, the SiZer, assesses the 

significant zero crossings of derivatives of estimates of the density. The density esti

mation is carried out simultaneously at different values of the bandwidth h. Marron 

noted that only "blurred signal" is available from a finite sample in the presence of 
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noise. Therefore, the focus of his analysis was on the convolution / * K h representing 

the "blurring" of the signal. At each level of h, the confidence limit for the derivative 

of a density f'h(x) was obtained, where f'h(-) denoted the derivative of / * Kh. The 

behaviour of the estimator f'h(-) at each x and h is presented via the SiZer colour 

map. Chaudhuri and Marron's method can be applied in the regression framework 

by looking at the first derivative of the regression function. The advantage of their 

technique is not only in detecting the number of significant bumps, but also in show

ing their locations. Chaudhuri and Marron mentioned, however, that their approach 

had less power than methods devised specifically for mode testing, since mode tests 

are not impeded by trying to be simultaneous at each x and h. As with the mode 

tree idea, SiZer should be used mostly as an exploratory tool, with follow up analysis 

of important features of interest. 

4.2 Regression Funct ion 

It is very surprising that tests for bumps are so much more prevalent in the density 

estimation context than in the regression estimation. Procedures for bump-hunting 

in the regression context are few, and only some of them can be readily implemented 

to the problem on hand. A n early reference is Schlee (1982) who proposed a test 

based on the greatest discrepancy of an estimate of the derivative of the regression 

function from zero. He used a modified version of kernel estimators, and based his 

tests on the asymptotic distribution of the maximal deviation. Schlee's tests can be 

used to test for constancy, monotonicity, or convexity of the underlying regression 

function. The drawback of the methodology is in the lack of discussion of practical 

implementation. 

Heckman (1992) suggested that one might recognize an occurrence of a bump in 
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the regression function if an estimate of the regression function rises and then falls 

over a range of independent variable. Letting Fj, i = 1,..., N denote these estimates, 

she defined a "bump" of size k at the j-th estimate as the event 

< <---<Yj>Yj+1>---> Yj+k] (4.6) 

She studied the asymptotic distribution of 5^, the number of bumps of size k, and 

KN, the maximum bump size observed. was proven to be a consistent estimator of 

the number of local maxima of a regression function provided k —> oo and k/N —> 0. 

However in practical applications, was very sensitive to the choice of k and iV in 

determining the correct number of bumps. 

Bowman et.al. (1998) constructed a test for the monotonicity of the regression 

function that is analogous to "Silverman's test" (1981) of multimodality of a prob

ability density function. Further discussion of "Bowman's test" is given in section 

4.3. 

4.3 N e w Test: CriSV 

As mentioned in section 4.2, results on bump-hunting in regression are few, when 

compared to the results in density estimation. These few results mainly concern 

testing for monotonicity. We would like to explore here bump-hunting in regression 

using spline methods of estimation. In the first place in section 4.3.1, we present the 

discussion on estimating the number of bumps in the regression function. Then in 

section 4.3.2, we propose a testing method inspired by Silverman's idea of defining 

the hcrit statistic. In section 4.3.3 we give a description of a testing procedure for the 

derivatives of the regression function. 
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4.3.1 Counting Bumps 

Following on the idea (4.6) of Heckman (1992) , we can decide that a bump in m^(-) 

(k=0, 1, 2, ...) has occurred if the estimates of m^(-) rise and then fall over a range 

of the independent variable. If we let = m(k\ti), i = 1, . . . ,n, be our estimates, 

then we say m^(-) has one bump in (tj-i,tj+i), if 

<y}-li< • • • < * f > >f /5> > y $ } (4.7) 

where A;=0, 1, 2, 3,.... We call it an /-bump to show how many points we take into 

account when estimating the number of bumps. 

It is very appealing to use (4.7) in the testing procedure for the number of bumps. 

However, the restriction of the estimates to be strictly rising and then falling over 

a range of an independent variable does not seem to work well in practice. We do 

not have any guarantee that in the vicinity of a mode the estimates of the regression 

function will rise on one side of a mode and fall on the other side at the grid points. 

In addition, the monotonicity property proven by Silverman for modes (Theorem 4.1) 

does not hold for regression estimates. Empirical studies show that often the estimate 

of the number of bumps increases and then decreases as the the smoothing parameter 

increases (see section 5.1). Another problem arises in the definition of A c r;t, which is 

needed to calculate the estimate of the regression function rh\CTit for our bootstrap 

procedure (step 1). For some data sets, rh\ may have fewer than k /-bumps for all 

values of A. Thus Xcrit does not exist. 

Furthermore, time of computation required to estimate the number of bumps 

according to (4.7) is prohibitively large. Therefore in our testing procedure, we utilize 

(4-8) 

as a basis for saying that rh^(-) has one bump in (tj^i,tj+i). We call this an /-max. 
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In our simulation studies, we found that /-max did not have the same problems as 

/-bump. 

For 1=1, /-bump and /-max are of course equivalent. However, for all other values 

of /, if a bump occurs according to /-max then it will occur according to /-bump, 

but not necessarily vice versa. If the true underlying regression function is not con

stant over an interval, the differences in the estimated number of bumps according 

to (4.7) and (4.8) happen mostly for small values of the smoothing parameter A. In 

section 5.1.1, we compare the performance of the CviSV using definitions (4.7) and 

(4.8) on one of the regression functions, and we discuss further the advantages and 

disadvantages of (4.8). 

4.3.2 CT\SV in Regression 

Formally, the following tests are performed for a fixed non-negative integer k: 

Ho : # of bumps in m(-) < k 

vs. 

Hi : # of bumps in m(-) > k 

Using the test statistic: A c r;t = inf{A : rh\ has k bumps}, we reject H0 if Xcrit is 

too big. The testing procedure would be reasonable if the number of bumps were 

monotone in A, i.e. the greater the A the fewer bumps of rh\(-). As A approaches 

infinity the limiting value of the number of bumps is the number of bumps in the 

default model m(-). 

The p-value of the test is then 

P = PHo{Krit > Krtt} (4-9) 
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where A°^, viewed as non-random in the probability, is the observed value of \Crit-

In the definition of p, we actually calculate the probability as a supremum under 

the null hypothesis, if Ho is composite. Unfortunately, the distribution of A c r j t is 

unknown, and the estimation of p is extremely computing-intensive. Therefore, we 

use the following shortcut. Define p* by 

p* = Pff0{mAof^has more than k bumps} (4-10) 

If the number of bumps in rh\ is monotone in A then p = p*. The set in (4.10) is 

fairly simple, since it depends on m A for a fixed value of A = X°^.s

it. 

The monotonicity of the number of modes as a function of the smoothing param

eter or the bandwidth was established in a few cases. In the case of kernel estimators, 

both Gasser-Miiller and Nadaraya-Watson estimators have the monotonicity prop

erty, if the kernel is normal. However, this feature does not hold for the local linear 

regression estimator or for the spline regression estimator. Fortunately, simulation 

studies indicate that, when defining a bump as in (4.8), data sets where the number 

of bumps in rh\ is non-monotone are very unusual, so we use p* as our estimator of 

the p-value. 

Theoretical derivation of the exact expression for p or p* would be hard or even 

impossible, therefore we will use bootstrapping to estimate p*. 

In order to keep the description of the procedure described below comprehensible, 

let us fix a smoothing method we use. We abbreviate the generic smoothing method 

utilized by SM. 

The bootstrap procedure involves the following steps: 

1. Calculate \°^ r

s

i t and m A o 6 ^ using SM. 

2. Find munr, an unrestricted estimate of m(-) with smoothing parameter for SM 

chosen by generalized cross-validation. 
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3. Find residuals e* = Y{ — munr(ti), i = 1 , n . 

4. Create a bootstrap sample Y* = m Ao6^(tj) + e*, i = 1 , n where the e*'s are 

drawn at random with replacement from the e^s, j = 1, 2 , . . . , n. 

5. Find the new estimate m* t ? for the bootstrap sample {17}" using SM. 
crit 

6. Find the number of bumps in m . 
Acrit 

7. Repeat 4-6 a large number of times, and calculate the estimate of the p-value 

by counting the number of estimates m\oba having more than k bumps, i.e. 
*crit 

# of estimates m*bs with more than k bumps 
p — Acrit 

# of bootstrap samples 

The choice of SM depends on the default model we assume. For instance, if the 

default model is a line, we use penalized least squares with Lm = m", and SM is then 

cubic Pspl ine . The smoothing method to calculate the residuals in step 3 need not 

be the same as the smoothing method in steps 1 and 5. However, steps 1 and 5 should 

use the same smoothing method. Therefore, we can experiment by using either spline 

smoothing or the local linear kernel technique in steps 1 and 5. When we use the 

kernel smoothing the definition of the critical smoothing parameter is analogous to 

Krit- We define hcrit = inf{ / i : rhh has k bumps} and we use the same bootstrap steps 

4-7 with mXobs replaced by mhobs. 
crit crit 

In step 3 we calculate the residuals using the estimates Y^nr = munr(ti). Another 

possibility would be to use the restricted estimates Yfrit = mXob^(U) in the residual 

computation. The two methods of generating the residuals may be equivalent when 

the null hypothesis is true, although this is not clear. The first method has an 

advantage of being appropriate under both null and alternative hypothesis while the 

second method is proper only when the null hypothesis is true. The results of our 
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simulation study (see Chapter 5) indicate that using the unrestricted estimates to 

obtain the residuals gives the right size of the test. 

Determining the "correct" residuals for hypothesis testing using a bootstrap tech

nique has not yet been done satisfactorily. There exist complex ways to adjust the 

bootstrap procedure in the simpler testing problems. However, no consensus has been 

reached on resolving the residual problem in more complicated testing procedures. 

Bowman et.al. (1998) used a similar bootstrap procedure in their test of the null 

hypothesis that m( - ) is monotone. They utilized the same residual generating method 

as we did in CriSV . The problem of the residual choice was mentioned in their work, 

but no satisfactory way to settle the issue was provided. Bowman et.al. used local 

linear kernel regression estimator in all steps of their bootstrap procedure. When 

the bandwidth h —» +00 this estimator tends to a least squares line fit, which is of 

course monotone. In a new test, CnSV, a default model plays the role of the line. 

The default model may not be monotone. Therefore, we can test for any number of 

bumps being greater than or equal to the number of bumps in the default model. 

4 . 3 . 3 CriSV for Derivatives 

So far we have concentrated on the bump-hunting problem in the regression function 

m(- ) . However we can extend our procedure to the derivatives of m(-). For example, 

we can test for any fixed integer-valued k 

H0 : # of bumps in m'(-) < k 

vs. 

Hi : # of bumps in m'(-) > k. 

We use the same test as for the regression function with m'(-) replacing m(-). Again, 

we have to use the bootstrap procedure to estimate the p-value of the test. Now, 
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instead of calculating the number of bumps in m(-), we compute the number of 

bumps in m'(-). 

Let us denote by SM, a generic smoothing method used in the procedure described 

below. The following steps are used in the bootstrap procedure testing for bumps 

in the derivatives: 

1. Calculate \°£ s

i t for m' and m Ao<« using SM. 

2. Find munr, an unrestricted estimate of m(-) with smoothing parameter for SM 

chosen by either generalized cross-validation or the plug-in method. 

3. Find residuals e\ = Yi — munr(ti), i = 1 , n . 

4. Create a bootstrap sample Y* = mXob^(ti) + e*, i = 1, ...,n where the e*'s are 

drawn at random with replacement from the e^'s, j = 1, 2 , . . . , n 

5. Find the new estimate for the bootstrap sample {^j*}" using SM. 

6. Find the number of bumps in m\0bS . 

7. Repeat 4-6 a large number of times, and calculate the estimate of the p-value 

by counting the number of estimates m'Xoba having more than k bumps, i.e. 
crit 

# of estimates m'Xobs with more than k bumps 

P — crit 

# of bootstrap samples 

Again, we use the same smoothing technique throughout the simulations, but 

we can experiment with a different smoothing method in steps 1, 2 and 6. In our 

simulation study, we employ Lsp l ine with the penalty Lm = m" + jm' with the 

default model mdef(t) = Po + Pi exp{—7^}. In the case of the Berkeley growth data, 

local linear kernel smoothing using the Splus function locpoly, is used as SM in all 
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steps. For comparison purposes, the data are re-analyzed, using locpoly in step 2, 

and Lsp l ine in steps 1 and 5. 

In Chapter 5 we present the results of the simulations for the regression functions 

and their derivatives as well as the analysis of the speed of growth in the Berkeley 

growth data. 
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Chapter 5 

Results 

In order to examine the proposed testing procedure for the number of bumps, we 

conducted a simulation study. We used several functions to assess the performance 

of a new test CviSV. In section 5.1, we present the results of the simulations for two 

classes of regression functions. In section 5.2, we show the performance of the test 

in the context of derivatives of regression functions, and in section 5.3, the CviSV is 

applied to the Berkeley growth data. 

5.1 Regression Funct ion Simulations 

We generated the data 

. Yi - m(ti) + o£i (5.1) 

with ti = i/101 and £j ~ N(0,1) for i = 1,2,..., 101. Two levels of noise were used, 

a = 0.05 and a = 0.10 for one of the functions, and one level of noise a = 0.05 for 

the other. Functions m(-) used in the simulation study are described below. For each 

model, we produced 500 data sets, and to each applied the bootstrap procedure (see 

pages 36 and 39) in sections 5.1.1 - 5.1.3, with bootstrap sample size equal to 500. 
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We have chosen two classes of monotone functions to work with, one being the linear 

function, and the other the exponential function. To each of them, we added one or 

more bumps. In order to preserve the continuity of the regression functions, we have 

chosen a function producing a bump decreasing at the exponential rate to zero. We 

define a function generating a bump by 

B ( t i c ) = e x p { - f ( ^ f }• <5-2' 
As we can see B(t\c) is the kernel of the normal density function. The parameter c 

controls the place the bump is inserted in the function. The choice of (0.1) in the 

denominator of the exponent enables us to separate bumps easily, in case we want to 

add more than one bump to the studied function. 

Definition of the functions 

We considered two classes of functions 

mi(t\a) =l+t + a*B(t\0.5) (5.3) 

and 

m2(t\a,b) = l + exp(-4i) + a * B(t\0.25) + b * B(t\0.75). (5.4) 

Introduction of the variable a in mi(-\a) allows us to introduce a bump in the otherwise 

a monotone function. Plots of the functions mi(-\a) used are shown in Figure 5.1. 

The value of a = 0 gives us a straight line and a = 0.15 produces a curve which is on 

a border-line of having a bump. Cases a = 0.25 and a = 0.45 produce curves with 

small and large bump respectively. Bowman et.al. (1998) used functions similar to 

(5.3) in their simulation studies of a test of monotonicity of a regression function. In 

the first two cases of the parameter a = 0,0.15, the function mi(-) is monotone, and 

in the other two cases, a = 0.25,0.45, non-monotone. 

