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Abstract 

In planning clinical trials in many subject areas, researchers often find it difficult to 

designate one single outcome measure as the primary endpoint to describe treatment 

efficacy. When a disease affects a patient's functions in multiple dimensions, expecting 

one outcome measure to assess treatment efficacy in a comprehensive way may not be 

realistic. Multiple sclerosis (MS) is one such complex disease. The topic addressed 

in this thesis concerns approaches for the design and analysis of clinical trials where 

a multidimensional outcome measure is used to measure treatment efficacy. The most 

common approach is to select a single primary endpoint for formal statistical testing with 

all other outcome measures considered as secondary. This thesis is concerned with the 

situation where agreement on a single primary endpoint is not possible so that methods 

based on multiple endpoints are required. 

Five methods, Bonferroni adjustment, Hotelling's T 2 , O'Brien's OLS and GLS statis­

tics and disjunctive outcome measures are examined and compared through power and 

sample size calculations. Our discussion of these methods is focused on two-armed 

(placebo and treatment) randomized clinical trials based on continuous outcome mea­

sures. We assume that the data to be analyzed are the changes in the responses from the 

baseline to the end of the trial and the underlying distribution of the multiple outcome 

measures can be approximated as multivariate normal. Our investigation is focused 

on the features of the configuration of the standardized differences in the underlying 

population means and the correlation structure among the multiple outcome measures. 

Specifically, several special cases are examined to highlight the main differences among 

the statistical properties of these methods. We also apply the methods considered to two 
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MS clinical trial data sets for a more focused comparison of these methods for actual MS 

patient populations. 

111 



Table of Contents 

Abstract ii 

List of Tables vii 

List of Figures ix 

Acknowledgment . x 

1 Introduction 1 

2 Several Approaches to Multiple Outcome Measures 8 

2.1 Bonferroni Adjustment 11 

2.1.1 Power and Sample Size Calculations 12 

2.2 Hotelling's T 2 Statistic 14 

2.2.1 Power and Sample Size Calculations 15 

2.2.2 The Non-centrality Parameters for Cases A , B , and C 16 

2.3 Linear Combinations of Z-Statistics 17 

2.3.1 O'Brien's OLS Statistic. 17 

2.3.2 O'Brien's GLS Statistic . . . . ! 19 

2.4 Comparisons for Equally Correlated Outcome Measures 21 

2.5 Comparisons for Unequally Correlated Outcome Measures 27 

2.5.1 Three Outcome Measures 28 

2.5.2 Five Outcome Measures . . 43 

2.6 Discussion 56 

iv 



3 Disjunctive Composite Outcome Measures 59 

3.1 Dichotomized Tests for One Outcome Variable 60 

3.1.1 How Much Is Lost by Dichotomizing? . . 62 

3.2 Properties of Disjunctive Composite Outcome Measures 73 

3.2.1 Power and Sample Size Calculations 73 

3.2.2 Optimal Common Cutoff Point for Equally Correlated Outcomes . 76 

3.2.3 Properties for Equally Correlated Outcome Measures 78 

3.3 Comparisons to O'Brien's GLS Statistic . 83 

3.4 Unequal Cutoff Points for Uncorrelated Outcomes 85 

3.5 Discussion 89 

4 Applications . 9 2 

4.1 Task Force Data . 92 

4.1.1 Data Description 93 

4.1.2 Results . 96 

4.2 Oral Methotrexate Data . 107 

4.2.1 Data Description 109 

4.2.2 Results 112 

4.2.3 Another Disjunctive Composite Outcome Measure 120 

4.3 Discussion 123 

5 Conclusion 126 

Appendix A 129 

Appendix B 131 

Appendix C 133 

v 



Appendix D 

Bibliography 



Lis t of Tables 

2.1 Power of procedures with n =100 for equally correlated outcome measures 24 

2.2 Sample size required to achieve power of 0.80 with equally correlated out­

come measures 26 

2.4 Case A with m = 3: Power achieved with n = 100 32 

2.5 Case A with m = 3: Sample size required to achieve power of 0.80 . . . . 33 

2.6 Case B with m = 3: Power achieved with n = 100 . . . . 34 

2.7 Case B with m = 3: Sample size required to achieve power of 0.80 . . . . 35 

2.8 Case C with m = 3: Power achieved with n — 100 36 

2.9 Case C with m = 3: Sample size required to achieve power of 0.80 . . . . 37 

2.10 For m = 5: average correlation, effect sizes, and noncentrality parameters 49 

2.11 Case A with m = 5: power achieved with n — 100 and sample size required 

to achieve power of 0.80 50 

2.12 Case B with m = 5: power achieved with n = 100 and sample size required 

to achieve power of 0.80 51 

2.13 Case C with m = 5: power achieved with n = 100 and sample size required 

to achieve power of 0.80 . . 52 

3.14 Optimal common cutoff point (expressed as a multiple of A*) for the dis­

junctive composite outcome measure with n — 100 for equally correlated 

outcome measures . 77 

3.16 Power achieved by the disjunctive composite outcome measure with n = 

100 for equally correlated outcome measures 82 

vii 



3.17 Power of DCM* relative to GLS with 100 patients per arm .84 

3.18 For Case A with three uncorrelated outcomes: Power achieved by DCM 

with 100 patients per arm (CJ is expressed as a multiple of A*) 86 

3.19 For Case B with three uncorrelated outcomes: Power achieved by DCM 

with 100 patients per arm (cj is expressed as a multiple of A*) 87 

3.20 For Case C with three uncorrelated outcomes: Power achieved by DCM 

with 100 patients per arm (cj is expressed as a multiple of A*) . . . . . . 88 

4.20 Baseline information by treatment group 93 

4.21 Summary of changes from Baseline to Year 2 by treatment group . . . . 94 

4.22 Power of procedures with 100 patients per arm 98 

4.23 Sample size required to achieve power of 0.80 98 

4.24 Baseline information by treatment group 109 

4.25 Summary of changes from Baseline to Year 2 by'treatment group . . . . 110 

4.26 Power of procedures with 100 patients per arm . . . 114 

4.27 Sample size required to achieve power of 0.80 114 

4.28 Treatment failure rates based on DCMD 121 

4.29 Treatment failure rates based on DCM0 122 

vm 



List of Figures 

3.1 Percent power loss for different values of C i and sample sizes 65 

3.2 A R E of the dichotomous test relative to the Z-test . 72 

4.3 Boxplots for the changes from Baseline to Year 2 94 

4.4 Power of Bonferroni adjustment, Hotelling's T 2 , OLS, and GLS as a func­

tion of n when (AArm, ALeg, ACoa.) = (--05, - .30, -.10) . 100 

4.5 Power of procedures with 100 patients per arm when A = k • Abase, where 

A 6 a s e = (-.05, - .30, -.10) . . 101 

4.6 Power of procedures with 100 patients per arm when A = k- A o a s e , where 

Abase = (.00, - .30, .00) 103 

4.7 Power of procedures with 100 patients per arm when A — k • A o a s e , where 

A 6 o s e - (-.30, - .30, -.30) 105 

4.8 Boxplots for the changes from Baseline to Year 2 110 

4.9 Power of procedures with 100 patients per arm when A = k • Abase, where 

Abase = (.50, .10, .40, -.10) 115 

4.10 Power of procedures with 100 patients per arm when A = k • Abase, where 

Abase = (.50, .50, .50, .50) 118 

ix 



Acknowledgment 

I am grateful to a number of people for helping me in the preparation .of this thesis. 

Foremost I would like to thank my supervisor, Dr. John Petkau, for his advice, ideas, 

support and encouragement throughout the last two years. I would also like to thank 

Dr. Harry Joe for his C programs and his very helpful suggestions and comments on 

improving the manuscript. As well, thanks to Dr. Donald E. Goodkin and to Dr. Gary 

Cutter and Ms. Monika Baier of the National Multiple Sclerosis Society Clinical Outcomes 

Assessment Task Force for providing the data sets used in Chapter 4 of the thesis. 

I must also express my gratitude towards my family and friends for their support 

and encouragement. Thank you Dad, Mom, Michelle, Michael, Brandon, Karen, Tiffany, 

Gladys, Kathy, Jennifer, Jessie and Friendy: > 

Finally, I would like to take this opportunity to especially thank my close friend, 

Howard Chang, for his constant encouragement and invaluable help in C programming. 

x 



Chapter 1 

Introduction 

In planning clinical trials in many subject areas, researchers often find it difficult to 

designate one single outcome measure as the primary endpoint to describe treatment 

efficacy. When a disease affects a patient's functions in multiple dimensions, expecting 

one outcome measure to assess treatment efficacy in a comprehensive way may not be 

realistic. Multiple sclerosis (MS) is one such complex disease. The fact that the most 

widely used outcome measure for evaluating MS, Kurtzke's Expanded Disability Status 

Scale (EDSS) (Kurtzke 1983), is based on a neurological examination involving nine 

functional systems, such as ambulation, cognitive function, upper extremity function and 

so on, indicates the multidimensional nature of MS. The question of how to construct a 

multidimensional outcome measure is a fundamental and challenging problem but this is 

not our focus here. The topic addressed in this thesis is concerned with approaches for 

the design and analysis of clinical trials where a multidimensional outcome measure is 

used to measure treatment efficacy. 

Suppose that the researchers have identified the most relevant dimensions for describ­

ing treatment efficacy. In addition, suppose they have selected what they believe to the 

most appropriate component measures for the individual dimensions. The focus through­

out this thesis will be on the issue arising subsequently: what statistical methods can be 

applied to the design and analysis of clinical trials when treatment efficacy is described 

by multiple outcome measures? 

The discussion of statistical and design issues for MS clinical trials with multiple 
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Chapter 1. Introduction 2 

outcome measures in Petkau (1996) motivates our work in this thesis. In that chapter, 

three statistical methods for dealing with multiple outcome measures were examined 

for the case of equally correlated outcome measures. Our investigation is within the 

same general framework but includes several extension. We investigate two additional 

methods and study the case of unequally correlated outcome measures. We also apply 

these methods to two MS clinical trial data sets for a more focused comparison among 

these methods for actual MS patient populations. 

In the thesis, our discussion of the statistical methods will be focused on two-armed 

(placebo and treatment) and randomized clinical trials with continuous outcome mea­

sures. The data to be analyzed are the changes in the responses from the baseline to 

the end of the trial. If fii and fi2 denote the vector of the mean changes of all outcome 

measures on the placebo arm and the treatment arm respectively, then the parameter of 

interest is \i\ — H2, the difference in the population mean changes. In MS clinical trials, 

these changes measure the patients' functional deterioration in the relevant dimensions,-

so a lowering of the mean change will correspond to a beneficial effect of the therapy. 

A simple approach to the problem of assessing treatment efficacy described by multi­

ple outcome measures is to carry out the comparisons on the individual outcome measures 

separately with adjusted Type I error levels. Simplicity is the main advantage of this 

approach as the assessment of treatment efficacy is made for the individual outcome mea­

sures. However, this approach may result in a lack of power as the relationships among 

the outcome measures are not taken into account; this is its main limitation. A n alter­

nate approach is to combine all the information from the individual outcome measures 

into a single prespecified composite outcome measure and use this composite outcome 

measure as the single primary endpoint to assess the relative efficacy of the two arms. 

The EDSS is an example of such a prespecified composite outcome measure. Although 

this approach provides an overall summary of treatment efficacy, the interpretation of 



Chapter 1. Introduction 3 

the treatment effect on a composite outcome measure can be difficult as the roles of the 

individual outcome measures are no longer clear. The main difficulty with this approach 

is that it is not obvious how to construct such an composite outcome measure. Devel­

oping a reliable, sensitive and widely accepted prespecified composite outcome measure 

requires a great deal of empirical assessment and validation of the outcome measures in 

current use. 

We consider five statistical methods employing one of the above two approaches. Two 

of these have long been available while the remaining three are more recently developed 

statistical methodology. The methods based upon Bonferroni adjustment and Hotelling's 

T 2 which are commonly used for comparisons of multivariate samples are discussed first 

in Chapter 2. In the former method, separate tests for comparing the treatment arms 

are carried out on each of the outcome measures. For Hotelling's T 2, a single summary 

statistic based on the vector of all outcome measures is used. The method based on the 

Hotelling's T 2 can be thought of as being based on a combination. of the individual Z-

statistics for comparing the two arms. Due to limitations of these two standard methods 

(see Sections 2.1 and 2.2), several new methods have been proposed. Two composite 

outcome measures introduced by O'Brien (1984) consisting of linear combinations of 

the individual Z-statistics which we will refer to as OLS and GLS statistics, are also 

discussed in Chapter 2. In Chapter 3, we consider a different type of composite outcome 

measure, called a disjunctive composite outcome measure. With this method, the original 

individual outcome measures are first transformed to binary responses indicating changes 

of clinical significance on the individual outcome measures. The composite outcome 

measure employed as the single primary endpoint is then defined as an indication of 

treatment failure if a patient has a significant clinical change on any of the individual 

outcome measures. Thus, the disjunctive composite outcome measure is simply a binary 

response. 
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The methods are compared through power and sample size calculations. Specifically, 

we evaluate and compare the power achieved by each method with a fixed sample size per 

arm, at specified alternatives. In addition, we compare the sample size required for each 

method to achieve a specified power at specific alternatives. In our power and sample 

size calculations, we consider the number of outcome measures ranging from 1 to 20. In 

most MS studies, the number of clinical dimensions range from 3 to 5; therefore, these 

will be of most interest to us. 

Our investigation is restricted to the case where the underlying distribution of the 

multiple outcome measures follows the multivariate normal distribution. We can therefore 

focus our investigation on the features of the configuration of the standardized differences 

in the underlying population means and the correlation structure among the multiple 

outcome measures. A thorough comparison of these methods requires consideration of 

many possibilities for these aspects of the probabilistic structure. We focus on several 

special cases intended to highlight the main differences among the statistical properties of 

these methods. In Chapters 2 and 3, three configurations of the standardized differences 

are considered. In the first configuration, only one of the multiple outcome measures 

is effective in comparing the two arms (Case A) . This case is intended to illustrate 

the impact of the inclusion of ineffective outcome measures. The second configuration 

involves successive outcome measures of diminishing effectiveness in comparing the two 

arms (Case B). This case allows examination of whether it is beneficial to include such 

outcome measures. In the third configuration, all of the multiple outcome measures are 

equally effective in comparing the two arms (Case. C). These configurations represent 

three special cases of multivariate problems: Case A and Case C represent worst and 

best case scenarios and Case B is intermediate. 

With respect to the pattern of correlations, much of our investigation is focused 

on equally correlated outcome measures with common correlations of 0, 0.3 and 0.5. 
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Only moderate values of p are considered, because researchers in MS clinical trials are 

aware of the fact that the inclusion of highly correlated outcome measures adds little 

information. In fact, it often adds noise to the assessment of the relative efficacy of 

the treatment. Therefore, avoiding the inclusion of highly correlated outcomes is one 

criterion for designing MS studies; see Rudick et al. (1996). These configurations of the 

standardized differences and patterns of correlations among the outcome measures are 

used throughout our work in Chapters 2 and 3. 

In Chapter 2, we show that O'Brien's OLS and GLS statistics are equivalent for 

equally correlated outcome measures. Therefore, our subsequent investigation is focused 

on other correlation structures which highlight the differences between these two proce­

dures. This work is limited to three and five outcome measures as that covers a reasonable 

range of the number of clinical dimensions relevant to MS clinical trials. Throughout our 

investigation for unequally correlated outcomes, the correlations between any two out­

comes are classified either low (p = 0.2), mild (p = 0.5) or high (p = 0.7). We also 

compare O'Brien's GLS to the methods based on Bonferroni adjustment and Hotelling's 

T 2 for unequally correlated outcomes. 

Because the disjunctive composite outcome measure involves the use of dichotomized 

outcome measures, before investigating its performance in Chapter 3, we first examine 

dichotomized tests on a single continuous outcome variable (see Section 3.1). The issue 

of how much information is lost by dichotomized tests compared to the Z-test on the 

sample means of the continuous outcome variable is addressed. Percent power loss and 

asymptotic relative efficiency are used to compare these two tests. 

Several other methods are available for comparing samples with multiple endpoints. 

As discussed in Pocock et al. (1987), the most common approach is to select a single 

primary endpoint for formal statistical testing with all other outcome measures consid­

ered as secondary. The design of the study and the assessment of the relative efficacy 
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of the two arms is based on the primary endpoint while the information provided by 

the other outcomes is viewed as exploratory. This thesis is concerned with the situation 

where agreement on a single primary endpoint is not possible so that methods based 

on multiple endpoints are required. Tang et al. (1993) discussed the dramatic decrease 

in power of GLS when the true directions of the treatment effects are not con'sistent. 

They noted that with the GLS procedure it is possible for endpoints to receive nega­

tive weights. This feature can result in that the directions of the components of GLS 

statistic are inconsistent and motivated them to consider a modification of the O'Brien's 

approach. They proposed an approximate likelihood ratio (ALR) statistic to account 

for that limitation. The statistic consists only nonnegative components. Wittes has 

provided a maximum score test based on the average of the maximum of the responses 

on the individual outcome measures; see Follmann (1995). For the special case of two 

outcome measures, Follmann (1995) discussed settings where O'Brien's GLS test and the 

A L R test can be clinically misleading. This motivated him to propose the risk score test 

whose rejection boundary corresponds to contours of constant risk and therefore clini­

cally appealing. This test requires the multiple outcome measures to be surrogates; that 

is, some analysis of the endpoints on an ancillary data set is required to determine the 

risk score weights of these endpoints. This may not be applicable in some settings. In 

addition, because the risk score test was examined only for the case of two endpoints 

with paired data, its general definition and performance are not clear. Due to difficulties 

of computational implementation and practical issues, these methods are not considered 

further in this thesis. 

In Chapter 4, we apply the methods discussed in Chapters 2 and 3 to two MS clinical 

trial data sets. Power and sample size calculations guided by patient characteristics 

in these data sets provide a more focused comparison among these methods for actual 

MS patient populations. The sample correlations among the outcome measures guide 
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our choices of the pattern of correlations and the configurations of the standardized 

differences considered in the underlying population means are suggested by the treatment 

effects observed in these data sets. 

The thesis concludes with Chapter 5 where we make some concluding remarks based 

on the work reported in the earlier chapters. 



Chapter 2 

Several Approaches to M u l t i p l e Outcome Measures 

Suppose we are in the following two-armed clinical trial setting: A total of 2n patients 

participate in the study with an equal number of patients assigned to the placebo arm and 

to the treatment arm. The experimenter will take measurements on m outcome measures 

for each patient and these m outcome measures are continuous response variables. We 

will assume that the variability of the responses and the correlation structure of the 

responses are the same on both arms in the population of interest. The experimenter's 

objective is to assess the treatment efficacy. , 

We will use the notation Xijk to represent the jth outcome variable for the kth 

patient in the treatment group i where j = 1,..., m; k — 1,..., re, and i = I (placebo), 2 

(treatment). Let A",-* denote the column vectors of length m containing the responses of 

the fcth patient on all the outcome variables. We will assume that are independently 

distributed and each follows a multivariate normal distribution with mean vector fii and 

known common variance-covariance matrix E: 

Xik~ N(tn,E). 

We can express £ as a product of the matrix containing the information on the variances, 

V , and the correlation matrix, Mp: 

S = V*MPV2, 

8 



Chapter 2. Several Approaches to Multiple Outcome Measures 

where 

and 
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Marginally, X\j — X2j follows a normal distribution with mean 8j, and variance ^crj. 

The Z-statistic for comparing the two arms on the jth outcome measure, Yj can be 

obtained by standardizing' X\j — X2j\ 

_ Xjj - X2j 

i = fa ' 

Let Y = (Yj., Y2,... ,Ym)' and A = ( A a , A 2 , . . . , A m ) ' , where Aj = the standardized 

difference between the two arms on jth outcome measure. Then, we have 

Y3~N(^A„1) (2.1) 

and 

• Y~N(J^A,MP). (2.2) 

The objective is to make inferences about the difference between the mean vectors, 

S = nx — The first question of interest might be "Is 6 = 0?". In this chapter, we will 

consider methods to address that question. We will explore the statistical properties of 

each method and compare the performance of the methods under a few specific circum­

stances such as uncorrelated outcome measures and equally correlated outcome measures. 

The methods are evaluated and compared through power and sample size calculations. 

To be more specific, the power achieved by each method with a fixed sample size per 

arm, at a fixed significance level, a, and a specific alternative, 6 = 6* will be computed 

and compared. Similarly, the sample size required for each method with a significance 

level of a to achieve a specified power at a specific alternative will be compared as well. 

A complete and comprehensive comparison of the methods requires consideration of 

many possibilities which arise from different configurations of the standardized differ­

ences in the underlying means, A, and different correlation structures, Mp. Only a few 
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special cases will.be investigated and hopefully the main differences among the statisti­

cal properties of these approaches will be apparent. We will consider the following three 

configurations of the standardized differences: 

Case A : A i = A*, A2 = • • • = Am = 0. In this configuration, only the first outcome 

measure effectively compares the two arms. We are interested in seeing how these 

procedures penalize the inclusion of outcome measures which do not effectively 

compare the two arms. 

Case B : A i = A * , A 2 = A*/2, • • •, A m = A*/m. In this configuration, successive 

outcome measures are of diminishing effectiveness in comparing the two arms. We 

want to examine whether it is beneficial to include such outcome measures. 

Case C : A i = A 2 = • • • = A m = A*. In this configuration, the individual outcome 

measures are all equally effective in comparing the two arms. 

The correlation structures to be considered will be specified together with the discussion 

in Sections 2.4 and 2.5. 

2.1 Bonferroni Adjustment 

The first method to be discussed in this chapter is perhaps the most common approach 

to multiple comparisons of two arms on different response variables. The idea of this 

method is to carry out individual comparisons separately but to adjust the Type Terror 

level of the individual comparisons so that the overall probability of making any Type I 

error is no larger than the desired significance level a. Suppose we carry out each test at 

the significance level a*. The statistical test for the jth. outcome measure is 

Reject H0j : 6j = 0 in favour of Haj : 63; ^ 0 if | X\j — X2j \> tj, 
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where tj = \J\o-jZx_**_ is chosen such that P(\ X\j — X2j \> tj \ 8j = 0) < a*. If we 

think of testing the equality of the standardized differences of the population means, the , 

test can be re-expressed as follows: 

Reject H0j : Aj = 0 in favour of Haj : A3: ^ 0 if | Yj |> Zx_a*/2. 

Based upon the Bonferroni inequality (Miller, 1981), we have the following result: 

Result 2.1 IfP(\Yj\>z1-a./2-\8j = 0)<% for j •= 1,2,..., m, then 

P(\ Yx |> z^a*/2,or \ Y2 \> z 1 _ a . / 2 , . . . , o r | Ym |> zx_a*f2 \ 6 = 0).< a. 

In other words, if we carry out each of the individual comparisons at the significance 

level a* = a/m, the overall probability of making any Type I error is ensured to be no 

larger than the desired significance level a. Note that Result 2.1 does not depend on the . 

assumed normality. 

For the special case of independent outcome measures, there is an exact adjustment 

based on the use of a* — 1 — (1 — a) 1/™; that is, if the probability of making a Type I 

error for the individual comparisons is 1 — (1 — a) 1/™, the overall probability of making 

any Type I error is a. 

2.1.1 Power and. Sample Size Calculations 

The overall power of this procedure is the probability of making one or more rejections of 

the individual null hypotheses; in other words, it is the probability that the two samples 

show a significant difference in one or more outcome variables. It is easier to evaluate 

this as the complement of the probability that the two samples show no difference in all 

of the outcome variables: 

PowerA=A* = P(one o r m o r e rejection of H0j for j = 1 , . , m \ 6 = 6*) 

= 1 — P(no rejection of H0j for = 1,..., m \ 6 = 6*). 
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Letting Zj = Yj - yJ^A*, then Z = (Z\,..., Zm)' is distributed as N(0, Mp), and we 

obtain 

PowerA=A* = 1 ~ ̂ 0 Y l \< zi-a*/2,1 Y2 \< Zi-c'/i, • • •, I Ym \< zx_a.j2 \ A = A*) 

= 1 - P{-Z\-a*/2 < Yj .< Zl-a*/2 for j = 1, . . . ,171 \ A = A*) 

77A* < Zj < z1_a./2 - \j-A* for j = 1,..., m) 

- 1 - / ••• / / z ( z ) ^ i •••dzm . (2.3) 

J am Jai 

where a3 = -zx_a.j2 - ^ / f A* and bj = zx_a*j2- ^A*j. 

For the special case of uncorrelated outcome measures, this expression can be simpli­

fied to the following: 

Power = 1 - n P(aj < Zj < bj) 
i=i 

m rbj 
- 1 - n / <t>(zj)dz3 

j=i 

= 1 - II - * ( « ; ) ] . (2-4) 

where (f>(-) and $(•) are the univariate standard normal density function and cumulative 

distribution function. 

