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A Minimally Informative Likelihood Approach
to Bayesian Inference and Decision Analysis

Abstract

For a given prior density, we minimize the Shannon Mutual Information between a pa-
rameter and the data, over a class of likelihoods defined by bounding a Bayes risk by
a ‘distortion parameter’. This gives a conditional distribution for the data given the
parameter which provides optimal data compression, or equivalently, is minimally infor-
mative for a type of location parameter. These optimal likelihoods cannot, in general,
be obtained in closed form. However, they can be found numerically. Moreover, we give
two statistical senses in which the optimal likelihoods form parametric families which
make the weakest possible assumptions on the data generating mechanism. In addition,
we establish properties of this parametric family that characterize its behavior as the
distortion parameter varies. We argue that the parametric families identified here may
lead to a default technique for some settings in initial data analysis. We partially charac-
terize the settings in which our techniques may be expected to provide useful answers. In
particular, we argue that if one is interested in performing certain Bayesian hypothesis
tests on a parameter that locates a typical region for the response, then our technique
may provide weak but nevertheless useful inferences.

We also investigated the robustness of inferences to modeling strategies for paired,

blocked data.
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Basic Notations and Definitions

The following notations and definitions are used throughout the thesis.

1. z™ stands for (21, ...,25).

vi




Acknowledgements

I would like to thank my supervisor Bertrand S. Clarke for guiding me to the unexplored

territory, for his inspiration, for his constant encouragement and the financial support.

I am indebted to Professor Harry Joe for his invaluable advise and suggestions, to Nancy
Heckman, Paul Gustafson and all the members of my Supervisory Committee for their
comments and help. I would like to thank Christine Graham, our Department secretary,

for her constant help.

Finally, I would like to thank the University of British Columbia and the Department of

Statistics for its financial support.




Chapter 1

Introduction

1.1 The Minimally Informative Likelihood Problem

In this thesis we investigate an information theoretic criterion for likelihood selection. It
is based on minimizing information: The information being minimized is the information
implicit in the likelihood. This is counter-intuitive because usually one wants a likelihood
which is as informative as possible. However, it must be remembered that fundamentally
the likelihood is as arbitrary, at least initially, as any other statistical construct. More
to the point, for the sake of being conservative, one wants to assume as little as possible
because it is hard to assess whether the assumptions one has made are acceptable for the
application. Indeed, it is an empirical fact that no models are demonstrably exact for any
real phenomenon. In practice, if one has a genuinely valid parametric family then infer-
ences made using it will likely be stronger than those made using a likelihood representing
weaker assumptions. We formalize this by obtaining minimally informative likelihoods.
Even though they provide weaker inferences, their conservatism is useful. For instance, re-
jecting a hypothesis using a minimally informative likelihood is a stronger form of rejection
than rejecting under a true likelihood. Estimation using a minimally informative likelihood
bypasses much of the argumentation essential to justifying a model — which is generally done
cursorily at best, that is without reference to the detailed physical basis of the phenomenon
which is often unknown.

The actual criterion we study is a minimization over a set of ‘good’ likelihoods defined by
a Bayes risk bound. Thus, to use this criterion one must identify a quantity or parameter,
choose a prior density for it, and choose a loss function. In addition, one must choose
a bound for the Bayes risk. Specifically, the criterion we are to optimize is the Shannon

mutual information (SMI) between the likelihood and the prior. i.e. the likelihood we seek



p — I ) X

where

1(0,X") = / / m(xn)w(ow)log%;—)dedx"

is the Shannon mutual information between the random variable X™ and the parameter ©,

m(z") = /p(:c"|0)w(0)d0

is the data marginal density and

P={ p(-|0)://p(x”]O)L(zn,O)w(H)dx”dOSl .

Here L(-,-) is the loss function and [ is the specified risk tolerance bound. Note the SMI is

the expected Kullback-Leibler divergence between the posterior and the prior
1(0,X") = En D(w(-|X™)||w(-)),
where for any pair of densities p(-) and ¢(-),

_ p(z) .
DG()a() = [ p(e)10g 55

is the Kullback-Leibler divergence between p(-) and ¢(-). It is not a distance, but has some
distance-like properties. It measures the discrepancy between the two densities.

Thus, we are seeking the likelihood, in the given class, which updates the prior the least
in that it gives a posterior as close to the prior as possible. In this sense, it is minimally
informative for the parameter among the class of likelihoods. We call such a likelihood
the Minimally Informative Likelihood (MIL). It is the most conservative, and in case no
knowledge of the data distribution available, it can be used for an initial data analysis.

Since I(©,X") = H(O) — H(O|X™), where H denotes the entropy, our method has
some connections with the maximum entropy method. In fact, minimizing the SMI over
likelihoods which we do here, is the same as maximizing the second term which is the

conditional entropy, where the conditioning is on the data.



1.2 Formulation of the MIL Problem

As we noted earlier, in Bayesian analysis, usually one assumes a known likelihood and
a known prior density, so that all inferences are obtained from the posterior distribution of
the parameter. Sometimes, however, we have pre-experimental knowledge about the param-
eter that we can quantify in a prior distribution, but little knowledge about the likelihood
or the distribution of the data conditionally on the parameter. For example, past experi-
ence with phenomena similar to a phenomenon under investigation, and expert opinion may
be used to suggest a prior, but do not generally provide enough information to suggest a
likelihood. In addition, modeling a physical problem may suggest a particular loss function,
or it can be chosen based on convenience. We also require a bound on the allowable Bayes
risk under that loss function; this can be set by the experimenter as we will discuss later.
This bound controls the Bayes risk of using the data itself say X, as an estimator for the
unknown parameter §. The likelihood our optimization produces therefore depends on the
prior, the loss function and the bound; its robustness to these inputs can also be assessed.
We will discuss the choice of these quantities in more detail in Section 1.2.3.

As a specific example, we might want to estimate the mean precipitation in a given month
over the long term in British Columbia based on the daily observations in that month. Past
records in B.C. can be used to help us to formulate the prior distribution. (If no such records
were available, a Bayesian might just specify a set of basic beliefs about the parameter, say
its location, dispersion, etc, and choose some standard distribution to fit these beliefs.) For
a moderately small number of observations, if a phenomena which, like the weather, is not
well understood, it may be hard to identify a reasonable family of distributions. So the MIL
method while may sensitive to the physical details of a phenomena, will at least provides an
option for the user who has limited knowledge. The loss function can be partially specified
by the cost of under estimation and over estimation. For instance, excessive rainfall might
lead to flooding or other damage to crops which can be assessed financially. Too little rainfall
might necessitate irrigation which. Ahas an approximately known cost. The Bayes risk bound
can be chosen by the experimenter acéording to the practical precision requirements; the

larger the bound, the less accurate, but the more flexible the model will be. Or it can be a

suitable positive number no greater than the minimum average loss over parameter, which




in the case of squared error loss, is just the prior variance, since by Proposition 3.1, there
is a unique MIL for each Bayes risk bound in that range.

For another example, consider the life time z;’s of light bulbs, or any life time data.
Let 6 be the mean life time. Suppose we have some historical data that can be used to
specify the prior. A reasonable loss function may be taken the form L(z,8) = L(z,0)I(z >
) + Ly(z,0)I(z < 6) where Ly is non-negative function which is non-decreasing in |z — 6|
and Ly is non-positive which is non-increasing in |z — 6| and such that the Bayes risk is
positive for a class of distributions. It is known that if L; and L, are linear in |z — 6],
which may be reasonable choices in some practical settings, then the Bayes estimators are
percentiles.

The parameter occupies an unorthodox role in this strategy. Conventionally, one spec-
ifies a prior fully and seeks a parametric family conditional on it. Of course this is hard.
Instead, we specify the parameter partially: we regard it as a sort of location parameter in
the sense that because we optimize over P, § must be estimable by X. (This of course, is in
addition to information theoretic criterion that § must be decodable from X.) As such, §
is partially specified and is only fully spec:iﬁed by the optimization procedure. In Example
1.4.3, for instance, we choose a N(0,1) prior for # that we think of as being the data mean.
In fact, it is not exactly the data mean: once we have the MIL, we see that @ is interpreted
as a shift of the mean. Examining the form of the MIL, we see that the loss function is
in the exponent. Thus, the nature of the loss function also strongly affects the detailed
interpretation of the parameter . This imprecision in the interpretation of  will not in
general hamper the assignment or elicitation of a prior.

In practice, it is difficult to explain the difference between a mean and a median and
in our method this degree of exactitude is usually glossed over anyway. Moreover, it is
rare to be able to assign a prior to one sort of location parameter without having obvious
implications for similar but different location parameters.

In applications, one is concerned with what the parameter represents. Consider a hy-
pothetical problem in which one person wants to estimate the median and another wants
to estimate the 99th percentile using the same loss function and the same prior. Noting
that the procedure gives the same MIL for both cases one is concerned that the basic set

up doesn’t make sense.




The answer to this criticism is that the set up does indeed make sense but that no
uniform statistical interpretation of the parameter exists. That is, you get to choose a
loss function, a measure of distortion and a prior but do not get to choose the statistical
interpretation for the parameter; the exact statistical interpretation of the parameter arises
from the optimization procedure. All that one case say in general is that as a consequence
of the choice of loss and allowed distortion one will optimize over a class of likelihoods for
which the random variable as an estimator for # has Bayes risk bounded by the distortion.
The parameter 4 is a location parameter in the sense that it can be estimated by X with
Bayes risk bounded by A and the loss appears in the exponent of expression (1.2.1.3).

For instance, if one chooses the squared error loss and 2 normal prior one does get a
normal MIL with an identified mean that is a function of A, 8, and the parameters in the
normal prior. In this case, the interpretation of § as a percentile depends on the values of
the parameters in the prior and on A. As noted in Section 2, if 4 = 0, then only in the limit
of Ao? going to infinity does one get 8 as the mean.

A limitation arises if one insists on using a certain parameter, loss and prior. In general
one cannot link the choice of the loss function and the interpretation of the parameter. For
example, suppose one insists on estimating the 99th percentile under the squared error loss.
Even if one uses a prior appropriate for the 99th percentile, the exact interpretation for
the parameter from our method depends on the loss function through (1.3.1). Since the
99th percentile is usually far from the posterior mean (the Bayes estimator under squared
error loss) one expects the 99th percentile to differ substantially from the 6 in (1.3.1). We
conjecture the only way to remedy this is to change the loss function so its Bayes estimator
is close to the interpretation one wants. Thus, the range of interpretations that can emerge
from our method is narrow. In practice, one should put a prior on a vaguely defined location
parameter after choosing a loss function. (This gives an idea of what type of 8’s can be
estimated well by X.)

Fundamentally, we have a way to choose A, the prior and the loss function to get a likeli-
hood. i.e., we have a hyperplane in the space of likelihoods parametrized by (A, w(-), L(-,")).
This hyperplane is the result of an information theoretic optimization ~ a “universally” op-
timal reduction of the information in the sénse of the data compression as described in

Chapter 2. This formulation reverses the usual decision theory approach. In the usual ap-



proach one specifies a loss function and a parametric family, optimizing to find an estimator.
Here, we have a loss function and an estimator (X) but we optimize to find a parametric

family.
1.2.1 Definition of the Minimally Informative Likelihood

To choose a likelihood, we note that for a givén prior w(#) and a parameter € R?, I(0, X)
can be minimized over certain classes of likelihoods. This minimization gives a likelihood for
which the posterior is least changed from the prior, in an average sense. This is one sense in
which the optimal likelihood can be regarded as minimally informative so we denote it by
pmir(z|6). Consequently, a product of optimal univariate likelihoods is an independence
model which is minimally informative apart from the assumption of independence.

For simplicity, we assume that X and # are continuous and unidimensional. When either
is discrete it will be enough to replace the integration with a summation; the properties
we use continue to hold. Let L,(z",0) = > v, L(z;,8) be the cumulative empirical loss for
estimating 6 based on the sample z", where.L(-, -) is the loss function. We minimize the
SMI over the class P; of likelihoods defined to be the set of parametric families of densities

on a measure space (X™, ) which satisfy
/ / p(2"18)w(8) Lo(z™, 6)dz"dd < 1. (12.1.1)

Here I, > 0 bounds the amount of Bayes risk we will tolerate for estimating # by X".

In information theory, the minimal value of the the SMI over P, for the n = 1 case
R(l) = inf I1(©, X), ' (1.2.1.2)
PEP; .

is the rate distortion function, see Cover and Thomas (1991). It is shown in Blahut (1972b)

that the minimum in (1.2.1.2) is achieved by
m*(x)e—)\L(z,G)

Pi(e|0) = [ m*(y)e= () dy’

(1.2.1.3)

where A and m*(z) are determined by the conditions

/ / 5 (2|0)w(6) L(z, 8)dzdd = 1 (1.2.1.4)




and AL(z.0)
1 e~ ME0)y(9)
_ * = < 1.2.1.
—— /p,\(x|0)w(0)d0 /fm*(y)e"‘L(yve)dyde <1 ( 5)

with equality in (1.2.1.5) for those = such that m*(z) > 0.

The general approach of using MIL’s as a default suggest models of the form
p(z]6,)) = C(8, \ym(z)e =0,

where m(z) > 0 and C(0, A) is the normalizing constant. We may in turn ask the question:
given the loss function L(-,-) and m(-), does there exist w(-) such that m(z) is the mixture
of p(z|6, ) and w(h):

m(z) = ma(e) = /p(z|0, A)w(8)de.

This is an integral equation problem.

Note that A = 0 in (1.2.1.3) is associated with p}(z|6) = m*(z) which is independent of
6. We will see later that the corresponding [, uﬁder suitable conditions, is infinity. In this
sense, the constraint (1.2.1.1) vanishes and the SMI assumes its minimum of zero for any
distribution that is independent of 4. ‘When n > 1, the foregoing holds with  and L(z, )
replaced by z™ and L,(z™,0) respectively. Although we have taken z to be real valued, the
procedure is valid more generally. In particular it is valid for z taking any values in R*. It
is this generality which will help permit the formulation of diverse models in Chapter 4.

In the definition of the MIL, 1/X or I behaves like a dispersion parameter for p}(-|4) in
addition to its role in defining P;. This will be discussed in an example in Section 1.4.

Apart from a few special cases, one cannot solve for the optimal
Parrr(z]0) = p3(z|0) explicitly. However, one can obtain p}(z|) numerically by the Blahut-
Arimoto algorithm, see Section 1.3.

This information theoretic technique produces a likelihood p3(z|f) which is optimal
within the class P; of parametric families. It is optimal in the sense of making the weakest
assumptions consistent with estimating by X with a Bayes risk bounded by /. Thus, in
general p%(z|#) is not a “true” likelihood. In particular, we require only that X be not a
bad estimator for 8, where 6 is aAlocation-type parameter. It is a location only in the sense

that it summarizes X in a data compression context or permits the effective decoding of X

in a channel transmission context.



1.2.2 Minimally Informative Distributions

When considering A as a parameter, the MIL is an optimal parametric family within a
class of parametric families. Sometimes it is interesting and practical for a given prior
density w(#), to ask for an optimal distribution within a given parametric family p(-|6, n),
where @ is the parameter of interest and 7 is an additional parameter, over which we are
optimizing. In this case, we still assume the data distribution is 77d. The SMI is a function
of the additional parameter 7:
. iz p(2il6,m) 5, n
I(n :// p(2:16, n)w(0) log =="-———""2dbdz",
(=] J Wptedo,me@ios =5, ey
= [ D(w3,(Mimal-1m))w(8)d6 = (3 X"1n)
and I(©; X™|n) is the conditional SMI. where
m(a"ln) = [ T] p(ail6,nyuw(®)ds.
=1
We are to minimize I(7) over . This will lead to more understanding of the behavior of
the minimum information approach.

For large sample size n and any fixed value of 7, we can use the approximation by B.

Clarke and A. Barron (1990)

D10, mllmaln)) = Flog gms +log YIGD 4 o(1),  (12:2)

where d is the dimension of the parameter § and v(6|n) is the Fisher information of the
likelihood p(z|6). So, by this formula, we can get an approximate minimally informative
distribution, by asymptotically minimizing y(8}|n) over .

We denote the minimizer of v(8}n) by #* and call the corresponding distribution p(-|6, n*)
the minimally informative distribution (MID). We will give some examples of MID’s in Sec-

tion 1.4.

1.2.3 The Quantities that Determine the MIL

G

Since the MIL requires a fixed prior w(-), a specified loss function L(-,-) and a given Bayes

risk bound /, we must specify these quantities before the construction of the MIL. There




are numerous methods for selecting the prior. If we have historical data, it may be used
to suggest a prior. If we have some vague knowledge of the likelihood, for example the
Fisher information v(6), one can use Bernardo’s reference prior which is based on v(8) (see
Bernardo, 1979). In practice, to specify a prior distribution, one usually first specifies some
basic beliefs about the prior, for example its range, location, dispersion, and then chooses
some standard distribution to meet these constraints.

Also, if the belief in the prior distribution is not strong, we may choose priors sequen-
tially. That is let wo(-) be the initial prior which may be very flat, get p§(:|-) from it by the
MIL procedure; use w1(-) x p5{datal-)wo(-) as the next stage prior and so on. Or divide
the data into two parts x = (y,z), use y as a training set to get w(8ly), treating it as the
prior and z as the data for inference.

The loss function can be chosen in several ways. The best way is to use an experimenter’s
understanding to formulate L so that the loss is a matter of modeling. In practice, however,
one often chooses a loss function subjectively or for mathematical convenience. For a single
continuous observation, the usual ch01ce is the squared error loss or absolute error loss. For
the binary case one may choose the 0 1 loss For a sample of size n, we may use the average
or weighted average loss for each observation.

As for the Bayes risk bound [, it may be chosen based on how much risk is tolerable
for the specific problem, or chosen informally in the same way for an optimal smoothing
parameter. (We will see later that | behaves much like a smoothing parameter in the
nonparametric context.)

A practical and simple way to choose a proper value for the parameter X is to find,
possibly by grid search, the Ag based on which the corresponding posterior updated by Pl
is closest, in the Kullback-Leibler sense, for instance, to the prior. This is consistent to the
ideal with the MIL.

Since I and A, in general, determine each other (see (ii) of Theorem 3.3.2), sometimes
choosing A is more convenient. Since A and ! have a sort of reciprocal relationship, we may

roughly choose A « 1/I. From the structure of the MIL, we see that A~! behaves some-

what like the dispersion of the distribution, thus; as another alternative we may choose
A= 1/(Q(0.75) — Q(0.25)), where Q(0.25) and Q(0.75) are the first and third sample quar-

tile respectively. In the example computed in Chapter 4 we choose A on the basis of how the



posteriors look — a heuristic approach which we find more convincing that the antomatic

techniques we have listed.

1.3 The Blahut-Arimoto Iterative Procedure

In Section 1.2.1 we stated that in general, there is no closed form solution for the MIL’s, but
it is computationally possible to obtain MIL’s through an iterative procedure, the Blahut-
Arimoto algorithm. Recall that the MIL is the minimizer of the rate-distortion function
R(l) for given distortion or Bayes risk /. It is shown in Blahut (1972), that the minimum
in R(l) is achieved uniquely by

. m*(x)e—)\L(a:,O)
= 1.3.
p*(z]9) fm*(y)e—'\L(y"")dy (1.3.1)
where m*(z) is determined by the equation
—AL(z,6)
‘ w(b) o< (1.3.2)

[ m*(y)e~ (w0 dy
with equality for those z such that m*(z) > 0, and A > 0 is determined by [ through the
equality in the constraint (1.2.1). Note that m*(z) is just the marginal density for the data
from p*(z|6): m*(a) = [ p*(al6)w(6)ds.

The following three theorems are given in Blahut (1987). For self containment, we state
them here and give an outline of the proof. The technique of proof is valid when X; is

discrete or continuous. Let
Q = {g: q(-) is a probability density on X},

and

R ={r(:|): Yz, r(f|z) is a posterior density on ©}.

We have
Theorem 1.3.1 (Blahut, 1987).

: . p(z]6)
(i) 1(0,X) = inf / w(@)p(a10)log® = S dbds.
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) _ r(0)2)
(41) 1(0,X) = fgg/ww)p(wle)log w(8) dfdz.

Theorem 1.3.2 (Blahut, 1987). R(!) is decreasing on [0, c0) and is convex and hence con-

tinuous on [0, r], where

r = inf / w(8)L(z, )db.

Theorem 1.3.1 says that the inequality constraints in the definition of R(l) can be re-
placed by an equality constraint, since R([) is deceasing and continuous. This is significant
because it means that we can use the equality constraint to introduce the Lagrange multi-

plier. That is, consider

p(z|0)
Jw(&)p(z|€)dE
+)\< [ [w@ne10)1(z,6)dzas - z)]

for each A. The minimum of this expression will be achieved by some p%, which depends on

A, and A is chosen so that [ w(G)pj(:L'lO)L(x, 6)dzdf = l. Thus we have the following:

R(1, ) = inf] / / w(8)p(z|6) log dzdo

Theorem 1.3.3 (Blahut, 1987).

R(1) = —\ +inf inf / / w(6)p(z|6) log %d&dw +A / / w(0)p(2]6) L(z, 0)dzdd),
where m(-) is a probability density.

For fixed p(:|-), the expression in the square brackets is minimized by choosing

m(z) = / w(6)p(2|0)do.

For fixed m(-), the expression in the square brackets is minimized by choosing

_ m(a)eM9)
el = g Ty

For more details of proof, see Blahut (1972a, b).

11



Based on the above double minimization, the MIL can be evaluated by the following
iterative procedure, see Blahut (1972a) and Arimoto (1972): choose an arbitrary density
function mo(-) and form po(:|-) by setting
mo(z)e™ ME(@0)

J mo(y)e WA dy’

po(z|0) = (1.3.3)

where A is chosen to achieve the equality in (1.2.1.1). Then, form the next step m(-)

marginal by

ma(z) = / w(8)po(x|8)d, (1.3.4)
and the next step pi(:|-) by replacing mo(-) by m1(-) in (1.3.3) and continue this fashion.
After n step iteration, we get p,(:|-). Is was shown by Csiszar (1974), that

Jim p.(z|0) = p*(|0),Vz and 6. (1.3.5)

1.4 Some Closed Form Examples

Except a few speciai cases, .the.ra:te Aistortion fﬁnctibﬂ.D(l) and its éorresbonding min-
imizer p*(z|0) cannot be evaluated in closed form, but can, in general, be carried out by the
Blahut-Arimoto iterative procedure. Here we show several examples, some for the discrete
case and some for the continuous case, in which the MIL p*(z|@) can be obtained in closed

form.

Example 1.4.1. For a discrete one-dimensional example, we take the binary symmet-
ric source, that is the prior w(f) takes « and 1 — & for some « € (0,1) respectively at 0 and
1, and zero at any other point. We take the loss to be the probability-of-error loss, that is
L(z,0) = 0for z = 0, and 1 for = # 6. For § = 0,1, p(z|6) is a probability mass function for
z on {0,1}. This example is used in information theory to illustrate how the rate-distortion
bound can be achieved by the corresponding channel, the MIL in our context. It also shows
that even in the simple situation, a closed form MIL solution is relatively difficult to obtain.

For ! € [0, min(e, 1 — @)] the constraint is

1 1
L= 323" w(@dp(ili) () = (1 - @)p(0]1) + ap(1]0) (14.1)

=0 j=0
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The MIL in this case is (see Cover and Thomas, 1991)

(I=e=D(=) i+, —p 0—a-l) ¢ _ 0,
TP =

* = (1-a)(1-21) a(1-20)
p*(z]0) = { (1_1(6;(—11_)2!) ifz=1, a=ble=) 5. - 1,

a(1-21)
And the corresponding m*(+) is
N l-a-1 0 a-=l
mO=T5 W=y
so we can determine, for each [ € [0, min(a, 1 — &)], the corresponding \ in the formula for

p*(z|0) by the relationship

m*(0)
m*(0) + m*(1)e=>’
1-1

which gives A = In“-. I,(X,0) is a decreasing function of I, since for larger I, the

p*(00) =

class P; is larger, and hence the infimum over the class is smaller. For [ = 0, the corre-
sponding I,.(X, ©) achieves its maximum value H(0), the entropy of ©. For [ larger than
min(a, 1 — &), the corresponding SMI is zero and is achieved by any distribution which is

independent of § (see Cover and Thomas, 1991).

Example 1.4.2. This is a discrete two-dimensional example. We use it to examine de-
pendence in an MIL based on generalizing the last example. We will see that here, the
dependence is not so high that the two random variables represent the same information.
The prior w(#) is the same as in Example 1.4.1. Let the loss function be Ly(z1,23,6) =
L(z1,0) + L(z2,0), where L(-,-) is the same as in Example 1.4.1. By (ii) of Proposi-
tion 3.1, the MIL is permutation symmetric in z; and @3, so p}(0,1]|0) = p3(1,0[0) and
p3(1,0[1) = p3(0,1]1). Now, constraint (1.2.1.4) is

l=2@m®Jm+aﬂ@H®+U—Mﬁ@ﬂD+ﬂ—®ﬂ@JM) (14:2)

To get the MIL, we first find the corresponding m*. For this, first we note that m*(zy, z)
is also permutation symmetric in its two arguments. Let §; = m*(0,0),82 = m*(0,1) and
B3 = m*(1,1). In (1.2.1.5) we take ; = 23 = 0,2y = 22 = l and 21 = 1,2, = 0 (or
z1 = 0,22 = 1) in turn to get the following three equations

o + (1 - a)e“z)‘ _
Bi+2e 2Py +e B3 e By +2e B2+ B3

1 (1.4.3),
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2X

ae_ + 1 - _ 1
Br+2e 2B+ e Bz e PPy +2e AP+ B3
and
ae™? (1 - a)e"\ 1

B1+ 2e7 2By + €72 B, * e By + 2¢ Py + B3
Multiply both sides of these equations respectively by

(B + 278 + €7 B3) (7 By + 2677 B2 + Bs)
we get
(81 + 26702 + €2 B3)(e 72 By + 26772 + Bs)
= e 81 + 2ae™ + (1= )6y + [ + (1 - 2)e™6s,
(B1 + 2728y + €72 B3) (67 By + 267 B2 + Bs)
= [(1- Aa) + a»e“"“]ﬂl + 2lae™ 4+ (1 - a)e™)By + e 45

and

(B1+2e7 285 + € B3)(e "By + 27232 + B3)

=[(1- a)e_’\ + ae_3’\]ﬁl +2(1 - a)e_2’\ﬂ2 + [ae_)‘ +(1- a)e_3’\]ﬂ3.

Let

¢ = l—a—-e 4 ae“‘”‘,
az = 2[(1-2a)e™+(2a —1)e"3],
a3 = 14+ a- e” — ae_4’\,
bh = —(1-a)+(1-a)e™ +ae™® —ae™,
by = 2[‘—(1 - a)e_’\ —ae™? ¢+ (1- a)e_z’\
and
by = —ce™ + e — (1-a)e™\.

Subtracting (1.4.6) from (1.4.7) and (1.4.7) from (1.4.8), we get respectively
a1 + a2z = asfs

b1B1 + bafy = b3fs.

14
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Thus we get
a3b2 — a2b3 _ aSbl - alb3

B = B3,

= = - 3.
(1,1b2 - a2b1 a1b2 - (L2b1

Also, by the relationship 8; + 262 + 03 = 1, we get

_ a1b2 - a2b1
 ay(bg + 2b3) — az(by + bs) + az(b2 — 2b1)°

B3

Plugging the values of 31,08, and f3 into (1.4.2) we choose the value of A to satisfy the
constraint for some values of I. Thus we can specify the §;’s completely and by (1.2.1.3)
get the MIL p}(z1,2|0) as

p3(0,00) = B1/C(0),  p3(0,1]0) = p3(1,0[0) = Bze™*/C(0),

p3(1,1]0) = Bse™2/C(0), px(0,0[1) = B1e™2*/C(1),

p3(0,1]1) = p5(1,0[1) = B2e™*/C(1),  p*(1,1]1) = B3/C(1),
where

C(0) = By +2B2e™* + B3, C(1) = Bre™ + 2B2e™* + fa.

To investigate the dependence in p*(z1,22]0), we can calculate the Pearson correlation
coefficient between X7 and X3. Let p} (21]0) and p3 ,(2|0) be the marginals of p}(z1, z2|6).
We get

_x -X —2X
P51 (010) = 53.4(010) = B Jg*(ﬂ()z)e , pha(1]0) = B o(1]0) = Bae anoﬂ)se :

Varg=o(X1) = Varg=o(X2) = p31(10)(1 - p3 1(1]0))
(Bae™ + B3e™*)(B1 + Bre™)

C%(0) ’
and
Cove=o(X1,X2) = pi(1,1|0) - p3 1(1]0)p} 2(1|0)
(B183 — B3)e~
(Bae™ + B3e=2})(B1 + Bae™?)’
So

e" 2N B8 — B2)(B1 + 262 + ﬂ3e_2>‘)2-

Corro=o(X1, X2) = (B2e™> + B3e=22)2(By + Pae?)?
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Similarly,

_ e (B = B3)(Bre” + 26ze”* + B3)°
Corrg=1(X1, X2) = (Bre=> + ;3)2(,316‘2)‘ + fae=)? 7

We see that as A — 0,

(B1Bs — B3)(B1 + 262+ Bs) |

Corrg=o(X1,X2) and Corrg=1(X7,X2) — (B2 + B3)%(B1 + B2)? '

and that as A — 400,

_ 32
Corrg=0(X1,X2) and Corrg=1(Xi,X2) — ('81'32—2%)

2
Example 1.4.3. For a continuous one-dimensional MIL example, choose w(-) to be a
N(u,0?) density and L to be squared error loss. From the form of p*, one expects that the
minimally informative likelihood will be normal. Indeed, the maximum entropy distribution
under a second moment constraint, is a normal, which is similar to the p* here. This turns

out to be the case subject to the restriction | < o2

, i.e., the amount of Bayes risk that
can be tolerated must be less than the variance of the source distribution. For [ > o2 the
rate distortion function is zero, see Cover and Thomas (1991, Chapter 13), so no unique
solution exists. We see also that for this range of I, I(A) = 1/(2X), so we get that A
must be greater than 1/(202). It will be seen that m*(-) is N(g,0% — &), and p*(-|8) is
N((1— 552)0 + 3574, 55(1 — 5552)), and {(A) = 2. Clearly, if 4 = 0 then, in the limit as
Ao? goes to infinity, # can be interpreted as the mean. More generally, any interpretation
of 6 will depend on the prior, and the loss I which determines p*.

To identify p*(-|@) and the relationship between the tolerable risk bound ! and the
Lagrange multiplier A in this case, we use three steps.

Step 1. we identify the m*(-) which satisfies the constraint.

Note that m*(-) must satisfy
e—Me— 6)? w(0)
de <1 149
/fm*(y TA=0dy T (149)
with equality in (1.4.9) for those = with m*(z) > 0. With some foresight, set m*(y) =
C exp{—(ay—b)?} for some real constants a and b, such that the ratio of w(8) = C exp{—ga;‘éﬁ}

and [ m*(y)e *@=0?dy is a constant. Now, the exponent of m* (y)e" =0 is —[(ay —b)2 +
My — 6)?] = —[(a? + N)y? — 2(ab + M)y + b? 4+ A§?] which is

r _ab+/\0>2_ 2, yg2_ (ab+ 20)?
(a +)\)(y Y (6 + 20 R J-
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Requiring that

2, g2 (@207 (8- )
b+ A0 a? + )\ ]_ 202
holds for all 8 gives
A
2 _ —
a” = m, b= ap.