Using a combination of variables a and b in the function m 2(t|a, b), we can produce 

a function with 0, 1, or 2 bumps. When a = 0 or a = 0.32 the resulting function 
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a=0 a=0.15 



has no bump at £=0.25. The values a = 0.48 and a = 0.64 yield a medium and 

large bump respectively. When 6 = 0, there is no bump in the regression function at 

£=0.75. However values of b = 0.10,0.15,0.20 give rise to a small, medium and large 

bump respectively. A n interaction between two bumps introduced in the equation by 

B(t\0.2b) and B(t\0.75) is negligible, since the exponential functions are the kernels 

of a normal density, and the distance between their maxima is equal to 0.5 = 5x 

the standard deviation, if thought of as a normal density function. We can see the 

functions with all the combinations of a and b in Figure 5.2. In our simulation study, 

we used 9 (indicated by the asterisks "**") out of 16 combinations to assess the 

performance of CviSV. 

Count ing bumps i n estimates 

We would like to look at a few aspects of our test in the simulation study. First, 

we want to investigate the behaviour of CviSV when we utilize two different methods 

for detection of a bump. Let % = m(ti), i.e. we take the estimates at the data points. 

As pointed out in chapter 3, we can employ either an /-bump 

{YM < YM+1 <---<Yj>Yj+1>---> Yj+l) (5.5) 

OR an /-max 

Yj > max {*}_,, • • • Yj-u Yj+U • • •, Yj+l) (5.6) 

with / = 1,2,3,..., to define a bump at Yj in our testing procedure. 

We use the function m 2(-1 a = 0.48, b = 0.15) to investigate in detail the behaviour 

of the CviSV. We employ the Lspline smoothing technique in all the steps of the 

bootstrap procedure, using the penalty L = m" + 7m' . The values of / = 2,3,4 and 

5 are used in /-max as well as / = 2 in /-bump for comparison purposes. We present 

detailed discussion and results in section 5.1.1. Based on that section, for all the 
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a=0,b=0" a=0,b=0.10 a=0,b=0.15" a=0,b=0.20 

a=0.32,b=0" a=0.32,b=0.10" a=0.32, b=0.15 a=0.32, b=0.20 

a=0.48,b=0 a=0.48,b=0.10" a=0.48,b=0.15" a=0.48, b=0.20 

. a=0.64, b=0 ** a=0.64, b=0.10 a=0.64,b=0.15 a=0.64, b=0.20 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5.2: Function m2(t\a, b) = 1 + exp(-4t.) + a * B(t\0.25) + b* B(t\0.75). 
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other functions we utilized 3-max as a basis for counting bumps in the CviSV testing 

procedure. 

5.1.1 Function m 2(-|a = 0.48, b = 0.15) 

We test the hypothesis 

H0 : m2(-) has < k bumps 

vs. 

Ha : m2(-) has > k bumps (5.7) 

for k = 0,1, 2,3, where 

m2(t\a = 0.48,6 = 0.15) = 1 + exp{-4t} + 0.48 * B(t\c = 0.25) 

+ 0.15 *B(t\c = 0.75). (5.8) 

We use /-bump with 1 = 2, and /-max with / = 2,3,4 and 5 to count the num

ber of bumps in the estimates m 2(-1 0.48,0.15). Results of the test (5.7) are dis

played in Table 5.1. The proportions of the simulations with p-values falling below 

5%, 10% and 25% are displayed. Thus, the table entries give the proportion of times 

we reject the null hypothesis at levels 5%, 10% and 25%. The standard error of the 

estimates of the rejection probabilities is not more than 2.25% at all significance 

levels. 

As we can see, there is little difference among definitions, but 5-max seems slightly 

better due to high power (for k=0, 1) and low rejection when k=2, 3. 

Consequently, it would be reasonable to use 5-max in our testing procedure. How

ever, for 2 out of 500 data sets used in the simulations, the estimates rh\, X > 0, had 

at most 2 bumps. Thus Xc% = 0. Therefore, X^r\t did not exist and so it was im

possible to carry out tests. In 26 out of 500 data sets, xfjit = 0, since the estimates 
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Table 5.1: Two Bumps: Proportion of times H0 is rejected at level a based on 500 

simulations of Yi = m 2 ( i i | a = 0.48,6 = 0.15) + ce;, i = 1,..., 101, £•» ~ iV(0,1), 

a = 0.05, using different definitions of a bump. 

a = 0.48,6 = 0.15 H0 : # of bumps < k 

Level Width k = 0 k = 1 k = 2 k = 3 

2-bump 1.000 0.358 0.032 0.016 

2-max 1.000 0.362 0.036 0.016 

a = 0.05 3-max 1.000 0.368 0.034 0.020 

4-max 1.000 0.366 0.034 0.022 

5-max 0.998 0.382 0.024 0.008 

2-bump 1.000 0.590 0.080 0.058 

2-max 1.000 0.592 0.088 0.056 

a = 0.10 3-max 1.000 0.586 0.074 0.060 

4-max 1.000 0.586 0.070 0.042 

5-max 1.000 0.596 0.056 0.026 

2-bump 1.000 0.836 0.212 0.174 

2-max 1.000 0.838 0.222 0.184 

a = 0.25 3-max 1.000 0.832 0.206 0.172 

4-max 1.000 0.840 0.202 0.150 

5-max 1.000 0.838 0.188 0.092 
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l-bump versus l-max 

l-maxfor 1=2,3,4,5 

-7 -6 -5 -4 -3 -2 -1 

loglO(lambda) 

Figure 5.3: Number of bumps as a function of a smoothing parameter 
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rh\ had at most 3 bumps for A > 0. When we used CviSV with 4-max, 1 out of 500 

datasets had X^it = 0. In all other situations, i.e. 2-bump, 2-max and 3-max, we were 

able to obtain A^] t > 0 for k < 3. Due to the similar performance of the CviSV test 

in all the cases, and difficulties encountered with 5-max and 4-max, we had to decide 

between values of 1=2 or 3 in /-max or we could use /-bump in the further studies. 

In the simulations, we found some problems with testing while utilizing /-bump 

when 1=3 or 4. Our testing procedure is based on the existence of \*£)it and on the 

monotonicity property of the number of bumps as a function of A. For some data 

sets, using /-bump with / > 3 seriously violates the monotonicity property as can be 

seen in Figure 5.3. When we use 2-bump, the monotonicity is violated mostly at the 

smaller values of A. 

The range of A on the plot extends from lO^ - 7) to lO^ - 1 ) . Values of A < 10^-7^ pro

duce a very wiggly estimate, since they correspond to using more than 60 (=tr 5(A)) 

parameters, and we do not want to model a data set with 101 observations by a 

regression function with so many parameters. 

Therefore, for our testing purposes we can choose either 2-max or 3-max. Since we 

are more interested in detecting "true" bumps, and not the spurious ones, we decided 

to use 3-max in all other simulation studies. 

5.1.2 Zero-One Bump Function 

As introduced in section 5.1, we used regression functions rai(-|a) in the first simula

tion study with a = 0,0.15,0.25 and 0.45. Sample data sets are given in Figures 5.4 

and 5.5. 

In the testing procedure, we use the Pspline method with a penalty L = m" 

giving a default model mdef(t) = a + (3t. For comparison purposes, we substitute 
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a=0.15 

0.0 0.2 0.4 0.6 0.8 1.0 

a=0 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5.4: Function mi(t\a) = 1 +1 + a * B(t\0.5) with 0 bumps and simulated data 

with the level of noise a = 0.10. 
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a=0.45 

Figure 5.5: Function mi(t\a) = 1 + t + a * B(t\0.b) with 1 bump and simulated data 

with the level of noise a = 0.10. 
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Table 5.2: Zero Bumps: Proportion of times H0 is rejected at level a based on 500 

simulations of Yi = m\(ti\a = 0) + oe^ i = 1,..., 101, Ei ~ iV (0 ,1 ) , a — 0.05,0.10. 

a = 0 f f 0 : # of bumps < fc 
Noise Level Method fc = 0 k = 1 

cr = 0.05 

a = 0.05 Pspline 

Kernel 

0.002 

0.002 

0.002 

0.006 

cr = 0.05 a = 0.10 Pspline 

Kernel 

0.004 

0.006 

0.010 

0.010 

cr = 0.05 

a = 0.25 Pspline 

Kernel 

0.030 

0.044 

0.024 

0.036 

a = 0.10 

a = 0.05 Pspline 

Kernel 

0.006 

0.006 

0.008 

0.018 

a = 0.10 a = 0.10 Pspline 

Kernel 

0.010 

0.014 

0.020 

0.038 

a = 0.10 

a = 0.25 Pspline 

Kernel 

0.080 

0.112 

0.088 

0.122 

Local Linear Kernel Smoothing for Pspline in steps 1 and 5 of the bootstrap procedure 

(see page 36). 

The results are exhibited in Tables 5.2 - 5.5. For a = 0 and a = 0.15, we carried 

out the tests with A; = 0 and k = 1, and for a = 0.25 and a = 0.45 we used k = 0,1 

and 2. 

Overall the performance of CriSV using either Pspline or Kernel Smoothing is 

very good at all combinations of a and a. In most cases, the size of the test is well 

below the significance level, and the power is at acceptable levels . 
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Table 5.3: Zero Bumps: Proportion of times H0 is rejected at level a based on 500 

simulations of Y{ = mx{ti\a = 0.15) + aeu i = l,..., 101, e{ ~ iV(0,1), o = 0.05,0.10. 

a = 0.15 H0 : # of bumps < k 

Noise Level Method k = 0 k = 1 

a = 0.05 

a = 0.05 Pspline 

Kernel 

0.032 

0.060 

0.010 

0.014 

a = 0.05 a = 0.10 Pspline 

Kernel 

0.082 

0.106 

0.026 

0.038 

a = 0.05 

a = 0.25 Pspline 

Kernel 

0.240 

0.298 

0.114 

0.162 

a = 0.10 

a = 0.05 Pspline 

Kernel 

0.024 

0.030 

0.026 

0.032 

a = 0.10 a = 0.10 Pspline 

Kernel 

0.066 

0.076 

0.050 

0.060 

a = 0.10 

a = 0.25 Pspline 

Kernel 

0.208 

0.250 

0.156 

0.204 

In the first case, a = 0, the rejection levels are far below the specified significance 

levels of 0.05, 0.10, and 0.25. As might be expected, when the noise level is higher, 

the null hypothesis is rejected more often. However this difference is only significant 

at level a = 0.25. Both methods (Pspline and Kernel Smoothing) give comparable 

rejection levels, with the first method being slightly superior. 

For a = 0.15 our test performs well given the fact that m(-|a = 0.15) is on a 

border line of having a bump. The proportions of rejection of H0 are larger than 

when a = 0, but in most cases are still below the specified significance levels. The 
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Table 5.4: One Bump: Proportion of times H0 is rejected at level a based on 500 

simulations of Y{ = mi(ti\a = 0.45) 4- aei, i = 1,..., 101, Si ~ N(0,1), a = 0.05, 0.10. 

a = 0.45 JFfn : # of bumps < 

Noise Level Method k = 0 k = 1 k = 2 

cr = 0.05 

a = 0.05 Pspline 

Kernel 

0.996 

1.000 

0.010 

0.006 

0.008 

0.018 

cr = 0.05 a = 0.10 Pspline 

Kernel 

1.000 

1.000 

0.026 

0.022 

0.020 

0.036 

cr = 0.05 

a = 0.25 Pspline 

Kernel 

1.000 

1.000 

0.124 

0.154 

0.096 

0.132 

a = 0.10 

a = 0.05 Pspline 

Kernel 

0.498 

0.916 

0.002 

0.006 

0.012 

0.010 

a = 0.10 a = 0.10 Pspline 

Kernel 

0.686 

0.974 

0.016 

0.024 

0.042 

0.046 

a = 0.10 

a = 0.25 Pspline 

Kernel 

0.924 

0.998 

0.138 

0.136 

0.150 

0.154 

Kernel Smoothing method rejects more often than the Pspline method. However the 

difference is significant only at a = 0.25. It seems surprising that we reject the true 

null hypothesis more often with a smaller noise. 

Thus far, we dealt with functions with zero bumps, and the rejection of the null 

hypothesis was expected in all the tests performed. When a = 0.25 or a = 0.45 the 

problem becomes more challenging, since we would like to reject the null hypothesis 

when k = 0, but not in the other instances k = 1 and k = 2. 

In the easier situation of a = 0.45, both Pspline and Kernel Smoothing give very 
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Table 5.5: One Bump: Proportion of times H0 is rejected at level a based on 500 

simulations of Yt = mx(ti\a = 0.25) + aeu i = 1,..., 101, Si ~ N(0,1), a = 0.05,0.10. 

a = 0.25 Ho : # of bumps < fc 
Noise Level Method k = 0 fc = 1 k = 2 

a = 0.05 

a = 0.05 Pspline 

Kernel 

0.782 

0.822 

0.018 

0.040 

0.010 

0.016 

a = 0.05 a = 0.10 Pspline 

Kernel 

0.902 

0.866 

0.040 

0.066 

0.034 

0.038 

a = 0.05 

a = 0.25 Pspline 

Kernel 

0.962 

0.936 

0.138 

0.170 

0.126 

0.158 

<r = 0.10 

a = 0.05 Pspline 

Kernel 

0.302 

0.298 

0.028 

0.054 

0.016 

0.030 

<r = 0.10 a = 0.10 Pspline 

Kernel 

0.462 

0.446 

0.050 

0.110 

0.056 

0.072 

<r = 0.10 

a = 0.25 Pspline 

Kernel 

0.702 

0.676 

0.182 

0.248 

0.186 

0.196 

good results. At a smaller level of noise a = 0.05, the estimated power of the test 

for H0 : k = 0 is 100% at all levels, except at a = 0.05 where the Pspline method 

rejects 99.6% of the time. When the noise level is increased to a = 0.10, the power 

decreases slightly for the Kernel method and quite a bit for the Pspline method. 

When we test with k = 1 or 2, at both noise levels the estimated sizes are far below 

the specified significance levels, and both methods (Pspline and Kernel) give very 

similar results. Thus, based on size and power, Kernel Smoothing seems superior to 

the Pspline method here. As expected, we falsely reject H0 : k < 2 more often at the 
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higher noise level. However the false rejection of H0 : k < 1 happens at virtually the 

same frequency at both levels of noise. 

We encountered by far the most difficult task in testing with a = 0.25. When the 

noise is at a lower level, we reject H0 : k = 0 a large proportion of time. However, 

power decreases dramatically when a = 0.10. The rejection levels for the true null 

hypothesis fall well below the specified significance levels, with performance better at 

the lower noise level. The Pspline method seems to be superior to the Kernel method, 

but the differences are not significant. In Figure 5.6 we can observe that the power 

of the test rises slowly as a function of significance level. Therefore, it would be more 

reasonable to choose a threshold value for a to be more than 10%. For a threshold 

of a = 0.15 (indicated by the vertical line), the power is high (around 0.50) and the 

size is fairly small (around 0.10). 

5.1.3 M u l t i - B u m p Function 

In the case of the first regression function mi (• | a), we had either 0 bumps or 1 bump. 

However, we want to evaluate the CviSV in a more challenging situation. We study 

regression functions with 0, 1 or 2 bumps in our second attempt. We use the function 

m 2(-|a, 6) introduced in section 5.1 

m2(t\a, b) = 1 + exp(-4t) + a * S(t|0.25) + b * B(t\0.7b). 

