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Abstract

The dissertation consists of two parts. In the first part we introduce and investigate a

class of mixed Poisson regression models that include covariates in both mixing proba

bilities and Poisson rates. The proposed models generalize the usual Poisson regression

in several ways, and can be used to adjust for extra-Poisson variation. The features

of the models, identifiability, estimation methods based on the EM and quasi-Newton

algorithms, properties of these estimates, model selection criteria and residual analysis

are discussed. A Monte Carlo study investigates implementation and model choice is

sues. Several applications of this approach are analyzed. This analysis is compared to

quasi-likelihood approaches.

In the second part we introduce and investigate a class of mixed logistic regression

models that include covariates in both mixing probabilities and binomial parameters with

the logit link. The proposed models generalize the usual logistic regression in several

ways, and can be used to adjust for extra-binomial variation. The features of the mod

els, identifiability, estimation methods based on the EM and quasi-Newton algorithms,

properties of these estimates, model selection criteria and residual analysis are discussed.

A Monte Carlo study investigates implementation and model choice issues. An appli

cations of this approach is analyzed and results compared to those by quasi-likelihood

approaches.

The dissertation also discusses future research in the areas and provides FORTRAN

codes for all computations required to apply the models.
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Chapter 1

Introduction

Poisson and logistic regression models are widely used for analyzing discrete data. Using

such models, we implicitly assume that the response variable follows either a Poisson dis

tribution or a binomial distribution with mean depending on covariates. Sometimes such

assumptions may not be appropriate in the sense that the mean-variance relationship

specified by the distribution of the response variable is not valid. In most of these cases,

we often observe that data are overdispersed, i.e., the observed sample variance is larger

than that predicted by inserting the observed sample mean into the mean-variance rela

tionship. On the other hand, in few cases of data analysis, we may also observe that data

are underdispersed, i.e., the observed sample variance is smaller than that predicted by

inserting the observed sample mean into the mean-variance relationship. Without taking

either overdispersion or underdispersion into account, using these regression models may

lead to biased parameter estimates and incorrect inferences about the parameters. In

this thesis, we propose using a finite mixture model approach to adjust for overdisper

sion. Specifically, we incorporate covariates in both mixing probabilities and component

parameters of a finite mixture model in such a way that overdispersion may be explicitly

interpreted by the model structure. The proposed models have applications in many

different disciplines including economics, biostatistics and epidemiology.

The work in this thesis was motivated by several studies in different areas. One of

these studies is to analyze relationship between technological innovation and research

and development expenditures for U.S. high-tech companies. Another study is to assess

1



Chapter 1. Introductioi 2

treatment effects in a clinical trial on epileptic patients carried out in British Columbia

Children’s Hospital. For the clinical study, for instance, the patients were randomly

assigned into two groups: control and treatment. Those patients in the treatment group

received monthly infusions of intravenous gammaglobulin (IVIG), while those patients in

the control group received “best available therapy”. The primary end point of the trial

was daily seizure frequency. The principal data source was a daily seizure diary which

contained the number of hours of parental observation and the number of seizures of each

type during the observation period. We analyzed a typical series of myoclonic seizure

counts from a single subject receiving IVIG. Data extracted from the seizure diary were

the daily counts and the hours of parental observation. The questions of interest here

are that of fitting a model to these counts which describes the pattern of epileptic seizure

activity, and assessing IVIG effects on suppression of myoclonic seizures. Although it is

a reasonable assumption that a daily seizure count follows a Poisson distribution which

implies random occurrence of seizures in time, the data were overdispersed with respect

to the Poisson regression model with mean including treatment effect. As indicated by

the clinical investigators conducting this study, they have observed subjects to have “bad

days” and “good days” with no obvious explanation of this effect. Hence, we are led to

consider the mixed Poisson regression models which allow seizure frequency function to

change in a random fashion.

Several alternative approaches for modelling overdispersion with respect to Poisson

assumption are reviewed in Chapter 2. In this chapter, we propose a mixed Poisson

regression model and shdw that it includes several special cases such as the usual Poisson

regression model, mixed Poisson regression model with constant mixing probabilities and

mixed Poisson regression model with constant Poisson rates. We also discuss identifiablity

of the proposed model and provide sufficient conditions for identifiability. Maximum

likelihood parameter estimation is used. An algorithm for computation of maximum
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likelihood estimates is presented (FORTRAN code for implementation of the algorithm

is provided in Appendix A). Particularly, for a fixed finite number of components, the

algorithm finds maximum likelihood estimates by two steps: (1) using the EM algorithm

first until either observed log likelihood or parameter estimates do not change more

than a given tolerance, and (2) using a quasi-Newton algorithm which maximizes the

observed log likelihood function. The results of a Monte Carlo study on performance

of the algorithm are given here. Model selection procedure determining the number of

components and inference about regression parameters is also presented. Classification

based on the estimated posterior probabilities from the fitted model is discussed. Finally,

four applications of this model are given, and results are compared to those from quasi-

likelihood approaches.

Several alternative approaches for modelling overdispersion with respect to binomial

assumption are reviewed in Chapter 3. In this chapter, we propose a mixed logistic

regression model and shOw that it includes several special cases such as the usual logis

tic regression model, mixed logistic regression model with constant mixing probabilities

and mixed logistic regression model with constant binomial parameters. We also discuss

identifiablity of the proposed model and provide sufficient conditions for identifiability.

Maximum likelihood parameter estimation is used. An algorithm for computation of

maximum likelihood estimates is presented (FORTRAN code for implementation of the

algorithm is provided in Appendix A). Particularly, for a fixed finite number of compo

nents, the algorithm finds maximum likelihood estimates by two steps: (1) using the EM

algorithm first until either observed log likelihood or parameter estimates do not change

more than a give tolerance, and (2) using a quasi-Newton algorithm maximizes the ob

served log likelihood function. The results of a Monte Carlo study on performance of the

algorithm are given here. Model selection procedure determining the number of compo

nents and inference about regression parameters is also presented. Classification based
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on the estimated posterior probabilities from the fitted model is discussed. Finally, an

application of this model is given, and results are compared to those from quasi-likelihood

approaches.

Chapter 4 concerns summary, conclusions and future research. We discuss some simi

larities and differences between the mixed Poisson regression and mixed logistic regression

models. We extend the mixed Poisson regression and logistic regression models to the

more general case of a one-parameter exponential distribution. Mixed exponential re

gression models are considered in this chapter. Furthermore, we propose hidden Markov

Poisson regression models for longitudinal data. Particularly, we give preliminary results

of this model, including model definition, moment structure, identifiability and parameter

estimation.



Chapter 2

Mixed Poisson Regression Models

2.1 Poisson regression and its modifications

The Poisson regression model has been widely used for analyzing count data in which

each observation consists of a discrete response variable and a vector of covariates or

predictors. Typical examples of such data include counts of events in a Poisson or Poisson-

like process where the upper limit to the number is infinite or effectively so. For instance,

the response variable may represent the number of failures of a piece of equipment per

unit time, the number of purchases of a particular commodity per family, or the number

of bacteria per unit volume of suspension. In practice, however, the model sometimes

fits poorly, suggesting the need for alternative models. In this case, it is not uncommon

that observed data are overdispersed, i.e., the variance of an observation is greater than

its mean. This may be reflected in over-large residual deviance and adjusted residuals

which have a variance > 1. Without consideration for the overdispersion, using the

Poisson regression model may not be justified. In the first part of this dissertation, mixed

Poisson regression models are introduced and investigated. These models are applicable

in several different situations where the Poisson regression model appears inadequate and

provide an alternative way to adjust for extra-Poisson variation with a more meaningful

interpretation.

Suppose that the ith response variable Y is a count, and associated with this response

is a covariate vector x = (x,. . .
,
xi,.)’ for 1 i n. The Poisson regression model

5



Chapter 2. Mixed Poisson Regression Models 6

assumes that the Y are distributed independently Poisson (j) with density function

f(ii a’ = exp(—)j) for yj = 0,1,2,..., (2.1)

where ) = exp(xa), a e R” is a r-dimensional vector of unknown parameters. Note

that the Poisson parameter X, = E(Y) is related to the covariate vector x by a link

function so that the dependence of ) on x is assumed to be multiplicative and is usually

written in the logarithmic form

log(X) = xa. (2.2)

Equations (2.1) and (2.2) are sometimes referred as a log-linear model.

The Poisson regression model has been applied in many areas (e.g., Frome, Kutner,

and Beauchamp 1973; Frome 1983; Holford 1983; Hausman et al. 1984; Mannering 1989).

For instance, Frome et al (1973) used the Poisson regression model to describe the rela

tionship between the number of failures of a piece of electronic equipment per unit time

(response variable) and the times spent in regimes one arid two (covariates), and the

relationship between the number of colonies produced in the spleen of recipient animals

(response variable) and the concentration of injected cells and the radiation dose (covari

ates). Frome (1983) applied the Poisson regression model in the analysis of survival time

data. He analyzed the data that were obtained in epidemiologic follow-up studies and

organized into a format similar to that of a life table. Holford (1983) analyzed the data

that consists of numbers of prostatic cancer deaths and mid-period population denomi

nators for non-whites in the US by age and calendar period, and fitted it to the Poisson

regression model with age and cohort effects to the death rates. Hausman et al. (1984)

introduced the Poisson regression model to analyze the relationship between the research

and development (R&D) expenditures of firms and the number of patents applied for and

received by them. Mannering (1989) used the Poisson regression model to investigate
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the determinants of commuter flexibility in changing routes and departure times for the

morning trip to work. He assumed that the number of route and departure time changes

occurring during a one month period follows a Poisson distribution with mean depending

on a vector of commuting and socioeconomic characteristics for an individual.

The Poisson regression model is analogous to the normal linear regression model in

many ways. The estimation of unknown parameters is straightforward and is done either

by an iterative weighted least squares technique or by a maximum likelihood algorithm.

The log likelihood function is globally concave so that maximization routines converge

rapidly. Residual analysis is carried out in the same way as the normal linear regression

model, except that the definition of the residual is different.

The Poisson regression model is used for many different purposes. Sometimes, infer

ence concerning the regression parameters a is of primary importance. For example, Y

may denote the number of car accidents for an individual. Large values of as (relative to

their standard errors) then correspond to factors which significantly increase the chance

of the accidents. On the other hand, when one is primarily interested in creating a good

predictive model, the interpretation of parameters may take a secondary role.

The Poisson regression model is an example of a Generalized Linear Model (McCul

lagh and Nelder, 1989) in which the frequency distribution of the response Y is a Poisson

distribution with mean )(x), and the link is a log function: g) = log(x)) = x’cv.

A consequence of using the Poisson regression model is that the variance equals the

mean, i.e., Var() = EQI’). In practice, however, we often have overdispersed data,

i.e., Var(Y) > E(Y). When the Poisson regression model fits the count data poorly,

overdispersion is often a cause of the problem. There are several ways to modify the

Poisson regression model. Using GLM formulation we can modify it by choosing either

an alternative link function or an alternative frequency distribution, or both. Since the

log link has nice properties such as multiplicative effects of covariates on the Poisson
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mean, few researchers have suggested use of alternative link functions. On the other

hand, there are a lot of studies of alternative frequency distributions for the Poisson

distribution (e.g., Breslow 1984; Efron 1986; Lawless 1987b and Dean et al. 1989).

To adjust for extra-Poisson variation, mixed Poisson distributions have been used

as frequency distributions (Efron 1986; Lawless 1987b and Dean et al. 1989). In these

models, the Poisson means associated with each observed count are defined as latent

variables that are sampled from a specified parametric distribution. In other words, the

Poisson means are random variables following a specific distribution. Under such a set

up, the marginal density function of the response Y without covariates can be often given

by

Pr(Y = y I ,g)
= f [vexp(—vA)g(v)dv, y=O,1,... (2.3)

where g(v) is a mixing probability density function and ). > 0 is a unknown parameter.

Such models can be viewed as multiplicative Poisson random-effects models (Brillinger

1986) for the following reasons: (1) there is a random effect T with a density g(v), v > 0

in the model; (2) conditional on 1’ = v, the response Y has a Poisson distribution with

mean v). Without loss of generality we can assume that E(T) = 1.

Most authors have considered a gamma mixing distribution, which leads to a negative

binomial distribution for the observed data (Manton, Woo dbury, and Stallard 1981,

Margolin, Kaplan, and Zeiger 1981). In this case the mixing distribution g(v) is

r(k)V exp(—kv) for v 0

g(v)

0 otheTwise.

where k > 0 and > 0 are unknown parameters. Note that E(T) = 1 and Var(T) = 1/k.

Hence (2.3) becomes

f(yA,k)= (k)Y(k)k, fory=0,1,2,..., (2.4)
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where k 0 is often referred to the index or dispersion parameter. The mean and

variance of Y are

E(Y) = A and Var(Y) A + (l/k)A2. (2.5)

As a natural extension of the above models, several researchers (e.g., Lawless, 1987b,

and Hausman, Hall, and Griliches, 1984) have studied negative binomial regression mod

els in which covariates are related to the parameter A by a positive function A(x). Usually

one takes the common log-linear form A(x) = exp(x’a) so that random and fixed effects

are added on the same exponential scale. The negative binomial regression model may

be interpreted as follows: if T is a positive-value random variable with mean 1 and vari

ance 1/k, and if the distribution of Y, conditional on T = v and covariates x, is Poisson

(vA(x)), then the marginal mean and variance of Y are as in (2.5), and the marginal

distribution of Y is the negative binomial defined by (2.4).

Note that in the negative binomial regression model, the shape parameter k is a

constant for all observations. In this case, the likelihood equations based on the neg

ative binomial model are unbiased and the maximum likelihood estimates of the mean

parameters are consistent, regardless of the true variance function (Lawless, 1987b and

Hausman, Hall, and Griliches 1984).

Several researchers apply the negative binomial model in different situations. For

instance, for count data without covariates, Anscombe (1950) gives a comprehensive

discussion of properties of the model and several examples of the use of the model.

Ehrenberg (1972) applies it to model market behaviour for frequently purchased low-

cost products by assuming that the number of purchases follows the negative binomial

distribution. For count data with covariates, Manton et al. (1981) use it in the analysis

of mortality rates. They assume that variation in individual risk levels follows the gamma

distribution within each category, and that conditional on the individual risk levels, the
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number of cancer deaths follows the Poisson distribution with mean depending on some

covariates including age and race. Hausman, Hall, and Griliches (1984) introduce it to

study the relation between technical innovation and firm characteristics (mainly R&D

spending and sales) at firm level. They assume that there is a random firm effect described

by the gamma distribution, and that number of patents applied for by a company per

year, Y, follows a negative binomial regression model in which E(Y) = x) is a log-linear

function of the covariates: annual R&D spending and sales of the company.

Another useful choice of the mixing distribution g(v) in (2.3) is an inverse Gaussian

distribution (e.g., Folks and Chhikara 1978, Tweedie 1957) for T, with density

g(v) = (27rrv3)_h/2 exp(—(v — 1)2/2rv), v > 0. (2.6)

The parameter r is unknown, and equals Var(T). The marginal distribution of Y from

(2.3) is then a Poisson-inverse-Gaussian model with the mean and variance relationship:

E(Y) = ) and Var(Y) = )+r\2. This model provides a heavier-tailed alternative to the

negative-binomial model, although both have the same mean and variance relationship.

A difficulty of using the model is to compute the integral in (2.3).

Dean, Lawless and Willmot (1989) introduce a Poisson-inverse-Gaussian regression

model by taking the common log-linear form \(x) = exp(x’cv). This model has almost

the same structure and interpretation as the negative binomial regression models. Jor

gensen (1987) and Stein and Juritz (1988) also propose other versions of Poisson-inverse

Gaussian models by using different variance functions. Jorgensen (1987) defines both the

Poisson and inverse-Gaussian distributions as exponential dispersion models so that his

mixture model is an exponential dispersion model and satisfies an appealing convolutions

property. Stein and Juritz’s model is structured so that the regression parameter vector c

is orthogonal to the shape parameter (analogous to the r in the above model) specifying

the degree of extra-Poisson variation. Neither model has, however, the simple structure
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of the above model in terms of the multiplicative random effects.

A log normal mixing distribution for g(v) has also been advocated (e.g., Hinde 1982

and Pocock et al 1981). In this model, the Poisson mean has a lognormal distribution

with location parameter related to a linear function of covariates and a constant scale

parameter.

Efron (1986) introduces the double Poisson distribution as an alternative frequency

distribution to accommodate extra-Poisson variation. The exact double Poisson density

is

h,o(y) = c(A, 0)f,o(y),

where

e\ °

f(y) = (Oh/2e_Oj ( ) (—) , for y = 0,1,2,...,

and the factor c(X, 0) can be calculated as

(9) = f,e(y) 1 + (1 +

Since the constant c(), 0) nearly equals 1, the approximate probability density function

for the double Poisson distribution is f,e(y). Usually ) is referred to as a mean parameter

and 0 as a dispersion parameter. The double Poisson distribution allows us to individually

adjust the mean and variance of the response Y using the parameters \ and 0, and it only

involves rescaled Poisson distributions, in the approximate sense that Y is approximately

expressed by X/0 where X follows the Poisson distribution with mean )0. For count

data with covariates, we can incorporate covariates to either ). or 0 or both. Efron

suggests that the double Poisson regression model may be more appropriate for count

data in which subjects may be, for example, obtained in clumps rather than by genuine

random sampling. Note that such clumped sampling may be one of possible causes of

overdispersion.
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Another approach to modify the Poisson regression distribution is the quasi-likelihood.

This approach specifies only the mean and variance structure of Y implied by the mixed

Poisson model, and estimates the regression coefficients by quasi-likelihood and the vari

ance parameter by the method of moments (e.g., Williams 1982 and Breslow 1987).

The attraction is that unduly rigorous assumptions about the frequency distribution are

avoided. The trade-off is that the estimation based on the quasi-likelihood model is not

as efficient as the fully parametric model (Lawless 1987b).

Several researchers have studied different quasi-likelihood models by assuming dif

ferent relationship between mean and variance. Breslow (1984) introduces the quasi-

likelihood models by assuming that conditional on \ and exposure tj, the response Y

has an independent Poisson distribution with mean E(Y) = and log) = x’cr + e

where c is a vector of unknown parameters and the j are random error terms having

means 0 and a constant unknown variance 2. Note that there are no assumptions on

the probability distributions of random effects j except the first two moments.

Breslow (1984) also proposes two procedures to fit count data to the model. One

is when the data have relatively large values of . In this case = log(Y/t) may

be regarded as having approximate normal distributions with mean x’c and variance

2 + rj2 where rj2 = 1/E(Y). Hence the estimation method is based on the iteration of

the following two steps: (1) obtain estimates of the regression parameters by weighted

least squares solution using the empirical weights w2 = (u2 + )_1, and (2) obtain the

value of a2 by setting the chi-square criterion equal to its degree of freedom, i.e.,

— x’a)2/(a2+ r?) =
—

p,

where p is the number of parameters in the model.

The other is when the data have relatively small values of Y. In this case, the normal

approximation appears in doubt. Since the above assumptions lead to the approximate
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mean and variance relationship: E(}’) = t exp(x’a) and Var(Y) +a2, the

maximum quasi-likelihood estimates are obtained with GLIM (Backer and Nelder, 1978)

by using Poisson error function and the natural log link, declaring log(t2) as an offset,

and defining prior weights w = (1 +u2))—’. The value of 2 is also obtained by setting

the chi-square criterion equal to its degrees of freedom, i.e.,

—

)2/{(
+ 2)}

=
—

where p is the number of parameters in the model. Note that this approach can also apply

to the data that have both small and large values of Y, because the above approximation

of the mean and variance relationship can still hold.

There are also other quasi-likelihood models in the literature for analyzing overdis

persed count data. For instance, many non-Poisson distributions encountered in statis

tical practice may have the connection between the mean and variance of a response Y

as expressed by

Var(Y) = ciE(Y) +c2{E(Y)}2.

This relation was used by Bartlett (1936) to analyze counts for field experiments. Both

Armitage (1957) and Finney (1976) define another mean-variance relationship as

Var(Y) =

and find by the study of examples that 1 < b < 2. Breslow (1990) also uses a quasi

likelihood model with the above mean-variance relationship to analyze viral activity from

pock counts.

Another approach for modifying the Poisson distribution is through finite mixture



Chapter 2. Mixed Poisson Regression Models 14

models which are obtained by taking the mixing distribution in (2.3) as a discrete prob

ability distribution with c points of support. Hence the distribution of Y is

Fr(Y = Ipi,.. ,Pc,i, . . ,A) = pPo(y

where p3 = 1 and p3 > 0 (1 < j c), and Po(y I ,)) are Poisson distribution

functions with mean This approach applies to a wide variety of applications and has

received an increasing amount of attention late. See for example Everitt and Hand (1981)

and Titterington et al (1985). Simar (1976) and Leroux (1989) study finite mixtures

with an unknown number components for overdispersed count data. No researchers have

systematically studied regression-type finite mixture models with covariates.

2.2 Implications of Overdispersion

Overdispersion as an issue has been recognized for many years. In Poisson regression

analysis of count data, residual variability sometimes is greater than what is predicted

by Poisson models, suggesting either lack-of-fit (incorrect mean) or overdispersion, or

both. It is important to note that so far various score tests cannot distinguish lack-

of-fit from the true overdispersion (incorrect variance). In our discussion, we mainly

concentrate on the issue of overdispersion rather than the choice of the link function.

Without consideration of overdispersion, using the Poisson regression model may be

misleading in statistical analysis. This will be illustrated in our examples later.

Many authors have studied the effects of overdispersion on inferences made under the

Poisson regression model. As Cox (1983) indicates, overdispersion in general has two

effects. One is that summary statistics have a larger variance than anticipated under the

simple model. The second effect is a possible loss of efficiency. It is important to note that

the implications of overdispersion may also depend on the type of overdispersion specified.

For the Poisson regression analysis, if the overdispersion is accommodated by randomizing
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the Poisson mean to obtain gamma-Poisson models and quasi-likelihood models, among

others (e.g. Cox 1983), fitting maximum likelihood of a log linear model for Poisson-

distribution data retains high efficiency for a modest amount of overdispersion, provided

that the log linear model determines the expected value of the observed count (Cox, 1983).

Specifically parameter estimates based on the Poisson regression model are generally not

seriously biased or inefficient, but estimated standard errors are too small and tests are

too liberal (Breslow 1990; Cox 1983; Firth 1987; Hill and Tsai 1988; McCullagh and

Nelder 1989).

On the other hand, when there is serious overdispersion, using the usual Poisson

regression may lead to either seriously biased or inefficient parameter estimates. For

instance, in a random coefficient log-linear Poisson regression, the response Y is Poisson

(e) given and /3, but each individual has a different random baseline c or different

responsiveness to treatment /3, parameter estimates of c and /3 as well as their standard

errors based on the Poisson regression may be misleading. In particular, the mean of

a random coefficient is not the Poisson mean evaluated at the average of the random

coefficients (see Neuhaus et al. 1991). Also if the true log-mean is a + x3 + z-y but

only x is recorded, then the assumed log-mean a* + 43 has a random intercept a* + z7

that varies with z. In this case the extent of the overdispersion depends on z, and

the parameter estimate of a* based on the Poisson regression may be seriously biased

when the overdispersion is serious. When the extra-Poisson variation is explained by the

mixed Poisson regression model, we will show, in examples, that without accounting for

the overdispersion may have rather different results from the usual Poisson regression.
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2.3 Tests for Extra-Poisson Variation

There are several overdispersed Poisson regression models which have been discussed in

the literature. Without fitting a particular overdispersed Poisson model, we would like

to know whether there is serious overdispersion. Several methods have been proposed

to detect overdispersion in terms of the Poisson assumption. An informal graphical

approach is introduced by Lambert and Roeder (1993) and Lindsay and Roeder (1992).

For instance, for log-linear Poisson regression, Lambert and Roeder (1993) define the

following function

C() = n’ exp(th
—

()Y2

i=1

where . = exp(x3) and t > 0. They show that C(,,t) tends to be convex when the data

are from a random mean Poisson regression model, random coefficient Poisson regression

model, or double Poisson regression model. Thus they suggest to use the plot of C(t)

against it. The more convex C(it) appears, the more evidence there is of overdispersion

or an omitted variable. It is not clear, however, whether this, approach can apply to other

modified Poisson regression models such as the finite mixture of Poisson regression model

for dealing with extra-Poisson variation.

Another simple approach is to fit a more comprehensive model that contains the

Poisson model and then test for a reduction to the simple model using, for instance,

a likelihood ratio test. This approach, however, may provide misleading results (Dean,

1992). As Lawless (1987a) indicates, in certain circumstances the asymptotic distribu

tions used with these tests may not be reliable because they tend to underestimate the

evidence against the base model.

A widely used approach is through score tests. With these tests we may fit the Poisson
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regression model as a first step in the model building process and test for overdisper

sion. Score tests for detecting extra-Poisson variation have been discussed by Cameron

and Trivedi (1986), Collings and Margolin (1985), Dean and Lawless (1989), and Fisher

(1950). Concern has been expressed over the suitability of tests and confidence interval

based on overly simple models for extra-Poisson. Breslow (1990) proposes tests for pa

rameters that appear in the mean, using model-free estimates of variance for each case.

He found that these to be robust to incorrect specification of the variance function, but

not as powerful as tests based on correct model for response variation. Dean (1992)

develops a unifying theory for all the score tests mentioned above.

Before applying the mixed Poisson regression models, we need to determine whether

the data are overdispersed with respect to the Poisson distribution in Poisson regres

sion models. We use three score test statistics proposed by Dean (1992). They test

the hypothesis of no overdispersion against alternatives representing different forms of

overdispersion. The test statistics are

P —

_____

a

P —

_____

b —

____

and P
=

corresponding to the following specifications of overdispersion:

(a) E(y) j, Var(y1) fL(1 + rt) for r small;

(b) E(y) = jj, Var(y) = jj(1 + rj);

(c) E(y) = Var(y) = (1 + r).

In these formulae ,â is the estimated mean value for the independent identical obser

vations based on Poisson regression. Under H0: r = 0, each asymptotically follows a

standard normal distribution. Note that the difference between (a) and (b) is that the
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former has the approximate forms for the first two moments, whereas the latter has the

exact ones.

For small samples, Dean (1992) provides the following “corrected” versions P, P

and P corresponding to Pa Pb and P respectively.

P, —

—

— (1 —

a

F’
—

_____

b

d
— 1 (yj — — +

an —

where Ijj is the ith diagonal element of the matrix H = Wh/2X(XTWX)_1XTW1/2,

with W = diag(1111,.. . , j%,) and X being an n x p design matrix. Dean (1992) points out

that the distributions of these corrected statistics converges very quickly to normality.

2.4 Mixed Poisson Regression Models

Without covariates, the finite mixture approach has been used for analyzing count data

appearing extra-Poisson variation (c.f. Titterington et al.,1985; Simar 1976; and Leroux,

1989). With covariates, however, this approach has not been systematically studied and

directly applied for analyzing regression-type count data. In this section, we extend the

finite Poisson mixture model to the mixed Poisson regression model by allowing both

the component Poisson parameters and mixing probabilities of a mixture to depend on

covariates. We investigate some basic features of the model. We also discuss identifiability

for the model and provide sufficient conditions for the identifiability.
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2.4.1 The Model

Let the random variable Y denote the ith count response, and let {(y, t, xJ, i =

1,. . . , n} denote observations where yj is the observed value of Y, t a non-negative num

ber representing the time period or exposure during which observation y is generated,

and x (x, m)) a covariate vector in which x and fm) are k1 andk2-dimensional

covariate vectors corresponding to the regression part and the mixing part of the model

respectively. We allow some or all components of x and x to be identical. Usually

the first elements of (m) and x is a 1 corresponding to an intercept. The mixed Poisson

regression model assumes

(1) The unobserved mixing process can occupy any one of c states where c is finite and

unknown;

(2) For each observed count yj, there is an unobserved random variable, A1, representing

the component which generates y. Further, the (1, A1) are pairwisely independent;

(3) A, follow discrete distributions with c points of support, 1,. . . , c, and

Pr(A1 = j) = pj3,

where =i Pu = 1 for each i and

(m)pj3 pj(x1 ,3)
(m)exp(/3,x1 ) .forj = 1 ... c—i and 2.7)

c—i 1(m)
i+>k.exp(/3kx1 )

c—i
(m)

Plc pc(x1 ,3) = 1 Pjj, (2.8)
3=1

where 3 = (th. . . ,,8c._1)’ and /3 = (,6,,. .. ,/3jk2)’, j = 1,. . . , c — 1, are unknown

parameters. Note that all components of /3 appear in each mixing probability Pij,
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(4) Conditional on A: = j, Y follows a Poisson distribution which we denote by

(r)
‘ f3Q’i I x1

Po(y I

=
exp(—Ai3) (2.9)

where we define a log link function between the Poisson mean and covariates as

t(x, aj) t exp(ax), for j = 1,. . . ,

where a (ar,. ..
,
as)’ are unknown parameters , and a = (aji,. . . , a, )‘, j =

1,. . . , c. Note that we could also choose other link functions.

The above assumptions define the unconditional distribution of observations, yj, as a

finite Poisson mixture in which the mixing probabilities, pj, are related to the covariates

m) through the logit function, and the component distributions are Poisson distribu

tions with mean determined by the exposure, t and by the Poisson rate a3),

which is related to the covariates x through an exponential function. Suppose that

observations can be classified into c groups corresponding to the c underlying states, a

vector of unknown parameters a may be interpreted as the coefficients of the Poisson

regression for group j. On the other hand, unknown parameters /3 may be interpreted

as the coefficients of the multinomial regression in which A. and m) are dependent and

independent variables respectively.

Note that our model allows some or all components of m) and x to be identical,

and some coefficients of Poisson rates, as, to be constant across components, i.e., ai =

forj=l,...,cor0inoneorseveralcovariates,i.e.,a31=Oforsomej,j=l,...,c.

Under the above assumptions the probability function of Y satisfies

,m) t• a, /3)
=p ( ) (2.10)
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where pj and Po (yj I ki) are given by (2.7), (2.8) and (2.9) respectively.

We may equivalently view the model as arising from the following sampling scheme:

Observations are independent; For observation i, component j is chosen according to

a multinomial distribution with probability pjj; Subsequently, y is generated from a

Poisson distribution with mean )qj.

A justification for the mixed Poisson regression models is to assume that the coefficient

vector a in the usual Poisson regression model, log()) = a’x, is a random variable

following a discrete distribution with c points of support: Pr(a = aj) = p3 for j = 1,. . . c.

By making the further asumption that p3 are related to a covariate vector m) through

a logit link p(m), /3) we are led to the model of equation (2.10).

Note that this model includes many previously studied models as special cases.

• Choosing c = 1 yields the Poisson regression model;

• Setting r) = m) = 1 and t, = 1 for all i yields an independent Poisson mixture

model (Simar (1976) and Leroux (1989));

• Setting m) = 1 yields an independent finite mixture of Poisson regression. Fur

ther, letting the Poisson rates have common regression parameters and different

intercepts yields a Poisson regression with a random intercept which follows a dis

crete mixing distribution;

• Setting cm) = 1, c,= 2 and)1(x, ai) 0 yields a Poisson regression model with

an extra mass at 0;

• Setting = 1 yields an independent multinomial mixture of Poisson distributions

with constant rates.

For the above model, the mean and variance of observation y are, respectively,

= E(E(IA))
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= tpjjjj (2.11)

and

Var(1) E(Var(Y I At)) + Var(E(Y I Aj)
2

= {= {Piii} } (2.12)

Obviously, Var(E( I Ai)) = 0 if and only if

i1 = i2 = ... = (2.13)

This implies that the mixture model is able to cope with extra-Poisson variation among

Y1,. . . , Y,, due to heterogeneity in the population.

2.4.2 Identifiability

To be able to estimate the parameters of (2.10), it is important to establish identifiabil

ity of the model, that is, two sets of parameters in the mixture which do not agree after

permutation cannot yield the same mixture distribution. Furthermore, identifiability is a

necessary requirement for the usual asymptotic theory to hold for the estimation proce

dures considered latter. For finite mixture models with covariates we define identifiability

as follows.

Let F = {F(x, 0); 0 E , x e Rd} be the class of d-dimensional distribution functions

from which finite mixtures are to be formed. This class is identifiable if

=

for x e Rd,

where p3 = = 1 and pj, j5 are positive, implies that c = and we can order

the summations such that p3 = F = F, j = 1,.. . , c. Note that if a class of models
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is not identifiable we cannot discriminate between (at least two) parameter values using

data generated by the model.

Without covariates, Teicher (1961) proves that the class of finite mixtures of Poisson

distributions is identifiable. Considering covariates, we extend the above definition of

identifiability as follows.

Definition 1: Consider the collection of probability models r) m) t1, a,

f(y x, t, a, /3)}, with a restriction that ) < ... < )iC, parameter space

C x Ax P, sample spaces )1,.. . , Y, and fixed covariate vectors (xT), Xm)), ..., (X
4m))

(r) k (m) k .where x E R 1 and x2 e R 2 for z = 1,. . . ,n. The collection of probability models is

identifiable if for (c, a, /3), (c*, a*, /3*) C x A x 7)

T) (m) a, /3) = f(yt
çr) cm) t, a’ /3*) (2.14)

for all y Y, i = 1,... ,n, implies (c,a,/3) = (c*,a*,/3*).

Note that the order restriction in the definition means that two models are equivalent

if they agree up to permutations of parameters.

We now provide sufficient conditions for identifiability.

Theorem 1: The mixed Poisson regression model is identifiable if both matrices X(m)

and X(r) are full rank, where X(m) = (m)m) .
4m)y and x(r) = . .

.

Proof: Suppose that (c, a, /3), (c*, a*, /3*) satisfy (2.14). This then implies that for each i

and all

I j) = pPo(y I , (2.15)

where p, = p(Xm), /3) and ) = a) are defined above. Note that each side

of (10) may be regarded as a finite Poisson mixture without covariates. Teicher’s result

implies that

c = c, Pij = and =
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for i 1,..., n and j = 1,... , c. By the definition of the model, we obtain

exp(xm)) = exp(/3xm)) for j = 1,... , c — 1 (2.16)

(r) *, (r)exp(ax ) = exp(a3 x ) for j = 1,. . . , c (2.17)

From (2.16) and (2.17) we obtain

(í3,—/3)x1 =Ofor=1,...,c—1andz=1,...,n

(a — *y(r)
= 0 for j = 1,. . . , c and i = 1,. . . , n

or

(/3 /3;)!X(m) = 0 forj = 1,...,c— 1 (2.18)

(crj_a)IX(r) = 0 forj = 1,...,c. (2.19)

Sufficient conditions for identifiability are that both X(m) and X(r) are full rank matrices,

in which case (2.18) and (2.19) imply that (a, /3) = (a*, j3*). We can assume this without

loss of generality such as might be the case in an ANOVA structure, since if it does not

hold we can reparameterize the model accordingly. D

2.5 Parameter Estimation for the mixed Poisson regression models

To find the maximum likelihood estimates of the parameters in the mixed Poisson re

gression model requires an iterative algorithm. Two kinds of widely used algorithms can

be applied to this case: (1) the EM algorithm due to Dempster, Laird and Rubin (1977)

and (2) quasi-Newton algorithms (e.g., Nash 1990, and Dennis and Schanbel 1983). In

this section we discuss how to find the estimates for the mixed Poisson regression model

with a known number of components by combining both algorithms. We also report the

results of a Monte Carlo study which investigates the performance of our codes and some

implementation issues which will be discussed later.
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2.5.1 EM and Quasi-Newton Algorithms

For a fixed number of components c, we obtain maximum likelihood estimates of the

parameters in the above model using the EM algorithm (Dempster, Laird and Rubin

(1977)). As is now standard in mixture model estimation, we implement it by treating

unobservable membership of the observations as missing data and representing a complete

data set for the model. We discuss choice of number of components below.

Suppose that (Y X(T), X(m), T) {(y, ti); i 1,. . . , n} is the observed data

generated by the mixed Poisson regression model. Let (YZ,Xfr),X(m),T) {(,
r) (m) tj; i = 1,. . . , n} be the complete data for the mixture, where the unobserved

quantity z = (zi,. . . , z)’ satisfies

1 ifA.=j
zij =

1. 0 otherwise.

The log likelihood for the complete data is

Y Z, X, T) = zjj log(p3)+ log Po (y
=1 j=1 i=1 j=1

where Pu and Po (yj )u) are given by (2.7), (2.8) and (2.9) respectively.

The EM approach finds the maximum likelihood estimates using an iterative proce

dure consisting of two steps: an E-step and an M-step. At the E-step, it replaces the

missing data by its expectation conditional on the observed data. At the M-step, it finds

the parameter estimates which maximize the expected log likelihood for the complete

data, conditional on the expected values of the missing data. In our case, this procedure

can be stated as follows..

E-step: Given a° and 9(°), replace the missing data Z by its expectation conditioned

on these initial values of the parameters and the observed data, (Y x(T), X(m), T). In

this case, the conditional expectation of the jth component of z equals the probability
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that the observation y was generated by the jth component of the mixture distribution,

conditional on the parameters, the data and the covariates. Denote the conditional

expectation of the jth component of z by ,,(a(°), /3(0)). Then

= E (z3 a(0),/3(0),Y;IvI,x(m),X)

= Pr (z = 1
(m) /3(0)) f, ( (r) aco))

;1 (Xcm/3o) fi ( i x,ti,a°))’
1•• (2.20)

1VI—step: Given conditional probabilities {(a(°), /3(0))
= (i,1,.. . , .i,)’; i = 1,. . . ,

obtain estimates of the parameters by maximizing, with respect to a and /3,

Q(a,/3 a°,/3°) = E {1C(cx,/3 I yZ,X(r),X(m),T) I

where

Qi
=

j(a°, 13(0)) log(p) and

Q2

=

(O), /3(0)) log(Po(y

The estimated parameters, & and , satisfy the following M-step equations

I&,/ i [1og(Po(y I )1 = 0 (2.21)

- I&, = -- 1/3= L1zj [1og(p3)} = 0. (2.22)

Since closed form solutions of these equations are unavailable, we use a quasi-Newton

approach (Nash, 1990) to obtain estimates. This approach makes use of functions Q, and

its gradient g = (, -)‘ to find the estimates through an iterative formula

(&, $) = (a, /3) + kBg (2.23)
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where B is a transformation matrix evaluated at (a, ), and k the step length. Note that

when B in the above iterative equation equals the inverse Hessian matrix of function

Q, this is Newton’s method. We implement the E and M steps in the following way to

obtain parameter estimates.

Step 0: Specify starting values a° = (a°, . . . , a°) and (o) (9O) O) and two

tolerance o and e;

Step 1: (E-step) Compute j = (i = 1,.. .,n), using (2.20). To avoid

overflow in the calculation of we divide both the numerator and denominator

in (2.20) by the largest term in the sum in the denominator;

Step 2: (M-step) Find values of & and 3 to solve (2.21) and (2.22) using the quasi-

Newton algorithm (Nash, 1990). This algorithm consists of two parts: a matrix

updating formula for B and a linear search procedure for k in (2.23). Given B and

w (0 <w < 1), it chooses k = 1, w,w2,..., successively until

0 < < [Q(&,$) — Q(a,/3)]/tTg for ei <<1

where t (&, ) — (a, /3) = —kBg and is given. Given t, B is updated by

B = dttT
— [t(BSg) + (BSg)tT]/tTSg

where Sg = g(&, /3) — g(a, /3) and ci (1 + 6gTBSg)/tTSg. Initially, B is set equal

to an identity matrix I. Reset B = I if any of the following occurs:

(a): tTg 0;

(b): (&,)=(a,/3);

(c): tT6g 0.
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The stopping criterion for the iterations is

c k1 c• k2

II (&, $) — (a, i3) > I — aj, I + I — /3:j,i 1< E2

j=1 1=1 3=1 1=1

where e2 is a very small positive number;

Step 3: If at least one of the following conditions is true, set a° = & and 9(O) = 3, and

go to Step 1; Otherwise, stop.

(0) c k1 (0)(1) ha—a IIE1>1Ia,i—a1 I;

(2) II — 3(°) ij,i
— /3 I e;

(3) I l(&, / I Y X(m), T) — l(a(°), I “ X(r), X(m), T) o, where l(a, j3

Y, X(r), X(m), T) is the observed log likelihood function.

Note that we could have used other versions of quasi Newtonwhich use different updating

scheme for B.

Dempster, Laird and Rubin (1977) and Wu (1983) discussed the convergence proper

ties of the EM algorithm in a general setting. Since Q(a, /3 I 3(0)) and its first order

partial derivatives are continuous in a, 3, a° and 3(°), applying Wu’s theorems (1983)

in our case, we conclude that the sequence of the observed data likelihood l(a(2’), I
YXfr),X(m),T) converges to a local maximum value l(a*,B* I YX(2’),X(m),T), pro

vided that it is not trapped at any saddle point. Furthermore, if II — II— 0,

,j3(P+1)
— i9’ II—÷ 0 and the set of local maxima with a given 1 value is discrete, then

(a(), /3(r)) converges to (a*, ,3*). Note that for some starting values the stopping criteria

in Step 3 above might not be valid. Also l(a, /3 I Y X(m), T) need not, in general,

be globally concave. For these reasons, we need to choose initial values carefully in order

to increase the chance that the algorithm converges to the global maximum. We will

discuss our starting value approach latter.
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Note that the above EM algorithm does not directly yield the estimates of the stan

dard errors corresponding to the parameter estimates. On the other hand, when the

number of components c is known, asymptotic normality of /((&, /3) — (a, 3)) is easily

proved under standard regularity conditions (Lehmann, 1983). To approximate standard

error, we compute o-(&,,1) and a(i3,) from the diagonal elements of the inverse of the

(c * k1 + (c — 1) *k2)-dimensional observed information matrix with c fixed at ê which is

defined as

821 821
32 3c

Y,Xfr),X(m),T) —

—

821 821

8c8fl 8132

An alternative algorithm to the EM which maximizes the observed log-likelihood

l(a,8) l(cr,/3 I YX(r),X(m),T) 1log{1p:jPo(yj I )q3)} is a quasi-Newton

algorithm (e.g., Nash 1990). Instead of using the E and M steps, we maximize l(cx, 3) by

computing successive parameter iterates via the formula

(a(1+1), j3(P+1))
= (a,19(P)) + kBjgi

where B1 is the transform matrix evaluated at (a(”),13(P)), gi the gradient of l(a, 3) at

(a0’), /3(r)), and k is a search step length. Note that the maximization of l(a, /3) is

different from maximizing the complete data log-likelihood Q(a, /3), though the quasi-

Newton algorithm is applied in both cases.

