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ABSTRACT

A mathematical model is developed for studying the inpiane dynamics and

control of tethered two-body systems in a Keplerian orbit. The formulation accounts

for:

• elastic deformation of the tether in both the longitudinal and inplane trans

verse directions;

• inplane libration of the flexible tether as well as the rigid platform;

• time dependent variation of the tether attachment point at the platform end;

• deployment and retrieval of the point mass subsatellite;

• generalized force contributions due to various control actuators (e.g. momen

tum gyros, thrusters and passive dampers);

• structural damping of the tether;

• shift in the center of mass of the system due to the tether deployment and

retrieval.

The governing nonlinear, nonautonomous and coupled equations of motion are ob

tained using the Lagrange procedure. They are integrated numerically to assess the

system response as affected by the design parameters and operational disturbances.

Attitude dynamics of the system is regulated by two different types of actu

ators, thruster and tether attachment point offset, which have advantages at longer

and shorter tether lengths, respectively. The attitude controller is designed using

the Feedback Linearization Technique (FLT). It has advantages over other control

methods, such as gain scheduling and adaptive control, for the class of time varying

systems under consideration. It is shown that an FLT controller based on the rigid

system model, can successfully regulate attitude dynamics of the original flexible
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system. A hybrid scheme, using the thruster control at longer tether lengths and

the offset control for a shorter tether, is quite attractive, particularly during re

trieval, as its practical implementation for attitude control is significantly improved.

Introduction of passive dampers makes the hybrid scheme effective even for vibration

control during the retrieval.

For the stationkeeping phase, the offset control strategy is also used to regu

late both the longitudinal as well as inpiane transverse vibrations of the tether. The

LQG/LTR based vibration controller using the offset strategy is implemented in

conjunction with the FLT type attitude regulator utilizing thrusters as before. This

hybrid controller for simultaneous regulation of attitude and vibration dynamics is

found to be quite promising. The performance of the vibration controller is further

improved by introduction of passive dampers. The LQG based vibration controller

is found to be robust against the unmodelled dynamics of the flexible system.

Finally, effectiveness of the FLT and LQG based offset controllers is assessed

through a simple ground based experiment. The controllers successfully regulated

attitude dynamics of the tethered system during stationkeeping, deployment and

retrieval phases.
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1. INTRODUCTION

1.1 Preliminary Remarks

Over the past decades, a number of proposals have been made for the space

exploration using Tethered Satellite Systems (TSS). The concept involves two or

more satellites connected by a tether upto 100km in length (Fig.1-1). In a typical

mission, the Space Shuttle carries the tether connected subsatellite payload. After a

desired orbit is achieved, the subsatellite is deployed from the orbiter to the required

altitude. Intended scientific measurements are carried out at a fixed tether length.

Subsequently the subsatellite is retrieved back to the Shuttle (Fig.1-1).

The innovative idea of the TSS is attributed to the Russian scientist Tsi

olkovsky, who explored the effect of gravity force on an individual climbing up a

tower extending upto geosynchronous altitude and beyond [1]. This analysis uncov

ered the principle that a string orbiting in a central force field always remains in

tension due to the gravity gradient, and led to the development of the TSS. So far

as the actual application is concerned, interest in the system was initially associated

with the retrieval of a stranded astronaut by throwing a buoy on a tether from a

rescue vehicle and reeling in the tether. Starly and Adihock [2] have shown that the

rotational motions of the tether grow continuously as it was reeled in. A proposal

was made to use tether for stationkeeping between two orbiting space vehicles [3],

however, the idea was abandoned due to the difficulties involved in determining and

controlling the required tether tension. On the other hand, Gemini XI and XII

flights have successfully demonstrated useful applications of a tethered system [4].

The former used a rotating configuration aimed at artificial gravity generation while

1
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Figure 1-1 Schematic diagram of the Space Shuttle based Tethered Satellite

System (TSS).
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the latter had a gravity-gradient stabilized configuration.

After one and half decade, a joint U.S.A.—Japan space project called the TPE

(Tethered Payload Experiment) used a sounding rocket based tether to conduct a

series of tests aimed at near earth environmental studies [5]. The technical and

scientific data obtained in the TPE supported the electrodynamic tether mission

TSS-i (Tethered Satellite System-i) launched in August 1992 [6]. The TSS mission

is a collaborative project between NASA and the Italian space agency (ASI). Because

of the mechanical failure, the mission objectives of the TSS-i were not met, but the

information gathered during the short deployment upto 259 m, as compared to the

desired length of 20 km, demonstrated the fundamental concepts of orbital tether

flights in many ways. Another series of sounding rocket experiments called the

OEDIPUS (Observation of Electrified Distributions in the Jonosheric Plasma — a

Unique Strategy) are being carried out by the Canadian Space Agency (CSA) [7].

The objective is to make passive observation of the auroral ionoshere and gain better

insight into pane and sheath—wave propagation in plasmas using a radio transmitter.

The first mission, called OEDIPUS-A, was successfully launched in January 1989

which deployed a tether upto 958 m. The next mission, OEDIPUS-C, planned for

January 1995, will include a payload for tether dynamics measurements.

The deployment of 20 km long tether was successfully completed in SEDS

(Small Expendable Deployment System) missions [8]. SEDS-I and SEDS-Il missions

flew in March 1993 and March 1994, respectively. Each deployed a 26 kg instru

mented probe to a distance of 20 km from the second stage of a DELTA II rocket

while in orbit around the Earth. These tether missions have successfully demon

strated the feasibility of tether deployment. On the other hand, retrieval of a tether

still remains to be realized in a real flight. With the advent of the Space Shuttle and

3



the proposed Space Station, several applications of the tethered subsatellite system

has been suggested which can be summarised as:

• sophisticated scientific experiments aimed at gravity gradient, magnetic, iono

spheric, aero-thermodynamics and radio astronomy experiments (e.g. OEDIPUS-

A and C);

• use of tethered system as a flying wind tunnel [9];

• deployment of payloads to new orbits [10] and retrieval of satellites for ser

vicing;

• provision of a desired controlled microgravity environment for scientific ex

periments and space manufacturing [11];

• generation of electricity (electrodynamic tether, TSS-1);

• power and cargo transfer between two orbiting bodies;

• collection of atmospheric dust by a small probe tethered to a larger orbiting

spacecraft thus avoiding landing [12];

• expansion of the geostationary orbit resource by having tethered chain satel

lites [13, 14];

• large antena reflector ( 1 km aperture) using tethers for gravity gradient

stabilization and shape control [15];

• orbiting optical astronomical interferometer consisting of three telescopes at

the corners and one at the center of a tethered triangle [16];

• use of multiple tethers for attitude stabilization of satellites in elliptic orbit

[17];

and many others [10, 18]. Some of these applications are illustrated in Fig.(1-2).

The fundamental principle governing the tether dynamic can be illustrated

4
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Figure 1-2 Some applications of the tethered satellite systems.
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by a simple two-body tethered system as shown in Fig.1-3. Consider a ‘dumbbell’

satellite in a circular orbit around the Earth. The top mass experiences a larger

centrifugal force than the gravitational force, being in an orbit higher than that of

the centre of mass. The reverse occurs at the lower mass. The resultant moment

causes The system to oscillate like a pendulum with the tether maintained taut under

tension. Now, as the length of the tether decreases during retrieval, the conserva

tion of angular momentum dictates the swinging oscillation of the tether to amplify.

For a space platform supported tethered satellite system, the swing motion could

increase to the point that the tether wraps itself around the platform. Furthermore,

reduced gravity induced tension at smaller lengths together with large amplitude os

cillations may render the tether slack. The presence of any offset between the tether

attachment point and the centre of mass of the end-bodies (platform and subsatel

lite) imposes an additional moment on the bodies involved. Flexibility of the tether,

along with the above mentioned factors makes the system dynamics rather chal

lenging. Obviously, a fundamental understanding of complex interactions between

librational dynamics, flexibility, deployment and retrieval maneuvers, as well as de

velopment of appropriate control strategies is essential for successful completion of

the proposed tether missions.

1.2 Review of the Relevant Literature

The possible applications of the TSS being numerous and diverse, consider

able amount of literature has developed, particularly during the past 30 years, which

was reviewed quite effectively by Misra and Modi [19, 20]. The growing importance

of this new technology is reflected in a special issue published in The Journal of the

Astronautical Sciences [21]. Objective here is to briefly touch upon more important
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contributions directly relevant to the present study.

1.2.1 Dynamical modelling

The dynamics of a TSS consists of three major phases of operation depending

on whether the unstretched length of the tether is constant (stationkeeping phase) or

varies with time (if increasing, deployment; when decreasing, retrieval). The dynam

ics during stationkeeping is simpler than the other two phases and is quite similar to

that of other cable connected bodies, e.g. the space station-cable-counterweight sys

tem [22]. It has been investigated extensively by various researchers who concluded

that the gravity gradient can excite longitudinal as well as transverse vibrations

of the tether [22, 23]. However, a small amount of damping (1% of the critical

damping) is quite effective in stabilizing the system [24].

Perhaps the first systematic effort at understanding dynamics of the TSS was

made by Rupp [25]. In his pioneering study, the librational motion in the orbital

plane was analyzed and the growth of pitch oscillations during retrieval phase noted.

The system was further investigated by Baker et al. [26] taking into account the

three dimensional character of the dynamics as well as the aerodynamic drag in

the rotating atmosphere. During either deployment or retrieval, the out-of-plane

rotational motion cannot be neglected if the orbit is in a nonequatorial plane. It

is excited by the rotating atmosphere induced aerodynamic drag. Even when the

orbit is in the equatorial plane, the initial out-of-plane disturbances may couple the

inpiane and out-of-plane dynamics. Fortunately, in general, such disturbances are

found to be small. Furthermore, their effects can be minimized through the design

of an appropriate active control system. Thus the coupling between the inpiane and

out-of-plane motions can be neglected, for systems in the equatorial orbit, at least
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in the preliminary design stage.

The other important parameters, which make the system dynamics compli

cated, are mass and flexibility of the tether. The mass of the tether is expected to

be of the same order of magnitude as that of the subsatellite, particularly when the

tether is long, and hence it can not be neglected. Because the tether diameter is ex

pected to be small (around few millimeters) and the length quite long (upto 100km),

the system shows considerable flexibility (the longitudinal stretch for a 100km long

tether can be around hundred meters). The axial vibration has been represented

in an approximate fashion by a single longitudinal displacement similar to that of

a spring mass system by several authors [26, 27, 28]. However, as the mass is dis

tributed along the tether, a more accurate representation in terms of combination-

of axial modes, similar to that of an elastic bar, would be more appropriate [29, 30].

Furthermore, the tether can have transverse displacements causing it acquire

curvature. This happens mainly due to two reasons. The aerodynamic drag not

only causes the subsatellite to lag behind the platform but also forces the tether to

assume a curved equilibrium position. Secondly during deployment or retrieval, the

Coriolis force acts in the transverse direction. Since the tether has distributed mass

and elasticity, transverse vibrations are also excited. They can influence system dy

namics substantially, particularly during retrieval [31]. The transverse oscillations of

the tether have been studied using two distinct approaches. Quadrelli and Lorenzini

[32] discretized the system using the lumped-mass approach. On the other hand,

Kohler et al. [33], Modi and Misrà [27], and Xu, Misra and Modi [30] adopted the

continuum model with admissible functions. To reduce the computational effort

involved in simulation, a combination of lumped-mass and continuum model has

been proposed called the semi-bead model [34].
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When the masses of the two end bodies are comparable, the system centre of

mass does not remain fixed with respect to any of the body fixed frames. The shift

in the centre of mass may become an important parameter in such situation and has

to be accounted for. The major conclusions based on the available literature may

be summarized as follows:

• stationkeeping phase is normally stable;

• deployment can be an unstable operation if velocity exceeds the critical rate;

• retrieval is inherently unstable

• particularly during the deployment and retrieval phases, the transverse vibra

tions can build up due to the Coriolis force induced excitation even though

there may not be any initial disturbance.

The other aspects of practical importance are the damping in the tether [35],

aerodynamics drag [36, 37], and orbital lifetime analysis [38]. The dynamics of

tethered systems in different configurations, which has less relevance to the present

study, have been addressed by Misra and Diamond [39], and DeCou [40, 16]. In real

systems, there is always a chance of accident. The dynamics of the tether connected

to the orbiter after a catastrophic failure has been studied by Bergamaschi [41].

1.2.2 Control of the TSS

Control of the TSS, particularly during deployment and retrieval, is a chal

lenging problem. Successful control of the unstable retrieval dynamics is of great

concern since it is directly related to the success of the mission. Over the years,

several control strategies have been proposed, which can be categorized into three

types:

(a) tension control and the law based on rotational rate of the tether reel (length

10



rate control or torque control);

(b) thruster augmented active control;

(c) offset control.

(a) Tension and length rate control

Among the control laws mentioned, the tension control law was developed

first. Rupp [25] formulated this strategy to control the inplane rotation during

deployment and stationkeeping. The retrieval problem was also touched upon briefly.

Here the tension level is modulated as a function of the instantaneous length, length

rate, and desired lengths of the tether. Several investigators have subsequently

modified Rupp’s tension control procedure, however the inherent approach remains

the same [26, 42—44]. For example, Bainum and Kumar [44] developed an optimal

control law, based on an application of the linear regulator theory, which modulates

the tether tension to achieve acceptable level of the tether swing.

As opposed to the tension control law, in the length rate scheme the ‘nomi

nal’ unstretched length or its time derivative are modulated to achieve the desired

system response. The law corresponds to modulating the rotation of the reel of the

deployment mechanism. This can also be implemented by monitoring the torque

applied to the reel mechanism. In principle, tension control, length rate control and

torque control affect the system dynamics by changing the tension in the tether. The

differences are in the mathematical modelling of the system used for the controller

design and its implementation. This type of control law was originally proposed

by Kohier et al. [33], and used by Misra and Modi [45] and others to regulate the

planar longitudinal and transverse vibrations.
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(b) Thruster augmented active control

During retrieval, as length of the tether reduces to a small value, the equi

librium tension in the tether due to gravity gradient approaches zero; and during a

dynamical situation, the tether may become slack. Thus a tension control law or its

modification, such as a length rate law, becomes ineffective. To alleviate this diffi

culty, Banerjee and Kane [46], and Xu et al. [47] used a set of thrusters to control

the retrieval dynamics. In this active control scheme, the thrusters are placed at

the subsatellite end to help reduce the motion and speed up the retrieval process.

The thrusters provide control forces in both transverse and longitudinal directions.

(c) Offset control strategy

It has been shown that, when the tether length is small the thruster aug

mented control is quite effective; however firing of thrusters in the vicinity of the

shuttle or space platform is considered undesirable due to plume impingement, safety

and other considerations. To overcome this difficulty the “offset control strategy”

was proposed by Modi, Lakshmanan and Misra [48]. Here, the point of attachment

of the tether at the platform is moved to control the tether swing. The coupling of

the offset acceleration and tether swing makes this control strategy a success. In

their study, Modi et al. considered a 3-dimensional rigid model without any shift in

the centre of mass. The results obtained from the numerical simulation were verified

by a ground based experimental set-up. From the comparison between numerical

and experimental results, they concluded the control strategy to be quite promising

for shorter tethers. Because of relative advantages and disadvantages of different

schemes, a desirable solution would be to use a hybrid strategy, where the offset

control is implemented at shorter lengths while the thruster, tension or length rate

12



control scheme is used for longer tethers [49].

1.2.3 Control algorithms

An important factor which needs careful attention is the methodology used

to obtain the control laws. In the pioneering work by Rupp [25], the feedback

gains were selected to achieve an appropriate stiffness and damping in the closed-

loop system. This approach is feasible only when the system dynamics is relatively

simple, which is not the case in practice. Since then, linear and non-linear control

laws have been developed by many investigators (for example [26]), where the control

gains are obtained by trial and error.

Among the wide variety of control methodologies, the Linear Quadratic Reg

ulator (LQR) has received considerable attention [44, 48, 49]. On the other hand,

a feedback control law using the second method of Liapunov was used by Vadali

and Kim [50, 51]. It was concluded that the tension control law is sufficient dur

ing fast deployment, however, thruster augmentation in the out-of-plane direction

is required during the terminal phase of the retrieval [51]. The existence of limit

cycles was avoided by the out-of-plane thrusting in conjunction with the tension

control [50]. Monshi et al. [52] used the reel rate control law with nonlinear roll

rate feedback, based on energy dissipation method. It was found to have better per

formance than that for the law developed using the Liapunov method. The study

showed that the retrieval constant c (c = i’/l; ,, nondimensionalized retrieval rate;

1, instantaneous tether length), in case of an exponential retrieval, does not have a

significant effect on limit cycle amplitude. As the retrieval rate increases the peak

value of the pitch oscillation also increase. So the maximum retrieval rate is limited

by a maximum allowable pitch angle. The limit cycle amplitude found in [52] is
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quite close to that obtained by Vadali and Kim [50].

In the study by Liaw and Abed [53], tension control laws were established

using the Hopf bifurcation theorem, which guarantees stability of the system during

the stationkeeping mode. They. also suggested a constant inplane angle control

method which results in stable deployment but unstable retrieval. In this method,

the instantaneous tether length is treated as an external control input, and the

length rate is obtained as a function of some desired inpiane equilibrium angle. The

length rate expression required to control the system during deployment does not

stabilize the retrieval dynamics.

Fleurisson et al, [54] designed an observer (Kalman filter) based controller

to follow a predetermined retrieval length history. The length history was obtained

to minimize a combination of final pitch angle, pitch rate at docking and total

retrieval time. The control strategy used feedforward trajectories motivated by

optimal control arguments. Optimal control procedure was employed to determine

an invariant final approach path, or randezvous corridor, which the satellite must

follow during the terminal phase to dock with the specified final conditions. The

study focused only on the last 2 km of the retrieval.

In the study by Fujii et al. [55], the dynamics during deployment and retrieval

is controlled by regulating the mission function, a positive definite quadratic function

of the mission states. The desired value of the system states are referred to as the

‘mission states’. For the closed-loop system, the non-dimensional time derivative

of the mission function is set to be negative definite, guaranteeing stability of the

system. Thus, the approach is quite similar to the Lyapuno’v’s second method.

Onoda and Watanabe [56] as well as Fujii et aL [57] studied control of teth
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ered systems in the presence of atmospheric drag. Attitude control of the tethered

systems after blocking of the attachment point has been explored by Grassi, et al.

[58]. The offset control, as discussed before, is for regulating the attitude motion

of the tether. However, this strategy can also be used for precise control of the

subsatellite attitude, where the control moment can be generated by a combined

effect of tether tension and the attachment point motion [59]. Numerous variations

of the control algorithms discussed here are also reported in the literature.

Almost all the investigations reported so far deal with the control of attitude

motion of the tether or the endbodies. Little attention has been directed towards

the control of structural vibrations of the tether. Xu et al. [30, 47) addressed the

problem of control of tether oscillations using length rate and thruster control. On

the other hand, the study by Thornburg and Powell [60] considers the control of

only transverse vibration in conjunction with the offset strategy.

As seen in this literature review, the models developed so far do not include

the attachment point offset for a flexible tethered system capable of deployment and

retrieval. The study in reference [60] incorporates the motion of the attachment

point, of a flexible tether, along a line parallel to the end body’s floor (i.e. motion

along one bodyfixed axis), however, it does not include the most critical operational

phases, deployment and retrieval. The tether is modelled as an arbitrary number of

point masses connected by elastic members. Use of the lumped mass model for a

continuum system may be appropriate for a preliminary study, however, any detailed

analysis of the system needs the more accurate continuum model. With the offset

motion restricted to be parallel to the subsatellite floor, the strategy is limited only

to the control of transverse oscillations. Furthermore, the analysis does not account

for the shift in the center of mass, an important parameter for long tethers during
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deployment and retrieval maneuvers.

1.3 Scope of the Present Investigation

With this as background, the thesis aims at studying dynamics and control

of two-body tethered systems, using a relatively general model, which is the funda

mental requirement for their successful realization. Distinctive features of the model

may be summarized as follows:

(i) A flexible tether, with arbitrary mass distribution and finite dimensional rigid

end bodies, is taken to be in a general Keplerian orbit. The tether is treated

as an elastic continuum during the system discretization.

(ii) Offset of the tether attachment point from the end body’s center of mass

and its time dependent variations are included in the formulation. This

permits development of several offset control strategies. Furthermore, the

formulation is amenable to thruster augmented active control and its hybrid

synthesis with the offset control procedure.

(iii) The formulation accounts for time dependent variation of the tether length,

thus permitting analysis of the tether performance during all the three op

erational phases of importance — deployment, stationkeeping and retrieval.

The deployment/retrieval time histories are considered arbitrary.

(iv) Kinetic and potential energy expressions are obtained for the general three

dimensional (i.e. in the orbital plane and out-of the orbital plane) motion

of the system. However, the governing equations of motion and hence the

study based on them are purposely confined to the inplane dynamics. This

helped focus on more important aspects of the system performance which are

governed by a large number of variables. Furthermore, some appreciation of
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the coupling between the inpiane and out-of-plane dynamics is already avail

able through early studies (by the U.B.C. group and others) using simpler

models.

(v) The formulation is based on the Lagrangian procedure which can account for

both holonomic and nonholonomic constraints.

(vi) As can be expected the governing equations of motion are highly nonlin

ear, nonautonomous and coupled. Their decoupled, linearized forms are also

obtained to facilitate the controller design.

(vii) Numerical integration codes for nonlinear and linear systems are so struc

tured as to help isolate effects of design parameters on the system perfor

mance.

To begin with, kinematics and kinetics of the system, leading to a set of highly

Coupled, Nonlinear and Nonautonomous (CNN) equations of motion, are discussed

in Chapter 2. This is followed by a brief account of the numerical integration

methodology as applied to the nonlinear as well as decoupled linearized system

(Chapter 3). Validation of the formulation by energy check and comparison of

frequencies with reported results in the literature are also included here. Chapter 4

focuses on the parametric dynamical study using the complete CNN set of equations.

Objective is to assess effect of the system design parameters on its performance, and

establish critical conditions leading to unacceptable response or instability. This sets

the stage for an effective controller design.

As pointed out before, the governing equations of motion are coupled, non

linear and nonautonomous. To assist in the controller design, rigid and flexible parts

of the system are often (but not always) decoupled due to their widely separated
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frequencies. However, it must be emphasized that the coupling between the rigid

degrees of freedom, and among the flexible generalized coordinates, was retained.

Two different control methodologies, linear eigenvalue assignment and the nonlinear

Feedback Linearization Technique (FLT), in conjunction with the actuators in the

form of offsets, thrusters and their combinations were used. Attitude controller was

developed first (Chapter 5) followed by a composite attitude-vibration regulator de

sign (Chapter 6). In all the cases, effectiveness of the controller was assessed through

its application to the original nonlinear, nonautonomous and coupled system.

Finally, in Chapter 7, a ground based facility for studying dynamics of a teth

ered system as well as its control using the offset strategy is described. Experimental

results are compared with numerically obtained simulation data.

The thesis ends with a summary of results and recommendations for future

work. Figure 1-4 presents an overview of the research project.
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2. FORMULATION OF THE PROBLEM

2.1 Preliminary Remarks

Considerable thought was directed in arriving at a model of the complex

tethered satellite system that would represent a logical step forward in understanding

its dynamics and control. The model selected for study consists of a rigid platform

connected by a flexible cable (tether) of finite mass density to a rigid subsatellite.

The entire system is in an arbitrary Keplerian orbit and free to undergo librational

as well as both longitudinal and transverse vibrations in the plane of the orbit.

Furthermore, the tether can be deployed, retrieved or maintained at a constant

length (stationkeeping). Deviation of the tether attachment from the platform center

of mass is treated as a function of time permitting development of the offset control

strategy. As in a practical situation, the platform based momentum wheels provide

control torques for its attitude control. In addition, one may attempt to regulate the

tether dynamics through an orthogonal set of thrusters at the subsatellite. Synthesis

of the offset and thruster based strategies present interesting possibilities for a hybrid

control design.

As pointed out before, in a typical mission under consideration, the tether

may be deployed from a length of few meters to around 100 km. This results in a

large change in the system inertia as well as a shift in the system center of mass

with respect to a body fixed reference frame. Thus, a realistic model must account

for the effect of shift in the center of mass on the system dynamics. The structural

damping of the flexible tether is also an important parameter and hence included in

the present formulation.
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This chapter can be divided into three major sections: kinematics; kinetics;

and equations of motion. System configuration and position of an elemental system

mass in the inertial space are established first. This is followed by evaluation of

the kinetic and potential energies of the system. Finally the governing equations of

motion are derived using the Lagrangian procedure. The generalized forces due to

active and passive control inputs are obtained using the principle of virtual work.

2.2 Kinematics of the System

2.2.1 Domains and reference coordinates

Four distinct domains can be established for the system described in Figure

2-1. Domain ‘p’ represents the rigid space platform. The frame F Z) is

attached to the centre of mass of the platform with its axes along any arbitrary

directions. Vectors described relative to this rotating frame are distinguished by the

subscript ‘p’. Mass of the platform is considered constant (rh = 0).

The tether involves two major domains. The domain ‘o’ consists of the offset

mechanism and undeployed tether that is wrapped around a reel. In general, mass

of the offset mechanism is expected to be quite small compared to the mass of the

platform (Space Shuttle, Space Station). So, without any loss of generality, the offset

mechanism is treated as a point mass and its location is expressed with respect to

F by the vector d. The mass of the offset mechanism is represented with subscript

‘o’. As the tether is deployed or retrieved the mass of the spooi, around which the

tether is wound, changes. The deployed portion of the tether is flexible and belongs

to the domain ‘t’. The frame Ft (Xi, Y, Zt) has its origin at the point of attachment

of the tether at the platform end. The Yt-axis is along the undeformed length of

the tether, i.e. the direction of tether in the absence of transverse deformation. The
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Figure 2-1 Domains and coordinate systems used in the formulation.
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Xt-axis is so selected that, in absence of the out-of-plane motion, it is parallel to

the orbit normal. The Zt-axis completes the right-handed system. The mass of

the deployed portion of the tether varies with time according to the deployment or

retrieval rate. The total tether mass, composed of the deployed (domain ‘t’) and

undeployed (domain ‘o’) portions, is constant (i.e. thj = —r’ao).

Domain ‘s’ consists of the rigid subsatellite attached to the end of the tether.

The frame F5 (X3,Y3,Z5) is used to describe its orientation in space. The origin

of this frame is at the centre of mass of the subsatellite. Vectors measured relative

to this rotating frame carry subscript ‘s’. Mass of the rigid subsatellite is constant

(r = 0).

Two more reference frames are required to completely define the kinematics

of a mass element in the system: the inertial frame F1 located at the centre of Earth;

and the orbital frame F0 (X0,Y0,Z0). The origin of the orbital frame is located at

the instantaneous centre of mass of the system and follows a Keplerian orbit. The

orbital frame is so oriented that theY0-axis is along the local vertical (the line joining

the centre of Earth and instantaneous centre of mass of the system) and points away

from Earth; the Z0-axis is along the local horizontal (the line perpendicular to Y0-

axis and in the plane of the orbit) and points towards the direction of motion of the

system; theX0-axis is along the orbit normal and completes the right-handed triad.

