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Abstract 

The classic F test for the hypothesis concerning the equality of two popula­

tion variances is known to be non-robust. When we apply the classical F test 

to the non-normal samples, the actual size of the test can be different from 

its nominal level. Therefore, several robust alternatives have been introduced 

in the literature. In this thesis, I will present some of these alternatives, and 

illustrate their application with some examples. A new approach will also 

be introduced. The best feature of this method is that it seems to be able 

to overcome the adverse effect of outliers. A Monte Carlo study is used to 

compare the new test with the F test and the other methods. The results of 

this study are encouraging for the new test. 
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1 I n t r o d u c t i o n 

It is a well-known fact that the two sample t-test is a reliable method to test the 

differences between population means because it is insensitive to the departures 

from normality in the populations. O n the other hand, when testing the differences 

between population variances, the F test is known to be rather sensitive to the 

assumption of normality. As a result, it might be possible that the null hypothesis is 

rejected because of the fact that the random variables are not normally distributed 

rather than the fact that the variances are not equal. This chapter focuses on 

inferences about variances of two populations. Section 1.1 investigates the influence 

of non-normality on comparing the variation in two samples. Section 1.2 describes 

alternative robust methods which have been proposed to deal with the non-normality 

problem. 

1.1 Non-normality 

The classic F test was first proposed by Bartlett [1]. Unfortunately, the F test is 

very sensitive to the assumption that the underlying populations have normal distri­

butions. Box [2] showed that when the underlying distributions are non-normal, this 

test can have an actual size several times larger than its nominal level of significance. 

To see the influence of non-normality on comparing the variation in two samples by 

a classical F test, we will look at the normally and non-normally distributed cases. 

Firstly, we will derive the asymptotic distribution of the classic F test statistic under 

the assumption of an underlying normal distribution. Secondly, we will investigate 

how this asymptotic distribution changes under departures from normality. 
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1.1.1 Normal Case 

Let us consider a two sample problem. Let ?/n, . . . , ? / i n i and y2i, ...,y2n2
 D e t w o inde­

pendently distributed samples from the distributions 7V"(/f,cT 2) and N(fj,,a2) respec­

tively. The asymptotic distribution of the test statistic i n the classical F test w i l l be 

derived, although the statistic has exact F distribution under the nul l hypothesis and 

normal assumption. We use the asymptotic distribution, because the distribution of 

the test statistic is hard to obtain when samples are non-normal. For simplicity, we 

assume first that n\ = n2 = n. The sample variances Sf = -—ir z3j=i (yij — yl)2-, f ° r 

i = 1,2, are unbiased estimators of the corresponding population variances af for 

i = 1,2 respectively, where y~i are the corresponding sample means. B y the Central 

L i m i t Theorem, 

(s2A I (0\ (s2A 
— -> N ,£ 

\ U, / 

where 

B y the Delta Method, 

E = 
/2af 0 \ 

\ 0 2u\, 

\s2 a2J 

where g(x,y) = \jxjy and V<? is the gradient of g(x,y) : 

( i ) 

(2) 

(3) 

\-<7l^2 3 / 

(4) 

(5) 

(6) 
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Therefore, 

a2 
(7) 

If the null hypothesis, H 0 : o\ = o~2, is true, and according to the equation (3) 

So, we can use T to test the two-sided Ho, and would reject Ho when T exceeds the 

upper 100(a!/2) percentile or falls below the lower 100(a/2) percentile of the N(0,1) 

distribution. Thus, H 0 is rejected when \T\ > z(l — a/2). For instance, if a = 0.05, 

then Ho is rejected, when \T\ is greater than 1.96. 

For the unequal sample size case, if ^ • d, then 

1.1.2 N o n - n o r m a l C a s e 

The method described in the last section is based on the assumption of normality. 

To see how this method is sensitive to departures from normality, we will look at 

the cases that the population of the variables follow other distributions: double 

exponential, t5 ,tw, X51X101 a n d uniform. In addition, we will calculate their actual 

asymptotic significance levels. 

Let us first look at the general case. If the observations yu,y\ni and 2/21 > J/2n2 

are independently distributed according to a general distribution F(y), then 

V</£V<7 = 1 

and 

(8) 

E(Sf) 1 •> (10) 
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Var(S,2) 
n — 1 n (11) 

where 

(12) 
( E ( y - » y y 

7 is called the coefficient of kurtosis and measures the peakedness or flatness of the 

probability distribution function (pdf). For the normal case, 7 = 0 and Var(S' 2) = 

2 ( T 4 / ( n - 1). By the C L T , 

where 

(si U 
E = 

N 

( (2 + l)a\ 

/ 0 \ 

V 0 (2 + 7KV 
According to(4) and (14) 

B y the Delta Method, if Ho is true, we obtain 

" ( TT - 1 
02 

and for the unequal sample size case, -

N(O, 
2 + 7 

•n-2 

/ (S^ ^ *r(n (2 + 7 ) ( l + ^ ) 2 

(13) 

(14) 

(15) 

(16) 

(17) 

If the normality assumption is met, 7 = 0, so that equation 16 is equivalent to 

equation 8. However, for the non-normal cases, like £ 5 , 7 won't be zero. So when we 

apply the classical F test to the non-normal samples, the actual size of the test would 

be different from its nominal level of significance, a. Table 1 displays the value of 



distribution 7 actual significance level 

double exponential 3 0.215 

h 6 0.327 

1 0.110 

xl 2.4 0.186 

Xw 1.2 0.121 

uniform (a, b) -1.2 0.002 

Table 1: Actual asymptotic significance level of F test (a = 0.05), with non-normal 

samples 

7 and the actual significance level of the F test (a = 0.05), for several non-normal 

distributions: double exponential,t 5, tw, xh Xio> a n d uniform (a,b) . Note that the 

arguments in the uniform distribution do not affect the result since in this case.7 is 

always equal to —1.2. Also, for a heavy-tailed distribution (7 > 0), the probability 

of rejecting Ho exceeds 0.05; whereas, for a short-tailed distribution, the probability 

is less than 0.05. 

1.2 Some Robust Methods 

This section contains some discussion of other alternatives to the test based on T 

defined in (8). The six robust methods considered here are the Levene test [6], the 

Jacknife test [7], the Box test [2], the Box-Andersen test [3], the Moses test [9], and 
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the Layard x 2 test [5]. 

