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ABSTRACT 

Natural killer (NK) cells and lymphokine activated NK (LAK) cells, contribute to the elimination 

and growth control of malignant and virally infected cells. The binding of killer cells to their 

targets is a prerequisite for the lysis of malignant cells by NK cells, which utilize cell adhesion 

molecules (CAMs) to establish initial attachment to target cells. This thesis examined the 

possibility that defective expression of CAMs on some leukemic cells may be the primary cause 

of resistance to NK cell-mediated killing. To elucidate the mechanisms by which some leukemic 

cells are resistant to NK cytotoxicity, a model system was established with the human NK cell 

line NK-92, and the NK resistant leukemic cell line SR-91 which were established and 

characterized. SR-91 cells express very low levels of ICAM-1 and they failed to bind to NK-92 

cells. NK-92 is highly cytotoxic and kills virtually all leukemic cell lines with the only exception 

being SR-91. Pre-treatment of SR-91 cells with TNF-a or IFN-y, two cytokines known to 

upregulate ICAM-1 expression, increased both ICAM-1 expression on SR-91 cells and binding 

to NK-92 cells. However, only TNF-a treated SR-91 cells became sensitive to killing by NK-92 

cells. The increased binding to NK-92 cells and sensitivity to their killing were abrogated by 

anti-LFA-1 antibody or a combination of antibodies against ICAM-1, ICAM-2 and ICAM-3, 

indicating that LFA-1 interaction with the three ICAMs is essential for effector-target cell 

binding, which is a prerequisite for subsequent target cell lysis. These results underline the 

importance of ICAM-1 expression on the target cell SR-91 to allow adequate conjugate 

formation. However, this is, on its own, insufficient to allow target cell lysis by NK-92 cells. 

TNF-a, but not IFN-y, also induced the activation of LFA-1, CD44 and pi integrins on SR-91 

cells. 
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Based on these observations, it was hypothesized that the differential effect of TNF-oc and IFN-y 

could be due to the TNF-oc activation of LFA-1 and CD44 on the surface of SR-91 cells that bind 

to their counter-receptors and activate NK-92 cells. Preliminary experiments showed that 

engagement of ICAM-3 and CD44 on NK-92 cells induced tyrosine phosphorylation of several 

proteins including the tyrosine kinase p56"*. Further confirmation of these results would not only 

suggest a role for these adhesion molecules in signal transduction events in NK-92 cells, but 

perhaps implicates the protein tyrosine kinase p56fc* as an early intermediate in the subsequent 

lysis of SR-91 cells. These data suggest that NK resistance of leukemic cells can be overcome by 

some cytokines. Although increased conjugate formation is induced by both TNF-a and PEN-v, 

only TNF-a functionally activates LFA-1 and CD44 on target cells that may, upon interaction 

with counter-receptors on NK-92 cells induce signal transduction events in the latter that lead to 

target cell lysis. Therefore, treatment of patients with cytokines to overcome NK cell resistance 

and to eradicate tumor cells may not only activate and stimulate immune effector cells function 

but may also have direct effects on leukemic cells to make them more susceptible to the lytic 

effects of NK cells. 
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Chapter 1. INTRODUCTION 

1.1.NK cells 

1.1.1. Definition, morphology, and cell surface markers 

Natural killer (NK) cells are large granular lymphocytes (LGL), defined by their ability to 

lyse without prior sensitization certain tumor cells, virus and intracellular bacteria infected 

cells [1]. NK activity may be enhanced by in vivo or in vitro treatment with cytokines such 

as interleukin-2 (IL-2) and interferons (IFN). These lymphokine activated killer (LAK) cells 

exhibit higher cytotoxic activity compared to primary NK cells, and acquire a larger 

spectrum of target cell specificities and the expression of activation antigens such as the IL-

2 receptor a chain (CD25), HLA-DR, CD71 (transferrin receptor) and CD69 [1,2]. 

NK cells do not rearrange nor express surface immunoglobulin or functional T cell receptor 

(TCR) and CD3 complex. They express a unique pattern of cell surface markers such as 

CD16 (FcyR III: Fc receptor for IgG) present on the majority of NK cells (80%), CD56 in 

humans and NK1.1 and asialo GM1 in mice. They also express, associated to CD16, the £ 

chain of CD3 complex. Other cell surface molecules expressed on NK cells are IL-2 receptor 

P chain (p75), LFA-1 (CDlla/CD18), CD2, LFA-3, CD7, while activation antigens such as 

DL-2 R a chain (CD25), CD71 (transferrin receptor), and CD69 are expressed on activated 

cells. Most NK cells express the receptor for C3bi (CR3 or CD1 lb/CD18 or Mac-1), not for 

(CR1 or CD35) or C3d (CR2 or CD21) [1-3]. 
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1.1.2. Origin, differentiation, and tissue distribution 

NK cells are bone marrow derived lymphocytes found at highest frequency in peripheral 

blood (PB) where they constitute up to 5-15% of mononuclear cells (PBMC), spleen (up to 

25% of lymphoid cells), and at lower frequencies in lung, liver, gastrointestinal tract, and 

peripheral lymphoid organs. Although they are bone marrow (BM) derived, the level of 

BM-NK activity is low. 

A number of studies have shown that human CD3- CD56+ NK cells can be obtained from 

B M derived CD34+ hematopoietic progenitor cells (HPC) cultured in the presence of IL-2 

and an allogeneic feeder cell layer, or IL-2 and other hematopoietic growth factors such as c-

kit ligand. The failure to detect IL-2 production by B M stromal cells and the presence of NK 

cells in IL-2 deficient mice [4], and the observation that mice [5] ,and humans [6] lacking 

the y subunit of the IL-2R (IL-2Ry) lack NK cells, together suggested that cytokines other 

than IL-2 which use IL-2Ry may participate in NK cell differentiation from HPCs in vivo 

[7]. B M stromal cells produce IL-15, a novel cytokine that can activate T and NK cells 

through components of the IL-2R. In vitro, CD3- CD56+ NK cells can be obtained from 21 

days culture of CD34+ HPCs supplemented with IL-15 in the absence of IL-2, stromal cells 

or other cytokines [7]. 

NK cell differentiation is thymus independent, and NK activity is normal in patients with 

the hypoplasic thymus of Di George's syndrome [8]. The thymic independence of NK cells 
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is also supported by the fact that athymic nude mice and rats have stronger NK cell activity 

than do their euthymic littermates [8-10]. 

NK maturation, however, requires an intact bone marrow environment. This is shown by 

depression of splenic NK cell activity by treatment of mice with 89Sr (a bone-seeking 

isotype) [11,12]. The role of the bone marrow as a necessary microenvironment for NK cell 

differentiation is further suggested by the failure of NK cell differentiation in congenital or 

17P-estradiol-induced osteoporotic mice and microphtalmic (mi/mi) mice that are 

congenitally osteoporotic, with reduced marrow and a deficiency in natural killing. 

Experimentally, osteoporosis and loss of NK cell activity can be observed by treating mice 

with 17P-estradiol for six weeks [13,14]. 

Data from irradiated patients and experimental animals suggest that NK cells might be 

relatively irradiation resistant [15-17]. Animal studies have suggested that mature NK cells 

are resistant, but that NK progenitors are relatively sensitive to radiotherapy. In humans, 

there have been some evidence suggesting that T and B cell subsets seem to be equally 

radiosensitive after in vivo total body irradiation with the exception of the immature 

thymocyte subset, while CD34+ progenitor cells and NK cells seem to be more 

radioresistant [18]. While radiotherapy-induced lymphopenia affects T cells markedly, 

resulting in a continuing depletion up to three years post treatment, the effect of 

radiotherapy on NK cell number and function depends on the extent of the underlying 

disease, the dosage delivered, and the area of the tissue irradiated [15]. 
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1.1.3. NK cells and cytokines 

NK cells secrete a number of cytokines in response to IL-2 treatment and other stimuli 

[19,20], which includes all the cytokines that are potent stimuli for monocyte/macrophages 

such as IFN-y, GM-CSF and TNF-a. Therefore, IL-2 stimulated NK cells "communicate" 

with monocytes and together these cells are responsible for so-called "innate" immunity. 

Upon stimulation with sensitive target cells, CD16 cross linking, or DL-2 treatment, NK cells 

produce IFN-y, TNF-a and GM-CSF [19,20]. Production of IL-3 upon nonspecific 

stimulation (phorbol esters, and calcium ionophores), and of IL-5 upon stimulation with IL-

12 have also been reported [21]. Unlike monocytes, NK cells do not produce TNF-a upon 

endotoxin stimulation. NK cells are also potent producers of macrophage inflammatory 

protein (MIP-1 alpha). Although fresh NK cells produce negligible amounts of MIP-1 alpha, 

abundant NK cell production of this cytokine is seen after costimulation with IL-12 and IL-

15 [22]. 

Some cytokines are also known to stimulate NK cells. NK cells proliferate in response to 

IL-2, IL-4, IL-7, IL-12 [23-26], and IL-15 [27]. IL-2, IL-7, IL-12 and IL-15 also enhance 

NK cytotoxic functions. IL-12 synergizes with IL-2 in NK activation and induction of L A K 

activity [23-27]. IL-2, IL-4, IL-7, IL-9 share the same IL-2Ry chains [5,28-31], while IL-15 

utilizes IL-2R(3 and y chains for transmitting signals [31,32]. 

4 



1.2. NK activity 

1.2 1. Determination of NK activity 

NK activity is usually quantified in a four hours chromium release assay in which target 

cells are labeled with radiolabeled 5 1Cr (Na2

 5 1Cr0 4), and mixed with the effector cells at 

different effector: target ratios. The released radioactivity at the end of incubation time is 

directly proportional to the extent of target cell lysis by NK cells. Another way of 

determining NK activity is the use of lytic units (LU), defined as the number of effector 

cells required to lyse a given proportion (optimally 50%, but often 20 or 30%) of target cells 

in the assay period. The most widely used target cells are the NK sensitive cell line K562, 

and the NK resistant L A K sensitive cell lines Daudi and Raji in humans; the NK sensitive 

cell line Yac-1, and the NK resistant, L A K sensitive cell line P815 in mice [1]. 

1.2.2. NK recycling and inactivation 

Combined use of the single-cell cytotoxic assay in agarose and estimation of the maximum 

NK cytotoxic potential by 5 1Cr release to study recycling of effector cells indicated that, NK 

cells recycle and are capable of killing multiple target cells. After delivering the lethal hit 

to the target cell, the NK cell detaches from the target cell and recycle, starting other cycles 

of target binding and lysis. Studies have shown that one NK cell can lyse on average, two to 

three target cells [33]. It has been reported that NK cells lose their lytic activity, for both 
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direct cell mediated cytotoxicity (CMC) and antibody dependent cytotoxicity (ADCC), 

after interaction with sensitive targets (not with resistant targets) and remain refractory for a 

period of time; that this loss of activity is reversible and can be recovered by incubation with 

IL-2 (18 hours) [34]. However, recent reports indicated that this NK inactivation involves 

down regulation of certain cell surface molecules such as CD 16 and CD2, and results in the 

induction of programmed cell death (PCD) [35,36]. 

1.2.3. Targets of NK cell mediated cytotoxicity 

NK cells and CD8+ CTLs represent two major populations of cytotoxic lymphocytes able to 

kill autologous cells infected with intracellular pathogens, as well as tumor cells and MHC 

incompatible grafted cells. Prior to the description of NK cells and the natural immunity, 

nearly two decades ago, T cells had been thought to play the principal role in host immune 

surveillance against malignancies. CTLs capable of specifically lysing target cells in vitro 

have been implicated as principal effector cells in allograft rejection [37,38], tumor 

immunity [39,40], and lysis of virally infected [41,42]. CTLs capable of killing autologous 

transformed cells in vivo have also been demonstrated in tumor bearing hosts [43]. It has 

now become clear that NK cells play an important role in host immune surveillance against 

malignancies and viral infections. There is much evidence to suggest that NK cells play an 

important role in controlling many tumors and metastasis. In contrast to CTLs that need to 

be sensitized and recognize target cells by binding to specific antigens on target cell in the 

context of major histocompatibility complex (MHC), NK cells are capable of mediating this 

cytotoxic function without the need for prior activation or sensitization, therefore, they are 
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an important component of innate immunity. Innate immunity, is generally followed by 

adaptive immunity, which is mediated by clonally selected and expanded antigen-specific B 

and T lymphocytes. 

A. Tumor cells 

While most primary malignant solid tumors are NK resistant [44,45], a significant role for 

NK cells in the in vivo regulation of some tumors, particularly in the control of metastases, 

has been reported [46]. NK cells are effective against blood-bome tumor cells such as 

leukemic and metastatic cells of renal or melanoma origin. NK regulation of tumor 

metastases is conceivable since a major physiologic reservoir of NK activity is the 

peripheral blood, the common route by which metastases typically disseminate. Recent in 

vitro studies have shown that leukemic blasts from patients with acute myelogenous 

leukemia (AML) are susceptible to the lytic action of autologous and non-autologous L A K 

cells [47]. Ex vivo activated NK cells along with IL-2 have also been shown to be effective 

in the treatment of metastatic malignant melanoma and renal cell carcinoma and leukemia 

[48]. In addition, NK cells, along with IL-2 and IL-12, have been shown to be effective on 

some NK resistant neuroblastoma cell lines [49]. 

Homing of NK cells to the site of tumors have been thought to be fairly poor, and their 

presence in tumor infiltrating lymphocytes (TILs) is controversial [50-53]. It has been 

shown that activation of TILs with IL-2 results in significant antitumor activity [54,55]. 

However, due to the heterogeneity of the cell population in TILs, controversy exists as to 

whether or not these cells are of NK cell lineage [56,57]. NK cells have been shown to be 

present within breast, lung, ovary, colon, and a variety of other tumors. NK activity of TILs 

has been found to be reduced in patients with lung and colorectal carcinomas, compared to 
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NK activity of PBLs [58,59], and also TILs in 5 1Cr release assay have been shown to have 

reduced recycling capability (ability to kill multiple target cells) [60]. However, single cell 

assays have shown that the proportion of cells binding to target cells is comparable to the 

proportion of cells binding to both TILs and PBLs. Therefore, NK cells in TILs appear to 

have functional impairment, the cause of which is unknown [61]. 

B. Virus infected cells 

Anti viral activity of NK cells is mainly directed against Herpes virus: human herpes 

simplex virus-1 (HHSV-1)[62,63], mouse herpes virus [64], mouse cytomegalovirus 

(CMV)[65], and mouse hepatitis virus [66]. CMV and Epstein Barr virus (EBV) are 

ubiquitous herpes viruses that generally cause only mild symptoms in normal individuals. 

While EBV related diseases are uncommon following conventional BMT, CMV reactivation 

remains the most common single cause of death following BMT. Although NK cells of 

BMT recipients are highly effective against EBV infected target cells they are inactive 

against CMV infected target cells. This different cytotoxicity seems to be associated with 

disparate expression of C A M on the target cells [67]. HIV infected patients have also 

depressed NK activity characterized by a defect at post binding stage of lysis [68,69]. As has 

been reported for NK resistant target cells, removal of sialic acid residues rendered 

retrovirus infected target cells sensitive to NK mediated lysis[69]. 

C. Parasites and intracellular bacteria 

In vitro, NK cells have been shown to be capable of lysing cells infected with intracellular 

bacteria such as Shighella flexneri [70], Legionella pneumophila [71] or Mycobacterium 

avium [72]. NK cells have also been reported to be effective in lysis of Mycobacterium 

leprae infected macrophages and the destruction of the bacteria either by newly migrated 
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competent monocytes or by the components of the NK cell cytolytic granules [73]. Murine 

and human NK cells can bind and inhibit growth of fungi such as Cryptococcus neoformans 

and NK deficient beige mice are less resistant to Cryptococcus neoformans [74,75]. Studies 

employing beige mice, split-dose irradiation, and adoptive transfer of an NK cell clones 

have suggested a possible role for NK cells in the clearance of Leishmania from spleen and 

liver [76,77]. NK cells show little spontaneous cytotoxicity for trypanosomes, but efficient 

ADCC and appear to be potentially effective against Toxoplasma gonidii [78-80]. 

D. Hybrid resistance 

NK cells have been implicated as the effector cells responsible for the hybrid resistance 

(HR) phenomenon in which homozygous parental B M grafts are rejected by irradiated F l 

progeny [81,82]. HR could be explained by the presence in Fl(AxB) mice, of a subset of 

NK cells which do not express inhibitory MHC class I receptors specific for parent A or B. 

HR prevents only engraftment of hematopoietic tissues, whereas other parental grafts such 

as skin are readily tolerated. 

E. Normal tissue 

Because NK cells can reject incompatible B M cells in healthy irradiated recipients (hybrid 

resistance), it has been postulated that they also play a role in the regulation of 

hematopoiesis. Conflicting reports exist regarding the role of NK cells in B M graft rejection 

and regulation of hematopoiesis. The majority of earlier studies on NK cells using both in 

vitro and in vivo assays have suggested that they primarily exert a negative influence on 

hematopoiesis. However, IL-2 activated NK cells have been shown to promote marrow 

engraftment in mice and support hematopoiesis in vivo [83,84]. Purified human IL-2 

activated NK have been shown to be capable of producing the hematopoietic growth factor 
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GM-CSF, furthermore, these L A K cells have also shown to have little cytotoxic activity 

against normal B M cells, and no inhibitory effect on hematopoietic progenitor growth in 

CFU-GM (colony-forming unit-granulocytes, macrophages), CFU-E (colony-forming unit-

erythrocytes), BFU-E (burst-forming unit-erythrocytes) or CFU-GEMM (colony-forming 

unit-granulocyte, erythrocytes, macrophages, megakaryocytes) assays [85]. Subpopulations 

of NK cells may exist that exert primarily growth promoting versus growth inhibitor 

functions on hematopoiesis based on the cytokine they produce. Recently, human 

allospecific NK cell clones have been generated that recognize distinct specificities inherited 

recessively and controlled by genes linked to MHC. The alloreactive NK cells were 

proposed to be the human counterparts of the cells mediating hybrid resistance in mice and 

to play clinically important roles in rejection or in graft versus leukemia (GVL) reactions 

after allogeneic BMT [86]. Thus, based on cytokine production, presence or absence of 

alloreactive NK clones, and the state of NK cell activation, NK cells may exert dual 

regulatory role on hematopoiesis 

1.2.4. Evidence for anti-tumor and anti-viral activities of NK cells. 

A. Congenital and acquired defects in NK cells 

Complete absence of NK cells in humans is extremely rare and has been described in only a 

few patients [87,88]. Al l reported cases were characterized by life threatening and relapsing 

herpes and recurrent viral infections, as young adults, with normal immunological 

parameters but lack of NK activity against K562 and HSV-1 infected target cells, 

particularly the case of four siblings with recurrent infections and pneumonia including EBV 
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infection [87]. Biron et al. have described an adolescent patient with an apparent selective 

NK deficiency. Patient's B, T cells and macrophage functions appeared normal, but 

peripheral blood lymphocytes were devoid of CD 16+ or CD56+ subsets and were incapable 

of mediating conjugation to or cytolysis of Daudi, or K562 target cells, this young girl 

suffered from severe herpes-virus infections including varicella, and CMV infections [88]. 

The bg/bg mouse, which is functionally deficient in NK activity, exhibits an elevated 

frequency of spontaneous lymphomas and is more susceptible to the formation of 

pulmonary metastases of the B16 melanoma than heterozygote bg/+ littermates, increased 

sensitivity to mouse CMV, hepatitis virus, herpes virus and influenza virus in vivo. In 

normal young mice, the ability to control the metastatic potential of tumors correlates with 

the appearance of NK activity at approximately three weeks of age [89]. 

B. Experimental NK depletion and restoration bv adoptive transfer 

Experimental NK cell depletion in mice, by in vivo administration of anti asialo-GMl or 

anti NK1.1 antibodies results in animals that are NK deficient and express increased 

frequencies of metastases as well as increased susceptibility to murine CMV and hepatitis. 

Cyclophosphamide treatment of mice, which ablates NK activity, also results in increased 

experimental metastases [90]. In contrast to these NK depletion studies, activation of NK 

cells in vivo with either poly I:C, IFN-y or IL-2 yields elevated NK activity and reduced 

pulmonary colonization by metastatic melanoma [91] and adoptive transfer of NK cells to 

NK deficient recipients confers resistance to metastases and to some virus infections [92]. 
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C. Other deficiencies affecting NK activity 

Leukocyte adhesion deficiency (LAD) which is a defective expression of the CD 18 

molecules (the common |32 chain of P2 integrins) also causes a defective NK activity. These 

patients suffer from severe bacterial and viral infections including herpes-virus infections, 

varicella, CMV with complete absence of NK cell activity [93]. 

Chediak-Higashi syndrome (CHS), with hyporesponsiveness NK cells is a rare autosomal 

recessive disease characterized by a defect in cytoplasmic granules and degranulation in 

lymphocytes and granulocytes, associated with defective pigmentation and increased 

susceptibility to infections [94]. CHS is a state of NK hyporesponsiveness with a normal 

number of NK cells, where NK cell activity is 10 to 100 times lower than in normal controls 

[95,96]. Children usually die of pyrogenic infections presumably resulting from their 

neutrophils abnormality. Survivors generally succumb to a lymphoproliferative disorder that 

may be malignant [97]. 