In principle either the EM or the quasi-likelihood algorithm can be used to produce

the maximum likelihood estimates for the mixed Poisson regression model. The EM and

quasi-Newton algorithms, however, have complementary strengths. The convergence

rate of the EM algorithm is linear which can be quite slow. In fact adjectives such as

‘exceedingly’ McCullagh and Nelder (1989), ‘maddeningly’ Redner and Walker (1984),

and ‘painfully’ Haberma’n (1977) have been used. As proven by Wu(1983), however, the
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EM algorithm converges to a stationary point regardless of the initial guess. A quasi-

Newton algorithm on the other hand, often requires rather good initial guesses in order

to converge, but the convergence rate in a neighborhood of the solution is much faster

than for the EM. The rate is quadratic for a quasi-Newton algorithm.

A sensible combination of these two algorithms is to use the EM until the iterates are

in a neighborhood of the solution and finish up with the quasi-Newton algorithm. This

is an obvious algorithm to propose and suggestions similar to this have been made. Bock

and Aitkin (1981) suggest performing a few EM steps and then one Newton-Raphson

step. Dempster et al (1977) suggest using a Newton step while Redner and Walker (1984)

suggest switching to a quasi-Newton procedure at some point. Note that using the quasi-

Newton algorithm, we can obtain the approximate standard errors of the estimates as

by-product.

To combine the EM and the quasi-Newton algorithm for our case, we modify the

above Step 3 as follows:

Step 3’: (a) If at least one of the following conditions is true, set = & and 3(°) =

and go to Step 1; Otherwise, go to (b).

(1) & - 1 I - cr e;

(2) II — II E= E1 I i.i,i —
i34 I c;

(3) I l(&, I y X(r), j(m), T) — l(c(°), ,6°) I y; x(r), (m), T)

(b) Maximize the observed likelihood function l(, I y, M, X(m), X(T)) using the

quasi-Newton algorithm (Nash, 1990) with & and 3 as initial values. Then, stop.

2.5.2 Starting Values

We assume that c is known. The first step of our approach divides the data, {yi,. . . , y},

into c groups in terms of its percentiles and fits the data into a c-component indepen

dent Poisson mixture model without covariates by choosing initial values based on the
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percentile information. The second step, if necessary, fits the data into a mixed Poisson

regression model containing only one covariate in either Poisson rate or mixing proba

bilities in such a way that the initial values of the parameters included in the previous

mixture model equal the estimates of the corresponding parameters from the previous

fitting model, and initial values of the parameters not in the previous fitting model are

set to a small value, say, 0.00001. This process is iterated until a complete set of ini

tial values for the mixture model is obtained. The motivation of this ad hoc approach

is based on the idea of cluster analysis. At each iteration, we use different criteria to

classify the data. First, the data are classified in terms of its percentiles. Then the data

are classified in terms ofindependent Poisson mixture model, and subsequently in terms

of mixed Poisson regression models. Note that choosing a complete set of initial values

for a mixture model step by step in such a way guarantees that the likelihood values will

increase in each step. Also our approach obtains maximum likelihood estimates for a

sequence of nested mixture models.

We use an example to explain this approach. Suppose that we need to choose initial

values to fit a 3-component mixture model with covariates x” = (1, d) and cm) (1, e)

where d: and e are real numbers. First, we find 16.5, 33.0, 49.5, 66.0 and 82.5 percentiles

of observations {yi,. . . , y} denoted as ql-q5 respectively, and fit the data into a 3-

(r) (m) . .component independent Poisson mixture model (x1 = = (1)) with the initial

values of a1,1, cr2,1 and cr3,1 equal to log(qi), log(q3) and log(q5) respectively, and both

the initial values of and /32,1 equal to 0. Note that under this specification and an

exponential link function, the initial values of X3(x, cry), (j = 1,2, 3) are equal to q,

q3 and q5 with the same mixing probabilities 1/3. Second, we fit the data into the 3-

component Poisson mixture model with x = (1, d) and (m) = (1) by choosing the

initial values of cr1,2, cv2,2 and cr3,2 equal to 0.00001 and the initial values of the other

parameters equal to the estimates of the corresponding parameters of the first fitting
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model. Finally, we choose initial values for the 3-component Poisson mixture model with

= (l,d:) and (m) =(1,e) in such a way that /31,2 and /32,2 are equal to 0.00001 and

the other parameters is equal to the estimates of corresponding parameters of the second

fitting model.

2.6 A Monte Carlo Study

This section consists of two parts. In the first part, we use Monte Carlo methods to

examine the performance of the above algorithm. In particular, we wished to verify the

reliability of our code, determine the precision of estimates and investigate some model

selection criteria. We use three 3-component mixture models. For each, we analyzed 100

replicates, each with 100 observations. In the second part, we use Monte Carlo methods

to study how the mixed Poisson regression models can be used to analyze some typical

problems in practice. We also fit the simulated data to Poisson regression, models and

compare them with the mixed Poisson regression models.

2.6.1 Performance of the Estimation Algorithm’

Two different approaches for choosing initial values are compared in the study. In one, we

use the true parameter values of the model generating the observations as initial values

in order to determine performance of the algorithm in the best case. The other uses

the true parameter values of a, c2,1 and a3,1 as initial values, chooses initial values of

/31,1 and /32,1 according to the approach described in section 2.5.2, and fits the samples

to a 3-component independent Poisson mixture model. Then, following the approach of

section 2.5.2, we choose a complete set of initial values for the parameters of the model

generating the samples. These two different approaches of choosing initial values lead to

essentially the same estimates. We describe the details below.
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Model 1: A model with Poisson rates depending on one time-dependent covariate, with

constant mixing probabilities and t, = 1. For the regression part,

r) = (1, di), (2.24)

whered=0.2fori=1,...,10,d1=0.4fori=11,...,20,etc.,and

a (ai, a2, a3) (2.25)

where o = (2.8, 2.9), c4 = (2.6, 0.4) and a = (3.6, 0.2). For the mixing part,

(m)
= 1

/9 = (,6, /92) = (1.1, 0.6).

For the Poisson rates, we choose an exponential link function defined by

= exp(2.8 — 2.9d) (2.26)

,\2(xT),a2) exp(2.6 + 0.4d) (2.27)

= exp(3.6 + 0.2d), (2.28)

and the mixing probabilities

Pl(Xm)/3) 0.5156,

p2(xH,/3) 0.3127

and p3(xi9) 0.1717.

Model 2: A model with constant Poisson rates and mixing probabilities depending on

one time-dependent covariate. That is, for the regression part,

(r)
=

a (ai, a2, a3) = (0.4, 3.0, 2.0)
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and for the mixing part,

where cl2 is defined as above, and

(m) = (1, d) (2.29)

i3(th, /32)

where = (2.0, —1.4) and = (—2.0, 1.5). The Poisson rates, then, are

(r)x ,ai) 1.49,

(r)
X ,a2) 20.08

and (r)
X ,a3) 7.39,

and the mixing probabilities are given by

(2.30)

(m)pi(x ,3) =
exp(2.0 — 2.0d)

exp(2.0 — 2.0c4) + exp(—1.4 +
(2.31)

(m)p2(x ,i3) =

(m)p3(x ,/3) =

exp(—1.4 + 1.5d1)
exp(2.0 — 2.Odj + exp(—1.4 + 1.5d) + 1

1
exp(2.0 — 2.0d) + exp(—1.4 + 1.5c4) + 1

(2.32)

Model 3: Both the Poisson rates and mixing probabilities depend on the covariate d.

For the regression part, x, a and a) are given by (2.24), (2.25), (2.26), (2.27),

and (2.28) respectively; For the mixing part, cm) /3 andp3(Xm), /3) are given by (2.29),

(2.30), (2.31), (2.32) and (2.33) respectively.

We chose the above parameter values so that the Poisson rate functions do not cross

each other and the ranges of the mixing probabilities for each component do not overlap.

We would expect that in this case, the algorithm would perform well.

l.5d:) + 1

(2.33)
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We carried out these simulations, each with 100 replicates. In each case, the response

y were obtained by first generating a uniform (0,1) random number u and then assigning

PoissonXi(xT), ai) if u p1(m) ,B), y ‘-‘.‘ Poisson(A2(x,a2)) ifP1(X(m) 3) <

(m) (m) . (r) . (m) (m)u, pi(x ,/3)+p2(x ,8),ory ‘-.‘Poisson(.)is(x ,as))ifu >p1(x ,/3)+p2(x ,/3).

The results of the Monte Carlo study are presented in Table 2.1. The table shows

that for each parameter the mean of estimates is very close to the true value in the

models, suggesting that the global maximum of the observed likelihood is reached. For

model 1, the sample means are quite close to the true values and the standard deviations

are relatively small. Although the Poisson rates of model 2 are estimated accurately,

estimates of mixing probabilities are more variable. This suggests that estimating mixing

probability parameters in this model is intrinsically more difficult than estimating Poisson

rates. This agrees with observations in the literature (Titterington et al., 1985; Mclachlan

and Basford, 1988). Estimates of the parameters of model 3 illustrate the same pattern

as in Model 2 where estimates of the mixing probability parameters are more variable

than those of Poisson rate parameters. Note, however, that although the estimates

of mixing probability parameters, 9, vary somewhat, the estimated mixing probabilities,

(m) . .

p3 (x , ), are more precise due to the multimonial link function between the parameters

and mixing probabilities.

Our implementation of the algorithm used FORTRAN on a Sun SPARC station 1.

The average number of the iterations of the EM algorithm for Model 1 is 4.75, 4.93 for

Model 2 and 55.6 for Model 3 under the stopping criterion = 0.01, and average time is

6.65, 7.39 and 79.2 seconds respectively.

2.6.2 The mixed Poisson regression Models For Some Typical Problems

In a clinical trial it may not be uncommon for a treatment to have a significant effect

on some subjects but not on others. Thus subjects under treatment may be classified
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into two groups: responding and non-responding. Models which ignore this distinction

often are unable to detect such a treatment effect. For example, in a clinical trial carried

out at British Columbia Children’s Hospital which investigated the effect of intravenous

gammaglobulin (IVIG) on suppression of epileptic seizures, the clinical investigators con

ducting this study found that some patients responded to the treatment and others did

not. Using Poisson regression to analyze the seizure count data, we found that the data

are seriously overdispersed. To explore whether the proposed mixed Poisson regression

models can be used to describe and analyze such a scenario, we carried out he following

Monte Carlo study.

In the study, we used eight 2-component mixed Poisson regression models in which

the mixing probabilities are constant Pi and P2, and the Poisson rates are defined by

= exp(ai+a2xj)

and 2(x,ai) = exp(ai),

where x = 1 if i < 50; and 0 otherwise, and i = 1,. . . , 100. This model describes

the following situation: there are 50 subjects in each of two groups (e.g., treatment and

control groups) for a study which records the observed responses for all subjects; the

background effects are characterized by the Poisson rate exp(ai); Pi 100% of subjects in

the treatment group respond to the treatment which has an effects characterized by the

Poisson rate exp(ai +a2) where a2 < 0; and the other P2 100% subjects in the treatment

group do not respond the treatment, and their responses are the same as the background

effects. These eight models in the study are defined by choosing all combinations of

parameter values from the following: p1 = 0.6, 0.4, a1 = 1.0, 2.0, and a2 = —0.5,

—2.5. Note that the actual Poisson rates of the background effects are 2.7183 and 7.3891

evaluated by exp(ai) respectively, and the rates of the treatment effects 1.6487, 4.4817,

0.2231 and 0.6065 by exp(ai + a2) respectively.
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We carried out these simulations, each with 200 replicates. The responses yj were

obtained by first generating a uniform (0,1) random number u and then assigning yj

Poisson(i(x, a1,a2)) if u p1 and y, Poisson(.\2(x,ai)) otherwise. Our implemen

tation of the algorithm used FORTRAN version on a Sun SPARC station 1.

The results are reported in Table 2.2 and Table 2.3. It summarizes the properties

of the estimated coefficients. Among all eight models the means of &i, & and j are

very close to the their true values, and their sample standard deviations are very small

compared with the magiitudes of the estimates. This means the maximum likelihood

estimates are achievable and robust for not only different choices of background and treat

ment effect but also different choices of responding rates. Since the means and medians

of the parameter estimates are very close and upper and lower quartiles are roughly sym

metric at the center of the means, the parameter estimates follow approximately normal

distributions. Indeed, the histograms of the parameter estimates (not given here) show

normal distribution patterns.

To investigate the treatment effect, we test the hypothesis of a2 = 0 by computing the

likelihood ratio test statistic. Note that the chi-squared approximation for the likelihood

ratio test statistic may not be justified here because the regularity conditions may be

not satisfied on the boundary. We use it in these cases as a guideline. The test results

are summarized in Table 2.4 in which the numerator in each cell is the number of the

times that we reject th hypothesis at 5% significance level, and the denominator is

the total number of the replicates. Clearly when the treatment effect is highly significant

(a2 = —2.5), we reject the hypothesis of a2 = 0 for almost all replicates at 5 % significance

level. This means the likelihood ratio test may work well in these cases. On the other

hand, when the treatment effect is small (a2 = —0.5), the likelihood ratio test may not

be appropriate partially because the difference between the background and treatment

effects may not be significant enough for the test. The baseline effects may not affect the
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tests significantly, while the mixing probabilities (respond rate) have some impact on the

tests. Note that when P’ = 0.4, there may be only 20 subjects out of 200 who may have

a significant treatment effect.

In order to compare the mixed Poisson regression model with Poisson regression, we

fitted the simulated data with the Poisson regression model with covariate (1, xi). The

results are summarized in Table 2.5. The means of the intercept estimates in the Poisson

regression are very close to the true values in these cases, suggesting that the back

ground effects are appropriately estimated. However the treatment effects are seriously

underestimated in these cases because the model cannot distinguish the non-responding

subjects from the responding subjects. For example, in the two cases of the low treatment

(cr2 = —0.5) and low background (ai = 1.0) effect, the estimate of the treatment effect

by the Poisson regression is —0.2668 for the mixing probability p = 0.6 and —0.1611

for p = 0.4, which are about one half and one quarter of the true parameter value

respectively; In the two cases of the high treatment (a2 = —2.5) and high background

(a1 = 2.0) effect, the estimate of the treatment effect by the Poisson regression is -0.8065

for the mixing probability p = 0.6 and —0.4536 for P1 = 0.4, which are less than one

quarter and one fifth of the true value respectively. We also carried out the test for the

hypothesis of a2 = 0 using the likelihood ratio test statistic. The test results given in

Table 2.6 in which the numerator in each cell is the number of times that we reject the

hypothesis, and the denominator is the total number of these tests. For example, in the

two cases of the low background (ai = 1.0) and low treatment (a2 = —0.5) effect, 99

times out of 200 for mixing probability p = 0.6 and 47 times out of 200 for Pi = 0.4,

respectively, that we reject the hypothesis at 5% significance level; In the two cases of the

high background (ai = 2.0) and high treatment (a2 = —2.5) effect, we always reject the

hypothesis at 5% significance level for both the mixing probability values. Note that the

Poisson regression is more powerful except one case, although Table 2.4 and Table 2.6
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have a similar pattern.

Using the mixed Poisson regression model, we can classify subjects as responding

and non-responding. In the Monte Carlo study, for x = 1, yj is identified with group

one generated by Poissn rate .Xi(x, a, o2) if the estimated posterior probability of

being group one > 0.5, and with the other generated by Poisson rate )2(x, ai)

otherwise. For 200 replicates the mean of the number of subjects in the treatment group

who responded to the treatment is very close to 5OPi, suggesting that the classification

criterion works well.

2.7 Implementation Issues

2.7.1 Model Selection

We need to address the following two issues when applying a mixed Poisson regression

model: (a) We must determine the number of components c, and (b) we must have a

method to carry out inference about model parameters. When c is known, inference for

the parameters can be bsed on a likelihood ratio test. In practice, however, this is rarely

the case. When c is unknown, the likelihood ratio test is no longer valid for determining

c or testing hypotheses about parameter values. This is because the usual regularity con

ditions do not hold for the likelihood ratio test statistic to have its standard asymptotic

null distribution of chi-squared with degree of freedom equal to the difference between the

number of parameters under the null and alternative hypotheses. One of the regularity

conditions requires that the parameters in a mixture are identifiable without any restric

tion. This ensures that the information matrix is non-singular. The main problem here

is the lack of identifiability even when the class of the mixed Poisson regression models

is identifiable. As McLachlan and Basford (1988) illustrate this, consider a 2-component
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mixture without covariates. The null hypothesis that there is one underlying population,

H0 : c = 1,

can be approached by testing whether p = 1, which is on the boundary of the parameter

space with a consequent breakdown in the standard regularity conditions. Alternatively,

we can view H0 as testing for whether ) = ‘2, where now the value of p is irrelevant.

If for a specified value of P1 regularity conditions held, so that the log likelihood ratio

test statistic under H0 were distributed asymptotically as chi-squared, then the null

asymptotic distribution of the likelihood ratio test statistic where P1 is unspecified, would

correspond to the maximum of a set of dependent chi-squared variables. A comprehensive

account of the breakdown in regularity conditions has been give by Ghosh and Sen (1985);

see also Hartigan (l985a,b), Titterington, Smith and Makov (1985), and Mclachlan and

Basford (1988). We propose the following methods for model selection.

In general, there are two criteria used for statistical model selection: the prillciple

of parsimony and closeness to the true distribution. The former means that more par

simonious use of parameters should be pursued so as to raise the accuracy of estimates

for unknown parameters in a model. On the other hand, closeness to the true model

is incompatible with parsimony of parameters. These two criteria form a trade-off: if

one pursues one of the Oriteria, the other must be necessarily sacrificed. The multiple

correlation coefficient adjusted for the degrees of freedom may be most commonly used

statistic that incorporates these two incompatible criteria into a single statistic.

Akaike (1973) has proposed a more general as well as more widely applicable statistic

that ingeniously incorporates the above two criteria. As it is based on the Kullback

Leibler Information Criterion (KLIC), Akaike’s statistic is called Akaike Information

Criterion and is abbreviated as the AIC. The AIC can be derived as follows.
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Suppose that the adequacy of a postulated model F(y 0) to approximate the un

known true distribution G(Y) is measured by the KLIC

if ri i-if n\\ i—i ri g
I jY. r ‘V. Li)) = rIGIog o

where 0 is a finite-dimensional vector of unknown parameters; g and f are density (or

probability) functions of G and F respectively; EG(.) stands for expectation with respect

to the true distribution 0. We define a pseudo-true model F(. I 0) with a parameter

value 0 such that

I(G: F(. 0)) <I(G: F(. I 0))

for any possible 0 in the admissible parameter space. The model F(. I Oo) may be

regarded as the most adequate relatively within the family models F(y I 0) in the sense

that the KLIC for FQ,, I 0) is minimized by F(y I Oo).

Assuming that 1(0 : F(. I 0)) = O(n’), i.e., the pseudo-true model is nearly true,

Akaike (1973) derives

AIC(F(. 0)) = —2 log f(y I Ô) + 2k

as an almost unbiased estimate for —2EG[log f(Y I &o)] where Ô is the maximum likelihood

estimate for 0 based on observation y and k is the number of unknown parameters, i.e.,

the dimension of 0. Note that the first term of the AIC measures the goodness-of-fit of the

model to a given set of data, because f(y I 0) is the maximized likelihood function. The

second term is interpreted as representing a penalty that should be paid for increasing the

number of parameters. In this sense the AIC may be regarded as an explicit formation

of the so-called principle of parsimony in model building.

Schwartz (1978) has proposed another model selection criterion: the Bayesian Infor

mation Criterion (BIC). The BIC is defined through a larger-sample version of Bayes
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procedures by placing a prior distribution on the parameter space including all dimen

sions and models considered. It can be derived as follows.

We assume that observations are generated by a distribution from a family with a

density

f(y,O) = exp(9 . x(y) —

where 0 e 3, a convex subset of the K-dimensional Euclidean space, and x(y) is the

sufficient K-dimensional statistic. The competing models are denoted by sets m3 e

where m3 is a k- dimensional linear submanifold of K-dimensional space.

Since the a priori distribution need not be known exactly for the asymptotic results,

we assume that it is of the form aj,uj, where a3 is the a priori probability of the jth

model being the true one, and the conditional a priori distribution of 0 given the j

model, has ak3-dimensional density that is bounded and locally bounded away form zero

throughout m3 E 0.

Finally, we assume a fixed penalty for guessing the wrong model. Under this assump

tion, the Bayes solution consists of selecting the model that is a posterior most probable.

That is equivalent to choosing the j that maximizes

S(X,n,j) = iogf aexp(X.O — b(0)n)d(0),

where the integral extend over m3 E 0, and X is the averaged x-statistic (1/n) > X(yj).

For fixed X and j, as n tends to infinity, we obtain the asymptotic expansion of

S(X,n,j) as

S(X,n,j) = nsup(X .0 — b(0)) — klogn + R,

where the remainder R = R(X, n,j) is bounded in n for fixed x and j. Therefore, for a

large sample, maximizing S(X, n, j) in j is equivalent to maximizing

IC=logf(yi,...,y) — klogn,
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wheref3(yi,.. . , y) is the maximum likelihood function for model j, and k3 is the di

mension of the model.

Qualitatively both the AIC and BIC give a mathematical formulation of the principle

of parsimony in model building. Quantitatively, since the BIC differs from the AIC

only in that the dimension is multiplied by (log n)/2, the BIC leans more than the AIC

towards lower-dimensional models. For large numbers of observations the two model

selection procedures differ markedly from each other.

McLachlan and Basford (1988) discussed the use of AIC to determine the number of

components in a finite mixture model. Leroux and Puterman (1992) applied AIC and

BIC to select independent Poisson mixture models. We define the AIC and BIC criteria

for the mixed Poisson regression model as follows:

• AIC: choose the model for which l(X) — ac(X) is largest;

• BIC: choose the model for which l(X) — (1og(n))a(X) is largest

where l(X) is the maximum log-likelihood of the mixture with c components and co

variate X, a(X) = c * k1 + (c — 1) * k2 where k1 and k2 are the dimensions of a3 and

13j respectively, and n is the total number of observations. As discussed above, these two

criteria do not always select the same model; the BIC tends to select a smaller number

of components than AIC when there are 8 or more observations.

Using the BIC (Ale), our model selection approach consists of two stages. At the

first stage, we determine c to maximize BIC (AIC) values for the saturated 1-3 (1-4)

component mixture models that contain all possible covariates in both rates and mixing

probabilities. Although we compute both AIC and BIC values in our applications, we

recommend using BIC because Monte Carlo studies reported below suggest that BIC is

more reliable in the model selection. At the second stage, our model selection approach

depends on our analysis objectives. If our goal is inference about some particular model
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parameter, we carry out likelihood ratio tests for nested c-component mixture models. If

the goal is choosillg an appropriate model to fit the data, we select a model to maximize

BIC (AIC) values among c-component mixture models concerned. Since this selection

method is heuristic and oniy gives a guideline in applications, some other specific concerns

in model selection should be taken into account from case to case. For instance, in

some applications the number of components and some parameters in a mixture may

be explicitly or implicitly determined by underlying theory, especially when a mixture

model is intended as a direct representation of the underlying physical phenomenon. For

a housing market in disequilibrium, the market has two phases: supply and demand. If

we regard the phase in o.peration in any given month to be the unobservable underlying

state because it may not be clear which phase is in operation, we have a two-component

mixture model. Goldfeld and Quandt (1973) discuss such a model and denote it as a

switching regression model.

In the Monte Carlo studies discussed in Section 2.6.1, we computed both AIC and

BIC values for all possible mixed 2 to 4 component models. Table 2.7 shows that AIC

and BIC are reliable methods for choosing the correct models. AIC chose the correct

model 96% of the time for Model 1, 87% of the time for Model 2 and 91% of the time for

Model 3. When AIC failed to select the correct model, it always chose a model with too

many components, suggesting that AIC may under-penalize the number of parameters

in the mixtures. On the other hand, BIC always chose the correct models, suggesting

that BIC may not over-penalize the number of parameters. Note that all sample sizes

in the Monte Carlo studies are 100. The examples in the next section will exhibit this

procedure in practice.
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2.7.2 Classification

In classification, the nuiriber and composition of groups are not known at the start of

the investigation. On occasion, the aim of a classification study may be to enable the

subsequent assignment of new objects. For instance, in pattern recognition (Fukunaga,

1972, and Duda and Hart, 1973), information about ‘patterns’ can be obtained from a

‘training’ set of observations which may be analyzed by classification method.

Fitting the mixed Poisson regression models to Poisson-distribution data, we assume

that each observation belongs one of c groups characterized by the Poisson rate functions.

One possible use of the mixed Poisson regression model is to classify data on the basis

of a probabilistic model rather than an ad hoc clustering technique. Since in (2.20)

is the estimated posterior probability that the ith observation yj is generated by the

jth component distribution f (y I r) cj), this information can be used to classify

observations into different groups characterized by the component distributions. For

instance, for a c-component mixture model we may postulate c different groups defined by

the c different forms of Poisson rates, c) (j = 1,.. .., c) of the model. According

to the classification criterion, an observation i is identified with the component which

maximizes . In our Monte Carlo study this classification criterion works very well.

Also in our applications, maximum values for this quantity all exceed 0.5. Note that if the

parameters of the model were known, this classification criterion would be the optimal

or Bayes rule (Anderson, 1984, chapter 6) which minimizes the overall error rate. Also

such a approach has been referred to as latent class analysis (Aitkin et al. 1981). We

illustrate this approach in examples below.
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2.7.3 Residual Analysis and Goodness-of-fit Test

Once a mixed Poisson regression model has been fit to a set of observations, it is essential

to the quality of the fit. For this purpose, we consider Pearson, deviance and likelihood

residuals for mixed Poisson regression models, and use them to identify individually

poorly fitting observations and influential observations on overall fit of the model as well.

We also define a quantity to measure influence of individual observations on the set of

parameter estimates, and use it to identify influential obseryations. In addition, we give

goodness-of-fit statistics for mixed Poisson regression models.

Definitions of Residuals

For Normal regression models, we can express an observation yj of the response vari

able in the form

yi = + (y
—

where is the maximum likelihood estimate of the mean of yj, i.e., data=fitted value

+residual. Residuals are used in many procedures designed to detect various types of

disagreement between data and assumed model. For example, the scatterplot of residuals

versus fitted values that accompanies a linear least square fit is a standard tool used to

diagnose nonconstant variance, curvature, and outliers. Diagnostic tools such as this

plot have two important uses. First, they may result in the recognition of important

phenomena that might otherwise have gone unnoticed. Outlier detection is an example

of this, where an outlying case may indicate conditions under which a process works

differently, possible worse or better. Second, the diagnostic methods can be used to

suggest appropriate remedial action to the analysis of the model.

For generalized linear models there are at least three types of generalized residuals
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which are widely used in practice. One is the Pearson residual defined as

234
—

where V(j) is the variance function and is the maximum likelihood estimate of the ith

mean of fitted to the regression model. These residuals are the signed square roots of the

contribution to the Pearson goodness-of-fit statistic X2. For the usual Poisson regression

model, the Pearson residual is

yi — ili
r=

where = exp(x&) and & is the maximum likelihood estimates of the regression pa

rameters; for the usual logistic regression model,

yj—m:j3j

—

________

where j3 = logit(x&).

The second type of generalized residuals is deviance residual defined as

rd = sign(yj — j)/2[l(y, Yz) — l(/%, y)}

= sign(yj — (2.35)

where l(, yj) is the log likelihood function for y and d is the contribution to the deviance

goodness-of-fit statistic D. For the usual Poisson regression model,

d = 2(y: 1n(y/)
—

yj + Iti),

where j% = exp(x&); for the usual logistic regression model,

d = 2yln () + 2(m — y)ln
(mi_ i)

m—t

where t% = mj3 = mlogit(x&). The third type of generalized residuals is the likelihood

residual which is derived by comparing the deviance obtained on fitting a linear model
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to the complete set of n cases, with the deviance obtained when the same model is fitted

to the n — 1 cases, excluding the ith, for i = 1,... , n. This gives rise to a quantity that

measures the change in the deviance when each case in turn is excluded from the data

set. The likelihood residual for the ith case is defined as

rj = sign(y — — D() (2.36)

where D and D() are the deviances based on n and n — 1 cases respectively. Pregibon

(1981) derives useful one step approximation for the above exact value by

I h,
ri slgn(yj

—

1 — hpt +

where h is the ith diagonal element of the n x n matrix

H =W’/2X(X’WX)’X’W1/2. (2.37)

In this expression for H, W is the n x n diagonal matrix of weights used in fitting

the linear model and X is the n x k design matrix. Fo.r Poisson regression model,

W = diag{%j,.. . , ,t%}; for logistic regression model, the ith diagonal element of W is

mj3(1 —j3).

Note that when the response Y follows a Normal distribution, r follows x distri

bution; when Y follows a non-Normal distribution, r does not asymptotically follows

x distribution as n — because the asymptotical theory does not hold in this case

(Williams, 1987).

To standardize the above residuals so that they have approximate unit variance, one

needs to account for the inherent variation in the fitted values /j. In general, for any type

of residuals R(y1,i2), Pierce and Schafer (1986) show that its variance is approximately

given by

Var[R(y, 2)] Var[R(y2,tJ] — Var[(f — it)/SD(y)] (2.38)



Chapter 2. Mixed Poisson Regression Models 49

as —* cc. For either Poisson regression or logistic regression model,

Var[(2 — j/SD(y)] =

where h is defined by (2.37). Therefore, we can standardize rd and ri by dividing

the factor /l — h because for all three types of the residuals the first term in the right

side of (2.38) is 1.

Several researchers have compared differences between these three types of residuals

(e.g., Pierce and Schafer, 1986; Williams, 1987; McCulagh and Nelder, 1989; and Collett,

1991). The value of ri is intermediate between rd and and it is usually much closer

to rd than to Both rd and r1 take account of the shape of the distribution of Y

which is ignored by Both rdl and have distributions which are closer to normality

than that of rpj. For outlier detection seems the best choice because of its relevance

to the measurement of case influence on likelihood ratio tests.

Several types of residual plots are useful for different purposes of diagnostics. For

example, an index plot that the residuals are displayed against the corresponding obser

vation number or index is particularly suitable for detection of outliers. Although a plot

of the residuals against the fitted values j or an explanatory variable is more informative

than an index plot for normal regression, it may be uninformative for Poisson regression

because when the mean of the response variable is small; there may be a pattern in the

plot no matter whether the model is correct or not. Indeed, if yj = 0, = =

This means that for small mean values, the residuals are not approximately normal.

Analogously, we can define the same three types of residuals for mixed Poisson re

gression models. That is, the Pearson residual, rp, for mixed Poisson regression models

is given by defining /‘L. and V(/11) in (2.34) as

= t (2.39)
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where

(r)
= exp(crx ),

i, (m)expi p •x•
Pu = for y = 1,. . . , c — 1 and

exp(/3x) + 1
1

Pic
EJ’ exp(/xm)) + 1’

and

V(ju) = tu + t - ]2}

The deviance residual, rD, for mixed Poisson regression models is given by defining

the log likelihood function l(,a, yj) in (2.35) as

(r) (m)
l(uj, y) = log[f(y ; ,; , t, a, 3)] (2.40)

(r) (m) .where f(y. ; ,x ,t,a,B) is defined in (2.10). Note that l(yu,yj) is the same for

both generalized linear models and mixed Poisson regression models because we have the

following relation

f(u I x),xm),ti,a,/3) = P(

C

= Po (yj I

This indicates that there is the same baseline for generalized linear models and mixed

Poisson regression models.

The likelihood residual rL for mixed Poisson regression models is given by defining

as specified in (2.39), and D and D() as the deviances based on the data set of ri and
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n — 1 cases for the mixed Poisson regression model. Computing the likelihood residuals

requres fitting the model n times, each having good starting values which are already

available in our algorithm. In contrast to linear normal regression, it may require fitting

the model only once.

Note that for the residuals of mixed Poisson regression models, equation (2.38) still

hold. Thus, to account for variation in the fitted values j, in these three types of the

residuals, we need to calculate

Var[(i%2 —

However, the computation of this variance now becomes too complicated. Fortunately,

for large samples, are very close to ,uj so that the variation in the fitted values may be

negligible.

Example. Ré1D and Patent In modeling the patent data from Section 2.8.1 on the

relationship between R&D spending and number of patent applications at firm level, a

3-component mixed Poisson regression model is found to be satisfactory. The analysis

will be given in Section 2.8.1. Figure 2.1, Figure 2.2 and Figure 2.3 give index plots of

the Pearson, deviance and likelihood residuals respectively.

Figure 2.1 shows that the Pearson residuals may not aprroximately be normal. On

the other hand, Figure 2.2 and Figure 2.3 show that the deviance and likelihood residuals

are very similar to each other. Note that the 6th has the largest Pearson residual and

the 8th has both largest deviance and likelihood residuals. These plots suggest that the

deviance residuals and the likelihood residuals may be likely to perform similarly in terms

of the ranking of extreme observations. In fact, the empirical evidence to be presented

in examples in Section 2.8 suggest the same. The numerical studies also indicate that

rm and rLI are more approximately normal than rp. Since the likelihood residuals are

much more difficult to compute than any other type of residuals, we recommend using
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TDi routinely.

Detection of Outliers and Influential Observations

The residuals obtained after fitting a mixed Poisson regression model to an observed

set of data form the basis of diagnostic techniques for assessing model adequacy. Since our

primary objective of residual analysis for mixed Poisson regression models is to identify

outliers and influential observations, we discuss how these residuals can be used for this

objective.

Like generalized linear models, we define outliers as those observations that are sur

prisingly distant from the remaining observations in the sample. Such observations may

occur as a result of measurement errors, that is errors in reading, calculating or recording

a numerical value; or they may be just an extreme manifestation of natural variability.

Since large residuals indicate poorly fitting observations, we use index plots of resid

uals for detection of outliers, that is, observations that have unusually large residuals.

For example, in the previous example, the 8th observation stands out from the rest as

having a relatively large residual in all three index plots of the residuals. The outlying

nature of this observation is obvious from these plots.

The influence of a particular observation on the overall fit of a model can be assessed

from the change in the value of a summary measure of goodness of fit that results from

excluding the observation from the data set. Since r is the change in deviance on

omitting the ith observation from the fit, an index plot of these values is the best way of

assessing the contribution of each observation to the overall goodness of fit of the model.

In the previous example, Figure 2.3 shows that the 8th observation has great impact on

the overall fit of the model to the data, as measured by the deviance. Indeed, on omitting

the 8th observation, the deviance reduction is r,8 = (3.392)2 = 11.506.
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To examine how the ith observation affects the set of parameter estimates, we define

the following quantity

= -{(&-&)/se(&)II+I-)/se()II}

I I
‘:‘!SJ3 ‘} (2.41)

where & and are the maximum parameter estimates of the mixed Poisson regression

model based on the complete data set of n cases, and and 13(i) on the data set of

n — 1 cases excluding the i case; se(&) and se(,8) are the estimated standard errors of

the corresponding estimates based on the n cases, and p = ck1 + (c— l)k2. Because each

term in (2.41) measures a relative change in individual coefficient, w may be interpreted

as average relative coefficient changes for a set of estimates. This is a useful quantity for

assessing the extent to which the set of parameter estimates is affected by the exclusion

of the ith observation. Relatively large values of this quantity will indicate that the

corresponding observations are influential and causing instability in the fitted model. An

index plot of w is the most useful way of presenting these values.

For the previous example, Figure 2.4 is the index plot of w. Clearly, the plot shows

that the 8th, 12th, 47th 64th, 65th and 66th observations are influential so that omitting

each of them from the data has a great effect on the set of parameter estimates. For

example, if the 12th observation is excluded from the data set, each parameter estimate

will averagely change about 33%. Although the 47th observation has relatively large value

of wj, it has a relatively small value of either likelihood residual or deviance residual. This

indicates that an influential observation need not necessarily be an outlier. In particular,

an influential observation that is not an outlier will occur when the observation distorts

the form of the fitted model to such an extent that the observation itself has a small

residual value. Note that in this example, the 8th observation is not only an influential
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observation but also an outlier as well. On the other hand, the first observation appears

an outlier but has a rather small value of w:.

Goodness-of-fit Statistics

After fitting a mixed Poisson regression model to a set of data, it is natural to inquire

about the extent to which the fitted values of the response variable under the model

compare with the observed values. If the agreement between the observations and the

corresponding fitted values is good, the model may be acceptable. If not, the current

form of the model will certainly not be acceptable and the model will need to be revised.

The aspect of the adequacy of a model is widely referred to as goodness of fit.

There are at least two widely used goodness-of-fit statistics which can be used here.

One is the deviance statistic, D, defined as

where TDi is the deviance residuals for the mixed Poisson regression model; And the other

is the Pearson’s statistic, X2, defined as

X2 =

where rp is the Pearson residuals for the mixed Poisson regression model. In order to

evaluate the extent to which an adopted mixed Poisson regression model fits a set of data,

the distribution of either the deviance or the Pearson statistic, under the assumption

that the model is correct, is needed. For normal linear models, the deviance and the

Pearson’s X2 statistics are distributed as x2 with (n — p) degrees of freedom, where ri is

the number of observations and p is the number of unknown parameters in the model. In

general, many studies have shown that the Pearson statistic is often much more nearly
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chi-squared than that of the deviance (e.g., Larntz, 1978). For this reason, we use the

Pearson statistic for overall goodness of fit tests for the mixed Poisson regression models.

2.8 Applications

2.8.1 R&D and Patents

Economists studying technological innovation often use patent applications as an indica

tor of inventive activity. The nature of much industrial R&D activity suggests that it is

natural to assume that patent counts follow a Poisson distribution: patent applications

can be thought of as measuring the number of successful outcomes among a large (but

unobserved) number of projects within a firm’s R&D lab, each of which has a small prob

ability of success. Econometricians have accordingly examined the relationship between

R&D and patenting by using Poisson regression to estimate a “production function for

patents” of the form: E(y) = exp(a’xt), where yj is the number of patents applied for

by firm i and x is a vector of explanatory variables, including R&D spending. (There

are many problems with using patent counts as indicators of innovative output, but they

remain the only comprehensive, objective, and readily available measure of inventive

activity. See Griliches (1990).)

In economics there are two important characteristics associated with a production

function f(x): returns to scale and elasticity. The former identifies how output responds

to proportionate, scaled expansion in inputs. If a proportionate increase in all inputs in

creases output by the same proportion, the production function is said to exhibit constant

returns to scale. This can be mathematically described by

tf(x) = f(tx),

where x is a vector representing inputs, and t is a positive real number. Similarly, if a more

(less) than proportionate increase (decrease) in output is obtained, there is increasing
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(decreasing) returns to scale. These can be mathematically described by

tf(x)<f(tx)

and

tf(x) > f(tx)

respectively.

An input (xj elasticity of output is a measure of responsiveness of output to that

input that uses the percent change in output divided by the percent change in the input.

This is given by

—
zXf/f — a(log f)

— — ö(logx)

Note that for the above production function for patents, for instance, the R&D elasticity

of patent applications is independent of the units in which patents are measured, and

thus a more meaningful measure of the responsiveness of patent applications to R&D

spending. The R&D elasticity of patent applications simply measures the percentage

change in patent applications when R&D spending changes by a small percent.

The parameters of the above model have a direct and interesting economic interpre

tation: they provide estimates of returns to scale in performing R&D. However, efforts

to test for returns to scale using these data have been hampered by the fact that they

are typically quite severely overdispersed. Hausman, Hall and Griliches (1984), Bound et

al. (1984), and Hall, Griliches, and Hausman (1986) estimated variations of the Poisson

model which account for the overdispersion by including an additive random firm effect in

the patent equation. The random firm effect can be thought of as capturing unobserved

firm-specific factors affecting R&D productivity. As is well known, if the additive random

effect is distributed gamma thell the unconditional distribution of the response variable
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is negative binomial. If the distribution assumption is incorrect, inconsistent parameter

estimates will be obtained. These studies also present results from the quasi-generalized

pseudo maximum likelihood estimators proposed by Gourieroux, Monfort, and Trognon

(1984) which allow the random firm effect to be drawn from an unspecified distribution.

Though results obtained using the Poisson, Negative Binomial, and QGPML estimators

were qualitatively the same, the estimated coefficient on R&D varied substantially. The

authors attributed this problem to “instability” in the R&D-patents relationship over

time and across firms.

We treat the unobserved heterogeneity in these data quite differently, and show how

the overdispersion can be accounted for in an alternative and perhaps more interesting

way by using finite rather than continuous mixtures. Rather than assume that all firms

have common regression coefficients and a random intercept, we allow both the intercept

and the coefficient on R&D to vary from firm to firm, but in a restricted way. We postulate

a discrete Poisson mixture model in which firms can be in a finite number of different

states defined by different degrees of R&D productivity, for example “high”, “medium”,

and “low”. In this model the coefficients vary from state to state, rather than from firm to

firm. One way to motivate this model is to assume that all firms have access to the same

technological opportunities, but have different unobservable innovative capabilities (e.g.

“Type A” or “Type B” or “Type C” organizational structures). Alternatively, we could

assume that all firms have the same innovative capabilities, but have differential access

to technological opportunities: some firms are working in “hot” areas of the underlying

science while others are hot.

The data are patent applications and R&D spending in 1976 for 70 pharmaceutical

and biomedical companies, taken from the NBER R&D Masterfile (see Hall (1988) for

documentation of this data set.) The data are displayed in Figure 2.5, where the hori

zontal axis is the logarithm of R&D. Formal test results in Table 2.8 confirm the visual
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impression that the data are overdispersed: all of the tests strongly reject the null hy

pothesis of no overdispersion. As in the standard model used in previous studies, the

dependent variable is a count of patent applications, and the explanatory variables are

log(R&D) and a quadratic term (log(R&D))2included to capture non-linearities in the

relationship. The coefficients on these variables provide a’ direct estimate of the elasticity

of innovative output with respect to R&D spending, and thus the extent to which there

are scale economies in performing R&D. If the elasticity is greater than one then an

increase in R&D spending would generate a more than proportionate increase in patents.

The coefficient on the quadratic term is particularly interesting since it captures the ex

tent to which economies of scale vary with the size of a firm’s R&D effort, a question

which has been been hotly (though inconclusively) debated by economists for many years.