1.2.1 The Levene test 

The idea of the Levene test [6] is to transform the original data y^ into Zij — — yi 

independently, identically, normal distributed under Ho, and use the usual t test 

on the two transformed samples: zu,...,zitTll and z 2 i , z 2 t J l 2 . Obviously, the 2,-j's 

do not satisfy the above assumptions. Normality is not met because the Zifs are 

absolute values. Independence is violated because of the common term yi i n each z^; 

also, they are not identically distributed unless ni — n2. However, as mentioned at 

the beginning of this chapter, the t test is a reliable method to check the differences 

between means due to the fact that it is insensitive to non-normality. To apply the 

two sample t test we have a new statistic 

where zi,z2, var(zi), and var(z2) are the means and variances of the samples z\ and 

z2. Levene [6] showed that under the null hypothesis, the distribution of 7} can be 

approximated by a t distribution with degree of freedom 

j = l , . . . , n t - for the two samples, i = 1,2. Then, we just pretend that they are 

Ti = (z! - z2)/s 

with 

1 

n\— 1 n?— 1 

where 

var(zi) 

ns2 
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For two side test, if |T/| is greater then tv(l — cn/2), where v is degree of freedom, 

Ho would be rejected. 

1.2.2 Modifications of Levene test 

For skewed distributions, such as the x 2 with 4 degrees of freedom (df), and heavy-

tailed distributions, such as the Cauchy, the Levene test usually has too many 

rejections. That is, the actual rejection rate exceeds the nominal significance level. 

For these settings, improved Levene-type procedures have been proposed by 

Brown and Forsythe [4] which modify the test statistic by replacing the central 

location yl with more robust versions, such as the medians and the 10% trimmed 

means of the the two samples. Monte Carlo studies [4] show that all of these test 

statistics are robust for the very heavy tailed Cauchy distribution. For the x 2 (4) 

distribution, the statistics based on the median is robust but the 10% trimmed mean 

rejects too often. Usually the version based on the sample mean has the greatest 

power in situations when the three statistics are robust. 

1.2.3 The Jacknife test 

In [7], Miller proposed a procedure based on the Jacknife technique to test Ho in the 

two-sample case. Let us first review the idea of the jacknife technique. Let 9 be an 

unknown parameter, and let (y-i,...,?/JV) be a sample of N independent observations 

with cumulative distribution function (cdf) G$- Suppose that we use 9 to estimate 

9, and that the data is divided into n groups of size k. Let 0_8-, i = 1, ...,n, denote 

the estimation of 9 obtained by deleting the i-th group and estimating 9 from the 

(n — 1)A; observations. Define 9{ = n9 — (n — l )0_i , and 9 = ^Z)"=i ^t? z — 1? ••-,n, 
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then the statistics 

1 
(18) 

should be approximately distributed as t with (n-1) df. The statistics 18 can be used 

to perform an approximate significance test on 9. To apply the jacknife technique 

to test Ho : lncr 2 = lncr 2 in the two-sample case, we first define 

9X = Inal , 6y = Inal , 

9X = \nS2
x, 9y = \nS2

y, 

x6~i = ni In S2
X - (n - 1) In xSli , 

y0i - n2 In Sy — (n- 1) In yS2^ , 

where n; is the number of subsamples in the ith sample. Since x9 and y9 are 

approximately independently distributed, Miller proposed to test Ho by using a two 

sample t-test on the two samples: x 6 i , x 9 n j , and y9\, ....y9n2. To apply the two 

sample t test we have a new statistic 

rp xO - y9 
J-e = 

s 

with 
~ 1/2 

^ _ /var( x9) var( y9)\ 

\ ni n2 J 

and x9, y9, var( x9), and var( y9) are the sample means and variances of the samples 

x9 and y9. He showed that under the null hypothesis, the distribution of T$ can be 

approximated by a t distribution with degree of freedom 
1 

ni — 1 n 2 — 1 
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where 

var( x6) 
c ns2 

For the two side test, we first compute \Te\. If \T$\ is greater then tv(l — a/2), we 

could reject H 0 , and conclude that the two variances are different. 

1.2.4 The Box test 

The Box test [2] is the earliest robust test for equality of variances. For the two 

sample case, similar to Jacknife test, each sample is divided into subsamples of size 

k(k > 1). So there are n-i subsamples for the fist sample X\, ...,xni ,and n2 subsam­

ples for the second sample y i , ...,yn2. Then l n 5 2 is obtained from each subsample. 

Let's define Gij = \nS?j, i = 1,2, and j = l , . . . , n t - . The Gij are approximately 

distributed as N [ lna 2 , ^-j- + ^ , and the Box procedure performs two sample t 

test on Gij and to test H 0 : l n a 2 = l n a | . First, let's define G\, G2, var{G\), and 

var(G\) as the sample means and variances of the two samples G\ and G2, and 

s 

with 

/var(Gi) ^ var(G2) 
1/2 

\ ni n2 J 

The null hypothesis can be approximated by a t distribution with degree of freedom 

1 

n\— 1 ri2 — 1 

where 

var(Gi) 
c ns2 
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For two sided test, if \TQ\ is greater then tv{\ — OJ/2) , where v is degrees of freedom, 

Ho would be rejected. 

Also, Box suggested that the test statistics TQ will not have exactly a t distri­

bution since In S2 is not exactly normally distributed, but the level of significance 

should be closely approximate because of the robustness of the t statistics. The 

main disadvantage of the Box test is the loss of information in subdiving the sam­

ples, and different groups of the data within each sample have the potential to 

produce substantially different results. 

1.2.5 The Moses test 

The main idea of Moses test [9] is to apply the Wilcoxon two sample rank test to 

the value S2 obtained from the subsamples as in the Box test. This method was 

studied in detail by Shorack [10]. Besides S2, other measures of dispersion (e.g., 

the range, or the mean deviation about the sample mean) were also considered to 

be used in the subsamples. Moses pointed out that the following properties:(a) this 

test yields an exact significance level, and (b) the two population means can be left 

completely unspecified. However, like the Box test, this test still suffers from the 

loss of information due to the sample subdivision. 

1.2.6 The Layard x 2 test 

Layard [5] suggested a x 2 test statistic which is a function of the kurtosis 7. For 

large sample size n, the statistic approximately follows a N[\na2,T2] distribution, 

where r 2 = 2 + [1 — (l/n)]7, and 7 is the coefficient of kurtosis. Under H 0 the 
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statistic 

s = j > < - 1 ) InSf 
E ( n , - - l ) l n S ? 1 2 

/ r 2 

E f a - 1 ) 

is asymptotically distributed like x\i a n d Sf is the sample variance of the ith sample. 