We analyze the behaviour of the CxiSV when the true function contains 0, 1 or 2 

bumps. In order to accommodate all the situations, we have chosen 9 combinations 

of parameters a and b presented below: 

• m 2(-1 a, b) with 0 bumps (see Figure 5.7): 

- m(-|a = 0,6 = 0) 
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Power for k=0 

a 

Figure 5.6: Power of the CviSV test with k = 0 and size of the test with = 1 for 

the function mi = 1 +1 + 0.25 * JB(£|0.5) with the noise level a = 0.10. 
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a=0, b=0 

cvi 

a=0.32, b=0 

o 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5.7: Function m2(t\a, b) = 1 + exp(-4t) + a * S(t|0.25) + b * B(t|0.75) with 0 

bumps and simulated data with the level of noise a = 0.05. 
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a=0, b=0.15 a=0.32, b=0.10 

Figure 5.8: Function m2(t\a, b) = 1 + exp(-4£) + a * 5(t|0.25) + 6 * B(£|0.75) with 1 

bump and the simulated data with the level of noise a = 0.05. 
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a=0.48, b=0.10 

0.0 0.2 0.4 0.6 0.8 1.0 

a=0.48,b=0.15 a=0.64, b=0.20 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5.9: Function m2{t\a, b) = 1 + exp(-4t) + a * B(t\0.25) + b* B(t\0.75) with 2 

bumps and simulated data with the level of noise a = 0.05. 
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- m(-\a - 0.32,6 = 0) 

• m 2(-1 a, 6) with 1 bump (see Figure 5.8): 

— m(-\a = 0,6 = 0.15) 

— m(-\a = 0.64,6 = 0) 

— m(-\a = 0.32,6 = 0.20) 

— m(-\a = 0.32,6 = 0.10) 

• m 2(-1 a, 6) with 2 bumps (see Figure 5.9): 

- m(-|a = 0.64,6 = 0.20) 

- m(-|a = 0.48,6 = 0.15) 

- m(-|a = 0.48,6 = 0.10) 

Within each group, we present the functions in order of increasing difficulty for de

tecting a bump, e.g. for m 2 with one bump, when a = 0 and 6 = 0.15 the bump 

is easily detected, while the combination of a = 0.32 and 6 = 0.10 presents a hard 

testing problem. In all the simulations in this section the level of noise is fixed at 

a = 0.05. 

Results are displayed in Tables 5.6 - 5.8. The proportions of the simulations with 

p-values falling below 5%, 10 and 25% are exhibited. We use 3 smoothing methods, 

Lspline, Pspline and Local Linear Kernel Smoothing, in steps 1 and 5 of the bootstrap 

procedure (see page 36) to assess the performance of the CviSV testing procedure. 

Lspline is always used in step 3. In order to use Lspline, we need to estimate the 

parameter 7 of the default model. We find 7 for each dataset by a nonlinear least 

squares fit of the parametric model m(t) = ao + aiexp{—7^} (see Heckman and 
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Ramsay (1996), for a discussion of estimation of unknown parameters in the default 

model). 

ZERO BUMPS (Table 5.6) 

In the first case of the combination of parameters a = 0 and b = 0, the sizes of the 

tests Ho : # bumps < k, k = 0,1, 2 fall well below the respective nominal levels of 

5%, 10% and 25%. It is worth observing the unexpected fact that the size increases 

as k goes from 0 to 2. The performances of both the Lspline and Pspline methods 

are very similar, and slightly better than the performance of Kernel Smoothing. 

The other case with a = 0.32 and 6 = 0 gives similar, but slightly worse results 

than the first case. The sizes of the test fall just below the nominal significance levels 

while testing with k = 0 and 1, except for a = 0.25 and k = 1. However they are 

larger than a when k = 2, but in most cases only marginally. Again the performance 

of both spline methods is similar, and slightly superior to the Kernel method. 

ONE BUMP (Table 5.7) 

For a = 0 and b = 0.15, the estimated power of the test Ho with A;=0 is 100% 

in most cases, with the lowest value of 98.6% for the Lspline method at level 0.05. 

The size of the test is substantially lower than the prespecified significance level in 

all cases. The results for all the methods are very similar. 

When a = 0.32 and b = 0.20, we achieve 100% power in all cases. The size of the 

test Ho : # bumps < 1 is very close to, but below the nominal significance level in 

all instances. For k = 2, the proportions of rejection of the true null hypotheses are 

lower than the respective levels. A l l the methods exhibit similar performance. 

While keeping a at the same level of 0.32, we changed b to 0.10, thus trying 

to detect a bump that has half the amplitude of the one discussed in the previous 

paragraph. The size of the test is very similar to the one above on most occasions, 

expect for the Kernel method at level 0.25. However, the power has dropped, but is 
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acceptable, ranging from around 65% to 90%. Therefore, even with a bump of very 

small amplitude the ChSV performs very well. Once more, there is practically no 

difference between the spline methods, with the Kernel method performing slightly 

worse in terms of both size and power. 

The last situation we deal with is slightly different since we put a = 0.64 and 

6 = 0, thus introducing a large bump on a steep part of an exponential function. 

In these circumstances, CriS'P's behaviour depends on the smoothing method used. 

Pspline and Lspline have sizes close to and often below the respective significance 

levels. However, for the Kernel method the size is marginally larger than the level a 

in most cases. We have a reverse situation when it comes to the power of the test. 

The Kernel method outperforms the spline methods, especially at significance levels 

less than 0.15 (see Figure 5.10). 

TWO BUMPS (Table 5.8) 

We start off with the easiest combination of parameters a = 0.64 and 6 = 0.20. 

Both bumps are moderately big, i.e. they should be easily detected, based on our 

experience in the cases discussed so far. The power of the test for both k = 0 and 1 

is over 95% in all cases but one (with the Kernel method for k = 0 and a = 0.05). 

The size of the test is well below the prespecified significance level. A l l the methods 

perform very well with the only exception noted above for the Kernel method. 

In the second function, we have two medium bumps introduced by setting a = 0.48 

and 6 = 0.15. In the case with k=0, the power of the CriSV test stays close to 

100% for all the methods at all considered levels. However, for the test with k=l, 

the power drops considerably for both spline methods and by some amount for the 

Kernel method. The reverse happens for the size: spline methods have sizes below 

the nominal significance levels, but the Kernel method has sizes above for the smaller 

values of a while testing with fc=2 (see Figure 5.11). 
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In the last considered case, we shrink the amplitude of the bump introduced by b 

to 0.10, and we leave a at 0.48. We observe that the power of the test for A;=0 drops 

substantially, if compared with the one in the previous case. However, the results 

obtained for k = 1 indicate little or no change when compared to the last case. The 

conclusions for the size are almost identical as in the case with 6=0.15 with the Kernel 

method performing worse in the same circumstances (see Figure 5.12). 
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Table 5.6: Zero Bumps: Proportion of times H0 is rejected at level a based on 500 

simulations of Yi = m 2(tj|a, b) + asi, i = 1,..., 101, £j ~ ^(0,1) , a = 0.05. 

a = 0, 6 = 0 H0 : of bumps < fc 

Leve l a Method fc = 0 k = 1 k = 2 

Lspline 0.008 0.020 0.034 

a — 0.05 Pspline 0.006 0.022 0.032 

Kernel 0.024 0.028 0.038 

Lspline 0.036 0.050 0.076 

a = 0.10 Pspline 0.038 0.048 0.074 

Kernel 0.066 0.062 0.070 

Lspline 0.168 0.184 0.222 

a = 0.25 Pspline 0.164 0.184 0.226 

Kernel 0.224 0.222 0.228 

a = 0.32 ,6 = 0 H0 : # of bumps < fc 

Level a Method fc = 0 k = 1 k = 2 

Lspline 0.030 0.034 0.064 

a = 0.05 Pspline 0.030 0.034 0.062 

Kernel 0.028 0.042 0.084 

Lspline 0.062 0.098 0.134 

a = 0.10 Pspline 0.064 0.092 0.136 

Kernel 0.078 0.092 0.178 

Lspline 0.176 0.294 0.318 

a = 0.25 Pspline 0.174 0.292 0.322 

Kernel 0.254 0.310 0.380 
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Table 5.7: One Bump: Proportion of times H0 is rejected at level a based on 500 

simulations of Fj = m2(ti\a, b) + oei, i = 1,..., 101, Si ~ iV(0,1), a = 0.05. 

a = 0, b -= 0.15 H0 : # of bumps < k 

Level Method k = 0 fc = 1 k = 2 

Lspline 0.986 0.014 0.022 

a = 0.05 Pspline 0.988 0.012 0.020 

Kernel 1.000 0.012 0.020 

Lspline 0.998 0.036 0.052 

a = 0.10 Pspline 0.998 0.036 0.048 

Kernel 1.000 0.022 0.048 

Lspline 1.000 0.134 0.168 

a = 0.25 Pspline 1.000 0.136 0.166 

Kernel 1.000 0.126 0.166 

a = 0.32, b = 0.20 H0 : of bumps < k 

Leve l Method k = 0 k = l k = 2 

Lspline 1.000 0.048 0.032 

a = 0.05 Pspline 1.000 0.050 0.034 

Kernel 1.000 0.038 0.042 

Lspline 1.000 0.088 0.056 

a = 0.10 Pspline 1.000 0.092 0.058 

Kernel 1.000 0.076 0.068 

Lspline 1.000 0.244 0.202 

a = 0.25 Pspline 1.000 0.250 0.202 

Kernel 1.000 0.236 0.212 
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Table 5.7: (continued) 

a = 0.32,6 = 0.10 HQ : # of bumps < k 

Level Method k = 0 k = 1 k = 2 

Lspline 0.678 0.042 0.048 

a = 0.05 Pspline 0.652 0.042 0.046 

Kernel 0.698 0.056 0.048 

Lspline 0.802 0.088 0.078 

a = 0.10 Pspline 0.788 0.088 0.080 

Kernel 0.782 0.106 0.110 

Lspline 0.930 0.264 0.206 

a = 0.25 Pspline 0.922 0.258 0.212 

Kernel 0.878 0.274 0.310 

a = 0.64,6 = 0 H0 : # of bumps < k 

Level Method k = 0 k = 1 k = 2 

Lspline 0.546 0.078 0.032 

a = 0.05 Pspline 0.554 0.078 0.034 

Kernel 0.838 0.066 0.044 

Lspline 0.812 0.088 0.078 

a = 0.10 Pspline 0.816 0.086 0.080 

Kernel 0.870 0.120 0.112 

Lspline 0.968 0.152 0.254 

a = 0.25 Pspline 0.972 0.154 0.258 

Kernel 0.992 0.292 0.302 
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Table 5.8: Two Bumps: Proportion of times H0 is rejected at level a based on 500 

simulations of Y; = m 2 ( i i |a , b) + o£i, i = 1,..., 101, Ei ~ iV(0,1), a = 0.05. 

a = 0.64, 6 = 0.20 H0 
# of bumps < k 

Level Method k = 0 k = 1 k = 2 k = 3 

Lspline 1.000 0.958 0.020 0.024 

a = 0.05 Pspline 1.000 0.956 0.018 0.022 

Kernel 0.922 0.996 0.016 0.016 

Lspline 1.000 0.978 0.044 0.050 

a = 0.10 Pspline 1.000 0.976 0.042 0.050 

Kernel 0.972 1.000 0.032 0.050 

Lspline 1.000 0.998 0.158 0.172 

a = 0.25 Pspline 1.000 0.998 0.168 0.164 

Kernel 1.000 1.000 0.146 0.172 

a = 0.48,6 = 0.15 Ho # of bumps < 
Leve l Method k = 0 k = 1 k = 2 k = 3 

Lspline 1.000 0.368 0.034 0.020 

a = 0.05 Pspline 0.998 0.328 0.036 0.020 

Kernel 0.976 0.708 0.078 0.022 

Lspline 1.000 0.586 0.074 0.060 

a = 0.10 Pspline 1.000 0.546 0.076 0.052 

Kernel 1.000 0.814 0.120 0.064 

Lspline 1.000 0.832 0.206 0.172 

a = 0.25 Pspline 1.000 0.810 0.208 0.160 

Kernel 1.000 0.918 0.242 0.226 
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Table 5.8: (continued) 

a = 0.48, 6 = 0.10 H0 # of bumps < fc 
Level Method k = 0 k = 1 k = 2 k = 3 

Lspline 0.650 0.420 0.036 0.036 

oc = 0.05 Pspline 0.616 0.360 0.036 0.034 

Kernel 0.640 0.738 0.100 0.044 

Lspline 0.816 0.614 0.076 0.070 

a = 0.10 Pspline 0.800 0.544 0.078 0.066 

Kernel 0.748 0.828 0.162 0.092 

Lspline 0.934 0.864 0.224 0.234 

a = 0.25 Pspline 0.932 0.844 0.226 0.230 

Kernel 0.914 0.910 0.316 0.244 
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Figure 5.10: Power and size. estimates for the function m 2(t |a = 0.64,6 = 0). The 

vertical line is drawn at a = 0.15. 
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Power for k=1 

Size for k=2 
o 

0.0 0.2 0.4 0.6 0.8 1.0 

a 

Figure 5.11: Power and size estimates for the function m 2(t |a = 0.48, b = 0.15). The 

vertical line is drawn at a = 0.15. 
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Power for k=1 

Size for k=2 

a 

Figure 5.12: Power and size estimates for the function m2(t\a = 0.48, b = 0.10). The 

vertical line is drawn at a = 0.15. 
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5.2 Derivative Simulations 

As mentioned in Chapter 4 the CviSV can be used in testing for bumps in the 

derivative of the regression function. As the example in section 5.3 will show, in 

certain situations we are interested in the rate of change of the regression function, 

and not in the function itself. In the simulation study we carry out, we have chosen 

to work with the antiderivatives of the function (m2(-) — 1). Therefore we define the 

derivative as 

m'3(t) = m2(t) — 1 

= exp{-4i} + a*£(£ |0 .25) + b*B(t\0.75) (5.9) 

and the regression function itself 

rt , 
mz{t) = / m3(s)ds 

Jo 
= 0.25 - 0.25 exp{-4£} + 

^ r ) ( 0 . 1 ) { a * $ ( ( * - 0.25)/0.1) + b* $((* - 0.75)/0.1} (5.10) 

where $(•) is the cumulative distribution function of the standard normal random 

variable. 

We generated the data 

Yt = m3(U) + o-£i (5.11) 

with U = i/101 and £; ~ iV(0,1) for i = 1,2,..., 101. Two levels of noise were used: 

a = 0.0025 and a = 0.0050. However, if the results at the higher noise level indicated 

a good performance of the test, we limited the simulations at the lower noise level to 

one method (Lspline) and one function in each bump category. For each model, we 

produced 500 data sets and for each of them we applied a bootstrap procedure with 

a sample size equal to 500. 

73 



We have chosen 6 out of the 16 original combinations of parameters a and 6 

defining functions ffl2(-). We have chosen them in such a way as to have 2 curves 

with 0, 1, and 2 bumps. The functions m 3 (-) are presented in Figures 5.13 - 5.15 

together with their derivatives. 