2.2.2 Position vectors

With the reference frames selected, the position vector of an elemental system

mass can be defined easily. As pointed out before, the instantaneous centre of mass

of the system follows a Keplerian orbit. This is based on the assumption that the

orbital motion is not affected by the librational (attitude) and vibrational motions
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of the system [61—63]. The position vector to the mass element with respect to the

inertial frame can be obtained by a set of vectors added in sequence. First of all,

the position vector is defined with respect to the frame attached to the domain in

which the mass element is located (fj, i = p, t, s). For bodies like the platform

and subsatellite, f and f consist of only rigid components. But for the flexible

tether, the position vector has contribution from two sources: rigid (ytt) and elastic

deformation (ft(yt)), i.e.

= yt3t + ft(yt),

where 3t is the unit vector along Yt-axis, and y is the distance to the mass element

from the origin of F. The position of the origin of the body fixed frames, Fj, i =

p, t, s, is defined with respect to the orbital frame F0 by the vector R, i = p, t, .s.

Finally, the origin of the orbital frame is defined with respect to the inertial frame

by Pc (i.e. radius vector of the Keplerian orbit). With these notations, position of

any elemental mass in the th domain with respect to inertial frame can be expressed

as

Rdmj = Rc+R1+r. (2.1)

The vector R, i = p, t, s, can be expressed in terms of other vectors defined in the

body fixed frames as:

RPRSM; (2.2)

= RSM + d; (2.3)

R$—RsM+dp+L,t+ft(L)—ds; (2.4)

where:

4 distance between origins of frames F and Ft expressed in F;
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L undeformed length of the tether;

t unit vector along the fl-axis;

ft(L) flexible deformation vector of the tether at a distance L from origin of Ft;

J., offset of the tether attachment point at the subsatellite end and expressed in

the frame F3.

In Eqs.(2.3 and 2.4) all the terms on the right hand side are not independent.

The vector SM, the distance between origins of the frames F0 and F, represents

the shift in the centre of mass and can be expressed in terms of other system vari

ables. By taking the first moment of the masses about the instantaneous centre of

mass and equating it to zero, it can be shown that

RSM = _{(mo + mt + ms)4, + ms(L3t + Jt(L) —
J8) + J tdmt},

where:

M total mass of the system, mp + m0 + mt + m8;

mp mass of the platform;

m0 mass of the offset mechanism;

mt mass of the tether, ptL;

p mass of the tether per unit length;

m3 mass of the subsatellite.

It may be pointed out that the vectors defined above and in Eqs.(2.1-2.4) are not with

reference to the same coordinate system. So, appropriate transformation matrices

are used during vector operations.
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2.2.3 Deformation vectors

Deformation at a point on the tether depends on its position and varies with

time. At a given instant, it can be expressed as three orthogonal components ut, v

and wt along Xt, Yt and Zt directions, respectively. The assumed mode method

is used to discretize the deformations. The admissible functions are linearly inde

pendent and satisfy geometric boundary conditions [64]. In a system with constant

length, the admissible functions may represent the mode shapes. But, in the present

case, where the tether length changes over time, the concept of mode shape does

not apply. However, an admissible function can be chosen to satisfy the geometric

boundary conditions. Since the diameter of the tether is very small (a few mm), the

admissible functions depend only on Y. So the tether deformations can be expressed

as:

ut(yt,L,t) =1mt,(t); (2.5)

vt(yt, L, t) = n(yt, L)Bn(t); (2.6)

Wt(yt, L, t)
=

n(yt, L)Cn(t); (2.7)

where:

4n(yt, L), ‘I’(yt, L) admissible functions for tether transverse and longitu

dinal deformations, respectively;

A(t), B(t), C(t) generalized coordinates for out-of-plane transverse, lon

gitudinal and inpiane transverse deformations, respec

tively.

Theoretically, a complete set of admissible functions should include infinite
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terms. Here the completeness implies that the energy of the discretized system

is the same as the energy of the continuous system [64]. For most engineering

systems, finite number of functions are sufficient to represent the dynamics. In the

present study, the first N1 and Nt functions from the complete set are considered

for representing the longitudinal and transverse deformations, respectively. Here N1

and Nt are arbitrary numbers. For the admissible functions, the kinematic boundary

conditions dictate that the transverse deformations at the supported ends be zero,

i.e.

u(0,L,t) = wt(O,L,t) ut(L,L,t) = wt(L,L,t) = 0; (2.8)

and the longitudinal deformation at the boundary y = 0 is zero, i.e.

vt(O,L,t) 0. (2.9)

At the subsatellite end (y = L), a dynamic boundary condition relating

the stretch and static tension in the tether can be obtained [65]. Having defined

the flexible deformations, elemental mass of the tether at any arbitrary unstretched

distance y from the origin of Ft can be defined by the position vector

= u(yt, L, t)j + (Yt + v(yt, L, t))3t + w(yt, L, t)k. (2.10)

The admissible functions for transverse oscillations of the tether correspond

to those of a flexible string [65],

(y,L)= %ñsin(Tht), n 1,2,”,Nt. (2.11)

For the longitudinal deformation, the admissible functions can be chosen as the

eigenfunction of a elastic tether supporting a point mass [29],

= sin(/3nyt/L), n = (2.12)

27



where 13 is governed by the equation

/3ntan(i3n)=, n=1,2,•,Nj. (2.13)
m3

Alternatively, it can be taken as

2n— 1

= () , n = 1,2,•• ,N1, (2.14)

which represents the vibration of a string with an end mass [36]. In the present

thesis the latter form of the admissible function (Eq.2.14) is used for the numerical

simulation.

2.2.4 Librational generalized coordinates

The generalized coordinates defining librational motion (rigid body motion)

are identified here. The orientation of each frame, F (i p, t, s), is obtained relative

to the orbital frame through three modified Eulerian rotations starting from the

orbital frame. The sequence consist of:

• rotation ofF0(X0,Y0,Z0) by angle a about theX0-axis resulting in (X1,Y1,Z1);

• rotation of (X1,Y1,Z1) by angle ,t3 about the Y1-axis resulting in (X2,Y2,Z2);

• rotation of (X2,Y2, 22) by angle about the Z2-axis resulting in (Xi, Y, Z).

These sequences of Eulerian rotations are indicated in Figure 2-2. Figure

2-2(b) shows a rotation about X0 axis in Yo, Z0—plane. In case of the tether, two

rotations at and ‘it are sufficient to describe its orientation in space (i.e. /3t = 0).

Therefore the generalized coordinates for the librational degrees of freedom are: ap;

/3p ‘in; at; ‘it (assuming the subsatellite and offset mechanism to be point masses).
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Figure 2-2 Diagrams showing relative orientations of two different frames: (a)

sequence of Eulerian rotations; (b) rotation about the X0-axis.
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2.2.5 Angular velocity and direction cosine

Since the gcneralized coordinates are defined with respect to the intermediate

frames of the Eulerian rotations, their derivatives are not the same as the inertial

angular velocities expressed in frame F. Before relating derivatives of the Euler

angles with the angular velocities, the following discussion on the vector transfor

mation between the reference frames is appropriate.

The matrix which transforms a vector from the frame Fj to the frame F2 can

be described by the equation

{v} = [Tj]{vj}, (2.15)

where:

{v2} vector expressed in frame F;

{v,} vector expressed in frame F;

[T] transformation matrix relating (Xi, Y, Z) and (Xi, }, Zj).

The transformation matrix [T] has the following properties [66]:

[T} = [Tjk][Tk(k_1)} . [T}[Tij], V integer k; (2.16)

[T][Tj] = [I] ; (2.17)

[T] = [T]’ = [T]T. (2.18)

Using Eq.(2.16), the angular velocity vector of the frame F can be obtained as

1wzi51 1+at
{w} = Li..),j = [T2][T21][T10] 0

(wzi) I 0
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10.1 10
+ [T12][T21] èt + [T2] 0

(oJ
I ( + at) cos(,6) cos(yj) + j sin(y) .1

= —(Ô + àt)cos() sin(’yj) + cos(yi) (2.19)

I (6+àt)sin(i3)+’y J

where: 6 is the orbital rotation rate; indices 1 and 2 in the transformation matrices

refer to the intermediate frames in the Eulerian rotation sequence; and

cos(yj) sin(7j) 0
T22 = —sin(7j) cos(7j) 0

0 0 1

cos(f3j) 0 —sin(/3)
T21= 0 1 0

sin(16) 0 cos(/3)

1 0 0
T10 = 0 cos() sin(a)

0 —sin(a) cos(a)

It is necessary to obtain the direction cosines {l} of the frame F relative

to the local vertical as they are needed in evaluation of the gravitational potential

energy later:

I .1 1 {i} {i0}
{l} = l = {j} .

{j°}
(l J ({k}.{j0}

10
= [T2][T21][Ti0] 1

(0

I sin(a) sin(i3j) cos(yj) + cos(a) sin(7j)
4

= — sin(a) sin(/3) sin(7j) + cos(a) cos(’yj) , (2.20)

( —sin(a)cos(6) J
where {i}, {jJ, {k:} are unit vectors along the X, Y, Z axes, respectively; and

{j0} is the unit vector along the Y0-axis.
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2.3 Kinetics

2.3.1 Kinetic energy

The inertial velocity of any elemental mass in the th domain can be obtained

by differentiating Eq.(2.1). In the following development, a bar over a character to

represent a vector quantity is dropped and replaced by brackets. The matrices are

enclosed by square brackets. With these notations, the velocity of an elemental mass

in the domain becomes

{dm}F1 = {ic}F1 + + {} + {w} x {r}. (2.21)

Here, the terms with subscript F1 refer to velocities with respect to the inertial

frame while those without any subscript are with reference to the local frames. The

kinetic energy of the elemental mass (Figure 2-1) can be expressed as

Tdmj = •{Rdm}F {Rdm.}Fdmj. (2.22)

The energy of the th body (Ti) can be obtained by integrating the above equation

over the mass of the body. The kinetic energy of the entire system (T) is the sum

of the energies of the individual domains,

T=T
i=p,t,s

= J {kdmj} {dm}dimi, (2.23)
i=p,t,s m

where mj is the mass of the domain i. Substituting Eq.(2.21) in Eq.(2.23) and after

some algebraic manipulations, the total kinetic energy of the system can be written

as

T = - {kc}F + M{RsM}F {SM}F
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+ (m0+ mt + ms){4}F

+ — {it(L)}F1} — {it(L)}F1}+ > {w}T[I}{w}

+ j{t} {t}dmt +J{t}. {{wt} x {rt}}dmt

+ ({{Lt}} {{Lft}})

_ms({{Lt}} _{ML)}F})

+ {SM}F1 . {mo +mt +ms){4}F1+ {t} +{wt} x {rt} }dmt

+ms{{Ljt}} _ms{{ds}F1- {it(L)}F}}

{t}+{wt}x{rt} }dmt

+ ms{{Ljt}}
- ms{{s}F + {Jt(L)}FJ}}. (2.24)

For conciseness, the kinetic energy is expressed as products of vectors and matrices.

Note, the kinetic energy expression accounts for 3-dimensional rotation of the plat

form, tether and subsatellite, as well as flexibility of the tether. For the particular

case where the system dynamics is confined to the orbital plane, the kinetic energy

expression reduces to

7’ = M{ic}{Rc}F + {i?sM}{M{i?sM} + {i?m}}

+ {w}T[I]{w} + (ms + pL).L2 + rnsL2w + ma{4}T{4}

i=p,t

+ mp{cip}T[U]{dp}
+ mawz{dp}T[UkjT[Uk]{dp}

+ { }T[Tt ]T{K1}+ wpz{dp}T[UkjT[TtPJT{Kl}

+{ã}T[TjT[K2]{..k} + wpz{dp}T[UkJT[Ttp}T[K2]{X}
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+ {}T[T]T[K3]{X} + w{dp}’ [Uk]T [Tt]T[K3]{X}

+ {iC}T[K4]{(} +{(}T[K5]{X}

-i- {X}T[K6]{X} + {K7}{i(} + {K8}{X}, (2.25)

where:

ma = m0 + pjL + m3;

{1m} = ma{{4} + {wp} x {d}} + J {{t} + {wt} x {rt}}dmt

+ms{{{Lt}} + {Jt(L)F};

{X}
= { }, = { } , and are expressed with respect to Ft;

{d} = velocity of the offset point in the frame Fr,;

{B} = {B}1; {C} = {C}t1.

Here, N1 and Nt are the number of generalized coordinates for longitudinal and

inpiane transverse vibrations, respectively. {K1}, [K2], , {K8} are defined in

Appendix-I. In the above energy expression (Eq.2.25), the first term represents the

orbital kinetic energy; the second accounts for the shift in the centre of mass; while

the rest of the terms arise from librational and vibrational motions of the system.

2.3.2 Gravitational potential energy

As in the case of the kinetic energy, the total gravitational potential energy

is the sum of the energies of the individual domains. The gravitational potential

energy for an elemental mass dm can be written as

dUG. =
GMe

dm. (2.26)
IRdmjI
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Using the binomial expansion with truncation of the series after the second degree

terms, the potential energy for the i’’ domain can be written as

Uc =
—

+ J ({R} {RJ —3 ({jo} {R})
2)

dm,

where:

G universal gravitational constant;

Me mass of Earth;

.Rc magnitude of the orbital radius;

m mass of the th domain;

{j°} unit vector along the Y0-axis (local vertical);

and {R} as defined in Eqs.(2.3, 2.4). The gravitational potential energy for the

entire system can now be written as

U =
— GMeM + GMe

(M({RSM}. {RSM} — 3({jo} {RSM})2)

+ ma(2{RSM} {d} + {d}. {d} — 6({j0} {RM})({jo} {dp})

- 3({j0} {d})2)

+ ms({Ljt} {Lj} + 2{Lj} {ft(L)} + {ft(L)} {ft(L)})

+ 2ms{{RSM} + {d}} {{Ljt} + {ft(L)}}

- 3m ({io} {Ljt}) ({i0} {Ljt} + 2{j0} {RSM}

+ 2{j0} {d} + 2{j0} {ft(L)})

- 3m ({i0}. {ft(L)}) (0 {ft(L)} + 2{j0} . {RSM} + 2{j0} . {d})

+ 2{{RSM} + {d} - 3({jo} {d} + {jo} {RSM}){jo}} {J{rt}dmt}

- (tr[zj_3{z}T[I]{l})). (2.27)
i=p,t,s
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Here the first term represents potential energy of the system treated as a point mass.

The rest of the terms are due to the system’s finite dimension. The potential energy

expression when simplified and expressed in matrix notation for the planar case has

the form

UG =
— GMeM

+ ({RSM}T[Plj{RSM} + {d}T[P2]{d}

+ 2{RsM}T[P2]{dp} + {X}T[P3]{RsM + d}

+ {X}T{P4}+ {X}T[P5j{X} + {p}T{R + d}

+ msL2(1 — 3Tto) —
(tr[i1 — (2.28)

i=p,t

where

[Ii] inertia dyadic of the domain i with respect to F (Appendix-I)

{l} direction cosine of the Y0-axis (local vertical) with respect to the frame F;

and [F1], [F2],... , {P}, and Vto are defined in Appendix-I. In Eq.(2.28), terms

containing {RSM } account for the potential energy due to shift in the centre of

mass.

2.3.3 Elastic potential energy

In the linear elastic theory of strings, it is generally assumed that the ini

tial tension in the string is large enough and the transverse displacements cause

negligible change in this tension. In a tethered orbiting system, the tension may

be reasonably large for long tethers (length of the order of kms). But at shorter

lengths, the tension is very low due to the weak gravity gradient force. In the ex

treme case when the length approaches zero, the tension tends to zero. Therefore

the effect of transverse vibration on the tether tension, and hence on the elastic
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oscillations can not be neglected.

The strain energy of the tether is based on the theory of vibrating string

[67]. In order to account for interactions between the longitudinal and transverse

modes, transverse displacement terms upto the second order are retained in the

strain expression

övt 1 1 / ãut 2 ow 2\
E=—+—( (—) +—) 1

Oyt 2 c9yt f9yt /
where is the total strain in an elemental tether mass of volume dVt. Total strain

energy of the tether can be written as

usz_J cdVt,

EAJ°( + 1((ôut)2 + (thvt)2))dY (2.29)

where:

u stress in an elemental mass of volume dVi, EE;

A area of cross-section of the tether;

L(t) unstretched tether length;

T4 volume of the unstretched tether, AL(t);

E young’s modulus of the tether material.

Substituting from Eqs.(2.6, 2.7) in Eq.(2.29), strain energy of the planar system can

be obtained as

U5
JL(t) (d{F(Yt)}T{B})

dyt +
JL(t) (d{Fb(vt)}T{c})4dyt

+
JL(t) (d{F(t)}T ) (d{Fc15(Yt)}T{C})

dyt. (2.30)
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2.3.4 Dissipation energy

The energy dissipation during tether deformation can be accounted for through

structural damping. Because of the complex mechanism of energy dissipation, the

stress—strain relation does not correspond to the elastic case. The system exhibits

the hysteresis phenomena during vibration. The area enclosed by the hysteresis

curve indicates the energy dissipation. In engineering applications, it is commonly

accounted for by considering the structural damping coefficient determined experi

mentally [68]. The structural damping can be expressed as an equivalent complex

Young’s modulus,

= E + iE1, (2.31)

where the real part E is the Young’s modulus without structural damping; the

imaginary part E1 contributes to the structural damping; and i = /1i. Now the

total stress can be written as

at E’c = (E + iE1)€ = E(l + ii)c,

where

= <<1. (2.32)

If is harmonic with frequency ,

i = — (2.33)
wo

and the total stress becomes

= E[e+ (_)E] = u+ad, (2.34)

where a = Ee is the stress in absence of the structural damping; and ad =

is the stress causing energy dissipation.
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The dissipation of energy can be expressed in terms of the Rayleigh’s dissi

pation function [69],

Wd= / OdfdVt

= EAi71L2
(2.35)

2.4 Equations of Motion

Using the Lagrangian procedure, the governing equations of motion can be

obtained from
d ÔT ÔT c9U ãWd

— +
+ Qq, (2.36)

where:

q vector of generalized coordinates;

Q q vector of generalized forces corresponding to generalized coordinates q;

U =UG+US.

The governing equations of motion account for:

(i) inpiane rotation of platform and tether negotiating any arbitrary trajectory;

(ii) longitudinal and inpiane transverse vibrations of the tether;

(iii) inpiane (two dimensional) offset of the tether attachment point from the

space platform’s centre of mass;

(iv) effect of the controlled variation of the offset attachment point;

(v) influence of deployment and retrieval on the system dynamics;

(vi) effect of thrusters located at the subsatellite end and momentum gyros on

the platform;
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(vii) shift in the centre of mass due to rigid body librations and elastic deforma

tions of the tether.

They would permit parametric response analysis of the system as well as aid in devel

opment of control strategies using thrusters, offsets and their hybrid combinations.

In a compact form the equations of motion can be expressed as

[M(q,t)]{ij} + {F(q,,t)} = {Qq}, (2.37)

where:

[M(q, t)} mass matrix (Appendix-IT);

{ F(q, t, t)} nonlinear, nonautonomous terms accounting for gravitational, Coriolis

and centrifugal forces (Appendix II);

{q} vector of generalized coordinates, {ap, at, {B}T, {C}T}T

ap platform pitch angle;

at tether pitch angle;

{B} vector of longitudinal elastic generalized coordinates;

{ C} vector of transverse elastic generalized coordinates;

{ Qq } nonconservative generalized force vector.

2.5 Generalized Forces

The generalized force vector (Qq) accounts for the effects of nonconservative

external forces and moments due to active and passive control, and environmental

disturbances. As mentioned before, the platform based momentum gyros provide

control torque (M,) about the platform axis Xp (Figure 2-3). As shown in the
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figure, the tether swing can be controlled by manipulating an orthogonal set of

thrusters (Tat, TL) at the subsatellite, or the motion of the tether attachment point

d) at the platform end. As discussed in Chapter 4, the control influence

matrix for the offset strategy can be obtained from the coefficient of the offset

acceleration in the equations of motion. However, for thruster control and platform

pitch equation, it has to be obtained as the generalized force vector.

The generalized force vector, Q, can be evaluated using the principle of

virtual work. Let F1, F2, , Fm are m external forces acting on the system

at locations with position vectors r1, ‘2, , fm, respectively. The system has

n generalized coordinates (qi, q, qn). The position vectors are, in general,

functions of qj’s. The virtual work, SW, by all the external forces can be expressed.

as

m m n -

i=1 i=1

(p. sqj = Qq38q3, (2.38)
j=1 :=

q3

where

(2.39)

is the generalized force corresponding to the generalized coordinate qj• The external

forces and moments acting on the system are:

M control moment acting on the platform about the X, axis;

Tat thrust applied perpendicular to the tether line at the subsatellite end;

TL control thrust along the undeformed tether applied at the subsatellite;

Fdt damping force perpendicular to the undeformed tether;
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Fdj damping force along the tether line.

The transverse and longitudinal dampers are located at distances of dt and

dl from the origin of Ft. Using Eq.(2.39), the generalized forces for the tether angle

and elastic degrees of freedom can be obtained as:

= Tat (L + {F(L)}T{B}) + Fdt (Ydt + {F(Ydt)}T{B}); (2.40)

{ Qn} = TL{F(L)} + Fdl{F(Ydl)}; (2.41)

{ Qc} = Fd{Fl(Yd)}. (2.42)

Since the tether can not transmit any moment or transverse force, the com

putation of Qap needs special attention. To that end, rather than considering the

external forces acting on the tether for virtual work computation, the equivalent

tension (1”a) at the platform end of the tether is employed. The tension ta depends

On Tat, TL, Fdt and Fdl, and attitude angles of the tether and platform. Tat and

Fdt are perpendicular to the undeformed tether and hence their contribution to t’a

can be neglected. This results in

The generalized force for ap can now be obtained from

where a is the position vector of the tether attachment point on the platform.

After appropriate transformation of vectors and expanding the dot product it can

be shown that

Qap = M + (TL + Fdl) (Dt sin(a) — .Dt cos(a)), (2.43)
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where:

a = at — ap;

= RSM + dp;

= RSMZ + 4•

2.6 Summary

A general set of kinetic and potential energy expressions are obtained for

a platform based tethered satellite system undergoing three-dimensional dynamics.

These expressions are used to obtain, through the Lagrangian procedure, governing

equations of motion for the system dynamics confined to the plane of the orbit. The

highly nonlinear, nonautonomous and coupled equations of motion are extremely

lengthy even in the matrix notation. They account for a shift in the center of mass,

time dependent variation of the tether attachment point at the platform, as well as

deployment and retrieval of the tether. The structural damping is modelled through

Rayleigh’s dissipation function. The generalized force vector representing effects of

external forces is evaluated using the principle of virtual work. The relatively general

formulation can implement the offset and thruster control strategies to regulate

both the rigid and flexible dynamics of the tether with the platform attitude motion

controlled by momentum gyros.
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3. COMPUTER IMPLEMENTATION

3.1 Preliminary Remarks

The governing equations of motion developed in the last chapter were inte

grated numerically to study the dynamics and control of the tethered systems. The

computer code is quite lengthy ( 6200 lines), mainly due to the highly time vary

ing nature of the system dynamics and moving tether attachment point. Moreover,

the frequencies of attitude and elastic degrees of freedom are widely separated with

a closely packed spectrum for the flexible system. The stiff characteristic of the

system, which may present problems during numerical solution, demanded special

attention. It was desirable to explore several different approaches to arrive at an

efficient controller design. To that end, it was necessary to evolve a flexible program

structure that would permit varied simulations with a few parameter changes in the

input file. Of course, the program should be easy to debug and efficient to run.

This chapter begins with discussion on the numerical algorithm and program

structure developed. Next, validity of the equations of motion and the computer

code are assessed by two different methods: conservation of total energy; and com

parison of frequency spectra for a particular case of the linear system as reported in

the literature. The chapter ends with a summary of salient features of the numerical

code.

3.2 Numerical Implementation

Integration algorithm

A computer program is written to numerically solve the governing equations

of motion of the tethered satellite system. The second order ordinary differential

45



equations representing the system dynamics are rearranged as first order equations

to this end. The system dynamics as represented in Eq.(2.37) can be expressed as

= [M(q,t)]_1{Qq
— F(q,i,t)}. (3.1)

Defining

the above relation can be rearranged as

{ [M(q,t)]1{Qq
- F(q,,t)} }‘ (3.2)

which is a set of 2N first order equations. Here N is the dimension of the generalized

coordinate vector {q}. The IMSL:DGEAR subroutine is used to integrate the above

equation. The main advantage of this method is the automatic adjustment of the

iteration step—size for stiff systems with error check in each iteration cycle [70]. The

subroutine uses Gear’s predictor-corrector algorithm [71].

Program structure

The flowchart showing the structure of the program to simulate- both un

controlled and controlled dynamics of the system is presented in Figure 3-1. The

program starts with initialization of the system parameters and generalized coordi

nates. Special program parameters are introduced to identify the type of controller

used in the simulation. The initialization is achieved by reading the input file. In

each integration time-step, the generalized coordinates, length and offset variables

are written into the output files. The main program calls the integration subrou

tine DGEAR which in turn calls the subprogram FCN. The system dynamics as

expressed in Eq.(3.2) is computed by this subroutine. In case of controlled simula

tion, the actuator inputs are obtained from the subroutine CONTROL. Details of
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the subroutines are given below.

Subroutine FCN

This subroutine computes the mass matrix and the nonlinear terms to for

mulate the vector ‘, Eq.(3.2), required by the integration subprogram (DGEAR).

As shown in the flowchart (Figure 3-2), this subroutine calls a number of sub

programs (such as KINETIC, POTENTIAL, etc.) which perform certain specific

computation (e.g. computation of modal integrals used in Kinetic and potential

energy expressions). This feature makes the program easy to debug. The velocity

and acceleration of the tether deployment/retrieval maneuver are calculated by the

subprogram LENGTH. Based on the specified parameters, the subprogram OFF

SET computes the velocity and acceleration profiles for the specified offset motion

These two subroutines define the system maneuvers. Next, the modal integrals and

other matrices used in the formulation (Appendix—I) are evaluated using the subpro

grams KINETIC and POTENTIAL. As explained in Chapter 2, some intermediate

matrices are defined for concise presentation of the governing equations of motion.

The matrices appearing in the potential and kinetic energy expressions are evalu

ated through the subprograms SP and SK, respectively. The matrices used in the

potential energy equation are

[F1], [F2], [F3], [P4], [F5], {P6},

and those used in kinetic energy expression are

{K1}, [K2], [K3], [K4], [K5], [K6], {K7}, {K8}.

The contribution of the terms containing the inertia matrix (Appendix I) of the

tether is computed by the subroutine INERTIA. The contribution of the strain
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energy and structural damping are estimated in subprograms STRAIN and DAMP

ING, respectively.

The above subprograms completely define all the terms required to evaluate

the governing equations of the system. Depending on the specified control param

eters, the system inputs are established and the vector computed. This value is

used by the integration subroutine DGEAR for the numerical solution.

Subroutine CONTROL

The system inputs required to regulate the dynamics are computed by the

subroutine CONTROL (Figure 3-3). This subroutine selects the appropriate con

troller design subprogram for either offset or thruster strategy. The subprogram

for offset control obtains the system model and then designs the controller. In the

thruster based regulator, three different models can be used for the controller design.