However 7 is unknown, so Layard suggested the use of 

7 [ E E ( * ; - * . - ) 2 ] 2 l i 9 j 

to estimate the kurtosis. Hence, we can use the estimate 7 and base a test on 

S = T 2 S / T 2 , where f 2 = 2 + [1 — ^7. If S exceeds the upper 100(o:/2) percentile or 

falls below the lower 100(ai/2) percentile of the x 2 distribution, the null hypothesis 

would be rejected. Note that Layard [5] and Brown [4] have simulated sampling 

experiments which suggest that the x 2 test compares favourably with Box test. 

A difficulty with this procedure is that quite large samples are needed to get a 

reasonable estimate of 7. 

1.2.7 The Box-Andersen Test 

Box and Andersen [3] applied permutation theory to construct an approximate ro­

bust test. The idea of this test is to adjust the degree of freedom for the statistic 

Sx/Sy , so that the mean and the variance of this distribution are equal to that 

under the permutation distribution. 

Permutation theory assumes that the two samples have been randomly selected 

without replacement from m = y n , u n i = y l n i , u n i + 1 = y 2 i , u n i + T l 2 = y2n2, 

where y,j = Xij — Hi, and is the population mean of the ith sample. For simplicity, 

/ «i + n2 \ 
//,-'s are assumed to be known. Each of the possible combinations is 

11 



equally likely. Let 
y ^ i 7 /2. 2^?=i tfij 73 V 2 V n i „?. ' 

The mean of 5 is the same under the normal and permutation distributions, 

VN(B) = MB) = ^, 

where JV = ni + re2- However, the variances differ. Under the normal distribution, 

Under the permutation distribution, 

1 / N 
N2(N + 2) 

where 

^ _ ( T V + 2 ) Y,T=1 Vij4 

( 5 Z » = i S j = i y « j 2 ) 2 

B y using new sample sizes, ni, and n~2, we can make the two variances equal, where 

rii — drii, n~2 = c?n2, and 

d 
1 / N + 2 

1 + 2 l i v T ^ ) ( 6 2 - 3 ) 

T2 

The mean of B is unchanged under this substitution. So, by redefinding the sam­

ple sizes, the normal theory distribution for B can be made to approximate the 

permutation distribution for B. 

According to the discussion above, Shorack [10] suggested the following approx­

imate Box-Andersen test. The test approximates the distribution of the usual F by 

an F distribution on degrees of freedom di,d2, where 

d\ — d{n\ — 1 ) and d2 = d(ri2 — 1 ) 

1 2 



with 

and 

d = 1 + ^ - 3) 
- l 

Z)i=l n » 2~!w=l YljLl{xij xi)4 

So, if the classic F statistic exceeds the upper 100(a/2) percentile or falls below the 

lower 100(a!/2) percentile of the Fdltd2 distribution, the null hypothesis would be 

rejected. 

1.3 Example 
This section contains two examples, which are available on the internet at the address 

http : I/lib.stat.cmu.edu/DASLjallmethods.html. The data file names are Clouds 

and Michelson. 

1.3.1 The first example: Cloud 

In the first example, clouds were randomly seeded or not with silver nitrate. Rainfall 

amounts were recorded from the clouds. The purpose of the experiment was to 

determine if cloud seeding increases rainfall. The side by side boxplots of the two 

logged variables Fig 1 indicate that the variances of the two groups are very similar 

after a log transformation. 

To compare the significance levels of these six tests, two outliers, with the same 

value are added to the seeded sample, and the value of the outliers is increased until 

the results of these tests become steady. The side by side boxplots for each pair of 

samples are shown in Fig 2. 

13 
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The results of these tests and the classic F test are displayed in Table 2. For the 

F , Levene, Layard, Jacknife, Box, Moses, and Box-Andersen tests, if the test result 

is 1 in the table, the test rejects Ho. For the Moses and Box tests, the test results 

may change due to different subsamples of the data within each sample. To see if 

these two tests are likely to reject the null hypothesis, for each pair of samples, each 

of these two tests is executed 100 times. The entries are the proportion of rejections. 

As expected, the F test is very non-robust. It rejects Ho as the two outliers 12 are 

added. In this example, of all the tests, the Moses and Box tests are less affected by 

the outliers. They do not reject the null hypothesis, even when the largest outliers 

100 are added. In addition, the performance of the Box-Andersen test is quite good. 

The Levene test is not as good as the Box-Andersen test, but is better than the 

Layard test, and the Jacknife test is the worst one. 

1.3.2 T h e second e x a m p l e : M i c h e l s o n 

In the Michelson's example, 100 determinations of the velocity of light in air using 

a modification of a method proposed by the French physicist Foucault. These mea­

surements were grouped into five trials of 20 measurements each. The numbers are 

in km/sec, and have had 299,000 subtracted from them. The currently accepted 

'true' velocity of light in vacuum is 299,792.5 km/sec. The side by side boxplots of 

the measurements in the first and fifth trials, F ig 3, reveal that their variances are 

very different. 

To compare the power of the seven tests, one outlier is added to the sample with 

smaller sample variance, and the value of the outlier is increased until neither of these 

tests rejects HQ . The results of these tests and the side by side boxplots of each 

14 



value of Box-

two Levene Layard Jacknife Box Moses Andersen 

outliers F test test test test test test test 

no outlier 0 0 0 0 0.03 0.04 0 

12 1 0 0 0 0 0.01 0 

14 1 0 0 1 0.01 0.04 0 

25 1 0 1 1 0 0.01 0 

28 1 1 1 1 0 0.01 0 

30 1 1 1 1 0 0.04 1 

100 1 1 1 1 0 0 1 

Table 2: Results of tests on variances for the Cloud data. 
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Figure 1: Side by Side Boxplots of the two logged variables in Cloud example 

pair of samples are shown in Table 3 and Fig 4. Without the outlier, all tests except 

Box and Moses reject Ff 0, and these two tests have about 25% of results rejecting 

Ho- Hence, these two tests do not perform powerfully in this example. Surprisingly, 

the F test is not fooled by large outlier in this example. The Levene test is also very 

powerful. The Layard test is the worst. The Jacknife and Box-Andersen tests are 

about equally powerful. 