Thus we have e
m*(z) = %e_(”_b)z N S e_é("_ﬁ%
2m(02 — 1)
which is recognized as a N(u,0? — 35) density, and it satisfies (1.4.9).
Step 2. we identify the MIL p*(‘-.w) in this case.
Now, the expression for p* gives

e—(a.:l:+b)2 —XMz—6)?

_ —abtAl
4r(a% 4+ Ne (B0 =)

_ 1 6_(a2+A)(x—a7g%’)2

Var(a?+X)

After substituting for a and b, the last expression is seen to be a

pi(z]8) =

N((1 - 5357)0 + 535714, 35(1 — 3357)) density. Note that E,s:(X|6) is not 6, it’s a weighted
average of p and 6.

For fixed 0,u,), as 02 — oo p}(+|#) — N(,5;), and hence its variance increases to
2r = (A). For fixed 0, p,0%, as A — oo (or I — 0), the family P; shrinkages to a single
member (), the degenerate distribution at . We see p}(-|¢) — ¢(8), which is consistent
with above reasoning. This provides a sense in which A is also a smoothing parameter,
ensuring that a minimally informative density does not just concentrate at the data points.

Also, we investigate the relationship between ! and A. From the constraint for the Bayes

| risk, we have

1 a® ., 1
2(a2+/\)+(a2+/\) 7 = ox

1)) = / / P (2]8)w(8)L(z, 6)dd =

Lastly, simple computation gives the corresponding posterior w*(8|z) is N(z,1/(2))) =
N(z,l) which is still in the same normal family as the prior, but with the prior mean and

variance (g, 0?) been updated to (z,[), any other likelihood in the class P; will update the

prior more by the expected Kullback-Leibler measure.




Example 1.4.4. This example is also for a one-dimensional parameter however we consider
the general n-dimensional data case to understand more about the structure of the MILs.
If no data summarization is possible one can, in principle, use the dependence model p*(-|6)
to be derived shortly to form a posterior. It is seen that this p*(-|#) bears a superficial
resemblance to the intuition behind shrinkage estimators.

As in the last example we choose a standard normal prior w(-) and comment that our

calculations can be extended to an arbitrary N(u,o?). Consider the loss function
1 n
n — (= ;- ! 2,
50 = (w0

arguably L(z",6) = L5 1(z; — 8)? is a more natural choice. However, it is difficult to
obtain closed form results for i(, :). As before, even for L(-,-), we caﬁ only obtain closed
form expressions for selected values of A. For ease of calculation, choose A = A, = (n+1)/2
(this choice of A makes the computation simpler and results in a closed form for the MIL;
other choices of A may not give a closed form expression for the MIL). We show that the

marginal density for the data is an n-dimensional normal
m*(-) ~ N, (0, Avjl)’

© where 0 is the n-dimensional zero vector, and A, is the variance-covariance matrix given

by

n -1 .. -1

A=l o2l -1 n .. -1
L) : .o
-1 -1 ... =n

It is seen that A, is positive definite with determinant
- 2\ -
451 = G+ 1)

The corresponding MIL is a n dimensional independent multivariate normal
2

),

(n+1)?

where 1,, is a n-vector of 1’s and I, is the n dimensional identity matrix. Here symmetry is

Pp*(-18) ~ Nn( o1,

n
n+4+1

also achieved as predicted by Proposition 3.1. The bound on the Bayes risk in the constraint

is
n 1 1

=i~ o)
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In this case, the marginal density is a dependence model and the MIL is an independence
model. We regard this case as unusual. The corresponding posterior w*(6|z™) is N(Z, ;-Jl_—l-),
does not follow the result of Theorem 3.1.1, since the loss function is not of the form there.
From this example, we see that the form of the loss function affects the MIL a lot.

To verify the forms of m*(-, ..., ) and p*(-, ..., -|#), first note that the support of m*(-, ..., -)

is the entire n-dimensional Euclidean space, so we must check that the equality in (1.2.1.5)

holds for all vectors (21, ...,2,). Using the conjectured form of m*(-,...,-) we have

/m*(yn)e—/\L(y",e)dyn
ABLOLIT [ el (s - £ %)
—A(Zn:% ~ 6)}dyy...dy,
G et (G55

1 _,\9_2.

dy, = ntl,
v \/n+1e

Choosing A = (n + 1)/2, we get
“ME T wi0? L -%
/ T - M
S mr(ym)e G i v dy, _dy,,

\/n+ / —mEL(g-L T gi)? o =1,

Vflfl, cery Ly

because the prior dens1ty w(0) cancels out. Thus (1.2.1.5) is satisfied.
Now, by (1.2.1.3),
m*(a") exp{-A(L T, a: - 6)7)
J e S m*(y1s9n) eXP{—A(% 2i1 Yi — 0)}dyy..dyy,
(V) (n+1)% 4 =~ Tia zi 2
nn(v/2m)" Xp{nZ( n ) Z nn
+Z($z +Z$z 22:1:10_{_02}
(\/ ) (n + 1)2 62/2 z; 0 5 G2
— A 1 — - -
(o) e exp{ (n+ );(n n-l—l) n+1}

(n—}—l)n 1(n+1)2Z n
- e - )

p*(z"|6)

Il
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which is the claimed multivariate normal distribution.

Finally, we derive an expression for the bound on the Bayes risk. It is

L((n+1)/2) = / / P (2"18) L(28)w(8)dz"df

(n+1)" 1(12—}-1)2 e
= a7 | ool R )

( Zx,—e )? exp{—6°/2}dz;...dz,db

1_1

=n(n(\+/2i73 7] ([ [em{-35 Z("

1 & n n
E[Z(azl ey 10) + — 10]2dx1...da:n) exp{—6%/2}d

=Tfn(\+/21—)>\/z—/(f el 5 - )

1 n
L O+ 2= O )
=1 i#g
4 2nf i( - 6)|da1...d > xp{—62/2}d6
nt 1 Z; nt1 I1...G6T, | €XP

= oo [ ([ [eol-3 nH)zi(*‘ 10}

2 Z( Ti = n—9)2dw1 dwn> exp{—67/2}d6

=1

/ _92/2 n
= CEDa

Examples of MID. We discussed the minimally informative distributions (MID) in Sec-
tion 1.2.2. They can be considered as of the MILs from different point of view, in which
we restrict the class of distributions to be optimized be some specified two parameter (they
can be vectors) distribution. One is a parameter of interest, the other, while not a nuisance
parameter serves only as an index for optimization. The optimization gives the member of
the parametric family closest to the prior in the Kullback-Leibler distance. In the examples
following, we will see that in most of the cases, MIDs can be solved in closed forms, and the

computation is usually easier than that of the MIL’s. The parameter value which achieves
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the minimum in the SMI can be viewed as the minimally informative estimation of the
additional parameter, it is the most conservative initial guess of the additional parameter

value.

‘Example 1.4.5. w(-) ~ N(0,1), p(-|9,77j ~ N(6,7n%). In this example, we can get a

closed form solution.

m(z"|n) = m/exp{—# ;(zi —6)° — E}d&
1 2 _ —
:(\/27r)n n1/n2 ¥ n 2+n p{ 2n 2(2 7 e )}

=1
.77 tn /exp 77 +n
V2mn

= nf)z}dO

1
T (Vo) o XP{ 2772(77 +n) [(n* + ») Z i~ (sz) }
s0, ' ‘ .
n |8 ) n?+n 1
10 z_lp(xll ?77 — 10 +
& (@) Ty 2n%(n* + n)
n n 1 n
7 +n) Yy ai— (D) - 7 > (zi—0)%,
i=1 =1 =1
thus,

1) = 1og ¥ 4 s | [P+ w3t - ]

X f[ (], n)w(8)dz"df — — / / 3 (e - 6 H (z:16, n)w(8)dz"d8

i=1
n(n—1)
22(n% + )’
It is decreasing in 2, so the minimum is achieved at n* = +o0, and I(7*) = 0.

If we add the constraint (1.2.1.1) with L(z",0) = 3 ,(z; — 6)2, we have

1> / / f[p(wiw,n)zn:(wi — 6)*w(6)dz"d6 = nn?,

= —10g(1+ 2)+

add the corresponding 7*? = [/n, with I(n*) = L 5 log "(n+l) + 212((71 1) The corresponding

3+12)
MID degenerates to a uniform distribution on (—oo,00) and the corresponding posterior
- *2
w(B|z™, n*?) is N(n,'ﬁﬁ_n, n,—nm) = N(:;fl, n2+1) Note here 7*? corresponds to the 1/\ for

21




the A in the MIL. As n tends to infinity, 7*2 tends to zero. (This corresponds to A tends to
infinity for the MIL.) The corresponding p(-|6, 7*%) converges to the degenerate distribution
at 0, and the corresponding posterior w(#|z™, n*?) converges to the degenerate distribution
at Z; this result is a parallel to (iii) of Theorem 3.3.1.

The choice of the loss function is problem dependent. In some cases, the average squared
error loss may be more reasonable. If we take the loss to be % ? 1(z;—6)? in the constraint
(1.2.1), then 7*2 = I, I(n*) = Llog(1+ %)+ % and the corresponding MID is N(6,1).
This has the least concentration around @ and hence the is least informative for §. The cor-
responding posterior w(f|z", 7*?) is N(l—“_%, I-I-Ln) This is the posterior which has the least
mean Kullback-Leibler divergence, as the likelihoods varying in the class P, from the prior
N(0,1). In fact, the general forms of the posterior w(8|z",n?) updated by other likelihood
in the class has the form N(n?——f—n-, n—ﬁj_—n), with §? < I. They have bigger Kullback-Leibler
divergence from N(0,1) than that of w(8|z™,n*?), since the former is more concentrated
around, roughly, Z. Also, we see that as l. increases to infinity, the constraint varnishes.
In this case, the MID tends to the uniform distribution on (—o0,00) as in the case of no
constraint, and the correspoﬁding I(n*) tends to zero. The corresponding posterior tends
to N(0,1), which is the same as the prior, i.e. the MID did not in fact update the prior in

forming the posterior.

Example 1.4.6. Again, let w(-) ~ N(0,1) and suppose p(z|8,7) is the logistic density

_ exp{—(z—-6)/n}
p(z|8,n) = (14 exp{—(z - 0)/77})2,

-0 <z,0<00, 0<n<o0.

In this example, it’s hard to get a closed form solution for 7*, so we use grid search. That
is for each fixed 5 and n, we use the Monte Carlo simulation to calculate I(7), then find
the n* corresponding to the minimal I(n*). Specifically, note the SMI can be written as

I(n) = Ee x+[~2log(1 + exp{~ 3 (X: — 8)/n})]

=1
I |
—Eo,xn[log(m(X™)] + 5 log(2r). (1.4.13)
We use 10° iterations for the Monte Carlo simulation. In each iteration, we generate 8 from

N(0,1), then generate 1, ..., %, iid from the logistic density p(z|6, n) corresponding to this

6. We use the inverse distribution function method: generate a random samples uy, ..., %,
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from a uniform(0,1) distribution, then get the logistic samples by z; = F~!(u8,7n) =
—nlog(1/u — 1) 4+ 6, where F~1(u;|0,n) is the inverse cdf for the logistic density p(z|6,n).

We calculated I(n) for n = 1,2,...,10 and found a roughly decreasing pattern for the
corresponding values of I(n).

Example 1.4.7. In this example, we want to investigate the dependence in the MID.

Consider w(:) ~ N(0,1) and p(z1,22/0,7) ~ N( Q\z , ( 717 717 ) Here the additional

parameter 7 is the correlation coefficient between the two variables in the distribution. For

a sample of size n, (x1,Xg) where X1 = (211,...,%1,n) and X2 = (€21,...,%2,n), the joint

density is
1

1
P2l = Gy (T
eXp{ 2(1 %) (Z (z1: — 6)* — 29 Z:(ﬂm' —0)(z2 —0) + i:((l?zi - 9)2)}_

i=1

The marginal density is

_ 1. 1 1‘ ex ——1'
m(x1,Xz|n) = (2r)" (M)" \/2_7r/ p{ 2(1-17?)
(Z( ~ )2 — 2 i(xh- ~ 0)(z2i — 6) + iw - "V) - g}d"

1 1 1 /ex {_ 1
T (Jimprver ) TP
(i(xu - 6)* - 2ni(wu = 0) (22 — 0) + i(xﬁ -6 -(1- n2)02) }d0

_ 1 1 /exp{_Qn-}—l—}-n( 3 (x1+:c2)) }
@2m)™ (V1= n2)n2r 2(1+1n) 2n+ 147
S SN £ < YE PR o SR S TS nz(l—v)(51+52)2>
exp{ 2(1_772)(21311 2";1;11:321‘}';1‘21' 2n+1+7,’ }

1 1

1 1
" o v U E
(ix%z - 277271:‘7"11'1721' + zn:wgz _ =)+ 52)2)}’

2n+1417

S0

p(x1,%2060,7) 1 2n+1-|—77 n n
to §1og 2(1 —n?) Zzlz 27725?1#21' + Zm%i

m(X1,Xz|1n)




n2(1—77)(51 +_:1-:'2)2 n 2 n L o ~ n Y
T 2m+l+ng > (@1 =) + 20 (21; — ) (w2 — 6) = D (22i — 6) )

i=1 i=1 i=1

and

I(n) = /// (x1, %210, ) (8) log ECL X2y g

m(x1,X2|n)

1 2n+ 1417 1 //(
- = -2 L2 N
28 Aoy ;xl nle o +Zx2

=1

_n*(1-n)(Z1 +7,)°
2n+ 147

_2(1+?72)// ((m1 - 0)2 — 2m(zy — 0)(z2 — 0) + (22 — 0)2)p(x1,x2|9,n)dx1dx2

)p(xl, x2|0, n)w(0)dxdxodb

2n4+ 147
1+1n

1_

T2(1- 2)(2n +1+n) // (Z T1i + szz) p(x1, %210, n)w(6)dx,dx2db

1, 2n+1+479 2—n(n+1)

log

% + 2(1_ ) / <1+92 —2n(n+6%) + 1+02>w(0)d0

=gl 1+7 tn 1— 2
T2(1+ 77)(21n +1+7) // (Z% + ; T16%15 + 22”511%
+2 @1iwa; + i i+ -’L‘zwzj)p(xl, x2|0, n)w(8)dx,dx,df
i#] i=1 i#s
—log(1+ 2_: )+n2;1n_£777;—1) -

1
21+ n)(2n+ 1+ )

(2n+ n(n—1)+2n(1+7)+2n(n—1)+2n + n(n — 1))

_llo

1 +7
which is minimized by #* = 1, with I(n*) = %log n. We see that the “optimal” correlation

coefficient corresponding to the MID is just the highest dependence. In the calculations
above, we have used the facts that, for £ = 1,2,

| [ #hipaa,xal6, mu(8)xadxadd = Bo(E(XE))
= Eo(Var(Xk) + E*( X)) = Eo(1 4+ 6%) = 2,

/ / Tk,iTk,jP(X1,X2|0, n)w(0)dx1dx2d0 = Eg(E(X;)E(Xk,;))

= Eo(8%) = 1,
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and

//xl,i$2,ip(x1’x2|0an)w(o)dxldxzde = FEo(Cov(X1, X3))
= Eo(n+0") =n+1.

The corresponding MID degenerates to a uni-dimensional N(6,1). This likelihood updates
the prior the least, since it basically produces one data point, and less data updates the
prior less. Recall that large sample size will dominate the posterior and overwhelm the prior
distribution. The corresponding posterior is

n(fl-i-fz.) 1+’I]* )_N(n(fl-l--fg) 1 )
2n+ 140" 2n+1+9*/ 2(n+1) 'n+1/"

’UJ('|X1,X2, 77*) ~ N(

If we add the constraint (1.2.1) with L(z",8) = L "% (21; + z2; — 26)?, we have (take
0<i<4)

=[f] }jp(x“’x%"”"%;{(xu — 0 +2(ai = O)(22: — 0) + (221 — 6)?]

w(0)dx1dx2df = 2(1 + 7).

Now, n* = % -1, I(n*) = $log(1 + %*) and the corresponding MID is still a bivariate
normal with mean 6, variance 1 and covariance % — 1. This is the distribution in the class
P which has the highest dependence between its two variables. In this way the effect of
two data values will reduce to some extent to that of a single data value, and thus for the
same reason as in the non-constraint case, updates the prior the least. The corresponding

posterior is

x 2n(§1+52) l )
w(+|x1,X2,77) N( dn+1 ’dntl)

; Sor ; n(T14T3) _ 149
Since the other posterior in the class is N( St ite * IntLin

Kullback-Leibler distance from N(0,1) than the MID does.

), with < n*, it has bigger

Example 1.4.8. Let P = {t,(0,0) : § € R', n € R*, v > 2 }, where t,(6,7) is the
t distribution with v degree of freedom, location parameter 6 and scale parameter 7, that
is (X —6)/n ~ t,. In this example, the parameter to be optimized is the degree of freedom
of the t-distribution and the dispersion, so we are seeking the ¢-distribution which, under

the bounded Bayes risk constraint, updates the N(0,1) prior the least. Since ¢, is normal,
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intuitively we expect the the MID is a normal distribution. Assume p(z™|8) = [T, p(z:|8);
the constraint (1.2.1.1) is

/ / p(&"|6) Ln(z™, 0)w(8)dz"d0 = niv /(v — 2).
The Fisher information for any member in P is the same

(310gp($|0, n,V)>2
09

I(0|n,v)=FE

(v+1)2 D) [\/(u+z)wr‘("—;l) _ \/Wr("—;&’)]

nv (%) r(42) r(42)

- ”—,‘,';—lﬁ[\/ﬁ— \/J+_4(u+z)]’

v+3

which is independent of §, so by the same reasoning as in the previous examples, minimizing
the SMI subject to constraint (1.2.1.1) is equivalent to minimizing I(6|n,v) subject to
nn*v/(v —2) < I. Since I(6}n,v) is decreasing in 52, this leads to 7% = (v — 2)/(nv).

Plugging this value in to I(6|n,v), we are now to minimize
YA} 23]
90v) = Vv v+ 3

which is positive for all finite v, and is equivalent to, for large v,

V(v +2)(v +1)

2(v — 2)(v + 1)2

as v — 0o. So, g(v) is minimized as v — oo, or the minimizer for the SMI is (n*,v*) =

— 0,

(v/l/n,00), this is in conformity with our intuition.

In the last two examples, we demonstrate how to use formula (1.2.2.1) efficiently to

calculate the MID approximately for large sample size n.

Example 1.4.9. Let Y = (X — 6)/n ~ have a logistic distribution with density function
fly) =eV/(1+e¥)?, —o00 <y < oo Assume p(z"|8) = [], p(z;|8), then constraint
(1.2.1.1) is

//p(m"]@,n)Ln(w",H)(O)dx"dO =Cnn? <1,

for some constant C' which is independent of n, n and 6. The Fisher information is

7(6ln) = E( _ %i»
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where C is a generic constant. Again for large n, by (1.2.2.1), minimizing the SMI over

dz

n > 0 subject to (1.2.1.1) is equivalent to minimizing I(8|n) over n > 0 subject to Cnn? < 1.
This leads to the unique solution *? = I/(nC) asymptotically.

Example 1.4.10. Let P = {N(6,7%): 6 € R', o0 € R*}. Constraint (1.2.1.1) is

/ / p(z"10)Ln(z™, 8)w(0)da™d6 = nn?,

so the corresponding Bayes risk bound [ should be no smaller than nn?. Minimizing the
SMI over p for large n, using (1.2.2.1), is equivalent to minimizing 7,2(8) = 1/7?, subject

to nn? < I. The minimizer is asymptotically 5? = I/n.
1.5 Dependence in the MIL

We see from the previous chapters that the n-dimensional MIL’s are usually dependence
models. It is natural to investigate the amount of dependence among the variables in the
MIL. It is well known that for 7id large data sets ™, the posterior will be dominated by the
data. Since the MIL is the likelihood which updates the prior the least, it is natural that
the n-dimensional MIL will have high dependence among its variables to make the large
data sets behave like a small data set. This is also suggested by Theorem 3.1.1 below. If
this high dependence seems undesirable, we may model the multi-dimensional data by a
product of uni-dimensional MILs. This may be appropriate in the data compression context
(see Section 2.1.3).

To assess the dependence, we use a transformation of the Kullback-Leibler distance into

the [0,1] scale proposed by Joe (1989). We calculate
8 = [1 — exp(-26)]?,
where

_ f(z1, .oy zn)
6= /.../f(ml,...,:z:n)log——fl(wl)mfn(zn)d:z:l...da:n
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is the relative entropy between a joint density f(z1,...,2,) and the product of its marginals.
Since the joint MIL’s we use are indexed by a parameter 6, we actually have a function
dprr(0). Integrating out 6 to obtain an averaged measure 83777, of dependence amongst the

variables in the joint MIL distribution gives

omIL = /5M1L(0)w(0)d0.

Indeed, sampling procedures often permit the assumption of independence, perhaps for
a set of summary statistics. When this is possible, it simplifies computation. To get an
independence MIL, we should add the constraint that the density for the data given the

parameter factors, i.e.

P(T1y ey Tn|f) = ﬁp(xilﬁ). (1.5.1)

i=1
Currently, we don’t know how to perform the minimization of I(X"; ©) to get the desired
independent p*(z™|f) under constraint (1.5.1). Instead, as a simplification to understand
the problem, what we may do is to select the loss functions and priors so that the Blahut-
Arimoto algorithm will give MIL in the from of univariate products.

In Chapter 4, we will form two-dimensional independent MIL’s by a product of two
unidimensional MILs for the data analysis. This may be somewhat artificial, since it is
not the result of the optimization procedure for the two-dimensional likelihood problem.
Nevertheless, it provides a model which is not implausible and can be compared to other
models we identify.

A compromise between the two methods above is to choose the independent likelihood
which is closest, in the Kullback-Leibler distance, to the MIL p*(z™]f) which is assumed
not an independent model. That is, let Py be the class of likelihoods which are indepen-
dent among all their variables. We choose p as our “independent minimally informative

likelihood”, i.e.
5= arg min D(p" (-, 10) 1p(10)...5(16)),
p€Py

where

. _ [ xom G D
D(p (-,---,'|0)Ilp(-|0)---p(‘l9))—/P (a™16) log o~ gy 4™

We have




Proposition 1.5.1

#(z"10) = [ pi(z:0).

=1

Proof: We see that
D(p*(-, cees | )| |P(+16)...p(:|6)) =

J oo g g+ [ a0 tos e

and that the first term above does not involve p(:|#). The second term is minimized by
setting p(+|8) = 5(-|0) = p*(-|0). So the “independent minimally informative likelihood” we
seek is

3e"10) = [["(@le).  ©

1.6 Computational Aspects

In cases no closed-form available for the MILs, we use the Blahut-Arimoto iterative proce-
dure, as in Section 1.3, to evaluate the MILs numerically. Our current C-program for the
MIL is effective for one-dimensional data and one-dimensional parameter case as a demon-
stration. The structure of the Blahut-Arimoto iterative procedure, as in (1.3.3) and (1.3.4),
makes it difficult to use the current C-routines for integration. Instead, we used summation
of 100 to 500 grid points to approximate integration. The convergence of the procedure
depends on the choices of priors and the loss functions. Roughly, in the one-dimensional
case, it needs 10 to 102 iterations to reach an uniformly absolute accuracy of the order 10~*
to 1076. The computational limit for MILs with multi-dimensional data/multi-dimensional
parameter(s) is routine and machine dependent.

In the MIL we need to choose the A so that equality in the constraint (1.2.1.1) is satisfied
for the given Bayes risk bound /. For this, we can use (iv), (v) and (vi) of Theorem 3.3.2 as
a guide to search for the corresponding value of A for given I, which states roughly that [ is
a decreasing function of A. This suggests the bisection rule in the choice of A corresponds to
a given [. Indeed, (Blahut 1972a) shows that the minimum in the rate distortion function

is achieved for this A.
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It is expected that as the dimension increases, the amount of computation will increase
exponentially, as the amount of computation involved in the integration does. The number
of iterations may increase linearly, as the number of comparisons for accuracy does.

We also wrote the C-program for the corresponding posteriors for Models I and II, as
in Section 4.2.2. They are for 4-dimensional data and require more CPU time than the
MILs, since one must produce the MIL first, then get the corresponding posterior. It can
be extended to higher dimensional cases, and will cause similar increases in the amount of
computations.

To assess convergence of pi \(z|0) to the limit p%(z|f) we used the supremum norm.
The computation terminates when sup, |px(z]0) — pr—1,2(2|0)| < € for a given value of
¢ and prespecified € > 0. We note that the sequence pi (z|0) tends to the limit p3(z|f)
independently of the initial density mg(+) chosen. Indeed, one can verify in closed form that
if L is squared error, w is a standard normal, # = 0 and A = 1 then p}(z|6 = 0) is a standard
normal. Our program gave this and pi \(z|6) was observed to converge numerically to a
standard normal for a wide range of choices of mg. Thus, the program matched what we
knew had to be the case from manua,i calcuiation. | '

A second test of the program was to replicate numerically the results of Theorem 3.3.1,
when A tends to infinity. Specifically, we verified expressions (i) and (ii) of Theorem 3.3.1
computationally. They show that as A increases the MIL converges to unit mass at a
parameter value and the posterior from the MIL converges to unit mass at a data point.
Figure 1.a shows this for the MIL: it is seen that as A increases, p* concentrates at the
parameter value. Figure 1.b shows that as A increases, w,+ concentrates at the data value.
L is squared error loss.

A third test of the program was to replicate numerically the results of Theorem 3.3.2,
when ) tends to zero. Consider part (vii) of Theorem 3.3.2, write 2o = arginf, [ L(z, 8)w(8)dé
assuming it is well defined, i.e g < 0co. Then, Theorem 3.3.2 gives conditions under which
p3(z|0) will concentrate at zo independently of 8 as A tends to zero. For squared error loss
and priors with finite variances, ¢ is just the prior mean. So, if w is N(0,1) we find zg = 0
and that p3(z|0) concentrates at zero. For w proportional to-exp(—(z + 10)), (z > —10) we
found zg = —9 and p}(z|0) concentrates at —9. For w proportional to exp(z —15), (z < 15),

zo = 14 and p}(z|f) concentrates at 14. In all these cases, the concentration was pronounced
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by the time A had decreased to .01 and was independent of 8, see Figure 2.

This confirms (vii) of Theorem 3.3.2. One can verify the other conclusion of Theorem
3.3.2 computationally as well, i.e., we observed the posterior formed from p}(:|-) converges
to the prior as A decreases to zero; we omit showing figures for this case since the meaning

is clear from Theorem 3.3.2.
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Figure 1: Effect of Increasing A on the MIL and Posterior Density. Figure 1.a shows how
p3(z|0) concentrates as A increases. Plotted are the MIL’s for A = 1 (dots), A = 10 (dashes)
and A = 20 (solid) when w is N(0,1), # = 5.98. Figure 1.b shows how the posterior based
on a single observation changes as A increases. Plotted are the posterior’s for A = 1 (dots),
A =10 (dashes) and A = 20 (solid) when w is N(0,1) and z = 5.
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Figure 2
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Figure 2: Effect of Decreasing A on the MIL. Graphs of py(z|8) for A = .01. The three
strongly peaked curves correspond to different priors, N(0,1) with zo = 0, a prior propor-
tional to exp(—(z + 10)) with zo = —9 and a prior proportional to exp(—(z — 15)) with
zo = 14. The values of 8 used were 6 = 1, 5,10 respectively, but the convergence to zg is in-
dependent of §. The more dispersed density is py(z|6) for A = .001, w given by U(-10,15),
and 6 = 5,10. In this case zo does not exist and p* does not concentrate. L is squared error
loss.
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Chapter 2

Information Theory and Other Background

The likelihood is the link between what we observed and what we seek to know. Con-
sequently, the information tacitly assumed by choosing a likelihood largely determines the
results of the analysis.

Nevertheless, in practice, sometimes researcher chooses a likelihood for convenience.
Sometimes a diagnostic check is used to assess the adequacy of a model. Alternatively,
the statistician may choose the likelihood according to one of a large number of model
selection principles or use nonparametric techniques. However once the model is obtained,
it is a means to doing statistical inference. It represents the statistician’s understanding of
the linkage between the data observed and the values of the parameter that might specify
the data generating mechanism. Here we focus on parametric families but recognize that
nonparametrics and model selection provide at least in large sample cases alternatives to
the technique we propose here.

Since information theoretic considerations underlie most of the kéy results we have to
present, we now turn to the relevant background in information theory. It will be seen that
the above summary of the statistical problem translates into the information theoretical

setting.
2.1 Information Theory
2.1.1 Entropy, Relative Entropy and Source Coding

The concept of entropy was developed by Shannon in 1948. In his attempt to quantify

the uncertainty of a random variable © satisfying a set of reasonable axioms, he showed
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that the unique functional of the probability density w(-) for a discrete random variable

satisfies these axioms is

H(0) =~ w(6:;)logw(8;).

1

Because this quantity is similar to the entropy in thermodynamics, the name “entropy” was
adopted.

Here the base of the log is e, and the unit of the entropy is measured in “nats”. If
another base for the logarithm is chosen, for instance, b # e, we write the entropy as Hy(0).
If one chooses b = 2, and the corresponding entropy is measured in “bits”. For a continuous

random variable © with density w(-), its entropy is defined as

H(O) = — / w(6) log w(6)dd.

For finite discrete distribution w(:), H(©) is non-negative, but not so in general.
Later, Kullback and Leibler (1951) extended the definition of entropy to measure the
discrepancy between two density functions p and ¢ as the relative entropy (or.the Kullback-

Leibler distance) D(p||q)

P(©) p(©) log p(0)
q(©) 9(0) " q(0)

It is not a metric, but has some metric like properties, such as non-negativity, the Pythagorean

D(pllq) = E,log =E,

relationship, and is zero if and only if p = ¢. It is stronger then the L; distance, see Csiszar
(1975).
Similarly, the conditional entropy of © given X is

H(O|X) = /m(m)H(G)IX = 2)de,
where m(-) is the marginal density for X and
HOIX =2) = —/w(OIX = 2)logw(6]X = z)d6.

Entropy characterizes some natural phenomena. Consider a discrete random variable
© with mass function w(-). Suppose messages are drawn form w(-) and sent to a receiver.
Before they are sent, these messages are coded into a b-ary alphabet B codeword (usually
binary i.e b = 2). There are many coding methods. A code is said to be non-singular if

different messages correspond to different codewords; a code is called instantaneous if it is
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not a prefix of any other codeword. An instantaneous code is preferred because any given
codeword can be decoded without reference to any other codeword. For a value 6, let I(6)
be the code length of §. For any instantaneous code, we want a small average code length
El(0) = > I(f)w(h) to describe a given source. Instantaneous codes are not unique for a
random variable, but the set of codeword lengths for instantaneous codes is limited by the

following result:

Kraft inequality: For any instantaneous code over an alphabet B, the code lengths

li,.... L must satisfy the inequality

> Bh<1.

Conversely, given a set of codeword lengths that satisfy this inequality, there exists an
instantaneous code with these lengths.

An instantaneous code is said to be optimal, if it satisfies the Kraft inequality, and its
expected code length is the smallest among all such codes.

The following theorem states the implication of entropy for the average length of the

shortest description of a random variable.

Theorem 2.1.1.1 (Cover and Thomas, 1991). Let {*(8) be the optimal code length assign-

ment to the source w(-) and B-ary alphabet, then
Hp(®) < EI'(0) < Hp(O) + 1.

