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A B S T R A C T 

The study was undertaken to investigate: (1) the effects of serum and the growth factors, 

EGF and TGFp,, and their combination, on the proliferation of embryonic hamster palate 

mesenchymal cells (HPMC); and (2) the effects of serum, growth factors and their 

combinations on expression of the immediate early genes, c-fos, c-jun, and c-myc. 

Initially, growth behavior of the cultured HPMC was examined. The results showed that 

the proliferation of HPMC was dependent on the concentration of serum in the culture media; and 

at least 2.5% serum was necessary to sustain the growth of HPMC in culture. EGF supported 

DNA synthesis (only in the presence of serum), and exerted mitogenic effects on HPMC; whereas 

TGFp, did not support DNA synthesis and arrested growth of HPMC. In addition, following co-

treatment of HPMC with EGF and TGFp,, 'the mitogenic effect on HPMC of EGF wasinhibited by 

TGFp,. Also, 30 minutes of TGFp., pre-treatment was sufficient to irreversibly inhibit the 

serum- and/or EGF-induced DNA synthesis as well as proliferation of HPMC. 

Northern blot analysis showed that both serum and EGF induced rapid expression of 

c-fos, c-jun, and c-myc; whereas TGFp, did not. Also, following co- or pre-treatment with 

TGFp,, the serum- and/or EGF-induced expression of immediate early genes was not inhibited. 

However, co- or pre-treatment with TGFp, did result in modulations in the temporal expression 

pattern of these immediate early genes. . 

The results of the present study indicate that EGF and TGFp, are important regulators of 

embryonic HPMC proliferation. Further.this study suggests that interaction among 

extracellular factors leads to modulation of the nuclear events that may be important in 

regulation of HPMC proliferation during palate morphogenesis. 
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INTRODUCTION 

Morphogenesis of Mammalian Palate 

Morphogenesis of mammalian palate is sequential and unique. It starts as intraoral 

outgrowth of two bilaterally symmetrical projections (shelves) from the maxillary 

processes in a vertical direction toward the floor of the mouth. The vertical shelves then 

reorient to a horizontal plane, and finally unite with one another in the midline, resulting in 

the separation of the oral and nasal cavities (Greene and Pratt, 1976; Shah, 1984). 

The sequential events of secondary palate morphogenesis, i.e., vertical growth, 

reorientation, and fusion of the palatal shelves are peculiar to mammals.. In other 

vertebrates, formation of the secondary palate is relatively simple. For instance, in early 

vertebrates, such as fish and amphibia, the palatal shelves grow vertically from the 

maxillary processes. The palate morphogenesis, however, does not advance and the shelves 

remain vertical throughout the ontogeny of the organism (LeCluyse et al., 1985; Shah et al., 

1990). In the alligator, the only reptile studied so far, the palatal shelves grow, 

ad initium, from the maxillary processes in a horizontal direction and unite, thus 

separating the oral and nasal cavities (Ferguson, 1981). In birds, as in reptiles, the 

palatal shelves start out in a horizontal direction towards each other but they never unite, 

and a physiological cleft persists throughout avian ontogeny (Shah and Crawford, 1980; 

Koch and Smiley, 1981; Shah et al., 1985a, 1987, 1988). 

A further review of the literature on palate development shows that mammals have 

been the target of most studies concerning the mechanisms that regulate morphogenesis of 

the secondary palate in vertebrates. These studies indicate that each step of palate 

morphogenesis involves a number of complex cellular and molecular events. 

Initially, for the formation a vertical palate primordia, cell proliferation seems to 

be a major contributor to the shelf growth (Shah et al., 1989a, b, c; 1994b). For further 
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progression of vertical shelf morphogenesis, synthesis of extracellular matrix (ECM) 

molecules such as glycosaminoglycans (GAGs), various collagens, and fibronectin (Pratt and 

King, 1971; Silver et al., 1981; Benkhaial and Shah, 1994;, Young et al., 1994a) appears 

to be necessary to regulate the size and shape of the palatal shelves. 

Subsequently, spatio-temporally regulated synthesis and accumulation of ECM 

molecules such as sulfated and non-sulfated GAGs, collagens, and fibronectin have been 

suggested to play a significant role in the reorientation of the palatal shelves from a vertical 

to a horizontal plane (Larsson, 1962; Jacobs, 1964; Nanda, 1971; Pratt et al., 1973; 

Ferguson, 1978; Brinkley, 1980; Jacobson and Shah, 1981; Brinkley and Vickerman, 

1982; Brinkley and Morris-Wiman, 1984; Turley et al., 1985; Foreman et al., 1991; 

Benkhaial and Shah, 1994; Singh et al., 1994; 1997; Young et al., 1994a; Ohsaki et al., 

1995). It has been proposed that regional accumulation and the increased synthesis of 

various matrix molecules during reorientation of the palatal shelves may create an 

environment within the palatal shelves to facilitate the migration of palate mesenchymal 

cells (Lassard et al., 1974; Krawczyk and Gillon, 1976; Wee and Zimmerman, 1980; Shah, 

1979b; Brinkley, 1980; Venkatasubramanian and Zimmerman, 1983), which, in turn, 

would cause the shelves to reorient. 

Following reorientation, the palatal shelves approximate and contact one another. 

Prior to the contact of the two opposing shelves, the medial edge epithelial (MEE) cells cease 

DNA synthesis (Hudson and Shapiro, 1973; Pratt and Martin, 1975; Shah et al., 1985b), 

accumulate lysosomal enzymes (Hayward, 1969; Smiley, 1970; Shah and Chaudhry, 1974; 

Im and Muliken, 1983; Shah et al., 1991) and increase cyclic AMP levels (Pratt and 

Martin, 1975; Greene and Pratt, 1979; Greene et al., 1980; Shah et al., 1985b). , 

Subsequently, the MEE of the opposing palatal shelves adhere to each other by means of a 

surface glycoprotein coat (Greene and Kochhar, 1974; Pratt and Hassell, 1975; Greene and 
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Pratt, 1977; Heinen et al., 1982; Baeckeland et al., 1982) and desmosomes (Shah, 1979) 

to form an epithelial seam. The epithelial cells of the seam then disappear and mesenchymal 

continuity is established between the united palatal shelves. Several studies have suggested 

that programmed cell death may account for the elimination of the MEE cells from the 

midline seam (Mato et al., 1966; Smiley, 1970; Chaudhry and Shah, 1973; Schupbach and 

Schroeder, 1983; Mori et al., 1994; Taniguchi et al., 1995). The programmed cell death 

may be regulated by epithelial-mesenchymal interactions (Shah, 1984; Ferguson et al., 

1984). On the other hand, it has been suggested that the epithelial cells of the midline 

seam, rather than being eliminated by cell death, may be1 transformed into mesenchymal 

cells (Fitchett and Hay, 1989; Griffith and Hay, 1992; Shuler, 1995; Yano et al., 1996a). 

Recently, Carette and Ferguson (1992) corroborated an earlier proposal made by Chaudhry 

and Shah (1973) that some of the midline epithelial cells may migrate to and integrate with 

or be eliminated from the adjacent oral and nasal epithelia to facilitate mesenchymal union. 

Regulation of Palate Morphogenesis 

Recent studies have suggested that the cellular and molecular events that occur 

during growth and differentiation of embryonic palate morphogenesis may be regulated by 

growth factors, prostaglandins, and neurotransmitters. 

Using immunohistochemical, Western and Northern blots, as well as in situ 

techniques, many growth factors and/or their receptors have been localized in the 

developing palate of mammals (Table 1), implicating their involvement during palate 

morphogenesis. 

Much of the work on growth factor involvement in regulation of embryonic palate 

development has been carried out using epidermal growth factor (EGF) and transforming 

growth factorp, (TGFp,). EGF was the first growth factor studied in palate development 
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(Hassell, 1975; Hassell and Pratt, 1977). Since then, EGF/TGFoc and their receptor 

molecules have been localized in both mesenchymal and epithelial cells during all stages of 

palate formation (Abbott et al., 1988; Abbott and Birnbaum, 1990; Shiota et al'., 1990; 

Dixon et al., 1991; Brunet et al., 1993; Citterio and Gaillard, 1994; Jaskoll et al., 1996). 

Furthermore, several tissue and cell culture studies using palatal cells have shown that both 

palatal mesenchymal and epithelial cells respond to EGF or TGFoc (Nexo and Pratt, 1980; 

Pratt, 1980; Pratt et al., 1984; Silver et al., 1984; Greene and Lloyd., 1985; Turley et 

al., 1985; Pratt, 1987; Gawel-Thompson and Greene, 1989; Dixon and Ferguson, 1992; 

Chepenik et al., 1994; Shah et al., 1995). Exogenous EGF appears to prevent programmed 

cell death of the MEE and result in its differentiation towards a keratinization epithelium 

(Hassell and Pratt, 1977; Pratt, 1980; Dixon and Ferguson, 1992; Brunet et al., 1993). 

Both the palate epithelial and mesenchymal cells in culture have also been shown to 

proliferate and produce ECM molecules in the presence of EGF/TGFoc (Gawel-Thompsbn and 

Greene, 1989; Foreman et al., 1991; Sharpe et al., 1992a,b; Dixon et al., 1993a,b; Shah 

et al., 1995). These findings suggest that EGF/TGFoc may influence both the proliferation 

and differentiation of palatal cells, and thus contribute to the formation of the palatal 

shelves. 

Several studies have investigated spatio-temporal localization of TGFB, molecules in 

both the epithelial and mesenchymal cells at various stages of palate development (Table 1) 

(Heine et al., 1987; Pelton et al., 1990a,b; Fitzpatrick et al., 1990; Abbott and Birnbaum, 

1990; Gehris et al., 1991; Williams et al., 1991; Proetzel et al., 1995; Jaskoll et al., 

1996). Treatment of cultured embryonic palate with TGFB, results in precocious cessation 

of DNA synthesis in the MEE, and accelerated palatal fusion (Shuler et al., 1991, 1992; 

Gehris and Greene, 1992). Exogenous TGFB, inhibits proliferation (Linask et al., 1991; 

Sharpe et al., 1992a,b), enhances GAG production, and increases synthesis but decreases 
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degradation of collagen in palate mesenchymal cells (D'Angelo and Greene, 1991). Recent 

studies also suggested that TGFp 3 may be necessary for normal closure of palatal shelves: 

palatal shelf fusion is blocked by TGFp 3 antisense oligomers or neutralizing antibodies 

(Shuler et al., 1991; 1992; Gehris and Greene, 1992; Proetzel et al., 1995). The 

mechanisms by which TGFps affect palatal cell behavior is, however, not yet understood. 