According to the two examples, the power of the F test and the Jacknife test 

are not so affected by the outliers, but their significance levels are very sensitive to 

the outliers. The Layard test is not so powerful, but, in term of the significance 

16 



Box-

value of Levene Layard Jacknife Box Moses Andersen 

outlier F test test test test test test test 

no outlier 1 1 1 1 0.28 0.25 1 

950 1 1 0 1 0.21 0.25 1 

980 1 1 0 0 0.13 0.12 0 

1000 1 1 0 0 0.13 0.03 0 

1100 0 0 0 0 0 0 0 

Table 3: Results of tests on variance for the Michelson data. 

level, it is better than the Jacknife test. The Levene test is the most powerful test 

in the Michelson's example, and its performance is better than the Layard test in 

the Cloud example. In addition, although, the Moses and Box tests are not affected 

by the largest outlier in the first example, they are not robust. They seem to be 

superior in the first example just because they are so conservative. Of all the tests, 

the Box-Andersen test is the best in these two examples. 
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2 A N e w R o b u s t t e s t 

This chapter contains three sections. In the first section, a new robust method 

testing the equality of variances between two populations is presented. In the second 

section, the asymptotic distribution of the new test statistic described in the first 

section is derived. In the last section, the new method is applied to the two examples 

mentioned in the first chapter. 

2.1 Robust Dispersion Estimates 

First , an alternative measure of dispersion that is more resistant to outliers is in ­

troduced. The best feature of this new method is that it has superior abil ity to 

overcome the effect of outliers. This measure is insensitive to changes in the most 

extreme observations and therefore is resistant to outliers. 

To start wi th , we just consider one sample, x \ , x n , wi th X{ ~ N(/i, cr 2), and X{ 

are independent. The alternative measure of dispersion, based on a sample x \ , x n , 

is called Sr. Notice that Sr satisfies the following equation 

[ 1 , otherwise, 

where c is arbitrary. The value of b depends on the choice of c. To ensure consistency 

of Sr, we choose 

(20) 

where Tn is the median of the sample, x is defined as a function: 

f , if k l < c; 
(21) 
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with z ~ iV(0, l)(i.e. Sr —> a as n —> oo.) Observe that for —c < z < c, x(z) equals 

the sample standard deviation score function. 

For the two sample case, Sri is referred to as the new measure of dispersion in 

the ith sample, i = 1,2. The new test statistic for the Ho will be based on the ratio 

R = §1. ,23) 

The asymptotic distribution of R is derived in the next section. 

In addition, Miller [8] also gave some references and mentioned the possibility of 

doing a test based on the ratio of M A D ' s , which is a particular case of robust scale 

estimate. 

2.2 Asymptotic Distribution of R 

In this section, the asymptotic distributions of the test statistic R for the normal 

and non-normal case are derived. To see the influence of non-normality when com­

paring the variation in two samples, we will look at the normally and non-normally 

distributed cases. Firstly, we will describe the statistical method based on the as­

sumption of an underlying normal distribution. Secondly, we will investigate how 

this method is sensitive to the departure from normality. 

2.2.1 Normal case 

First, we need to compute the asymptotic distribution of n(Sr — a). Because R is 

location invariant, we can assume, without loss of generality, that u = 0. By the 

Taylor series expansion, 
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n 
E X { - S r - \ 

- b 
n 
1 

x(f) 

n 
E x(f) 

n 
1_ 

- & - r E ( x ' ( ? A ) ( s 
E U F R ( 5 r - a ) . (24) 

So, 

y/n(Sr — a) 
% E (x(*)) - ^ 6 

^(x'(^)ft) 
B y the Law of Large Numbers, 

1Efx'(^)(^) 
with i = £ [x'(f)(f)] = -S [x'MW]. Also, 

n 

where 

and 

2/i = X(—) - b, 
(7 

E(y) = 0, Var(y) = E { [ X ( - ) - 6 ] 2 } = r^ 
(7 

B y the C L T , 

^ £ ( X ( * ) ) - V ^ " < O , T ' ) . 

Therefore, by Slutsky's Theorem, 

q i V ( 0 ,T 2 ) 
V n ( 5 r - a ) 

= 7V(0,a<72), 

(25) 

(26) 

(27) 

(28) 

(29) 

20 



c a b E F F 

1.041 0.989 0.500 0.51 

1.7 0.625 1.294 0.80 

2.07 0.555 0.218 0.90 

2.3765 0.526 0.172 0.95 

Table 4: relation between c, a, b and E F F 

with 

a = 

The value of a depends on the choice of c. Table 4 shows how a, b and E F F , the 

relative efficiency of Sr to the classic sample standard deviation SD, varies with the 

value of c. The table shows that the efficiency of the dispersion estimate increases 

with c. We do not use larger c to obtain greater efficiency because as c increases, b 

will decrease, and the less the value of b is, the less robust the test is. In the next 

chapter, we will find a value of c, such that the test will be robust and efficient. 

In the two sample case, suppose we have two independent samples, Xn, ...,x\ni 

and X21,x2n2 from the populations, JV(//i,<7i) and N(fi2,cr2). Suppose the 

j — 1, . . . , n ; are independent. For simplicity, we assume ni = n2 = n. 

By the Central Limit Theorem, 

(<ri\ 

\o-2) 
N 

/ 0 \ \ 
(30) 
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where 

E = (31) 

V 0 aal) 
Let us define a function g(x,y) = x/y. Thus, we have by the Delta Method, 

V ^ ( 
Sri _ <Ji 

Sr2 <J2 

N(0,Vg'ZVg) (32) 

where 

Vg = 
( £<7(ci,<72)' 

( a , " 1 

and 

Vg'ZVg = 2 o U 

(33) 

(34) 

(35) 

If the null hypothesis, 1 1 0 : 0 " ! = <T2, is true, 

and 

S = 
y/n 

( R - 1) -> JV(0,1). (36) 

So, we can use 5 to test the two side Ho, and would reject Ho when S exceeds the 

upper 100(a/2) percentile or falls below the lower 100(a/2) percentile of the iV(0,1) 

distribution. Thus, H 0 is rejected when \S\ > z(l — a/2). For instance, if a = 0.05, 

then Ho is rejected, when |5| is greater than 1.96. 