Throughout the study, the Lspline method of estimation was used with the penalty 

L = m"+7m' , yielding the default model mdef(t) = a0+ai exp{—7*}. The estimation 

of 7 is necessary to utilize the Lspline smoothing method. We find 7 for each dataset 

via a nonlinear least squares fit of the parametric model m(t) = a0 + a\ exp{—7*}. 

For comparison purposes we also use Local Quadratic Kernel Smoothing in steps 1 

and 5 of the bootstrap procedure (see page 39). 

ZERO BUMPS in the DERIVATIVE (Table 5.9) 

In the first case with a = 0 and 6 = 0, the results show that the sizes of the 

test for H0 : # bumps < k for k=0, 1, 2 are in most cases below the nominal 

significance levels. Both methods, Lspline and Kernel, perform well, and there is not 

much difference when the level of noise is increased. 

In the second case with a = 0.32 and 6 = 0, i.e. with a "shoulder" on the slope of 

the derivative, for k = 0 and 1 the results are very similar to the previous case. The 

Kernel method holds an edge at the level a = 0.25. When k=2, the Lspline method 

has consistently larger size than the prespecified level, and the Kernel method has 

size around the nominal levels. 

ONE BUMP in the DERIVATIVE (Table 5.10) 

We start evaluating CnSV in the one-bump case by setting a = 0 and 6 = 0.20. 

The estimated power of the test is equal to 100% in all the cases while testing with 

Lspline, and is almost as high while utilizing the Kernel method. The size of the test 

is well below the nominal level in most cases, and slightly below in a few situations. 

Size-wise the Kernel method seems to outperform the Lspline method. However we 
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Function m Function m 

Derivative m' 
with a=0 and b=0 

Derivative m' 
with a=0.32 and b=0 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5.13: Functions m 3(£|a, b) (Top) and its derivative m'3 (Bottom) with 0 bumps. 

Also included, data sets (Top) with noise level a = 0.005. 
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Function m Function m 

Figure 5.14: Function m3(t\a, b) (Top) and its derivative m'3 (Bottom) with 1 bump. 

Also included, data sets (Top) with noise level a = 0.005. 
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Function m Function m 

Derivative m' Derivative m' 
with a=0.48 and b=0.15 with a=0.64 and b=0.20 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5.15: Function m 3 ( i |a , b) (Top) and its derivative m 3 (Bottom) with 2 bumps. 

Also included, data sets (Top) with noise level a = 0.005. 
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have to remember that Lspline has larger estimated power that is, Lspline to reject 

more often. To our surprise, the estimated size at the lower noise level is consistently 

higher than at the higher noise level. However power is about the same at both noise 

levels. 

We try another setup of parameters a and b by introducing an "almost bump" 

on the steep part of m 3(-|a, b) by putting a = 0.32. We leave b = 0.20. Again, the 

power of the test is very high, reaching 100% when we use the Lspline method, and 

over 90% when the Kernel method is used. The sizes of the test are well below the 

nominal levels. In most cases, the Kernel method holds an advantage, when the size 

is considered, especially at the highest prespecified level a = 0.25. 

TWO BUMPS in the DERIVATIVE (Table 5.11) 

We have come to by far the most difficult case of all considered. We would like to 

evaluate the CviSV test when we generate the data using a regression function with 

its derivative having two bumps. We start off with setting a = 0.64 and b = 0.48, i.e. 

introducing the two largest bumps considered in our study. We obtain results that 

are very satisfactory. The estimated power of the test is over 95% in all but one case, 

and the size of the test is well below the prespecified level. Once more, the Kernel 

method has an edge over Lspline when we compare the sizes of the test at a = 0.25. 

However, the differences are only marginally significant. 

We set a = 0.48 and b = 0.15, thus introducing only two moderate size bumps 

in ra3(-). At the lower noise level a = 0.0025 the size of our test is about right in 

all the cases taken into account. However, when we look at the estimated power the 

Lspline method produces superior outcomes with the lowest estimated power over 

85% at the level a = 0.05, and k=l. The Kernel method achieves significantly lower 

power, especially for the lower significance levels or when we test for not more than 

one bump (see Figure 5.16). 
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When we increase the noise level to a = 0.005, the power of CviSV decreases 

slightly for the Lspline method when k=0. For k=l, the Kernel method has higher 

estimated power at the lower significance levels, but the Lspline method starts to be 

advantageous at the level a = 0.15 (see Figure 5.16). When k = 2 the size of the test 

is higher than the nominal level, but in some cases only marginally. In the case of 

k = 3, the estimated size is at the right level in all but one case. 

The simulation studies indicate that we should choose a rejection level of at least 

10%. Otherwise, the power of our test will tend to be low. On the other hand, we do 

not want to commit a Type I error too often. Therefore the significance level should 

not be larger than 20%. In the next section, we settle for a = 0.15, however any 

choice between 0.10 and 0.20 would be reasonable. 
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Table 5.9: Zero Bumps: Proportion of times H0 is rejected at level a based on 500 

simulations of Yt = m3(ti\a, b) + aeu i = 1,..., 101, e{ ~ N(0,1), o = 0.0025,0.0050. 

a = = 0,6 = 0 HQ : # of bumps < k 

Noise Level Method k = 0 k = 1 k = 2 

a = 0.05 Lspline 0.018 0.010 0.030 

cr = 0.0025 a = 0.10 Lspline 0.054 0.046 0.082 

a = 0.25 Lspline 0.160 0.228 0.254 

a = 0.05 Lspline 0.034 0.014 0.046 

Kernel 0.030 0.020 0.026 

a = 0.005 a = 0.10 Lspline 0.072 0.050 0.104 

Kernel 0.062 0.054 0.064 

a = 0.25 Lspline 0.188 0.208 0.290 

Kernel 0.192 0.202 0.230 

a = 0.32,6 = 0 H0 : # ° f bumps < k 

Noise Level Method k = 0 k = 1 k = 2 

a = 0.005 

a = 0.05 Lspline 

Kernel 

0.054 

0.044 

0.018 

0.020 

0.088 

0.040 

a = 0.005 a = 0.10 Lspline 

Kernel 

0.084 

0.062 

0.074 

0.052 

0.180 

0.090 

a = 0.005 

a = 0.25 Lspline 

Kernel 

0.204 

0.144 

0.258 

0.152 

0.400 

0.284 
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Table 5.10: One Bump: Proportion of times H0 is rejected at level a based on 500 

simulations of Yt = m3(ti\a, b) + aeu i = l,..., 101, e{ ~ JV(0,1), a = 0.0025,0.0050. 

a = 0,6 = 0.20 HQ : # of bumps < fc 

Noise Level Method k = 0 fc = 1 k = 2 

a = 0.05 Lspline 1.000 0.028 0.028 

a = 0.0025 a = 0.10 Lspline 1.000 0.064 0.064 

a = 0.25 Lspline 1.000 0.238 0.248 

a = 0.05 Lspline 1.000 0.008 0.014 

Kernel 0.944 0.000 0.004 

cr = 0.005 a = 0.10 Lspline 1.000 0.032 0.038 

Kernel 0.998 0.002 0.022 

a = 0.25 Lspline 1.000 0.140 0.204 

Kernel 1.000 0.064 0.140 

a = 0.32,6 = 0.20 H0 : # of bumps < fc 

Noise Level Method k = 0 fc = 1 k = 2 

a = 0.005 

a = 0.05 Lspline 

Kernel 

1.000 

0.910 

0.020 

0.038 

0.042 

0.010 

a = 0.005 a = 0.10 Lspline 

Kernel 

1.000 

0.978 

0.054 

0.048 

0.076 

0.032 

a = 0.005 

a = 0.25 Lspline 

Kernel 

1.000 

1.000 

0.220 

0.076 

0.244 

0.148 
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Table 5.11: Two Bumps: Proportion of times H0 is rejected at level a based on 500 

simulations of Y{ = m3(ti\a, b) + aeu % = 1,..., 101, e{ ~ iV(0,1), a = 0.0025,0.0050. 

a — 0.64, b = 0.20 H0 : # of bumps < k 

Noise Level Method k = 0 k = 1 k = 2 k = 3 

a = 0.05 Lspline 1.000 1.000 0.024 0.032 

a = 0.0025 a = 0.10 Lspline 1.000 1.000 0.058 0.082 

a = 0.25 Lspline 1.000 1.000 0.198 0.244 

a = 0.05 Lspline 0.986 0.898 0.026 0.026 

Kernel 0.956 0.960 0.044 0.026 

cr = 0.005 a = 0.10 Lspline 0.996 0.982 0.064 0.076 

Kernel 0.964 0.968 0.070 0.060 

a = 0.25 Lspline 0.998 0.998 0.186 0.242 

Kernel 0.980 0.976 0.138 0.176 

a = 0.48, 6 = 0.15 H0 : # of bumps < k 

Noise Level Method k = 0 k = 1 k = 2 k = 3 

cr = 0.0025 

a = 0.05 Lspline 

Kernel 

1.000 

0.460 

0.874 

0.240 

0.040 

0.046 

0.042 

0.036 

cr = 0.0025 a = 0.10 Lspline 

Kernel 

1.000 

0.690 

0.938 

0.270 

0.090 

0.084 

0.122 

0.094 

cr = 0.0025 

a = 0.25 Lspline 

Kernel 

1.000 

0.970 

0.972 

0.410 

0.238 

0.258 

0.288 

0.238 

cr = 0.005 

a = 0.05 Lspline 

Kernel 

0.832 

0.328 

0.090 

0.328 

0.104 

0.062 

0.044 

0.056 

cr = 0.005 a = 0.10 Lspline 

Kernel 

0.904 

0.404 

0.290 

0.360 

0.164 

0.108 

0.116 

0.100 

cr = 0.005 

a = 0.25 Lspline 

Kernel 

0.968 

0.680 

0.662 

0.484 

0.306 

0.266 

0.292 

0.256 
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Figure 5.16: Power of the CviSV test when k=0 and k=l for the function m'3(t\a 

0.48,6 = 0.15) at the two noise levels. The vertical line is drawn at a = 0.15. 
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5.3 Analys is of the G r o w t h D a t a 

We consider the growth data coming from a longitudinal study conducted in Berkeley, 

California. These data are usually referred to in the literature as the Berkeley growth 

data. The complete description of the study can be found in Tuddenham and Snyder 

(1954). Here, we analyze the data coming from the records of 43 white males and 50 

white females born in 1928 or 1929 in Berkeley, California. The data set includes, in 

most cases, measurements of recumbent length at three months and then at three-

month intervals to 21 months. Standing heights were measured annually from age 

two until eight and thereafter semiannually until age eighteen. 

Most of the analyses of human growth use the data coming from the Zurich longi

tudinal growth study (see Gasser et.al. (1984a, 1984b, 1985, 1990, 1991a, 1991b)). In 

the Zurich study, the children's heights were measured at a lesser frequency in infancy. 

In work making comparisons between the Berkeley and Zurich data sets, the common 

ages were chosen to make the comparison fair (see Ramsay et.al. (1995)). Therefore, 

in our analysis we have used only the measurements at ages 1, 1.5, 2 and annually 

thereafter until 9.5 in females and 10 in males, followed by semiannual measurements 

until age 18, for a total of 27 ages for the males and 28 for the females. The growth 

curves were analyzed for each child. 

We have used the bootstrap procedure for derivatives outlined on page 39. We 

utilized local quadratic kernel smoothing in step 2 of the bootstrap procedure to find 

the unrestricted estimate munr(-) of the regression function m(-). Local quadratic 

smoothing produces a good estimate of m', the rate of growth. The calculations 

were performed using the locpoly function in Splus. locpoly selects a bandwidth 

based on a plug-in procedure. We chose this method because the GCV method for 

smoothing parameter choice performs badly when the noise in the data is very small, 
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as is the case here. The GCV choice of A is usually too small, yielding residuals which 

are very close to zero. 

Also, we employed Lsp l ine smoothing in steps 1 and 5 of the bootstrap procedure. 

The penalty used was Lm = ra" + 7 m ' with the default model nidef{i) = a0 + 

a1exp{—jt}. We estimated 7 by a non-linear least squares procedure. For each 

child, we generated 500 bootstrap samples from the original residuals. 

Our data set has height measurements on either a semi-annual or annual basis. If 

we wanted to implement our testing procedure at the observed times ti, it would be 

easier to detect a bump in an area with more frequent measurements. However, we do 

not want the frequency of observations to differ from the testing procedure developed 

for equally spaced independent variable values. Therefore, for testing purposes, we 

evaluate the estimate of the speed of growth at 101 equally spaced values of time 

between the ages 1 and 18. 

We decide on the number of bumps in a curve using p-values from tests for the 

existence of 0, 1, 2, or 3 bumps in the speed of the growth. Following the discussion in 

section 5.2, we decided to choose the significance level of our test to be a = 0.15, i.e. we 

reject H0 if a p-value < 0.15. For each child, we perform 4 tests: H0 : # bumps < k 

for k = 0, 1, 2, and 3. We base our decision on either a "strict" or "soft" rule, 

described below. 

By the "strict" decision rule, we reach a conclusion that the speed of growth has 

exactly b bumps if, for the hypothesis tests H0 : # bumps < k the p-values are less 

than or equal to 0.15, for all k < b and the p-values are greater than 0.15 for all 

b < k < 3. When we reject H0 for all k < 3 we conclude that the number of bumps 

b is greater than three. In some cases, no classification can be made by the strict 

decision rule. For instance, we may reject the hypothesis H0 : # bumps < k for k=Q 

and 2, but we do not reject it for k=l and 3 at the level a = 0.15. 
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Therefore, we introduce the "soft" decision rule, which always gives us a classi

fication. For 6=0, 1, 2, 3, we say that the curve has b bumps if, for the hypothesis 

tests H0 : # bumps < k, for all k < b the p-values are less than or equal to 0.15, 

and the p-value is greater than 0.15 for k = b. As with the strict decision rule, we 

conclude that a curve has more than 3 bumps if, for all k < 3, the p-values are less 

than or equal to 0.15. 

If we cannot reach a conclusion according to the strict decision rule, we report 

not only b, the soft rule decision, but also a range of values for the number of bumps. 

Thus, we say that a curve has 6^, 6L+I, • • • ,bu bumps where = b according to the 

soft decision rule, and bu = 1 + (the biggest k for which the p-value < 0.15). For 

example, when the p-value < 0.15 for k=Q and 2, and the p-value > 0.15 for k=l and 

3, we have a range of bumps bL = 1,..., bu = 1 + 2, since k=2 is the largest k value 

for which the p-value < 0.15. 

We present here the results obtained using Lsp l ine smoothing with 3-max as the 

definition of bump. Results are summarized in Tables 5.12 and 5.13 for males and 

females respectively. When the strict rule gives us a classification we have a single 

number in the "Conclusion" column. For other cases, we present a classification based 

on the range rule with the number of bumps as classified by the soft rule indicated 

in bold face. 

The full results of all the tests performed are presented in Appendices A and B 

in Tables A . l and B . l for males and females respectively. 