Sharpe and associates (1992a) have indicated that treatment of palate mesenchymal 

cells with TGFp, or IGF II induces reduction of EGF receptor binding. The effects of bFGF on 

EGF receptor-ligand binding kinetics seems to be biphasic: a short period of treatment 

(3-5 hours) induces a decrease, but a long period of treatment (24 hours) results in a 

large increase in 1 2 5I-EGF binding. Co-incubation of TGFp, with bFGF inhibits the positive 

effects of bFGF on EGF receptor binding. Further, pre-treatment of palate mesenchymal 

cells with either bFGF or IGF II enhances the 3H-thymidine incorporation induced by EGF 

treatment; whereas it is reduced with TGFp, (Sharpe et al., 1992a). Simultaneous 

treatment with TGFp, and PDGF stimulates 3H-proline incorporation in palate mesenchymal 

cells (Sharpe et al., 1992b). Also, regulation of TGFp 3 expression in murine embryonic 

palatal cells appears to be upregulated by treatment with TGFp, and p2, but downregulated by 

EGF treatment (Gehris et al., 1994)., 



Table 1. Growth factors and/or receptors during mammalian palate development. 

Growth factor Location in 
palatal tissue 

Stage of palate 
development 

Authors 

EGF (protein) M and E all stages Abbott and Birnbaum, 1990; 
Dixon et al., 1991 

EGF/TGFa receptor 
(protein) 

M and E all stages Abbott et al., 1988; Shiota 
et al., 1990; Dixon et al., 
1991; Citterio and Gaillard, 
1994; Jaskoll et al., 1996 

TGFa (protein) M and E all stages Abbott and Birbnaum, 1990; 
Dixon et al., 1991; Citterio 
and Gaillard, 1994 

FGF acidic and basic 
(protein) 

M and E fusion Sharpe et al., 1993 

TGFpi (protein) M and E vertical and 
horizontal 

Heine et al., 1987; Abbott 
and Birnbaum, 1990; 
Williams et al., 1991; 
Gehris et al., 1991 

TGFp2 (protein) M and E all stages Abbott and Birnbaum, 1990; 
Gehris et al., 1991 

TGFP1 (mRNA) M and E vertical and 
horizontal 

Fitzpatrick et al., 1990; 
Pelton et al., 1990; Jaskoll 
et al., 1996 

TGFp2 (mRNA) M and small 
regions of MEE 

vertical and 
horizontal shelf, 
and during fusion 

Fitzpatrick et al., 1990; 
Jaskoll et al., 1996 

TGFp3 (mRNA) MEE vertical and 
horizontal 

Fitzpatrick et al., 1990; 
Jaskoll et al., 1996 

TGFp receptors 
(types 1, II, & III) 
(protein) 

M vertical (cell 
culture) 

Linask et al., 1991 

PDGF-AA (protein) basement 
membrane, M 
nasal E, and MEE 

all stages Qui and Ferguson, 1995 

PDGF-BB (protein) E horizontal Qui and Ferguson, 1995 
PDGF-cx receptor 
(protein) 

M, E; heavy in 
MEE 

vertical and 
horizontal 

Qui and Ferguson, 1995 

PDGF-p receptor 
(protein) 

nasal E post-fusion Qui and Ferguson, 1995 

IGF 1 (protein) M vertical and 
horizontal 

Ferguson et al., 1992 

IGF II (protein) E vertical and 
horizontal 

Ferguson et al., 1992 

IGF II (mRNA) M horizontal Ferguson et al., 1992 
IGFBP-1 (protein) E horizontal Ferguson et al., 1992 

M: mesenchyme 
E: epithelium 
MEE: medial edge epithelium 
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In addition to growth factors, prostaglandins (PG) have been implicated in the 

regulation of mammalian palate development (Greene and Garbarino, 1984). Various 

prostaglandins such as PGE 2 and PGF 2, and their receptors have been immunolocalized in 

developing palatal tissue (Greene and Lloyd, 1985; Jones and Greene, 1986), and indeed are 

synthesized by palate mesenchymal cells (Chepenik and Greene, 1981; Alam et al., 1982). 

Experimental evidence suggested that PGE 2 and PGI 2 induce cAMP synthesis in primary 

cultures of palate mesenchymal cells (Greene et al., 1981b), stimulate GAG synthesis 

(Greene et al., 1982), and inhibit re-entry of cells into the cell cycle (Greene et al., 

1981a, b; Pisano et al., 1986). Elevation of intracellular levels of cAMP seem to partially 

inhibit the release of various prostaglandins (Chabot and Chepenik, 1986). These data 

suggest possible involvement of PGs in the regulation of proliferative and differentiative 

activities of palatal, mesenchyme (Chabot and Chepenik, 1986). 

Several neurotransmitters such as dopamine, norepinephrine, and epinephrine, as 

well as B-adrenergic receptors have been detected in the developing mammalian palate 

(Zimmerman et al., 1981; Zimmerman and Wee, 1984; Pisano et al., 1986; Pisano and 

Greene, 1987; Greene, 1989). Exposure of palatal cells to neurotransmitters activates 

B-adrenergic receptors, which leads to stimulation of adenylate cyclase activity and 

subsequent accumulation of intracellular cAMP in a dose-dependent manner (Waterman et 

al., 1976, 1977; Garbarino and Greene, 1984; Greene and Garbarino, 1984). Also, 

addition of isoproterenol, a potent B-agonist, increases cAMP levels in palatal cells and 

delays re-entry of cells into the cell cycle (Pisano et al., 1986; Greene, 1983). 

Furthermore, the neurotransmitters, seratonin and acetylcholine, appear to stimulate 

palatal shelf reorientation, whereas y-amino-n-butyric acid (GABA) inhibits it 

(Zimmerman and Wee, 1984). These data suggest putative involvement of these 

neurotransmitters in the regulation of palate morphogenesis. 
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The Foregoing analysis suggests that extracellular factors are essential regulators of 

cellular functions during palate morphogenesis. To understand the mechanisms by which 

growth factors, prostaglandins, and neurotransmitters regulate growth, proliferation, and 

differentiation of mammalian embryonic palate mesenchymal cells, recent studies have 

investigated the involvement of intracellular signaling molecules (figure 1). It has been 

suggested that palate mesenchymal cell behavior may be regulated by several intracellular 

signaling cascades, and cross-communication among them, which are involved in relaying 

the extracellular signals from the plasma-membrane to the nuclear environment. For 

example, exposure of vertebrate palate mesenchymal cells to extracellular factors seehns to 

affect the cellular levels of cAMP, which in turn, modulates the activity of protein kinase A 

(PKA) and subsequently induces changes in cell cycle progression and extra-cellular matrix 

synthesis (Greene et al., 1982; Pisano et al., 1986; Pisano and Greene, 1986). Also, 

treatment of palate mesenchymal cells with growth factors induces the activation of PKC 

(Chepenik and Grunwald, 1988; Chepenik and Haystead, 1989), and that of second-

messenger independent protein kinases such as mitogen activated protein kinase (MAPK) , 

casein kinase 2 (CK2), and p34 c d c 2 (Young et al., 1995, 1996a, b), all of which have been 

implicated in regulation of cellular behaviors including cell proliferation and 

differentiation. Although several extracellular ligand-regulated signaling cascades in palate 

mesenchymal cells have been recognized (figure 1), the information on how the signaling 

molecules mediate the down stream nuclear events in response to different factors is not 

available. Recently Greene and associates (1995) have identified an increase in the activity 

of CRE binding protein (CREB) with advancing palate development. CREB is a transcription 

factor that binds to the promoter regions of several genes and seems to mediate the linkage 

between cAMP and gene expression. In fact, in vitro induction of cAMP in palate 
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mesenchymal cells has also been shown to result in an increase of CREB phosphorylation, 

and hence an increase in its activity. 

Plasma 
membrane 

Growth 
Factors 

Prostaglandins 

Neuro
transmitters 

Nuclear 
membrane 

DNA 
gene 
transcription 

Figure 1. Schematic presentation of current state of understanding of regulation of growth 
and differentiation of mammalian embryonic palate mesenchymal cells. 

Epidermal Growth Factor (EGF) 

EGF is one of the best known growth factors. It was first isolated from the 

submaxillary gland of mice by Cohen in 1960, and was shown to cause premature opening of 

eyelid and eruption of teeth in neonatal mice (Cohen, 1962). During the past three decades, 

EGF related molecules were identified in many eukaryotes and were shown to play critical 

roles during development, repair, and maintenance of a variety of tissues in different 

organisms (Cochet, 1989; Carpenter and Wahl, 1990). In addition, EGF seems to exert 

mitogenic effects in tissues of endodermal or mesodermal origins, and thus participate in 

regulation of proliferation in these tissues (Hofmann and Scott, 1995). 
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EGF is a single poly-peptide chain of 53 amino acids, containing 3 intramolecular 

disulfide bonds, which are required for its biological activity (Taylor et al., 1972; Savage 

et al., 1973). Precursor EGF is first expressed as a large 1200 amino acid long, 

glycosylated, membrane anchored molecule (Bell et al., 1986; Mroczkowski et al., 1989), 

which is processed in a tissue specific manner to soluble EGF molecule (Gochet, 1989). 

Besides the active domain, the precursor EGF molecule contains 8 EGF-like sequences (a set 

of 6 cysteine residues spaced over a span of 30-40 amino acids), and a low density 

lipoprotein (LDL) receptor-like domain (Bell et al., 1986). In addition to the unbound EGF 

molecule, the high molecular weight membrane-bound precursor EGF molecule seems to be 

biologically active and has been suggested to play a role in cell-cell recognition 

(Mroczkowski et al., 1989). 