1.3. Mechanism of NK mediated cytotoxicity 

Extensive studies to elucidate the molecular mechanism underlying the killing mediated by 

CTL and NK cells, have proposed a common death pathway that generally involves a three 

steps mechanism: (i) binding of the target cell (conjugate formation), (ii) activation of the 

effector cell leading to the delivery of the lethal hit, (iii) target cell disintegration. Binding 

occurs rapidly within minutes at 37°C and requires Mg 2 + , not Ca2 +, while the following 

events are temperature dependent (optimum 37°C), Ca 2 + dependent, sensitive to Ca 2 + channel 
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blockers and calmodulin inhibitors. These events are energy and cytoskeleton dependent and 

could be blocked by various inhibitors of energy production and cytoskeletal function. One 

of the hallmarks of this killing is the highly selective nature of its lethal effects, as shown by 

"innocent bystander" experiments in which bystander cells not bearing target antigen were 

mixed with antigenic target cells and CTLs added, little or no killing of bystander cells was 

observed, therefore, the lethal hit is highly polarized. 

1.3.1. Models of NK mediated cytotoxicity 

Two major molecular pathways for target cell lysis, that are not mutually exclusive, have 

been proposed: (i) a secretory membranolytic mechanism (necrosis) and (ii) a non secretory 

and receptor mediated triggering of target cell apoptosis. 

A) Granule exocytosis and the content of the granules 

The major mechanism by which NK cells and CTLs kill their targets is the regulated 

exocytosis of specialized granules, termed lytic granules [98]. The discovery of perforin or 

cytolysin in the cytoplasmic granules of CTLs and NK cells [98,99], about 10 years ago, 

gave the first explanation for the ability of cytotoxic effectors to damage target cell 

membranes [100-103]. Perforin molecules together with some contribution from serine 

esterases [104,105] lead to target cell death. This pathway can be triggered through two 

mechanisms: direct cell mediated cytotoxicity (CMC), and antibody dependent cytotoxicity 

(ADCC) which is the Fc receptor dependent lysis of antibody coated target cells, mostly 

against virus infected cells coated with antiviral antibodies. In this necrotic type of cell 
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death, target cell membranes are disrupted, and this leads to osmotic lysis initiated by the 

formation of pores in target cell membranes by secreted molecules of lymphocyte origin, 

such as perforin. The release of cytotoxic granules is vectorial, delivering cytotoxic factors 

into the contact area between effector and target cells. Morphological analysis of NK cell 

interaction showed extensive cell-cell adhesion of NK cell with target cell, evidence of 

activation and degranulation in NK cell, with membrane material of probably granule origin 

present in the space between the two cells [106]. Upon delivery, perforin monomers form 

homopolymers in the presence of extracellular calcium and insert into the membrane of the 

target cell forming pores of 150-170°A diameter. These cause loss of cell integrity and 

osmotic lysis, and also allows granzymes to access target cell where they can activate the 

apoptotic pathway of cell death. 

Morphological and metabolic inhibitor studies suggest that the essential feature of this 

model is a polarized and highly regulated secretion of the cytotoxic factors which are 

presynthesized and stored in secretary granules. Degranulating agents were shown to both 

deplete granules and inhibit killing [107]. Each granule contains two structural domains: an 

electron dense core of homogenous appearance surrounded by a thin cortex of vesicles or 

lamellas. Cytoplasmic granules from effector lymphocytes have been isolated and found to 

contain mainly cytotoxic factors or "lytic associated proteins" (perforin[103], granzymes 

[108], proteoglycan [109]), lysosomal proteins, and other granule membrane proteins such 

as Calreticulin [110]. The soluble, secreted proteins which are killer cell-specific are all 

concentrated in the dense core domain of the granules, as demonstrated by immunogold 

labeling of thin frozen electron microscope (EM) sections [111,112]. Conversely, most of 

the lysosomal proteins are confined to the multivesicular domains. 
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Perforin (or cytolysin) is a complement like protein which in the presence of Ca 2 + undergoes 

a conformational change and forms homopolymers which can insert into the target cell 

membrane and destroy its integrity. While only activated T cells contain perforin, NK cells 

are the only resting lymphocytes expressing detectable levels of perforin [113]. 

Granzymes are serine proteases expressing esterase activity. In mice seven of these granule 

associated proteases, named granzymes A-G, have been characterized, whereas three 

granzymes have been identified in human, granzymes A, B and 3 [114,115]. Together, the 

proteolytic spectrum of the granzymes is very broad including tryptases (granzyme A) and 

Asp-ase (granzyme B). A role for granzymes in cellular cytotoxicity has been postulated for 

several years, principally on the basis that cytotoxicity could be completely abrogated by a 

variety of proteinase inhibitors [116]. Granzymes A and B have been also shown to be 

involved in triggering apoptosis in target cells [104,115,117,118]. Purified NK granule 

proteases can induce extensive chromatin condensation, and oligonucleosomal DNA 

fragmentation [105,119] in the presence of perforin. Therefore, at least a portion of the 

granzyme family can initiate nuclear damage which is indistinguishable from apoptosis; 

however, they are inactive on their own and have an absolute requirement for perforin 

[105,118]. Experiment of degranulation of mast cells expressing granzyme A to cross-linked 

targets showed that granzymes, whether in simple solution or vectorially delivered at the 

intercellular site of contact, are not sufficient to initiate apoptosis [118]. This observation 

virtually eliminates the possibility that proteases activate a membrane receptor such as Fas. 

However, it does not mean that they have no effect at the membrane. Perforin is able to 

promote granzyme B or granzyme A induced apoptosis not only at doses that induce 

membrane damage but also at sublytic levels [105,119]. Another suggested role for 

granzymes is that they act as auxiliary proteins to perforin [120]. Presumably, they act in 
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both aspects by proteolytically activating other proteins. Experiments with granzymes A and 

B knock out mice have recently shown profound alteration in the perforin dependent 

necrosis pathway suggesting that granzymes may be involved in the processing and/or 

activation of perforin molecules [121], The similarity of the enzyme specificity of granzyme 

B to members of the CED-3/ interleukin-1 P converting enzyme (ICE) family proteases, 

which are important for cell death has led to the speculation that granzyme B may either 

mimic the effects of ICE proteases on substrates required for apoptosis, or it may activate 

one or more members of the ICE family [122]. Several ICE family members have been 

found to be correctly processed by granzyme B in vitro, including CPP32 [123], and 

therefore could be candidate in vivo substrates. Recently, experiments in gene-targeted ICE-

deficient mice, which have defective granzyme B induced apoptosis, have confirmed the 

requirement for ICE in granzyme B induced apoptosis. These studies have also shown the 

involvement of CPP32 protease and p34cdc2 kinase in granzyme B-induced apoptosis and 

suggested that they act upstream and downstream ICE respectively [124]. 

The third type of lysis associated granule protein is TIA-1 and its relative TIAR. The 15 

kDa protein generated after TIA-l proteolytic cleavage is capable of causing DNA 

fragmentation [125]. 

The granules are also rich in highly acidic chondroidin sulfate proteoglycan. At the 

intragranular pH of 5.5, these proteoglycans are resistant to degradation by the granzymes 

and can bind to them. The proteoglycan-protease complexes minimize serine esterase-

induced auto-degradation and remain intact even after exocytosis [126]. Therefore, the 

proteoglycans seem to play important structural roles as chaperone, protective, or carrier 
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molecules. First, they serve as a means of packaging lysis-specific proteins at high 

concentrations, second, they maintain these proteins in inactive forms until the pH and other 

environmental conditions change upon exocytosis. 

Calreticulin is a highly conserved, ubiquitously expressed intracellular Ca 2 + binding protein 

[110] shown to bind to integrins, as well as to regulate gene expression by interacting with 

the DNA-binding domain of nuclear hormone receptors [127,128]. In addition, considering 

the essential role of calcium in lytic process, calreticulin could serve as a molecular 

chaperone by chelating calcium in the lytic granules and thus preventing premature 

conformational changes in lytic proteins [110,129]. 

B) The nonsecretory Fas mediated pathway of apoptosis 

Several lines of evidence suggested that in addition to perforin-based mechanism, at least 

another mechanism is involved in lymphocyte mediated cytotoxicity. The existence of an 

alternative pathway(s) was clear from earlier findings that some target cells can be killed 

under Ca 2 + free conditions in which degranulation does not occur, nor can perforin cause 

membrane damage. Perforin deficient mice obtained by perforin gene knock out have 

profound defects in the clearance of viral infection, delayed type hypersensitivity and tumor 

rejection. The perforin knock out mice have normal number of CTL and NK cells but the 

activity of these cells, tested in vitro, is severely impaired [130-132]. This model strongly 

supported that perforin is a dominant pathway of lymphocyte mediated cytotoxicity, and 

showed the existence of a less effective alternative lytic pathway mainly active on certain 

tumor cells. This second pathway involves direct effector cell-target cell membrane 
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interactions during which intracellular signals are transduced within the target cell that 

culminate in target cell's DNA fragmentation and programmed cell death (PCD). Such 

signals probably occur through the apoptosis-inducing target cell membrane molecule Fas. 

Fas antigen is a cell surface molecule capable of transducing apoptotic signals, and 

expressed on a variety of cells including those of lymphoid lineage. In lymphocytes, Fas 

mediated apoptosis regulates activation induced cell death and participates in cytotoxicity 

leading to target apoptosis. 

Further studies on CTLs showed that CTLs from perforin deficient mice can still exert a Fas 

based cytotoxicity against Fas expressing target cells. Most, if not all, target cells tested 

display the Fas receptor at the surface and are lysed by perforin free CTLs and NK cells. Fas 

based killing accounts in most cases for approximately 25% of the observed lysis in a short 

term assay. Cells undergoing apoptosis show characteristic morphological changes including 

plasma and nuclear membrane blebbing, cell shrinkage, chromatin condensation and 

fragmentation, these changes distinguish apoptosis from cell death by necrosis. 

Fragmentation of the target cell's DNA into units, consisting of multiples of 180 bp and 

some smaller fragments, precedes overt damage to the target cell's membrane and release of 

the affected target cell's cytoplasmic contents (usually monitored by 5 1Cr release). Fas based 

cell mediated cytotoxicity is rapid, leading to detectable "Cr release (a late indicator of cell 

death), does not require extracellular Ca 2 + as it is detectable in the presence of EGTA [133]. 

Fas (also termed APO-1) antigen (CD95) is a novel member of the nerve growth factor 

receptor/tumor necrosis factor (TNF) receptor family, expressed on immature thymocytes, 

activated T cells, and nonlymphoid cells in liver, ovary, and heart [134]. Fas expression and 
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Fas mediated cytotoxicity is greatly increased on target cells by treatment with IFN-y and 

TNF-a [134,135]. Triggering of the Fas receptor pathway by its ligand or specific 

monoclonal antibody results in apoptosis of susceptible normal and malignant cells of 

lymphoid origin [136-138]. Transfection of Fas into an NK resistant T lymphoma cell line 

was shown to significantly increase the susceptibility to NK cytotoxicity suggesting that Fas 

mediated cytotoxicity is involved in NK cell cytotoxicity, while the parental or cells 

transfected with mutated Fas were still resistant to NK cell killing. These transfectants were 

shown to be similarly sensitive to cytotoxicity by alloreactive CTLs, suggesting that Fas 

ligand (Fas L) expression on NK cells is functional and mediates cytotoxicity against 

specific lymphocyte populations or tumor cells expressing Fas [139,140]. 

Fas L is a 40 kDa type II transmembrane glycoprotein that belongs to the TNF family [141]. 

It is expressed on activated T cells or some T cell lines [142] and NK cells [139,140]. 

Interaction between Fas L on the effector cell and Fas receptor on target cell is capable of 

inducing apoptosis in target cell and Fas L expression in Cos cells was shown to induce 

apoptosis in Fas expressing target cells [141]. 

1.3.2. Other mediators of NK cell mediated cytotoxicity 

A. TNF 

The availability of perforin and Fas L deficient mice offered an opportunity to investigate 

roles of perforin and Fas L dependent and independent cytolytic mechanisms in NK and 

L A K cells. Very recently, perforin and Fas knock out mice experiments have shown the 
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existence of a TNF-based long term cytotoxicity for L A K cells that is efficient against TNF 

sensitive targets, while perforin and Fas were required for acute target cell lysis [143]. L A K 

cells deficient in both perforin and Fas L are essentially noncytolytic in short term 

cytotoxicity (four hours) assay with the exception of highly TNF sensitive target cells 

demonstarting that perforin and Fas L are the main cytotoxic molecules used by L A K cells 

under these conditions. However, significant TNF-mediated cytotoxicity is observed in long 

term (16-24 hours) assay. 

B. Nitric Oxide 

Nitric oxide (NO) is a multifunctional molecule that is found in a variety of mammalian 

cells. NO is generated by both immune and nonimmune cells via the inducible NO 

synthetase (NOS) by cleavage of terminal guanidino nitrogen from L-arginine. Several lines 

of evidence first suggested that NO is involved in tumor cell killing by mononuclear 

phagocytes. NO can cause DNA strand break and mutations and is capable of inducing DNA 

fragmentation. Triggering through NKR-P1 known to induce NK cell activation and to 

mediate reverse ADCC, was found to induce arginine metabolism with consequent increase 

of NO levels. Tumoricidal activity of fresh or IL-2 activated NK cell assessed against Yac-1 

and P815 target cells respectively was found to be dependent on the arginine level in the 

media as it was significantly reduced when cytotoxic assays were performed in arginine free 

medium or in the presence of L-arginine analog which inhibits NO formation. Moreover, 

NOS activity was found to gradually increase during the L A K generation and correlated 

well with the increased capability of these cells to lyse NK resistant targets such as P815 

[144,145]. These observations suggested a role for NO as one mediator of murine NK cell 

mediated DNA fragmentation and cell lysis. 
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1.4. Cell adhesion molecules 

Cell adhesion molecules (CAMs) play a key role in stabilizing and strengthening cell-matrix 

and cell-cell interactions. Leukocyte C A M provide antigen nonspecific recognition and are 

involved in a wide range of intercellular interactions including those between helper T cells 

and antigen presenting cells (APC), CTL, NK cells and their targets [146,147]. Direct 

effector-target interaction is essential but not sufficient step in this direct cell mediated 

cytotoxicity. Although specific receptor-ligand structures in NK/LAK recognition of the 

target cell and subsequent signals involved in this process are still largely elusive, the 

involvement of certain CAMs in this interaction has now been well established [148]. 

Recent studies have shown that LFA-l/ICAM-1 and CD2/LFA-3 interactions are two 

predominant pathways of effector-target interaction for both CTL and NK cells [149-151]. 

Extracellular matrix (ECM) proteins, specially fibronectin (FN) and laminin (LN) and their 

receptors of pi integrin family of adhesion molecules may also play an important role in 

NK/LAK interaction with leukemic cells [148,152,153]. Since NK/LAK cells express a 

variety of adhesion receptors, most studies have come to the conclusion that the presence 

and distribution of adhesion molecules on the target cell may be more important, and that 

downregulation of adhesion molecules on neoplastic cells may represent a potent escape 

mechanism of the tumor cell. 
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1.4.1. LFA- l / ICAMs interaction 

A. LFA-1. 

LFA-1 (CDlla/CD18) is an ccLp2 heterodimer, which binds to ICAMs. Like other 

integrins, LFA-1 is not constitutively avid for its ligands but exhibits a rapid and inducible 

change in avidity upon activation with stimuli such as phorbol esters. The a chain of LFA-1 

is constitutively phosphorylated, whereas (3 chain becomes phosphorylated in response to 

stimuli such as phorbol esters. Although protein kinases play a role in the activation of 

LFA-1, and phorbol ester treatment causes direct phosphorylation of both a and p subunits 

of p2 integrins, mutational analysis have shown that phosphorylation is not necessary for 

PMA induced binding to ICAM-1 [154], and the exact mechanism by which the change in 

its avidity occurs has not been elucidated [155]. 

LFA-1 is a bifunctional molecule capable of transmitting signals from outside of the cell to 

inside and from inside cell to the outside [156]. Stimulation with PMA converts LFA-1 to a 

state of high avidity thereby promoting interaction with its ligands (inside out signaling). On 

the other hand, LFA-1 itself is capable of signal transducing and second messenger 

generation upon cross linking or activation with its ligand (outside in signaling) [156]. 

LFA-1 was shown to be linked to protein tyrosine kinase (PTK) signaling pathway that 

stimulate tyrosine phosphorylation and activation of phospholipase C yl (PLCyl) [157]. 

This signaling through LFA-1 involves calcium mobilization, phosphoinositide (PI) 

hydrolysis, amplification of CD3 dependent IL-2 production, proliferation and enhancing 
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antigen presentation in B cells [157]. LFA-1-dependent interactions are important in many 

immune effector mechanisms, they are Mg2+-dependent, temperature-dependent and trypsin-

sensitive, and require an intact cytoskeleton [158]. It has been repeatedly described that in 

the ICAM-l/LFA-1 interaction, LFA-1 plays the most important role in signal transduction. 

Experiments with ICAM-1 receptor immunoglobulin (Rg) and ICAM-2 Rg fusion proteins 

coimmobilized with anti TCR mAb have shown that ICAM-1 and ICAM-2, exert a strong 

costimulatory effect during TCR-mediated activation of T cell [159,160]. 

Monoclonal antibodies (mAbs) directed against LFA-1 determinants significantly inhibit 

NK-mediated conjugate formation and cytolysis of susceptible target cell lines. Inhibition is 

at effector level and target cell pretreatment with either anti CD 18 or anti CD 11a does not 

affect NK sensitivity [151,161]. However, the degree of anti LFA-1 inhibition observed in 

NK assays varies significantly depending on the target cell analyzed [162]. The importance 

of LFA-1 in NK cytotoxic functions is further supported by the recent observation that NK 

from C D l l a knock out mice, generated by disruption of murine C D l l a gene in embryonic 

stem (ES) cells, have markedly reduced cytotoxic activity [163]. ICAM-1 knock out mice, 

on the other hand, have been shown to have impaired inflammatory and immune responses. 

Lymphocytes from these ICAM-1 deficient mice have been shown to have negligible 

stimulatory effect in mixed lymphocyte reaction (MLR), while proliferating normally as 

responder cell population, this further supports a role for ICAM-1 as co-stimulatory rather 

than signal transducing molecule [164-166]. 
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B. ICAMs : three ligands for LFA-1 

ICAM-1, 2 and 3, the three ligands for LFA-1, are members of the immunoglobulin (Ig) 

superfamily and are variably.expressed on the surface of leukocytes. ICAM-1 (CD54), is a 

widely distributed 90 kDa glycoprotein with five Ig like domains in its extracellular portion 

[167]. It is expressed on activated leukocytes, epithelial and endothelial cells, and its 

expression is upregulated by cytokines. ICAM-1 binds also to CDllb/CD18 or Mac-1, 

CD43, rhinovirus and Plasmodium falciparum [168-170]. ICAM-2 (CD105) is a 55kDa 

glycoprotein constitutively expressed on lymphocytes, monocytes and endothelial cells. It 

has two Ig domains and binds only to LFA-1 [171]. ICAM-3 (CD50) is a 124kDa 

glycoprotein with five Ig like domains, mainly expressed on hematopoietic cells and at 

particularly high levels on resting leukocytes, neutrophils, monocytes, and is absent from 

endothelial cells [172,173]. 

ICAMs are highly homologous in their extracellular domains, but their cytoplasmic portion 

is poorly conserved with no serine or tyrosine residues for ICAM-1 and ICAM-2 [167,171], 

while ICAM-3 has five serine and two tyrosine residues [172,173]. LFA-1 binds to all 

ICAMs with different affinities. LFA-1 affinity for ICAM-1 seems to be higher than for 

ICAM-2 or ICAM-3 [159,171,174]. The extracellular domain of LFA-1 a subunit contains 

two domains thought to be of functional significance. These include a putative divalent 

cation binding region also found in other integrins, and a 200 amino acids inserted or I 

domain which is also present in a chains of a M (Mac-1), ocX (pi50, 95), ccl(VLA-l), oc2 

(VLA-2), ocE (ocEp7) and is involved in ligand binding [155,175]. Three distinct epitopes 

Ide A, B, and C within the CD lice I domain recognized by antibodies that block binding of 
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LFA-1 to ICAM-1, ICAM-2 and ICAM-3 have been identified suggesting that different 

conformation of LFA-1 is required to support adhesion to ICAM-1, ICAM-2, and ICAM-3, 

and that these ligands may bind on different sites of LFA-1 molecule [176]. Recently, using 

a series of human/murine C D l l a I domain chimeras, a fourth epitope within the I domain, 

epitope Ide D, was identified that is recognized by anti C D l l a antibody that block 

selectively binding to ICAM-3 [177]. The existence of ICAM-3 receptors other than LFA-1 

was first suggested by the observation in human T cell lines Jurkat and JM, that ICAM-3 

could regulate both LFA-l/ICAM-1 dependent and independent pathways involved in cell-

cell interaction [178]. Recently a cDNA encoding a 4th a chain ad that associates with 

CD 18 was identified. This novel leukointegrin ad|32 exhibits preferential recognition of 

ICAM-3 over ICAM-1 [179]. 

Whereas direct intracellular signaling pathways through LFA-1 have been extensively 

described, there are few data about signal transducing effects through ICAM-1 and ICAM-2. 