MALE DATA 

Using the "strict" decision rule described in the last section, we classify the males 

into groups with 0, 1, 2, 3 and more than 3 bumps (or spurts of growth). We can 

make a decision in 34 out of 43 cases. Out of 34 males classified according to the 

strict decision rule, 10 males have one spurt of growth, 17 males - two spurts, 6 males 
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- three spurts, and 1 male more than three spurts. 

In the remaining 9 cases, we do not reject the null hypothesis for some smaller 

values of k, but we do reject for larger /c's. For instance, for 5 boys, we do not reject 

the H0 with fc=l and 3, but we do reject H0 for A;=0 and 2. As mentioned before, in 

such a situation we give a range of values for 6, the number of bumps. 

The "soft" decision rule gives the following classification: 17 males with one growth 

spurt, 19 males with two growth spurts, 6 males with three, and 1 male with more 

than three spurts of growth. 

Figures 5.17 - 5.19 contain plots of curves classified by the strict definition of 

having 1, 2, and 3 bumps, respectively. None of the 43 curves was classified as having 

0 bumps. We plot the estimates for 6=1, 2, and 3 bumps, and we indicate the one we 

decided on by a solid curve. The top plot in each figure shows an individual where 

our decision was very clear: p-values were much smaller than a = 0.15 for k less than 

our choice of 6, and much larger than 0.15 for the other values of k. The p-values for 

the bottom plot are less separated. 

Figure 5.20 contains plots of two curves that could only be classified by the soft 

or range decision rule. The top plot shows curves for male # 18, with a range of the 

number of bumps: 1, 2, 3. The bottom plot plot for male # 23 has a range: 1, 2, 3, 

>3 bumps. 

We cannot make a complete comparison of our test results with the work described 

in Ramsay et.al. (1995). The procedure outlined in their work deals with estimating 

so called "landmarks", or ages at which an important feature of growth occurs. The 

features consist of events associated with the mid-spurt of growth (MS), and the 

pubertal spurt of growth (PS). In total, eight landmarks are described, but only two 

are related to bumps in the rate of growth: T3 - age of maximal velocity during MS, 

and T8 - age of maximal velocity during PS. 
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Ramsay et.al. then find in how many cases T3 and T8 occur. From the information 

provided, we can use Ramsay et.al.'s estimation procedure to classify curves into two 

groups: in one group, curves have one bump (only T8 present), and in the other 

group, curves have two or more bumps (both T3 and T8 present with the possibility 

of T3 being multiple). 

For the male data, they discovered the occurrence of T3 in 24 out of 43 cases, and 

T8 in all 43 cases. In our study, we found 1 bump in 10 cases out of 34 classified 

by the "strict" decision rule, and 17 out of 43 using the "soft" decision rule. The 

remaining curves were, of course, classified as having 2 or more bumps. Therefore, 

71% of the cases classified by the "strict" rule give us 2 or more bumps in a curve, 

and in 60% of the cases "soft" rule indicates 2 or more bumps in the rate of growth 

curves. Ramsay et.al. had 56% of male growth curves with 2 or more bumps. We can 

conclude that our "soft" decision rule gives comparable results to the ones described 

in Ramsay et.al. 
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Table 5.12: p-value estimates based on 500 bootstrap samples for the male data using 

3-max as a definition of a bump in the testing procedure. 

HQ : # of bumps < k 

Males k = 0 k = 1 k = 2 A; = 3 Conclus ion 

1 0.000 0.002 0.938 0.994 2 

2 0.000 0.908 0.680 0.316 1 

3 0.000 0.130 0.380 0.718 2 

4 0.000 0.068 0.274 0.996 2 

5 0.000 0.310 0.094 0.884 1,2,3 

6 0.000 0.000 0.126 0.560 3 

7 0.000 0.010 0.114 0.558 3 

8 0.000 0.590 0.442 0.998 1 

9 0.000 0.000 0.864 0.454 2 

10 0.000 0.862 0.478 0.476 1 

11 0.000 0.000 0.220 0.588 2 

12 0.000 0.030 0.460 0.310 2 

13 0.000 0.012 0.798 0.802 2 

14 0.000 0.012 0.162 0.126 2,3,>3 

15 0.000 0.000 0.984 0.992 2 

16 0.000 0.088 0.148 0.134 >3 

17 0.000 0.830 0.292 0.384 1 

18 0.000 0.380 0.010 0.224 1,2,3 

19 0.000 0.154 0.706 0.718 1 

20 0.000 0.184 0.204 0.036 1,2,3,>3 

21 0.000 0.000 0.532 0.178 2 ' 

22 0.000 0.000 0.472 0.744 2 
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Table 5.12: (continued) 

Males k = 0 k = 1 k = 2 k = 3 Conclus ion 

23 0.000 0.750 0.296 0.086 1,2,3,>3 

24 0.000 0.000 0.150 0.484 3 

25 0.000 0.000 0.208 0.256 2 

26 0.000 0.092 0.162 0.066 2,3,>3 

27 0.000 0.748 0.798 0.416 1 

28 0.000 0.390 0.078 0.776 1,2,3 

29 0.000 0.000 0.172 0.566 2 

30 0.000 0.010 0.038 0.364 3 

31 0.000 0.050 0.686 0.998 2 

32 0.000 0.152 0.994 0.978 1 

33 0.000 0.534 0.302 0.484 1 

34 0.000 0.222 0.028 0.286 1,2,3 

35 0.000 0.006 0.856 0.938 2 

36 0.000 0.296 0.030 0.188 1,2,3 

37 0.000 0.002 0.034 0.516 3 

38 0.000 0.000 0.018 0.400 3 

39 0.000 0.100 0.538 0.994 2 

40 0.000 0.106 0.658 0.440 2 

41 0.000 0.824 0.408 0.260 1 

42 0.000 0.212 0.592 0.488 1 

43 0.000 0.028 0.388 0.576 2 
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Figure 5.20: Estimates of the speed of growth of males when a decision cannot be 

reached by a "strict" criterion. 
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FEMALE DATA 

When we apply the "strict" decision rule to the female growth curves, we can 

classify 39 out of 50 females. In 17 of these cases, we decide that there is one spurt 

of growth, in 15 cases - two spurts, in 5 cases - three spurts, and in 2 cases - more 

than three spurts of growth. The remaining 11 females cannot be classified into one 

of the mentioned groups. 

Classification according to the "soft" rule gives: 1 case with zero spurts, 24 cases 

with one spurt of growth, 18 cases with two spurts, 5 cases with three, and 2 cases 

with more than three spurts of growth in the speed curve. 

We plot two curves for each number of the bumps detected 6=1, 2, 3 according 

to the "strict" rule (see Figures 5.21 - 5.23). Figure 5.24 contains the cases when the 

"strict" decision rule did not provide a 6 value. 

In Appendix B the plots of the estimated growth functions for all 50 females are 

presented. 

Ramsay et.al. found T3 present in 9 growth curves, and T8 in 49 growth curves, 

and this would classify 49 of the curves as having 1 bump and 9 of the curves as 

having 2 or more bumps. (Recall that there were multiple occurrences of T3 in some 

estimates of the female speed of growth.) Our results indicate more females having 

more than one episode of maximal velocity, 22 cases out of 39 using the "strict" 

criterion, and 25 out of 50 using the "soft" criterion. 

Comparison of the female and male growth curves suggests that multi-bump curves 

are more prevalent for boys than for girls (71% of the boys versus 56% of the girls 

when the "strict" criterion is used, and 60% of the boys versus 50% of the girls when 

the "soft" criterion is used). Also, boys and girls are equally easy to classify by the 

"strict" definition, with only about 20% of each group being unclassified. 

95 



Female # 1 

Female #12 
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Figure 5.21: Estimates of the speed of growth of females with one bump. 
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Figure 5.23: Estimates of the speed of growth of females with three bumps. 
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Female #2 

Female # 39 

Figure 5.24: Estimates of the speed of growth of females when the decision could not 

be reached according to the "strict" criterion. 
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Table 5.13: p-value estimates based on 500 bootstrap samples for the female data 

using 3-max as a definition of a bump in the testing procedure. 

H0 : # of bumps < k 

Females k = 0 k = 1 k = 2 k = 3 Conclus ion 

1 0.000 0.872 0.998 0.994 1 

2 0.586 0.630 0.116 0.030 0,1,2,3,>3 

3 0.014 0.496 0.664 0.902 1 

4 0.000 0.138 0.676 0.672 2 

5 0.000 0.022 0.998 0.956 2 

6 0.000 0.152 0.002 0.682 1,2,3 

7 0.000 0.126 0.008 0.058 >3 

8 0.000 0.388 0.722 0.884 1 

9 0.000 0.426 0.420 0.606 1 

10 0.000 0.320 0.508 1.000 1 

11 0.000 0.214 0.168 0.102 1,2,3,>3 

12 0.000 0.510 0.250 0.476 1 

13 0.000 0.150 0.546 0.448 2 

14 0.000 0.166 0.184 0.606 1 

15 0.014 0.012 1.000 0.976 2 

16 0.000 0.376 0.348 0.530 1 

17 0.000 0.290 0.986 0.848 1 

18 0.000 0.006 0.982 0.998 2 

19 0.000 0.306 0.110 0.998 1,2,3 

20 0.000 0.716 0.428 0.380 1 

21 0.000 0.020 0.888 0.656 2 

22 0.010 0.126 0.194 0.546 2 
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Table 5.13: (continued) 

Females k = 0 k = 1 k = 2 k = 3 Conclusion 

23 0.000 0.006 0.390 1.000 2 

24 0.000 0.008 0.772 0.324 2 

25 0.000 0.014 0.984 0.948 2 

26 0.000 0.144 0.000 0.470 3 

27 0.000 0.918 0.816 1.000 1 

28 0.000 0.080 0.094 0.162 3 

29 0.000 0.042 0.170 0.018 2,3,>3 

30 0.000 0.138 0.266 0.332 2 

31 0.002 0.000 0.060 0.826 3 

32 0.000 0.126 0.020 0.182 3 

33 0.000 0.686 0.932 0.926 1 

34 0.000 0.330 0.102 0.026 1,2,3,>3 

35 0.000 0.042 0.172 0.954 2 

36 0.000 0.088 0.148 0.026 >3 

37 0.000 0.078 0.994 0.942 2 

38 0.020 0.734 0.658 0.396 1 

39 0.000 0.230 0.294 0.034 1,2,3,>3 

40 0.000 0.008 0.210 0.112 2,3,>3 

41 0.000 0.452 0.974 0.944 1 

42 0.000 0.004 0.508 0.104 2,3,>3 

43 0.000 0.218 0.080 0.902 1,2,3 

44 0.000 0.148 0.984 0.970 2 

45 0.000 0.340 0.092 0.002 1,2,3,>3 

46 0.000 0.028 0.016 0.724 3 
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Table 5.13: (continued) 

Females k = 0 k = 1 k = 2 k = 3 Conclusion 

47 0.000 0.634 0.548 0.898 1 

48 0.000 0.086 0.778 0.958 2 

49 0.010 0.728 0.242 0.796 1 

50 0.000 0.804 0.652 0.938 1 
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Chapter 6 

Conclusions 

In this thesis, the new, smoothing parameter based test CriSV for the number of 

bumps in regression functions and their derivatives has been proposed. Bootstrap 

methods have been used to assess its performance. Simulation studies indicated that 

the CriSV test was successful in all considered setups. The behaviour of the test 

was better when the bump was of a bigger size and not situated on a steep slope of a 

regression function. As mentioned in Chapter 5, the significance level that should be 

chosen for CriSV is between 10% and 20%. At low significance levels (a < 0.05) the 

power of the proposed test drops substantially, especially for the more challenging 

regression functions and their derivatives. 

Cri.S'P was applied to the Berkeley growth data, to detect the number of spurts of 

children's growth. Most of the results obtained from the completely data-driven test 

agree with what one might decide "by eye", by looking at an appropriately smoothed 

derivative estimate. When we compared our test with the results of Ramsay et.al. 

(1995), we arrived at very similar conclusions for the male data. For the female data, 

we detected spurts of growth on more occasions than Ramsay et.al. did. 

It should be noted that the procedure introduced in this thesis is complicated, 
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and many issues regarding it are still unresolved. Throughout the simulation studies, 

we obtained a few surprising results. For instance, in the simulations involving the 

first derivative of the regression function, for some models we got better results with 

a higher level of noise added to the true regression function than with a lower level of 

noise. Also, we were able to detect a small bump on a flat portion of the curve more 

often than for a large bump on a steep slope. 

In the introduced procedure, the residuals were calculated using the GCV criterion 

for the smoothing parameter choice in spline smoothing. This criterion chooses the 

"optimal" smoothing parameter for the estimation of the function m(-). However, 

when we test for the number of bumps in the derivative of m(-), we could probably 

improve the performance of CriSV if we used a procedure tailored to choosing the 

"best" smoothing parameter for m'(-), rather than for m(-). 

Another issue of interest is the definition of a bump. We defined it in terms 

of the values of the original function m(-). However, we could define it as a zero 

down-crossing of the derivative of m. 

When we define a bump as (5.5), we encounter the unpleasant property of the 

number of bumps being a non-monotone function of a smoothing parameter. It causes 

some philosophical problems in the testing procedure. This property is not necessary 

for CxiSV to work, but without the monotonicity property we cannot provide the 

intuitive reasons behind our test. 

A modification of CxiSV to deal with correlated or heteroscedastic errors is worth 

pursuing. This adjustment would most likely involve a new estimate of rhunr and 

a different method of bootstrapping the residuals. A version of CviSV for higher 

dimensional data would also be useful. 
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A p p e n d i x A 

M a l e results 

In Table A . l the results of the bootstrap procedure are summarized. We show the 

p-values of all the tests performed with different definitions of a bump (2-, 3-, 4-, and 

5-max), and two smoothing methods used in steps 1 and 5 of the bootstrap procedure 

on page 39: Lspline and Kernel smoothing. In step 2 of the bootstrap procedure, we 

always used the Kernel smoothing. 

Also, we exhibit here the estimated growth curves for all 43 males. Lspline smooth

ing is used to obtain these estimates. When the "strict" decision rule gives us the 

classification, we plot only the estimate with the value of a smoothing parameter 

being equal to the respective Xc

b

r\t. In 9 cases with no decision made according to the 

"strict" rule, we plot the estimates with the values of b arrived at using the range 

rule and we indicate the "soft" classification by a solid line. 
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Table A . l : Summary of 500 bootstrap samples for the male growth data. 