Once the model is selected, the procedure is the same as in the offset strategy. The

control inputs are computed and returned to the subroutine FCN.

3.3 Formulation Verification

Once the computer program is developed to integrate the equations of mo

tion, the next logical step is to validate the formulation as well as the numerical

code. Two different approaches are used to this end. In the first place, total energy

is computed for conservative configurations of the system. In the second approach,

natural frequencies of the linear system are compared with those reported in the

literature. As can be expected, numerical results for the model selected for study

are not available. One is forced to be content with validation through comparison

of a few simplified cases.
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Figure 3-3 Flowchart for the subprogram CONTROL to compute actuation
inputs.

Offset control
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3.3.1 Energy conservation

In the study of the attitude dynamics of spacecraft, the effect of attitude

dynamics on the orbital motion is very small [61, 62, 63J. Therefore, it is a normal

practice to consider the satellite to be moving in a Keplerian orbit. This assumption

does not affect the results of an attitude dynamic study. However, it imposes an ad

ditional constraint and makes the system nonconservative. So, the attitude and the

orbital motions are decoupled and the governing equations representing uncoupled

attitude dynamics, which is a conservative system, is used for energy calculation.

The inertia and elastic parameters considered in the analysis are the same as those

used for the dynamic simulation (Chapter 4).

With zero structural damping, the variations in kinetic, potential and total

energies from the reference values are plotted in Figure 3-4. The energies at the

beginning of the simulation are considered as the reference values. Figure 3-4(a)

shows results for the stationkeeping at a tether length of 20 km and zero offset

where as Figure 3-4(b) is for L = 5 km and an offset of 1 m along the the local

horizontal. In both the simulations, initial disturbances of 0.5° is given to the tether

attitude (at) and the platform pitch angle (ap). Initial conditions of 12 m and 0.8 m

are given to the longitudinal oscillation (B1) of the tether for L = 20 km and 5 km,

respectively. For the tether transverse vibration, the disturbance levels are taken as

1 m and 0.01 m for L 20 and 5 km, respectively. As expected for a conservative

system, change in the total energy remains zero and there is a continuous exchange

between the potential and kinetic energies in both the simulations. Similar results

were obtained for other lengths and offset positions of the tether. In all the cases

conservative nature of the system was found to be preserved. It should be recognized

that during deployment/retrieval and movement of the tether attachment point,
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there is energy input to the system. So the system is no longer conservative and the

energy check can not be applied.

3.3.2 Eigenvalue comparison

In this case, linear models were obtained for decoupled rigid and flexible sub

systems by neglecting the second and higher order terms and making appropriate

substitution for the trigonometric terms. These linearized equations of motion for

the rigid and flexible subsystems are given in Appendices III and IV, respectively.

The frequencies of the system are calculated and compared with the results reported

by Keshmiri and Misra [34], and Pasca and Pignataro [72]. In ref. [34], the number of

elastic modes of a tether in each direction is limited to two. The higher frequencies•

of the system are obtained by using what authors call the semi-bead model, where

the tether is divided into a number of smaller segments and negligible masses are

placed at the connection points. Ref. [72] analyzes a system consisting of an elas

tic continuum tether with mass, and orbiter and subsatellite represented as point

masses. The linearized equations of motion are solved by means of a perturbation

technique.
-

The present analysis, which models the tether as a flexible string using the

assumed mode method, can include any arbitrary number of modes in both the

longitudinal and transverse directions. The eigenvalues are computed for the same

mass and geometric parameters as in the references. The governing equations are

linearized about the static equilibrium position which is zero for the rigid and trans

verse flexible modes. The equilibrium value for the first longitudinal mode is 100 m

and 3.6 m for tether lengths (L) of 100 km and 20 km, respectively. The normalized

frequencies are compared in Tables 3.1 and 3.2. The mass and elastic parameters
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considered for the frequency computation are indicated in the tables.

Table 3.1 Inplane dimensionless natural frequencies (w/Ô) of a 2-body system

(L 100 km, mp = i0 kg, m3 500 kg, pt = 5.76 kg/km,
EA 2.8 x N).

Mode Present Ref.[34] Ref.[72j Type
Study

1 1.732 1.731 1.794 Lib.
2 5.958 6.388 6.905 Tran.
3 11.917 12.059 12.457 Tran.
4 17.876 17.879 18.269 Tran.
5 23.835 23.742 24.142 Tran.
6 29.794 29.627 — Tran.
7 35.753 35.528 — Tran.
8 41.712 41.445 — Tran.
9 47.670 47.383 — Tran.

10 53.627 53.344 53.807 Tran.
11 54.266 54.541 54.559 Long.
12 59.589 59.337 59.758 Tran.

In the tables, w is the frequency of the system; 8, the orbital frequency; m3,

the subsatellite mass; pt, the mass per unit length of the tether; E, the Young’s

modulus and A, the cross sectional area of the tether. The first column represents

the mode number and the last column is the mode type, i.e. librational (Lib.),

transverse (Tran.) or longitudinal (Long.).

Table 3.2 Inpiane dimensionless natural frequencies (w/6) of a 2-body system

(L = 20 km, mp = oo, m3 = 576 kg, p = 5.76 kg/km, EA =

2.8 x N).

Mode Present Ref.[34] Ref.[72] Type
Study

1 1.732 1.732 1.733 Lib.
2 12.640 12.777 12.780 Tran.
3 25.281 25.245 25.241 Tran.
4 37.922 37.795 37.771 Tran.
5 50.563 50.369 50.319 Tran.
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The minor differences between the present results and those of ref. [34] are

of the same order in both the cases. The discrepancies may be attributed to the

different formulation methods used. The larger differences for L = 100 km is due to

a parameter 7 = pL/ms defined in ref.[72], which plays an important role. y has a

smaller value in Table 3.2 than in the previous case. As pointed out by the authors,

their results are more accurate for smaller -y, hence the correlation is better in Table

3.2.

Frequencies of the systems with different platform and subsatellite masses

are shown in Table 3.3. The discrepancy between the present results and those of

Ref. [34] follow the same trend as before. Since has a reasonable value, the results

are in better agreement with those of Ref. [72]. Results for three cases are reported

here with different end masses. One case is close to the TSS configuration where the

platform mass is iü kg and the subsatellite mass is 500 kg. Other two cases are for

equal end masses. As shown in Table 3.3, the frequencies are the highest with the

largest end masses (mp = ms = iü kg) and the lowest for the smallest end masses

(mp = m3 = 500 kg).

Note, the results of the linearized system match quite well with the reported

data although the three studies use different methods to determine frequencies of

the system. Furthermore, the results are in close agreement for different tether

lengths as well as different masses of the endbodies. This with the conservation of

total energ test provides considerable confidence in the validity of the governing

equations of motion and the numerical code developed for their integration.
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Table 3.3 Comparison of natural frequencies of a tethered two-body system
with different end masses (L = 20 km, Pt = 5.76 kg/km, EA
2.8 x iü N).

Mode Present Ref.[34J Ref.[72] Type
Study

mp = kg,m3 = 500 kg
1 1.732 1.732 1.738 Lib.
2 11.917 11.956 11.993 Tran.
3 23.835 23.578 23.644 Tran.
4 35.753 35.286 35.368 Tran.
5 47.671 47.019 47.112 Tran.
mp = ms = kg

1 1.732 1.715 1.728 Lib.
2 10.028 14.432 — Tran.
3 113.453 113.430 113,385 Tran.
4 226.908 227.023 226.736 Tran.
5 340.364 340.934 340.095 Tran.
6 453.813 455.167 453.455 Tran.
mp = ms = 500 kg

1 1.732 1.732 1.742 Lib.
2 8.294 8.486 8.341 Tran.
3 16.588 16.507 16.191 Tran.
4 24.883 24.637 24.155 Tran.
5 33.178 32.799 32.142 Tran.

3.4 Summary

The governing equations of motion for the tethered satellite system are in

tegrated numerically using the IMSL:DGEAR subroutine. The computer program

is developed in a structured manner to reduce debugging and running time. The

numerical code is validated by two methods: the total energy check for conservative

systems; and comparison of frequencies with those reported in the literature. The

excellent correlation provide confidence in the simulation model and the numerical

code developed for its dynamical response and control studies.
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4. DYNAMIC SIMULATION

4.1 Preliminary Remarks

Understanding of the system dynamics is fundamental to the design and

development of any engineering system. Furthermore, design of an appropriate

controller requires appreciation of the system performance under a wide variety of

operating conditions to guard against the possible instability. To that end, the

governing equations of motion of the tethered satellite system are numerically inte

grated and the system’s dynamical response studied for different parameter values

and operating conditions.

A major concern in the operation of tethered systems is the dynamical be

haviour during deployment and retrieval phases. In modelling of a flexible system,

the number of modes used for discretization is important. The model developed

here can include an arbitrary number of modes for both the transverse and longi

tudinal vibration of the tether. An acceptable number of modes for the analysis of

the system is arrived at through comparison of simulation results including higher

modes. This chapter focuses on results of a parametric study carried out by system

atic variations of the tether length (L), offset of the tether attachment point (d

and Young’s modulus of the tether (E), density of the tether material (Pt) and

mass of the payload (m3).

4.2 Deployment and Retrieval Schemes

Before proceeding with the parametric analysis of the system dynamics,

some remarks on the deployment and retrieval time histories used in the study
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would be appropriate. The deployment is carried out with an exponential-constant-

exponential velocity profile. Let L1 and L2 are the lengths where the velocity (L)

profile changes from exponential to constant and from constant to exponential char

acter, respectively. The deployment velocity profile is characterized by the following

relations:

LcdL, LaL<Li; (4.1)

= CdL1, L1 L <L2; (4.2)

—Cd(Ll+L2—L), L2 LLf; (4.3)

where L0 and Lf are the initial and final tether lengths, and Cd is the proportionality

constant. The above equations can be integrated to obtain the length expression:

L = Loecd(t_t0), L0 L <L1; (4.4)

= L1 + CdL1(t — t1), L1 L <L2; (4.5)

= L1 + L2 — Lie_Cd(t_t2), L2 L Lf, (4.6)

where and t are the time instants when the tether length is L1 and L2, respec

tively, starting from the beginning of deployment. Given the initial time t, final

time tf, L0, Lf, L1 and L2, the proportionality constant can be obtained as

Cd (tftO){ln(t) +
(L2i)1(Ll+L2_Lf)}

()

Similarly, expressions for the retrieval profile are

L = crL; (4.8)

and L =L0ed7(t_t0), (4.9)

where L0 and t0 are the tether length and time, respectively, at the beginning of
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the retrieval phase. The proportionality constant, c,, now has the form

cr
= ( ) in (t). (4.10)

At times, particularly with the offset control in a hybrid scheme, only the exponential

velocity profile is used. The corresponding length expressions for such deployment

scheme are similar to the retrieval expressions with appropriate initial and final

parameters.

4.3 Simulation Results and Discussion

The parametric study was rather comprehensive, however, for conciseness,

only a few typical results are reported here to help establish the trends in the

dynamic behaviour. The inertia and elastic parameters considered in the analysis

are:

I, = Inertia matrix of the platform,

8,646,050 —8,135 328,108
—8,135 1,091,430 27,116 kg-rn2;
328,108 27,116 8,286,760

rnp = mass of the platform, 90, 000 kg;

rn0 = mass of the offset mechanism, 10 kg;

Pt = mass of the tether per unit length, 4.9 x i0 kg/rn;

rns = mass of the subsatellite, 500 kg;

EA= 61,645 N.

The system negotiates a circular trajectory with a period of 90.3 minutes. In the

simulation, the X-axis is oriented parallel to the orbit normal (X0). The platform
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pitch,
,,

is the angle between the Yp-axis and the local vertical (i.e. Y0-axis).

Similarly, X.t is parallel to X0 and the tether pitch is the angle between Y and the

local vertical. The longitudinal and lateral elastic deformations of the tether are

measured with respect to the frame Ft.

The structural damping considered in the simulation corresponds to a damp

ing ratio () of 0.5% based on the first natural frequency of the longitudinal oscilla

tion of the tether. Computation of dissipative terms due to the structural damping

requires the values of the parameters and w0 (Section 2.3.4). Here w0 is considered

as the frequency of the 1st longitudinal mode (B1) which can be computed from the

equivalent stiffness and mass of the decoupled system,

/--
wo = 4! —,

Vtm&

where:

= Ck3(1, 1) + Ck3(1, 1) + Wtl k4(l 1) — 2K6(1, 1)

m = 2K4(1, 1).

The structural damping parameter can be obtained from the damping ratio ,

— 2Ewmb
/

LI ‘1’i \
Jo

The matrices used in the above expressions are defined in Appendix I.

4.3.1 Number of modes for discretization

In the modelling of a flexible system using the assumed mode method, the
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system is complete in the sense that the energy of the mathematical model converges

to the true energy when the number of modes approaches infinite [64]. However,

in reality, one can employ only a finite number of modes. Fortunately, for most

physical systems, it has been observed that only a few modes can represent the

system dynamics with considerable degree of accuracy. The model with the first

three transverse and the first two longitudinal modes are considered to be reasonably

accurate. The disturbance induced relative amplitudes of different modes were used

as a basis for selecting the acceptable number of modes.

Simulations are carried out for two tether lengths. Figure 4-1 shows the

response of the system with a tether length of 20 km and initial conditions as shown

in the diagram. As expected, for the stationkeeping case, the rigid degrees of freedom

(i.e. ap and at) exhibit pure oscillatory motion. The first and second longitudinal

modes (B1 and B2) show high frequency decaying oscillation due to the structural

damping, which has a stronger effect on the second mode (B2). Modulation of the

B2 response is due to its coupling with the first longitudinal mode. Note, an initial

disturbance of 10 m is given to the first transverse mode (C1). With zero specified

offset (D = = 0) of the tether attachment point, the tether dynamics is

not coupled with the platform motion. Therefore C1 has a pure oscillatory motion

with zero mean. As the structural damping has only the second order effect on

the transverse tether vibration, the responses in the higher modes, C2 and C3, are

also non-decaying. As apparent from the at response, there is very small coupling

between the attitude and flexible motion of the tether even for, a length of 20 km.

The modulation of the second and third transverse modes (C2 and C3) is due to the

coupling between the flexible degrees of freedom.

The important aspect of this simulation is the relative magnitudes repre
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senting the energy content of the higher modes. A comparison for the longitudinal

modes shows that the amplitude of B2 is an order of magnitude lower than that of

B1. Moreover, the vibration of the second longitudinal mode decays in about 0.02

orbit as compared to one orbit for the first mode. As mentioned before, the sustained

oscillation of B2 is due to its coupling with the B1 response. So the energy content

of the second longitudinal mode would be very small compared to that of the first

one. Similar conclusion can also be made for the transverse modes. The amplitude

of the first transverse mode (Ci) is higher by at least one order of magnitude from

that of C2, and two orders of magnitude from that of the C3 response. Thus the

energy content in the higher modes of the tether vibration is minimal.

Similar conclusion can be arrived at from the simulation results for a tether

length of 10 km (Figure 4-2). Unlike the previous case, now the modulation of

the third transverse mode is quite prominent, although the amplitude is rather

small. The beat phenomenon is due to the weak coupling between the attitude

and flexible motions through a shift in the center of mass. Note, in this case the

differences between the fundamental and the higher modes are more than two orders

of magnitude.

From these two sample cases, it can be concluded that the energy content

in the higher modes is relatively small. Therefore, in the subsequent dynamics

and attitude control studies, only the first longitudinal and transverse modes are

considered.

4.3.2 Tether length

To facilitate comparison of results, a reference case is established for a tether

length of 5 km and zero offset along both the local horizontal and local vertical direc
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Figure 4-2 System response for a shorter tether with higher modes included in
the flexibility modelling.
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tions. In the reference case (Figure 4-3), the rigid body rotations of the tether (ct)

and the platform (ap) are essentially unaffected by the tether flexibility. For zero

offset it is expected that the platform dynamics is not coupled with the tether mo

tion and hence free from its dynamical behaviour. The tether rotation is negligibly

affected by its flexibility dynamics. As apparent from the figure, the longitudinal

flexible response (B1) consists of two frequencies. The lower frequency is due to

the coupling between the rigid body motion of the tether (ct) and the flexible dy

namics, whereas the higher frequency corresponds to the flexibility itself. The high

frequency component of B1 decays due to the structural damping in the tether. The

structural damping has a second order effect on the transverse tether vibration. So

the C1 response has an essentially constant amplitude. For zero offset, as expected,

the transverse vibration (C1) is not coupled with other degrees of freedom.

The response of the system with a smaller tether length (L = 50 m) is

shown in Figure 4-4. As in the reference case, the longitudinal mode contains

two frequencies. But the higher frequency of oscillation increases from 0.025 Hz

(corresponding to the reference case) to 0.249 Hz when the length decreases to 50

m. For L = 50 km (Figure 4-5), the higher frequency decreases to 0.0073 Hz. There

was also a change in the frequency of transverse vibration (C1) from 0.0045 Hz for

the reference case to 0.0448 Hz for L = 50m and to 0.0014 Hz for L = 50 km. The

stiffness of the tether, which is inversely proportional to its length, increases as the

length decreases and hence results in a higher frequency of oscillation for a shorter

tether.

Figure 4-6 shows the effect of the flexible tether on the rigid body dynamics

for a length of 500 m. Simulation is carried out with zero initial condition for

the tether attitude motion. at response has a high frequency component due to it
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coupling with transverse tether oscillation (C1). But the amplitude of oscillation is of

the order of i0 degree, which can be considered negligible in practical applications.

4.3.3 Offset of the tether attachment point

‘Effect of the tether attachment point offset was found to be quite significant.

It couples the platform dynamics with the tether degrees of freedom. The offset

along different directions, i.e. local horizontal and local vertical, was found to have

different coupling effects. Thus motion of the tether attachment point, which is

required during the offset control, adds extra complexities to the system dynamics.

Figure 4-7 shows the system response during the offset motion from the center of

mass of the platform by 2 m in 120 s along the local vertical while D2 is held fixed

at zero. As shown in the figure, is varied according to a sinusoidal acceleration

profile. The tether pitch (c) and longitudinal elastic mode (B1) are unaffected by

the offset motion, while the platform pitch response (np) shows amplitude modula

tions. The amplitude of the transverse vibration (C1) reaches around 0.08 m during

the offset motion and remains at that value subsequently. Note, here the response

reaches a higher value than the initial disturbance of 0.01 m.

Response results were also obtained for an offset motion from zero to 2 m in

120 s along the local horizontal (Figure 4-8). In this case there is strong coupling

between the platform and tether dynamics. Particularly, the platform oscillates

at much lower frequency and about a mean orientation at _900 as compared to

the local horizontal position in Figure 4-7. The C1 response is modulated due to

the coupling with the platform dynamics. The other degrees of freedom behave as

before.
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Figure 4-7 Simulation result.s during offset motion along the local vertical with

the offset along the local horizontal fixed at zero.
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Figure 4-8 System response showing the effect of offset motion along the local
horizontal.
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When a fixed offset is given along both the local horizontal (D) and the

local vertical (D2) directions (Figure 4-9), there is a strong modulation of the

crp response like that shown in Figure 4-7 but the frequency is not modulated as

indicated in Figure 4-8. As shown in Figure 4-9, the transverse vibration (C1) has a

regular amplitude modulations due to the coupling with the platform pitch motion,

however, The tether attitude and the longitudinal flexible modes are unaffected by

the offsets.

4.3.4 Tether mass and elasticity

The flexible motion of the tether is significantly dependent on the mass and

elastic properties of the material. The two flexible characteristics which are most

affected by the change in mass and elastic stiffness are: static deformation of the

tether; and the frequency of both the transverse and the longitudinal vibrations.

To understand these effects, studies were undertaken with different mass densities

and elastic stiffnesses for the stationkeeping phase at a tether length of 5 km. A

decrease in the linear mass density (Pt) from 4.9 x i0 kg/rn (corresponding to

the reference case) to 1.0 x i0 kg/rn does not significantly affect the longitudinal

response (Figure 4-10). However, the frequency of the transverse elastic mode is

increased from 0.0045 Hz, corresponding to the reference case (Figure 4-3), to 0.01

Hz. The platform and tether attitude responses are not affected by the change in

the tether mass.

There is an increase in the static elongation of the tether from around 0.81

rn to 0.88 m when the linear mass density is increased to 25 x 10 kg/rn from the

reference value of 4.9 x i0 kg/rn. As shown in Figure 4-11, the most significant

change is observed in the frequency of the transverse vibration mode (C1), which
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Figure 4-10 Plots showing the effect of decreasing the tether mass per unit
length on the system response.
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is decreased to 0.0021 Hz from the reference value of 0.0045 Hz. The rigid body

responses are essentially unchanged.

The response of the system with a decrease in the the elastic stiffness (EA)

to 40,000 N from the reference value of 61,645 N, is shown in Figure 4-12. As

expected, with the reduced stiffness the static elongation of the tether increased to

1.27 m compared to 0.81 m for the reference case (Figure 4-3). The frequency of

the longitudinal vibration (B1) is also reduced to 0.02 Hz from the reference value

of 0.0249 Hz. The change in stiffness has only a small influence on the transverse

oscillation (C1) of the tether. For a system with an increase in the elastic stiffness

of the tether (Figure 4-13), the trends are as expected. Now, the frequency of B1

is increased to 0.0282 Hz from the reference value of 0.0249 Hz. As before, the

transverse vibrations exhibit insignificant change from the reference response.

4.3.5 Subsatellite. mass

The mass of the subsatellite (ms) is an important parameter affecting, par

ticularly, flexible dynamics of the tethered satellite systems. The tether tension is

mainly governed by the subsatellite mass and length profile during deployment/retrieval

which, in turn, affects the elastic response of the system. The system behaviour with

a decrease in the end mass to 50 kg and its increase to 5,000 kg from the reference

value of 500 kg, is shown in Figures 4-14 and 4-15, respectively. For m3 = 50

kg (Figure 4-14), frequency of the longitudinal oscillation increased to 0.0733 Hz

from the reference value of 0.0249 Hz (Figure 4-3). This can be explained by mod

elling the longitudinal oscillation by a spring—mass system which has a frequency

inversely proportional to square root of the end mass. However, the frequency of

the transverse vibration, which is proportional to square root of the tether tension
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[73] (tension is higher for a larger subsatellite mass), has a lower value of 0.00 16

Hz as compared to 0.0045 Hz in the reference case. On the other hand, for an in

crease in the subsatellite mass to 5,000 kg, the frequency of longitudinal oscillation

reduced to 0.0081 Hz and that of the transverse vibration increased to 0.014 Hz. It

is interesting to note that the frequencies of the transverse and longitudinal oscilla

tions change in opposite directions (i.e. one decreases and the other increases) for a

change in the subsatellite mass. As expected, the static elongation of the tether is

more for higher subsatellite mass.

4.3.6 Deployment and retrieval

From the dynamics point of view, deployment and retrieval are the critical

phases in a tether mission. As pointed out before, the retrieval dynamics is an

inherently unstable operation where as the deployment can be unstable if the velocity

exceeds a certain critical value. Figure 4-16 shows the dynamic response during

deployment of the subsatellite from a tether length of 200 m to 20 km in 3 orbits. An

exponential- constant-exponential velocity profile is employed for the deployment.

The deployment parameters are obtained from Eqs.(4.4-4.7). The velocity profile

switches from the exponential to constant at a tether length of 2.5 km and the second

switch, from constant to exponential, occurs at 18 km (L1 2.5 km and L2 = 18

km). As shown in the figure, even with a zero initial condition, the tether pitch

(at) grows to —30° during the initial phase of the tether deployment. Subsequently,

it slowly decreases and oscillates between ±2° after the deployment is over. This

growth in the amplitude of at is mainly due to the Coriolis force caused by the

interaction between the orbital and deployment velocities. For zero offset, there is

no coupling between the platform and the tether dynamics. Therefore, ap oscillates

between 0 and Q•50• The mean value of 0.25° is caused by the nonzero product
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Figure 4-16 Response of the system during deployment of the subsatellite using
an exponential-constant-exponential velocity profile.
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of inertia about the Y, Zp axes (‘P,z 0). As expected, the mean value of the

longitudinal oscillations, which is the static elongation of the tether, increases with

the length. As shown in the inset of the B1 plot, the deformation of the tether is

greater than zero implying that the tether tension is positive. Since tension in the

tether is small at the beginning of the deployment, it is critical to use appropriate

acceleration profile for deployment because higher acceleration may cause slackness

(i.e. negative tension) in the tether. If the first switch in the velocity profile occurred

at 800 m (L1 = 800 m) instead at 2.5 km, B1 became negative at the beginning of

the deployment and the tether was slack (plot not shown). Because of the Coriolis

force, C1 increases to —7 m even without any initial disturbance. In the terminal

exponential deployment phase, C1 decreases because of the decrease in the velocity

(L). After the deployment is over C1 oscillates with a constant amplitude about the

zero mean value.

The system response for retrieval from L = 20 km to 200 m in 4 orbits with

an exponential velocity profile is shown in Figure 4-17. The Coriolis force during

the retrieval made the tether pitch () unstable. Since the offset in the simulation

is taken to be zero, the platform attitude angle is not affected by the tether motion.

As expected, the tether elongation (B1) decreased with the length. As the length

decreased, frequencies of the elastic modes (B1 and C1) increased as expected. The

instability in the system excited the transverse mode (C1), which grew to ±50 m.

The magnitude of the retrieval velocity, and hence the Coriolis force, decreases with

the tether length. This, along with the increase in the stiffness, led to the decrease

in the amplitude of C1 towards the end of the retrieval. However, at the beginning

of the retrieval the instability due to the Coriolis force is stronger resulting in an

increase in the transverse amplitude. The instability also excited the longitudinal

oscillations resulting in negative B1, i.e. the slack tether.
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4.3.7 Shift in the center of mass

In a typical mission the length of the tether can vary from zero to 20 km.

Experiments involving 100 km long tether are in the planning stage. Obviously, this

would result in an extremely wide shift in the center of mass of the system. Figure

4-18 shows plots for the shift in the center of mass of the system during deployment,

stationkeeping and retrieval for a maximum tether length of 20 km. As expected,

at the beginning of deployment (L 200 m), the shift in the center of mass is small

(Figure 4-18 a). The shift along the local vertical (Rn) increases with the tether

length and, at the end of the deployment, R becomes more than 120 m, which

is 0.6 % of the tether length. The shift along the local horizontal (R) is mainly

due to the tether libration. Though the tether pitch is large at the beginning of

the deployment (Figure 4-16), because of a smaller length, variations remain

essentially the same. As shown in Figure 4-16, there is a change in the mean value

of t as the deployment terminates. This effect can be easily seen in a change in

the amplitude of R2 at the end of deployment.