To apply our mixture model, we assume that

(1) the total number of patents applied for by firm i is associated with covariates x =

(X(m) (r)) where t = 1 ( one year), (m) = (1) and x = (1, log(R&D1),(log(R&D))2)

where R&D, is R&D expenditure of firm i in 1976. Note that m) = (1) correspond to

the assumption of constant mixing probabilities. Note also that the mixing probability

here may be interpreted as the likelihood that a firm stays in a particular underlying

state during one year period. Since R&D expenditure is usually calculated at the end of

a year, for one year patent data, it is legitimate to assume that the mixing probabilities

are independent of R&D covariates;

(2) patent counts of different firms are independent;

(3) each patent count follows a mixed Poisson distribution with Poisson rates defined

by exponential link functions

A(x, aj) = exp[ojo + oj1 Iog(R&D,) +cr,2(log(R&D,))2j

where i = 1,2, ..., 70, j = 1,2, ..., c, and c is the number of components in the mixture.
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The maximum likelihood estimates for the saturated 1-4 component mixture models

and several constrained 3-component mixture models applied to the data are given in

Table 2.9. Among the four saturated mixture models, both AIC and BIC lead to the

choice of 3-component mixtures. Within the class of 3-component mixture models, the

saturated 3-component mixture model is considered as the most appropriate one to fit

the data in terms of BIC (AIC).

After fitting the 3-component mixed Poisson regression model to the data, the Pearson

goodness-of-fit statistic X2 is 64.53 with 59 degrees of freedom. This value does not

exceed the upper 95% critical point of the2-distribution on 59 degrees of freedom,

X9,o.95 = 77.93, suggesting that the mixed Poisson regression model fits adequately.

Moreover, as discussed in Section 2.7.3, the residual analysis shows that there are a few

influential observations and outliers. For example, the 12th observation is an influential

observation corresponding to the company which spent $33.8 million on R&D for 59

patent applications. On omitting the 12th observation, the new parameter estimates

become

= (13.7407, 7.7893, —0.8036),

(0.4344, 1.8847, —0.2071),

= (0.7056,0.5177,0.0744),

= 0.1653, 132=0.1929, and jO.64l8.

Note that the changes in the parameter estimates of the first component are relatively

large, while the changes in the other parameter estimates are not significant.

The fitted mixed Poisson regression model suggests that patent counts are generated

by three underlying Poisson distributions with rates defined by three different R&D

productivity functions, respectively,

= exp[—16.223 + 9.3091og(R&D2)— 1.014 (log(R&D))2],
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a2) = exp[0.590 + 1.780 log(R&D) — 0.196 (log(R&D1))2]

and )(x,a3) = exp[0.703 + 0.518 log(R&D) + 0.076 (log(R&D))2].

Note that since the above three rate functions are conditional on the three underlying

states respectively, the coefficients in these functions should be interpreted as the effects

on conditional mean. For instance, cv12 = 9.309 is the log(R&D) effect on patents when

a firm is in state one.

The three dotted lines in Figure 2.6 represent the curves of the above functions re

spectively. The implied R&D elasticities (derivatives with respect to log(R&D)) are

9.309 — 2.028 log(R&D), 1.780 — 0.3921og(R&D) and 0.518 + 0.1521og(R&D), suggest

ing that returns to scale differ across components.

Note that when we fit the data by the usual Poisson regression, which fails to account

for the excess variation, the quadratic term is not significant. (The difference in the log

likelihood between the usual Poisson regression models with and without the quadratic

term is 0.45 and x,0.99 = 6.634 > 2 * 0.45 = 0.9 .) If this were the correct model, we

would conclude that economies of scale do not vary significantly with the size of the

firm’s R&D program. The mixture model estimated above indicates, however, that the

quadratic term is significant in terms of likelihood ratio test. (The difference in the log

likelihood between 3-component mixture models with and without the quadratic term is

6.56 and = 11.345 <2 * 6.56 = 13.12.) This result exemplifies that overdispersion

in the usual Poisson regression may result in too large standard error estimates, and

subsequently reject too many items in the usual Poisson regression.

If we postulate three different states in terms of the above three different forms of the

Poisson rates, a firm has 0.1819 probability of being in state 1, 0.1773 of being in state
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2 and 0.6408 of being in state 3. Based on the estimated posterior probabilities defined

in (2.20), we identify each firm with one of the three states. Figure 2.6 displays this

classification in which a firm is identified with a state if the estimated posterior probability

of the firm’s being in that state has the largest value. The maximum estimated posterior

probabilities always exceeds 0.5 in this application. Note that those observations marked

as “1” form a group characterized by)1(xT), ai), those marked as “2” by)2(xT),a2),

and those marked as “3” by)3(x,a3).

For the purpose of comparison, we fit the data to three widely used quasi-likelihood

models. The first assumes a variance function Var(Y) = a2E(), and the second

Var()1) = E(11) +o2E(Y)2. Note that the negative binomial model has such a mean-

variance relationship. Further, the parameter estimates under the negative binomial

model may not be significantly different from those obtained by the quasi-likelihood,

though the former may be more efficient (Lawless, 1987). The third assumes that

= is a random variable, and that log()) = x/3 + ej where x are covariates,

are unknown regression parameters, and are random errOr terms having mean 0 and

a constant unknown variance The unknown parameter o2 in these models is called

unexplained variance. Estimation for these models is discussed by McCullagh and Nelder

(1989) and Breslow (1984).

The results of parameter estimates and standard errors are given in Table 2.10. Com

puting the t-statistic (estimated coefficient/standard error) and comparing the mixed

Poisson regression model with the quasi-likelihood, we find that all three quasi-likelihood

models may underestimate the effects of R&D innovation. For example, the absolute

values of the t-statistics of the estimated coefficient for (log(R&D))2 are 0.398, 3.418

and 1.554 for the quasi-likelihood model I, II and III respectively, while the values of the

same coefficient in the mixed Poisson regression model are 4.955, 4.560 and 4.314 for the

first, second and third components.



Chapter 2. Mixed Poisson Regression Models 62

In summary, we have applied the mixed Poisson regression model to analyze the

relationship between technological innovation and R&D research at firm level. The patent

data are well fitted by the 3-component mixed Poisson regression model with constant

mixing probabilities and Poisson rates defined by quadratic functions in log(R&D). This

shows that both covariates log(R&D) and (log(R&D))2are significant predictors of the

number of patent applications. On the other hand, the covariate (log(R&D))2 is not

significant in the usual Poisson regression model which may not be justifiable here because

of overdispersion. The goodness-of-fit test shows that there is no significant evidence of

lack of fit in the mixed Poisson regression model. In addition, the residual analysis

identifies outliers and influential observations in terms of the fitted model. According to

the fitted model, the firms are classified into three categories, each characterized by a

Poisson rate function. Note that the significance of the parameter estimates of the mixed

Poisson regression model is quite different from that obtained by the quasi-likelihood

methods for dealing with extra-Poisson variation.

2.8.2 Seizure Frequency in a Clinical Trial

The timing and circumstances of epileptic seizure recurrence are a source of apprehension

for the patients and a mystery for the neurologists. Thus there have been many clinical

studies of different treatments for reducing occurrence of epileptic seizures, and accord

ingly various methods used to assess a reduction in seizure frequency (e.g., Wilensky, et

al., 1981, Hopkins, et al., 1985, Milton, et al., 1987, Gram, 1988, and Albert, 1991). Some

of these methods like the percentage of patients “improved,” “unchanged,” or “worse”

are rather subjective. This kind of the methods cannot be used to form anything other

than an impressionistic opinion of the value of a treatment unless formal criteria for

evaluating the significance of changes in the various parameters are first defined; others

are designed for particular situations. For instance, Hopkins et al. (1985) first proposed
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a two-state Markov mixture model to describe apparent clustering among daily seizure

counts for epileptics. They assumes that at each state the number of seizures is gener

ated by a Poisson distribution, and that transitions between the two states are governed

by a Markov chain. Albert (1991) and Le, Leroux and Puterman (1993) presented two

different algorithms to find the estimates of the parameters in the model. All these meth

ods do not directly include treatment effects as covariates in model building so that the

treatment effects may be difficult to assess.

In this subsection we analyze data from a clinical trial carried out at British Columbia’s

Children’s Hospital which investigated the effect of intravenous gammaglobulin (IVIG)

on suppression of epileptic seizures. Subjects were randomized into two groups. After a

four week (28 days) baseline observation, the treatment group received monthly infusion

of IVIG while the control group received “best available therapy”. The primary end point

of the trial was daily seizure frequency. The principal data source was a daily seizure

diary which contained the number of hours of parental observation and the number of

seizures of each type during the observation period.

We use Poisson regression to analyze a series of myoclonic seizure counts from a single

subject receiving IVIG. Data extracted from the seizure diary was the daily counts, yj,

and the hours of parental observation t for the ith day. Figure 2.7 gives the time plot

of daily seizure counts. As covariates we use treatment (xii), trend (x2) and treatment-

trend interaction (xj.), where

1 1 if there is a treatment (i > 28)
= (2.42)

1 0 otherwise, (i 28 )
= log(i) (2.43)

and x3 = x1x2. (2.44)

The second column in Table 2.11 reports results of fitting the data using the usual
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Poisson regression with covariates defined in (2.42), (2.43) and (2.44), and a log link

function. The data are overdispersed with respect to the Poisson distribution, since each

of the overdispersion tests is highly significant (Pa = 16.18, Pb 16.22 and Pc = 36.33).

This suggests the inadequacy of the usual Poisson regression model.

We apply the mixture model assuming that

(1) each daily observed seizure count, y, is associated with time exposure (observation

hours), t, and covariates (m) (1) and x’ = (x.1 x2,x3), where x, x:2 and x3 are

defined in (2.42), (2.43) and (2.44). Note that we assume constant mixing probabilities

here because it is believed that the likelihood of being a particular state is a constant for

a patient;

(2) daily seizure counts are independent and follow a mixed Poisson regression model

with means equal to the, product of observation time (ti) and the Poisson rate (number

of seizures per hour). Rates are specified by exponential link functions

(xT),
aj) = exp(ajo +a1x1 +a2x2•+a3x3).

where i = 1,.. . , 140, j = 1,. . . , c, and c is the number of components in the mixture

model. This model allows the treatment, trend and interaction of the treatment and trend

to affect the Poisson rate, and the regression coefficients to vary across components.

Table 2.12 provides the results of fitting these models. Among the three saturated

mixture models, both AIC and BIC suggest a 2-component model. Within the class of

two component models, we can carry out likelihood ratio tests for treatment, trend and

interaction effect respectively. For example, to test interaction effect, i.e., H0 : a33 = 0

for j = 1, 2, we find that the likelihood ratio statistic equals 2 * (426.21 — 376.18) =

100.06 > = 9.21. ‘This suggests a highly significant treatment-trend interaction.

The model we finally select is the 2-component saturated mixture.
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After fitting the 2-component mixed Poisson regression model to the data, the Pear

son goodness-of-fit statistic X2 is 134.0 with 131 degrees of freedom. This value does

not exceed the upper 95% critical point of the2-distribution on 131 degrees of freedom,

x31,0.95 = 158.7, suggesting that the mixed Poisson regression model fits adequately.

Furthermore, the Pearson, deviance and likelihood residuals from the fitted model are

calculated and displayed in Figure 2.10, Figure 2.11 and Figure 2.12 respectively. Fig

ure 2.10 shows that the Pearson residuals may not be approximately normal. On the

other hand, both Figure 2.11 and Figure 2.12 show that the deviance residuals and likeli

hood residuals are very similar to each other, and that the 61st observation is far distant

from the remaining observations in both plots, suggesting that it may be an outlier.

On omitting this observation, the deviance reduction is r,61 = (_0.314)2 = 9.86. This

means that the 61st observation has great impact on the overall fit of the mixed Poisson

regression model to the data.

For detection of influential observations, the average relative coefficient changes w are

calculated and displayed in Figure 2.13. Clearly, the 6th observation is the only influential

observation suggested b the plot. On omitting the 6th observation, the average relative

coefficient change for each parameter estimate is about 20%, and the new parameter

estimates become

= (2.2701, 1.8800, —0.2006, —0.6373),

= (2.0045, 7.4989, —0.2444, —2.3026),

= 0.2740 and 12 = 0.7260.

Note that the changes in the parameter estimates of the first component is relatively

larger than that in the other parameter estimates. After excluding the 6th observation,

we reanalyze the data by fitting to the Poisson regression and 2-3 component mixed Pois

son regression models, and select the same mixed Poisson regression model with the above



Chapter 2. Mixed Poisson Regression Models 66

new parameter estimates. In fact, the values of AIC for the Poisson regression and the

saturated 2-3 component mixed Poisson regression models are -576.4, -379.7 and -383.8

respectively, and the values of BIC are -582.3, -392.9 and -404.4 respectively. Further,

the likelihood ratio tests lead to the choice of the saturated 2-component mixed Pois

son regression model. Hence, residual analysis identifies possible outliers and influential

observations in terms of the mixed Poisson regression model.

We now interpret the fitted model. In it the mixing probabilities equal 0.2761 and

0.7239 and the respective rates are

Ai(xT),i) = exp[2.8450 + l.3020x21 — 0.4O63x2 — 0.4309x3J

and)2(x,a2) = exp[2.0704 + 7.43l8x1 — 0.2707x2 — 2.2762x3].

Note that since the above two rate functions are conditional on the two underlying states

respectively, the coefficients in these functions should be interpreted as the effects on on

conditional mean. For example, &12 = 1.3020 is the treatment effect when the patient is

in state one, while &22 = 7.4318 is the treatment effect in state two.

Figure 2.8 provides the estimated hourly seizure rate corresponding to each component

(the solid line is the rate for component one and the dotted line for component two) and

the observed hourly seizure rate y/t. Observe that with the treatment both the hourly

rates are lower and the trend is less steep than at baseline, suggesting that this patient

benefited from IVIG therapy. Figure 2.9 depicts the estimated mean E() (the solid line)

and variance Var(Y) (the dotted line) for the fitted model obtained through (2.11) and

(2.12). Observe that with the treatment the variance becomes much closer to the mean,

suggesting the patient’s situation becomes more stable. Further, the variance exceeds the

mean throughout, with the greatest difference in the baseline period. The “bumpiness”

in these quantities is due to the non-constant exposure. Note also that there is no obvious
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parametric relationship between the estimated mean and variance.

We note that the clinical investigators conducting this study found the two compo

nent model plausible. They said that they have observed subjects to have “bad days” and

“good days” with no obvious explanation of this effect. We believe our model captures

this aspect of the data and by doing so provides a clinically meaningful explanation of

overdispersion. Note that Figure 2.8 also classifies the days in terms of the estimated

posterior probabilities. Those observations marked as “1” form a group which is charac

terized by the Poisson rate function1(x, ai), while those marked as “2” form another

group which is characterized by 2(x,cr2). We may regard )i(x, oi) as the Poisson

regression specification for group one, and)2(xR cr2) for group two. In this sense, our

model consists of two P?isson regression models, each describing the seizure frequency

rate on “bad days” and “good days” respectively.

For the purpose of comparison, we also fit the data to the three quasi-likelihood models

defined in Section 2.8.1. Table 2.11 reports parameter estimates for these methods.

From Table 2.11 we find that using different methods for overdispersion may lead to

either different parameter estimates or different standard errors or both. For instance,

the coefficient estimate for treatment effect is 4.132 by model I, 4.656 by model II,

3.757 by model III, and 1.3020 for component 1 and 7.4132 for component 2 by our

mixture. Further, the ratio of estimate to standard error for trend is 5.8535 under

Method I, 4.2559 under Method II, 4.5145 under Method III, and 2.6550 for component

1 and 14.587 for component 2 under our mixture. This implies that these methods

disagree to the significance of background trend effect. Compared with the three methods

for overdispersion, our mixture model has smaller confidence intervals for parameter

estimates.

In this example, we have analyzed the series of myoclonic seizure counts from a

clinical trial. The data are well fitted by 2-component mixed Poisson regression model
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with constant mixing probabilities and Poisson rates depending on covariates treatment,

trend and treatment-trend interaction. The goodness-of-fit test suggests that there is

no significant evidence of lack of fit in the model. In addition, the residual analysis

identifies influential observations and outliers. According to this model, the patient

may have two states of seizure frequency rate, which describe “bad days” and “good

days” situations respectively. Comparing with the quasi-likelihood methods, the mixed

Poisson regression model gives smaller confidence intervals of parameter estimates. Note

that both parameter and staildard error estimates under the mixed Poisson regression

model differ from those obtained by the quasi-likelihood method.

2.8.3 Terrorist Bombing

We analyze data consisting of a time series of the number of international terrorist bomb

ing episodes (Roberts, 1991, p.432). Roberts (1991) notes that the data do not behave

as a single homogeneous series, and suggests that an indicator variable be used to model

a level shift for the 1astseven years. This is reinforced by the time plot (Figure 2.14)

which suggests that there might have been a change in rate in 1973.

We first apply the usual Poisson regression with an intercept, trend variable log(i)

and a step variable s, defined by

10 fori<60
8, = (2.45)

1 otherwise.

Note that defining the step variable as above, we assume that the step change hap

pened in the 60th month. The trend variable is insignificant, and regression estimates

are 0.7498(0.0887) for intercept and 1.158(0.0981) for the coefficient of the step vari

able. The deviance for the model is 368.1 with 142 degrees of freedom. Note that the

data are overdispersed in terms of the Poisson regression, since all three score tests for

overdispersion (Dean, 1992) are highly significant (Pa = Pb = 13.84, and P 14.59).
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We apply a mixed Poisson model in which

(1) the monthly terrorist bombing count, yj, is associated with exposure t and covariates

r) = (1) and (m) = (1, log(i), si), where t = 1 (one month) and s is defined

by (2.45). Note that the covariate log(i) represents a trend, and Poisson rates are

constant;

(2) yj, i = 1,. . . , 144, are independent and follow a mixed Poisson model with rates, .A,

and mixing probabilities defined as

P(Xm),13) _1ei0+13ull0+2su1 (i

=
k=i exp{/3k0 + 13k1 log(z) +/3k2Si] + 1

c—i
(m) (m)and pc(; ,i3) = 1— p3(x ,8),

3=1

where i = 1,. . . , 144 and c is the number of components in the mixture.

This model allows mixing probabilities to depend on the trend variable and step change

and to vary between different forms of them.

Table 2.13 provides the results of model fitting. Among the four saturated mixture

models, both AIC and BIC suggest a 3-component mixture model. To test whether

the trend effect is signifièant, we first compare the mixture with covariates including an

intercept and the step change with the 3- component saturated mixture. The difference

in log-likelihood between the two is 0.89, and the chi-square test statistic is 2* 0.89 = 1.78

with 2 degrees of freedom. Hence the trend effect is not significant based on the usual

likelihood ratio test. Similarly, comparing the mixture without covariate with the one

with the step change variable in covariate, we find that the step change is significant

based on the likelihood ratio test. (The chi-square test statistic is 61.62 with 2 degrees

of freedom.) Further, we can compare two non-nested mixtures with only step change
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variable in covariates and only the trend variable respectively using either AIC or BIC.

Clearly, the former has bigger AIC and BIC values. According to the model selection

procedure, we finally choose, within the class of 3-component mixtures, the model with

a step change in the mixing probabilities.

After fitting the 3-component mixed Poisson regression model to the data, the Pear

son goodness-of-fit statistic X2 is 134.7 with 137 degrees of freedom. This value does

not exceed the upper 95% critical point of the2-distribution on 131 degrees of freedom,

X3r,o.95 = 165.3, suggesting that there is no evidence of lack of fit. Furthermore, the

Pearson, deviance and likelihood residuals from the fitted model are calculated and dis

played in Figure 2.16, Figure 2.17 and Figure 2.18 respectively. Figure 2.16 shows that

the Pearson residuals may not be approximately normal. On the other hand, Figure 2.17

and Figure 2.18 show that the deviance residuals and likelihood residuals are very similar

to each other, and that the 7th observation is far distant from the remaining observations

in both plots, suggesting that it may be an outlier. On omitting this observation, the

deviance reduction is r7 = (3.121)2 = 9.741. This means that the 7th observation has

great impact on the overall fit of the mixed Poisson regression model to the data.

For detection of influential observations, the average relative coefficient changes w, are

calculated and displayed in Figure 2.19. Clearly, the 7th observation is the only influential

observation suggested by the plot. On omitting the 7th observation, the average relative

coefficient change for each parameter estimate is about 586%, and the new parameter

estimates become

I = (30.28, —30.10),

/32 = (27.56, —26.05),

= 1.6874, 2 = 6.3577 and )3 = 14.239.

Note that the changes in the regression parameter estimates of the mixing probabilities
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are very significant. This may be due to the fact that after excluding the 7th observa

tion, the first 60 observations are all generated by the first two components. Hence the

mixing probability of the third component is almost zero. In this case, the parameter

estimates may lead infinity because they are on the boundary of the parameter space, as

it usually happens in logistic regression. Note also that the Poisson rates do not change

significantly, suggesting that the 7th observation has great influence on the mixing prob

abilities rather than on the Poisson rates. The residual analysis confirms that the fitted

model is adequate. We interpret the fitted mixed Poisson regression model as follows.

In it the mixing probabilities are

‘
(m) — exp(4.0231 — 3.8535s)

Pi
— exp(4.0231 — 3.8535s) + exp(1.3141 + O.1741s) + 1’

,
(m) — exp(1.3141+0.1741s)

P2i ‘ 1
— exp(4.0231—3.8535s)+exp(1.3141+0.1741s)+1

(m) 1
and p3(x

exp(4.0231 — 3.8535s) + exp(1.3141 + 0.1741s) + f

and the Poisson rates are

A1 = 1.6864, A2 = 6.3611 and ) = 14.044.

This model suggests that the mixing probabilities have a jump. During the first 60

months, the number of episodes follows one of three Poisson distributions with a low

rate of 1.6864 (episodes per month) with probability of 0.9221, a medium rate of 6.3611

with probability 0.0614 and a high rate of 14.044 with probability 0.0164 respectively.

After December 1972, the data follow one of the same Poisson distributions, however

the probabilities have changed to 0.1791, 0.6697 and 0.1512 respectively. This indicates

that terrorist bombing incidents become significantly more frequent between 1973 and

1979. Furthermore, the mixture model suggests that the time trend (monthly index) is

not significant, suggesting that rates are stable in these periods.
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If we postulate three levels of terrorist bombing corresponding to the three different

Poisson rates, each month occupies one of the levels according to the mixing probabil

ities. Based on the estimated posterior probabilities defined in (2.20), we identify each

observation with a level if its estimated posterior probability of being at that level is

greater than 0.5. Figure 2.15 classifies months in this way. Note that the high intensity

component counts for the large number of episodes in July 1968 as well many past 1973

data parts.

From the fitted model, we find the estimated mean and variance are 2.18 and 6.69,

respectively, for the first five years, and 5.82 and 19.5 for the last seven years. Clearly,

the mixed Poisson model accounts for overdispersion.

Note that we also fit the data using mixed Poisson regression model with a step

change in the rate, and have found that the above model fits better.

In summary, the terrorist bombing data have been fitted by the 2-component mixed

Poisson regression model with constant Poisson rates and mixing probabilities depending

on a step change. This means that since July 1968 terrorist bombing have become more

intensive because of a likelihood of being a higher bombing rate. The goodness-of-fit test

shows that there is no significant evidence of lack of fit. In addition, the residual analysis

identifies one observation which is not only an outlier but also an influential observation

in terms of the fitted model.

2.8.4 Accidents in Worksites

There have been many studies of the relationship between alcohol and accident injuries

(e.g., McDermott, 1977; Dietz and Baker, 1974; Hingson and Howland, 1987; and Wech

sler et al., 1969). Some of these studies established a link between alcohol and accidental

injuries (McDermott, 1977), but others have not. Particularly, there is no strong evi

dence implicating alcohol in workplace injuries. Some methodological issues associated
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with these studies include data collection, alcohol measurement and appropriate statis

tical models. Webb et al. (1994) conducted a study to analyze the relationship between

problem drinking and industrial workplace injuries. They collected data from 470 em

ployees of a large industrial plant manufacturing metal products in the Hunter Valley

region of New South Wales, Australia, employed during period May 1985 to July 1986.

Problem drinking was measured by the Mortimer-Filkins test, which was devised initially

to detect alcohol problem among persons charged with drunk-driving (Mortimer et al.,

1971). The range of the test scores (MFts) in the data varies from -3 to 37. The numbers

of work injuries were obtained from medical reports completed for all injuries reported

to the medical center by study participants, for a period of 12 months from the time

of administration of the questionnaire to each study participant. The data also contain

socio-demographic measures including age and job satisfaction. A question of interest

here is to find significant predictors of work injuries.

A review of studies on the relationship between alcohol and work injuries revealed

that the evidence is contradictory and that many of the studies contain methodological

flaws (Webb et al., 1994). As a standard method for count data analysis, we use Pois

son regression by defining the number of work injuries in subject i as Y and including

covariates:

= log(age) (2.46)

1 1 if individual i has low level of job satisfaction
= (2.47)

0 otherwise,

xi3 = 1og(MFts + 10) (2.48)

and x4 = x. (2.49)

Thus the model for Poisson mean X is

log()) = ao +a1x11 +c2x2 + cr3x3+a4x24.
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Note that we add a constant 10 in (2.48) so that MFts + 10 > 0 and the log-transfer

can be applied.

The first row in Table 2.14 reports the results of fitting the data using usual Poisson

regression. Comparing the t-statistics (parameter estimate/standard error), all covariates

except x4 are highly significant. However these results may be misleading because the

data are seriously overdispersed. The overdispersion score test statistic Pa has a value

of 24.33 which was compared to the N(0, 1) reference value, and suggests inadequacy of

the usual Poisson regression model.

To apply the mixed Poisson regression model, we assume that

(1) the number of work injuries for individual i is associated with covariates x =

(tn) (r) . (m) / (r)(x , x ) with x = (1, x, x:2, x3) , x = (1, x1,x2,x3,x4), where x1,x2,x3 and

x4 are defined by (2.46), (2.47), (2.48) and (2.49) respectively. Note that we choose

t=1fora1li;

(2) injury counts of different individuals are independent and follow a mixed Poisson

regression model with rates (number of work injuries per year) given by the link functions

).(Xr) .) = exp(ajo + cvjixil + cj2x2 + aax3 + aj4x4)

where i = 1,2, ...,470, j = 1,2, ...,c and c is the number of components in the mixture.

Table 2.14 shows the results of fitting these models. In order to determine the number

of components first, we compare the values of BIC and AIC among the three saturated

models. Clearly, both BIC and AIC lead to the choice of 2-component mixture models.

Within these 2-component mixtures, we carry out inference using likelihood ratio tests.

First we test the hypothesis that the effects of covariates x2,x3 and x are insignificant

by comparing the one including oniy x in both mixing probabilities and rates with

the saturated 2-componnt model. Since the chi-square test statistic is 2 * (—897.74 +

903.45) = 11.42 < xLo.95 = 15.51, we do not reject the hypothesis at 5% significance
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level. This implies that both the level of job satisfaction and Mortimer-Filkins test score

do not have significant effects on mixing probability and Poisson rates.

Then we test whether the effect of age (x) is insignificant in the mixing probabilities.

Indeed, age is a significant covariate in mixing probabilities because the cu-square test

statistic for the corresponding hypothesis is 2 * (—899.15 + 906.31) = 14.32 > x,0.95 =

3.84.

For Poisson rates, the age covariate x is also highly significant in the rates because

the corresponding test statistic is 2 * (—903.45 + 909.57) = 12.24 > x,0.95 5.99.

Finally we test the hypothesis of a common slope for both components, i.e., a =

21• Indeed this hypothesis is valid at 5% significance level because the test statistic is

2*(—903.45+ 903.48) = 0.06 <2(1, 0.95) = 3.84. Therefore we choose the 2-component

mixture model with the age covariate in mixing probabilities and Poisson rates with the

common coefficient. This model fits the data best.

After fitting the 2-component mixed Poisson regression model to the data, the Pearson

goodness-of-fit statistic X2 is 510.8 with 465 degrees of freedom. This value does not

exceed the upper 95% critical point of theX2-distribution on 465 degrees of freedom,

= 516.27, suggesting that there is no evidence of lack of fit in the mixed Poisson

regression model. Furthermore, the Pearson, deviance and likelihood residuals from the

fitted model are calculated and displayed in Figure 2.21, Figure 2.22 and Figure 2.23

respectively. Figure 2.21 shows that the Pearson residuals may not be approximately

normal. On the other hand, Figure 2.22 and Figure 2.23 show that the deviance residuals

and likelihood residuals are very similar to each other, and that the numbers of the

possible outliers in these two plots are the same, with the 72th observation having the

largest values of deviance and likelihood residuals. On omitting the 72th observation,

the deviance reduction is r,72 = (3.488)2 = 12.166. This means that this observation has

great impact on the overall fit of the mixed Poisson regression model to the data.
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For detection of influential observations, the average relative coefficient changes w

are calculated and displayed in Figure 2.24. Clearly, the plot shows that there are a

couple of influential observations with the 434th observation having the largest value

(0.417). On omitting the 434th observation, the average relative coefficient change for

each parameter estimate is about 42%, and the new parameter estimates become

= (—1.1505,0.2566),

a2 (0.5850,0.2566) and

= (—6.5083,1.9982).

Note that the changes in the regression parameter estimates of the Poisson rates, espe

cially the common regression parameter, are relatively larger than that in mixing prob

abilities. This suggests that the 434th observation has great influence on the Poisson

rates rather than on the mixing probabilities. The residual analysis identifies possible

outliers and influential observations in terms of mixed Poisson regression model. We now

interpret the fitted model as follows.

The chosen mixture model suggests that work injury counts are generated by the two

underlying Poisson distributions with rates defined by

;\1(Xr), ai) = exp(—1.4545 + 0.3431 log(agej)

and 2(x,o2) = exp(0.3066 + 0.3341 log(age)).

Also these two distributions are mixed according to the mixing probabilities defined by

(m) , — exp(—6.8705+2.10681og(age2))
Pi

— exp(—6.8705+2.10681og(age))+1
(m) 1

and p2(x
= exp(—6.8705 + 2.1068 log(age)) + 1
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According to this model employees may be classified into two groups on the basis of

work injury rates. Those in one group have relatively a low baseline risk, and those in

group two a high baseline risk. Age, however, has the same effect on both groups. In

fact as employees get older, their chances of having a work injury increase. On the other

hand, since the mixing probability for group one1(m), /3) increases in terms of age,

there are more senior employees in the low risk group than young ones. For example,

for a 25 year old employee, there is a 47.8% chance of being classified into the low risk

group with an accident rate of 0.7 work injuries per year, and 52.2 % chance the high

risk group with an accident rate of 4.0 work injuries per year; For a 50 year old employee,

there is a 79.8% chance of being classified into the low risk group with an accident rate

of 0.9 work injuries per year, and 20.2% chance the high risk group with an accident

rate of 5.0 work injuries per year. Figure 2.20 provides the estimated work injury rate

corresponding to each group (the solid line is the rate for the low risk group and the

dotted line for the high risk group. Note that Figure 2.20 also classifies the employees in

terms of the estimated posterior probabilities. Those observations marked as “1” form

the low risk group which is characterized by the function ) (xv, ai), while those marked

as “2” form the high risk group which is characterized by the function)2(x,a2).

In this example, we have found that neither the problem drinking measure, the

Mortimer-Filkins test score nor the job satisfaction score is a good predictor of work

place injuries. On the other hand, age is a significant predictor of workplace injuries.

After taking into account age effects, the accident rates do not depend on Mortimer

Filkins test score and job satisfaction but only on age in the log-linear function. The

workplace injury data are well fitted by the 2-component mixed Poisson regression model

which consists of two Poisson regression models. According to the model, the employees

can be classified into two groups depending on baseline risk and the likelihood of being in

one of the baseline groups associated with age. Note also that the inferences differ from
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those obtained through the usual Poisson regression analysis. The goodness-of-fit test

shows that there is no significant evidence of lack of fit. In addition, the residual analysis

identifies several outliers and influential observations in terms of the fitted model.

2.8.5 Aces Salmonella Assay Data

The data in this example were first presented by Margolin et al. (1981) from an Ames

salmonella reverse mutagenicity assay, and analyzed by Breslow (1984) and Lawless

(1987b) using quasi-likelihood and negative binomial approaches respectively. Table 2.15

shows the number of revertant colonies (yj) observed on each of three replicate plates

tested at each of six dose level of quinoline (di).

Lawless (1987b) defined the expected frequency of revertants as

E(Y d) = )(d:) exp(ao + a1d + a2 log(d + 10)),

while Breslow (1984) assumed E(l’ I d) \(d). At issue is whether a mutagenic

effect is present. This corresponds to testing the hypothesis that a2 = 0. The data are

overdispersed relative to Poisson regression with rate defined above, since each of the three

tests for overdispersion is highly significant (Pa 5.628, Pb = 5.656 and P = 5.607).

To account for overdispersion, Breslow (1984) assumed a variance function Var(Y)

)(d) + u2,)(d)2, and obtained parameter estimates by using weighted least-squares

combined with method of moments. Similarly, Lawless (1987b) fitted the data with a

negative binomial model in which the variance function is Var() = )..(d)+J2)..(d)2,and

obtained parameter estimates by maximum likelihood. Parameter estimates (standard

errors) are reported in Table 1.8.5.3.

Our analysis of the data using mixed Poisson regression models follows. We assume

(1) the number of observed revertant colonies, y, is associated with covariates x =

(1,d:,1og(d + 10)), and t: = 1;
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(2) Y: are independent and follow a mixed Poisson regression model with Poisson

rates

c) = exp(a30 +a31d.j + cJ2 1og(d + 10)).

where i = 1,. . . , 18 and j = 1,. . . , c.

Table 2.16 shows the results of fitting these models. Among the three saturated mod

els, both AIC and BIC lead to the choice of 2-component mixtures. To test mutagenic

effects, we compare thesaturated model to the one without covariate log(d + 10) by

a likelihood ratio test. Since the chi-square test statistic equals 2 * (68.81 — 60.90) =

15.82 > X,o.9g = 9.21, mutagenic effects are significant. Further, the similar regression

coefficient estimates for each component in the saturated model suggest common regres

sion coefficients for both components. This is indeed confirmed by the likelihood ratio

test (the chi-square test statistic is 2 * 0.01 = 0.02 < x,0.99 = 9.21.) Hence we choose to

represent the data by the 2-component mixture with common regression coefficients and

different intercepts for each component.

The fitted model may be interpreted as follows. In it mixing probabilities equal 0.8173

and 0.1827 and the respective rates are

= exp(1.9094 — 0.00126d + 0.36401og(d + 10)) and

)2(x,a2) =‘ exp(2.4768 — O.00126d + 0.3640 log(d + 10).

This model indicates that mutagenic effects are the same for both components. This

model may also be regarded as a Poisson regression with a random intercept following a

discrete mixing distribution with 2-points of support. Figure 2.25 shows the classification

for the data in which each observation is identified with either of the two components

in the mixture according to the estimated posterior probabilities defined by (2.20). This

plot may provide a way to visualize overdispersion for the data. From it we conjecture
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that the three observations classified with component 2 may be outliers in terms of the

Poisson regression model, and that overdispersion may be due to these three observations.

In fact, the residual analysis below adds strength to this conjecture.

After fitting the 2-component mixed Poisson regression model to the data, the Pear

son goodness-of-fit statistic X2 is 16.2 with 13 degrees of freedom. This value does not

exceed the upper 95% critical point of the2-distribution on 13 degrees of freedom,

Xo.s(l3) = 22.36, suggesting that there is no evidence of lack of fit. Moreover, the

Pearson, deviance and likelihood residuals are displayed in Figure 2.26, Figure 2.27 and

Figure 2.28 respectively. Figure 2.27 and Figure 2.28 show that the deviance and likeli

hood residuals are very similar to each other. On the other hand, Figure 2.26 indicates

that the Pearson residuals may not be approximately normal.

For detection of influential observations, the average relative coefficient changes w: are

calculated and displayed in Figure 2.29. Clearly, the plot shows that the 12th observation

is influential. On omitting the 12th observation, the new estimates of the intercepts in two

components are 2.2242 and 2.5460 respectively; the new estimates of the other common

regression parameters are -0.00067 and 0.2430 respectively; and the new estimates of the

mixing probabilities for the two components are 0.5644 and 0.4356 respectively. Note that

the new intercept estimates are very close, suggesting that the data excluding the 12th

observation may not be overdispersed. In fact, we fit the data to the Poisson regression

model, and find that there is no strong evidence of overdispersion because each of the

three overdispersion score test statistics is not significant (Pa = 1.6142, Pb = 1.6132

and P = 1.8543). If we use the correction forms of these score test statistics for small

samples, P = 2.1339, P = 2.1328 and P = 2.3688. These values are marginal to the

normal critical values at critical level a = 0.5, suggesting again that there are no strong

evidence of overdispersin. Assuming that the data excluding the 12th observation is

overdispersed, we also fit the data to the 2 and 3 component mixed Poisson regression
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models, and select the (one-component) Poisson regression model because it yields the

largest values of AIC and BIC among the three saturated models. That is, the values of

AIC and BIC for the Poisson regression and the 2-3 component saturated mixed Poisson

regression models are -61.3, -61.4 and -64.4 respectively, and the values of BIC are -62.7,

-64.5 and -68.9 respectively. The analysis shows that extra-Poisson variation may be

caused by outliers in terms of Poisson regression, and that the mixed Poisson regression

model may tend to model these outliers by extra components. Note also that the changes

in the parameter estimates and corresponding standard errors between the two Poisson

regression models with and without the 12th observation may not be very significant,

suggesting that the 12th observation may be an outlier in terms of the Poisson regression

with the complete data.

From Table 2.17, we note that the regression coefficient estimates, & and &2, do

not vary drastically across models, but their standard errors do. For instance, the value

of &2/se(&2)changes from 0.3640/0.0665 = 5.4737 under the mixed Poisson regression

model to 0.3110/0.09901 = 3.1411 under the quasi-likelihood model. Thus, although

all four models agree that mutagenic effects are significant, they disagree agree to the

significance of the effect’s. Note that confidence intervals under the mixed Poisson re

gression model are much smaller than either the quasi-likelihood or negative binomial

model. Hence effects are estimated more precisely. For example, an approximate 95%

confidence interval for the coefficient of log(dose + 10) under the mixed Poisson regres

sion is 0.3640 + 0.1303, 0.3110 + 0.1941 under quasi-likelihood, and 0.313 + 0.1701 under

the negative binomial model. This suggests that using different models to account for

overdispersion may lead to different conclusions.

In this example, we analyzed the data set from an Ames salmonella reverse muta

genicity assay. The data are well fitted by the 2-component mixed Poisson regression

model with constant mixing probabilities and Poisson rates as functions of dose level.
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Note that the mutagenic effects are the same for both components, while the intercepts

in the Poisson rates vary between the two components. The goodness-of-fit test sug

gests that there are no evidence of lack of fit in the model. In addition, the residual

analysis identifies one influential observation. Excluding this observation, the data are

not overdispersed. This example suggests that extra-Poisson variation may be caused

by the presence of outliers in terms of Poisson regression, and that the mixed Poisson

regression may model these outliers by including extra components. This example also

illustrates a difference between our approach and the usual approaches for accounting for

overdispersion. Since the variance exceeds the mean, methods which correct for this by

increasing the variance may lead to less significant regression coefficient estimates. Our

approach has a different effect. By attributing overdispersion to the presence of several

components, the mixed Poisson regression model estimates coefficient effects with smaller

error.

2.9 Tables and Figures in Chapter 2
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Chapter 2. Mixed Poisson Regression Models

Pt

0.6 0.4a1 a2

-0.5 63/200 17/200
1.0

-2.5 200/200 198/200

-0.5 174/200 119/200
2.0

-2.5 200/200 200/200

Table 2.4: The results of the likelihood ratio tests for the hypothesis of a2 = 0 based on

the 2-component mixed Poisson regression model—I.
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p1=o.6 p,=O.4

parameter — true value mean standard mean standard
deviation deviation

1.0 0.9910 0.0849 0.9882 0.0861a1

-0.5 -0.2668 0.1362 -0.1611 0.1306a2

a 2.0 1.9985 0.5669 1.9954 0.05461

-0.5 -0.2708 0.0889 -0.1693 0.0862a2

1.0 0.9976 0.0797 0.9903 0.0761a1

a 2.5 -0.8055 0.2021 0.4377 0. 15982

a 2.0 1.9959 0.0500 1.9931 0.0517I

-2.5 -0.8065 0.1789 -0.4536 0.1425a2

Table 2.5: The results of fitting mixed Poisson regression model to the data from a Monte
Carlo study on the 2-component mixed Poisson regression model with constant mixing
probabilities and variable rates.
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—

Pt

0.6 0.4a1 a2

-0.5 99/200 47/200
1.0

-2.5 200/200 177/200

-0.5 . 181/200 122/200
2.0

-2.5 200/200 200/200

Table 2.6: The results of the likelihood ratio tests for the hypothesis of a2 = 0 based on

the 2-component mixed Poisson regression model—IT.
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Table 2.11: Parameter estimates for five methods for seizure data.

Parameters Poisson Method Method Method Mixed Poissoe Regressice
Estimated Regression I U Ill

Comp 1 Comp 2

Intercept 2.118 2.118 2.148 2.129 2.8450 2.0704
(0.0815) (0.1897) (0.5539) (0.3846) (0.2360) (0.0890)

x1 4.132 4.132 4.656 3.757 1.3020 7.4318
(0.3032) (0.7059) (1.094) (0.8322) (0.4904) (0.5095)

x2 -0.2257 -0.2257 -0.2412 -0.2408 -0.4063 -0.2707
(0.0329) (0.0766) (0.2191) (0.1523) (0.0909) (0.0377)

x3 -1.320 -1.320 -1.440 -1.221 -0.4309 -2.2762
(0.0800) (0.1863) (0.3098) (0.2316) (0.1385) (0.1377)

Mixing NA NA NA NA 0.2762 0.7238
• Probabilities

Unexplained 1.0 5.4206 0.8631 0.4051 NA NA
Variance
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Table 2.12: Mixed Poisson regression model estimates for seizure data.