So, roughly speaking, entropy is the average length of the shortest description of a random
variable.

The Shannon code-length assignment for the random variable © is i(8) = [log ﬁ]
(here |r] denote the smallest integer greater or equal to r). This is not necessarily optimal,

but the Shannon code is operationally simple and is within 1 bit of optimal. Indeed, the

following result is well known.

Theorem 2.1.1.2 (Cover and Thomas, 1991).

0 < Ei(0) - Hp(©) < 1.
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For any source w(-), the optimal code length assignment can be obtained by the Huffman
coding, see Cover and Thomas (1991).

Suppose we use the Shannon code, with code length assignment i(8) = [log 11(1_9)] based
on the mass function v(-), while the true mass function for © is w(-). Then we will not
achieve the optimal expected length Hp(®). The following theorem verifies that the in-

crease in description length due to using the wrong mass function is the relative entropy

D(w||v).

Theorem 2.1.1.3 (Cover and Thomas, 1991). The expected length under w(-) by us-

ing the code length assignment [(6) = [log u—(lﬂ] satisfies
D(w||v) < El(©) — H(©) < D(wl||v) + 1.

This theorem provides the main information theoretic interpretations of the relative en-
tropy. It is the average number of extra bits of information that one would have to send in
general, but that one wouldn’t have to send if one knew the true density. In other words, the
relative entropy is the redundancy of a coding scheme. Thus, we shall see that Bernardo’s
reference prior (see Section 2.2) is the source distribution which yields the worst case Bayes
redundancy, and what we have called an MIL is the parametric family of densities which pro-

duces, for a given prior, the least Bayes redundancy within a class good parametric families.
2.1.2 Channel Capacity

Consider a random variable ® with distribution w(-). In the present context © is often
called a “source” because it is preserved to supply a string of data we want to encode for
some purpose. For simplicity we assume © is a random draw from {1,2,...,M}. A sender
wants to send a message 6 (a realization of ©). Before sending, the message is coded into
a b-ary alphabet with code-length n. This is called an (M, n) code. When the codeword
reaches the receiver, it is translated back into a message. Due to background noise, there
may be transmission error, so the codeword that reaches the receiver may be corrupted.
The conditional probability p(z|f) that the message sent is § and the received message is =
is called a channel. It describes the distribution of messages that might be received given

the sent message. One wants p(z|6) be high for those z’s near 6, i.e., relative to z, 8 is a
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location parameter.

Usually, larger values of M require larger code-lengths n to guarantee the distinguisha-
bility of different codewords, but this costs more. The proportion R = M/n is called the
rate of a code. A rate R is said to be achievable, if there exists a sequence of (M,n) codes
with arbitrary small proba’t.)ility of error, i.e., the maximum probability of error e(n) for
each code word tends to zero as n tends to infinity, where e(n) = maX;e{1,2,.,B) €, and
e; = P(X # i|® = ). That is, the received message is not ¢ when the sent message is 7. A
basic question in data transmission is: what is the maximum number of bits per unit time
we can send, or equivalently bits per transmission through a given channel with arbitrarily
small probability of error? The capacity of a channel is defined as the maximum of all
achievable rates for this channel. ‘

Shannon’s channel coding theorem establishes that the channel capacity is the supremum
of the Shannon mutual information over all the input marginals, i.e.,

sup I(X; ©); (2.1.2.1)
w(:)
see Cover and Thomas (1991). So, roughly speaking, we can send at most = 27{(X:®)
distinguishable sequences of length n across the given channel in a single transmission. The
w*(+) which achieves the supremum in (2.1.2.1) is the source distributioﬁ which permits the
fastest data transmission over the given channel.

We have seen the definition of the Kullback-Leibler distance (or relative entropy) be-
tween two density functions p(-) and ¢(-). The mutual information of two random variables
X and Y with a joint density function p(z,y) and marginal density p;(z) and p2(y) is defined
as the relative entropy between the joint distribution and the product of the marginals, i.e.,

I(X;Y)= / / p(z,y)log pf()();f()y)dwdy

= Ep, D(p(:|X)l|p2(-))- (2.1.2.2)

A Jensen’s inequality argument shows that I(X;Y) > 0. I(X;Y) is a measure of depen-
dence and so arises naturally in channel coding as rate because the message required should
depend strongly on the message sent. Regarding I(X;Y’) as a measure of dependence we
see that another interpretation of Bernardo’s reference prior (Section 2.2) is that it is the

distribution of the parameter which depends most, asymptotically, on the data distribution
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in that it changes the most upon receipt of the data. It is immediate from the definition that
the larger I(X;Y) is, the more dependence there is between X and Y; Indeed, I(X;Y) =0
if and only if X and Y are independent. Thus, minimizing I(X; ©) will yield a trivial result
with no constraint, since this will result in a “likelihood” independent of parameter as in

our first consideration for the minimization.
2.1.3 Data Compression and the Rate Distortion Function

This concept is motivated by the discretization of continuous random variables into dis-
crete ones or data compression. Since outcomes of a continuous random variable require
infinitely many bits to represent, the only practical way to represent is to “compress” it by
representing it with finitely many bits. Consider dividing the support of a one-dimensional
continuous random variable X into 2"F intervals. Let X(X) be a discfete random variable
assuming values 1, 2, ..., 2"E, depending on which cell X lands in, where R is the code rate
described in section 1.3.2. A distortion function L(z, &) is a measure of the loss representing
z by &. For instance # may be the midpoint of the interval z lies in and L(z,%) = |z — £|.
We want the compressed data X (X) to represent the true data X with small “distortion”,

i.e. the expected loss or Bayes risk

EL(X, X(X)) = //p(x)p(§:|x)L(:i:,z)dwd§:.

Intuitively, the larger the rate R is, the more accurate the representation, and the smaller
the distortion, but the higher the cost in operation. In the present case, the more accurate
our representation will be. However, we want to use as few intervals as possible. Assigning
more z values into larger intervals means we are throwing out information. If we fix a level
of distortion we are willing to tolerate, we are led to minimizing R since we want to compress
as much as possible, i.e., throw out information by permitting less accurate representations
of z, subject to the distortion constraint.

We are interested in: For a given source, what is the minimum rate to achieve a distortion
no greater than a given tolerable distortion {? And what is the corresponding channel?

For a given positive number /, the rate distortion function R(!) is defined as the min-
imum rate to achieve the distortion /. It is the minimum amount of information needed

for representing the source with average loss bounded by [. The rate distortion theorem
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establishes that the rate distortion function valued at [ is the minimum of the SMI over
conditional densities with distortion (Bayes risk) bounded by !:

|
1 R()= min I(X,X),
i D= dmin, (XX

where P; = {p(Z|z) : [ [ p(2)p(Z|z)L(Z,z)dzdi < I} is the class of channels with distortion
no greater than /. This is the quantity we investigated in choosing the MIL.

Note that the above concepts can be expressed in terms of channels as well. The
conditional density achieving the rate R(l) is the channel with the slowest transmission
for the given source, with tolerable distortion /. It is what we have called the MIL. It is the
conditional density providing optimal data compression, in the sense that it provides the
greatest compression within the allowed distortion.

In practice, one uses R(!) as a theoretical lower bound, seeking discretizations of X into
regions which provide optimal compression. Usually, one wants as few regions as possible
provided they do not cause excessive distortion. Current work on this problem is often

called vector quantization.
2.1.4 Comparison with the ME Formulation

The principal of the maximum entropy and our method are similar, since minimizing the
SMI is equivalent to maximizing the conditional entropy. However, there are some differ-
ences also.

The maximum entropy, ME, method is used for selecting an optimal likelihood based on
incomplete information about the likelihood. The information available is incorporated into
a set of known constraint(s), and the least informative likelihood subject to these constraints
is found in an entropy sense.

The ME likelihoods are in the exponential family

p(e0) = a(B) exp(fr1Ta(2) + - - - + BrTr(2)],

where the parameter § = (f1,...,0k) is chosen so that the likelihood satisfies the con-
straint(s). Its exponent part has a fixed form, the corresponding sufficient statistics 73(z), ..., Ti(z)

are determined by the form of the constraints.
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Our method is a,imed. at selecting an optimal likelihood in a Bayesian setting with
a known prior and some incomplete information about the likelihood: It has bounded
Bayesian risk. Here we assume less than the ME method and many other known methods,
and we have incorporated the prior information about the parameter.

The MIL is a function of an exponential family and the marginal of the data

—AL(z,6
Pi(el) = 7 nnZ((;)):‘f\L((yﬁ))dy’

where m(z) = [p*(z|0)w(6)df is the marginal of the data, and A is chosen so that the

equality in the Bayesian risk constraint is satisfied. Its exponent structure is determined
by the loss function L(-,-) rather than by moments as is the ME likelihood. Our method
produces a likelihood, i.e., a parametric family as a functional of the prior information. The
parametric family can be used in frequentist techniques, or (with a different prior even) in
Bayesian techniques. In general the MIL is not an exponential family, but we conjecture the
set of MIL’s contains the collection of exponential families. The MIL defines the channel
which transmits information as slowly as possible subject to a distortion constraint that

ensures data transmission actually occurs.

2.1.5 Interpretation of the MIL

From the information theory point of view, the MIL is the conditional density which achieves
the rate distortion function lower bound. The rate distortion function plays a central role in
data compression and has an interpretation in transmitting data across a channel. Usually
in data transmission, large amount of source message is compressed into a relatively smaller
number of representatives for practical purposes. For example, continuous variables must be
represented by finitely many representatives for transmission for economical or operational
reasons. There are many ways to do so. For a given source, the possible representatives con-
stitute a codebook. We want a code that is optimal in that it has the fewest codewords (z™)
(fewest representatives or greatest compression), where n is the code length. This is to be
accomplished subject to not losing too much information about the original source (6). The
loss is quantified by the distortion L(z™,6), the Bayes risk bound [ in (1.2.1.1) constrains
the average distortion. So, the MIL is just the conditional distribution of the optimal code

given the source, subject to average distortion bound /. This causes high dependence be-
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tween 2™ and ¢ and amongst the entries of ™. For more details about data compression, see
Blahut (1987), Cover and Thomas (1991). Both provide information-theoretic justification
based on data compression for calling p} minimally informative. Here, we only describe the
channel-based interpretation which we argue is more appropriate to the statistical context.

An information-theoretic channel is a conditional distribution which specifies the dis-
tribution of the output received given the input sent. The input is a coded version of the
message. The output received has a probabilistic description because even though we trans-
mit a specific message it may be corrupted by background noise. For instance, a conditional
density such as p(z|#) defines a channel: If 4 is the input then the channel gives output z
with probability p(z|6). If 8 is drawn from a source distribution with density w then the
SMI can be interpreted as a rate of transmission in bits per unit time. Therefore, minimiz-
ing the SMI over a constrained set of channels defined by conditional densities yields the
channel in that set with the slowest rate of transmission which we have called minimally
informative.

Here, the set we have used is the collection of densities for which the Bayes risk of
estimating 6 with X is bounded by a number [. Information theoretically, this means that
the average discrepancy, or distortion, between the output X and the input 6 is bounded.
That is, all the channels we are considering must transmit at least some information related
to the input #. The minimal SMI is the slowest rate for this transmission and we have
numerically found the conditional density achieving this rate. We regard it as an “optional”
likelihood with the desired Bayesian loss based on the incomplete information, and propose
to use it as a default likelihood in certain settings we identify in Chapter 4.

Now we look at the parameter A in the MIL. The inverse of the parameter A in p}(z|6)
behaves like a dispersion parameter. Under reasonable conditions, it is a decreasing function
of | which controls the amount of risk (distortion). For the p%(-|f) in Example 1.4.3, for
fixed 6, u, A, as 0% — o0, p3(-|0) — N (6, 35), and hence its variance increases to 2 = I(N).
For fixed 0, p,02, as A — oo, p5(:|8) — ¢(8), the degenerate distribution at 6, consistent
with (iii) of Theorem 3.3.1. More generally, our computations show that p%(-|f) spreads out
as A shrinks and concentrates at 6 as A grows.

Alternatively, one can regard A as a smoothing parameter ensuring that a minimally

informative density does not just concentrate at the data points.
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2.2 Relation to Reference Priors

Since the method we used for selecting the optimal likelihood has some connection with
that used for noninformative priors, we also review some background on prior selection.
In a Bayesian setting, the pre-experimental knowledge about the parameters of interests is
incorporated into the prior distribution. When such experience is available, the Bayesian
is expected to be more efficient in statistical inference about the parameter than the non-
Bayesian, in the sense that the class of all Bayes rules is a complete class, or non-Bayes
is inadmissible (see Wald, 1950). However, when such pre-experimental information is far
from enough to establish a prior distribution, how to choose a prior for inference remains
an important issue for a Bayesian. Much work has been done on this. For example, conju-
| : gate priors are often based on mathematical convenience. They require that the posterior
and prior be in the same distribution family. Another criterion was invariance. Jeffreys’
non-informative prior was originally proposed to satisfy an invariance principle. In 1979,
Bernardo proposed the reference prior, which is based on an information theoretic optimality

criterion: One selects the prior for which the posterior is updated the most, asymptotically

in the expected Kullback-Leibler measure, i.e. it is arg maxy, lim,—c Emn D(w(-|X™)||w(+)),

so it is the prior that permits the posterior to change from it the most upon receipt of the
data, on average, in an asymptotic sense.
| In a fully Bayes setting, one has some pre-experimental beliefs about the parameter
encapsulated in a prior density. Often, in practice, we do not have as many data points as
desirable for many known methods, and the reasoning for the basic assumptions behind is
unclear. In this case, choosing any known likelihood to model the data seems inappropriate,
and how to model the data reasonably becomes a basic and practical problem. In the fully
Bayes setting, the prior represents partial information in parallel to that specified by the
constraints of the ME method. We want a likelihood which is “unbiased” in that it is
reasonable based on this partial information.

The MIL method here is, in some sense, the reverse of the reference prior method of
Bernardo (1979). Our task is to choose a likelihood given the prior, while Bernardo identified

a prior given the likelihood. Specifically, Bernardo found a way to choose a prior in the
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absence of information about the parameter. He used the Shannon mutual information
(SMI), or the expected Kullback-Leibler distance between the posterior and the prior

1(0,X") = En D(w(-|X™)||w(-))

: p(z"|6)

= inf /w )p(z™|0)log ———=dfdzx",

inf | w(0)p(="|6)log D)
where m(2™) = [ p(z"|0)w(8)dl is the marginal density of the data X ™, Q is the class of all
the n dimensional densities. It measures, on average, the discrepancy between the posterior

and the prior. He maximized, asymptotically, the SMI over all priors. Recognizing that m

is the Bayes estimator for p(-|6), Bernardo examined

max inf [ w(6)p(z"|9) log pq(z’mi(;)dedx". (2.2.1)

The asymptotic maximizer w*(-) is his reference prior. It differs most, on average, from the
posterior in an asymptotic sense. It is the prior that contains the least information about
the parameter, since the posterior based on it is furthest away from the prior.

Under some regularity conditions, Jeffreys’ non-informative prior is a special case of
Bernardo’s reference prior, see Clarke and Barron (1994).

We see that prior selection forces the prior to be far from the posterior, but if we are
selecting a likelihood, we want the posterior differ not too much from the prior.

Thus, we have minimized the SMI under a constraint to get an optimal likelihood, while
Bernardo maximized the SMI (asymptotically) to get an optimal prior. Operationally,

Bernardo’s method is a max-min procedure, while our method is a double minimization

min min D
min min (pll9),

where A is the set of all the likelihoods that satisfy the Bayes risk constraint, B is the set
of product distributions w(6)r(z™) with arbitrary densities w(#) and r(z"), see Cover and
Thomas (1991). Likelihoods are less informative when the posterior is close to the prior.
Priors are less informative when they give a posterior far from the prior.

Our initial efforts to find a minimally informative likelihood and reverse Bernardo’s
approach originally led us to consider minimizing the expected Kullback-Leibler distance
between the posterior and the “contaminated” prior over likelihoods. That is, we used

(1 - a)w(f) + ag(z,0)/m(z) in the SMI, where 0 < a < 1 is fixed and ¢(z,0) is a given
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non-negative function. In the case of a single outcome, our functional can be written as

EnD (w(-IX)II(1 —ojuw() + a%)

where D(p||q) = [ p(z)log g—((gda: is the relative entropy between two densities p(-) and ¢(-).

The standard method of calculus of variations gives a type of Fredholm equation, see for

example, Kondo (1991),

p(z,6) = ac(8)6(z,0) + (1 - a)e()u(0) [ pla, ),

which results in

A8 o1 o) /aB)w(B) f e(£)9(z, £)dé
Plt) = o=t T A o) feu(edE

where ¢(#) is the normalizing constant for each #. We verified minimality for this éolution,

and for some choices of @ and ¢ this p(:|8) is non-negative. However, it is not clear that
this solution admits any physical interpretation. Moreover, it appeared mathematically
intractable.

Later, instead of modifying the functional to be optimized, we tried restricting the class
of likelihoods over which we conducted the optimization. When we sought meaningful
quantities to optimize over large classes of likelihoods, it seemed natural to start with thé
SMI. Finally, Decision theory led us to considered minimizing the SMI over likelihoods in

the class with a bounded Bayes risk, and gave a constraint of the form

/ / w(6)p(2|8)L(z, 0)dzdf < 1. (2.2.2)

From this one can recognize that the optimization is the same as that in the definition
of the rate distortion function in an information theory context. Statistically, the MIL is
the likelihood which gives a posterior updated from the prior the least on average. In the
next Chapter, we will see formally that the Bayes risk bound ! behaves like a dispersion
parameter in the MIL.

In practice, the Bayes risk bound / may be chosen subjectively according to the ex-
perimenters tolerance for the risk. However, how to choose [ in a general setting is still a

question for further work. We address this heuristically in the application of Chapter 4.
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2.3 Other Background

There are numerous methods in literature regards likelihood selection. Here we give a
partial review of those have some relevance with our methods.

Many authors have used and developed the maximum entropy (ME) method for choosing
a likelihood based on incomplete information. Usually one assumes the “partial informa-

tion” may be incorporated into a set of moment constraint(s)
ETy(X)| =6k, k=0,1,...m

It can be shown, see Jaynes (1957), that the maximum entropy distribution under these

constraints is of the form

p(]0) = a(B) exp[B1T1(2) + - - - + BeTi(z)), (2.3.1)

where the (3’s are chosen so that the moment constraints are satisfied. The family (2.3.1)
is the “least informative” distribution in the absence of the adequate knowledge about the
data generating mechanism.

In practice, usually little is known about the data generating mechanism, so the ME
method plays an important role in data modeling in these situations.

As the other data modeling strategies, the ME is not a perfect principle. The concern
is how closely the ME distribution approximates the data generating distribution for a
given data. It is reasonable to ask if the data generating distribution is well approximated
by the information specified constraints. If this is the case, then the entropy of the data
distribution is expected to be somewhat close to the maximum entropy H,qz. “When the
constraints do not reflect the information content of the underlying random mechanism of
data generating process, then a non-parametric estimate of the entropy solely based on the
data would generally yield an unacceptable lower value than H,,,, estimated by the data.
In such a case, the use of the ME distribution would be inadequate because it will fail to
predict the future outcomes correctly”, see Soofi (1994).

The minimum complexity or minimum description length criterion developed by Kol-

mogorov (1965) is another information theoretic modeling selection criterion. Assume
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X1,...,Xy are tid random variables with common density p(z). Denote p(z") = [T, p(z:).
Let T';, be a countable collection of density functions. For each p(-) € T, there is a
non-negative number L, (p) which is the description length of p. In Kolmogorov’s original
formulation it is the length of the shortest computer program that can calculate p. Barron
and Cover (1989) modified this idea so as to interpret. L, as a code length from a codebook
which provides a code for each member of I',,. In this case, the minimum complexity or min-
imum description length criterion is to choose the p,, € I';, which minimizes the complexity
of the data X™ relative to L, and Ty, i.e. the p, € T, defined by
bn = arg min B(X™) = arg min (Ln(p) — log p(X ”))-

In information theory, the terms L,(p) and —logp(X™) are, respectively the description
length of p and the Shannon code length of X™ based on p.

This minimum complexity estimator has many useful properties, see Barron and Cover
(1989). They also provided a Bayesian interpretation based on using the Kraft inequality
to regard L,(p) as a prior.

The information criteria Akaike Information Criteria, AIC and the Bayes Information
Criteria, BIC are also well known methods for model selection (see, Akaike, 1977). Let
P be a class of iid likelihoods with a k-dimensional parameter 6, let § be the maximum
likelihood estimate of  based on a sample of size n, and assume the density for the data is

in P. The AIC criterion is to choose the model in P which minimizes
AIC(k) = —2log(p(z"|6)) + 2k.

It is argued that the AIC has a maximum entropy interpretation.
An alternative to the AIC is the BIC. It chooses the optimal & for the dimensionality of
the parameter. The BIC is

BIC(k) = AIC + k(log(n) — 1) + log(Q(k)/k),

where Q) (k) is the projection of the n-dimensional observed data into a k-dimensional space,
its functional form depending on the method of estimation. The BIC method is to choose
the k which minimizes the BIC (see, Akaike, 1977).

These usual methods are only asymptotically optimal under regularity conditions. By

contrast, the method we propose has some small sample optimality and provides a flexible
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class of models for consideration. We note that the AIC is rarely consistent and The BIC

rests on Bayes testing for its optimality. See Schwartz (1978) and Haughton (1988).




Chapter 3

Main Results on The MILs

In this chapter we establish our main results on the MIL’s.
Let ¢ = inf, [ w(@)L(x,0)dd. This value r is achieved at the point = which is closest
to the center of the distribution of ©. Our first result is that the parametric family we

identified is unique.

Proposition 3.1. (i) For each [ € [0,r), R(!) has an unique minimizer p*(-|-) in P.

(ii) For I > r, R(I) = 0 and it is achieved by any p(-) which is independent of 6.

(iii) Assume the parameter 8 is a permutation symmetric functional of the distribution
of X", i.e. let Fx, . x, be the joint distribution of (Xy,...,X,), there is a functional G(+)

such that for any permutation (1, ...,4,) of (1,...,n)
0 =G(Fx,,..x,) = G(Fx,,,..x:,)

and L,(z",#) is permutation symmetric in 1, ..., 2y, then p*(z"|-) is permutation symmet-

ric in &4, ..., &y

Proof: (i) First note that any p(-) which is independent of # is excluded form P;. In
fact, for any p(-),

/ / p(2)w(6)L(z, 6)deds > / p(z)int / w(6)L(t, 8)dbdz
= [peds =1,

so, p(+) is not in P.
Next note that P; is a convex set of probability densities. In fact Vpi(+|-) € P, pa2(¢|-) €
Prand 0 < a <1,

// (apl(x|0) +(1- a)p2(¢|0)) L(z,0)w(8)dzdd
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—a / / p1(|0) Lz, 6)w(8)dzdd + (1 — ) / / p2(2|0)L(z, 6)w(6)dzdo
Sal-}—(l—q)l:l,

that is api (1) + (1~ a)pa(-]-) € Pr

Now it is enough to show that I(©,X) is strictly convex on P; as a functional of
p(+|-). Write I(0, X) as I(p,0) to indicate its relationship with p(:|-). Now V 0 < X <
1, p(-|-), p2(+]-) € P, with p1(+|-) # p2(+]-), we have

I(Ap1 + (1= X)p2, ©)
Apa(20) + (1 = N)pa(]6)
Jw(©Ppi(2[€) + (1 = A)pa(]£)]d¢

= [ [w(@0n(el8) + (1 = Npael6)] og Aj’;,fl('g L 8 - ijﬁ('?)

The log-sum inequality states that for any integer n and any non-negative numbers aq,. .., a,

and by,...,b,,

= [ [ w(®Dri(a16) + (1 - Mpael6)]log dbdz

dodz.

(Za,)log i= lb’ <Za,logb
=1

1=1

with equality if and only if a;/b; is a constant over all i. Now, I(Ap; 4+ (1 — A)pq, @) is

bounded from above by

p1(|6) p2(z|6)
A//w(B)pl(a:IH)log oy +(1—/\)//w(0)p2(:c[0)1 og 22 7 S b

= /\I(pl, @) + (1 - A)I(pz, @)

(ii) Let zo = arg inf, [w(0)L(z,0)dl, po(-) be the density which is independent of
¢ and is concentrated in a small neighbourhood of zq, then apparently, po(-) € P, and
I(po]|©) = 0, since po(-) is independent of 6.

(iii) By the Blahut- Arimoto iterative procedure in Section 1.6.1, we can choose mq(, ..., )
to be a permutation symmetric density, so in each step k of iteration, pg(-, ...~ |6) is permu-

tation symmetric. Thus Vi, j
P&y ey Ty ey Ty weny Ty |0) = klim PE(T15 ey Tiy ey Ty ooy Tp]0) =
- 00
klim PE(Z1y s Ty eeey Tiy ooy T }0) = PT(21, o0y B,y oy T4y oony T |6),
mge el

that is, p*(z1, ..., 2,|0) is permutation symmetric in its argument. ]
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We comment that MIL’s can be used to form a posterior density or can be used to obtain
frequentist estimators. The prior has thus far only been used to get a likelihood. One need
not use it again to form a posterior. This is a frequentist usage (getting a point estimator)

of a Bayesian quantity (a prior).
3.1 Large Sample Properties of the MIL

Consider the collection of parametric families of the same form as P;, but for a random

variable X™ in place of the univariate X. That is, let
Pr = {pn(2"0) : //pn(xnle)w(O)Ln(w",0)da:”d0 <} (3.1.1)
Denote the minimally informative likelihood for X™ by pasrr.(2™|0), that is write
pumrn(z"|0) = arg;rel'%}l I(0,X™).

Similar to the univariate case handled in Blahut (1972a), one can obtain a form for the
MIL based on the loss function L. For given prior w, this is

m;(xn)e—/\nLn(z'",e)

T (e e Dy

pmiL(z"]0) = (3.1.2)
where m} (z™) is determined by

e—)\nLn(z",e)w(o)
fm;(yn)e_,\n[/n(ynye)dynda S 1 (313)

with equality for z™’s such that m}(z™) > 0, and A, > 0 is determined by /,,. We will see
that a posterior formed from the parametric family (3.1.2) and the prior w is asymptotically
the same as w in a relative entropy sense when convergence is assessed in the mixture
distribution. That is, the data update w trivially. In addition, we will see that use of pasry,
or pi(z]f) to denote its dependence on A explicitly, gives the weakest inferences possible
amongst the elements of P,

To establish the asymptotic equivalence of w and the posterior based on w and (3.1.2)
we note that Ppsjz, is typically a dependence model, in which the dependence structure
depends on n and A,. Because Ppsyr, typically cannot be given in closed form, the proof

of our first theorem requires a carefully chosen independence density p,(-|6) in P,. This
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pn(+]0) is chosen so that the expected relative entropy between the posterior based on pysrr
and w and the prior is bounded by the relative entropy between the posterior based on
Pn(-]0) and w and the prior. Then we prove the latter tends to zero as n goes to infinity.
In the definition of Py, if we take L,(z™,0) = a, > 1y L(z;, ) for given L(-,-), then we
can absorb the l,, into a,, and assume I, = 1, for all n. Thus our set ’P,.l is the same as used
in the usual formulation of the rate distortion problem, see Cover and Thomas (1991).
To state the theorem, we define the average loss for fixed = as r(z) = [ w(6)L(z,6)dd,

and denote its supremum and infimum by
r=infr(z), 7 =supr(z).
r z

Now we show that a posterior based on pasrr(2™]f) and the prior w which generated it

updates w trivially, in an asymptotically average sense.

Theorem 3.1.1. Assume that
Ve, r(z)= /w(@)L(z,H)dH < 00,

and that, for all n, I, = 1. Let L,(2",0) = a, Y iy L(x;,0) where L(-,) is continuous in
both arguments and assume that the limit of na, exists and is s. Now, if s < 1 we have

that

Proof: Step 1: First we prove that there exists a probability density ¢(-) such that the

new parametric family p, for X™ defined by

il | L))
[ e In@W Ty q(y:)dy™

is an element of P, for n large enough.

pn(z™0) =

(3.1.4)

Indeed, take a constant r < 7 < 7 and a constant b € (r,7) such that bs < 1. Choose a

probability density ¢(-) such that for all 6

/q(z)L(z,H)d:z: < 00,
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and

/ w(8)¢(2)L(z,0)dzdd = b.
That is, we have [q(z)(r(z) — b)dz = 0. Such a probability density ¢(-) exists because
r<b<7.

By the symmetry of p,(z"|@), the sum of integrals from L, can be reduced to a univariate

integral. Now, the density p,(z™|6) satisfies

[ [ pe(am000@)Laa", 0)dzmdo

n . -anz:; L(z;,6)
] [ .
f H?:l Q(yi)e_a" Ei=1 L(yi.0) dyn

_ w(0)q(x)e"“"L(x’9)L(m, 6)
= nan/ [ g(y)e-a T dy dzdé.

Denote the double integral in (3.1.5) by I(a,). Since na, — s, and sb < 1, since in the

(3.1.5)

definition of P,, I, = 1 to see that pn(z™6) € P, for all large n, it is enough to show
I(an) — b.
By standard inequalities we have that,
[1(an) — b _
_ w(0)q(z)L(z,§)e~*nL(z:0)
= | / / IO T / / w(0)q(2)L(z,0)dzds|
—anL(z,0) _ —anL(y,9)
Ja(y)e dy| ,

e
< [ [w®)a)L(z,6) O af

[ ] a(@)a(@)L(z,0)le= 1= — e=enl08)|dady
< 6 .
= /w( ) [ q(t)e=onLt0)dy df

Let Ag = {(2,9)|L(z,6) > L(y,0)}. Since

(3.1.6)

J [ a(2)q(y)L(z, §)lerE(=0) — g=anllv:0)|dzdy
[ q()e—anL(t0) gt

< 1 Ja, 9(@)a(y) L(z, 0)|e=enL(@0) — e=anl(v:6)|dzdy
> f q(t)e—a,,L(t,é)dt

J fag a(z)a(y) L(y, B) e 2nH=0) — e=enlv:f)|dzdy
+ [ q(t)e—onl(t0)dt

[ Ju, 4(@)L(z, 0)q(y)eon L0 |e=en(L(z.0)-Lw0) _ 1]dzdy
- [ q(t)eenL(t0)dt
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file:////dxdy

} f fAC q(y)L(y’g)q(m)e—anL(z 8) Il —an(L(y,G)—L(a:,e))|d$dy
' [ q(t)e—onLth)dz

J [a, a(2)L(z, 0)q(y)e~ @A dzdy [ [as a(y)L(y,0)a(w)e Mo dedy

< Ta(t)e o l0d TaDeTe0d
< [ 4@ L 0)q(y)e M dady | [ [ a(y)L(y,0)a(x)e” L) dudy
. T q(ye-en B ] (e E0A s

=2 / ¢(2)L(z, 8)dz,
which is integrable w.r.t. W(#), since
2 / w(6) / (2)L(z,0)dzds = 2 / w(8)¢(2)L(z,0)dwdd
= 2b < oo0.