Figure 4-18(b) shows the response during stationkeeping at L = 20 km. The

coupling between the attitude motion of the tether and platform results in a beat

response for both and variations are confined to one side of —121.26

m, where as oscillates about the zero mean. As expected, decreases with

the tether length during retrieval (Figure 4-18 c). The retrieval is carried out from a

tether length of 20 km to 200 m in 4 orbits with an exponential velocity profile. The

tether pitch (c) being unstable, there is no specific pattern to the shift in the center

of mass. Though at becomes very large during the retrieval, does not increase

beyond —25 m. This is due to the fact that an increase in the tether attitude angle

is associated with a decrease in the tether length. The combined effect of these two
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Figure 4-18 Plots showing shift in the center of mass during three different
phases of the system operation:(a) deployment; (b) stationkeeping;
and (c) retrieval. Total deployed length is 20 km.
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factors limits any increase in beyond a certain value.

4.4 Concluding Remarks

Results of a comprehensive parametric study suggest the following:

(i) Higher modes carry insignificant amount of energy.

(ii) In absence of the tether attachment point offset, tether flexibility has little

effect on the rigid body dynamics.

(iii) Offset of the tether attachment point couples the platform dynamics with

the tether degrees of freedom.

(iv) Flexible dynamics of the tether is substantially affected by the mass and

elastic properties of the tether material. In particular, they affect static

deflection of the tether, and frequency of both transverse and longitudinal

oscillations.

(v) The tension of the tether is primarily governed by the subsatellite mass and

length of the tether and, in turn, affects its natural frequencies.

(vi) Deployment and retrieval represent critical phases in a tethered mission. De

pending on the deployment/retrieval rate, the system is susceptible to insta

bility and the tether may become slack.

(vii) There can be significant shift in the system center of mass during deployment,

stationkeeping and retrieval.
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5. ATTITUDE CONTROL

51 Preliminary Remarks

The instability during retrieval, large amplitude swinging motion at the time

of deployment and undesirable performance in the stationkeeping phase would de

mand some active control strategy for a successful tether mission. Depending on

the mission requirements, the objective of the controller is to regulate the attitude

and/or flexible motion of the system. The design and implementation of the attitude

controller is addressed in this chapter.

As mentioned in Chapter 1, in the past, control of tethered systems has

been approached through three different strategies: tension or length rate control;

thruster control; and offset strategy. The tension or length rate control scheme

depends on the differential gravity field, and hence is ineffective at shorter tether

lengths. Although the thruster based control procedure is unaffected by the length

of the tether, it is not advisable to use thrusters in the vicinity of the space platform

due to plume impingement and safety considerations. Therefore, the offset control

strategy is the most effective choice for shorter tethers. The offset motion required

for controlling the tether attitude dynamics increases with the length and hence the

applicability of this strategy is limited by the space available to move the tether

attachment point on the platform.

The advantages associated with the three control strategies over different

lengths lead to a hybrid scheme where the offset method can be used for shorter

tethers and thruster or tension based approaches can be applied at longer lengths.

Such a hybrid strategy was originally used by Modi et al.[49j for a rigid tethered
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system. In this thesis, the hybrid strategy is extended to a system with flexible

tether. The thruster augmented active control is used here to regulate the attitude

dynamics for longer tethers.

The dominant feature, which governs the system characteristics, is the time

varying length of the tether. If the time dependent variation of the system param

eters is relatively small, the Linear Time Invariant (LTI) robust control techniques

can be used to regulate the dynamics with the parameter variations treated as un

certainties. But, in the present situation, the length of the tether varies from few

meters to 20 km, and hence the robust LTI controller will not be effective. There

are mainly four different approaches to control such highly time varying systems:

• gain scheduling control;

• adaptive/self-tuning control;

• simultaneous control of multiple plants;

• control based on the Feedback Linearization Technique (FLT).

In the gain scheduling approach, a number of LTI controllers are designed for

different operating conditions and are stored on-board. In the real time operation,

the controller selects and implements the appropriate gains corresponding to an

operating condition. The major difficulties with these controllers are the design and

storage of the controller gains for a number of operating conditions. Any change in

the mission objective may need redesign of the controllers for new operating points.

In the adaptive control, a simple system model is estimated from the knowl

edge of the system inputs and outputs. Based on the estimated model, the controller

is designed and implemented in real time [74]. This approach has advantages for

systems whose dynamics can not be modelled accurately.
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Another alternative to these approaches is the simultaneous control of a

number of LTI plants, over the entire range of parameter variation, by a single

controller. Here, the time varying system is considered as a collection of controllable

and observable LTI plants described by:

th = Ax + Bu; (5.1)

y=Cx, i=l,2,...,np; (5.2)

where: x, yj and u are the state, output and control input vectors, respectively;

and A, B and C are the LTI matrices of appropriate dimensions. The index ‘i’

corresponds to the th plant and Tip is the total number of plants. Considering

the output feedback, the objective is to design a single controller, u = —Ky, i =

1,2, -. , Tip, so that all the plants are simultaneously controlled. The control can also

be achieved by state or dynamic output feedback. Several algorithms to accomplish

this objective have been reported in the literature [75—81].

In the FLT, the nonlinear and time varying dynamic equations are trans

formed into an LTI system by the nonlinear, time-varying feedback. Thus a single

controller structure can regulate the highly time varying and nonlinear dynamics of

the system. References [82-88] discuss detail mathematical background and design

procedures for the feedback linearization control.

The FLT based controller is quite effective for systems which can be modelled

accurately. The controller performance is sensitive to the modelling errors [89]. In

the present study, attitude dynamics of the system can be modelled quite accurately

and hence the FLT is selected for the controller design. In a general problem with

feedback linearization, the control algorithm consists of three steps: transformation

of the state space; control variable transformation making the system linear in the

92



new coordinate system; and control of the linear system in the new state space. The

dimension of the transformed linear controllable system depends on its properties

and type of the linearization procedure applied, such as the input-state or the input-

output feedback linearization [83].

The attitude controller for shorter and longer tethers are designed using the

offset and the thruster strategies, respectively. The following section discusses the

design algorithm and implementation of the thruster based controller. The design

and implementation issues related to the offset strategy are addressed in the next

section. Finally, a hybrid control scheme is presented followed by some concluding

remarks.

5.2 Thruster Control Using Dynamic Inversion

Selection of an acceptable design model is important in the development of

a controller using the dynamic inversion. From the implementation point of view,

it is advantageous to use a simpler model for the controller design. However, an

approximate model may affect the system stability [89] and performance. In the

present study an acceptable dynamic model for the controller design is obtained via

numerical simulation. Three different models — complete nonlinear flexible, rigid

nonlinear, and rigid linear — are selected for the controller design. Simulation results

for each case are compared to arrive at an acceptable model.

5.2.1 Controller design algorithm

As pointed out before, the thruster control strategy is used to regulate the

attitude motion of the longer tether, and momentum gyros control the platform

pitch motion. The rigid body modes, i.e. ap and aj, are controlled actively through
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feedback and the flexible degrees of freedom are regulated by passive dampers. The

control of the flexible generalized coordinates becomes important particularly during

retrieval when the elastic modes are unstable. The controller for the rigid degrees

of freedom is designed using the inverse control procedure, which is a special case

of the Feedback Linearization Technique (FLT). In case of the thruster control, the

system is already in the canonical form. So only control transformation is necessary

for linearization of the system.

The system model for the controller design can be expressed in the form

M3 1j8 + F8 = Q, (5.3)

where: M3 is the mass matrix; F3 is the vector of nonlinear terms; and q3 and

are the vectors of generalized coordinates and forces, respectively. If the number

of independent control inputs in Q3 is the same as the dimension of q3, the above

system can be transformed into a linear time invariant form by the generalized force

vector

= M3v + F3. (5.4)

This transforms Eq.(5.3) into a linear form of

= v. (5.5)

Here v is the new control input required to regulate the transformed decoupled

linear system. A linear control theory can be used to design the control input. In

the present study, v is chosen in such a way that the error (e = q3 — q3) dynamics

has poles at desired locations in the s-plane. This is accomplished by

= ‘1d + Kv(sd — s) + Kp(q$ — qs), (5.6)
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which results in the error equation

ë+Kvé+Kpe=O. (5.7)

Here K and K are the diagonal matrices of velocity and position feedback gains,

respectively, and q, sd and sd represent the desired trajectory. The controller

expression in Eq.(5.4) is referred to as the primary controller while that in Eq.(5.6)

is called the secondary controller.

The next step in the controller design is to decide an acceptable structure for

M8, F8 and Q for the system model in Eq.(5.3). As mentioned before: nonlinear

flexible; nonlinear rigid; and linear rigid models are used for the controller design.

The linear and nonlinear rigid models are in a form which can directly be used for the

controller design. But the nonlinear flexible model has a different form. However,

it can be transformed to have the required structure as follows.

The system under consideration has the form

M(q, t) + F(q, , t) Qq, (5.8)

where: q and Qq are vectors of the generalized coordinates and forces, respectively;

M(q, t) is the nonlinear time varying mass matrix; and F(q, , t) is the vector con

taining nonlinear gravitational, Coriolis and centrifugal terms. Here the dimension

of q is more than the number of independent control inputs in Qq. Let q, and

denote the components of q; Fr and Ff the components of F(q, , t); and Qq,. and

Qqf the components of Qq corresponding to the rigid and flexible modes, respec

tively. Here Qq,. represents the generalized forces due to the control inputs, and

Qq corresponds to the generalized forces due to the passive dampers in the system.
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Partitioning the mass matrix appropriately, the above equation can be rewritten as

[M,.,. Mrf1f4ri> fFrfQqr

1 ff J 1q J l f J 1.. q

Here: q, = {crp, ct}T; qf = {B1, B2,• • , B1, C1, C2,• • , CNt}T; and Nt and

N represent the number of flexible modes in transverse and longitudinal directions,

respectively. If the controller is to be designed based on the rigid model of the

system, Mrf and the flexibility terms from Mrr, F,. and Qq,. are neglected and the

resulting rigid body (qr) equation can be used to design the controller using Eqs.(5.4)

and (5.6). But if the effect of flexibility on the rigid modes is to be accounted for

by the controller, the equations of motion for the rigid degrees of freedom (q,.) can

be obtained as [84]

M8 &+Fs—Qqr, (5.10)

where:

—1M8 = M,.,.
—

MrfMff Mf,.;

and F F,. + MrfMJ(Ff + Qqf)’

Eqs.(5.4) and (5.6) can be used to design the controller for this system.

In the implementation of this control strategy, the submatrices of M and F

are to be computed, which need the knowledge of the flexible system model and the

flexible generalized coordinates. Using the assumed mode method to discretize the

elastic deformations, the dynamic model can be obtained with a considerable degree

of accuracy. The problems associated with the observation of the flexible modes and

their resolution is a subject in itself. Here, it is assumed that the flexible generalized

coordinates are available for the control purpose.
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5.2.2 Control with the knowledge of complete dynamics

The system model considered for the controller design includes all the non

linear time varying terms including the effect of tether flexibility (Eq. 5.10). The

controller is designed using the dynamic inversion (Eqs. 5.4 and 5.6) and imple

mented on the complete nonlinear flexible model of the system (Eq. 5.8). The

numerical values for the system parameters considered in the simulation are the

same as those used for the dynamic study in Chapter 4. Only the first longitudinal

(Bi) and lateral (Ci) modes are considered in the simulation, however, the program

developed can incorporate an arbitrary number of modes in both directions.

Figure 5-1 shows controlled response of the system during the stationkeeping

phase at a tether length of 20km. Since the dynamics of the rigid system is exactly

cancelled by the controller, the platform pitch (ap) and tether swing (as) behave

as required. The desired performance specifications for the closed ioop system are

characterized by the rise and settling times, which are 0.1’r and 0.4T, respectively,

for both the platform and tether librations. Here r is the orbital period. The thrust

(Tat) requirement is quite small for an initial disturbance of 2° in the tether pitch

(at). The nonzero mean value of M is required to regulate ap about zero which is

not its equilibrium value, and to cancel the extra moment on the platform due to a

nonzero offset. The control inputs (M and Tat) cancel the effect of flexible dynamics

on the rigid degrees of freedom. This introduces the high frequency component in

the time histories of M and Tat. The coupling between the rigid and flexible

generalized coordinates excites the transverse vibration (C1) even in absence of any

initial disturbance. As expected, the longitudinal elastic mode decays due to the

structural damping.

The controlled response during deployment from L = 200m to 20km in 3
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orbits is shown in Figure 5-2. An exponential-constant-exponential velocity profile

is used for the deployment. The first switch from exponential to constant velocity

occurs at L = 2.5 km and the second switch takes place at L = 18 km. The

behaviour of the rigid modes, c, and , is similar to the stationkeeping case.

It is interesting to note the similarity between the deployment velocity (L) and

control thrust (Tat) profile governed by the Coriolis force. The moment M is very

small due to zero offset of the tether attachment point from the platform center

of mass (D = = 0). As expected, elongation of the tether (B1) increases

with the length. With the present deployment profile, inset within the B1-plot

shows the tether elongation at the beginning of deployment to be greater than zero.

Sometimes, if the deployment acceleration is high, tether may become slack. The

response of the transverse flexible mode (C1) is governed by two effects: change in

the tether tension due to the deployment acceleration profile; and the Coriolis force

effects due to the deployment velocity.

The rigid body dynamics during the retrieval is controlled quite successfully

(Figure 5-3). However, it is important to recognize the unstable dynamics of the

flexible subsystem. The uncontrolled longitudinal elastic mode (B1) becomes nega

tive implying that the tether is slack. The amplitude of C1 response also becomes

very high (±80m) due to the Coriolis force. The retrieval is carried out with an

exponential velocity profile (Chapter 4). As the velocity decreases the effect of the

Coriolis force becomes small. Furthermore, frequencies of the flexible degrees of

freedom increase with a decrease in the tether length. The decay in the amplitudes

of B1 and C1 responses after certain time during retrieval is due to the combined

effect of the tether length, changing Coriolis effect and structural damping. The
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constant-exponential velocity profile.
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Figure 5-3 Controlled response during the exponential retrieval without a pas

sive damper.
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control thrust cancels effects of the flexible dynamics on the rigid modes resulting

in the high frequency oscillations of Tat.

In the present study, the unstable dynamics of the flexible degrees of freedom

is controlled only by passive dampers. Passive dampers are provided for both the

transverse and longitudinal oscillations. The transverse damper (damping coeffi

cient = 0.03 Ns/m) is placed at the middle point of the tether and the longitudi

nal damper (damping coefficient = 1.5 Ns/m) is located at the subsatellite. The

magnitude of the damping coefficients considered in the simulation are within the

practically achievable range [90]. The results for controlled retrieval with passive

dampers are presented in Figure 5-4. The rigid body responses are the same as

the previous case without damper. However, the flexible responses (B1 and C1)

now settle to their equilibrium values rather quickly. Note, the magnitude of B1 is

always greater than zero implying that the tether has positive tension.

5.2.3 Inverse control using simplified models

The controller design in the last section is based on the complete nonlinear

model of the system. The implementation of this controller needs knowledge of all

the flexible modes, which are difficult to obtain, and requires considerable amount

of the real time computational effort. These limitations may make the controller

difficult to implement. Therefore, to obtain a readily implementable controller, two

simplified models are considered here. The results of the uncontrolled dynamic

simulation (Chapter 4) serves as the guideline in selecting the simplified model. As

seen in Figure 4-6, the rigid body responses are not significantly affected by the

tether flexibility. Since objective of the attitude controller is to regulate the rigid

body modes, the nonlinear rigid body model is considered for the controller design.
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Figure 5-4
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The governing equations of motion can now be expressed as

[Mn M12 f&pj+JF11_f M j 511)[M21 M22 &tJ 1F2J1LTatJ’ (.

where the coefficients are defined in Appendix III. This system is in the canonical

form and hence Eqs.(5.4 and 5.6) can be used directly to design the controller.

The other simplified model considered for the design corresponds to the rigid linear

system, which can be expressed as

[ML11 ML121 fz’l+ 1ii CL121 I a1)
[ML21 ML22j 1 & J [GL21 CL22] at

+
[KL11 KL121 I 1 + I FL1

— f M (5 12
KL21 KL22j 1cJ FL2J

— 1LTatJ’ ‘

with the coefficients defined in Appendix III. This controller is also designed using

Eqs.(5.4 and 5.6). The controllers, designed by dynamic inversion using simplified

models, are implemented on the complete nonlinear flexible system. Figure 5-5

shows the system response during stationkeeping with the controller based on the

nonlinear rigid model. As expected, ap and at settle to the desired value in about

0.5 orbit. Note, in the present case, the control inputs do not cancel the effect of

flexibility on the rigid modes. Therefore the high frequency components of M and

Tat have much lower amplitudes than those in Figure 5-1. As can be seen from the

inset of at-plot, due to the coupling between C1 and at, the tether pitch has a high

frequency component with very small amplitude. These oscillations slowly decay

due to active control and, in turn, decease the amplitude of C1 through coupling

effects.

As shown in Figure 5-5, the controller based on the rigid nonlinear model

results in a steady state error in the platform pitch (ap). An outer Proportional

Integral (PT) controller loop is used to take care of this error. With this, the primary

104



Figure 5-5 System response during stationkeeping using the rigid nonlinear
model for the controller design.
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controller of Eq.(5.4) becomes

I KpT(ap—pd)+KITj(ap_apd)dt
= M8v + F5 + , (5.13)

( 0 J
where KPT and KIT are the proportional and integral gains, 2.0 and 0.05, respec

tively. The response of the system with the P1-controller is presented in Figure 5-6.

Note, the steady state error in the platform pitch response is reduced to zero. The

other responses remain essentially unchanged.

The response of the controlled system during deployment, with dynamic

inversion, using rigid nonlinear model is shown in Figure 5-7. The deployment

velocity profile is the same as in Figure 5-2. Comparing Figures 5-2 and 5-7, it can

be concluded that the system dynamics is virtually identical except for two effects:

amplitude of the steady state ocillations of the control thrust (Tat) is very small;

and the C1 response decays slowly with the controller based on the rigid nonlinear

model. In Figure 5-7, the controller does not cancel the effect of flexibility on the

rigid model. It leads to a smaller fluctuation of Tat as compared to that in Figure

5-2. The tether transverse oscillation (Ci) decays slowly due to its coupling with

the a response which has a small diminishing amplitude. Similarly, response of the

system with the controller based on the rigid linear model (Eq. 5.12) was found to

be almost identical to that in Figure 5-7. Thus the controllers based on the rigid

nonlinear and rigid linear models lead to essentially the same performance during

deployment.

The simplified linear and nonlinear models of the rigid system were also used

to design the controller for regulating the attitude motion during retrieval. Response

of the system with the controller based on the rigid nonlinear model and in presence

of passive dampers is shown in Figure 5-8. The dampers used here are the same
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as those for the simulation in Figure 5-4. A comparison of results in Figures 5-4

and 5-8 shows similar behaviour except for reduced Tat fluctuations in the present

case. Similar trends were observed with the controller based on the rigid linear

model. Identical observations can be made for the controller design aimed at the

stationkeeping case.

5.2.4 Comments on the controller design models

As seen in the previous section, the controllers based on the complete flexible

nonlinear, rigid nonlinear, and rigid linear models result in very similar system

performance. Hence, the computational time may serve as an important criterion

in selection of the model. To that end, the controlled dynamics was assessed over

five orbits with a time—step of 1 s. This corresponds to the situation where the

controller can be implemented as a sampled data system with a step—size of 1 s.

The computational time with the controller design based on different models are

compared in Table 5-1 for stationkeeping, deployment and retrieval phases.

Table 5.1 Comparison of the time (s) required by the controllers using different
design models.

Nonlinear Nonlinear Linear
Flexible Model Rigid Model Rigid Model

Stationkeeping 402.6 67.6 70.4
Deployment 5195.1 68.1 71.6

Retrieval 5332.2 68.4 71.7

Each computation loop involves calculation of the control inputs, and record

ing of the system output as well as input values in a file. Calculations for the sta

tionkeeping case correspond to L = 20 km. Deployment is carried out from a tether
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length of 200 m to 20 km in 3 orbits using an exponential-constant-exponential

velocity profile with the switch over at tether lengths of 2.5 km and 18 km. During

retrieval, the tether length decreases from 20 km to 200 m in 4 orbits with an expo

nential velocity profile. The study was carried out on a SUN Sparc-2 workstation.

As expected, in all the three modes of tether operation, the controller based

on the nonlinear flexible model demands the maximum computational effort. The

controller based on the rigid nonlinear model takes the minimum time. In the linear

rigid model, the equations are linearized about an arbitrary reference trajectory.

So the governing equations involve more algebraic and trigonometric operations

than the rigid nonlinear case. This results in a longer computational effort for

the controller based on the rigid linear model as compared to the riid nonlinear.

case. As seen in the previous section, the system performance with the different

controller is essentially similar. So the controller based on the rigid nonlinear system

is preferred. Of course, it should be recognized that irrespective of the system model

chosen for the controller design, its effectiveness is assessed through application to

the nonlinear, nonautonomous and coupled flexible system.

5.3 Offset Control using the Feedback Linearization Technique

As mentioned before, because of practical limitations, it is advantageous to

use the offset strategy for attitude control when the tether length is small. This

section presents the design procedure and simulation results for the offset control of

a class of tethered systems. The Feedback Linearization Technique (FLT) is used

to design the controller for this highly time varying tether dynamics.
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5.3.1 Mathematical background

For two vector fields f and g on R”, the Lie bracket [f, g] is a vector field

defined by [83]
ôg of

[f,g]f—g,

where Of/Ox and ag/ax are the Jacobians. It is also denoted by ad}(g), and by

induction

ad(g) = [f, ad1(g)],

with ad°f(g) = g. A set of vector fields (x) {x1,..., xm} is said to be involutive

if there are scalar fields ajjJ such that

j,

=

or in other words [xi, Xj] E s(X). It is called completely integrable if for every

point, assuming x1, , x are linearly independent, there exists an rn-dimensional

manifold M in R such that at each point of M the tangent space of M is spanned

byx,•,xm.

Let h R” —‘ R be a scalar field. The gradient of.h, denoted by dh, is a

row vector field
fOh Oh
Ox1’ ‘8

on R”. A set of scalar fields are linearly independent if their gradients are a linearly

independent set of row vector fields. For a scalar field h and a vector field f =

(fi, ••

, f)T, the dual product of dh and f, denoted by (dh, f),is a scalar field

defined by
Oh Oh

The feedback equivalence for control systems is based on three operations
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[86]: coordinate transformation in the state space; coordinate transformation in the

control space; and feedback. For linear systems, with the operations defined in a

linear fashion, it is well known that every single input system which is time invariant

and controllable is feedback equivalent to the canonical form

Z[ Z2 0

= + V. (5.14)dt Z_1 Z 0
Zn 0 1

Any nonlinear system which is feedback equivalent to the above form is called linear

equivalent.

Theorem 1 (Su, 1982 [86)): A system = f(x, u) is a linear equivalent if and only

if

(i) J(x,u)—_ f(z)+g(x)4’(z,u) where f(O)= 0, 4(0,O)=0 and 84/ôu 0;

(ii) the vectors g, ad}(g),. , ad)(g) span R about the origin;

(iii) the set of vector fields {g, ad}(g),... , ad?)(g)} is involutive. D

For systems satisfying the above theorem, the state transformation z =

T(x) {T1, . , Tn}T required for linearization can be obtained from the following

conditions:

(dTi,adjc(g)) =0, i = 0,1,,n—2; (5.15)

(dT1,ad’1(g)) 0; (5.16)

T2 0

= +
. (5.17)dt Tn

Eqs. (5.15) and (5.16) can be used to get the function T1. The complete transfor
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mation, z = T(x), can be obtained from Eq.(5.17). Ifq5(x,u) is selected as

q(x,u)
v —P(x)

(5.18)

where: n

P(x) =

n

and
j1

Eq.(5.17) acquires the same canonical form as that of Eq.(5.14).

The expression for (x,u), Eq.(5.18), which transforms the system into the

canonical form, is referred to as the primary controller. Now the task is to design a

feedback controller (called the secondary controller) to generate the control input,

v, so that the transformed states z1,•• , Z1’ and hence the original states x1,• ,

follow the desired trajectory. This can be achieved by using the linear time invariant

control procedure.

5.3.2 Design of the controller

The purpose of the attitude controller is to regulate the rigid body rotations

of the platform and tether. The dominant characteristic, which governs the system

dynamics, is the time varying length of the tether during deployment and retrieval.

As discussed in the previous section, the controller based on the rigid model of

the system gives almost the same performance as that obtained using the flexible

nonlinear model. Furthermore, as shown in Chapter 4, the tether response is not

significantly coupled with the platform dynamics; however, for a nonzero offset, the

platform attitude is strongly affected by the tether motion. Therefore the controller

for the tether dynamics is designed based on the rigid model decoupled from the

platform motion. On the other hand, the model for the platform controller includes
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the effect of tether libration.

As shown in the thruster control case (Section 5.2), performance of the system

with the controllers based on linear and nonlinear rigid models is almost identical.

Therefore, it is sufficient to consider only the linear model for design of the tether

controller. The rigid body equation for the tether dynamics, decoupled from the

platform motion, is linearized about the quasi-equilibrium trajectory (at) and the

specified offset motion. The total offset position, {d}, is the sum of the specified

value, {D}, and the controller coordinate {D}. The resulting dynamic equations

for the controller design are:

ma(ap, x, t)& + f(ap, p, x, , t) = (5.19)

= alat +a2D2 + a3at +a4Dz + b + cDi, (5.20)

where

r iTx =jat, a, -‘j

Here D2 is the z-component of {D} which is the offset along the local horizontal

required by the controller. The coefficients of Eqs.(5.19) and (5.20) are defined in

Appendix III.

The equilibrium value for the platform pitch angle (p) is specified by the

mission requirement, and the quasi-equilibrium angle for the tether pitch rotation

(at) is given by

{miDpz + m1(Ô2 — 2ji)D +61imi(Dp — Da) +

= mi(—Dpy + Da)
— mcrtS — that8

+ mi(Ô2 — 2u)(Dpyäp + D2). (5.21)
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Here Dpv and represent the ‘y’ and ‘z’ components, respectively, of the vector

{D} and other coefficients are defined in Appendix III. In Eq.(5.20), the accelera

tion of the tether attachment point along the local horizontal (Di) is used to control

the tether swing. Since it is necessary to regulate the position and velocity of the

tether attachment point, the dynamic model for the tether pitch is augmented by

the identity

= ut. (5.22)

The alternate method to control the offset motion is to include the physical be

haviour of the offset mechanism into the system dynamics. It should be pointed out

that the time constant of the offset mechanism is usually much smaller than that of

the tether libration. Hence the use of Eq.(5.22) to regulate the offset motion does

not affect the implementation of the control strategy.

The governing equation for the platform dynamics (Eq. 5.19) is already in

the canonical form. Therefore, only the control variable transformation is required

to linearize the system. The structure of the primary controller which accomplishes

the linearization is

Qcrp = m(cp, x, t)v + fap(p, &p, Z,
,

t). (5.23)

The secondary control input, Vp, which asymptotically drives the error (e = p—apd)

dynamics to zero, can be expressed as

Vp k1 (Pd —
+ kp2(àpd —

p) + &pd, (5.24)

where: and k2 are coefficients of the desired closed loop polynomial for the

error dynamics; and cpd, &pd, cpd represent the desired trajectory. Now the error
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equation becomes

ë+kp2ê+kp1e= 0.