Coapceeo Mixing Poisson rate logprobability
likelihood AIC BIC0)

p1 a10 a1 aj2 a13

1 -component mixture

[ [ 2.118 4.132 -0.27 -1.320 [ -583.16 [ -587.16 [ -3.04

2-component mixture

1 0.4128 1.2183

-700.10 -703.10 -707.412 0.5872 -1.1571

• 1 0.3715 1.8959 -1.2761

-462.79 -467.79 475.142 0.6285 1.3777 -3.1018

1 0.3736 2.9919 -0.4732 -0.4718

426.21 -433.21 -443.512 0.6264 2.1791 -2.3248 -0.3379

1 0.2761 2.8450 1.3020 -0.4063 -0.4309
(0.2360) (0.4924) (0.0909) (0.1385) -376.18 -385.18 -398.41

2 0.7239 2.0704 7.4318 -0.2707 -2.2762
(0.0890) (0.5095) (0.0377) (0.1371)

3-component mixture

1 0.2742 2.8440 1.2938 -0.4054 -0.4294
2 0.0277 2.0809 -28.767 -0.3928 5.4488 -375.29 -389.29 409.88
3 0.6981 2.0694 7.3197 .0.2648 -2.2478



1%
)

I
-

t’
)

I
.

t)
s-”

-

M
0
0

0
0

0
0

t’
)

Go
I’

.)
0

0

t-
t)

I’
.)

-
0
’

V
i

0
0

— -4
(%

)
-4

0 Ls
)

j

b
0
’

(‘
3

i—

0
0
’

V
i

0
V

i
0

V
i

%
Q

O
i.

-
-

3 V
i

‘.
3

!.
3 V
i

0O V
i

l3

0 -
3
b

I-
.-

4
.

1
U

.
(‘

3
V

)
O

0
’

t-
,—

4
i—

0
0

0
I-

’
—

3
0

’

-
.

p
p

t)
I—

0
-4

i%)
—

3
0
0

‘3
0

V
i

0
0

0
-

0

I
I

—
w

W
V

i
;

0
•
‘

-
3

V
i

—
4

V
i

-
4

4
0
’

i
-

.
V

i

V
i

C
-
4
0
0

V
i

4
(‘

3
0

0
.

O
\

0
0

0
ç

V
i

(s
)

.
0

I
I

..
)

(.
J

.
V

i
-4

0’
.

-4
-

0
0

)
I
l

V
i

‘.
3

C
’ 0 0 0 >4

C)

(‘-
3

C’ >4

I z z z 00 I— (.
3 V
i

00 0 0’
.

(‘.
3 1:.. 0
0

(‘.
3

0
0 0

I C’ 0 I >4

C)

‘-
—

‘
0
.

0 >4 S. -
t 0 0 0 cn C,
) 0 0

I-
I

C.
)

0 (‘.
3

0’
.

0
’

I— V
i

0
0

(‘.
3

(‘-
3

t&
)

\0

0
0

4
0

0
V

i
.

.
(3

“
I

—
‘

U
t

0
0 0 0
0 0’
.

0 0
0

—
3

0 V
i

0

C
,’

I
I

I
I

1J3 V
i

V
i

V
i

0
0

V
i

.
0
0

U
)

i_
il

.
.3

U
)

(‘
3

U
i

U
)

I
I

I
I

I
U

)
U

)
U

)
U

)
U

)
-.3

0’
.

a’
.

0
’

‘.
0

—
3

00
43

.
00

0
bo

bo
0

0
3

0’
.

U
)

‘0
I-

’
43

.
V

i



‘0

C9
0

•0

(10%0%

I-0%0
.

III•1II:iI

Um

Ij,,

x

8
.

III

I0009z

1I

:

9
0

0
0

0
0

a
.
.
.
‘
q
i
-

0
0

0
%

9
r9

—
—

.-
.

a
r

—
1

0
0

0
0

!.
0

(I
(
.

—
(1

9
‘o

-
-
:

£
)

?
r

I
r

-
1

-
°

900
0
.

r)

19
9

0
.

%
0

‘0
v

•
l
f
)
$

.
w

,
r
,

00
0

‘9
?

?
0

‘9
‘
?

II

‘0V
.

0
.

00(
‘0V

.

I—

F!“1

09

9

9(1V
.

S9(-I

a’9090

90%0
0

0

(‘I

9V
.

—
0’1

—
f
l

(1
1-4

—



T
ab

le
2.

15
:

N
um

be
r

Of
re

ve
rt

an
t

co
lo

ni
es

of
sa

lm
on

el
la

(y1)

D
os

e
of

qu
in

ol
in

e
d,

(j.
Lg

/p
la

te
)

_
_
_
_
_
_
_
_
_
_
_
_

_
_

_
_

_
_

_
_

_
_

_
_

0
I

10
33

10
0

33
3

10
00

O
bs

er
ve

d
#

of
15

16
16

27
33

20
co

lo
ni

es
21

18
26

41
38

27

29
21

33
60

41
42

I.



Chapter 2. Mixed Poisson Regression Models 98

C_z Pviuoa rate log
a1t probability likelihood PJC BK

p, - a, ai1 a12

1-component mixture

1 [ J 2.173 -0.001013 0.3198 -68.13 -71.13 -72.47

2-component mixture

1 0.6145 3.0779
-68.93 -71.93 -73.27

2 0.3855 3.7112

1 0.5617 2.9886 0.000188
.68.81 -73.81 -76.04

• 2 0.4383 3.6428 0.000082

1 0.8132 1.9125 -0.001247 0.3623
-60.90 -67.90 -71.02

2 0.1868 2.4064 -0.001294 0.3790

1 0.8173 1.9094
-0.001260 0.3640 -60.91 -65.91 -68.14

2 0.1827 2.4768

-___________

3-component mixture

1 0.5918 1.8484 ..0.001190 0.3640

2 0.3241 2.8535 -0.000154 0.1476 -60.78 -71.78 -76.68

3 0.0841 5.9320 -0.000100 -03895

Table 2.16: Mixed Poisson regression model estimates for Ames salmonella assay data.
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Chapter 3

Mixed Logistic Regression Models

3.1 Logistic Regression and Its Modifications

The logistic regression model has been widely used for analyzing count data in which

each observation consists of a finite valued response variable and a vector of covariates or

predictors. Areas of applications include epidemiology, quantal bioassay, and the social

sciences. Sometimes the model fits poorly, suggesting the need for alternative models.

In this case, it is not uncommon that observed data are overdispersed in terms of the

binomial assumption. In the second part of this dissertation, mixed logistic regression

models are introduced and investigated. These models are applicable in several different

situations where the ustial logistic regression model is inadequate. They provide an

alternative way to quasi-likelihood approach and others for modelling extra-binomial

variation with a more meaningful interpretation.

Suppose that the ith response Y is a count of successes in m trials, and associated

with this response is a covariate vector x = (xii,. . . , x.)’ for 1 n. The logistic

regression model assumes that the Y are distributed independently binomial(m, ir) with

density function given by

f(yi I c, x,
= ( ) Yi(l —

\ Ui)

where r(x, a) = exp(xa)/(1 + exp(xa)), a RT, is a unknown regression param

eter vector, m2 is an integer and y = 1,. . . , m. Note that the binomial parameter 7r is

129
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related to the linear part, xa, through a logit transformation. Note also that m may

vary with i.

The logistic regression model may be used as follows. Sometimes, inference concerning

the as is of primary importance. For example, when m = 1, Yj 1 may denote the

occurrence of a particular event of interest. Large a’s (relative to their standard errors)

correspond to factors which increase the chance of the event.

There are several reasons for the widespread popularity of the logistic regression

model. Cox (1970) argues from considerations of sufficiency. By writing down the likeli

hood based on {(y, xi),. .
., (y, x)}, one discovers that the vector

. . .

, ) yxj)

is sufficient for a. Cox(1970) feels that this model is the most useful analogue, for bino

mial data, of the normal linear model. When the covariates are nominal or ordinal, there

is a correspondence between the logistic parameters and the parameters of a log linear

model for cross-classified data (Fienberg(1981)). Finally, inference for the a’s remains

unaffected regardless of whether the data are sampled prospectively or retrospectively

(see for examples McCullagh and Nelder (1989)).

The logistic regression model is an example of a Generalized Linear Model (GLM)

which is discussed by McCullagh and Nelder (1989). GLMs are models for regression

data, i.e. a response Y measured along with a vector of covariates x. Under the GLM

formulation, the response Y has a distribution which is a member of the exponential

family and some monotonic differentiable function of the expected value = E(Y)

(called the link function), g(u), is expressed as a linear combination of covariates and

parameters. For binomial regression data, the proportion Y/m is regarded as the response

and E(Y/m) = ir. Hence for the logistic regression model, the link function is the logit

function, i.e., g(7r) = log(7r/(1
—

7r))
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When the logistic regression model fits the data poorly there are several alternative

models to consider. Using the GLM formulation, these alternatives can be dichotomized

into link function or frequency distribution modifications. To understand some of these

generalizations, it becomes important to distinguish between two types of data sets.

Suppose that in a designed experiment, experiment units are sampled and a 0-1 response

along with some covariates are recorded for each unit. We call such data sets as ungrouped

or point binomial, and the fundamental experimental units as Bernoulli experimental

ones. Observations of this nature arise, for instance, in some medical trials where an

end-period result for each patient (experimental unit) is either recovered (Y = 1) or

unrecovered (Y = 0). Alternatively, if 0-i responses are grouped under each experimental

condition and the cumulative number of positive responses for each condition are recorded

along with a vector of covariates describing the condition, we call such data sets from the

experiment as grouped and the fundamental experimental units as binomial ones. In a

toxicity experiment, for example, tanks of fish are exposed to some toxic agent at several

levels and the incidence of liver tumors in each tank is recorded. Here the tumor rates are

the fundamental experimental units and each provides a 0, 1,. . . , m response where m is

the size of the ith tank. With the logistic regression model, this distinction between these

two data sets is superfluous. The log-likelihoods under the two regimes differ only by

an irrelevant constant term ln j, and inference remains unaffected. When

\ yi I
considering generalizations, however, the distinction between two types of data can be

crucial. While grouped data can be modelled by non-binomial frequency distributions,

with ungrouped data we do not have this option. Any model for a Bernoulli response,

Y = 0 or 1, is determined by P(Y = 1), which specifies a binomial model with m = 1

and r = P(Y = 1).
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3.1.1 Link Modifications

A wide choice of link function g(’r) is available. In addition to the logistic function, at least

two other functions are commonly used in practice: (1) the probit function gfr) =

where1(r) is the inverse of the standard Normal integraL This function is symmetric

in ir and for any value of r in the range (0, 1), the corresponding value of the probit of

ir will lie between —oo and oo. Note that when r = 0.5, probit(’ir) = 0; and (2) the

complementary or log-log complementary function ln(— ln(1 — 7r)). This function again

transforms a probability in the range (0, 1) to a value in (—oc, oc), but unlike logistic and

probit transformations, this function is not symmetric about ir = 0.5. Note that all the

three link functions can be regarded as special cases of a general procedure that relates

the probability of a positive response to the covariates through a link G’ (yr) where G

is some continuous distribution function. In fact, the logistic link is the inverse of the

logistic distribution which is defiled as 7r(z) = exp(z)/(1 +exp(z)) = Pr(Z <z) where Z

is a standard logistic random variable. Similarly, the complementary link can be derived

by taking the inverse of the extreme value distribution function as the link function.

McCullagh and Nelder (1989) discuss and compare these link functions. Of these

three link functions, the use of the complementary function is limited to those situations

where it is appropriate to deal with success probabilities in an asymmetric manner. The

logit and probit link functions are quite similar to each other, but from computational

viewpoint, the logistic transformation is more convenient because it has an explicitly

analytical form. There are two other reasons why the logit link function is preferred to

the other two link functions. First, it has a direct interpretation in terms of the logarithm

of the odds in favor of a success. Second, models based on the logit link function are

particularly appropriate for analysis of data that have been collected retrospectively, such

as in a case-control study.



Chapter 3. Mixed Logistic Regression Models 133

Other links include the angular, g(ir) = sin(r)h/2 and the linear, g(7r) = r. These

links are discussed in Cox (1970). Of the links discussed above, the linear, angular, probit

and logit are symmetric in the sense thatg1(z) = 1 —g1(—z) and these links are similar

for probabilities in the range (0.1,0.9).

Relaxing the requirement that g(ir) be a linear function of the covariates, we can use

nonlinear link functions to obtain a richer class of probability functions than the class

specified by a linear link. Prentice (1976) generalizes the logistic link symmetrically to

—

[r1aexp(w7)(1+exp(w))_(1+’2)

— J_ B(71,72)

j f(w)dw, (3.1)

where B(a, b) is the beta function.

When ‘yi = inverting (3.1) yields the logistic link. The parameters -y and ‘-y

indicate skewness and heaviness of tails of the density f(w). Other special cases of

f(w) are extreme minimum value, extreme maximum value, probit, exponential, reflected

exponential, and double exponential. Thus this model can be viewed as specifying a richer

class of threshold distributions than the logistic alone.

Other link functions include the power transformations of the logit probability (Aranda

Ordaz (1981) and Guerrero and Johnson (1982)). A problem with these nonlinear link

functions is that in some cases it may be difficult to compute the maximum likelihood

estimates under the corresponding models. With development of high speed computers,

this problem may become less important.

Carroll et al. (1984) modify the probit link function by including covariates measured

with error in Bernoulli experiments. With normal measurement errors, they discuss pro

cedures to compute estimates for this model. They also demonstrate that the usual

estimate of the probability of a positive response can be substantially in error when co

variates are measured with non-trivial error. Their modification differs from the previous
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link alternatives in that the modified link is derived to accommodate a specific problem.

These approaches try to modify or enrich the basic logistic model by focusing on the

relationship between the covariates and the probability of a positive response.

3.1.2 Frequency Distribution Modifications

A consequence of using the binomial frequency distribution in the logistic regression is

that Var(Y) = m7r(x, a)(1 — 7r(x, a)). In practice, however, we often have Var(Y) >

m7r(x, a)(1 — 7r(x, a)), suggesting the need for alternative frequency distributions. This

may be reflected in over-large residual deviance and adjusted residuals which have a

variance > 1. We note that if a positive response Y can be expressed as the sum

of m independent Bernoulli random variables each with success probability (7r(x, a)),

Var(Y) = m7r(x, a)(1 — r(x, a)). Hence, to use a non-binomial frequency distribution

implicitly requires viewing Y as the fundamental response, that is, to have binomial

experimental units. Several researchers have proposed approaches to accommodate extra-

binomial variability.

Without covariates, an alternative frequency distribution is the beta-binomial distri

bution

f( I a,b,m)
= i () (1- )m-Y+b-ld. (3.2)

The model is derived by assuming that the binomial parameter ir is a positive random

variable following a beta(a,b) mixing distribution. Hence the marginal distribution of

the response Y is the beta-binomial. Williams (1975) discusses this model for the data

from completely randomized toxicological experiments in which the experimental units

are animal litters. In the model, the number of deaths among pups within a litter is

assumed to have a beta-binomial distribution. This is a sensible situation to consider
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binomial generalizations because litter mates often tend to respond more alike than pups

from different litters and a binomial model assumes independence between litter mates.

Several researchers generalize the beta-binomial distribution to incorporate covariates

in the parameters for some particular applications. Crowder (1978) generalizes the beta-

binomial model for 1 and 2 way layouts. It is not obvious, however, how his approach

generalizes to continuous covariates. A difficulty with generalizing the beta-binomial to

allow more complicated settings, for example continuous covariates, is that one ought to

somehow relate the beta-binomial parameter a and b to a covariate vector x via some

functions a(x) and b(x). As Ochi and Prentice (1984) point out, it is hard to specify such

functions with intuitive appeal.

Otake and Prentice (1984) model the number of aberrant cells in samples of 100

cells taken from human survivors of the atom bombings of Hiroshima and Nagasaki.

Possibly due to measurement error of the radiation doses, the data exhibit extra-binomial

variability. At each unique x vector, they estimate a(x), b(x) by maximum likelihood

using the beta-binomial model of equation (3.2). They then fit a linear model (x) = x’a

via weighted least squares where i(x) is the average number of responses at covariate

vector x. The weights are the inverses of the estimated variance of i(x) (based on

b(x)) under the beta-binomial model. They point out that failure to accommodate this

variability results in overly precise inference concerning the a’s.

Pierce and Sands (1975) used a different approach. They assume that unmeasured

covariates or measurement errors might have an additive random effect on the log-odds

scale, and that logit(ir) = x’a where the intercept a0 is distributed as a normal (,o2)
random variable. Likelihood estimation and residual analysis are discussed as well as an

approximate analysis necessitated by the complicated nature the likelihood function.

Efron (1986) introduces double exponential families as constituent distributions in

GLMs, in which means and variances are allowed to depend on covariates. As an example
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of his model, he modifies the binomial distribution (m, ?r) by rescaling it with sample size

m to define a double binomial family

f(y I r, 0, m) c(Tr, 0,m)0”2{g,m(y)}°{gy,m(y)}’6[dGm(y)],

where

g,m(y) = ( m mY(1 — )m(i-Y)

\myj

(m\
and Gm(y) is the discrete distribution putting mass 2—m at y = 0, 1/rn,... , 1,

\my)

and c(ir,0,m) satisfies

I ,0,m)dGm(y) = 1.

Based this model, he analyzes the toxoplasmosis data by incorporating covariates to the

mean and variance in such a way that logit(ir) = ao +a1x+c2x+c3x where x is the

standardized rainfall for city i, and 0 = 1.25/(1 +exp(—X)) where A =

and M is the standardized value of the sample size m2 for city i.

Another approach for modifying the binomial frequency distribution is quasi-likelihood

which specifies only the first two moments of Y rather than the complete distribution.

The attraction is that unduly rigorous assumptions about the frequency distribution are

avoided. To model binomial a regression (yi, xi),. . . , (y, x), McCullagh and Nelder

(1983) suggest assuming that E(Y) = mirj and Var(Y) = mju27r(1 — r) rather than

specifying a complete distribution for Y, where ir = ?r(x, cr). This approach is similar to

one advocated by Finney (1971) who used the probit instead of the logit link. Note that

for the logistic regression model, u2 = 1. Therefore 2 > 1 corresponds to extra-binomial

variability or overdispersion, while u2 < 1 corresponds to underdispersion. Since the

complete distribution of Y is not specified, maximum likelihood estimation is precluded.
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Estimates of a and a2 are computed via a quasi-likelihood (Wedderburn, 1974) approach.

In fact, the maximum quasi-likelihood estimates of a are the same as the usual logistic

regression maximum likelihood estimates regardless of the value of a2, and the moment

estimate of 2 equals Pearson’s chi-square value divided by the degree of freedom. This

estimate is consistent in the limit as the number of observations increases to infinity

with m fixed, and its asymptotic distribution is known (McCullagh and Nelder (1983)).

Another estimate of a2 is obtained by the deviance divided by degree of freedom. A prob

lem with this model is lack of interpretation of it because it cannot explain the cause of

overdispersion as other juasi-likelihood models such as that of Williams does.

Williams (1982) considers two quasi-likelihood models which fine tune the previous

approach. By regarding the binomial parameter as an unspecified random variable

ll following a continuous mixing distribution on (0, 1) with E(II) = 02 and Var(ll) =

qO2(1 — 0j, he shows that the unconditional mean and variance of I’ are

E(Y) = m20 and

Var(Y) = m20(1 — 0j)(1 + çb(m2 — 1)),

where 0 = exp(xa)/(1 + exp(xa). Note that in the absence of random variation in

the response probabilities, Y would have a binomial distribution, Bi(m, 0j, and in this

case, Var(Y) = m0(1
—

0). This corresponds to the situation where = 0 in the

above equation. On the other hand, if there is variation of Y amongst the response

probabilities, so that is greater than zero, the unconditional variance of Y will exceed

m202(1
—

02) by a factor (1 + q(m2—1)). Thus variation amongst the response probabilities

causes the variance of the observed number of successes to be greater than it would have

been if the response probabilities did not vary at random, resulting in overdispersion.

As Ochi and Prentice (1984) and Collett (1991) mention, this model can be also de

rived by assuming that there is a common correlation between the Bernoulli responses
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within a binomial experimental units. Suppose that the ith of m sets of binary data

consists of Y successes in m observations. Let Rj1,. . . , Rjm be the random variables as

sociated with the m2 observations in this set, where R, = 1 for j = 1,. . . , m, corresponds

to a success, and R3 = 0 to a failure. Now suppose that the probability of a success

is O, so that P(R1, = 1) = 0, B(R3) = 0 and Var(R3)= 0(l
—

0). The number of

successes Y is then the random variable R, and so E() = E(R) =

and the variance of Y is given by

m m
Var(11) = > Var(R3)+ > Cov(R3,Rk)

j=1 3=1 kj

where Cov(R3,Rk) is the covariance between R3 and Rj for j $ k, and k 1,. . . , m.

If the m random variables R1, . . . , Rjm were mutually independent, each of these co

variance terms would be zero. However, since we assume that the correlation between

R3 and Rik is

Cov(Rj,,Rjk)

.../Var(R)Var(Rik)

we have Cov(R3,Rk) = 6O(1 — 0) and

m m
Var(Y) =

j=1 j=1 kj

= m:Ot(1 — 0) + m(m; — 1)[SO(1 — O)}

= m:0j(1 — 0)[1 + (m — 1)S].

Note that the approach of McCullagh and Nelder lacks this interpretation unless

m, = m for i = 1,. . . , n. An iterative algorithm which produces estimates of a and ir is

also presented. Unlike the approach of McCullagh and Nelder, the estimates of a may be

different from the usual logistic regression maximum likelihood estimates unless m = m

fori=1,...,n.
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Williams (1982) also discusses another model where the logit of ‘irj is a random variable

with E(logit(7rj) = x’a and Var(logitfrj) = a2. As a consequence of this assumption,

the true response probability is a random variable II whose expected value is O. The

resulting model for logit(ll) is then

logit(llj = xa + 6

and the term 6 is known as a random effect. This model generalizes the approach of

Pierce and Sands by relaxing the assumption that the intercept of the regression has a

normal distribution. Williams(1982) notes that these two models are quite similar though

the latter has a more elegant interpretation since the fixed and random effects are on the

same scale.

Follmann and Lambert (1989) propose a non-parametric mixture of logistic regression

model in which the intercept in the regression is a random variable with an unknown

mixing probability distribution, and other regression coefficients are unknown constants.

The mixed probability function of the response Y associated with a covariate vector x

and m trials is given by

Im’\ r°°
x, a, m, H)

= ( j J r(a + x’a)!I(l
— ir(a + x’a))mdH(a), (3.3)

uJ -

where r(a+x’a) =exp(a+x’a)/(l +exp(a+x’a)) andy = O,1,...,m.

Although the mixing distribution H is not indexed by parameters, Laird (1978) has

shown, under general conditions, that when estimating any mixture model (without

covariates), the nonparametric maximum likelihood estimator of H is a step function

with a finite number of steps. Lindsay (1983) also discusses some general results for

nonparametric mixtures. He shows that existence, uniqueness and support size of the

maximum likelihood estimate are related to properties of the convex hull of the likelihood.

These results given by Laird (1978) and Lindsay (1983) imply that in terms of maximum
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likelihood estimate, it is the same no matter whether H is assumed as a nonparametric

distribution or as a discrete distribution with c points of support, where c is an unknown

finite integer. In this sense, (3.3) may be equivalently expressed by a finite mixture with

an unknown number of components. In the next section we will propose a mixed logistic

regression model which generalizes Follmann and Lambert’s model.

3.2 Tests For Extra-binomial Variation

To check whether data re overdispersed relative to the binomial assumption, we need

a way to test for extra-binomial variation for regression type data. Note that it may

be misleading if one tests for extra-binomial variation by fitting a more comprehensive

model that includes the binomial, and tests a reduction to the simple model using, for

instance, a likelihood ratio test. Lawless (1987a) points out that in some circumstances

the asymptotic distribution used with these cases may be unreliable, as they tend to

underestimate the evidence against the base model.

An informal approach to detect extra-binomial variation is to use convexity plots

(Lindsay and Roeder, 1992, and Lambert and Roeder, 1993). For example, Lambert and

Roeder (1993) define the following function C(7r) and propose plotting it against r for

logistic regression
fl vi mj—yj

C(Tr) = n’ > () (f)
where = exp(x’&)/(1 + exp(xj’à)), & is the maximum likelihood estimate of regres

sion parameter vector a, and r E (0, 1). They prove that if observations are generated

by a logistic regression model with random coefficients or random means, C(r) is ap

proximately convex for a large sample. Therefore, the more convex C(7r) appears, the

more evidence there is of overdispersion or an omitted variable. Note that this approach

cannot distinguish overdispersion from lack-of-fit problem.
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Several researchers use score tests for extra-binomial variation by fitting the bino

mial model as a first step in the model building and testing for overdispersion. Tarone

(1976) considers a correlated binomial alternative model, and applies the C(o) proce

dure of Neyman (1959) to derive the score test statistic for the adequacy of the binomial

distribution. Taking a different approach, Efron (1986) derives the score test statistic

against beta-binomial alternatives. Dean (1992) develops a unifying theory for the score

tests mentioned above and provides three score test statistics for the hypotheses of no

overdispersion in the usual logistic regression model against alternatives based on three

different forms of extra-binomial variation respectively. These score test statistics are

N
— — mfr)2 — m(1

—

a

N
— {[*(1 — ,)]‘(yj — mfr)2 + *j(yj — m)

— y:(l —

b — n 1/2
an

{2E1m(m—1)}

N
— 1{(m — 1)(1

—

*)}1{(y — m)2 + fr(y — mir) — y(l —

— {2 m2(m — 1)_1}h/2

corresponding to the following specifications of overdispersion:

(a) E(1’) m’irj and Var(11) mr(1 — r)[1 + O(m — 1)7r(1 — 7r) for 0 small,

(b) E() = mir and Var(Y) = mr(1 — ir)[1 + 0(m, — 1)], and

(c) E() = mr and Var() = m,r(1 — ir)(1 + 0) for 0 > 0.

In the formula for Na, V is calculated by

V2 = {2mfr(1 — )2 +mir(1 — irj(1 — 67r +67r)} —

_____

:=1 j=1

where Wi: = mr(1
—

irs), W2 = m:irj(1 — ir)(1 — 2ir), and are the elements of

the matrix H =W2X(XtW1X)_1W1h/2where W1 = diag{ Wii,. . . , W1} and X is the

design matrix. In the above three formulae *j is the estimated probabilities for positive
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response for the independent identical observations based on the usual logistic regression.

Under the null hypothesis H0: 0 = 0, each statistic asymptotically follows the standard

normal distribution. Note that the first two types of overdispersion (a) and (b) are the

mean-variance relationship of the models proposed by Williams (1982), and (c) is that

introduced by McCullagh and Nelder (1983).

3.3 A Mixed Logistic Regression Model

Without covariates the finite mixture approach has been widely used in many applications

(c.f. Titterington et. al. (1985)). With covariates, however, this approach has not been

systematically studied and directly applied for analyzing binomial response data. In this

section we extend the finite binomial mixture model to the logistic regression model by

allowing both the component binomial parameters and mixing probabilities to depend on

covariates. We investigate some basic features of the model. We also discuss identifiability

for the model and provide sufficient conditions for identifiability.

3.3.1 The Model

Let the random variable Y denote the ith binomial response variable, and let {(y, m,

i = 1,... , n} denote observations where y, are observed value of 1’, m are total trials

for and x = (Xm), xT)) are k-dimensional covariate vectors associated with yj. Note

that m) and x arek1-dimensional andk2-dimensional vectors corresponding to the

regression part of mixing probabilities and component binomial parameters respectively.

Usually the first element of cm) and is 1 corresponding to an intercept. Our mixed

logistic regression model assumes

(1) The unobserved mixing process can occupy any one of c states where c is finite and

unknown;
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(2) For each observed binomial response j, associated with a binomial denominator

m, there is an unobserved random variable, H,, representing the component which

generates yj. Further, the (1’, fl) are pairwisely independent;

(3) Conditional on covariate çm) fl follows a discrete distribution with c points of

(m) (m) c (m)
support, and Pr(ll = j x1 ,/3) = p3(x ,8) where_1p(x1 ,/3) = 1 and

(m)p,(x1 ,/3) is defined by

(m)p3(x1 ,/3) Pij
,(m)exp(/33x. )= forj = 1,...,c— 1, (3.4)

1 + E’ exp(/3xm))

and

— (m)
Pic = pc(x1 ,8)

=
1_ipij (3.5)

with /3 = (flu,. . . ,/9—i)’ and /3 = . . , /31)’, j = 1,. . . , c — 1, are unknown

parameters. In fact, conditional on m) . follows a multinomial distribution

(1, Pil,. . . , pic). Note that /3 appears in each pj3 for 1 <j < C;

(4) Conditional on ll = j and the binomial denominator m, Y follows a binomial

distribution which we denote by

/ (r)f3j,yiIx,

bi(y1 I m,7r)

Imi\
= I I 7...Yi(1 — )mz (3.6)

\ Il J
where

/ / (r)
— (r) expaj X2

7rj = 7r(x aj) = , for j = 1, . . . ,
1 + exp(aj’x ‘)
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where a (ai,. . . , aj’ are unknown parameters , where a3 = (cr3i,. . . , aJ/2 )‘,

j 1,... , c. Note that the component binomial parameter rjj relate to covariates

r) through the logit function.

The above assumptions define the unconditional distribution of observations, yj, as a

finite binomial mixture in which the mixing probabilities, Pu, depend on the covariates

(m) through the multinomial link function, and the component distributions are binomial

distributions with the probabilities, lrjj, depending on the covariates x through the logit

function. Suppose that observations can be classified into c groups corresponding to the

c unobservable states, a, may be interpreted as the coefficients of the logistic regression

of observations in group j. On the other hand, 3 may be interpreted as the coefficients of

the multinomial regression in which llu and m) are dependent and independent variables

respectively.

Note that the model allows some or all components of (m) and x to be identical, and

some coefficients, a’s, to be constant across components, i.e., ajl = al for j = 1,.. . , c

or 0 in one or several covariates, i.e., au = 0 for some j, j = 1,. . . , c. We denote

(m) (m) (m) , (r) ,X = (z . . . x, ) and X ‘ = (x1 . . . x’’) as two design matrices.

Under the above assumptions the probability function of Y satisfies
C

(‘,‘) (m)
f(y ; ,x ,mu,a,/3) = p,bi(y, I mu,ru) (3.7)

j=1

where pj and hi (y I m, are specified by (3.4),(3.5) and (3.6) respectively.

We may equivalently view the model as arising from the following sampling scheme:

Observations are indepndent; for observation i, component j is chosen according to

a multinomial distribution with probabilities pjj; subsequently, yj is generated from a

binomial distribution with m trials, and probability ‘Irj.

There are several justifications for mixed logistic regression models. Suppose that

each experiment unit or object has some underlying propensity for a positive response
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which is captured by one of the c response curves: logit(ir) = x(”1’a, (1 j c), and

that the proportion of the experiment units captured by the jth curve, depends on a

covariate vector (m), i.e.,p3(x(m), 8). Thus we are led to the model of equation (3.7).

Another argument for the mixed logistic regression model is that the coefficient vector

a in the usual logistic regression model, logit(7r) x’)’a, is a random variable with

the discrete distribution: Pr(a = a3) = p3 for j = 1,. . . c. By making the further

assumption that p3 are related to a covariate vector (m) we are led to the model of

equation (3.7).

Note that the above model includes several interesting models as special cases. Some

of them were previously studied.

• Choosing c = 1 yields a logistic regression model;

• Setting m) = (1) yields a finite mixed logistic regression model with constant

mixing probabilities;

• Setting (m) = (1), x 1 and aj ak for k 4 1 yields Follmann and Lambert’s

model (1989);

• Setting x = (1) yields the finite binomial mixture in which the component bi

nomial parameters are constant and the mixing probabilities depend on covariates

(m)

3.3.2 Features of the Mixed Logistic Regression Models

To use the mixed logistic regression models we have to distinguish experiment units as

either Bernoulli or binomial. For binary data (m1 = 1 for 1 i n) we can rewrite
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equation (3.7) as
C C

(r) (m)f(y x , , m, a, /3) = [ pjj7rjj} [1 — pjirjjj
j=1 j1

The above equation implies that we oniy modify the link function with the probability

= prj. In this case, no matter whether the binary responses are heterogeneous,

the responses always have Bernoulli distributions. This also means that the above model

cannot adjust for overdispersion relative to the Bernoulli assumption. Furthermore, the

model may not be identifiable without imposing some unrealistic restrictions on covari

ates. Hence we recommend not using the mixed logistic regression models when dealing

with binary data.

For binomial experimental units, the distribution defined by equation (3.7) is no

longer a member of exponential family so that the representation of a generalized linear

model does not apply. In this case the component distributions have the logistic link,

and the frequency distribution is a finite binomial mixture.

For the mixed logistic regression models, the unconditional mean and variance of Y

are, respectively,

E(Y) = E(E(1IH))

=
mj(pjjjj) mj*j (3.8)

and

Var(Y) = E(Var(Y I ll)) + Var(E(Y I fl))

= m — pj) + ((mi — 1)/mi) Var(E( I ll))

= m(1
—

j) + ((mi — 1)/rn:) Var(E(Y I fl)), (3.9)

where

Var(E( I ll)) = m
— }
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Since m > 1, Var(E(}’ I He)) = 0 holds if and oniy if E(Y I ll) is constant. Hence, if

we denote as the new probability, Var(34) = m*(1
— j) if and only if 7r1 ... 7rj

for 1 <i <n. This implies that the proposed model is able to cope with extra-binomial

variation among Y1,.. . , Y,, due to heterogeneity in the population.

3.3.3 Identifiability

To be able to reliably estimate the parameter of (3.7) we require the mixture be identi

fiable, that is, two sets of parameters which do not agree after permutation cannot yield

the same mixture distribution. Although an unlimited class of finite binomial mixtures

may not be identifiable, classes of finite mixtures of some subfamilies of binomials may

be identifiable. Without covariates Teicher (1961,1963), Blischke (1964) and Margolin,

Kim and Risko (1989) give necessary and sufficient conditions for identifiability of the

finite binomial mixtures. These results may be summarized as follows. In the binomial

family bi(M, ir), 0 < r < 1, for fixed M but varying ir, the class of mixtures of at most k

members is identifiable if and only if M 2k— 1. That is, if there are two representations

of the same mixture:

= y = 0,. .. , M,

with Fj(y) = bi(y I M,ir), Fj(y) = bi(y I 0 <j < 1 for 1 j ci, for

1 j c2, p3 = j5 = 1 and c1, c2 < k, then

Cl = c2,’ 7r = j, and p3 = for j = 1,. . .

if and only if k (M + 1)/2.

With covariates, Follmann and Lambert (1991) discuss the sufficient conditions for the

identifiability of the nonparametric logistic regression model with common nonrandom

regression coefficients and a random intercept with a finite, unknown mixing distribution.
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Note that their model may be equivalently viewed as a special case of our models. They

show that for binary response the number of components in the mixture must be bounded

by a function of the number of covariate vectors that agree except for one coordinate;

and for binomial response the number of components must satisfy the same bound or

be bounded by a function of the largest number of trials per response (M), i.e., c

(M+1)/2.

To discuss sufficient conditions for identifiability in our case, we first define identifia

bility as follows

Definition: Let denote the class of probability models {f(yi x,x,m1, a, ,8),

x,xm),mn,a,/3)}, with fQi
r) (m) ma/3) with at most c compo

nents, a restriction that < ... < parameter space C x II x 2, sample spaces

• , and fixed total number of trials and covariate vectors (m1,(x, m))),

(ma, (41, 4m))) where x E Rd1 and (m) E Rk2 for i = 1,. . . , n. Ø is identifiable if for

(c, a, ,8), (c*, a, j3*) E C x U x 2,

f(i I çm) t, a, 8) = f(y x, t, a, /3*) (3.10)

for all y E Y, i = 1,..., n, implies (c, a, /3) = (c*, a*, /3*).

Note that the order restriction in the definition means that two models are equivalent

if they agree up to permutations of parameters.

Like the setting without covariates, we give sufficient conditions for identifiability by

imposing a restriction on c specified by the minimum number of trials for proper subsets

of the observations. We state them below.

Theorem 2. Let S,\ = {(y, xAj; i = 1,. . . , t for some t} denote such a subset

(m) (m)
of the observations indexed by ) E A that the ranks of vectors {x, ,. . . } and

{x,. . .
, x} equal the ranks of the design matrices X(m) and X(T) respectively, and

let N = min{m1, . . . , m}, and NA0 = maxXEA{NA}. Then is identifiable if (1)
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c (NA0 + 1), and (2) x(T) and X(m) are full rank.

Proof. Without loss of generality, we assume that the subset of the first t observations is

SA0 corresponding to NA0. Suppose that (c, , 3) and (c*, a, *) satisfy equation (3.10),

this then implies that for each i and all y E Y, ? 1,. . .

I mj) — pbi I (3.11)

where 6) and 7rjj irj(xT), aj) are defined above, and p, and are

defined analogously. Note that each side of equation (3.11) may be regarded as a finite

binomial mixture without covariates. Since c, c” N m, Teicher’s results (1961, 1963)

imply that

c = c”, pjj = p’, and rij = (3.12)

for i = 1,... ,t and j = 1,... ,c. By the definition of the model, we obtain

exp(/3xm)) = exp(/3xm)) for j = 1,... ,c— 1, (3.13)

1ogit(ax) = logit(cvxT)) for j = 1,. . . , c, (3.14)

for i = 1,.. . , t. Since the logit function is monotone, from (3.13) and (3.14) we obtain

(/3_/3;)IXm) = 0 forj =1,...,c—1 andi= i,...,t,

*, (r)(a—c3)x1 = 0 forj=1,...,candz±=1,...,t,

or

(I3_/3;)1x4m) = 0 forj = 1,...,c—1, (3.15)

(a a*)Ix = 0 forj 1,...,c, (3.16)

(m) (r) (m) rwhere X and X, are the submatrices consisting of the first t rows of X and X

respectively. Since the ranks of Xm) and equal to the ranks of X(m) and x(r) that

are full rank, (3.15) and (3.16) imply that (cr, /3) = (o*, /3*). Thus is identifiable. D
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Note that we can assume that condition (2) holds without loss of generality, since if

it does not we can reparameterize the model accordingly. Note also that the sufficient

conditions for identifiability depend on partial information of the observations.

The conditions in Theorem 2 mean that if the two design matrices are full rank, the

mixed logistic regression models are identifiable up to [(NA0 + 1)/2] components. For

instance, if NA0 4, the theorem only guarantees that one or two-component mixed

logistic regression models are identifiable. Note that the sufficient condition c (NA0 +

1) may not be the lowest bound for identifiability.

As a simple illustration of Theorem 2, consider the following data in Table 3.1 on

the toxicity of ethylene oxide for grain beetles (Busvine, 1938). Note that Follmann

and Lambert (1991) discuss identifiability of their model for this data set. We assume a

mixed logistic regression model with both binomial parameters and mixing probabilities

depending on dose level x and an intercept. Hence the ranks of the design matrices X(m)

and x” are 2. Since any 2 x 2 submatrix of either X(m) or X’ is full rank, there are

45 x 45 = 2025 elements in the index set A. NA ranges from 24 to 31, and NA0 = 31.

Therefore, Theorem 2 allows 16 components in the mixed logistic regression model. This

sufficient condition is the same as that given by Follmann and Lambert (1991).

For two special cases of our model: constant mixing probabilities (X(m) = 1) and

constant binomial parameters (X(’) 1), the above sufficient conditions can be stated

as follows.

Corollary 1. Let SA = {(y, mx1,XAJ; i = 1,.. . , k2} denote such a subset of the

observations indexed by ) E A that the rank of vectors {x,.. . , x } equal the ranks of

the design matrices X(r). And let NA = min{mA1,. .. , m,k2}, and NA0 = maxAEA{NA}.

Then is identifiable if (1) c < (NA0 + 1), and (2) X(r) is full rank.

Corollary 2. Let S, = {(yA, mA,, xA); i = 1,. . . , k1} denote such a subset of the
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observations indexed by -.A E A that the rank of vectors {xS,. . . , x) } equal the ranks

of the design matrices X(m). And let N>, = min{m>,1,.. . , m>,,1 }, and N>,0 = max>,EA {N>, }.
Then is identifiable if (1) c (N>,0 + 1), and (2) X(m) is full rank.

3.4 Parameter Estimation

To obtain the maximum likelihood estimates of the parameters in the proposed model

requires using an iterative algorithm. Two widely used algorithms can be applied to this

case: (1) the EM algorithm (Dempster, Laird and Rubin, 1977) and (2) quasi-Newton

algorithms. In this section we discuss how to apply the EM algorithm and the quasi-

Newton algorithm to our model with a known number of components. Note that when

implementing the EM algorihtm, we also use a quasi-Newton approach for the M-step.

We present results of a Monte Carlo study to investigate the performance of our codes

and discuss some implementation issues.

3.4.1 The EM algorithm

For a fixed number of components c we obtain maximum likelihood estimates of the

parameters in the above model using both the EM algorithm (Dempster, Laird and

Rubin, 1977) and the quasi-Newton approach (Nash, 1991). As is now standard in

mixture model estimation, we implement the EM algorithm by treating unobservable

component membership of the observations as missing data. We discuss choice of number

of components below.

Suppose that (Y M, X(m), X(r)) {(yj, m, (m) xv); i 1,. . . , n} is the observed

data generated by the mixed logistic regression model. Let

(Y z, M, X(m), X) {(yj, z, m, m) xT)); i = 1,. . . , n}
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denote the complete data for the model, where the unobserved quantity z2 = (z21,. . . ,

satisfies

1 ifll=j
zij =

( 0 otherwise.

The log-likelihood of the complete data is

1Z,M,X(m),X(r)) = + I m,))
=1 j=1 i1 j=1

where pj and bi (zi I m, 7rjj) are defined by (3.4),(3.5) and (3.6) respectively.

The EM approach finds the maximum likelihood estimates using an iterative proce

dure consisting of two steps: E-step and M-step. At the E-step, it replaces the missing

data by its expectation, conditional on the observed data and the initial values of pa

rameters. At the M-step, it finds the parameter estimates which maximize the expected

log likelihood for the complete data, conditional on the expected values of the missing

data. Iteration stops when the log likelihood for the observed data does not increase

significantly. In our case this procedure can be stated as follows.

E-step: Given the values, and 3(0), replace the missing data, Z, by its ex

pectation conditioned on these initial values of the parameters and the observed data,

(Y M, X(m), X(r)). In this case, the conditional expectation of the jth component of z

equals to the probability that the observation y was generated by the jth component

of the mixture distribution, conditional on the parameters, the data and the covariates.