EGF receptor 

The EGF receptor is a 170 kDa transmembrane glycoprotein, which belongs to the 

tyrosine kinase family of receptors (Carpenter and Zendegui, 1986; Gill et al.,1987). The 

EGF receptor consists of an extracellular ligand-binding domain, a trans-membrane region, 

and a cytoplasmic domain, which contains a juxta-membrane region, a catalytic domain, and 

a C-terminal tail with at least five tyrosine phosphorylation sites (Carraway and Cantley, 

1994; Carter and Kung, 1994; Boonstra et al., 1995). The intracellular region of the EGF 

receptor contains a number of tyrosine, and serine/threonine phosphorylation sites that 

seem to play important regulatory roles in activation of the receptor (Ullrich et al., 1984; 

Downward et al., 1984; Davis and Czech, 1985; Hunter et al., 1985; Carpenter and Wahl, 

1990; Staros and Guyer, 1995). EGF can bind with both low and high affinity to the 

extracellular domain of the EGF receptor (Livneh et al., 1986). The binding of EGF to the 

receptor on the cell membrane results in oligomerization and autophosphorylation of the 
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receptor, which leads to activation of a number of intracellular protein substrates, and 

subsequently to the activation of various signal transduction cascades in the cell (Carter and 

Kung, 1994; Boonstra et al., 1995). These signal transduction cascades then form a 

biochemical network, which ultimately induces metabolic alterations and intrinsic 

molecular changes in gene expression that modulate the cells' behavior (Cochet, 1989; 

Ullrich and Schlessinger, 1990; Carpenter and Wahl, 1990). Also, upon ligand binding to 

the receptor, the EGF-receptor complex is internalized, stored in intracellular 

compartments, and is eventually degraded in lysosomes (Carpenter and Cohen, 1976; 

Stoschek and Carpenter, 1984; Beguinot et al., 1984; Schlessinger, 1986; Cochet, 1989). 

EGF s ignal ing pathways 

Following the ligand binding, autophosphorylation of the cytoplasmic domain of the 

EGF receptor is a critical step in initiation of various signaling pathways. The 

phosphorylated regions form binding sites for different cytoplasmic proteins that mediate 

several signaling pathways. The proteins that directly interact with the phosphorylated 

cytoplasmic domain of EGF receptor include enzymes such as phospholipase Cy (PLCy), Raf, 

Ras-GTPase activating protein (Ras-GAP), syp phosphotyrosine phosphatase, and non-

enzymatic molecules such as p85 subunit of phosphatidylinositol 3-kinase (PI3 kinase), 

Src homology/collagen (SHC), growth factor receptor-bound protein-2 (GRB2), and 

transcription factor p91 (Panayotou and Waterfield, 1993; Koch et al., 1994; Malarkey et 

al.,1995). These molecules are involved in induction of a number of signaling cascades, 

including second-messenger dependent cascades, mitogen-activated protein (MAP) kinase 

cascade, and the signal transducers and activators of transcription (STAT) cascade. 

Second-messenger dependent cascades are among the signaling pathways involved in 

relaying EGF signal from the cell membrane to the intracellular environment. EGF receptor 
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activation leads to activation of PLCy, which catalyzes phosphatidylinositol-4,5-

bisphosphate (PIP2) to triphosphate inositol (PI3) and diacylglycerol (DAG) (Rhee et al., 

1989). Accumulation of PI3 increases the intracellular concentration of Ca 2 + , which 

together with DAG induce the activation of protein kinase C (PKC) (Nishizuka, 1988; Asaoka 

et al., 1992; Berridge, 1993). PKC has a broad range of substrates including growth factor 

receptors, ion channels, cytoskeletal proteins, nuclear proteins, several proto-oncogenes, 

as well as members of other signaling pathways such as MAP kinases (Pelech et al., 1990; 

Nishizuka, 1992; Olson et al., 1993; Mahoney and Huang, 1994; Hii et al., 1995). 

In addition, involvement of second-messenger dependent heteromeric G-proteins in 

EGF signaling pathways has been proposed (Ramirez et al., 1995). For example, G-protein 

subunits seem to be involved in regulation of C a 2 + influx upon EGF signaling (Maraca, 1986; 

Moolenaar et al., 1986). Furthermore, transient association and activation of Gia subunit 

of G proteins with the ligand activated EGF receptor have been reported (Yang et al.,1991). 

G-proteins have also been suggested to play a role in EGF-induced activation of adenylate 

cyclase (Nair et al., 1990), resulting in an increase in cAMP levels in a number of cell 

types (Nair et al., 1990; Yu ef al., 1992; Nakaguwa, 1991). The exact role and mechanism 

of action of G-proteins and cAMP in EGF-induced signal transduction pathways, however, 

remains unknown. 

The best known EGF induced signal transduction pathway is the MAP kinase cascade 

(Boonstra et al., 1995; Carraway and Carraway, 1995). To initiate the intracellular 

pathway, the adaptor protein, GRB-2 binds to the phosphorylated EGF receptor and recruits 

a Ras guanine nucleotide exchange factor (Lowenstein et al., 1992; Boguski and McCormick, 

1993; Panayotou and Waterfield, 1993), which interacts directly with Ras and induces the 

GDP/GTP exchange resulting in activation of Ras (Chardin et al., 1993; Gale et al., 1993). 

Activated Ras protein acts as a key mediator between the tyrosine receptor and the 
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proceeding intracellular protein kinases which include: Raf, MAP kinase kinase (MEK), and 

MAPK (Davis, 1993; Katz and McCormick, 1997). There are multiple kinase isoforms at 

each junction-point that allow the formation of a network of interactions for cross-

communication between different signaling pathways. The progressive phosphorylation and 

activation of these protein kinases lead to the selective phosphorylation of various 

cytoplasmic and nuclear substrates such as S6K, p90rsk, c-Raf, c-Jun, c-Myc, and ELK-1 

(Hunter and Karin, 1992; Fu and Zhang, 1993; Kazalauskas, 1994; Gupta et al., 1996) 

which ultimately affect the gene transcription and subsequent proliferative or 

differentiative behavior of the cell. 

Recently, another group of substrates have been shown to interact with 

phosphorylated EGF receptors, which include STAT proteins (Sadowski, 1993; Zhong et al., 

1994, Kumar et al., 1995; Leaman, et al., 1996). Activation of the EGF receptor results in 

rapid phosphorylation of these molecules (Sadowski, 1993; Darnell et al., 1994, David et 

al. 1996) and their translocation to the nucleus, where they act as transcription factors 

(Zhong et al., 1994; Leaman et al., 1996). 

Transforming Growth Factor B (TGFB) 

Transforming growth factor p's .(TGFB) are a large family of well characterized 

peptide growth factors. Based on structural and functional properties, the members of the 

TGFB superfamily of growth factors have been categorized into three subgroups: 1) TGFB 

subfamily (mammalian TGFB1-3, Xenopus TGFB4, and chicken TGFP5), 2) 

Activins/inhibins, and 3) Bone morphogenic proteins (BMP's, nodal, Xenopus Vg-1, 

Drosophila Dpp, and screw) (Massague, 1990; Roberts and Sporn, 1990). In addition, 

other TGFp related peptides, such as mullerian inhibiting substance (MIS) and glia derived 
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neurotrophic Factor (GDNF) have been identified, but they do not seem to belong to any of 

the categorized subfamilies (Massague, 1990; Brand and Schnider, 1995; Polyak, 1996). 

T G F p l , the prototypical member of the TGFp superfamily, was first isolated from 

human platelets by Assoian and associates in 1983, and later cloned from a human cDNA 

library by Derynck and co-workers in 1985. Subsequent studies have indicated that 

members of the TGFp superfamily have a variety of functions during development, repair, 

and maintenance of tissues in evolutionary diverse organisms ranging from insects, worms, 

and frogs, to mammals (Massague, 1990; Roberts and Sporn, 1990). Experiments on 

cultured cells, obtained from a variety of different organisms, suggest that these molecules 

may be involved in regulation of a wide spectrum of cellular behaviors such as cell 

proliferation, differentiation, migration, adhesion, ECM synthesis, and death (Lyons and 

Moses, 1990; Massague, 1990; Roberts and Sporn, 1990; Kingsley, 1994). 

Understanding the role of TGFp molecules during mammalian development has been 

the subject of intense investigation during the past decade. Numerous studies have employed 

techniques such as Northern and Western blottings and in situ hybridization of mRNA as well 

as immuno-localization of protein to localize TGFp molecules in developing mammalian 

systems (Heine et al., 1987; Wilcox and Derynick, 1988; Lenhert and Akhurst, 1988; 

Miller et al., 1989; Pelton et al., 1990a, b; 1991). Even though there is some 

disagreement among different studies regarding the exact onset and amount of TGFp 

expression during mammalian development (Akhurst, 1994), these studies generally 

recognize the presence of both mRNA and protein of TGFp in the developing tissues and organs 

such as haemopoetic tissue, salivary gland, tooth bud, secondary palate, eye, neural tissue, 

bone tissue, and kidney (Akhurst et al., 1992; Akhurst, 1994), thus implicating their 

involvement in embryonic development. 



1 

Structurally, TGFB molecules are disulfide-linked dimers of two identical 

polypeptide chains, which contain nine conserved cysteine residues. These molecules are 

initially synthesized by a variety of cell types in a precursor form, composed of a N-

terminal signal sequence, a pro-region containing glycosylation sites, and a C-terminal 

bioactive region (Massague, 1990). Upon secretion to the extracellular environment, the 

pro-region cleaves, but remains non-covalently associated with the bioactive form. 

However, only the dissociated bioactive TGFB molecule is capable of binding to the receptors 

and performing biological activities. The dissociation of bioactive TGFB thus appears to be 

tightly regulated in various tissues or cell culture environments (Massague, 1990). 

T G F B receptors (TpR) 

At least five membrane-bound glycoprotein receptors of TGFB have been identified: 

TBRI, II, Ml, IV, and V (Yingling et al., 1995; Kolodziejczyk and Hall, 1996). However, 

only TpR I, II, and III, which seem to be abundantly expressed in almost all cell types, have 

been well characterized (Cheifetz et al., 1987, 1990; Massague,1987, 1990, 1992, 

Attisano et al., 1994; Kingsley, 1994). Both TpR I and TpR II contain cytoplasmic 

serine/threonine protein kinase domains, whereas TpR III is a membrane anchored 

proteoglycan, and lacks an intracellular kinase domain (Cheifetz et al., 1988; Massague, 

1990 ) . 