The model used for the tether controller design, Eqs.(5.20) and (5.22), can be rep

resented by

= f(x, t) + g(x, t)ut, (5.25)

where:

I X3

X4
‘ ‘ — ax1 + a2x2 + a3x + a4x4 + b

0

(U
Jo

and g(x,t)=

Ii

In general, the coefficients in Eq.(5.25) are time varying. The transformation of

this system to time invariant canonical form can be obtained using the algorithm

of Hunt and Su {91j. However, in the present case, the coefficients of the tether

dynamics are slowly time varying parameters and hence a quasi-static approach is

sufficient to achieve the objective. This results in a quasi-static controller structure

which transforms the system into the canonical form. The functions f(x) and g(x)

satisfy the conditions in Theorem 1, and hence the system is feedback equivalent.

The state transformation, which maps the system into the canonical form, is

z = T(x) = [t]x, (5.26)

where:

= a + a1c + a3(a4 + a3c);

t12 = — c(a2 + aic) + a4(a4 + a3c);

= a4 — a3c;
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= c(a4 + a3c);

and for i = 2,3,4

til =

tj2 =

tj3 = t(_1)1+a3t(_l)3;

+ a4t(_l)3.

The structure of the transformed system is similar to Eq.(5.14), where the primary

controller has the form

— P(x)
Ut

=

, (5.27)

with:

P(z) =a1t43x1—i- at43z+ (t41 +a3t43)z3+ (t42 +a4t43)x4;

Q(x) = Ct43 + t44.

The secondary controller for the system is designed to place the closed ioop eigen

values at some desired locations. This leads to the following expression for the

transformed control input Vt,

Vt =
— zld) + kt2(z2

— Z2d) + kt3(z3
— Z3d) + kt4(z4

— Z4d), (5.28)

where kt and Zid = 1, , 4, are the coefficients of the desired closed loop polyno

mial and the desired values for z, respectively. Zid can be computed from Eq.(5.26)

with the knowledge of the desired x. The structure of the tether pitch controller is

shown in Figure 5-9.
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Figure 5-9 Schematic diagram of the closed-loop tether dynamics with the FLT
based controller.

5.3.3 Results and discussion

The controller designed for the platform and tether pitch angles are imple

mented on the complete flexible and nonlinear model. As mentioned before, the

offset control strategy has advantages at shorter tether lengths. In this section, con

trolled response results are presented for operations with a maximum tether length

of 200 m. The inertia and elastic parameters are the same as those used in the

dynamic simulation of Chapter 4. One possible drawback of the inverse control pro

cedure may be its lack of robustness against the model uncertainty [89]. To assess

this aspect, intentional modelling error was introduced by neglecting the shift in

the center of mass terms from the controller model, but retaining the corresponding

terms in the simulation model.

The desired system performance is characterized by the settling and rise

times. The settling times for platform, tether and offset motion are 0.4 ‘r, 0.8r and

0.82T, respectively. The rise times are O.lr and 0.15r for the platform and offset

1 I

FLT controller
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motions, respectively. The rise times for the tether libration are 0.2r, 0.16r and

0.18r during deployment, stationkeeping and retrieval, respectively. Here r is the

orbital period. The maximum allowable offset is taken as ±15m.

Figure 5-10 shows the controlled performance of the system for stationkeeping

at L = 200 m with the modelling error in the controller design. Though the rigid

modes are stabilized to some steady state values, the performance of the system

is not satisfactory. The desired steady state values for ap and are 0 and 1 m,

respectively, which are not achieved by the controller. Moreover, the at and d2

response is quite oscillatory. The moment required to control a1,, i.e. M, is also

oscillatory because of the coupling between the platform and the tether dynamics

caused by a nonzero offset.

When the shift in the center of mass terms are included in the controller

model, the oscillatory nature of a and d1,2 responses is reduced substantially and

the steady state value of a1, become zero (Figure 5-11). The steady state value of

d1, is still less than the required magnitude of 1 m. An outer Proportional-Integral

(P1) loop was introduced to reduce this steady state error. With this, the structure

of the tether primary controller becomes

Ut
=

Q(r
+K1,0(d — D1,2)+K10j (d1, — D1,2)dt, (5.29)

where K1,0 and K10 are the proportional and integral gains, respectively. The sec

ondary control input Vt IS obtained as before using Eq.(5.28). In the present sim

ulation, the gains are: K1,0 = 1.0 x 10—6 and K10 = —1.5 x i0. The schematic

diagram of the controllers with the integral loop is shown in Figure 5-12 and re

sponse of the system is presented in Figure 5-13. Now, the steady state offset is 1.0

m. Note, the offset requirement is a little higher than the previous case, however

120



xp°

M

B1

2.0

-0.0

0.0

2.0

0.0

-2.0

0.01

0.0

2.0

2.0

0.1

Figure 5-10 Controlled response in presence of the modelling error introduced
by neglecting the shift in the center of mass terms during the con
troller design.

a(O) = 2°; cx(0) =2°
Stationkeeping, L = 200 m

B1(0)=0.1304x102m

C.(O)=0 D=O ; D=1.0m

2.0 0.0

0.0

Cl -0.00

-0.01
0.0 Orbit 0.5

121



a(O) = 2°; c(O) =2°
Stationkeeping, L = 200 m

B1(0)=0.1304x102m

C1(0) =0 = 0 ; D = 1.0 m

Figure 5-11 System response with the shift in the center of mass included in the

2.0

-0.0

0.0 2.0 0.0 2.0

xp°

M

2.25

B1

1.25

0.0
0.01

C1 -0.00

-0.01 —

0.0

0.1

Orbit 0.5

controller design model.

122



Figure 5-12 Schematic diagram of the closed-loop system with the outer P1

control loop for the tether dynamics.

the response is substantially improved. The longitudinal oscillation (B1) decays due

to the structural damping in the tether. Although the transverse vibrational degree

of freedom is not subjected to any initial disturbance, the offset motion during the

control excites the C1 response resulting in a small amplitude oscillation.

Response results were also obtained for the controlled deployment of the

subsatellite from a tether length (L) of 50 m to 200 m in one orbit (Figure 5-14). An

exponential-constant-exponential velocity profile was used for the deployment. The

first switching of the velocity from exponential to constant profile occurs at L 80

m and the second switching is at L = 180 m. The controller used in this case includes

the outer P1 loop for the tether dynamics with the gains as mentioned before. As

shown in Figure 5-14, the platform pitch angle is controlled quite successfully. The

D+

Plant

CL
p
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Figure 5-13 System response in presence of the outer PT control ioop.
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tether pitch (at) is controlled about the quasi-equilibrium trajectory as defined by

Eq.(5.21). After deployment, at settles to zero. The total offset motion required

is within ±5 m, which is much less than the limiting value of ±15 m. The control

moment M cancels the coupling between the tether and platform dynamics, and

drives ap towards its desired value. The coupling between the tether and platform

dynamics is due to the offset (d2). This leads to similarity between the moment

(Mi) and d2 time histories. The nonzero steady state value of M is needed to

stabilize a, about zero, which is not its equilibrium state.

As expected, the mean value of the longitudinal oscillations increase with

the tether length. Note, frequency of the transverse vibrations decrease as the

tether length increases. Effect of the Coriolis force during deployment is stabilizing

and keeps amplitude of the transverse oscillations quite small, however the mean

value of C1 is not zero. In the post—deployment phase, amplitude of the transverse

oscillations increase with zero mean. Simulations were also carried out for several

other deployment rates (0.7 and 1.5 orbit, plots not shown). As can be expected,

the maximum offset requirement was found to be higher (±7 m) for the faster

deployment in 0.7 orbit and lower (±3 m) for the slower deployment rate.

The controlled response of the system during the exponential retrieval from

a tether length of 200 m to 50 m in 1 orbit is shown in Figure 5-15. The generalized

coordinate for the transverse vibration (C1) grows to around 0.02 m even when it is

not excited initially, i.e. C1(0) = 0. The initial disturbance in the first longitudinal

mode (B1) decays quite rapidly due to the structural damping, however a small

amplitude oscillation persists due to coupling with the transverse vibration (inset in

B1 plot). In the present case the destabilizing Coriolis force is not enough to make

the tether slack (i.e. B1 < 0). The platform pitch (ap) response settles to zero
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Figure 5-15
velocity profile.
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within 0.4 orbit while the tether pitch (at) is stabilized about the quasi-equilibrium

trajectory, which is zero after the retrieval. The moment (Mi) required to control

ap is only 4 Nm. The offset position required to control the tether swing is between

+12 m and —5 m, which is within the limit of ±15 m used in the present study. As

in the case of deployment, simulation results were also obtained for several retrieval

times (results not shown). As anticipated, the maximum offset required to regulate

the tether swing was larger for a faster retrieval.

5.4 Attitude Control using Hybrid Strategy

As discussed earlier, thruster and tension control schemes have disadvantages

at shorter tether lengths which leaves the offset strategy as an efficient alternative.

This section presents simulation results of a tethered system implementing a hybrid

control scheme. The controller design procedures are the same as those described

earlier. In the study, the offset strategy is used for tether lengths less than 200 m

and the thruster control law is applied for longer (> 200 m) tethers. The thruster

control strategy is based on the rigid nonlinear model of the system.

Response of the system during controlled deployment from 50 m to 20 km

using this hybrid strategy is shown in Figure 5-16. Deployment from 50 m to 200

m is carried out in 1 orbit with an exponential velocity profile while the rest of the

deployment (200 m to 20 km) is completed in 3 orbits with an exponential-constant

exponential velocity profile. In the second deployment stage, the first switch (from

exponential to constant velocity profile) takes place at a tether length of 2.5 km

and the second switch occurs at 18 km. The tether pitch is controlled about its

quasi-equilibrium value during the first orbit. In this period, the maximum offset

required along the local horizontal is within ±3 m from the steady state value of 1
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m. The nonzero steady state value of the offset leads to coupling between the tether

and platform dynamics. This coupling exhibits through the small fluctuations in

the cp response. As observed earlier in the thruster control section (Sec. 5.2), the

M and Tct profiles have similarity with the L and L responses, respectively.

The simulation results for retrieval from a tether length of 20 km to 50 m in

5 orbits is shown in Figure 5-17. An exponential velocity profile is used for the re

trieval. The initial retrieval from 20 km to 200 m is carried out in 4 orbits. To limit

the offset motion, the final stage of the retrieval from 200 m to 50 m is completed

in 1 orbit. The instability of the flexible modes is controlled by passive dampers.

As in the case of the thruster control, the damper for the longitudinal oscillation

is located at the subsatellite and for the transverse vibration at the center of the

tether. The damping coefficients for the longitudinal and transverse dampers are

1.5 and 0.03 Ns/m, respectively. The thruster control is used for retrieval upto 200

m, and the offset scheme for the rest of the retrieval as well as the subsequent sta

tionkeeping. During the offset control, the tether pitch angle is regulated about the

quasi-equilibrium trajectory (Eq.5.21). As in the case of deployment, M and Tat

profiles are similar to the L and L trajectories, respectively. The offset excursions

to control the unstable tether attitude during the retrieval range from —4 m to +13

m, a significantly large distance than that required during deployment. Of course,

this is expected due to unstable character of the retrieval maneuver.

5.5 Gain Scheduling Control of the Attitude Dynamics

For a comparison between the FLT based regulator and a linear controller

with gain scheduling, design of an attitude controller using the eigenvalue assignment

algorithm was undertaken. This linear time invariant controllers were implemented
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Figure 5-17 System response during retrieval with a hybrid control scheme.
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on the time varying nonlinear plant in conjunction with the gain scheduling. The

controllers were designed using the Graph Theoretic Approach. The detail mathe

matical background and the controller expressions are given in Appendix IV. Only a

few typical results are presented here for comparison. Figure 5-l8shows the station-

keeping dynamics in presence of the thruster augmented active control. Note, the

attitude degrees of freedom are controlled quite successfully. The control effort (M

and Tat) requirements are rather modest. However, the system performance during

retrieval with a fixed specified offset of 1 m along the local horizontal (D2=1 m) is

not satisfactory (Figure 5-19). Particularly, the platform pitch response has a large

overshoot of more than —5° at the beginning of the retrieval. This is attributed to

coupling, caused by a nonzero offset, between the tether and platform dynamics.

The linear controller (with gain scheduling) takes some time to compensate for the

coupling effect. Similar response was also observed during the retrieval maneuver

of shorter tethers using the offset strategy (Figure 5-20). The performance of the

system during a hybrid control is essentially the same. Comparison of these results

with those presented in Figure 5-17, where the FLT based hybrid control is used

to regulate the retrieval dynamics, clearly shows better performance of the FLT

controller compared to the gain scheduling linear regulator.

5.6 Concluding Remarks

A controller based on the FLT is found to be adequate in regulating the

highly time varying attitude dynamics of the TSS with a flexible tether. Two dif

ferent strategies, thruster and offset control, are used for longer and shorter tethers,

respectively. Three different system models (nonlinear flexible, nonlinear rigid, and

linear rigid) are considered to arrive at an efficient FLT controller design. Results
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suggests that the rigid body model (either nonlinear or linear) is sufficient to de

velop an effective thruster based regulator with a PT control ioop. The FLT based

controller with an PT loop is also shown to be effective during the offset control.

Both the offset and thruster strategies are also implemented in a hybrid fashion.

The hybrid control strategy using the thruster control at longer tether lengths and

the offset control for shorter tethers appears quite promising.

Linear time invariant regulators, designed using the graph theoretic approach

and implemented through gain scheduling, though effective are not as efficient as

the FLT based control system.
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6. VIBRATION CONTROL OF THE TETHER

6.1 Preliminary Remarks

Tether missions involving controlled gravity environment or precise position

ing of the subsatellite require regulation of the tether’s vibratory motion. The

tether may oscillate in both the longitudinal and transverse directions. The design

and implementation of the controller to suppress tether vibrations is addressed in

this chapter. The results presented here correspond to the stationkeeping situation

where most of the mission objectives are carried out. Only the first longitudinal

and transverse modes are controlled actively here as their energy content is domi

nant. The higher transverse modes constitute critically stable degrees of freedom.

The tether vibrations can be controlled either by some active methods (if control

lable and observable) or using passive dampers at appropriate locations. In the

present study, a passive damper is used to control the higher transverse modes. The

rigid degrees of freedom are regulated by thrusters and momentum gyros, and the

transverse and longitudinal modes are governed by the offset strategy.

This chapter begins with some mathematical background for the controller

design. This is followed by the system linearization. Finally design of the controller

is undertaken which includes the choice of system inputs and outputs as well as

some typical results showing its performance.

6.2 Mathematical Background

The nominal design model of a plant in the linear state space form can be
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expressed as:

th=A0x+B0u+1’; (6.la)

y=C0x+q; (6.lb)

where: x E R1; E Rm; y E R’; E R1; and A0, B0, C0 and F are constant

real matrices of appropriate dimensions. x, u and are the state, control input

and measured output vectors, respectively. is the state noise vector and i is the

measurement noise vector. These are white noises uncorrelated in time (but may

be correlated with each other) with covariances

E[T] = E 0, E[T] = 0 > 0, and E[T] = 0,

where 0 is the null matrix of appropriate dimension. In the transfer function nota

tion the system can be represented by

(6.2)

where:

C(s) =C04(s)Bo;

d =

and 4(s) = [sU — A0J1.

Here, C(s) is an m x r transfer function matrix and U is the unit matrix. The

standard feedback configuration of the system is illustrated in Figure 6-1. It consists

of an interconnected plant C(s) and a compensator F(s) forced by the command

input r, measurement noise and disturbance d.
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d

6.2.1 Model uncertainty and robustness conditions

In reality, the true model of the system, G’(s), is not the same as the nominal

design model, G(s). Hence, no nominal model can be considered complete without

some assessment of its error, normally referred to as model uncertainty. The repre

sentation of these uncertainties varies primarily in terms of the amount of structure

it contains. For example, the uncertainty caused by variation of certain parame

ters in the governing equations of motion is a highly structured representation. It

typically arises from the use of linear incremental models, e.g. error in the moment

of inertia of a spacecraft, variation in the satellite mass due to firing of thrusters,

changes in the aerodynamic coefficients of an aircraft with flight environment and

configuration, etc. In these cases, the extent of variation and any known relationship

between the parameters can be expressed by confining them to appropriately defined

subsets in the parameter space. An example of the less structured representation

of uncertainty is the direct statement for the transfer function matrix of the model

Figure 6-1 Standard feedback configuration.
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such as

G’(jw) = G(jw) + G(jw) (6.3a)

with

ã[G(jw)] <la(w), Yw 0,

where: la() is a positive scalar function confining the matrix C’ to the neighborhood

of C with magnitude la(w); and a(.) represents the maximum singular value of a

matrix. The statement does not imply a mechanism or structure that gives rise to

G(jw). The uncertainty may be caused by parameter changes as above, or by

neglected dynamics, or by some other unspecified effects. This is also referred to as

additive uncertainty. The alternative statement has the multiplicative forms:

G’(jw) = [U + Lo(jw)]G(jw); (6.3b)

or

G’(jw) = G(jw)[U + L(jw)], (6.3c)

with

ö[L0(jw)} <lmo(w), U[L(jw)] < lm(w), Vw 0,

where lmo() and lm() are positive scalar functions; U is the unit matrix of appropri

ate dimensions with Lo(jw) and L(jw) representing output and input multiplicative

uncertainties, respectively. The structure of the system with these uncertainties is

shown in Figure 6-2.

The objective of the feedback design problem is to find a compensator F(s)

such that:

(i) the nominal feedback system, GF[U + GF]1,is stable;

(ii) the perturbed system, G’F[U + G’F]1,is stable for all possible C’; and
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Figure 6-2 Diagram showing different unstructured uncertainties: (a) additive;
(b) output multiplicative; and (c) input multiplicative.
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(iii) performance objectives are satisfied for all possible G’.

The requirement (i) demands that the encirclement count of the map det[U+

GF(s)], valuated on the standard Nyquist D-counter, be equal to the (negative)

number of unstable open loop modes of GF(s) [92]. As shown by Yuan and Stieber

[93], for the additive uncertainty used in the present study, the closed loop system

satisfies the stability robustness requirement (ii) if

1
la(w)

< ã[R(jw)]’
(6.4)

where [R(jw)] = F(j)[U + G(jw)F(jw)]1.Simillar conditions for other uncer

tainties can also be obatained [94].

6.2.2 LQG\LTR design procedure

Linear Quadratic Gaussian (LQG) procedure is a widely used approach for

feedback design [95, 96]. The LQG controller is an ordinary finite dimensional LTI

compensator with the internal structure as shown in Figure 6-3. It consists of a

Kalman-Bucy Filter (KBF) which provides an estimate of the state, &. The KBF

gain, Kf, is given by [94]

T-1Kf PfC0 0 , (6.5

where Pf is the solution of the algebraic Riccati equation

PfA + AOPf — PfC’O1COPf + F E FT =0, (6.6)

and Pf = PJ 0. In general there are several solutions to Eq.(6.6),.but only one

of them is positive-semidefinite.

The state estimate, I, is multiplied by the full-state Linear Quadratic Regu

lator (LQR) gain, K, to produce the control command which drives the plant and
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Figure 6-3

also feed—backs internally to the KBF. The LQR gain K is obtained to minimize

the cost function

J
= j (zTQz + uTRu)dt,

where: z = Mx is some linear combination of the states; and Q = QT 0,

R = RT > 0 are weighting matrices. The solution to this problem is

I’ D1 1-lTD
.LkC — c, 6.7

where P satisfies the algebraic Riccati equation

+ PA0 - PCBOR BQTPC + MTQM =0, (6.8)

and P=P’>0.

Both the LQR and KBF loops have good robustness properties [97, 98].

Therefore, it may be expected that the LQG compensator would generally display

acceptable robustness and performance. Unfortunately, it has been shown that the

LQG designs can exhibit arbitrarily poor stability margins [99]. However, there are

Compensator F(s)
I

Closed-loop system with the LQG feedback controller.
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procedures to design either LQR controller or KBF so that the full state-feedback

properties are recovered at the output or input, respectively, of the plant [100]. For

a square minimum phase plant, design for the Loop Transfer (function) Recovery

(LTR) at the plant output consists of two steps:

(i) Design a KBF by manipulating the covariance matrices and 0 until a return

ratio C0(sU — Ao)’Kf (i.e. the KBF loop transfer function) is obtained

which would be satisfactory at the plant output (i.e. at the break point (i)

in Figure 6-3).

(ii) The ioop transfer function obtained by breaking the loop at point (ii) in.

Figure 6-3 is OF(s), where F(s) is the compensator transfer function. It can

be made to approach Co(sU — Ao)1Kf pointwise in s by designing the LQR

in accordance with a sensitivity recover’y procedure due to Kwakernaak and

Sivan [101]. To achieve this, synthesize an optimal state-feedback regulator

by setting Q = Q0H- qU and R = R0 (or Q = Qo and R = R0 + pU), and

increase q (reduce p) until the return ratio at the output of the compensated

plant converges sufficiently close to Co(sU — Aa)’Kf over a large range of

operational frequencies.

For non-square plants, the inputs and/or outputs can be redefined to make

the system square and the LQG/LTR procedure can be applied to the modified plant

(if it is observable and controllable). For non-minimum phase plants the recovery

may be achievable at those frequencies at which the plant’s response is very close to

that of a minimum-phase plant, i.e. at frequencies which are small compared to the

distance from the origin to any of the right-half plane zeros [94]. A simple strategy

to use with the non—minimum phase plant is to follow the usual LTR procedure. If

the right half-plane zeros lie well out side the required bandwidth, then adequate
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recovery of the ideal characteristics would be achieved at all significant frequencies.

6.3 Controller Design and Implementation

The prime objective of the controller is to regulate longitudinal and trans

verse tether vibrations using the offset strategy with the attitude dynamics regulated

by the thruster augmented active control. As explained earlier, only the first longitu

dinal and transverse modes are considered for the controller design. The LQG/LTR

based procedure is used which can account for the model uncertainty due to the

neglected dynamics.

6.3.1 Linear model of the flexible subsystem

The model is obtained by linearizing the decoupled equations of motion for

the flexible subsystem about the equilibrium positions. The equilibrium position for

the transverse vibrations is zero and for the longitudinal oscillations corresponds to

the static deflection value. The linearized equations can be written as

M2Z + G Z + K Z + Mdy + Gddpy + Kdydpy

+ Md2dtpz + Gdzdpz + Kdzdpz + P2 = QZTL, (6.9)

where: Z {{B — Beq}T, CT}T is the flexible generalized coordinate vector;

TL, the control thrust along the undeformed tether line; d, (D + D) and cL2

(D2 + D2), the offsets of the tether attachment point along the local vertical and

local horizontal, respectively; and the specified offsets; and D and D2,

the offsets required by the controller. The expressions and numerical values of the

coefficient matrices (for a system with 10 transverse and 2 longitudinal modes) are

defined in Appendix V. The numerical values are for the system without any passive

damping. Depending on the choice and controllability, the variables TL, D, D,
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D and D2 can be used as control inputs, either separately or in combinations.

The selection of outputs completes system characterization in the linear state-

space form. It should be recognized that placement of sensors on the tether to

measure vibrations is impractical due to small diameter (one to two mm) of the

tether as well as its deployment and retrieval maneuvers. The objective of the

controller is to suppress longitudinal as well as transverse vibrations using the offset

control strategy. The output vector consists of: longitudinal deformation from the

equilibrium value of the tether at yt = L; slope of the tether due to transverse

deformation at y = 0; and offset positions along the local vertical and horizontal;

i.e.

{ i(L), ..., %(L), 0, ..., 0}{Z}

{ 0, •.., 0, (aia)0, ••, (aN1/aYt)0}{Z}
(6.10)

6.3.2 Design of the controller

In the nondimesional form, the lowest elastic and maximum attitude frequen

cies (w/O) are 12.6 and 1.732, respectively. This separation of frequencies allows the

controllers for the rigid and flexible subsystems to be designed based on the decou

pled equations of motion. The rigid body controller was designed using the Feedback

Linearization Technique (FLT) discussed in Section 5.2.3. Now, the controller for

the flexible subsystem is designed by the LQG based approach. Here, the objective

is to regulate both the longitudinal and transverse vibrations by the offset control

strategy. As mentioned earlier, the 1st transverse (C1) and 1st longitudinal (B1)
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modes are controlled. The nondimensional frequencies of C1 and B1 degrees of

freedom are 12.6 and 65.5, respectively. Again, the frequency separation permits

the design to be based on the decoupled C1 and B1 models. The control input for

the B1 model is the offset acceleration along the local vertical (.b) and that for

C1 model is D (offset acceleration along the local horizontal). The outputs are

selected from Eq.(6.10). For the B1 subsystem, the output vector is

I ,b1(L)Z1’)
(6.11)

D, J
where Z1 = B1 — Beg1, and Beg1 is the equilibrium (static deflection) value of the

1st longitudinal mode (B1). For the C1 equation, the outputs are

I (ôi/ôt) c1 ‘1
= Yt0 . (6.12)

)
Controller for the B1 model, which is a two output and a single input system, is

designed using the LQG/LTR method. The design approach is due to Doyle and

Stein [100]. The controller matrices are obtained using the subroutines available in

the Robust Control Toolbox of MATLAB [102]. This procedure requires the system

to be square. The rectangular linear model for the B1 dynamics is rendered square

by defining the output as

Yb =b1(L)Z1+ D. (6.13)

The system and control influence matrices are obtained consistent with the first

mode assumption. With this modified output, the system is found to be controllable

and observable. The controller design equations for the C1 dynamics is obtained in

a similar way. In this case, the LQG/LTR controller, obtained after redefining the

output, does not give satisfactory performance. The degradation was attributed to

the modified output and can be avoided by using the original input-output structure
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in conjunction with the LQG design procedure. To regulate the offset motion, the

design equations are augmented by the following identities:

= u;

and jjz = u,

for B1 and C1 dynamics, respectively. The controller design models can be repre

sented by:

Xb = Abxb + Bbub; (6.14a)

Yb = Cbxb, (6.14b)

and

th Ax + Bcuc; (6.15a)

Yc (6.15b)

where:

Z z{(B1 — Beq1), E1, D, ]3}T;

z={C1, O1, D2, .Oz}T;

with Yb and Yc given by Eqs.(6.13) and (6.12), respectively.

Here, the subscripts ‘b’ and ‘c’ refer to B1 and C1 dynamics, respectively. The

dynamic feedback controllers have the form:

Xfb = Afb Zfb + Bfb Yb; (6.16a)

Ub = Cfb Xfb, (6.16b)
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and

Xfc = Af Xfc + Bfc ye; (6.17a)

U = Cf Xfc, (6.17b)

where Xfb and Xfc are the state vectors for the B1 and C1 controllers, respectively.

The numerical values of the design model are obtained from the higher order model.

The complete linear model, controller and weighting matrices are given in Appendix

V. The data are for a tethered system during stationkeeping at L = 20 km with

mass and elastic properties as given in Chapter 4. Next, the closed-loop eigenvalues

for the linear flexible system were obtained to have some appreciation as to the

controller’s effectiveness. The eigenvalues of the open-loop and closed-loop systems

are shown in Table 6.1.

Table 6.1 Comparison of the open-loop and closed-loop eigenvalues of the sys
tem.