In general, the expression for power for the correlated outcome measures would have to 

be evaluated by numerical integration. The C codes, written by Dr. H . Joe, for approx-

imating multivariate normal rectangle probabilities based on conditional expectations 

(Joe, 1995.) are used here. To be more specific, second order approximation is used. Note 

that for the special case of equally correlated outcome measures, this calculation can be 

reduced to one dimensional normal probability calculation (Johnson and Kotz, 1972). 

As there is no closed form expression.for the sample size required to achieve a specified 

power at an alternative A*, we evaluate it numerically. Writing (2.3) and (2.4) in the 
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form of g(n) — 0, we can express the sample size required as the root of g(n). The 

Newton-Raphson method is perhaps the most well-known numerical method for solving 

such a root-finding problems but it requires exact evaluation of derivatives of the non­

linear equations. To avoid this inconvenience, the quasi-Newton method is used instead; 

a C routine is used to numerically obtain the derivatives at each iteration. 

2.2 Hote l l ing ' s T2 Statist ic 

One can imagine the possibility that the evidence of differences between the samples on 

each individual outcome measure is not strong, but all the evidence combined results 

in a significant overall difference. That is, when we perform statistical tests for each 

individual outcome separately, no significant difference between the two arms is shown; 

however, when we carry out a single global comparison of the two arms which combines 

the evidence from the individual outcomes, a significant difference is detected. The 

Bonferroni adjustment approach does not allow one to explore this possibility since it 

only carries out separate individual comparisons. Now, we will look at methods which 

allow us to compare the two samples on all m outcome measures simultaneously. 

One simple and common approach is based on the use of the Hotelling's T2 statistic, 

the multivariate version of the Student's t statistic. For testing H0 : 6 = 0 against 

Ha : 6 = 6*, Hotelling's T2 statistic is given by: 

T2 = ( X 1 - x 2 ) , ( - i ; ) - 1 ( X 1 - x 2 ) 
n 

• = . ^(X, -x^v-^M^v-^ix, - X 2 ) 
= Y'Mp-]Y. 
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- For the special case of uncorrelated outcome measures, 

T2 = Y2 + Y2 + • • • + Y2, 

which is simply the sum of the squared Z-statistics for comparing the two arms on the 

individual outcomes. 

As the T2 statistic sums up the squared Z-statistics, it does not take account of the 

direction of the differences between the two arms on the individual outcomes. This is 

the main limitation of this procedure. The question of whether one arm is better than 

the other is not being addressed; rather this procedure simply addresses the question of 

whether the two arms are different. We will therefore consider approaches which attempt 

to overcome this limitation in the next section. 

The T 2 statistic has a Xm distribution when Xx — X2 is multivariate normally dis­

tributed. Under the null hypothesis, H0 : 6 = 0, T2 is distributed as Xm a n ( ^ u n d e r 

the alternative hypothesis, HA : 6 = 6*, T2 is distributed as Xm(^ 2) where A 2 is the 

noncentrality parameter given by, 

A 2 = {6*)'(^E) V * ) 
77 

= -(A*)'MP~1(A*) (2.5) 

2.2.1 Power and Sample Size Calculat ions 

The power of this procedure can be easily obtained once the distribution of the T2 

statistic under HA is specified. The function pchisq in S-Plus calculates the cumulative 

probability for the x 2 distribution and for the non-central x 2 distribution as well. To 

determine the sample size required to achieve a specified power for a level a statistical test, 

the magnitude of the noncentrality parameter required to achieve this power needs to be 

calculated first. Once the magnitude of the noncentrality parameter, A 2 , is determined, 
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the required sample size, n, can be easily evaluated using (2.5). For the special case of 

equally correlated outcome measures, the expression for A 2 can be simplified to: 

A 2 = nt
 n JA*)'(l / , A (A*), 

2(1 -p) { > \ l + (m-l)p )K  h  

where J is a m x m matrix with all elements equal to 1. The derivation of this expression 

appears in Appendix A. 

2.2.2 The Non-centrality Parameters for Cases A , B, and C 

The non-centrality parameter plays an important role in the power achieved and sample 

size required for this procedure. Let m*-7 denote (Mp~x)ij. For the three configurations 

of the standardized differences between the underlying means, Cases A , B, and C, we 

can simplify the expression for A 2 : 

For Case A where A* = (A*, 0,0, • • •, 0)', 

A 2 =  r^(A*) 2m 1 1. (2.6) 

For Case B where A* =. (A*, A*/2 , • • • , A*/m) ' , 
mm ij 

A ! ^ ( A T E E | . (2-7) 
1=1 j=l J 

For Case C where A* = (A*, A*, • • •, A*) ' , 
mm 

A 2 ^ ( A f E E ^ (2-8) 

For Case A , (2.6), (2.7), and (2.8) indicate that M ' 1 affects A 2 only through m 1 1 . For 

Case C, M p

_ 1 affects A 2 only through the sum of all its elements. Case B is more 

complicated as A 2 is affected through the weighted sum of the elements of M p

_ 1 . The 

impact of the individual elements in M p ~ x on A 2 is different; the further from m 1 1 

the element lies, the more its contribution to A 2 is diluted through the weights. For 

later reference, we will denote m 1 1 , Eti ££= i 7T a n d £ £ i E£=i ™ i j as \ \ A | , and \ 2

C 

respectively. 
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2.3 Linear Combinations of Z-Statistics 

In this section, two additional composite outcome measures based on linear combinations 

of the Z-statistics for comparing the two arms on individual outcomes will be discussed. 

A randomized clinical trial comparing two therapies for the treatment of diabetes with 

responses on 34 outcome measures on a total of 11 patients motivated O'Brien (1985) to 

examine procedures for comparing samples with multiple endpoints. O'Brien indicated 

that the approaches based on Bonferroni adjustment and Hotelling's T 2 statistic were 

perhaps most commonly used in the comparison of multivariate samples; however, there 

are some limitations of these two approaches. He suggested that the Bonferroni procedure 

may lack power when all the outcome measures are effective in comparing the two arms, 

particularly when the number of outcome measures is large relative to the sample size. He 

also argued that the Hotelling's T 2 procedure basically addresses the wrong question as 

we have already indicated. Therefore, he proposed three alternative composite outcome 

measures for the comparison of multivariate samples which are intended to overcome these, 

limitations. Only two of these will be considered here as the other proposed method is a 

rank-based procedure which may be most suitable for use with ordinal outcome measures. 

2.3.1 O'Brien's OLS Statistic 

Suppose we consider each of the Z-statistics on the m outcome measures an unbiased 

estimator of the true standardized treatment efficacy, £. O'Brien's OLS statistic, denoted 

by POLS, is the linear combination of these Z-statistics which minimizes the sum of 

squares between the estimate of £ and the individual Z-statistics: 

POLS = arg£ m i n j ^ m(Yj - £)2 

Yj + Y2 + ... + Ym 

m 
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The expectation and variance of POLS can be easily obtained from (2.1): 

1 m 
E0OLS) =..-EC£Yj) 

i = i 

= — > A / - A 7 -

| A ; . . • " (2.9) 

m 

Var0oLs) =. -^VarlJ^Yj 

-i / m m 

m V=l <#J 

m 2 
m + Pii 

[m + m(m — l)p] 
m 2 

. . = ^ [ H ( m - l ) ? ] . (2.10) 

As we assume that the underlying data follows a multivariate normal distribution, 

POLS is normally distributed with mean ^ / f A and variance ^ [1 + (m — l)p]. To be 

specific, under the null hypothesis: A = 0,POLS ~ 'N (o, ^ [1 + (m - 1)/»]), and under 

the alternative hypothesis: ^ = A*,POLS ~ (y/i^, „ t 1 + ( m ~ I)?])-

The general formulae for the power achieved and the sample size required per arm by 

a level a test for comparing two population means are derived in Appendix B . Based on 

the results in Appendix B , the formulae for the power and the approximate sample size 

required per arm for O'Brien's OLS procedure are readily obtained: 

PowerA=A' = 1 ~ $ z i - « / 2 ~ 
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(2.11) 
^ £ ( 1 + (m - 1)75) 

and 

n 
2 ( j ( l + ( m - l ) ^ ) ) fo.y + ^ ) 2 

A * 2 
(2.12) 

O'Brien's OLS statistic is simply the equally weighted average of the Z-statistics for 

comparing the two arms on the individual outcomes.-Unlike the T 2 statistic, (3OLS takes 

the direction of the differences between the placebo arm and the treatment arm on each 

outcome measure into consideration. However, the limitation of this approach is that 

correlations among the outcome measures are not taken into account. This motivates 

the proposal of O'Brien's GLS statistic discussed next. 

which minimizes the weighted sum of squares between £ and the individual Z-statistics. 

The idea is to weight the individual Z-statistics according to the correlation among the 

outcome measures. It is sensible to down-weight any two highly correlated outcomes 

since they provide very similar information concerning the relative efficacy of the two 

arms. On the other hand, if two outcomes are almost uncorrelated, the weights on these 

two outcomes should be relatively larger. We will first define / ? g l 5 : 

2.3.2 O'Brien's GLS Statistic 

O'Brien's GLS statistic, denoted as (3QLSI is the linear combination of the Z-statistics 

PGLS - I'M'1! 

where 1 is a m x 1 vector with all elements equal to 1. 

The expectation and variance of (3QLS can be easily obtained from (2.2): 

r _ VM-'E(Y) 
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fnl'M- lA 
y - ^ l ' M , - 1 ! ) 

Var(f3GLs) = 
[VM' 1!)' 

VM^VariY^VM- 1)' 

I'M' 1! 
{VM-Hy 

i 
I'M- 1!' 

As we assume that the underlying data follows a multivariate normal distribution, 

@GLS is normally distributed. Based on the results in Appendix B , the formulae for the 

power and sample size required per arm for the O'Brien's GLS procedure can be easily 

obtained as follows: 

i du £JnrM^A*y 
Power A A* = 1 - <P I Zi-a/2 , , . -

+ $ - 2 i _ „ / 2 - 1 • . 2 . 1 3 ) 

and 

2 ( i ' M p - l i ) ( ^ 1 _ f + Zl_0y 
( 2 - 1 4 ) 

( l ' M , - 1 ^ * ) 2 

For the special cases of either uncorrelated or equally correlated outcome measures, 

PGLS— POLS as is shown in Appendix C. We use the S-plus functions qnorm and pnorm 

to evaluate the quantiles and the cumulative probabilities for the power and sample size 

calculations for both the OLS and GLS tests. 
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We have limited our computations to the case of normally distributed data. How­

ever, as long as the joint distribution of Y, the vector of Z-statistics, can be reasonably 

approximated by the multivariate normal distribution, the procedures we have discussed 

can be applied and the numerical results which follow will be relevant. 

2.4 Comparisons for Equally Correlated Outcome Measures 

Because G1S and OLS are equivalent for the case of equally correlated outcome measures, 

the comparisons in this section are made among Bonferroni adjustment, Hotelling's T2 

and OLS. To investigate these procedures, the correlation structure among the m outcome 

measures needs to be specified. First, we will consider the exchangeable form for the 

correlation structure where all outcome measures are equally correlated: 

/ 1 p p 

p i p 

P P 

\P P 

1 

P 

P 

P 

P 

1 

(l-p)I + pJ. 

Among all the possible values of p, we specifically examine: 

1. p = 0 which corresponds to uncorrelated outcome measures.. 

2. p = 0.3 which corresponds to mildly correlated outcome measures. 

3. p = 0.5 which corresponds to modestly correlated outcome measures. 

The powers of two-sided tests of 5% significance level in comparing two arms with 100 

patients per arm for Cases A , B , and C are presented in Table 2.1. Note that for a single 
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outcome measure, the three methods are equivalent. The value of A* which identified 

the specific alternative is chosen so that for a single outcome measure with 100 patients 

per arm, a level a = 5% two-sided comparison of the two arms will achieve a power of 

0.80; this value is A * - 0.396232. 

We will first discuss the special case of uncorrelated outcome1 measures. For Case 

A, the power of all procedures decreases monotonically with the inclusion of additional 

outcomes. A l l three procedures penalize the inclusion of outcome measures which are 

not effective in comparing the two arms although the penalty is substantially heavier for 

O'Brien's OLS procedure as the decrease in power is dramatic even with the inclusion of 

only one ineffective outcome measure. The performance of Bonferroni adjustment and 

T2 are roughly comparable although the former has a slight advantage over the latter 

and this advantage become noticeable as the number of outcome measures increases. 

On the contrary, for Case C, the power of all three procedures increases monotoni­

cally with the inclusion of additional equally effective outcomes. Moreover, this increase 

in power is dramatic for all procedures. A l l procedures perform very well. However, 

O'Brien's OLS has a clear advantage over the other two and Bonferroni adjustment is 

least competitive. 

Case B is more complicated. The inclusion of additional outcome measures with di­

minishing effectiveness has a deleterious effect on all three procedures, except for the 

inclusion of the first additional one. OLS has a clear advantage over the other two as this 

deleterious effect is only mild on OLS. The impact on the method based on Bonferroni 

adjustment is substantially larger; for.example, the inclusion of a single ineffective out­

come measure already has a detrimental effect on Bonferroni adjustment. The impact 

on T2 is mild when m is small but becomes modest as m gets larger. Similarly to Case 

C, Bonferroni adjustment is not competitive with OLS and T2. 

Table 2.1 indicates that the inclusion of ineffective outcomes can result in drastic 
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deterioration in the performance of these procedures. Furthermore, the inclusion of too 

many weakly effective outcomes leads to such deterioration as well. On the other hand, 

the performance of these procedures is impressive for. Case C. In particular, OLS and T 2 , 

which share the characteristic that the evidence provided by the individual outcomes is 

summarized into a global statistic to give an overall assessment of the treatment efficacy, 

are very powerful. 

We now translate this comparison of power into comparison of the required sample 

sizes. Table 2.2 provides the sample sizes required to achieve a power of 0.80 when 

the common correlation p = 0, 0.3 or 0.5. The results for p = 0 indicate that.the 

required sample sizes differ substantially even when the power differs only slightly. For 

example, in Cases B and C, slight differences in power between OLS and T 2 lead to 

moderate differences in the required sample sizes. The results for Case A indicate that 

the substantial differences in power between OLS and the other two procedures lead to 

huge differences in the required sample sizes. 

We next turn to the examination of the impact of positive correlation on the perfor­

mance of these procedures. The discussion for the case of p = 0 has highlighted the issue 

relevant to trials with multiple outcome measures. Our discussion for p = 0.3 and 0.5 

will focus on the sample sizes required rather than power because the former provides 

equivalent comparisons which are of greater relevance for designing clinical trials. 

We first examine the effect of positive correlation on the Bonferroni adjustment pro­

cedure. Positive correlation among the multiple .outcomes has a negative impact on the 

Bonferroni adjustment procedure. In Case A , for a fixed number of ineffective outcomes, 

the magnitude of the common correlation has very small negative impact on the required 

sample size. In addition, regardless of the magnitude of the common correlation, the 

impact of the inclusion of additional ineffective outcomes on the performance of this 

procedure is roughly the same. In Case C,.any positive correlation dilutes the evidence 
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Table 2.1: Power of procedures with n =100 for equally correlated outcome measures 
m=total number of outcome measures 

Case P Procedure 1 2 3 4 5 10 20 
A 0.0 Bonferroni 0.80 0.72 0.67 0.63 0.61 0.52 0.44 

Hotelling's T2 0.80 0.71 0.64 0.60 0.56 0.43 0.31 
O'Brien's OLS 0.80 0.51 0.37 0.29 0.24 0.14 0.10 

0.3 Bonferroni 0.80 0.71 0.66 0.62 0.59 0.50 0.42 
Hotelling's T2 0.80 0.75 0.72 0.69 0.66 0.59 0.43 
O'Brien's OLS 0.80 0.41 0.25 0.17 0.13 .0.07: 0.06 

0.5 Bonferroni 0.80 0.71 0.66 0.62 0.59 0.50 0.41 
Hotelling's T2 0.80 0.83 0.83 0.82 0.81 0.73 0.61 

, O'Brien's OLS 0.80 0.37 0.21 0.14 0.11 0.07 0.05 

B 0.0 Bonferroni 0.80 0.77 0.73 0.70 0.68 0.58 0.49 
Hotelling's T2 0.80 0.81 0.79 0.77 0.75 0.65 0.51 
O'Brien's OLS 0.80 0.84 0.84 0.83 0.82 0.74 0.62 

0.3 Bonferroni 0.80 0.74 0.70 0.66 0.63 0.54 0.45 
Hotelling's T2 0.80 0.73 0.67 0.62 0.59 0.52 0.46 
O'Brien's OLS 0.80 0.74 0.65 0.56 0.49 ,0.27 0.14 

0.5 Bonferroni 0.80 0.73 0.68 0.64 0.61 0.52 0.43 
Hotelling's T2 0.80 0.71 0.66 0.65 0.64 0.64 0.63 
O'Brien's OLS 0.80 0.68 0.55 0.45 0.38 0.20 0.11 

C 0.0 Bonferroni 0.80 0.92 0.96 0.98 0.988 0.999 1.000 
Hotelling's T2 0.80 0.95 0.990 0.998 1.000 1.000 1.000 
O'Brien's OLS 0.80 0.98 0.998 1.000 1.000 1.000 1.000 

0.3 Bonferroni 0.80 0.88 0.91 '0.93 0.94 0.96 0.98 
Hotelling's T2 0.80 0.89 0.91 0.92 0.92 0.91 0.85 
O'Brien's OLS 0.80 0.94 0.97 0.98 0.988 0.996 0.998 

0.5 Bonferroni 0.80 0.85 0.87 0.88 0.89 0.91 0.92 
Hotelling's T2 0.80 0.83 0.83 0.82 0.81 0.73 0.61 
O'Brien's OLS 0.80 0.90 0.93 0.94 0.95 0.97 0.97 
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provided by the different outcome measures resulting in a larger required sample size. 

Moreover, the benefit gained from including more equally effective outcomes diminishes 

as the common correlation increases. As the total number of outcomes increases, the 

negative impact of positive correlation increases. In Case B, the effect of positive corre­

lation for a fixed number of outcome is intermediate. It can be seen that for each fixed 

number of outcomes in Table 2.2, an increase of the common correlation results in an 

increase in the required sample size. 

We now turn to the impact of positive correlation on the procedure based on Hotelling's 

, T2 statistic. The effects of a common positive correlation among the multiple outcomes 

on T 2 are more complicated. In Case A , for a fixed number of outcome measures, the 

required sample size decreases as the correlation increases. In Case C, similar dilution of 

evidence occurs as for the Bonferroni adjustment procedure, but the effect on the required 

sample size is greater for Hotelling's T2. In Case B , it can be shown that for each fixed 

number of outcomes, there exists a particular value of p such that smaller positive corre­

lation has a negative impact on T2 and larger positive correlation has a positive impact. 

For instance, when the total number of outcomes is equal to 5, for a common correlation 

above about 0.30, the required sample size decreases as the correlation increases. 

Positive correlation among the multiple outcome measures has a deleterious effect on 

O'Brien's OLS. As shown in (2.12), the sample size for OLS is directly proportional to 

1 + (m — Vfp and inversely proportional to (A*) 2 . As we can see from Tables 2.1 and 

2.2, any positive correlation has a negative impact on OLS and this impact becomes 

dramatic as the total number of outcomes gets larger. Since the correlations among the 

outcomes affect the properties of OLS only through p and the standardized differences in 

the underlying means on the two arms affect its properties only through their average, 

A* , any correlation structures with the same value of ~p or similarly any configurations 

of the standardized differences with the same value of A* will yield the same properties. 
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Table 2.2: Sample size required to achieve power of 0.80 with equally correlated outcome 
measures . ; 

m=total number of outcome measures 
Case P Procedure 1 2 3 4 5 10 20 

A 0.0 Bonferroni 100 120 132 140 147 167 187 
Hotelling's T2 100 123 139 152 • 163 207 267 
O'Brien's OLS 100 200 300 400 500 1000 2000 

•0.3. Bonferroni 100 121 133 142 149 169 190 
Hotelling's T2 100 112 120 126 132 158 196 
O'Brien's OLS 100 260 480 760 1100 3700 13400 

0.5 Bonferroni 100 121 133 142 149 170 190 
Hotelling's T2 100 92 93 95 98 114 140 
O'Brien's OLS 100 300 600 1000 1500 5500 21000 

B 0.0 Bonferroni 100 108 116 123 129 150 172 
Hotelling's T2 100 95 102 107 112 134 167 
O'Brien's OLS 100 89 89 92 96 117 155 

0.3 Bonferroni 100 114 125 134 141 162 184 
Hotelling's T2 100 118 133 144 152 170 184 
O'Brien's OLS 100 116 143 175 '211 431 1035 

0.5 Bonferroni 100 118 130 139 146 167 188 
Hotelling's T2 100 123 133 137 137 134 136 
O'Brien's OLS 100 133 179 230 288 641 2900 

C 0.0 Bonferroni 100 72 61 55 50 40 33 
Hotelling's T2 100 61 46 38 33 21 13 
O'Brien's OLS 100 50 33 25 20 10 5 

0.3 Bonferroni 100 80 73 68 65 58 54 
Hotelling's T2 100 80 74 72 72 77 89 
O'Brien's OLS 100 65 53 48 44 37 34 

0.5 Bonferroni 100 87 82 79 78 74 72 
Hotelling's T2 100 92 93 95 98 114 140 
O'Brien's OLS 100 75 .67 63 60 . 5 5 53 
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Taking the three procedures together for an overall comparison, in Case A , with the 

exception that Hotelling's T2 benefits from the inclusion of a few ineffective outcomes 

when the correlation among them is large enough, positive correlation has a deleterious 

effect on all procedures. This effect is substantially more dramatic for OLS than the 

other two procedures. Generally speaking, when the correlation is very mild, Bonferroni 

adjustment has the advantage especially when m is large. On the other hand, when the 

correlation becomes modest, Hotelling's T2 performs better. In Case C, OLS has a clear 

advantage. Hotelling's T 2 has a clear advantage over Bonferroni adjustment when the 

common correlation is small, but the latter performs better when p becomes larger and, 

in particular, when m is large as well. In Case B , except for the special case of p = 0, 

the inclusion of rather weakly effective outcome measures results in a deterioration of 

the performance for all three procedures. For the special case of uncorrelated outcome 

measures, Bonferroni adjustment is the least powerful procedure and OLS performs best. 

However, as the deleterious effect of the magnitude of p on the performance of Bonferroni 

adjustment is slight and that on OLS is substantial, Bonferroni adjustment has a clear 

advantage over OLS even when p is modest. When p = 0.3, Bonferroni adjustment has 

a slight advantage over T2. On the other hand, when p = 0.5, T2 has the advantage over 

Bonferroni adjustment, although Bonferroni adjustment is competitive with T2 when 

only a few weakly effective outcomes are included. 

2.5 Comparisons for Unequally Correlated Outcome Measures 

In this section, the main focus will be the comparison between O'Brien's OLS and GLS 

procedures as we want to explore the potential of GLS to be a more powerful procedure 

than OLS. Subsequently, we will bring the methods based on Bonferroni adjustment and 

T2 into the comparison with GLS. 
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As O'Brien's OLS and GLS are equivalent when the outcomes are equally correlated, 

we now want to consider a few other correlation structures to get a better understanding 

of the properties of GLS. In the following, we will classify the correlations between any 

two outcomes as either weakly correlated (L), mildly correlated (M) or highly correlated 

(H) and restrict ourselves to consideration of corresponding p to be 0.2, 0.5 and 0.7 

respectively. In addition, our examination will be limited to rh = 3 and 5 as in most MS 

clinical trials, the number of clinical dimensions ranges from 3 to 5. 

2.5.1 Three Outcome Measures 

If the total number, of outcomes is 3, we are limited to a total of 27 possible patterns 

of the correlations among the three outcome variables. (Note that 3 of these correspond 

to equally correlated cases for which OLS and GLS are equivalent.) The comparisons 

between OLS and GLS are summarized in Tables 2.3 to 2.9, where the results for the 

Bonferroni adjustment and Hotelling's T 2 are also provided. We will make the comparison 

between OLS and GLS through their effect sizes as the procedure with a large effect size 

has the larger power. The effect sizes (taken here for convenience, as mean/sd, ignoring 

the common factor of of the OLS and GLS statistics, denoted (OLS and (GLS are: 

c. OLS 
^ [ l + (m-l)p] 

I'M'1 A* 
GLS G" - - p 

Table 2.3 provides the effect sizes of OLS and GLS statistics, as well as p and the 

weights GLS assigns to the individual Z-statistics, denoted as Wj. Table 2.4 presents the 

power achieved with 100 patients per arm for the OLS and GLS statistics for each of the 

27 possible patterns of correlations for Case A . Table 2.5 translates the comparison of 



Chapter 2. Several Approaches to Multiple Outcome Measures 29 

power for Case A into the comparison of the sample size requirements. Tables 2.6 and 

2.7 present the corresponding results for Case B and those for Case C appear in Tables 

2.8 and 2.9. 