Denote the conditional expectation of the jth component of z by (a(°), 3(0)). Then

= E (z I c X(m), x(T), a(0) (O))

= Pr (z = i

(m) (j . (r) (0)
pj(x ,3’ ‘)bi(y: I m,?r(x ,a ) . /forj=1 ... c 3.17
C çm . (r) 0)

1=1 pi(x, , 3( ))bi(y I rn, iri(x ‘ )
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where pj(X,/3()) and bi(y. I are defined by (3.4), (3.5) and (3.6)

respectively.

M-step: Given conditional probabilities {:(a(°), 9(0)) = (zi,. . . ,z)’; i = 1,. . . ,

obtain estimates of the parameters by maximizing, with respect and /3,

Q(a, 3 (°), 3(0)) = E (ic I Y, X(m), jij, (O), /3(0))

Qi(13
/3(0)) + Q2(a

where

= :j1og(pj) and
i=1 j=1

= j log (bi(y m,
1=1 j=1

The estimated parameters, & and , satisfy the following M-step equations

= 0 (3.18)

öQ2
= 0. (3.19)

Since closed form solutions of these equations are unavailable, we use a quasi-Newton

approach (Nash, 1990) to obtain estimates. We implement the E and M steps in the

following way to obtain parameter estimates.

(0) (0) (0) (0) (0)Step 0: Specify starting values a’ ‘ = (a1 ,. . . , a ) and j3’ = (i ,. . . , /3_) and two

tolerance E1 and 2;

Step 1: (E-step) Compute j = . , i)’, (1 n), using (3.17). To avoid

overflow problem in the calculation of we divide both the numerator and de

nominator in (3.17) by the largest term in the sum in the denominator;
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Step 2: (M-step) Find values of & and /3 to solve (3.18) and (3.19), respectively, using

the quasi-Newton algorithm (Nash, 1990);

Step 3: If at least one of the following conditions is true, set a° = & and ,B(°) /3, and

go to Step 1; Otherwise, stop.

(1) H & — II E= E I — a

(2) H — II I — /34
(3) I l(&, $1 Y M, X(m), X(r))

— l(a(°), I “ iw X(m), X(r)) e2, where l(ci, /3
Y M, X(m), X(r)) is the observed likelihood function.

Dempster, Laird and Rubin (1977) and Wu (1983) discussed the convergence proper

ties of the EM algorithm in a general setting. Since Q(a, /3 a(°), /3(0)) and its first order

partial derivatives are continuous in c, 9, a(°) and 3(°), applying Wu’s theorems (1983)

lets us conclude that the sequence of the observed likelihood l((1c), /3(k) Y, M, X(m), X(r))

converges to a local maximum or saddle point. Note that the observed likelihood func

tion l(a, /1 Y M, X(m), X(r)) need not, in general, be globally concave. Thus we need to

choose initial values carefully in order to increase the chance that the algorithm converges

to the global maximum. Our approach will be discussed below.

Note that the above EM algorithm does not directly yield estimates of the standard

errors corresponding to the parameter estimates. On the other hand, when c is known,

asymptotic normality of /((&, /3) —

(a, /3)) is easily proved under standard regularity

conditions (Lehmann, 1983). To approximate standard errors, we may compute &(&,)

and ô,1) from the diagonal elements of the inverse of the (c * k1 + (c — 1) * k2) -
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dimensional observed information matrix with c fixed at ê which is defined as

321 321

3a2 8c33

I X(r),X(m),M,) —

—

- 321 32l
3a8 3/32

Although the EM algorithm is relatively robust for the choice of initial values, it has

a lower convergence rate than the quasi- Newton algorithms. To balance the trade-off

between these two algorithms, we first use the EM algorithm until either the likelihood

value does not increase significantly in terms of a given tolerance epsilon2 or the parame

ter estimates do not change significantly in terms of a given tolerance epsilon1,and then

shift to a quasi-Newton algorithm which maximizes the observed likelihood function. In

doing so we can obtain approximate standard error of the estimates as by-product of

the quasi-Newton approach. Note that in some cases the approximate standard errors

by the quasi-Newton approach may not be accurate. Hence we recommend calculating

the information matrix numerically whenever possible. We modify the above Step 3 as

follows: -

Step 3’: (a) If at least one of the following conditions is true, set c(° = & and 3(°)

and go to Step 1; Otherwise, go to (b).

(o) — c k1 (0)(1) II — II = —
I 61;

(2) 11$ — II D=i I — iP
(3) I l&, $ y pj (r))

— l(cx(°), y pj j(m) j(r)) I 2•

(b) Maximize the observed log likelihood function l(cv, 3 Y, M, X(m), X(r)) using the

quasi-Newton algorithm (Nash, 1990) with & and 3 as initial values. Then, stop.

3.4.2 Starting Values

To run the code of the above algorithm, we need to choose the starting values for the pa

rameters in the model. Note that the EM only ensures, under some regularity conditions
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(Wu, 1983), that the estimates converge to the local maximum points of the likelihood

function for the observed data. Furthermore, since the likelihood function may not be

globally concave, the several starting points needed to find the maximum likelihood es

timates, & and $. We propose the following approach for choosing the starting values.

We assume that c is known. At the first step of the approach it calculates the

ratios, {y1/mi,. . . , yn/mn}, divides the set of the ratios into c groups in terms of its per

centiles and fits the observed data into a c-component mixture with constant covariates,

(m) = (r) (1) by choosing initial values based on the percentile information. At the

second step, if necessary, it fits the observed data into a mixed logistic regression model

containing only one regression term in either the success probabilities or the mixing prob

abilities in such a way that the initial values of the parameters included in the previous

mixture model equal the estimates of the corresponding parameters from the previous

fitting model, and initial values of the parameters not in the previous fitting model are

set to a small value, say, 0.00001. This process is iterated until a complete set of initial

values for the mixture model is obtained. The motivation of this ad hoc approach is based

on the idea of cluster analysis. At each iteration, we use different criteria to classify the

data. First, the data are classified in terms of its percentiles. Then the data are classified

in terms of a finite binomial mixture without covariates, and subsequently in terms of

mixed logistic regression models. Note that choosing a complete set of initial values for

a mixture model step by step in such a way guarantees that the likelihood values will

increase in each step. Also our approach produces maximum likelihood estimates for a

sequence of nested mixture models while it achieves a complete set of initial values for

the mixture model.

We use an example to explain this approach. Suppose that we need to choose initial

(r) (m)values to fit a 3-component mixture model with covariates X: = (1, s) and x. = (1, t)

where s and t are real numbers, each with a regression term. First, we find 16.5, 33.0,
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49.5, 66.0 and 82.5 percentiles of the observed ratios {yi/mi,. . . , yn/mn} denoted as q—q

respectively, and fit the data into a 3-component binomial mixture of constant covariates

(x = m) = (1)) with the initial values of cr11, a21 and a31 equal to logit(qi),

logit’(q3)and logit(q5) respectively, and both the initial values of /3 and /321 equal

to 0. Note that under this specification and the logit link function, the initial values of

(r) . . . .

a,), (j = 1, 2,3) are equal to q, q3 and q5 with the same mixing probabilities

1/3. Second, we fit the data into the 3-component mixed logistic regression model with

(r) (m) .

= (1, s) and ; = (1) by choosing the initial values of a12, a22 and a32 equal

to 0.00001 and the initial values of the other parameters equal to the estimates of the

corresponding parameters of the first fitting model. Finally, we choose initial values for

the 3-component mixed logistic regression model with x = (1, s) and x = (1, t1) in

such a way that /312 and /322 are equal to 0.00001 and the other parameters is equal to

the estimates of corresponding parameters of the second fitting model.

3.4.3 A Monte Carlo Study

We use Monte Carlo methods to examine the performance of the above algorithm. Par

ticularly, we wished to verify the reliability of our code, determine the precision of es

timates and investigate some model selection criteria to be discussed below. We use

three 3-component mixture models. For each, we analyzed 101 replicates, each with 100

observations.

Two different approaches for choosing initial values are compared in the study. In

one, we use the true parameter values of the model generating the observations as initial

values in order to determine performance of the algorithm in the best case. The other

uses the true parameter values of a11, a21 and a31 as initial values, chooses initial values

of /3ii and /921 according to the approach described in 3.4.2 section, and fits the samples to

a 3-component binomial mixture with constant covariates. Then, following the approach



Chapter 3. Mixed Logistic Regression Models 158

of section 3.4.2, we choose a complete set of initial values for the parameters of the model

generating the samples. These two different approaches of choosing initial values lead to

essentially the same estimates. We describe the details below.

Model 1: A model with the success probabilities, Trjj, of the component binomial dis

tributions, bi(y m, irjj), depending on one time-dependent covariate, with constant

mixing probabilities, where m 30. For the logistic regression part,

(r) = (1, sj, (3.20)

wheres=0.2fori=1,...,10,d=0.4fori=11,...,20,etc.,and

a = (a,, a2, Q3) (3.21)

where c = (—1.2962,—0.4505), a = (—1.3148,1.0811) and a = (0.6973,0.7499). For

the mixing part,

(m)
= 1

13 = (th’ 132) = (—0.9163, —0.5108).

For the success probabilities can be written with the form

Tri(x, ai) = logit(—1.2962 — 0.4505s) (3.22)

= logit(—1.3148 + 1.0811s) (3.23)

ir3(xc a3) = logit(0.6973 + 0.7499s), (3.24)

and the mixing probabilities

p1(Xm),/3) 0.2,

p2(xm),13) 0.25

(m)• and p3(x2 ,/3) 0.5.
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Note that choosing the parameters as the above makes the component distributions easily

distinguished. In this model, decreases from 0.3 to 0.1, Pi2 increases from 0.3 to 0.7

and increases from 0.7 to 0.9. Thus there are no overlap among them.

Model 2: A model with constant success probabilities, lrjj, of the component binomial

distributions, bi(y, m,, 2rj,), and mixing probabilities depending on one time-dependent

covariate, where m: 30. That is, for the logistic regression part,

(r)
= 1

a = (ai, a2, a3) = (—2.1972,—0.8473,1.3863)

and for the mixing part,

(m) = (1, s) (3.25)

where s, is defined as above, and

/3 = (13i, /32) (3.26)

where /3 = (—2.1129,1.6057) and /3 = (—0.9692,1.3805). The positive probabilities,

then, are

(r) —

?rl(x ,a1) = 0.1

(r) —

72(X ,a2) = 0.3

and
ir3(xT),a3) 0.8,

and the mixing probabilities are given by

(m) — exp(—2.1129 + 1.6057s)
3 27P1\X,

— exp(—2.l129 + 1.6057s) + exp(—0.9692 + 1.3805s) + 1
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(m) exp(—0.9692 + 1.38O5s)
p2(x

exp(—2.1129 + 1.6057s) + exp(—0.9692 + 1.38O5s) + 1
(3.28)

(m) 1
p3(x

= exp(—2.1129 + 1.6057s) + exp(—0.9692 + 1.3805s) +
(3.29)

Note that choosing the values of j3 as the above results in that Pu decreases from 0.2 to

0.1, Pu2 increases from 0.25 to 0.7 and Pu3 increases from 0.7 to 0.9. They don’t overlap.

Model 3: Both the success probabilities and mixing probabilities depend on the covariate

s. Fortheregressionpart, x, aand Kj(xT),cj) aregivenby (3.20), (3.21), (3.22), (3.23)

and (3.24) respectively; For the mixing part, m) 3 and P(Xm), ) are given by (3.25),

(3.26), (3.27), (3.28) and (3.29) respectively.

We chose the above parameter values so that the success probabilities and mixing

probabilities for each component do not overlap. We wouldexpect that in this case, the

algorithm would perform well.

We carried out these simulations, each with 100 replicates. The responses i were

obtained by first generating a uniform (0,1) random number u: and then assigning yu

binomial(m2,iri) if u p1(m),

binomial(m,iri2)if p(xm),1B) < ‘UI pi(xm),8) + p(x),); and yj

binomial(m1,R-3) if u, >p1(m), 9) +P2(X(m) /9). Our implementation of the algorithm

used FORTRAN version on a Sun SPARC station 1.

The results of the Monte Carlo study are presented in Table 3.2 , Table 3.3 and Ta

ble 3.4. These tables show that the mean of estimates are very close to the true parameter

values in the models, suggesting that the global maximum of the observed likelihood is

reached. For model 1, the sample means are quite close to the true values and the stan

dard deviations are relatively small. Although the coefficients of the logistic regression

of model 2 are estimated accurately, estimates of mixing probabilities are more variable.

This suggests that estimating mixing probability parameters in this model is intrinsically



Chapter 3. Mixed Logistic Regression Models 161

more difficult than estimating the success probabilities. This agrees with observations

in the literature (Titterington et al., 1985; McLachlan and Basford, 1988). Estimates of

the parameters of model 3 illustrate the same pattern as in Model 2 where estimates of

the mixing probability parameters are more variable than those of success probabilities

parameters. Note, however, that although the estimates of mixing probability parame

ters, , vary somewhat, the estimated mixing probabilities, p3(x , 9), are more precise

due to the multimonial link function between the parameters and mixing probabilities.

The average number of the iterations of the EM algorithm for Model 1 is 8.24, 12.35

for Model 2 and 20.2 for Model 3 under the stopping criterion = 0.01, and average time

is 12.5, 19.4 and 120.5 seconds respectively.

3.5 Implementation Issues

3.5.1 Model Selection

We need to address following the three issues when we apply a mixed logistic regression

model: (a) We need to determine the conditions of identifiability for the model; (b) we

need to determine the number of components, c, of a mixture, and (c) we need to have a

method to carry out inference about model parameters. When c is known, inference for

the parameters can be based on a standard likelihood ratio test. In practice, however,

this case may not be common. When c is unknown, the usual likelihood ratio test is

no longer valid for determining c or testing hypotheses about parameter values. As we

discuss in section 2.7.1, this is because mixing probabilities may lie on the boundary of

the parameter space when the hypothesized number of components is less than the fitted

number of components. Hence the usual regularity conditions for the likelihood ratio test

do not hold. We propose the following methods for model selection.

Two widely used model selection criteria are the Akaike’s Information Criterion (AIC)
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(Akaike, 1973; 1974) and the Bayesian Information Criterion (BIC) (Schwarz, 1978) (see

section 2.7.1. For the mixed logistic regression models, we define the AIC and BIC criteria

as follows:

• AIC: choose the model for which l(X) — ac(X) is largest;

• BIC: choose the màdel for which l(X) — (log(n))a(X) is largest

where I(X) is the maximum log-likelihood of the mixture with c components and co

variate X, a(X) = c * k1 + (c — 1) * k2 where k1 and k2 are the dimensions of a3 and 9j

respectively, and n is the total number of observations. These two criteria do not always

select the same model.

Using the BIC (Ale), our model selection procedure consists of two stages. At the

first stage, we determine c to maximize BIC (AIC) values for the saturated 1-3 (1-4) com

ponent mixture models that contain all possible covariates in both success probabilities

and mixing probabilities. Note that the c values must be within the range satisfying the

identifiability conditions. Although we compute both AIC and BIC values in our appli

cations, we recommend using BIC because our Monte Carlo studies suggest that BIC is

more reliable in the model selection. At the second stage, our model selection approach

depends on our analysis objectives. If our goal is inference about some particular model

parameter, we carry out likelihood ratio tests for nested c-component mixture models. If

the goal is choosing an appropriate model to fit the data, we select a model to maximize

BIC (AIC) values among c-component mixture model concerned. Since this selection

method is heuristic and only gives a guideline in applications, some other specific con

cerns in model selection should be taken into account from case to case. For instance, in

some applications the number of components and some parameters in a mixture may be

explicitly or implicitly determined by underlying theory.
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In the Monte Carlo studies discussed in Section 3.4.3, we computed both AIC and

BIC values for all possible mixed 2 to 4 component models. Table 2.5.1.1 shows that AIC

and BIC are reliable methods for choosing the correct models. AIC chose the correct

model 94% of the time for Model 1, 82% of the time for Model 2 and 93% of the time for

Model 3. When AIC failed to select the correct model, it always chose a model with too

many components, suggesting that AIC may under-penalize the number of parameters

in the mixtures. On the other hand, BIC always chose the correct models, suggesting

that BIC may not over-penalize the number of parameters. Note that all sample sizes

in the Monte Carlo studies are 100. The examples in the next section will exhibit this

procedure in practice.

3.5.2 Classification

One possible use of the mixed logistic regression model is to classify data on the basis

of a probabilistic model rather than an ad hoc clustering technique. Since j in (3.17)

is the estimated posterior probability that the observation y, is generated by the

component distribution bi (yj I m?r), this information can be used to classify observa

tions into different groups characterized by the component distributions. For instance,

for a c-component mixture model we may postulate c different groups defined by the c

different sets of the coefficients of the logistic regression,7rj cj) (j = 1,.. . , c) of the

model. According to the classification criterion, an observation i is identified with the

component which maxiniizes jj. In our applications, maximum values for this quantity

all exceed 0.5. Note that if the parameters of the model were known, this classification

criterion would be the optimal or Bayes rule (Anderson, 1984, chapter 6) which minimizes

the overall error rate. Also such an approach has been referred to as latent class analysis

(Aitkin et al. 1981). We illustrate this approach in examples below.
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3.5.3 Residual Analysis and Goodness-of-fit

Once a mixed logistic regression model has been fit to a set of observations, it is essential

to check the quality of the fit. For this purpose, we first define Pearson, deviance and

likelihood residuals for mixed logistic regression models, and then use them to identify

individually poorly fitting observations and influential observations on overall fit of the

model as well. We also define a quantity to measure influence of individual observations

on the set of parameter estimates, and use it to identify influential observations. In ad

dition, we provide goodness-of-fit statistics for mixed logistic regression models.

Definitions of Residuals

As we discuss in Section 2.7.3, we define Pearson, deviance and likelihood residuals

for a mixed logistic regression model. The Pearson residual is defined as

yi — 12i
rp,, 3.30

where

=
(3.31)

.i (r) (r)
7rjj = exp(cr3; )/(1+exp(c3x)),

“ (m)
exp(/33x )

pi’ = for j = 1 ... c — 1 and
c—i , m)

Ek exp(/3kx: ) + 1
1

c—i , (m)
Ek exp(/3k; ) + 1

and

V(tj) = m —

C

+ m(m — 1)
{C

— } (3.32)

The deviance residual is defined as

= sign(yj — /%)\,/2[l(y, yi) — l(/, y)}
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sign(y — (3.33)

where l(j, y) is the log likelihood function of mixed logistic regression model for obser

vation yj and d = 2(l(yj, y) — l(/j, yj)) is the contribution to the deviance goodness-of-fit

statistic D which is defined as

D 2[l(y,y)
— l(fj,y)]. (3.34)

Note that l(yj, yj) is the same for both the usual logistic regression and mixed logistic

regression models because

C

(r) (m)
f(y ; ,x ,m,a,6) = pbi(y I (3.35)

j=1

< m,y) (3.36)

= bi(y I mj,yj) (3.37)

This indicates that there is the same baseline for the usual logistic regression models and

mixed logistic regression models.

The likelihood residual is derived by comparing the deviance obtained on fitting a

mixed logistic regression model to the complete set of n cases with the deviance obtained

when the same model is fitted to the n — 1 cases, excluding the ith, for i = 1,. . . , n.

This gives rise to a quantity that measures the change in the deviance when each case in

turn is excluded from the data set. The value of the likelihood residual for the ith case

is defined as

rL = sign(yt — [t)/D — D() (3.38)

where /% is defined by (3.31); & and & are the maximum estimates of the regression

parameters based on the complete data set of n cases and the data set of n — 1 cases
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excluding the i case respectively; and D and D() are the deviances based on n and n — 1

cases respectively.

Note that for large binomial denominators m, all three types of residuals approx

imately follow the standard normal distribution if the fitted model is adequate. Our

numerical results show that the Pearson residuals may not be as approximately normal

as the other two types of residuals.

Detection of Outliers and Influential Observations

The residuals obtained after fitting a mixed logistic regression model to an observed

set of data form the basis of a large number of diagnostic techniques for assessing model

adequacy. Since our primary objective of residual analysis for mixed logistic regression

models is to identify outliers and influential cases, we discuss how the residuals can be

used for this objective.

Like mixed Poisson regression models, we define outliers as those observations that

are surprisingly distant from the remaining observations in the sample. Such

observations may occur as a result of measurement errors, that is errors in reading,

calculating or recording a numerical value; or they may be just an extreme manifestation

of natural variability. Since large residuals indicate poorly fitting observations, we use

index plots of residuals for detection of outliers, that is, observations that have unusually

large residuals.

The influence of a particular observation on the overall fit of a model can be assessed

from the change in the value of a summary measure of goodness of fit that results from

excluding the observation from the data set. Since is the change in deviance on

omitting the ith observation from the fit, an index plot of these values is the best way of

assessing the contribution of each observation to the overall goodness of fit of the model.

To examine how the ith observation affects the set of parameter estimates, we define
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the following quantity

= {ii (& - &)/se(&) 11+11 ( - )/se() ii}
k1 (i) c—i k2 —

=

a,,l-a

se(,i) } (3.39)

where a and 3 are the maximum likelihood parameter estimates of the mixed logistic

regression model based on the complete data set of n cases, and and on the

data set of n — 1 cases excluding the i case; se(&) and se() are the estimated standard

errors of the corresponding estimates based on the ii cases, and p = ck1 + (c — 1)k2.

Because each term in (3.39) measures a relative change in individual coefficient, w can

be interpreted average relative coefficient changes for a set of estimates. This is a useful

quantity for assessing the extent to which the set of parameter estimates is affected by

the exclusion of the ith observation. Relatively large values of this quantity will indicate

that the corresponding observations are influential and causing instability in the fitted

model. An index plot of w is the most useful way of presenting these values. The exam

ple in the next section will illustrate these points.

Goodness-of-fit Statistics

After fitting a mixed logistic regression model to a set of data, it is natural to enquire

about the extent to which the fitted values of the response variable under the model

compare with the observed values. If the agreement between the observations and the

corresponding fitted values is good, the model may be acceptable. If not the current form

of the model will certainly not be acceptable and the model will need to revised. The

aspect of the adequacy of a model is widely referred to as goodness of fit.

There are at least two widely used goodness-of-fit statistics which can be used here.
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One is the deviance defined as

D
=

(3.40)

where rD is the deviance residuals for the mixed logistic regression model; and the other

is the Pearson’s X2 statistic defined as

= (3.41)

where rp is the Pearson residuals for the mixed logistic regression model. In order to

evaluate the extent to which an adopted mixed logistic regression model fits a set of data,

the distribution of either the deviance or the Pearson statistic, under the assumption that

the model is correct, is needed. In general, the deviance and the Pearson’s X2 statistics

are asymptotically distributed as x2 with (n — p) degrees of freedom, where n is the

number of observations and p is the number of unknown parameters in the model. Many

studies have shown that the Pearson statistic is often much more nearly chi-squared than

that of the deviance (e.g., Larntz, 1978). For this reason we use the Pearson statistic for

overall goodness of fit tests for the mixed logistic regression models.

3.6 An Application

This example uses data from an experiment reported by Ganio and Schafer (1992), which

investigates the carcinogenic effects of aflatoxin, a toxic by-product produced by a mold

that infects cottonseed meal, peanuts, and grains. Forty tanks of rainbow trout embryos

were exposed to either afiatoxin Bi or a related compound, afiatoxicol, at one of five

doses for one hour, and the incidence of liver tumors in each tank was recorded after

one year. The data in Table 3.5 are the proportions of fish with liver tumors in each of

40 tanks. The researchers believe that there may exist extra-binomial variation due to

tank effects and different treatments. They believe that afiatoxical must undergo more



Chapter 3. Mixed Logistic Regression Models 169

chemical changes than afiatoxin B1 to produce tumors in fish. This may result in more

variation of effective doses reaching the liver of fish in aflatoxicol tanks and, therefore, a

greater degree of extra-binomial variation for the aflatoxicol group. The issue of interest

is to assess dose level and treatment effects on the proportions of fish with liver tumors

while taking extra-binomial variation into account.

We first apply the usual logistic regression model with covariates including an inter

cept, dose level (xii), treatment (x2) and dose-treatment interaction (x3), where

1 0 if fish in tank i was exposed to aflatoxin B1
= (3.42)

( 1 if fish in tank i was exposed to afiatoxicol

and x3 = x1x2. (3.43)

The top part of Table 3.6 reports results of fitting the data to the usual logistic

regression models. Note that the deviance and Pearson goodness-of-fit statistics for the

model with covariates x, x2 and x3 are 391.08 and 365.3, respectively, with 36 degrees of

freedom, suggesting that there is significant evidence of lack of fit in the logistic regression

model. Furthermore, the data are overdispersed with respect to the binomial distribution,

since each of overdispersion tests is highly significantly (Na = 68.26, N = 36.42 and

N = 36.3). This also indicates inadequacy of the usual logistic regression model.

Ganio and Schafer (1992) only present exploratory techniques for use in an early stage

of data analysis to aid modelling extra-binomial variation. They take some function

of the dispersion parameter in a generalized linear model to depend on explanatory

variables. To detect extra-binomial variation for the fish data, they consider three models

for dispersion. Let ‘Irjj be the probability of tumor for concentration level i and carcinogen

group j (i = 1, . . . , 5; j = 1,2), and let Yk be the number of tumors observed in

mk fish in tank k of treatment ij. Then they model the variance of this count as

—

rjj)/qjjk and consider the following forms for dispersion parameter: (a) qjjk =
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; (b) cijk = A + az3, where z3 = (j — 1); and (c) qSk = [A + aZjik}’, where Zijk =

(mk — l)r,(l — ?rj,). Note that Model (a) is a generalized linear model with constant

dispersion. Model (b) contains separate dispersion parameters for the two carcinogen

groups. Model (c) is the approximate variance of Y if a random effect, with mean 0 and

variance a, is additive on the logit scale (Williams, 1982). They find that the extra-

binomial variation is associated with the type of carcinogen and cannot be explained

simply by differences in the rk’s. Note that, however, they do not analyze extra-binomial

variation along with dose-response function in mean simultaneously.

We apply the mixed logistic regression model assuming that

(1) each observed number of tumors, yj, in m fish in tank i is associated with co

(m) (r)variates ; = (1, x1,x22) and x = (1, x1,x2,xj) where x1, xj2 and x3 are defined

above;

(2) numbers of tumors in different tanks are independent and follow a mixed logistic

regression model with binomial parameters rjj given by the link function

= exp(a30 +a31x1 +a2x2+a33x3)
(3 44)

1 + exp(ajo +a1x1 +a2x2+a3x3)’

where i = 1,. . . ,40, and j = 1,. . . , c, and the mixing probabilities pj3 given by

exp(/330 + /3ixi +32xi2)
p: = ford = 1 ... c—i (3.45)c—i1 + >ki exp(,Bko +/3kiXii +/3k2X2)

and

Pic = 1
—

1Pij. (3.46)

Note that since the smallest binomial denominator in the data set is 80, the mixed

logistic regression model is identifiable if c < (80 + l)/2 = 40.5. Thus, there are virtually

no restrictions on identifiability in this example.

Table 3.6 provides the results of fitting these models. In order to determine the

number of components first, we compare the values of AIC and BIC among the three
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staturated models. Clearly, both AIC and BIC lead to the choice of a 2-component

mixed logistic regression model. Within these 2-component models we carry out inference

using likelihood ratio tests. First we test which covariates in the mixing probabilities

are significant. Comparing the model oniy excluding x2 in mixing probabilities and

including all covariates in binomial parameters with the saturated 2-component model,

the chi-square test statistic is 0 up to 2 decimal approximation. This clearly indicates

that x2 is insignificant in mixing probabilities. Then we test the hypothesis that x1

is insignificant in mixing probabilities. The corresponding chi- square test statistic is

2(1784.36 — 1757.48) = 53.76 with one degree of freedom, suggesting that x1 is highly

significant in mixing probablities.

For binomial parameters we first test the hypothesis that the dose-treatment in

teraction is insignificant. Comparing the one only excluding x3 in binomial parame

ters and including x1 in mixing probabilities with the one including all covariates in

binomial parameters and x1 in mixing probabilities, the chi- square test statistic is

2(1760.57 — 1757.48) = 6.18 with 2 degrees of freedom. Since the p-value of the test

statistic is 0.0455, we do not reject the hypothesis, at 1% level, that the interaction

effect is insignificant. On the other hand, both the effects of covariates x1 and x2

are significant. For instance, to test the hypothesis that the effect of x2 is insignifi

cant, we compare the model including x,2 in binomial parameters only and x1 in both

mixing probabilities and binomial parameters with the one only including x1 in both

mixing probabilities and binomial parameters, and obtain the corresponding chi-square

test statistic 2(1834.94 — 1760.57) = 148.74 with 2 degrees of freedom. Clearly we reject

the hypothesis that the effect of x:2 is insignificant. Finally, we test the hypothesis of a

common effect of treatment for both components, i.e., o2 = o22. Indeed this hypothesis

is valid because the test statistic is 0 up to two decimal approximation. Therefore we

select the 2-component mixed logistic regression model with the covariate of dose level
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in both mixing probabilities and binomial parameters and the common coefficient of the

covariate of treatment in binomial parameters. This model fits the data best.

After fitting the 2-component mixed logistic regression model, the Pearson goodness-

of-fit test statistic X2 is 52.18 with 33 degrees of freedom. The p-value of the test statistic

is 0.0181, suggesting that there is no evidence of lack of fit at 1% significance level. Note

that the deviance for the fitted model is 51.46 with 33 degrees of freedom. In addition,

the Pearson, deviance aid likelihood residuals from the fitted model are calculated and

displayed in Figure 3.1, Figure 3.2 and Figure 3.3 respectively. These plots show that the

three types of residuals are very similar to each other, and that the 37th observation is far

distant from the remaining observations in these plots, suggesting that it is an outlier.

On omitting the observation, the deviance reduction is r37 = (_3.1651)2 = 10.0179.

This means that the 37th observation has great impact on the overall fit of mixed logistic

regression model to the data.

For detection of influential observations, the average relative coefficient changes w are

calculated and displayed in Figure 3.4. Clearly, the 37th observation also has the largest

value (0.3543). On omitting this observation, the average relative coefficient change for

each parameter estimate is about 35%, and the new parameter estimates become

= (—44.38,—1183.7) (3.47)

= (—0.8838, 7.2151, 1.2232) (3.48)

a2 = (—4.8242, 123.29, 1.2232) (3.49)

Note that changes in the binomial parameter estimates for first component are relatively

large, while there are almost no changes in the parameter estimates for mixing probabili

ties. This indicates that the 37th observation has greater influence on the first component

than on the second component. We now interpret the fitted model.

The chosen mixed logistic regression model suggests that numbers of fish with liver
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tumors are generated by two underlying binomial distributions with binomial parameters

defined by, respectively,

— exp(—0.8161 + 6.6209x1+ 1.1686z2)
3 50

— 1 + exp(—0.8161 + 6.6209x1+ 1.1686x2)

and

— exp(—4.7798 + 122.92x1+ 1.1686x2)
3 51

— 1 + exp(—4.7798 + 122.92x1+ 1.1686x2)

In addition, these two distributions are mixed according to the mixing probabilities de

fined by

— exp(—44.38 + 1183.7xi)
3 52

— 1 + exp(—44.38 + 1183.7xi)

and

1
Pi2

= 1 + exp(—44.38 + 1183.7x1)
(3.53)

According to this model, tanks in either of the two treatments may be classified

into two groups on the basis of the two dose-response functions. For either of the two

treatments, fish in those tanks exposed to a higher dose level (> 0.025 pm) follows one

dose-response function; and fish exposed to a lower dose level ( 0.025 ppm) follows

another. In addition, the treatment effect is the same for both groups. On the other

hand, when exposed to a higher dose level, there is a higher chance for fish to follow

the first dose-response function because the mixing probability for component one is

very close to 1. Similarly, when exposed to a lower dose level, there is a higher chance

for fish to follow the second dose-response function because the mixing probability for

component two is close to 1. Figure 3.5 provides the estimated proportions of fish with

liver tumors corresponding to each group for either of the two treatments (the solid line is

the proportion for group one and the dotted line for group two). Note that Figure 3.5 also
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classifies the observed proportions in terms of the estimated posterior probabilities from

the fitted model. Those observations marked as “1” form group one which characterized

by the function while those marked as “2” form group two which is characterized by

the function

Figure 3.6 depicts the mean-variance relationship for the fitted model based on the

estimated mean and variance obtained through (3.8) and (3.9). Note that there is no

obvious parametric relationship between the estimated mean and variance.

For the purpose of comparison, we also fit the data to the two quasi-likelihood mod

els which are discussed by McCullagh and Nelder (1989) and Williams (1982) respec

tively. The first assumes a variance form Var(1’) = cr2mr(1 — 7r), and the second

Var() = mK(1 — 7r)[1 + (m
—

l)q9. Note that the unknown parameters u2 and

are usually called unexplained variance. The results of parameter estimates and stan

dard errors are given in Table 3.7. Note that the dose-treatment effect is not significant

in quasi-likelihood models (estimates not reported here). As expected, the parameter

estimates for both quasi-likelihood models are very similar to each other because the

binomial denominators m do not vary much. From Table 3.7, we find that parameters

estimates under quasi-likelihood models and mixed logistic regression model are different,

suggesting that using different methods to model extra-binomial variation may lead to

either different parameter estimate or different standard errors or both. For instance,

the coefficient estimate for dose level is 12.82 and 12.81 by quasi-likelihood method I

and II respectively, and 6.6209 for component one and 122.92 for component two respec

tively. Furthermore, computing the t-statistic (estimated coefficient/standard error) and

comparing the mixed logistic regression model with the quasi-likelihood, we find that

quasi-likelihood models may underestimate the treatment and dose effects. For example,

the values of the t-statistic of the estimated coefficient for x are 4.1556 and 4.1441 for

the quasi-likelihood model I and II respectively, while the value for the mixed logistic
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regression model is 13.732. Thus, compared with quasi-likelihood methods, the mixed

logistic regression model has smaller confidence intervals for parameter estimates.

In summary, we have applied the mixed logistic regression model to analyze the

data from a fish toxicology study. The data are well fitted by a 2-component mixed

logistic regression model with mixing probabilities depending on the dose level covariate

and binomial parameters dependillg on both dose level and treatment covariates. The

goodness-of-fit test suggests that there is no evidence of lack of fit in the model. In

addition, the residual analysis identifies an outlier and influential observations. According

to this model, there are two dose-response functions for each treatment, which describe

lower dose level and higher dose level situations respectively. Comparing with the quasi

likelihood methods, the mixed logistic regression model gives smaller confidence intervals

of parameter estimates. Note that both parameter estimates and standard errors under

the mixed logistic regression differ from those obtained by the quasi- likelihood method.

3.7 Tables and Figures in Chapter3
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Table 3.1: Data of Busvine (1938)

Jar label Dose Jar total Number dead

1 0.033 24 0

2 0.167 31 10

3 0.199 30 17

4 0.225 31 12

5 0.260 27 7

6 0.314 26 23

7 0.322 30 22

8 0.362 31 29

9 0.391 30 30

10 0.394 30 23
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Table 3.2: The results of the simulations for the mixed logistic regression model (Model 1)

Initial values set as the true values

Parameter True Upper Upper Median Lower Lower Average
value extreme quartile quartile extreme

ç -0.9163 -0.2618 -0.7825 -0.9698 -1. 1354 -1.6169 -0.9643tH

-0.5108 0.0366 -0.3293 -0.5443 -0.7185 -1.2269 -0.5380‘-21

a 4.2962 0.6248 4.0144 4.2717 4.4430 -1.9056 4.2402it

a -0.4505 0. 1955 -0.2766 0.4593 0.6294 -0.9752 -0.485512

a -1.3148 -0.8427 -1.2082 -1.3796 4.5097 4.7884 4.361921

a 1.0811 1.4963 1.2325 1.1158 1.0344 0.7893 1.121122

a 0.6973 1.0054 0.8004 0.6911 0.5779 0.3414 0.689231

a 0.7499 1.1164 0.8855 0.7695 0.6527 0.4017 0.768332

Initial values chosen step by step

, -0.9163 -0.2467 -0.7711 -0.9626 -1.1331 -1.6162 -0.9586i-fl

-0.5108 0.0336 -0.3317 -0.5500 -0.7468 -1.2571 -0.5386‘-21

a11 4.2962 0.6238 -0.9970 -1 .2561 -1.4414 4.9909 4.2324

a 0.4505 0. 1540 -0.3189 -0.4839 -0.6473 -0.9759 -0.497612

a 4.3148 0.7701 4.1968 4.3648 4.5076 -1.7880 -1.284421

a 1.0811 1.5773 1.2293 1.1066 0.9885 0.6696 1.059922

a 0.6973 1.0076 0.813i 0.6996 0.5814 0.3416 0.701131

a 0.7499 1.1165 0.8772 O7656 0.6473 0.3954 0.757732
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Table 33: The results of the simulations for the mixed logistic regression model (Model 2).

Initial values set as the true values

Parameter True Upper Upper Median Lower Lower Average
value extreme quartile quartile extreme

p -2.1129 -0.7531 -1.6871 -2.2560 -2.8070 -3.8851 -2.30681.’ll

p 1.6057 2.8955 2.0599 1.7048 1.4069 0.5755 1.7467
‘ 12

p -0.9692 0.2170 -0.7619 -1.0517 -1.4186 -2.3082 -1.0958‘21

p 1.3805 2.3960 1.7416 1.4624 1.1670 0.4227 1.494122

-2.1972 -1.8090 -2.0612 -2.1586 -2.2975 -2.6451 -2.2061a11

a -0.8473 -0.6443 -0.7807 -0.8517 -0.9046 -1.0277 -0.847321

a 1.3863 1.5637 1.4346 1.3926 1.3371 1.2438 1.389231

Initial values chosen step by step

i -2.1129 -0.7410 -1.6260 -2.2150 -2.7535 -3.8757 -2.2733

p 1.6057 2.8799 2.0629 1.6947 1.3974 0.5713 1.7469“12

p -0.9692 0.2106 -0.7705 -1.0538 -1.4351 -2.3073 -1.1090‘21

p 1.3805 2.3804 1.7385 1.4463 1.1490 0.4193 1.4889‘22

a -2.1972 -1.6279 -2.0135 -2.1347 2.2806 2.6425 2.1818: 11

a 0.8473 0.6152 0.7692 0.8452 0.8980 4.0274 0.837821

-____________

a 1.3863 1.5637 1.4348 1.3926 1.3386 1.2438 1.389531
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Table 3.4: The results of the simulations for the mixed logistic regression model (Model 3)

Initial values set as the true values

Parameter True Upper Upper Median Lower Lower Average
value extreme quartile quartile extreme

p -2.1129 -0.2943 -1.5967 -2.2683 -2.8381 4.5911 -2.26181.111.

p 1.6057 3.3711 2.1703 1.6764 1.2100 -0.1373 1.7061‘12

p -0.9692 0.0446 -0.8472 -1.0817 -1.4547 -2.1604 -1.1588‘21

p 1.3805 2.6180 1.7743 1.4772 1.1977 0.3613 1.538322

-1.2962 -0.4551 -0.9429 -1.1646 -1.5292 -2.1857 -1.2114a11

a 0.4505 0.3340 0.2551 0.4819 0.6523 4.0381 0.506712

a 4.3148 -0.8501 4.1829 -1.3497 4.4191 -1.6918 4.316421

1.0811 1.3219 1.1537 1.0830 0.9804 0.7596 1.0718a22

0.6973 1.0964 0.8138 0.6710 0.5802 0.3398 0.688131

0.7499 1.2727 0.9020 0.7549 0.5985 0.2325 0.7604a32

Initial values chosen step by step

-2.1129 -0.2945 -1.5197 -2.1655 -2.8181 -4.6014 -2.2109tJi1

p 1.6057 3.3687 2.1429 1.6063 1.1472 -0.3411 1.666012

p -0.9692 0.0457 -0.8123 -1.0815 -1.4438 -2.3682 -1.1286‘21

p 1.3805 2.5867 1.7570 1.4766 1.1845 0.3604 1.506122

-1.2962 -0.4557 -0.9293 -1.1561 -1.5302 -2.1914 -1.2054a11

a 0.4505 0.3340 -0.2544 0.4896 0.6639 4.0377 -0.509612

a 4.3148 0.8394 -1.1830 -1.3459 -1.4153 -1.6962 -1.297421

a 1.0811 1.3233 1.1550 1.0768 0.9769 0.7526 1.057722

0.6973 1.0967 0.8149 0.6848 0.5824 0.3398 0.7022a31

0.7499 1.2727 0.8991 0.7518 0.5948 0.1788 0.7455a32
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Table 35: Number of trout with liver tumors/number in tank

Dose (ppm) Aflatoxin Bi Aflatoxicol

0.010 3/86, 5/86, 4/88, 2/86 9/87, 5/86,2/89,9/85

0.025 14/87,14/90, 9/83 12/88 30/86, 41/86, 27/86, 34/88

0.050 29/90, 3 1/89, 33/89, 26/87 54/89, 53/86, 64/90, 55/88

0.100 44/86,40/80, 44/89, 43/88 71/88,73/89, 65/88, 72/90

0.250 62/87,67/88,59/88,58/84 66/86, 75/82, 72/81,73/89
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Table 3.6: Logistic regression and mixed logistic regression modd estimates for fish data.