TheTpR I (50-60 kDa) belongs to the family of serine/threonine kinase receptors, 

which are ubiquitously expressed in various cell types of different species, and share 

60-70% identity in their kinase domains. Studies on TGFp resistant mutants have shown 

that TpR I is essential for mediating the TGFp signal across the cytoplasmic membrane, 

although it is unable to bind to TGFp directly (Boyd and Massague, 1989; Laiho et al., 
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1990). Instead, TpR I seems to recognize and interact with TGFp-bound type II receptor 

(Wrana et al., 1992; Bassing et al.,1994). 

The TpR II (75 kDa) also belongs to the family of serine/threonine kinase receptors, 

which has been identified in mammals,, Drosophila, and C. elegans and show 30-40% 

homology in the kinase domain (Massague et al., 1994). Studies on TGFp non-responsive 

mutants have demonstrated that, like TpR I, TpR II is required for transducing TGFp signals 

from extra- to intra-cellular environment (Laiho et al., 1990). However, unlike TpR I, 

TpR II seems to bind directly to TGFp molecules (Laiho et al., 1990; Wrana et al., 1992). 

TpR III (280-330 kDa), also known as betaglycan, is a large membrane-bound 

proteoglycan, which binds to all three isoforms of TGFp but lacks a protein kinase domain; 

(Massague, 1985; Massague and like, 1985; Cheifetz et al., 1987; Segarini and Seyedin, 

1988; Lopez-Casillas et al., 1991; Fukushima et al., 1993). The TpR III may bind to TGFp, 

and present TGFp to its signaling receptors (type I and II), thereby increasing the signaling 

efficiency (Lopez-Casillas et al., 1993; Moustakas et al., 1993; Aittisano et al.,1994). 

Furthermore, in the presence of extracellular enzymes such as plasmin, TpR III becomes 

soluble and acts as an antagonist of TGFp by preventing its receptor binding (Andres et al., 

1989; Laminar et al., 1994; Lopez-Casillas et al., 1994). Thus, it seems that TpR III may 

play a dual role in regulating TGFp activity: as a membrane-bound protein, it functions as an 

accessory molecule; and as a soluble molecule it acts as a sequestering molecule (Attisano et 

al., 1994). 

The ligand binding and activation of TGFp receptor complex have been elucidated in 

various cell types (Wrana et al.,1992; 1994; Lin and Lodish, 1993; Penton et al., 1994; 

Attisano et al., 1995; Liu et al., 1995; Yingling et al., 1995). These studies have proposed 

that binding of TGFp to the constitutively active (autophosphorylated) TpR II recruits TpR I, 

which form a complex with the ligand-bound TpR II. Subsequent to formation of the 
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complex, TBR II phosphorylates TBR I on its serine/glycine rich (GS) domain, which seems 

to be essential for the downstream cytoplasmic responses induced by TGFB. 

Intracellular mediators of TGFB s igna l ing pathway 

In recent years, efforts have been made by several investigators to recognize 

intracellular mediators of the TGFB signaling pathway. Using a yeast two hybrid screening 

system to identify signaling molecules that directly interact with the cytoplasmic domain of 

TBR I, two intracellular TBR l-binding molecules, a peptidyl polyisomerase, FKBP12, and 

a subunit of farnesyltransferase (FT-a) have been recognized (Kowabata et al., 1995; Liu 

et al., 1995; Wang et al., 1994, 1996). Although the exact role of FKBP12 in TGFB-

induced signaling pathway is not yet known, it has been suggested that FKBP12 and TBR I 

may interact in vivo (Yingling et al., 1995). FKBP12 also binds to immunosupressive 

drugs, FK506 and rapamycin (Schrieber, 1991; Fruman, et al., 1994) to form a complex, 

which causes G1 arrest in cells by inhibiting cyclin dependent kinase activity required for 

G1 to S phase transition (Yingling, 1995; Polyak 1996). FT-a is the regulatory subunit of 

Ras farnesyltransferase which seems to play an important role in activation/modulation of 

Ras molecule, other members of Ras superfamily and y subunit of G proteins, all of which 

are implicated in cell regulation (Hancock et al., 1989; Wang et al., 1996). Wang and 

colleagues (1996) indicated that FT-a binds ligand-free TBR I, and is subsequently 

phosphorylated and released in the cytoplasm. Its ensuing involvement in TGFB-induced 

signaling pathway, however remains unclear. 

Also, a highly conserved family of proteins, mothers against dpp (MAD) proteins, 

initially identified in Drosophila (Sekelsky et al., 1995; Newfeld et al., 1996; Wiersdorff 

et al., 1996) and subsequently in C.elegans, Xenopus, and mammals (Massague, 1996; Hill, 

1997) has been implicated as an intracellular mediator of the TGFB signaling pathway. The 
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null mutants of MAD gene possess identical phenotype as mutants of dpp, a TGFp related 

protein in Drosphila (Hoodless et al., 1996; Wiersdorff et al., 1996). It has been suggested 

that, upon trans-phosphorylation of TPR I with TpR II, MAD protein transiently interacts 

with TpR I cytoplasmic domain (Zhang et al., 1996; Macias-Silva et al., 1996). The 

interaction between activated TpR I and MAD protein results in MAD protein 

phosphorylation, and subsequent accumulation in the nucleus (Baker and Harland, 1996; 

Hoodless et al., 1996; Liu et al., 1996; Macias-Silva et al., 1996). The exact role of MAD 

proteins in the nucleus is not yet well defined. Liu et al. (1996), however, showed that 

when fused to the DNA binding protein, GAL-4 protein, the C-terminus of MAD acts as a 

transcriptional activator of GAL-4 reporter gene. Such observations may be suggestive of a 

possible involvement of MAD proteins in regulation of gene expression in response to TGFp-

induced signal transduction (Arora et al., 1995; Liu et al., 1996; Niehrs, 1996). 

Ant ipro l i ferat ive act ions of TGFp 

TGFp seems to exert growth inhibitory effects in normal and transformed cell lines 

of epithelium, endothelium, fibroblast, neural, lymphoid) and haemopoetic cell types 

(Massague, 1992). TGFp has been suggested to exert its antiproliferative effects through 

various mechanisms during mid to late G1 phase of cell cycle (Massague, 1990; Roberts and 

Sporn, 1990; Kingsley, 1994; Polyak 1996). One of the proposed mechanisms by which 

TGFp inhibits cell cycle progression is through preventing the phosphorylation of 

retinoblastoma tumor suppressor protein (Rb) (Laiho et al., 1990; Polyak 1996). Rb is a 

key player in the cell cycle machinery and interacts with the cell cycle regulators, cyclins, 

Cdks, Cdk inhibitors, and cyclin-activating kinase (Brand and Schneider, 1995). 

Another mechanism by which TGFp may restrain cell proliferation is through 

modulation of the mitogenic signaling pathway involving Ras, Raf-1, MEK, and MAPK 
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(Kolodziejczyk and Hall, 1996; Polyak, 1996). Recent studies have shown that the effects 

of TGFB on the Ras-MAPK pathway is highly dependent on cell type and environment. For 

instance, TGFB treatment of variety of cell types such as intestinal epithelia (Mulder and 

Morris, 1992) , HD3 colon carcinoma (Yan et al., 1994), and CCL64 mink lung epithelia 

(Hartsough and Mulder, 1995) rapidly induces the activation of Ras protein. In addition, 

Howe and associates (1993) showed that microinjection of the oncogenic Ras protein 

(Ha-Ras) to TGFB treated mink lung epithelial cells overcomes the TGFB growth inhibitory 

effect, and allows progression of the cell cycle. On the other hand, microinjection of anti-

Ras antibody to mink lung epithelial cells following release from TGFB treatment causes the 

cells to remain in a growth arrested state (Howe et al., 1993). These observations suggest a 

possible involvement of Ras protein in the TGFB-induced signaling pathway. 

Furthermore, the ability of TGFB to modulate the activity of MAPK is cell type 

specific effects. In proliferating cultures of intestinal epithelial cells (Hartsough and 

Mulder, 1995), HD3 colon carcinoma cells (Yan et al., 1994), and mesangial cells •' 

(Huwiler and Pfeilschifter, 1994), TGFB treatment seems to activate various isoforms of 

MAPK. Conversely, in other cell types such as CCL64 mink lung epithelial cells (Hartsough 

and Mulder, 1995) and smooth muscle cells (Berrou et al., 1996), TGFB treatment inhibits 

MAPK activation. Alternatively, TGFB treatment has been reported to up-regulate serine-

threonine phosphotases in some cell types (Gruppuso et al., 1991; Fontenay et al., 1992). 

In their study, Berrou et al. (1996) have hypothesized that TGFB may display its anti

proliferative effects on FGF-induced smooth muscle cells through activating 

serine/threonine phosphatases that interfere with Ras-MAPK mitogenic pathway. 

Another hypothesis, indicating direct involvement of TGFB in Ras-MAPK through a 

TGFB-activated kinase (TAK-1), has also been proposed (Yamaguchi et al., 1995). TAK-1 

is a member of the MAPK kinase kinase (MAPKKK) family of protein kinases, which was 
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isolated from a c-DNA library of murine cells (Yamaguchi et al., 1995). The kinase domain 

of TAK-1 shows 30% homology with c-Raf and MEKK. Addition of TGFB to MC3T3 

osteoblasts seems to stimulate the kinase activity of TAK-1 within 5-10 minutes in a dose 

dependent manner (Yamaguchi et al., 1995). In addition, two TAK-1 binding proteins 

(TAB-1 and -2) have recently been isolated from the cDNA library of human brain cells, 

which seem to enhance TGFB-regulated activity of TAK-1, implicating their potential 

involvement in the TGFB signaling pathway (Shibuya et al., 1996). 

Immediate Early Genes 

Biological behavior of cells of multicellular organisms is regulated by both the 

proximate and distant environmental factors through ligand-receptor mediated 

transcriptional changes (figure 2). The ligand-receptor complex sets in motion a series of 

cross-talking, intracytoplasmic signaling cascades, which transmit signals to the nucleus, 

and activate transcriptional machinery to enforce gene expression. In a developing system, 

spatio-temporally specified, ligand-induced gene expression determines the biological 

behavior of cells, which, in turn, modulates the morphogenesis of a structure/organ. The 

ligand controlled behavior of cells during development may result from a combinatorial 

activation of a set of genes, whose temporal kinetics of quantitative induction, cell/tissue 

specific expression, and post-translational modifications of gene products plays an 

important role in regulating variations in the biological response (Herschman, 1991). 