GLS versus OLS 

As indicated by (.2.9) and (2.10), the correlations among the outcome measures affect 

the properties of OLS only through p. Therefore, the results presented in Tables 2.1 and 

2.2 for equally correlated outcomes can be relevant, depending upon the values of ~p for 

the correlation structures under consideration here. For example, p = 0.30 the patterns 

(pi2, P23, P23) = (L, L, M) , (L, M , L) , and (M, L, L) . Hence, the performance of OLS will 

be identical for these patterns and for three equally correlated outcomes with common 

correlation of 0.30, where the configuration of standardized differences has the same value 

of A* . The patterns (L, M , M) , (M, L, M) , and ( M , ' M , L) have an average correlation 

of p = 0.40. In this situation, OLS will be less powerful than with the previous three 

patterns but more powerful than for the case of three equally correlated outcomes with 

p = 0.50 illustrated in Tables 2.1 and 2.2. 

We now turn to the comparison between GLS and OLS. In Case A where only the 

first outcome measure is effective in comparing the two arms, if the weight GLS assigns 

to the effective outcome is larger than that assigned by OLS, GLS will have a larger 

effect size and therefore an advantage. The magnitude of this advantage depends upon 

how much larger (GLS is than (OLS • For example, the patterns (L, H , H) and (H, L, 

H) represent situations where one of the two ineffective outcomes is highly correlated 

and the effective outcome is almost independent of the highly correlated outcome. In 

this situation, the advantage of GLS is most substantial. For GLS, the weight on the 

effective outcome is very large, wx = 0.75, while the weight OLS assigns is only 0.33. As 

a result, the effect size of GLS is substantially larger than that for OLS (0.40 compared 
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Table 2.3: For m = 3: weights, effect sizes, and noncentrality parameters 

Correlation Weights Case A Case B CaseC 

Pu Pl3 P23 P w< w3 COLS CGLS Cots CGiS % Cots CGtS 
L I L .20 .33 .33 .33 1.07 .19 .19 1.10 .35 . .35 2.14 .58 .58 
L L M .30 .40 .30 .30 1.06 .18 .22 1.09 .33 .36 1.90 .54 .55 
L L H .37 .44 .28 .28 1.05 .17 .24 l . ib .32 .36 1.79 .52 .53 
L M L .30 .30 .40 .30 1.35 .18 .16 1.15 .33 .33 1.90 .54 . .55 
L M M .40 .42 .42 .16 1.34 .17 .22 1.24 .31 .35 1.71 .51 .52 
L M H .47 .50 .50 .00 1.42 .16 .26 1.43 .30 .38 1.67 .49 .51 
L H L .37 .28 .44 .28 1.98 .17 .15 1.39 .32 .31 1.79 .52 .53 
L H M .47 .50 .50 .00 2.08 .16 .26 1.71 .30 .38 1.67 .49 .51 
L H H .53 .75 .75 -.50 2.90 .16 .40 2.69 .29 .51 1.82 .48 .53 
M L L .30 .30 .30 .40 1.35 .18 .16 1.02 .33 .32 1.90 .54 .55 
M L M .40 .42 .16 .42 1.34 • 17. .22 1.02 .31 .33 1.71 .51 .52 
M L H .47 .50 .00 .50 1.42 .16 .26 1.04 .30 .34 1.67 .49 .51 
M M L .40 .16 .42 .42 1.71 .17 .09 1.04 .31 .27 1.71 .51 .52 
M M M .50 .33 .33 .33 1.50 .16 .16 1.04 .30 .30 1.50 .49 .49 
M M H .57 .42 .29 .29 1.42 .16 .19 1.06 .29 .31 1.42 .47 .47 
M H L .47 .00 .50 .50 2.67 .16 .00 1.28 .30 .21 1.67 .49 .51 
M H M .57 .29 .42 .29 2.08 .16 .14 1.28 .29 .28 1.42 .47 . .47 
M H H .63 .43 .43 .14 1.96 .15 .20 1.39 .28 .32 1.35 .46 .46 
H L L .37 .28 .28 .44 1.98 .17 .15 1.10 .32 .30 1.79 .52 .53 
H L M .47 .50 .00 .50 2.08 .17 .26 1.19 .30 .34 1.67 .49 .51 
H L H .53 .75 -.50 .75 2.90 .16 .40 1.44 .29 .40 1.82 .48 .53 
H M L .47 .00 .50 .50 2.67 .16 .00 1.15 .30 .21 1.67 • .49 .51 
H M M .57 .29 .29 .42 2.08 .16 .14 1.09 .29 .27 1.42 .47 .47 
H M H .63 .43 .14 .43 1.96 .15 ,20 1.08 .28 .30 1.35 .46 .46 
H H L .53 -.50 .75 .75 5.45 .16 -.27 1.75 .29 .07 1.82 .48 .53 
H H M .63 .14 .43 .43 2.88 .15 .07 1.34 .28 .23 1.35 .46 .46 
H H H .70 .33 ,33 .33 2.36 .15 . .15 1.27 .27 .27 1.25 .44 .44 
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to 0.16). The simultaneous down-weighting of one of the ineffective outcomes enables 

GLS to make better use of the evidence provided by the effective outcome. On the 

contrary, if GLS assigns a smaller weight to the effective outcome than OLS does, OLS 

will have a larger effect size and it will have the advantage. Consider the patterns, (M, 

H , L) and (H, M , L) as examples. In these two situations, the effective outcome is highly 

correlated and therefore considered redundant, and GLS assigns it zero weight which 

results in zero effect size. Consequently, the power achieved is identical to the level a 

and the required sample size is oo. One might wonder about the even more extreme 

pattern, (H, H , L) which represents two weakly correlated but ineffective outcomes plus 

one highly correlated but effective outcome. With this structure, GLS actually assigns 

negative weight to the effective outcome. As a result, the effect size is negative. If we 

perform a one-sided test, GLS will have no power. 

Both OLS and GLS are expected to be powerful in Case C because in this configu­

ration, all outcomes are equally effective in comparing the two arms. The means for the 

OLS and GLS statistics are the same; therefore, the differences between (GLS and (OLS 

arise only through differences in their standard deviations; whichever has the smaller 

standard deviation will have the advantage. For the cases under consideration, this ad­

vantage will only be modest as the differences between the effect sizes of GLS and OLS 

are quite small. The greatest difference in effect sizes, 0.53 for GLS versus 0.48 for OLS, 

is for the patterns (L, H , H), (H, L, H), and (H, H , L); this results in a modest advantage 

for GLS. 

Similar to Case A , in Case B, the weight GLS assigns to the most effective outcome 

dominates its effect size and consequently its performance. If this outcome is weighted 

more heavily by GLS than OLS, (GLS is larger than (OLS a n d vise versa. We first look 

at the patterns for which GLS is substantially more powerful than OLS. The pattern (L, 

H , H) represents a situation where the two outcomes of more effectiveness are almost 
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Table 2.4: Case A with m = 3: Power achieved with n = 100 
Correlation Procedures 

Pl2 P23 Bon. T 2 OLS GLS 
L L L 0.66 ' 0.68 0.28 0.28 
L L M 0.66 0.67 0.25 0.35 
L L H 0.66 0.67 0.23 0.39 
L M L 0.66 0.79 0.25 0.21 
L M M 0.66 0.78 0.23 0.33 
L M H 0.66 0.81 0.21 0.44 
L H L 0.66 0.93 0.23 0.18 
L H M 0.66 0.94 0.21 0.44 
L H H 0.66 0.99 0.20 0.81 
M L L 0.66 0.79 0.25 0.21 
M L M 0.66 0.78 0.23 0.33 
M L H 0.66 0.81 0.21 0.44 
M M L 0.66 0.88 0.23 0.09 
M M M 0.66 0.83 0.21 0.21 
M M H 0.66 0.81 0.20 0.28 
M H L 0.66 0.98 0.21 0.05 
M H M 0.66 0.94 0.20 0.17 
M H H 0.66 0.92 0.19 0.29 
H L L 0.66 0.93 0.23 0.18 
H L M 0.66 0.94 0.21 0.44 
H L H 0.66 0;99 0.20 0.81 
H M L 0.66 0.98 0.21 0.05 
H M M 0.66 0.94 0.20 0.17 
H M H 0.66 0.92 0.19 0.29 
H H L 0.66 1.00 0.20 0.47 
H H M 0.66 0.99 0.19 0.08 
H H H 0.66 0.96 0.18 0.18 
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Table 2.5: Case A with m = 3: Sample size required to achieve power of 0.80 
Correlation Procedures 

pu Pl3 P23 Bon. T2 OLS GLS 
. L L L 133 130 420 420 

L L M 133 131 480 317 
L L H 133 132 520 278 
L M L 133 103 480 599 
L M M 133 104 540 336 
L M H 133 98 580 240 
L H L 133 70 520 734 
L H M 133 67 580 240 
L H H 133 48 620 98 
M L L 133 103 480 599 
M L M 133 104 540 336 
M L H 133 98 580 240 
M M L 133 81 540 2100 
M M M 133 93 600 600 
M M H 133 98 640 416 
M H L 133 52 580 oo 
M H M 133 67 640 816 
M H H 133 71 680 404 
H L L 133 70 520 734 
H L M 133 67 580 240 
H L H 133 48 620 98 
H M L 133 52 580 oo 
H M M 133 67 640 816 
H M H 133 71 680 404 
H H L 133 25 620 220 
H H M 133 48 680 3640 
H H H 133 59 720 720 



Chapter 2. Several Approaches to Multiple Outcome Measures 34 

Table 2.6: Case B with m — 3: Power achieved with n = 100 
Correlation Procedures 

Pl2 Pl3 P23 Bon. T 2 OLS GLS 
L L L 0.71 0.69 0.71 0.71 
L L M 0.70 0.69 0.65 0.71 
L L H 0.70 0.69 0.62 0.72 
L M L 0.70 0.71 0.65 0.64 
L M M 0.70 0.75 0.60 0.70 
L M H 0.70 0.81 0.57 0.77 
L H L 0.70 0.80 0.62 0.60 
L H M 0.70 0.88 0.57 0.77 
L H H 0.70 0.98 0.54 0.95 
M L L 0.69 0.65 0.65 0.61 
M L M 0.69 0.66 0.60 0.65 
M L H 0.68 0.66 0.57 0.67 
M M L 0.68 0.66 0.60 0.47 
M . M M 0.68 0.66 0.55 0.55 
M M H 0.68 0.67 0.53 0.59 
M H L 0.67 0.76 0.57 0.33 
M H M 0.67 0.76 0.53 0.51 
M H H 0.67 0.80 0.50 0.61 
H L L 0.68 0.69 0.62 0.56 
H L M 0.68 0.73 0.57 0.67 
H L H 0.67 0.82 0.54 0.81 
H M L 0.67 0.71 0.57 0.33 
H M M 0.67 0.69 0.53 0.49 
H M H 0.67 0.68 0.50 0.55 
H H L 0.66 0.89 0.54 0.08 
H H M 0.66 0.78 0.50 0.37 
H H H 0.66 0.76 0.48 0.48 
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Table 2.7: Case B with m = 3: Sample size required to achieve power of 0.80 
Correlation Procedures 

Pl3 P23 Bon. T 2 OLS GLS 
L L L 122 126 125 125 
L L M 123 127 143 123 
L L H 124 126 155 121 
L M L 124 121 143 147 
L M M 124 112 161 126 
L M H 125 97 173 107 
L H L 125 100 155 159 
L H M 125 81 173 107 
L H H 125 52 184 60 
M L L 127 136 143 156 
M L M 128 136 161 143 
M L H 128 134 173 135 
M M L 130 134 161 221 
M M M 130 133 179 179 
M M H 130 131 190 164 
M H L 130 109 173 346 
M H M 130 109 190 197 
M H H 130 100 202 156 
H L L 130 126 155 176 
H L M 130 117 173 135 
H L H 130 98 184 98 
H M L 132 121 173 346 
H M M 132 127 190 211 
H M H 132 129 202 .180 
H H L 133 79 184 3520 
H H M 133 104 202 297 
H H H 133 109 214 214 
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Table 2.8: Case C with m = 3: Power achieved with n = 100 
Correlation Procedures 

Pl3 P23 Bon. T 2 OLS GLS 
L L L 0.93 0.95 0.98 0.98 
L L M 0.91 0.92 0.97 0.97 
L L H 0.90 0.90 0.96 0.96 
L M L 0.91 0.92 0.97 0.97 
L M M 0.89 0.88 0.95 0.96 
L M H 0.88 0.87 0.94 0.95 
L H L 0.90 0.90 0.96 0.96 
L H M 0.88 0.87 0.94 0.95 
L H H 0.87 0.90 0.92 0.97 
M L L 0.91 0.92 0.97 0.97 
M L M 0.89 0.88 0.95 0.96 
M L H 0.88 0.87 0.94 0.95 
M M L 0.89 0.88 0.95 0.96 
M M M 0.87 0.83 0.93 0.93 
M M H 0.86 0.81 0.91 0.92 
M H L 0.88 0.87 0.94 0.95 
M H M 0.86 0.81 0.91 0.92 
M H H 0.84 0.79 0.90 0.90 
H L L 0.90 0.90 0.96 0.96 
H L M 0.88 0.87 0.94 0.95 
H L H 0.87 0.90 0.92 0.97 
H M L 0.88 0.87 0.94 0.95 
H M M 0.86 0.81 0.91 0.92 
H M H 0.84 0.79 0.90 0.90 
H H L 0.87 0.90 0.92 0.97 
H H M 0.84 0.79 0.90 0.90 
H H H 0.83 0.75 0.88 0.88 
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Table 2.9: Case C with m = 3: Sample size required to achieve power of 0.80 
correlation procedures 

Pl2 Pl3 P23 Bon. T 2 OLS GLS 
L L L 68 65 47 47 
L L M 73 73 53 53 
L L H 76 78 58 56 
L M L 73 73 53 53 
L M M 77 81 60 58 
L M H 81 83 64 60 
L H L 76 78 58 56 
L H M 81 83 64 60 
L H H 85 76 69 55 
M L L 73 73 53 53 
M L M 77 81 60 58 
M L H 81 83 64 60 
M M L 77 81 60 58 
M M M 82 93 67 67 
M M H 86 98 71 71 
M H L 81 83 64 60 
M H M 86 98 71 71 
M H H 90 103 76 74 
H L L 76 78 58 56 
H L M 81 83 64 60 
H L H 85 76 69 55 
H M L 81 83 64 60 
H M M 86 98 71 71 
H M H 90 103 76 74 
H H L 85 76 69 55 
H H M 90 103 76 74 
H H H 94 111 80 80 
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independent of each other and the least effective outcome is highly correlated. The 

weights on the first two rather effective outcomes are relatively larger (wi — w2 = 0.75) 

than that on the least effective one (u>3 = —0.50) which results in a substantial difference 

between the effect sizes of GLS and OLS (0.51 versus 0.29). Similar but less extreme 

examples are the patterns (L, M , H) and (L, H , M) which correspond to two relatively 

weakly correlated and effective outcomes plus one highly correlated and less effective 

outcome. For these patterns, GLS assigns no weight to the least effective outcome and 

equal weights to the other two. For the patterns (M, L, H) and (H, L, M) , the second 

outcome is relatively weakly correlated, as was the third outcome in (L, M , H) or (L, 

H , M) , and it is assigned zero weight; however, GLS is again more powerful than OLS. 

Another similar example is the pattern (H, L, H) which corresponds to the most and 

least effective outcome being only weakly correlated with each other and the moderately 

effective outcome being highly correlated. In this case, equal weights are assigned to the 

first and third outcomes (wi = w3 — 0.75) and a large negative weight to the second 

outcome (w2 = —0.50). Even when the moderately effective outcome is so negatively 

weighted, as long as the most effective outcome is heavily weighted, GLS still has a clear 

advantage over OLS. 

Nevertheless, for a few patterns of correlations, GLS is less powerful than OLS. Con­

trary to (L, H , H), the pattern (H, H , L) describes a situation where the most effective 

outcome is highly correlated with the other weakly correlated outcomes. A large negative 

weight therefore is assigned to the first outcome and GLS performs poorly in this situa­

tion. Less extreme examples are provided by the patterns (M, H , L) and (H, M , L) , as 

contrasted with (L, M , H) and (L, H , M) . With these patterns, the first outcome which 

is relatively highly correlated with the other moderately correlated outcome variables is 

assigned no weight by GLS. OLS is much more powerful than GLS in these situations. 
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Bonferroni Adjustment 

The results in Tables 2.4 and 2.5 show that in Case A , the correlation structures seem 

to have essentially no impact on the performance of Bonferroni adjustment. This agrees 

with the results in Table 2.2 where in Case A , positive correlation has only a small impact. 

The results in Tables 2.6 and 2.7 indicate that in Case B, the correlation structure has 

only a little more impact on the performance of Bonferroni adjustment than in Case A. 

Generally speaking, when the more effective outcomes are less correlated, this procedure 

performs slightly better. For example, the pattern (L, M , H) describes a situation where 

the most effective outcome is least correlated and the least effective outcome is most 

correlated. On the contrary, the pattern (H, M , L) represents a situation where the most 

effective outcome is heavily correlated and the least effective is modestly correlated. 

Bonferroni adjustment performs better in the former situation. (Compare power of 0.67 

to 0.70.) 

In Case C, the impact of the correlation structure on the performance of Bonferroni 

adjustment is more apparent. The results in Tables 2.8 and 2.9 reveal that a smaller 

degree of correlation among the outcome measures results in better performance of this 

procedure. Among the 27 patterns of correlation, it performs the best for the pattern (L, 

L, L) (power of 0.93) and the worst for the pattern (H, H , H) (power of 0.83). Generally 

speaking, in this case, the required sample size is roughly proportional to p. For example, 

the average of the correlation for each of the patterns (L, L, M) , (L, M , L) and (M, L, L) 

is 0.30 and the performance of Bonferroni adjustment for these patterns is identical to 

that for the pattern of three equally correlated outcomes with the common correlation 

of 0.30. 



Chapter 2. Several Approaches to Multiple Outcome Measures 40 

Hotelling's T 2  

The effects of correlation structures on the procedure based on Hotelling's T 2 are more 

complicated. As indicated by (2.6), (2.7), and (2.8), the magnitude of the non-centrality 

parameter, A 2 is proportional to m 1 1 , the weighted sum of the elements in M p

_ 1 and the 

sum of all the elements in for Cases A , B , and C respectively. We will discuss the 

effect of the correlation structure on T 2 through these quantities; Table 2.3 provides the 

relevant information. 

In Case A , among the 27 patterns, T 2 performs most powerfully for the pattern (H, 

H , L) . The inverse of this correlation matrix is: 

M- 1 = 

1 5.45 -3.18 -3.18 ^ 

-3.18 2.90 1.65 

y -3.18 1.65 2.90 ) 

The relatively large m 1 1 = 5.45 leads a large A 2 and hence, large power for T 2. The 

results in Tables 2.4 and 2.5 suggest that this procedure performs better when the degree 

of correlation relevant to the effective outcome is higher. For example, for the patterns 

(L, M , L) , (M, M , L) , and (H, M , L) , the power achieved with 100 patients per arm by 

T 2 is 0.79, 0.88 and 0.98. This agrees with the results for Case A in Table 2.1 where 

the common correlation increases, the power of the procedure based on Hotelling's T 2  

increases. Not only p\2 and p13 but also p23 impact on the performance of T 2. For 

example, when pi2 and p i 3 have the patterns (pi2, Pis) = (L, L) , (M, M) , (M, H), (H, 

M) , and (H, H), the power achieved by T 2 increases as p2$ decreases. On the other hand, 

for (p\2, P13) = (L, H) and (H, L) , Hotelling's T 2 performs better when p2z is larger. 

In Case C, the impact of the correlation structures on Hotelling's T 2 is similar to 

that on Bonferroni adjustment: when the degree of correlation among the outcomes is 

smaller, T 2 performs better. This impact could be quite substantial. Taking the two 
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most extreme patterns, (L, L, L) and (H, H , H), for comparison, the required sample size 

for the former is about | that for the latter (65 versus 111). 

In Case B , the effect of the correlation structures on T2 is complicated. The largest 

power occurs for the pattern (L, H , H). The inverse of this correlation matrix is: 

Mp' 1 = 

\ 

V 

2.90 1.65 -3.18 

1.65 2.90 -3.18 

-3.18 -3.18 5.45 

As the negative elements are removed from m 1 1 , the resulting weighted sum relevant to 

Case B is quite large (2.69). Compare this to the pattern (M, L, L) whose inverse matrix 

is: 

Mp' 1 = 

I 1.34 -0.71 0.09 

-0.71 1.71 -0.71 

0.09 -0.71 1.34 

\ 

The small positive elements and negative elements lying close to m 1 1 lead to a small 

weighted sum (1.02). As a result, T2 is not very powerful in this situation. 

Overall Comparison 

Bringing all the procedures together for an overall comparison, we first discuss Case A 

where only one outcome measure is effective in comparing the two arms. In Case A , 

the results in Tables 2.4 and 2.5 reveal the potential of GLS to perform substantially 

better than OLS. When the correlation relevant to the effective outcome is weak and the 

correlation between the ineffective outcomes is strong, GLS performs more powerfully. 

When the correlation pattern is (L, H , H) or (H, L, H), GLS has a clear advantage over 

Bonferroni adjustment; otherwise, Bonferroni adjustment is substantially more powerful. 

In Case A , T2 has a clear advantage over GLS in all 27 correlation structures. Bonferroni 
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adjustment is competitive with T2 only when the correlations relevant to the effective 

outcomes are weak (patterns: (L, L , L) , (L, L , M) and (L, L , H)). 

In Case C where all outcomes are effective, all procedures perform well, but partic­

ularly GLS. In all 27 correlation structures considered, GLS always performs at least 

as well as OLS. However, because OLS also performs well in this case, the advantage 

of GLS is quite small. GLS also has a modest advantage over T2 for the structures 

considered; the magnitude of this advantage in the required sample size is roughly the 

same for all patterns considered. For all the patterns of correlation considered, GLS also 

has a modest advantage over Bonferroni adjustment. In Case C, Bonferroni adjustment 

and T2 are rather comparable. For patterns (L, H , H), (H, L, H) and (H, H , L) , T2 has 

a modest advantage over Bonferroni adjustment. On the other hand, when the degree 

of correlation among the outcome measures is relatively large, Bonferroni adjustment is 

more powerful. The patterns (M, M , H), (M, H , M) , (M, H, H), (H, M , M) , (H, M , H), 

(H, H , M) , and (H, H , H) are examples where Bonferroni adjustment performs better. 

In Case B where outcome measures are of diminishing effectiveness, the performance 

of GLS, OLS and T2 depends strongly on the correlation structure; this is especially 

so for GLS. Only when the most effective outcome measure is weakly correlated with 

the other two outcome measures (patterns (L, L, L) , (L, L, M) , and (L, L, H)), does 

GLS have a slight advantage over T2. For all other patterns considered, T2 is more 

powerful. When the degree of correlation relevant to the first outcome measure is large, 

the advantage of T2 over GLS can be substantial. The pattern (H, H , L) represents such 

a situation and T2 is much more powerful (power of 0.89 versus 0.08). In Case B , GLS 

has a clear advantage over Bonferroni adjustment when the patterns of correlation are 

(L, L, H), (L, M , H), (L, H , M), (L, H , H) and (H, L, H). Generally speaking, when 

the correlation between the first and second outcomes is moderate or high, Bonferroni 

adjustment performs substantially better; the only exception is the pattern (H, L, H). 
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2.5.2 Five Outcome Measures 

We now turn to the case of m = 5. A few examples where the differences between GLS 

and OLS are pronounced will be considered. We first present the patterns of correlations 

to be considered among the 5 outcome measures; the resulting weights GLS assigns to 

each individual outcome are provided in the last row adjoined to the correlation matrices: 

/ 

M, 

1 L L M H 

L 1 M H H 

L M 1 H H 

M H H 1 H 

H H H H 1 

1.62 1.38 1.38 -1.15 -2.23 

\ 

MP2 = 

1 L M H H 

L 1 M H H 

M M 1 M M 

H L M 1 H 

H L M H 1 

1.87 1.87 -0.25 -1.25 -1.25 

1 L M H H 

L 1 H H H 

M H 1 H H 

H H H 1 H 

H H H H 1 

1.50 1.50 0.00 -1.00 -1.00 

1 L M M H 

L 1 H H H 

M H 1 H H 

M H H 1 H 

H H H H 1 

0.75 0.75 0.00 0.00 -0.50 
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1 L L L M 

L 1 L L M 

L L 1 L M 

L L L 1 M 

M M M M 1 

0.31 0.31 0.31 0.31 -0.25 

M, P6 

1 L L M 

L 1 L L M 

L L 1 M H 

L L M 1 H 

M M H # 1 

0.42 0.42 0.43 0.43 -0.69 

1 L X H 

L 1 L L H 

L L 1 L M 

L L 1 M 

H H M M 1 

0.75 0.75 0.42 0.42 -1.33 

1 L Z X M 

L 1 H H 

L 1 H H 

L H H 1 H 

M H H i f 1 

0.50 1.50 1.50 -1.00 -1.50 

1 L L M 

L 1 L H 

L 1 M H 

L L M 1 H 

M H H i f 1 

0.50 0.97 0.71 0.71 -1.88 

1 L L M M 

L 1 H i f H 

L # 1 # H 

M H H 1 H 

M H H # 1 

0.55 0.39 0.39 -0.16 -0.16 
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1 L L L M 

L 1 i f i f i f 

L i f 1 i f i f 

L i f i f 1 i f 

M i f i f i f 1 

0.50 0.25 0.25 0.25 -0.25 

M„,n = P12 

1 L L L L 

L 1 H H H 

L H 1 H H 

L H H 1 H 

L H H i f 1 

0.42 0.15 0.15 0.15 0.15 

M P13 

1 H L 

H 1 L L Z, 

L L 1 L 

L L L 1 

L L L L 1 

0.15 0.15 0.24 0.24 0.24 

M P 1 4 = 

1 H # L L 

# 1 I L L 

i f 1 L L 

L 1 L 

L L L 1 

-0.27 0.40 0.40 0.23 0.23 

A T P15 

1 i f i f i f M 

i7 1 i f M M 

H i f 1 M L 

H M M 1 L 

M M Z, L 1 

-0.35 -0.06 0.46 0.43 0.52 

1 i f i f i f Af 

i f 1 i f i f Af 

i f i f 1 i f I 

i f i f i f 1 L 

M M L 1 

-0.16 -0.16 0.39 0.39 0.55 

GLS versus OLS 

To compare GLS with OLS, we first provide their effect sizes and p, the average correla­

tion, in Table 2.10. The results of the power and sample size calculations for GLS and 
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OLS for these 16 correlation structures for Cases A , B , and C are presented in Tables 

2.11 to 2.13. 