By the Dominated Convergence Theorem, the limit of the left hand side of (3.1.6) is bounded

by
([ a(@)e(y)L(z, 8)|e”2nL=0) — e‘“"L(y"’Hda;dy
/ w(6) lim ( ot TR )d0, (3.1.7)
and for any fixed 6, the limit in (3.1.7) is
: —anL(z,0) _ ,—anL(y,8) ;
lim, [ [ q(z)q(y)L(z,0)]e e |dzdy (3.1.8)

lim,, [ ¢(t)e—anL(t.0)qd¢
provided the numerator of (3.1.8) exists and the denominator of (3.1.8) exists and is non-
zero. In the numerator, the integrand is bounded by 2¢(z)q(y)L(z,8), which is integrable
w.r.t. z,y for any fixed 8 by our choice of ¢(-). So by Dominated Convergence, the numerator
of (3.1.8) is

//q(a:)q(y)L(ac,H) lim |lemenl(2:0) _ g=anl(v:0)|dady = 0, (3.1.9)

since a, — 0, so for fixed z and 8, lim,, je~*L(#) — ¢=eanL(wf)| = 0. For the denominator in
(3.1.8), the integrand is upper bounded by ¢(t), which is integrable w.r.t. ¢, so by Dominated

Convergence again,
lién/q(t)e_“"L(t’o)dt = /lignq(t)e_“"L(t’e)dt = 1. (3.1.10)

Now, by (3.1.7), (3.1.8), (3.1.9) and (3.1.10), the limit of the left hand side of (3.1.7) is
zero, i.e. p,(z"|0) € P, for all large n.
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Step 2: Now we prove the assertion of the theorem. Let

My, (2") = / Pu(z"|0)w(8)d6

be the mixture of p,(z"|0) with respect to the prior w(6) and write ¢(z™) = [1i=; ¢(2:)-
By the definition of p}, its posterior is the closest to w(f) in the expected Kullback-

Leibler distance among all the posteriors based on any other probability densities in P,.
We have
0 < By D(wpy (| X™)||w(-)) < Emy,,, D(wp, (| X™)]|w(-)) (3.1.11)

/ / w(8)pn(2"18) log <p":j(nlf;)dz”d6

z™)e—Ln(z™.0) "
= //w(0)pn(x”|0) log (fq(ég/")?s‘Ln(y"vo)dy">dx do

— [ [ w(8)pa(a"16)1log — _w(€)d¢ ) da"df
/] (e oe)

Ja(y™)e~
- / / w(8)pn(2"|0) Ln(z™, 6)dz"™d6 (3.1.12)
—/w(ﬁ) log (/q(y”)e_L"(yn’a)dy”>d0 (3.1.13)
_ / / w(8)pa(a"0) 10g< fqgf;:ifz;ﬁ%)dyndg)da:”do. (3.1.14)

Term (3.1.12) is —nay,I(a,) — —sb, and we shall show (3.1.13) — sb and (3.1.14) — 0.

For (3.1.13), since —log(-) is convex , we have that for any § and n,

0 < —log ( / Q(y")e"”"(y”"’)dy") = —log[Eg(e~ ("))
< Eqy[~log(e 2" D)) = Ey(La(Y™,9))

= nan/q(y)L(y,H)dy < 0. ' (3.1.15)

Denote the integral in the right hand side of (3.1.15) by a(8). Now, a(f) is integrable w.r.t.
W(-). Indeed, [a(0)W(db) = [ [w(6)q(y)L(y,0)dydd = b < co. By the strong law of large
numbers, we have that for all 8, L,(Y",6) — sa(f), almost surely with respect to ¢q. So,

for any fixed 8, € > 0, when n is large enough, we have that

e—(sa(0)+e) < e—L,.(Y",t‘)) < e—(sa(B)—e) (3.1.16)
with high ¢(-) probability.
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Let U be the set of Y™’s such that (3.1.16) holds. For n large, we have E,xve < ¢, and

Eq(e_L"(Yn’e)) = Eq(e—.L"(yn'Q)XU) + Eq(e_Ln(yn’e)XUc)‘

-L,

Because e~ Ln(Y™9) is bounded, we now have

e—(sa(9)+e) —e< Eq[e—Ln(Y”,0)] < e—(sa(a)—e) + e

Since € > 0 can be arbitrarily small, we get
/q(y”)e‘L"(y"’e)dy" — e2a(0) (3.1.17)

for each §. Hence by (3.1.17) and the Dominated Convergence Theorem, expression (3.1.13)

converges to

- / log(e=**@)W (d8) = sb. (3.1.18)

So, as n goes to infinity, (3.1.12) and (3.1.13) will cancel each other.

To complete the proof we only need to prove (3.1.14) tends to zero as n goes to infinity,
and by the non-negativity of the Kullback-Leibler distance, we only need to show that
(3.1.14) is non-positive.

Recall

—logz <z'-1 (3.1.19)

and that expectations can be written w.r.t. ¢(-) rather than p,(:|#). We have that, for all

n, (3.1.14) is
-/ w(O)Eq{E%%log( %dg) Yo
/ QLT [;L';i’iyf?o)][< ?f[ze_::(fn;’f])dg)_l — 1]} d8
- £, / ‘;(‘)[ie;i'(’:,x';g]) d0< %d{) _1} ~1=0. (3.1.20)

Thus we have

0 < T B,y D(wys (1X™[0(")) < T Eny, D(wp, (1XMlw()) < 0. O

Comment: This theorem shows that, asymptotically, the n-dimensional MIL does not in
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fact updates the prior at all. In this sense the MIL is minimally informative. Also one may
use the product of n-fold 1-dimensional MILs and do regular Bayesian updating given the
data for independent observations. We have seen in Proposition 1.5.1 that the product of
marginals is the product density closest in Kullback-Leibler distance to a joint density. Ac-
cordingly, we may use a product of unidimensional MIL’s when the dependence is believed
to be slight or absent. If the dependence cannot be ignored we have nevertheless done the

best possible subject to dependence.

In cases where the data may be assumed ¢id, we expect to get consistency results for the
MIL parallel to those for usual likelihoods. Here we only consider these questions heuristi-
cally from a Bayesian standpoint and may investigate them in detail in our future studies.
Specifically, assume the data are iid and model their common distribution by the MIL, i.e.

choose

p(z"|8) = [] C(8)m(z;)e™L1=00)
=1

where :
Cc(9) = (/m(z)e"’\L(m’e)dz)_l

is the normalizing constant. Now, the log likelihood is
G(0|x) = nlogC(8) — /\ZL(zi,O) + Zm(x,)
=1 =1

So the m.l.e. 6, of 8 based on the MIL can be obtained by solving the equation

0=U(x,0) = QC%X_) |9=9‘n'

Denote the MIL given 6 by pj and the true density of X by pg,, here we assume the
same parametrization for both pj and ps,. Essentially, we are using the likelihood equation
from the MIL as an estimating equation whose solution is the wrong model m.l.e. (under

p5). Since such estimators are typically consistent and asymptotically normal even if their

asymptotic variance is higher than the Fisher information. Let
) =F 9 L(X,0 E 0 L(X,0
€00 (0) = Epy(55L(X,6)) = Epg, (55L(X.,6)).

By modifying the proof of Jgrgensen and Labouriau (1994), we have the following consis-
tency result of the m.l.e. based on the MIL.

LY




Theorem 3.1.2. Assume C(6) and £ L(X,6) exist and are continuous in 6 almost ev-
erywhere with respect to Py, and that there exists a §o > 0 such that for all § € (6 —
80,00), €o,(0) > 0,and for all & € (80,00 + 6o), &6,(0) < 0. Then, there exists a sequence
of roots {,} of ¥(x,8) such that

~ Py,
0, — 6o, as n— oo.

Proof: First note

"a— - — faa_@L(x, e)m(ﬂf)e_’\[’(zro)dx B i
55108 C(0) = 50 = B2 10x,)),

SO

0 0
Fpey ¥(X,8) = — 52108 C(6) - )\/%L(:c,O)p(xwo)dx
= Mg, (8).

Thus, take § € (0,6p), by the strong law of large numbers

1 Ps,

;\I’(X,eo - (5) — )\600(00 - 6) > 0,
and

1 P90

;L'\I’(X,GQ + 6) — )\&90(00 + 5) <0,
as n — oo. Hence for large n we have

U(X,00—-6)>0 and U(X,0p+86)<0.

By the continuity of ¥(X,8), there exists a root 8,(6) of ¥(X,6) = 0 in the interval
(6o — 8,00 + &) such that
Ps, (w*n(a) | < 5) -1,

as n — 00. Now, instead of én(é), we take the root §, which is closest to By, this root does

not depend on é and also satisfy

Py, (|én — b < 5> — 1. O

Next we state a well known result for the asymptotic normality of the solution of an
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estimating equation. We first recall the definition of regular inference function. An inference
function ¥(X,#) is regular if and only if for all #

i) E,,¥(X,6) = 0;

i) 0¥(X,0)/00 exists for py-almost all z, where y is the common o-finite dominating
measure for the likelihood: p(-|0) = dP(:|0)/duy;

iii) The order of the integration and differentiation may be changed:

L [0, 0)p(alntiz) = [ 2(¥(, 0p(al0)n(do)

iv) 0 < E,,{¥%(X,0)} < o0;
v) 0 < E,,{09?%(X,0)/00} < .

Within the context of Estimating Equations (see, for example, Godambe, 1960 or

Jorgensen and Labouriau, 1994), we know that under the above regularity conditions
V(b —0) 5 N(0,0%0) as n— oo,

where the asymptotic variance is given by the Godambe information
2 0 0
o3(0) = TR C0T)
Ep,¥?(x,0)

Now, we have used an MIL to generate an estimator, its m.l.e. is consistent and asymp-
totically normal. In principle, we can examine the optimality of this estimator in terms
of the Godambe information. However, for the present, we note that the above results on
consistent and asymptotical normality suggest, but do not prove, that the posterior density
formed from an MIL concentrates asymptotically at the true value of the parameter in a

mode of convergence defined by the true model, i.e.,
P,
w(f|X™) =2 .

This conjecture is supported by Strasser (1981) who demonstrate that Bayes posterior con-
sistency is weaker than frequentist m.l.e. consistency. Indeed, Strasser showed that any
set of conditions ensuring the m.l.e. also ensures posterior concentration. In the present

context, we would want to use Laplace’s method of integration on m(z") at 6, to extend
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Walker’s proof. Indeed, a modification of Walker’s (1969) proof should give the desired

consistency and asymptotic normality of the posterior formed from an MIL.
3.2 Small Sample Properties of MIL

- Now, we turn to a non-asymptotic sense in which the MIL as we have defined is mini-
mally informative. Let p},(z"|0) be the MIL from P, based on w and let w,s (6| X™) be the
posterior formed from w(#) and p}(z"|#). Following Csiszar (1975), the tangent hyperplane
determined by w(f) and wp: (8|2™) is given by

H(&" w,00) = {u'+ | w/(0)10g Va0 = Dws (e[}
Let p € P, be any given density. The tangent hyperplane determined by w(8) and w,(6|z™)
is

B(e" w,wy) = {5 [ w(6)10g “X0a0 = D, (17w}

The two tangent hyperplane divide the whole space of priors into subspaces, one of them
which we denote by S(z", w, wps,w,) is

{u's [ w0 "0 < Dwys (1)),

w108 205 > Dl (lalhu()}.

Let Sp(w, wps, wp) = NznS(2™, w, wps , wp), which is a subspace in the prior space inde-
pendent of data. Let wg be a mémber of Sn(w, wpx,wp). We show that, on average, using
the MIL likelihood p}(2™|0) to update w(-) gives a posterior w,+(8|z™) further from wq in
Kullback-Leibler distance than any other likelihood p(z™[f) in P does. i.e., wp. is further
away from any untrue wg than any other w,.

To get a pointwise result in the above sense, let

U(w, wpy, wp) = {2 D(wy (-1a™)|w(-)) < D(wp(-[2™)]w())}.

Since Emp;D(wp;(-|X")|['w(-)) < En,, D(wp(-|X™)||w(+)), it is likely that for some z™,
U(w>wp;7 wp) # ¢
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Theorem 3.2.1.
(i) If 2™ € U(w, wps, wp), and wo € S(z™, w, wps, w,), then

D(wo-)||wps (-|2")) > D(wo(-)|wp(-|z™))- (3.2.1)
(ii) If for some n, wg € Sn(w,wp;,wp), then

B o D(wo(-)l|wpy (-1X™)) 2 Em, D(wo(-)l|wp(-|X™)). (3:2.2)

Proof: (i) Since

w10 s = DOl - D' (X7,

and
' @)10g 2T do = DG (1)) = D(w Ol (X7,

we see that wo € S(2™, w, wps, w,) implies that
D(wo(:)[w(-)) < D(wo(-)l|lwp(-12")) + D(wpy (-|2")|[w(-)),
and that
D(wo(:)l[w(-)) = D(wo(-)l|wp(-|2™)) + D(wp(-]&™)[Jw(-)).

Since D(wps(+|z™)[|w(+)) < D(wp(-|z™)[|w(-)), so for 2™ € U(w,wps,wy), by the above two

inequalities we have
D(wo(:)l|wpy (+127)) 2 D(wo(-)l|[wp(-|2™))-
(i) Since wo € Sn(w, wpx,wy), we have that
D(wo(-)[[w(-)) < D(wo(:)l|wpy (-1X™)) + D(wpy (-|X™)|w(-)),
and that
D(wo()llw(-)) 2 D(wo(-)lfws(-|X™)) + D(wp(-|X™)[fw(-))-
Taking expectations we have

D(wo()][w(-)) < Enmys D(wo(- |5 (-1X™) + B, Dlwgs (1X)][w()),

and

D(wo()[w(+)) 2 Em, D(wo(-)fwp(-|X™)) + Emy D(wp(-| X™)|w(-)).
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By definition of p}(z™|6) we have
B s D(wps, (1X")[|[w(-)) £ Emy D(wp(-|X™)|Jw(-)),

so we have

B e D(wo(-)l[wpy (-|X™)) 2 Em, D(wo(-){[wy(-[X™)). O

3.3 Behavior of the MIL for large and small values of A

Clearly, the MIL depends on the choice of A (or equivalently !) used to define P. In
this section, we prove two theorems that show how the size of A affects the behavior of the
MIL. To emphasize the dependence of the MIL on A, we write p%(«|d) for the MIL, and
we denote the corresponding marginal density by m3(z), and the corresponding posterior
density by w}(6|z). Let {(8) be the degenerate probability mass function at 8, L denote
convergence in distribution, and u(-) be the Lebesgue measure on R!. First, we character-
ize the behavior of the MIL for A large. For simplicity, we only prove the results for one
dimensional data case, the proofs are also valid for n-dimensional data case.

Theorem 3.3.1. (i) The marginal density for X from p3}(z|) is m}(z), i.e.

i

m3(a) = [ p3(cl6)u(6)ds.

Let S be the support of w(-), with interior S°, and let C be the set of points in S at which
w is continuous. Assume L(z,6) = r(|z — 6]) is strictly increasing in |z — 6|, with r(0) = 0,
and r(s+t) > r(s) + (t), for all s > 0, > 0. Then as A — oo, we have the following

(ii) The marginal density for the data satisfies

« w(z), if zeSnC
mi(z) = { 0, for a.e. p() ze€S°, (3.3.1)

(iii) the MIL densities satisfy
Pi(zl8) > ¢(6), V8es°nc, | (3.3.2)

and  wi(f|z) 3 ((z), Vaze SNC. (3.3.3)

62




Proof: (i) Since
. m*(z)e—L(=.8)
p/\(.'r|9)= ,:\( )—AL 9 ’
fm/\(y)e (v, )dy

if p3(z|8) > 0, then m3}(z) > 0, so

e—,\L(z,e)w(o)
m3 (y)e LW dy

| Pty = mi(z) [ -

by (1.2.1.5). If p3(z|@) = 0, then m}(z) = 0, we still have

df = m(z),

mi(e) = [ pi(elo)u(6)de.

ii) To prove the result, recall that m3(z) is determined by
_ A

e—,\L(z,e)w(())
S mi(y)e  wddy

g < 1, (3.3.4)

where equality holds for € 5, where §) is the support of m}(:). Since w(-) and m3(-)
integrable, they are continuous almost everywhere, without loss of generality we restrict to
the continuity points of w(-). Take § > 0 small, then Vz € SN C, by (3.3.4) we have

e—/\L(z,é))w(g)
12> / " 2L(9,0 df
[c—6,2+6] f[0—6,6+6] m3(y)e M dy 4 (1 + h(], 6))

e-—,\L(x,O),w(e)
+ Ax—&,a&&]c fm;(y)e—/\L(y,G)dydo’ (3.3.5)

where N
Jio-s045e MA(y)e M@ dy

Jio-6046) M3 (y)e MO dy "

We show that the second term on the right hand side of (3.3.5) tends to zero as A tends

h(),0) =

to infinity, and h(A, 8) is negligiblely small for large A, so the remaining part of (3.3.5) gives
a ratio which is approximately “w(z)/m¥ (z)”, and equals 1. There are six steps in the
proof.

~ Step 1: Show that the second term in (3.3.5) goes to zero as A increases to infinity, i.e.

—AL(z,9)
/ : W(o) dé — 0, as A — oo.
[z—6,2+8)¢ fmi(y)e—)\L(y,t‘))dy

Indeed, the second term in (3.3.5) equals

/33—6 e_/\L(.’L'—e)w(O) 20 /00 e—/\z_(O—z),w(o) 0
~o [ mi(y)e Mwd)dy ots [ mi(y)e~AMwddy
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Since V8 € (—o0,z—6],7(z—6)=r(6+2—-6-0)>r(6)+r(z—6—60) = () + L(z —4,0),
and V@ € [z+6,00), L(0—z) = L(6+0—(z+6)) > L(6)+ L(8—(z+8)) = L(6)+ L(z+6,0),
so the second term in (3.3.5) is bounded from above by

—AL(&)(/ 2= = AL(z~56)y(g) d0+/oo e~ L(=+50) () do)

o [ mi(y)e A WOdy +5 [ mi(y)e lvDdy

—AL 6)(/ e~ Mo(z— 69)w(0) 94 e—AL(z+6,6)w(0) )
Jm3

(y —AL( y,e)dy fm;(y)e—)\L(y,ﬁ)dy
< 2e” —()—>0, as A — oo,
since by (3.3.4)
e——/\L(a:iS,e)w(o)
Jmi(y)e M whdy
this completes the proof of Step 1.

dg <1,

Now, from Step 1 and (3.3.5), we have

1 [e] 1 3.3.

where o(1) goes to zero as A — oo. For fixed 6, it is easy to show h(X,8) — 0, but this may
not hold uniformly for 6 € [z — §,z + 6] the domain of integration in (3.3.6). So, we split
[z — 6,2+ 6] into a “good” set on which (], 8) is uniformly small, and a “bad” set on which
‘h(A,0) is not small. We show the “bad” set is negligible in Lebesgue measure for large A.
Formally, let € > 0, and let Ay = {# € [x — §,z+ 8] | h(}\,8) > €}. If A, is contained in
a sub-interval of [z — 6,z + 6] which excludes z, we can reduce § and there is nothing to
prove, otherwise the Lebesgue measure of Ay is controlled as follows.

Step 2: We show that as A — oo,
p(AxNlz—6/2,z+6/2]) = o(e—A(L(S)—L(6/2))).

By reducing the domain of integration in (3.3.5) we have

) >/ e~ =0 (9) o
" Je—botanay flo—s 045 mA(Y)e M @A dy + Jio-s.0481e M3 (y)e WO dy

S / e—AL(a:,(?),w(o)
~ Je-s/2045/1045 €1 1) fpg 0461 MA(Y)e M dy

do, (3.3.7)
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since h(A,0) < € on Ay, i.e. we have

* - 1 * —_
[6-6,6+6] € J[o-6,6+5]

We can bound the e~ *£(#:%) in the numerator of (3.3.7) from below by e~*£(5/2)  and bound
the e~ (%) in the denominator of (3.3.7) from above by e™*£(9), This means that (3.3.7)
is bounded below by
e—>r(6/2) w(h)
(71 + 1)e=2z(9) /[95_5/2,a,,_|_‘g/2]m4A f[0—5,0+6]c m3(y)dy
eMz(8)-x(6/2))
el4+1 /[a,~—5/2,ac+5/2]rmA
(O -(8/2)) ()
el 41 2

do

w(8)df

[L([II) - 6/27 z+ 6/2] n A/\),

since the continuity of w at z guarantees that for § small we have w(6) > w(z)/2, when
0€lz—6/2,z+ 6/2]. Step 2 now follows.
Now by Step 1, and the definition of Ay, we get

/ e—,\L(ac,())w(o) &

[e-6/2.248/2n43 Jo—s,046) T3 (¥)e @O dy(1 + o(1))

+/ e—AL(z,&)w(o)

[z—6/2,2+8/2]nA, [ m}(y)e M(0)

as A tends to infinity. We will see that the second term in the right hand side of (3.3.8)

1>

230+ o(1), (3.3.8)

tends to zero as A tends to infinity. Also, by the mean value theorem for integrals, we will
see that the first term of the right hand side of (3.3.8) becomes w(() over m3}(n) times an
integral 1 to 1.

Step 3: As A — oo,

e—)\L(a:,é’)
/ (0.0) di — 1.
[.’L‘—ﬂ/?,:):-{-&/?]ﬁAf\ f[0—5,9+(5] € Y dy

We start by showing that as A — oo,

e—/\L(:z:,e)
dé — 0. 3.3.9
/[.Z—6/2,:D+5/2]n.4,\ f[0—5,0+5] e_AL(y70)dy ( )

Indeed, let 0 < &’ < § satisfy L(6") < L(6) — L(6/2). Now, the left hand side of (3.3.9) is

bounded from above by

e~ L(z,0)
dé.
v/[‘:v—5/2,a:+5/2]nA/\ f[@—s’,&-{-ﬁl] e—)\L(y,())dy
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Since the numerator is bounded above by 1, and for y € [§—¢',§+6'], we have L(y, 8) < L(§'),

the last expression is bounded above by

ple =6/2,2+8/2]0 A\) o K _\p(6)-r(s/2)-2(e')]
26'e—>z(8") - 28

— 0,

as A — oo, for some constant K.
Now by adding and subtracting the left hand side of (3.3.9) to the left hand side of Step
3, the integral in Step 3 becomes ‘

e—/\L(:L‘,0)
/[”—5/2,x+6/2] f[0_5,9+5] e L) dy df + o(1)
e—)\L(:c,e) e_)\L(z,e)
) /[Z_MH] f[e—a o+ e MDdy “- /§<Iz—9ls6 f[9—5,9+6] e—AL(yﬂ)dydo +o(1)

e~ r(t) § e—rlt)
/ f‘s —/\T(s)ds /5/2 ——f(f e—f\L(s)dsdt + o(1)
§/2 g=Ar(t+6/2)
=1 A mdt + 0(1)

Since the absolute value of the second term is not greater than

o~ r(6/2) I _M(t)dt

f Ry e A/2) 9, as A — oo,
Step 3 is complete.

To ensure that the equality is achieved in (3.3.5), we first verify that m3(z) is positive
in a stronger sense.

Step 4: We show that Vz € S°,
limy_,m3(z) > 0. (3.3.10)

To prove Step 4, note that by (3.3.8) we have (we will show later that the second term in
(3.3.8) tends to zero)

1 >/ e 2D (6) df + o(1)
lo-8/2.0+6/2n43 Jo—s,045 MA(Y)e @O dy(1 + o(1))

e~ L(z.0)
_ Q) .
mi(n) Jiz-s/2, z+6/2]NAS f[0 5,0+6) € ~AL(v:8) dy(1 + 0(1))
w(() 1 e~ o(z.6)

=% df + o(1),
3 (1) (1 + o(0) Jto—s/atsfainas, —sges e E@Ddy " + X
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by using the median point theorem of integration twice, where ¢ € [z — §/2,z 4+ §/2] N Af,
and 7 € [0 - 6,0 4 8] C [z — 36,z + 36], since both w(-) and m}(-) are continuous at z. By

Step 3, the last expression is

w(¢)
m3(m)(1 +o(1))

Now, Step 4 follows by way of contradiction: Suppose m}(z) — 0, as A — oo. Then,

+o(1). (3.3.11)

there exists § > 0, and A so large that w(¢)/m%(n) > 1, which is impossible by the above
inequality. This means we must have liminfy_,. m}(z) > 0, i.e. Step 4 is completed. Note
that the result of Step 4 applies to each y € [z — 6,z + 6] C 5.
Now we prove the second term in the right hand side of (3.3.8) is small as A increases.
Step 5: As A — oo, we have that

—AL(z,8)
/ = —Af(ef)) df — 0. (3.3.12)
[z—6/2,z+5/2)nA, [ m}(y)e  L(vf)dy

To see this, let € > 0 and ¢’ be as in Step 3, and let
Bye={yelz—-6/2-8,z+6/2+ 6] | mi(y)> ¢}

By choosing € small enough and A large enough, B)  can be made as close to [z — §/2 —

6,z + 6/2 4 ¢') in p(-) measure as we want, i.e. for small € and large A we have
p(le —6/2—68,24+6/2+6))— w(Bxre) < §/2.
By intersecting the interval with B) . and Bf\76 we get
p(BreN[0—=6,0+6]) > %/, VO €[z —6/2,z+6/2).
Hence the left hand side of (3.3.12) is bounded above by |

/ e—AL(z,e)w(g) oy
le—6/2,0+8/A045 Jig—s1 645108, MA(Y)e M@0 dy

—AL(z,0)
< 2w(zx) e  ___,

€ Jlz-6/2,24+6/2)nA, f[0—5’,9+5']anyee (.0 dy
since w(#) < 2w(z),V0 € [z — 6/2,z + §/2], and m3(y) > ¢, Vy € By.. Noting that

e MA=8) < 1) and e MAw) > =) for y € [0 — 6,6 + &1 N By, the last expression can

be bounded above by

2'w(:1:) /1,([113—5/2,.%-}-5/2]014)‘)
€ e MOV infoers_s2pps/21(Br N[0 — 6,0+ 68))
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4/w(x) e—A[z(ﬁ)-—g(&/Z)—y;(&’))
<
T € o'
by Step 4. Now, Step 5 is complete.

-0, as A — o0,

Now let ¢ and 7 as in (3.3.11), write w({) = w(z) + o(1), and m3}(n) = mi(z) + o(1).
By definition of m}(-), equality is achieved in (3.3.5) for z € S, thus (3.3.11) achieves the

upper bound 1, i.e.

W )
L= ey T

Letting 6§ — 0, we get
1= o)
limy o m} ()
proving (3.3.1) forz € SN C.

For the final step in the proof, let z € §¢. If for such an = we have YA, m}(z) = 0,
then the conclusion follows. Otherwise, we must have mj (z) > 0 for some sequence {A;}
which satisfies limg_,oo Ax = 0o and limg_,o inf mjk(a:) > 0. For this case, it is enough to
show limy_,co inf m3, () = 0 a.e. on a small neighborhood of z. Without loss of generality,
assume z lies on the left of 5.

Step 6: There is a 6 such that 0 < 6§ < d, where d = inf e |z — y| is the distance
between 2 and S so that m3(-) = 0,a.e. u(-) on (z,z + 6].

We prove this by way of contradiction. If this is not true, there is a least § satisfying
such that 0 < § < d, and limj_, inf m3 () > 0 a.e. on (2,2 4 6]. Now, let ¢ > 0 and
write Dy, = {y € [z + /2,2 + 6] | m3, (y) > a}. Choose a so small and k so large that
pu(Dy,) > 6/4.

Since mj (z) > 0, (3.3.4) implies

1 _ / 6—)\kL(:L‘,9)w(0) de
s fmy, (y)elwhdy

Let M > 0, and let Sy be a closed set satisfying supgeg,, w(6) < M < oo, and

-1_ < e—AkL(z,e)w(e) 0
27 Jsy [} (y)e wEWAdy

This gives that
l</ e—AkL(x,())w(G)
27 Jsu Jp,, ™3, (y)e LD dy
M e—,\kL(x,0)v

<= do.
= a Jsy [p, e MEWAdy

de
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Since L(z,0) > L(y,0)+r(6/2),Yy € D),,V8 € Sps, the last expression can be bounded by

M —/\k (6/2) e'—)‘kL(yye)
e hr d8. 3.3.13
P su Ipy, € E@Ady (3:3.13)

By an argument similar to that used in Step 3, we have that

e_AkL(yye)

—AxL(y,0
SM fDAk € k (y’ )d

df — 1, as k — oo.
Y

In particular, for large k, the last expression is bounded from above by 2, and the right

hand side of (3.3.13) is bounded by

a

which is a contradiction thereby establishing Step 6. This completes the proof of part (i)
because we have shown that Vz € §¢, if liminfy_,., m3}(z) > 0, then limy_., m}(-) = 0, a.e.

on (z,z + 6], for some 0 < § < d. i.e.
lim m}(z) =0, a.e. p(-) on S°
A—00 3

This last statement is equivalent to (3.3.1) for z € S°.
(iii) To prove (3.3.2), let ¢x(-) be the characteristic function of p%(-|8). We have

f m;(m)e—,\L(x,e)eiztdx
Jmi(y)e M wOdy

¢,\(t) =

~ f[9—5,6’+6] mt\(x)e—/\L(a:,e)eixtdx + f[9—6,6’+6]° mx}:‘(x)e—/\L(z,G)ei:vtdx
Jo-s.6+6y AW MEANdyY + fig_s 451 M3 (y)e WA dy

To simplify the expression, we first prove

Jio-s 0151 M3 (9)e" A L@ dy
Jio-5.0+ M3 (9)e A WA dy

— 0,

as A — oo. In fact

Jio-sorsie MA@y o405 mi(y)e M@ dy
Jio-s.0+5 A ()WY = flg_5p3 5459 m3(y)e M dy

Since 8 € 59, Step 4 gives that limy_,, inf m%(y) > 0, pointwise for y € [§—6/2,8+6/2]nS°.
Fora > 0,1et Dy = {y € [0 —6/2,0 + 6/2]) | m3(y) > a}. Now, for a small enough
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. and A large enough we have p(D)) > %. Since Yy € [0 — 6,0 + 6]°, e~ M(wh) < ¢=2r(8),

Vy € Dy, e~ b > ¢=22(6/2) the right hand side in the above inequality is bounded by

Jio=s ps1e M3 (y)e MWD dy
Jp, mi(y)e MO dy

e E) fio_s 045 M3 (Y)dyY
= e/ [ mi(y)dy
2e~Alz(6)—z(6/2)]
<
- ad
Now by this inequality we have

—0, as A— oc.

| fio—s.45c ma(2)e =it dg|

< f[0—6,0+5]c m;(y)e—)\L(y,O)dy
= Jo-s 60 mi(y)e WO dy

— 0, as A - o0.

thus we have |
Jio—s.6+6] m}(z)e MA=0)eit dy
(f[0_6,0+5] m;(y)e_/\L(y'e)dy)(l + 0(1))
f[@-—6,9+5] m:{(a;)e‘AL(wyé’)eiztdx

Jo=s,0+4] m}(y)e Wb dy

oa(t) = +0(1)

+ o(1)

Jio—s046 m3(2)e @D cos(at)de  fig_s o5 M3 (2)e™ A0 sin(at)de
 Jsers mi(w)e W 0dy Jio—5,04.6) M5 (v)e" A dy

= Ji(\ t) + iJa(A, 1) + o(1).