Following demonstrations by Riddle and associates (1979) that serum-induced 

mitosis was accompanied by a rapid increase in synthesis of nuclear and cytoplasmic 

proteins, and by Stiles and Colleagues (1979) that treatment of BALBc/3T3 quiescent 

fibroblasts by EGF and PDGF would rapidly induce mitosis in them, Herschman and Scher 

(1983) showed that both EGF and PDGF induce the accumulation of translatable RNA. 



21 

Subsequently, it was shown that a brief exposure to serum, EGF, FGF, or PDGF induces a 

rapid and transient transcription of c-fos, c-jun, and c-myc proto-oncogenes (Kelly et al., 

1983; Bravo, et al., 1985; Ryseck et al., 1988; Quantin and Breathnach, 1988). These 

genes were named "immediate early genes" because following mitogenic stimulation of cells 

their expression was rapid (within minutes), often transient, and did not require de novo 

protein synthesis (Henriksoh and Luscher, 1996). Immediate early genes generally 

participate in normal cellular regulation involving signal transduction cascades, to convert 

extra-cellular messages through target genes into a program of gene expression (figure 2). 

The protein products of immediate early genes are involved in many cellular activities such 

as cellular growth, proliferation, differentiation and oncogenic transformation (Morgan and 

Curran, 1989). 

So far, over 170 immediate early genes have been identified in serum- or growth 

factor-treated cells, or from regenerating tissues (Mohn et al., 1991). A highly varied 

pattern of their expression in different cell types indicates that tissue specificity of their 

biological response may be related to a particular set of genes expressed in a given tissue or 

in response to an inducing agent rather than expression of a few cell type specific genes 

(Mohn et al., 1991). 

Depending upon the cellular milieu, immediate early genes encode proteins that can 

act as activators of transcription factors or proteins involved in signal transduction 

cascades to regulate cell behavior (Hunter and Karin, 1992). To activate transcription of 

an immediate early gene, a transcription factor should localize into the nucleus, bind to 

DNA, and interact with the basal transcription factor apparatus (Hill and Triesman, 1995). 

One of the most common ways of transcription regulation is through phosphorylation by 

members of signaling pathways (Hunter and Karin, 1992). Phosphorylation of a 

transcription factor or its associated protein can induce conformational changes in the 
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protein to promote: its nuclear localization, its association with a coactivator protein, its 

dimerization, its transactivation, or its DNA binding properties (Hill and Triesman, 1995). 

Such phosphorylation-led changes eventually regulate the biological behavior of cells such 

as growth, proliferation, differentiation, and/or apoptosis (Pawson and Hunter, 1994). 

In biological systems, the changes in immediate early gene expression appear to be 

associated with potential changes in cellular capabilities: new transcription factors are 

induced that could affect the expression of secondary (target) genes, thus linking acute 

stimuli with long term adaptive changes in cellular gene expression. The functional role of 

inducible genes in specific physiological systems however is not well defined. The change 

from a quiescence to proliferating state of cell is characterized by the induction of several 

waves of genes which are believed to be necessary for the onset and progression of cell cycle 

(Beserga, 1985). Many immediate early genes encode transcription factors that bind to 

specific DNA sequence elements present in the regulatory regions of their target genes, thus 

regulating a subsequent wave of gene expression. Three of these early response genes that 

are involved in cell cycle progression are the proto-oncogenes c-fos, c-jun, and c-myc. 

Because of their rapid and widespread transcription, these proto-oncogenes provide an 

excellent model for studying the mechanisms by which extracellular stimuli regulate DNA 

synthesis during the cell cycle. In the present study, the effects of growth factors on 

expression of these immediate early genes was analyzed to investigate their involvement in 

proliferation of embryonic palate mesenchymal cells. 



Figure 2. Ligand-induced cellular response through activation of 
immediate early genes. 
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c-fos 

The immediate early gene c-fos is one of the best characterized proto-oncogenes, and 

its protein product, c-Fos, belongs to a family of highly related nuclear phosphoproteins 

which also includes v-Fos, FosB, and Fos-related antigens, Fra-1 and Fra-2 (Verma and 

Graham, 1987; Curran, 1988; Distel and Spiegelman, 1990; Hesketh, 1994; Misra, 

1994; Piechaczyk and Blanchard, 1994). fos was initially isolated, as the gene responsible 

for induction of bone tumors (v-fos), from two murine osteosarcoma retroviruses, Finkel-

Biskins-Jinkins (FBJ) and Finkel-Biskins-Reilly (FBR), by Curran and Teich in 1982 

(the term fos is derived from FBJ/FBR osteosarcoma) . Subsequently, cellular fos (c-fos) 

was cloned from a mouse liver and a human lymphoblast cell line (Curran et al., 1983) and 

its complete nucleotide sequence was determined (Van Beveren et al., 1983, 1984; Van 

Straaten et al., 1983). In addition to mice and humans, c-fos has been identified in other 

vertebrates such as chicken and Xenopus, and its structure seems to be highly conserved 

among various species (79-94%) (References cited above). 

The c-fos gene structure consists of a 5' promoter region, a coding region containing 

four exohs, and a 3' non-coding region containing poly(A) tail (figure 3a). The mRNA 

transcript of c-fos has a size of 2.2 kb as detected by Northern blotting, and encodes the 380 

amino acid c-Fos molecule. The primary translation product of c-fos is 55 kDa (Curran et 

al., 1982). However, on polyacrylamide gel electrophoresis, the apparent molecular 

weight of c-Fos is between 55-62 kDa, perhaps due to high proline content of the protein 

and post-translational modifications such as phosphorylations and phosphoesterifications on 

its serine and threonine residues (Curran et al., 1984; Verma et al., 1984; Muller et al., 

1987) : 
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Figure 3. Schematic diagram of c-fos gene (a) and c-Fos protein (b) structure (source: 
Ransone and Verma, 1990). 

c-Fos is a short lived transcription factor (half life 30 minutes-2 hours; Curran et 

al., 1984; Muller et al., 1984; Curran and Morgan, 1986), which has been implicated in a 

variety of cellular activities including cell growth, proliferation, differentiation, death and 

oncogenic transformation (Verma, 1986; Gonzalez-Martin et al., 1992). Structurally, 

c-Fos consists of a leucine zipper region, a highly basic region, and a transcription 

activation domain (figure' 3b) (Curran, 1988; Distel and Spiegelman, 1990). The 

phosphorylation of c-Fos seems to be altered by a variety of extracellular stimuli. In vitro 

studies have shown that both the C-terminal and the N-terminal domains of c-Fos can be 

phosphorylated by several protein kinases such as p34-(cdc2), PKA, PKC, MAP kinase, 

DNA dependent protein kinase (DNAPK), GSK, and RSK (Abate et al., 1991; Taylor et al., 

1993). Extensive post-transcriptional modifications of c-Fos led to suggestion that c-Fos 

activity may be a distal intermediate in the process of signal transduction (Distel and 
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Spiegelman, 1990). c-Fos could translate diverse short-term events from cell membrane 

into both short-term and long-term changes in gene expression (Morgan and Curran, 

1986). The exact effect of c-Fos phosphorylations in regulation of its transcriptional 

activity is, however, not well understood. 

To act as a transcription factor, Fos molecules require dimerization with the Jun 

family of transcription factors. Due to their protein structure, Fos members are not 

capable of forming homodimers, and therefore, on their own, they cannot bind to DNA and 

activate transcription (Verma and Graham, 1987; Curran et al., 1993; Piechaczyk and 

Blanchard, 1994). 

Regulat ion of c-fos t ranscr ip t ion 

Several extracellular stimuli such as serum, growth factors (EGF, PDGF, NGF, FGF, 

etc.), cytokines, cAMP, Ca 2 + , phorbol esters, UV light, etc., may result in rapid and 

transient induction of c-fos in a variety of cell types including fibroblasts, lymphocytes, 

nerve cells, and established cell lines (Curran, 1988; Distel and Spiegelman, 1990; 

Ransone and Verma, 1990; Angel and Karin, 1991). c-fos transcription usually begins 

within minutes after stimulation of the responding cells; its mRNA levels reach maximum at 

30-60 minutes and decline to basal levels by 90-120 minutes (Cochran et al., 1988; 

Curran, 1988; Misra, 1994). It is generally agreed in the literature that c-fos 

transcriptional activation involves several complex regulatory mechanisms. 

One of the mechanisms responsible for c-fos transcriptional regulation involves 

interaction of several transcription factors with the c-fos promoter region (Curran, 

1988). The c-fos promoter region contains a number of regulatory sequences (Hill and 

Treisman, 1995; Janknecht, 1995) (figure 4). The serum response element (SRE) is a 

protein binding site required for the induction of c-fos expression by serum and mitogens 
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(Gilman et al, 1986; Treisman, 1992). SRE appears to be constitutively occupied by a 

ternary complex of transcription factors that contains serum response factor (SRF) 

homodimer, and a ternary complex factor (TCF; which includes Elk-1, SAP-1, or SAP-2) 

(Norman et al., 1988; Shaw et al., 1989). Following stimulation of quiescent cells by 

serum or growth factors, both SRF and TCF are phosphorylated (Prywes et al., 1988; 

Janknecht et al., 1993; Marais et al., 1993). The exact mechanism responsible for 

activation of SRF is not well known; however, involvement of PKC dependent pathways has 

been implicated (Graham and Gilman, 1991). Furthermore, phosphorylation of TCF 

molecules by MAP kinase seem to play an important role in stimulation of c-fos expression 

(Shaw et al., 1989; Hipskind et al., 1991; Hill et al., 1993; Davis, 1994). Another 

regulatory DNA sequence in the c-fos promoter is the calcium and cAMP response element 

(CRE), which mediates rapid c-fos induction in response to elevated cAMP and calcium 

(Gilman, 1986; Sassone-Corsi et al., 1988; Sheng et al., 1988; Fisch et al., 1989). 

Expression of c-fos in response to calcium and cAMP has been proposed to occur through 

phosphorylation of CRE binding protein (CREB) by PKA (Sheng et al., 1991). The sis-

inducible element (SIE) is also a transcription factor binding site in the c-fos promoter. 