The structure MPl represents one relatively weakly correlated outcome, the first, 

two moderately correlated outcomes, the second and third, plus two highly correlated 

outcomes. For this structure, GLS assigns large negative weights to the two highly cor­

related outcomes and large positive weights to the remaining three, especially the least 

correlated one. In Case A , since the outcome with the largest weight is the effective 

outcome, GLS makes very good use of the information provided by this outcome. OLS 

is not competitive with GLS because of the big difference between the effect sizes (3.65 

versus 0.10). Similarly in Case B , as the most effective outcome is weighted the most, 

as expected, GLS has a clear advantage. In Case C, the much larger effect size for GLS 

results in its superiority in power. Taking Cases A , B , and C together, for this particular 

correlation structure, GLS is much more powerful than OLS. MP2 is a similar example. 

In this structure, two outcomes are relatively less dependent, one moderately dependent 

and the remaining two are highly dependent. GLS considers the two highly dependent 

outcomes as redundant outcomes and hence weights them heavily and negatively and 

assigns large weights to the relatively weakly correlated outcomes. The moderately de­

pendent outcome is assigned a small weight. With the same reasoning as in the previous 

example, GLS performs substantially better than OLS in all of Cases A , B , and C. MP3 

and MP4 also describe similar situations. 

MP5 represents a structure where the first four outcomes are weakly correlated and 

the remaining outcome is equally and moderately dependent with each of the first four. In 

this situation, GLS weights the dependent outcome negatively while assigning equal and 

positive weights to the first four outcomes. In Case A , GLS is modestly more powerful 

than OLS as the weight GLS assigns to the effective outcome is not large; nevertheless, the 

required sample sizes differ substantially. Similar in Case B , GLS has a clear advantage. 
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In Case C, because OLS also performs very well, the advantage of GLS is rather limited. 

MP6 is a similar example to MP5. The main difference between these two structures 

is that the fifth outcome in Mp& is even more dependent than in MPh. As a result, 

this highly correlated outcome is more negatively weighted and the first four are more 

positively weighted by GLS. In each of Cases A , B , and C, the advantage of GLS becomes 

more clear. 

MP7 corresponds to four weakly correlated outcomes plus one very dependent out­

come. This dependent outcome is equally and highly correlated with the first two out­

comes; in addition, it is equally and moderately correlated with the remaining two out­

comes. Not surprisingly, GLS down-weights this dependent outcome. However, it worth 

noting that the first two outcomes which seem to be more dependent are actually weighted 

more heavily than the remaining two. This result seems to suggest that GLS tends to 

transfer the weight from a redundant outcome to the outcomes which are relatively highly 

correlated with the redundant outcome. In Cases A and B , both the power and required 

sample size clearly demonstrate the superiority of GLS. In Case C, the gain by GLS in 

power is modest (the potential gain is limited as the power of OLS is 0.98); however, the 

difference in the required sample sizes for GLS and OLS is substantial. MP8 and MP9 

represent similar structures as MP7. 

The correlation structure MPW describes one less correlated outcome, the first, and 

two equally and moderately correlated outcomes, the second and third, plus two equally 

and more heavily correlated outcomes. Under this structure, GLS assigns a larger weight 

to the first outcome, and least weight to the fourth and fifth outcomes. GLS again 

performs substantially better than OLS for Cases A and B and modestly better for Case 

C. The improvement of GLS over OLS is smaller in this example than in MPW since the 

differences in the weights GLS assigns to the outcome measures are less dramatic. MPu 

represents a situation where the first outcome is not strongly correlated with any of the 
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remaining outcomes while these four outcomes are highly correlated among themselves. 

GLS assigns most weight to the first outcome, least weight to the fifth, and equal weights 

to the remaining three outcomes. MP12 is a similar example except that the degree of 

correlation relevant to the first outcome is smaller. The pattern of improvement of GLS 

over OLS for MPn and MPl2 is similar to that for the structure MPW. 

We now turn to examples where GLS may perform poorly and therefore OLS could 

be more powerful. MP1Z corresponds to a structure in which two outcomes are highly 

correlated, the remaining three are weakly correlated, and these two sets of outcomes are 

weakly correlated as well. With this structure, GLS weights the three weakly correlated 

outcomes more heavily. In Case A , as the weight GLS assigns to the effective outcome 

is small, GLS performs even more poorly than OLS. In Case B , since the weights on 

the more effective outcomes are smaller than those on the less effective outcomes, OLS 

again is more powerful. In Case C, both procedures perform very well and GLS has 

a slight advantage over OLS. MP14 is similar to MP13 except that the first outcome is 

even more dependent as it is also highly correlated with the third outcome. This time, 

GLS assigns negative weight to the first outcome. Consequently, for Case A , the mean 

of the GLS statistic is negative. As we have discussed for a similar situation earlier, 

this fact is not reflected in our power or sample size calculations as the tests we perform 

are two-sided. MP15 represents outcomes of diminishing dependence. Roughly speaking, 

GLS assigns the weight in an increasing fashion. The first outcome is least and actually 

negatively weighted and the fifth outcome is most weighted. For Case A , the mean of 

GLS statistic is again negative. Furthermore, for Case B , the mean is not only negative 

but also very close to zero. As a consequence, the required sample size is very large. 

MP16 represents a similar situation except that the first and second outcomes have the 

same correlations relative to the remaining outcomes and hence the first outcome is not 

so negatively weighted. 
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Table 2.10: For ra = 5: average correlation, effect sizes, and noncentrality parameters 

Case A Case B Case C 
Correlation 
Structure P A 2 

COLS CGLS A 2 

COLS CGLS A 2 

COLS CGLS 

MP1 0.56 88.50 0.10 3.65 138.68 0.22 4.60 32.50 0.49 2.26 
MP2 0.57 20.63 0.10 1.21 23.57 0.22 1.40 2.67 0.49 0.65 
MP3 0.63 11.63 0.09 0.94 14.11 0.22 1.13 2.50 0.47 0.63 
MP4 0.61 3.52 0.10 0.40 4.29 0.22 0.55 1.82 0.48 0.53 
MP5 0.32 1.35 0.12 0.20 1.64 0.27 0.39 2.67 0.59 0.65 
MP6 0.39 1.57 0.11 0.29 2.36 0.25 0.51 3.07 0.55 0.69 
MP7 0.36 6.09 0.11 0.81 10.79 0.26 1.20 7.50 0.57 1.09 
MP8 0.48 2.67 0.10 0.51 11.00 0.24 1.23 6.67 0.52 1.02 
MP9 0.41 8.08 0.11 1.05 30.44 0.25 2.15 28.33 0.55 2.11 
Mno 0.56 1.85 0.10 0.30 2.33 0.22 0.43 1.85 0.49 0.54 
MPU 0.53 1.48 0.10 0.27 1.80 0.23 0.39 1.90 0.50 0.55 
MP12 0.50 1.05 0.10 0.23 1.19 0.23 0.33 1.87 0.51 0.54 
MP13 0.25 1.99 0.13 0.09 1.11 0.29 0.26 2.57 0.63 0.64 
MP14 0.30 5.52 0.12 -0.17 1.81 0.27 0.11 2.59 0.60 0.64 
Mpis 0.52 4.15 0.10 -0.20 2.13 0.23 -0.01 2.03 0.50 0.57 
M P ^ 0.56 3.27 0.10 -0.09 1.93 0.22 0.05 1.85 0.49 0.54 
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Table 2.11: Case A with m = 5: power achieved with n = 100 and sample size required 
to achieve power of 0.80 

Correlation Power n 
Structure Bon. T2 OLS GLS Bon. T2 OLS GLS 

Mn 0.59 1.000 0.11 1.000 149 2 1620 1 
MP2 0.59 1.000 0.11 1.000 149 8 1640 11 
MP3 0.59 1.000 0.10 1.000 149 14 1760 18 
MP4 0.59 0.99 0.10 0.81 149 46 1720 98 
MP5 0.59 0.71 0.13 0.30 148 121 1140 384 
MP6 0.59 0.78 0.12 0.53 148 104 1280 188 
MP7 0.59 1.000 0.13 1.000 148 27 1220 24 
MP8 0.59 0.96 0.11 0.95 148 61 1460 60 
MP9 0.59 1.000 0.12 1.000 148 20 1320 14 

MP10 0.59 0.85 0.11 0.55 149 89 1620 180 
MPn 0.59 0.75 0.11 0.49 148 111 1560 210 
MP12 0.59 0.58 0.11 0.36 148 155 1500 306 
MP13 0.59 0.88 0.14 0.10 148 82 1000 1840 
MP14 0.59 1.000 0.13 0.22 149 30 1100 544 

0.59 0.998 0.11 0.29 149 39 1540 403 
0.59 0.99 0.11 0.09 149 50 1620 2080 
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Table 2.12: Case B with m 
to achieve power of 0.80 

5: power achieved with n = 100 and sample size required 

Correlation 
Structure 

M, 
M, 
M, 
M, 
M, 
Mt 

Af, 
M, 
Af, 
Af 

P2 

P3 

P4 

P5 

P6 

P7 

P8 

P9 

Af, 
M, 
M, 
Af, 
Af 
M 

p\o 
p\\ 
P12 

P13 

P14 

P15 

£16 

Power 
Bon. OLS GLS 
0.63 
0.63 
0.62 
0.62 
0.64 
0.64 
0.64 
0.64 
0.64 
0.63 
0.63 
0.63 
0.62 
0.61 
0.60 
0.60 

1.000 
1.000 
1.000 
0.998 
0.80 
0.93 
1.000 
1.000 
1.000 
0.93 
0.84 
0.64 
0.61 
0.84 
0.90 
0.87 

0.36 
0.35 
0.33 
0.34 
0.47 
0.43 
0.45 
0.39 
0.42 
0.36 
0.37 
0.38 
0.53 
0.49 
0.37 
0.36 

1.000 
1.000 
1.000 
0.97 
0.79 
0.95 
1.000 
1.000 
1.000 
0.86 
0.80 
0.64 
0.44 
0.12 
0.05 
0.06 

n 
Bon. T2 OLS GLS 

139 
141 
141 
141 
138 
138 
138 
139 
138 
140 
140 
140 
144 
146 
148 
148 

1 
7 

12 
38 
99 
69 
15 
15 
5 

70 
91 

137 
148 
90 
77 
85 

311 
315 
338 
330 
219 
245 
234 
280 
253 
311 
299 
288 
192 
211 
295 
311 

1 
8 

12 
52 

104 
60 
11 
10 
3 

85 
101 
146 
239 

1310 
22300 

6200 

c 
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Table 2.13: Case C with m = 5: power achieved with n = 100 and sample size required 
to achieve power of 0.80 

Correlation Power n 
Structure Bon. T2 OLS GLS Bon. OLS GLS 

Mn 0.88 1.000 0.94 1.000 82 5 65 3 
MP2 0.87 0.96 0.93 0.996 84 61 66 37 
MP3 0.85 0.95 0.92 0.993 89 65 70 40 
MP4 0.86 0.85 0.92 0.97 86 90 69 55 
MP5 0.94 0.96 0.99 0.996 66 61 46 37 
MPe 0.93 0.98 0.97 0.998 70 53 51 33 
MP7 0.94 1.000 0.98 1.000 67 22 49 13 
Mpg 0.90 1.000 0.96 1.000 77 25 58 15 
MP9 0.93 1.000 0.97 1.000 70 6 53 4 

0.88 0.85 0.94 0.97 82 89 65 54 
MPU 0.89 0.87 0.94 0.97 80 86 62 52 
MP12 0.90 0.86 0.95 0.97 77 87 60 53 

0.95 0.95 0.993 0.994 63 64 40 39 
MP14 0.94 0.96 0.988 0.995 66 63 44 39 
M P U 0.89 0.89 0.95 0.98 79 80 62 49 

0.88 0.85 0.94 0.97 82 89 65 54 
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Despite the limited scope of these examples, the results presented in this section have 

highlighted some differences between the properties of GLS and OLS. In Cases A and B , 

if the weight GLS assigns to the most effective outcome is more than that OLS assigns, 

the former has a larger mean and is more likely to have a larger effect size. (Of course, the 

effect size also depend on the standard deviation but the examples considered reveal that 

the standard deviations of GLS and OLS do not differ much.) This can result either when 

the most effective outcome is nearly uncorrelated with the others or when one or more of 

the less effective outcomes are nearly redundant as GLS weights less correlated outcomes 

relatively more heavily. In Case C, because the means of GLS and OLS are identical, the 

procedure having a smaller standard deviation has a larger effect size and hence larger 

power. In this case, both GLS and OLS perform well and they are competitive in power 

in most situations; however, a mild advantage in power of GLS can result in substantial 

differences in the required sample sizes. 

Bonferroni Adjustment 

The effect of the correlation structures on the performance of Bonferroni adjustment for 

five outcome measures is similar to that for three outcome measures. Table 2.11 show 

that in Case A , these different correlation structures seem to have essentially no impact 

on its performance. This agrees with the results for three outcome measures in Tables 

2.4 and 2.5. 

Table 2.12 indicates that in Case B, the different structures have a small impact on the 

performance of Bonferroni adjustment. When the more effective outcomes are relatively 

weakly correlated, this procedure performs slightly better; MP5, MP6, MP7, MP9, M P 1 3 , 

and MP14, are examples of this kind. 

In Case C, the procedure based on Bonferroni adjustment performs better when the 
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outcomes are generally more weakly correlated. For instance, with the correlation struc­

tures MP5, MP6, MP7, MP8, or MP9, the outcomes are mostly only mildly correlated, 

whereas with structures like MP1, MP2, MP3, MP4, MPW, MP11, MPl2, or MP16, there 

is a greater degree of correlation among the outcomes. Bonferroni adjustment performs 

more powerfully in the former situation. The results in Table 2.13 suggests that in Case 

C, the required sample size is roughly proportional to ~p, but this effect is moderate for 

the case of m = 5. 

Hotelling's T 2 

The effects of the correlation structures on the procedure based on T 2 for five outcome 

measures are complicated. The magnitude of A 2 for each case is displayed in Table 2.10. 

Taking MP1 as an example, we first display -Mp"1: 

88.5 75.0 75.0 -63.5 -122.5 

75.0 66.0 64.0 -55.0 -105.0 

75.0 64.0 66.0 -55.0 -105.0 

-63.5 -55.0 -55.0 48.5 87.5 

-122.5 -105.0 -105.0 87.5 172.5 

\ 

With this correlation structure, T 2 is more powerful in Case A than Case C as 88.5 

(m 1 1) is larger than 32.5 (sum). The elements close to m 1 1 are quite large and all the 

large negative elements are relatively far away from m 1 1 leading to a large weighted sum 

(138.68). As a consequence, T2 performs even better in Case B than in Case A . 
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As another example, 

M _ 1 = 
1V1P13 

\ 

1.99 -1.34 -0.09 -0.09 -0.09 

-1.34 1.99 -0.09 -0.09 -0.09 

-0.09 -0.09 1.10 -0.15 -0.15 

-0.09 -0.09 -0.15 1.10 -0.15 

-0.09 -0.09 -0.15 -0.15 1.10 

The matrix has a sum of 2.57 and a weighted sum of 1.11. The element m 1 1 , the weighted 

sum and the sum are considerably smaller than those of Mp' 1. For this structure, T2 is 

less powerful than it was for MP1 for each of Cases A , B, and C. The above examples and 

Table 2.7 show that the correlation structure can have a great impact on the performance 

of T2. 

Overall Comparison 

Now, we want to bring all the procedures together for an overall comparison. In Case A 

where only the first outcome is effective in comparing the two arms, GLS has the potential 

to have a very clear advantage over OLS. The structures MPl, MP2, MP3, M P 7 , MPS, and 

MP9 are examples of patterns of correlations for which GLS is very powerful. In these 

examples, Hotelling's T2 is comparable to GLS and sometimes Hotelling's T2 performs 

slightly better than GLS. On the other hand, Bonferroni adjustment is not comparable to 

GLS and T2 although it has a clear advantage over OLS. Still in Case A , for structures 

like MP5 MP6, MP1Q, MPn and MP12, where GLS does not perform well although it 

still has a clear advantage over OLS, T 2 is more powerful. MP13 and MP16 are patterns 

of correlations where in Case A , OLS performs poorly but better than GLS. In these 

situations, T2 is most powerful and Bonferroni adjustment also performs considerably 

better than OLS although it is not comparable to T2. 
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In Case C where all outcomes are effective, GLS has a clear advantage over the other 

procedures in all the 16 patterns of correlations considered. The performance of GLS 

is substantially better than Bonferroni adjustment. The advantage of GLS over T2 in 

required sample size is quite clear except for the structures MPl and MP9 in which the 

latter also requires only a small sample. 

In Case B where outcomes are of diminishing effectiveness, the results in Tables 2.12 

indicate that the correlation structures have a great impact on the performance of both 

GLS and T2 . Tables 2.11 and 2.12 show that for structures where T2 is comparable 

to GLS in Case A , T2 is also comparable to GLS in Case B . Furthermore, under the 

situations where T2 is more powerful than GLS in Case A , T2 is also more powerful than 

GLS in Case B . 

2.6 Discussion 

Although the comparisons presented in this chapter are limited, we can still draw a 

few general conclusions. First, for the special case of equally correlated outcomes, the 

inclusion of ineffective outcome measures leads to detrimental effects on all the procedures 

(Case A) . In this situation, if only one outcome measure is effective, identifying this single 

effective outcome becomes essential. However, if it is not clear which outcome measure 

is effective, the results suggest the use of the procedure based on Bonferroni adjustment 

as the impact of the inclusion of ineffective outcomes on this procedure is smallest. 

When several equally correlated outcome variables with roughly equal effectiveness 

are included, procedures which combine the evidence provided by individual outcomes 

can be quite powerful in assessing the relative efficacy of the two arms. The results in 

Case C suggest that O'Brien's OLS and GLS procedures are the best way to proceed in 

this situation. 
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For outcome measures with diminishing effectiveness (Case B), the situation is more 

complicated. For equally correlated outcomes, O'Brien's OLS procedure is more powerful 

than the other procedures only when the common correlation is very small. With a 

modest common correlation, say 0.3, Bonferroni adjustment seems to be the best way 

to proceed. When the common correlation is moderate, say 0.5, Bonferroni adjustment 

performs better than Hotelling's T2 only when a small number of outcomes are included. 

For unequally correlated outcome measures, O'Brien's GLS and Hotelling's T2 statis­

tic demonstrate their potential to overcome the possible detrimental effects resulting from 

the inclusion of ineffective outcome measures. When the effective outcome is weakly cor­

related with the ineffective outcomes and the ineffective outcomes are intercorrelated, the 

resulting down-weighting of these ineffective outcomes in the GLS statistic (relative to 

the OLS statistic) results in enhanced sensitivity of the assessment of the relative efficacy 

of the two arms. As the approach based on Hotelling's T2 does not take account of the 

direction of the differences between the two arms on the individual outcomes, when T2 

and O'Brien's GLS are comparable, the latter should be preferred. Generally speaking, 

the examples we have considered suggest that when the outcome measures with greater 

effectiveness are not highly correlated and the outcomes with less effectiveness are not 

weakly correlated, T2 and O'Brien's GLS are competitive with each other. 

However, the danger of using O'Brien's GLS procedure is that depending upon the 

correlation structure among the outcome measures, it is possible for GLS to perform very 

well or very poorly. Throughout our work, we have assumed that the correlation structure 

is known. This would typically not be the case when planning clinical trials. The ideal 

situation would be that the effectiveness of the individual outcome measures selected for 

inclusion is clear and high quality information on the relationship among the outcome 

measures to be used is available. In this case, the appropriateness of using the O'Brien's 

GLS or OLS procedure can be assessed. This will not be possible if the information on the 
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pattern of the correlation among the outcome measures is of low quality. There might be a 

situation when it is not clear which outcome measures are effective and therefore several 

outcomes need to be included, and the information about the underlying correlation 

structure among the outcomes is very limited. In such a situation, the use of the GLS 

procedure could be risky. To avoid that, Bonferroni adjustment is a reasonable way to 

proceed as our results indicate that the impact of correlation structures on this procedure 

is small. 



Chapter 3 

Disjunctive Composite Outcome Measures 

We now consider another type of composite outcome measure called a "disjunctive" 

outcome measure. The low dose oral methotrexate clinical trial in chronic progressive 

MS, the results of which are presented in Goodkin et al. (1992), is one example of a 

MS clinical trial which used this type of composite outcome measure in its design and 

analysis. The idea of this method of combining multiple outcome variables is as follows: 

The researcher first dichotomizes each outcome measure; a measurement on the j th 

outcome variable exceeding a pre-assigned cutoff value is taken to indicate a significant 

clinical change on this particular outcome. An indication of significant clinical change 

on any of the m outcome measures is taken to indicate a treatment failure. In other 

words, the responses on the original individual outcome measures are first converted to 

binary responses, and the information on the binary responses is then combined into an 

overall binary response. To assess the effect of the treatment relative to the placebo, the 

proportions of treatment failure on the two arms are compared. 

As all the evidence from the individual outcome measures is summarized into a single 

response, the simplicity of this method makes it attractive to some researchers. However, 

there are some potential difficulties with this method. To construct meaningful pre-

assigned cutoff values for individual outcome measures requires substantial knowledge 

on these outcomes. Additionally, the best rule for combining the binary responses from 

the individual outcome measures into a composite outcome measure is not obvious. Here 

these binary responses are combined disjunctively, but they could be combined in other 

59 
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ways. For instance, the most strict way would be that an indication of significant clinical 

change on all of the m outcome measures is required to indicate a treatment failure. 

In this chapter, we first examine the properties of dichotomized tests in the univariate 

setting and compare such tests to those based upon a continuous variable. Second, 

we investigate the statistical properties of disjunctive outcome measures. Finally, we 

compare this method to the procedures discussed in Chapter 2. 

3.1 Dichotomized Tests for One Outcome Variable 

This section is devoted to the examination of dichotomized tests on a single continuous 

outcome variable. For consistency of notation with Chapter 2, let Xnk represent this 

particular outcome variable for the kth patient in treatment group z, where i = 1 for the 

placebo arm and i = 2 for the treatment arm. We will assume that Xnk are independently 

and identically distributed with the distribution function Fi which has mean fin and 

known variance <r2; similarly, X2u are i.i.d as F2 with mean fi2\ and the same variance 

o~\. Further, we will assume that F\ and F2 belong to the same location shift family; that 

is, 

F1{x) = F2(x-S1), 

where 8\ = fin — fi2i. In other words, the difference between the two population distri­

butions can be expressed by a shift in location. Let F denote the standard cdf for this 

family which has mean 0 and variance 1. Then F\(x) and F2{x) can be expressed in 

terms of F: 

and 

F2 = 
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Let represent the pre-assigned cutoff point for this outcome measure; a patient has 

a significant clinical change on this outcome if his or her response is greater than rji. We 

will express r)i as the sum of the underlying mean of this outcome on the placebo arm, 

/ i n , and the standardized distance between fin and rf\\ that is, 

rji = fin + CI<TI, 

where Ci > 0 which means rji is greater than the placebo mean. 

If 7T; denote the probability that a patient has a significant clinical change on the zth 

treatment arm, then 7T; can be expressed as: 

7Tt- = P(a patient on the ith treatment arm has a significant clinical change) 

= 1 - P(Xilk < Vl) 

= 1 - P(Xilk < fin + cio-i) 

_ l _ p (Xjlk-pil < c i Mil-Mil ] 

In terms of F, we can express 7Ti and 7T2 as: 

TTi = 1 - F(ci) (3.1) 

and 

TT 2 = 1 - F(Cl + A i ) , (3.2) 

where A i = ^ n ~ ^ 2 1 is the standardized difference of the underlying population means of 

this continuous outcome variable. 