S Mixing probability Binomial pacsmetcrs
BIC

(3)
= fi0 P,., P,2 c,,

Logistic regression model (i-component)

I NA NA NA -1.758 11.93 0.8911 2.402 -1930.38 -1934.38 -1937.76
(0.0847) (0.6750) (0.1143) (1.154)

1 NA NA NA -1.839 12.82 1.063 .1932.62 -1935.62 -1938.15
(0.0764) (0.5424) (0.0803)

2-component mixture

1 -43.89 1170.6 -0.0103 -0.9220 7.4548 1.4198 -2.1632
-1757.48 -1768.48 -1776.77

2 4.0710 90.50 0.1337 47.67

1 42.81 1141.58 -0.9220 7.4547 1.4198 -2.1631
-1757.48 -1767.48 -1775.92

2 4.0710 90.50 0.1337 47.67

1 0.4095 -0.9232 7.4613 [.4141 -2.1311
-1784.36 -1793.36 -1800.96

2 4.0708 90.4747 0.1356 47.48

1 42.72 1139.6 -0.8156 6.6201 1.1676
-1760.57 -1768.57 -1775.32

2 4.7821 122.94 1.1716

1 -44.38 1183.7 -0.8161 6.6209
(407.8) (4.453) (0.0982) (0.6155)

1.1686 -1760.57 -1767.57 -1773.48

2 -4.7798 122.92
(0.0851)

(0.2896) (12.49)

1 -2.6492 64.73 -0.5843 7.9411
-1834.98 -1840.98 -1846.05

2 -3.8221 87.33

1 4.9315 -1.5167
-1922.26 -1926.26 -1929.64

2 -[00.94 0.7843

3-component mixture

1 25.66 -195.59 0.2586 -1.3636 13.58 1.1820 1.5813

2 74.16 -1500.7 .0.3769 -4.0710 90.50 0.1337 47.67
-1750.80 -1768.80 .1784.00

3 -0.6032 5.9736 1.6905 -3.5038

1 Log-likelihood does not include the constant term.
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Chapter 4

Summary, Conclusions and Future Research

In this chapter, we summarize similarities and differences between the mixed Poisson re

gression and mixed logistic regression models discussed in the previous chapters. Further

more, we discuss some extensions of these mixed regression models and related remaining

issues for future research. Section 4.2 formulates a mixed exponential family regression

model which includes the mixed Poisson regression and mixed logistic regression models

as special cases. Section 4.3 concerns a hidden Markov Poisson regression models for

longitudinal data. We give some preliminary results of this model.

4.1 Summary and Conclusions

There are many similarities between the mixed Poisson regression and mixed logistic

regression models discussed in Chapters 2 and 3. These are that

• both models assume an unobserved mixing process which can occupy any one of c

states where c is finite and unknown; independent pairs of observed and unobserved

random variables; covariates consisting of two parts: one related to the mixing

probabilities, and the other to the component parameters; the same multinomial

link in the mixing probabilities;

• both models can model overdispersion in the sense that the variances of the mixed

regression models are larger than those specified by the mean-variance relationships

of the corresponding usual regression models;

189
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• parameters are estimated by maximum likelihood. Parameter estimates of both

models are obtained by applying (1) the EM algorithm treating the unobserved

random variable as missing data and (2) a quasi-Newton approach for the M-step

and for maximizing the observed log likelihood functions;

• the model selection procedures for both models are the same, i.e., first determining

the number of components by comparing the AIC and BIC values among the satu

rated models, and then carrying out inferences about regression parameters within

c-component mixtures by likelihood ratio tests;

• classification, residual analysis and goodness-of-fit tests for both models are carried

out in the same way.

There are several differences between the mixed Poisson regression and mixed lo

gistic regression models. Obviously, the component distributions of the mixtures and

link functions are different. This leads to different sufficient conditions for identifiability

of these models. For the mixed Poisson regression models, the sufficient conditions for

identifiability are virtually satisfied in all applications; for the mixed logistic regression

models, since the sufficient conditions for identifiability depend on the binomial denom

inators, these may restrict the applications of these models in some cases. Although the

algorithms for computation of parameter estimates for both models are similar, the im

plementation of these algorithms are quite different because there are different rescaling

schemes to overcome numerical overflow or underfiow problems. Note that coding these

algorithms might be a formidable task.

Both the mixed Poisson regression and mixed logistic regression models provide new

tools to analyze discrete data when data are overdispersed with respect to either the

Poisson or binomial assumption. Allowing covariates in both mixing probabilities and

the component parameters give a direct way to assess effects of each covariate on the
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response variable. Using these models, we can classify observations into different groups

characterized by different regression functions. This may give a more meaningful inter

pretation for overdispersion.

The mixed regression models are not always preferable to other models for mod

elling overdispersion such as parametric mixtures or quasi-likelihood regression. When

overdispersion is reasonably modeled by a continuous mixing distribution, either para

metric mixtures or quasi-likelihood regression models may. be better. For the Poisson

case, for instance, if extra-Poisson variation is caused by a random effect in the mean

which is reasonably modelled by a continuous distribution, say a gamma distribution,

then the negative binomial model is more suitable. Likewise, for the binomial case, if

extra-binomial variation varies smoothly in the binomial denominators, Williams’ quasi-

likelihood models (1984) may be better. Nevertheless, the mixed regression models are

suitable in many applications, which we have demonstrated in the previous chapters. The

same technique of accommodating heterogeneity with mixture models can be applied to

other cases. We discuss some generalizations below.

4.2 Mixed Exponential Regression Models

For a given one-parameter one-dimensional exponential model, the mean-variance rela

tionship is determined by a single parameter. The one-parameter exponential density

is

h(y) exp(Oy
— x(O)),

where h(y) is a real function, x(O) is the log moment generating function with mean

= , and variance x”(O)• Sometimes samples are found to be either too heteroge

neous or homogeneous to be explained by a one-parameter exponential model of models

in the sense that the implicit mean-variance relationship in such a model is violated by
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the data. If the sample variance is large compared with that predicted by inserting the

sample mean into the mean-variance relationship, overdispersion occurs. On the other

hand, if sample variance is small compared with that predicted by the mean-variance

relationship, underdispersion occurs. In this section, we suggest a mixed exponential

regression model to adjust for overdispersion in terms of the mean-variance relationship

of the one-parameter exponential model.

Let the random variable Y denote the ith response variable, and let {(yj, xi), i =

1,.. . , u} denote observations where yj are observed value of Y, and x = (Xm),

are k-dimensional covariate vectors associated with y. Note that (m) and x are k1-

dimensional andk2-dimensional vectors corresponding to the regression part of mixing

probabilities and component parameters respectively. Usually the first element of (m)

and is 1 corresponding to an intercept. Our mixed exponential regression model

assumes that

(1) the unobserved mixing process can occupy any one of c states where c is finite and

unknown;

(2) for each observed response j, there is an unobserved random variable, O, repre

senting the component which generates y. Further, the CI’, 9) are pairwisely

independent;

(3) conditional on covariate m) follows a discrete distribution with c points of

(m) (m) c (m)support, 1,. . . , c, and Pr(9 = j x ,/3) = p(x , 9) where j1 p,(x ,8) 1

(m)and p,(x2 ,/9) is defined by

(m)p(x ,/3) pj
exp(/3xIm))

= c—i / (m)
for j = 1,. . . , c — 1, (4.1)

1 + ki exp(/3kx )
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and

— (m)
INc = pc(Xj ,i3)

= (4.2)

with 3 = (/3,...,8C_)’ and /3 =(/3j1,...,83k1)’, j = 1,...,c— 1, are unknown

parameters. In fact, conditional on (m) follows a multinomial distribution

(1, pa,. .. , p). Note that appears in each pjj for 1 j C;

(4) conditional on € j, Y follows an one-parameter exponential distribution which

we denote by

fi (Yi I x,aj)

= exp(Oy
— X(0ii)) (4.3)

where

h(x, aj) for j = i,:. . , c,

where a (ai,. . . , a,)’ are unknown parameters , where a3 = (aj,. . . ,

j = 1,. . . , c. Note that the component parameter Otj relate to covariates SIr)

through the link function h.

Under the above assumptions the probability “density” of Yj satisfies

f(y x),xm),a,) =
(9

— x(8ij)) (4.4)

where pjj and Oj are specified by (4.1),(4.2) and (4.3) respectively.

Note that the mixed Poisson regression and mixed logistic regression models discussed

in the previous chapters are special cases of the mixed exponential regression models in

which the component distributions are Poisson and binomial distributions respectively.
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Another example of the mixed exponential regression models is the mixed normal re

gression model which assumes that the component distributions are normal distributions

with conimon variance for all components. In this case, the component distributions can

be denoted by

I (r) ‘\ 1 1 2
fj zi I x

, °i)
= /_

exp(—-j(yj
— pii) )

where

I(r) for j = 1,. . . , c,

Note that the link function is the identity function.

To apply the mixed exponential regression models, we need to show under what con

ditions the unconditional variance of Y is larger than that allowed by the one-parameter

exponential distribution. The results given by Shaked (1980) may provide insight it.

Since the different assumptions about the component distributions may lead to different

conditions for identifiability of the mixed regression models, as we show in the previous

chapters, we also need to show under what conditions the mixed exponential regression

models is identifiable.

As we did for the mixed Poisson regression and mixed binomial regression models,

parameter estimation of the mixed exponential regression model can be carried out by

maximum likelihood. Furthermore, to obtain the maximum likelihood estimates requires

using an iterative algorithm similar to ones in the previous chapters. Specifically, for

a fixed number of components c, we may apply the EM algorithm by defining the un

observed random variable as missing data and using a quasi-Newton approach for the

M-step. When either the observed likelihood or the parameter estimates do not change

more than a given tolerance, we apply a quasi-Newton approach for maximizing the

observed likelihood function.
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After fitting data to the proposed model, we need to carry out residual analysis to

identify possible outliers and influential observations and goodness-of-fit test for the fitted

model. As we do for the mixed Poisson and logistic regression models, we propose using

Pearson, deviance and likelihood residuals as well as relative average coefficient changes in

a similar way for this purpose. We also suggest using the estimated posterior probabilities

from the fitted model to classify observations into c groups, each characterized by a

regression function.

4.3 Hidden Markov Poisson Regression Models

In this section, we consider a statistical method for longitudinal discrete data where the

objective of data analysis is to describe an observed count, Yki, for subject k during the ith

time interval zt, as a function of covariates, Xk. Longitudinal data are characterized by

the fact that there may exist some dependence structure between repeated observations

for a subject. The model which we have developed assumes that the dependence between

repeated observations for a subject is determined by a finite state Markov chain in such

a way that conditional on a state, an observed count, Yki, follows a Poisson distribution

with mean specified by the product of exposure, = t — t_1, and Poisson rate defined

by a log linear function of covariates, Xkj, in which coefficients may vary from state to

state. This model allows for overdispersion relative to the usual Poisson regression model.

Our initial motivation comes from economic studies which investigate the relationship

between research and development and patent activity at firm level based on longitudi

nal discrete data associated with covariates. The previous studies have suggested that

the data may be overdispersed relative to the usual Poisson regression and that there

may exist some correlation between repeated observations for a firm (Hausman, Hall

and Griliches (1984) and Hall, Griliches and Hausman (1986)). However these studies
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have no discussion about directly modeling the dependence structure between repeated

observations. Our approach explicitly specifies the dependence structure as a finite state

Markov chain and estimates both the parameters of the Markov chain and coefficients in

the Poisson regression corresponding to each underlying state.

In the context of generalized linear models, several approaches have been developed

for longitudinal data. Liang and Zeger (1986) proposed a general framework for analysis

of longitudinal data based on generalized linear models, and Zeger (1988), Kaufmann

(1987), Stiratelli, Laird and Ware (1984), Zeger, Liang and Self (1985) and Zeger and

Qaqish (1988) developed methods for serially correlated discrete observations. In ap

plications to economics in which data are primarily continuous, some approaches allow

parameter values suddenly to change according to the states of a Markov chain, c.f.

Goldfeld and Quandt (1973), Lindgren (1978), Sclove (1983) and Tyssedal and Tjos

theim (1988).

In applications without covariates, Albert (1992) proposed a two- state Markov mix

ture model for longitudinal epileptic seizure counts. Leroux and Puterman (1992), Ler

oux (1989) and Le, Leroux and Puterman (1992) developed a finite state Markov mixture

model for the sequence of counts of fetal movements. Our approach extends their ap

proaches by incorporating covariates into the model and allowing variable exposure. We

also use a rescale scheme to overcome either over or under numerical flow in applying the

EM algorithm so that our algorithm improves the ones proposed by these authors.

4.3.1 The Model

The model we study in this paper embeds a finite state Markov chain in Poisson re

gression in which the regression coefficients depend on the chosen state. Specifically, let

{ (yii, Xki, tki); i 1,. . . , k, 0 = tko <tkl < ... <tkfl} be a sequence of observed data for

a subject k, where Yki is an observed count associated with covariates Xkj of d-dimension
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during a time interval /tk tki — tki_1. For simplicity we suppress the subscript for

subjects in the following discussion. A Markov Poisson regression model assumes

(1) The unobserved stochastic process has c possible states where c is finite and un

known;

(2) For each observed count, yj, at time point t, there exists an unobserved discrete

random variable, S, representing a state at which yj is generated. Further, S has

c points of support, {1,. .. , c};

(3) The S-process, {S1, 52,.. . , S,}, follows a c-state Markov chain with transition prob

abilities defined by

Pr(S=jIS_l=k)=pk, j,k=1,...,c; (4.5)

(4) Conditional on Sj = j, Y follows a Poisson distribution which we denote as

f3 (i I a, S) Po (y I

=
a)t] exp [j(Xj, )t] (4.6)

where yj = 0, 1,..., tj (xi, a) and X a)is a nonnegative function

equal to the Poisson rate; for example,

(xj,aj) = exp (cx),

where c = . . , aj,j, j = 1,. . . , c, are unknown parameter vectors. Note that

= t,
—

tj4 may equal 1 for all i or correspond to time of observation in time

series data.

The above assumptions define a semi-Markov process {(Y, Si); i = 1,. . . , n, 0 = t0 <

t < ... < t} in which the transitions of the S-process follow a stationary, first-order,
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Markov process, and the count, }, is renewed at each transition point, t, so that the

conditional component distributions for the count depend only upon which state is exited.

Note that the Poisson rates of the conditional component distributions vary between

states by different coefficients in the same Poisson regression specification. Furthermore,

since the covariates can include parts of an individual’s past history, the proposed model

provides a means of relaxing the assumptions about the transition process of the renewal

counts. Note that the transition probabilities pjj do not depend on covariates.

Under the above assumptions, the joint probability “density” function of a sequence

of observed counts, Y = {yi,. . . , y}, associated with covariates, X = {x1,. . . , x,}, and

exposure, T {zt1,.. . , satisfies the following equation.

f(YIX,T,O) =
(i)f(

xi,ti,aj,Si)
j=1 S2 S=1

flps_1sfs(y I (4.7)

where 0 = (an, . . . ,ald,a21, . . . , 2d, . , . . acd,pli, . . . ,Plc, . . . ,Pci, . . ,pcc) is an

unknown parameter vector, ps’) = Pr(Si = j), = 1,... ,c, are the probabilities of the

initial states for the subject, ps_1s and fs (i I x, as, S1) are defined by (4.5) and

(4.6) respectively.

Note that the probabilities of the initial states, p, are assumed known. We will

discuss how to determine their values below. Note also that Pjk = 1 for all j.

Some previously studied models are special cases of the above model.

• Choosing c = 1 yields a Poisson regression model;

• Choosing the transition probability matrix as an identity matrix yields an inde

pendent mixed Poisson regression model which is a special case of the generalized
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mixed Poisson regression models discussed by Wang, Puterman, Le and Cockburn

(1994);

Setting x = (1) and t = 1 for all i yields Markov Poisson mixture without covari

ates which is studied by Leroux and Puterman (1992) and Albert (1992).

4.3.2 Moment Structure

From the above definition we can derive the basic moment structure of observed counts.

Using the properties of conditional expectation, we obtain

I S) = )is and Var(Y I S) =

Thus the unconditional mean and variance of Y are

E(1) = E(E(1 I Si)) = Pr(S = j)jj (4.8)

Var (‘4) = E(Var(Y I Si)) + Var(E(} I Sj)

= Pr(S = j)ij + {E Pr(S =

—

Pr(S = i)A}2}(49)

Since the second term in (4.9) is always nonnegative, (4.8) and (4.9) show that the

proposed model can accommodate overdispersion relative to Poisson regression, and that

the observed data are homogeneous if and only if = ... = for all i.

The covariance of Y and ‘+m is given by

COV(1’,’4+m) cov(E()4 I S),E(’4+m I S))

E()jS)j+ms+m) —

= iji+mkFT(Si = j, Si+m = k) —

j=1 k=1
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4.3.3 Identifiability

Along with the applications of the Markov Poisson regression models we must be con

cerned with the identifiability for the models. Without covariates, Teicher (1961, 1967)

proves that both the class of finite Poisson mixtures and the class of all mixtures of

Poisson distribution products are identifiable. We will apply these results to derive the

sufficient conditions for identifiability for the model. But we first define identifiability for

the Markov Poisson regression model as follows.

Definition: Consider the class of probability models, {f(Y I X, T, O)}, with f(Y I
X, T, 0) defined by (4.7), a restriction that ) < ... <), parameter space Cx 0, sample

space Y1 x. . . x and fixed covariate matrices X and T. The class of probability models

is identifiable if for (c,0), (c*,0*) C x 0,

f(Y I X,T,0) = f(Y X,T,0*) (4.10)

for all (yr,. . .,y,,) E 34 x ... x Y, implies (c,0) = (c*,0*).

Note that the order restriction in the definition indicates that two models are equiva

lent if they agree up to permutations of parameters. We now provide a sufficient condition

for identifiability as follows.

Theorem 3: The hidden Markov Poisson regression model is identifiable if the design

matrix X is full rank.

Proof: Suppose that (c,0) and (c*,0*) satisfy (4.10), then summing up both sides of

equation (4.10) for Y2, . . . , n respectively yields

p’Po(y1 ‘j)
=p1Po(y j) (4.11)

for all y E 34. Since each side of equation (4.11) may be regarded as a finite Poisson

mixture without covariates, Teicher’s result (1961) implies that

c= c, l) = > 0 and )1j =
(4.12)
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forj=1,...,c.

Now summing up both sides of (4.10) for y3,. . . , y,, yields

ppkP0(y1 I )Po(y2 I 2k) = P’P;kPO(Y1 I i)Po(y2 I ) (4.13)
j=1 k=1 j=1 k=1

for all (yr, y2) e 31 x )‘2. Since each side of equation (4.13) may be regarded as a finite

mixture of two Poisson distribution products without covariates, Teicher’s result (1967)

implies that

)‘2j, forj = 1,...,c, (4.14)

P1Pk =
(1) for j, k = 1,. .. ,

or

Pjk =Pk’ forj,k= 1,...,c. (4.15)

For each i > 2, summing up both sides of (4.10) for Yl,. . . , zii—i, . , y yields

(E... Po(y I ) = (s... Psi_ik) Po(y I ) (4.16)
k=1 j=1 sil k=1 j=1 s_1=1

for all yj E Y. (4.16) implies that

)jj= ., for i = 3,...,n andj = 1,...,c. (4.17)

From (4.12), (4.14) and (4.17) we obtain

exp(axj) =exp(4’x) fori = 1,...,n andj = 1,...,c.

This is equivalent to

(c—c)’x=0, fori=1,...,nandj=1,...,c,

or

(a3—cr)’X=O, forj=1,...,c. (4.18)
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Thus a sufficient condition for identifiability is that X is full rank, in which case

(4.18) implies that cr = for j = 1,. . . , c. We can assume that this sufficient condition

holds without loss of generality, since if it does not we can reparameterize the model

accordingly. D

4.3.4 Estimation

The EM algorithm

In order to find the maximum likelihood estimates of the unknown parameters for the

above model, we apply the EM algorithm (Dempster, Laird and Rubin, 1977), treating

the unobservable state variable S as missing information. In doing so, we represent a

complete data set by introducing the following indicator functions

1 ifS_i=kandS=j
zz(z,j,k) =

( 0 otherwise;

1 ifS=j
z(z,j) =

0 otherwise.

Thus the log-likelihood of the complete data set, {(yj, x, z(i, j), z(i, j, k)); i = 1,. . . , n

and j,k=1,...,c},with0=0°is

Q(0 100) =

i=2 j=1 k=1

+ z(i,j)logfs(y I
i=1 3=1

logp) + Qi(Oi I 0°) + Q2(02 I 0°)

where 01 = (Pu, . . . ,Pic, . . ,Pc1, . . . ,Pcc), 02 = (a1i, . . . , aid, , ad, . . . , add),

Qi(Oi 0°) = >zz(i,j,k)logpjk and
i=2 j=1 k=1
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Q2(02 I 0°) = z(i,j)1ogf(y =j)
i=1 j=1

The EM algorithm finds the maximum likelihood estimates by proceeding iteratively

in two steps: E-step and M step. At the E- step, it replaces the missing data in Q(0 I 0°)

by its expectation, conditional on the observation data and the initial values of the

parameters. At the M-step, it finds the estimates of the parameters by maximizing the

expected log likelihood for the complete data set, conditional on the observed data. It

repeats the two steps until the log likelihood of the observed data no longer increases.

Note that the EM algorithm guarantees that the log likelihood does not decrease for each

iteration.

In our case, the E-step of the EM algorithm updates the expected values of the missing

data z(i, j) and zz(i, j, k) in each iteration, given the observed data and the initial values

of the parameters. By definition,

(i,j) = E{z(i,j) I ui,. . . ,y,}

= Pr(S i I Yi,.”,Yn)

= =j)/Pr(y1,...,y,S = k)

Iz(i,j,k) = E(z(i,j,k) y,. ..,y,)

= Pr(z(i,j,k) I ii,.

= Pr(yi,.. =j,S = k)/Fr(y1,...,y)

= Pr(y1,...y_1,S_1=j)pkPr(y,...,yfl I = k)

As first proposed by Baum et al. (1970), we use the following quantities to set up the

forward-backward recursive formula for the computation of .(i,j) and Iz(i,j, k),

a(i) = Pr(yi,...,y:,S:=j), fori=2,...,nand

a(1) = I x1,t1,aj, 51 = j) for j = 1,..., c,
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b3(i) = Pr(yi,.
. .,y S = j), for i 1,... —1 and

b3(ri) 1 for j = 1,... ,c

Thus (i,j) and iz(i,j, k) can be written as

(i,j) = a(i)b(i)/a(n) (4.19)

Iz(i,j,k) = pJkf(y I = j)aj(i — 1)bk(i)/a(n) (4.20)

The advantage of the above expressions is that there are the following recursive for

mula to compute a(i) and b(i):

a(i) =

= k)pf(y I j)

= ak(z
— l)pkfj(u I j)

b(i) = = k I S =i)

= I x+i,t+i,aj,S =j)Pr(yi,...,y S i)

= Pjkfj(Y+1 I = j)bk(i + 1)

The M-step is equivalent to maximizing the following two functions with respect to

Oi and 02 separately:

0°) = z”z(i,j,k)logpk and
i=2 j=1 k=1

Q2(02 00) = 2(i,j)1ogf(y =j).
i=1 j=1
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To maximize Qi(Oi I 00) with respect to 01, the estimated values of the transition

probabilities, 01 = (l3jk), should satisfy the following equation

1o1= 0. (4.21)

Solving (4.21), we obtain ê = (jk) by

— 2z’z(i,j,k)
Pjk — ,. . .

, j,k —1,...,c. (4.22)
E1=2E1=1zz(z,j, k)

To maximize Q2(02 I 00) with respect to 02, the estimated value 02 should satisfy the

following equation

02 0. (4.23)

However there are usually no closed form for the solution of (4.23). We use the quasi-

Newton approach (Nash, 1990) to solve it for 02.

We now summarize the EM algorithm for the hidden Markov Poisson regression model

below.

Step 0: Specify starting values o° and o° and a tolerance ;

Step 1: (E-step) Compute (i,j) and i’zi,j, k) using (4.19) and (4.20) respectively, for

i=2,...,nandj,k=1,...,c;

Step 2: (M-step)

1. Find the values of 0 = J3jk using (4.22);

2. Find the values of 02 to solve (4.23) using the quasi-Newton approach (Nash,

1990);

Step 3: If II O —

0) ::= I Pjk — p°) e or II 02— 0 II =i I
-‘

(0) (0) (0)
crk

— jk I , set 01 = 0 and 02 = 02, and go to Step 1; Otherwise, stop.
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The E-step of the EM algorithm

The difficulty to compute (i,j) and Iz(i,j, k) by (4.19) and (4.20) is that a(i) and

b3 (i) converge to 0 or oo very fast as i increases. This will cause underfiow problems in

the computation. To overcome this difficulty, we introduce an approach to rescale a3(i)

and b,(i) so that both maximum values are around 1 for each i. This approach takes the

special structure of the model into account. It first represents, for such j that a(i) 0,

a(i) = ( ak(i
— l)pkj)fj(y x, j, Si = j)

= exp {lo (E ak(i — l)pk) + log(f(y x, aj, s1 = i)) }
exp(q3)

where qij = log( ak(i — 1)pk3) + log(f3(y x, crj, s1 j)). It then rescales a(i)

by multiplying exp(—màxt) for such j that a3(i) 0, where maxt maxk{qjk}, and

stores the order ofa3(i) by powera(i) = maxt3. This order will be used to calculate

the orders of (i,j) and Iz(i,j, k). The same procedure is applied to calculate b3(i).

Before we state the computation of the E-step of the EM algorithm, we first define

some notations for simplicity as follows:

f(i,j) y!f(y I x,/ =j)

= [ztA(x, a)] exp (—t)(x1,cj))

= exp{yj log(t3)+ y(a3’x) — Lt exp(a’xj}

exp(rj,j)

where rj,j = y log(Lt3)+ yj(cj’xj) — Lt exp(a3’xj) for i = 1,. . . , n and j = 1,. .. , c.

Note that factorials in the numerators and denominators of (4.19) and (4.20) are

cancelled out. This simplifies the computation of the E-step.

The E-step of the EM algorithm can now be carried out as follows:
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(a) compute a3(1) =p1f(1,j), j = 1,.. . , c, and set powera(i) = 0;

(b) compute a3(i) for i = 2,.. . , n, and j = 1,. . . , c as follows:

1. identify an index set Ka(i) {k; a3(i — 1)pik L 0, k = 1,.. . ,

2. find tempa(i) maxkEKa(){log(1a(i — 1)pk) + r,k};

3. compute a3(i) = exp{1og(1ak(i — 1)pk) + rj,3 — tempa(i)} for j Ka(i)

and 0 otherwise;

4. set powera(i) = powera(i — 1) + tempa(i).

(c) Set b(n) = 1, forj = 1,...,c, and powerb(n) = 0;

(d) compute b(n) for i = n — 1,n — 2,...,1 andj = 1,...,c as follows:

1. identify an index set K”(i) {k;.1pkb(i + 1) 0,k 1,... ,c};

2. find tempb(i) maxkEKb(){log(l pkb(i + 1)) + r+1,k};

3. compute b(i) exp{log(1pkbk(i — 1)) + r,1,3 — tempb(i)} for j E K’(i)

and 0 otherwIse;

4. set powerb(i) = powerb(i — 1) + tempb(i).

(e) For i = 2,. . . , u and j = 1,. .. , c compute temp(i) exp{powera(i) + powerb(i) —

powera(n)} and

(i,j) = temp(i)a(i)b(i)/ a(n);

(f) For i = 2,... , n and j = 1,. . . , c, compute

Iz(i,j, k) = temp(i)pkf(i, k)a(i — 1)bk(i)/ a(n).
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4.3.5 The Probabilities of Initial States and Starting Values

In the above model we define the probabilities of initial states as known parameters. To

determine their values, we consider two types of data: (1) data for a single subject and

(2) data for several subjects. In the first case there is only the first observation directly

related to the initial states so that there is little information about the initial probabilities.

Thus we set p’) = ...

= p. Since the data in this case usually contain a rather long

sequence of observations, the values of the probabilities may not have significant effects on

estimation in terms of aymptotic properties. Without covariates, Leroux (1989) proves

that the effect of the probabilities vanishes as the number of observations increases.

In the second case we choose the values of the probabilities as the estimates of the

mixing probabilities which are obtained by fitting the first observations of the subjects,

{ yii; k = 1,. . . , m}, into a c-component mixed Poisson regression model with constant

mixing probabilities and covariates in Poisson rates (Wang, Puterman, Le and Cockburn,

1993). Note that in this case the mixing probabilities can be equivalently interpreted as

the the probabilities of initial states for the Markov mixture model. Further, in many

applications like this, the data contain many subjects but short series.

To be able to run the EM algorithm, we need to choose the starting values for the

unknown parameters in the model. The EM algorithm only guarantees, under some

regularity conditions (Wu, 1983), that the parameter estimates are local maxima of the

likelihood function. As the number of unknown parameters in the model increases, there

may be more local maxima. Further, a poor choice of the starting values may slow

down convergence with the EM algorithm. Indeed, in some cases where the likelihood is

unbounded on the edge of parameter space, the sequence of estimates generated by the

EM algorithm may diverge if the starting values are too close to the boundary. Hence

for these reasons it is important to choose the starting values carefully so as to increase
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the chance to achieve the maximum likelihood estimate. We use the following approach

which works well in our applications.

We assume that c is known. We first fit the observed data into a c-component in

dependent mixed Poisson regression model. Then we choose the initial values of the

regression parameters as the corresponding estimates by the fitting. Further, we identify

each observation with one of the c states if it has the largest value of the estimated

posterior probabilities calculated by (4.19). We then calculate the frequencies of the

transitions from state j to state k, and set these frequencies as the initial values of the

corresponding transition probabilities, p:j

4.3.6 Implementation and Remaining Issues

We suggest using BIC or AIC to determine the number of underlying states, and carrying

out inference about parameters by likelihood ratio tests. Specifically, we first determine

the number of components c by comparing BIC and AIC values among saturated models

which include all covariates in Poisson means. After c is determined, we then carry

out inference about regression parameters by likelihood ratio tests within c component

mixture models. We will plan to conduct a Monte Carlo study to investigate this model

selection procedure.

On the other hand, using the quantities (i,j) and Iz(i,j, k) from the fitted model,

we can classify observations into one of c states, and identify transitions for each subject.

This information may be useful in applications. Note that our code works well for fitting

the fetal movement data (Leroux,1989) to the proposed model without covariates; the

results are the same as those given by Leroux (1989).
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Appendix A

1. Fortran program for computing the maximum likelihood estimates of the mixed Poisson
regression model.

C
PROGRMf GENMDC

C
C Thi. I. dceigird for dii. in whldi e.dR cinc.vatii i.
C wi4hi t poriod. Tidi • piorid.. fitlid von., Pcui&. Ma*i.Aic
C XSQR. Devinico, P..o.’. d.vin.or oc.Inh for l • i1

C LZI for radi
C NV-I OF VARIABLE REGRESSION COEFFICIENTS FOR E4C1I COMPONENT.
C NT I OF COMMOM REGRESSION COEFFICIENTS.
C

IMPLICrF DOUBLE PRECTSION(A.H,O-Z)
INTEGER NOBSNSFAT,NX,NXI,NV,NF,NI$2
DiMENSION OBS(I000),TU000),M(1000,8),X141(1000,8),Z(1000,5)
COMMON OBS,TIME,XM,XM1,Z,NOBS,NFrAT,NX,NXI.NV.NF,Nl,N2
DIMENSION BGUESSQ0),OB(30),HO0,30),AGUESS(IQ),OADG)
DIMENSION PA(10),PB(I,PC(10),Wr(30),DRES(1aOo),TDEES(IC0o)
DIMENSION Frr(i000,12),RE (IC ,iid0,3Q), RESL(i000)
dioxoajai tdi.(I0C0),tImo(I000),(I000,8),I(lOQ0,8)
diiorork.i s(lOOO),ae3O),cp.oQO),w(I0C0)
INTEGER N1,N2,UII,1112,MON,NEVALS,IFAIL,NSFEF
INTEGER N’r,N’FEMPI,NTEMP2,n13,NUM,IrER.NrOI.
OPEN( UNTr=I,FILE=’lcuI’)
OPEN( UNrr-2,FnE=rcon.r)
OPEN( UNIF..3,FIE.’Iflntor’)
OPEN( UNrr=7.PILE-rcauk’)
opni( aiit=8fiin&flt.a)
OPEN( UNrr—9,FILE—’ld.taoi)
READ(1,I00) NOBS,NSTAT,NX,NXI,NV,NF
w,100) ncin,ini.t,ior,n.I,NV,NF

100 EORMAT(615)
Ni ..(NTrAT-I)NX
N2=NSTAT*NV+NF

NT=NI+N2
NTEMP1=NI
NTEMP2N2
READ(1,i13) (OBS(I),TIME(I), l.’I,NOBS)

110 FORMAT(Fi0.5)
wriln(*,113) (oin(i),tiin.(i),i—i,nois)

do lii 1i,nob.
READ (1,112) (XM(,J),Ii,NX)

if(Lgt.i0) go to ill
wñte°,iI2) (xm(Lj)j—i,xoc)

111
112 FORMAT(6G16.8)
113 FORMAT(2F10.5)

READ(l,1I0) (BGUESS(I),I—1,N1)
wnlc(9,i10) (bgucaa(i),ii,n1)

DO 115 1—l,NOBS

READ(i,1IZ QcMI(1,i),J=1,NXI)
if (I gt.i0) go to 115
writo (,I12) (xxnl(i.j)j1,mcl)

115 CONTINUE
READ(l,1 10) (AGUESS(I),l= l,N2)
WRrrE(9,1 10) (AGUESS(O,1 i,N2)

do 118 i’I,oobe
toin(i)’’cb(i)

do 116 j=i,nx
116 lxm(Lj)xm(ij)

do Ill j1,nxl
117 mI(Lj)=xm1(i.j)
118 ccoih.r

NEVALS- 1000
uhIN1
IH2’N2
1113-NT
MONt
TOL.=0.0001
TOL.L’..O.OI
DO I 1=I,NOBS

l TDRES(I)=0.0
OBSINF0.0

220



DEV=0.ODO
DO 150 1=1,NOBS
IF (OBSQ).EQ.0.0) GO TO 150
TDRESQ)=OBS(1)*(DLOG(OBSQ))1 .0D0D0)oba(i)*dllog(time(i))

DEV=DEV+TDRES(1)
TEMP1 =0.ODO
NSTEP=INT(OBS(1))
DO 145 J=1,NSTEP
TEMP1 =TEMPI +DLOG(DFLOAT(J))

145 CONTINUE
obainf=obainf+TEMPIOBS(I)*DLOG(T1ME(1))

150 CONTINUE
NTOL=NOE5
ODEV=DEV
OOESINF=OBSINF
do 155 i=1,ntol

155 w(i)=0.ODO
160 DO 888 1TER=0,NTOL

PREL=(10.0D0ca10.0D0)

200 DO 202 I=1,N1
202 OBm=EGuESso)

DO 205 1=1,N2
205 OA(I)=AGUESS(1)

CALL ESTEP(NTEMPI,NTEMP2,EGUESS,AGUESS)
CALL MSTEPIa4TEMP2,AGUESS,H,P,1H2,NEVALS,IFML,MON)
CALL MSTEfl(NTEMP1,BGUESS,H,P,IHI,NEVALS,IFAIL,MON)
SSRI =0.ODO
SSR2=0.ODO
DO 350 I=l,Nl
SSRI =SSRI+(OEW-BGUESS(I))°’QODO

350 CONTINUE
DO 352 l=1,N2

352 SSR2=(OA(1)-AGUESS(l))2.0D0+SSR2
DO 353 K=l,Nl

353 BT(K)=BGUESS(K)
DO 354 K=1,N2

354 BT(K+Nl)=AGUESS(K)
CALL LL1KELY’lT,BT,F)
TEMP=-F-PREL
IF (TEMP.LT.TOLL) GO TO 359
PREL=F
IF (ITER.GT.0) GO TO 356
f=-f-obainF
WRITE(9,1II1) F
wcitc(*,l11l) f

liii fonnat(4x,G16.8)
356 IF ((SSRI .GT.TOL).OR.(SSR2.GT.TOL)) GO TO 200
359 call cawton(nI,bt,li,pO,nt,tr.vals,ifail,mon,std)

if (itcr.eq.0) call Fllkely(nt,bt,f,dits)
if (ilec.gt.0) call llhktly(nt,bt,l)
do 3M i=l,nl

364 bgueas(i)=bt(i)
do 365 i=I,n2

365 agtas(i)=bt(ol+i)
DEV=2*(DEV(F))

C wcite(*,9 itec,cdev,tdcea(itcc),f
IF (ITER.EQ.0) TDEV=DEV
IF (1TER.GT.0) GO TO 500
f--f-obuiof
wcite(9,ll11) f
call gfit(ol,n2,bgueua,agiraa,XSQR,flt,RES,pa,pb,pc)
do 366 i-1,nobS
temp=fIt(i,l)-fit(i,2)
if (Icoipcqo.ODO) sign(i)=0.ODO
if (lcmpat.O000) sign(i)=tecap/(aba(tcmp))
dQ)(2*Q).(i))yICK(05IJffl3t3)

dces(i)=sign(i)*drea(i)

366 continue
wcitc(9,4444)

4444 fonnat(4x,’gccdneaa of fit--XSQR, DeviancE’)
write(9,7777) XSQR, DEv
do 368 i1,nobe
wrile(8,369) (FfflI,J),J= 1,2÷2aNSTAT)

o WRJTE(2,369) (RES(I,J),J=l,l+NSTAT)
wcite(7,l 12) (zQj),j I,natat)
NUM= 1
DO 367 J=l,NSTAT-l
IF (ZQ,J)GT.ZO,J+l)) GO TO 367
NUM=J+I

367 CONTINUE
WRITE(2,370) Fff(I,l),Ffr(I,2),RES(I,l),DRES(I),FIT(I,NUM+2),



o RES(I,l+NUM),NUM
368 continue
369 fonnat(12g16.8)
370 FORMAT(G12.6,x,g12.6,x,g12.

DO 400 J=1,N1
400 BGUESS(J)=BT(J)

DO 402 J=I,N2
402 AGUESS(J)=BT(J+N1)

call estep(ntempl,ntcmp2,bgueas,a
temp=dfloat(nl +n2)
do 410 k=1,nl

ct,ar(k)=bgucsa(k)
se(k)=(std(k,k)*a(0.500DO))*temp

410 continue
do 420 k=1,n2
opar(k+n1)aguess(k)
sek+nl)(sk+nl,k+nl)ca(0.5D0D0))temp

420 continue
WRfl’E(9,5555)
WR]TE(9,7777) (BGUESS(1), std(I,i)ca(0.SDODO), 1l,Nl)
writc(*,7777) (bguess(i),i= 1,nl)
write(9,6666)
write(9,7777) (AGUESS(I), atd(l+Nl,i+n1)°’(0.5D0D0),l= I,N2)
writet*,7777) (aguess(i),i=l,n2)
wiite(9,7787)
writc(9,7777) (pa(i),i l,nstat)

write(9,7797)

write(9,7777) (pb(i),i l,natat)
wiite(9,7799)

wrlte(9,7777) (pc(i),i l,nstat)
GO TO 504

500 RESLQTER)=TDEV-DEV
do 501 k=l,nl
w(Uer)=w(iter)+abs(bguees(k)-oparikl)/sc(k)
bguess(k)opar(k)

501 continue
do 502 k=l,n2
w(iter)=w(iter)+abe(aguess(k)-opa(k+n1))Ise(k+nl)

aguess(k)=opar(k+nl)
502 continue

IF (TTER.EQ.NTOL) GO TO 889
504 NOBS=NTOL-l

DEV=ODEV.TDRES(ITER+ I)
if (iter.eq.0) go to 514
do 510 k=l,iter
obs(k)tobs(k)
time(k)ttime(k)
do 505 j=1,nx

505 xm(k,j)=tzcm(kj)
do 506 j=1,nxl

506 xm1(kj)=ntm1(kj)
510 continue

if (iter.eq.noba) go to 888
514 DO 520 K=ITER+l,NOBS

OBS(K)=TOBS(K+l)
TIME(K)=tTIME(K+l)
DO 515 J=1,NX

515 XM(K,J)=tXM(K+l,J)
DO 516 J=1,NXI

516 XMI(K,J)=tXMI(K+l,J)
520 CONTINUE
888 CONTINUE
889 do 900 i=l,ntol

resl(i)=sign(i)*(resl(i)ncO.SD000)

write(3,7778) ds(i),ca(,l),nul(i),w(i)
900 continue
5555 fonnat(4x,’beta-vecto?)
6666 fonnat(4x,’alpl,a-vecto?)
7777 fom.at(4x,2g16.8)
7778 fonnat(4x,4g16.8)
7787 fonnat(’pa’)
7797 fonnat(’pb’)
7799 fonnat(’pc)
9999 sro

END

SUBROUflNE FuNcr4,B,P)
Cnu0on0a

C This subroutlue computes the value of function QI in Chapter 2.
C Data input: N diiuension of vector B;
C B=betavector;



C output: P = Ut flmction value Q1(B).

IMPLICiT DOUBLE PRECISION (A-H,O-Z)
INTEGER NOBS,NSTAT,NX,NXI,NV,NF,N1,N2
DIMENSION OBS(1000),TIME(1000),XM(1000,S),XM1(l000,8),Z(1000,5)
COMMON OBS,TIME,XM,XM1,Z,NOBS,NSTAT,NX,NXI,NV,NF,N1,N2
INTEGER N
DIMENSION E(N),BX(5)
P=0.ODO
DO 100 1=l,NOBS
DOS J=l,NSTAT-l
BX(J)=0.ODO
DO 6 M=I,NX

6 BX(J)=BX(J)+XM(I,M)*B(M+(J.I)*NX)

S CONTINUE
P=P+Z(I,l)5BX(l)
TEMP1 =EX(l)
IF (TEMPI .LT.0.ODO) TEMPI =0.ODO
DO 20 J=2,NSTAT-I
P=P+Z(I,J)*BX(J)

IF (BX(J).GT.BX(J-I)) TEMPI =BX(J)
20 CONTINUE

P=P-TEMPI
CALL AEXP(-TEMPI,TEMP2)
DO 30J=I,NSTAT-I
CALL AEXP((BX(J)-TEMP1),TEMP3)
TEMP2=TEMP2+TEMP3

30 CONTINUE
P=P-DLOG(TEMP2)

100 CONTINUE
P=-F
RETURN
END

SUBROUrINE GRADasB,G)
ct
C This subroutine computes Ut first derivative of QI (see eqn 2.21).
C Data input: N = dimension of vector B;
C B=hetavector;
C output:G=tlsederivativeofQlatli.
C :::.::..:. .:.