H0 : # of bumps < k 

M a l e Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.002 0.962 0.992 

Kernel 0.022 0.120 0.948 0.778 

3-max Lspline 0.000 0.002 0.938 0.994 

1 Kernel 0.014 0.096 0.934 0.720 

4-max Lspline 0.000 0.004 0.936 0.996 

Kernel 0.014 0.076 0.868 0.628 

5-max Lspline 0.000 0.000 0.908 0.944 

Kernel 0.012 0.056 0.992 0.946 

2-max Lspline 0.000 0.930 0.632 0.372 

Kernel 0.006 0.874 0.610 0.266 

3-max Lspline 0.000 0.908 0.680 0.316 

2 Kernel 0.004 0.882 0.638 0.274 

4-max Lspline 0.000 0.914 0.738 0.382 

Kernel 0.004 0.862 0.628 0.264 

5-max Lspline 0.000 0.934 0.632 0.556 

Kernel 0.000 0.876 0.650 0.274 

2-max Lspline 0.000 0.082 0.436 0.726 

Kernel 0.000 0.226 0.388 0.948 

3-max Lspline 0.000 0.130 0.380 0.718 

3 Kernel 0.000 0.222 0.328 0.944 

4-max Lspline 0.000 0.108 0.372 0.624 

Kernel 0.000 0.242 0.344 0.960 

5-max Lspline 0.000 0.148 0.432 0.614 

Kernel 0.000 0.218 0.398 0.836 
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Table A . l : (continued) 

M a l e Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.068 0.300 0.998 

Kernel 0.008 0.052 0.802 0.418 

3-max Lspline 0.000 0.068 0.274 0.996 

4 Kernel 0.004 0.058 0.802 0.404 

4-max Lspline 0.000 0.072 0.242 0.992 

Kernel 0.000 0.056 0.836 0.484 

5-max Lspline 0.000 0.104 0.226 0.958 

Kernel 0.000 0.088 0.832 0.482 

2-max Lspline 0.000 0.352 0.106 0.884 

Kernel 0.020 0.330 0.096 0.862 

3-max Lspline 0.000 0.310 0.094 0.884 

5 Kernel 0.014 0.322 0.100 0.866 

4-max Lspline 0.000 0.296 0.082 0.874 

Kernel 0.008 0.328 0.094 0.856 

5-max Lspline 0.000 0.264 0.106 0.848 

Kernel 0.008 0.330 0.096 0.912 

2-max Lspline 0.000 0.000 0.138 0.632 

Kernel 0.000 0.000 0.182 0.550 

3-max Lspline 0.000 0.000 0.126 0.560 

6 Kernel 0.000 0.000 0.158 0.590 

4-max Lspline 0.000 0.000 0.130 0.924 

Kernel 0.000 0.000 0.162 0.588 

5-max Lspline 0.000 0.000 0.130 0.864 

Kernel 0.000 0.000 0.176 0.906 
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Table A . l : (continued) 

M a l e Width Method Jfc = 0 Jfc = 1 k = 2 k = 3 

2-max Lspline 0.000 0.016 0.136 0.500 

Kernel 0.000 0.118 0.056 0.842 

3-max Lspline 0.000 0.010 0.114 0.558 

7 Kernel 0.000 0.098 0.038 0.832 

4-max Lspline 0.000 0.014 0.114 0.444 

Kernel 0.000 0.080 0.036 0.826 

5-max Lspline 0.000 0.014 0.100 0.524 

Kernel 0.000 0.046 0.024 0.918 

2-max Lspline 0.000 0.630 0.492 0.996 

Kernel 0.030 0.510 0.348 0.994 

3-max Lspline 0.000 0.590 0.442 0.998 

8 Kernel 0.024 0.506 0.328 0.998 

4-max Lspline 0.000 0.554 0.396 0.998 

Kernel 0.010 0.518 0.318 1.000 

5-max Lspline 0.000 0.528 0.456 1.000 

Kernel 0.012 0.510 0.370 0.940 

2-max Lspline 0.000 0.000 0.882 0.466 

Kernel 0.000 0.016 0.676 0.838 

3-max Lspline 0.000 0.000 0.864 0.454 

9 Kernel 0.000 0.008 0.830 0.842 

4-max Lspline 0.000 0.000 0.916 0.474 

Kernel 0.000 0.004 0.950 0.818 

5-max Lspline 0.000 0.000 0.918 0.948 

Kernel 0.000 0.004 0.970 0.714 
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Table A . l : (continued) 

Male Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.884 0.522 0.520 

Kernel 0.030 0.910 0.698 0.416 

3-max Lspline 0.000 0.862 0.478 0.476 

10 Kernel 0.020 0.914 0.710 0.454 

4-max Lspline 0.000 0.854 0.536 0.420 

Kernel 0.014 0.894 0.626 0.472 

5-max Lspline 0.000 0.854 0.550 0.468 

Kernel 0.010 0.886 0.624 0.614 

2-max Lspline 0.000 0.000 0.258 0.636 

Kernel 0.000 0.000 0.290 0.094 

3-max Lspline 0.000 0.000 0.220 0.588 

11 Kernel 0.000 0.000 0.290 0.262 

4-max Lspline 0.000 0.000 0.166 0.696 

Kernel 0.000 0.000 0.302 0.408 

5-max Lspline 0.000 0.000 0.178 0.630 

Kernel 0.000 0.000 0.278 0.824 

2-max Lspline 0.000 0.042 0.428 0.152 

Kernel 0.004 0.018 0.350 0.064 

3-max Lspline 0.000 0.030 0.460 0.310 

12 Kernel 0.000 0.014 0.434 0.134 

4-max Lspline 0.000 0.026 0.518 0.270 

Kernel 0.000 0.014 0.440 0.562 

5-max Lspline 0.000 0.012 0.558 0.272 

Kernel 0.000 0.012 0.388 0.670 
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Table A . l : (continued) 

Male Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.024 0.738 0.818 

Kernel 0.000 0.030 0.884 0.504 

3-max Lspline 0.000 0.012 0.798 0.802 

13 Kernel 0.000 0.028 0.764 0.438 

4-max Lspline 0.000 0.016 0.738 0.706 

Kernel 0.000 0.036 0.782 0.342 

5-max Lspline 0.000 0.024 0.762 0.628 

Kernel 0.000 0.038 0.782 0.406 

2-max Lspline 0.000 0.034 0.184 0.092 

Kernel 0.000 0.054 0.002 0.062 

3-max Lspline 0.000 0.012 0.162 0.126 

14 Kernel 0.000 0.050 0.006 0.050 

4-max Lspline 0.000 0.014 0.140 0.080 

Kernel 0.000 0.046 0.044 0.036 

5-max Lspline 0.000 0.018 0.106 0.034 

Kernel 0.000 0.048 0.086 0.036 

2-max Lspline 0.000 0.000 0.976 0.998 

Kernel 0.004 0.038 0.974 0.890 

3-max Lspline 0.000 0.000 0.984 0.992 

15 Kernel 0.004 0.022 0.980 0.886 

4-max Lspline 0.000 0.000 0.990 0.984 

Kernel 0.000 0.014 0.978 0.864 

5-max Lspline 0.000 0.000 0.984 0.918 

Kernel 0.000 0.008 0.920 0.688 
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Table A . l : (continued) 

M a l e Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.104 0.150 0.118 

Kernel 0.034 0.150 0.014 0.072 

3-max Lspline 0.000 0.088 0.148 0.134 

16 Kernel 0.032 0.130 0.014 0.070 

4-max Lspline 0.000 0.066 0.130 0.150 

Kernel 0.028 0.096 0.034 0.066 

5-max Lspline 0.000 0.054 0.084 0.086 

Kernel 0.020 0.066 0.060 0.040 

2-max Lspline 0.000 0.774 0.282 0.318 

Kernel 0.000 0.708 0.236 0.800 

3-max Lspline 0.000 0.830 0.292 0.384 

17 Kernel 0.000 0.726 0.238 0.654 

4-max Lspline 0.000 0.860 0.332 0.316 

Kernel 0.000 0.740 0.250 0.464 

5-max Lspline 0.000 0.806 0.348 0.540 

Kernel 0.000 0.706 0.198 0.938 

2-max Lspline 0.000 0.382 0.010 0.242 

Kernel 0.002 0.480 0.054 0.140 

3-max Lspline 0.000 0.380 0.010 0.224 

18 Kernel 0.000 0.492 0.064 0.158 

4-max Lspline 0.000 0.440 0.036 0.238 

Kernel 0.000 0.446 0.096 0.136 

5-max Lspline 0.000 0.478 0.058 0.270 

Kernel 0.000 0.466 0.048 0.146 
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Table A . l : (continued) 

Male Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.204 0.654 0.792 

Kernel 0.000 0.020 0.950 0.578 

3-max Lspline 0.000 0.154 0.706 0.718 

19 Kernel 0.000 0.018 0.944 0.616 

4-max Lspline 0.000 0.110 0.786 0.602 

Kernel 0.000 0.018 0.930 0.550 

5-max Lspline 0.000 0.076 0.812 0.402 

Kernel 0.000 0.018 0.938 0.456 

2-max Lspline 0.000 0.218 0.214 0.032 

Kernel 0.000 0.160 0.012 0.148 

3-max Lspline 0.000 0.184 0.204 0.036 

20 Kernel 0.000 0.142 0.014 0.172 

4-max Lspline 0.000 0.184 0.192 0.026 

Kernel 0.000 0.138 0.018 0.148 

5-max Lspline 0.000 0.206 0.126 0.030 

Kernel 0.000 0.138 0.014 0.186 

2-max Lspline 0.000 0.002 0.574 0.282 

Kernel 0.002 0.022 0.462 0.420 

3-max Lspline 0.000 0.000 0.532 0.178 

21 Kernel 0.002 0.018 0.478 0.360 

4-max Lspline 0.000 0.000 0.462 0.164 

Kernel 0.002 0.018 0.504 0.330 

5-max Lspline 0.000 0.000 0.444 0.118 

Kernel 0.000 0.016 0.434 0.364 
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Table A . l : (continued) 

Male Width Method k = 0 k - 1 k = 2 k = 3 

2-max Lspline 0.000 0.000 0.548 0.756 

Kernel 0.022 0.002 0.140 0.808 

3-max Lspline 0.000 0.000 0.472 0.744 

22 Kernel 0.006 0.000 0.114 0.852 

4-max Lspline 0.000 0.000 0.446 0.766 

Kernel 0.004 0.000 0.100 0.754 

5-max Lspline 0.000 0.000 0.390 0.766 

Kernel 0.004 0.000 0.072 0.644 

2-max Lspline 0.000 0.794 0.256 0.072 

Kernel 0.000 0.560 0.278 0.080 

3-max Lspline 0.000 0.750 0.296 0.086 

23 Kernel 0.000 0.548 0.248 0.082 

4-max Lspline 0.000 0.790 0.334 0.122 

Kernel 0.000 0.536 0.208 0.066 

5-max Lspline 0.000 0.754 0.308 0.048 

Kernel 0.000 0.546 0.294 0.104 

2-max Lspline 0.000 0.000 0.164 0.382 

Kernel 0.000 0.008 0.222 0.712 

3-max Lspline 0.000 0.000 0.150 0.484 

24 Kernel 0.000 0.008 0.214 0.648 

4-max Lspline 0.000 0.000 0.118 0.360 

Kernel 0.000 0.010 0.206 0.548 

5-max Lspline 0.000 0.000 0.104 0.486 

Kernel 0.000 0.008 0.204 N A 
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Table A . l : (continued) 

M a l e Width Method k = 0 k - 1 k = 2 k = 3 

2-max Lspline 0.000 0.000 0.232 0.302 

Kernel 0.052 0.030 0.200 0.404 

3-max Lspline 0.000 0.000 0.208 0.256 

25 Kernel 0.012 0.016 0.160 0.360 

4-max Lspline 0.000 0.000 0.292 0.256 

Kernel 0.000 0.012 0.188 0.360 

5-max Lspline 0.000 0.000 0.336 0.294 

Kernel 0.000 0.002 0.300 0.334 

2-max Lspline 0.000 0.098 0.118 0.062 

Kernel 0.010 0.130 0.230 0.028 

3-max Lspline 0.000 0.092 0.162 0.066 

26 Kernel 0.002 0.148 0.246 0.022 

4-max Lspline 0.000 0.072 0.152 0.056 

Kernel 0.002 0.118 0.198 0.022 

5-max Lspline 0.000 0.062 0.274 0.042 

Kernel 0.000 0.136 0.208 0.036 

2-max Lspline 0.000 0.788 0.758 0.454 

Kernel 0.016 0.918 0.548 0.320 

3-max Lspline 0.000 0.748 0.798 0.416 

27 Kernel 0.010 0.922 0.530 0.336 

4-max Lspline 0.000 0.728 0.798 0.426 

Kernel 0.006 0.920 0.530 0.388 

5-max Lspline 0.000 0.726 0.702 0.322 

Kernel 0.004 0.918 0.524 0.462 
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Table A . l : (continued) 

Male Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.398 0.112 0.746 

Kernel 0.000 0.522 0.066 0.638 

3-max Lspline 0.000 0.390 0.078 0.776 

28 Kernel 0.000 0.516 0.058 0.656 

4-max Lspline 0.000 0.402 0.076 0.714 

Kernel 0.000 0.540 0.080 0.688 

5-max Lspline 0.000 0.456 0.068 0.766 

Kernel 0.000 0.548 0.092 0.700 

2-max Lspline 0.000 0.000 0.210 0.660 

Kernel 0.000 0.018 0.134 0.106 

3-max Lspline 0.000 0.000 0.172 0.566 

29 Kernel 0.000 0.016 0.124 0.230 

4-max Lspline 0.000 0.000 0.160 0.610 

Kernel 0.000 0.016 0.152 0.478 

5-max Lspline 0.000 0.000 0.174 N A 

Kernel 0.000 0.016 0.140 0.816 

2-max Lspline 0.000 0.006 0.036 0.318 

Kernel 0.008 0.104 0.104 0.446 

3-max Lspline 0.000 0.010 0.038 0.364 

30 Kernel 0.002 0.090 0.098 0.470 

4-max Lspline 0.000 0.012 0.062 0.446 

Kernel 0.002 0.078 0.108 0.444 

5-max Lspline 0.000 0.026 0.050 0.476 

Kernel 0.000 0.064 0.122 0.426 
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Table A . l : (continued) 

Male Width Method k = 0 A; = 1 k = 2 k = 3 

2-max Lspline 0.000 0.032 0.738 0.998 

Kernel 0.000 0.064 0.948 0.748 

3-max Lspline 0.000 0.050 0.686 0.998 

31 Kernel 0.000 0.064 0.882 0.818 

4-max Lspline 0.000 0.048 0.674 0.996 

Kernel 0.000 0.064 0.778 0.866 

5-max Lspline 0.000 0.048 0.640 0.918 

Kernel 0.000 0.072 0.834 0.712 

2-max Lspline 0.000 0.114 0.996 0.982 

Kernel 0.000 0.208 0.964 0.960 

3-max Lspline 0.000 0.152 0.994 0.978 

32 Kernel 0.000 0.216 0.966 0.974 

4-max Lspline 0.000 0.136 0.994 0.984 

Kernel 0.000 0.192 0.962 0.972 

5-max Lspline 0.000 0.176 0.986 0.976 

Kernel 0.000 0.186 0.968 0.900 

2-max Lspline 0.000 0.566 0.306 0.546 

Kernel 0.000 0.514 0.080 0.924 

3-max Lspline 0.000 0.534 0.302 0.484 

33 Kernel 0.000 0.556 0.082 0.904 

4-max Lspline 0.000 0.536 0.268 0.342 

Kernel 0.000 0.508 0.086 0.832 

5-max Lspline 0.000 0.522 0.266 0.402 

Kernel 0.000 0.542 0.096 0.806 
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Table A . l : (continued) 

M a l e Width Method A; = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.160 0.024 0.264 