SIE seems to interact with the STAT family of transcription factors and contribute to c-fos 

promoter activation by cytokines and growth factors that induce STAT DNA-binding activity 

(Fu and Zhang, 1993; Sadowski et al., 1993; Zhong et al., 1994; Leaman, et al., 1996). It 

has been suggested that an AP-1 binding region in the promoter region of c-fos may be 

responsible for c-fos negative auto-regulation (Sasson-Corsi et al., 1988; Fisch et al., 

1 989 ) . 
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Figure 4. Schematic diagram of c-fos transcriptional regulation on its promoter region 
(modified from: Hill and Triesman, 1995 ). 

In addition to promoter-directed regulatory mechanisms, other mechanisms appear 

to be involved in regulation of c-fos transcription. The rapid turn over of the c-fos mRNA 

seems to depend on the presence of a AT-rich untranslated region at the 3' of c-fos as well as 

a region in the coding domain of c-fos (Meijlink et al., 1985; Rahmsdorf et al., 1987; Lee 

et al., 1988; Raymond et al., 1989). In the presence of protein synthesis inhibitors, the 

half life of c-fos mRNA is increased, suggesting an involvement of a rapidly induced RNase in 

the degradation of these molecules. Also, c-Fos may be involved in down-regulation of its 

own transcription. Sasson-Corsi and associates (1988a), and Schonthal and colleagues 

(1988) indicated that over expression of c-fos may result in rapid reduction of both the 

basal level and serum induced levels of c-fos expression. Similarly, inhibition of c-fos 

protein synthesis using antisense RNA seem to lead to an increase in the c-fos transcription. 

Further analysis of c-fos deletion mutations revealed that the C-terminal of c-Fos may be 

involved in its transcriptional repression (Gius et al., 1990). 
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c-jun 

The proto-oncogene c-jun is another immediate early gene, which has been the 

subject of extensive investigations during the past two decades. The protein product of 

c-jun, c-Jun is a member of a family of related transcription factors that also includes 

v-Jun, JunB, and JunD. Although the Jun transcription factor family members share 

significant sequence homology, they are expressed in variable amounts in different cell 

types and tissues, and show different transcriptional and biological activities (Chiu et al., 

1989; Schutte et al., 1989; Castellezzi et al., 1991; Deng and Karin, 1993; Pfarr et al., 

1994). jun was initially identified and isolated as the transforming gene of avian sarcoma 

virus 17 (ASV 17) in chicken cells by Maki and associates and Vogt and colleagues in 1987 

(the term jun is the condensed form of "junana", the Japanese word for 17). Subsequently, 

cellular jun has been identified in several vertebrates (humans, mice, rats, and chickens) 

where it shows to have high sequence homology (71-99%) across species (Ryder et al., 

1988; Schutte et al., 1989; Nomura et al., 1990; Hartl et al., 1991). 

The vertebrate c-jun gene consists of a 5' promoter region, a single exon without 

any introns, and an extensive 3' non-translated region (figure 5a). It encodes for 330 

amino acid (39kDa) c-Jun protein. Using Northern blotting technique, the mRNA 

transcript of c-jun has been detected in two sizes 2.7 and 3.3 kb. The two transcripts seem 

to differ in the size of untranslated poly(A) (AU-rich sequence) tail at the 5' end of the 

mRNA (Ransone and Verma, 1990; Vogt and Bos, 1990; Hesketh, 1994) : 
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Figure 5. Schematic structure of c-jun gene (a) and protein (b) (source: Ransone and 
Verma, 1990). 

The product of proto-oncogene c-jun has been implicated in regulation of a variety of 

cellular activities including cell proliferation, differentiation, death, and oncogenic 

transformation (Vogt and Bos, 1990; Angel and Karin, 1991; Devary et al., 1991; van Dam 

et al., 1995; Bossy-Wetzel et al., 1997). Structurally, c-Jun protein consists of a leucine 

zipper domain and a highly basic domain in its C-terminal region and a highly acidic 

transcriptional activation domain in its N-terminal region (figure 5b). In vivo and in vitro 

studies have revealed that both the C-terminal and the N-terminal domains of c-Jun can be 

.phosphorylated by several protein kinases including Jun-N-terminal kinase (JNK), stress 

activated protein kinase (SAPK), GSK, and CK 2 (Devary et al., 1992; Karin and Smeal, 

1992; Hibi et al., 1993). In resting (GO) epithelial and fibroblast cells, c-Jun is 

phosphorylated by GSK on the C-terminal near its DNA binding domain, which exerts 
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inhibitory effects on c-Jun activity. In growth factor or mitogen stimulated cells, , 

activation of c-Jun occurs through dephosphorylation of the C-terminal (perhaps through a 

PKC dependent mechanism) and phosphorylation of the N-terminal, by protein kinases such 

as JNK, SAPK, and CK2 (Boyle et al., 1991; Hunter and Karin, 1992, Pulverer et al., 

1993 ) . 

To act as an active transcription factor, the c-Jun molecule should form a dimer 

complex with other transcription factors. All the members of Jun family, including c-Jun 

associate with Fos proteins to form Fos-Jun heterodimers, also known as activator 

protein-1 (AP-1). In turn, the AP-1 family of transcription factors activate a wide 

assortment of genes in different types of cells in response to the environmental stimuli that 

activate signal transduction pathways (Hunter and Karin, 1992; Hill and Triesman, 1995; 

Karin, 1995). To activate a gene, the AP-1 molecules bind to 5TGAG/CTCA3' consensus 

sequences on DNA, recognized as the TPA (12-O-tetradecanoylphorbol 13-acetate) response 

element (TRE) of several cellular and viral genes (Angel and Karin, 1991). The affinity of 

Jun protein for DNA binding is significantly increased by the presence of Fos. In addition, 

unlike c-Fos, c-Jun homodimer acts as an active transcription factor; however, its activity 

is much less than Jun/Fos heterodimer (Angel and Karin, 1991). In addition to c-Fos, 

c-Jun also associates with other transcription factors such as ATF-2 and CREB to form 

active transcription factor heterodimers (Hai and Curran, 1991). The ability of c-Jun to 

interact with different transcription factors may result in its binding to several distinct 

DNA binding sites and activation of diverse groups of genes. 

Regulat ion of c-jun t ransc r ip t i on 

The c-jun gene is expressed in response to a variety of extracellular stimuli 

including growth factors, UV light, phorbol esters, oxidative stress, etc. (Sherman et al., 
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1990; Devary et al., 1991; Rozek and Pfeifer, 1995). In most cell types, the c-jun mRNA 

levels increase within 30-60 minutes following stimulation, and decline to basal levels by 

2-4 hours (Lamph et al., 1988; Ryder and Nathans 1988). Elevation of c-jun mRNA levels 

appears to be due to an increase in gene transcription in response to extracellular stimuli 

(Ryder and Nathans, 1988; Sherman et al., 1990; Devary et al., 1991; Bergelson et al., 

1994). Several transcription factor binding regions have been identified in c-jun 

promoter region, which seem to be responsible for regulating its expression (figure 6). 

These regions include a serum response factor-related binding domain (RSRF), two 

AP-1-like binding domains (jun1 and jun2), a CAT domain, a SP-1 domain, and a nuclear 

factor-Jun binding domain (NF-Jun). 

TGFp UV Growth Factors Phorbol esters serum 

Figure 6. Schematic diagram of c-jun transcriptional regulation. 
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In both unstimulated and stimulated fibroblasts, the c-jun promoter region is 

occupied by transcription factors; therefore, mechanisms such as post-transciptional 

modifications of the transcription factors (eg. phosphorylation by various signaling 

pathways) or replacement of less active transcription factors with more active ones may be 

responsible for induction of c-jun expression (Rozek and Pfiefer, 1993; Herr et al., 1994; 

van Dam et al., 1995). Both the AP-1 binding sites in c-jun promoter seem to be involved 

in positive regulation of c-jun expression by serum, EGF, UV light and phorbol ester (Angel 

et al., 1988; Han et al., 1992; van Dam et al., 1993; Herr et al., 1994). The transcription 

factors that interact with c-jun AP-1 sites include c-Jun/AP-1 and c-Jun/ATF-2 

complexes (figure 6). In vivo and in vitro studies have shown that several different 

mitogen induced protein kinase pathways (including MAP kinase signaling cascade) are able 

to phosphorylate c-Jun at both at the transcriptional activation domain and at the DNA 

binding domain (Pulverer et al., 1991; Baker et al., 1992; Hibi et al., 1993; Kamada et 

al., 1994) to increase its transcriptional activity (Smeal et al., 1992; Hibi et al., 1993). 

ATF-2 also appears to be a target of stress activated protein kinase (SAPK), a member of 

the MAP kinase family (figure 6), in response to UV light stimulation (van Dam et al., 

1995). RSRF seems to be responsible for c-jun induction by serum, phorbol esters, and 

EGF in fibroblast cells (Han et al., 1992; Rozek and Pfeifer, 1995). The mechanism by 

which extracellular stimuli induce RSRF transcriptional activity, however, is unknown. 

Nuclear factor-jun (NF-jun) binding region associates with NF-jun transcription factor, 

which has several features similar to NFKB.and its expression is restricted to proliferating 

cells (Brach et al., 1992). NF-jun seems to be involved in activation of c-jun 

transcription in response to tumor necrosis factor-a (TNF-a) and phorbol esters. The PKC 

(figure 6) pathway has been proposed to regulate NF-jun transcriptional activity (Brach et 

al., 1992). In addition, RB protein has been reported to activate c-jun expression in 
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fibroblasts (Chen et al., 1994). RB protein seems to exert its effect on c-jun expression 

through binding to the Sp-1. binding site in the c-jun promoter as well as through binding to 

the Sp-1 inhibitor and result in release of active Sp-1 transcription factor (Chen et al., 

1994 ) . 