The difference between TTI and 7T2 depends upon the cutoff value, Ci, and the stan­

dardized difference between the population means of the two arms. If we compare the 

two arms by a dichotomized test, we will test Hod '• TTI = TT2 against Had : 7Ti ^ 7r 2 . On the 

other hand, if we compare the two arms by the Z-test on the sample means of the con­

tinuous outcome variable, we will test HQc : fin = fi12 against Hac : (in ^ Mi2- As 7Ti and 
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7r 2 are equal if and only if fin and fi\2 are equal, the null hypotheses, Hod '• TTI = ^2 and 

HQC '• = fJ-12 are equivalent and a meaningful comparison between the dichotomized 

test and the Z-test can be made. Moreover, for every specified c\, the difference to be de­

tected between 7Ti and 7r 2 is determined by A i , the standardized difference to be detected 

between the underlying means. Hence, once Hac is specified, the corresponding alterna­

tive hypothesis, Haa\, is specified as well. In particular, the alternative corresponding to 

A i = A is 7Ti — 7r 2 = 0, where 9 = F (c i + A ) — .F(ci). Under such situations where the 

hypotheses to be tested by the two statistics are equivalent, a meaningful comparison 

between the dichotomized test and the Z-test can be made. 

3.1.1 How Much Is Lost by Dichotomizing? 

It is clear that use of the dichotomized outcome variable involves a certain degree of 

loss of information due to the transformation of the continuous variable to the binary 

response variable. The issue now becomes how much information is lost. We will try to 

address this issue in this section through a comparison between the dichotomized test 

and the Z-test using two criteria: percent power loss and asymptotic relative efficiency. 

Criterion 1: Percent Power Loss 

Percent power loss is defined as the difference between the powers achieved by the 

two tests for equivalent alternative hypothesis, expressed as a percentage of the power 

achieved by the Z-test; that is, 

Percent power loss = P c ~ F d 100%, 

where Pc and Pd denote the power achieved by the Z-test and the dichotomized test 

respectively. 
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To evaluate the percent power loss, we need formulae for Pc and P<f. From Appendix 

B, the formula for the power of the Z-test on the continuous outcome variable evaluated 

at the specified alternative, A i = A , is: 

P C ( A ) w 1 - $ ( ^ _ A / 2 - ^|A) + $ ( - z i _ a / 2 - ^ | A ) . 

This approximate formula is derived based upon the Central Limit Theorem. Provided 

that n is reasonably large, this approximation should be adequate. From Appendix D 

which presents the general formulae for the power and the sample size required per arm 

for a level oc test for comparing two population proportions, we have: 

Pd(9) * 1 - $ ^ W 2 

2TT(1 - 7f) y/n6 
\ 7^(1 - 7 T 1 ) + 7r 2 ( l -7T 2) ^ ( 1 - + 7T2(1 - 7T2), 

2x(l - 7f) 

' \ | 7n(l - T T i ) +7T 2 (1 - 7 T 2 ) ^7Ti(l - 7Ti) + 7T2(l - tf2) / 

where 7r = 71-1 "t,"̂ 2 and ^ = 7T! — 7r 2 . A s this approximate formula for the power of the 

dichotomized test relies on the normal approximation for binomial probabilities, it will 

not provide an accurate approximation when 7Ti and 7r 2 are close to 0 or 1. 

As in Chapter 2, we assume Xiu follows the normal distribution and examine the 

property of percent power loss under this assumption. (Note that under this normality 

assumption, the formula for Pc is exact.) From (3.1) and (3.2), TTI and 7r 2 can then be 

calculated as: 

TTi = 1 - $ ( C l ) , (3.3) 

and 

TT 2 = 1 - $(ci + A a ) . (3.4) 
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Figure 3.1 presents the percent power loss as a function of A i , the standardized 

difference between the population means, for a few specified cutoff points for each of 

four different sample sizes when F is taken to be normal distribution. Comparing the 

five specified values of the cutoff point, regardless of the sample size, using a cutpoint of 

f}\ = Mn or C\ = 0 (i.e. dichotomizing at the placebo mean) provides the minimal percent 

loss of power for every fixed value of A , the standardized difference. Moreover, for every 

fixed value of A , as the pre-assigned cutoff point gets larger, the percent power loss 

increases. If the continuous variable is dichotomized at the placebo mean (i.e. rji = Mil); 

the percent power loss never exceeds 30%, no matter what the value of the standardized 

difference. 

Figure 3.1 also shows that for each specific cutoff point, the value of the standardized 

difference at which the percent power loss achieves its maxima changes with the sample 

size. With the sample sizes of 50, 200 and 500, the value ranges from 0.2 to 0.5, increasing 

only slightly as the pre-assigned cutoff point gets larger. With n = 20, this value lies 

beyond 0.5. The figure illustrates the dramatic impact of sample size on the relationships 

among the percent power loss, the cutoff point and the standardized difference. When 

we have very large samples, say n = 500, with the cutoff point of 1.5 or smaller, the 

percent power loss decreases very quickly from its maxima to 0 as the standardized 

difference gets moderately large. In this case, the power for both the dichotomized test 

and the Z-test approaches 1 very quickly. However, when the cutoff point is too large, 

the power of the dichotomized test can never approach 1 even with a large standardized 

difference. For example, with a sample size of 500, when c\ = 2, the percent power loss 

does not approach 0 as A increases. On the contrary, for small samples such as n = 20, 

Figure 3.1 shows that a small difference in the cutoff point can result in a substantial 

difference in the percent power loss. Also, when the cutoff point is 0.5 or larger and Ai 

is reasonably large, the percent power loss for small samples is substantially larger than 
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Figure 3.1: Percent power loss for different values of c\ and sample sizes 
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for large samples. 

From (3.3) and (3.4), it is clear that for any positive values of A i , once C\ is beyond 

about 2, 7f2 is close to 0. Similarly, as the cutoff point gets large no matter where the 

standardized difference lies, both ~K\ and 7r2 approach 0. In either case, the use of normal 

approximation is no longer valid; it is used here only for illustration purposes. 
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Criterion 2: Asymptotic Relative Efficiency 

As Percent Power Loss, for a fixed sample size, depends upon both where the continuous 

outcome variable is dichotomized and where the alternative lies, it does not provide a 

general comparison between the dichotomized test and the Z-test when the alternative 

hypothesis is composite as in our case. One criterion often used for comparing two test 

statistics which overcomes this disadvantage is the asymptotic relative efficiency (ARE) , 

also often called the Pitman efficiency. Suppose we want to compare two tests, A and B , 

having the same level. An obvious comparison would be of the sample sizes required to 

achieve the same power at a specified alternative. The idea of the A R E of test A relative 

to test B is to examine the limiting behaviour of the ratio n j / n s of these required sample 

sizes, as the specified alternative approaches the null hypothesis. 

We first provide the theoretical basis for calculating the A R E . Suppose that we have 

two test statistics, Tn and T*, for samples of size n and the parameter of interest is v. Both 

tests are used to test H0 : v G Qo versus Ha : v £ Q — Cl0. Further, suppose that a subset 

of the space fi can be indexed in terms of a sequence of parameters {vo, V\, • • •, z/„, • • • } 

such that v0 specifies a value in f) 0 and the remaining v\, v2, • • • are in 0 — J l 0

 a n d that 

l im n _oo vn = v0- Under these conditions, we can give a formal definition of the A R E of 

T relative to T* (Gibbons, 1971): 

Definition 3.1 Let Tn and T* be two sequences of test statistics, all with the same 

significance level a. Let {n^} and {n*} be two monotonic increasing sequences of positive 

integers such that 

where 7 is not equal to 0 or 1. Then the asymptotic relative efficiency of test T relative 

lim Power(Tni \ v = i/,-) = lim Power(T*. v = Vi) - 7 
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to test T* is 
n* 

ARE(T, T*) = lim 
i-*oo m 

provided this limit exists and is constant for all sequences o/{n,} and {n*}. 

To calculate the A R E directly from its definition is complicated. The calculation 

of the A R E can be simplified if the following regularity assumptions are satisfied by 

the sequences of test statistics Tn, and analogously for T* (E(Tn) and cr(Tn) denote the 

expectation and standard deviation of the test statistic Tn): 

1. dE{Tn)Idv exists and is nonzero for v = Uo, and is continuous at UQ. 

2. There exists a positive constant c such that 

dE{Tn) I dv\u=U0 hm —._ /_ .. = c. 
^/no-(Tn)\„=U0 

3. There exists a sequence of alternatives {vn} such that for some constant d > 0, we 

have 
d 
*n 

dE(Tn)/dvl=I/n 

dE{Tn)ldv\v= 

cr(Tn) \v=Un 

lim )Z{ " = 1. - o o a(Tn) \ v = v q 

lim P 
Tn - E(Tn) \ v = V n 

<. z V = I / n ] = $(z) 
cr(Tn) \„=un 

Theorem 3.1 Under these four regularity conditions, the limiting power of the test Tn is 

lim Power{Tn \ v = vn) = 1 — — dc) 



Chapter 3. Disjunctive Composite Outcome Measures 68 

Theorem 3.2 IfTn and T* are two tests satisfying these four regularity conditions, the 

ARE of T relative to T* is 

ARE(T,T*) = lim 4^4, 

where e(T n) is called the efficacy of the test statistic Tn when used to test the hypothesis 

v = u0 and 
[dE{Tn)ldv]2 

<r2{Tn) 

Theorem 3.3 The statement in Theorem 3.2 remains valid as stated if both tests are 

two-sided, with rejection region 

Tn G R for tn > tnA_ai or tn < tn^_a2 

where the size is still a, and a corresponding rejection region is defined for T* with the 

same ct\ and a2. Then the alternative is also two-sided, as Ha : v ^ v§. 

We now use the above theorems to calculate the A R E of the dichotomized test for 

comparing two population proportions relative to the Z-test for comparing two population 

means with known variance. Suppose we have the distribution model 

F1(x) = F2(x-v) 

and the null hypothesis is H0 : v = 0. With samples of size n, the corresponding Z-

statistic for populations with a common known variance o\ is 
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Since 

E{T*n) = y | n v 

and 

Var(T:) | „ = 0 = 1, 

the efficacy of this Z-test for any population within the location shift family is 

n 
e< r"> = M ' 

For the dichotomized test, the test statistic is 

(3.5) 

T = Pi - vi 

y/2p(l-p)/n 

w here p — P l * p z . It can also be written as 

T = (Pi ~ P2) 7r(l — 7r) 

\l ?(i - p) 

To evaluate the efficacy of this test statistic, first note that as n 

in probability. Therefore, Tn is asymptotically equivalent to 

(pi - P2) 

and it suffices to calculate the expectation and variance of Tn. But 

00, P(I-P) 
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and the null variance (TTX — 7r 2 = 0 under H0) is 

V f l P / T ' \ I n2ir2(l - 7 r 2 ) / n 

Thus, to evaluate the efficacy of T n , it remains to evaluate 

d_ 
dv 

E{T'n) H0 = 
7Ti — 7T2 

H0 

2 d " \y/w(l -W)t 

We will first evaluate (keep in mind that under the null hypothesis, v = 0, and 

7!"! = 7r 2 = 7f): 

^ ( 1 - 7T2) - fa - 7 T 2 ) £ [0r( l - W) 

dv 
TTl - 7T2 

I Ho = 
7r(l — 7r) 

7f(l — 7f) 
Ho 

(7T1 - 7 T 2 ) | f f o 

( f l f o +1/) - f l M J U 

^ ( 1 - T T j ) 

+ v) \h0 

Mm) 

Mm) 
y/F1(th)[l-F1(rn)] 

Thus, 

Mm) 

and the efficacy of T'n therefore is 

n 
2 f i f l i ) [ l - % ) ] 

Ho 

(3.6) 
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Result 3.1 From (3.5) and (3.6), the ARE of the dichotomized test relative to the Z-test 

for location shift family F\ with known variance o~\ is 

e(Tn) ARE(T, T*) = lim 

= lim 
<T'n) 

= lim H [ / l ( 7 / l ) ] 2 

n-foo 2 7Ti(l — 7Ti) TI 

( g i / i f o ) y 

\F1(m)[l-F1(t,1)]) • 

Applying this result to normal and logistic populations leads to: 

Result 3.2 

1. If Fi is taken to be normal, 

ARE(T, T*)- 1 J 

2 7 r [ l - $ ( C l ) ] $ ( C l ) ' 

2. If F\ is taken to be logistic, where 

1 
Fl(x | / / l l , < 7 i ) = 

ARE(T, T*) 

1 -)- e-^(x-mi)/(oiV3)' 

^2 e - 7 r c i / \ / 3 

3 [1 + e-^i/v^]2" 

Note that the A R E does not depend upon the standardized difference; it is a function 

only of the cutoff point, c\. Figure 3.2 plots the A R E of the dichotomized test relative to 

the Z-test for normal and logistic populations as a function of the cutoff point c\. The 

A R E is symmetric about the cutoff point of 0 and decreases as the cutoff point moves 

away from 0; in particular, for both the normal and logistic populations, the A R E is 

maximized at the cutoff point of 0. As the cutoff point moves away from 0, the A R E 
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Figure 3.2: A R E of the dichotomous test relative to the Z-test 
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decreases more rapidly for logistic populations than for normal populations. The A R E 

has a maximum of 2/TT = 0.64 for normal populations while it has a maximum of 7r 2/12 = 

0.82 for logistic populations. For both distributions, the A R E is about 0.5 when the cutoff 

point is close to 1 or —1; the A R E is only about 0.3 when c\ is at 1.5 and the A R E is 

very small once C\ moves above 2 or below —2. 

Compared to the percent power loss, the A R E generalizes the comparison of the 

dichotomous test and the Z-test in the sense that it does not depend on the significance 

level and the standardized difference. However, the disadvantage of the A R E is that 
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because it is an asymptotic concept, it may not accurately reflect the relative sample 

sizes required to achieve the same power when the samples are finite and/or Ha is not 

approaching HQ. Nevertheless, the message from both criteria we have examined is clear: 

dichotomizing at the placebo mean is the best choice among the various values of c\ we 

have examined for the dichotomous test on one outcome variable. With this choice, if 

the underlying distributions are normal, the percent power loss is ensured to be no more 

than about 30% and the A R E is about 60%. 

3.2 Properties of Disjunctive Composite Outcome Measures 

After some basic understanding of the statistical properties of dichotomized tests based 

on one outcome variable, we now turn to the examination of the disjunctive composite 

outcome measure. In this section, we will work under the assumption, as in the previous 

chapter, that the underlying data follows a multivariate normal distribution; that is to 

say, Xik are independently distributed and each follows a multivariate normal distribution 

with mean vector p,i and known common variance-covariance matrix S. It is difficult 

to provide a thorough investigation of the properties of this composite measure because 

there are many possibilities that could be considered. The objective here, as in Chapter 

2, is to examine a few cases to highlight the main aspects of its statistical properties. 

3.2.1 Power and Sample Size Calculations 

We first give a formal definition of this composite measure and provide the formulae for 

its power and the required sample size. Let rjj represent the pre-assigned cutoff point for 

the j t h outcome measure. A patient has a significant clinical change on the jth outcome 

if his or her response on the j t h outcome is greater than rjj. Again, we will express rjj 

as the sum of the underlying mean on the jth outcome of the placebo arm, / i i j , and the 
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standardized distance between pij and rjj, rjj = p\j + CjOj. An indication of significant 

clinical change in any of these m outcome measures is taken to indicate a treatment 

failure. In other words, the information obtained from the individual outcome variables 

is summarized by a binary response, treatment failure or treatment success. 

If 7T; denotes the probability that a patient on the z'th treatment arm has a treatment 

failure, then 7TS- can be expressed as: 

7Tt- = P(a patient on the ith treatment arm has a treatment failure) 

= P(a patient on the ith treatment arm has a significant change 

on any of the m outcomes) 

where fv. denotes the pdf of Xik, the pdf of the multivariate normal distribution with 

mean vector //; and variance-covariance matrix S. 

We can simplify the expression for 7T; with the standardization of X^ by: 

Marginally, Zj follows the standard normal distribution. With Z = Z2, • • •, Zm)', 

the joint distribution of Z is the multivariate normal distribution with 0 mean vector 

and correlation matrix Mp. Now, 7T; can be repressed as: 

' rrt 

fz(z)dz1 ---dz, 
—oo —oo 

where /^(z) denotes the pdf of Z. Thus, 
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/

Cm fCi 
••• fz(z)dz1 • • • dzm, (3.7) 

-oo J—oo 

/

c m +A m /-Ci+Ai 
•••/ fz{z)dzx---dzm. (3.8) 

-oo J—oo 

For the special case of uncorrelated outcome measures, the expressions for %\ and 7T2 

simplify to: 
m m 

= i - n p(Zj < = i - n *(^) (3.9) 
j = i j = i 

m m 
t 2 = i - n ^ c i + a . ) = 1 - n ^ + A i ) (3.io) 

j = i j = i 

Now with all the information from the individual outcome measures being combined 

and summarized by this disjunctive outcome measure, comparison between the two arms 

reduces to a comparison of the two population proportions, TTI and 7r 2 . From Appendix 

D, the approximate formulae for the power and the required sample size for the test 

comparing two population proportions are: 

Power^-^g « 1 - ® yzi-a/2-

+ $ ( - Z i _ a / 2 . 

25r(l - TT) y/n~6 

\ | 2T(1 - TT) - 6>/2 yj2T(l-T)-0y2/ 

27f(l-vf) y/n~9 

\ 2TT(1 - W) - 9*/2 j2T(l-T)-6y2/ 

(Zl_a/2yj2W(l - W) - ^^/27f(l - W) - \02)' 

0 2 

where ¥ - * i ± 2 a . 

In order to connect the power and sample size calculations for the disjunctive outcome 

measure to those for the procedures discussed in Chapter 2, the calculations must be made 

for equivalent hypotheses. Testing the equivalence of the mean vectors, Hi and fj,2, is 
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the same as testing the equivalence of the population proportions, iri and 7r2. As shown 

by (3.7) and (3.8), the difference between the population proportions depends upon the 

cutoff values, Cj, and the standardized differences, A j , between the population means 

of the two arms. Therefore, for every specified set of C j ' s , the difference to be detected 

between 7Ti and 7r 2 is determined by the standardized differences between the underlying 

means. In other words, for every alternative hypothesis considered in Chapter 2, the 

corresponding alternative hypothesis for the population proportions, TT\ and 7T2, can be 

determined. Therefore, we will consider the same configurations of the standardized 

differences in the underlying means, namely, Case A where only one outcome measure is 

effective, Case B where outcome measures are of diminishing effectiveness, and Case C 

where the individual outcome measures are all equally effective. Due to the complicated 

nature of this disjunctive outcome measure, our power and sample size calculations are 

mainly for the special case of equal cutoff points for all outcome measures; that is, for 

the special case where c\ = c 2 = • • • = cm — c* say. 

3.2.2 Optimal Common Cutoff Point for Equally Correlated Outcomes 

The suggestion from the previous section that for a single outcome measure, di­

chotomizing at the placebo mean, c\ — 0, is most powerful among the various values of 

c\ we have investigated, motivates us to examine the value of the common cutoff point, 

c*, which maximizes the power of the disjunctive outcome measure. An analytic exam­

ination is difficult but using C and S-Plus, it is straightforward to numerically evaluate 

the optimal cutoff point under the constraint of equal cutoff points for each of Cases A , 

B, and C. 

We examine the special case of equally correlated outcomes with common correlation 

of p — 0.0, 0.3 and 0.5. For each scenario, the power is evaluated at values of the 

common cutoff point lying within a reasonable range and the value at which the power is 
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Table 3.14: Optimal common cutoff point (expressed as a multiple of A*) for the disjunc­
tive composite outcome measure with n — 100 for equally correlated outcome measures 

m = total number of outcome measures 
Case P 1 2 3 4 5 10 20 

A 0.0 0 0.669 1.316 1.752 2.077 3.016 3.658 
0.3 0 0.567 1.193 1.564 1.863 2.721 3.481 
0.5 0 0.443 0.968 1.319 1.582 2.326 2.978 

B 0.0 0 0.718 1.372 1.812 2.140 3.086 3.936 
0.3 0 0.630 1.239 1.648 1.951 2.820 3.588 
0.5 0 0.514 1.054 1.414 1.749 2.434 3.049 

C 0.0 0 0.631 1.238 1.647 1.953 2.844 3.862 
0.3 0 0.540 1.096 1.467 1.743 2.536 3.241 
0.5 0 0.422 0.907 1.245 1.640 2.139 2.735 

maximized is identified as the optimal. Table 3.14 presents the results for the case of 100 

patients per arm with the same choice of A* as used in Chapter 2. The optimal common 

cutoff point, c* t , is presented as a multiple of A* , identified to a precision of 0.001. The 

optimal common cutoff point increases with a decreasing rate as the number of outcome 

measures increases. For example, when m = 2, c*opt lies in the range of 0.4 to about 0.7; 

on the other hand, when m = 10, c*opt is in the range of 2 to 3. This observation can be 

explain by the following reasoning: The power of this procedure is maximized when 7Ti 

and 7r 2 are widely separated. When the total number of outcomes is large, -K\ and 7r 2 will 

be well separated only if the probabilities that a patient has a significant clinical change 

on the individual outcome measures are already widely separated across the two arms. 

Regardless of the standardized differences of the underlying means, a larger value of the 

cutoff point widens the separation on the individual outcome measures. 

Table 3.14 shows that for any configuration of the m standardized differences consid­

ered, the optimal common cutoff point decreases as the positive correlation among the 



Chapter 3. Disjunctive Composite Outcome Measures 78 

multiple outcome measures increases. The optimal common cutoff point for Case A lies 

between that for Case B (largest) and for Case C (smallest). However, the differences 

are small, ranging from 0.1 to 0.3 multiples of A * (i.e. ranging from 0.04 to 0.12). Thus, 

the configurations of the standardized differences of the underlying means considered do 

not have a great impact on the value of the optimal common cutoff point. 

Additional numerical results (not presented) suggest that the common optimal cutoff 

point for equally correlated outcomes does not depend on n. However, without analytic 

verification, we will consider the results in Table 3.14 to be applicable only to the case 

of n = 100. 

3.2.3 Properties for Equally Correlated Outcome Measures 

The statistical properties of this approach will be explored for equally correlated out­

comes. We will again consider Cases A , B , and C where different configurations of the 

standardized differences between the underlying means are examined. In addition, there 

is one more feature to be specified: the cutoff points, Cj. Dichotomizing at the placebo 

means on all m outcomes (ci = c 2 = • • • = cm = c* = 0) seems a natural choice for 

several reasons. First, the mean of the responses of the patients on the placebo arm is 

then used as a guideline of a significant clinical change. Moreover, dichotomizing at the 

placebo mean helps to ensure a reasonable proportion (away from 0 and 1) of patients 

with significant clinical change on the placebo arm; if the histograms of responses on the 

placebo arm are roughly symmetric, then about 50% of the placebo patients will exhibit 

a significant clinical change on each of the individual outcome measures. 

Table 3.15 provides the sample size required to achieve a power of 0.80 as well as 

the corresponding 7Ti and 7r 2 when the common correlation p = 0, 0.3, 0.5. Before our 

discussion, it is worth emphasizing again that our calculations of the required sample size 

use the normal approximation and hence their accuracy relies on the appropriateness of 
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Table 3.15: Sample size required to achieve power of 0.80 for the disjunctive composite 
outcome with equally correlated outcome variables when all the cutoff points are at the 
placebo mean (i.e. Cj = 0 for j = 1, 2, . . . , m). Second lines contain (xi, 7̂ ). 

m = total number of outcome measures 
Case p 1 2 3 4 5 10 20 

A 0.0 160 542 1300 2830 5890 195,000 200,000,000 
(.50, .35) (.75, .67) (.88, .84) (.94, .92) (.968, .959) (.9990, .9987) (1.0000, 1.0000) 

0.3 160 651 1630 3300 5930 44,400 434,000 
(.50, .35) (.70, .63) (.80, .76) (.86, .83) (.90, .88) (.964, .960) (.9893, .9887) 

0.5 160 742 1910 3840 6700 40,600 267,000 
(.50, .35) (.67, .60) (.75, .71) (.80, .77) (.83, .81) (.909, .903) (.9524, .9507) 

B 0.0 160 204 308 495 828 14,900 8,980,000 
(.50, .35) (.75, .62) (.86, .79) (.94, .89) (.97, .94) (.9990, .9977) (1.0000, 1.0000) 

0.3 160 233 358 534 770 3190 19,000 
(.50, .35) (.70, .58) (.80, .71) (.86, .80) (.90, .85) (.964, .949) (.989, .986) 

0.5 160 252 391 571 795 2600 10,300 
(.50, .35) (.67, .55) (.75, .66) (.80, .73) (.83, .78) (.91, .89) (.952, .944) 

C 0.0 160 110 105 115 139 668 38800 
(.50, .35) (.75, .57) (.86, .72) (.94, .82) (.97, .88) (.999, .986) (1.0000, .9998) 

0.3 160 125 121 125 133 196 365 
(.50, .35) (.70, .53) (.80, .64) (.86, .72) (.90, .77) (.96, .89) (.99, .95) 

0.5 160 134 131 133 137 164 216 
(.50, .35) (.67, .50) (.75, .59) (.80, .65) (.83, .69) (.91, .80) (.95, .88) 



Chapter 3. Disjunctive Composite Outcome Measures 80 

the normal approximation in each case. There are a few examples in the table where ni 

and 7T2 approach 1 and the approximation may not be accurate; the inclusion of these 

examples is for illustration purposes only. 