Kernel 0.000 0.370 0.040 0.070 

3-max Lspline 0.000 0.222 0.028 0.286 

34 Kernel 0.000 0.396 0.034 0.060 

4-max Lspline 0.000 0.358 0.016 0.234 

Kernel 0.000 0.360 0.040 0.092 

5-max Lspline 0.000 0.458 0.016 0.352 

Kernel 0.000 0.386 0.048 0.108 

2-max Lspline 0.000 0.010 0.886 0.936 

Kernel 0.000 0.010 0.972 0.856 

3-max Lspline 0.000 0.006 0.856 0.938 

35 Kernel 0.000 0.010 0.964 0.876 

4-max Lspline 0.000 0.004 0.804 0.940 

Kernel 0.000 0.008 0.962 0.838 

5-max Lspline 0.000 0.000 0.788 0.874 

Kernel 0.000 0.010 0.962 0.906 

2-max Lspline 0.000 0.268 0.024 0.176 

Kernel 0.068 0.464 0.002 0.082 

3-max Lspline 0.000 0.296 0.030 0.188 

36 Kernel 0.064 0.460 0.000 0.090 

4-max Lspline 0.000 0.328 0.022 0.158 

Kernel 0.060 0.464 0.000 0.054 

5-max Lspline 0.000 0.378 0.016 0.156 

Kernel 0.056 0.464 0.002 0.066 
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Table A . l : (continued) 

M a l e Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.000 0.038 0.598 

Kernel 0.000 0.038 0.116 0.316 

3-max Lspline 0.000 0.002 0.034 0.516 

37 Kernel 0.000 0.038 0.112 0.312 

4-max Lspline 0.000 0.002 0.044 0.584 

Kernel 0.000 0.038 0.116 0.354 

5-max Lspline 0.000 0.002 0.040 0.458 

Kernel 0.000 0.040 0.104 0.234 

2-max Lspline 0.000 0.000 0.014 0.390 

Kernel 0.000 0.000 0.012 0.360 

3-max Lspline 0.000 0.000 0.018 0.400 

38 Kernel 0.000 0.000 0.016 0.294 

4-max Lspline 0.000 0.000 0.014 0.478 

Kernel 0.000 0.000 0.012 0.326 

5-max Lspline 0.000 0.000 0.016 0.400 

Kernel 0.000 0.000 0.018 0.356 

2-max Lspline 0.000 0.118 0.492 0.994 

Kernel 0.000 0.138 0.504 0.936 

3-max Lspline 0.000 0.100 0.538 0.994 

39 Kernel 0.000 0.170 0.432 0.942 

4-max Lspline 0.000 0.122 0.472 0.986 

Kernel 0.000 0.146 0.410 0.942 

5-max Lspline 0.000 0.122 0.588 0.884 

Kernel 0.000 0.148 0.476 0.604 

125 



Table A . l : (continued) 

M a l e Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.106 0.694 0.416 

Kernel 0.000 0.076 0.540 0.202 

3-max Lspline 0.000 0.106 0.658 0.440 

40 Kernel 0.000 0.092 0.668 0.220 

4-max Lspline 0.000 0.108 0.644 0.560 

Kernel 0.000 0.080 0.610 0.534 

5-max Lspline 0.000 0.066 0.558 0.530 

Kernel 0.000 0.090 0.592 0.786 

2-max Lspline 0.000 0.694 0.374 0.278 

Kernel 0.002 0.460 0.288 0.506 

3-max Lspline 0.000 0.824 0.408 0.260 

41 Kernel 0.002 0.652 0.310 0.432 

4-max Lspline 0.000 0.784 0.660 0.236 

Kernel 0.000 0.790 0.504 0.442 

5-max Lspline 0.000 0.820 0.614 0.600 

Kernel 0.000 0.736 0.888 0.682 

2-max Lspline 0.000 0.184 0.656 0.572 

Kernel 0.000 0.284 0.114 0.106 

3-max Lspline 0.000 0.212 0.592 0.488 

42 Kernel 0.000 0.266 0.262 0.090 

4-max Lspline 0.000 0.224 0.564 0.504 

Kernel 0.000 0.248 0.372 0.182 

5-max Lspline 0.000 0.188 0.480 0.640 

Kernel 0.000 0.240 0.336 0.858 
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Table A . l : (continued) 

M a l e Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.012 0.434 0.564 

Kernel 0.000 0.064 0.324 0.422 

3-max Lspline 0.000 0.028 0.388 0.576 

43 Kernel 0.000 0.068 0.348 0.410 

4-max Lspline 0.000 0.020 0.426 0.570 

Kernel 0.000 0.052 0.384 0.384 

5-max Lspline 0.000 0.032 0.520 0.820 

Kernel 0.000 0.068 0.314 N A 
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Male #32 Male #33 Male #41 
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• 

10 15 

Figure A . l : Plot of male speed curves with 1 bump. 
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Figure A.2: Plot of male speed curves with 2 bumps. 
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Male #31 Male #35 Male #39 

Figure A.3: Plot of male speed curves with 2 bumps (top) and 3 bumps (bottom). 
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Male # 5 Male #18 Male #28 

Figure A.4: Plots of the cases with no decision reached by the "strict" criterion. 
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A p p e n d i x B 

Female results 

In Table B . l the results of the bootstrap procedure are summarized. We show the 

p-values of all the tests performed with different definitions of a bump (2-, 3-, 4-, and 

5-max), and two smoothing methods used in steps 1 and 5 of the bootstrap procedure 

on page 39: Lspline and Kernel smoothing. In step 2 of the bootstrap procedure, we 

always used the Kernel smoothing. 

Also, we exhibit here the estimated growth curves for all 50 females. Lspline 

smoothing is used to obtain these estimates. When the "strict" decision rule gives us 

the classification, we plot only the estimate with the value of a smoothing parameter 

being equal to the respective X^Ht- In 11 cases when the decision was not reached by 

using the "strict" rule we plot the estimates with the values of b attained when using 

the range rule. "Soft" rule classification is indicated by a solid line. 
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Table B . l : Summary of 500 bootstrap samples for the female growth data. 

H0 : # of bumps < k 

Female Width Method k = 0 k = l k = 2 k = 3 

2-max Lspline 0.000 0.908 1.000 0.996 

Kernel 0.000 0.748 0.998 0.998 

3-max Lspline 0.000 0.872 0.998 0.994 

1 Kernel 0.000 0.754 0.994 0.998 

4-max Lspline 0.000 0.870 0.996 0.986 

Kernel 0.000 0.762 0.988 0.998 

5-max Lspline 0.000 0.818 0.998 0.950 

Kernel 0.000 0.712 0.962 0.774 

2-max Lspline 0.578 0.520 0.156 0.034 

Kernel 0.074 0.172 0.170 0.026 

3-max Lspline 0.586 0.630 0.116 0.030 

2 Kernel 0.066 0.186 0.174 0.020 

4-max Lspline 0.582 0.638 0.096 0.052 

Kernel 0.058 0.196 0.148 0.018 

5-max Lspline 0.600 0.698 0.090 0.118 

Kernel 0.068 0.198 0.160 0.018 

2-max Lspline 0.022 0.544 0.718 0.924 

Kernel 0.116 0.352 0.884 0.804 

3-max Lspline 0.014 0.496 0.664 0.902 

3 Kernel 0.072 0.348 0.886 0.838 

4-max Lspline 0.010 0.462 0.614 0.826 

Kernel 0.038 0.316 0.924 0.856 

5-max Lspline 0.002 0.408 0.654 0.770 

Kernel 0.024 0.296 0.860 0.764 
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Table B . l : (continued) 

Female W i d t h Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.070 0.728 0.688 

Kernel 0.000 0.006 0.222 0.430 

3-max Lspline 0.000 0.138 0.676 0.672 

4 Kernel 0.000 0.004 0.462 0.398 

4-max Lspline 0.000 0.118 0.700 0.610 

Kernel 0.000 0.004 0.752 0.476 

5-max Lspline 0.000 0.084 0.722 0.966 

Kernel 0.000 0.004 0.882 N A 

2-max Lspline 0.000 0.044 0.364 0.944 

Kernel 0.000 0.012 0.874 0.630 

3-max Lspline 0.000 0.022 0.998 0.956 

5 Kernel 0.000 0.008 0.886 0.550 

4-max Lspline 0.000 0.018 0.996 0.910 

Kernel 0.000 0.008 0.894 0.508 

5-max Lspline 0.000 0.012 0.982 0.804 

Kernel 0.000 0.012 0.914 0.656 

2-max Lspline 0.000 0.196 0.008 0.756 

Kernel 0.002 0.062 0.012 0.304 

3-max Lspline 0.000 0.152 0.002 0.682 

6 Kernel 0.000 0.054 0.012 0.272 

4-max Lspline 0.000 0.100 0.002 0.616 

Kernel 0.000 0.052 0.000 0.242 

5-max Lspline 0.000 0.034 0.000 0.554 

Kernel 0.000 0.044 0.000 0.170 
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Table B . l : (continued) 

Female Width Method Jfc = 0 Jfc = 1 Jfc = 2 Jfc = 3 

2-max Lspline 0.000 0.174 0.020 0.038 

Kernel 0.000 0.082 0.000 0.008 

3-max Lspline 0.000 0.126 0.008 0.058 

7 Kernel 0.000 0.084 0.000 0.012 

4-max Lspline 0.000 0.128 0.010 0.032 

Kernel 0.000 0.102 0.000" 0.008 

5-max Lspline 0.000 0.132 0.008 0.034 

Kernel 0.000 0.104 0.000 0.012 

2-max Lspline 0.000 0.448 0.672 0.920 

Kernel 0.000 0.390 0.754 0.774 

3-max Lspline 0.000 0.388 0.722 0.884 

8 Kernel 0.000 0.336 0.768 0.714 

4-max Lspline 0.000 0.378 0.608 0.904 

Kernel 0.000 0.300 0.820 0.710 

5-max Lspline 0.000 0.362 0.658 0.784 

Kernel 0.000 0.286 0.920 0.732 

2-max Lspline 0.000 0.474 0.518 0.616 

Kernel 0.000 0.868 0.776 0.732 

3-max Lspline 0.000 0.426 0.420 0.606 

9 Kernel 0.000 0.864 0.888 0.806 

4-max Lspline 0.000 0.550 0.376 0.652 

Kernel 0.000 0.810 0.974 0.836 

5-max Lspline 0.000 0.744 0.968 0.838 

Kernel 0.000 0.790 0.860 0.784 
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Table B . l : (continued) 

Female Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.382 0.522 0.998 

Kernel 0.000 0.562 0.624 0.946 

3-max Lspline 0.000 0.320 0.508 1.000 

10 Kernel 0.000 0.582 0.546 0.928 

4-max Lspline 0.000 0.310 0.476 1.000 

Kernel 0.000 0.646 0.468 0.884 

5-max Lspline 0.000 0.272 0.456 0.904 

Kernel 0.000 0.566 0.472 0.808 

2-max Lspline 0.000 0.246 0.206 0.140 

Kernel 0.014 0.466 0.216 0.216 

3-max Lspline 0.000 0.214 0.168 0.102 

11 Kernel 0.010 0.448 0.194 0.192 

4-max Lspline 0.000 0.220 0.208 0.068 

Kernel 0.006 0.422 0.162 0.150 

5-max Lspline 0.000 0.258 0.154 0.062 

Kernel 0.006 0.450 0.156 0.090 

2-max Lspline 0.000 0.468 0.276 0.316 

Kernel 0.000 0.006 0.148 0.322 

3-max Lspline 0.000 0.510 0.250 0.476 

12 Kernel 0.000 0.010 0.140 0.284 

4-max Lspline 0.000 0.550 0.200 0.374 

Kernel 0.000 0.024 0.092 0.294 

5-max Lspline 0.000 0.492 0.124 0.526 

Kernel 0.000 0.060 0.070 0.348 
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Table B . l : (continued) 

Female Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.180 0.624 0.450 

Kernel 0.000 0.356 0.438 0.684 

3-max Lspline 0.000 0.150 0.546 0.448 

13 Kernel 0.000 0.318 0.406 0.672 

4-max Lspline 0.000 0.200 0.520 0.416 

Kernel 0.000 0.310 0.448 0.616 

5-max Lspline 0.000 0.258 0.496 0.404 

Kernel 0.000 0.352 0.388 0.620 

2-max Lspline 0.000 0.154 0.250 0.700 

Kernel 0.000 0.174 0.062 0.174 

3-max Lspline 0.000 0.166 0.184 0.606 

14 Kernel 0.000 0.168 0.058 0.234 

4-max Lspline 0.000 0.186 0.234 0.690 

Kernel 0.000 0.182 0.064 0.192 

5-max Lspline 0.000 0.128 0.186 0.550 

Kernel 0.000 0.190 0.072 0.250 

2-max Lspline 0.010 0.018 1.000 0.984 

Kernel 0.374 0.006 1.000 1.000 

3-max Lspline 0.014 0.012 1.000 0.976 

15 Kernel 0.356 0.004 1.000 0.988 

4-max Lspline 0.014 0.008 1.000 0.962 

Kernel 0.346 0.004 0.998 0.964 

5-max Lspline 0.014 0.008 0.990 0.930 

Kernel 0.332 0.004 0.996 N A 
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Table B . l : (continued) 

Female Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.446 0.276 0.492 

Kernel 0.000 0.350 0.164 0.600 

3-max Lspline 0.000 0.376 0.348 0.530 

16 Kernel 0.000 0.346 0.180 0.534 

4-max Lspline 0.000 0.410 0.416 0.516 

Kernel 0.000 0.348 0.156 0.502 

5-max Lspline 0.000 0.412 0.302 0.602 

Kernel 0.000 0.274 0.122 0.674 

2-max Lspline 0.030 0.348 0.988 0.882 

Kernel 0.000 0.148 0.964 0.908 

3-max Lspline 0.000 0.290 0.986 0.848 

17 Kernel 0.000 0.188 0.962 0.930 

4-max Lspline 0.000 0.248 0.998 0.810 

Kernel 0.000 0.160 0.968 0.948 

5-max Lspline 0.000 0.194 0.994 0.872 

Kernel 0.000 0.132 0.984 0.888 

2-max Lspline 0.000 0.006 0.932 0.998 

Kernel 0.000 0.028 0.968 0.870 

3-max Lspline 0.000 0.006 0.982 0.998 

18 Kernel 0.000 0.032 0.972 0.828 

4-max Lspline 0.000 0.002 1.000 0.996 

Kernel 0.000 0.030 0.928 0.896 

5-max Lspline 0.000 0.002 0.998 N A 

Kernel 0.000 0.040 0.962 0.656 
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Table B . l : (continued) 