Table 5 displays the upper and lower critical values (i.e. the acceptance regions) 

for the test statistic R = Sri/Sr2, with a = 0.05 based on both the asymptotic 
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n = 25 n = 50 

c = 1.7 

Asymptotic 

distribution (0.562, 1.438) (0.690, 1.310) c = 1.7 

simulation (0.631, 1.575) (0.727, 1.383) 

c = 2.07 

Asymptotic 

distribution (0.587, 1.413) (0.707, 1.292) c = 2.07 

simulation (0.648, 1.538) (0.736, 1.356) 

c = 2.3765 

Asymptotic 

distribution (0.598,1.402) (0.708,1.292) c = 2.3765 

simulation (0.654, 1.535) (0.745, 1.341) 

Table 5: Acceptance regions of R = Sr-i/Sr? with a — 0.05 obtained from asymp­

totic distribution and simulation with 10,000 repetitions. 

distribution and generation of R from 10,000 random numbers in Splus. The larger 

the sample size is, the less difference between the acceptance regions obtained from 

the two methods. F i g 5 shows the simulated distribution of R, with sample sizes 

25 and 50, c — 1.7,2.07,2.3765. The histogram for the smaller sample size is more 

skewed to right, but as the sample size increases it becomes more symmetric. 

For unequal sample size case, if ^ —> d, then we obtain 

V ^ 7 + l ^ ( i 2 - 1) - N(0, ^ p ^ a ) . (37) 
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2.2.2 N o n - n o r m a l case 

To see how this new test is sensitive to departures from normality, we will look 

at the cases that the population of the variables follow other distributions: £5 ,tio, 

X51X101 uniform(0,l), and uniform(0,10). In addition, we will estimate their actual 

significance levels by generating 10,000 numbers. Since we want to known if the two 

arguments in the uniform distribution affect the results, the uniform distributions 

with arguments (0,1), and (0,10) are investigated. The simulated significance levels 

(a = 0.05) for the non-normal distributions are displayed in Table 6. The normal 

case is included in the table because we want to see how large the error is due to 

the generation of data. Note that the arguments in the uniform distribution do not 

affect the result. Also, for a heavy-tailed distribution , the probability of rejecting 

H 0 exceeds 0.05; whereas for a short-tailed distribution, the probability is less than 

0.05. But, in general, the results are closer to 0.05 than the ones from classic F test. 

Also, the significance levels yielded by smaller c are closer to 0.05. 

2.3 Examples 

In this section, the new tests with c = 1.7,2.07,2.3765 are applied to the examples 

described in the first chapter. The test results and the the test statistics i?'s for each 

pair of samples are shown in Table 7 and 8. Table 9 displays the acceptance regions 

of R with a = 0.05 for sample sizes ni,ri2. The acceptance regions shown in the 

table are obtained from simulation with 1,000 repetitions. In the Cloud example, 

when no outlier is added, ni = n 2 = 26, and with c = 1.7, R = 0.958. Since R is 

within the acceptance region, [0.689, 1.457], shown in Table 9, the new test with 
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Distribution c = 1.7 c = 2.07 c = 2.3765 

iV(0 , l ) 0.053 0.052 0.051 

u 0.087 0.105 0.123 

0.073 0.079 0.080 

x\ 0.074 0.127 0.150 

X2io 0.052 0.080 0.098 

Uniform(0,1) 0.0005 0.001 0.002 

Uniform(0,10) 0.0005 0.001 0.002 

Table 6: Simulated actual significant level of the new test (a = 0.05) from 10,000 

generated data, with normal assumption for several non-normal distributions 
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c= 1.7 c = 2.07 c = 2.3765 

value of 

two outlier R reject R reject R reject 

no outlier 0.958 0 0.953 0 0.969 0 

12 0.958 0 0.953 0 0.969 0 

14 0.958 0 0.953 0 0.969 0 

25 0.958 0 0.953 0 0.969 0 

28 0.958 0 0.953 0 0.969 0 

30 0.958 0 0.953 0 0.969 0 

100 0.958 0 0.953 0 0.969 0 

Table 7: Results of the new tests (c = 1.7,2.07,2.3765) on the Cloud example. If 

reject = 1, the test rejects Ho 

c = 1.7 does not reject the null hypothesis. For all of the three tests, no matter how 

large the two outliers are, they still do not reject the null hypothesis. It means that 

the tests are not affected by the extremely large observations. Also, the value of R 

does not vary with the value of outliers for each test. Similarly, for the Michelson's 

example, the size of outlier does not make any influence on the results of the tests, 

and the value of R keeps constant with different values of outliers. 

Based on these two examples, we can conclude that the new tests have superior 

ability to overcome the effect of outliers. 
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c = 1.7 c = 2.07 c = 2.3765 

value of 

two outlier R reject R reject R reject 

no outlier 1.841 1 1.882 1 1.781 1 

950 1.841 1 1.882 1 1.589 1 

980 1.841 1 1.882 1 1.589 1 

1000 1.841 1 1.882 1 1.589 1 

1100 1.841 1 1.882 1 1.589 1 

Table 8: Results of the new tests (c = 1.7,2.07,2.3765) on the Michelson example. 

If reject = 1, the test rejects H 0 

ni n2 c= 1.7 c = 2.07 c = 2.3765 

26 26 [0.689, 1.457] [0.716, 1.464] [0.698, 1.413] 

26 28 [0.688,1.431] [0.721, 1.407] [0.710, 1.415] 

20 20 [0.564, 1.774] [0.599, 1.723] [0.606, 1.679] 

20 21 [0.654,1.592] [0.661, 1.490] [0.672, 1.470] 

Table 9: Acceptance regions of R = Sr1/Sr2 with a = 0.05 with sample sizes n i , n 2 

obtained from simulation with 1,000 repetitions. 
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3 M o n t e C a r l o s t u d y 

In this Chapter, we compare the new tests with the F test and the six robust tests 

described in the first chapter. Two types of Monte Carlo studies are presented. First 

we investigate the sensitivity of the tests to non-normality. Second we investigate 

the influence of outliers on the power and the significance level of the tests. The 

procedures for our first Monte Carlo study are the following: 

(i) Generate one hundred and fifty pairs of samples; the sample size is 25, and 

the pseudo-random numbers represent samples from a uniform distribution. 

(ii) Transform the pseudo-random numbers to obtain samples from a iV(0,1), X2IOJ 

£5,^0, and ̂ 20 distributions. 

(iii) After the transformation, the second sample was scaled by the factor A so 

that the ratio of the two variances is A 2 for each distribution. Different values of A 

are selected and applied to the samples. 

(iv) Ten tests were applied to each of the 150 pairs of samples. The ten tests are 

the F test, the Box-Andersen test, the Levene test, the Jacknife test with subsample 

size k = 1, the Box and Moses tests both with subsample size k = 5, and the three 

new tests with c = 1.7,2.07, and 2.3765. 

(v) Repeat steps (i) to (iv) with sample size 50. 