Mode Open-loop Closed-loop

Trans. 1 0.0 ± 1.468e-2 — 9.880e-4 ± 1.463e-2
Trans. 2 0.0 ± 2.937e-2 0.0 ± 2.937e-2
Trans. 3 0.0 ± 4.405e-2 0.0 ± 4.406e-2
Trans. 4 0.0 ± 5.874e-2 0.0 ± 5.874e-2
Trans. 5 0.0 ± 7.342e-2 0.0 ± 7.343e-2
Long. 1 — 3.797e-4 ± 7.601e-2 — 1.144e-2 ± 7.614e-2
Trans. 6 0.0 ± 8.811e-2 0.0 ± 8.811e-2
Trans. 7 0.0 ± 1.028e-1 0.0 ± l.028e-1
Trans. 8 0.0 ± 1.174e-1 0.0 ± 1.174e-1
Trans. 9 0.0 ± 1.321e-1 0.0 ± l.321e-1
Trans. 10 0.0 ± 1.468e-1 0.0 ± 1.468e-1
Long. 2 — 2.267e-2 ± 5.870e-1 — 2.183e-2 ± 5.912e-1

Additional controller was designed for the model with a passive damper hay
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ing a damping coefficient (Cdt) of 0.2 N.s/m and located on the tether at a distance

of 9.8 km from the platform. The damper was introduced to reduce the transverse

vibrations. The controller design procedure is given in Figure 6-4. As before, the

controller for theB1-dynamics is designed by the LQG/LTR method and the C1-

controller is designed using the LQG algorithm. The attitude controller is obtained

through the FLT procedure. The recovery of the return ratio at the plant output

with the LQG/LTR controller for the B1 dynamics is shown in Figure 6-5. The gain

and phase of the return ratio approaches those of the KBF loop transfer function

with an increase in the design parameter q. In the present case, the B1 dynamics

is a non-minimum phase system with zeros at +0.045 and —0.042. As mentioned

before, the recovery in this class of plants is not guaranteed as apparent in Figure

6-5.

Finally, the robustness property of both the B1 and C1 controllers is checked

against the additive model uncertainty G(j). Figure 6-6 compares the bound

for G(jw), i.e. la(w), and the inverse of the maximum singular value of R(jw)

F(jw) (u + L(3w)) , where: L(jw) = G(jw)F(2w) is the ioop transfer function;

F(jw) is the controller transfer function (both the controllers); G(jw) is the openloop

transfer function; and U is the unit matrix. As shown in the figure, the stability

condition of Eq.(6.4) is satisfied. The structure of the closed-loop system, with

controllers for rigid body dynamics as well as longitudinal and transverse vibrations,

is shown in Figure 6-7.

6.3.3 Results and discussion

The controllers were implemented on the complete nonlinear system with

two longitudinal and three transverse modes. Figure 6-8 shows the response of the
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Figure 6-5 Comparison of gain and phase of the return ratio at the plant output

with those of the KBF loop transfer function.
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Figure 6-6 Robustness property of the vibration controller.

system without a passive damper and using a three level control structure for simul

taneous regulation of flexible and rigid modes. The total longitudinal deformation,

v(L), is controlled about its equilibrium value of 13.896 m. As shown in Figure

6-8, it returns to the equilibrium value in less than 0.05 orbit. The initial specified

offsets for this simulation was set at zero (D = = 0.0). The offset motion

requirement for control of the flexible modes is much lower than ± 15 m limit set

for regulation of the rigid degrees of freedom. The total offset motion along the

local vertical (d) is less than ± 2 m. The first transverse mode settles to zero in

around one orbit. The offset motion along the local horizontal (d), required by

theC1-controller, is around ± 0.6 m. As discussed earlier, the platform motion is

strongly coupled with the tether dynamics through Since the FLT controller

for the platform pitch (ap) dynamics cancels all the coupling effects, the shape of
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for Long. Vibration
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Trajectory FLT Controller for

[e}

Figure 6-7 Three-level controller structure to regulate rigid as well as trans
verse and longitudinal flexible motions of the tether.

the moment (Me) time history required to regulate p is similar to that of The

magnitude of M is well within the acceptable limit. The thrust (Tat) required to

control the tether pitch (at) is also very low.

Figure 6-9 shows the response of the controlled system with a passive damper.

The rigid body and longitudinal vibration responses are similar to those observed

in the previous case. However, there is a substantial improvement in the transverse

vibration responses, particularly in the C1 and C3 modes. There is a room for

further improvement through optimum location of the damper.

From these simulations, it can be concluded that the tether vibrations in

both longitudinal and transverse directions can be controlled effectively by the offset

strategy. It is important to note that the offsets required to control the flexible modes
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Figure 6-8 Response of the system using a three level controller in absence of

a passive damper.
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Figure 6-9 Controlled response of the system in presence of a passive damper.
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are less than ±2 m, which is small compared to the limit (±15 m) set for regulating

the attitude motion.

6.4 Concluding Remarks

Issues involving the control of elastic motion of the tether using offset strategy

were addressed in this chapter. To begin with a linear model of the flexible subsystem

was obtained. Next, three controller ioops were designed for simultaneous regulation

of attitude as well as longitudinal and transverse flexible modes. The controllers for

flexible modes were obtained using the LQG based approaches while the attitude

controller employed the FLT algorithm. Offset accelerations along local horizontal

and vertical were used as inputs for transverse and longitudinal modes, respectively,

while the attitude motion was controlled through thrusters. Effectiveness of the

controllers was assessed through its application to the complete nonlinear coupled

system. From the simulation results it can be concluded that the procedure is quite

effective in regulating, during stationkeeping, both the rigid and flexible degrees of

freedom.
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7. EXPERIMENTAL VERIFICATION

7.1 Preliminary Remarks

Since the first practical application of a tethered system in 1966 during the

Gemini flight, several missions have been carried out to demonstrate the concept.

As mentioned in Chapter 1, they include: a joint U.S.—Japan sounding rocket based

Tethered Payload Experiment [TPE, 5]; U.S.A.—Italy TSS—i (Tethered Satellite

System—i) mission in August 1992 [6]; sounding rocket based OEDIPUS (Observa

tion of Electrified Distributions in the lonosperic Plasma—a Unique Strategy) ex

periment launched by the Canadian Space Agency in January 1989 [7]; and the

most recent studies called SEDS—I and II [Small Expendable Deployment System,

8], launched in 1993 and 1994, respectively by NASA. Several ground based lab

oratory experiments have also been carried out to verify the tether dynamics and

effectiveness of different attitude control strategies. Dynamical aspects of a spin

ning tethered system were explored by Jablonski et al. [103] and Tyc et al. [104]

particularly with reference to the OEDIPUS—C experiment scheduled for lunch in

December 1995.

Gwaltney and Greene [105] implemented a tension scheme by converting the

control algorithm to a length rate law, for both inpiane and out-of-plane dynamics,

as well as accounting for the deployment and retrieval phases. The control scheme,

with measured tension feedback, was investigated by Shoichi and Osamu [106]. A

laboratory set—up, for studying the attitude control of the subsatellite using the

offset strategy, has been developed by Kline -Schoder and Powell [59]. Effectiveness

of the offset control strategy was verified by Modi et al. [48] using a ground based
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experimental facility. An LQR type offset control algorithm was used to regulate

tether librations during deployment, stationkeeping and retrieval. Using the modi

fled facility to improve the sensor accuracy, the present study assesses effectiveness

of the FLT and LQG control methodologies.

To begin with, the experimental set—up is described followed by details of the

controller design and implementation procedure. Only a sample of typical results is

presented to attest effectiveness of the two controllers. The chapter ends with some

concluding remarks.

7.2 Laboratory Setup

The objective of the present experiment is to have some appreciation as to

the effectiveness of the FLT and LQG based offset control schemes for regulating the

attitude motion of the tether. The experimental setup consists of a spherical mass,

representing the subsatellite, which can be deployed or retrieved from a carriage.

The carriage, depicting the offset mechanism translating on a platform, can be

moved in a horizontal plane. This permits time dependent displacement of the

tether attachment point to implement the offset control strategy. A Nylon thread,

1 mm in diameter, connecting the subsatellite with the carriage, serves as tether.

The tether can have a maximum length of 2.25 m. A larger platform with a height

of 5 m to accommodate longer tethers has also been designed and constructed.

Details of the dimensions and mass properties of the setup are given in Appendix

VI. The experimental apparatus consists of three main parts: the sensor; actuator;

and controller.

7.2.1 Sensor

Role of the sensor is to measure the angular deviation of the tether from the
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vertical position. To that end, a pair of optical potentiometers (Si series Softpot,

U.S. Digital Corp.) were used. The Softpot optical shaft encoder is a noncontacting

rotary to digital converter. Useful for position feedback, it converts the real—time

shaft angle, speed and direction into the Transistor—Transistor Logic (TTL) compat

ible two channel quadrature outputs plus a third channel index output. It utilizes

a mylar disk, a metal shaft with bushing, and an LED. The unit operates from a

single +5 V supply. Low friction ball bearing makes it suitable for motion control

applications.

The output pulses are monitored by a counter circuit, which generates an

eight bit digital signal. The counter output can directly be read by the data acqui

sition system (a commercially available card [107]). The resolution of the sensor de

pends on whether one or two potentiometer output channels are used in the counter.

Two different resolutions, 0.25° and 10, can be obtained with the present counter

circuit. The index pulses are used to reset the counter to a reference value when

the tether swings through the vertical position. This feature eliminates sensor drift

that is normally associated with a resistance potentiometer. Attractive features of

the system are : low friction in the bearing; no sensor drift; and accurate resolution

to 0.25°.

An important step in the sensor development was the design of a suitable

mechanism to rotate the potentiometer shaft with the tether swing. The mechanism

has to perform its task without interfering with the deployment/retrieval maneuvers

and yet maintain the unavoidable friction at a low level. The design consists of a

light, slotted, aluminum semi—ring as shown in Figure 7-i. The ring is so designed

as to maintain dynamic balance during acceleration of the carriage. Any dynamic

unbalance may introduce an inertia torque on the ring leading. to an error in the
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Front View Side View

Figure 7-1 A device to measure the tether swing through rotation of the po
tentiometer shaft.
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potentiometer reading. One side of the ring is connected to the potentiometer shaft

while the other is supported by the bearing thus permitting it to rotate about a

fixed axis. The tether passes through the slot in the ring permitting detection of the

swinging motion even during deployment and retrieval. A pair of such semi—rings

are used to measure the angles in two orthogonal planes.

7.2.2 Actuator

The actuation mechanism can be visualized as a large x-y table, where a car

riage representing the tether attachment point traverses a horizontal plane (Figure

7-2). The motion of the carriage is controlled by a pair of stepper motors. The

carriage carried a reel mechanism, driven by another stepper motor, to deploy or

retrieve the tethered payload. All the three motors were commanded by a digital

computer that implements the control strategy.

7.2.3 Controller

The controller was a 486/33 MHz IBM compatible personal computer. A typ

ical control loop consists of sensing the tether angles, computation of the corrective

control effort, transmitting actuation commands for moving the tether attachment

point, and saving the required information into an output file. The stepper mo

tor commands are sent through translators, which supply required voltage to the

motors for each pulse received from the controller. The pulse train for the de

ployment/retrieval motor is generated by a commercially available card [108]. A

trapezoidal velocity profile is selected for this maneuver. The pulses for the car

riage motors are generated through the digital output port of the PCLabCard [107].

A linear velocity profile is chosen to implement the constant acceleration of the

tether attachment point during each time—step. Photographs of the test facility are

presented in .Figures 7-3 to 7-6.
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Digital hardware used in the experiment: (a) translator module,

deployment and retrieval; (b) translator module, offset motions;

(c) power supply; (d) function generator.

Figure 7-5
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7.3 Controller Design and Implementation

The equations governing dynamics of the laboratory model of the tethered

satellite system were obtained. The linearized equations of motion can be written

as:

a=a1a+a3&+cd; (7.1)

7=a17+a3-y+c7, (7.2)

where:

ai = —g/L; a = —2L/L; c = —ilL.

Here: L is the instantaneous tether length; g is the acceleration due to gravity; a

and ‘y are the tether angles in two orthogonal vertical planes; and da and th are the

accelerations of the offset point for controlling a and y, respectively. The a and

equations are independent of each other and hence the controllers can be designed

separately. The controller design is based on the FLT and LQG procedures which

are explained below.

7.3.1 FLT design

The procedure for the FLT controller design was outlined in Chapter 5. For

the experimental model, it consists of state and control transformations:

z = T() = [tjj]x; (7.3)

— P(x)
Uj

=
; (7.4)

where:

tj1= aic+ac;
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2
= —arc + a3c,

= —a3c;

=

and for i= 2,3,4

ui =

t2O

= t(_l)l +a3t(_l)3;

P(z) =a1t43x1+a2t43x2+ (t4i +a3t43)x3+ (u42 1-a4t43)4;

Q(x) = ct43 + t44.

The secondary controller, Vt, for the system is designed to place the closed ioop

eigenvalues at some desired locations. This leads to the following expression for v

= kt1(zi zid)+kt2(z2 _Z2d)+ kt3(z3 _Z3d)+kt4(z4_z4d), (7.5)

where: and Zid i = 1, , 4, are the coefficients of the required closed loop

polynomial and the desired values for zj, respectively.

Controllers for a and 7 degrees of freedom are designed by considering x as

{a, cl, ix, d}T and {, J, , q7}T, with u as and d.y, respectively. The

coefficients of the desired closed loop polynomials correspond to rise—times of 0.5

and 0.6 s for tether and offset motions, respectively, and settling—times of 3.0 s for

both the tether and offset motions.
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7.3.2 LQG design

Considering the dynamics of , the linear equations for the LQG controller

design can be written as:

= Acxc + brua; (7.6a)

= Ccxc, (7.6b)

where:

= {cr da a da}T;

ua =

o 0 1 0 (0
o 0 0 1 Jo

Aa
ai 0 0
o 0 0 0 Ii

_r T.
ya_1a (hJ

1000
Ccx 0 1 0 0

The controller design (i.e. LQR gains and KBF matrices) is arrived at using the

subprograms available in MATLAB. The weighting matrices considered in the design

are:

50.0 0 0 0
o 2.0 0 0
0 0 1.0 0

IL—LOS

0 0 0 0.1

30.0 0 0 0
01.0 0 0 11.0 0

—

= 0 100.0 0
and 0

= L 0 1.0
o o 0 100.0

The continuous time LQG controller is implemented as a sampled data system To

that end, the dynamic controller equation is transformed into the discrete model,
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which can be expressed as:

Xfa(k + 1) AfaXf(k) + Bfaya(k); (7.7a)

u.(k) = CfXfy(k). (7.7b)

For L = 1 m; L = 0; and a sample time of 0.09 s, the controller matrices are:

0.52214 0.00177 0.06212 0.00639

A
— 0.01194 0.62945 0.00585 0.06604

fcr
— —1.17623 0.01768 0.81021 0.15977

0.22942 —0.74557 0.14336 0.80424

0.43029 0.00243
0.00341 0.36614Bf

= —0.03394 0.08718 ; and

0.11417 0.64020

Cfa [5.49377 —1.41421 1.73788 —2.12424].

The controller for regulating ‘y is designed in a simillar way and leads to exactly the

same design.

7.3.3 Controller implementation

The two controllers were implemented as sampled data systems with the zero

order hold. The FLT compensator is described by algebraic equations. Therefore,

the control inputs can be computed by Eqs.(7.3-7.5) at the sampling point. The

LQG control inputs are calculated by the discrete time model given in Eq.(7.7).

As pointed out before, in the present experimental setup, stepper motors are

used to move the tether attachment point. These motors are commanded to move

to a specified position by providing required number of pulses in each time—step.

Therefore, the acceleration requirement, i.e. the control input, is converted into a

displacement requirement. The displacement can easily be converted into the num
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ber of pulses required, from the knowledge of pulses per revolution and parameters

of the transmission mechanism (chain drive in the present case). The conversion of

acceleration requirement to displacement is accomplished by integrating the accel

eration profile, which is considered constant over a time—step. This leads to:

dcz(k + 1) = o!a(k) + Ja(k)zt; (7.8a)

da(k + 1) = dcx(k) + dcx(k)L?&t + cicr(k)(t)2, (7.8b)

where: da(k) and da(k) are the magnitudes of cia and da at the kt1’ sampling point,

respectively; and t is the sampling period.

In case of the LQG controller, the control input da(k) is directly computed

from the knowledge of the system outputs a(k) and da(k). In the present study, a(k)

is measured directly by the potentiometers and da(k) is obtained from Eq.(7.8b).

For the FLT controller, in addition to these outputs, magnitudes of à(k) and da(k)

are required. da(k) can be computed using Eq.(7.8a). Since no sensor is used to

measure a, backward finite difference method is used for its evaluation, i.e.

a(k)
= a(k) — a(k —1)

(7.9)

As the equations of motion for a and
‘

degrees of freedom are identical in form, the

7-controller can be implemented using exactly the same procedure.

The next important step in the controller implementation is the selection of

the sampling time t. It has to be sufficiently large so that the computations re

quired in the control ioop can be completed in the time—step. In the present setup,

the time required to complete a control loop, i.e. to perform sensing, computation,

actuation and data storage is less than 5 ms. The sampling rate is based on the re

quirement that the sampling frequency should be higher than the Nyquist frequency.
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For better performance of the system, the sampling time should be less than one

sixth of the minimum period of the system [109], which is 1.45 .s in the present case.

From these considerations, the sampling time (st) is taken to be 90 ms.

The computer program to implement the controller was written in MicroSoft

C language. The real time implementation starts with initialization of the system

parameters and special purpose computer cards, and calibration of the potentiome

ters for reference vertical position. Application of a disturbance activates the control

loop. Each loop consists of measurement of the angles; computation of the offset

position, velocity and acceleration; checking the steady state and safety conditions;

commanding the motors to move; writing the data into the output file; and updating

the variables for the next time—step. The controller operation can be stopped by

pressing an arbitrary key at any time. This can be used for emergency exit of the

controller. The fow chart for the controller operation is shown in Figure 7-7.

7.4 Results and Discussion

The experimental validation of the offset strategy in conjunction with the

FLT and LQG controllers provided considerable insight into the feasibility of the

approach. The concept of controlling the attitude motion of a tether, using off

set acceleration as the input, augmenting the tether dynamical equations with the

identity cia u, and providing both angle and offset variable feedback proved to

be feasible. Small discrepancies observed between the experimental and numerical

simulation results may be attributed to the following factors:

• Damping effects can not be completely eliminated in a real system. Here

the contributions come from friction in the sensing mechanism (Figure 7-1),

linear bearings of the carriage and aerodynamic effects.
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Figure 7-7 Flow chart showing the real time implementation of the attitude
controller.

IN ITIALIZATION:
Define constants and deployment/retrieval parameters
Initialize port addresses and system variables
Choose controller (FLT or LOG

Measure angles and compute angular velocities I
Compute offset parameters at the end of At

Send pulses to inplane
and out-of-plane motors

Measure time

No
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• The stepper motors are controlled in the open ioop fashion. Therefore, any

missing pulse can not be compensated by the controller.

• The step—size for the motors is 1.8°. The required angular rotation of the

motor in each time—step may not be a multiple of 1.8°. This introduces error

in the implementation of the controller.

Considerable amount of information was obtained through a series of care

fully planned experiments. Only a sample of results is presented here. The system

was purposely subjected to a very large disturbance of 10° in both the directions

(a and ‘y) to assess the controller’s effectiveness under demanding situations. In

practice, an external excitation would seldom result in motions larger than a few

degrees. Performance of the FLT and LQG controllers is discussed in the following

two subsections. The acceptable steady state error limits are set at ± 1 cm for offset

positions and ± 0.5° for the tether angles. The maximum allowable offset positions

are limited to ± 20 cm.

7.4.1 FLT control

Figure 7-8(a) compares numerical and experimental results during the sta

tionkeeping phase at a tether length of 0.5 m. The uncontrolled response is fairly

well predicted by the numerical simulations, however, small attenuation is observed

in the amplitude of the experimental response. As pointed out before, this may be

attributed to friction in the ring mechanism used to measure the angles. Compar

ison of results during the controlled phase shows acceptable correlation. Note, the

steady state errors are within the limits. The initial disturbance is damped within

a. very short time (< 4 s). The offset motions required to regulate a and 7 are also

within the specified limits.

Subsatellite and carriage positions during the controlled experiment are shown
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Numerical Experimental

Figure 7-8 Plots showing the comparison between numerical and experimental
response results during the stationkeeping phase: (b) subsatellite
and carriage positions.
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in Fig.7-8(b). The projection of the subsatellite position in a horizontal plane has

two orthogonal components, L sin a cos and L sin y COS a. For small angles they

may be represented, approximately, as La and L’y. Therefore, vs. a plot rep

resents the scaled position of the subsatellite projected on a horizontal plane. In

the present simulations, disturbance is given to the angular positions only. Initially,

librational velocities, as well as position and velocity of the carriage (tether attach

ment point)are zero. Under this situation, the subsatellite should oscillate in one

plane during both the uncontrolled and controlled conditions. The numerical simu

lation (solid line in -a plot) substantiates this observation. The small discrepancy

in the experimental results is again due to the sensor noise mentioned before. The

plots for carriage position show similar trends.

Figure 7-9(a) shows response of the system during stationkeeping at a longer

tether length of 1 m. The numerical and experimental responses for the uncontrolled

as well as controlled system show excellent agreement. As expected, the frequency of

angular motion is lower compared to that for L = 0.5 m. The offset motion required

to regulate the inpiane and out-of-plane librations is rather modest (within +6 cm

and —4.5 cm). Experimental results for the subsatellite and carriage positions are

quite close to the straight line predicted by the numerical simulation (Figure 7-9b).

Similar trends continued even at a higher length of 2 m (Figure 7-10).

As emphasized earlier, retrieval is the most critical phase in the tether op

eration. To show effectiveness of the controller, two different retrieval rates are

considered with maneuver completed in 15 s and 5 s. In each case, the tether length

was reduced from 2 m to 0.5 m in accordance with a trapezoidal velocity profile.

The velocity was linearly increased (constant acceleration) from zero to the max

imum value in O.ltr, held constant (zero acceleration) at the maximum value for
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O.8tr, and finally linearly reduced to zero in 0.lt,.. Here tr is the specified time to

complete the retrieval. The maximum velocities are 0.11 rn/s and 0.33 rn/s for the

retrieval times of 15 s and 5 s, respectively.

Figure 7-11(a) shows experimental response results for the retrieval com

pleted in 15 s. As expected, with the tether length becoming smaller, inertia of

the system reduces causing the tether oscillations to grow to conserve the system

angular momentum. During the uncontrolled operation, the system response (c and

7) grows to a maximum amplitude of ± 290 as the retrieval ends. Subsequently,

the frictional damping causes the amplitudes to slightly diminish as expected. The

offset procedure effectively controls the motion within 8 s, i.e. long before the re

trieval is completed. Note, excursion of the tether attachment point is maintained

within the specified limit of ± 20 cm. Even at a faster retrieval rate (t = 5 s), the

offset strategy continues to be effective (Figure 7-llb).

7.4.2 LQG control

The offset controller, designed using the LQG algorithm (Section 7.3.2), was

also implemented on the same tethered system. The uncontrolled and controlled

responses, for the stationkeeping case at L = lm, are compared in Figure 7-12(a).

As before, the results show good agreement with the numerically predicated per

formance. The initial disturbance is damped within 5 s. Considering the frictional

effects, the subsatellite and carriage positions also show good correlation with the

numerically predicted results (Figure 7-12b).

The experimental results for the retrieval phase are presented in Figure 7-13.

As before, a trapezoidal velocity profile was employed with the retrieval from 2 rn

to 0.5 rn completed in 10 s. Instability of the uncontrolled system is shown rather

dramatically. Gain scheduling was used during the retrieval phase with the gains
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Figure 7-11 Uncontrolled and controlled experimental results for retrieval of the
subsatellite: (a) retrieval time of 15s.
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adjusted at 0.75 m and 1.5 m. The LQG controller is quite successful in regulating

such a large initial disturbance within 12 .s. The steady state errors are less than

5 % of the initial disturbance for the angles and less than ± 1 cm for the offset

position.

Finally, performance of the LQG controller in regulating the spherical pendu

lum type motion was evaluated (Figure 7-14). This required application of a rather

severe set of initial disturbances both to the angular velocity and position. The con

troller continues to be remarkably effective as shown by the inward spiral motion.

The corresponding carriage position also converges to the steady state value. The

time to damp the disturbance was found to be around 15 .s.

A video of the experimental set—up, presenting in some detail the sensor,

actuator and the controller, was taken. It shows, rather dramatically, effectiveness

of the offset control strategy in damping a variety of severe disturbances.

7.5 Concluding Remarks

Experiments carried out employing a unique ground based test—facility sug

gests that the offset control strategy, using the FLT as well as LQG algorithms, can

effectively damp rather severe disturbances during both stationkeeping and retrieval

phases. The controllers continue to be effective even during a faster retrieval rate of

0.33 rn/s. Note, the above mentioned performance is attained within the specified

limit of the offset motion. Correlation between the experimental and the numerically

predicted results is also good considering the frictional effects encountered in the

real-life situation. A video captures, quite effectively, the remarkable performance

of the offset control procedure.
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8. CLOSING COMMENTS

8.1 Concluding Remarks

Using a relatively general model, the thesis develops a methodology and as

sociated computational tools for studying planar dynamics and control of tethered

satellite systems. Versatility of the model is illustrated through its application dur

ing all the three phases of a typical mission involving deployment, stationkeeping,

and retrieval. The focus is on the system control using two distinctly different types

of actuators: thrusters located at the subsatellite; and movement of tether attach

ment at the platform. Both linear as well as nonlinear controllers, using the actuators

and their hybrid combinations, are developed applying the Linear Quadratic Gaus

sian (LQG) regulator and the Feedback Linearization Technique (FLT). It may be

recalled that the FLT accounts for the complete nonlinear dynamics of the system.

As can be expected, the governing equations of motion are highly nonlinear,

nonautonomous and coupled. They were used to assess uncontrolled dynamical per

formance of the system as affected by the important system parameters. However,

widely spaced frequency for the rigid and flexible degrees of freedom was often taken

advantage of through decoupling during the controller design. Thus controllers for

the rigid and flexible parts of the system were designed separately using the coupled

sets of linearized equations. Of course, effectiveness of the designed controllers was

assessed through their application to the original nonlinear and coupled system.

The thesis presents innovations in several areas. More important contributions

of the thesis, which have not been reported in the literature, include the following:

(i) the system model that accounts for the tether flexibility and motion of the

tether attachment point at the platform end;
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(ii) control of the system’s attitude dynamics using the offset scheme in presence

of tether flexibility;

(iii) application of the Feedback Linearization Technique, which accounts for the

complete nonlinear dynamics, to tethered systems;

(iv) vibration suppression along both the longitudinal and transverse directions

using the offset strategy;

(v) simultaneous attitude and vibration control of the tethered systems;

(vi) ground based experiment to substantiate effectiveness of the FLT and LQG

based offset control synthesis.

It should be emphasized that the objective here was to establish a methodology

to understand dynamics and control of such a complex system. It was not intended

to acquire large amount of information useful in the system design. Of course, such

information can be generated quite readily as the dynamics and control programs

are operational. Even then the amount of information obtained is rather extensive.