In addition to the positive regulatory mechanisms, c-jun expression is subject to 

several negative regulatory mechanisms, c-jun negative regulation seems to be important 

in normal cell function, since c-jun over-expression may result in oncogenic 

transformation. Similar to other immediate early gene, c-jun mRNA transcripts are very 

unstable. The c-jun mRNA has a very long untranslated poly (A) tails (approximately 

1 kb), which may be the site of specific RNAse enzymes (Hattori et al., 1988). Additional 

negative mechanisms may also operate through c-jun promoter region. For example, 

transfection experiments have shown that homodimers of JunB, a c-Jun-related proto-

oncogene, bind to AP-1 binding sites in c-jun promoter and act as its negative regulator 

(Angel and Karin, 1991). Furthermore, transcriptional activity of c-jun may be 

repressed by CREB, which forms heterodimers with c-Jun and bind to the AP-1 binding 

region (Angel et al., 1988; Benbrook and Jones, 1990). The activity of CREB seems to be 

regulated by its phosphorylation through PKA in response to cAMP- inducing factors 

(Benbrook and Jones, 1990; Macgregor et al., 1990). In some cell types TGFp seems to 

exert negative effects in activation of c-jun expression (figure 6). Sott and associates 

(1994) suggested that TGFp exert its negative effects by inhibition of the nuclear activity of 

NF-jun transcription factor. Taken together, these findings show that transcriptional 

regulation of c-jun is a complex process, and involves interaction of a large number of 

regulatory proteins. 
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c-myc 

One of the most extensively studied immediate early genes is the c-myc proto-

oncogene, whose protein product, c-Myc, belongs to a large family of highly related 

phosphoproteins that also includes v-Myc, N-Myc, B-Myc, S-Myc and L-Myc (Marcu et 

al., 1991; Spencer and Groudine, 1991; Henriksson and Luscher, 1996; Lemaitre et al., 

1996). Upon translation in the cytoplasm, these proteins have been shown to translocate to 

the nucleus, bind to specific DNA sites, and act as transcriptional activators. In 1979, 

Shieness and Bishop identified the first myc gene, viral myc, (v-myc), as the transforming 

sequence in the avian leukemia retrovirus MC29, whose expression caused myelocytomas, 

carcinomas, sarcomas, and lymphomas in birds fibroblasts and macrophages (Cole, 1986). 

In 1982, Vennstrom and associates isolated the cellular homologue of v-myc, c-myc, from 

chicken fibroblasts. It is now recognized that c-myc is evolutionarily conserved; its 

homologue genes have been cloned and characterized in insects, zebra fish, frogs, sea stars, 

as well as in mammals (Marcu et al., 1992; Henriksson and Luscher, 1996; Lemaitre et 

al., 1996). ' 

The gene structure of c-myc consists of a promoter region, three exons, and a 

poly(A) tail (figure 7a). The c-myc gene product is translated from exons two and three. 

The exon one is non-coding although it is evolutionarily conserved (Farhlander and Marcu, 

1986; Marcu et al, 1992). Using immunoprecipitation techniques, Hann and associates 

(1983) and Personn and coworkers (1984) detected translation of at least two nuclear 

proteins p64 and p67 from human c-myc. These two gene products seem to exhibit very 

similar phosphorylation, protein interaction and DNA binding properties in both in vivo and 

in vitro systems (Personn et al., 1984; Ramsay et al., 1984; Watt et al., 1985). The 

transcripts for these two gene products have a size of 2.4 and 2.2 kb and appear to be 
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encoded under the direction of two different promoters, P1 (10-25%) and P2 (75-90%) 

(Henriksson and Luscher, 1996; Lemaitre et al., 1996). 
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Figure 7. Schematic diagram of c-myc gene (a) and c-Myc protein (b) structures 
(source: Marcu, et al., 1992; Lemaitre et al., 1996). 

Structurally, c-Myc consists of a transcriptional activation domain in its N-

terminal (Kato et al., 1990), a basic helix-loop-helix leucine zipper (bHLHLZ) domain 

(Landschulz et al., 1988; Murre et al., 1989; Luscher and Eisenman, 1990), as well as 

two nuclear localization signals (NLS) in its C-terminal (Dang and Lee, 1988) (figure 7b). 

Numerous in vivo and in vitro studies have shown that c-Myc is phosphorylated on serine 

and threonine residues in the transcriptional activation domain, by glycogen synthase 

kinase-3 (GSK-3), MAP kinase, p34 cdc2 kinase (CDK1), and a p107/cyclinA/CDK 

complex, and in the C-terminal domain by Casein kinase-2 (CK-2) (Lutterbach and Hann, 

1994; Henriksson and Luscher, 1996; Lemaitre, et al., 1996). Phosphorylation of c-Myc 

on serine and threonine residues is regulated by mitogens, and alters its ability to induce 

gene transcription. Also, it has recently been shown that the phosphorylation sites of c-Myc 
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are different in immortalized and transformed cell lines compared with primary cells 

(Lutterbach and Hann, 1997). c-Myc is a short-lived protein with a half life of 20-30 

minutes (Luscher and Eisenman, 1990). From a functional viewpoint, c-Myc is implicated 

as a positive regulator of cell proliferation, cell cycle progression, neoplastic cell 

transformation, and apoptosis, and an inhibitor of cell differentiation (Marcu et al., 1992; 

Pakham and Cleveland, 1995; Herinksson and Luscher, 1996). 

To function as a transcription factor, dimerization of c-Myc with another protein is 

essential. c-Myc homodimers are unstable and seem to be physiologically inactive. The 

c-Myc partner, Max, was identified by screening a human cDNA expression library with a 

radiolabeled fusion protein containing the c-Myc C-terminus (Blackwood and Eisenman, 

1991). Max is a bHLHLZ transcription factor that lacks a transcriptional activation domain 

and forms stable heterodirhers with c-Myc, N-myc, and L-Myc as well as homodimers with 

itself (Blackwood and Eisenman, 1991; Wenzal et al., 1991; Blackwood et al., 1992; 

Mukherjee et al., 1992). Also, unlike c-myc, Max protein is abundant in various cell 

types, has a long half life, and its expression is not regulated by growth factors or mitogens 

(Amati and Land, 1994), 

Myc and Max interact with each other through their HLH and LZ domains, and with 

DNA through their highly basic regions (Crouch et al., 1993; Davis and Halazonetis, 1993). 

Myc/Max heterodimers bind to a DNA concensus hexamer sequence, CACGTG, also known as 

E-box (Blackwell et al., 1990; Prendergast et al., 1991, Fisher et al., 1991; Kerkhoff et 

al., 1991). Since recognition of the E-box, several studies have focused on characterizing 

the genes that possess this E-box in their promoter and are subsequently induced by the 

c-Myc/Max dimer. The c-Myc/Max-induced target genes include: a-prothymosin (ai 

nuclear protein with unknown function) (Eilers et al., 1993); ornithine decarboxylase 

(ODC) (Bello Fernandez et al., 1993; Tobias et al., 1995); tumor suppressor gene p53 
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(Riesman et al., 1993); a developmental^ regulated gene ECA39, which may be involved in 

cell cycle regulation (Bevenisty et al., 1992; Schuldiner et al., 1996); cad which encodes 

one of the mediators of pyrimidine synthesis, (Miltenberger et al., 1995); cdc25A gene 

whose product is a CDK-actiyating phosphatase (Galaktionov et al., 1996), and elf,-2a, 

encoding eukaryotic translation initiation factor (Rosewald et al., 1993). Even though the 

mechanism by which these target genes may mediate the effects of c-myc is not well 

understood, a few of these genes such as cad, ODC, and ECA39 have been suggested to be 

involved in cell cycle progression and cell transformation (Moshier et al., 1993, 

Miltenberger, 1995; Schulinder et al., 1996). < 

In addition to Max, two other bHLHLZ proteins, Mad (Ayer et al., 1993) and Mxi 

(Zervos et al., 1993), which, interact with Max, but show no homology to either Myc pr Max 

have been identified. It appears that these proteins compete with Myc for binding to Max 

with approximately equal affinities (Ayer et al., 1993). Recently, it has been proposed that 

Myc-Max-Mad may form a transcription factor network for controlling cell cycle 

progression, differentiation, and apoptosis (figure 8); In this network, Myc/Max 

heterodimers seem to induce cell proliferation and apoptosis, whereas Max/Mad and 

Mxi/Mad may be involved in growth arrest and cell differentiation (Amati et al., 1994; 

Henriksson and Luscher, 1996). Whether various growth stimulatory factors that are 

implicated in modulation of c-Myc activity affect the transcription factor pairing is not yet 

known. 
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Figure 8. Myc-Max-Mad: Cell cycle and expression of Myc and associated proteins. 
(source: Henriksson and Luscher, 1996; Lemaitre et al., 1996). 

Regulat ion of c-myc t ranscr ip t ion 

The expression of the c-myc gene is highly regulated by extracellular factors. In 

quiesent cells, c-myc mRNA and protein are generally not readily detectable. Several 

growth promoting factors such as serum, PDGF, FGF, EGF, IL-3, CSF, etc. induce a rapid and 

transient c-myc expression in fibroblasts, keratinocytes, and lymphocytes (Marcu et al., 

1992; Henrikson and Luscher, 1996). In contrast, growth inhibitory, or differentiation 

promoting factors such as TGFp, TNFa, and interferons appear to inhibit c-myc activation. 

For example, TGFp downregulates mRNA and protein levels of c-myc in mouse BALB/MK 

keratinocytes (Polyak, 1996). Numerous studies have proposed the involvement of 

multiple growth factor-initiated signaling cascades in regulation of c-myc expression 

including PKC, c-AMP (PKA), JAK/STAT, CK2, and Src pathways (Luscher et al., 1989; 

Barone and Courtneidge, 1995; Lemaitre, et al., 1996; Watanabe et al., 1996). 

Furthermore, a number of regulatory sequences have been identified in the 5' flanking 

region (promoter region), exon 1, and possibly intron 1 of c-myc, which seem to interact 
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with transcription factors c-Myb, NFKB, Sp-1, NF-1, AP-2, E2F, AP-1, and octamer 

binding factor and may be involved in regulation of c-myc expression in response to the 

extracellular stimuli (Marcu et al., 1992; Dubik et al., 1996). 