+ o(1)

Obviously, for all A

in cos(at) < J1(A, 1) < su cos(xt
<€[0—6,0+6) (a1) < 2. 1) z€[0—5?9+§] (=1)

and

lim inf cos(zt) = lim su cos(zt) = cos(dt
§—0z€[6-6,6+6] (1) 6_’0x6[9—($I,)0+6] (at) (60),

s0, lims_0 J1(A,t) = cos(6t) holds for all A. Similarly, for all A, lims_,q J2(A, ) = sin(8t).
Thus, if we first let § — 0 and then let A — oo, we get

Jim ¢,(t) = €,
which is the characteristic function of ((8).
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To prove (3.3.3), let ¢,(+) be the characteristic function of w3(:|z), then

NG, :/PX(wIO)w(o)eiotde

m3(«)

w(9)6—~,\L(z,9)ei0t &6
) Tm3(y)e )y

B / w(§)e=NDAm0) it
[e~6.2+8] Jlo—s,045 MA@y + fo_5 4 510 M3 (y)e WO dy
N / w(@)e=ALz0) it
lz—8,2+6]c fm’/‘{(y)e—AL(y,f’)dy )

The absolute value of the second term in the last expression is bounded by

dé

/ w(@)e (z:9) 20
[z—6.z+6]c [ m;(y)e‘/\L(yﬂ)dy

which tends to zero as A tends to infinity, by Step 1. By the transformation r = 8 — z, for

large A we have

PYa(t) =

w(()e! (f JEe gy N 0(1)) T o(1),

m3(n) \ @ e=>(5)ds(1 + o(1))

where ( € [z — b,z + 6], € [0 — 6,0 + 8] C [z — 26,2 + 26]. By the same reasoning as in
Step 4, ¢ and 7 tend to z as 6 tends to zero. Therefore, the ratio w(¢)/m3(n) tends to 1
by (3.3.1). Thus we have

/\lim Ya(t) = €, ae. p(-) on z €S,
and part (iii) is proved. O
Our next result characterizes the behavior of the MIL for the range of the parameter A be-
tween zero and infinity and relates A to the [ used to define P;. Let r = inf, [ w(0)L(z,6)dd,
zo = arginf, [ w(#)L(z,0)dd. It will be seen that when [ > I the method breaks down be-
cause there is no necessary relationship between the data and the estimand 6. The following

theorem is proved for one dimensional data and parameter, the results and proof should be

the same for random vectors and multi-dimensional parameters.

Theorem 3.3.2. Assume L(-,0) is not constant. Then we have:
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(i) For I € (0,1), p(=|0) exists uniquely, infy(.p)ep, [p(0, X) = L3(0,X) > 0, and is a
continuous, decreasing function of /.

(ii) For I € (0,7), A and ! determine each other uniquely. We can therefore write I = I()),
or A = A(l).

(ili) For I € [r, 00],inf,(jg)ep, Ip(©, X) = 0, and the infimum is achieved by any p(z) € P;
which is independent of 6.

(iv) Assume D(mj},||m3,) + D(m},[|m3,) < oo for 0 < A3 < Ag, then I(Ag) < I(A1). iee.
I(-) is a decreasing function.

Under conditions of Theorem 3.3.1, we have the following:

(v) I(A) = 0, a8 A — oo.

(vi) I(A) — , as A — 0.

(vii) Let Py(+|8), M%(-), W(-) and W}(-|z) be the probability measures corresponding to
P (2|0), m3(z), w(#) and w3(6|z) respectively. If

M) B Me() (3.3.14)
for some probability measure Mo(-) as [ — r (or A — 0), then
P5(-18) 3 Mo(-) (3.3.15)

Wi(-|z) S W () (3.3.16)

(viii) Under conditions of (vii), if 7 < oo, then Mp(+) = {(zo).
We comment that I(-) is usually continuous in examples, but we have not established a

general result showing this.

Proof: (i) By Proposition 3.1, for given ! € (0,r), p3(-|f) exists uniquely. From The-
orem 6.3.2 of Blahut (1987), we know that for [ € (0,r), the rate distortion function
inf,(.|0)ep, Ip(©, X) is strictly positive and is a convex (hence continuous) decreasing func-
tion of [. .

(ii) By (i), ! is determined uniquely by A.

On the other hand, for I € (0,r), we know that there is a unique p}(-|f). I there is
another A’ # A such that p3,(-|0) = p3(-|#), then by (i) of Theorem 3.3.1, m3,(-) = m3(-),
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so by (1.2.1.3) we have, Vz, 6
¢~ NL(z,0) o= AL(,6)
fmi(y)e‘AL(yye)dy = me(y)e—/\L(yye)dy’

or
e~ (N =NI(z.0) _ /m*(y)e y,e)dy//m (9)e @D gy,

which is impossible, since the left hand side of the above is a function of z and the right
hand side is independent of z.
(iii) In the proof of Theorem 6.3.2 of Blahut (1987), it was shown that
p(: 1191;1;7%] o(8,X) = 0.
By (i), it is decreasing in [.
Clearly, if p(-) is independent of 8, then I,(0,X) = 0.

(iv) Consider
m/\(w)e—/\L(x )
Jmi(y)e=AwAdy

for two values Ay and A;. For fixed 6, we have

pi(z|0) =

p3,(2]0)
3, (z6)
/m Al(y)e ALye)d@/e(A1 A2)L(z,0) T2 (T) ,\2(1')
S m3, (y)e~AeLvO)dy m3, (z)

ML(y,9) g :
(fmhgz;e_,\ﬂ(y,a)dz) + (A1 = A9) / L(,0)p3,(z|0)dz

dz

D(3,1193,)(6) = [ #5,(z16) log

= [ 3, (al6) g )dz

+/p;2(x|o)1 iE ; | (3.3.17)

Similarly,

L ~ I mjz(y)e_’\zL(y’o)dy

+0 = ) [ E(o, 003, @10)dn + [ 13, (210) log n') E TRNCER

Adding (3.3.17) and (3.3.18) gives
D(B3,173,)(6) + D(33, 1153,)(6)
= (= 22)( [ (2,053, (el6)ds - [ L(a, 8)p3, (2l0)de)
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m3, (2) 1) o T (®)
+/ 3, (z]0) log ——2—dx + / Y\ (2]0) log ———dz. 3.3.19
P (el0)log Ty + [ 3, e10) o T (3.3.19)
Averaging over 8 in (3.3.19), we get
0 < EwD(p3,||p5,)(0) + EwD(p}, 11p3,)(6)
= [(D(3,1155,)6) + D3, 113, )(6)w(6)ds
= (M = A)(I(A2) — I) + D(mi m3,) + D(ms, lIms,). (3.3.20)

By the same technique as in the proof of Proposition 3.1, we can prove that D(p||p1) is

convex in po, p1:
D(ep; + (1 = c)pzllopy + (1~ e)pf) < aD(pyllpy) + (1 - ) D(RalIpY),  (3.3.21)
with equality holds if and only if p5(-) = pi(-) and p4(-) = p{(-). So, we have
EuD(p3,11P%,) 2 D(Ewpi, ||Ewp},),  EwD(p3,11P3,) = D(Ewp}, [1Ewp},).  (3.3.22)

With equality holds iff p¥,(-0) = p3, (-|0) a.s.8. Thus, from (3.3.20) and (3.3.22) we have
l(/\g) S l()\l), for /\1 S /\2.
(v) For all A we have

() = / f 5(218) L(z, 0)w(8)dedd > 0.
Taking the limit superior gives

limsupl(}) < / w(®)limsup [ pi(z|6)L(z, 6)dzdd
A—o00 A—o0

=/ w(6)lim sup/pﬁ(le)L(x,O)dde.
sonC A—o00
So, it is enough to show
lim sup/p}(a:|0)L(x,0)d:c =0, ¥9eS°ncC. (3.3.23)
Indeed, by continuity we have that Ve > 0,36 > 0,5 L(§) < e. This gives

[ o)L, 6)d = [

le—

L PEOL@ 0+ [ Bl (s, 6)ds
6)<6 |z—8]>6

f[z_91z+5]c mj(x)e‘AL(fﬂ)L(x, 6)dz
[ m3(y)e= v dy

<et (3.3.24)
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Since 3 T, fort > T,e~* < e7t/2, let ) be so large that Ar(8) > T. Now for such A(> 1),
e MEO[(,0) < e MEDNL(,0) < e_%L(I’e), "V €z -6,z + 6]

Let &' > 0, satisfy r(6") < r(8)/2, and [@ — 6,0 4+ &) C 5°. For such §, the second term on
the right hand side of (3.3.24) is bounded by

_AL(z .
ftz—&,z+5]° mj(x)e 2L Ye)dx 6_%1(6) f[x—ﬁ,a:+6]° m)\(a:)dm
f[&—&’,9+6’] mj{(y)e_)‘L(y'e)dy = e—Ar(8") f[9—5',0+5’] m3i(y)dy

(8) ' 1
< e~ M -z(d) .
f[o—S',a+5/] m3(y)dy

Let b = infyeg_s g4 w(y), and By = {y € [0 — &,0 + '] | mi(y) > &}. Now by (ii) of

Theorem 3.3.1, we know that for large A, we have u(B)) > §’. Now, the last upper bound
is bounded by ‘

e_A($_W))b_1__ < i,e—x(ﬂ‘:’—zw')) =0,
34(Bx) ~ bs

as A — oo,
establishing (v).

(vi) Let A(0) = lim;—,, A({), then from (iii) we know that Ip;(o)(G,X) = 0, and so p}(q,
is independent of §. That is A(0) = 0 otherwise it cannot be independent of 6.

(vii) For (3.3.15), it is enough to prove that for all compact A € B, the Borel algebra
on Rl,as A = 0

P(A]8) — Mo(A).
Indeed, since
m;(x)e—)\L(a:,e)

Tmi(g)e Ty’

pi(zl0) =

we have
e~ L(=.0)

PY(Al9) = /A [ e L) M3(dy)

For any pre-assigned ¢ > 0, we can choose a,b, A\g such that —oco < a < b < 00,0 < Ay < 00

M (dz). (3.3.25)

and

/ e LW Mo(dy) > 1 = <
[a,5] 2
Since e~*{=) < 1, we have that, for A < Ag,

M3(A)

P5(Al6) < .
,\( | )—- f[a,b] e—,\oL(y,e)M;:(dy)

(3.3.26)
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_)\OL(yy

Note that a, b, Ag are independent of A. Since e %) is bounded and continuous on [a,b],

and M3(-) A Mo(+), we have

Jlye M) = [ by,
a,b [a,b]

as A — 0. That is, for A small enough,
[ e g (dy) > 1 ¢
[a,]

and M3(A) < Mg(A)+ €. Now (3.3.26) is bounded from above by

Mo(A)-l—G
1—¢

Since ¢ was arbitrary, we have
lim sup Py(A|6) < Mp(A).
A—0
On the other hand, since the denominator in (3.3.25) is no greater than 1, we have

Pi(Al6) > /A e~ LEO) 2 (dz)

> [ e Ledir(an),
AN[a,b)
where a,b and g are chosen so that
/ e L@ po(dz) > Mo(A) — .
Anfa,b]
So, for A small, we have
P{(AI6) > Mo(4) - e.
Thus
lim )i‘nfo PY(A|6) > Mo(A),
establishing (3.3.14).
For (3.3.16), note

pi(elOyw() _ e LE0w(g)
mi@) | miy)e My

w(6]z) =

So, for small A
e—AL(z,é’)w(de)
4 [ e MO M (dy)

Wi(4le) =
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W (df)
< . 3.2
<y Fone a5 ay (3320

As before, choose finite numbers a,b so large and Ay so small that uniformly for § € A

(recall that A is compact)
/ e LA M (dy) > 1 — e
G

Now, (3.3.27) is bounded above by W(A)/(1 — ¢).
On the other hand, for small A

Wi(4le) > [ e HeOw (o)
A

> / e~ ML= (4g),
AN[a,b]

As before, choose a,b and Ag > 0 small enough that

/ e L@ (dg) > W(A) — e.
An[a,b]

Since € > 0 was arbitrary, we get (2.4.16).
(vili) Now we prove Mo(-) = ((xo). By way of contradiction, suppose Mo(-) # ((zo).
By the constraint (1.2.1) we have

1) = / / L(z, 8) P}(dz|9)W (d6)

> /[ | /[ d]L(z,O)Pj\‘(da:]B)W(dﬁ). (3.3.28)
a,b] J]c,
Since Mo(-) does not concentrate at zo = arginf, [ L(z,0)W(df), there is €2 = e2(€e1) > 0
such that

/ / L(z,0) Mo(dz )W (d6) > 1 + ¢, (3.3.29)
for some € > 0. Strictness of the inequality follows from My(-) # ((zo), since the inequality

implies My(+) assigns positive mass away from zo. We can choose a,b,c and d large and

independent of A so that

/[a,b] /[c’d] La,OMo(d2)W(d0) 2 [ [ 1(e,0)Mo(da)W(d6)~ 5. (3330)

Now, using (3.3.28), (3.3.19), (3.3.30) and (3.3.14), and the fact that L(z,#) is bounded

and continuous in « on [a,d], and the fact that I{(A\) — r as A — 0, we get

lim I(A) > 1i L(z,0)P5(dz|0)W(d0
lim () > im [ [ 1z, 0)Pi(dzio)Ww (do)
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= [ [ L,6)Mo(da)W(d8) > 2+ 3,
(a.8] Jlc.d] 2

which is impossible. Thus, (3.3.16) follows. O

3.4 Hypothesis testing Using MILs

In this subsection, we demonstrate a parallel result for the exponential rate of the type
IT error when the product form of the MIL are used for testing the simple versus simple
hypothesis.

Specifically, assume the independence model for the MIL, ie, for 2™ = (z4,...,z5),
pi(2™0) = [li=; pi(2:|6). Now for fixed 6, the family now is parameterized by ), we
may interested in testing the hypotheses Hy : A = Ay vs Hy : A = A,. For simplicity, we de-
note p3, (-|0) and p3,(-|0) just by p1(-) and pa(-) respectively. If we use the Neyman-Pearson
level o test with acceptance region A, based on an iid sample Xy, ..., X,. Let G, denote
the type 2 error, ie. B, = P2(A,), then we identify the exponential rate of 8, as in the
following:

Theorem 3.4.1.

_1[H(A2) — U(A)P

li —l = 4.1
g, 1080 = =55 X, 0)] (34.1)
Proof: We first prove
2

n—oo 2 fpg(lOg %% 2 D2(P2HP1)'

Since A, has the form

n 2 X"
e 2 )

where ¢, is determined by P;(A,) =1 — a. So we have

L pl(X 1 )
1—a:P( ——— > —=loge,
1 Z; p2(X \/_ g
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<f Titillog 258 — D(pillp)] | Jzlogen — vaD(pllpa) )
VI p1(log )2 — DX(pullps) (/[ pi(log B)2 ~ D¥(pullp2)
(I)< “zlogen — /nD(p1l|p2) )

V// p1(log 2)2 — D(py]|py)

~1 -

= = loge, ~ / [ pattog 2252 = D2(pallpn)@ (@) + VD (i l).

And

ﬂn = PZ(An) = P2 (% znjlog ﬁig§:§ S _'\}_ﬁlog cn)

i=1

<f Liallo By — Dwallp)] __ grlogen + vaD(allpy) )
\/fpz(log £2)2 — D*(palip1) \/fp2(10g £2)2 — D?(p2||p1)
(p( Tz logen + v/nD(pallp1) )
/S p2(log 22)2 — D(paIp1)
o ( _ 27(a)\/S pr(log B)2 = D(pulp2) + /nD(prllp2) + x/ﬁD(mllpl))
/S P2(log 22)2 — D*(py|Ip1)
= ®(az),

where a, — —00, as n — 00, so by using the L’Hospital rule we get

lim —log Br = hIn — log ®(a,) = nhm —log(

n—oo n \/
6_4}(_# D(p, |[p2)+D(pallpy)
fpz(log t2)2—D2(pallp)
= lim \/
n=oo o e~ de
2
o2 _L D(p1llp2)+D(aller) 2
lim | i \/fp (log £2)2—D?(p2|lp1) (o)
= iim
"l =S 1 Diallpa)tDiralm)
B[] (o B2)2=D2 (pallnr)
_zju(~ 1___D(p]lps)+D(wa|lp1)
#/n? VI P2108 2)2-D2pallp)
+
e (= L. Dllp2) +D(pallp1)

2/ "\/fpz(logi)z—D%mm)
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_ 1 (D(p1llpz) + D(pallp1))?
2 [ p2(log £2)? — D?(pa||p1)’

ie. (3.4.2) is true.

Now since

D(p3,11p3,)(0) + D(p3,11p3,)(8)
= (01 = M) / L(z,8)p}, (2|6)dz — / L(z,8)p3, (216)de),

and note @ has a degenerate distribution w(-), so for i = 1,2

/L(a:,&)pi(z|0)da: = //L(x,O)pi(:c!H)w(O)da:dH = I(\),

and hence

D(pallp1) + D(pa|p2) = (A2 — A1)(I(A) — l(,\g)).> (3.4.3)

p2(z|8) 2 / ( (fm§(y)6_’\2L(y’0)dy (A1=22)L( 0)))2
9 1 — 1 2 x,
/p (z]8)(log iz |0)) dz = [ p2(2]6){ log fm}‘(y)e"\ll'(%e)dye dx

= (log (f mz(y)e~f\2L(y»9)dy>)2 + 2(A1 — A2)l(Ag) log (fmg(y)e*’\zL(W)dy)

Jmi(y)e M E@Ady [ (y)e ML dy

(0 = Ag)? / L(z,8)*ps(2]6)dz. (3.4.4)

Since

Jm3, (y)e 2L dy .
D(p3,|1p3,)(8) = log <fm§j(y)e"\1L(y’9)dy) + (Ag — Al)/L(x,O)p/\l(:clﬁ)da:. (3.4.5)

we have

%) e=22L(:8) g\ \ 2 [ m(y)e 22 L@hg
2 _ (i (fmg(y)e y)) _ ( 3(y y)
D pllp:) <°g Fmi(y)enTwday)) T2 = ODles (o SSTeEg,

(M1 = A2)H2(Ns). | (3.4.6)

Now by (3.4.3), (3.4.4) and (3.4.6), the RHS of (3.4.2) is
_ 1[I = 1)

2 Var,, (L(X,9))’
thus complete the proof. a
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3.5 Remarks

The result of Theorem 3.3.1 is in striking contrast to the fact that for ¢id data distributed

according to a density p(z|0) where 6 is a d-dimensional parameter, we have
n d
En D(w(|X") () = §lnn +O(1).

Asymptotically maximizing this latter expression over priors w as is done to find a reference
prior, see Bernardo (1979), leads to Jeffreys prior, Clarke and Barron (1994).

Let 2o =arg inf; [ w(@)L(z,#)d as in the condition of Theorem 3.3.1. It is necessary for
w(-) to have a finite second moment if 2¢ is to be finite for L(z,8) = (z—6)%. In particular, if
the prior w(-) is N(u,0?), then [w(8)L(z,0)dd = 62+ (p—=z)?, soinf, [ w(0)L(z,8)dd = o?
and the infimum is achieved at zo = p. If w(:) is Fzp(a, ), where p is the location
parameter, then [w(0)L(z,0)dd = (z —p—1/a)?+ 1/a?, and inf, [w(8)L(z,0)dd = 1/a?
and the infimum is achieved at 29 = p + 1/a.

In general, zo = mean (8), if L(z,0) = (z — 0)%. .
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Chapter 4

Application

4.1 Introduction

Here we give a practical example in which MIL’s can be used to provide answers to questions
of interest that do not seem amenable to other techniques. In the present case, it appears
that MIL’s do better than a conventional analysis because they can be- applied to summary
statistics.

In general we suggest that MIL’s may prove useful in settings satisfying the following
criteria. First, a true parametric family cannot be proposed. That is, a general form for
the relationship between outcomes and a parameter is not apparent. Second, the unknown
parameter must be location like, that is, it is not necessarily a location parameter in the
strict sense of the term but does nevertheless track the typical range for the outcomes. The
interpretation for @ is pre-set, the prior must be formulated according to this. Here, we
use a Bayes hypothesis test, Theorem 3.1.2 to suggest some point estimate problem from a
frequentist perspective way also be feasible.

We assume that a finite dimensional parametrization for the parameter has been chosen
and that it permits estimation of the parameter of interest, possibly as a function of the coor-
dinates of the parameter. Let § = (64, ...,0;) denote the finite dimensional parametrization.
In general, the data can be written as a random vector X" = (X3,...,X,,) with outcomes
denoted 2" = (&1,. ,xn) Assume that it is possible to associate to the distribution of
X" a parametric family that has a density that can be written as p(z"|d) for § € R* but
that the form of p(-|#) is unknown. In particular, suppose that there is no basis for any
assumptions about p(:|d), i.e., we know nothing about how values of the parameter affect
the probabilities of the outcomes, only that the two are related in some way.

Even in such cases where little is known, an experimenter may have some idea about
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what values of 8 are more surprising than others. Assume these preconceptions have been
formulated into a prior density w(8).

Now, from either a Bayesian or frequentist perspective, the key quantity remaining to
be identified is the likelihood. Assuming there is no practical basis for choosing p(-|8), we
adopt a minimal information criterion. That is, we seek a likelihood which requires rela-
tively relaxed assumptions in a precise sense. Although the data compression interpretation
is valid, we present our method from a data transmission viewpoint since this is easier to de-
scribe compactly. The likelihood can be used in initial data analysis where one cannot make
detailed modeling assumptions and one must rely chiefly on arguments from robustness: If
one has robustness against modeling strategy in the sense that the same results obtain
for several different modeling strategies (none of which make strong assumptions i.e., are
minimally informative), and the results are insensitive to the choice of prior, loss function

and bound on the Bayes risk then one has more confidence in the validity of the conclusions.
4.2 Application to A Real Data Set

Here we demonstrate the use of MIL’s by re-analyzing data from Nader and Reboussin
(1994). To model the data, we used the MILs in two different ways. That is, the models we
use make weak assumptions in an information theoretic sense. However, for large sample
sizes, Theorem 3.3.1 tells us that the n-dimensional MIL may unsuitable for practice in
some situations, especially for large data sets. Other models and assumptions may be more
appropriate for this data set, we are not aiming to search through for the best model for
this data, just simply want a demonstration of possible uses with the MIL approach. The
particular model by the MILs may also not appropriate, however, as a study of our method
for an initial use to a real data set, we made our best effort in the modeling and data
assumptions, and welcome any criticism for our future improvement.

In the formulation of the MILs, we used the Bayes risk bound [, but in most of our
examples and applications, we used the parameter A to determine the MILs. The two pa-
rameters are equivalent as described in (ii) of Theorem 3.3.2. Use of ) is direct and more

convenient in inferences.
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4.2.1 Description of the Data

The experimental data studied in Nader and Reboussin (1994) was collected to investi-
gate whether two different training methods will produce different effects on the behavior
of the monkeys. In this experiment, eight monkeys were initially trained to respond under
a fixed interval 5-minute schedule of intravenous cocaine presentation, FI5. In this training,
the first time that a monkey pulled a lever after having waited at least five minutes produced
a cocaine injection. The injection lasted ten seconds. (Responses during the injection were
not counted.)

Prior to the second phase of training, the monkeys were rated from one to eight based
on response rates under the FI5 schedule. Based on this rating, the monkeys were paired
so that two monkeys who formed a pair would have similar average FI5 response rates
before two different cocaine self-administration reinforcement schedules were applied. The
two highest ratings gave the first block; the third and fourth highest gave the next and so
on. Within each pair, members were randomly assigned to one of two schedules. Thus,
four monkeys were trained under an FR50 (“fixed response 50”) schedule: that is for every
fifty responses (lever~ pulls) the monkey got an injection of cocaine. The other four monkeys
were trained under an IRT30 (“inter-response time 30 seconds”) schedule; the monkeys were
reinforced by a cocaine dose for lever presses at least thirty seconds apart. A lever press
before 30 seconds elapsed reset the IRT30 timer. For all monkeys, each cocaine injection
was followed by a two minute timeout and a sixty minute timeout followed the tenth and
twentieth cocaine injections. o

Following the 65th session under FR50 or IRT30, availability of cocaine was again sched-
uled under FI5 for sixty consecutive sessions. For each of these sixty sessions three variables
were measured. The primary variable of interest was the response rate which was the total
number of responses during the session divided by the session length in minutes. Here,
session length was the actual session length less the timeouts. Secondary variables were
cocaine intake (in mg/kg per session) and average quarter life. Quarter life values are the
proportion of the fixed interval elapsed when 25% of the responses in that interval had
occurred. The average is taken over the five minute intervals that occurred during a ses-

sion. The intake measures how quickly the monkey made a response after the five minute
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intervals in a session. Figure 3 shows plots of the response rate data over the sixty sessions
for the eight monkeys. The left 4 plots are the data from the 4 monkeys of the FR50 group,
the right 4 plots are the data from the 4 monkeys of the IRT30 group. The monkeys are
paired row wise.

First, label the monkeys in pairs as (1,2), (3,4), (5,6) and (7,8), (here the odd numbers
and even numbers correspond to, respectively, the FR50 and IRT30, or the left column and
the right column of plots in Figure 3) where the odd labels mean that the first in each pair
was trained under FR50 and the even labels mean that the second in each pair was trained
under IRT30. From Figure 3, we see a few data points in the early sessions of monkeys I
and III that are obviously larger than the rest of the corresponding observations. We treat
these as outliers and delete the first three observations from all the eight monkeys in our
data analysis. For simplicity of notation, we jﬁst relabel the remaining observations for each
money as 1 to 57. Let y;; be the datum on rate for the ¢-th monkey on the j-th day where
t=1,...,8and j=1,...,57. For each 7, let §; = 51—7 1521 ;; be the sample mean of the rate
data from the i-th monkey. Now, take differences of the means within each pair. We write
these differences as z1 = 91 — %2, €2 = ¥3 — Y4, T3 = ¥5 — ¥s, and T4 = J7 — . From the
paired data we can obtain a few simple descriptive statistics. For the first pair, (1,2) we can
find the mean, variance and lag-1 auto correlation for the vector (y1,1 — y1,2, .-+, 41,60 — Y2,60)
of sessional differences. Doing this for the other 3 pairs, and for the vector of sessional
differences with the first 3 entries deleted gives the summary statistics in Table 1. Note
that following the rule of thumb which gives 2/4/n = 0.26 as a threshold for assessing the
presence of serial correlation (see Farnum and Stanton, 1989, P.78) leads us to suspect that
most of the vector of differences does exhibit dependence. In addition, we see that all of the
means are positive, consistent with IRT30 and FR50 having different effects. The range of
the sample variances is too large to permit meaningful assertions. Deleting the outliers does

not appear to affect the summary statistics uniformly, apart from reducing the variances.

Table 1. Data Summary for Observed Differences in the Two Groups

Full Data 1st 3 Obs. Deleted
Diff. | Mean  Var. Auto Corr. || Mean Var. Auto Corr.
1-2 0.80 16.31 0.25 0.59 1.03 0.31
3-4 4.10 10.46 0.35 3.65 5.25 0.22
5-6 9.42 19.15 0.43 9.27 19.69 0.44
7-8 1.79  3.59 0.44 2.27 2.33 0.40
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Figure 3: Plots of Rate Over the Sixty Sessions. This sequence of figures shows a plot
of rate over the sessions for each of the eight monkeys. Each row corresponds to a pair

from matching baseline lever pressing rates; each column corresponds to a treatment either
FR-50 (left) or IRT-30 (right).
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Here, the data vector for monkey I is (y1,1,...,%1,60) With mean, variance and lag-1 auto
correlation defined as before for the vector of differences. The corresponding summary
statistics are displayed in Table 2. Note that, again, deleting of the outliers does not affect
the summary statistics uniformly, and the rule of thumb gives that each Monkey’s data
vector exhibits dependence, although for Monkey III with the 3 outliers deleted one may
be skeptical.

Table 2. Data Summary for the Eight Monkeys

Full Data 1st 3 Obs. Deleted
Monkey | Mean  Var. Auto Corr. || Mean  Var. Auto Corr.
1 2.65 14.76 0.23 2.47  0.53 0.31
2 1.85 0.46 0.27 1.88  0.44 0.24
3 5.00 9.73 0.33 4.57 4.76 0.18
4 0.90 0.26 0.24 091 0.24 0.22
5 19.03 9.54 0.31 || 19.06 10.03 0.31
6 9.61 8.89 0.45 9.78 8.71 0.48
7 3.39 249 0.34 3.19 145 0.31
8 1.59  0.57 0.47 1.63  0.57 0.43

Remark: The summary statistics ¢ and y* do not reflect the role of the sample size n.
To address this criticism, one could use the standardized summary statistics. Here, for
example one might use /nz* in place of 2% and the same for y*. If for the pair of monkeys,
the numbers of observations are different, say n; and ny respectively for the two monkeys,
we may use the weighted standard summary statistics, for example use \/ﬁx“ in place of
z* and similarly for y2.

There are other ways to address this criticism also. In view of Theorem 3.1.1, we do
not want to lump together too many data points. So, we might replace a string z,...,2,
by a sequence of summary statistics, the number of summary statistics to be taken as
independent being chosen by the experimenter to reflect the number ‘of independent data,
points his data is equivalent to.

One may also interested in how sample size affects the width of the HPD region based
on the MIL model. At the two extremes, the MILs can be used to form a product of i.i.d.
densities or to get a single n-fold dependent density. In the former case, the result is the
same as for i.i.d distributions. As sample size increases, the accuracy of inference increases,

so the width of the HPD region decreases roughly as y/n times root inverse of the Fisher
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information. For the latter case, since the n-fold MIL has high dependency, in general,
among its arguments, the sample size effect on the width of the HPD regions is not as ev-

ident as in the former case, since dependence causes large data sets to look like smaller ones.
4.2.2 Models for the Data and Results

Part of the data analysis presented in Nader and Reboussin (1994) was a repeated measures
analysis of variance for the rate data. Pairs and treatment group are between subject ef-
fects, session is a within subject effect. Nader and Reboussin (1994) looked for linear trends
in the rate over the 60 sessions and asserted that the apparent nonlinearity did not affect
the conclusions substantially. This model did not reject the hypothesis that the mean rates
are the same in both groups, though the p-value is in the suggestive range. However, it did
reveal a highly significant difference between the mean linear trends in the two groups over
the sixty sessions. The other variables intake and quarter life were analyzed separately and
gave conclusions compatible with the rate analysis.

The main viftue of this'modeliﬁg abﬁfoaéh is 1ts sixﬁplicity. However, other models
examined by Nader and Reboussin (1994) gave similar conclusions. This included one
model with an AR(1) component over the 60 sessions, one allowing some curvature in the
trend over sessions, and several excluding the early sessions. In these cases, the conclusions
were much the same: not quite significant mean difference between groups, highly significant
difference in linear trends.

Here, we fit two models and consider a third. We model the data differences for the
paired monkeys in the two groups and look for training differences in the mean response
rates. We find a significant difference in the mean rates. We only analyze the rate data
since it is regarded as the most important index. Our methods can be applied to either the

average quarter life or the cocaine intake data as well.

Model I
The data on rate for the eight monkeys over the 60 sessions are plotted in Figure
3 . Neither the plots in these plots, nor the form of the experiment suggests an obvious

parametric family. Moreover, there is not enough data to perform a nonparametric analysis.
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A key problem is that for each monkey one cannot assume the data from the sixty sessions
are independent, even conditionally on the monkey. In addition, it is not clear how the
differences from pair to pair can be modeled. As a consequence of the absence of strong
modeling assumptions, it is unreasonable to use any standard likelihood to model the data.
However, the MIL method gives a likelihood which makes relatively weak assumptions on
the data distribution. We use it to extract initial conclusions.