We first examine the special case of uncorrelated outcome measures. In Case A where 

only the first outcome is effective in comparing the two arms, the inclusion of even one 

ineffective outcome has a dramatic deleterious effect on this method. The separation 

between 7Ti and 7T2 decreases very quickly as additional ineffective outcomes are included 

because both approach 1 very quickly; for example, with m = 4, the difference between 

7Ti and 7T2 is only about 0.02. Hence, for large m, the sample size required is huge as 

the difference between 7Ti and 7r2 is vanishingly small. In Case B where the outcomes 

have diminishing effectiveness in comparing the two arms, the effect of including one 

additional outcome is detrimental as well but much less dramatic than in Case A . The 

required sample size increases rather gradually as the number of outcomes increases. In 

Case C where all outcomes are equally effective, Table 3.15 shows that there is a value 

of the number of outcome measures below which the inclusion of an additional outcome 

is beneficial but above which such inclusion is detrimental. The results in Table 3.15 

indicate that when the number of outcomes included is not larger than 3, the inclusion of 

an additional outcome is beneficial. On the contrary, such inclusion is detrimental when 

the number of outcomes included is larger than 3. Once m is 10 or more, the probability 

that a patient has a significant clinical change on any of the outcomes is close to 1 for 

both treatment arms. Thus, the difference to be detected between 7Ti and 7T2 is very 

small. The detrimental effect is then substantial but still much less dramatic than in 

Cases A and B. 

We now turn to the examination of positively correlated outcomes. The effect of 

positive correlation among the multiple outcomes on the disjunctive measure is quite 

interesting. The results in Table 3.15 show that in Cases B and C, the effect of positive 
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correlation on this procedure depends upon the number of outcomes included. For ex­

ample, with m = 5, for both Cases B and C, there is a value of p below which positive 

correlation has a positive impact but above which the effect is detrimental. In addi­

tion, in both Cases B and C with less than 5 outcomes, within the range of values of 

p considered, the effect of positive correlation is deleterious as the required sample size 

increases. On the other hand, with more than 5 outcomes, the required sample size 

decreases substantially as p increases. In Case A , there is a value of m below which the 

effect of positive correlation is negative but above which the effect is beneficial. For all of 

Cases A , B , and C, when the number of outcomes is large, say greater than 10, the effect 

of positive correlation is beneficial. For example, with m = 10, when p changes from 0 

to 0.3, the impact is substantial: for all three cases, the required sample size decreases 

about 70% to 80%. However, as p changes from 0.3 to 0.5, the beneficial impact is only 

mild: there is only about 10% to 20% additional decrease in the required sample size. 

So far, we have considered two choices for the common cutoff points, c* = c*pi and 

c* = 0. We now examine the improvement of the performance of this procedure made by 

dichotomizing each outcome measure at the optimal common cutoff point instead of at 

the placebo means. We will abbreviate the disjunctive outcome measure with Cj = c*opt 

as DCM* and with C j = 0 as DCM0. 

Table 3.16 presents the power achieved by DCM* and DCM0 with equally corre­

lated outcomes for n = 100. In Case A where only one outcome measure is effective 

in comparing the two arms, the improvement in power made by c*pt is very limited for 

all three values of p. In Case C, the difference in power is only mild for m = 2, but 

as the number of outcome measures increases, the difference in power becomes more 

and more apparent. In addition, when m is fixed, the improvement in power made by 

DCM* diminishes as the common correlation increases. We also notice that for Case C, 

the impact of including an additional outcome measure on DCM* and DCM0 differs. 
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Table 3.16: Power achieved by the disjunctive composite outcome measure with n = 100 
for equally correlated outcome measures 

m = total number of outcome measures 
Case P ci 1 2 3 4 5 10 20 

A 0.0 0 
c* 
^opt 

0.60 
0.60 

0.224 
0.232 

0.121 
0.140 

0.082 
0.104 

0.065 
0.087 

0.051 
0.061 

0.050 
0.053 

0.3 0 
r* 
^opt 

0.60 
0.60 

0.194 
0.198 

0.106 
0.114 

0.077 
0.085 

0.065 
0.072 

0.052 
0.055 

0.050 
0.051 

0.5 0 
^opt 

0.60 
0.60 

0.176 
0.178 

0.098 
0.102 

0.074 
0.077 

0.063 
0.067 

0.052 
0.054 

0.053 
0.051 

B 0.0 0 
c* 

0.60 
0.60 

0.498 
0.518 

0.356 
0.434 

0.241 
0.370 

0.163 
0.320 

0.056 
0.193 

0.050 
0.116 

0.3 0 
r* 
'-opt 

0.60 
0.60 

0.448 
0.459 

0.314 
0.353 

0.226 
0.282 

0.172 
0.234 

0.078 
0.130 

0.055 
0.081 

0.5 0 
uopt 

0.60 
0.60 

0.420 
0.426 

0.292 
0.314 

0.215 
0.245 

0.168 
0.201 

0.085 
0.111 

0.059 
0.073 

C 0.0 0 
r* 
uopt 

0.60 
0.60 

0.761 
0.776 

0.782 
0.857 

0.741 
0.902 

0.660 
0.929 

0.191 
0.978 

0.052 
0.995 

0.3 0 
^opt 

0.60 
0.60 

0.706 
0.716 

0.720 
0.767 

0.705 
0.797 

0.678 
0.816 

0.517 
0.863 

0.309 
0.893 

0.5 0 
c* 

0.60 
0.60 

0.675 
0.681 

0.686 
0.714 

0.679 
0.734 

0.666 
0.750 

0.589 
0.777 

0.477 
0.798 
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For DCM0, there is a value of m below which the inclusion of an additional outcome is 

beneficial but above which such inclusion is detrimental. On the contrary, for DCM*, 

the power increases as the number of outcome measures included increases. Case B is 

more complicated. When m is 5 or less, for a fixed value of the common correlation, 

the differences in power increase as m increases. On the other hand, when m increases 

from 10 to 20, the difference in power decreases. Also for Case B , for a fixed number 

of outcomes, positive correlation has a negative impact on the improvement made by 

DCM*. For both Cases B and C, DCM* and DCM0 are comparable only when the 

number of outcomes is 2 or less. 

The results in Table 3.16 indicate the substantial improvement DCM* can achieve 

over DCM0 for Cases B and C. Nevertheless, use of DCM* does not seem practical for 

at least two reasons. First, the numerically optimal common cutoff points might not 

be clinically meaningful. When the cutoff points used are not clinically meaningful, the 

interpretation of the results can be difficult. Second, the determination of these optimal 

cutoff points depends heavily on knowledge of the configuration of the standardized 

differences between the underlying means and the pattern of correlations. As high quality 

information on the properties of some of the outcome measures in current use in MS is 

scarce, the determination of the optimal cutoff points seems very difficult as well. 

3.3 Comparisons to O'Brien's GLS Statistic 

Now we want to bring the methods based on the disjunctive composite measure and 

O'Brien's GLS statistic together for comparison. We select O'Brien's GLS for comparison 

for two reasons. First, it is also a composite measure although the information from the 

individual outcome measures is combined in a very different way. Second, among all 

the procedures discussed in Chapter 2, it appears generally to be the most sensitive 
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Table 3.17: Power of PCM* relative to GLS with 100 patients per arm 
m = total number of outcome measures 

Case P 1 2 3 4 5 10 20 
A 0.0 0.75 0.45 0.38 0.36 0.36 0.43 0.53 

0.3 0.75 0.48 0.46 0.50 0.56 0.79 0.85 
0.5 0.75 0.48 0.48 0.55 0.61 0.77 1.02 

B 0.0 0.75 0.62 0.52 0.45 0.39 0.26 0.19 
0.3 0.75 0.62 0.54 0.50 0.48 0.48 0.58 
0.5 0.75 0.63 0.57 0.54 0.53 0.56 0.66 

C 0.0 0.75 0.79 0.86 0.90 0.93 0.98 1.00 
0.3 0.75 0.76 0.79 0.81 0.83 0.87 0.89 
0.5 0.75 0.76 0.77 0.78 0.79 0.80 0.82 

procedure in assessing the relative efficacy of the two arms. The large sample sizes 

required by the method based on the disjunctive outcome measure when each outcome 

measure is dichotomized at its placebo mean indicate that this method is not competitive 

with the methods discussed in Chapter 2. Therefore, the comparison we make here is 

between the power achieved with 100 patients per arm by O'Brien's GLS and DCM*. 

(Note that as we only examine the case of equally correlated outcome measures, GLS 

and OLS are equivalent.) 

The results in Tables 2.1 and 3.16 yield the ratio of the power of DCM* to that 

of GLS presented in Table 3.17. For a single outcome measure, DCM* loses 25% of 

the power achieved by GLS. We first consider the special case of uncorrelated outcome 

measures. In Case A where only the first outcome is effective in comparing the two arms, 

the results in Table 3.17 show that there is a value of m below which the inclusion of 

an additional ineffective outcome results in an decreased ratio but above which the ratio 

increases with the number of ineffective outcomes included. There is a dramatic decreases 
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of the ratio for m = 1 to m = 2, but for other values of m, the change in the ratio is 

modest. In Case A , with two or more uncorrelated outcomes, DCM* loses about 50% of 

the power achieved by GLS. For Case B with uncorrelated outcome measures, the ratio of 

the power of DCM* to that of GLS gradually decreases as m increases. In Case C where 

the outcomes are all equally effective, GLS is a very powerful procedure; although DCM* 

is also quite powerful, it is not comparable for small numbers of outcomes. However, the 

advantage of GLS over DCM* decreases as m increases. 

For Case A , positive common correlation among the multiple outcomes has a positive 

impact on the ratio of the powers: for a fixed value of m, the ratio increases as p 

increases. With more than 10 modestly correlated outcomes, DCM* is competitive with 

GLS although both perform very poorly. Similarly for Case B , for a fixed value of m, the 

larger the common correlation, the more competitive DCM* is with GLS; however, the 

advantage of GLS is still substantial. In Case C, while positive correlation has a negative 

impact on the procedure based on GLS, this negative impact is even more substantial on 

DCM*. Consequently, the ratio of the power of DCM* to that of GLS decreases as p 

increases. 

No comparison of the disjunctive outcome measure to GLS are made for other patterns 

of the correlations among the different outcome measures since the message is already 

very clear: The disjunctive composite outcome measure with common cutoff points is 

substantially less powerful than GLS. 

3.4 Unequal Cutoff Points for Uncorrelated Outcomes 

The modest performance of the disjunctive composite outcome measure with common 

cutoff points described in the previous sections prompts us to briefly consider the extent 

of improvement over DCM0 that is possible with unequal cutoff points. We consider 
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Table 3.18: For Case A with three uncorrelated outcomes: Power achieved by DCM 
with 100 patients per arm (CJ is expressed as a multiple of A*) 

C l C2 c 3 
power 

0 0 0 .12 (.88, .84) 
0 1 1 .19 (.79, .72) 
0 1 2 .23 (.74, .66) 
0 2 2 .29 (.69, .60) 
0 4 4 .49 (.55, .42) 
0 6 6 .58 (.51, .36) 
1 0 0 .09 (.84, .80) 
2 0 0 .07 (.80, .78) 

only the case of three uncorrelated outcome measures. 

Table 3.18 presents a few choices of cutoff points and the resulting power achieved 

with 100 patients per arm for Case A . The values of TT\ and 7 r 2 are also provided. The 

results suggest that dichotomizing the ineffective outcome measures at values larger than 

the placebo mean results in more powerful performance. For instance, the power gained 

by dichotomizing the three outcome measures at (ci, c 2, C 3 ) = (0, 4A*, 4A*) instead of 

at the placebo means (that is, (ci, c 2, c 3) = (0, 0, 0) ) is quite substantial. This can 

be explained by the following reasoning: As the cutoff point increases, the contribution 

of the ineffective outcomes to the overall composite outcome decreases. This enables 

DCM to make better use of the information provided by the first outcome. Consider 

the choice of cutoff points (0, 6A*, 6A*) as an example. When the ineffective outcomes 

are dichotomized at 6A*, the probability that a patient has a significant clinical change 

on either of these outcomes is negligible for both treatment arms. Consequently, the 

probability of treatment failure is mainly determined by the first outcome. In this case, 

the resulting 7Ti and 7 r 2 , (.51, .36), are close to the values realized with only the single 

effective outcome (.50, .35). On the contrary, the choices (1A*, 0, 0) and (2A*, 0, 0) result 
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Table 3.19: For Case B with three uncorrelated outcomes: Power achieved by DCM with 
100 patients per arm (CJ is expressed as a multiple of A*) 

Cl c 2 c 3 
power (^1,^2) 

0.0 0.0 0.0 .36 (.88, .79) 
0.0 0.5 1.0 .45 (.81, .70) 
0.0 2.0 4.0 .59 (.63, .47) 
0.0 3.0 4.5 .61 (.58, .42) 
1.0 0.5 0.0 .35 (.81, .72) 
2.0 1.0 0.0 .31 (.74, .65) 
1.0 0.0 0.0 .33 (.84, .75) 
4.0 0.0 0.0 .23 (.76, .69) 

in decreased power relative to DCM0 . For these two choices, the separation between 7Ti 

and 7T2 is small as the contribution of the first outcome to the overall composite outcome 

is modest. 

The results in Table 3.19 reveal that for Case B , dichotomizing the less effective 

outcomes at larger cutoff points results in increased power. The same reasoning as above 

can be applied to Case B . When the less effective outcome is dichotomized at a cutoff 

point larger than the placebo mean, its contribution to the overall composite measure is 

smaller. The gain in power can be substantial; see the choice of cutoff points (0, 3A*, 

4.5A*) for example. On the other hand, dichotomizing the more effective outcomes at 

cutoff points larger than the placebo mean and the least effective outcome at the placebo 

mean results in a decrease in power; the choice (4A*, 0, 0) is an example with a modest 

decrease in power. 

The results for Case C are presented in Table 3.20. In this case, with uncorrelated 

outcomes, it seems reasonable to consider equal cutoff points as all outcomes are equally 

effective in comparing the two arms. The choice (1.25A*, 1.25A*, 1.25A*) is close to 

the optimal common cutoff point, c*opt, for three uncorrelated outcomes with 100 patients 
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Table 3.20: For Case C with three uncorrelated outcomes: Power achieved by DCM 
with 100 patients per arm (CJ is expressed as a multiple of A*) 

C l c 2 c 3 power ( 7 T i , 7 r 2 ) 

0.00 0.00 0.00 
1.25 1.25 1.25 
1.25 1.25 1.50 
1.00 1.25 1.50 
1.25 2.00 4.00 

.78 (.88, .72) 

.857 (.72, .51) 

.8564 (.66, .44) 

.8560 (.67, .46) 

.79 (A9, .30) 

per arm. The results in Table 3.20 suggest that dichotomizing the outcome measures at 

unequal cutoff points results in decreased power. The degree of loss in power depends 

upon the extent of deviation from the optimal common cutoff point. Slight deviation 

from c*pt, such as the choices (1.25A*, 1.25A*, 1.5A*) and (1A*, 1.25A*, 1.5A*), result 

in very mild decreases in power. The choice (1.25A*, 2A*, 4A*) results in a modest 

decrease in power as its deviation from c*pt is larger. 

This brief discussion of the impact of unequal cutoff points for three uncorrelated 

outcome measures illustrates the potential improvement of DCM over DCM0 for each 

of Cases A , B and C. For Cases A and B , this can happen as dichotomizing the ineffective 

outcomes (for Case A) or the less effective outcomes (for Case B) at cutoff points larger 

than the placebo means enables DCM to make better use of the information provided 

by the effective or more effective outcomes. This improvement can be substantial, par­

ticularly for Case A. For Case C, the results suggest that DCM the use of unequal cutoff 

points does not result in improved performance, but the equal cutoff points for DCM 

should not be at the placebo means. 

But, most importantly from a practical point of view, the results also indicate that the 

choice of good cutoff points requires knowledge of the standardized differences between 
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the underlying population means. If the researcher believes that the standardized differ­

ences are similar as in Case C, then DCM with equal cutoff points should be considered. 

On the other hand, if the researcher believes that the standardized differences are similar 

to Case A or B , use of the best single outcome measure as the primary endpoint is indi­

cated. Of course, it is exactly the inability to identify the best single outcome measure 

a priori that leads to the consideration of methods based on multiple outcome measures. 

The necessary information on the characteristics of outcome measures for target patient 

populations is typically not available. Hence, the information required to allow the best 

possible cutoff points for DCM is typically not available either. 

3.5 Discussion 

In this chapter, a different type of composite outcome measure, the disjunctive composite 

outcome measure, has been discussed. The approach based on this composite outcome 

measure converts responses on the individual outcome measures into a single overall 

binary response indicating treatment failure or success which is employed as the single 

primary endpoint. The comparison between the dichotomized test and the Z-test on one 

outcome variable indicates that the percent power loss can be dramatic when the cutoff 

point is removed from the placebo mean, particularly for small samples. Also, the A R E 

of the dichotomized test relative to the Z-test is only about 64% for normal populations. 

For the method based on the disjunctive composite outcome, we considered mainly 

two possibilities: DCM0 corresponding to the choice of cutoff points C\ = • • • = cm = 0, 

and DCM* corresponding to the choice C\ = • • • = cm = c* t . The choice c\ = • • • = 

cm = 0 seems quite natural as the placebo means are used to identify significant clinical 

changes. DCM* was considered mainly for purposes of illustration as it does not seem 

to be practical. The results in Table 3.16 indicate the potential improvement associated 
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with the latter choice; the improvement in power can be substantial. However, when 

DCM* is compared to O'Brien's GLS statistic, the former is clearly quite inefficient. 

We also briefly considered the disjunctive composite outcome with unequal cutoff 

points. The tabulated powers for three uncorrelated outcome measures when n = 100 

indicate that for Case C, the choice of equal cutoff points suffices. The results for Cases 

A and B illustrate that substantial gains in power can be obtained by dichotomizing 

ineffective and less effective outcomes at cutoff points larger than the placebo means. 

However, if the researcher has knowledge that certain outcomes are ineffective or weakly 

effective, excluding these outcome measures would be a better strategy. As a result, the 

disjunctive composite outcome with unequal cutoff points does not seem very useful. 

This particular composite outcome measure combines the evidence from the individual 

binary responses disjunctively. Other ways of converting the binary responses on the 

original outcome measures into a single overall binary response could be considered. For 

example, a different composite outcome measure of "treatment failure" could be defined 

as worsening of a designated amount on all of the m outcome measures. We briefly 

examined its statistical properties for the case of uncorrelated outcome measures when 

the individual outcomes are dichotomized at the placebo means. For all of Cases A , B , 

and C, the impact of the number of outcome measures included on this new composite 

outcome measure is similar to that on DCM. The main difference is that whereas for 

DCM, 7!"! and 7r2 approach 1 very quickly, with this new outcome measure, TTI and 7r 2 

approach 0 very quickly. The resulting small separation between TTX and 7r 2 leads to poor 

performance of this procedure. 

Although the simplicity of this type of composite outcome measure is its big attrac­

tion, its simplicity can result in the loss of a substantial amount of information and 

therefore poor statistical performance. The main difficulty associated with this type 
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of composite outcome is that there seems to be no obvious rules for constructing reli­

able pre-assigned cutoff values for individual outcome measures and for the best way 

of combining the individual binary responses. Constructing a clinical meaningful and 

statistically powerful disjunctive outcome measure requires a lengthy process of empir­

ical assessment. This can be done only when high quality information on the outcome 

measures in current use in MS is available. 



Chapter 4 

Applications 

In this chapter, the five procedures we investigated in Chapters 2 and 3, namely, Bonfer­

roni adjustment, Hotelling's T 2 , O'Brien's OLS and GLS, and the disjunctive composite 

outcome measure, will be applied to two MS clinical trial data sets. Our earlier discussion 

of these procedures was quite general in the sense that various patterns of correlations 

among the outcome measures and three configurations of the standardized differences in 

the underlying means were considered. The objective here is to provide a more focused 

comparison among these procedures using specific outcome measures observed in MS 

patient populations. In particular, the sample correlations among the outcome measures 

will guide our choice of the pattern of MS patient population correlations. Further, we 

will consider configurations of the standardized differences in the underlying means sug­

gested by the treatment effects observed in these data set. As before, the comparisons 

among the procedures are based on power and sample size calculations. 

4.1 Task Force Data 

The first data set, which we will refer to as the Task Force data, was provided by the 

National Multiple Sclerosis Society's Task Force on Clinical Outcome Assessments in 

MS. This international Task Force was created to develop recommendations for optimal 

clinical assessment measures for use in future MS clinical trials. Its initial deliberations 

are reported in Rudick, Antel, Confavreux et al. (1996) and its recommendations are 

reported in Rudick, Antel, Confavreux et al. (1997). Data were provided for a total of 

92 
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Table 4.20: Baseline information by treatment group 

Dimension 

Placebo 
(N = 219) 

Treatment 
(N = 216) 

Dimension Mean SD Mean SD 
Arm 

Leg 

Cognitive 

0.14 1.01 

0.12 0.99 

-0.35 0.76 

0.18 0.99 

0.18 0.96 

-0.32 0.74 

429 patients: 216 in a placebo arm and 213 in a treatment arm. For the context of 

investigations being carried out by the Task Force, three major clinical dimensions have 

been identified for the outcomes which are available in this data set: Arm Function, Leg 

Function, and Cognitive Function. Each dimension is measured by a composite outcome 

measure. The data provided consist of the z-scores of the composite outcome measures 

corresponding to the individual clinical dimensions at Baseline, Year 1, and Year 2 for 

each patient. (The standardization employed to create the z-scores provided was based 

on all the baseline data in a larger data set available to the Task Force consisting data 

from several MS clinical trials.) For all three dimensions, the z-scores were constructed 

so that higher scores represent better functional performance. In other words, a negative 

difference in the mean change of the z-scores between the placebo arm and the treatment 

arm (placebo — treatment) corresponds to a beneficial effect of the treatment. 

4.1.1 Data Description 

Table 4.20 summarizes the baseline information on the two arms. In addition to the 

summary statistics, the boxplots for each dimension (not presented) indicate that the 

patients on the two arms are comparable. 

As we are interested in the change in the responses from the baseline to the end of 

the trial, we now turn to descriptive statistics for the changes from Baseline. As typically 
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Table 4.21: Summary of changes from Baseline to Year 2 by treatment group 

Dimension 

Placebo 
(N = 179) 

Treatment 
(N = 152) 

Dimension Mean SD Mean SD 
Arm 

Leg 

Cognitive 

-0.15 0.78 

-0.24 0.96 

0.26 0.75 

-0.10 0.63 

0.01 0.89 

0.33 0.62 

Figure 4.3: Boxplots for the changes from Baseline to Year 2 

ARM LEG 

pi Rx 
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often occurs in clinical trials, some patients did not provide data on one or more of the 

three dimensions at Year 2. For our purposes, we will focus on the changes from Baseline 

to Year 2 and regard those patients who did not provide complete data on all the three 

dimensions as dropouts. With this convention, approximately 24% of the patients are 

dropouts at Year 2, with a substantially higher percentage of dropouts occurring on the 

treatment arm. 

Table 4.21 summarizes the changes from Baseline to Year 2 by treatment group and 

Figure 4.3 presents the boxplots of these changes. The summaries in Table 4.21 reveal 

that the changes in the responses are rather small on all three clinical dimensions, with 

Leg Function being more effective in comparing the two arms than the other clinical 

dimensions. The boxplots show that the data on the individual dimensions are roughly 

symmetrically distributed for both arms. There are quite a few outliers for the individual 

dimensions on both arms. In addition, the variability of the changes from Baseline to 

Year 2 on both arms are comparable (although the SD's on the treatment arm are slightly 

smaller on all three dimensions). 

The correlation matrices of the changes from Baseline to Year 2 among the three 

dimensions, denoted as M p p i and M P R x , are: 

/ A r . _ / - i . \ 

Af, PPI 

M P R X = 

Arm Leg Cog. 

Arm 1.00 0.34 0.20 

Leg 0.34 1.00 0.28 

Cog. 0.20 0.28 1.00 

Arm Leg Cog. 

Arm 1.00 0.33 0.16 

Leg 0.33 1.00 0.21 

Cog. 0.16 0.21 1.00 
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The patterns of correlations for the two arms are similar: the three dimensions are only 

modestly correlated. 