The entries in Tables 10 to 14 are the proportions of samples in 150 trials that 

the tests reject the null hypothesis cr2 = <r2 for the various distributions and A . For 

A = 1 the proportions should be close to a = 0.05. For A > 1 the proportions are 

Monte Carlo estimates of the power of the tests at the particular selections of A for 

various distributions. The results of these tables reveal the following conclusion: 
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(i) The F test is extremely non-robust. It gives too many significant results for 

long tailed distributions. 

(ii) The three new tests have about the same power, and in general they are the 

most powerful tests in the group. The three tests, when A = 1, give more significant 

results than the other tests. 

(iii) The new test with c — 1.7 is not as powerful as the new tests with c = 

2.07,2.3765, but its actual significance level is closer to 0.05. 

(iv) The other tests are robust, but they are not as powerful as the new tests. 

In general, the Jacknife and Box-Andersen tests have about the same power. The 

Levene test is more powerful than these two tests. 

(v) The Moses test is sightly less powerful than the Box test, and seems to be the 

least powerful of all the tests. 

The second type of Monte Carlo studies includes two parts. The first part esti­

mates the influence of outliers on the significance of the tests, and the second part 

estimates the influence of outliers on the power of the tests. The procedures for the 

first part are the following: 

(i) Transform the first sample of each of the one hundred and fifty pairs of pseudo­

random samples to obtain samples from JV(0,1) with different number of outliers 

from N (5,0.1). 

(ii) Transform the second sample of each of the one hundred and fifty pairs of 

pseudo-random samples to obtain samples from iV(0,1) without outlier. 

(iii) Repeat steps (i) and (ii) with sample size 50. 

The entries in Table 15 are the proportions of samples in 150 trials that the 

tests reject the null hypothesis c r 2 = a2, for the various numbers of outliers. Test 
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with smaller values is less affected by the outliers, and seldom falsely rejects the null 

hypothesis. According to the results in the table, we have the following conclusions: 

(i) The Moses test is less affected than the Box test. Both of these tests seem 

to be least affected by the outliers. However, it is probably due to the fact they are 

very conservative, and the result is consistent with the one obtained by Miller [7]. 

(ii) The new test with c = 1.7 is the second least affected one. When the sample 

size is 25 and less than 16% of observations in the first sample are outliers, the 

Levene test is slightly better than the new test with c = 2.07; the new test with 

c = 2.3765 is almost the worst one. Also, as the number of outliers increases, the 

new test with c = 2.07 becomes more affected by the outliers. 

(iii) When the sample size is 50, the new test with c = 2.07 is better than the 

Levene test. In addition, the performance of the new test with c = 1.7 is almost the 

best in the group. 

The second part is to test the effect of outliers on the power of the tests. The 

procedures are the following: 

(i) Transform the first sample of each of the one hundred and fifty pairs of pseudo­

random samples to obtain samples from JV(0,1) with different number of outliers 

from iV(5.5,0.1). 

(ii) Transform the second sample of each of the one hundred and fifty pairs of 

pseudo-random samples to obtain samples from N(0,3) without outlier. 

(iii) Repeat steps (i) and (ii) with sample size 50. 

The entries in Table 16 are the proportions of samples in 150 trials that the tests 

reject the null hypothesis a l = a2

y for the various numbers of outliers. Tests with 

larger values are less affected by the outliers, and seldom falsely accepts the null 
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hypothesis. 

To estimate the influence of larger outlier, we repeat the procedures with larger 

outliers from iV(10,0.1) distribution. The results are exhibited in Table 17. Based 

on these two tables, we have the following conclusions: 

(i) The new test with c = 1.7 has the best performance. 

(ii) When the sample contains less than 16% outliers, the new tests with c = 

2.07,2.3765 are the second best tests. Whereas, as the number of outliers increases, 

the new tests with higher values of c become the worst of the all. 
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= n2 = 25 ni = n2 = 50 

ratio of 

standard 

deviation 1:1 1:1.5 1:2 1:2.5 1:5 1:1 1:1.5 1:2 1:2.5 1:5 

F-test 0.053 0.513 0.927 0.987 1.000 0.053 0.767 1.000 1.000 1.000 

Levene 0.047 0.460 0.893 0.973 1.000 0.080 0.733 0.987 1.000 1.000 

Layard 0.040 0.407 0.827 0.953 1.000 0.067 0.707 0.980 1.000 1.000 

Jacknife 

k = 1 0.027 0.493 0.900 0.973 1.000 0.040 0.740 1.000 1.000 1.000 

Box 

k = 5 0.047 0.293 0.707 0.820 1.000 0.060 0.553 0.927 0.993 1.000 

Moses 

k = 5 0.027 0.287 0.600 0.800 0.987 0.053 0.560 0.920 0.980 1.000 

Box 

Andersen 0.033 0.487 0.913 0.973 1.000 0.053 0.747 0.993 1.000 1.000 

New test 

c = 1.7 0.060 0.420 0.860 0.967 1.000 0.067 0.687 0.987 1.000 1.000 

New test 

c = 2.07 0.047 0.453 0.893 0.980 1.000 0.080 0.740 0.993 1.000 1.000 

New test 

c = 2.3765 0.060 0.453 0.900 0.973 1.000 0.067 0.760 1.000 1.000 1.000 

Table 10: Monte Carlo Power Function for Tests on Variances for Normal distribu­

tion 
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ni = n2 = 25 ni = n 2 = 50 

ratio of 

standard 

deviation 1:1 1:1.5 1:2 1:2.5 1:5 1:1 1:1.5 1:2 1:2.5 1:5 

F-test 0.153 0.540 0.860 0.960 1.000 0.093 0.707 0.987 1.000 1.000 

Levene 0.060 0.487 0.833 0.953 1.000 0.087 0.653 0.973 1.000 1.000 

Layard 0.040 0.353 0.740 0.900 1.000 0.027 0.507 0.913 1.000 1.000 

Jacknife 

k = 1 0.080 0.440 0.760 0.900 0.993 0.053 0.600 0.940 1.000 1.000 

Box 

k = 5 0.033 0.293 0.600 0.800 0.987 0.067 0.460 0.880 0.987 1.000 

Moses 

k = 5 0.033 0.227 0.493 0.760 0.973 0.060 0.447 0.860 0.987 1.000 

Box 

Andersen 0.053 0.407 0.780 0.913 1.000 0.047 0.600 0.933 1.000 1.000 

New test 

c = 1.7 0.0737 0.427 0.847 0.967 1.000 0.073 0.653 0.980 1.000 1.000 

New test 

c = 2.07 0.093 0.500 0.880 0.967 1.000 0.100 0.693 0.987 1.000 1.000 

New test 

c = 2.3765 0.100 0.487 0.873 0.967 1.000 0.113 0.727 0.993 1.000 1.000 

Table 11: Monte Carlo Power Functions for Tests on Variances for Xs 2 distribution 
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= n2 = 25 ni = n2 = 50 