We begin our analysis by using the MILs. There are other modeling strategies that are
feasible with MILs but they are more elaborate and require much more programming. In
the first modeling strategy, we take differences within each pair in the data and average over
the fifty seven sessions. (Recall we deleted the first three observations as outliers from each
monkey. Also, one may consider different models, for example, use the CLT for a normal
approximation of the average. However, if the number of observations is small, the CLT
and other models may not be practical to use. Here our only intent is to demonstrate the
MIL approach.) Thus, we estimate a single parameter using, effectively, four data points
which are the mean differences. In the second model, we again average over the 57 data
points for each monkey but do not take differences in the data. Note that the eight monkeys
are assumed to be independent of each other, although for each fixed monkey, the 57 data
points may not be independent. Nevertheless, the eight mean data points are independent,
though they may not be identically distributed. Instead, we use two parameters, one for
the IRT30 group and one for the FR50 group and then obtain a posterior for the difference
in the parameters.

For Model I, we suppose that the expected values of the z;’s are the same and treat this
as the parameter of interest 6, with the samé units a;s the observations. Now, the problem
reduces to finding a posterior for this parameter given the data. If the posterior assigns most
of its mass around a positive value we infer that the expectation of z; is strictly positive
and therefore the IRT30 rate is lower than the FR50 rate.

For a given prior w(f), a given loss function L, and a given value of A, we can get an
MIL p*(z|@) by the procedure in Chapter 1. For simplicity, we treat the four pair differences
T1,...,T4 as approximately independent and identically distributed. Although dependence

may present between blocks, we may assume they are canceled in the difference, leaving
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only the effects of the training. Now, we can form the posterior density

0 (0]21, 2, 7, 2) = LGP (22|00 (25]0)p" (2alO)w(6)
B T @lOp (walOp(walOp (el () e

Given a > 0, one can see whether the (1 — ) highest posterior density (H.P.D.) region for

(4.2.2.1)

0 contains 0.

We obtained graphs of the posterior in (4.2.2.1) for a range of values of )\, several
choices of prior and two choices of L. In practice, the priors are chosen according to pre-
experimental knowledge about the parameter distribution. Here we choose a few of them
for convenience. In particular, we chose w(-) to be U(—15,20) or any of N(—2,1), N(0,1),
N(2,1) and N(0,10) to reflect a variety of priors with a range of reasonable means and
variances; we choose L(z,8) = (z — 6)2, or L(z,6) = |z — 0]; and we choose A to range from
.5 to 5. We recall that in the context of p*(z|6), A has two meanings. First, it behaves like
a scale or dispersion parameter. For larger A’s, p*(z|6) is more flat, for smaller A, p*(z|6) is
more concentrated or more sharply peaked. The value of A also affects the set of likelihoods
over which we have optimized. Larger A values correspond to a smaller set, and vice versa.
We require A to be in [0, 00), otherwise p*(z|#) is independent of § and so is meaningless.
In our work we generally found that values of A in [.1, 10] gave reasonable results.

We used the iteration method described in section 1.3 to find the MIL p*(z|6). That
is, we chose an initial distribution m(g)(-), and got p’("l)(x|0) by (1.3.1). Then, we plugged
p’(“l)(x|0) into (1.3.2) to get m{;)(-). We continued this cycling to get the n step likelihood
p’z‘n)(x|0) until the absolute difference of the two consecutive approximations to the MIL
were no greater than a prespecified ¢ > 0. Here, we found that a reasonable choice for €
ranged from 1076 to 1074, and that the number of iterations required in our calculations
for a fixed z and @ was of the order 10 to 102.

Our results for the cases listed above were generally consistent. For all the above choices
of the prior distribution, A and the loss function, the posterior density was unimodal and
concentrated on the positive half line, with mode between 4 and 8.5, and relatively small
posterior variance, which can be controlled by the parameter A\. Thus, we infer that there is
a significant effect from FR50 and IRT30 training, with the rate for the IRT30 group bemg
much less than the rate for the FR50 group. Flgure 4.a shows some of the posteriors we

obtained. Note that the posteriors assign essentially all their mass to the positive half-line.
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Also, for Model I we tried some priors with larger variance (from the data plot, we find
variance 10 is reasonable) and we deleted the first three observations from each monkey,
since it seems that there are some outliers in these observations. The results are plotted in
Figure 4.b. We see similar skewness toward the right axe on 6.

Note that Theorems 3.3.1 and 3.3.2 do not apply directly to (4.2.2.1) because it uses a
product of univariate MIL’s rather than a single MIL for a 4-variate outcome. However, the
conclusions of those two theorems are qualitatively consistent with the results here. The
posterior in (4.2.2.1) is seen to concentrate at a point as A increases which is consistent with
(iii) of Theorem 3.3.1. In addition, as A decreases, the posterior is seen to converge to a

dispersed distribution that is similar to the prior used, as suggested by (iii) of Theorem 3.3.1.
Model II

We investigate an alternative model based on MIL’s to show how one might examine
robustness against modeling strategy for paired data. As an alternative model, instead of
using four differences in the data to eét_imaté 6ﬁe parameter, we considered using the sample
mean for the four first entry pairs and the sample méan from the four second entry pairs
to estimate two parameters reflecting the means of the two groups of monkeys. Again, we
assume independence between the two groups to simplify the modeling. This may seems
not reasonable for the practical data set. To model the exact dependence structure in the
data seems difficult, here we only intend to do another initial analysis using the MIL in a
different way and compare the conclusion. Then, we can marginalize the posterior to get
credible regions for the difference in the two parameters.

Since there are two parameters, we use a two-dimensionz_z,l prior which for the present we
assume factors, that is, we assume w(:,-) = wy(+) - wa(-). Also, we assume the components
of X are independent and the components of Y are independent.

From w(+), we get the MIL pj(z%|6;) = [T, p%(2:|61), and from w,(-) we get the MIL
P3(y*62) = [Ti1 p5(vil02). Now, we can form the two-dimensional posterior
pi(=*161)p3(y*162)

(x4, 4

= wy(f1]z*)wa(B2]y*),

w(by,02|2*, y*) = (4.2.2.2)
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Figure 4: Posteriors from Model I. In 4 (a), the posteriors plotted here were formed from
MIL’s based on choosing w to be N(0,1), L to be squared error loss, and A = .7 (points)
or A = 1.5 (solid). In 4 (b) The posteriors plotted here were formed from MIL’s based on
choosing w to be N(0,10), L to be squared error loss, and A = .7 (dots) or A = 1.5 (solid).
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where m*(z?,y*) is the marginal from p(z*,y%|6;,602) = p}(z*|61)p3(y*|02) and the prior
w(6y,02) = wi(6;)w2(62), and wy(61|z*) and wy(6;]y*) are the corresponding one-dimensional
marginals.

Now, we can apply the transformation
Yp=0:+0;, ¢=~06,-0

in the bivariate posterior. After integrating out v, we get a posterior for ¢. (In our C
program, we used discretization summation to approximate the integration.)

For this model, we also tried several priors (with variances ranging from about 1 to 10),
losses (squared error and absolute difference) and As (around 0.0001 to around 0.05). We
found that when A is small, around .0001, and the prior is N(0,1), the posterior is nearly
N(0,1). In view of Theorem 3.3.1 this is not a surprise. As X increases, the posterior shifts
so as to concentrate on positive values of . However, when A is much above .09 or much
below .0001 our implementation of the Blahut-Arimoto algorithm is numerically unstable
because the integrand function is close to a product of delta functions. This problem did
not occur with Model I because the posterior there is based on a product of four densities
whereas in Model II the product has 8 densities. The problem seems to be that as A
increases, the wy and wy concentrate at different points so that the product is too small for .
the computer to store. One consequence of this is that we cannot observe the convergence
of the posterior to unit mass at a point that is suggested by Theorem 3.3.1. Moreover,
in addition to having used a product of MIL’s, we have marginalized (4.2.2.2) making the
conclusion of Theorem 3.3.1 more distant.

Despite being unable to observe the concentration of the model at a point with increasing -
A, Figure 5 shows the posteriors we obtained for two values of A, .0001 and .09. Intermediate
values of A give posteriors roughly between these two posteriors. Note that for A = .0001
the posterior reverts to a dispersed distribution resembling the prior. As the common value
of the A’s increases, w* shifts away from being centered at zero and again assigns essentially
all its mass to the positive half-line (see Figure 5.a). The point is to note that if A is chosen
in Model II to be as close as possible to the values we used for Model I (without exceeding
the limit of .09 so we can still compute) the inferences we make from the two models are
qualitatively the same, namely we have evidence that the difference in rates for the FR50

and IRT30 groups is positive. Thus the two modeling strategies confirm each other. We
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note that the conclusions from Model II do not seem as strong as from Model I: we attribute
this to the choice of A here being much smaller than the choice of A in Model I, that is,
the Bayes risk bound [ used here is larger than that used in Model I. So, the set P, here is
much larger. Currently we do not have a good formal technique for choosing A (or I). We
will discuss this later in Chapter 6.

We also used N(0,10) as the prior for Model I and the priors for §; and 6, in Model
II, and did the same analysis. In this case, the posteriors form the two models are more
spread out, see Figure 5 (b), especially for small values of A; and A, since the corresponding
Bayes risk bound is large which makes the allowable distortion large and hence less accurate
inferences. However, for the moderate value of 0.05 for A; and Az, much of the posterior

mass lies on the right of zero, this leads to similar conclusion as the N(0, 1) prior was used.

More Alternatives

Having recourse to MIL’s permits the elaboration of other models that do not require
the extreme data summarization used in models I and II. This summarization is used here
only to make it easier to get computational resuits, and is justifiable chiefly on the basis
that it is not far wrong. One of the ways in which models I and II can be criticized is that
they, unlike Nader and Reboussin’s original model, are insensitive to the sample size used
to form the summary statistics.

Other models can be considered. For example, assuming independence between the 57
sessions for each monkey, we can model each of the 57 observations form the two groups by
the same MIL, and take the product of the 57 MIL’s for the whole data set; or assuming
no independence, we generate a 57 dimensional MIL to model the whole data. In this later
case, we get a dependence model. Intermediate dependence structures can also be used.
Unfortunately, there remains the problem of how to get the right dependence structure from
the data. We will discuss this question partially in Section 6.2.1.

It is this plethora of modeling strategies that are equally plausible which motivated the

work in the next Chapter.
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Figure 5: Posteriors from Model II. In § (a) the posteriors plotted here were formed from
MIL’s based on choosing wy = wy to be N(0,1), L to be squared error loss, and A; = Ay =
.0001 (dots), or Ay = Ay = .05 (solid). In 5 (b) the posteriors plotted here were formed
from MIL’s based on choosing wy = wy to be N(0,10), L to be squared error loss, and
A1 = Az = .0001 (bold), or Ay = Ay = .05 (solid).
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Chapter 5

Robustness of Modeling Strategies
for Paired Data

Motivated by the inferential similarity of two different modeling strategies we have tried to
investigate formally the degree to which three modeling strategies applicable in the prob-
lems of the previous chapters would agree in general. We begin by defining general cases of
the two models we have used and defining a general case for a third model that is equally
plausible but that we did not use. Then, we seek conditions under which these three models
will be equivalent, and we present results which partially characterize how discrepant the
inferences from these models will be. In this Chapter, some of our results are for n-fold
likelihoods, some are for products of univariate likelihoods and some are for other special

cases. We indicate applicability of each result.
5.1 Introduction and Definition of Models

Recall that in the example in the previous chapter, we assume that we have two independent
data sets X™ and Y™, and we are interested in modeling the data with various likelihoods
so as to make inference about the parameter . The parameter 6 is a quantification of some
population trait of interest.

We have used several different models. In Model I from Section 4.2.2, we generate the
MIL for Z" = X™ — Y™ directly to get p()(2"|6) = p*(2"|d) and get the corresponding
posterior w(;)(#]2"). In Model II, by contrast, we model the two sets of data X™ and Y™ by
pi(2™|61) and p3(y"|d2) which use the two marginal priors wy(6;) and wz(f2) from a joint
prior w(6;,62). We got the posterior w(f;, 0,/ X", Y™), and then applied the transformation
6 =6,—-0,, ¢=06;+0, Marginalizing out ¢ gives the postérior w(g)(0] X", Y™) of 6.
In Chapter 4, we used the product of uni-dimensional MILs to form the model. In this

Chapter, we present a robustness analysis for paired data from general likelihoods; they
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may be dependent or independent among their variables, often including the various MIL’s
as special cases. Also, some results are only for n-dimensional MILs. The point here is to
compare different modeling strategies, assuming the same likelihoods been used in each of
these models.

We can consider other models. In particular, we define a third model, Model III: just
as in Model II, we use p;(z"|6;) and p2(y™|62) for X™ and Y™ respectively, then use the
transformation Z” = X" — Y™, 5" = X" + Y™ to get the density for (Z",5"). Then
integrating out $™ gives the density p(s)(2"|61,0;) for Z". Using the transformation 8 =
01 — 02, $ = 0 + 0, and marginalizing out ¢ gives the posterior w(z)(#|2") of 8. In some
cases p(3)(2"|01,02) will reduce to the form p(z)(2"|6), where 6 = 8; — ,, without further
transformation. Later in this chapter we will deal with these conditions. This model is
different from Model II in general. It uses the transformation of parameters to get the
likelihood in @ first and then gets the posterior. Whereas in Model II, we get the two
dimensional posterior first, then use the transformation on parameters and marginalize to
get the posterior for 6.

There are numerous reasonable models ‘for. coﬂsideration, here as an attempt to do some
robustness analysis for the paired data, we only consider the above three commonly used

models. In practice, we can consider more general transformations in the models:

2" = fi(z",y"), "= fa(a",y"). (5.1.1)
Also, we have used

0 = g1(01,62), ¢ = g2(61,062). (5.1.2)

Note that in Model I, we model the data transformation, while in Model II, we model the
parameter transformation. These two modeling strategies are widely used in practice, it is
natural to investigate the robustness of these methods for paired data.

If there were only 2 ways, Model I and Model II, to analyze a data set, we could do
both. If they agree, as we have shown in Chapter 4, then we could be content and stop.
However, there are many altemativé techniques. Consider the general form of Model III
in which used both a transformation in the data and a transformation on the parameters.

Model X, ..., X, as iid p(z{f;) and Y,...Y, as iid p(y|6;). Here we assumed the X;’s and
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the Y;’s are from the same parametric family only with different parameters. Assume X"
and Y™ are independent. Now, we can use Z" = f(X",Y") so as to derive, by convolution,

a density for Z™. The density for Z; is, in general,

p(zi61,02) = /pl(gl(si»Zi)lol)P2(92(3i,2i)|02)J(3n,zn)dsi, (5.1.3)

where z; = g1(8:, %), ¥i = g2(8i, %) is the inverse transformation, and J(s", 2™) = [T, J(si, 2:)
is the transformation Jacobian. For compatibility of the data transformation, let § =
f1(61,62) be the parameter of interest. We can use the MIL for p;(-|6;) and for py(+|6;) so
as to obtain a minimally informative convolution in (5.1.3).

In some cases, which we identify presently, the left hand side of (5.1.3) reduces to a
density of the form p(2"|0), where 8 = f(6;,6,). More generally, however, this reduction
does not occur. Whether or not the reduction occurs, the parametér of interest is § =
f1(61,02): we would therefore use a prior for 8 (or 6 and ¢) and make inferences as before.

If we want to relax the assumption of independence between X; and Y;, (5.1.3) changes.

We would use

| Pla1(s,2), 0205, 161,62 (s, 2)ds

in place of (5.1.3) and have to find a MIL for a bivariate random variable, with two param-

eters.

For the present, we note some further alternatives. One could use a location family,

N\

one could use extra data; one could use/,a likelihood that was not minimally informative
— perhaps based on physical modeling. One could avoid the extreme data summarization
used here by modeling the day-to-day dependence through a time series approach.

The class of all models is enormous. Even after restriction to the subclass of all statisti-
cally plausible models, there remain too many to enumerate and evaluate in every particular
instance. Moreover, there is no guarantee that all models in this subclass will give the same
inferences for the parameter of interest. It is worthwhile therefore to have some theoretical
guidelines for when to expect two modeling strategies to agree and for when to expect them
to disagree. _

In short, the task of this chapter is to begin an investigation into the robustness of infer-

ences to change in modeling strategy for paired data. Many have investigated sensitivity to
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prior selection. Sensitivity to small changes in the likelihood has also been studied, although
not much. Sensitivity to outliers or, more generally, data has been extensive . However, in
all cases, the modeling strategy (by which we mean transformation of data, transformation
of parameters and the nature of the link between the likelihood and the data, including
the loss function if there is one) has never been the focus of a robustness study. Here we

undertake to begin this in several cases.
5.2 Equivalence of Models

For simplicity, we consider the models for the specific form as in the beginning of this chap-
ter. Thus, the results in this subsection are general; they are true for any n-dimensional
likelihoods, independent or not, any form of MIL or not, including all the models with the
product of 1-dimensional MILs we considered in Chapter 4.

Let the prior for Model I to be

1 0 -0
w(b) =5 - wl(qé;r -)’wz(d)-'2 -)do,

and choose the likelihood for Model I to be

poyel0) = 5 [ [ SR D2 2 (gyasas,
for some density 7(-). We see that if the joint likelihood p(s, z|¢,8) = %pl(ﬁz-_z|%rﬁ)l’2(%| ¢4
for (5, Z) satisfies a sufficiency-like condition between Z and 6, then the three models are
equivalent. The sufficiency-like condition is that the joint density of Z and S, obtained
from the joint density of X and Y by transformation, can be factored into two parts. One

part is a function of Z and 6 only, the other part is independent of §. Specifically, we have
the following

Proposition 5.2.1 Suppose the joint likelihood for (S, Z) satisfies

p(s,216,0) = g(z,0)h(z,s,4)

for some functions g¢(-,-) and h(-,-,+), and the prior satisfies

$+6

2220 = wy(Oyun(@)

w(
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for some w1 (+) and wy(-), then

w()(+|2) = w(1X,Y) = w)(2).

Proof: Since the likelihood for Model I is

1
p(210) = 50(.0) [ [ b5, $)n(0)dsde,
the posterior density for Model I is

g(Z, 0) ff h(Za Sy ¢)7r(¢)d3d¢wl(0)
19(2,8) [ [ M(Z, s, ¢)m(¢)dsddw:(£)dE

x g(Z,0)w1(6).

w(1)(0|Z) =

Similarly, the likelihood for Model II factors as

P(é)(w, y|61,02) = g(z,0)h(z,s, ¢),

giving that the posterior density for Model II is

1 ) -6
_19(2,6) [ (2, 5,8)w(tE, #50)ds
) = 2 (2, 5, 6y BE, ) dgde

x g(Z,0)w1(8).

The likelihood for Model IIT is

Py (2161, 02) = 9(z, ) / h(z,s,d)ds,
thus
9(Z,8) [ h(Z, s, $)ds [ w(#F2, 28)dg
J9(2,6) [ [ W(Z,5,¢)w(ELE, 258 )dsdpde
x g(Z,0)w(6).

w(3)(0|Z) =

Now (5.2.1), (5.2.2) and (5.2.3) together complete the proof. O

(5.2.1)

(5.2.2)

(5.2.3)

Remark. We comment that if wi(:) = wy(:) is the standard normal then p,(-/6;) is

N(6y1,0?) and py(:]62) is N(62,0%), and the condition in Proposition 5.2.1 is satisfied.
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5.3 Robustness against Modelling Strategies
for Paired Data

The previous bounds on the differences between Models T and II were bounds in an av-
erage sense useful for comparing whole models. For practical purposes bounds that are
pointwise in the data are more useful: they permit comparison of inferences given a partic-

ular data set. We first consider the simple case of the transformation of data and parameters:

¢ =0 + 6., 6 =6, —6,.

If we use priors wo(61,62), ws(61,62) in Models IT and III respectively, we can get an
upper bound on the L; distance between the two posteriors without averaging over the
data. In Proposition 5.3.1 and Proposition 5.3.3, the likelihoods involved are general in
the sense described in the beginning of this Chapter they include all the models we consid-
ered in Chapter 4. Corollary 5.3.1, Proposition 5.3.2 and Theorem 5.3.1 are only for the
n-dimensional MILs.

Proposition 5.3.1. If the priors of models 2 and 3 are respectively wy(61, 6;),
'w3(01, 02), then
(i) For any data z™ and y™,
/’w(z)(alw",y") - w(s)(9|2")|d9 < 2M(g3)(2",y™),
where

M(2,3)(‘7;n7 yn) = M(?,S)(sna zn) = S;lg) M(2,3)(3n3 zn’ b, 0)’

Mg3)(s", 2", $,0) = min{’l — Rz3)(s", 2", ¢,0)

3 '1 - [R(2,3)(3n7 Zn, ¢a 0)]_1‘}
7 G o G i i 2 i )

R(2,3)(8n’zn’ ¢7 9) = n n §n—zn — —
(S pa(5E 5 wa(4, 470

If wa(+,-) = ws(+, ) = w(:, ), then the factor M 3)(s",2") in the upper bound is inde-

pendent of w(:,-), so we have
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sup. Wiz (012", ") — wie(8]2")| d8 < 2M (2", 5™,

where W is the collection of all the two-dimensional priors.

(ii) The posterior means under Model II and III satisfy

[Ey(617,5™) = Egsy(812™)] < (Eay (161 12", 4™) + Eqay (18] [2")) Mz (", 47),

for any data set ™, y™.

(iii) The posterior variances under Models II and III satisfy

’Vafu)(ell’n, y") — Var(3)(0|z")’ < b3y (2", y") M2,3)(2™, y™),

where

hi23) (2", y") = hz)(s", 2") = E@)(6? [z",y") + E@3)(6%|2")

+2(E)(10]12",3™) + E@)(10]12"))

Proof: (i) Let

Mg OS2 -0 o 6—0
oo, 1) = [ (T (S P Dy 220 220,

"y g4 st -z $—0 60 ¢—0
5sz"10) = [ [ i D 2 (S, 2 g

Now,
1/ p1(="| 2 )pa (v | 250 wa (252, 252 )dgp

I [ p1(a™01)p2(y™102)wa (61, 02)d6,db,
Y G i i o o
J [ pr (| Sl ypy (SR52R |G gy (Sfhz &1o82)gg) dg,
g2(s™, 2™|8)
S ga(s™, 2"|€)dE’

and likewise, for Model II we have

wiyy(0)z",y") =

w (0|zn) - ffpl('%-z_nljd;_o)p2(£;ili;i)w3(¢§_oa95-2__0)d¢d3n
(3)

J T [ (52 | 9382 )py (27527 | 9582 g (Sat2 81282 dg depdsm
g3(z"18)
[ g3(z"|€)d¢’
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Thus, the difference in the posteriors is

ot (28 gs(2716)
/|w(2)(9|$ » Y )_w(s)(9|z )|d0_/lfg2(sn z“[f)df ng(an)dgldg
g2(s™,2"0)  g3(z"6) 93(z"0)  _g3(2"]6)
</ ’fgz(s”,znlé)dﬁ Ta(sm, n(6)de w+ | ‘fgz(S",z"Iﬁ)dﬁ Toa(me)de| “

- fg2(s"1zn|§)d§/'92(3"’2’"|0) — g3(z"|0)| df

fg3(z"§0)d0 | [ g2(s™, 2"|€)dE — [ ga(2"]€)dE]
J 92(s™, 2™€)dE [ ga(=m]€)dE

[ loats™,2716) = ga(a"10)1 00+ | [ an(s™, 7€) = [ (el

1
[ ga(sn, 2m|€)dE

2 o )
= Tolom, z”lé)df/ lga(s"™, 2"6) — g5(2"(6)| 6

S |1 1 (12 o (2522 | 250 g (452, 452 )dp
I IM)wz(ﬁ—f& G582 )dgy dey

— ] pa (| pa (52 450 dvmon (B2, 252 db
S o (5 5y (P57 | St yup (4, 282 )dey dey

I 1 | (51 ) pa (55 2 wa (452, 450)
[ [ pr (S e yp, (252 |aslay, (dle L2 ygg, dg,

~ [ o1 (5 S )pa (U5 | 57 domwg (42, 452 )| dgdd
Jf pr (|t ypy (520 [tz Yy (Aftz L1282 de, de,

1= B (2 6 0) (S (5|40 w42, 450 dgds
J I pr (25 |2 )y (520 |Gtz Yy (b2 L1282, d

= 2F, |1 — Ray(s™ 2" ¢, e)l, | (5.3.1)

where the expectation Fy is taken over (¢, 8) with respect to the density

P (—*—I“’—)p (=519 we( 52, 47%)
JIp (Mlu)pz(s""znlm)wz(ﬁ—@ az82)dgdey

ql(¢, )

Similarly, by adding and subtracting g2(s™, 2"|6)/ [ g3(z"|€)d€, we have
[ e etz v - weyelem)] a8
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g2(s", 2"[6) g92(s™, 2"|8) g92(s™,2"0)  _ g3(2"[0)
</ ‘fgz o, 2 E)dE T [ ga(IE)dE o+ | s 1E)dE ~ T ga(=71€)de
_ Laa(s™,216)d8 | [[gals™, 2"1E) — gal"1€)]de]
T 2(sm, 7€) [ oo 1E))de

df

1 n oty i
+W/|92(8 » 2 |0) gs(z |0)|d0

2 n o ngy _ n
< W/lgz(s ,2"|0) — gs(2"(6)| d6

LY o (15 ( 5 25 wa (22, 45%)dg

F 1T o5 8 0py (57 |25 yws (25, 252 ) dsndpdd
— [ ] o (T ) py (52|45 ) dsmws (452, 452 ) dg | df

T 1o | 52 pa( 2522 | 258 Ywg (22, 222 ) dsmdpdf
IS (5 pa S5 £ wa(42, 25 d
I 1 I o5 ) pa (757 |85 wa (852, 452 ) dsndpdd
— I B a5 250 ds s (44, 45°) | dird

T Lo (522 | 28 py (2522 | 85 Yws (22, 220 dsmdpdd

=2 [ [|Rag(sm 20,007 - 1]

I pr(E | 2 py (552 | 258 Ywa (252, 250)dsm dgdd
fffpl(s—""z‘z—"l%—)pz(s";"" 1252 )wa (822, 20 dsmdepdf

= 2E, ][3(2,3)(3”,zn,¢, 0)! - 1[ , (5.3.2)

where the expectation Ej is taken over (¢, 8) with respect to the density

S (0 )pa (5| 55 wa (S, 250 dsm

32(4,0) = fff (MIgS_)pz(s"—Z"I_i"_)w (4’— L)ds”d¢d0

Now by (5.3.1) and (5.3.2) we get the desired conclusion.
(ii) Similarly,

n n fg2(s", 2"10) fg3(= "|9)
‘/(mz(mx y")do /0w3(0|z )d()‘ ‘/ o o~ Tt do‘
Og92(s",z"6) 0g3(2"]6)
<|/ T a2(sm, 716 &E fgz(s",znlﬁ)dé)do’

00s("18)  6us(2"(6)
* |/ (Foaton 6% ~ fgf(znlodg)d”‘
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_ J[€lga(s™, 2"€)dE | [ (8g2(s™, 2"|6) — Ogs(2"|6))db)]

[ ga(sm, 2n|€)dE T 1€lga(s™, 2" |€)dE
+f [€1g3(2"1)dE | [ ga(s™, 2[€)dE — [ ga(2™]€)dE]
S g3(2"[€)d€ [ g2(s™, 2[€)dE

< (Eay(61 1™, ™) + Boy(011") ) Mz (s, 4™,

since, as in the proof of (i) we have

|/ (8g2(s™, 2"|0) — 8gs(2"10))d6|
[ 1€lga(s™, 2[€)dE

S g2(s™, 2™|€)dE — [ ga(2"|€)dE| <

[ g2(s™, 2"[€)dE -

< M(2,3)(xna yn),

Moz, 9™,
and
S 1€lga(s™, 2"{€)dE

S g2(s™, 27[€)dE
(iii) We have

3(2™|€)d. i
fflg—glf(inlél% = E@(16] |=").

= E@)(10]1=",9™),

[Varg)(8ls™, y™) — Varg)(6]2")| < ’ / (62w(z)(8lz"™, y™) ~ 02w(3)(0|z”))d9’

+ ‘(/gw(2)(9|x”,y”)d0)2 - (/ew(s)(9|2n)d0)2

Note the second term in the right hand side of the above is

)

’ / <OW(2)(9|x",y")—0w(3)(0|z"))d0’ / (0w(2,(o|xn,yﬂ)+ew(3)(9|zn))d9,

so as in the proof of (ii), the above is bounded by

mg(s™, 2")  mg(z")
My(8™, 27) My (27)

mz(s",2")  mz(2")
(mw(s”,z”) May(2")

)M(z,s)(S",Z") + 2( )M(2,3)(8”,zn)

= (Be(@ ",5") + B8 127) + 2By (0], + (91127
XM(2,3)(3n7 zn)’

where we have defined

m@(s",z”)
Moy (87, 27)

noony  Male” n
= B(@ 1", ZEE) = By (ol1a"),
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in which

n n ] n __ .n ]
mas ) = [ [ (TS0

x02w2(¢;0 ¢ =0 15d0,
n 9 . .n -6
m;a(z")-f///ms = |¢'2* pa(C5 1220
(¢+9 i e)ddbded" O

Remarks: 1. Since

1 = Rp3)(s™, z”,¢,0)‘ >1 implies |1 — [Ri2,3)(s™, z“,d),@)]_ll <1
so Yz, y", Mpas)(z", ") < 1.

2. Note that in the above Proposition, if ws(+,-) = wa(+,-), then Ry 3)(s", 2", ¢,0) =
p(z"|s™)~1, the conditional distribution of Z™ given S™. So, if Z" is tightly distributed
given 5™, then R(33)(s",2", ¢,8) ~ 1, and so My 3)(z",y") ~ 0.

Also, for given priors wa(+,-),ws(+,), we can choose the data set (z™,y™) such that
Ry 3)(s", 2", #,0) ~ 1. For given data set (z",y"), we can choose priors wy(-,-), ws(-,")
such that R, 3)(s",2",¢,0) = 1. Or in other words we can identify data for which the
models are indistinguishable for given priors and we can find priors which make the models
indistinguishable for a data set.

The upper bound in Proposition 5.3.1 is not sharp. If we take wi(-,-) = wa(-,-) and
p1(+|6) = p2(+|0) = N(6,1), then by Proposition 5.2.1 we have wy)(8|z™,y™) = w(z)(]2").
However, R(s”, 2,0, ¢) = [17., V4~ exp{(si—¢)?/4}, so M33)(s",2",0,9) = 1-]]x * (Var
exp{(s; — ¢)?/4})™! > 0, and as n tends to infinity, M, 3)(s",2",6,¢) tends to 1 giving
a trivial result. On the other hand, this reduction to a trivial limiting case makes sense
because posteriors concentrate at the true value if the prior assigns mass on a neighborhood
around it.

If we use the MIL for the likelihoods, ie. pi(z™|61) = pi(2™[61), p2(y"|62) = p3(v"|62),
and take wy(-,-) = wa(-,-). Then for the independent case (i.e. pi(z"|0) = [Ti=, pi(=:l8),

for k = 1,2, we have
R(Z,S)(Sn’ Zna 0, d)) =
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[T, flm(5 g (2sm oM iy L (5528900 T, La(255,450) g,

n Imy (s ymy(sE ) |em M Kin L H0-de L, (55, 450)

In some cases, we can calculate R(33)(s",2",0,4) in closed form. For example, if we
further specify Li(z,y) = (¢ — y)? for k = 1,2,A\; = A2 = 1, and w(-,+) = N(0, I,), then
from Example 1.4.3, we know that m¥(z) = m}(z) x e~ . By the facts that

vitz ¢+86

z ¢—40
( 2 2 B

2

P+ (S P = Sl = ) + (2 - 67,

and

Vit Zivg Vi Ziv  lia o
( 2 )+( 2 )—2[1)1"{-21]’

we have

[Tie S exp{—vf — M(v; — ¢)*/2}dv;
[Tiey exp{—s? — A(si — ¢)%/2}

n
=11 il T li-xi79)

R(2,3)(3n7 zn, 07 ¢) =

We can state the corresponding results for Model I vs Model II and Model I vs Model

IIT as in the following corollary.