ICAM-1 cross linking was recently shown to induce an oxidative burst from mononuclear 

leukocytes [180], to induce transient tyrosine phosphorylation and inactivation of cdc2 

kinase in T cells [181]. The majority of the available data however, suggest that the main 

functional role for ICAM-1 and ICAM-2 is their binding to LFA-1 which triggers signals 

that can directly, or through other stimulatory surface proteins, enhance cell activation. The 

important difference in cell distribution, intracytoplasmic domain, and phosphorylation sites 

observed in ICAM-3 first suggested that ICAM-3 could play a more active role in signal 

transduction than ICAM-1 and ICAM-2. 
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C. CD50/ICAM-3 

In contrast to ICAM-1 and ICAM-2, ICAM-3 has a longer cytoplasmic domain that contains 

five serine and two tyrosine (Y) residues that can be phosphorylated upon stimulation with 

different stimuli, and this phosphorylation is believed to be involved in regulating ICAM-3 

functions [182-184]. A sequence motif termed "Ag recognition activation motif is present 

in the cytoplasmic domain of CD3y, 8, e as well as £ and plays critical role in signal 

transduction. This motif is based on a Y and leucine (or isoleucine) residues arranged in the 

general pattern Y X X L . The Y in antigen recognition activation motifs are phosphorylated 

after receptor stimulation possibly by members of src kinases and this is believed to play a 

role in receptor function. One of the cytoplasmic tyrosine residues in ICAM-3 is present in a 

Y X X L motif. Recent studies reported that ICAM-3 exert strong stimulatory activity in both 

resting and activated T cells, showing that certain antibodies to ICAM-3 or ICAM-3 cross 

linking induce activation of pi and P2 integrins in T cells [185,186], an increase in 

intracellular calcium concentrations and tyrosine phosphorylation of a number of 

intracellular proteins in neutrophils and T cells [178,184,187]. In human T leukemic cell 

lines JM and Jurkat, ICAM-3 was suggested to play an important role in the regulation of 

LFA-l/ICAM-1 dependent and independent pathways involved in cell-cell interaction 

[178,188] also suggesting the existence of other receptors for ICAM-3 that LFA-1, or 

triggering of intracellular signals through ICAM-3 that would activate other CAMs [178]. 

More recently, ICAM-3 which has no intrinsic kinase activity has been reported to associate 

with Src family PTKs Ick and Jyn in Jurkat T cell line [187]. 
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1.4.2. CD44 

CD44 is broadly distributed integral membrane glycoprotein [189,190] shown to be 

involved in many adhesion dependent cellular processes including lymphocyte recirculation 

and homing process [191], hemopoiesis [192], cell interaction with extracellular matrix 

proteins (FN, hyaluronan, Collagen) [190,191], lymphocyte activation [194-197], NK 

mediated killing [198-200], and tumor metastasis [190]. Alternative splicing events can 

generate a large number of differentially expressed CD44 isoforms with molecular weights 

(MW) ranging between 80 and 250 kDa, that contain additional peptide sequences of 

varying length inserted into a single site within the extracellular domain [201-204]. 

Currently 10 alternatively spliced exons encoding sequences present within the extracellular 

domain and two encoding sequences present within the cytoplasmic domain have been 

identified. CD44H, 80-85 kDa , is the major CD44 isoform and widely expressed on many 

cell types. CD44 variants are structurally similar to CD44H isoform except for the presence 

of 132-338 amino acids inserts in the gag region of the COOH terminal of CD44 

extracellular domain [205,206]. CD44E, with 132 amino acids insert, corresponds to exons 

13,14,15 (V8.V9, and V10) and is expressed in monocytes, macrophages, epithelial cells 

and immature myeloid cells [201,205]. CD44R1 which differs from CD44E by a single 

amino acid, and CD44R2 which corresponds to exon 15 (V10) are expressed on transformed 

epithelial and certain activated or malignant hemopoietic cell types [203]. 

CD44 functions as a receptor for glycosaminoglycan hyaluronan (HA), and this binding is 

dependent on cell activation. There is also increasing evidence that binding to hyaluronan 

cannot explain all CD44 dependent adhesion events, and homotypic binding between 
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different isoforms of CD44 has recently been reported. CD44R1 has been shown to bind to 

CD44R1 and CD44H, while CD44H cannot bind to CD44H [207]. CD44 has also been 

reported to be implicated in signal transduction events and to trigger cytotoxic functions of 

CTLs [208-210] and NK cells [196-198], it has been recently reported to associate with 

p56fc* in T cells [211]. 

1.4.3. CD2-LFA-3 

Virtually all blood or splenic NK cells express the 50 kDa integral membrane glycoprotein 

CD2 which is not an NK specific receptor but serves as an important accessory molecule in 

both NK and T cells. The CD2 molecule on the effector cell interacts with its ligand LFA-3 

(CD58) on the target cell. LFA-3, a 40 to 65 kDa glycoprotein, is expressed on various 

tissue types including leukocytes and erythrocytes. It can exist in either a GPI-linked form 

or an integral membrane form. Interaction between CD2 and LFA-3 occurs efficiently at 

both 4°C and 37°C, and do not require the presence of divalent cations such as Mg 2 + or Ca 2 + 

[157]. Both CD2 and LFA-3 are sensitive to trypsin digestion [212]. Antibody inhibition 

studies have shown the involvement of CD2 at NK level and of LFA-3 at target level [212-

214]. Furthermore, phosphatidyl inositol-specific phospholipase C (PIPLC) treatment of 

Jurkat or MOLT-4 target cell which removes the GPI-linked form of LFA-3, partially 

inhibits target cell recognition by NK cells [215-217]. Finally transfection of human LFA-3 

into mouse L cells confers sensitivity to human NK cells [218]. 
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1.5. Other cell surface receptors involved in signal transduction 

1.5.1. IL-2 receptor (IL-2R) 

The IL-2 receptors expressed on the surface of activated T cells and NK cells exhibit a 

variety of affinity states depending on their subunit composition. The functional IL-2R may 

consist of 3 subunits a, p and y chains, none of which contains an intrinsic PTK domain that 

is the hallmark of other growth factor receptors. The low affinity binding, with rapid 

association and dissociation, is associated with a 55kDa a chain (CD25 or Tac antigen). The 

intermediate affinity receptor, with slow association and dissociation binding, associates 

with the 70-75 kDa P chain, and the high affinity receptor is composed of the a and P chains 

with rapid association and slow dissociation. A third subunit for IL-2 R termed the y chain, 

64 kDa, is associated with the P subunit and was originally discovered by co-

immunoprecipitating with P chains from cells incubated with IL-2 [219,220]. NK cells are 

unique among all 3 types of lymphocytes in that they constitutively express IL-2Rs and 

thus they are always IL-2 reactive [221,222]. Only 10% of NK cells express high affinity 

IL-2R, whereas the remaining 90% lack the 55 kDa a chain and only express the 

intermediate affinity receptor [220-222]. Expression of p55 is induced upon stimulation with 

IL-2, regulated by NK-target cell stimulation, or CD16-ligand, which modulate proliferation 

of NK cells in response to IL-2 (interaction with IL-2RP or ap). Recent studies have 

demonstrated the critical role of IL-2RP and y cytoplasmic regions in IL-2 signaling and the 

importance of the cooperation between P and y cytoplasmic domains in activating 

downstream signaling pathways [223,224]. 
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1.5.2. Fc receptors 

CD 16, the FcRy, is a low affinity receptor that binds IgG in immune complexes with soluble 

or insoluble antigen (e.g. antibody coated cells) but does not bind monomeric IgG. FcyR is a 

multimeric receptor that associates with dimers of y or £ chains of TCR. None of these 

subunits possess intrinsic kinase activity, but stimulation of FcyR rapidly activates PTK 

signaling pathway and tyrosine phosphorylation of substrates critical for cell activation 

including £ and PLC, tyrosine phosphorylation and increase in the catalytic activities of both 

Syk family PTKs, Zap70 and syk. Using a vaccina virus expression system, it has been 

shown that Ick overexpression of the wild type , but not the kinase deficient mutant, of Ick in 

cloned human NK cells increases this phosphorylation and the association of Zap70 with £ 

chain of FcyR, suggesting a role for Src family PTK, p56fc\ in FcyR initiated regulation of 

tyrosine phosphorylation of Zap70, syk and PLCy [225,226]. 

FcpR, the Fc R for IgM, initially reported on a small proportion of NK cells, has recently 

been shown, by the use of more sensitive techniques, to be expressed on the majority of 

resting NK cells [227], and shown to be involved in ADCC mediated by NK cells against 

target cells coated with IgM . Very recent studies have shown that like FcyRIII, FcpR also 

associates physically and functionally with £ and y chains which become tyrosine 

phosphorylated upon cross-linking of the FcuR, and induces the activation of Src and Syk 

family members PTKs [228]. 
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1.5.3. CD69 

CD69, also designated activation inducer molecule (AIM), is a new member of the calcium 

dependent lectin superfamily of type II transmembrane receptors which includes the human 

NKG2, the rat and mouse NKR-P1 families of NK specific genes, and shares functional 

characteristics with most members of this superfamily which act as transmembrane 

signaling receptor in early phases of cellular activation. CD69 is a phosphorylated disulfide-

linked heterodimer of a 28 and a 32 kDa chains. It is not expressed by resting peripheral 

blood lymphocytes but on activated T, B and NK cells and platelets and seems to be the 

earliest inducible cell surface glycoprotein. Its expression on IL-2 activated NK cells 

parallels the acquisition of lytic activity preceding the appearance of HLA-DR, IL-2R 

(CD25), and the transferrin receptor (CD71). CD69 and phorbol esters are comitogenic for T 

lymphocytes [2]. 

1.5.4. CD28 

CD28 is a disulfide-linked homodimer expressed by peripheral T lymphocytes, and 

thymocytes. It binds to CD80 and CD86 (B7-1 and B7-2 respectively), that are expressed on 

activated B cells, macrophages, and dendritic cells. CD28 on T cells provides one of the 

most important costimulatory signals for T cell proliferation induced by stimulation via 

TCR. CD28 mediated signals result in cytokine production, in particular IL-2. Although 

CD28 is generally absent from PB NK cells [229], its involvement as an important 
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costimulatory molecule for NK cells have been shown in a number of studies using MHC 

unrestricted cytotoxicity of the NK cell lines YT2C2 and YT which express CD28. Ligation 

of CD28 receptor on YT cells induces granule exocytosis, which was also induced by mAb 

to LFA-1 [230]. The participation of CD28/B7 interaction in MHC-unrestricted cytotoxicity 

mediated by YT2C2 was demonstrated by correlation of target cell sensitivity with the 

level of B7 expression, and the inhibition of cytotoxicity by CD28 or anti B7 antibodies and 

by making both murine and human cell lines susceptible to YT2C2-mediated lysis by 

genetic transfection with expression vectors containing B7 cDNA. However, CD28/B7 

interactions alone were insufficient to initiate cytotoxicity. 

1.6. M H C class I and NK receptors 

Both CTL and NK cells distinguish self from nonself through target cell MHC class I. NK 

activity was originally defined as MHC non-restricted as opposed to that of CTLs which 

recognize foreign antigen in the context of MHC class I. Subsequent studies showed that the 

pattern of MHC class I expression of the target cell may in fact determine its sensitivity to 

NK cell killing. Several reports indicated an inverse correlation between MHC class I 

molecules expression on tumor cells and their susceptibility to NK cells: in some cell lines 

low expression of MHC class I correlated with high sensitivity to NK-mediated killing and 

limited in vivo growth potential, whereas high MHC class I variants were resistant to NK 

cells and highly metastatic. MHC class I molecules seem, at least in some cases, to "protect" 

tumor cells from NK effector cells by masking some recognition structures on target cells 
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(target interference model) or by giving a negative signal to NK cell (effector inhibition 

model). Selected MHC class I molecules have been shown, in some but not all systems, to 

protect the target cell from NK cell lysis by delivering a predominantly inhibitory signal 

[231-234]. The protective effect of MHC class I would occur at a post-binding step hence 

over-riding activating signals induced by target cell. It has been shown that while NK cell 

binding to both MHC class I deficient and MHC class I transfected target cells induces rapid 

PTK activation, the more distal phospholipase C (PLC) dependent signaling events 

(phosphoinositol release and intracellular calcium increase) were only induced by NK cell 

binding to MHC class I deficient target cells [235]. To date, not a unique NK-receptor 

responsible for initiating the cytolytic response has been identified. Target cell lysis by NK 

cells is regulated by a balance between activating and inhibitory receptors. 

1.6.1. Activating molecules 

A number of activating receptors capable of inducing cytotoxicity and cytokine production, 

have been identified. They are type II integral membrane proteins with calcium dependent 

lectin domain, that bind to carbohydrate moieties. Although their ligands are not yet known 

it can not be excluded that they also recognize MHC class I molecules. These receptors 

termed NK1.1, NKR-P1 and CD69 in mouse, and NKG2 and CD69 in human, are encoded 

by a family of related genes, on or near the NK gene cluster on the mouse chromosome 6 

and on the human chromosome 12 respectively. NKR-P1 has first been cloned and 

sequenced in rat [236], and mouse[237] where several isoforms occur simultaneously; and 

then the human homologous the NKG2 family was cloned [238]. 

33 



A. Mouse NKR-P1 family 

NKR-P1 is a type II integral membrane protein formed of a 60 kDa homodimer and 

expressed on rat and mouse NK cells. A role for NKR-P1 molecules as activating receptors 

capable of triggering effector functions of NK cells has been suggested by the observation 

that antibody to NKR-P1 was able to enhance redirected lysis of FcR+ NK resistant target 

cells by IL-2 activated NK cells [239]. More recently, a number of oligosaccharides have 

been shown to bind, with different affinities, to NKR-P1 and such ligands have been further 

identified on NK susceptible tumor cells. Inhibition studies using soluble forms of NKR-P1 

or the ligand oligosaccharide provided evidence that NKR-P1 interaction with 

oligosaccharide ligands on target cells is crucial and results in activation of NK cells leading 

to target cell lysis. These studies further postulated that different classes of oligosaccharide 

constitute ligands for NKR-P1 depending on the nature of target cell [240]. 

B. Human NKG2 family 

NKG2 family of genes preferentially expressed on human NK and some T cells with NKG2-

A and B alternatively spliced product of the same gene product, while NKG2-A, C and D 

are different gene products [234]. A recombinant soluble form of NKG2-C was shown to 

bind specifically to NK sensitive target cells K562, but not to several other hematopoietic 

cell lines tested. This binding structure on surface of K562 as well as the susceptibility to 

killing disappeared when K562 were induced to differentiate with phorbol esters and 

calcium ionophores. This suggests the presence of specific target molecules for NKG2 on 

K562 and propose that NKG2-C is functionally important in NK cell killing process [241]. 
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1.6.2. Inhibitory molecules 

A. mouse Ly-49 family 

Ly-49 is a family of nine closely related genes on mouse chromosome 6, encoding type II 

integral membrane proteins (members of C type lectins) that are preferentially expressed by 

NK cells. They may bind to carbohydrate moieties on the target cell [242,243]. LY-49A was 

the first inhibitory receptor identified on murine NK cells. Originally identified as YE 1/48 

or A l , a T cell antigen of unknown function [244-246], it was later cloned [247,248] and 

shown to be a member of the Ly 49 multigene family [249]. It was subsequently observed 

that Ly-49A+ NK cells were unable to kill H-2Dd and H-2Dk tumor cells, whereas Ly-49A-

NK cells efficiently lysed these target cells [250,251]. Among other identified Ly49 

members are Ly49C, also termed 5E6, that reacts with H-2b, H-2d, H-2k, and H-2S [252,253], 

and Ly49G2, also termed LGL-1, that has been reported to react with H-2Dd, and H-2Ld 

[254]. 

B. Human inhibitory receptors 

In common with murine NK cells, human NK cells also express receptors for polymorphic 

MHC class I molecules that inhibit killing of target cells bearing appropriate alleles. Two 

classes of inhibitory receptors have been identified thus far, namely killer inhibitory receptor 

(KIR) family which belongs to the Ig-superfamily and CD94 which is a C-type lectin. 

KIRs are members of the immunoglobulin (Ig) superfamily encoded by a small family of 

related genes located on the human chromosome 19, and have no homology to the murine 

Ly-49 genes. They comprise two groups of molecules: p58 and p70 that interact with HLA-
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C and HLA-B alleles respectively. The p58 family with two Ig like domains is characterized 

by mAb GL183 and EB6 that react with serologically distinct epitopes on molecules termed 

p58. Expression of p58 defines two groups of NK cells specific for HLA-C. Group 1 

recognizes HLA-Cw4, and group 2 recognizes HLA-Cw3 [255,256]. p70 has three Ig like 

domains and is defined by DX9 monoclonal antibody (previously called NKB1). p70 

recognizes HLA-Bw4 [257]. p58 molecule appear to recognize polymorphism at residues 77 

and 80 of HLA-C molecule (GL183+ group 1 corresponds to Ser 77 and Asn 80, whereas 

EB6+ group 2 corresponds to Asn 77 and Lys 80)[258,259], and NKB1 recognizes 

corresponding region on HLA-B [260]. Recently a new member of the KIR family 

designated NKAT4, encoding a 70 kDa receptor specific for HLA-A3 has also been 

described [261] 

CD94 (Kp43) is a type II integral membrane protein expressed on NK cells, a subset on y/5 

T cells, and rare oc/(3 CD8+ CD56+ T cell clones, and reported to provide specific 

recognition for HLA-B (B7, B8, B14)[262,263], but its ability to recognize MHC molecules 

is controversial [260,263]. Although the general consensus is a post binding inhibitory 

signal delivered by target MHC class I binding to its receptor on NK cells, there is some 

discrepancy between the available data with studies indicating that cross linking of some of 

these same receptors can trigger activating signals and granule exocytosis. An anti p58 

antibody, presumably directed against epitopes serologically distinct from that recognized 

by EB6 or GL183, was reported to directly activate TNF-a, IFN-y production as well as 

serine esterase secretion by NK cells [264]. Stimulation through CD94 with an anti Kp43 

mAb was shown to enhance the ability of IL-2 stimulated NK cells to synthesize TNF-a, 

through an LFA-l/ICAM-1 interaction [265]. This was suggested to be due to the great 
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heterogeneity of different clonal populations in terms of quantitative and qualitative 

differences in their expression of MHC class I receptors [266]. The functional ambivalence 

of CD94 was also recently reported with CD94 specific mAbs shown to either trigger or 

inhibit cytotoxicity in distinct subsets of NK clones [267]. These clonotypic differences 

have been shown to lead to differential signaling and cellular responses. CD94 ligation in 

group A clones, expressing low levels of CD94, induced proximal PTK cascade including 

activation of PTKs Ick and Zap70, PLC, and PI3K, while in group B clones, expressing high 

levels of CD94, it did not induce any of these activation events, instead it inhibited FcR 

induced signaling events such as tyrosine phosphorylation of Zap70, and PLCyl, formation 

of phospho-£/Zap70 complex, and PI release [268]. 

The cytoplasmic region of these KIRs includes a motif characterized by two tyrosine-X-X-

leucine (YXXL) pairs spaced by 26 amino acids. The integrity of this intracytoplasmic 

sequence appears to be critical for KIR-mediated inhibition, since a naturally occurring form 

of the molecule, truncated after the first tyrosine residue, mediates NK cell activation rather 

than inhibition [269,270]. The configuration of tyrosine residues in KIRs is reminiscent of 

the immune receptor tyrosine-based activation motif (ITAM), also called antigen receptor 

activation motif (ARAM), associated with the Fc, B, and T cell receptors [271]. ITAMs 

transduce activation signals upon receptor cross-linking by serving as substrates for src 

family tyrosine kinases such as Ick or lyn, and by subsequent association with SH2 domains 

contained in tyrosine kinases such as ZAP-70 and syk [271]. However, the unusual spacer 

region between the two Y X X L , spanning 26 instead of 6-8 amino acids present in ITAM, 

suggests an independent, and possibly different, function for these two motives. The 

hematopoietic cell-specific tyrosine phosphatase (HCP) [272] or PTPase PTP1C (also called 
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SHP, SH-PTP1), expressing two SH2 domains is involved in the termination of many 

inhibitory signaling pathways, such as erythropoietin and Kit/stem cell factor (SCF) receptor 

signals [273]. Its association with several receptors has suggested a role for this phosphatase 

in either modulating or blocking activation signals [274]. Association of HCP/PTP1C with 

tyrosine phosphorylated p58 has been recently reported providing functional evidence that 

HCP plays a role in the delivery of a negative signal that prevents target cell lysis by NK 

cells [275]. Recruitment of HCP/PTP1C by p58 KIR was shown to be mediated by the 

specific binding of p58 cytoplasmic phosphotyrosine-containing sequences to PTP1C, after 

phosphorylation induced by either the pharmacological agent phenylarsine oxide or by 

conjugation with target cells [276]. Tyrosine phosphorylation of the NKB1 KIR consensus 

motif YXXL(x) 2 6 YXXL was also shown to induce an association with PTP1C and to be 

capable of inhibiting T cell activation in Jurkat cells [277]. CD94 was recently shown to 

assemble covalently with members of NKG2 family of C-type lectins [278,279]. NKG2A/B 

possess two 1'1'lM sequences in their cytoplasmic domain, which may be responsible for the 

inhibitory function of these receptors, whereas other NKG2 proteins lack ITIMs and may 

potentially transmit positive signals [278]. Association of CD94 with different NKG2 

members available on different NK clones could therefore explain clonotypic differences in 

terms of activatory versus inhibitory signals provided by CD94 engagement. 

At present no human homologs to Ly49 genes or murine counterparts to the KIR family 

have yet been identified. However, despite distinct evolutionary origins, it has recently been 

reported that both human p58 KIR and H^D^-specific mouse Ly49A receptors recruit the 

same protein tyrosine phosphatases, PTP1C and PTP1D, upon phosphorylation of critical 

intracytoplasmic tyrosine residues [280]. 
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1. 7. Signal transduction in NK cells 

Two major signal transducing pathways have been extensively studied in NK cells, those 

following IL-2 binding to IL-2R, and those involved in triggering cytotoxic functions 

through ADCC or direct binding to target cell. 