ratio of 

standard 

deviation 1:1 1:1.5 1:2 1:2.5 1:5 1:1 1:1.5 1:2 1:2.5 1:5 

F-test 0.193 0.500 0.847 0.960 1.000 0.227 0.667 0.973 1.000 1.000 

Levene 0.040 0.353 0.727 0.940 0.993 0.073 0.593 0.940 1.000 1.000 

Layard 0.040 0.227 0.607 0.840 0.993 0.027 0.407 0.860 0.947 1.000 

J acknife 

k = 1 0.047 0.353 0.673 0.847 0.980 0.073 0.473 0.860 0.940 1.000 

Box 

k = 5 0.040 0.240 0.547 0.780 0.980 0.053 0.433 0.860 0.967 1.000 

Moses 

k = 5 0.020 0.200 0.467 0.660 0.980 0.060 0.427 0.847 0.960 1.000 

Box 

Andersen 0.027 0.293 0.660 0.833 0.993 0.053 0.473 0.880 0.960 1.000 

New test 

c= 1.7 0.087 0.427 0.840 0.953 1.000 0.120 0.667 0.973 1.000 1.000 

New test 

c = 2.07 0.093 0.493 0.860 0.967 1.000 0.120 0.700 0.960 1.000 1.000 

New test 

c = 2.3765 0.113 0.480 0.847 0.973 1.000 0.140 0.720 0.973 1.000 1.000 

Table 12: Monte Carlo Power Functions for Tests on Variances for £5 distribution 
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= n 2 = 25 = n 2 = 50 

ratio of 

standard 

deviation 1:1 1:1.5 1:2 1:2.5 1:5 1:1 1:1.5 1:2 1:2.5 1:5 

F-test 0.107 0.507 0.900 0.980 1.000 0.087 0.747 0.987 1.000 1.000 

Levene 0.047 0.427 0.840 0.967 1.000 0.080 0.667 0.967 1.000 1.000 

Layard 0.040 0.333 0.720 0.913 1.000 0.053 0.520 0.940 0.993 1.000 

J acknife 

k = 1 0.033 0.420 0.793 0.913 1.000 0.040 0.600 0.960 1.000 1.000 

Box 

k = 5 0.033 0.260 0.613 0.807 1.000 0.073 0.507 0.920 0.993 1.000 

Moses 

k = 5 0.020 0.200 0.560 0.700 0.973 0.053 0.480 0.860 0.980 1.000 

Box 

Andersen 0.027 0.413 0.787 0.920 1.000 0.053 0.647 0.967 0.993 1.000 

New test 

c = 1.7 0.067 0.427 0.847 0.967 1.000 0.093 0.673 0.987 1.000 1.000 

New test 

c = 2.07 0.073 0.480 0.873 0.980 1.000 0.093 0.720 0.987 1.000 1.000 

New test 

c = 2.3765 0.067 0.447 0.873 0.973 1.000 0.093 0.733 0.980 1.000 1.000 

Table 13: Monte Carlo Power Functions for Tests on Variances for t 1 0 distribution 
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= n2 = 25 = n 2 = 50 

ratio of 

standard 

deviation 1:1 1:1.5 1:2 1:2.5 1:5 1:1 1:1.5 1:2 1:2.5 1:5 

F-test 0.073 0.493 0.900 0.980 1.000 0.060 0.767 0.993 1.000 1.000 

Levene 0.047 0.433 0.873 0.967 1.000 0.080 0.720 0.973 1.000 1.000 

Layard 0.053 0.367 0.773 0.927 1.000 0.060 0.647 0.967 1.000 1.000 

Jacknife 

k = 1 0.033 0.453 0.833 0.953 1.000 0.040 0.707 0.987 1.000 1.000 

Box 

k = 5 0.033 0.287 0.653 0.853 1.000 0.047 0.607 0.880 0.993 1.000 

Moses 

k = 5 0.020 0.207 0.553 0.760 0.993 0.067 0.567 0.900 0.980 1.000 

Box 

Andersen 0.027 0.440 0.860 0.953 1.000 0.053 0.713 0.980 1.000 1.000 

New test 

c= 1.7 0.067 0.420 0.860 0.967 1.000 0.087 0.673 0.987 1.000 1.000 

New test 

c = 2.07 0.053 0.480 0.880 0.980 1.000 0.087 0.733 0.993 1.000 1.000 

New test 

c = 2.3765 0.060 0.447 0.887 0.973 1.000 0.067 0.747 0.993 1.000 1.000 

Table 14: Monte Carlo Power Functions for Tests on Variances for t20 distribution 

36 



n\ = n2 = 25 = n 2 = 50 

number of 

outliers 1 2 3 4 5 2 4 6 8 10 

F-test 0.380 0.807 0.960 0.987 0.993 0.653 0.993 1.000 1.000 1.000 

Levene 0.040 0.153 0.460 0.820 0.987 0.140 0.473 0.873 1.000 1.000 

Layard 0.000 0.093 0.467 0.913 0.987 0.027 0.513 0.987 1.000 1.000 

Jacknife 

k = 1 0.047 0.413 0.840 0.967 0.987 0.260 0.893 1.000 1.000 1.000 

Box 

k = 5 0.013 0.073 0.233 0.400 0.547 0.100 0.207 0.560 0.740 0.907 

Moses 

k = 5 0.047 0.033 0.173 0.267 0.400 0.067 0.227 0.420 0.653 0.840 

Box 

Andersen 0.013 0.140 0.600 0.940 0.987 0.100 0.680 1.000 1.000 1.000 

New test 

c = 1.7 0.073 0.100 0.240 0.400 0.700 0.080 0.187 0.407 0.727 0.933 

New test 

c = 2.07 0.073 0.193 0.373 0.833 0.993 0.080 0.280 0.680 0.987 1.000 

New test 

c = 2.3765 0.107 0.293 0.773 0.993 0.993 0.120 0.487 0.980 1.000 1.000 

Table 15: Monte Carlo Power Functions for Tests on Variances for based on two 

samples from the N(0, 1) population with different number of outliers from the 

iV(5,0.1) in the first sample 
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= n2 = 25 ni = n2 = 50 