4.1.2 Results 

Our objective is to investigate the appropriateness of the methods discussed in earlier 

chapters for a MS clinical trial involving therapies with similar characteristics; that is to 

say, a MS clinical trial using responses on these outcomes to assess the treatment efficacy 

based on similar patient populations. In addition, we hope to demonstrate the usefulness 

of the comparison among the methods in designing a clinical trial. 

We will use the information from this Task Force data as the basis of our investigation. 

As already illustrated, the relationship of the changes from Baseline to Year 2 among the 

three clinical dimensions and the variability of these changes on the individual dimensions 

are similar on the two arms, so the assumption of a common variance-covariance matrix 

seems to be a reasonable approximation. The sample variance-covariance matrix of the 

changes from Baseline to Year 2 for the placebo arm will be taken to be the common 

variance-covariance matrix of these changes in the populations. In other words, the 

variance-covariance matrices for these changes are assumed to be known and common 

for both populations. Thus, the standard deviations are taken to be: OArm = 0.78, oteg = 

0.96, and ocog. = 0.75. (Note that use of the larger standard deviations provided by the 

data on the placebo-treated patients would be expected to lead to conservative results.) 

The correlations among the three clinical dimensions are taken to be: 0.34 between Arm 

and Leg, 0.20 between Arm and Cognitive, and 0.28 between Leg and Cognitive. 

With this pattern of correlations, the average correlation is p = 0.27, and the weights 

GLS assigns to Arm, Leg and Cognitive are 0.34, 0.30, and 0.36 respectively. Relating 

to our work in Chapters 2 and 3, we make two remarks on this particular pattern of 
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correlations. First, this pattern of correlations can be considered similar to the case of 

having three equally correlated outcomes with the common correlation of 0.3 (although 

the degree of correlation is slightly weaker here). Presumably, provided that the stan­

dardized differences between the underlying means are relevant, the comparisons among 

the methods should be similar to our work in the previous chapters. Second, under this 

correlation structure, as the correlations among the dimensions are roughly equal, the 

performance of O'Brien's GLS and OLS should be very similar. This is also indicated by 

the roughly equal weights GLS assigns to the three dimensions. 

In addition, we will use the treatment effects observed to be indicative of the "true" 

treatment effects. The data suggest the standardized differences between the underlying 

population mean changes of: A ^ r m = —0.05, Af , e 3 = —0.27, and Ac0g. = —0.10. Note 

that for this particular data set, as higher scores correspond to better performance, a 

negative standardized difference between the mean changes (placebo — treatment) corre­

sponds to a beneficial treatment effect. Under these presumed population characteristics, 

Leg is the most effective outcome measure in comparing the two arms, Cognitive is only 

modestly effective, and Arm is quite ineffective. This seems similar to our Case B where 

the outcome measures are of diminishing effectiveness although the rate of diminishing 

is faster here. 

Before proceeding with the comparisons of the procedures, we emphasize that, the 

version of the disjunctive outcome measure used here is D C M 0 , where each dimension 

is dichotomized at the placebo mean (i.e. Cj = 0 for all j). 

Table 4.22 provides the power each of the five procedures achieves with 100 patients 

per arm. The sample sizes required to achieve a power of 0.80 are presented in Table 4.23. 

We first consider a rounded version (for simplicity) of the observed standardized differ­

ences; namely, A Arm = —-05, ALeg = —.30, and Acog. = —.10. Bonferroni adjustment 

and Hotelling's T2 are more powerful than the other procedures and are comparable; 



Chapter 4. Applications 98 

Table 4.22: Power of procedures with 100 patients per arm 
Configuration Proced ure 

Bon. OLS GLS DCM0 

-.05 -.30 -.10 .42 .41 .31 .29 .14 

.00 -.30 -.10 .41 .45 .26 .24 .12 

.00 -.30 .00 .40 .47 .17 .14 .08 

— - .30 -.10 .47 .46 .42 .42 .23 

— - .30 .56 .56 .56 .56 .39 

-.30 -.30 -.30 .70 .70 .84 .84 .48 

Table 4.23: Sample size required to achieve power of 0.80 
Configuration Proce dure 

&Leg Bon. T2 OLS GLS DCM0 

- .05 -.30 -.10 228 233 360 399 1030 

.00 -.30 -.10 228 212 455 514 1400 

.00 - .30 .00 232 203 809 1020 2960 

— - .30 -.10 206 213 251 251 526 

— - .30 — 174 174 174 174 277 

-.30 -.30 -.30 125 125 90 90 213 
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with 100 patients per arm, both achieve power of around .40. OLS and GLS have power 

of around .30 and OLS has a small advantage. With power of only .14, DCM0 is clearly 

inferior to the other procedures. Comparing the sample sizes required to achieve power 

of .80, Bonferroni adjustment and T 2 require only about | as many patients as OLS and 

GLS and only about - as many as DCM0. With this particular correlation structure, the 

advantage of OLS over GLS is expected because GLS assigns less weight (.30 versus .33) 

to the most effective outcome measure Leg. But the difference in these weights is small, 

so as long as the effectiveness of Leg in comparing the two arms is not overwhelming, the 

advantage of OLS over GLS will be modest. 

Now consider planning a clinical trial using these outcome measures to assess the 

treatment efficacy. Suppose that the researcher, who is willing to assume a common 

variance-covariance matrix for the populations, is convinced that the specified standard­

ized differences between the underlying population means and the specified correlation 

structure are the most relevant values. If all three outcome measure are to be employed, 

the above power and sample size calculations indicate that the procedure based on the 

Bonferroni adjustment will provide the most sensitive evaluation of the results of the 

trial. These calculations suggest that about 230 patients per arm are required to detect 

the specified standardized differences with a probability of 0.80. 

Following these basic calculations, the researcher may want to examine several further 

aspects. For example, because the above results are limited to the case of power of 0.80, 

the researcher may want to explore how the power relates to the sample size for each 

procedure. In addition, the researcher may be interested in how the relationship among 

the procedures changes with the sample size. This more detailed investigation helps the 

researcher to determine if one procedure is consistently most sensitive in the assessment 

of the treatment efficacy and hence truly is the one to be used in the design and analysis 

of the study. The power of the procedures based on Bonferroni adjustment, Hotelling's 
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the number of patients per arm 
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Figure 4.5: Power of procedures with 100 patients per arm when A 
A 6 o s e = (-.05, - .30, -.10) 

k • ABASE, where 

Bonferroni 
Hotelling's T2 
OLS 
GLS 
DCM0 

~1~ 

0.0 2.0 0.5 1.0 

k 

1.5 

T 2 , OLS and GLS as a function of the sample size per arm is presented in Figure 4.4. 

(Note that DCM0 is not considered because of its clear inferiority.) This plot shows 

that Bonferroni adjustment and Hotelling's T 2 are competitive; however, the former is 

slightly more powerful when there are more than about 50 patients per arm. OLS is 

consistently more powerful than GLS for the values of n considered. Figure 4.4 reveals 

that the relationship among the procedures is quite similar for different values of power; 

therefore, Bonferroni adjustment should be used in this situation. 

We next examine the performance of these procedures under a few other configurations 
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relevant to the specified one. We will denote the specified standardized differences ( A ^ r m , 

ALeg, Acog.) as Abase- Suppose the true treatment effects are a multiple of the specified 

treatment effects, i.e. A = k • Abase- (The configuration of Abase corresponds to the 

case k = 1.) With Abase = (—0.05, —0.30 —0.10), Figure 4.5 shows how the power with 

100 patients per arm changes as k ranges from 0 to 2. This figure shows that when the 

true treatment effects are less than one-half of the specified ones (k < 0.5), none of the 

procedures are sensitive in the assessment of the treatment efficacy. Due to the inclusion 

of two almost ineffective outcome measures and only one modestly effective outcome 

measure, all five procedures perform poorly. Figure 4.5 shows that for 0.5 < k < 2, the 

procedures based on Bonferroni adjustment and Hotelling's T2 are competitive and have 

a clear advantage over the other procedures. When the treatment effects are 50% larger 

than the specified treatment effects, i.e. k = 1.5 and A = (AArm, ALeg, Acog.) — (—-75, 

— .45, —.10), the procedures based on the Bonferroni adjustment and Hotelling's T2 have 

reasonable sensitivity with 100 patients per arm. 

As the data suggest that Arm is only modestly effective in comparing the two arms, 

we next consider the more extreme configuration where Arm is an ineffective outcome 

measure: A = (.00, —.30 , —.10). Comparing to the configuration Abase-, the power 

achieved by all procedures except Hotelling's T2 decreases slightly for this configuration. 

The inclusion of an ineffective outcome measure instead of a weakly effective outcome 

results in a slight improvement in the performance of the procedure based on Hotelling's 

T2. This illustrates the complicated nature of this procedure. For this configuration, with 

power of .45, Hotelling's T2 performs slightly better than Bonferroni adjustment (power 

of .41), moderately better than OLS and GLS (power around .25) and substantially 

better than DCM0 (power of .13). Both OLS and GLS require more than twice as many 

patients as T2. 

We next consider the even more extreme situation where Cognitive is also ineffective 
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(i.e. A = (.00, —.30, .00)) which is analogous to our Case A . Comparing to the previous 

configuration, again, all procedures except Hotelling's T2 are less powerful for this config­

uration. It is interesting to observe that T2 actually performs slightly better when both 

Arm and Cognitive are ineffective. The performance of Bonferroni adjustment is not 

much affected. For both GLS and OLS, the penalty for including an ineffective outcome 

measure instead of a mildly effective outcome is quite substantial. Taking A = (.00, 

— .30, .00) as Abase, Figure 4.6 shows how the power of the procedures with 100 patients 

per arm is affected by the magnitude of the effectiveness of the single effective outcome 

measure. This figure indicates the advantage of Hotelling's T2. Bonferroni adjustment 

is the only procedure which is competitive with T2. 

We then examine the impact of excluding less effective outcome measures. Based on 

the observed standardized differences, Arm is the least effective outcome. Suppose the 

dimension Arm is deleted; the configuration considered is: A = ( , —.30, —.10). The 

results in Tables 4.22 and 4.23 indicate that all procedures benefit from the exclusion 

of the least effective outcome. This exclusion has a great impact on the performance 

of DCM0: it now requires only half as many patients to achieve a power of 0.80. The 

impact of excluding the least effective outcome measure on OLS and GLS is moderate; 

this impact on Bonferroni adjustment and T2 is only mild. 

Suppose now only the most effective outcome is included: A = ( , —.30, ). For 

this configuration, only a single outcome measure is included so Bonferroni adjustment, 

T 2 , OLS, and GLS procedures are identical provided two-sided tests are carried out in 

each case. Comparing to the results for the configurations considered earlier, we note 

that for this pattern of correlations, the inclusion of the other nearly ineffective or weakly 

effective outcome measures has a detrimental effect on all of the procedures. This should 

deliver a clear message to the researcher that the choice of outcome measures to be used 

is crucial. 
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Finally, we consider a more optimistic configuration analogous to our Case C, where 

Arm and Cognitive are as effective as Leg: A = (—.30, —.30, —.30). GLS and OLS 

are expected to perform more powerfully as indicated by the results for three equally 

correlated outcome measures with common correlation of 0.30 in Chapter 2. Moreover, 

GLS should have a small advantage over OLS as it assigns slightly more weight Cognitive. 

Again, we consider different magnitudes of effectiveness, taking A = k-A{,ase, where Abase 

= ( — .30, —.30, —.30). As the difference in power between GLS and OLS is negligible, only 

the power of GLS is displayed on Figure 4.7. For this pattern of correlations, when the 

three outcomes are equally effective in comparing the two arms, GLS is most powerful. 

We also notice the substantial improvement in the performance of DCM0 due to the 

increased sensitivity on each dimension. Comparing the configuration A = (—.05, —.30, 

— .10) to the configuration A = (—.30, —.30, —.30), the results in Table 4.23 show that 

the latter requires only about 20% as many patients to achieve adequate sensitivity. 

Summary 

Suppose a researcher is planning a MS clinical trial with therapies having similar charac­

teristics as those investigated in the study which led to the Task Force data. Suppose also 

that s/he is willing to assume a common variance-covariance matrix for both populations 

and is convinced that the observed standardized differences and the sample correlation 

structure of the placebo arm are the most relevant values. Our power and sample size 

calculations indicate that if the researcher intends to use one of these procedures with all 

three outcome measures, the procedure based on Bonferroni adjustment is the best way 

to proceed. However, even when the researcher has a reasonably good knowledge of the 

correlation structure, s/he is still unlikely to know the configuration of the standardized 

differences. Consequently, it is still very difficult to conclude which procedure performs 
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better under the specified pattern of correlation structure. However, the results in Ta­

bles 4.22 and 4.23 and Figures 4.5 to 4.7 provide several clear messages for a clinical 

trial with three outcome measures and for the specific pattern of correlation structure 

considered where all three outcomes are modestly correlated. First, DCM0 with each 

dimension dichotomized at the placebo mean is not comparable to the other procedures. 

Second, when all dimensions are equally effective in comparing the two arms, O'Brien's 

GLS is most powerful no matter the magnitude of effectiveness. Third, when only a 

single outcome measure is effective, T2 is most powerful. Finally, when the situation 

is intermediate; for example, when all three dimensions are effective but with unequal 

effectiveness, Bonferroni adjustment and T2 are competitive and perform better than the 

other procedures. 

The results in Tables 4.22 and 4.23 also demonstrate the detrimental effect of including 

less effective outcome measures on the performance of all procedures under the specified 

correlation structure. The researcher who is planning such a clinical trial should definitely 

consider including only the most effective outcome provided s/he is convinced that the 

magnitude of observed standardized differences are most relevant. 

4.2 Oral Methotrexate Data 

The second MS clinical trial data set, which we will refer to as the Oral Methotrexate 

data, originated with the randomized, placebo-controlled, double-blind clinical trial of 

oral methotrexate in chronic progressive MS (Goodkin et al. 1989) and was provided by 

Dr. D. Goodkin. A total of 60 patients were involved in this study: 29 in the placebo 

arm and 31 in the treatment arm. The data consist of six outcome measures: EDSS, 

Ambulation Index (AMB) , the Box and Block Test on the left arm (LBB) , and the Box 

and Block Test on the right arm (RBB), the Nine Hole Peg Test on the left arm (L9HP), 
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the Nine Hole Peg Test on the right arm (R9HP). For this two-year study, responses were 

obtained monthly, but our data set contains these responses at only baseline, Year 1 and 

Year 2. The original analysis of the data for this clinical trial was based on the monthly 

data and employed a single primary endpoint, the proportion of patients experiencing 

treatment failure. This endpoint was a disjunctive composite outcome measure which 

will be described in Section 4.2.3. 

EDSS, an ordinal scale taking values from 0.0 to 10 in steps of 0.5, measures the degree 

of neurologic impairment on nine functions which are believed to be most relevant to MS. 

The Ambulation Index, a 10-step ordinal scale, is an assessment of the time required to 

walk 25 feet. Although both EDSS and A M B are ordinal variables, for the sake of 

simplicity, we will treat them as continuous variables in what follows. The response on 

the Box and Block Test, a timed test given separately for the left and right arms, is 

the total number of blocks a patient puts into a box within 60 seconds (a higher score 

represents better performance). The response on the Nine Hole Peg Test, another timed 

test given separately for the left and right arms, is the time (in seconds) a patient takes to 

put nine pegs into pre-specified holes (a lower score corresponds to better performance). 

For those patients who failed to complete this test, a score of 777 seconds was assigned 

to indicate the failure to complete the task and to differentiate these responses from the 

missing values for those who did not take the test. (We do not know exactly why 777 

was chosen. The largest score for patients completing the task was 342.8 seconds.) For 

the Nine Hole Peg Test and the Box and Block Test, instead of using the left hand and 

right hand scores separately, we will use the average scores. We create a new outcome 

measure, B B , which represents the average number of blocks a patient puts into a box 

within 60 seconds. Similarly, 9HP represents the average time (in minutes) a patient 

takes to put nine pegs into the pre-specified holes. Since 9HP is a timed measure, its 

reciprocal, I9HP = 1/9HP, represents the rate at which the task is completed. To be 
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Tab e 4.24: Baseline information by treatment group 

Response 

Placebo 
(N = 29) 

Treatment 
(N = 31) 

Response Mean SD Mean SD 
EDSS 5.27 1.45 5.48 1.26 

A M B 4.14 1.72 4.03 1.47 

N B B -46.63 8.12 -49.77 10.63 

NI9HP -1.67 0.58 -2.07 0.58 

consistent with EDSS and A M B for which lower scores represent better performance, B B 

and I9HP need to be transformed so that lower scores also represent better performance. 

We will use N B B = - B B , and NI9HP = - I 9 H P in what follows. Therefore, for the four 

outcome measures considered, EDSS, A M B , N B B , and NI9HP, a positive difference of the 

mean changes between the placebo arm and the treatment arm (placebo — treatment) 

indicates a beneficial treatment effect. 

4.2.1 Data Description 

Table 4.24 provides the baseline summary statistics for the two treatment groups. The 

patients on the two arms are quite comparable at baseline. 

We now examine some descriptive statistics for the changes from baseline. As for 

the previous application, we focus on the changes from Baseline to Year 2. Table 4.25 

provides the summary of the changes from Baseline to Year 2 by treatment group. Figure 

4.8 presents the boxplots of these changes for the individual outcome measures. The 

summaries in Table 4.25 reveal that the treatment appears to have beneficial effects on 

EDSS, A M B and N B B but not on NI9HP. The boxplots indicate some departures from 

normality. For example, the collection of changes in EDSS on the placebo arm is heavily 
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Table 4.25: Summary of changes from Baseline to Year 2 by treatment group 

Response 

Placebo 
(N = 22) 

Treatment 
(N = 23) 

Response Mean SD Mean SD 
EDSS 1.02 1.24 0.41 1.09 

A M B 1.00 1.66 0.78 1.17 

N B B 7.18 10.50 3.07 6.91 

NI9HP 0.29 0.45 0.33 0.50 

Figure 4.8: Boxplots for the changes from Baseline to Year 2 

EDSS AMB 

Rx Rx 

NBB NI9HP 

Rx Rx 
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skewed to the right. Also, there are a few outliers in A M B and N B B on the placebo arm 

and in EDSS and NI9HP on the treatment arm. The boxplots indicate the variability 

of these changes in the two populations are reasonably comparable although Table 4.25 

indicates the standard deviations are somewhat smaller in the treatment arm except for 

NI9HP. 

The sample correlations of the changes from Baseline to Year 2 among the four out­

come measures are: 

( TTI r* n A TI jf n A • n n T\T m TT n \ 

M, PPI 

MPRx = 

EDSS AMB NBB NI9HP 

EDSS 1.00 0.72 0.36 0.34 

AMB 0.72 1.00 0.80 0.61 

NBB 0.36 0.80 1.00 0.75 

NI9HP 0.34 0.61 0.75 1.00 

EDSS AMB NBB NI9HP 

EDSS 1.00 0.82 0.27 0.48 

AMB 0.82 1.00 0.15 0.36 

NBB 0.27 0.15 1.00 0.47 

NI9HP 0.48 0.36 0.47 1.00 

The correlations among EDSS and the other outcome measures show a similar pattern 

for both arms. On the other hand, the pattern of correlations among A M B , N B B , and 

I9HP differs substantially between the two arms: all three correlations are considerably 

stronger on the placebo arm than on the treatment arm. 
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4.2.2 Results 

The objective of our investigation in this subsection is to illustrate how the comparisons 

among the methods can assist the researcher in planning a study. Our focus is on MS 

clinical trials with treatment having characteristics similar to those investigated in the 

study which led to the Oral Methotrexate data. 

The information from the Oral Methotrexate data will be the basis of our investiga­

tion. Assuming the variabilities of the changes from Baseline to Year 2 are equal in both 

populations, we will take the standard deviations of these changes on the placebo arm 

as the standard deviations of these changes in the populations, OEDSS, &AMB-, &NBB and 

&NI9HP- (Because the standard deviations for EDSS, A M B , and N B B are larger on the 

placebo arm, our results might be conservative.) The data suggest that the assumption 

of equal variability for the populations is reasonable as a rough approximation. 

We are sometimes in a situation where the researcher has the knowledge of the cor­

relation structure only for the placebo population (because data for placebo patients are 

often available from previous trials but that for treated patients is not). Suppose that 

the researcher is willing to assume that the correlation structures are common for the 

populations. Under such a situation, the best one can do is to take M p p i as a guide for 

the pattern of the population correlations among the outcome measures. This is how we 

will proceed in specifying the pattern of correlations among the four outcome measures 

(despite the substantial differences in the observed correlation structures between the 

two arms). Guided by M p p i , we notice that the correlations between EDSS and N B B 

and EDSS and NI9HP are about the same (average = 0.35) and the remaining correla­

tions, while considerably stronger, are also similar (average == 0.72). For simplicity, we 

will take the respective average values to represent the common correlation structure for 

both populations and we have: 
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/ 

Mp = 

EDSS AMB NBB NI9HP 

EDSS 1.00 0.72 0.35 0.35 

AMB 0.72 1.00 0.72 0.72 

NBB 0.35 0.72 1.00 0.72 

NI9HP 0.35 0.72 0.72 1.00 

With this particular structure, we have three highly correlated outcome measures: 

A M B , N B B , and NI9HP. EDSS is highly correlated with A M B but only modestly corre­

lated with N B B and NI9HP. The average of the correlations in this structure is p = 0.60. 

GLS is expected to assign EDSS the most weight and A M B the least weight, with equal 

and moderate weights assigned to N B B and NI9HP. The weights GLS assigns to EDSS, 

A M B , N B B , and NI9HP are 0.63, -0.43, 0.40, and 0.40 respectively. 

The observed treatment effect suggests standardized differences between the under­

lying mean changes of the populations of: AEDSS = -49, AAMB = -13, ANBB = -39 and 

ANI9HP — —.09. EDSS is the most effective outcome measure in comparing the two arms, 

N B B is moderately effective, A M B is modestly effective, and NI9HP is nearly ineffective. 

As indicated earlier, NI9PH shows a detrimental treatment effect, so the directions of 

the treatment effects on the individual outcome measures are not consistent. 

Treating the pattern of the correlations in the populations to be known and common, 

we examine a few configurations of the standardized differences. Tables 4.26 and 4.27 

present the power achieved with 100 patients per arm and the sample size required to 

achieved power of 0.80 for the five procedures, Bonferroni adjustment, Hotelling's T2, 

O'Brien's OLS and GLS, and DCM0. 

We first consider a configuration of standardized differences suggested by the data; 

for simplicity, a rounded version A = (AEDSS, &AMB, A N B B , ANI9HP) = (-50, .10, 
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Table 4.26: Power of procedures with 100 patients per arm 
Configuration Procedure 

A.EDSS &-AMB &NBB A-NI9HP Bon. T2 OLS GLS DCM0 

.50 .10 .40 -.10 .93 1.0000 .48 .95 .23 

.50 .10 .40 .10 .93 1.0000 .64 .991 .68 

.50 .10 .40 .93 1.0000 .79 .99 .54 

.50 — .40 .95 .95 .97 .97 .80 

.50 .94 .94 .94 .94 .79 

.50 .50 .50 .50 .97 .97 .99 .995 .87 

Table 4.27: Sample size required to achieve power of 0.80 
Configuration Procedure 

&EDSS A.AMB &-NBB &NI9HP Bon. T2 OLS GLS DCM0 

.50 .10 .40 -.10 72 23 216 61 530 

.50 .10 .40 .10 71 26 145 42 134 

.50 .10 .40 69 23 103 39 184 

.50 . — .40 62 63 52 52 99 

.50 63 63 63 63 102 

.50 .50 .50 .50 61 57 44 38 82 
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Figure 4.9: Power of procedures with 100 patients per arm when A = k • A{,ase, where 
A 6 a s e = (.50, .10, .40, -.10) 

k 
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.40, —.10) is used. Hotelling's T2 is most powerful and requires substantially fewer 

patients to achieve an adequate power than other procedures; DCM0 and OLS perform 

particularly poorly. GLS has a small advantage over Bonferroni adjustment. GLS is 

expected to perform more powerfully than OLS as the most heavily weighted outcome 

measure, EDSS, is most effective in comparing the two arms. In fact, the advantage of 

GLS over OLS is substantial as the weight GLS assigns to EDSS is more than twice that 

assigned by OLS. GLS requires less than | as many patients as OLS to achieve a power 

of 0.80. With a power of .23, DCM0 is not comparable. 

We next consider the power of these procedures for A = k • A f , a s e , where Abase = 

(.50, .10, .40, —.10). Figure 4.9 shows that the procedure based on Hotelling's T2 is 

most powerful although for k greater than about 1.3, GLS and Bonferroni adjustment 

are comparable to T2. For k less than about 1.3, T2 has a modest advantage over GLS 

and Bonferroni adjustment and a substantial advantage over OLS and DCM0. While 

neither OLS nor DCM0 is competitive, the former has substantial advantage. 