Corollary 5.3.1 Let

mi(z") exp{—A1L1(z",61)}

PN = T () expl - La(em, ) i

and
m3(y") exp{=AsLa(y", 6)}
p2(y"162) fm;(tn)exp{—A2L2(tn,92)}dtn

be MIL’s, and write the likelihood for Model I as

m*(2") exp{—AL(z",0)}
J m*(t) exp{—AL(¢t",6)}dt"

py(2"10) =

For Models I, IT and III, choose the priors to be wy (61, 62), wo(01,02) and ws(6;,6;), where
wy(0) = %fwl(gs;"—e, ﬁ;—e)dcﬁ. We have the following
(i) For comparing Model I to Model II we have

[ lway(@1z) = way(6la™, %)

df < 21‘4(1,2)(‘7:"’ yn),
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‘E(l)(0|2") - E(2)(0|x",y”)l < (Eq)l0112") + E@(l6l =™, 3™ ) M1,2)(z", y"),

[Varq)(812") = Var(g)(6]2", ™)

< h(1,2)($n’ yn)M(l,Z)($n7 yn),
where

M,2)(2™,y") = M 2)(s",2") = sup My 2)(s™, 2", ¢,0),

M(1,2)(3n7 2", b, 0) = m]n{|1 - R(l,2)(‘sn7 2", ¢,

1 [Raa(s™, 2" 6,07}

and

mi(FFE ) exp{—A Ly (32, ¢40))

S mi(m) exp{—A Ly (¢, &2)}dtr

my(555) exp{— Ao La(555, 250)} [ m*(#7) exp{=AL(t", 6) }dt" wy( 42, £59)
fm;(t")exp{—)\gllg(t",f—gﬁ)}dt" m*(z") exp{—AL(z",8)} wl(%,ﬂz—-)’

h(1,2)($n, y") = h(1,2)(3n, 2")

R(12 ( » & 7¢70)

= Eq)(6” ") + E)(07[a", y™) + 2(Ew)(16]12") + E(z) (6] 2", y™))-
(ii) For comparing Model I and Model IT we have
[ lway@127) = wi(61:7)] db < 2010159(2", 57,

[Bay(81) = Bay(817)] < By (161 127) + Egoy(8112 ) Mor (5™ 4™,
‘Var(l)(0|z”) - Var(3)(0|z”))‘ < h(1,3)(:1:",y")M(1,3)(:1:", y"),
where

M(1,3)($nayn) = M(1,3)(5n,2n) = sup M(1,3)(3n,2na¢,9),
$.0

M(1,3)(5na Zn, é, 0) = mln{ll - R(1,3)(3nv z'n, é,

1- [R(1,3)(3na Zna ¢7 0)]-1|}

and
,8=0) 4
R 3)(s",2",¢,0) = %B
2
where
A= [t epf-nm (T, Sy
exp{—AgLa( > i #)}ds" / m*(t") exp{—AL(t", 8)}dt"
B :/m;(tn)exp{—AlLl(tn ¢+0)}dt”
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-0
/ m3(t") exp{—A2Lo(t", ('/)T)}dt”m*(z") exp{—AL(z",0)}
and
h(lyg)(a)", yn) = h(l,g)(sn, Zn) ot

Eq)(0%[2") + E5)(67 ") + 2(Eq(16] ") + E)(16]12"))).0

Let us now examine the robustness of the three models with respect to sets of possible
data points that are likely when MIL’s are used. For this we define a notion of typicality
based on Theorem 3.1.1. That result suggests sets on which posteriors should be close to

their respective priors under the mixture density. First let
I{(n) = Emy D(wi(-|X™)[|wi(-)),

13(n) = Epy D(w3(-[Y™)[[ws(-)),

and

I5(n) = Em» D(w™(:|Z27)l}w(-)).

Now, Theorem 3.1.1 gives conditions under which I}(n) — 0, as n — oo. To use this fact,

let Ci(n), for ¢ = 0,1,2 be sequences of constants such that as n — oo we have
Ci(n) — oo, Ci(n)I}(n) — 0.
Next, for ¢ = 0,1,2, let S; be subsets of the sample space defined by
So = 12" : D(w (12 |w(-)) < Co(mI(n)},

S1={X": D(wi(-|X")||wi(-)) < Ca(n)I7(n)},

and

Sz = Y™ : D(w3(-[Y™)|wa(-)) < Ca(n)I5(n)}.

We call such data sets canonical. Let P} be the probability measure corresponding to
pf,(¢ = 0,1,2). The following proposition gives a sense in which the MIL probability of

these canonical sets is large.
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Proposition 5.3.2 For any pre-assigned ¢ > 0, there exist subsets A4; ,(¢) for i = 0,1,2 in

the domain of ©, so that as n — oo,
Pr(5716) =0, V0€ A;, and Wi(4f,)<e Vn.

That is, for large sample sizes, the canonical sets have large P(-|6) probabilities, for all

values of # in a set of arbitrarily large probability under the prior distribution W;(-).

Proof: We only prove the statement for 7 = 1, the other cases are similar. We will

omit the # in P when it is notationally convenient and no confusion. Note that
Pi(S§10) = B (D(witIX") i) > Cr(mE () )

= Bpx(DiCIXDllon()) > Gim ()

< —-——1 | |

= Cy(n)I7(n)

where x(A) is the indicator function for set A. Recall that

pi(z"6)
ml(

Epy D(wi (- X™)[|lwi(-)), (5.3.7)

Pl( "€)

Epp D(wi(-|[X™)|[wi(-)) = mi(z")

/ pi(e"E)w(€) log Lo dgedan.  (5.3.8)

Since
pi(a™16) _ e In(a)
mj(zn) - Jmi(t") exp{—Ln(t7,60:1)}dt?’

we denote the inverse of the denominator of the right hand side of the last expression by

h(n,@). By definition we require

e Du ) o<1
Jmi(t?) exp{—L,(t,0)}dt»  —

for all ™. That is, for all z" we h#ve

/ =20 b, 0)w(6)dh < 1. (5.3.9)

We show that for any pre-assigned € > 0 there exists A;,, such that e"L(’:"’e)h(n, 6) is
bounded by a number N on A, uniformly in n and z™ with W;(4§ ) < €. Now, by way
of contradiction, suppose there is an ¢y and z™ so that for some sequence N(n) — oo as

n — oo, there is a sequence of sets A/, such that
e @O p(n,0) > N(n), on Ay, and Wl(Alf,n) > €.
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Then,
/ LD (n, 0)(6)d0 > / e~ LD h(n, 0)w(0)do
Al

1n

> N(n)ep — oo,
contradicting (5.3.9). Now we have
T T _ oL@ Dp(n, @) < N, VO € Ay, Vn, Va".  (5.3.10)

By (5.3.8), (5.3.9) and (5.3.10), V8 € A; ,, and Vn we have

* ¢ n pl( nlé’) n

Pr(5110) < W //P1(m |£)w(§)log ——== -y g dédz
1

= G 1M =

as n — 00, since Ci(n) — oo by assumption. O

C()

Let B be the Borel field on the unidimensional parameter space ©, and let W;)(-|Data)
be the posterior probability measure corresponding to w(i)( :|Data). Here, Data means the
full data set or whatever summary statistics are being used to form the posterior. If we
use MIL’s (here we mean the multi-dimensional MIL’s, not the product of one-dimensional
MIL’s) and assume that the data came from a canonical set then the posterior probabilities

converge to a common limit in variation distance. We have the following.

Theorem 5.3.1 Let Model I be obtained from the prior w(-) as in (ii) of Proposition
5.2.1, and suppose Models II and III are obtained by using the priors w(1)(+) and wy(-) as
described in Section 5.2. Under the conditions of Theorem 3.1.1, if Models I, II, and III
are formed from MIL’s then the posteriors from these models conditional on canonical data
satisfy
sup Wi(BIX",Y™) = Wi (BIX™, Y™)| < Ca(8) + 0y s (1),

for 1 < 4,5 < 3, where C; ;(n) tends to zero as n tends to infinity. The error terms are
Op3+p31,2(1) = 0, 0p34p3,1,3(1) = 0p14p3,2,3(1) = 0ps(16y)(1) + Opg(16,) (1), for b1 € Ay, 02 €
A, where A;, and A, , are as in Proposition 5.3.2. Convergences in probability are as-

sessed with the appropriate mixture density.
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Remark 1: Theorem 5.3.1 is a sense in which Bayesian inferences using the MIL’s and
canonical data sets are insensitive to which of the three models is used, at least for large
sample sizes. In particular, this means that the conclusions of Bayesian hypothesis tests
based on posteriors using MIL’s are also robust against modeling strategy for canonical
data. This follows from recalling that a Bayes hypothesis test is based on the posterior
odds ratio or, equivalently, the posterior probability of the null. This is a limited form of

robustness against modeling strategy.

Remark 2: Our strategy of proof is to expand W(“;)(B|Data)’s as W(B) plus the cor-

responding error terms. For example, we write

Wiy(BlZ") = /B w(6)d8 + /é (w’("l)(0|Z")—w(0)>d0,

and prove the second term is negligible. For W(*2)(B|X",Y”) and W(*3)(B|Z”), the treat-
ments are similar. Note that this holds because convergences are assessed in a mixture
density not in an i¢d density. We use the mixture density so that canonical data can be

defined, however, in practice, one would assume that there is a true value of the parameter.

Proof: First we prove the conclusion for models I and II. We first expand W(*l)(B [X™,Y™)
and W(*2)(B[X ", Y™) as W(B) plus negligible error terms. For any B € B, we have

[, (wio@12) - w@)) ol < [ w012 - w(@)lde

1 1 "
< = D(wr (127 lu()) < m\/com)fo(n),

Now,.

* () 1 *
[We(BIZ™) = W(B)| < —ms/Com) i (m) (5.3.11)

\/zlm Co(n)I3(n) is o(1) as n — oo, for any data X™, Y™ giving

where the error term
Z™ € 8.

Similarly,

1 0 -6
WinBIxX" Y™ = [ (5 [ty S5 v m)ds )

- /B (él—/wl((ﬁ;e)wz(qs; e)d‘ﬁ)d() + J2,1(X") + Jo (X, YT,
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where, the first term above is W(B) and the error terms

iy = [ (5 [0 (D Yo £ s,

1) = [ [0 (w25 v = S5

arise by adding and subtracting W(B) and [g 3 fw1(3"2—|X")w2(¢;—0)d¢d0. The median

point theorem of integration and the canonicality of the data gives bounds on the error

terms. We have

$+6

2 X < 5 [ 125 = wn (B S5 yagas

= / / Wi (81 X™) — w1 (8y)|wa(f2)d61db,

1 . 1 -
< VM) [ua@)ity = i [OER),  (532)

thus, J,1(X™) tends to zero as n tends to infinity.

Similarly, for canonical data X™, Y™,

a0 < [ 3 [ 10y = oa DS s

- / / |W5(02]Y™) — wa(62)|w (81| X™)d6db;

1 %
< o \/Cam)Ij(n), (5.3.13)

50 J,2(X™,Y™) tends to zero as n tends to infinity. Thus, by (5.3.12) and (5.3.13),

Wy (BIX™, Y™ - W(B)| < by(n), (5.3.14)

\/21m(\/01(n)1i“(n) + \/Cz(n)I;(n)). Now by (5.3.11) and (5.3.14), the

conclusion is true with Cy 5 = \/Tlln——Z_ Co(n)I§(n) +ba(n), which tends to zero as n tends

where by(n) =

to infinity.
Now we prove the conclusion for models I and III, IT and III. We first express W3 (B|Z™)

as W(B) plus an error term. since

wz)(8]2") = 1/ [ o2 20 p3 (525 | 252 ) ds™wy (840w (25 dg
3) 4] PR |6 ) p3 (B (6 wr (€1 wal €2 ) A dEgds™

L (BT g (5T I
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where

mi (25 = [ [s (e uiende,
[ [5 (5576 ueie

and

mig)(2") = %//PI(#Kl)P;(sn - anﬁz) w1 (&) wa(€2)dérdErds™

2/ s +Zn)m2(s +Z”)_ s (5.3.15)

So, VB € B, we have that W(*3)(B|Z”) can be written as

//( / +0|5 +Z”) 2(¢ 0ls zzn)>d¢d9m;(snzz;))(n§,f;n_2 ")dsn,

Let

1mi (=5 )mi(=52)
2 mZ‘B)(Z")
then [ h(s"™, Z™)ds™ = 1. So, for fixed Z™ = 2", h(-, Z™) is a probability density. Now

weB1zm = [Uf (5 [ w1 e 0" )i ) dBlI(s”, 27 ds”

s+ Z"

h(s™, Z") =

(s, 2™ + [ a2 ST (e, 2,

= W(B)+/J21(

by adding and subtracting W(B) and
1 ¢+0 5"+ 2" ¢ 9
—_— * h n Zn
//32/“’1( 5 |5 w5 )h(s )d¢d9ds

Recall that by the definition of S in Proposition 5.3.2, we have

| / (2", 27|
3n+Zn
< J h(s™, Z™)ds"
J/&W/zﬂ h(s", 27)ds"|

|/ /le
28¢—-2Zn

where 257 — Z™ is the set of all s"’s, for fixed Z” = 2", such that 5-1-'2& € 51. By (5.3.12),

2 )h(sm, 27yds",

the first term in the right hand side above is bounded by \/2—1111—2 C1(n)I$(n). For the second
term on the right hand side, note that J;; is bounded and A(-, Z") is a density, we may
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apply Proposition 5.3.2 to assert that Py(25{ — Z") tends to zero as n tends to infinity.
Thus, the second term on the right hand side converges to zero in P; probability, i.e. it is
opr(1).

Similarly,

Sn+Zn sn— Zn "
| [ I 5= S5 (s, s

Sn + Zn S'n _ Zn " n "
<[ a5 S, s
25,427
8" + Zn gn _ zZn n n "
+|/ J2,2( 9 )h(‘s ’Z )dS |’
255427 2 2

by (5.3.13), the first term above is bounded by \/ilTﬁ\/C’l(n)I{‘(n). For the second term,

the argument is similar as before: Jj 5(:,-) is bounded and A(-, Z™) is a density, Proposition
5.3.1 asserts that the set 255 + 2™ is ops(1). So is the second term in the right hand side

above. Thus we have
[W5)(B|Z™) — W(B)| < ba(n) + 0p2 (1) + 0p3(1). (5.3.16)

Now since by(n) — 0 as n — o0, by (5.3.11) and (5.3.16) we get the conclusion for Model I
and IIT. By (5.3.14) and (5.3.16), we get the conclusion for models IT and III. O

Since the three models rarely coincide but are similar in a general sense, we are in-

- terested in which pairs of them are closer together or further apart. The following propo-

sition tells us that, roughly speaking, Models IT and III are the closest, and Models I and
III differ most. This is consistent with intuition. Since Models II and III start from the
same likelihoods, the difference is that Model II is transformed once in the parameters and
Model III is transformed twice, in both data and parameters. This additional transforma-
tion make Model III differs most from Model I. For Model I, the likelihood is different from
that of Models IT and III, and it differs from Models II and III than they do from each other.

Proposition 5.3.3 Assume the general likelihoods as described in the beginning of Chapter

5 (so the results including all the models we considered in Chapter 4), we have
(i)
E(xnyn) (D(ww)(-lX”,Y”)llW(l)('IZ")) - D(w(2)(-|X",Y”)||w(3)(-|Z“))> > 0.
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(i)

E(xnyn) (D(W(s)('IZ")l|W(1)('|Z")) - D(w(g)(-|Z”)I|w(2)(-|X”,Y”))> >0
(iii)

E(xnyn) (D(w(n('IZ")lIw(3))('|Z")) — D(w()(-1Z™)||weg)(-|X™,Y™)) > 0,

where all the expectations are taken with respect to the marginal distribution of (X", Y ™).

Proof: (i) Let the marginal density for Z™ be m(z") obtained from the joint marginal
my(z™)mo(y™) by the transformation
ZN=X"-VY", S"=X"4Y"

and integrating out s”. Now

n 1 LU AL sT=Z" .
m(z) = 5 [ m( = ma(5 ) ds

which is the same as m3)(2"™), the marginal density for model 3,

n 1 s 4 Z" st —Z"
m (") = 5 [ P15 m)pa T |n)wa(m w2 ) dmany

_|_ VAL n_ 7zn "
2/ S mg(s 5 )ds™.
So,
Exnyn) (D(w(2)(-|X",Y")||w(1)(-|Z")) - D(w(z)(-|X",Y")||w(3)(-|Z")))
+0 n n
_EXnyn)(//2w1(¢ XYy (2= vy de
op LIPS0, (s"-Z"|ﬂ—)w1(L>w2(L)d¢ds )
Am (27w (0127
. +0 . -0, 0
= E(Xn,yn) —w1(¢ |X )w2(¢—|Y )d(b
2 2
SAO|RLZT Ny (20020 Yy (LT Y (2227 ) Jb
og LIRSl A (S ) (o
4m(3 (Z")w 1)(0|Z")
The log-sum inequality states that for any integer n and any non-negative numbers ay, ..., a,
and bq,...,b,, we have

(Za,)log i lb’ <Za,logb ,
1_.1

1=1
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with equality if and only if a;/b; is a constant over all ¢. Using this inequality, the right
hand side of (5.3.17) is greater than

/EX"Y")/2w1(

Egn [ [ wy($E2[S42% Yoy (S0 22 )y (S22 Yy (82222 ) d g5
4m(3 (Z"')Ezn'w(l Ci

:/(///%w1(¢+0lm”)wg(—_—-|y”)ml(x”)mz(y")dm”dy"dq&)

o i 1w (BE 5 wa (5| 55 Y ma (4 Yyma (55 )ds"dz"d¢
Eznw 1)(9|Z")

/ G/ [ [ imyoa Sty m ey maty e dyras)

o2 fffwl(L|$")w2(Lly")m1($")m2( ")dz"dy"dé
Eznw(l)(0|Z")

since it is the relative entropy between two densities of 4.

X ( IY")d¢

log dé

dé > 0,

(ii) The proof is similar to that of (i).

(iii) It is enough to note that

B yny (D0 (12)w(127) = Dlwey (127} w157, 7))
0 -9
= E(Xn,Yﬂ)(/w(l)(9|Zn (103 2/ ¢+ w2(¢ 5 1Y")dé

~ ¢+ 6 5" +Z” $—6 5" — 2"
log4m(e))(Z” //wl( 2 g el

s +Z Yma( S 2Z )d¢ds">d0

z//Ewwmwww

og 3 1 S o |2 )wa(25E g™ ma (2™ )ma(y" ) da dy" dg
%fffwl(j‘t_olﬂi?'z_")wﬂgé;_elsn;zn )ml(sn.;zn )mz(sn;zn )ds”dzndgb

- / / Eznw(1)(812")

[ I [ w1 (8 |a™) wa (252 [y™)ma (a™)ma(y™)da dy"d¢ _
I T J w1 (82 zm)wa (252 [y )my (a7)my (y) dzrndyndg

ma (
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Comment: In Chapter 4, the data analysis used Models I and II and we found that they
gave similar conclusions. According to Proposition 5.3.3, we can expect that the conclusions
from Model III to be close to those of Model II.

Models II and III are closer because both use pairs of data points and integrate out a
function of the data. That they give weaker results may be attributed to the marginalization
procedure. In marginalizing, we take an average over all possible data points. This is
different from fixing a particular data point, and so implicitly includes variation from two
random variables whereas in Model I we have included variation from only one random
variable. Since two random variables generally have more variability than one does, it
seems Models II and III require more data to achieve inferences of the same strength as
we got from Model 1. Physically, one should ask if there are two random variables that are
reasonable to model, or if we have only one random variable (like for Model I). This is a
scientific question brought to light by our statistical analysis. However, statistical analysis
alone cannot provide an answér.

The results from Model II and III are similar to that of Nader and Reboussin, Section
4.2, in which the conclusion is not clear-cut. Model I gives stronger inferences and clear
answers. There is the question for the experimenter: are the model assumptions in Model I

reasonable? i.e., do we have one random variable or must assume there are more of them?

By the above Proposition, Models 1 and III differs most on average. So the average dis-
crepancy between Models I and III can be taken as a measure of robustness for the likelihood-
prior quadruple {p;(+|61), p2(+|62), w1(61), w2(62)} for the three modeling strategies. To sim-
plify the problem, we may fix the priors, and for Model I, we take the prior w(l)(b‘) =
J 3wi( 2 )wa(252)dg, and the likelihood to be p(ry(2]6) = 1py (32| EE)p,( 552|250 )dsd g,
Then the question becomes the robustness of the likelihood pairs {p1(:|61), p2(:|02)} against

the three modeling strategies. Specifically, we can use
R = exp{=Exy D(w(s)(|2)||w1)(:|2))} = exp{=Ep 5 (z) D(w(3)(1 2)||way(:|2))}
to measure the robustness, where Z = X — Y. Or to simplify the calculation, we may use
R’ = exp{—D(Exy[w)(1Z2)IID(Ex,y[wa)(-|2)])}
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= exp{= (M B o [0y (12))

as the measure. Note that 0 < R < R’ < 1. Roughly speaking, the larger R’ is, the more
robust the likelihood pair is against the three models and R’ can be arbitrarily close to 1

by choosing appropriate likelihoods and priors. To see this, note

By we(12)) = / mggjp(l)(2|0)w(1)(9)dz,'

m

where

m)(z) = %/ (//P1(82z|¢;0)P2(S;z|¢—2—0)dsd¢>
(o5

mo@ =7 [ ([ [ Dm S s

wn (5 w25 ) ) o,

If we take the priors for Model I and IIT to be w;)(8) = [ %wl(ig'—e)wﬂg)dqﬁ = w(s)(f) and
the likelihoods for Models I and II1, as {p1(-|61), p2(+|02)}, to be uniform densities on finite in-

and

tervals, then the interval bounds may depend on 6,, 8, respectively. If the intervals are large,

then m)(-) & my3)(+), so Eriy(2) [way(112)] & [ py(2|0)wq)(0)dz = w(yy(-) = wz)(+), thus
R ~1.

5.4 More Considerations for the Robustness Issue

Here we discuss some more considerations for the robustness issue addressed in the pre-
vious sections. These considerations are in the initial stage, the conditions imposed are too
strong in practice, and the results are comparatively weak. However, we list these results
here for further possible improvements.

We have compared Models I and II computationally in an example. Here we compare
Models II and III theoretically. We begin by stating and proving sufficient conditions for
the left hand side of (5.1.3) to reduce to a function p(2"|#) with 6 = (6;,6;). Assume that
X1,y Xn are iid p(z|61), and that Yi,...,Y, are éid py(y|62). Assume Z™ = f(X™, V™)
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has density of the form

p("16) = T] (z:16)

=1

where
p(z]0) = /P1(91(3»2)|01)P2(g2(3’2)192)'7(3,73)(13,

and 6 = f1(61,62).
Because we have assumed independence, it is enough to examine the n = 1 case. Assume

the distributions of X and Y are in a one parameter exponential family, ie.

p(z|01) = exp{m(61)T1(z) — B1(61)} (), (5.4.1)
p(y|62) = exp{n2(62)T2(z) — B2(0;) }ho(z). (5.4.2)

Let z = fi(z,y),s = fa(2,9), 0 = f1(61,02), ¢ = f2(01,02). or z = g1(s,2),y = ga(s, 2)
and 6; = g1(0,¢), 02 = g2(0, ), and J(s,2) is the transformation Jacobian. Now in the
following Proposition, we give a sufficient condition for p(z|6y,62) to reduce to the form
p(3)(2]0) for the exponential family. It basically says that if the exponents of p; and p, can
be reformed into a sum of exponents from two exponential families for Z™ and S™, then we
get the reduction we want.

In this section, Proposition 5.4.1 and Theorem 5.4.2 are only for exponential families;
Proposition 5.4.2, Proposition 5.4.4 and Theorem 5.4.1 are for the MILs in both the product
form of n-dimensional dependent form; Proposition 5.4.3 is for any likelihoods as long as

they satisfy the stated hypotheses.

Proposition 5.4.1 (Reduction in parameters for exponential families:) Suppose the dis-

tributions of p, and p, are given by (5.4.1) and (5.4.2) respectively. If

m(01)T1(f1(s, 2)) — B1(61) +log hi(fi(s, 2))
+n2(02)T2(fa(s, 2)) — B2(02) + log ha(fa(s, 2)) + log J (s, 2)

7i1(¢)T1(s) — B1(¢) + log hy(s) + ih2(0)T2(2) — B2(6) + log hy(2) (5.4.3)
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for some functions 7 (-), Tx(+), Be(-), k() (k = 1,2), then

p(2"161,02) = p(2"|6) = exp{7:T2(z) — B2(6)}ha(2).

ie. p(2™|61,02) reduces to a parameter only depend on 6.

Proof:

p(a161,02) = [ pa(s(s,2)10)pa(gals, )162) (s, 2)ds
= [exp{mET(fi(s,2)) = Ba(6) + logha(fi(s, 2))}
& (1 (02) Tl fa(s, 2)) = Ba(6) +1og hal fo(s, 2)) +log I (s, 2)}ds
= [exp(i(@)Tils) ~ Bu(¢) +logn(s) + Ma(O)Ta(=) = Ba(0) +logha(:)}ds
= exp{#(0)To(2) ~ Ba(@)}ha(2). O

Remark: If pi(z|6;) and p2(y|f2) are normal densities with 6y, 8, be their respective lo-
cation parameters, (without loss of generality assume their variance is 1) then n;(6;) = 6;,
Ti(z) = z, Bi(f) = 6%, hi(z) = 1 (i = 1,2). Assume fi(z,y) = z+ v, fu(z,y) = z — y,
then (6.2.2.2) is satisfied with 7;(0) = 16, T;(s) = s, By(8) = 6%, hi(z) =1, (i = 1,2) and
J(s,2) = 3.

Next we show that the conclusion of Proposition 5.4.1 holds for certain MIL’s. Note

that MIL’s have a form similar to that assumed in Proposition 5.4.1, but they are different.

Proposition 5.4.2 Let p;(z™|6,) and pa(y™|62) be MIL’s denoted by p(z™|61) and p3(y™|65).
(i) If the marginal priors w(-) and wo(-) and the marginal densities m}(-) and m3(-) are

the uniform densities on R", and the Li(-,-) in p} (k = 1,2) satisfies

Ll(xa 01) + LZ(ya 02) = fl(fl(ma y)7f1(01a92)) + £2(f2(m’ y)>f2(01702)),

Vw,y,01,02 € Rlv. (544)
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with rx(t,0) = rx(|t — 0]) > 0,(k = 1,2), then again p(2"|6;,0,) reduces to p(z"|6) and

p("16) = c(n) exp(=Nars (", 8)) [ exp(=daz; (s, 0)J (57, )ds™.

where ¢(n) is the normalizing constant.

(ii) For n = 1, if the marginal priors w;(-) and wy(+) are the uniform densities on R!, then
mj}(-) and m3(-) are the uniform densities on R!.

Remark 1: If Li(t,0) = Ly(t,0) = (t — 0)?, fi(z,y) = z + y, then (5.4.4) is true with
r1(t,0) = ry(8,0) = 2(t — 6)2.

Remark 2: If mj(-) or m3(+) is not uniform, p(2"|6y, 62) will not necessarily reduce to the
form p(2"|6). For example, if we take wq(-) = wa(-) = N(0,1), L1(¢,0) = L2(¢,8) = (1 —6)2,
A1 = Ay =1, n =1, 2" = 2" + 9", then form Example 1.4.3, we know that mj(z) =
L=’ (k = 1,2), and so p(z"|6,0;) x exp{—21(61 — 2)® — 3(82 + 2)?} which cannot be

v
reduced to the form p(z|0).

Proof:
(i) By definition, the density for Z" is

/Pi‘(gl(sn,Z")If?l)PE(gz(S",zn)l(’z)J(S",Z”)dsn

(57, 7 mi(ga(s”, )N ) bl )0
_/ fm’{(tn)e—/\lLl(t",el)dtnfm;(tn)e—/\glzg(t",gz)dtn

By the assumptions on the priors and marginals we get

J(s™, z2™)ds™.

/ exp{_/\lﬁl(sna ¢) — >‘2£2(zn7 0)}
Jexp{=A1L1(t",61)}dt™ [(¢*) exp{—A2L2(t", 0)}dt™

which reduces, by (5.4.3), to

J(s™,2")ds™

c(n) exp(—Aary(2", 6)) /exp(—/\lzl(s”, 6))J(s", 2")ds".

(ii) In the case n = 1, since mj(+) is uniquely determined by the inequality

exp{—)\lLl(x, 01)}’(1)1(01)
J mi(t)exp{—A1Li(t,01)}dt

dal < 17
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with equality for all z in the support of m}(-). We see that if w;(+) is uniform on R!, then

the uniform density for mj(-) satisfies the above inequality. The same holds for m}(-). ]

As we will see later, the problem of the equivalence of models is much harder than
that of the mean of the model, the conditions imposed are so stringent that only in very
rare cases the equivalence can be guaranteed.

Now we show that for the exponential families we discussed in Proposition 5.4.1, if the
density for Z = f1(X,Y) reduces to a likelihood in @ alone, then Model II and III are

identical in a formal sense, namely the posteriors are the same.

Proposition 5.4.3
(i) Suppose the joint prior w(-, ) satisfies

_w(é,8)
Tu(e,0)de = ©
and ‘
n n (] n_ 2" -0
P TS = 4l el 1)

for some non-negative ¢;, g where q; satisfies

/ql(s”,z")d.s" = C,

then

w(g)(0]z", y™) = w(s)(8]2").

(ii) Suppose p1(z|61) and py(z|62) are given by (5.4.1) and (5.4.2) respectively, and (5.4.3)
is satisfied. Assume further that J(s, z) is constant, that w(6y,82) = w1(6;)w2(62), and that

w(gl(¢7 0)7 g2(¢’ 0))J(¢7 0) = ’(1_)1(¢)’(I)2(0), V¢, 0

for some integrable @;(-) and ws(+). Then

w(z)(0]z", y™) = w(g)(8]2").
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Proof:(i) Let us abuse notation to write

¢+0 P -
)pZ( 9 | 9 )a

f(sn,zn,|¢,0) Pl( |

and, for simplicity, denote

g o—86
w(%v ?LQ_) = w(¢79)

Since

wele", 9™« [ £(57,2%, 18, 0)uw(#,6)ds,
and by the definition of Model III, |

wB1") o [ [ £(s7,27,16,0)dsds” [ w(s,)ds,

we have w(y)(8|z", y") = w(s)(8]2") if and only if

[ 15210000000 = (5™ 27 [ [ (57,2 10, 6)dgas” [ w(s,0)ds,

for some non-negative ¢, the last expression is equivalent to

w ’0 n Y n n )
Ut o0 s [ 0,046 =0, (549
A sufficient condition for (5.4.5) is that the integrand itself be zero, i.e. V2", ¢, 8,

0
f(3n>zn’ |¢7 o)f_::]((% = Q1(3n, Z'n)/f(sn,zn’ l¢7 O)ds"

If we omit the fixed variables 2", ¢, 8 for simplicity, we get

RV COEPYFIESTES (5.4.6)
which is a Fredholm equation of the second type (See, for example, Kéndo, 1991), where
g(s™) = (q1(s™,2™))71, and A = [w(E,0)dé/w($,0). To solve this equation, divide by
v/4(s™) on both sides of (5.4.6) and let Y (s") = 1/q(s") f(s"). Now (5.4.6) becomes

Y(s") = Y (t)dt". (5.4.7)

1
Shv-ore
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Expression (5.4.7) has a solution if and only if

ds™ _
q(s™, 2")

X@.0) [

Since this is guaranteed by the assumption on ¢;(-, ), the solution is given by

f(s™, 2%, |9,0) = q1(s™, 2™)g2(2", ¢, 0) (5.4.8)

where

q2(znv¢a0) = /f(sn,zn,|¢,9)dsn

is non-negative, and for any non-negative gz(2", ¢, 8), by substituting (5.4.8) into (5.4.6), it
is seen that (5.4.8) is a solution for (5.4.6).