1.7.1. IL-2 R 

IL-2 potently stimulates NK proliferation and cytotoxic functions, with acquisition of higher 

cytotoxic activity and larger spectrum of target cells. The pleiotropic effects of IL-2 on NK 

cells are initiated and regulated by a complex and multistep interaction between different 

PTKs including p56fc* and members of the Janus family (JAK) of PTKs that are critical 

enzymes in signaling pathways via hematopoietic receptors. EL-2R P chain interacts both 

physically and functionally with p56fc* which is activated by IL-2, and also with Jakl and 

syk of the Syk/Zap70 family PTKs [223], while IL-2Ry binds to JakS [281]. Although very 

small percentage (1%) of total cell p56tet associates with IL-2R P chain, this association has 

been shown to be critical for the EL-2 induced activation of p56fc*. IL2 stimulation induces 

tyrosine phosphorylation of a number of intracellular proteins, a rapid and substantial 

increase in catalytic activity of p56w (measured in an in vitro kinases assay). This activation 

is associated with a pronounced reduction in the electrophoretic mobility of p56" due to an 

increase in the phosphorylation of the NH2 terminal region of p56w containing multiple 

sites of serine/threonine phosphorylation, as well as in the COOH terminal peptide 
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containing the regulatory Tyr505 residue of p56"* [282,283]. Quantitative analysis have 

shown that 10-40% of total p56k*is converted into p6<f* presumably due to phosphorylation 

of p56k* on serine/threonine and/or tyrosine residues. Therefore, p56" serves as a substrate 

for both protein serine and tyrosine kinases activated during stimulation with IL-2 [281]. 

Recent studies reported that syk activation precedes p56" activation which in turn activates 

PI3K in the cascade of IL-2R stimulation[282]. 

1.7.2. Cytotoxic functions 

Activation of NK cells following conjugate formation with their target cell has been shown 

to be associated with intracellular calcium mobilization, increased PI turnover, protein 

kinase C (PKC) activation and tyrosine phosphorylation of a number of NK cell proteins. 

CD 16 being one of the first NK receptors known to trigger cytotoxic functions and target 

cell lysis, is the most studied NK cell surface molecule with respect to the induced signaling 

events. Early studies showed that PKC together with calcium ionophores induce granule 

exocytosis in CTL and NK cells [284]. PI turnover and increased intracellular calcium 

concentrations were shown to be induced upon FcR ligation or exposure of NK cells to NK 

sensitive, but not NK resistant target cells suggesting a possible involvement of PI 

metabolism in ADCC and CMC. It was subsequently shown that FcR cross linking as well 

as contact with NK sensitive, but not NK resistant, target rapidly induced tyrosine 

phosphorylation of a number of distinct proteins. PTK inhibitors, herbimycin A and 

genestein, inhibit NK cytotoxic functions for both ADCC and CMC, suggesting that 
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tyrosine phosphorylation provides an early and requisite signal for activation of NK 

cytotoxic functions [285]. The £ chain constitutes a substrate for CD 16 induced tyrosine 

phosphorylation, as the activation of NK cells with either anti CD 16 Ab or Ab coated target 

cells but not other activating stimuli (phorbol esters, ionomycin, IL-2, NK sensitive targets) 

triggers tyrosine phosphorylation of FcR activation is coupled to phospholipase C (PLC) 

via a G protein independent pathway, and it induces tyrosine phosphorylation of both 

PLCyl and PLC y2 isoforms [286,287]. Herbimycin A abrogates this phosphorylation as 

well as the subsequent PI turnover, suggesting that FcR-initiated PI turnover in human NK 

cells is regulated by tyrosine phosphorylation of PLCy. cAMP has been reported to exert a 

potent inhibitory effect on NK cytotoxicity (ADCC or CMC) probably by uncoupling NK 

receptor from PLC mediated PI hydrolysis. Activation of PLC cleaves Pis into inositol 

1,4,5-triphosphate (IP3) and diacylglycerol (DAG) which in turn mediate mobilization of 

intracellular calcium and activation of PKC respectively. Furthermore, Wortmannin, a 

selective PI3K inhibitor, inhibits FcR initiated granule exocytosis and ADCC, suggesting 

that PI3K activation in NK cells is associated with this pathway. Despite some similarities 

in the signaling events such as early PTK activation, PI turnover and increases in 

intracellular calcium concentration, ADCC and CMC are differentially regulated by PKC 

and PI3K: ADCC operating through PI3K dependent and CMC though a PKC dependent 

pathway [288]. More recently, FcyR was reported to induce tyrosine phosphorylation and 

increase the catalytic activity of both Syk family PTKs, syk and Zap70, this 

phosphorylation was markedly increased by Ick overexpression of wild type, but not the 

inactive mutant, suggesting a regulatory interplay between Src and Syk families PTKs and 

that early FcyR initiated activation of Ick results in subsequent regulation of Syk family 

PTKs [225,226]. 
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1.8. TNF-alpha and IFN-gamma signal transduction pathways 

I. 8.1. TNF -a signaling pathway 

TNF-cc is a cytokine with pleiotropic action. It is known to induce DNA fragmentation 

[289], and expression of a number of cellular genes, including c-fos, c-myc, HLA class I and 

II, ICAM-1, ELAM-1, VCAM-1, diverse cytokines (IL-1, IL-6, IL-8, TNF-a, CSFs), and 

their receptors [290-294], There is increasing evidence that induction of many TNF-

responsive genes is mediated, at least in part, through activation of nuclear transcription 

factor system NF-jfcB and its binding to kB site which is found in the enhancer element of 

many genes [295-299]. NF-fcB was originally described as being present in the cytosol of 

most cell types as an inactive heterodimer composed of 50 kDa and 65 kDa subunits [300]. 

This heterodimer is bound to an inhibitor protein or proteins IkB. Induction of NK-fcB 

binding involves dissociation of NK-fcB from IkB, followed by translocation of the p50-65 

heterodimer to the nucleus, where it directly binds to its cognate DNA sequence [301,302]. 

TNF-a has been identified as one of the few naturally occurring endogenous NF-fcB 

inducers. TNF-a, ionizing radiation, or daunorubicin cause the activation of NF-fcB by its 

rapid nuclear translocation through degradation of IkB. This protects cells from killing, and 

inhibition of NF-fcB nuclear translocation enhances apoptotic killing by these reagents, but 

not by apoptotic stimuli that do not activate NF-&B [303,304]. Experiments in NF-&B knock 

out mice, and in cells expressing a dominant negative IkB, have recently brought some 

information on the mechanism of cellular resistance to TNF-a induced PCD and confirmed 
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an essential role for NF-fcB in preventing TNF-a induced apoptosis [305,306]. Since cell 

killing by TNF-a is enhanced by protein synthesis inhibitors [307], it was suggested that a 

negative feedback mechanism results from TNF-a signaling in which NF-&B activation 

suppress the signals for cell death. Thus the activation of NF-/fcB probably functions to 

transcriptionally up-regulate a gene or group of genes encoding proteins involved in 

protection against cell killing [305]. Thus, although it triggers a biochemical pathway 

leading to PCD, TNF-a activates a key molecule, NF-&B, that can block this same pathway 

and so sets a delicate life-death balance within the cell [305,306]. NF-fcB is activated in 

many cell types by PMA, a direct activator of PKC. However, IL-1 and TNF-a have been 

shown to activate NF-fcB in PKC depleted cells and in presence of PKC inhibitors [295]. 

TNF-a signaling is initiated by interaction of TNF-a with two distinct cell surface receptor 

molecules that have apparent molecular sizes of 55-60 kDa (TNF R-55, or TNFR1), and 75-

80 kDa (TNF R-75, or TNFR2) [308]. These receptors share homology in the extracellular 

ligand binding region; however, the cytoplasmic domains are distinct and lack any inherent 

enzymatic activity, which suggests that ligand binding and subsequent receptor clustering 

leads to the association of active signaling molecules with TNFRs [308]. While information 

about TRF R-75 signaling is scarce, TRF R-55 has been shown to trigger specific signal 

cascades, including phospholipase A2 (PLA2), phosphatidylcholine (PC)-phospholipase C, 

protein kinase C (PKC), and sphingomyelinase (SMase)[309]. Two of the most important 

activities of TNF, apoptosis and NF-fcB activation, are signaled by TNFR1 following its 

oligomerization by the trimeric TNF [308]. TNF-a signals via unknown second messengers 

leading to activation of NF-fcB [299] and Jun nuclear kinase/stress-activated protein kinase 

(JNKs/SAPKs), and a weaker stimulation of MAP kinase activity [310,311]. Ceramide has 
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been suggested to be an important mediator of the effects of TNF-a on growth inhibition, c-

myc down-regulation, apoptosis, and the activation of the nuclear factor NF-fcB [311]. 

Ceramide has also been shown to be the link between the binding of TNF-a to TNFR1 and 

activation of a cytoplasmic kinase cascade that results in stimulation of JNK/SAPK activity 

and c-jun expression [311]. By activating JNK/SAPK, TNF-a and ceramide activate a 

subset of AP-1 transcription factors, such as c-jun and ATF-2 which in turn will 

preferentially induce genes with specific non-consensus binding sites, such as the c-jun itself 

[312]. The weak activation of MAP kinase activity by TNF-a may be the result of ceramide-

independent activation of a component (MEK or MAP kinase itself) downstream of Raf-1 

and/ or by activation of protein kinase C [313]. 

1.8.2. IFN-y signaling pathway 

IFN-y is a potent immunomodulatory cytokine that exerts its pleiotropic effects by 

interacting with a single high affinity receptor expressed on the surface of nearly all host-

derived cells [314]. IFN-y receptors consist of two subunits: a 90 kDa a chain that is 

responsible for ligand binding, ligand trafficking through the cells, and signal transduction 

[315] and a 62 kDa (3 chain that plays only minor role in ligand binding but which is 

obligatorily required for function [316,317]. IFN-y signal transduction is known to require at 

least three other components in addition to receptor polypeptides. Two of these are the 

tyrosine kinases JAK-1 and JAK-2 [318], which become rapidly activated following IFN-Y 

receptor ligation and affect the tyrosine phosphorylation of the third component, a latent 

cytosolic transcription factor, Statl, which subsequently forms an activated homodimer, 
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translocates to the nucleus, and initiates transcription of IFN-y inducible genes [319,320]. 

Although it is not yet clear whether JAK kinases phosphorylate STATs directly, they are 

required for tyrosine phosphorylation and activation of STATs [321,322]. Recent studies 

clearly demonstrate that the IFN-y receptor a and P subunits do not constitutively associate 

with one another but rather become associated upon exposure to ligand. These results also 

demonstrate that each receptor subunit associates with a specific JAK kinase. JAK-1 

associates with the IFN-y receptor a chain, and JAK-2 with the IFN-y receptor P chain 

[323]. Thus ligand-dependent association of the IFN-y receptor subunits brings into close 

juxtaposition inactive forms of receptor subunit-associated JAK-1 and JAK-2, which 

transactivate one another to initiate the IFN-y signaling responses [324]. 
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1.8. Thesis objective 

The overall goal of this thesis is to elucidate the mechanism by which leukemic cells escape 

NK cell mediated cytotoxicity. Although NK cells have been shown to be effective in 

eliminating leukemic cells in vitro as well as in vivo, not all leukemic cells are sensitive to 

their cytotoxic effects. Killing of target cells by NK cells is a multistep process that involves 

the initial binding of NK cells to their target, activation of NK cells, and eventual lysis of 

target cells. This thesis focuses on the first two steps of this process and examines whether 

NK cells fail to kill certain leukemic cells due to their failure to achieve either binding or 

activation steps. In these studies, the NK resistant leukemic cell line SR-91 and the human 

NK cell line NK-92 were established. It was found that SR-91 expresses very low level of 

ICAM-1 which has been demonstrated to play an important role in NK cell cytotoxicity, it 

was therefore hypothesized that the low level of ICAM-l expression is responsible for the 

resistance of SR-91 to NK-mediated cytotoxicity. The second hypothesis is that some 

adhesion molecules are important not only for the binding of NK cells to target cells, but 

also for the generation of activation signals in NK cells. To test these hypotheses, the 

relevance of ICAM-1 expression on the NK resistant leukemic cell line, SR-91, to its 

sensitivity to NK-mediated killing is examined, and the effect of upregulation of ICAM-1 

expression on conjugate formation and lysis by NK cells is studied. The second part of these 

studies focuses on the cellular mechanism of TNF-a induced sensitivity of SR-91 cells to 

NK-mediated killing, and two major directions are investigated: 

1) the possibility of induction of apoptosis in the target cells upon TNF-a treatment, and 2) 

activation of CAMs on SR-91 cells by TNF-a. 
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Finally, the possibility that the cell adhesion molecules ICAM-3 and CD44 may function 

activating receptors on NK-92 cells is examined. 
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Chapter 2. MATERIALS AND METHODS 

2.1. Cells and culture medium 

K562 (erythroleukemia), HL-60 (promyelocytic), U937 (myelomonocytic), KGla (variant 

of the A M L cell line KG1), Daudi (Burkitt's lymphoma), Raji (B-cell lymphoma), Jurkat 

(T-cell lymphoma), NCI H929 (IgA myeloma), U266 (IgE myeloma), and RPMI 8226 

(myeloma, light chain secreting) cell lines were obtained from American Type Culture 

Collection (ATCC, Rockville, MD). NK-92 cells were maintained in myeloid long-term 

culture medium (Myelocult™, StemCell Technologies Inc., Vancouver BC) supplemented 

with 200 units/ml recombinant IL-2 (provided by Amgen Canada, Inc., Mississauga, ON). 

Al l other cell lines were maintained in continuous suspension culture in RPMI 1640 

supplemented with 10% FCS, penicillin at 10"4 units/ml and streptomycin at lOmg/ml. 

DA3, the murine IL-3 dependent myeloid cell line (provided by Dr G Krystal, Terry Fox 

Laboratory, Vancouver, BC) was maintained in RPMI 1640+10% FCS, supplemented with 

5 ng/ml murine recombinant IL-3 (provided by Recombinant Protein Production Facility, 

Terry Fox Laboratory, Vancouver, BC). 
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2.2. Antibodies and reagents 

The following murine monoclonal antibodies (mAbs) to human antigens were used: affinity 

purified antibodies to CD54 (anti ICAM-1, clone RR1.1, IgGla, provided by Dr. R. 

Rothlein, Boehringer Ingelheim Inc. Ridgefield, CT), CD102 (anti ICAM-2, clone CBR 

IC2/2, IgG2a, provided by Dr. T. Springer, Boston, MA), CD50 (anti ICAM-3, clone ICR-

2, IgGl, provided by Dr. M . Gallatin, ICOS Corporation, Bothell, WA), CDlla (anti LFA-

1, clone NB107, IgGl, provided by Dr. F. Takei, Terry Fox Laboratory, Vancouver, BC), 

anti CD44 (clones 3C12, 8D8, 7F4, and 2G1, IgGl, provided by Dr. G. Dougherty, Terry 

Fox Laboratory, Vancouver, BC), anti MHC class I (W6/3, IgG2a, provided by Dr P 

Landsdorp, Terry Fox Laboratory, Vancouver, CA). Mouse anti Lck mAb was purchased 

from Santa Cruz Biotechnology (Santa Cruz, CA). Rabbit antisera specific to Lck was 

provided by Dr. P. Leibson (Mayo Clinic, Rochester, MN), free and Protein A conjugated 

anti phosphotyrosine mAb, clone 4G10 was from Upstade Biotechnology Inc. (Lake Placid, 

NY ), horse radish peroxidase conjugated second antibody was obtained from Jackson 

Immunoresearch (West Grove, PA), soluble ICAM-3 (sICAM-3) was provided by Dr. M . 

Gallatin. Human ICAM-1 cDNA was provided by Dr. T. Springer (Boston MA). 

Recombinant IL-2 was obtained from Amgen Canada Inc., recombinant TNF-a was 

provided by Genetech Inc. (San Francisco, CA), IFN-y was purchased from Collaborative 

Research Inc. (Bedford, MA), IL-1 from R&D Systems (Mineapolis, MN, USA ), IL-4 from 

DNAX (Palo Alto, CA, USA), IL-6 and IL-7 from Immunex (Seatle, WA, USA), IL-12 

from Genetics Institute(Cambridge, MA, USA), IFN-a from Schering Canada Inc. (Pointe 
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Claire, Quebec, Canada), GM-CSF from Behringwerke (Marburg, Germany), murine 

recombinant IL-3 was obtained from Recombinant Protein Production Facility at Terry Fox 

Laboratoy (Vancouver BC), protein grade Nonidet P-40 (NP-40) was purchased from 

Calbiochem (San Diego, CA), and the enhanced chemoluminescence Western blotting 

reagents were purchased from Amersham (Arlington Heights, IL). A l l other reagents were 

obtained from Sigma (St Louis, MO), unless otherwise indicated. 

2.3. Purification of human NK cells 

Human peripheral blood mononuclear cells (PBMC) were separated from peripheral blood 

of healthy volunteers by Ficoll-Hypaque. 2 ml of PBMC ( 2xl0 8 cells) were then placed on 

top of a seven-layer iso-osmolar(290 mOsm, pH 7.4) discontinuous Percoll (Pharmacia, 

Piscataway, NJ) density gradient ( density of 1.052, 1.055, 1.058, 1.061, 1.064, 1.067, and 

1.071). After centrifugation at 550xg for 30 mn at room temperature, the NK cell enriched 

population with a density of 1.055, and 1.058 was collected and cultured in MyeloCult 

supplemented in the presence of 500 U/ml IL-2. After 4-5 weeks of culture in IL-2, a highly 

purified IL-2 activated NK cell population (>90% CD56+, CD3- cells by direct 

immunofluorescence) was obtained that lysed target cells K562 and Daudi. 
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2.4. Cell surface marker analysis 

HLA typing for NK-92 was performed by Dr B. Thiele (laboratory of immunology, 

Kalserslautern, Germany) using the polymerase chain reaction sequence specific primer 

(PCR-SSP) based technique (Dynal, Oslo, Norway) [325]. Al l other cell surface markers 

were determined by flow cytometry and indirect immunofluorescence with appropriate 

isotype-matched antibodies used for control experiments. lxlO 5 cells were washed twice in 

phosphate buffered saline (PBS) +2% FCS +0.02% sodium azide, and incubated with 

unconjugated primary antibody, or with FITC or PE conjugated antibodies for 30 min at 4°C 

in the dark. Staining with unlabeled antibodies was performed by sequential incubation with 

saturating concentration of test antibodies and FITC conjugated goat F(ab)'2 anti mouse IgG 

as a secondary antibody. Cells were then washed twice in washing solution and resuspended 

in PBS+2%FCS+0.2%NaN3, supplemented with propidium iodide at a final concentration 

of 1 pg/ml. IgGl and IgG2 isotype controls, secondary antibody alone or normal saline 

(unstained) controls were included in all experiments. Cells were then analyzed in a flow 

cytometer FACSort/FACScan (Becton-Dickinson, Mountain View, CA). Propidium iodide 

was used to set up a live gate on FL-3 to exclude dead cells. For each sample, 5000 events 

were collected and analyzed using Hewlett Packard HP340 software. 
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2.5. Cytotoxicity assay 

Target cells (K562, Daudi or SR-91) were pelleted and labeled with 30uCi (Du Pont) at 

37°C for 1 h, washed and placed into 96-well round-bottom microtiter plates (Nunc) at lxlO 4 

cells/well. NK-92 effector cells were added at different effector: target cell ratios to a final 

volume of 200 pi. After incubation at 37°C for four h, 100 ul of the supernatant was 

removed from each well and the released radioactivity counted in a gamma counter (Gamma 

5500, Beckman instruments Inc., Palo Alto, CA). The percent cytotoxicity was determined 

according to the formula : 

Experimental release - Spontaneous release 

% Specific cytotoxicity = XI00 

Maximum release - Spontaneous release 

Spontaneous release (target cells incubated with medium alone) was always less than 15% 

of maximum release (target cells lysed by medium containing 20% Triton X-100). 

Antibody inhibition experiments were performed using antibodies against LFA-1, ICAM-1, 

ICAM-2 and ICAM-3. Different antibodies were either preincubated with effector or target 

cells for 30 min at 25°C and the excess antibody was removed by two washes prior to the 

cytotoxicity assay, or antibodies were added to the reaction mixture and were present during 

the cytotoxicity assay. 
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For the cold target cell competition assay, varying numbers of unlabeled and radiolabeled 

TNF-a and IFN-y treated SR-91 cells were mixed with effector cells, keeping the total target 

cell number constant (lxlO 4 cells/well), and a cytotoxicity assay was performed as described 

above. For calcium free conditions, the assay was performed in Ca 2 + and Mg 2 + free Hank's 

balanced salt solution (HBSS) supplemented with 5mM MgCl and ImM EGTA. 

2.6. Proliferation assay 

Cells were washed and resuspended at 4xl0 5 cells/ml in RPMI 1640 medium supplemented 

with 10% FCS or alpha medium for SR-91 and NK-92 cells respectively. 100 pi of cell 

suspension were seeded in a 96 well flat-bottomed plate ( Falcon, Becton Dickinson) and 

an equal volume of the media alone or media containing different cytokines at various 

concentrations was added to each well, and incubated at 37°C in a humidified incubator at 

5% C02. Serum free medium was used when testing erythropoietin. SR-91 cells were 

cultured for 48 h, 3 H thymidine (Amersham, Oakville, ON, Canada) was then added at 0.5 

pC/well (in 20 pi). After six hours incubation, cells were harvested and samples collected 

using a cell harvester (Cambridge Technology, Watertown, MA, USA) and 3H-thymidine 

uptake counted in a liquid scintillation counter (Beckman Instruments). For NK-92 cells 

after 3 days of incubation, alpha medium was replaced by RPMI 1640 medium and plates 

were further incubated for two hours. This was necessary as alpha medium contains 

thymidine which can interfere with the 3 H thymidine incorporation. Plates were incubated 

for further two hours. Cells were then pulsed with 3H-thymidine and harvested as described 

above. 
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2.7. Irradiation of NK-92 cells 

NK-92 cells were irradiated in T25 flasks (Falcon, Beckton Dickinson ) using a cesium 

source (Cis-US, Bedfors, MA). A dose range of 200-2000 cGy was tested. After irradiation, 

the cells were washed twice and resuspended in medium and cultured for 72 hours in IL-2. 