Female Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.346 0.116 0.998 

Kernel 0.000 0.210 0.064 0.990 

3-max Lspline 0.000 0.306 0.110 0.998 

19 Kernel 0.000 0.196 0.070 0.988 

4-max Lspline 0.000 0.282 0.084 0.988 

Kernel 0.00.0 0.206 0.090 0.974 

5-max Lspline 0.000 0.226 0.096 0.958 

Kernel 0.000 0.226 0.068 0.912 

2-max Lspline 0.000 0.678 0.522 0.404 

Kernel 0.002 0.758 0.462 0.164 

3-max Lspline 0.000 0.716 0.428 0.380 

20 Kernel 0.002 0.760 0.476 0.136 

4-max Lspline 0.000 0.698 0.312 0.354 

Kernel 0.000 0.764 0.456 0.176 

5-max Lspline 0.000 0.658 0.236 0.366 

Kernel 0.000 0.736 0.508 0.278 

2-max Lspline 0.000 0.038 0.912 0.650 

Kernel 0.000 0.014 0.838 0.576 

3-max Lspline 0.000 0.020 0.888 0.656 

21 Kernel 0.000 0.020 0.818 0.570 

4-max Lspline 0.000 0.008 0.914 0.712 

Kernel 0.000 0.008 0.776 0.598 

5-max Lspline 0.000 0.012 0.838 0.646 

Kernel 0.000 0.014 0.938 0.724 
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Table B . l : (continued) 

Female Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.014 0.166 0.156 0.548 

Kernel 0.124 0.004 0.412 0.198 

3-max Lspline 0.010 0.126 0.194 0.546 

22 Kernel 0.114 0.008 0.388 0.206 

4-max Lspline 0.010 0.092 0.212 0.556 

Kernel 0.094 0.004 0.386 0.156 

5-max Lspline 0.010 0.046 0.256 0.340 

Kernel 0.082 0.002 0.404 0.162 

2-max Lspline 0.000 0.012 0.444 1.000 

Kernel 0.048 0.044 0.182 0.888 

3-max Lspline 0.000 0.006 0.390 1.000 

23 Kernel 0.010 0.032 0.188 0.880 

4-max Lspline 0.000 0.000 0.364 1.000 

Kernel 0.006 0.022 0.166 0.846 

5-max Lspline 0.000 0.000 0.312 1.000 

Kernel 0.006 0.016 0.150 0.870 

2-max Lspline 0.000 0.012 0.830 0.372 

Kernel 0.004 0.000 0.594 0.330 

3-max Lspline 0.000 0.008 0.772 0.324 

24 Kernel 0.000 0.000 0.618 0.316 

4-max Lspline 0.000 0.008 0.776 0.290 

Kernel 0.000 0.000 0.628 0.342 

5-max Lspline 0.000 0.004 0.752 0.168 

Kernel 0.000 0.000 0.642 0.380 
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Table B . l : (continued) 

Female Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.060 0.986 0.928 

Kernel 0.000 0.006 0.830 0.590 

3-max Lspline 0.000 0.014 0.984 0.948 

25 Kernel 0.000 0.006 0.912 0.780 

4-max Lspline 0.000 0.016 0.988 0.982 

Kernel 0.000 0.006 0.904 0.788 

5-max Lspline 0.000 0.008 0.988 N A 

Kernel 0.000 0.004 0.854 0.416 

2-max Lspline 0.000 0.198 0.010 0.288 

Kernel 0.000 0.030 0.000 0.770 

3-max Lspline 0.000 0.144 0.000 0.470 

26 Kernel 0.000 0.034 0.000 0.686 

4-max Lspline 0.000 0.126 0.000 0.400 

Kernel 0.000 0.036 0.000 0.752 

5-max Lspline 0.000 0.084 0.000 0.614 

Kernel 0.000 0.026 0.000 0.786 

2-max Lspline 0.000 0.952 0.892 1.000 

Kernel 0.000 0.804 0.594 0.874 

3-max Lspline 0.000 0.918 0.816 1.000 

27 Kernel 0.000 0.772 0.670 0.902 

4-max Lspline 0.000 0.892 0.846 0.994 

Kernel 0.000 0.728 0.668 0.734 

5-max Lspline 0.000 0.832 0.730 0.948 

Kernel 0.000 0.654 0.860 0.602 
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Table B . l : (continued) 

Female Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.114 0.080 0.172 

Kernel 0.000 0.082 0.188 0.010 

3-max Lspline 0.000 0.080 0.094 0.162 

28 Kernel 0.000 0.072 0.204 0.028 

4-max Lspline 0.000 0.078 0.058 0.166 

Kernel 0.000 0.064 0.200 0.146 

5-max Lspline 0.000 0.056 0.060 0.764 

Kernel 0.000 0.056 0.176 0.780 

2-max Lspline 0.000 0.036 0.098 0.014 

Kernel 0.000 0.038 0.060 0.006 

3-max Lspline 0.000 0.042 0.170 0.018 

29 Kernel 0.000 0.036 0.074 0.004 

4-max Lspline 0.000 0.056 0.166 0.012 

Kernel 0.000 0.038 0.108 0.004 

5-max Lspline 0.000 0.062 0.302 0.024 

Kernel 0.000 0.048 0.084 0.002 

2-max Lspline 0.000 0.142 0.378 0.390 

Kernel 0.000 0.094 0.206 0.114 

3-max Lspline 0.000 0.138 0.266 0.332 

30 Kernel 0.000 0.084 0.222 0.156 

4-max Lspline 0.000 0.178 0.360 0.314 

Kernel 0.000 0.082 0.176 0.100 

5-max Lspline 0.000 0.118 0.356 0.236 

Kernel 0.000 0.054 0.184 0.250 
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Table B . l : (continued) 

Female Width Method k = Q k = 1 k = 2 k = 3 

2-max Lspline 0.008 0.000 0.092 0.862 

Kernel 0.000 0.000 0.014 0.474 

3-max Lspline 0.002 0.000 0.060 0.826 

31 Kernel 0.000 0.000 0.022 0.788 

4-max Lspline 0.000 0.000 0.034 0.824 

Kernel 0.000 0.000 0.022 0.746 

5-max Lspline 0.000 0.070 0.018 0.752 

Kernel 0.000 0.000 0.020 0.738 

2-max Lspline 0.000 0.180 0.026 0.200 

Kernel 0.000 0.204 0.000 0.196 

3-max Lspline 0.000 0.126 0.020 0.182 

32 Kernel 0.000 0.230 0.004 0.178 

4-max Lspline 0.000 0.104 0.026 0.180 

Kernel 0.000 0.196 0.004 0.174 

5-max Lspline 0.000 0.106 0.036 0.164 

Kernel 0.000 0.190 0.004 0.232 

2-max Lspline 0.000 0.738 0.902 0.904 

Kernel 0.008 0.440 0.886 0.564 

3-max Lspline 0.000 0.686 0.932 0.926 

33 Kernel 0.004 0.418 0.896 0.554 

4-max Lspline 0.000 0.646 0.914 0.784 

Kernel 0.000 0.416 0.892 0.598 

5-max Lspline 0.000 0.576 0.872 0.986 

Kernel 0.000 0.424 0.668 0.474 
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Table B . l : (continued) 

Female Width Method A: = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.302 0.110 0.020 

Kernel 0.000 0.214 0.066 0.344 

3-max Lspline 0.000 0.330 0.102 0.026 

34 Kernel 0.000 0.224 0.110 0.340 

4-max Lspline 0.000 0.478 0.142 0.036 

Kernel 0.000 0.206 0.164 0.256 

5-max Lspline 0.000 0.414 0.190 0.352 

Kernel 0.000 0.206 0.386 0.140 

2-max Lspline 0.000 0.078 0.214 0.942 

Kernel 0.000 0.088 0.172 0.776 

3-max Lspline 0.000 0.042 0.172 0.954 

35 Kernel 0.000 0.086 0.130 0.834 

4-max Lspline 0.000 0.034 0.116 0.980 

Kernel 0.000 0.090 0.152 0.832 

5-max Lspline 0.000 0.030 0.106 0.960 

Kernel 0.000 0.078 0.154 0.484 

2-max Lspline 0.000 0.162 0.140 0.020 

Kernel 0.000 0.044 0.000 0.000 

3-max Lspline 0.000 0.088 0.148 0.026 

36 Kernel 0.000 0.042 0.000 0.000 

4-max Lspline 0.000 0.052 0.134 0.016 

Kernel 0.000 0.014 0.000 0.000 

5-max Lspline 0.000 0.016 0.130 0.002 

Kernel 0.000 0.008 0.000 0.000 
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Table B . l : (continued) 

Female Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.086 0.996 0.928 

Kernel 0.000 0.050 0.922 0.760 

3-max Lspline 0.000 0.078 0.994 0.942 

37 Kernel 0.000 0.050 0.924 0.826 

4-max Lspline 0.000 0.054 0.994 0.934 

Kernel 0.000 0.046 0.896 0.806 

5-max Lspline 0.000 0.022 0.982. N A 

Kernel 0.000 0.052 0.762 0.442 

2-max Lspline 0.026 0.768 0.554 0.436 

Kernel 0.100 0.894 0.456 0.104 

3-max Lspline 0.020 0.734 0.658 0.396 

38 Kernel 0.076 0.888 0.472 0.100 

4-max Lspline 0.012 0.704 0.586 0.340 

Kernel 0.048 0.894 0.448 0.098 

5-max Lspline 0.012 0.646 0.634 0.266 

Kernel 0.032 0.896 0.400 0.138 

2-max Lspline 0.000 0.228 0.306 0.070 

Kernel 0.000 0.148 0.344 0.222 

3-max Lspline 0.000 0.230 0.294 0.034 

39 Kernel 0.000 0.136 0.356 0.248 

4-max Lspline 0.000 0.184 0.254 0.048 

Kernel 0.000 0.134 0.394 0.278 

5-max Lspline 0.000 0.178 0.266 0.092 

Kernel 0.000 0.140 0.278 0.180 
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Table B . l : (continued) 

Female Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.034 0.198 0.144 

Kernel 0.000 0.014 0.024 0.362 

3-max Lspline 0.000 0.008 0.210 0.112 

40 Kernel 0.000 0.014 0.026 0.380 

4-max Lspline 0.000 0.016 0.178 0.064 

Kernel 0.000 0.008 0.024 0.474 

5-max Lspline 0.000 0.006 0.182 0.080 

Kernel 0.000 0.008 0.020 0.384 

2-max Lspline 0.000 0.424 0.962 0.920 

Kernel 0.000 0.276 1.000 0.984 

3-max Lspline 0.000 0.452 0.974 0.944 

41 Kernel 0.000 0.260 1.000 0.998 

4-max Lspline 0.000 0.420 0.954 0.984 

Kernel 0.000 0.272 0.994 0.982 

5-max Lspline 0.000 0.338 0.924 0.860 

Kernel 0.000 0.216 N A N A 

2-max Lspline 0.000 0.010 0.510 0.100 

Kernel 0.030 0.000 0.306 0.048 

3-max Lspline 0.000 0.004 0.508 0.104 

42 Kernel 0.024 0.000 0.328 0.064 

4-max Lspline 0.000 0.004 0.494 0.142 

Kernel 0.012 0.000 0.334 0.236 

5-max Lspline 0.000 0.004 0.460 0.482 

Kernel 0.002 0.000 0.330 0.302 
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Table B.l: (continued) 

Female Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.228 0.046 0.858 

Kernel 0.000 0.134 0.010 0.778 

3-max Lspline 0.000 0.218 0.080 0.902 

43 Kernel 0.000 0.130 0.012 0.728 

4-max Lspline 0.000 0.232 0.036 0.944 

Kernel 0.000 0.148 0.014 0.668 

5-max Lspline 0.000 0.164 0.074 0.870 

Kernel 0.000 0.188 0.024 0.730 

2-max Lspline 0.000 0.172 0.958 0.992 

Kernel 0.000 0.106 0.980 0.918 

3-max Lspline 0.000 0.148 0.984 0.970 

44 Kernel 0.000 0.082 0.984 0.888 

4-max Lspline 0.000 0.122 0.962 0.942 

Kernel 0.000 0.086 0.966 0.724 

5-max Lspline 0.000 0.100 0.994 0.896 

Kernel 0.000 0.100 0.914 0.864 

2-max Lspline 0.000 0.384 0.076 0.010 

Kernel 0.052 0.320 0.122 0.108 

3-max Lspline 0.000 0.340 0.092 0.002 

45 Kernel 0.036 0.320 0.116 0.116 

4-max Lspline 0.000 0.290 0.098 0.026 

Kernel 0.032 0.322 0.102 0.138 

5-max Lspline 0.000 0.290 0.102 0.066 

Kernel 0.032 0.298 0.096 0.160 
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Table B . l : (continued) 

Female Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.000 0.088 0.044 0.774 

Kernel 0.026 0.004 0.002 0.192 

3-max Lspline 0.000 0.028 0.016 0.724 

46 Kernel 0.020 0.012 0.000 0.348 

4-max Lspline 0.000 0.010 0.012 0.718 

Kernel 0.016 0.024 0.000 0.626 

5-max Lspline 0.000 0.008 0.004 0.640 

Kernel 0.012 0.014 0.000 0.870 

2-max Lspline 0.000 0.628 0.628 0.924 

Kernel 0.000 0.466 0.462 0.134 

3-max Lspline 0.000 0.634 0.548 0.898 

47 Kernel 0.000 0.468 0.436 0.342 

4-max Lspline 0.000 0.588 0.504 0.938 

Kernel 0.000 0.426 0.392 0.732 

5-max Lspline 0.000 0.538 0.438 0.868 

Kernel 0.000 0.432 0.412 0.860 

2-max Lspline 0.000 0.102 0.804 0.968 

Kernel 0.000 0.098 0.652 0.682 

3-max Lspline 0.000 0.086 0.778 0.958 

48 Kernel 0.000 0.092 0.606 0.870 

4-max Lspline 0.000 0.080 0.722 0.974 

Kernel 0.000 0.080 0.622 0.876 

5-max Lspline 0.000 0.042 0.646 0.872 

Kernel 0.000 0.068 0.462 N A 
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Table B . l : (continued) 

Female Width Method k = 0 k = 1 k = 2 k = 3 

2-max Lspline 0.030 0.748 0.252 0.808 

Kernel 0.070 0.612 0.490 0.294 

3-max Lspline 0.010 0.728 0.242 0.796 

49 Kernel 0.058 0.602 0.714 0.352 

4-max Lspline 0.000 0.710 0.240 0.776 

Kernel 0.058 0.582 0.660 0.762 

5-max Lspline 0.000 0.694 0.186 0.950 

Kernel 0.058 0.590 0.666 0.978 

2-max Lspline 0.000 0.842 0.708 0.924 

Kernel 0.000 0.488 0.414 0.238 

3-max Lspline 0.000 0.804 0.652 0.938 

50 Kernel 0.000 0.440 0.536 0.358 

4-max Lspline 0.000 0.740 0.550 0.926 

Kernel 0.000 0.480 0.536 0.602 

5-max Lspline 0.000 0.690 0.372 0.860 

Kernel 0.000 0.398 0.428 0.894 

149 



Female # 1 Female # 3 Female # 8 

Figure B . l : Plots of female speed curves with 1 bump. 
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Female # 20 Female # 27 Female # 33 

Figure B.2: Plots of female speed curves with 1 bump (continued). 
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Female # 4 Female # 5 Female #13 

Figure B.3: Plots of female speed curves with 2 bumps. 

152 



Female # 25 Female # 30 Female # 35 



Female # 26 Female # 28 Female # 31 
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Figure B.7: Plots of the cases with no decision reached by the "strict" criterion 

(continued). 
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