(ii) Since p; and p, are exponential families, we have

w6l 9 o [ explm(o1(8,0) 3 Tilais ) + ma(aa(d,6) 3 Tooir )

—nbBy (gl((b, 0)) - nt(g2(¢, 0))}w(gl(¢7 0)’ g2(¢7 0))J(¢’ o)dd)a

Therefore

M1(g1(4,0)) Zn:Tl(% ¥i)) + m2(g2(¢, 0)) zn:T2(f'3i, yi)) — nB1(91(8,0)) — nB2(g2(¢,9))

= 71(¢) Xj: T1(g1(zi, i) + 772(6) Xj: Ta(g2(zi, 4i)) — nB1(9) — nBy(0),

so we have

way(Ols", ") o« exp{(0) 3 Falgaloi, 1) - nBa(@)ia(®)).  (5.49)

=1

On the other hand, the density of Z” has the reduced form

p(3)(2"10) = exp{72(0)T2(z"™) — nB,(6)}ha(2"),

where Tz(z") =3y Tz(z,') and izg(z”) = [T, izg(zi). So

wey(012")  exp{(OTo(=") - nB2(0)} [ wler(4,0), 92(8,6)7(8,6)do
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o exp{72(8)T2(2") — nB2(6)}d2(6). (5.4.10)

For w(-, -) satisfying the given conditions, the right hand side of (5.4.9) and (5.4.10) are

proportional to

exp{ia(8)Ta(=") — nBa(6)} (),

ie. wig)(flz™, ") = w(z)(0]2"), O.

Remark: Let wl() = ’UJQ() be the N(O, 1) density, f1(01, 02) = 01 +(92, f2(01, 02) = 01 —- 02,
then (ii) is satisfied with J(¢,6) = %, @1(-) and @2(-) be the N(0,1) density.

Note the sufficient conditions in (i) of Proposition 5.4.3 are not necessary. For ex-
ample, let n = 1, p1(2]6) = p2(216) = p*(2[6) = m*(z)e L=/
fm*(t)e MO dt with L(z,y) = (z — y)? and the prior w(fy,6;) to be N(0,I;). By
Proposition 5.4.4 in the following we know that w(y)(6[z",y™) = w(3)(6]2"), but the con-
dition in Proposition 5.4.3 (i) is not satisfied. In fact from Example 1.4.3 we know that

p*(+]8) ~ N(6,1/4), and

s+z,¢+86 s—z ¢—10
s I r(1

pi( ) = exp{~(s — ¢)* + (2 — 0)*},

which does not satisfy the conditions in (i) of Proposition 5.4.3.

We assume the uniform priors and marginals for MIL’s as in Proposition 5.4.2 and
give conditions to ensure the same results as in Proposition 5.4.3. Note that even if we use
the uniform prior to generate the MIL’s, we can still choose proper priors to form posteriors
for inference.

Parallel to Proposition 5.4.3 for exponential families, we give conditions for Model II

and III to give the same posterior when MIL’s are used.
Proposition 5.4.4 Assume py(c"|6;) = p;(2"]61), pa(y7162) = P3(47[62).

(i) Assume (i) of Proposition 5.4.2 and w(y,6;) = wy(61)ws(6;). If we take the prior for

inference on @ to be
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w(®) = [ w(9:(8,6),92(6,0))7(8,6)d,

then

w(g)(0]z", y™) = w(s)(8]2").

(iiYLet n =1, fi(z,y) =z +y, fa(z,y) =z -y, \1 = Ao = 1, Li(=,0) = (z—0)%, (k = 1,2).
if w(-,-) factors, i.e. w(:,-) = wi(-)wq(-) and wy(-) = we(-) is the N(0,1) density, then

w(2)(0]z,y) = wz)(0]z)
Proof: (i) By Proposition 5.2.1, the density for Z" is

p(2"]01,02) = p(2"0) x exp(—Aqry(2",9)),

SO

wig) (0] = PR (2", 6)}w(6)
®) Jexp{—Aary(2", ) }w(€)dE
_ exp{=dary(z",0)} [ w(gn(#,6), 92(,6))J (8, 6)dg
Jexp{—Aary(27,€)} [ w(g1(é1,€2)J (€1, &2)dE1dE,
o exp{=ara(",0)} [ w(1(8,6),95(6,6))7(6,6)ds.

On the other hand,

pi(z"]01)p5(y™|02)w (61, 02)
I pi(@™&)ps(yn|é)w(éy, £2)dérdEs’

w(fy, b2|2", y") =

S0
wele™,5") = [ w(01(6,0),9:(8,0)l",4")I(8,6)d
— m1($")mz(y")/ e~ MI1(ma1(80) X la " 9200w g4 (¢, 6), 92($, 6))J (8, 6)
m*(xn n f m tn)e—AlLl (tm.91(4,0)) d¢n f m*e—/\sz(t” 192(6.0)) gy ¢
Since w(6y,02) = wy (61 )wa(82), m*(z™, y™) factors into m(z")m3(y™), so the above is

eXp{")‘lzl(Sna ¢)} exp{_)‘2£2(zn’ 0)}w(gl(¢7 0)7 92(¢> 0))J(¢7 0)
Jexp{=2A1L1(t", 91(8,0))}di™ [ exp{—A2L2(t", g2(¢, 0))}dt™

d¢
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o exp{=dars(=", 0)} [ w(91(6,6),92(6,6))J(8,6)do.

Thus,

w(z)(0]z") = wz)(0l=™, y").

(ii) We only assumed the MIL families, before marginalizing to get a posterior for 8 given

z, the posterior for (6y,0;) given z is given by

w(3)(01,02]2) = c(z)a(by,0:]2)

where
a(6r, 0]z) = 20002) S Mi(01(5, 2)mi(95(s, 2))e” I lor (02 0) = Telalon02) )./ (s, 2)ds
1,92 = fm{(t)e—)qlq(t,el)dtfm;(t)e—/\ng(t,92)dt
and

(= [ [ Ll Dmitants e alole ) ol s, )52

S
[ mi(t)e=MLit€)dt [ mi(t)e=2L2(t€2)dt d&idgs.

Now, recall the posterior for § under Model II is

mi(z)mi(y)
m*(e,y)

w(g1(4,0), 92(, 9))6—A1L1 (l‘,gl(¢:0))—/\2L2(yy.92(¢,9))J(¢’ 9)
X/ [ mi(t)e=MLa(toa(80))dt [ mi(t)e=P2L2(tg2(4:0))dt

Since w(-,+) = wi(-)wy(-) with wy = wy = N(0,1), and we have chosen n = 1,
Li(z,0) = (z — 0)?, Ay = or k = 1,2, g1(z,y) = 1”%3 and gz(z,y) = %%, then we
know from Example 1.4.3 that mj(z) = #e‘ﬁ for k= 1,2, and J(-,-) = 1/2. So

w(g)(0]z,y) =

6, -8 1
w(3)(01, 022) o exp{—(z - %)2 - 5(93' + 63)}.

Thus,

1 8 ¢o—0
w(3)(0]z) = §/w(3)(¢; ,?2—)d¢ oS eXP{—%((’ - 2)’}.

By the expression for w(y)(6|z", y™) we get w(y)(8z™, y™) e=5-2)" and 50, w(3)(01, 02|2) =

w(Z)(olm’y) 0
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If the conditions in Proposition 5.4.2 are not satisfied, we might still want to know
how far away the posteriors from the different models are. In the following we use || - || to
denote the Ly norm, and U(-), U(-,-) to denote the uniform density on R!, R? respectively.
Let 5(,-) be the Bayes estimator of § under model ¢ using the common convex loss h(:, ) (i.e.
under a posterior w;)(0|z",y") for ¢ = 1,2,3. Note that & can be different from the Lj’s
used to get the MIL’s p;’s for £ = 1,2,3. LetAE(i)(0|X",Y”),Va,r(i)(0|X”,Y”) denote the

posterior expectation and variance of 8 under Model :.

Theorem 5.4.1 Assume the MIL’s for the likelihoods, then Ve > 0, 36; > 0,(i = 1,2,3,4),
such that if fw(-,) = U, )| < 61, Imi(-) = UCI| < &2, [Im3(-) = UCI| < 8 and Le((-,-)’s
satisfy

sup |L1(SB, 01) + L2(Z/, 92) - El(fl(za y)7 fl(ela 02)) - £2(f2(.’1/‘, y)a fZ(al, 02))' S 643

z‘,y,91 102

with 7.(¢,0) = r(|t — 0]) > 0,(k = 1,2), then we have
(i)
|lwiz)(8]™, 3"™) = wg)(8]z")|] < e,

and hence

|E@)(81X™,Y™) — E@3)(0]27)] < e,
|Va,1‘(2)(0|Xn,Yn) - Var(3)(0(Z”)| <e

(ii) For any € > 0, the Bayes estimators from the two models satisfy
|é(2) - é(3)| S €.

Proof: (i) Clearly, as a functional of w(-,-), mi(-) and my(-), the posteriors w(;)(6]z",y™)
(4 = 2,3) are continuous (in L; norm). Let w(j)’U’E(9|x”,y") (j = 1,2,3) be the posterior
density corresponding to w(-,+) = U(:,-), mi(-) = U(-) and some loss function r; satisfies
the assumption of Theorem 5.4.1 (k = '1’2). w(j)i(9|z”,y”) (j = 1,2,3) be the quan-
tity corresponding to w(-,-) = U(-,-). By Propositions 5.4.2 and 5.4.3, w(g), UL (0]z",y™) =
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w(3),Uyz(0|z"). So

[ 1wale™,4m) = wey(681:)1d8
< [ 1wy (012", 4") = we (012" 97)|d0

+/ﬂw@xmyw-4aaﬁiwpnww. (5.4.11)

For simplicity, in the following we only discuss the first term in the right hand side of

(5.4.11). It is

J1way@la™,y™) = w5012, 7)o
< [ ol 5") - vy 0l2", 47148

+ [ 10w 01", 57) = weo.0la", 47| db.

The first term above can be made as small as we want by the continuity of w)(8|z™, y™)

as a functional of Li(-,-)’s. the second term in the above is

/

/ e_’\lalll(sn"ﬁ)w(gl(qs, 9), 92(¢’ 0))J(¢’ 0)
[ mt(t")e=MLa (791 (6:0) dgn [ m;(tn)e—/\zﬁz(t",m(tﬁﬂ))dtn

mi (2" ()2 0)

m*(zn’ yn)

d¢
_U(e™)U(yr)er2%ra(z"0)
U(z™,ym)

/ e Manl" AU (g1(4,6), 92(4,6))(4,6)
fU(tn)e—/\lﬂl(t",gl(¢,9))dtnfU(tn)e—/\gfq(t",gg(qﬂ,&))dtn

By adding and subtracting appropriate terms, the above can be bounded by a4||m} — U|| +

dp| o

az||m3 — Ul| + as||w — U|| for some constants a;, a; and as, except for 8, 2™, 4" in a set of
small Lebesgue measure. The second term in the right-hand side of (5.4.11) can be bounded
in a similar manner. Thus the right-hand side of (5.4.11) can be made smaller than ¢ for
suitable choices of the §’s.

Also, since E(;)(0]z",y™) and Var;(6|z",y™) are continuous functionals of w(;), the last

two conclusions of (i) follow.
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(ii) Since the loss is convex in a, the Bayes solution é(i) exists and is the unique mini-

mizer of the posterior risk:

é(z) = arg iIEIE Rw(l.)(ah;n, yn),

where

Ry (ala™, y™) = / h(a, 6wy (62", 4™)do,
and A is the action space. Since Ry, (alz",y") is a continuous functional of wi(-), (k =
1,2), so is 5(2—), (i=2,3). Also, Ry, (alz™, y") = Ry, (alz™, y") for (i,7 = 2,3) under
the conditions of Proposition 5.4.4, so when these conditions are deviated a little (in the

sense given in the L; conditions ), the Ry (alz™,y")’s will also change a little, thus the

conclusion true. 0

Next, we establish a version of Theorem 5.4.1 for model II and III when exponential

families are used.

Theorem 5.4.2 Assume

p1(z|01) = exp{n1(61)T1(z) — B1(61)}h1(x),
p(y|02) = exp{na(82)T2(z) — B2(62)}ha(z),

if we assume (5.4.3) is satisfied. and take w(0) = [w(g1(9,0), g2(¢,0))J(#,8)dé, then

(1) For any prespecified €, we can choose § such that

|E(2)(0|Xn,Yn) - E(3)(0|Zn)| S €,
[Var) (81 X", Y™) = Var) (8| Z7)] < ¢,

whenever w(gy(¢,0)) can be approximated, in the Ly sense, by the product of two indepen-
dent densities, i.e. ||w(g1(¢,0),492(9,0)) — @1(¢)W2()|| < 6 for some integrable @;(-) and
wa(+).

(ii) The Bayes estimators 5(2) and 5(3) satisfy
Ié@) — é(3)| S €.
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Proof: (i) Since E;(0|X™,Y") and Var(;)(8|X™,Y™) are continuous functional of w(-,-).
The E(;)’s are equal, and the Var(;)’s are equal for w(g1(¢,8),
92(9,8)) = w1(@)w2(0), so for any prespecified €, we can choose § such that

|E@2)(81X™,Y") — E3)(0|12")] <€,
|Var(2)(0|X”,Y”) - V(IT(3)(0|Z”)| S €,

whenever |[w(g:($,6), 92($,0)) — @1(¢)2(8)]] < 5.

For the second conclusion, the proof is similar to that in Theorem 5.4.1. O

We may also investigate the inference range for the three different Models. For a
function A(-) integrable with respect to w;)(60|z™,y"), i = 1,2, 3, let W be the collection of
the three posteriors w(i)(Hl:c", y"), i =1,2,3 based on the three likelihoods from the three

models. Consider the interval

(Bminsewh(®), Eonascwh(©))

and length of it. Since

n ony_ 9@ +y" " —y"|0)
v (ble™,v") = [z + ym,zn — yn|€)dE’

and
no,ny _ fg(sn’ " - ynle)dsn
w(a)(0|$ Y ) — ffg(sn’ " — ynlg)dsnd€7
we have : . ‘
_ Jh(0)g(a" +y",a" — y"|6)d6
Bua) MO = = oy om —rlyde
and

J [ h(®)g(z™ + y™,z™ — y™|0)dOds™

By IO = == o = yrie)dédsn

So the difference
By [M(©)] = Euys) [A(O)]
_ Lol + 373" = g IO)(6) - 1]d0
Jg(z™ +yn, 2™ — y|6)db
+f [ h(0)[g(s",z™ — y"|6) — 1]d8ds™
J [ g(sm,a™ — yn|€)dEds™

(5.4.12)
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Similarly, assume w(6) = fw(ﬁéj—e, M)dqﬁ Since

(CB —Y Ie)fw( 2 ’ 2 )d¢
J I (e — yr|0)w( &2, £20)dgd6’

w(y)(8lz", y") =

we get
w(l)[h(g)] - W(z)[h(e)]

S h(@)p(a™ — y™|6)w(6)db
fp(w" —-y" I£)w(£)d£fg(w” Ty, en — yrle)dé

] [t 410 9-0

)p (v" | ) p(a” = y"0)]w(=—, ——)déd6

ST RO = y16) - pl(wnlL)pz(y 1255 w( 22, ¢_)d¢d9
fg(.z'n + y 7$n - y |€)d€

(5.4.13)

Likewise, we have,
By [M(O)) = Evoy[2(0)]

[ R(0)p(2z™ — y™|6)w(6)do
T p(e — yrl€)dE [ [ g(s, 2n[€)dEds™

[ [or Dm0 — ate - o) 2, £ s

ffh((’)[p(w —y"0) - pl(w"IL)pz(y 1450)|w( £, L)dqbdf?
fa(z™ + yn, zn — yn|€)dE

(5.4.14)

Likewise, we have,
By [A(©)] = By [1(0)]

S h(O)p(z™ — y™|0)w(8)do
~ Tp(m = ynI€)dE [ [ g(s, 27|€)dEds™

[ [ (=2 e a2, g

_l_ffh((’)[p(w" - y"0) — pl(z’ii—ld’—)P (5155w (&2, L)d¢d9
J [g(s, zn|€)dEdsm

(5.4.15)

By using (5.4.13), (5.4.14) and (5.4.15) we may find the interval range as the posteriors

vary among the three models.
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Chapter 6

Discussion and Further Research

6.1 Discussion

Here we have proposed a technique for choosing a likelihood based on a given prior, a
loss function and a distortion parameter. Given those three quantities, one can optimize
the Shannon mutual information over a class of likelihoods to find the likelihood which
makes the weakest possible assumptions in a precise information theoretic sense.

The assumptions implicit in this likelihood are also weak in two other statistical senses,
formalized by the first two theorems. Theorem 3.1.1 shows that in the limit of large sample
sizes, the expected relative entropy distance between a prior and a posterior formed from the
minimally informative likelihood tends to zero. That is, the Shannon mutual information
goes to zero. Theorem 3.2 states a small sample sense in which the MIL is minimally infor-
mative. Theorems 3.3.1 and 3.3.2 show how posteriors formed from minimally informative
likelihoods depend on the distortion parameter. When the allowed Bayes risk increases, the
posterior tends to the prior. When the allowed Bayes risk decreases to zero, the posterior
tends to concentrate at the data. We may consider generalizing these theorems to the case
of the n-fold product of univariate MIL’s.

The main drawback to the use of these likelihoods is that at this point we have not
compared the inferences they give to the inferences one would get from a true parametric
family. In particular, one can conjecture that highest posterior density sets from the present
likelihoods would be wider than one would get from the true parametric family and that
there would be further deformation due to the fact that the parameter introduced here
might not be exactly the same as the actual location parameter of interest, this would
appear to follow from the estimating equation context in Chapter 3. Another drawback is

that the computing required to find these likelihoods for several parameters or more than
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one outcome may be onerous.

The formulation of the minimally informative likelihood permits a robustness analysis
against choice of loss, A and prior. In Figures 1 and 2, Section 1.6, we observed how the
shape of p*(-|@) varies as the prior and the parameter A vary. For relatively small values of
A, the location of the p*(:|6)’s are approximately at 6, this may be due to the loss function
punishing data points for being far away from the parameter and the exponential component
of the MIL. For larger values of A, the location of p*(:|8) moves, indepéndently of the prior,
around the point where the minimal average loss is achieved, which in the squared error
case, is the mean of the prior. This is predicted by Theorem 3.3.1. However the shape seems
does not change significantly. For the left skewed exp(—(z + 10)), (z > —10) prior, the non-
skewed N(0,1) prior and the right skewed exp(—(z — 15)),(z < 15), the corresponding
p*(+|6) all have a roughly symmetric form around their locations. We may also investigate
how the MIL varies if we fix the mean of a prior and increase its variance; or if we fix the
mean and vary the skewness of a prior.

In addition, one must choose how many parameters to include and how to condition
on the data (‘in a posterior). Offén, there dré several ways one can do this. For instance,
in a very simple case one might have an independent sequence of paired data. One can
marginalize a bivariate likelihood to get a model for the difference in each pair, as in Model
I. This gives a univariate posterior for a single parameter generating credibility sets for the
difference in means in one sense. Alternatively, one can condition on all the data in a two
parameter likelihood to get a bivariate posterior. Now, one can marginalize in the posterior
to get a credibility set for the difference in means in a different sense, as in Models II and
ITI. It is not clear in general when taking differehces in the data will be equivalent to taking
differences in the parameters so that the two strategies will give compatible inferences. In
the usual case, one does not have a plausible likelihood which can be used in either approach.
Our method generates one which also permits a sensitivity analysis of the modeling strategy
for paired data.

In general, the n-dimensional MIL p*(z"|f) and the n-fold MIL [], p*(z;|0) are very
different. The former may be used for dependent data. In information theory, # represents
the send message, " may be interpreted as the messages received by n receivers, there

should be reasonably high dependence among those messages. Whereas p*(z"|6) is the
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channel which permits the slowest data transmission subject to a distortion constraint.
The latter may be used for independent data. Intermediate between an n-fold product and
an n-fold density we may define the following. Let {zn:*'} be a partition of the data z”,

e
where T,

stands for (zn,, Tn;+1, ...,a:n,.+1_1). If there is dependence among the data in
each substring but it is reasonable to model different substrings as independent, then we
can model the data by []; p*(zri**]9).

If there is reason to believe the data are independent, one should use the product of
MILs. If there is obvious dependence structure, for example, pair wise dependence, one may
use a bivariate MIL. It is unclear how generally applicable the assumptions of Theorem 3.3.1
are. In case this result is applicable, it is an argument for modeling of dependent data from a
sample of size » by an n-dimensional MIL when n is too large. If the result is not applicable,
then an n-dimensional MIL may be a candidate model.

In the data analysis, we used the MIL for a location parameter. We can also use it for
different types of parameters. For example, for a scale parameter, we may take the loss to
be L(z,0) = C(z/6)* for some positive constant C' and real number a. If one still wishes
to use a summary statistic, one may take the sufficient statistic > ;., % in this case. For
the location-scale parameter (p,0), we may take the loss to be L(z,p,0) = (z — p)?/0? or
some other suitable alternatives. ‘

In our examples, inferences seems do not appear to be particularly dependent on priors.
This robustness may be due in part to the imprecision in specification of the parameter
(pre optimization) on which the prior is used. That is, when the optimization procedure
identifies the exact interpretation of the parameter, it may also, as a concomitant, reduce the
influence of the prior. This is a natural conjecture if the requirement of non-informativity
tends to make MIL’s more similar than the priors which produced them. In this seﬁse, the
SMI may be a contraction mapping, and this contraction may be the main waay minimal
informativity is being achieved. '

The MIL method seems work well for the initial data analysis in Chapter 4, as it does not
require detailed physical modeling. In addition, it makes relatively few assumptions. These
assumptions are the inputs of w(-), L(-,-) and .the dispersion parameter X. Our method
assigns likelihoods based on minimizing the strength of assumptions, so it is easy to get

likelihoods which can be applied to summary statistics. (earlier, we discussed how to handle
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the seeming independence of our method from the sample size on which a summary statistic
was based, see Section 4.2.1. Partially as a consequence of optimization, we obtain some
robustness against choice of prior since we are minimizing the strength of assumption going
into the formulation of the likelihood. In addition, robustness against local perturbations
of the inputs is relatively straight forward to evaluate.

Frequentist and Bayesian evaluations of robustness usually assume perturbations are
local. We do not have to do this here. It is scientifically more important to compare
models that close in physical motivation but not close mathematically (i.e., one is not just a
perturbed form of the other). This can be examined by evaluating the compatibility of their
inferences. For example, Models I, II and III in Chapter 4 are not close in mathematical
formulation in any quantified sense, but being formed from pairs and differences they are
“close” interpretationally. Classical frequentist robustness results do not appear to handle
this case even though it may be of more importance to scientists. Conventional Bayesian
robustness does not either. It is only certain model selection techniques that permit this sort
of comparison indirectly when they chbos‘é the mode of a posterior distribution over a class
of models. Here, we are not concerned with model selection so much as with corroboration
of inferences by similar yet distinct modeling strategies.

Another potential use of the MIL for statistical problems is that, it provides a reference
model for initial data analysis in a Bayesian frame work when little data are available and
it is difficult to model them.

There are also potential use of the MIL in information theory context. In fact, we see
from Section 2.1.5 that the MIL provides the optimal code for data compression. It is also

the channel over which the slowest transmission of the source is achieved.
6.2 Further Topics Regarding The MIL

We see in Section 2.2 that, there is the problem of choosing the Bayes risk bound /; and
there are other formulations of the minimization problem, for example use penalty term(s)
instead of constraint. In case there is little knowledge for both the likelihood and prior,
we may consider a joint optimization procedure for selecting both the likelihood and prior.

Also, as we noted that, / and A\ determine each other and they have a sort of reciprocal
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relationship. In many cases, choose A is more convenient, and A behaves like a smoothing
parameter. So we can consider some smoothing technique for choosing .

In cases without an exact interpretation of 6, it is hard to get a prior distribution of 6.
But if we have some vague knowledge about the data distribution, ‘for example its Fisher
information (#), then we can form Jeffreys’ non-informative prior for the problem, and add
the constraint so that the likelihood has the Fisher information v(6). Or we may choose
an initial prior wo(-) which can reasonably the parameter, get passr o form this prior, then
based on its Fisher information vo(6) get Jeffreys’ non-informative prior wy(-) as the next
stage prior, and continue this iteratively we get a minimally informative likelihood-prior
pair.

A modification of this search for joint minimal information is sequential. Consider the
following procedure. Start with a prior wg(#) which is non-informative and is not derived
from a likelihood. (We note that Jeffreys’ prior is non-informative but depends on a likeli-
hood through its Fisher information.) For instance, suppose wg(6) is that. From p{(-|6) for
the first data point z;. From this get the posterior density wy(8|z1) = p§(z1]0)wo(8)/mo(z1)
and use it for fixed z; as a prior so that optimization of the SMI gives a likelihood pi(-|6),
for use on z3. (Note pj(-|#) also depends on z; but we have suppressed this.) In this se-
quential fashion we can develop an adaptive formulation for a joint likelihood by taking a
product of these sequential likelihoods. At this point we cannot even conjecture how this
procedure will perform. We mention it as a further possibility to explore.

It is also interesting to investigate how much will be lose if we use the MIL, instead of
using the true likelihood for inference.

From Example 1.4.3, we see that Ey,:(X|6) is biased for 8 because it is a weighted average
of 4 and §. We may investigate whether this is the general case, and try method to reduce
the bias. In principle there may be cases where it is possible to ensure Eps(X10) = 6 is
satisfied. We may also consider this as a constraint in the optimizatioh procedure.

In Chapter 5, we studied the robustness of modeling strategies for paired data. There
we investigated the use of general likelihoods, in some cases the special cases for both the
dependent and independent MILs, also some cases only for the n-dimensional MILs. We
may investigate some special cases only for the independent MILs, since in practice this

form may be of wider use than the n-dimensional MILs, although our theoretical work is

138




mostly for the multivariate MILs.

Also, in Chapter 5, some bounds on the differences for the three modeling strategies
are not sharp, so we are not sure how robust the modeling strategies are in such cases. To
access it, we may do some numerical comparisons for some practical problems to get some
ideas about how these models differ.

Theorem 3.1.1 asserts that under suitable conditions, (0, X™) — 0 as n — co. That is,
Theorem 3.1.1 syas that the MIL for a lot of data must be vacuous given all the dependence
structures infinitely much data might have. So, it may be useful to associate to a data
string of length n, say 21,...,z,, an integer k between 1 and n. This integer k is to be
regarded as the information content of z1, ...,2, measured in terms of k independent data
points. That is, because a sequence of dependent data points behaves like a smaller sequence
of independent data points we convert the z™ to k smaller sequences each representing
information equivalent to one data point. Now, we have grouped the data set z,...,z,
into k subsets of equal size. Naturally one would want to use several plausible values for
k to see how they affect the conclusions. In our example in Chapter 4, we summarized
z1,...,Ts7 into one summary statistic, essentially thereby regarding the information content
of z4,...,257 as being equal to that of one data point.

In general cases, the data may rarely be independent, but the generally high dependence
in the multivariate MIL may not appropriate. To control the dependence structure in some
extent in the multivariate MILs, we may consider using the copula to construct multivariate
MILs.

Using a copula to construct multivariate model has been popular in recent years. The
copula method is an attempt to construct multivariate models with arbitrary given marginals
and to some extent, control the dependence structure (see Sklar 1959, Joe, 1993).

Definition: A mapping C : (0,1)™ — (0,1) is called a copula if

(1) it is a continuous distribution function;

(2) each of its univariate marginals is a uniform distribution.

Let F(x) be a multivariate distribution function with marginal distributions Fi(z1), ..., Frn(Zm),

and let ug,...,un be random variables from U(0,1), then the multivariate distribution

Cr(,....) defined by

oty ooy ) = F(F{l(ul), ...,F,,;l(um))
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is a copula by the above definition.

One of the most commonly used copulas is the multivariate normal copula. It is con-
structed from the multivariate normal distribution N(O; I'), where I' = (v;;) is its covariance
matrix, and for convenience, all the diagonal elements are 1. We denote its distribution
function by &r, its marginal cdfs by ®r1,...,®r,». Then the m-dimensional copula is

defined as
Cp.(ul) = &r (@Ell(ul), ...,q);;n(um))» ue(0,1)™.

Its density function is
- 1 -
e, (ull) = |17 2 exp{ - 2x" (07" - Dx},

where x = (1,...,2m)T with z; = @E}(ui), i =1,...,m, and I is the identity matrix of
dimension m (see Xu, 1996).

In this way, we can construct a multivariate minimally informative distribution F*(-,...,-)
with given marginals Fy*(+), ..., F;%x (), and partially known dependence structure by means

of the m-dimensional normal copula, i.e., if

F*(21, 0, 2[T) = Cg (Fl*-l(xl), ...,F;-l(xm)),

then its marginals are F7*(-), ..., Fyr(-) and its dependence structure can be controlled by the
chosen T.

We may also consider a non-parametric MIL, by treating the unknown data distribution
F(-) as the parameter of interest, and use the Dirichlet process as the prior for distributions.
Such method was first proposed by Ferguson (1973) for the non-parametric Bayes method.
Let (R, B) be a measurable space, where R is the real line and B is the o-algebra of Borel
subsets of R. Let a(-) be a finite non-null measure on (R,B). A stochastic process P(-)
is a Dirichlet process with parameter a and we write P € D(a), if for any finite partition
{B1,...,Bn} of R, the random vector (P(Bi),..., P(By,)) has a Dirichlet distribution with
parameter (a(By), ...,a(Br)). It has the property that if F € D(a), then the posterior of
F given X1, ..., X, is D(a+ i, éx,), where 6, is the indicator function at z (see Ferguson,
1973). Thus, if one can find the Bayes rule for the no-sample problem (n = 0), then the
Bayes rule for the n-sample problem is given by replacing o with o + 3", éx,. For given

loss function L(-,-) (for example, we may take it as the L, norm, the variational distance,
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or the Kullback-Leibler divergence, etc.) and ! > 0, the Bayes risk bound for the no-sample
problem is

EL(F, )<,

where F(t) = P((—o0,t]) and F is chosen to minimize the SMI in this setting subject to
the above constraint. Here, we need to formulate the SMI in a meaningful way, so that the

optimization is feasible.
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