The directions of the standardized differences on the individual outcome measures in 

the configurations considered in Figure 4.9 are not consistent as NI9PH shows a detri­

mental treatment effect while the other outcomes show beneficial treatment effects. In 

Chapter 2, we noted the main limitation of Hotelling's T2 is that it does take the di­

rection of the treatment effects into account. Consequently, the advantage of Hotelling's 

T2 shown in Figure 4.9 deserves some further examination. We want to examine if this 

advantage is a result of its limitation and therefore consider the outcome measure NI9HP 

with a beneficial treatment effect. The configuration to be considered is A = (.50, .10, 

.40, .10) and the results are presented in Tables 4.26 and 4.27. Comparing to A = (.50, 

.10, .40, —.10), T2 is extremely sensitive for both configurations but it requires slightly 

fewer patients when A = (.50, .10, .40, —.10). This illustrates our concern with the 

limitation of T2. In contrast, OLS, GLS, and DCM0 improve substantially when the 
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direction of the treatment effects are consistent. In this case, Bonferroni adjustment is 

only very little affected. It is worth pointing out that although Bonferroni adjustment 

also addresses the question of whether there is a difference between the two arms as 

Hotelling's T 2 , the former requires one to assess the difference between the two arms for 

the individual outcomes and hence the direction of the difference on each outcome will 

be apparent when the analysis is carried out. 

We next consider excluding the outcome measure NI9HP: A = (.50, .10, .40, ). 

Comparing to A = (.50, .10, .40, —.10), the results for this configuration show that 

dropping the outcome measure with detrimental treatment effects improves OLS and 

DCM0 substantially, improves GLS slightly, and has essentially no impact on T 2 . 

Suppose now only the two most effective outcomes are included in the study; the 

configuration to be considered is A = (.50, , .40, ). Comparing to the config­

uration A = (.50, .10, .40, —.10), all procedures except T2 improve their performance 

upon excluding the two least effective outcomes. Note the dramatic improvement of 

the performance of DCM0: it now requires less than 20% as many patients to achieve 

an adequate sensitivity (power of 0.80). Consequently, the choice of outcome measures 

also has a great impact on DCM0. The improvement of the performance of OLS is 

also substantial. Comparing to the configuration of A = (.50, .10, .40, ), both OLS 

and DCM0 improve their performance substantially upon the exclusion of the weakly 

effective outcome. 

We next consider the configuration where only the most effective outcome is included: 

A = (.50, , , ). Comparing to the case where the two most effective outcomes 

are included, the results indicate that dropping a weakly correlated but reasonably effec­

tive outcome measure has a very small negative effect on all procedures. The correlation 

between EDSS and N B B is 0.35 and the two outcomes are reasonably effective; this is 

similar to Case C with two mildly correlated outcome measures considered in Chapter 2. 
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Figure 4.10: Power of procedures with 100 patients per arm when A = k • A&ase, where 
A 6 a s e = (.50, .50, .50, .50) 

s 

0.0 0.5 1.0 1.5 2.0 

k 

As illustrated by the results in Tables 2.1 and 2.2, using two weakly correlated outcome 

measures with equal effectiveness, is more effective than using only one of these outcomes. 

However, here we see an example where addition of a reasonably effective outcomes leads 

to only limited gain in sensitivity. 

Finally, we consider a more optimistic configuration, where the four outcome measures 

are equally effective. Regarding A = (.50, .50, .50, .50) as Abase, Figure 4.10 shows that 

when the magnitude of the effectiveness is large, say k > 0.70, all five procedures perform 

well but DCM0 is still not comparable. When lesser magnitudes are considered, GLS 
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and OLS are clearly most powerful with the former having a slight advantage. 

Summary 

Imagine a clinical investigator planning a MS clinical trial with therapies having similar 

characteristics as those investigated in this study. Suppose further that s/he is willing 

to assume a common variance-covariance matrix for both populations, and is convinced 

that the observed standardized differences and the sample correlation structure of the 

placebo arm are the most relevant values. Our calculations show that the procedure 

based on T2 is most powerful. However, one should be aware of the limitation of the 

procedure based on Hotelling's T2. For the Oral Methotrexate data, the directions of 

the standardized differences are not consistent: three of the outcomes show beneficial 

treatment effects and the remaining outcome shows a detrimental treatment effect. Our 

example illustrates the limitation of Hotelling's T2. 

Suppose the researcher intends to use one of the five procedures in the design and 

analysis of a MS trial with four outcome measures. For the specified pattern of corre­

lations among the four outcome measures, when all the outcomes are equally effective, 

GLS is most sensitive in the assessment of the relative efficacy of the two arms. 

In addition, the results in Tables 4.26 and 4.27 illustrate the importance of the se­

lection of outcome measures to be included in designing a study. Not surprisingly, the 

inclusion of an outcome measure with a detrimental treatment effect has a negative ef­

fect on the procedures (except T2) although Bonferroni adjustment is not much affected. 

The inclusion of a weakly effective outcome measure can also have a negative impact 

on the performance of the procedures. Also, the gain in sensitivity from the addition 

of reasonably effective outcome measures can sometimes be quite limited. These results 

should encourage researchers to attempt to identify the best single outcome measure as 

the primary outcome measure for the design and analysis of clinical trials. 
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4.2.3 Another Disjunctive Composite Outcome Measure 

So far, our discussion on the disjunctive composite outcome measure in this chapter has 

focused on DCM0. We found that this approach is not as competitive with the others 

considered. In this subsection, we want to examine another definition of treatment failure 

which is related to the definition used in the original analysis of this data set. We first 

provide this definition of treatment failure; see Goodkin et al. (1992): 

Definition 4.1 Patients could meet treatment failure requirements for the disjunctive 

composite outcome measure in any of the following ways: 

1. Worsening of the entry EDSS score by >1.0 point for patients with an entry score 

of 3.0-5.0 or by >0.5 point for those patients with an entry score of 5.5-6.5; 

2. Worsening of the entry AMB score of 2-6 by >1.0 point; 

3. Worsening of > 20% from the baseline value on the best performance of two succes­

sive Box and Block or Nine Hole Peg test scores obtained with either hand. 

Changes on any the four components of this composite outcome measure had to be sus­

tained for >2 months to be designated as treatment failure. 

Note that the original definition of treatment failure also contained: the appearance 

of new or enlarged lesions on annual serial magnetic resonance imagine (MRI) scans. 

However, early in the study, it was decided to remove this dimension form the definition 

of treatment failure due to concerns regarding the potential contribution of measurement 

and repositioning error to what was assumed to represent disease activity. 

As we have only the baseline and annual scores for each of these outcomes, we modify 

this definition of treatment failure for our purposes. The requirement that changes had 

to be sustained for > 2 months is dropped. Second, the evaluation of successive scores 
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Table 4.28: Treatment failure rates based on DCMD 

Failure parameter Placebo Treatment 
EDSS .57 .39 

Ambulation Index (AMB) .35 .52 

Box and Block Test (BB) .39 .44 

Nine Hole Peg Test (9HP) .61 .44 

(EDSS, A M B , B B , 9HP) .87 .74 

(EDSS, B B , 9HP) .87 .65 

(EDSS, 9HP) .78 .57 

on the Box and Block and Nine Hole Peg tests is dropped. In other words, for each of 

the Box and Block and Nine Hole Peg tests, the requirement becomes: worsening of > 

20% from the baseline value on the scores obtained with either hand. We will refer to 

the resulting procedure as DCMD in what follows. 

Table 4.28 presents the treatment failure rates for each of the outcome measures. 

According to our definition of treatment failure, 87% of the patients on the placebo arm 

and 74% on the treatment arm experienced treatment failure. (These compare to 83% 

and 52% according to the original definition based on the monthly data.) 

We now take the sample treatment failure rates as the population treatment failure 

rates and evaluate the power and the required sample size for this disjunctive composite 

outcome measure. With it^ = .87 and 7r 2 = .74, we find that with 100 patients per arm, 

the power of the procedure based on this composite outcome measure is 0.64 and the 

required sample size to achieve a power of 0.80 is 144 patients per arm. 

We wish to compare the performance of DCMD to other procedures. As the results 

of DCMD were based directly on the data, it seems most reasonable to compare to 

the performance of the other procedures under the configuration most relevant to the 
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Table 4.29: Treatment failure rates based on DCM0 

Failure parameter Placebo Treatment 
EDSS .50 .31 

A M B .50 .46 

N B B .50 .34 

NI9HP .50 .54 

(EDSS, A M B , N B B , NI9HP) .76 .69 

(EDSS, A M B , NBB) .72 .58 

(EDSS, NBB) .69 .50 

observed standardized differences, i.e. A = (.50, .10, .40, —.10). First consider DCM0. 

The results in Tables 4.26 and 4.27 show that DCMD provides substantial improvement 

in performance over DCM0. The treatment failure rates on the individual outcomes for 

DCM0 are presented in Table 4.29. The results in Tables 4.28 and 4.29 show that the 

differences in the failure rates between the placebo and the treatment arms on Ambulation 

Index and Nine Hole Peg Test for DCMD are substantially larger than for DCM0, this 

difference on N B B for DCMD is considerably smaller than for DCM0, and the difference 

on EDSS is about the same for both procedures. Note that the directions of the differences 

in the failure rates are not consistent for either DCMD or DCM0. For DCMD, the 

failure rate on A M B is considerably larger for the patients on the treatment arm and 

that on B B is slightly larger on the treatment arm whereas for DCM0, the failure rate 

on NI9HP is slightly larger on the treatment arm. The net result is a moderately larger 

difference in the failure rates on the composite outcome measure DCMD which leads to 

its substantially better performance. Comparing DCMD to the other four procedures 

in Tables 4.26 and 4.27, we find that DCMD has a clear advantage over OLS; DCMD 

requires about 65% as many patients as OLS to achieve a power of 0.80. However, 
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DCMD is still not competitive with Bonferroni adjustment, GLS and T2. 

Suppose we consider dropping less effective outcomes from DCMD and DCM0. First 

consider excluding the least effective outcome; that is, dropping A M B from DCMD 

and NI9HP from DCM0. Tables 4.28 and 4.29 present the failure rates of these new 

composite outcomes. For DCMD, with iri = .87 and 7T2 = .65, the power achieved 

with 100 patients per arm is substantially improved to 0.96 and it now requires only 

59 patients per arm to achieve a power of 0.80. For DCM0, with the exclusion of 

NI9HP, the power and the required sample size are now 0.54 and 184 respectively (with 

7Ti = .72 and 7r 2 = .58). Consequently, both procedures gain substantially from deleting 

the least effective outcome. Suppose now only the two most effective outcomes are 

included. DCMD is negatively affected as its power decreases to 0.91 and n increases 

to 72 whereas DCM0 improves as power = 0.80 and n = 99. This detrimental effect 

on DCMD by dropping an outcome with a negative treatment effect is unexpected; an 

explanation requires further investigation. These results illustrate the detrimental effect 

on disjunctive outcome measures resulting from the inclusion of weakly effective outcomes 

and indicate the importance of the choice of outcomes in the design and analysis of a 

study. The potential of this type of outcome measure is revealed as well. 

4.3 Discussion 

In this Chapter, the five procedures discussed in the Chapters 2 and 3 were applied to two 

data sets from MS clinical trials. For the Task Force data, the three outcome measures 

are modestly and roughly equally correlated on both arms. The results in Tables 4.22 and 

4.23 indicate that with this particular pattern of correlation structure, the performance 

of the procedures depends heavily on the configuration of the standardized differences. 

This confirms the findings based on idealized scenarios in Chapters 2 and 3 that the 
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anticipated configuration of standardized differences should play an important role in 

the selection of the procedure to be used for the design and analysis of the trial. For 

example, when all the outcome measures are equally effective in comparing the two arms, 

O'Brien's GLS is the best way to proceed. OLS has almost identical performance, but 

the other procedures are clearly inferior. On the other hand, when only a single outcome 

is effective, T2 is most powerful. Bonferroni adjustment is reasonably competitive but the 

other procedures are clearly less sensitive. For intermediate cases, Bonferroni adjustment 

performs better. Therefore, it is essential for the clinical investigator to obtain as much 

information as possible on the characteristics of the outcome measures for the patient 

population to be studied. Without adequate knowledge, it is impossible to decide which 

of these statistical approaches to multiple outcome measures is most appropriate for the 

MS clinical trial being planned. 

The Oral Methotrexate data provided several interesting features. The directions 

of the observed standardized differences on the individual outcome measures are not 

consistent as one outcome shows a detrimental treatment effect whereas the rest show 

beneficial treatment effects. The least correlated outcome measure is most effective in 

comparing the two arms. The results in Tables 4.26 and 4.27 illustrate the limitation of 

the procedure based on Hotelling's T2 resulting from the fact that it does not address 

the question of whether one arm is better than the other. Also, the results indicate that 

for the specified correlation structure and configuration of the standardized differences, 

the procedure based on O'Brien's GLS is most appropriate. 

For both data sets, DCM0 is not competitive with the other procedures. However, 

to some extent this is due to the definition of treatment failure underlying DCM0. For 

example, the alternate disjunctive outcome measure based on a definition of treatment 

failure related to that used in the original analysis of this data performs substantially 

better than DCM0. This suggests the potential of the procedure based on this type of 
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composite outcome measure. It also indicates a difficulty of using this type of composite 

outcome measure: its performance depends heavily on the definition of treatment failure 

employed, but in most circumstances the most appropriate definition will not be obvious. 

For both applications, we also considered several configurations to illustrate the effect 

of the exclusion of weakly effective or ineffective outcomes. The results indicate that 

when planning a study, researchers should pay particular attention to the selection of 

the outcome measures to be included as the inclusion of outcomes of little effectiveness 

or no effectiveness can have considerable negative impact on the sensitivity of these 

procedures for the assessment of the relative efficacy of the two arms. Also, addition of 

even reasonably effective outcomes sometimes adds little to the sensitivity. These results 

demonstrate the importance of effort in identifying the best single outcome measure when 

planning a study as the primary outcome measure for the design and analysis of clinical 

trials. If several primary endpoints must be included because it is not possible to identify 

the single best outcome, then, these results stress the extreme importance of identifying 

equally effective outcome measures for the assessment of each clinical dimension judged 

to be of importance in the clinical trial under consideration. 



Chapter 5 

Conclusion 

In this thesis, five statistical methods for the design and analysis of clinical trials where 

the efficacy of a therapy is assessed by multiple outcome measures were compared. The 

results presented allow several general remarks. 

First, the inclusion of ineffective or weakly effective outcome measures can result in a 

substantial penalty. Consequently, the selection of outcome measures to be used is very 

important. The results for equally correlated outcome measures show that the inclusion 

of ineffective outcome measures leads to detrimental effects on all the procedures. In this 

situation, identifying the best single outcome becomes essential. However, when it is not 

clear which outcome is effective, the results suggest that Bonferroni adjustment should 

be used as the impact of including ineffective outcomes on this procedure is smallest. 

Second, our examples presented in Section 4.2.2 illustrate that results obtained using 

the procedure based on Hotelling's T 2 can be misleading as the inclusion of an outcome 

measure with a detrimental treatment effect leads to a smaller required sample size. 

Because T2 does not take into account the directions of the treatment effects, it is not 

an appropriate procedure for the clinical trials context. 

Third, procedures which combine the evidence provided by individual outcomes can 

be quite sensitive in the assessment of the relative efficacy of the two arms. The procedure 

based on O'Brien's GLS statistic shows its superiority in many of the settings considered. 

In particular, when several outcomes with roughly equal effectiveness are included, GLS 

is very sensitive. 
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On the other hand, there is potential danger in using the GLS procedure: Depending 

upon the correlation structure among the outcome measures, it is possible for GLS to 

perform very well or very poorly. Therefore, to determine the appropriateness of a 

particular procedure relies heavily on the researcher's knowledge of the outcome measures 

to be used. Without high quality information on the outcomes to be used, providing a 

specific recommendation on the most appropriate procedure for a particular MS clinical, 

trial is impossible. 

Although our results suggest that DCM is not comparable to the other procedures, 

this may be due to the limited scope of DCM considered. The results in Section 4.2.3 

illustrate the potential of this method. The main advantage associated with DCM is 

its ease of handling longitudinal data as using the longitudinal data would presumably 

add sensitivity in the assessment of treatment efficacy. Its main difficulty is that there 

seems to be no obvious rules of constructing reliable pre-assigned cutoff values for the 

individual outcome measures. Constructing a clinical meaningful and statistically pow­

erful disjunctive outcome measure requires the researcher to provide detailed and reliable 

information on the outcomes to be used. Overall, perhaps the most important message 

is that more empirical work on high quality information is essential to provide a better 

understanding of the properties of outcome measures in current use and the relationships 

among these outcome measures. 

The discussion in this thesis has focused on the case of continuous and normal re­

sponses. For the Hotelling's T 2 , OLS and GLS procedures, as long as the joint distribution 

of the vector of Z-statistics can be reasonably approximately by the multivariate normal 

distribution, these procedures can be applied and our numerical results are relevant. 

Another limitation of our investigation is that we have assumed that the data to 

be analyzed are the changes in the responses from the baseline to the end of the trial. 

However, quite often outcome measures are recorded regularly throughout the period 
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of the study. Using the procedures based on Bonferroni adjustment, Hotelling's T 2 , 

O'Brien's OLS and GLS to analyze such longitudinal data involve first summarizing the 

data by a suitable univariate descriptor. In other words, some of the information collected 

in the study is not used. In contrast, longitudinal data can easily be analyzed by DCM. 

This appears to be the main reason DCM was proposed and used in the original analysis 

of the Oral Methothexate data. Our results have illustrated the potential of O'Brien's 

GLS statistic in providing a sensitive assessment of treatment efficacy, so a procedure 

analogous to GLS but for longitudinal data certainly deserves future work. 



Appendix A 

The non-centrality parameter, denoted by A 2 , for the Hotelling's T2 statistic for testing 

H0 : A = 0 against Ha : A = A* is: 

A 2 = ^(A*)'M-\A*) 

For the special case of equally correlated outcome measures, the correlation matrix is of 

the form: 

1 p p ••• p 

p i p ••• p 

\ 

P P 

(l-p)I + pJ, 

• 1 P 

V P P ••• P  1 J 

where p is the common correlation among the outcomes. To simplify the expression for 

A 2 , re-express Mp as: 

Mp = (1-p) (l + 
1-p 

We will need the following lemma before proceeding further: 

Lemma A . l Let the p x p matrix W have the form 

W = I + aJ. 

Then, 

w-1 = 1-
1 + ap 
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Applying this result yields 

and we obtain: 

m (1 -p) 

1 

(1 -*>) 
1 

(1 -p) 

1 — p + mp 

P 
1 + (m - l)p 

J 

71 
-(A.-)'M-\A.-) 



Appendix B 

For a simple two-armed clinical trial with n patients on each arm, suppose the parameter 

of interest is the difference in the population means, fi\ — fi2 = 8 say, and the common 

population variance, o2 say, is known. We would like to test HQ : 8 = 0 against HA : 8 ^ 0. 

At the end of the study, we estimate this parameter by the difference in the sample means, 

8 = X\ — X2. The expectation and variance of this estimator is: 

E(8) = 8, Var(8) = -a2. 
n 

By the Central Limit Theorem, for large n, the distribution of 8 can be approximated as 

N(8, f c 2 ) . Therefore, the distribution of 

8-8 

y/2a2/n 

can be approximated as standard normal. To produce an approximate level a test, Ho 

is rejected if | 8 |> zi_a/2^j2o2/n. The power of this test evaluated at Ha : 8 = 8* is: 

Powers=s* = P5=s* [\8\> z1_a/2\/2o2/nj 

= 1 - Ps=s* (-z1_a/2y/2cr2/n <8< zx_aj2^2o2/nj 

1 _ Ps_s. (-*i-g/2V^"-** < 6~s* < Z l - a ^ V ^ - 8*\ 

* i - * ( * . - / » - ^ 7 ) + * ( - " - " - ^ 7 ) 
If 8* > 0, then provided n is large, 
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V fnS*\ n 

$ ( - ^ / 2 - V 2 7 J " ° -
Therefore, we can approximate Powers=s* by the upper tail probability only; that is, 

Powers=5. ^ Z i - a / 2 - ]f^~~j • 
The approximate sample size required to achieve power 1 —/3 can be obtained by solving 

^•( ' - . / • - i / I f )" 1 - ' ' 

for n. This is equivalent to solving z1_a/2 — ^ / f 7- ~ zp for n. This calculation yields: 

2 c r 2 ( 2 ! _ A / 2 - Zp)2 

(<S*)2 

With A = the standardized difference of the population means, we can re-express 

the approximate power and the required sample size as: 

PowerA=A* = 1 - $ (zi_a/2 - A / | A * ) + $ ( - z W 2 - A* ) 

« 1 - $ ( z ! _ a / 2 - ^ A * ) / o r < T > 0 , 

and 
_ 2 (z i - a / 2 - */?)2 

(A*) 



Appendix C 

Here, we want to show that when the outcome measures are equally correlated, O'Brien's 

OLS and GLS statistics are equivalent. As already shown in Appendix A , for equally 

correlated outcome measures, the correlation matrix has the form: 

Mp = (l-p)I + pJ, 

and 

M p ~ l = ( ^ b ) (J " l + ( m - l ) / ) • 

With this expression, we can proceed to show the equivalence of POLS and PGLS-

Y1 + Y2 + ...-rYm 

POLS 
in 

f3GLS = (l'Mp-1l) 1 i ' M „ - 1 y 

Let a = f ° r simplification. Then, 

and 

Therefore 

I ' M - i 1 _ m ( l ~ m a ) 

fes - m( l - ma) (1 - p) £>Y* ~ = ^ O L S ' 
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In many clinical trials, the parameter of interest is the difference between two population 

proportions, 7Ti — 7r 2 = 9 say. Suppose that one has available independent binomial 

samples of size n with probability of success TC\ for the placebo arm and 7r 2 for the 

treated arm. We would like to test H0 : -K\ = 7r 2 = n say, against Ha : TCI ^ 7r 2 . We 

estimate TT\ and 7T2 by the sample proportions, pi and p2, and 

E(pi) = T T I , Var(p1) 
7Ti(l - TTl) 

n 

E(p2) = 7T 2, Var(p2) 
7T2(1 - 7T2) 

n 
By the normal approximation, for large n, 

under H0: m - TT 2 = 0, P l - p2 » 7V(0, ^ J ^ 1 ) . 

under TTI - TT 2 = 9, P l - p2 w JV(0, M 1 - * ' ) ^ 1 - ^ ) ) . 

Estimating 7r by p = P ' + P 2 , the Z-statistic for this test is 

Pi ~P2 

y/2p(l-p)/n' 

To produce an approximate level a test, H0 is rejected if 
y/2p(l-p)/' 

P 1 - P 2 
> zl-a/2-

n 

The power of this test can be evaluated as follows: 

Power. 

0 T l ( l - 7Ti) + 7T2(1 - 7T 2 ) /n 
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w h e r e a = -*i-~i2y/m-v)l»zL a n d b = ^ - W ^ i - ^ z L . 
!ri)+ir 2(l—ir 2)/n Y ^ i (l-7ri)+7r2(l—7r2)/n 

If n is large, ( P I - P 2 ) - 0 = approximately follows the standard normal distribu-
^/TTl (1 —7Tl )+7T2 (1 —7T2 ) /n 

tion. Also for large n, p approaches 71-1+71"2 = ¥ in probability. It follows that PowerVl-V2=g 

can be approximated by: 

Power^-^e ~ 1 - $ I 2 i _ a / 2 

+ $ - Z i _ « / 2 

2TT(1 -7f) 

^ 7 r 1 ( l - 7 r 1 ) + 7r2(l-7r2) ^ ( 1 - TTI ) + 7r2(l - T T 2 ) , 

2TT(1 - 7f) 

^ 7 r 1 ( l - 7 T 1 ) + 7r 2 ( l -7r 2 ) _ ̂  + ^ _ ^ 

Because 27r(l — 7r) = 7^(1 — 7^) + 7r2(l — 7r 2 ) + y , this can be re-expressed as: 

D 1 | 27f(l - 7f) ~ y/E6 
Powerva-,r2=0 « 1 - $ Z i - a / 2 * ^zzr; =r 7777: , 

V \ 2 7 r ( l - T ) " #2/2 v / 2 7 f ( l - 7 f ) - ^ 2 / 2 / 

/2' 
2TT(1 - TT) 

^ j 2 F ( l - 7 f ) - ^ / 2 ^ / 2 ¥ ( 1 _ ¥ ) _ ^ / 2 / 

If 0 > 0, then for large n, * ( - ^ . ^ ^ Z ^ ^ _ 
therefore approximate PowerVl-V2=$ by the upper tail probability only: 

0. We can 

Powerni^2=e « 1 - $ ^i_a/ 2-
2TT(1 - 7f) 

\2W(l-x)-P/2 ^ ( l - V ) - ^ 
Solving the equation 

Zl-a/2* 
2¥(1 - 7f) 

^ 2 7 f ( l - 7 f ) - ^ / 2 ^ ( 1 - TT) - 0 2/2 ~ 

for n yields the approximate required sample size: 

( ^ _ a / 2 ^ / 2 ¥ ( l - TT) - z^2W(l -¥)- | f l 2 ) 

62 n « 
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