The thesis presents only some typical results useful in establishing trends. Based

on the analysis following general conclusions can be made:

(a) Offset of the tether attachment point leads to coupling between the platform

and tether dynamics. The tether pitch libration significantly affects the plat

form dynamics, however, the effect of platform motion on the tether dynamics

is relatively unsignificant.

(b) As can be expected, static deflection of the tether as well as frequency of

both transverse and longitudinal oscillations are affected by the mass density

and elastic properties of the tether material. Higher modes of the longitudinal

vibrations have rapidly decaying characteristics due to the structural damping,

which has only the second order effect on the transverse tether vibrations.
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(c) The tether dynamics is susceptible to instability when the deployment/retrieval

rate exceeds the critical value.

(d) The FLT based controller using the rigid nonlinear model of the system is

quite successful in regulating attitude dynamics of the system with a flexible

tether. The controller structure is relatively easy to implement. A single con

trol algorithm is applicable to all the three operational phases of deployment,

stationkeeping and retrieval.

(e) The FLT based controller is found to be better than linear, time invariant reg

ulators designed using the graph theoretic approach and implemented through

gain scheduling.

(f) A hybrid strategy, relying on the thruster control at longer tether lengths and

the offset control for shorter tethers, appears quite promising for regulating

the tether pitch libration. Results show that a pair of passive dampers can be

used to control the unstable elastic degrees of freedom.

(g) Besides controlling the tether pitch motion, the offset strategy can be used

to regulate, simultaneously, both longitudinal and transverse oscillations of

the tether duing the stationkeeping. Results for a 20 km tether showed the

controller to be remarkably effective in damping the motions with the tether

offset maintained much below the specified ± 20 m limit.

(h) Substantiation as to the effectiveness of the FLT and LQG based offset control

strategies using a rather unique test facility represents a significant contribu

tion to the field. Results show that the concept of controlling the motion of

a tethered payload through specification of the acceleration at the point of

attachment is not only effective but can also be implemented in practice.
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8.2 Recommendations for Future Work

The present thesis represents a modest contribution to the challenging field

of tether system dynamics and control. There are several avenues open for future

exploration which are likely to improve our understanding of the field. A few of

them, more directly related to the present study, are indicated below:

(i) Extension of the present investigation to three dimensions, i.e. generalization

of the model to account for inplane as well as out-of-plane dynamics represents

the logical next step.

(ii) Offset control of the tether vibrations during a retrieval maneuver needs to

be explored. If successful, it will make the offset strategy more attractive and

versatile.

(iii) In presence of an offset along the local horizontal, the tether dynamics sig

nificantly affects the platform motion. This presents an exciting possibility

of controlling the platform libration through an offset strategy. Simultaneous

control of the platform and tether dynamics through offset would represent an

important contribution to the field.

(iv) It would be useful to assess effect of the free molecular environment forces on

the tether dynamics and control.

(v) Multibody tethers have been proposed for several scientific experiments, in

cluding monitoring of Earth’s environment as in the case of Mission to Planet

Earth. The present model can be extended, through a recursive formulation,

to account for such configurations.

(vi) Extension of the ground based experiment to attest effectiveness of the offset

strategy in controlling transverse and longitudinal oscillations of the tether

would represent an important step forward.

194



/

(vii) Validation of various offset control strategies using a longer tether is desir
able particularly during retrieval. It would also help study the concept of
tethered elevator system. The larger facility, already constructed, which can
accommodate a 5 m tether may be used to that end.
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APPENDIX I: MATRICES USED IN THE FORMULA
TION

For concise derivation and efficient computer implementation of the governing

equations of motion, a number of matrices are defined to express the system energies.

The matrices, dependent on modal integrals and attitude angles, are also reported

here.

Matrices used in the Kinetic Energy (Eq. 2.25)

{K1} = LL{Ak0}+L2wt{Bk0}+ msL{Dk1}+m8Lwt{Dk2} E R3;

[K2] = [Ak2] + ms[Ap1] E R3)<Ntl;

[K3] = L[Ak1]+ wt[Bk1]+ msct[Uk][Ap1] E R3tl;

[K4] = -ms[Ap1]T[Ap1]+ -[Ck2] E RNtltl;

[K5] = mswt[Ap1]T[Uk][Ap1j+ L[Ck3]+ wt[Hk4] E RNtltl;

[K6] = mswz[ApljT [Uk]T[Uk] [A1] + j,2[ck] + Lwt[Hk3] E RNtZtl;

{K7} + + msL{Dk1}[Ap1]

+ msLwt{Dj1,2}[Ap11 E RNtZ;
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{K8} = 1L2{ck}T + Lwt{Hk1}T+ msLwt{Dk1}T[Uk][Apij

+ mgLw{Dk2}T[Ukj[Apl1 E RI.

Matrices used in the Potential Energy (Eq. 2.28)

[F1] = M[U] — 3M{V] E R3<3;

[F2] = ma[U] — 3ma[Vpo] E

2p
— 6pt cos(at){f{F.p(yt)}dyt}{I/0}T

31
— 2p{f{F(yt)}dyt}{Utp}T + 6pt sin(at){f{F(yt)}dyt}{17po}T

+2m8[Api]T[Ttp] — 6ms[Api]T{17to}{Wpo}T E RNt1X3;

{F4} = 2m8L { {F(L)} } — GmsLcos(crt)[Ap1]T{Wto} E RNtZ;

[F5] = ms[Api]T [Ap1] — 3ms[Api]T{Wto}{Wto}T[A1j E RNtlTtl;

{P6} = (2m3 + pL)L{Wtp} — 3(2m3 + pL)L cos(crt){T’Vpa} E

= cos2(at) E R.
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Inertia Dyadics and Their Derivatives

The terms associated. with the inertia matrices and their derivatives, used in

derivation of the governing equations of motion, are presented here.

‘Pz ‘Pzy ‘Pzz
[4] = 1Pzy ‘Py ‘Pyz

4zz 4yz ‘Pz

1t 0 0 Ib+Ic 0 0
[1t] = 0 jt 1ty2 = 0 Ic ‘bc

- 0 ‘ty ‘tz 0 ‘bc ‘b

where:

= + {B}T[Iblj{B} + 2{1b2}{B};

Ic {C}T[Ici]{C};

1bc = —{Ib1}{C} — {B}T[1oc2]{C};

[1b1] = Pt f{Fb}{Fb}TdYt;

{Ib2}
ptJyt{Fp}Tdyt;

[Icr] = Pt j {Fq}{F,}Tdyt;

{1&ci}
=

jL
vt{F}Tdyt;

[‘bc2l = pt
jL{i}{i}Tdyt.

The time derivative of [Ip] is zero. The derivatives of the elements of [‘] used in

the equations of motion, are as follows:

= + 2{B}T[Ibl){B} + {B}T[.ibl]{B}

+2{1b2}{B} + 2{lb2}{B} + 2{C}T[I1J{C}

+{C}T[ici]{C};
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o{X}(tT[1t])
2f{ItzB}1

I sin(2czt){ItyZB } +sin2(ct){ItZB }
%

ô{X}
t}Ttjt}) t cos2(t){Itz} — Sifl(2t){Ityz}

ã{X}
({w}T[I]{w}) = { }

where:

WiT.
{‘tZB}=2[Ib1]{B}+2{Ib2

{ 1tzc} = 2[1c1J{C};

{ ItYZ } = —[IbC2]{C};

{ = {J&
}T_ [Ibc2lT{B};

[1b1] = F fL{{DF}{F}T
-f {F}{DF1p}T}dy + {F}{F}T];

Lo

Ub1} = pt{
JL{

+ +

[i1 = F fL{{DF}{F}T + {F}{DF}T}dy + {F}{F}T].
[JO

Modal Integral and other Constant Matrices

{Ako}={Pt}ER3;
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o 0

[Ak1]=
pJoL{DF}dy 0 ER3tl;

o ptJ{DF#}dyt

o 0

[Ak2] = Pt f{F(yt)}Tdyt 0 e R3tl;

o p f{F(yt)}Tdyt

o 0

[A1] {F(L)}T 0 E

o {F1,(L)}T

(01
{Bk0}z 0

(pt/2J

o o

[Bk1]= 0 _ptf{F(yt)}Tdyt ER3>tl;

Pt fJ{F(ut)}Tdyt 0

Ptf{DF}{DF}Tdut o
1 — RNtZXNt1

I k1i
— 0 Pt fj’{DF,}{DF}Tdyt

pt ,f{F1p(yt)}{F(yt)}Tdyt 0
[Ck2] = E RNt1)<Ntl;

0 Ptff{F(vt)}{F(vt)}Tdyt
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0 ] ER’tltl;[Ck3] =

0 2pt f{F(yt)}{DF}Tdyt

{Ck4}

= { J’ó’{DF}dyt } E RNtZ;

{Ck5}

= { 2Pt f{Fi,(yt)} } € RNt1;

{Dk1} { } € R3;
0

{oi
{Dk2}= O €R3;

1

{Hk1}

= { foL{yt{DF#} — {F}}dyt } E RNtZ;

{Hk2}
= { f yt{F}dyt } €

0 pt f{F(yj)}{DF,}Tdyt
[Hk3]

= 0 ] € RNtltl;
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0 —Pt
[Hk41 = e RNtltl;

pt 0

1 0 0
[T] = 0 cos(at — Qp) sin(at — crp)

0 — sin(czt — ap) cos(at — czp)

100
[Uj= 0 1 0

001

000
[Uk] = 0 0 —1 e

010

1 0
{U} —sin(at—ap) h

cos(at — ap) J
0 0 0

[V0] 0 cos2(ap) —sin(ap)cos(ap)

0 — sin(ap) cos(ap) sin2(ap)

1 0
{W} cos(at — cxp) ;

I sin(at — cxp) J
(0

{1i70}= cos(ap) ;
(—sin(ap) J
10 ‘I

{1’t,} = cos(at) ;

I —sin(at) J
Nt

{F(yt)} ={.(y,L)} e RNt;
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{F,,1,(y)} ={‘I’ct,L)}’1 E Rl;

OF ôF
{DF}+ ERNt;

8F ôF,b
{DFti}=-ã---+--- eRl.

Here:

N1 = number of modes used to represent the longitudinal tether vibration;

Nt = number of modes for transverse oscillation of the tether;

Nti= Nt+Nj.

Time Derivative of Matrices

{Ak0} ={O};

o 0

[Ak1]
f{D2F}Tdyt + {DF(L)}T 0

o -
JL{D2F}Tdy {DF(L)}T

[Ak2] [Ak1];

{E} ={0};
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- 0 0 -

[E] = 0 —[Ak2(3,Nl + 1: N)]

[Ak2(2,1 N1)] 0

f{{D2F,,1,}{DF}T +{DF1p}{D2F}T}dyt

[Ck11 =ptL

0

0

,f{{D2F}{DF}T + {DF}{D2F}T}dyt

+{DF4,(L)}{DF(L)}T

+ {F}{DF,,11}T}dy

[Oh2] =L

0

0

+ {F}{DF#}T}dyt

+ {F,}{D2F}T}dy

[Oh3] =2pL

0
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0

J’{{DF}{DF}T +

I f{D2F}dyt + {DF(L)}
{Ck4}=2pL

1 0 )

{Ok5} .L{Ck4};

1 0
{1rk1}=ptL

I f yt{D2F}dyt + L{DF,(L)} — {F(L)} J

1 0

{iIk}=ptL2
f{{F#} + + L{F(L)} J

0

[Ilk3] =ptL
— J’{{DFçj,}{DF}T +{F1,}{D2F1}T}dyt

—{F,(L)}{DF,,h(L)}T

f{{DF,ç}{DFq}T + {1\t}{D2Fc5}T}dyt

0
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0

[Hk4] ptL f{{vF}{F}T + {F}{DF}T}dy

f{{F}{DF#}T + {DF}{F4}T}dy

+{F(L)}{F(L)}T

0

o 0 0
[1}(aà) 0 —sin(at—cp) cos(atap)

o —cos(at—ap) sin(cxtap)

where:

8{DF.} Ô{DF4
{D2F4,}= ‘‘ +

ôyt

ô{DF1,} ô{DF}
{D2F1}

= c9yt
+

ÔL
e RN1.

Derivatives of Matrices used in the Potential Energy

[Pi]cxp = 3M[Vpr,jap;

[P2]ap = — 3ma[Vpo]ap;

P
— 2pt{J’{Fp(yt)}dyt}{Wtp}’p — 6Pt cos(ct){f{F,,,(yt)}dyt}{iV0}’

[3lap
-

2{fL{F}d}{U}T + 6pt
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-I- 2ms[Api]T[Ttp]ap — 6ms[ApijT{Wto}{Wpo}’;

{P4}ap = {O};

[P5]cxp= [0];

{P6}= (2m8 + ptL)L{Wtp}ap — 3(2m8 + ptL)Lcos(ct){1’Vpo}a;

= [0];

[P2]at = [O];

— 2pt{f{F,t,(vt)}dyt}{Wtp}’ + 6pt sin(at){f{F(yt)}dyt}{17po}T

lt
— {f{F(yt)}dyt}{utp} + 6Pt cos(at){f{F(yt)}dyt}{Wpa}T

+ 2m8[A1]T
[Ttp]at — 6m8[A1]T{TVp7to}at {l:vpa}T;

{P4}at = — 6m8Lcos(a)[Ap1]T{Ti7jo}a + 6msL sin(czt)[Ap1]T{Wto};

[P5jat = - 3m3[Ap1]T[ o}at{Wo}T+ [Ap1];

{P6} = (2m8 + ptL)L{Wtp}at + 3(2m8 + ptL)Lsin(at){T’’po},

where:

()ai?’
=p’

o 0 0
[Ttp]crp = 0 sin(at

—

czp) — cos(at
—

cip)
0 cos(at

—

ap) sin(at
—

ap)

[Ttp1c =
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o 0 0
[Vpo]czp = 0 — sin(2cp) — cos(2ap)

o — cos(2a) sin(2c)

1 0
{Wtp}ap = sin(a — ap) ;

I. — cos(c — cp) J

{Wtp}at = {Wtp}ap;

1 0
{ Utp}ap = cos(at — cp)

I. sin( — cxp)

{Utp}at = {Utp}ap;

1° ‘I
{T’Vpo}crpz —sin(ap) ;

—cos(ap) J
(o

=
— sin(a)
—cos(at)
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APPENDIX II: ELEMENTS OF MATRICES ‘M’ AND

‘F’

The matrices M(q, t) and F(q, v, t) appearing in Eq. (2.37) can be partitioned as

follows

Mr(11)+MSMr(1,1) Mr(l,2)+MSMr(2,1)

M(q,t) = Mr(2,1)+MSMr(2,1) Mr(2,2)+MSMr(2,2)

Mfr(:, 1) + MSMf (:, 1) Mfr(:, 2) + MSMf (:, 2)

.Mrf(1:)+MSMf(1:)

MTf(2,:) + MSMf(2:) E R(2t1)x(2ti);

Mf+MSMf

Fr(1) + FSMr(1)

F(q,,t) = E R(2tl);

Ff + FSMf

where

Ntz= Nt+Nz;

M(1, 1) = ‘P2 + ma{dp}T[UkIT[Uk]{dp};

Mr(1,2) = {dp}T[Uk]T[Ttp]T{L2{BkO}+msL{Dk2}

+ [[Bk1]+ms[Uk][Api]j{X}};

{Mrf(1, :)} = {dp}T[Uk]T[Ttp] [K2];

Mr(2,1) Mr(1,2);
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Mr(2, 2) = It + m8L2 + ms{X}T[Ap1IT[Uk]T[Uk][Apl]{X}

+ 2msL{Dk2}T[Uk][Ap1]{X};

{Mrf(2, :)} = {X}T {[Hk4IT + ms[Apl]T[Uk]T[Apl]]

+ {Hk2}T + msL{Dk2}T[Ap1];

{Mfr(:, 1)} = {Mrf(1, :)}T;

{Mfr(:,2)} = {Mrf(2,:)}T;

Mf = 2[K4];

Fr(1) = (Mr(1 1) + Mr(12))8 + mQ{dp}T[U]T{Jp}

+ {dp}T[uk]T[Ttp]T{L{AkO} + ms{Dk1}+ [Ak1]{X}}L

H- ma{4}9’[Uk]{4} + 2mawpz{dp}T[Uj$,]T[Uk]{dp}

+ {dp}T[Uk]T[Ttp]T{L2{AkQ} + 2LLwt{Bk0}+ msLwt{Dk2}

+ [[Ak2] + [K3]] {J} + [L[Akl] + wt[Ekl]] {x}}

+ {dpT[uk]T[tp]T + {a}T[Uk]T[TtIT}

{ {K} + [K2]{5} + [K3]{X}}

- {{}T + wp{dp}T[uk]T}[rtp]P{{Kl} + [K2]{i} + [K3]{x}}

+ ({dp}T[P2lap{dp} + {X}T[P3]ap{dp}

+{P6}’{d} + 6{lp}’p[Ip]{lp});

Fr(2) = (M(1 1) + Mr(1, 2))

+ ltwt + 2msLLwt + {L2{BkO} + msL{Dk2}}[tp]{4}

+ {L2{BkO} + msL{Dk2}+ [[Bk1]+ ms[Uk][Api]] {x}} [Tt]{J}
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+ ({x}T[Hk3]{x} + {{Hkl}T + ms{Dkl}T[Uk][Apl]}{X}) L

+ {2LL.Bk0 + msL{Die2}} [T]{4}

+ {dp}T[Uk]T[Ttp]T{2LL{BkQ} + m$L{Dk2}}wpz

+ {.1apT[uk]T[Ttp]T + {dp}T[Uk]T[ipJT}

{L{Bj0}+ msL{Dk2}}wpz

+ {4}T[i]T[[Bk1]+ ms[Uk][Api]j {X}

+ {4}T[Tt]T [[Bk] + ms[Uk][Api]] {;t} + {ã}T[Tt]T[Ek]{x}

+ [{ã }T[Uk]T[Tt]T + {dp}T[Uk]T[ip1T]

[[Bk1] ms[Uk][Api]j {X}p

+ {dp}T[Uk]T[Ttp]T[Bkl]{X}wpz

+ {dp}T[Uk]T[Ttp]T [[Bk1]+ ms[Uk][Api]] {}wp

+ {i(}T[[Hk4]T + ms[Apl]T[Uk]T[Apl]] {} + {5}T[iIk4]{X}

+ {k}T [4mswt[Apl]T [Uk]T[Uk] [A1] + L[Hk3j+ L[Hk3ITj {X}

+ {ik2 + msL{Dk2}T[Apl]}{iC} + L{X}T [ilk3]{X}

+ {L{Hkl}T + msL{Dk1}T[Uk] [A1]

+ 2msLwt {Dk2}T[Uk] [A1]

+ {L{ilkl}T + 2msLwtz{Dk2}T[Uk][Api]}{X}

- {{}T + wpZ{dp}T[UkjT}[Ttp]{{Kl} + [K2]{} + [K3]{X}}

+ ({X}T[P3]at{dp} + {X}T{P4}cxt + {X}T[P5]czt{X}
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+ {P6}cxt{dp} — 3mgL2(Vto)ct -I- 6{lt}t[It]{lt});

{Ff} = (Mfr(:1)+Mfr(:2))

+ [K2]T[Tt]{i} + {{Ck5}+ ms[Ap1]T{Dk1}+

+ [[K2]T[] + [Ak2]T[Ttp}] {{a} +wP[Uk]{dP}}

+[K2]T[Ttp][Uk]{p}wp + [[Ok2]+ [Ks]] {}

+ [L[ak3]+ [ilk4]] {X}

+ {i{Ok5}+ + msLwtz[Apl}T{Dk2}}

-[K3]T[TJ{{4} +wP[Uk]{dP}} - [K5]T{}

- [[K6]+ [K6]T]{X}
- {K8}T

- a{x}
({W}T[I]{W})

c9Us OMe 1

+ ã{X} + 2R
j[P3]{dp} + {P4} + [[] + [P5JT]{X}

— â{X}
(tr[Itl) --

a{X}
({lt}T[It1{l}) }

+ () f 8{}
}dt 1

° 1 fo){ 8{ó}
}dYt

j;

T

MSMr(1,1) =_MfôM} {CM};
1.. &p

T

MSMr(1,2) _M1t3M} {CMczt};

T

{M(1, :)} = — MI ÔRSM } [CMx];1 p
T

MsM(2, 1) = — MI ÔRSM } {CMcxp};
1 at

T

MSMr(2,2) = — MIf9RSM } {CMcxt};1. at
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{ :)} = — Mf ÔRSM

}T[cMx];l &t

{MSMf(:1)} = {MsMf(1,:)}T;

{MSMf(:2)} = {MsMf(2,:)}T;

[MsMff] = _M[’9RSM1
[CMxJ;

FSMr(l) = (MSMr(11)+MSMr(12))

{ d (8RSM
f-M{1sM}- ptL (L{Dki} + [A1]{X}) }+

dt p Jj 1.
I ÔRSM

(LL + + L[A1]{X} +—pt.
I p , I

— MI ÔRSM T{cM}

I p J

- J aR }T{_M{SM} - PtL (L{Dki} + [A1]{X}) }I
GMe ( ÔRSMT2[p

]{R } + 2[P2]{d}+2R3 I c9api I

+ [P3]T{X} + {P6}})

GMeI
+

2R
{RSM}T{[Pl]ap{RSM} + 2[P2]cxp{dp}

+ [P3]{X} +{P6}op});

FSMr(2)= (MSMr(21)+MSMr(22))

TI d (ORSM
-M{1SM} - PtL(L{Dki} + [A1i{X})}

at jJ I

I ÔRSM (LL + + L[A1]{X} +—pt
I at )

— MI ÔRSM
T

I at J

- I aRSM}T{M{ } -
pL (L{Dki} + [A1]{X}) }I at
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GM /IORSM
+

2R oat

}T{

+ [P3]T{X} + {P6}})

GMeI
+ 2R +{P6}at});

{FSMf} = {MSMf(:1)+MSMf(:2)}

rd fOR\)] {_M{1SM} - PtL(L{Dki} + [A1]{X})}

roRSM1
- pt [ .

j + + L[A1]{X} +

T
— MFORSM] {CMF} + ptL[Apl]T{i?sM}

raRSM1T
- [ {_M{SM} - PtL(L{Dki} + {A1]{X}) }

GMe I roRSM
+ 2R U ]T{2[Pl]{RSM}+2[P2]{dP}

+ [P3]T{X} + {P6}})

GMeI
2R [P31{RsM});

where:

I 8u8 •‘

{ous’a{Bfl1 a{X} ) = 8U8/8{C} )‘
I ou8 r L(8F, 1OFIT 1
t — EAI I —-j dutj{B}

8{B} Lb I 8Yt
L/r8FT \2(OF

+ (EA/2) f (j-__) {C}) i_a—)dut;
O \

(oU3} L(8F,T (OFT
EAI !—.--$ {B}j-_? {C}}dt

O{C} .‘ I ôt j
8FT \3(OF

+(EA/2) -— {C}) j-_-dt;

222



t8F1T Id
jaj j

T dãF T({)}T)(11 {O}+{_{_}} {C});
i ayt J

( a •‘ 1aF

to{E}J ia1’
( o •‘ /(ÔFT \1âF’

jo{E} z(i.aj {C})t_j;

{RSM} = — {ma{dp} + (msL +ptL2/2)[Ttp]T{Dk1}

+ [Tt]T [ms[Api] + [Ak2]] {X}};

{1SM} = - {ma[ip]{dp} + ma[Ttp]{4} + (ms + ptL)L{Dk1}

+ [Ak2]{X} + [ms[Api] + [Ak2]]

+ {wt} x {[Ttp]{RSM}};

ma
{CMap} =

{CMcxt} = — + [Uk][Ttp]{RSM};

[CMx] = —
[ms[Api] + [Ak2]];

{CMF} = — -{ma(àt — a)2[T2]{d} + 2ma[i’tp]{4,}
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+ ma[Ttp]{äp} + ((ms + pL)L + pL2){D}

+ [L[Aki] + L[Ak1]]{X} + 2[Ak2]{}}

+ [Uk] [T] {RSM } + wt [Uk] [i] {RSM }

+ w [Uk][Ttp]{isM};

IÔRSM’I ma

1 a
= [T1j{dp};

dI8RSM1 ma

______

ma
a. )=[T1j{ãp}+[T1]{dp};

____

ma ma

t àtàp){Ti]ap{dp} [TtpJap{dp}

+ wtz[Uic][Tp]ap{RSM} + wtz[Uk][Ttp]{R5M}czp;

[t3RSM1 ma

aa =
— j[Ti}{dp} + [Uk][Ttp]{RSM};

d 1ÔRSM1 ma ma

ôt
= —[Tl]{dp}—[Tl]{dp}+[Uk]{sM};

[ÔRSM1 ma ma

i ac ) =
— p)[Ti]at{dp} — y[Ttp]at{dp}

+ wt [Uk] [Ttp]at {RSM } + Wtz [Uk] [Tt] {RSM }at;

raRSM1 1

[ = —

[ms[Api] + [Ak21j;

d [aisM1

dtl 9j jM
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IÔRSM1

__________

ÔRSM] 1

L ax j Wta [Uk] [Tt]
[ ax j —

IÔRSM1 1

1. aa j =
— yj{(msL +PtL2/2)[Ttp]{Dk1}+ [T]’ {ms[Api] + [Ilk2]]{x}};

(8RSM’l 1
=

— j{(msL +ptL2/2)[Ttp]{Dk1}+ [Ttp]at [ms[Apil + [Ilk2]]{x}};

raRsM1 1

L ax j =

— [Tt]T [ms[Api] + [Ak2]];

ro 0 0 1
[T1] = lo —sin(at—ap) cos(at—cxp) I[o —cos(ot—ap) —sin(at—ap)j

[0 0 0 1
[T2] = 10 COS(tap) —sin(at—ap) I;

[0 sin(t—cp) _cos(at_ap)]

[t1] = (at — a) [T2};

[Ti]ap = — [T2];

[Ti]at _[T2].