Cytotoxicity ( 5 1 Cr release assay) and proliferation (3H-thymidine ) assays were performed 

with these cells as described above. 

2.8. Assay for clonogenic hematopoietic progenitor cells 

Normal PBMCs were co-cultured with irradiated (lOOOcG) NK-92 cells for two days. Cells 

were then plated in replicate 1.1 ml aliquots of methylcellulose-containing media at 

densities adjusted to give approximately 10-100 large colonies of erythroid cells (from 

burst-forming units, or BFU-E), granulocytes and macrophages (from colony-forming units-

granulocyte/macrophage or CFU-GM), and combinations of all these (from CFU-

granulocyte/erythroid macrophage/megakaryocyte, or CFU-GEMM). The medium was 

supplemented with 30% FCS, 1% de-ionized bovine serum albumin (BSA), 10 M 2-

mercaptoethanol, 3 units/ml human erythropoietin, and 10% human leukocyte conditioned 

medium. Plates were incubated for 18-21 days in 5% C02 humidified air at 37°C and the 

different types of colonies scored in situ using established criteria. Colonies were counted 
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under an inverted microscope two weeks late. This assay was performed by Stem Cell Assay 

laboratory at Terry Fox Laboratory. 

2.9. Conjugate formation assay 

To quantitate the binding between SR-91 and NK-92 cells, a conjugate formation assay was 

performed as previously described [326,327]. Briefly, effector and target cells were washed 

separately in serum free PBS, resuspended at two times the desired concentration in 500 pi 

and mixed with an equal volume of 1-2 pg/ml of fluorescent cell linkers PKH26 (red 

fluorescence) and PKH2 (green fluorescence) (Sigma), respectively. The cells were 

incubated in the dark for 2-5 min at 25°C. The staining reaction was stopped by adding an 

equal volume of FCS and incubating at 25°C for one min. After adding 2 ml 

RPMI+10%FCS, cells were centrifuged at 400x g for 10 min, the supernatant removed and 

the pellet resuspended in HBSS +2% FCS, transferred into a new tube and washed three 

times with HBSS+10%FCS. The cell pellets were then resuspended at the desired 

concentration in PBS containing 5mM MgCl 2 and ImM EGTA. To allow for conjugate 

formation, 100 pi aliquots of effector and target cells were mixed, centrifuged at 400x g for 

three min, incubated for 10 min at 37°C and then analyzed by flow cytometry. To eliminate 

non-specific conjugate formation, two-color labeled effector/effector and target/target cells 

were also examined. A total of 5000 events were examined. The percentage of conjugated 

cells was determined by dividing the number of dual labeled particles by the total number of 

cells bearing that label. 
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2.10. Transfection 

Human ICAM-1 cDNA was subcloned into the EBV derived expression vectors pREP9 and 

pCEP4 (Invitrogen. San Diego. CA) which contain neomycin and hygromycin resistance 

genes respectively. Not I/Hind HI sites were used for pREP9, and the Nhe I/Xba I sites for 

pCEP4. SR-91 cells (5xl06 in 500 pi of media), were transfected with 20 pg of either 

pREP9:ICAM-l or pCEP4:ICAM-l plasmid by electroporation (0.25 kVolt, 500 uFD) 

using a Gene Pulser™ (Bio-Rad, Hercules, CA). The transfectants were selected in 0.4 

mg/ml G418 or 0.5 mg/ml hygromycin respectively. 

2.11. Adhesion assay 

To determine the activation state of LFA-1, CD44 and the pi integrins, adhesion assays 

using fluorescent tagged SR-91 cells were performed essentially as previously described 

[174]. Briefly, 96 well flat bottom plates ( Falcon) were coated with 4pg/ml sICAM-3 in 

TSM buffer (25mM Tris-HCl, pH 8.2, 150 mM NaCl, 2mM MgCl2) for 2 h at 37°C (to 

measure the activation state of LFA-1), or with fibronectin (1 mg/ml in PBS) (for the p i 

integrins) overnight at 4°C. 24 well plates (Falcon) were coated overnight at 4°C with 

hyaluronan (Sigma) (5mg/ml in PBS) to assess CD44 activation. As a control, 0.1% bovine 

serum albumin (BSA) was coated onto the same plates. At the end of the incubation time, 

wells were washed twice with PBS prewarmed to 37°C, and saturated with PBS containing 

0.1% BSA for 30 min at 37°C. 
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For fluorescent labeling, SR-91 cells were washed three times with serum-free HBSS, 

resuspended in 1 ml serum-free HBSS and 1-5 pg/ml calcein A M (Molecular Probes Inc., 

Eugene, OR) added to the cell suspension. After incubation at 37°C for 45 min, cells were 

washed once in HBSS and once with HBSS+2%FCS and resuspended in HBSS+2%FCS. 

For binding, 500 pi or 50 pi of the cell suspension (lxl06cells/ml) were added to the 24 or 

96 well plates, respectively, and incubated for 30 min at 37°C. Non-adherent cells were 

gently removed, the plates gently washed twice with prewarmed PBS and the wells overlaid 

with PBS. The intensity of the fluorescence bound to the wells was determined using a 

fluorescent plate reader (Bio-Instruments, Highland Park, VT, model EL30q). The 

percentage of bound cells was determined by referring to a standard curve established using 

known numbers of fluorescent cells. 

2.12. DNA fragmentation assay 

Cells were incubated overnight with different doses of TNF-a, lxlO 6 cells were used for 

each condition. Cells were washed in PBS, pelleted and DNA obtained by lysing the cell 

pellet in 20 pi of apoptosis lysis buffer (0.1% Na Citrate, 0.1% Triton X-100, pH 8). DNA 

samples were then incubated with lp l proteinase K (at 10 mg/ml), followed by 10 pi RNase 

( at lpg/ml), both incubations were for 1 h at 50°C. Samples were further incubated at 70°C 

for 10 min after the addition of 10 pi of loading buffer, and loaded in 1% agarose gel 

containing O.lmg/ml ethidium bromide, and run at 90 volts. 
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2.13. Flow cytometric cell cycle analysis for the detection of apoptosis 

The decreased binding of DNA-binding dyes to apoptotic cells which appears as a distinct 

peak below the Go/Gl peak, allows the discrimination of apoptotic cells from their healthy 

counterparts by conventional cell cycle analysis [328]. Cell cycle analysis was performed as 

previously described [329]. Briefly, lxlO 6 cells were washed once in PBS and lysed in lysis 

buffer (0.1% Na Citrate, 0.1% Triton X-100, pH 8) containing 20 ug/ml of propidium 

iodide, cell lysates were kept at 4°C in the dark for 10 min, and then analyzed by flow 

cytometry. The IL-3 dependent DA3 cells were deprived of IL-3 and FCS for 24 h. SR-91 

cells as well as TNF sensitive cell lines U937 and HL60 were cultured overnight in the 

presence of different doses of TNF-a. 

2.14. Immunoprecipitation and immunoblotting 

Immunoprecipitations and Western blot analysis were performed as described previously 

[330]. Briefly, NK-92 cells were deprived of IL-2 for 4 h, and, after washing and 

resuspending in PBS, they were incubated with different doses of the indicated antibodies 

for various times (5 to 45 min) at 25°C. The cells were then washed twice in PBS to 

eliminate excess antibody and lysed with 1% NP-40 in phosphorylation solubilization buffer 

(PSB) (50mM HEPES, pH 7.4, lOOmM NaF, lOmM NaPPi, 2mM NaV03, 4mM EDTA, 
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2mM DMSO) containing 10 pg/ml leupeptin, 2 pg/ml aprotinin, and 2mM PMSF for 1 

hour at 4°C. Cell lysates were then centrifuged at 400x g for 10 min to pellet nuclei and any 

intact cells, and the supernatant centrifuged at 18000x g for 10 min to pellet insoluble 

material. For immunoprecipitation, the supernatants were incubated with 

antiphosphotyrosine (4G10) coupled Protein A sepharose beads for four h at 4°C, or 

sequentially with rabbit anti-Lck antiserum for 1 h at 4°C and Protein A coupled Sepharose 

beads for three h at 4°C. Immunoreactive proteins were then eluted specifically by 20 mM 

phenylphosphate (for 4G10) or by boiling in SDS sample buffer. The samples were resolved 

by SDS-polyacrylamide gel electrophoresis, and the proteins transferred onto Immobilon-P 

membranes (Millipore, Bedford, MA). Blots were then blocked with 5% BSA in PSB or 5% 

skim milk in TBS (20mM Tris, pH 7.5, 150mM NaCl) and incubated with 4G10 or mouse 

monoclonal anti-Lck antibody (at 0.5 pg/ml) for 1 h at 25°C. Membranes were washed five 

times in TBS, 0.025% Tween (TBST) and then incubated with anti-mouse IgG coupled to 

horse radish peroxidase (HRP) for 45 min at 25°C. After washing in TBST, the proteins 

were visualized by incubation with ECL substrate solution and exposed to Kodak Xomat 

film (Eastman Kodak). 
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Chapter 3. Establishment of a model system to investigate leukemic 

cell resistance to NK mediated killing. 

The data presented in this chapter has been incorporated into the following manuscripts: 

Klingemann HG, Gong J, Maki G, Horsman DE, Dalai BI, Phillips GL. 1994. 

Establishment and characterization of a human leukemic cell line (SR-91) with features 

suggestive of early hematopoietic progenitor cell origin. Leuk Lymphoma 12: 463. 

Gong J, Maki G , Klingemann HG. 1994. Characterization of a human cell line (NK-92) 

with phenotypical and functional characteristics of activated natural killer cells. Leukemia 

8: 652. 

Klingemann HG, Wong E, Maki G. 1996. A cytotoxic NK-cell line (NK-92) for ex vivo 

purging of leukemia from blood. Biol Blood Marrow Transplant 2: 68. 

3.1. Rationale 

Despite the use of more aggressive regimens of chemo-radiotherapy in the treatment of 

cancer patients, tumor relapse remains a major problem. In patients with leukemia, even 

after bone marrow transplantation (BMT), the relapse rate is still about 40-60% for 
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autologous BMT suggesting that myeloablative doses are not sufficient to eliminate residual 

disease. The relapse rate is much lower with allogeneic BMT. This is thought to be due to 

generation of graft versus leukemia (GVL) effect in allogeneic BMT. GVL is an immune 

reaction involving CTLs, NK cells and cytokines such as IL-2, IFN-y and TNF-a. One 

possible mechanism of inadequate GVL in autologous BMT, and tumor resistance in 

general, can be a lack of expression of MHC and/or accessory molecules on tumor cells. 

NK cells and CTLs represent two major cytotoxic lymphocyte populations able to kill 

malignant cells. They become activated and proliferate in response to IL-2 among other 

cytokines. Several studies employing IL-2 as an adjuvant immunomodulatory agent have 

demonstrated that IL-2 also enhances the proliferation and cytotoxicity of T and NK cells in 

vivo [331-333]. Beside their direct antitumor capacity, NK and T cells are also able to 

secrete a number of cytokines upon activation, including cytokines with antineoplastic 

activity such as TNF-a and IFN-y [334,335]. Thus, activated CTLs and NK cells generated 

post-BMT contribute to this antineoplastic activity and GVL [336]. Induction of cytokine 

secretion, in addition to enhancement of the cytotoxic effector functions, is thought to 

contribute to the antineoplastic effects of IL-2 therapy. Investigations performed with 

purified T and NK cells from adult BMT patients receiving IL-2 therapy demonstrate that, 

as a response to IL-2, both cell populations are capable of secreting IFN-y and TNF-a in 

vitro [334]. IFN-y and TNF-a are also known to induce the expression of adhesion 

molecules on tumor cells [337], rendering the neoplastic cells more sensitive to cytotoxic 

effector-cells by providing initial cell-cell contact. 
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In contrast to CTLs that need to be sensitized and recognize the target cell only in the 

context of MHC class I, NK cells are capable of mediating this cytotoxic function without 

prior activation or sensitization [1]. Therefore, they are important components of innate 

immunity functioning as a first line of defense against primary and metastatic tumors. In 

vitro studies have shown that most acute myeloid leukemia (AML) cells are sensitive to 

L A K killing, and a number of animal studies as well as clinical trials in humans have 

demonstrated that combined use of L A K cells and EL-2 can be effective in reducing tumor 

burden and prolonging survival in patients with renal cancer [338-340], melanoma 

[341,342], lymphoma [343], and leukemia [344-346]. However, not all leukemic cells are 

sensitive to cytotoxic effect of L A K cells [162]. 

The objective of this study was : (i) to delineate why some leukemic cells are resistant to 

L A K cell killing, and (ii) to define the contribution of cell adhesion molecules expressed on 

leukemic cells to their susceptibility to L A K cell killing. Information obtained from these 

studies could be useful as to how resistance of malignant cells to NK/LAK cells could be 

overcome for example by modulating the expression of these adhesion molecules on 

leukemic target cells. 

The low number of NK cells in peripheral blood (PB) (10-15% of PBMCs), and technical 

difficulties to obtain pure populations of NK cells free of contaminating T cells constitute a 

major obstacle to the study of this lymphocyte subset. Enriched NK fractions can be isolated 

by Percoll density gradient. Further depletion of monocytes and T cells can be achieved by 

using nylon wool column or plastic adherence, and antibody coated magnetic beads coupled 

to anti CD3 antibody, respectively. Although combination of these methods can allow to 

obtain highly enriched NK cell populations, the purity of the NK population obtained is still 
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compromised by the contaminating T cells. Moreover, the long term maintenance of normal 

NK cells is difficult. Therefore, the availability of NK cell lines is of great practical 

advantage. To date, only very few permanent NK cell lines have been established including 

one rat NK cell line (RNK-16), and four human NK cell lines [347-350] that are listed in 

table 1. The other alternative option to obtain pure NK cells for biological studies is the 

generation of NK clones. A number of such NK clones have been isolated and characterized 

[256,267,351-353]. They have proven to be very useful tool for the studies of MHC class I 

receptors on NK cells. NK cell clones isolated from single donors display different patterns 

of cytolytic activity against a panel of allogeneic cells, thus indicating that an NK cell 

repertoire exists. Each NK clone shows clonal specificity to recognize HLA class I. 

Expression of given HLA class I alleles protects target cells from lysis by different groups 

of NK clones [256,267,351-353]. Target specificity of these NK clones is therefore limited 

by MHC class I molecules expression on the target cells. 

To investigate the underlying cause(s) for the resistance of certain leukemic cells to killing 

by L A K cell, a model system was established with the NK resistant leukemic cell line SR-

91, and the human NK cell line NK-92 that I established and characterized. The NK-92 cell 

line which has identical features as NK/LAK cells proved to be essential for the hypothesis 

to be tested. The following chapter describes the details as to how the cell line was 

established including its characterization. 
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Table 1. Other available human N K cell lines 

Cell line phenotype Reference 

NK3.3 CD3-, CD56+, CD 16+ Kombluth 1982 [347] 

YT CD3-, CD56+, CD16+ Yodoi 1985 [348] 

YT2C2 CD3-, CD56+, CD16- Teshigawara 1987 [349] 

N K L CD3-, CD56+, CD16+ Robertson [350] 
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3.2. Results 

3.2.1. Establishment and Characterization of a human NK cell line (NK-92) with 

phenotypical and functional characteristics of activated natural killer cells. 

A. Establishment of NK-92 cell line 

The human NK cell line NK-92 was established from blood lymphocytes of a 50-year old 

male patient with rapidly progressive non-Hodgkin's lymphoma, whose marrow was 

diffusely infiltrated with large granular lymphocytes (LGL). Immunophenotyping of marrow 

blasts and peripheral blood lymphocytes showed expression of CD56, CD2, and CD7 but 

not the T-cell marker CD3. Cytotoxic activity of peripheral blood mononuclear cells against 

the NK sensitive cell line K562, and the NK resistant L A K sensitive cell line Daudi, at an 

effector:target ratio of 50:1 was 79% and 48% respectively. To establish the line, PMBCs 

were cultured in tissue culture flasks, at lxlO 5 cells/ml in enriched alpha medium 

supplemented with FCS (12.5%) and horse serum (12.5%) (MyeloCult™, StemCell 

Technologies, Vancouver, BC) in the presence of lOOOU/ml of human recombinant IL-2. 

Cells were cultured at 37°C in a humidified atmosphere of 5% C02. The NK-92 cell line 

has been continuously proliferating in suspension culture with twice weekly medium change 

for over 18 weeks. Under these conditions, NK-92 cells grew as non adherent cells forming 

large loose aggregates. Cell growth and survival was dependent on IL-2 and alpha medium, 

as the cells died within 72 h when IL-2 was omitted or when the alpha medium was replaced 

by RPMI 1640 supplemented with either 12.5% human AB serum or 12.5% FCS. 
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B. Cell surface marker analysis 

Flow cytometric analysis showed that NK-92 cells are positive for CD56, CD2, CD25, 

CD28, CD54 (ICAM-1), CDlla/CD18 (LFA-1); and negative for CD16, CD3, CD4, CD8, 

CD34 (Fig 1). Expression of the IL-2 R alpha-chain (p55) was found to be dependent on the 

amount of IL-2 in the culture medium. At higher doses of IL-2 (lOOOU/ml) 10% of the cells 

were positive whereas about 50% of NK-92 cells express this receptor at intermediate doses 

of IL-2 (lOOU/ml). The IL-2R beta-chain (p75) expression was independent of the 

concentration of IL-2 in the medium (Fig 1). NK-92 cells also express CD95 (Fas Ag), 

CD44, VLA-4, but not VLA-5 (Table 2). The MHC phenotype of NK-92 cells is listed in 

table 3. 
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Log Fluorescence Intensity 

Figure 1. Flow cytometric analysis of cell surface molecules expression on NK-92 cells. 
NK-92 cells were stained with saturating concentrations of monoclonal antibodies against 
CD56, CD3, CD16, CD2, TL-2 receptor a and P chains, LFA-1, ICAM-1 and CD28 (filled). 
Background fluorescence of cells stained with the secondary antibody alone is also shown 
(open). Expression of the IL-2 R alpha-chain (p55) was found to be dependent on the 
amount of IL-2 in the culture medium. At higher doses of IL-2 (lOOOU/ml) 10% of the cells 
were positive whereas about 50% of NK-92 cells express the receptor at intermediate doses 
ofIL-2(100U/ml). 
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Table 2. Flow cytometric analysis of cell surface molecules expression on NK-92 cells. 