IMPLICiT DOUBLE PRECISION (A-H,O-Z)
INTEGER NOBS,NSTAT,NX,NX1,NV,NF,NI,N2
DIMENSION OBS(l000),TIME(I000),XM(l000,S),XMI(l000,S),Z(l000,5)
COMMON OBS,TIME,XM,XMI,Z,NOES,NSTAT,NX,NX1,NV,NF,Nl,N2
INTEGER N

DIMENSION G(25),B(N),TEMP(25),BX(5)
DOS I=l,N

S G(I)=0.ODO
DO 100 I=l,NOBS

DO 20 J=l,NSTAT-I
BX(J)=0.ODO
DO 1OM=I,NX

10 BX(J)=BX(fl+XM(I,M)*B(M+(3l)*NX)

20 CONTINUE
TEMP1 =BX(1)
IF (FEMP1 .LT.0.ODO) TEMP1 =0.ODO
DO 30 J=2,NSTAT-I
IF (BX(J).GT.BXQ-I)) TEMPI =BX(3)

30 CONTINUE
CALL AEXP&TEMPI ,TEMP2)
DO 40 J=l,NSTAT-I
CALL AEXP((BX(J)-TEMPI),TEMPQ))
TEMP2=TEMP2+TEMP(J)

40 CONTINUE
DO 60J=l,NSTAT-1

DO 50 M=I,NX
G(M+(Jl)aNX)=G(M+(J.l)aNX)+XM(I,M)*(z(I,J).TEMP(J)IfEMp2)

50 CONTINUE
60 CONTINUE

100 CONTINUE
DO 200 I=I,N

200 G(I)=-G(I)
RETURN
END

SUBROI.TrINE MSTEP2(N,B,H,P0,IH,NEVALS,IFAIL,MON)
Ct©©ttt5©t

C This subroutine is a quasi-Newton algorithm (Nash, 1990) which
C maximizes Ut function Ql.

13-3



C Data input: N dimenskai of vector B; B = beta vector;
C 111 = dimansion of tiz Hessian matrix;
C NEVALS 1/of evaluations for the function QI;
C output: H = Liz Hessian matrix; P0 nzxinasn value;
C B = optimal values of beta vector.

IMPLICiT DOUBLE PRECISION(A-H,O-Z)
INTEGER NOBS,NSrAT,NX,NXI,NV,NF,Nl,N2
DIMENSION OBS(l000),TIME(l000),XM(l000,8),XMI(1000,8),Z(l000,5)
COMMON OBS,TIME,XM,XMI,Z,NOBS,NSTAT,NX,NXI,NV,NF,N1,N2
DIMENSION B4), H(IH,N)
DIMENSION X(30), C(30), 0(30), T(30)
DOUBLE PRECISION K
INTEGER COUNT

DATA W,TOL.2,1.0D0D-4/,EPS/1 .ODOD-61
IF (N.LT.0.OR.N.GT.23) GO TO 160
IFN = N+l
10 =

RLIM=7.2D0*(l0.ODOec74.ODO)

CALL FUNCr(N,B,P0)
IF(P0.GT.RLIM)GOTO18O
CALL GRAD4,B,G)

C
C RESEF HESSIAN
C

10 DO 301 = l,N
DO 20 J l,N

20 H(I,J) = 0.0130
30 H(I,l) = I .ODODO

ILAST = 10
C
C TOP OF ITERATION
C

40 DO 501 l,N

X(1) = B(I)
50 C(I)=G(1)

C
C FIND SEARCH DIRECrION T
C

Dl = 0.ODO
SN=0.000
DO 701 = l,N

S = 0.0
DO 60 J = 1,N

60 S = S-H(I,J)*G(J)
T(I) = S
SN = SN+S*S

70 Dl = Dl-SG(I)
C
C CHECK IF DOWNHILL

C
IF (D1.LE.0.ODO) GO TO 10

C
C SEARCH ALONG T
C

SN = 0.SDODO/DSQRT(SN)
K = DMIN1(1.000DO,SN)

80 COUNT =0
DO 901 = l,N

B(I) = X(1)+K*T(I)
IF (DABS(B(I)-X(1)).LT.EPS) COUNT COUNT+l

90 CONTINUE

C
C CHECK IF CONVERGED
C

IF (COUNT.EQ.N) GO TO 150
CALL FUNCT(N,B,P)
IFN = IFN+1
IF (IFN.GE.NEVALS) GO TO 170
IF (P.LT.P0DI*K9X)L) GO TO 100
K = W*K

GO TO 80
C
C NEW LOWEST VALUE
C

100 P0 P
10 = 10+1
CALL GRAD(N,B,G)
IFN IFN+N

C
C UPDATE HESSIAN



C
DI = 0.0D0
DO 1101 = 1,N

TI)) = K5T(I)
C(I) = G(l)-C(1)

110 Dl = D1+T(1)*C(l)

C
C CHECK IF +VE DEF ADDITION
C

IF (D1.LE.0.ODO) GO TO 10
D2 = (l.ODO
DO 130 1 = l,N

S = 0.0130
DO 120 J = I,N

120 5 = S+H(1,J)C(J)
XCI) = S

130 D2 = D2+S’C(l)
1)2 = I+D2/D1
DO 140 I = I,N

DO 1401 = 1,N
140 H(I,J) = H(I,J)-(T(I)*X(J)+T(J)*X(I)-D2fl(Ifl(J))ID1

GO TO 40

150 WAIL = 0
C SUCCESSFUL CONCLUSION

RETURN
160 WAlL = I

C N Our OF RANGE
RETURN

170 WAIL = 2
C TOO MANY FUNCTION EVALUATIONS

RETURN
180 WAIL=3

C IND1AL POINT INFEASIBLE
RETURN

2005 FORMAT( 2X,3G16.4)
END

SUBROUTINE AEXP(X,F)
C
C This subroutite computes a expotrntial function value.
C Data input: X = real number;
C output: F = exp(X).
C••••

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER NSTEP
TEMP1 =ABS(X)
IF (TEMPI.GT.79.9D0) GO TO 50
F=DEXP(X)
GO TO 200

50 IF (X.LT.-79.9D0) GO TO ISO
IF (X.GT.lS0.ODO) X=150.ODO
F=l.ODODO+X
NSTEP=l
FAcrrOR= 1 .ODODO
TEMPI =DFLOAT(NSTEP)
TEMP2=XITEMP1

100 IF (TEMP2.LT.l.ODODO) GO TO 200
NETEP=NSTEP+ 1
TEMPI =DFLOAT(NSTEP)
FACTOR=XITEMPI
TEMP2=TEMP25FACTOR
F=F+TEMP2
GO TO 100

150 F=0.ODO
200 RETURN

END

SUBROUTINE FUNCT1(N,B,P)

C This subroutine computes the value of function Q2 in Chapter 2.
C Data input: N = dinrnsion of vector B;
C B=alphavector;

C output: P = the fanction value Q2(B).

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER NOBS,NSTAT,NX,NXI,NY,NF,NI ,N2
DIMENSION OBS(1000),TIME(I100),XM(1IM),8),XMI (I,8),Z(II00,5)
COMMON OBS,TIME,XM,XMI,Z,NOBS,NSTAT,NX,NX I ,NV,NF,N I ,N2
INTEGER N

i



DIMENSION B(N),BX(5)
P=0.ODO
DO 100 I=1,NOBS
DOS J=1,NSTAT
BX(J)=0.000
DOS M=1,NV

6 BX(J)=BX(J)+XMI(1,M)SB(M+Q.1)*NV)

S CONTINUE
TEMP=0.000
DO I2M=I,NP
TEMP=TEMP+XMI (I,NV+M)*B(M+NSTAT*NV)

12 CONTINUE
DO 14J=1,NSTAT
BX(J)=BX(J)+TEMP

14 CONTINUE
DO 20 J=1,NSTAT
CALL AEXP(BX(J),TEMP)
P=P+ZQ,J)*(OBS(I)*BX(J)TIME(1)*TEMP)

20 CONTINUE
100 CONTINUE

P=-p
RETURN
END

SUBROUTINE ORADI(N,B,O)
C
C This subroutine computes the first derivative of Q2 (see eqn 2.22).
C Data input: N = dimension of vector B;
C B = alpha vector;
C output: G...thederivativeofQ2atB.
Cossssssoucosssosssso©nosssossss©seccs©ccccccomrs

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER NOBS,NSTAT,NX,NXI,NV,NF
DIMENSION OBS(l000),TIME(l000),XM(l000,S),XM1(l000,8),Z(l0(XI,5)
COMMON OBS,TIME,XM,XMI ,Z,NOBS,NSTAT,NX,NXI ,NV,NF
INTEGER N
DIMENSION G(30),B(N),BX(5)
DOS I=I,N

S G(I)=0.000
DO 100 1=l,NOBS
DO 20 J=l,NSTAT
BX(J)=0.ODO
DO 10 M=l,NV

10 BX(J)=BX(J)+XMI(I,M)’B(M+(J-l)5NV)
20 CONTINUE

TEMP=0.ODO
DO 22 M=l,NF
TEMP=TEMP+XMI (I,M+NV)*B(M+NSTAT*NV)

22 CONTINUE
DO 24 J=I,NSTAT
BX(J)=BX(J)+TEMP

24 CONTINUE
DO 32J=l,NSTAT
CALL AEXP(BX(J),TEMP)

DO 30 M=l,NV
G(M+(J-l)5NV)=G(M+(J.l)*NV)

C +Zo,J)*XMla,M)*(OBS(I)T1MEwrrEMp)
30 CONTINUE
32 CONTINUE

DO 42 M=I,NF
DO 40 J=I,NSTAT
CALL AEXP(BX(J),TEMP)
G(M+NSTArNV)=G(M+NSTAT*NV)

C +Z(I,J)*XMI(I,M)*(OBS(I).TIME(l)*TEMP)

40 CONTINUE
42 CONTINUE

100 CONTINUE
DO 200 I=l,N

200 G(I)=-G(I)
RErURN
END

SUBROUTINE MSTEPI(N,B,H,P0,IN,NEVALS,IPAIL,MON)

C This subroutine is a quasi-Newton algorithm (Nash, 1990) which
C maximizes the function Q2.
C Data input: N = dimension of vector B; B = alpha vector;

C IN = dinrnsion of the corresponding Hessian matrix;
C NEVALS = # of evaluations for the function Q2
C output: H = the Hessian matrix; P0 = maximum value;



C B optimal values of alpha vector.

IMPLICiT DOUBLE PRECISION(AH,O.Z)
INTEGER NOBS,NSTAT,Nx,NxI ,NV,NF,Nl,N2
DIMENSION OBS(100O),TIME(l00),XM(1008)XM1(l08)Z(l00

COMMON OBS,TIME,XM,XI,z,NoBs,NSTATNVNVINVNFNINZ

DIMENSION BQl), H(U4,N)

DIMENSION X(30), C(30), 0(30), T(30)
DOUBLE PRECISION K
INTEGER COUNT

DATA W,TOLIO.2,l .ODOD-4/,EpS/I .0130D-61
IF (N.LT.0.OR.N.GT.23) GO TO 160
IFN = N+l
IG I

RLIM=7.2DGa(I0.000es74OD0)

CALL FUNCrI(N,B,po)

IF(P0.GT.RLIM)GOTO18O

CALL GRADI(N,B,G)

C
C RESET HESSIAN
C

10 DO 301 = I,N
DO 203 = I,N

20 H(I,J) = 0.01)0
30 H(1,J) 1.0001)0

ll.ATT = IG
C
C TOP OF ITERATION
C

4000501 = l,N
X(I) = B(l)

50 C(I)=G(1)
C
C PINt) SEARCH DIRECTION T
C

DI 0.ODO

SN=0.000
DO 701 I,N

S 0.000
DO 601 I,N

60 5 = S.H(I,3)*G(J)

T(I) = S
SN SN+SS

70 DI DI-S*G(I)
C
C CHECK IF DOWNHILL
C

IF (Dl .LE.0.ODO) GO TO 10
C
C SEARCH ALONG T
C

SN = 0.500DOIDSQRT(SN)

K = DMINI(l.00000,SN)
80 COUNT 0

DO 901 = I,N
B(I) = X(I)+I(3T(I)
IF (DAES(B(I)-X(I)).LT.EPS) COUNT COUNT+I

90 CONTINUE

C
C CHECK IF CONVERGED
C

IF (COUNT.EQ.N) GO TO 150
CALL FUNCrI(N,B,p)
IFN IFN+l
IF (IFN.GE.NEVALS) GO TO 170
IF (P.LT.P0-Dl*KSTOL) GO TO 100
IC = WK
GO TO 80

C
C NEW LOWEST VALUE

C
100 P0 P

10 10+1
CALL GRADI(N,B,G)

IFN IFN+N
C
C UPDATE HESSIAN
C

Dl = 0.000
DO 1101 I,N

T(I) = K’T(I)



CQ) = Gm-CU)
110 Dl = Dl +TQ)*CQ)

C
C CHECK H +VE DEF ADDITION
C

IF (D1.LE.0.000) GO TO 10
02 = 0.000
DO 130 I = 1,N

S = 0.000
DO 1203 = I,N

120 S = S+H(I,J)*C(J)

X(1) = S
130 D2 = D2+S*C(I)

D2 = 1+D2ID1
DO 140 I = l,N

DO 140 J = 1,N
140 11(1,3) = Ho,J).cr(I)*X(J)+T(J)*Xa).D2*r(Iyrr(J))/D1

GO TO 40
150 WAIL = 0

C SUCCESSFUL CONCLUSION
REFURN

160 WAlL

C N OUT OF RANGE
REFURN

170 WAlL = 2
C TOO MANY FUNUFION EVALUATIONS

RErURN
180 WAlL = 3

C INITIAL POINT INFEASIBLE
RErURN

2005 FORMAT( 2X,3G16.4)
END

SUBROUTINE ESFEP(14TEMF1,NTEMF2,B,BI)

C This subroutine executes the E-step of the EM algorithm.
C Data input: NTEMFI = dimension of vector B;
C NTEMP2 = dimension of vector RI;
C R=hatavectoG
C El = alpha vector.
C Ouput: updated pesterior prohabifitisa, Z(I,J).
C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
INTEGER NOBS,NSTAT,NX,NX1,NV,NF,NI ,N2
DIMENSION OBS(l000),TIME(l000),XM(l000,8),XMI(l000,8),Z(l000,5)
COMMON OBS,TIME,XM,XMI,Z,NOBS,NSTAT,NX,NX1,NV,NF,N1,N2
DIMENSION B(NTEMFI),B1(NTEMF2),TEMF(5),BX(5),BX1(5),TEMPL(5)
INTEGER NTEMFI,NTEMF2
SMALL=-79.9D0
SMALI0= 10000000000.000
SMALLO= I .OD000/SMALLO
DO 100 I=I,NOBS
DO 12J=1,NEFAT-I
BX(J)=0.000
DO 10 M=l,NX
BX(J)=BX(J)+XM(I,M)*B(M +(Jl)*NX)

10 CONTINUE
12 CONTINUE

BXQ4STAT)=0.000
DO 18 J=1,NSTAT
BX1(J)=0.000

DO 16 M=I,NV
BXl(J)=BXl(J)+XMI(I,M)*Bl(M+(Jl)*NV)

16 CONTINUE
18 CONTINUE

H mF.EQ.0) GO TO 25
TEMPP=0.000
DO 22 M=l,NF
TEMPP=TEMFP+XMI(I,NV+M)*Bl(M+NSTAT*NV)

22 CONTINUE
DO 24J=l,NSTAT
BXI (J)=BX1(J)+TEMPP

24 CONTINUE
25 CONTINUE

CALL AEXP(BXI(l),TEMP(l))
TEMP1 =BX(l)+OBS(I)*BXI (l)-TIME(I)*TEMP(l)
DO 30 J=2,NSTAT
CALL AEXP(BXI(l),TEMP(J))
TEMFI2=(rEMF(s)-TEMP(s-l)flPIME(I)
TEMPl2=(BX(J)BX(J.l))+OBS(l)*(BXl(J)BXl (J.l)).TW4PI2



IF (rEMPI2.GT.0.000) TEMPI Bx(J)+OBSm*Bx1a)TIME(IyrTEMP(J)

30 CONTINUE
TEMP2=0.ODO
DO 40 J=l,NSrAT
TEMP(J)=BX(J)+OBS(I5BXI(J)-TIME(I)rEMP(J)
CALL AEXP((TEMP(J)-TEMP1),TEMPLQ))
TEMP2=TEMP2+TEMPL(J)

40 CONTINUE
DO 50 J=I,NSTAT
Z(I,J)=TEMPL(J)IrEMP2
IF (Z(I,J).LT.SMALLO) Z(I,3)=0.ODO

50 CONTINUE
100 CONTINUE

RErURN
END

SUBROIJFINE LLIKELY(NT,BT,F)
C .: .::: .:

C This subroutine computes the observed log likelihood value.

C Data Input: NT = total dintnsion of vector BT;
C BT = vector combining beta and alpha vectors.

C Output: F = lit observed log likelihood value at liT.

IMPLICif DOUBLE PRECISION(A-H,O-Z)
INTEGER NOBS,NSTAT,NX,NXI,NV,NF,NI,N2
DIMENSION OBS(l000),TIME(1000),XM(l000,8),XMI(l000,8),Z(ltXlo,5)
COMMON OBS,TIME,XM,XMI,Z,NOBS,NSTAT,NX,NXI,NV,NF,Nl,N2
INTEGER NT
DIMENSION B(30),Bl(30),BT(NT),BX(5),BX1(5),TEMP(5)
DO 1 J=I,Nl

I B(J)=BT(J)
DO 2 J=1,N2

2 BI(J)=BT(Nl+J)
F=0.ODO
DO 100 I=l,NOBS
DO 12J=l,NSTAT-I
BX(J)=0.ODO

DO 10 M=l,NX
10 BX(J)=EX(J)+XM(I,M)B(M+(JI)NX)
12 CONTINUE

BXQISTAT)=0.ODO
DO 18 J=l,NSTAT
BXI(J)=0.000
DO 16 M=l,NV
BXI (J)=BXI(J)+XMI(1,M)5B1(M+(J-l)*NV)

16 CONTINUE
18 CONTINUE

IF F4F.EQ.0) GO TO 25
TEMPP=0.000

DO 22 M=l,NF
TEMPP=TEMPP+XMI(I,NV+M)*Bl(M+NSTAT*NV)

22 CONTINUE
DO 24 J=1,NSTAT
BXl(J)=BXI(J)+TEMPP

24 CONTINUE
25 CONTINUE

CALL AEXP(BXI (l),TEMP(1))
TEMPI =BX(1)+OBS(I)*BXl(l)TIME(I)*rEMP(I)

TEMPPI =BX(l)
DO 30 J=2,NSTAT
IF (BX(J).GT.BX(J-l)) TEMPPI=BX(J)
CALL AEXP(BXI(J),TEMP(fl)
TEMPI2=(TEMP(J)-TEMP(J-I)flIME(I)
TEMPI2=(BX(J).BX(J1))+OBS(I)*(BXl(J)BXI (J-1))-TEMPI2
IF (TEMPI2.GT.0.ODO) TEMP1 =BX(J)+OBS(I)*BXl(J)TIME(IflEMPQ)

30 CONTINUE
TEMP2=0.ODO
TEMPP2=0.ODO
DO 40 J=l,NSTAT
CALL AEXP((BX(J)-TEMPPI),TEMPP2I)
TEMPP2=TEMPP2+TEMPP2I
TEMPI2=BX(J)+OBS(I)*BXI(J).TIME(IyrI’EMP(J)

TEMPI2=TEMPI2-TEMP1
CALL AEXP(TEMPI2JEMF22)
TEMP2=TEMP2+TEMP22

40 CONTINUE
F=F+TEMP1 +DLOG(TEMP2)-TEMPPI-DLOG(TEMPP2)

100 CONTINUE
F=-F
RETURN



END

SUBROUDNE NEWTON(N,B,H,PO,IH,NEVALS,IFAIL,MON,std)

C This suhrouthr is a quasi-Newton algorithm 4ash, 1990) which
C maximizes the observed log littlihood function.
C Data input: N = dimension of vector B;
C B = vector combining heta and alpha vectors;
C III = dimension of the corcesponding Hessian matrix;
C NEVALS =1/ of evaluations for fir observed log lilrlihocd function;
C output: H = fir Hessian matrix; 90 = maxinasu value;
C B = optimal values of alpha vector
C sal = approximate standard errom.

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
INTEGER NOBS,NSTAT,NX,NXI,NV,NF,Nl,N2 -

DIMENSION OBS(l000),TIME(l000),XM(l000,8),XM1(l000,8),Z(1000,5)
COMMON OBS,TIME,XM,XMI,Z,NOBS,NSTAT,NX,NXI,NV,NF,Nl,N2
DIMENSION BQ4), H(IH,N),std(30,30)
DIMENSION X(30), C(30), G(30), T(30)
DOUBLE PRECISION K
INTEGER COUNT,ib,n
DATA W,TOLIO.2,I .ODOD-41,EPS/l .ODOD-6/
IF (N.LT.0.OR.N.GT.23) GO TO 160
lEN = N+I
IG = I
RLIM=7.2D05(lO.ODO*574.ODO)

CALL LLIKELY(N,B,P0)
IF (P0.GT.RLIM) GOTO 180
CALL GLIKELYa4,B,G)

C
C RESET HESSIAN
C

10 DO 301 = I,N
DO 20 J = l,N

20 H(l,J) = 0.01)0
30 HØ,fl = I .ODODO

ILAST = IG
C
C TOP OF ITERATION
C

40 DO 501 = I,N
X(I) = B(I)

50 C(I)=G(I)
C
C FIND SEARCH DIRECTION T
C

Dl = 0.01)0
SN=0.ODO
DO701=l,N

S = 0.ODO
DO 60 J = l,N

60 S = S-H(I,.J)G(J)
T(I) = S
SN = SN+SS

70 Dl = Dl-55G(I)
C
C CHECK IF DOWNHILL
C

IF (Dl.LE.0.ODO) GO TO 10
C
C SEARCH ALONG T
C

SN = 0.SDODO/DSQRT(SN)
IC = DMINI(l.ODODO,SN)

80 COUNT =0
DO 901 = l,N

= xm÷K5Tm
IF (DABS(Bm-X(ID.LT.EPS) COUNT = COUNT+ I

90 CONTINUE
C
C CHECK IF CONVERGED
C

IF (COUNT.EQ.N) GO TO ISO
CALL LLIKELY(N,B,P)
IFN = IFN+l
IF (IFN.GE.NEVALS) GO TO 170
IF (P.LT.P0-D15K’TOL) GO TO 1(8)
K = W5K
GO TO 80



C
C NEW LOWEST VALUE
C

100 P0 = P
10 = 10+1
CALL GLIKELY(N,B,0)
IPN = WN+N

C
C UPDATE HESSIAN
C

Dl = 0.000
DO 1101 = 1,N

TQ) = K*T(I)

CQ) = OQ)-C(I)
110 Dl = D1+T(Iy5C(I)

C
C CHECK IF +VE DEP ADDITION
C

IF (Dl.LE.0.ODO) GO TO 10
D2 = 0.000
DO 130 I = I,N

S = 0.000
DO 120 J = 1,N

120 S = S+H(I,J)C(J)
X(I) = S

130 D2=D2+S*C(l)

02 = 1+02/01
DO1401=I,N

DO 140 J = I,N
140 H(I,J) = Ho,J)cJ)+T(J)ax(I)D2T(Iytcr(J))ml

GO TO 40
150 do 141 i=1,n

do 141 j=l,n
141 std(ij)=h(ij)

IFAIL. = 0
C SUCCESSFUL CONCLUSION

RETURN
160 WAIL 1

C N OUT OF RANGE
RETURN

170 WAIL = 2
C TOO MANY FUNCTION EVALUATIONS

RETURN
ISO WAIL = 3

C INITIAL POINT INFEASIBLE
RETURN

2005 FORMAT( 2X,3G16.4)
END

SUBROUTINE OLBCELYQ4,B,G)
C©°ve

C This subroutInc computes the first derivative of the observed log
C llktlihocd function.
C Data input: N = dinantaice of vector B;
C B = vector combining bets and alpha vectors;
C Output: G=thederivative of the function atE.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER NOBS,NSTAT,NX,NX1,NV,NF,NI,N2
DIMENSION OBS(l000),TIME(l000),xM(I000,I),xMI (1000 ,S),Z(l000,5)
COMMON OBS,TIME,XM,XMI,Z,NOBS,NSTAT,NX,NXI,NV,NF,Ni,N2
INTEGER N
DIMENSION G(30),B(N),BX(5),BX1(5),BTEMP(30),ATEMP(30)
DO I J=I,Nl

1 BTEMP(J)=B(J)
DO 2 J=I,N2

2 ATEMP(J)=B(Nl+J)
CALL ESTEP(Nl,N2,BTEMP,ATEMP)
DOS I=I,N

S 0(I)=0.000
DO 100 I=I,NOBS
DO t21=l,NSTAT-I
BX(J)=0.000
DO 10 M=l,NX

10 BX(J)=BX(J)+XM(I,M)5BTEMP(M+ (J-I)*NX)
12 CONTINUE

BX(NSTAT)=0.000
TPROB=0.000
DO 13 J=t,NSTAT
CALL AEXP(BX(J),TEMP1)
TFROB=TPROB+TEMpI



BX(J)=TEMPI
13 CONTINUE

DO 14J=1,NSTAT
14 BX(J)=BX(J)/TPROB

DO 183=1,NSTAT
BX1(J)=O.000

DO 16 M=1,NV
BX1(J)=BX1(J)+XM1(I,M)*ATEMP(M+(J1)*NV)

16 CONTINUE
11 CONTINUE

IF (NF.EQ.0) GO TO 22
TEMPP=0.ODO
DO 20 M=I,NF
TEMPP=TEMPP+XMI(I,NV+M)*ATEMP(M+NSTAT*NV)

20 CONTINUE
DO 21 J=1,NSTAT
BX1(J)=BXI(J)+TEMPP

21 CONTINUE
22 CONTINUE

DO 24 J=1,NSTAT-1
DO 23 M=1,NX
G(M+(J1)*NX)=G(M + (J1)*NX)+XM(I,M)*(Z(1,J)BX(T))

23 CONTINUE
24 CONTINUE

DO 30 3=1,NSTAT
CALL AEXP(BXI(J),TBATE)
I1X1(J)=TRATE

30 CONTINUE
DO 45 J=1,NSTAT
DO 42 M=1,NV
GQv1+(J-l)5NV+Nl)=G(M+Q-l)NV+N1)

C +XMl(l,M)*Z(l,J)*(OBS(I)BX1(J))

42 CONTINUE
45 CONTINUE

IF (NF.EQ.0) GO TO 60
DO 55 M=1,NF
DO 52 J=I,NSTAT
G(M+N1 +NSrA’r5NV)=o(M+N1 +NSTAT5NV)

C +XMI (I,M+NVfl(I,J)5(OBS(1)-BXI(J))
52 CONTINUE
55 CONTINUE
60 CONTINUE

100 CONTINUE
DO 200 I=1,N

200 G(1)=-G(I)
RETURN
END

SUBROUTINE GFIT(NTEMP1,NTEMP2,B,Bl,XSQR,FIT,RES,PA,PB,PC)
Ci4+ ,.++‘.+‘::4+ +:z:.:: .,: .

C This suhroutitr computes Pearson statistic, fitted values, Pearson
C residuals, overdispemion test statistics for each component.
C Data input: NTEMPI = dimession of vector B;
C NTEMP2 = dimension of vector El;
C B =brtavector; El =alphavector;
C Output: XSQR = Pearson statistic;
C FTT = fitted values including for each component;
C RES = Pearson residuals including for each component;
C PA, PB and PC are vectors containing tes A, B and C
C overdinperion teat statistics for each component.
Cssssssssssssssssuasussssssssssssssssssssssssssssssssssssssssss50555so

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
INTEGER NOBS,NSTAT,NX,NX1,NV,NF,Nl,N2
DIMENSION OBS(1000),TIME(l000),XM(l000,8),XMI(I000,I),Z(I000,5)
COMMON OBS,TIME,XM,XMI ,Z,NOBS,NSTAT,NX,NXl,NV,NP,Nl,N2
INTEGER NTEMP1,NTEMP2,NCOUNT(l0)
DIMENSION Bq’TEMPI),BIQqTEMP2),BX(5),BXI(5),FTT(I000,l2)
DIMENSION PA(10),TPA(10,2)
DIMENSION CFTT(lO),RES(l000,6),PB(l0),TPB(l0,2),PC(l0),TPC(l0,2)
DO2J=l,NSTAT
NCOUNT(J)=0
TPA(J,l)=0.ODO
TPA(J,2)=0.ODO
TPB(J,I)=0.ODO
TPB(J,2)=0.ODO
TPC(J,l)=0.ODO

2 CONTINUE
XSQR=0.0
DO 100 l=I,NOES
FIT(I,l)=OBS(I)



FIT(l,2)=0.000
DO 20 l=1,NSTAT-1
BX(J)=0.ODO
DO 10 M=1,NX

10 BX(J)=BX(J)+XM(I,M)5B(M+(J-1)5NX)
20 CONTINUE

BX(NSTAT)0.0D0
TEMPI =BX(1)
DO 21 J=2,NSTAT
IF (BX(J).GT.IIX(J-1)) TEMPI =BX(J)

21 CONTINUE
TEMPD=0.ODO
DO 25 J=1,NSTAT
CALL AEXP((BX(J)-TEMP1),TEMPI 1)
BX(J)=TEMPII
TEMPTh=TEMPD+TEMP1 1
BXI(J)=0.ODO
DO 22 M=1,NV
Bxl(J)=Bx1(J)÷xMl(I,M)*Bl(M÷q-1)Nv)

22 CONTINUE
if (nv.eq.0) go to 25
DO 23 M=1,NF
BXI(J)=BXI(J)+XMI(l,M+NV)5E1(M+NSTAT5NV)

23 CONTINUE
24 CALL AEXP(BXI(J),TEMP2)

EX1(J)=TEMP2*TIME(l)

FIT(i,2+J)=BX1(J)
CFIT(J)=BXIQ)

25 CONTINUE
DO 26 J=l,NSTAT
FrF(I,2+NSTAT+J)=BX(J)IrEMPD

FIT(I,2)=FIT(I,2)÷FITa,2÷J)5FIT(I,2+NSTAT÷J)
RES(l,l +J)=(FlT(l,1)FlT(I,2+J))s(Frr(I,2+J)*%0iD0D0))

26 CONTINUE
E2=0.000
DO 30 J=l,NSTAT
E2=E2+FIT(I,2+NSTAT+J)*(F1T(l,2+J)*K2.ODODO)

30 CONTINUE

E2=Frf(J,2)+E2-(FITq,2)(2.oD0D0))
RES(l,l)=(F1T(I,1)F1T(I,2))*(E2fl(0.5D0DO))

XSQR=XSQR+(RESa,l)ve(2.ODODO))
NUM= I
DO 40 J=I,NSTAT-l
IF (Z(l,J).GT.Z(I,J+l)) GO TO 40
NUM=J+1

40 CONTINUE

NCOUNTa4UM)=NCOUNT4UM)+ I
TPA(NUM,1)=TPA(NUM,1)+(OBS(l)-CF1T(NUMfletaODO-CFTra4UM)
TPB(NUM,l)=TPB(NUM,i)+(OES(i)-CF1T(NUM))2.0D0-OBS(l)
TPA4UM,2)=TPAQ4UM,2)+CFIT(NUM)tte2.0D0
TPB4UM,2)=TPA(NUM,2)
TPC(NUM,l)=TPC(NUM,l)+((OBS(I)-CFlT(NUM))2.0D0

C -OBSØ)/CFEf4UM)
100 CONTINUE

DO 150 J=I,NSTAT
PA(J) =TPA(J,l)/((2.0D0DcWI’PA(J,2)).5D0D0)
PB(J)=TPB(J,1)/((2.0D0D05TPB(J,2)y5.5DOD0)
PC(J)=TPC(J,l)/((DFLOAT(NCOUNT(J))n.ODODO)y’°v.SDODO

150 CONTINUE
RETURN
END

SUBROUTINE FLIKELY(NT,BT,F,DRES)
C
C Thia subroutine computes Ut deviance residuals.

C Data input: NT dimension of vector BT1
C BT = vector combining beta and alpba vectors;

C Output: ORES = deviance residuals;
C F = the observed log likelihood fsnctlon value at liT.
Cn0©anacccccnccccc

IMPLICIT DOUBLE PRECISION(A-I4,O-Z)
INTEGER NOBS,NSTAT,NX,NXl,NV,NF,Nl,N2
DIMENSION OBS(1000),TIME(l000),XM(l000,8),XMI(I000,8),Z(l000,5)
COMMON OBS,TIME,XM,XMI,Z,NOBS,NSTAT,NX,NX1,NV,NF,Nl,N2
INTEGER NT
DIMENSION B(30),Bl (30),BT(NT),BX(5),BX1(5),TEMP(5),DRES(l000)
DO I J=l,Nl

1 B(J)=BT(J)
DO 2 J=l,N2

2 lil(J)=BT041+J)
F=0.000

an



DO 100 I=l,NOBS
DO 12 J=1,NSTAT-I
BX(J)=0.ODO
DO 10 M=1,NX

10 BX(J)=BX(fl+XM(I,My°B(M+ (J.1)NX)
12 CONTINUE

BXO1STAT)=0.ODO
DO 18J=I,NSTAT
BXI(J)=0.ODO
DO 16 M=I,NV
BXI(J)=BX1(J)+XMIO,MrBl(M±(J.1)*NV)

16 CONTINUE
18 CONTINUE

IF (NF.EQ.0) GO To 25
TEMPP=0.ODO
DO 22 M=1,NF
TEMPP=TEMPP+XMI(1,NV+M)5B1(M+NSTAT5NV)

22 CONTINUE
DO 24]=I,NSTAT
BX1(J)=BX1(J)+TEMPP

24 CONTINUE
25 CONTINUE

CALL AEXP(BX1(1),TEMP(1))
TEMP1 =BX(1)+OBS(I)5BXl(l).TIME(1)8EMP(1)
TEMPPI=BX(1)
DO 30 J=2,NflAT
IF (BX(J).GT.BX(J-1)) TEMPPI =BX(J)
CALL AEXP(BXI(J),TEMP(J))
TEMP12=(rEMP(J).TEMP(J1fl*rIME(1)

TEMP12=(BXQ)-BX(3-1))+OBS(I)5(BXI(J)-BXI(J.I))-TEMP12

IF (TEMPI2.GT.0.ODO) TEMPI =.BX(J)+OBS(I)*BX1Q)TIME(I)*TEMP(J)

30 CONTINUE
TEMP2=0.ODO
TEMPP2=0.ODO

DO 40 J=1,NSTAT
CALL AEXP((BX(J)-TEMPPI),TEMPP2I)
TEMPP2=TEMPF2+TEMPP2I
TEMPI2=BX(J)+OBS(I)*BXI (J)-11ME(IflEMI%I)
TEMPI2=TEMP12-TEMPI
CALL AEXP(rEMPI2,TEMP22)
TEMP2=TEMP2+TEMP22

40 CONTINUE
DRES(1)=TEMPI +DLOO(TEMF2)-TEMPPI-DLOO(TEMPP2)
F=F+DRES(1)

100 CONTINUE
F=-F
REFURN
END

2. Fortran program for computing the maximum likelihood estimates of the mixed logistic regression model.

PROGRAM BINMIX
C
C This code find niaximosn IIlcnllhood estimates of tIre parameters for mixed *

C binomial regression model. Observed data should be assooisted with n(i) *

C whioh is the number of total trials related to observation i. *

C In this code we sflnw to choose common regression coefficients for *

C different oresponenta. NVAR = I/of different coeffecients *

C NCOM = 1/ of common coeffecients *

C If NCOM =0, this Is the most general mae. Note that this code does *

C not impose any restriction on mixing probabilities. *

C The progrsm gives the estimated standard errnrs from the quasi-Newton *

C apprcach. *

C ... --“ -- .++‘+-‘“.i.

C
IMPIJCfF DOUBLE PRECISION(A-H,O-Z)
INTEGER NOBS,NSTAT,NX,NXI,NVAR,NCOM
DIMENSION OBS0000),TIME(I000),xM(I000,g),xMl0000,8),w000,5)
COMMON OBS,TIME,XM,XM1,Z,NOBS,NSTAT,NX,NX1,NVAR,NCOM
DIMENSION BGUESS(30),OB(30)jI30,30),AGUESS(30),OA(30)
DIMENSION Fff(I000,13),RES(1000,8),Th(30),TDRES(l000),DRES(l000)
INTEGER Nl,N2,nII,D12,MON,NEVALS,IFML,NSTEP,NSTEPI,N,1H3
Integer stol,iter
dinresnion tcbs(l),uinse(I000),sms(I000,8),

o ocmi(1000,8),resl(I000),sign(I000)
dimension opar(3OXse(3O),w(I000)
OPEN( UNIT=l,FILE’Iostl’)
OPEN( UNIT2,FILE’residsaY)

p.. 3i4



open( unit=3,fiIe=’IiIres’)
open( unit=8,flIc’fitout’)

OPEN( UNIT7,FILE=’result’)
OPEN( UN1T9,FILE=’Idataout’)
READ(1,I00) NOBS,NSTAT,NX,NXI,NVAR,NCOM
write(*,100) nobs,nstat,nx,nxl,NVAR,NCOM

100 FORMAT(615)
NI =(NSTATI)*NX
N2=NSTAT*NVAR+NCOM

N=N1 +N2
READ(I,113) (OBS(1),TIME(1), I=I,NOBS)

110 FORMAT(FI0.5D0)
write(*,1 13) (obs(i),ti,ue(i),i=1,nobs)

do 111 11,nobs
READ (1,112) (XM(I,J),J=1,NX)
wrilc(*,112) (xm(ij)j=1,nx)

III continue
112 FORMAT(6G16.8)
113 FORMAT(2F10.500)

READ(1,l10) (BGIJESS(I),1=1,Nl)
write(9,I 10) (bguess(i),i=I,nl)

DO 115 I=1,NOBS
READ(1,112) (XMI(1,J),J1,NX1)
write (*,112) (xml(i,j)j=l,nxl)

115 CONTINUE
READ(1,1 10) (AGUESS(J),1=1,N2)
WRITE(9,1 10) (AGUESS(I),1= I ,N2)

do 118 i=l,nobs
tobs(i)=olw(i)

ttimeC)’timeO)
do 116 j=1,nx

116 txm(i,j)=xm(i,j)
do 117 j=1,nxl

117 bm1(i,j)xml(ij)
118 continue

NEVALS 1000
IH1N1
JIJ2=N2
IN3N
MON=1
TOL0.0D01
toIlO.ODOI
OBSINF=0.ODO
DEV=0.ODO
DO 120 1=l,NOBS

120 TDRES(I)=0.ODO
do 121 iI,nobs

121 w(i)=0.ODO
DO 150 1=I,NOBS
IF (OES(I).EQ.0.ODO) GO TO ISO
IF (OES(1).EQ.TIME(1)) GO TO 150
TDRES(1)=OBS(J)*DLOG(OBS(1))TIME(I)*DLOG(rIMEQ))

C +(flME(I)-OBS(I)yDLOG(TIME(1)-OBs(J))
DEV=DEV+TDRES(1)
TEMPSUM=0.ODO
NSTEP=INT(OBS(1))
NSTEP1 =INT(flME(I))
DO 142 J=NSTEP+1,NSTEPI
TEMPSUM=TEMPSUM+DLOG(DFLOAT(J))

142 CONTINUE
OBSINF=OBSINF+TEMPSUM
TEMPSUM=0.ODO

N8TEP=INT(TIME(1)-ORS(1))
DO 144 J=1,NSTEP
TEMPSUM=TEMPSUM+DLOG(DFLOAT(J))

144 CONTINUE
OBSINF=OBSINF+TEMPSUM

ISO CONTINUE
ntol=nobs
odev=dev
do 888 iter=0,ntol
prel=(10.0DOK10.0D0)

200 DO 202 I=1,NI
202 OB(I)=BGUESS(I)

DO 205 I=I,N2
205 OA(1)=AGUESS(I)

CALL ESTEP(N1,N2,EGUESS,AGUESS)
CALL MSThPI(N2,AGUESS,H,P,1112,NEVALS,IFAII,MON)
CALL MSTEP241,BGUESS,H,P,flh1,NEVALS,IFAIL,MON)
SSRI =0.ODO
SSR2=0.ODO

3r



00210 I=1,N1
SSRI =SSR1 +(0B(1)-EGUESS(1))2.0D0

210 CONTINUE
DO 220 I=1,N2

220 SSR2=(OA(I)-AGUESS(1))2.0D0+SSR2
1111 format(4x,2G16.8)

do 230 i=1,nl
230 tb(i)=bgiess(i)

do 240 i=1,n2
240 tb(i+nl)=agueeu(i)

call lll1y(n,tb,f)

tcmp=-f-pcel
if (temp.lt.toll) go to 368

prel-f
if (iter.gt.0) go to 363
10=-f
f=-f-inf
write(9,1l11) f,Rl
write(a,111l) f,10

363 IF ((SSRI.GT.TOL).OR.(SSR2.GT.TOL)) GO TO 200
368 call tn(n,tb,b,fueva1s,ifail,mcas)

if (lter.eq.0) call fllk1y(n,tb,f,dies)

if (lter.gLO) call lllAIy(n,tb,f)
do 375 i=I,nl

375 bguess(i)=tb(i)
do 376 i=l,n2

376 agueas(i)tb(i+nl)
DEV=2’(DEV-(-F))
if (iter.eq.0) tdev=dev
if (iter.gt.0) go to 600
10=-f
f-f-obainf
write(9,llil) f,10
call esteZbgueas,aguess)
call gflt(nl,n2,bguess,agueas,XSQR,fit,RES)
tempdflnut(nl +n2)
do 378 k1,nl
opar(k)bgueas(k)
=Qi(kk)(0.5D0))*temp

378 continue
do 379 k=1,n2
opar(k+nl)aguess(k)
se(k+n1)=(h(k+n1,k+nl)*(0.5D0))*temp

379 continue
wrlte(9,4444)

4444 format(4x,goodness of flt—XSQR, atal devianco’)
wrlte(9,7777) XSQR, DEV
do 380 i1,noba

C IF (OBS(1).EQ.0.000) GO TO 380
o IF (OBSW.EQ.TIME(I)) GO TO 380

TEMP=tobe(i)-FIT(1,3)
IF (rEMP.EQ.0.ODO) sign(I)=0.ODO
IF (1EMP.NE.0.0D0) sign(i)=TEMP/(ABS(IEMP))
DRES(I)=(2*(rDRES(I)0RES(I))).5D0
DRES(1)=sign(i)*DRES(l)

380 CONTINUE
do 385 i1,nobs
write(8,398) (FIT(I,J),J= 1,2+2*NSTAT+ 1)
WRITE(2,398) DRES(i), (RES(I,J),J =1,1 +NSTAT)

385 continue
398 format(6g18.7)

do 500 i1,nobs
writc(7,1 12) (z(i,j),j= I ,nstat)

500 continue
WRITE(9,5555)
WRITE(9,7777) (BGUESS(J),(h(i,i)°0.500),I= l,Nl)
write(°,7777) (bgueus(i),i= l,nl)
write(9,666
write(9,7777) (AGU SS(I),lh(i+nl,i+n1).5D0),l= I,N2)
write(°,7777) (aguess(i),i=l,n2)
go to 603

6(8) rcsl(iter)=tdev-dev
do 601 k=1,nl
w(itcr)=wtec)+aIs(bguess(k).opar(k))/se(k)
bguess(k)=opar(k)

601 continue
do 602 k=1,n2
w(iter)=w(iter)+aba(aguess(k)-q,ar(k+nI))/se(k+nI)
aguess(k)=cpar(k+nI)

602 cnat
if (itcr.eq.ntol) go to 889



603 noba=ntol-1
dev=odev-tdins(iter+ I)
if (iter.eq.0) go to 614
do 610 k1,iter
obs(k)tob(k)
t(kttime(k)
do 605 j=l,nx

605 =ncmQc)
do 606 j=I,nxl

606 uu1(kj)Uun1(kj)

610 continue
if (iter.eq.nobe) go to 888

614 do 620 k=iter+1,oobs
obs4k)=tobs(k+1)
timettime(k+1)
do 615 j1,nx

615 xm(k.j)txm(k+1j)
do 616 j1,nxl

616 xml(k.j)=txml(k+1j)
620 continue
888 continue
889 do 900 i=1,ntol

res1(i)=aigtai)*(res1(i)I*.5D0))

write(3,7778) dresQ),resQ,1),msl(i),w(i)
900 continue
5555 format(4x,beta-vecto?)
6666 format(4x,’alpha-vectoi’)
7777 format(4x,2g16.8)
7778 format(4x,4g16.8)
9999 STOP

END

SUBROUTINE FUNCr(N,B,p)

C This subroutinc computes the value of function QI in Chapter 3.
C Data input: N = dimension of vector B;
C B = beta vector;
C output: P the function value Q1(B).