The matrices used in the above equations were defined in Appendix I.
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APPENDIX III: NONLINEAR AND LINEARIZED EQUA

TIONS OF MOTION FOR THE RIGID

SUBSYSTEM

Nonlinear Equation

The nonlinear equations of motion for the rigid degrees of freedom can be expressed

as

[Mu M12 f&,jfF1j_f M j
III1

LM21 M22 1&tJ 1F2JLTatJ’

where:

M11 =mamc(d + d2) + ‘;

M12 =mlmc (d1 cos(c) + sin());

M21 =M12;

M22 =pL3/3+ m8L2 —

F1 =(M11 + M12)S + mamcdp’ydpz + 2mamcdpzdpzwpz

+ { (mrn + pL)L + pL2 — mlwmc} (d sin(a) — cos(a))

+ { (msmc + ptL +m2mc)Lwt } (d cos(a) + d sin(c))

+ (_msL cos(a) + m1wj sin(cz))ma4z/M

+ 3uma(D — D) sin(2p) + 6/.LmaDtDt2cos(2ap)

+ 2m1 (D sin(a) — Dt2 cos(c))

+ 6iimi cos(t) (Dt sin(ap) + Dt cos(czp))

+311pz — Ipy) sin(2ap)
—

cos(2cp)
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+3itmp(R% —R%)sin(2ap)

+ 6IImPRSMYRSMZ cos(2ap) + ii + up2;

F2 =(M21 + M22)8 + mlmc cos()Jz

+ (pL2L + 2m3LL
— 2mim2L/M)wt

+ m1mc (d sin(cz) — d2 cos(a))

+ mi(1 + mc)4zwp sin() — maptLLwp cos(a) + sin(cx))/M

— maptLL4z cos(a)/M — 2mi (D sin(a)
— Dt2 cos(cz))

+ 6mi sin(ot) (Dt cos(ap)
— .Dt sin(ap))

+34u(msL2+pL3/3)sin(2czt) — up
—

P1
=() { —2mDt, sin(a) (i — 3 cos2(ap)) + 2maDt2 cos(a) (i — 3 sin2(cp))

+ 3ma sin(2ap) (D cos(a)
— Dt sin(cx)) + 3m1 sin(2czt)};

mpm1 2
P2

= ( M ) {_2 (RSMY sin(a)
— RSMZ cos(a)) +6RSM sin(a) cos (ap)

— 6RSMZ cos(o) sin2(ap) + 3 sin(2ap) (RsM cos(a)
— RSMZ sin(a)) };

RSM = (—madpy — m1 cos(a)) /M;

RSMZ = (_madpz — ml sin(a)) /M;

1%, tRSM + d;

Dt RsM + dpz;

ma =ptL + m0 + m3;

m1 =m3L+ ptL2/2;

m2 =m3 + ptL;

mc =1 — maiM;

M=m+m0+ptL+m;
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GMe
2R

Linear Equation

The nonlinear equations of motion for the attitude dynamics of the tethered system

are linearized about some arbitrary trajectory for the platform and tether pitch, and

offset motion along the local horizontal. The offset along the local vertical is kept

fixed at The governing equations of motion can be represented as

[ML11 ML12]Jl [CL11 GL121 f’i
[ML21 ML22j & J GL CL22 j 1 &

+ FKL1i KL121 I ‘ 1 + f MD1 j
LKL21 KL22j cz f MD2 f 2

(111.2)

where:

ML11 = ma(D + D) + ‘;

ML12 m1 (D cos(ã) + D2 sin(a));

ML21 =ML12;

ML22 =m5L2+ ptL3/3;

CL11 = 2maDpzDpz;

GL12 = — 2m1Ô(D sin(ä) — D2 cos(a)) + 2m2L(D cos(ã) + D2

CL21 = 2m18 sin(ã) — D2 cos(ã)) + 2miDpz sin(a);

CL22 = 2m3LL + ptL2L;

KL11 = m1(D sin(ä) — D2 cos(ä)) — m2L cos(ä) + D2 sin(ä))
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— ptL2 (D cos(ä) + D2 sin()) + miÔ2 (D cos(ã) + sin(ã))

+ 2m2L8 (D sin(ä) — cos(a)) + 6ma1u(D — D) cos(2äp)

— 12matDpyDpz sin(2ãp) — 2mip (D cos(a) + sin(ã))

+ 6miILcos(ät)(Dpcos(ãp) D2sin(aP))
—

6j(Ip
— Ip)cos(2ap)

+ 12,Ulpyz sin(2ap);

KL12 — m1 sin(ã) — cos(a)) + m2L(D cos(ã) + D2 sin(a))

+ ptL2 cos(ä) + D2 sin(ã)) — m1Ô2(Dm1cos(ä) + sin(ä))

— 2m2L9 sin(ä) — D2 cos(a)) + 2mi (D cos(a) -I- Dpz sin(ä))

— 6m1sin(ät) (D sin(ãp) + cos(ap));

KL21 = m1(D11 sin(ä) — cos()) + mliipz sin(ã)

— m1Ô2 cos(ä) + sin(ä)) — 2mi8bpz cos(a);

+ 2mt (Dpy cos(ä) + D2 sin())

— 6m1s1n(t) sin(äp) + cos(p));

KL22 = — mi(Dpy sin(ä) — cos()) — miiipz sin(ã)

+ miÔ2 (D cos(a) + sin(ä)) + 2miODpz cos(a)

— 2m1i(D cos(ã) + sin(ã))

+ 6mi cos(ät) cos(äp) — sin(ãp))

+ 6(msL2+ ptL3/3) cos(2at);

MD1=maDpy;

MD2 = ml cos(a);

229



GD1 —2maSDpz;

GD2 = 2m18sin(a);

KD1 = 2ma6Dpz + m16sin(ã) — m2Lcos(ä) + 2ma8Dpz

— pL2 cos(ã) -I- mÔ cos(a) + 2m2LÔ sin(ã) — 6maDpz sin(2p)

+ 6maitDpy cos(2p) — 2m1cos(ä) + 6m1,ucos(ãt) cos(äp);

KD2 = m16sin(ä) + m1(2 — 2) cos(ä) — 6m1psin(äj) sin(äp);

FL1 = (M11 + M12)8

+ ma(D + D2)ö + Ipö + mi (D cos(a) + sin(a))

+ maDbpz + m2L sin(ã) — D2 cos(ä))

+ 2maSDpzDpz+ (p.L2 — mlÔ2)(Dpij sin(ä) cos(ã))

+ 2m2L6 (D cos(ä) + D2 sin(a)) + 3ma(D — D2)sin(2äp)

+ 6mafLDpyDpz cos(2ãp) + 2m1 sin(ä) — cos(ä))

+ 6mlI4cos(ãt)(Dpsin(äp) + cos(p))
—3P(Ipy — Ip)sin(2a)

— 6,.iIp cos(2ãp);

FL2 (Mi1 + M12)8

+ m1(D cos(a) + sin(ä)) + (msL2 + ptL3/3)

+ mliipz cos(ä) + (2m3LL + ptL2L)8

+ mÔ2 (Di sin(ä) — cos(a)) + 2miÔi3pz sin(ã)

— 2m1 sin(ã) — cos(a))

+ 6m11usin(ãt) cos(äp) — sin(äp))

+ 3(m3L2+ pL3/3) sin(2ät);
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a =a
—

a3,.

Here, ã,, ä define the reference trajectories for platform and tether pitch angles,

respectively; cz3, and a are the differences between the actual and reference values

for the platform and tether pitch angles, respectively; D3, and D3, are the reference

values for the offsets along the local vertical and local horizontal, respectively; and

D2 is the offset required by the controller along the local horizontal direction.

Equations for the Offset Control

The dynamic model for the offset control of the tether attitude is based on the linear

equation which is decoupled from the platform motion. However, since the platform

dynamics is strongly coupled with the tether attitude in the presence of nonzero

offset, the platform pitch controller is based on the complete nonlinear equation.

These can be presented as

map(cxp, x, t)&3, + p, x, th, t) = M; (111.3)

= aa +a2D2 + a3c + €L4D2 + b+ cD2, (111.4)

where:

map(ap,x,t) =M11 —M12M21/M22;

f,(ap,àp,x,th,t) =F1 —M12F2/M22;

a1 = —
_?_{mi (_D3, sin(ä) + D3, cos(&))

+ m1(2 — 2)(D cos(ä) + D3, sin(ä))

+ 6i.tmi cos(ãj) (D cos(äp) — D3,2 sin(dp))

-I-6fLmatcos(2at)};
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a = — sin(ä) + mi(2.t — Ô2) cos(ä)
mct

— 6m1 sin(ãt) sin(ap)};

a3 =
—

mat
1 1 _

a4 =
— ____t2m1Ssmn(a);

mat

b =
—

_--_{mi(Dpi, cos(ã) + sin(ä)) + maj + thatÔ

+ mi(2 — 2t) (D sin(ä) — cos(ã))

+ 6,um1 sin(at) (D cos(äp) — D2 sin(p))

+ 3umat sin(2at)};

— m cos(ã)

mat

mat =ptL3/3+ m3L2;

nat =ptL2LH- 2m8LL.

The terms used to define the platform pitch equation, Eq.(III.3), were given in the

sub—section titled “Nonlinear Equation”, Eq.(III.1).

232



APPENDIX IV: CONTROLLER DESIGN USING GRAPH
THEORETIC APPROACH

Some details of the mathematical background and the controller design proce

dure which assigns specified eigenvalues to the linear time invariant tethered system

are described here.

Mathematical Background

Definitions *

A directed graph (also called digraph) 13 = (V, E) consists of two finite

sets

• V, the vertex set, a nonempty set of elements called the vertices of 13; and

• E, the directed edge set, a (possibly empty) set of elements called the

directed edges of 13;

such that each e in E is assigned an ordered pair of vertices (u, v). If e is a directed

edge (also called edge) in the digraph 13, with associated ordered pair of vertices

(u,v), then e is said to join u to v. u is called the origin or the initial vertex of e,

and v is referred to as the terminus or the terminal vertex of e. If a number (or

an edge weight) is assigned to each edge of a digraph, then the graph is called the

weighted digraph. In G = (V, E), if the element e of E is assigned an unordered

pair (u,v), then G is called a graph.

* Clark, J., and Holton, D. A., A First Look at Graph Theory, World
Scientific Publishers, Singapore, 1991, Chapters 1, 7.
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A directed walk in the digraph D is a finite sequence

W = vjelv ..

whose terms are alternately vertices and edges such that for i = 1,2, , k, the

edge e has the origin v_1 and terminus v. If u and v are the starting and ending

vertices, respectively, of the walk W then the u — v walk (i.e. W) is called closed or

open depending on whether u = v or u v, respectively. If W does not contain an

edge then it is called a trivial walk, else it is nontrivial.

A nontrivial closed walk in a digraph D is called a cycle if its origin and inter

nal vertices are distinct. In detail, the closed walk C =v0e1v1 vk_lekvk(vk = vo)

is a cycle if:

(i) C has at least one edge; and

(ii) v0, v1, v2, , v_ are k distinct vertices.

Since C contains distinct vertices, it also has distinct edges. The integer k, the

number of edges in the cycle, is called the length of C. A cycle C, of length Ic, is

denoted by Ck. A set of vertex disjoint cycles is referred to as a cycle family. The

width of the cycle family is the total number of vertices in it.

A graph C is called connected if every two of its vertices are connected. A

tree is a connected graph whose number of edges is one less than the number of

vertices. A spanning tree (or complete tree) of a connected graph C is a subgraph

which is a tree that involves all the vertices of C. A digraph is said to have a root

r if r is a vertex and, for every other vertex v, there is a path which starts in r and

ends in v. A digraph D is called a rooted tree if D has a root from which there is

a unique path to every other vertex.
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Mapping of linear state-space model into diagraphs *

Consider the Linear Time Invariant (LTI) equation

x—Ax+Bu, (IV.1)

where z e R is the state vector; u E R is the control input vector; A E

and B E RnXm. For the state feedback situation the control law can be expressed

as

u=Fx, (IV.2)

where F e R>< is the controller matrix. The closed-loop system of Eqs. (IV.1)

and (IV.2) can be mapped into the digraph (GS) defined by a vertex set and an edge

set as follows:

• the vertex set consists of m input vertices denoted by Ui, U2, ..., urn, and n

state vertices denoted by 1, 2, •, n;

• the edge set results from the following rules:

— if the state variable occurs in the x-equation, i.e. 0, then there

exists an edge from the vertex j to the vertex i with ajj as its weight;

— if the input variable Uk occurs in the z-equation, i.e. 0, then there

exists an edge from the input vertex Uk to the vertex i with the weight

— finally, if the state variable x occurs in the ui-equation, i.e. f 0,

then there exists an edge from the vertex i to the vertex Uk with the

weight fj.

* Reinschke, K. J., Multivariable Control: A Graph Theoretic Approach,
Lecture Notes in Control and Information Sciences, Edited by: M. Thoma
and A. Wyner, Berlin, Springer-Verlag, 1988, Chapters 1,2.
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Here, ajj is the row and th column entry of the matrix A; and bk and fk are

the entries of B and F, respectively.

For illustration, consider a system defined by the matrices

A
= [ai a32 a33 a34];

B = []; F = [fi f2 f f i•
a41 a42 a43 a44

The digraph C for this dynamic system can be represented as in Figure IV-1.

Obviously, the diagraph C5 contains less information than Eqs. (IV.l) and

(IV.2). Actually, G8 reflects the structure of a closed-loop system with state feed

back. As far as the small scale systems are concerned, it seems unnecessary to

investigate their structures separately. In case of the large scale systems, however,

one should start with a structural investigation. Thus, particularly for higher order

systems, the diagraph approach is extremely useful.

A typical feature of large scale systems is their sparsity. This structural

property becomes evident in the digraph C5. The digraph reflects only the non-

vanishing couplings of the system. So, instead of n2 state edges and nm control

edges one has really to take into account only a small percentage of this number in

most sparse systems. Moreover, the diagraph C5 gives an immediate impression of

the information flow within the closed ioop system. So for higher order systems, the

digraph approach to controller design is advantageous from computational point of

view.

For lower order systems, which is the case in the present study, this design

method gives a simple closed-form expression for the controller that can be readily

included in the dynamic simulation program or implemented in real system. This

feature allows for efficient simulation with a gain scheduling control for the highly
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Figure IV-1 Digraph representation of a linear, time-invariant system.

time varying dynamics of the tethered systems.

Controllability

A class of systems characterized by the structure matrix pair [A, B] is said

to be structurally controllable (or s-controllable) if there exists at least one

admissible realization (A, B) e [A, B] that is controllable in the usual numerical

sense.

The n x (n -I- m) structure matrix pair [A, B] is s-controllable if and only if

its associated digraph G([Q]) contains a set of i ( m) disjoint cacti, each of them

rooted in another input vertex and, together, touching all the state vertices. Here
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i_ ([A] [B]’\ 1V3LQJ - [F] [0])’ ( .)

and the ‘cactus’ associated with G([QJ) is the spanning input-connected graph

consisting of a simple path with an input vertex as the initial vertex, p ( 0)

vertex disjoint cycles and p distinguished edges each of which connects exactly

one cycle with the path or with another cycle.

Note, the digraph G([Q]) associated with the structure matrix [Q] is the same as

the diagraph GS corresponding to Eqs.(IV.1) and (IV.2) defined earlier.

Characteristic polynomial of a square matrix

Let the characteristic polynomial of the closed-loop system be represented

by

+Pn_ls+Pn. (IV.4)

The coefficients p, 1 i n, can be determined by the cycle families of width i

within the graph G( [Q]). Each cycle family of width i corresponds to one term in

p. The numerical value of the term results from the weight of the corresponding

cycle family. The value must be multiplied by a sign factor (_].)d if the cycle family

under consideration consists of d vertex disjoint cycles. In particular, pi results from

all cycles of length 1, with the common sign factor as —1; and P2 arises from all

cycles of length 2, each with a sign factor —1, as well as all disjoint pairs of cycles

of length 1, each pair with a sign factor +1, etc.

Controller Design Algorithm

Based on the preliminaries discussed above, the state feedback controller

238



which assigns the closed-loop poles at the desired locations in the complex plane

can be obtained by the following procedure.

Step 1: Consider the digraph G([Qj), Eq.(IV.3), and choose a subgraph consist

ing of m disjoint cacti as indicated before. Enumerate these cacti

arbitrarily from 1 to ñì.. There are fiz.! possible different enumerations.

Step 2: Choose an mx n feedback structure matrix [P’] whose th— 1 nonvanishing

elements correspond to feedback edges leading from the final vertex of

the path of cactus jto the root of cactus j + 1 (j = —1).

Choose a unit structure vector {gj such that the input vertex associated

with the column structure vector [Bg], is the root of cactus 1.

The matrix [F] and the vector [g] assure the s-controllability of the single

input pair [A + BP, Bg]. Moreover, for almost all admissible (A, B) e

[A,B], P E [P’j, g E [g], the pair (A + BF,Bg) is controllable in the

numerical sense.

Step 3: Choose admissible (A,B,P’,g) E [A,B,P,g] such that the pair (A +

BF, Bg) becomes controllable. Set up the system of equations

P —

[pl]Tf (IV 5)

where: p = {Pi, P2,
, }T is the vector of characteristic polyno

mial coefficients defined by the desired pole locations of the closed loop

system; p0 contains the characteristic polynomial coefficients determined

by the cycle families in G(A + BP); and

[F1] = [P,)]’ w = 1,2,••• ,n; j = ,n.

The element of [F1], i.e. Pw,j)’ is the (sign weighted) sum of weights
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of all those cycle families of width w within the diagraph of Eq.(IV.3)

that contain one feedback edge (with weight 1), from state vertex j to

the input of cactus 1.

[F’] has rank n, if and only if (A + BP’, Bg) is controllable. Hence,

Eq.(IV.5) can be solved for f for almost all (A, B) E [A, B].

Step 4: The overall feedback matrix

F=P+gfT (IV.6)

provides the desired eigenvalue placement.

For single input systems, the controller can directly be designed from Eq.(IV.5) with

P = [0] and g = {0}.

Design of the Controller

The state feedback controller is designed to regulate the rigid degrees of

freedom, i.e. p and . The governing linearized equations of motion for the rigid

system are used to that end (Appendix III, Eq.(III.2)). The platform and tether

pitch controllers are designed based on the decoupled equations of motion. For the

offset control, to regulate the offset motion, the tether pitch equation is augmented

by the identity

= Ut.

The equations governing the tether dynamics can be written in the state space form

as

±=Ax+bu, (IV.7)
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where:

x = {at, at,
}T;

0 0 1 0 0
0 0 0 1

b= 0
a31 a32 a33 a34
a41 a42 a43 a44

The entries in A and b matrices are obtained from Eq.(III.2), Appendix III. The

digraph of this system with the state feedback controller is shown in Fig. IV-1. The

controller, u = fx, can now be designed using Eq.(IV.5) with p° and [F1] as given

below:

( —a33 — a44
o

— J a33a44 — a3 — a42 — a34a43
2’ — —a32a43 + a42a33 + a3a44 —a34a4

1. a31a42 —a32a41

0 —b3 b3a44 — b4a34 b3a42 — b4a32

rpll — 0 —b4 —b3a43 + b4a33 —b3a41 -I- &ia3i
I

— —b3 b3a44 — b4a34 b3a42 — b4a32 0
—b4 —b3a43 + b4a33 —b3a41 -I- b4a3j 0

Similarly, the state model of the platform dynamics can be represented by the ma

trices

0 1 loand b=c
aj a22

The corresponding matrices for the controller design are

= { 22 } and [p1]

= [—2 I
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APPENDIX V: LINEARIZED EQUATIONS OF MOTION

AND CONTROLLER FOR THE FLEX

IBLE SUBSYSTEM

Linearized Equations of Motion

The governing equations of motion (Appendix II) are decoupled separating

the rigid and flexible subsystems. Neglecting the nonlinear terms from the decoupled

equations, the linear model for the flexible system can be represented by the vector

equation

MZ + GZ + K2Z + Mdydpy + Gddpy + Kdydpy

+ Mdzdpz -I- Gdpz + Kdzdpz + 1z = QzTL, (IV.1)

where:

Z = {{B — Beq}T, CT}T;

{Beq} = equillibrium value of {B};

M2 = 2{K4};

C2 =
+ [K5] — [K5]T

+ () [[i
[AC3d]]

F{F(Ydl)} {O} 1 FCdz{F(Ydl)}T {O} 1+ [ {Q} {F(Ydt)}j I {O} Cdz{F(Ydt)}Tj‘

K2 = rrig[Apl]T[Uk] [A1] .+ + +

+ Ô[1k4]— [K6] — [K6]T + [P5] -f- [p5]T
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(—2—4i)[I] + [AB] [0] ]+ L [0] (2
+ 2i)[Ici] + [AC]

l{F(Ydj)} {0} 1 CdjL{DF(Ydl)}T Cdl{F(Ydl)}T+1
L {0} {F(Ydt)}j [ Cdt{F(Ydt)}T cdL{DF(yd)}T]

Md [K2IT[Ttp];

Gd = [Ak2]T[Ttp] +[K2]T[Ttp][Uk] — [K3]T[Tt]

r {0} {0} 110 Cdl 0 1
+ I {0} I

L {0} {F(Ydt)}j L0 0 Cdt]’

Kd = ë[K2]T[Ttp][Uk] + [Ak2]T[Ttp][Uk] — [K3]T[Ttp][Uk] + [P3]

r {0} {0} 1 —Cdl 0
+ S J F(Y1)} {0}

[ {0} {F(Ydt)}j
{ 0 Cdi]’

iz = {Hk2}+msL[Apl]T{Dk2}}+ {{Ck5}+ ms[Apl]T{Dkl}}L

- {K8}T + {Ok5} + + mSLÔ[Apl]T{Dk2}+ {P4}

I (Ô2 + 4){’b2}}
+ { 1

Lcdl ,

F.Ø(Ydl)} {0}-1 {} {0} {F(Ydt)}J { YCj

r ,L(ãF. (ÔFI1T

[AB]=EAIJ —‘-0 t 6t J
dY];

I T IÔF 18FT 1

[AC}=EA’J
ij_} {Be})t?t dYtj;

L o

[AC8d]
(8FlT

8ytfJ -j
ditj.

Here: Cdl and °dt are the damping coefficients of the longitudinal and transverse
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dampers located at distances dl and dt, respectively; and w0 are as defined

in Eqs.(2.32) and (2.33); {B} and {C} are the vector containing longitudinal and

transverse modes of the tether; and the coefficient matrices are defined in Appendix

I.

Numerical Values of the Coefficient Matrices

The numerical values for the coefficient matrices in Eq.(IV.1) are given be

low. They correspond to the stationkeeping case with a tether length of 20 km, and

mass and elastic properties as given in Chap.4.

532.7 519.6
= 519.6 514.0 [t1 e

[0] [Diag.(98.0)]

[0.405 0.4051 c T
[0.405 0.729] E R122;

[G] [0]

—1.023 —0.401
0.512 0.434

—0.341 —0.318
0.256 0.246

—0.205 —0.199
Gt =0.1 X

0.171 0.168
—0.146 —0.144

0.128 0.127
—0.114 —0.113

0.102 0.102

13.08 3.081
K [3.08 5.54]

[0]
E R12X 2;

[0] [Diag.{K}]
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—42.982 0.0211
—41.928 0.0845

0.0 0.1902
0.0 0.3382
0.0 0.5284

= 0.0 Kt 0.7609
0.0 1.0357
0.0 1.3527
0.0 1.7120
0.0 2.1136

0.0
—549.0 0.0
—524.5 —88.231

0.0 0.0
0.0 —29.410
0.0 0.0

Md
= 0.0 Md

= —17.646
0.0 0.0
0.0 —12.604
0.0 0.0
0.0 —9.803

10.0

0.0
0.0 —1.2733

0.2046 —1.2165
0:0 0.0

0.0682 0.0
0.0 0.0

0dy = 0.0409 Gd 0.0
0.0 0.0

0.0292 0.0
0.0 0.0

0.0227 0.0
0.0
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—0.2215e 2 1.0
—O.2116e — 2 1.0

0.0 0.0
0.0• 0.0
0.0 0.0

Kd
= 0.0 =

0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

1.0 0.0 2’

1.0 0.0
0.0 0.2221e — 3
0.0 0.4443e — 3
0.0 0.6664e — 3

— 0.0 0.8886e — 3
C0

0.0 0.lllle—2
0.0 0.1333e — 2
0.0 0.1555e — 2
0.0 0.1777e—2
0.0 0.1999e — 2
0.0 0.2221e — 2

where:

b1(L) ... 0 •.. 0
C0

= .. 0 (a1,o) •.. (8N /8t)
Yt=0 Yt0

[Diag.(a)] =[D];

with D= 0, Vij;

= a, if a is a scalar;

= a(i), if a is a vector.
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Design Parameters and Controller Matrices

The numerical values for the weighting matrices used for the controller design

and final controller matrices are given below.

B1- Controller (LQG/LTR)

q = 1.0e5;

=

R = 1.0e5;

= 1.5e2;

—1.811e — 2 1.0
— 7.277e — 1 9.480

Afb —4.460e — 2 00
—7.135e — 1 —9.199

( —1.8110e — 2
I —1.0165e—3

Bfb j —4.4601e — 2
I —8.1649e — 4

Cfb= {0.7126 9.1993

3.Oe — 2 0.0 0.0 0.0
— 0.0 3.Oe —4 0.0 0.0
— 0.0 0.0 1.Oe — 2 0.0

0.0 0.0 0.0 1.Oe — 4

0.0
1.053e+1

1.0
—1.022e + 1

—1.811e — 2
1.029

—4.460e — 2
—1.001

1.0002 10.2202 };
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C1- Controller (LQC)

0.0 0.0
1.Oe—2 0.0

0.0 1.Oe—1
0.0 0.0

1.Oe+9 0.0 1.
— 0.0 1.Oe+9j’

r—1.2363e 3
I —2.3062e — 4

Afc I 0.0
L 1.5779e—5

r 5.5654
I 3.3292e — 3

Bfc= I 0.0
L 0.0

1.0
—1.6433e —3

0.0
1.4645e — 3

0.0 0.0
2.8471e — 5 7.3920e — 3

—4.4732e — 3 1.0
—4.1623e — 5 —8.2105e — 3

Cf= {1.5779e—5 1.4646e—3 —3.1623e — 5 —8.2105e — 3 };

1.Oe — 1
0.0
0.0
0.0

R=1.Oe+8;

1.Oe+9
— 0.0

0.0
0.0

0.0
0.0
0.0

1.Oe — 3

0.0
0.0
0.0

1.Oe — 1

0.0 0.0
1.Oe+7 0.0

0.0 1.Oe+1
0.0 0.0

0.0
0.0

1.Oe — 5
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APPENDIX VI: LABORATORY TEST SETUP

The experimental setup used three step-motors with corresponding translator

modules and two optical potentiometers. The motors consist of permanent magnet

rotors while the stators contain a stack of teeth with several pairs of field windings.

The windings can be switched on and off in sequence to produce electromagnetic

pole pairs that cause the rotors to move in increaments. The sequential switching

of the windings is accomplished by a translator module. The translator module has

logic circuitry to interpret a pulse train and “translate” it into the corresponding

switching sequence for stator field windings (on/off/reverse state for each phase

of the stator). The details of the motors and translators are well documented in

reference [110]. Relevant mass, geometry, and other system parameters used in the

analysis are listed below:

Mass of Carriage = 70.43 kg

Mass of inplane traverse = 2.23 kg

Mass of the pendulum = 0.1108 kg

Deployment/Retrieval reel diameter = 2 x 10_2 m

Pulley diameter = 4.4 x 10—2 m

Maximum tether length = 2.25 m

Maximum offset motion in X — Y plane = (± 0.7 m) x (± 0.7 m)

Number of pulses required to move the motors = 200 pulses/rev

A pair of Softpot optical shaft encoders (Si series, U.S. Digital Corp.) is

used to measure the angular deviation of the tether from the vertical position. The
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Softpot is available with ball bearings for motion control applications or torque-

loaded to feel like a potentiometer for front panel manual interface. Characteristic

features of the Softpot are given below:

• 2-channel quadrature, TTL (Transistor — Transistor Logic) squarewave out

put;

• 3rd channel index option;

• tracking capability — 0 to 10,000 RPM;

• ball bearing option tracks to 10,000 RPM;

• — 40 to + 100°C operating temperature;

• single + 5v supply;

• 100 to 1024 cycles/rev;

• small size;

• low cost.
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