Cell surface antigen expression level8 

CD34 -

CD3 -

CD4 -

CD8 -

CD56 +++ 

CD16 -

CD2 ++ 

CD54 (ICAM-1) +++ 

CD102 (ICAM-2) ++ 

CD50 (ICAM-3) + 

CDlla (LFA-1 a chain) +++ 

CD29 (pi integrins p chain) +++ 

CD49d (VLA-4occhain) +++ 

CD49f (VLA-5achain) -

CD44H +++ 

CD44R1" ++ 

CD95 (Fas Ag) ++ 

Expression of cell surface antigen was determined by indirect immunofluorescence staining 
with the corresponding mAb and FACS analysis as described in Materials and Methods. 
Expression levels of each surface antigen is coated as +++(bright), ++ (intermediate). + (low 
expression), or - (not expressed) above background fluorescence. bBased on CD44 staining 
with mAb 2G1 (recognizing exon V10), NK-92 cells express one or more CD44 isoform(s) 
containing the alternatively spliced exon V10 (isoforms R l or R2). 
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Table 3. HLA phenotype of NK-92 cells 

MHC class I ' + for HLA A3, 11 

HLA B4, 44 

MHC class II" + for HLA DR7, 15,51,53 

HLA DQ2, 6 

* MHC class I and II phenotype was determined by PCR-SSP based technique as described 
in Materials and Methods. 
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C. Effects of various cytokines on the growth of NK-92 cells 

NK-92 cells were cultured in the presence of different cytokines and 3H-thymidine 

incorporation measured after 48 h. Different doses of cytokines were tested. No evidence of 

NK-92 cell proliferation was found after two days in medium alone. IL-la, IL-4, IL-6, IFN-

a and IFN-y, tested over a range of 50-1000 U/ml, had no effect on the proliferation of NK-

92 cells (Fig 2). NK-92 cell growth was IL-2 dose dependent and concentrations as low as 

lU/ml induced measurable proliferation with a maximum at 50 U/ml of IL-2 (Fig 3). IL-7 

also stimulated NK-92 cell proliferation. However, cells could not be maintained in IL-7 

alone for longer than one week. IL-12 neither induced short-term proliferation nor was it 

able to support long-term growth of NK-92 cells. 
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Figure 2. Effects of various cytokines on growth of NK-92 cells. 
3H-thymidine incorporation was performed as described in Materials and Methods. The 
cytokines were used at the following concentrations: IL-la lOOOU/ml, IL-2 50U/ml, IL-4 
lOOOU/ml, IL-6 lOOOU/ml, IL-7 lOOU/ml, IFN-a lOOU/ml, IFN-y lOOOU/ml. Results 
represent mean ± SD of triplicates. 
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Figure 3. Dose response curve of the effect of IL-2 on proliferation of NK-92 cells. 
NK-92 cells were cultured with different doses of IL-2, and 3H-thymidine incorporation 
assay was performed after 48 h as described in Materials and Methods. Results represent 
mean ± SD of three different experiments. 
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D. Effect of NK-92 cell on normal and malignant hematopoietic cells 

NK-92 cells spontaneously kill the NK sensitive cell line K562 and the NK resistant, L A K 

sensitive Daudi cells with high efficiency. Even at E:T ratio of 1:1, 83% of K562 and 76% 

of Daudi cells were killed by NK-92 cells. Moreover, it has a very potent cytotoxic activity 

against a broad spectrum of tumor target cells including a number of leukemia (K562, 

KG la, U937, HL-60), lymphoma (Daudi, Raji, Jurkat, DHL-10), and myeloma ( NCI-H929, 

RPMI 8226, U266) cell lines (Table 4). To test whether proliferation of NK-92 could be 

suppressed while maintaining their cytotoxic activity, NK-92 cells were irradiated with a 

cesium source at different doses and tested in proliferation and cytotoxicity assay. It was 

found that at a dose of lOOOcGy, their proliferation, as measured by 3H-thymidine was 

almost completely inhibited (Fig 4) without significant alteration of their cytotoxic activity 

(Fig 5). 
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Table 4. Comparison of cytotoxic activity of NK-92 cells and IL-2 activated PBMCs 
against various leukemia, lymphoma, and myeloma cell lines 

Percentage of cell lysis 

Effector: target ratio 

50:1 20:1 10:1 5:1 1:1 

Leukemia K562 NK-92 68 68 64 59 50 

PBMC+IL-2 63 73 67 51 19 

HL-60 NK-92 97 90 77 46 40 
PBMC+IL-2 31 26 17 2 0 

KGla NK-92 90 91 80 67 39 
PBMC+IL-2 15 11 12 6 0 

U937 NK-92 99 98 96 91 85 
PBMC+IL-2 57 43 23 13 2 

Lymphoma Daudi NK-92 94 87 71 48 39 

PBMC+IL-2 65 57 29 16 6 

Raji NK-92 81 75 74 70 54 
PBMC+IL-2 72 67 57 35 13 

Jurkat NK-92 100 100 98 93 80 
PBMC+IL-2 67 50 36 27 4 

Myeloma NCIH929 NK-92 94 89 89 86 51 

PBMC+IL-2 75 58 39 24 5 

RPMI 8226 NK-92 82 72 70 72 41 
PBMC+IL-2 95 83 81 67 25 

U266 NK-92 84 77 85 81 53 
PBMC+IL-2 84 74 73 56 21 

" Cell lysis was determined in a four h 51Cr release assay as described in Materials and 
Methods, using various E:T ratios. PBMCs were cultured in the presence of lOOOU/ml IL-2 
for four days and then tested in cytotoxicity assay. Data are representative of one out of 
three independent experiments. 
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Figure 4. Effects of y irradiation on NK-92 cells proliferation. 
NK-92 cells were irradiated with a cesium source at the indicated doses and cultured for 48 
h at 37°C in the presence of 100 or 500 U/ml IL-2. Two h prior to the addition of 3H-
thymidine (0.5pCi/well), the culture medium was replaced with thymidine free RPMI. 3H-
thymidine uptake was measured in a liquid scintillation counter four h later. The counts per 
minute (cpm) from two independent experiments are presented in panels A and B . 
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Figure 5. Effects of various doses of radiation on NK-92 cytotoxic activity. 
NK-92 cells were irradiated with a Cesium source at doses ranging between 200 and 
lOOOcGy. After 24 h in BL-2 containing medium to allow cell recovery, cells were then 
tested in a four h Cr release assay against K562 target cells. Mean values of two 
independent experiments are presented. Error bars are not shown, they were always less than 
7% the mean values. 
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To determine whether NK-92 cells have any cytotoxic or inhibitory effect on normal 

hematopoietic progenitor cells, normal PBMCs were co-cultured with irradiated NK-92 cells 

(lOOOcGy) for two days and hematopoietic progenitor cell assay was performed as described 

in Materials and Methods. No growth inhibitory effect on hematopoietic progenitors by NK 

-92 cells was noted (Table 5). Furthermore, NK-92 cell conditioned supematants obtained 

after maintaining the cells for 2 days in either intermediate (lOOU/ml) or high (lOOOU/ml) 

concentrations of IL-2 had neither stimulatory nor inhibitory effects on myeloid colony 

formation when tested in standard BFU-E, CFU-GM, and CFU-GEMM containing non

adherent cell suspensions prepared from human marrow. 
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Table 5. Effect of NK-92 cells on colony formation of normal hematopoietic progenitor 
cells. 

Experiment number CFU-GEMM" BFU-E" CFU-C 8 

1 100 46 94 

2 200 98 64 

3 33 104 103 

"NK-92 cells were irradiated with lOOOcGy (cesium source) and co-cultured with normal 
PBMCs at a 1:1 ratio. The cells were then plated in methylcellulose and counted two weeks 
later as described in Materials and Methods. Results obtained from different donors are 
presented as percentage of normal controls. 
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E. IL-2 deprivation maintains NK-92 activity for 48 hours 

To test how long NK-92 cells would maintain their cytotoxic activity in the absence of 

exogenous IL-2 in the culture medium, NK-92 cells were deprived of IL-2 and 51Cr-release 

was measured in 24-hour intervals. The results obtained suggested that the cells maintain 

full cytotoxic activity for at least 48 hours. Thereafter, the activity dropped rapidly to 

negligible levels (Fig 6). 
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Figure 6. Effects of IL-2 starvation on NK-92 cytotoxic activity. 
NK-92 cells were cultured in medium without TL-2. 51Cr release assay was performed 
against K562 target cell line every 24 h. Results represent mean values of two independent 
experiments ± SD. 
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3.2.2. Establishment of NK resistant human leukemic cell line SR-91 

A. Establishment of SR-91 cell line 

SR-91, a leukemic cell line, was derived from the peripheral blood of a 22-years old male 

patient with a diagnosis of undifferentiated acute leukemia with a peripheral blast cell count 

of 25xl01 0/L. His bone marrow at diagnosis showed >95% infiltration with blast cells which 

were uniform in size and 10-20 u, in diameter. To establish the cell line, the thawed 

peripheral blood obtained at diagnosis were cultured in RPMI 1640/10% FCS and 10% 

5637 conditioned medium which was produced by collecting the supernatant from a cell line 

that had originated from a patient with bladder carcinoma. The cells were maintained at 

37°C in a humidified incubator with 5% C02, with medium changed twice weekly. After 

four weeks, cells became independent of the presence of 5637 medium and were maintained 

in RPMI 1640/10% FCS. 

B. Characterization of SR-91 

Flow cytometric analysis showed that SR-91 cells are positive for CD33, CD34, CD45, 

CD56, and negative for T cell and B cell markers. SR-91 cells were found to express low 

levels of ICAM-1 and high levels of MHC class I (Fig 7). The MHC class I phenotyping of 

SR-91 cells showed that they were positive for HLA-A2, B44, B57, C5. To study the effect 

of various cytokines on the growth behavior of SR-91 cells, 3H-thymidine uptake assay was 

performed. An increase in thymidine incorporation was observed in a dose-dependent 

manner when cells were cultured in the presence of GM-CSF. IL-3 and IL-6 only slightly 

promoted cell growth. No increase or inhibition of proliferation was seen with IL-1, IL-2, 
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IL-4, erythropoietin, TNF-a, IFN-a or IFN-y (Fig 8). The sensitivity of SR-91 cells to NK 

mediated cytotoxicity was assessed in a standard four h 5 1Cr release assay. They were 

resistant to IL-2 activated NK cell killing by both peripheral blood mononuclear cell 

(PBMC)-derived NK cells and NK-92 cell line (Fig 9) 
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Log Fluorescence Intensity 

Figure 7. Expression of ICAM-1 and MHC class I on SR-91 cells. 
SR-91 cells were stained with saturating concentrations of mAbs against ICAM-1, and 
MHC class I (W6/32 mAb) (filled). Background fluorescence of cells stained with the 
secondary antibody alone is also shown (open). 
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Figure 8. Effect of various cytokines on growth of SR-91 cells. 
SR-91 cells were cultured at an initial concentration of 2xl04 in 200 ul per well in the 
presence of recombinant cytokines as indicated (IL-la lOOOU/ml, IL-2 lOOOU/ml, EL-3 
lOOng/ml, IL-4 lOOOU/ml, IL-6 lOOOU/ml, IL-7 lOOOU/ml, M-CSF 360 ng/ml, GM-CSF 
lOOng/ml, IFN-y lOOOU/ml, TNF-a lOOOU/ml, erythropoietin lOU/ml). After 48 h of 
incubation, 3H-thymidine uptake (over six hours) was measured. Results represent mean ± 
SD of triplicates. 
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Figure 9. Sensitivity of SR-91 cells to NK mediated cytotoxicity. 
Cytotoxic activity of (A) peripheral blood NK cells and (B) NK-92 cells against K562, 
Daudi and SR-91 cells measured in a four h 51Cr release assay using various E:T ratios. 
Results are expressed as mean values of three independent experiments ± SD. 
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3.3. Discussion 

In this chapter, establishment, cell surface markers, growth and functional characteristics of 

the human NK cell line NK-92 and the NK-resistant leukemia line SR-91 are described. 

NK-92 is an IL-2 dependent human NK cell line with characteristics of IL-2 activated NK 

cells and able to lyse very efficiently a broad spectrum of tumor target cells, including a 

number of leukemia, lymphoma and myeloma cell lines. Unlike NK clones, NK-92 has a 

broad target specificity and is not inhibited by specific MHC class I on target cells. 

Extensive studies undertaken by other investigators on the relevance of MHC class I 

molecules on target cells which could react with specific NK receptors on NK-92 cells have 

not shown protection from NK-92 cell mediated lysis (E Long personal communication), 

but it has recently been reported that the infection of NK-92 cells, with recombinant vaccina 

virus encoding the two p58 receptors specific for HLA-Cw3 and HLA-Cw4 conferred to 

NK-92 cells the ability to receive an inhibitory signal and reduced significantly their lytic 

activity against Cw3 and Cw4 expressing target cells [275]. 

NK-92 cell line is unique among other available human NK cell lines because it has 

exceptionally high cytotoxic activity against a broad spectrum of target cells. Indeed NK-92 

has proven to be a useful cell line to study the mechanism by which NK cell cytotoxicity is 

regulated [354-357]. The lack of expression of CD 16 represents an advantage of this cell 
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line, allowing it to be used to selectively analyze direct cell-mediated killing mechanisms 

without the involvement of ADCC. 

SR-91 is a leukemia cell line resistant to killing by both PBMC derived NK cells and NK-

92 cells. SR-91 expresses low levels of ICAM-1. Although the cytotoxic activity of NK-92 

is considerably higher than that of IL-2 activated peripheral blood NK cells, the leukemic 

cell line SR-91 cells was still resistant to its killing. The hallmark of SR-91 is that it 

expresses low levels of ICAM-1 and high levels of MHC class I, and thus provides a model 

with which to investigate the role of two potentially important factors in determining NK 

resistance : 1) lack of adequate expression of an important cell adhesion molecules, ICAM-

1; 2) high expression of a "protective" molecule, MHC class I. 
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Chapter 4. ROLE OF ICAMs IN LEUKEMIC TARGET CELL 

INTERACTION WITH EFFECTOR NK-92 CELLS 

4.1. Rationale 

Target cell killing by NK cells involves three steps: 1) binding of NK cells to the target cell 

and conjugate formation, 2) activation of the effector cell leading to the delivery of lethal 

hit, and 3) target cell lysis. A number of cell adhesion molecules (CAMs) have been shown 

to be critical in this process, including members of integrin family (LFA-1, VLA-4, VLA-5) 

and members of the immunoglobulin superfamily (ICAM-1, CD2, LFA-3)[148]. Recent 

studies have shown that LFA-l/ICAM-1 and CD2/LFA-3 interactions are two predominant 

pathways of effector-target interaction for both CTL and NK cells [149-151]. Since 

NK/LAK cells express a variety of adhesion receptors, most studies have come to the 

conclusion that the presence and distribution of adhesion molecules on the target cell may 

be very important in determining its sensitivity to effector cytotoxic cells, and that 

downregulation of adhesion molecules on neoplastic cells may be a potent escape 

mechanism of the tumor cell from the host immune system. 

Considering the importance of LFA-l/ICAM-1 pathway in tumor target interaction with 

effector killer cell, potential contribution of a defective expression of ICAM-1 on target cell 

to its resistance to NK-mediated lysis was investigated in this chapter. For these studies, the 

model system using the NK resistant leukemic cell line, SR-91 and the human NK cell line 
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NK-92 described in the previous chapter was used. SR-91 cells were found to express low 

levels of ICAM-1 and were shown to be resistant to highly enriched CD56+/CD3- NK cells 

obtained from peripheral blood as well as to NK-92. The hypothesis to be tested was that 

resistance of SR-91 to NK mediated lysis is due to lack of conjugate formation, the 

consequences of inadequate expression level of ICAM-1. To test this hypothesis, two 

approaches were taken to upregulate ICAM-1 expression. First, the ICAM-1 cDNA was 

transfected into SR-91. Second, inflammatory cytokines known to induce ICAM-1 

upregulation were used to treat SR-91, and their effects on conjugate formation and 

sensitivity to NK-mediated killing were investigated. 
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4.2. Results 

4.2.1. ICAM-1 transfection 

To determine whether the low levels of ICAM-1 expression on SR-91 is responsible for its 

resistance to NK cells, ICAM-1 cDNA was transfected into SR-91 using the two EBV 

derived mammalian expression vectors pREP9 and pCEP4. ICAM-1 expression of 

pREP9:ICAM-l transfectants, followed by repeated rounds of fluorescent cell sorting of 

transfected cells after selection by G418 resistance allowed us to isolate populations with 

about a fivefold increase in expression of ICAM-1 over the background expression of non 

transfected SR-91 cells (Fig 10A). pCEP4:ICAM-l transfectants (selected by hygromycin 

resistance) showed higher levels of ICAM-1 expression ( five to sixflod) (Fig 10B), and 

were tested in a cytotoxicity assay (Table 6). However, the sensitivity of these higher 

ICAM-1 expressing transfectants to NK-92 mediated lysis was not different from that of the 

cells transfected with the vector alone (Table 6). 

90 



Figure 10. ICAM-1 expression on SR-91 transfectants. 
ICAM-1 expression of transfectants obtained by electroporation of SR-91 with human ICAM-1 
cDNA subcloned into two EBV derived expression vectors pREP9 and pCEP4, was tested: (A) 
with pREP-9:ICAM-l after selection in G418, the hatched area shows higher expressing 
transfectant population isolated by fluorescent activated cell sorting, (B) with pCEP4: ICAM-1, 
after selection in hygromycin B. The expression level of non transfected SR-91 cells is also 
shown as control. 
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Table 6. Sensitivity of SR-91 transfectants to NK-92-mediated cytotoxicity. 

Percentage of cell lysis 

Effectontarget ratio 

10:1 5:1 1:1 0.5:1 

SR-91 8±3 7±2 6+3 3±3 

SR-91. Cep4 18±5 15±4 10+4 8±5 

SR-91. Cep4:ICAM-l 19±2 15±4 11±2 9+2 

K562 83+2 80+2 72+1 63±4 

Daudi 80+2 70±2 65±2 51±3 
a SR-91 transfectants (pCep4: ICAM-1) selected by hygromycin resistance and showing 
higher levels of ICAM-1 expression were tested in a cytotoxicity assay. Hygromycin 
resistant selected SR-91 transfected with vector alone (pCep4) as well as the sensitive cell 
lines K562 and Daudi were also included in the assay. Results represent mean ± SD of 
triplicates. 
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4.2.2. Upregulation of surface expression of ICAM-1 by TNF-a and IFN-y 

In an attempt to achieve higher levels of ICAM-1 expression, pro-inflammatory cytokines 

TNF-a and IFN-y, known to up-regulate ICAM-1 expression on a number of cells, were 

used to investigate whether ICAM-1 up-regulation on NK resistant SR-91 allows conjugate 

formation and lysis by NK cells. Both cytokines were tested at various concentrations (100-

2000U/ml) for induction of ICAM-1 expression. The dose of 500 U/ml for both was found 

to be optimum and used throughout the experiments. SR-91 cells were treated with 

500U/ml of either TNF-a or IFN-y for 16 h at 37°C and tested for the expression of ICAMs 

by flow cytometry. Both TNF-a and IFN-y treatment of SR-91 substantially up-regulated 

ICAM-1 expression by about 15-fold (Fig 11). In contrast to ICAM-1, the two other 

members of the ICAM family, ICAM-2 and ICAM-3 have not been shown to be induced by 

these cytokines. The expression levels of ICAM-2 and ICAM-3 were not significantly 

affected by TNF-a or IFN-y treatment (Fig 11). 
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Figure 11. Flow cytometric analysis of ICAM-1, ICAM-2, ICAM-3, and LFA-1 on SR-
91 cells and the effect of cytokine treatment. 
SR-91 cells (untreated and after 16 h treatment with TNF-a or IFN-y at 500U/ml) were 

stained with saturating concentrations of mAbs against ICAM-1, ICAM-2, ICAM-3, and 
LFA-1 (fdled). Background fluorescence of cells stained with the secondary antibody alone 
is also shown (open). 
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4.2.3. Effects of TNF-a and IFN-y treatment of SR-91 on sensitivity to NK cytotoxicity 

A. Cytotoxicity and Cold target competition assay 

SR-91 cells were treated with TNF-a or IFN-y overnight, and the effects of the treatment on 

sensitivity of SR-91 to NK-92 cytotoxicity was examined. Interestingly, although the level 

of ICAM-1 on EFN-y treated SR-91 cells was comparable to that on the TNF-a treated cells, 

only TNF-a treated cells became sensitive to NK-92 mediated lysis (Fig 12). Thus it can be 

concluded from this that upregulation of ICAM-1 per se is insufficient to enhance 

susceptibility to NK-mediated killing. To determine if upregulation of ICAM-1 is required 

to enhance conjugate formation and to compare the ability of NK binding induced by the 

two cytokines, a cold target competition assay between TNF-a and IFN-y treated SR-91 was 

performed. Varying numbers of unlabeled and radiolabeled TNF-a and IFN-y treated SR-91 

cells were mixed and used as target while keeping the total target cell number constant. The 

results of this assay showed that IFN-y treated SR-91 cells were able to compete with TNF-

a treated cells as targets of NK-92 cells. Therefore, IFN-y and TNF-a seem to induce the 

same level of binding of SR-91 to NK-92 cells (Table 7). These results suggest that 

increased ICAM-1 expression on the target cell does induce a higher level of binding to NK 

cells, but that this only allowed increased killing by NK cells of the TNF-a treated SR-91 

cells. Untreated SR-91 cells showed low binding to NK cells in conjugate formation assay, 

consistent with the hypothesis that increased ICAM-1 expression does lead to increased 

conjugate formation. However, this alone seems to be insufficient to cause lysis and that 

multiple factors induced by TNF-a, but not IFN-y, were required. 
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Figure 12. Effect of treatment with TNF-a and IFN-y on sensitivity of SR-91 cells to 
NK-92 mediated lysis. 
Target cells were incubated with TNF-a or IFN-y at 500 U/ml for 16 h, and then tested in a 
four h 51Cr release assay as described in Materials and Methods. Results are expressed as 
mean values of three independent experiments ± SD. 

96 



Table 7. Cold target competition assay 

Number of lysed cells* xlO 3 

2xl0 4 target cells per well" Experiment 1 : Experiment 2 : 

100% TNF* 12.0 11.0 

75% TNF*+ 25% TNF 8.2 8.1 

25% TNF*+ 75% TNF 2.8 2.8 

75% TNF* + 25%IFN 8.2 7.9 

25% TNF* + 75%IFN 3.3 2.4 

100% IFN* 0 0 

" Varying numbers of non labeled (cold) and radiolabeled TNF-a and IFN-Y treated SR-91 
cells were mixed with effector cells, keeping constant the total target cell number (2xl04 

cells per well). A cytotoxicity assay was performed as described in Materials and Methods. 
Results of two different experiments are presented. * indicates51 Cr labeled target cells. 
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B. Potential inhibitory effect of IFN-y 

Both TNF-a and IFN-y induced ICAM-1 expression (Fig 11) to the same extent and seem to 

induce similar levels of binding to NK-92 cells (Table 7), but only TNF-a treated cells were 

NK sensitive. To test the possibility that IFN-y treatment might have induced some 

inhibitory mechanisms that over-ride the effect of ICAM-1 up-regulation and inhibits the 

induction of NK sensitivity, SR-91 cells were treated with both cytokines simultaneously, 

and chromium release assay performed. SR-91 cells treated with both cytokines were still 

NK sensitive, ruling out the possibility that IFN-y has an inhibitory effect on cytotoxicity 

(Table 8). 
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Table 8. Effect of simultaneous treatment of SR-91 cells with TNF-a and IFN-y on 
sensitivity to NK-92 cell-mediated lysis 

Treatment of SR-91 cells 

Percentage of cell lysis " 

Treatment of SR-91 cells 

Effectontarget ratio 

Treatment of SR-91 cells 20:1 10:1 5:1 1:1 

No treatment 10±3 9+2 7±3 4±3 

TNF-a 57±5 55±4 48+4 38+5 

IFN-y 16±2 12±4 9+2 4+2 

TNF-a+IFN-y 59±2 53±6 49+5 37+3 

a SR-91 cells were incubated with either or both cytokines, and tested in a cytotoxicity assay 
as described in Materials and Methods. Results are expressed as mean values of three 
independent experiments ± SD. 
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C. Effect of antibodies on NK-92 mediated cytotoxicity 

To investigate whether or not ICAM-1 up-regulation was required for the lysis of TNF-a 

treated SR-91, the effect of anti LFA-1 and anti ICAM-1 mAbs on this process was studied. 