IMPLICIT DOUBLE PRECISION (A.H,O-Z)
INTEGER NOBS,NSTAT,NX,NXI,NVAR,NCOM
DIMENSION OBS(l000),TIME(1090),XM(l000,8),XMI(l000,8),Z(l000,5)
COMMON OBS,TIME,XM,XMI,Z,NOBS,NSTAT,NX,NXI,NVAR,NCOM
INTEGER N
DIMENSION B(N),BX(5)
P=0.000

DO 100 1=l,NOBS
DO 8 J=l,NSTAT-l
BX(J)=0.ODO
DO 6 M=1,NX

6 BX(J)=BX(J)+XM(I,M)*B(M+(J.l)*NX)

8 CONTINUE
BX(NSTAT)=0.ODO
TEMPMAX=BX(l)
Conom

C Loop 20 finds the largest BX(J), TEMPMAX. *

C
DO 20J=2,NSTAT
IF (BX(J).UT.BX(J-l)) TEMPMAX=BX(J)

20 CONTINUE
TEMPSUM=0.ODO
DO 30 J=l,NSTAT
P=P+Z(I,J)*BX(J)

CALL AEXP((BX(J)-TEMPMAX),TEMP3)
TEMPSUM=TEMPSUM+TEMP3

30 CONTINUE
P=P-TEMPMAX-DLOG(TEMPSUM)

100 CONTINUE
P=-P
RETURN
END

SUBROUTINE GRAD(N,B,G)

C This subroutine computes the first derivative of QI (see eqn 3.18).
C Data input: N = dimension of vector B;
C B=betavector
C output:G=thederivativeofQlatB.
C’on°°°

IMPLICIT DOUBLE PRECISION (A-H,O.Z)
INTEGER NOBS,NSTAT,NX,NXI,NVAR,NCOM



DIMENSION OBS(I000),TIME(l(mo),XM(1000,8),XMI(I000,g),Zu000,5)
COMMON OBS,TIME,XM,XM1,Z,NOBS,N&rAT,Nx,Nxl,NVAR,NCOM
INTEGER N
DIMENSION 0(25),B(N),TEMPC2S),BX(S)
DOS I=I,N

S G(I)=0.0D0

DO 100 I=l,NOBS
DO 20 J’=l,NSTAT-I
BX(J)=0.000
DO 10 M=l,NX

10 BX(J)=BXQ)+XM(I,M)*B(M +(Jl)*NX)

20 CONTINUE

BXaISTAT)=0.ODO
TEMPMAX=BX(l)

C :. ::

C Loop 30 finds the largest 3)1(J), TEMPMAX.5
Cs*+_+._+—.++ :+——— ++‘+— . +4

DO 30 J=2,NSTAT
IF (BX(J).GLBX(J-l)) TEMPMAX=BX(J)

30 CONTINUE
TE1vWSUM=0.ODO
DO 40 J=1,NflAT
BX(J)=BX(J)-TEMPMAX
CALL AEXP(BXQ),TEMP(J))
TEMPSUM=TEMPSUM+TEMP(J)

40 CONTINUE
DO 60 J=I,NSTAT-1
TEMPPRO=TEMP(JyrEMPSUM
DO 50 M=l,NX
G(M+(Jl)*NX)=0(M +(J.l)aNX)+XM(I,M)*(z(1,J)TEMPPRO)

50 CONTINUE
60 CONTINUE

100 CONTINUE
DO 200 1=1,N

200 GQ)=-G(I)
RETURN
END

SUBROUTINE MSTEP2(N,B,H,PO,IH,NEVALS,IFAIL,MON)
C . :: -. ::

C ‘This sshrzusiir is a quasi-Newton algorithm (Nash, 19P0) which
C maximizes theflincticnQl.
C Data input: N = dinrttion of vector B; B = heta vector;
C 114 = dinresion of the Hessian matrix;
C NEVALS = 1/ of evalustimta for the ftasctisn QI;
C output: H = the Hessian matrix; P0 = nnxinaies valse;
C B = optimal values of heta vector.

+4,——”:., .‘,+——

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
INTEGER NOBS,NSTAT,NX,NXI ,NVAR,NCOM
DIMENSION OBS(I000),TIME(I000),XM(l000,I),XM I (l000,8),Z(l000,5)
COMMON OBS,TIME,XM,XMI,Z,NOBS,NSTAT,NX,NXI ,NVAR,NCOM
DIMENSION 3Q4), H(IH,N)
DIMENSION X(30), C(30), 0(30), T(30)
DOUBLE PRECISION K
INTEGER COUNT
DATA W,TOL/0,2,l .0000-41,EPSII .ODOD-6/
IF (N.LT.0.OR,N.OT.23) GO TO 160
IFN = N+I
10 =

RLIM=72*(l000074,0)

CALL FUNCT(N,B,P0)
IF(P0GT.RLIM)GOTO1SO
CALL GRADQ4,B,0)

C
C RESEF HESSIAN
C

10 DO 301 = I,N
DO 20 J = l,N

20 H(I,J) = 0,000
30 HQ,l) = 1.000

ILAST = 10
C

C TOP OF ITERATION
C

40 DO 501 = I,N
X(I) 3(1)

50 C(I)=0(I)
C
C FIND SEARCH DIRECrION T



C
Dl = 0.ODO
SN =0.000
00701 = 1,N

S 0.000
DO 603 l,N

60 S SH(1,J)*G(J)

T(1) S
SN = SN+SS

70 Dl = D1S*G(I)

C
C CHECK IF DOWNIULL
C

IF (D1.LE.0.ODO) GO TO 10
C
C SEARCH ALONG T
C

SN 0.SDO/DSQRT(SN)

K = DMINI(1.000DO,SN)
80 COUNT =0

00901 1,N
5(1) = X(I)+K9(I)

IF DABS(B(I)-X(I)).LT.EpS) COUNT COUNT+ I
90 CONTINUE

C
C CHECK IF CONVERGED
C

IF (COUNT.EQ.N) GO TO ISO
CALL FIJNCT(N,B,P)
IFN = IFN+I

IF (IFN.GE.NEVALS) GO TO 170
IF P.LT.DI*1QqOL) GO TO 100
K = WK
GO TO 80

C
C NEW LOWEST VALUE
C

100 P0 = P
IG = IG+1
CALL GRAD4,B,G)
IFN = IFN+N

C

C UPDATE HESSIAN
C

Dl = 0.000
DO 1101 = 1,N

T(1) = K*T(I)

C(I) = G(E)-C(1)
110 Dl =D1+T(I)V(I)

C
C CHECK IF +VE DEF ADDITION
C

IF (Dl .LE.0.00000) GO TO 10
02 =0.000
DO 130 1 = 1,N

S = 0.0130
DO 1203 = 1,N

120 S S+H(1,fl’C(/)

X(I) = S
130 02 = D2+SCQ)

D2 = 1+02/01
DO 1401 1,N

DO 140/ = 1,N
140 H(1,J) =

GO TO 40
150 WAIL 0

C SUCCESSFUL CONCLUSION
RETURN

160 IFAIL I
C N 0U OF RANGE

RETURN
170 WAIL = 2

C TOO MANY FUNCTION EVALUATIONS
RETURN

180 IFAIL = 3
C INITIAL POINT INFEASIBLE

RETURN
2005 FORMAT( 2X,3G164)

END



SUBROUTINE AEXP(X,F)
+ +: :4

C This subroutine computes a exponential function value.
C Data input: IC = real oumbeç
C output: F = exp(X).

IMPLICTT DOUBLE PRECISION (A-N,O-Z)
INTEGER NSTEP
TEMFI =ABS(X)
IF (TEMFI .GT.79S) GO TO SO
F=DEXP(X)
GO TO 200

SO IF(X.LT.-79.9)GOTOISO
IF (X.GT.lS0.ODO) X=lS0.ODO
F=l.000+X
NSTEP= I
FACTOR= I .ODO
TEMF1 =DFLOAT(NSTEP)
TEMP2==XITEMPI

100 IF (TEMF2.LT.I.ODO) GO TO 200
NSTEP=NSTEP+1
TEMF1 =DFLOAT(NSTEP)
FACTOR.=XITEMP1
TEMP2TEMP25FACTOR
F=F+TEMP2
GO TO 100

150 F=0.000
200 RETURN

END

SUBROUTINE FUNCTI(N,B,P)

C This subroutine computes the value of function Q2 in Chapter 3.
C Data input: N = dintntion of vector B;
C B alpha vector;

C cutput: P = tic function value Q2(B).

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INTEGER NOBS,NSTAT,NX,NX1,NVAR,NCOM
DIMENSION OBS(l000),TIME(I000),XM(l000,8),XMI(1000,8),Z(l000,5)
COMMON OBS,TIME,XM,XMI ,ZJ4OBS,NSTAT,NX,NXI,NVAR,NCOM
INTEGER N
DIMENSION B(N),BX(5)
P=0.0D0
TEMPI = 1 .ODO
DO 100 I=I,NOBS

H . —,--4-’ttttt-tt-,,: :‘ : +t,,±’ “‘:: -: 4

C Locp 8 computes BX(J) for variable coefficient part. *

Ct :. . H :

008 J=l,NSTAT
BX(J)=O.0150
DO6M=l,NVAR

6 BX(J)=BX(J)+XMI(I,M)B(M+(J-I)NVAR)
8 CONTINUE

IF (NCOM.EQ.O) GOTO II
DO l0J=l,NSTAT
DO 9 M=1,NCOM
BX(J)=BX(J)+XMI(I,NVAR+M)*B(NVAR*NSTAT+M)

9 CONTINUE
10 CONTINUE
11 CONTINUE

DO 20J=l,NSTAT
IF (BX(J).LT.0.000) GO TO IS
CALL AEXP(-BX(J),TEMP)
PP+Z(Ij)5((OBS(WTI?ctE(I))5BX(J)-TIMEQ)5DLOG(EEMPI+TEMP))
GO TO 20

IS CALL AEXP(BX(J),TEMP)
P=P+Z(t,J)(OBS(I)BX(J)-T1ME(I)DLOG(TEMPt +TEMP))

20 CONTINUE
100 CONTINUE

p=-p
RETURN
END

SUBROUTINE GRADI(N,B,G)

C This subroutine computes the first derivative of Q2 (tee eqo 3.19).
C Data input: N = dlnconioo of vector B;
C B=alphavedor;



C rutput:G=thedeeivativeofQ2atB.

IMPUCTr DOUBLE PRECISION (A-H,O-Z)
INTEGER NOBS,NSTAT,NX,NXI,NVAR,NCOM
DIMENSION OBS(1000),TIME(1000),XM(1000,8),XMI(l000,8),Z(I000,5)
COMMON OBS,TME,XM,XMI,Z,NOBS,NS’FAT,NX,NXl,NVAIçNCOM
INTEGER N
DIMENSION G(3o),Ba4),BX(5)
TEMP1 = I .ODO
DOS I=’l,N

S O(I)=0.ODO
DO 100 I=l,NOBS

,‘:I,—’

C Loop 20 osmputea BX(3) for variable ocefficient past. *

DO 20.I=l,NSTAT
BX(J)=0.0D0
DO 10 M=I,NVAR

10 BX(J)=BX(J)+XMI(l,M)*B(M+QI)*NVAR)

20 CONTINUE
IF (NCOM.EQ.0) GO TO 25
DO 243=I,NSTAT
DO 22 M=l,NCOM
BX(J)=BX(J)+xMla,NVAR+M)*B(NnA’PONvAR÷M)

22 CONTINUE
24 CONTINUE
25 CONTINUE

C
C Loop 40 computes tic gradient.
c 44-,++— ——

DO 40 J=I,NSTAT
IF (BX(J).GT.0.ODO) GO TO 35
CALL AEXP(BXQ),TEMP)
DO 30M=1,NVAR
G(M +(3l)*NVAR)=G(M +(JI)*NVAR)

C +Z(1,J)*XM1(1,M)*(OBS(I)TIME(IflEMPI(TEMpl +TEMP))
30 CONTINUE

GO TO 40
35 CALL AEXP(-BX(J),TEMP)

DO 36 Ml,NX1
G(M +(J1)*NVAR)=G(M +(J1)*NVAR)

C +Z(I,J)*XMI(1,M)*(OBS(I)TIME(I)/(TEMPl +TEMP))
36 CONTINUE
40 CONTINUE

IF (NCOM.EQ.0) GO TO 81
DO 80 M=1,NCOM
DO 60 J=l,NSTAT
IF (BX(J).GT.0.ODO) GO TOSS
CALL AEXP(BXQ),TEMP)
O(M +NVAR*NSTAT)=G(M+NVAR*NSTAT)

C +Z(lj)*XMI(I,M+NVAR)*(OBS(1)-TIMEQflEMP/cI’EMPI +TEMP))
GO TO 60

55 CALL AEXP(-BX(J),TEMP)
G(M +(J1)*NVAR)=G(M+(J1)*NVAR)

C +Z(I,J)*XMI(I,M+NVAR)*(OBS(1)TIME(I)/(rEMp1 +TEMP))
60 CONTINUE
80 CONTINUE
81 CONTINUE
100 CONTINUE

DO2001=I,N
200 G(fl=-G(1)

RETURN
END

SUBROUTINE MFrEP1a4,B,H,p0,IH,NEVALS,IFAIL,MON)
H.. .

C This aubroutine is a quasi-Newton algorithm (Nash, )9%) which
C maximizes the fanction Q2.
C Data input: N = dimension of vector B; B alpha vector;
C DI = dincanion of the corresponding Hessian matrix;
C NEVALS =// of evaluations for fan function Q2;
C output: H = liar Hessian matrix; P0 = maximian value;
C B = optimal values of alpha vector.
C5aos©ncanatnsussssss4o55n©essocenn*sssn.wsssossss.sns

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
INTEGER NOBS,NFrAT,NX,NXI,NVAJçNC0M
DIMENSION OBS(I000),TIME(i000),XM(1000,8),XM l(l000,8),Z(l000,S)
COMMON OBS,TIME,XM,XMI,z,NOBS,NSTAT,Nx,Nxl,NVaNCOM
DIMENSION B(N), H(IH,N)
DIMENSION X(30), C(30), 0(30), T(30)



DOUBLE PRECISION K
INTEGER COUNT
DATA W,T0LTh2,1 .000D-41,EPS)1 .ODOD-6/
IF (N.LT.0.OR.N.GT.23) GO TO 160
IFN = N+1
IG = 1
RLIM=7.2*(10.0D074.0)
CALL FUNCFI(N,B,P0)
IF(P0.GTRLIM)GOTOISO
CALL GRADI(N,B,G)

C
C RESET HESSIAN
C

10 DO 301 1,N
DO 20) = 1,N

20 HO,)) 0.0130
30 H(I,I) I.ODO

ILAST = 10
C
C TOP OF ITERATION
C

40 DO 501 = 1,N
XQ) = 0(1)

50 C(I)=’G(I)
C
C FIND SEARCH DIRECTION T
C

Dl = 0.000
SN=0.ODO
DO 701 I,N

S 0.000
DO 60) 1,N

60 S = S.H(I,J)*G(J)
T(1) = S
SN = SN+S*S

70 DI = D1-SG(1)
C
C CHECK IF DOWNHILL
C

IF (D1.LE.0.ODO) GO TO 10
C
C SEARCH ALONG T
C

SN = 0.500/DSQRT(SN)
K = DMINI(1.ODODO,SN)

80 COUNT 0
DO 901 = 1,N

BQ) X(1)+K*T(I)
IF (DABS(B(1)-X(I)).LT.EPS) COUNT = COUNT+1

90 CONTINUE
C
C CHECK IF CONVERGED
C

IF (COUNT.EQ.N) GO TO ISO
CALL FUNCFI(N,B,P)
IFN = LFN+1
IF (IFN.GE.NEVALS) GO TO 170
IF (PiT.P0.DI’KrOL) GO TO 100
K = WK
GO TO 80

C
C NEW LOWEST VALUE
C

100 P0 = P
IG 10+1
CALL GRADI(N,B,G)
IFN = IFN+N

C
C UPDATE HESSIAN
C

DI = 0.000
DO 110 I I,N

T(I) = KT(1)
C(1) = G(1)-C(I)

110 Dl =DI+T(I)*C(I)
C
C CHECK IF +VE DEE ADDITION
C

IF (D1.LE.0.00000) GO TO 10
02 = 0.0130
DO 1301 l,N



S = 0.000
DO 1203 = 1,N

120 S=S+Ha.JY5C(J)
XO) = S

130 02 = 02÷S*c(I)
D2 = I+D2/Dl
DO 1401 = 1,N

DO 1403 = I,N
140 H(l,J) = H.crwex(J)÷Tq)*xo).D2serorT(J))mI

GO TO 40
150 IFAIL = 0

C SUCCESSFUL CONCLUSION
RETURN

160 WAIL 1
C N OUT OF RANGE

RETURN
170 IFAIL = 2

C TOO MANY FUNCTION EVALUATIONS
RETURN

180 WAlL = 3
C INITIAL POINT E1FEASIBLE

RETURN
2005 FORMAT( 2X,3G16.4)

END

SUBROUTINE ESTEPQ4I,N2,B,B1)
C• :. tt**-ttrt-rr’-rt

C This subroutine executes the E-step of the EM algoritlun.
C Data input: NTEMFI = dimension of vectoe B;
C NTEMF2 dimension of vector Bi;
C Bbetavectoe
C El = alpha vector.
C Ouput: updated posterior probabilities, Z(l,J).

IMPLICIT DOUBLE PRECISION (A-H,O.Z)
INTEGER NOBS,NSTAT,NX,NX I ,NVAR,NCOM
DIMENSION OES(l000),TIME(1000),XM(I000,8),XMI (l000,8),Z(1000,5)
COMMON OBS,TIME,XM,XMI ,Z,NOBS,NSTAT,NX,NXI,NVAR,NCOM
INTEGER Nl,N2
DIMENSION B(NI ),Bl(N2),TEMP(5),EX(5),EXI(5)
SMALLO= l0000000000.000
SMALLO= 1 .ODOISMALLO
ONE=l.ODO
DO 100 1=l,NOBS

C Loop 12 computes BX(J). *

DO 12 J=1,NETAT-I
EX(J)=0.000
DO 10 M=I,NX
BX(J)=BX(I)+XM(I,M)5B(M+(3.l)*NX)

10 CONTINUE
12 CONTINUE

BXQ4STAt=0.ODO

C Loop 21 computes BXI(J) foe variable coefficient part. *

-. .. -,

DO 21 J=I,NSrAT
EXI(J)=0.ODO
DO 20 M=1,NVAR

20 EXI(J)=BXI(J)+XMl(1,M)*El(M+(JI)*NVAR)
21 CONTINUE

IF (NCOM.EQ.0) GO TO 24
DO 23 J=I,NSTAT
DO 22 M=l,NCOM
BXI(J)=BXI(J)+XMI(I,M+NVAR)*B1(NSTAT*NVAR+M)

22 CONTINUE
23 CONTINUE
24 CONTINUE
C4-4=—° .1

C Loop 30 linda the largest item in exponential functioes. *

...,....:.::,,, I,

IF (BXl(I).GT.0.000) GO TO 25
CALL AEXP(EX1(l),TEMPI)
TEMP(l )=BX(1) +OBS(I)*BXI(I)-TIME(I)5DLOG(ONE+TEMPI)
GO TO 26

25 CALL AEXP(-EXI(l),TEMPI)
TEMP(l)=EX(l)+(OBS(1).TIME(I))*BXI(l).TIME(l)*DLOG(ONE+TEMF1)

26 TEMPMAX=TEMP(1)
DO 34 J=2,NSTAT



IF (BX1(J).GT.0.0D0) GO TO 32
CALL AEKP(BXI(J),TEMP1)
TEMP(J)=’BX(J)+OBS(I)*BXI (J)TlMEm*DLOG(ONE+TEMPl)
GO TO 33

32 CALL AEXP(-BXI(J),TEMPI)
TEMP(J)=BX(J)+(OBST1ME(1))*BX1(J)TIME(l)*DLOG(ONE+TEMP1)

33 IF (rEMP(J).GT.TEMP(J-1)) TEMPMAX =TEMP(J)
34 CONTINUE

C Loops 40 and 50 compute Z(I,J) values. *

TEMPSUM’=o.OW
DO 40J=1,NSTAT
TEMPP’=TEMP(J)-TEMPMAX
CALL AEXP(TEMPP,TEMP(J))
TEMPSUM=TEMPSUM+TEMP(J)

40 CONTINUE
DO 50 J=t,NSTAT
Z(I,J)=’TEMP(J)fI’EMPSUM
IF (Z(I,J).LT.SMALLO) Z(I,J)=’O.ODO

50 CONTINUE
100 CONTINUE

RETURN
END

SUBROUTINE GFff(Nt,N2,B,BI,XSQR,F1T,RES)

C This aubroutiit computes Pearson statistic, fitted values,l5earscss
C residuals.
C Data input: Ni = dhneeaicn of vector B;
C N2 dimension of vector Bi;
C B’=betavector; Dl =alphaveotor;
C Output: XSQR = Pearson statistic;
C FIT = fitted values including for each ctanpomnt
C RES = Pearson residuals including for each ccinpcarnt;

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
INTEGER NOB ,NSTAT,NX,NX1,NVAR,NCOM
DIMENSION OBS(1000),TIME(I000),XM(t000,8),XMI (t,8),Z(l000,5)
COMMON OBS,TIME,XM,XM1,Z,NOBS,NSTAT,NX,NXI ,NVAR,NCOM
INTEGER Nl,N2
DIMENSION B(N I),Bl(N2),BX(5),BXt(5),TEMP(5)
DIMENSION FIT(tOtX),13),RES(l000,8)
ONE=t.000
XSQR=0.ODO
DO 100 I=I,NOBS
Ffl’(I,I + t)=OBS(l)
Ff1’ 0,2+ I)=0.ODO

Csscsccscancsaasassscscsassc

C Loop 12 computes BX(J).

DO 123=I,NSTAT-1
BX(J)=0.ODO
DO 10 M=I,NX
BX(J)=BX(fl+XM(I,M)sB(M+(J1)*NX)

10 CONTINUE
12 CONTINUE

BX(I1STAT)=0.ODO
TEMP1 =BX(1)
DO 14 J=2,NSTAT
iF (BX(J).GT.BX(J-l)) TEMP1 =BX(I)

14 CONTINUE
TEMPD=0.ODO
DO 161=1,NSTAT
CALL AEXP((BX(J)-TEMP1),TEMP1 1)
BX(J)=TEMPI 1
TEMPD=TEMPD+TEMP1 I

16 CONTINUE
DO 18J=I,NSTAT
Fff(1,2+NSTAT+J + 1)=BX(J)IFEMPD

18 CONTINUE

C Loop 21 computes DXI (I) for variable coefficient pact. *

DO 21 1=I,NSTAT
DX 1(J) =0.ODO
DO 20 M=I,NVAR

20 BXt(J)=BXt(i)+XMt(I,M)*Bt(M+(JI)*NVAR)
21 CONTINUE

IF (NCOM.EQ.0) GO TO 24
DO 23 J=I,NSTAT



DO 22 M=l,NCOM
BX1(J)=BXI(J)+XMI(I,M+NVAR)*Bl(NSTAT*NVAR+M)

22 CONTINUE
23 CONTINUE
24 CONTINUE

C
El =0.ODO
DO 40 J=l,NSTAT
IF (BXIQ).LT.0.ODO) GO TO 35
CALL AEXP(-BX1(J),TEMPP)
TEMP(J)ONE/(ONE+TEMPP)
TEMP(J)=TIME(lflEMP(3)*(ONETEMP(J))

El =El +FIT(I,2+NSTAT+J+IflEMP(J)
FIT(l,2+J + 1)=TIME(I)/(ONE+TEMPP)
GO TO 40

35 CALL AEXP(BXI(J),TEMPP)
TEMP(J)=TEMPP/(ONE+TEMPP)
TEMP(J)=TIME(Iyel’EMP(J)*(ONETEMP(l))

El =El +FITa,2+NSTAT+J÷IflEMpGT)
F1T(l,2+J + I)=TIMEcJrEMPP/(ONE+TEMPP)

40 CONTINUE
DO 42 i=I,NSTAT
F1T(l,2+l)=F1T(I,2+l)+F1T(I,2+NSTAT+i+l)5Frr(I,2+J+l)
RES(l,l +J)=(FIT(I,l +l)-FlTQ,2+J+l)r(I’EMP(J)(-0.5D0))

42 CONTINUE
E2=0.ODO
DO 50 J=t,NSTAT
E2=E2+F1T(l,2+NSTAT+J+ t)*(FIT(I,2+J+l)*5(2.000))

50 CONTINUE
E2=EI +E2-(FIT(I,2+ l)(2.0D0))
FIT(I,I)E2
RES(I,t)=(FIT(i,1 + l)FlT(I,2+l))*(E25©s(0.5D0))
XSQR=XSQR+(RES(I,l)an(2.000))

100 CONTINUE
REFUEN
END

SUBROUTINE GLIKELfl4,TB,G)
C
C This subroutine computes the first derivative of the observed log
C likelihood flusotion.
C Data input: N = dinsonsion of vector B;
C B = vector combining beta and aipha vectors;
C Output: G = the derivative of the function at B.
C

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
INTEGER NOBS,NSTAT,NX,NXI,NVAR,NCOM
DIMENSION OBS(I000),TIME(l000),XM(1000,8),XMI(l000,8),

C Z(l000,5)
COMMON OBS,TIME,XM,XMI,Z,NOBS,NSTAT,NX,NXI,NVAR,NCOM
INTEGER N,Nl,N2
DIMENSION TB(N),B(25),BI(25),BX(5),BXI(5),TEMP(5),COM(5)

C ,G(25),P(5)

DO 1 l=l,N
1 G(I)=0.000

Ni =(NSTATI)*NX
N2=NSTAT*NVAR+NCOM

DO 2 I=l,Nl
2 B(I)TB(I)

DO 3 I=I,N2
3 Bl(I)TB(Nl+l)

ONE=l.ODO
DO 100 I=l,NOBS

C
C Loop2ooomputesliX(J). *

C
DO 20 J=I,NSTAT-l
BX(J)=0.ODO
DO 1OM=l,NX

10 BX(J)=BX(J)+XM(I,M)*B(M+(Jl)*NX)

20 CONTINUE
BX(NSTAT)=0.000
DO 22J=l,NSTAT
BXI(J)=0.ODO

Ca4----4

C Loop 21 computes BX1(J) for variable coefficient part. *

C
DO 21 M=l,NVAR
BXI(J)=BXI (J)+XM1(I,M)*B1(M+Q.l)*NVAR)

21 CONTINUE

çr



22 CONTINUE
IF (NCOM.EQ.0) GO TO 25
DO 24 J=I,NSTAT
0023 M=I,NCOM
BX1(J)=BXI (J)+XMI(I,M+NVAR)*B1(M+NSTAT*NVAR)

23 CONTINUE
24 CONTINUE
25 CONTINUE
C:::::-:::::::::::::::-::::.:

PMAX=BX(1)
DO 26J=2,NSTAT
IF (BX(J).GT.BX(J-1)) PMAX=BX(J)

26 CONTINUE
PSUM=0.ODO

DO283=l,NSTAT

CALL AEXP(BX(3),P(J))
PSUM=PSUM+P(I)

28 CONTINUE

C CALCULATE MIXING PROBABILiTIES Pj *

0029 J=1,NSTAT
29 P(J)=P(J)IPSUM

C —

C CALCULATE BINOMIAL PARAMErERS THETAJ *

DO 40 J=1,NSTAT
IF (BXI(J).LT.0.000) GO TO 35
CALL AEXP(-BXI (J),TEMPP)
TEMp(J)=Bx(J)+(oBswTIME(u)*BXl(J)TlMEm*DLOG(oNE+TEMpp)
BXI (J)= I .ODO/(l .000+TEMPP)
GO TO 40

35 CALL AEXP(BXI(J),TEMPP)
TEMP(J)=BX(J)+OBS(l)*BXI (J)-TlME(I)DLOG(ONE+TEMPP)
BXI(J)=TEMPP/(l .000+TEMPP)

40 CONTINUE
TEMPMAX=TEMP(1)
0045 J=2,NSTAT
IF (TEMP(J).GT.TEMP(J-1)) TEMPMAX=TEMP(J)

45 CONTINUE
TEMPSUM=0.000
DO 48 J=1,NSTAT
TEMPP=TEMP(J)-TEMPMAX
CALL AEXP(FEMPP,COM(J))
TEMPSUM=TEMPSUM+COM(J)

48 CONTINUE
DO SO J=1,NSTAT
COM(J)=COM(J)fI’EMPSUM

50 CONTINUE
0070 J=l,NSTAT-I
TEMPP=COM(J)-P(J)
0065 M=l,NX
G(M +NX*(J1))=G(M +NX*(J1))+XM(1,MflEMPP

65 CONTINUE
70 CONTINUE

TEMPSUM =0.000
0080 J=I,NSTAT
TEMPP=COM(J)*(OBS(I)TIME(l)*BXl(J))

TEMPSUM=TEMPSUM +TEMPP
0075 M=l,NVAR
G(M+Nl +NVAR*Ql))=GQol+Nl +NVAR*(Jt))+TEMPP*XMl(I,M)

75 CONTINUE
80 CONTINUE

IF .lCOM.EQ.0) GO TO 100
0090 M=1,NCOM
G(M +N1 +NVAR*NSTAT)=G(M +N1 +NVAR*NSTAT)+

C TEMPSUM*XMI(l,M+NVAR)

90 CONTINUE
100 CONTINUE

do 200 i=t,n
200 g(i)=-g(i)

RETURN
END

SUBROIJfINE LLIICELY4,TB,F)
Cas 000

C This subroutine computes the observed log ilbelihood value.
C Data input: N = total dinrnsion of vector BT;
C TB = vector combining beta and alpha vectors.



C Output: F = Ike observed log likelihood value at liT.

IMPLICiT DOUBLE PRECISION(A-I4,O-Z)

INTEGER NOBS,Nsi’AT,NX,NXi,NVAR,NCOM

DIMENSION OBS(i000),TIME(l000),XM(1000,8),XM1 (1000,8),

C Z(l000,5)

COMMON OBS,TIME,XM,XM1,Z,NOBS,NSTAT,NX,NX i,NVAR,NCOM

INTEGER Ni,N2

DIMENSION TBQ4),B(25),Bl(25),BX(5),BX1 (5),TEMP(5)

Ni =alSTAT.i)*NX
N2=NSTAT*NVAR+NCOM

DO 1 i=i,Nl
I B(I)=TB(I)

DO 2 I=i,N2

2 Bi(i)=TBO’Tl+I)
F=0.ODO
ONE= I .ODO
DO 100 I=i,NOBS

C
C Loop 20 romputes BX(J). *

DO 20 J=l,NSTAT-i
BX(J)=0.ODO
DO 10 M=i,NX

10 BX(J)=BX(J)+XM(i,M)*B(M+(Jl)*NX)

20 CONTINUE
BX(NSTAT)=0.ODO
DO 223=i,NSTAT
BX1(J)=0.ODO

C Loop 21 computea BXI(J) for variable oceflicient part, a

C
DO 21 M=i,NVAR
BXi(J)=BXi(J)+XMl(I,M)*Bi(M+(Ji)*NVAR)

21 CONTINUE
22 CONTINUE

IF Q4COM.EQ.0) GO TO 25
DO 24 J=l,NSTAT
DO 23 M=l,NCOM
BXI(J)=BXI(J)+XM1(l,M+NVAR)*Bl(M +N&FAT*NVAR)

23 CONTINUE
24 CONTINUE
25 CONTINUE

C H. :::..::::::. :::::..:H::t4444: *44

PMAX=BX(i)
DO 26 J=2,NSTAT
IF (BXQ).OT.BX(J-I)) PMAX=BX(J)

26 CONTINUE
PSUM=0.ODO
DO 28 ,t=l,NSTAT
bx)j)=bxØ-pmn
CALL AEXP(BX(J),TEMPP)
PSUM=PSUM+TEMPP

28 CONTINUE
F=F-DLOG(PSUM)

Cttt’
DO 40 J=I,NSTAT
IF (BX1(J).LT.0.ODO) GO TO 35
CALL AEXP(-BX1(J),TEMPP)
TEMP(J)=BX(J)+(OBS(I)TiME(ID*BXi (J).TIME(I)*DLOG(ONE+TEMPP)

GO TO 40
35 CALL AEXP(BX1(J),TEMPP)

TEMP(J)=BX(J)+OBS(I)*BXi(J)TIME(i)*DLOG(ONE±TEMPP)

40 CONTINUE
TEMPMAX=TEMP(i)
DO 45 J=2,NSTAT
IF (TEMP(J).GT.TEMP(J-i)) TEMPMAX=TEMP(J)

45 CONTINUE
TEMFSUM =0.ODO
DO 48 J=l,NSTAT
TEMPP=TEMP(J)-TEMPMAX
CALL AEXP(TEMPP,TEMI’2)
TEMPSUM=TEMPSUM+TEMP2

48 CONTINUE
F=F+TEMPMAX +DLOG(FEMPSUM)

100 CONTINUE
f=-f
RETURN

END

dr’9



SUBROUTINE QNEWrON(N,B,H,P0,NEVALS,IFAIL,MON)
C—-.
C This subroutine is a quasi-Newton algorithm 4ash, 1990) which
C maximizes the observed log lihalihood function.
C Data input: N = dinantsion of vector B;
C B = vector combining beta and alpha vectors;
C 111 = dimansion of the corresponding Hessian matrix;
C NEVALS 11 of evaluations for the observed log likelihood function;
C output: H = the Hessian matrix; 90 = maximum value;
C B = optimal values of alpha vector
(sasst—t—t— . 4:

IMPLIC1T DOUBLE PRECISION(A-H,O-Z)
INTEGER NOBS,NS1’AT,NX,NXI,NVAR,NCOM
DIMENSION OBS(l000),TIME(l000),XM(l000,8),XMI(l000,8),

C Z(l000,5)
COMMON OBS,TIME,XM,XMI,Z,NOBS,NSTAT,NX,NX1,NVAR,NCOM
DIMENSION B4), H(30,30)
DIMENSION X(30), C(30), G(30), T(30)
DOUBLE PRECISION K
INTEGER COUNT,IH,N
DATA W,TOL/0.2,l.ODOD-4/,EPSI1 .000D-61
ih=n
IF (N.LT.0.OR.N.GT.23) GO TO 160
IFN = N+l
lG =

RLIM=7.2D05(l0.0D074.0D0)
CALL LLIKELY(N,BP0)
IF(P0.GT.RLIM)GOTOI8O
CALL GLlKELY(NB,G)

C
C RESEF HESSIAN
C

10 DO 301 = l,N
DO 20 J = l,N

20 H(I,J) = 0.01)0
30 H(l,l) I.ODO

LAST = 10
C
C TOP OF ITERATION
C

40 DO 501 I,N
X(l) = B(I)

50 C(I)=G(1)
C
C FIND SEARCH DlRECION T
C

Dl = 0.000
SN =0.000
DO 701 = I,N

S = 0.000
DO 60 J = l,N

60 S = SH(I,J)*G(J)

T(l) = S
SN = SN+S*S

70 Dl = Dl.S*GQ)

C
C CHECK IF DOWNHILL
C

IF (DI.LE.0.ODO) GO TO 10
C
C SEARCH ALONG T
C

SN = 0.5D0/DSQRT(SN)
K = DMIN1(l.000DO,SN)

80 COUNT =0
DO 901 = l,N

B(l) = X(l)+K*T(I)

IF (DABS(B(I).X(I)).LT.EPS) COUNT = COUNT+l
90 CONTINUE

C
C CHECK IF CONVERGED
C

IF (COUNT.EQ.N) GO TO ISO
CALL LLIKELYa4,B,P)
IFN IFN+l
IF (IFN.GE.NEVALS) GO TO 170
IF (P.LT.P0Dl*K*TOL) GO TO 100
K = W*K

GO TO 80
C
C NEW LOWEST VALUE



C
100 P0 = P

10 = 10+1
CALL GLIKELYa4,B,G)
WN = IFN+N

C
C UPDATE HESSIAN
C

Dl = 0.000
DO 1101 = 1,N

TO) = K5TQ)
C(I) = 0(I)-C(I)

110 Dl =D1+T(I)*CW

C
C CHECK W +VE DEF ADDiTION
C

W (D1.LE.0.OD000) GO TO 10
D2 = 0.000
DO 130 I = 1,N

S = 0.000
DO 1203 = 1,N

120 S = S+H(I,J)*C(J)

XQ) = S
130 D2=D2+S*C(1)

02 = 1+02/01
DO 140 I = I,N

DO 140 J = I,N
140 H(1,J) = H(I,J).(r(l)*x(J)+T(J)*xO).D29(1Yer(J))/Dl

GO TO 40
150 IFAIL =0

C SUCCESSFUL CONCLUSION
RETURN

160 IFAIL = I
C N 01fF OF RANGE

RETURN
170 WAIL = 2

C TOO MANY FUNCTION EVALUATIONS
RETURN

180 WAIL = 3
C INITIAL POINT INFEASIBLE

RETURN
2(8)5 FORMAT( 2X,3G16.4)

END

SUBROUTINE FLIKELY(N,TB,F,DRES)
Csese°°’40

C This subroutine computes the deviance residuals.
C Data input: N = dimension of vector BTI;
C TB = vector combining beta and alpha vectors;
C Output: ORES = deviance residuals;
C F = the observed log likelihood function value at BT.
C —.

IMPUC1T DOUBLE PREC1SION(A-E,O-Z)
INTEGER NOBS,NSTAT,NX,NXI,NVAR,NCOM

DIMENSION OBS(l000),TIME(l000),XM(I000,8),XMI (1000,8),
C Z(I000,5)
COMMON OBS,TIME,XM,XM1,Z,NOBS,NSTAT,NX,NX1,NVAR,NCOM
INTEGER NI,N2
DIMENSION TB(N),B(25),BI (25),BX(S),BXI(5),TEMP(5),DRES(l000)
NI =(NSTAT-I)5NX
N2=NSTATvNVAR+NCOM

DO I l=l,Nl
1 B(I)=TB(I)

DO 2 l=I,N2
2 BlO)=TBIN1+I)

F=0.000
ONE=l.ODO
DO 100 l=I,NOES

C Loop 20 computes BX(J). *

C
DO 20 J=l,NETAT-l
BX(J)=0.ODO
DO 1OM=l,NX

10 BX(J)=BX(J)+XM(l,M)*B(M+(Jl)*NX)

20 CONTINUE

BXa4STAT)=0.ODO
DO 22 J=l,NSTAT
BXI(J)=0.ODO

C
C Loop 21 computes BXI(J) for variable coefficient part. *



DO 21 M=1,NVAR
BX1(J)=BX1(J)+XM1(I,M)*B1(M+(iI)*NVAR)

21 CONTINUE
22 CONTINUE

IF (NCOM.EQ.0) GO TO 25
DO 24 J=l,NSTAT
DO 23 M=l,NCOM
BXI(J)=BX1(J)+XMI(I,M+NVAR)*B1(M+NSrADWNVAR)

23 CONTINUE
24 CONTINUE
25 CONTINUE

PMAX=BX(l)
DO 26 J=2,NSTAT
IF (EX(J).GT.EX(J-l)) PMAX=EX(J)

26 CONTINUE
PSUM=0.ODO
DO 28 J=l,NSTAT

bx(j)bxW-pmax
CALL AEXP(BX(J),TEMPP)
PSUM=PSUM+TEMPP

28 CONTINUE
DRESW=-DLOG(PSUM)

DO 40J=I,NflAT
IF (BX1(J).LT.0.ODO) GO TO 35
CALL AEXP(-BXI(J),TEMPP)
TEMP(J)=BX(J)+(OB)T1MEW)*BXl(J)TIME(1)*DLOG(ONE+TEMPP)

GO TO 40
35 CALL AEXP(BXI(J),TEMPP)

TEMP(J)=EX(3)+OES(I)*BXl(J)TIME(I)*DLOO(ONE+TEMPP)

40 CONTINUE
TEMPMAX=TEMP(1)
DO 45 J=2,NSTAT
IF (FEMP(J).GTJE?vIP(J-l)) TEMPMAX TEMP(J)

45 CONTINUE
TEMPSUM=0.ODO
DO 48 J=l,NSTAT
TEMPP=TEMP(J)-TEMPMAX
CALL AEXP(TEMPP,TEMP2)
TEMPSUM=TEMPSUM +TEMP2

48 CONTINUE
DRES(1)=DRES(I)+TEMPMAX+DLOG(FEMPSUM)
F=F+DRES(1)

100 CONTINUE
f=-f
RETURN
END