number of 

outliers 1 2 3 4 5 2 4 6 8 10 

F-test 0.953 0.713 0.407 0.153 0.067 1.000 0.967 0.820 0.540 0.273 

Levene 0.947 0.760 0.473 0.240 0.087 1.000 0.987 0.867 0.613 0.273 

Layard 0.747 0.407 0.180 0.087 0.040 1.000 0.833 0.613 0.333 0.187 

J acknife 

k = 1 0.073 0.093 0.093 0.087 0.067 0.947 0.807 0.613 0.440 0.307 

Box 

k = 5 0.767 0.240 0.060 0.013 0.013 0.980 0.867 0.573 0.313 0.120 

Moses 

k = 5 0.527 0.233 0.073 0.053 0.033 0.987 0.813 0.467 0.207 0.133 

Box 

Andersen 0.820 0.507 0.280 0.140 0.080 1.000 0.907 0.740 0.480 0.293 

New test 

c = 1.7 0.993 0.980 0.940 0.853 0.573 1.000 1.000 0.993 0.987 0.840 

New test 

c = 2.07 0.993 0.980 0.880 0.567 0.013 1.000 1.000 0.993 0.820 0.067 

New test 

c = 2.3765 1.000 0.960 0.700 0.080 0.027 1.000 1.000 0.940 0.333 0.127 

Table 16: Monte Carlo Power Functions for Tests on Variances for based on two 

samples from the 7V(0,1) and 7V(0, 3) populations with different number of outliers 

from the JV(5.5,0.1) in the first sample 
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ni = n 2 = 25 = .n2 = 50 

number of 

outliers 1 2 3 4 5 2 4 6 8 10 

F-test 0.173 0.007 0.073 0.207 0.320 0.580 0.000 0.107 0.380 0.673 

Levene 0.607 0.047 0.000 0.013 0.173 0.953 0.313 0.000 0.040 0.413 

Layard 0.027 0.073 0.027 0.020 0.127 0.047 0.033 0.027 0.073 0.420 

J acknife 

k = 1 0.000 0.000 0.000 0.100 0.307 0.000 0.000 0.013 0.220 0.600 

Box 

k = 5 0.127 0.000 0.000 0.000 0.020 0.847 0.167 0.013 0.000 0.020 

Moses 

Jfe = 5 0.007 0.000 0.000 0.000 0.080 0.787 0.047 0.000 0.027 0.153 

Box 

Andersen 0.013 0.000 0.000 0.020 0.227 0.140 0.000 0.000 0.140 0.567 

New test 

c= 1.7 0.993 0.980 0.940 0.853 0.573 1.000 1.000 0.993 0.987 0.840 

New test 

c = 2.07 0.993 0.980 0.880 0.567 0.100 1.000 1.000 0.993 0.820 0.133 

New test 

c = 2.3765 1.000 0.960 0.700 0.120 0.500 1.000 1.000 0.933 0.227 0.853 

Table 17: Monte Carlo Power Functions for Tests on Variances for based on two 

samples from the N(0,1) and 7V(0,3) populations with different number of outliers 

from the iV(10,0.1) in the first sample 
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4 C o n c l u s i o n 

The classic F test for the hypothesis concerning the equality of two population 

variances is known to be non-robust. Let us consider a two sample problem. Suppose 

we have two samples, y n , y X n i and 7 / 2 1 , 2/2n 2 - Suppose the ?/,j's are independent 

where 7 is the coefficient of kurtosis. If normal assumption is met, 7 = 0. However, 

for non-normal cases, like t5, 7 won't be zero. So, when we apply the classical F 

test to the non-normal samples, the actual size of the test would be different from 

its nominal level of significance, a. Therefore, several robust alternative procedures 

have been introduced in this century. 

This paper presents a new robust method. The best feature of this new method 

is that it has superior ability to overcome the effect of outliers. First, an alternative 

measure of dispersion, Sr, that is more resistant to outliers was introduced. 

The new test statistic was then defined using these robust dispersion estimates. 

In Section 2.2.2, we estimated the actual significance levels of the new tests 

(a = 0.05) for the non-normal case. We've found that for a heavy-tailed distribution 

the probability of rejecting H 0 exceeds 0.05; whereas for a short-tailed distribution, 

the probability is less than 0.05. But, in general, the results are closer to 0.05 than 

the ones from classic F test. Also, the significance levels yielded by smaller c are 

closer to 0.05. 

According to the two examples described in the first two chapters, the perfor­

mance of the new tests is obviously better than the other tests discussed in the first 

and identically distributed with cdf G((yi — //;)/cr;). As n 
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chapter. In these two examples, we can see that no matter how large the outliers 

are, the new tests are not affected by them. It can be explained by the fact that the 

test statistic R is not affected by the size of outliers but the number of outliers. 

In addition, according to the first type of Monte Carlo study, the three tests have 

about the same power. In general, the new tests are most powerful i n the group, 

although the true significance levels of the three tests are sightly more sensitive to 

the other tests. Also , the new test with c = 1.7 is just not as powerful as the new 

tests wi th c = 2.07,2.3765, but its actual significance level is closer to the proposed 

significance level 0.05. Based on the second type of Monte Carlo study, the new test 

wi th c = 1.7 seems to have the superior power to overcome the effect of outliers. 

O n the whole, this paper has demonstrated that although the new test wi th 

c = 1.7 is just a l i t t le bit less powerful than those wi th c — 2.07, 2.3765, of al l the 

tests, the new test with c = 1.7 has superior ability to overcome the effect of outliers. 
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two outl iers 12 a d d e d in the s e e d e d s a m p l e two outl iers 14 a d d e d in the s e e d e d s a m p l e two outl iers 2 5 a d d e d in the s e e d e d s a m p l e 

two outl iers 2 8 a d d e d in the s e e d e d s a m p l e two outl iers 30 a d d e d in the s e e d e d s a m p l e two out l iers 1 0 O a d d e d in the s e e d e d s a m p l e 

Figure 2: Side by Side Boxplots of the two logged variables wi th outliers i n the 

seeded sample 
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no outlier added 

Figure 3: Side by Side Boxplots of the measurements in the first and fifth trials 

Michelson's example 
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Figure 4: Side by Side Boxplots of the two variables with outliers in the fifth sample 
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n = 25,c=1.7 n = 25, c =2.07 n = 25, c =2.3765 

i 1 1 1 i 1 1 1 i 1 1 1 1 1 1 

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.6 0.8 1.0 \1 1.4 1.6 1.8 

M trS 66 

Figure 5: Histograms of R for different combinations of sample size n, and c 
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