NK-92 mediated cytotoxicity against TNF-a treated SR-91 cells was partially blocked with 

anti-ICAM-1 antibody, while LFA-1 completely abrogated the cytotoxicity. A combination 

of antibodies against ICAM-1, -2, and -3 also completely inhibited it, whereas combination 

of ICAM-1 and ICAM-2 or ICAM-1 and ICAM-3 only partially inhibited the cytotoxicity 

(Fig 13). Anti ICAM-2 or ICAM-3 alone or in combination had almost no inhibitory effect. 

These results indicate that LFA-1 is crucial for cytotoxicity of TNF-a treated SR-91 cells by 

NK-92. In this system LFA-1 primarily interacts with ICAM-1 but ICAM-2 and ICAM-3 

are also involved. Thus the upregulation of ICAM-1 appears to enhance the efficiency of 

killing, but as suggested in the previous assay it is not sufficient to account for the induced 

cytotoxicity observed by TNF-a. 
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Figure 13. Effect of different antibodies on the cytotoxicity of NK-92 against TNF-a 
treated SR-91. 
Target cells were incubated with TNF-a at 500U/ml for 16 h, and a MCr release assay 
performed after antibodies against different adhesion molecules were added to the cells. Anti 
LFA-1 mAb was used at 1:20 dilution of hybridoma supernatant, affinity purified mAbs anti 
ICAM-1, anti ICAM-2 and anti ICAM-3 were used at 5 to 10 pg/ml. Panel A shows the 
mean of five independent experiments ± SD, one representative experiment (out of three 
independent experiments) is shown in panel B. Anti CD44 hybridoma supernatant (clone 
2G1, IgGl), and the affinity purified mAb OKT9 (CD71, IgGl) and W6/32 (against MHC 
class I invariant portion, IgG2a) were used as control antibodies, and had no effect on killing 
of TNF-a treated SR-91 cells. 
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4.2.4. Effect of cytokine treatment on conjugate formation 

A. Dual color flow cytometric analysis 

To further establish upregulation of ICAM-1 on SR-91 by pretreatment with TNF-a and 

IFN-y enhanced the binding of SR-91 to NK-92 cells, effector and target cells were labeled 

with two distinct fluorescent dyes and a conjugate formation assay performed. Effector-

target cell conjugates were visualized by flow cytometry as double color events. Only 8-

16% of untreated SR-91 cells formed conjugates with NK-92 cells. Treatment of SR-91 

cells with TNF-a enhanced the frequency of conjugates to 32-44% (Fig 14). IFN-y 

pretreatment also enhanced the number of conjugates to the same extent (26-40%). These 

results indicate that TNF-a and IFN-y are equally effective at enhancing conjugate 

formation between SR-91 and NK-92 and is consistent with the increased ICAM-1 

expression by both cytokines. Since TNF-a, but not IFN-y, treatment enhanced the 

susceptibility of SR-91 to NK-92 cytotoxicity, TNF-a is likely to have additional effects on 

SR-91 cells. 
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Figure 14. Quantification of effector-target conjugate formation by dual color flow 
cytometry. 
After incubating SR-91 cells with TNF-a or IFN-y at 500U/ml for 16 h, effector and target 
cells were labeled with two different fluorescent dyes (red and green fluorescence 
respectively), and a conjugate formation assay was performed as described in Materials and 
Methods. Effector-target conjugates were visualized by flow cytometry as double color 
events, quadrant 1: effector cells, quadrant 2: effector-target conjugates, quadrant 3: target 
cells. The number of conjugates was obtained by dividing the number of dual labeled 
particles (quadrant 2) by the number of target cells (quadrant 2+3) multiplied by 100. 
Results of one representative experiment (out of five independent experiments) are shown. 
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B. Effect of antibodies on conjugate formation 

To examine the contribution of CAMs in conjugate formation in this system, and to 

investigate whether ICAM-1 up-regulation was responsible for this increased binding to NK 

cells of TNF-a treated SR-91, the effect of anti LFA-1 and anti ICAM-1 mAbs on this 

process was studied. Conjugate formation between cytokine treated SR-91 and NK-92 cells 

was reduced to baseline when anti-LFA-1 antibody or a combination of antibodies against 

ICAM-1, ICAM-2 and ICAM-3 were used (9% and 7% respectively). Antibody against 

ICAM-1 alone had not a significant inhibitory effect on conjugate formation (30% versus 

33% in the absence of antibodies) and anti ICAM-2 or anti ICAM-3 when used alone, had 

no effect (Fig 15). This data is consistent with the data using cytotoxicity as a readout (Fig 

13) and underlines that ICAM-1 expression on SR-91 cells is crucial for conjugate 

formation and lysis by NK cells. 
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Figure 15. Inhibitory effect of antibodies on conjugate formation. 
SR-91 cells were incubated with TNF-a or IFN-y at 500U/ml for 16 h and conjugate 
formation determined (as described in the legend to Figure 14) in the presence or absence of 
antibodies to LFA-1 and the different ICAMs (as described in the legend to Figure 13). The 
percentage of effector-target conjugates is stated in the heading of each plot. Control 
antibodies were used as mentioned in the legend to figure 13. 
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4.3. Discussion 

ICAM-1 transfection into SR-91 was not conclusive in that although it allowed about 

fivefold increase in ICAM-1 expression, these transfectants when tested in cytotoxicity 

assay showed similar sensitivity as the cells transfected with vector alone. The second 

approach however, SR-91 treatment with TNF-a, was more effective and allowed higher 

expression of ICAM-1 (about 15-fold), and increased binding and sensitivity to NK-92 cells. 

The results in this chapter demonstrated that: 1) TNF-a and IFN-y treatment of SR-91 

induced the same level of ICAM-1 expression and binding to NK cells, but only TNF-a 

treated cells became sensitive to NK mediated killing. 2) The increased binding and 

susceptibility to NK-92 cells was completely abrogated by anti LFA-1 antibody or a 

combination of antibodies against all three ICAMs, while anti ICAM-1 alone had only a 

partial inhibitory effect and antibodies against ICAM-2 or ICAM-3 had almost no effect. 

These results indicate that ICAM-1 expression on SR-91 cells is required for binding to NK 

cells but, on its own, is not sufficient to induce sensitivity to NK cell mediated killing. 

MHC class I expression of SR-91 cells is high and does not change upon treatment with 

either cytokines. Therefor, it is unlikely that MHC class I is responsible for the resistance of 

SR-91 cells to NK-92 mediated killing. Moreover, NK-92 cells do not express any known 

member of the KIR family whether p58 or p70, but express high levels of CD94 (E Long 

personal communication). 
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The conjugate formation assay showed inefficient binding between SR-91 and effector NK 

cells. Considering the crucial role of ICAM-l/LFA-1 in target cell interaction with effector 

killer cells, and the fact that NK-92 cells express a wide spectrum of CAMs, it was 

hypothesized that NK resistance of SR-91 cells is due to the lack of adequate binding to NK 

cells, which in turn is a consequence of low expression of ICAM-1 on SR-91. 

The results in this chapter confirm the importance of LFA-l/ICAMs interaction for initial 

effector-target cell binding and subsequent target lysis by NK cells. They also suggest that 

ICAM-2 and ICAM-3 participate in conjugate formation, but require the presence of ICAM-

1 at a certain level to allow adequate binding. This further underlines that ICAM-1 

expression on target cell is essential to allow binding to the effector cell. However, ICAM-1 

on its own is not sufficient to induce sensitivity to NK killing. In a number of systems, 

antibody inhibition studies have previously shown the importance of ICAM-1 at the target 

level and of LFA-1 at effector level, since preincubation of effector cells with anti LFA-1 

and target cells with anti ICAM-1, but not anti LFA-1, have been shown to significantly 

inhibit NK-mediated conjugate formation and cytolysis of susceptible target cell lines 

[151,161]. It should be noted that the degree of anti LFA-1 inhibition observed in NK assays 

varies significantly and is apparently dependent on the given target cell analyzed [162]. In 

this study, antibodies had to be present in the reaction mixture during the period of the assay 

to be effectively inhibitory. Preincubation of either effector and/or target cells with 

antibodies against LFA-1, ICAM-1, ICAM-2 or ICAM-3 alone or in combination followed 

by removal of unbound antibody did not result in any significant inhibitory effect. This 

might be due to low affinity of the antibodies used. Therefore, these studies did not allow 

the role of LFA-1 and ICAM-1 (or ICAMs) on effector versus target cells to be delineated. 
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The fact that both cytokines used in these studies induced the same level of ICAM-1 

expression and binding to effector cells, while only TNF-a treated target cells became 

susceptible to NK-92 mediated lysis argues against an upregulation of ICAM-1 on SR-91 as 

the sole factor responsible for this observed NK sensitivity. This is further supported by the 

results of antibody inhibition studies. The importance of LFA-l/ICAMs interaction in 

conjugate formation and susceptibility to NK lysis was demonstrated by profound inhibitory 

effects of antibodies to LFA-1 and ICAMs. Among CAMs examined in this study, only 

ICAM-1 was upregulated by the two cytokines. These results suggest that ICAM-1 

upregulation is sufficient for binding of SR-91 to NK-92. However, the differential effects 

of TNF-a and IFN-Y o n m e sensitivity of SR-91 to NK cytotoxicity suggest that other 

molecules or pathways may be involved in subsequent post binding events necessary for the 

induction of costimulatory signals to the effector cell and granule exocytosis. 
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Chapter 5. INVESTIGATION INTO T H E R O L E OF OTHER 

CAMs IN T H E LYSIS OF TNF T R E A T E D SR-91 BY 

NK-92 C E L L S 

5.1. Rationale 

Based on the well established role of ICAM-l/LFA-1 pathway in effector-target interaction, 

the original hypothesis of this project was that the lack of adequate expression of ICAM-1 

on target cell is responsible for its resistance to NK cell mediated killing. However, results 

from the previous chapter showed that induction of ICAM-1 expression by IFN-y results in 

increased binding of SR-91 to NK-92 cells, but not enhanced sensitivity to NK-92 cell 

mediated killing. In contrast, TNF-a treatment induces not only increased binding but also 

enhanced sensitivity of SR-91 to NK-92. Therefore, it was postulated that TNF-a, but not 

IFN-y, may activate molecules on SR-91 cells that, upon interaction with their counter 

receptors on NK-92 cells, trigger the release of cytotoxic granules and target cell lysis. TNF-

a is a cytokine with pleiotropic action. It is known to induce apoptosis and DNA 

fragmentation [289]. It has also been identified as one of the few naturally occurring 

endogenous NF-ifcB inducers. Expression of a number of cellular genes, including c-fos, c-

myc, HLA class I and II, and cytokine genes are induced by TNF-a [290-292]. Therefore, 

TNF-a may have many effects at various levels of effector-target interaction. 
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A number of cell adhesion molecules, including ICAM-1, ELAM-1, and VCAM-1, have 

also been shown to be induced by T N F -a . In addition to inducing expression of these 

CAMs, T N F - a may also functionally activate CAMs. It was hypothesized that T N F -a , but 

not IFN-y, may activate molecules on SR-91 cells that upon interaction with their counter-

receptors on NK-92 cells trigger the release of cytotoxic granules and target cell lysis. 

Among several CAMs known to be expressed on NK cells, ICAM-3 and CD44 are of 

particular interest. CD44 has recently been reported to trigger cytotoxic functions of CTL 

[208-210] and NK cells [196-198]. Anti CD44 antibodies or the CD44 ligand, hyaluronan, 

have been shown to be costimulatory for T cells and to trigger cytotoxic functions and 

tyrosine phosphorylation. Ligation of CD44 on NK cells by selected antibodies, have also 

been shown to induce NK cytotoxic functions and increased killing of sensitive target cells 

[198,200]. Bispecific antibodies linking CD44 on NK cells to target molecules on the target 

cell, have also been shown to induce target cell lysis [199]. Finally CD44 has been recently 

reported to associate with p56fc* in T cells [211]. Moreover, homotypic and heterotypic 

binding between different isoforms of CD44 has recently been reported [207]. Thus it is 

possible that a ligand of T N F - a treated SR-91 cells may bind to CD44 on NK cells and 

trigger cytotoxicity. Another possible counter-receptor on NK cells is ICAM-3. ICAM-3 has 

been reported to transduce signals and to associate with the Src family members of tyrosine 

kinases^/! and lck in T cells [187]. However, the involvement of ICAM-3 in triggering 

activation signals in NK cells that lead to granule exocytosis has not been reported. 

Therefore, the hypothesis was that T N F - a induced counter-receptors on SR-91 cells that 

may interact with CD44 and ICAM-3 on NK-92 cells to trigger the cytotoxic function. 
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5.2. Results 

5.2.1. TNF-a and apoptosis 

The results in the previous chapter showed that TNF-a treated SR-91 cells become sensitive 

to NK mediated cytotoxicity. TNF-a is known to induce DNA damage either directly [289] 

or indirectly through the induction of other molecular pathways such as Fas-Fas L [135]. To 

determine whether this is due to induction of apoptosis of SR-91 by TNF-a treatment, DNA 

was isolated from SR-91 cells treated overnight with different doses of TNF-a and analyzed 

by a 1% agarose gel electrophoresis. HL-60 and U937 cells were used as positive control for 

TNF-a induced apoptosis [289]. TNF-a did not induce DNA fragmentation of SR-91 cells, 

whereas apoptosis of HL-60 and U937 was readily detected by this assay (Fig 16). 

Apoptosis of SR-91 was also examined by flow cytometric analysis of cell cycle as 

described in Materials and Methods. The results confirmed that TNF-a treatment does not 

induce apoptosis of SR-91 cells. As positive control, IL-3 starvation of the IL-3 dependent 

cell line DA3 induced a 20% increase of the proportion of apoptotic cells, while the TNF 

sensitive cell line, U937, showed about 8% increase of the apoptotic rate upon TNF-a 

treatment (Fig 17). 

SR-91 and NK-92 cells both express Fas antigen, but the expression of Fas ligand (CD95) 

on NK-92 cells had not been documented. In contrast to granule exocytosis and perforin 

mediated killing, Fas pathway of apoptosis is Ca 2 + independent [133]. To determine whether 

TNF-a treatment induces Fas-mediated apoptosis of SR-91, a cytotoxicity assay was 
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performed in the presence and absence of calcium (Fig 18). The results clearly demonstrated 

that the lysis of TNF-a treated SR-91 by NK-92 is totally dependent on Ca 2 +. Therefore, 

Fas-Fas L pathway, which is Ca 2 + independent, is not involved in this cytotoxicity. 
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Figure 16. DNA fragmentation assay. 
SR-91 and the TNF-a sensitive cell lines HL-60, and U937 cells were exposed to various 
doses of TNF-a (0, 500, 1000, and 2000 U/ml), for 16 h. DNA was extracted and resolved 
by agarose gel electrophoresis as described in Material and Methods. 1x10 cells were 
analyzed in each experiment. 
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Figure 17. Detection of apoptosis by flow cytometric analysis of cell cycle. 
SR-91 cells and the TNF sensitive cell line U937 were exposed overnight to TNF-a. 1x10 
cells were lysed and analyzed by flow cytometry as described in Material and Methods. The 
IL-3 dependent cell line DA3 was also included as a positive control of apoptosis induced 
upon IL-3 starvation. 
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Figure 18. Calcium requirement for NK-92 lysis of TNF-a treated SR-91. 
To test the effect of calcium depletion on NK-92 mediated lysis of TNF-a treated SR-91, a 
cytotoxicity assay, in calcium free conditions, was performed in Ca2+ and Mg + free HBSS 
supplemented with 5mM MgCl2 and ImM EGTA as described in Materials and Methods. 
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5.2.2. TNF-a but not IFN-y activates the adhesion receptors LFA-1, and pi integrins 

on SR-91 cells 

To investigate whether CAMs other than ICAM-1 were involved in sending an activating 

signal to NK-92 cells, cell surface expression and the functional activation state of a number 

of cell surface molecules on SR-91 and the effects of TNF-a and IFN-y were examined. 

Activation of LFA-1 by TNF-a was determined by binding of SR-91 cells to plastic wells 

coated with sICAM-3. LFA-1 and ICAM-3 were found to be constitutively expressed on 

both NK-92 and SR-91(Fig l & l l ) . LFA-1 on NK-92 is in active state, as assessed by 

binding to sICAM-3 coated wells, presumably because of IL-2 stimulation. On the other 

hand, SR-91 cells without cytokine treatment did not bind to sICAM-3-coated wells, 

indicating that it is in inactive form. Upon treatment with TNF-a, but not IFN-y, SR-91 

cells avidly bound to sICAM-3, indicating that LFA-1 on SR-91 is functionally activated by 

TNF-a, but not IFN-y (Fig 19). This is consistent with the hypothesis that LFA-1 on SR-91 

may bind to ICAM-3 on NK-92 cells and send a signal to kill. 

p i integrins VLA-4 and VLA-5 bind to the ECM protein, FN [358]. VLA-4 also binds the 

vascular endothelial adhesion molecule (VCAM-1) which is normally expressed on vascular 

endothelial cells, and its expression is inducible by TNF-a [359,360]. Although usually both 

VLA-4 and VLA-5 are expressed on NK cells, only VLA-4 is expressed on NK-92 cells. 

VCAM-1 is not expressed on NK-92 cells nor on SR-91 or cytokine treated SR-91 cells. 

Therefore,VCAM-lA^LA-4 interaction is not involved in this process. Although SR-91 cells 
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constitutively express VLA-4 and VLA-5, they do not bind to fibronectin unless they are 

activated by PMA (Fig 19). However, TNF-a treatment enhanced the adhesion of SR-91 to 

fibronectin, although not to the same extent as seen with PMA, whereas IFN-y had no effect. 
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Figure 19. Activation of LFA-1 and pi integrins on SR-91. 
SR-91 cells were incubated for 16 h with TNF-a or IFN-y and tested for their binding to 
plastic wells coated with sICAM-3 and fibronectin, respectively, either in the absence or 
presence of PMA (added at 100 ng/ml during the adhesion assay). The percentage of bound 
cells was determined by referring to a standard curve established using a series of known 
number of fluorescent cells. Results are expressed as mean values of two independent 
experiments ± SD. 
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5.2.3. Expression and function of CD44 isoforms 

CD44 binds hyaluronan (component of ECM). Homotypic adhesion of CD44, mediated by 

interaction between CD44R1 and CD44R1 or CD44R1 and CD44H, has also been reported 

[207]. Flow cytometric analysis showed that NK-92 expresses CD44H and CD44R1, as well 

as the activation epitope defined by the antibody 7F4 (Table 2, Fig 20). SR-91 expresses 

CD44H, and TNF-a treatment up-regulates CD44R1 expression and slightly enhances the 

expression of 8D8 epitope (Fig 21). It also induces CD44 activation, as assessed by binding 

of SR-91 to hyaluronan coated plastic wells and the expression of the activation epitope 

7F4 (Fig 22). 7F4 mAb reacts with a CD44 determinant shown to be expressed on 

peripheral blood T cells following PHA stimulation which parallels the acquisition of the 

capacity to bind hyaluronan. Therefore, it appears to define an activation epitope associated 

with functional activation of CD44 molecules [361]. IFN-y did not induce activation of 

CD44 (Fig 21& 22). 
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Figure 20. Flow cytometric analysis of ICAM-1, ICAM-2, ICAM-3, LFA-1, and 
different epitopes of CD44 on NK-92 cells. 
NK-92 were stained with saturating concentrations of monoclonal antibodies against ICAM-
1, ICAM-2, ICAM-3, LFA-1, and CD44 (fdled). Background fluorescence of cells stained 
with the secondary antibody alone is also shown (open). 
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Figure 21. Flow cytometric analysis of different epitopes of CD44 on SR-91 cells and 
the effect of cytokine treatment 
SR-91 cells (untreated and after 16 h treatment with TNF-a or IFN-y at 500U/ml) were 

stained with saturating concentrations of monoclonal antibodies against CD44H (3C12), 
CD44R1 (2G1) and different epitopes of CD44 (8D8 and 7F4) (fdled). Background 
fluorescence of cells stained with the secondary antibody alone is also shown (open). 
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Figure 22. Activation of CD44 on SR-91 cells and TNF-a treated cells. 
Untreated and cytokine treated SR-91 cells were analyzed (A) by flow cytometry for the 
expression of the activation epitope of CD44, 7F4 and (B) in adhesion assay with 
hyaluronan coated wells (as described in the legend to Figure 19). Results are expressed as 
mean values of two independent experiments ± SD. 
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5.3. Discussion 

In this chapter, I investigated the mechanisms by which TNF-a-induces sensitivity of SR-91 

cells to NK-92-mediated killing. This effect of TNF-a is not due to direct induction of 

apoptosis of SR-91 cells and is independent of Fas-Fas L pathway. Functional analysis of 

CAMs on SR-91 cells demonstrated that TNF-a, but not IFN-y, functionally activates LFA-

1, p i integrins (VLA-4, and VLA-5), and CD44. These adhesion molecules have been 

shown to be important for the interaction between NK cells and target. NK-92 expresses 

ICAMs and CD44 that can function as counter-receptors for LFA-1 and CD44, respectively. 

Thus it is possible that these CAMs may bind to their counter-receptors on NK-92 and 

induce activation signals in these NK cells. 

A large number of studies have already established that LFA-l/ICAM-1 pathway is 

critically involved in effector-target cell interaction, suggesting the importance of ICAM-1 

as a major adhesion molecule, and of LFA-1 as a dominant adhesion molecule able to 

transmit both inside-out and outside-in signals [155]. LFA-1, like other integrins, needs to 

be activated in order to bind its ligands. The original focus of this study was the relevance of 

ICAM-1 expression on target cell as adhesion molecule necessary to provide adequate 

conjugate formation, and of LFA-1 on effector cell as signal transducing molecule. 

Although the importance of LFA-1 on NK cells has been well documented not only as 

adhesion molecule involved in effectontarget conjugate formation, but also as signal 

transducing molecule [151,161], functional role of LFA-1 on target cells has not been 

investigated. 
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ICAM-3 has recently been shown to be a signal transducing molecule mainly in both resting 

and activated T cells. A sequence motif termed "Ag recognition activation motif (ITAM) 

which is present in the cytoplasmic domain of CD3y, 5, £ as well as £ and plays critical role 

in signal transduction, is also found in ICAM-3. This motif is based on a tyrosine and 

leucine (or isoleucine) residues arranged in the general pattern (YXXL) 2 . The tyrosines in 

ITAM motifs are phosphorylated after receptor stimulation possibly by members of the Src 

family of kinases, and this is believed to play a role in receptor function. ICAM-3 cross 

linking has been reported to induce activation of (31 and [32 integrins in T cells [185,186], 

an increase in intracellular calcium concentrations and tyrosine phosphorylation of a number 

of intracellular proteins in neutrophils and T cells [178,184,187]. In the human T leukemic 

cell lines JM and Jurkat, ICAM-3 was shown to play an important role in the regulation of 

LFA-l/ICAM-1 dependent and independent pathways involved in cell-cell interaction 

[178,188] suggesting the existence of novel receptors for ICAM-3 other than LFA-1. 

Alternatively ICAM-3 may trigger signals that would activate other CAMs [178]. More 

recently, ICAM-3 which has no intrinsic kinase activity has been reported to associate with 

Src family PTKs lck and fyn in Jurkat T cell line [187]. 

CD44 has been implicated in triggering cytotoxic functions of CTL and NK cells. CD44 

binding to its ligand requires its activation. Homotypic and heterotypic adhesion have 

recently been reported for CD44R1 which is able to bind CD44R1 as well as CD44H 

isoforms. NK-92 cells express both isoforms as well as the activation epitope, presumably 

as a consequence of activation by IL-2, while SR-91 cells express the activation epitope 

only after TNF-a treatment. It is conceivable that CD44 on SR-91, upon activation with 

124 



TNF-a treatment, becomes able to bind its counterparts (CD44H or Rl) on NK-92 cells, 

providing stronger binding and/or post binding signaling events. Therefore, the functional 

activation of their counter-receptors LFA-1 and CD44, respectively, on SR-91 by TNF-a 

may be responsible for the susceptibility of TNF-a treated SR-91 cells to NK-92 mediated 

cytotoxicity. 

Thus, susceptibility of leukemic cells to NK-mediated killing seems to depend on the 

expression and activation state of several CAMs. In this study ICAM-1, LFA-1, CD44, and 

pi integrins were shown to be upregulated or activated upon TNF-a treatment. Only ICAM-

1 was upregulated by IFN-y which did not induce sensitivity to NK-mediated cytotoxicity, 

although ICAM-1 was required for conjugate formation. It is therefore possible that 

other upregulated or activated CAMs may trigger NK cells to kill. Initial evidence is 

consistent with this hypothesis and suggest a role for ICAM-3 and CD44 on NK cells in 

triggering cytotoxicity. Further elucidation of the role of these CAMs in triggering NK cell 

cytotoxic functions will provide new insight into possible pathways of target induced 

activation of NK killing mechanisms. 
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Chapter 6. DISCUSSION 

Although high doses of chemotherapy supported by rescue with bone marrow stem cells can 

cure a certain percentage of patients with leukemia and other hematopoietic malignancies, 

data from allogeneic transplants suggest that immune-mediated events significantly 

contribute to elimination of tumor in the recipient. In addition to T-lymphocytes, NK cells 

are critically involved in such a graft-versus-tumor effect. IL-2 activated NK cells are a 

major effector population and potent mediators of lysis of autologous and allogeneic 

leukemic cells in vitro. Adoptive immunotherapy with ex vivo activated NK cells (LAK) 

cells and EL-2 has been shown to induce tumor regression in some melanoma and renal cell 

carcinoma patients [362,363]. Such an approach has also shown promising results in 

patients after high dose chemotherapy and bone marrow transplantation. Although most 

leukemic cells are effectively killed by DL-2 activated NK cells in vitro, a certain proportion 

are resistant to L A K cell-mediated cytotoxicity [364]. The objective of this thesis was to 

investigate why some leukemic cells were resistance to NK cell killing. 

Cell adhesion molecules (CAMs) are critical in effector-target conjugate formation which is 

a prerequisite for target cell lysis by effector CTL and NK cells, and the LFA-l/ICAM-1 

pathway has been shown to be one of the most relevant adhesion pathways involved in 

effector-target interaction [146-148]. Therefore, this study focused on the contribution of 

CAMs in effector cell-target cell conjugate formation and their potential involvement in a 

post-binding step as signal transducing molecules that might be able to provide stimulatory 
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signals for NK cytotoxic functions. As LFA-l/ICAM-1 pathway is considered the most 

important for killer cell functions and interactions, the main objective of this study was to 

characterize the role of ICAM-1 in conjugate formation and of ICAM-3 and CD44 as 

candidates to deliver activating signals to NK cells. 

An NK resistant leukemic cell line, SR-91, was isolated and found to express ICAM-1 at 

very low density, raising the possibility that its resistance to NK mediated killing may be 

due to lack of expression of ICAM-1. To examine this hypothesis, a human NK cell line, 

NK-92, was established. NK-92 was found to be an IL-2 dependent human NK cell line with 

characteristics of IL-2 activated NK cells. NK-92-mediated cytotoxicity is exceptionally 

potent against a broad spectrum of target cells tested so far, with the exception of SR-91. 

The lack of expression of CD 16 is also an advantage of NK-92 cells, since it allows to 

analyze direct cell mediated killing mechanisms without the involvement of ADCC. 

SR-91 is a leukemia cell line resistant to killing by both peripheral blood derived NK cells 

obtained by activation with IL-2, and NK-92 cells. Despite the potent cytotoxic activity of 

NK-92, which is considerably higher than that of IL-2 activated peripheral blood NK cells, 

the leukemic cell line SR-91 cells was still resistant to its killing. Because of these 

characteristics, these cell lines provided an ideal model to investigate how some leukemic 

cells escape NK cytotoxicity. 

The hypothesis to be tested was that resistance of SR-91 to NK mediated lysis is due to 

lack of conjugate formation, the consequences of inadequate expression level of ICAM-1. 

To test this hypothesis two approaches were taken. First, human ICAM-1 cDNA was 

transfected into SR-91 cells. These transfection studies, although they allowed stable 
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increase of ICAM-1 expression (about fivefold ) were not conclusive in that the 

susceptibility of ICAM-1 transfectants to NK-92 mediated lysis was found to be slightly 

increased ( 19% at 10:1 ratio against 8% for untransfected cells) but the same percentage of 

killing was also observed for SR-91 cells transfected with vector alone. 

The second approach was SR-91 treatment with inflammatory cytokines TNF-a and IFN-y 

known to induce ICAM-1 expression. It was found that the resistance of the leukemic SR-91 

cells to NK-92 cell killing could be overcome by exposure of SR-91 cells to TNF-a but not 

to IFN-y. Although both cytokines increased conjugate formation between NK-92 cells and 

SR-91 cells to similar levels and upregulated the expression of ICAM-1, only TNF-a was 

able to render target cells sensitive to NK cell killing. This suggests that ICAM-1 

upregulation may be required to induce adequate conjugate formation, but does not allow 

sensitivity to NK mediated killing, which may require additional activating signals. 

Interestingly, the increased binding induced by both cytokines and the TNF-a induced 

sensitivity of SR-91 cells to NK-92 cell killing were abrogated by anti-LFA-1 mAb as well 

as a combination of antibodies against the three ligands of LFA-1, ICAM-1, ICAM-2 and 

ICAM-3, while anti-ICAM-1 on its own had only a partial effect. These observations 

suggest that binding of ICAMs to LFA-1 is involved in the initial binding of NK cells to 

target cells. In this study, antibodies had to be present in the reaction mixture during the 

period of the assay to be effectively inhibitory. Preincubation of either effector and/or target 

cells with antibodies against LFA-1, ICAM-1, ICAM-2 or ICAM-3 alone or in combination 

followed by removal of unbound antibody did not result in any significant inhibitory effect. 

This might be due to low affinity of the antibodies used, or may underline the importance 

and involvement of LFA-1 on both effector and target side. 
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Since enhanced conjugate formation on its own was insufficient to overcome resistance to 

NK cell killing in these studies, it was hypothesized that TNF-a (but not IFN-y) may cause 

the activation of other molecules on SR-91 cells that are important for post binding 

activation of NK-92. Subsequent studies showed that TNF-a, but not IFN-y treatment of 

SR-91 induced functional activation of LFA-1, CD44 and pi integrins. Therefore, ICAM-3 

and CD44 are potentially activating receptors on NK-92. It is possible that activation of SR-

91 with TNF-a leads to binding of LFA-1 and CD44 on SR-91 to ICAM-3 and CD44, 

respectively, on NK-92 which may in turn activate NK-92 to kill SR-91. Although the 

importance of LFA-1 on NK cells has been well documented not only as adhesion molecule 

involved in effectontarget conjugate formation, but also as signal transducing molecule 

[151,161], functional role of LFA-1 on target cells has not been investigated. The results of 

this thesis underline the potential importance of LFA-1 on the target cell where by binding 

to its counter-receptor on NK cell can lead to the activation of NK cell which may 

particularly involve ICAM-3. Therefore, the activation state of LFA-1 on the target cell may 

also be important for the activation of NK cell. 

The differential effect of the two cytokines reflects differences in signaling pathways and 

intracellular targets, and activation of distinct transcription factors. fFN-y is a potent 

immunomodulatory cytokine that exerts its pleiotropic effects through JAK/STATs 

signaling pathway [318-320, 323,324]. Two major signaling pathways known for TNF-a are 

1) ceramide and sphingomyelinase, and 2) MAPK and JNK/SAPK pathways [310,311]. 

TNF-a is known to induce apoptosis in some cells, and the expression of a number of 

cellular genes, mainly through activation of NF-&B. However, TNF-a has not been shown to 
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induce sensitivity to NK mediated lysis. The possibility of apoptosis induced by TNF-a was 

ruled out, but TNF-a may have induced not only cell surface molecules, but also expression 

of other cytokines or cytokine receptors. It was not the objective of this study to analyze 

those events 

It has been proposed that NK-mediated cytotoxicity may not be due to a unique, dominant 

receptor, but may result from an interaction between an appropriate array of "adhesion" 

molecules with their ligands, and be triggered by engagement of certain "accessory" or 

"costimulatory" molecules with their counter-receptors. Interference with individual 

receptor/ligand pairs could partially or totally inhibit the cytolytic response. However, none 

of the receptors alone would be sufficient for the initial "recognition" event that results in 

triggering cytotoxicity. LFA-1 may be an important adhesion and costimulatory molecule 

not only on NK cells, but also may play an important role on the target cell by binding to its 

counter-receptor ICAM-3 on the NK cell where it could trigger activating signals to the NK 

cell. 

ICAM-3 has been shown to be a signal transducing molecule, increasing cell adhesion via 

Pi and 02 integrins, calcium mobilization and tyrosine phosphorylation through p56" and 

p59*" in T cell lines [185,187]. In contrast to the other ligands for LFA-1, ICAM-1 and 

ICAM-2 which have no serine in their cytoplasmic domains, the cytoplasmic domain of 

ICAM-3 has five serine and two tyrosine residues that can be phosphorylated upon 

stimulation with different stimuli. These cytoplasmic tyrosine residues are present in a 

(YXXL) 2 motif, a sequence motif termed "Ag recognition activation motif (ITAM) which 

is present in the cytoplasmic domains of CD3y, 8, e as well as £ and plays critical role in 
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signal transduction. These observations first suggested that ICAM-3 may play a more 

dominant role in signal transduction than ICAM-1 or ICAM-2 [172,173,183,184]. ICAM-3 

has been shown to be costimulatory for both resting and activated T lymphocytes [186] and 

has been implicated in homotypic cell aggregation through the regulation of both LFA-

l/ICAM-1 dependent and LFA-l/ICAM-1 independent cell-cell interactions of leukemic T 

cells. This suggested the existence of other ligands for ICAM-3, or triggering of intracellular 

signals through ICAM-3 that would activate other CAMs [178,187]. A fourth chain that 

associates with CD 18 has recently been cloned allowing the identification of an alternative 

counter-receptor for ICAM-3, a novel leukointegrin, ocdp2 that was found to be expressed at 

moderate levels on myelomonocytic cell lines [179]. Whether this new ICAM-3 counter-

receptor is present on SR-91 or on NK cells is not known, but if it is expressed on SR-91 

cell, it would be of interest to investigate its interaction with ICAM-3 on NK-92 cells. 

CD44 has also been implicated in signal transduction events and the triggering of cytotoxic 

functions of CTL [208-210] and NK cells [198-200]. CD44 has recently been reported to 

associate with p56(* in T cells [211]. Different isoforms of CD44 with molecular weights 

ranging from 80 to 250 kDa can result from alternative splicing of 10 exons. Although 

CD44 can function as a receptor for the glycosaminoglycan hyaluronan, there is evidence 

that binding to hyaluronan cannot explain all CD44 dependent adhesion events, and 

homotypic binding between different isoforms of CD44 has recently been reported showing 

that CD44R1 is able to bind to CD44R1 and CD44H while CD44H cannot bind to CD44H 

[207]. NK-92 cells express activated forms of both the CD44H and CD44R1 isoforms. It is 

conceivable that activation of CD44 (H and Rl) on SR-91 cells that occurs upon treatment 

with TNF-a (but not IFN-y), could allow interaction with CD44 on NK-92 cells, providing 
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costimulatory signals to the NK cells. Hence, overexpression or activation of CD44 on the 

target cell could contribute to an increased target sensitivity to NK cell mediated lysis. 

Although NK cells have been considered as MHC non-restricted with regards to reactivity 

with target cells, the pattern of MHC class I expression of the target cell may determine its 

sensitivity to NK cell-mediated killing. Selected MHC class I molecules have been shown, 

in some but not all systems, to protect target cell from NK effector cells by delivering a 

predominantly inhibitory signal [231-234]. The protective effect of MHC class I would 

occur at post binding step, hence over-riding other target induced activating signals. A 

number of inhibitory receptors have been identified on human NK cells that belong mainly 

to two structural families of molecules. One is a family of immunoglobulin related 

molecules termed killer inhibitory receptors (KIRs) with p58 and p70 that interact with 

HLA-A and HLA-B alleles respectively [255-261]. Another is a type II integral membrane 

protein Kp43 (CD94) that provides specific recognition for HLA-B molecules 

[260,262,263]. SR-91 cells express high levels of MHC class I molecules, and NK-92 cells 

do not express any known member of the KIR family whether p58 or p70, but express high 

levels of CD94 (E Long personal communication). The study of the relevance of MHC 

class I molecules on target cells which could react with specific NK receptors on NK-92 

cells is currently under investigation by other groups. Extensive studies against a large panel 

of transfectants expressing single HLA class I alleles have not shown protection from NK-

92 cell mediated lysis (E Long personal communication), but it has recently been reported 

that the infection of NK-92 cells, with recombinant vaccina vims encoding the two p58 

receptors specific for HLA-Cw3 and HLA-Cw4 conferred NK-92 cells with the ability to 

receive an inhibitory signal and reduced significantly their lytic activity against Cw3 and 

Cw4 expressing target cells [275]. It is not likely that MHC class I is responsible for the 
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resistance of SR-91 cells to NK-92 mediated killing, because NK-92 cells do not seem to 

express inhibitory receptor for MHC class I expressed on SR-91(HLA-A2, B44, B57, C5). 

Furthermore, the fact that TNF-a treated SR-91 cells are sensitive to NK-92-mediated lysis 

argues against a protective effect of MHC class I molecules in this system, since the MHC 

class I expression on SR-91 is not altered by TNF-a treatment. TNF-a and IFN-y are in fact 

able to induce MHC class I expression in a number of cells [291,314,317,337,365], 

however, MHC class I expression of SR-91 cells is high and does not change upon treatment 

with these cytokines. 

The study of NK cells and cytotoxic mechanisms is hindered by the difficulty of obtaining 

pure NK populations exempt of contaminating T lymphocytes. Therefore, the availability of 

NK cell lines represents a great practical advantage. A number of NK cell clones have been 

isolated and characterized. They have proven to be important tool in the study of the NK cell 

repertoire and MHC class I receptors. However, these NK clones have, by definition, 

limited cytotoxic activity and are only effective against target cells missing the MHC class I 

molecules recognized by inhibitory receptors expressed on these clones [256,267,351-353]. 

On the other hand, only a few NK cell lines are available to date [347-350]. The 

establishment of NK-92 cell line is of particular interest mainly because of (i) its very potent 

cytotoxic activity against a broad spectrum of target cells and (ii) its lack of expression of 

CD 16 which makes it more suitable for the study of direct cell mediated cytotoxicity 

without the involvement of ADCC. NK-92 cell line has thus far proven to be a very useful 

tool to investigate different aspects of NK-mediated cytotoxicity by various groups 

[275,354-357]. It has been used to determine the specificity of p70 KIR for HLA-B 

allotypes [354], and to show the association of NKG2A with CD94 [355]. The cell line has 
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also been used to investigate cytokine induced apoptosis of NK cells [356], and the 

contribution of NK cells to endothelial cell activation and xenograft rejection [357]. 

Furthermore, the data presented in the first results chapter of this thesis, show its potential 

application for ex-vivo purging of malignant cells. 

The data presented herein demonstrate that ICAM-1 expression on the target cell SR-91 is a 

prerequisite for conjugate formation between cytotoxic effector and target cells. However, 

this on its own is insufficient to allow target cell lysis by NK-92 cells. ICAM-2 and ICAM-

3 on SR-91 cells also participate in this effector-target binding but their effect is minor 

relative to that of ICAM-1. Furthermore, preliminary experiments suggested that binding of 

anti ICAM-3 and CD44 to NK-92 may induce tyrosine phosphorylation of a number of 

proteins including p56fc* in NK-92 cells. Although not completely conclusive, these 

observations are consistent with the hypothesis that TNF-a activated LFA-1 and CD44 on 

SR-91 cells may upon interaction with ICAM-3 and CD44, their respective counter-

receptors on NK-92 cells, trigger activating signals. ICAM-3 and CD44 may contribute to 

signal transduction events in NK-92 cells which seem to involve the Src family member of 

protein tyrosine kinases p56". However, whether ICAM-3 or CD44 play a major role in 

NK-92 lysis of TNF-a treated SR-91 cells still remains to be established. Their potential 

involvement in triggering cytotoxic activity of NK-92 cells could be further examined by 

testing (i) the ability of antibodies to ICAM-3 or CD44 to increase NK-92 cytotoxicity 

against other target cells, (ii) in a redirected ADCC against FcR bearing target cells, (iii) by 

using tetrameric antibodies against ICAM-3 or CD44 and an antigen present only on the 

target cells [199]. If ICAM-3 and CD44 are signal transducing molecules on NK-92 cells, 

such bispecific antibodies should be able to induce the killing of EFN-y treated SR-91 cells, 
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which bind to NK-92 cells but are still resistant. Finally, the full scope of signal transducing 

events in NK-92 cells remains to be resolved and is beyond the intention of this thesis. 

These results in this thesis demonstrated that the NK-resistant leukemic line SR-91 can 

become NK-sensitive by T N F - a treatment. Although the precise mechanisms responsible 

for this effect are still unclear, some were addressed in this thesis. This effect of T N F - a 

which has not been described before potentially has important implications with respect to 

the treatment of leukemia. NK/LAK cells have proven to be very effective in the treatment 

of hematological malignancies and particularly the eradication of residual leukemic disease 

after myeloablative chemo-radiotherapy supported by BMT [344-346]. One of the problems 

associated with the use of NK/LAK cells for the treatment of leukemia is that some 

leukemic cells are resistant to their cytotoxicity. This research was undertaken to investigate 

underlying cause(s) of this resistance, and if an improvement of this therapeutic modality 

could be achieved by modulating the expression of CAMs. My results suggest that at least 

some NK/LAK-resistant leukemic cells can become sensitive by appropriate treatment. It 

will be of great interest if this observation could be confirmed for other leukemic cells and 

particularly if it could be extended to fresh leukemic cells. This could improve the outcome 

of approaches using NK-cells in the treatment of leukemia. Although systemic 

administration of cytokines such as T N F - a may not be clinically desirable given their side 

effects, one possible approach to this may be the use of antibody based targeting of 

cytokines allowing that cytokines like as T N F - a to selectively interact with malignant cells 

without causing systemic side effects [366-368]. Since NK cells are themselves producers of 

T N F - a upon activation, bispecific antibodies to a receptor on NK cells able to deliver 

activating signal upon cross-linking and coupled to a molecule on the surface of leukemic 
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cell could allow target cytokine to bind directly to leukemic cell and also improve target cell 

lysis. Moreover, results in the first chapter show a potential application using NK-92 cell 

line ex vivo to eliminate leukemic cells. In conclusion, the observations presented in this 

thesis could potentially benefit patients with leukemia for whom in addition to 

chemotherapy, immunotherapy with NK cells is considered. 
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