Another mechanism by which c-myc transcription is regulated involves its mRNA 

elongation. Abnormal transcript elongation has been noted in leukemia virus-transformed 

murine fibroblasts, differentiating mouse erythroleukemia (MEL) cells, and P19 cells 

(Nepveu, et al., 1987; St-Arnaud, et al., 1988). Also, it has been suggested that 

transcription elongation blockage may be a mechanism for down, regulation of c-myc during 

differentiation (Campisi et al., 1984; Marcu al., 1992). Truncated transcripts do not seem 

to accumulate in the nucleus or cytoplasm of mammalian cells and are quickly destroyed in 

the nucleus (Spencer and Groudine, 1990). Several studies have investigated the regions 

necessary for transcription blockage within the c-myc gene. These regions seem to lie in 

the 3' end of the exon 1, P2 promoter, and 5' end of exon1/intron1 boundary (Miller et al., 

1989; Wright and Bishop, 1989). 

In human T lymphocytes, mouse spleen lymphocytes and T cells, and mouse 

fibroblasts, mitogens and growth factors such as PMA, Con A, and EGF have been suggested to 

exert their effect on c-myc transcription by relieving the block of elongation (Eick et al., 

1987; Nepveu et al., 1987; Heckford, et al., 1988; Lindsten, et al., 1988; Curty et al., 

1989 ). However, the exact mechanism of myc transcription blockage and its removal 

remains to be determined. 

Post transcriptional modification of c-myc mRNA transcripts has been proposed to 

be yet another mechanism for regulating c-myc transcription. Alterations in c-myc mRNA 

stability was first identified in the malignant cells of murine plasmacytomas and Burkitt's 

lymphoma. In these cells, c-myc mRNA seems to be about 10 times more stable than in 

untransformed cells, with a half life of several hours instead of 10-20 minutes (Eick et al., 

' ' ' . 
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1985; Piechanczyk et al., 1985; Rabbits et al., 1985). Also, post-transcriptional 

phenomena have been shown to contribute to both promotion and inhibition of c-myc 

transcription during cell proliferation and differentiation. For instance, post-

transcriptional regulation seems to be responsible for increased levels of c-myc expression 

and mRNA stability in growth factor treated cells (Blanchard et al., 1985; Levine et al., 

1986; Lacy et al., 1989). Furthermore, in regenerating kidney and liver in vivo, 

alterations in c-myc mRNA stability is responsible for enhanced c-myc induction (Asselin 

and Marcu, 1989; Sobczak et al., 1989; Morello et al., 1990). Several 

deletion/transfection studies have revealed that both 5' flanking/exon 1 sequences and an AU 

rich region at the 3' untranslated end of c-myc mRNA are important in determining the 

stability of c-myc transcript (Jones and Cole, 1987; Brewer, 1991). 

The aforementioned mechanisms of c-myc transcriptional control indicate that 

regulation of c-myc proto-oncogene expression is a highly complex process. Differentiated 

cells tend to show reduced c-myc transcriptional initiation and premature transcription 

termination, whereas proliferating cells demonstrate an increased c-myc expression 

through a combination of enhanced transcriptional initiation and post transcriptional mRNA 

stabilization. 

Furthermore, c-myc has been suggested to have an autoregulatory effect on its own 

gene expression. Using transgenic systems, Grigani et al (1990), and Penn et al (1990) 

have proposed a negative autoregulatory loop for c-myc in cells derived from primary 

cultures and established cell lines. In these cells, exogenous c-myc expression negatively 

regulates the endogenous c-myc expression in a dose dependent manner (Grigani et al., 

1990). On the other hand, transformed cell lines might have lost their c-myc 

autoregulation ability (Grigani et al., 1990). 
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Immediate Early Genes in Cell Proliferation and Cell Cycle 

The induction of c-fos, c-jun, c-myc transcription is one of the earliest nuclear 

response to a wide variety of extracellular stimuli, which are known to exert effects on cell 

proliferation, differentiation, transformation, and apoptosis. Depending upon the cell type, 

its differentiation state, and the specific environment, the effects of these proto-oncogenes 

on regulation of these biological processes appear to be varied. 

Observation that: 1) the rapid and transient induction of c-fos and c-jun, during 

G0-G1 in cell occurs in response to various external stimuli that promote cell 

proliferation, and 2) induction of transformation of cell upon deregulation of these genes, 

led to the proposition that both these transcription factors may be required in regulation of 

cell cycle (Bravo and Muller, 1986; Lamph et al., 1988; Ryder and Nathans, 1988; Ryseck 

et al., 1988; Carter et al., 1991) as well as for the maintenance continuous cell 

proliferation (Smith and Prochownick, 1992). Also, purified antibody against c-jun has 

been shown to prevent DNA synthesis in fibroblasts (Kovary and Bravo, 1991). 

The notion that the increased expression of c-fos and c-jun is necessary for the 

G0-G1 transition has been, however, challenged by the observation that cell proliferation 

may occur 1) in the absence of increased expression of these proto-oncogenes (Columbano 

and Shinozuka, 1996), or 2) in the presence of purified antibodies or antisense RNA against 

c-fos products (Kovary and Bravo, 1991). It has been, however, suggested that Fos related 

proteins may play compensatory roles in the absence of c-Fos (Kovary and Bravo, 1991). 

A dimer combination between c-Fos and c-Jun forms activator protein 1 (AP-1) 

transcriptional complex, which is involved in transmitting growth promoting signals for 

cell proliferation and differentiation (Angel and Karin, 1991) as well as for apoptosis 
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(Smyene et al., 1993; Goldstone and Levine, 1994; Estus etal . , 1994)., AP-1 activates 

several genes in response to extracellular agents that stimulate various signal transduction 

pathways, leading to DNA synthesis (Hunter, 1987; Hunter and Karin, 1992; Hill and 

Triesman, 1995). It has been suggested that messages from different signaling pathways 

converge at AP-1 to eventually regulate its function (Bandyopadhyay and Faller, 1997). 

Also, c-myc is rapidly induced within 1-2 hours of mitogenic stimulation of resting 

(GO) cells. Similar to other immediate early genes, mitogen induced expression of c-myc 

does not require protein synthesis (Cochran et al., 1983; Greenberg et al., 1985). 

Expression of c-myc alone seems to be necessary, and in some cases sufficient for G0-G1 

transition in many cell types (Zoring and Evan, 1996). Unlike other immediate early 

genes, however, c-myc mRNA levels do not drop to the background levels after cell entry to 

G1, but they stay at a constant level throughout the cell cycle in proliferating cells 

(Henrikson and Luscher, 1996; Lemaitre et al., 1996). The continued expression of c-myc 

throughout the cell cycle may be suggestive of its role in other stages of the cell cycle in 

addition to G0-G1. transition. In fact, several studies have provided evidence that c-Myc 

may be required for S-to-G2-to-M transitions in many cell types (Waters et al., 1991; 

Shibuya et al., 1992; Seth et al., 1993; Born et al., 1994). Cells that express high levels 

of c-Myc protein generally have: reduced growth factor requirements (Armelin et al., 

1984; Stern et al., 1986), high growth rates (Palmieri et al., 1983), and can overcome 

growth arrest (Armelin et al., 1984; Kohl and Raley, 1987). 

Immediate Early Genes and Embryonic Development 

Information on genes involved in regulation of cell growth, proliferation, and 

differentiation, during embryogenesis is of basic importance to understand the molecular 
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basis of development. All cells need continuous availability of different molecules to 

perform various biological activities. The transcription machinery, involving interaction 

between transcription factors and genes, is crucial in regulating timely synthesis and 

degradation of molecules by a cell for its biological activities of growth, proliferation, and 

differentiation (Davidson, 1986). Also, stimulation of a cell by diverse factors commits the 

cell to a complex (genetic) developmental program during which immediate early genes 

(proto-oncogenes) are transcriptionally activated within minutes in response to 

stimulation. During embryogenesis, immediate early genes are important not only because 

of their connections with extra-cellular factor-induced signal transduction pathways, but 

also because of their potential role in cellular determination and/or differentiation. 

Fos, Jun, and Myc are all transcriptional regulators, and have been localized in 

various structures of vertebrate embryos or in cultured embryonic cells. c-Fos has been 

recognized during development of adipocytes and is expressed transiently in response to 

many extra-cellular stimuli (Lee et al., 1996). Also, Smeyne et al. (1993) and Yano et al. 

(1996a) have identified expression of c-fos in the epithelial cells during palate closure. 

c-Jun was localized during hepatogenesis (Hilberg et al., 1993), tooth development 

(Kitamura and Tarashita, 1997), and is implicated in long terrrr maintenance embryonic 

fibroblasts (Vandel et al., 1996). Embryos lacking c-jun die during mid to late gestation or 

show retailed growth (Hilberg and Wanger, 1992; Hilberg et al., 1993; Johnson et al., 

1993), indicating that c-jun is essential for normal embryonic development. No 

correlation between expression of c-fos or c-jun and biological behavior of cells was noted 

in these cells/tissues. 

c-myc is perhaps the most widely studied immediate early gene during 

embryogenesis. It has been localized in developing eye, mandible, maxilla, and tooth 



45 

(Yamada et al., 1992), embryonic mesenchyme (Jaffredo et al., 1989; Stanton et al., 

1992), chick limb (Ros et al., 1995), chondrocytes (Farquharson et al., 1992), 

myoblasts (Miner and Wold, 1991), and feather germ development (Desbiens et al., 1989). 

High level of N-myc expression during early development and c-myc expression during 

mid-gestation correlate with cell proliferation, whereas that of N- and L-myc with post

mitotic cells undergoing differentiation (Zimmerman et al., 1986; Mugrauer et al., 1988; 

Schmid et al., 1989; Morello et al., 1989; Mugrauer and Ekblom, 1991; Farquharson et 

al., 1992; Morgenbesser et al., 1995). During embryonic development, however, 

relationship between c-myc induction and cell proliferation appears to be 

cell/tissue/species-specific. A correlation between c-myc induction and cell proliferation 

was seen in mesoderm-derived but not ectoderm- and endoderm-derived structures 

(Pfiefer-Ohlsson et al., 1985; King et al., 1986; Downs et al., 1989; Schmid et al., 1989; 

Vandenbunder, et al., 1989; Hirvonen et al., 1990; Lemaitre et al., 1995). A reduced 

c-myc expression was observed in embryonic mouse (Morgenbesser et al., 1995) but not 

in chick lens cells (Nath et al., 1987; Harris et al., 1992). The c-myc proto-oncogene has 

also been implicated as an apoptosis promoting gene under conditions of restricted cell 

proliferation (Evan et al., 1992; Pakham and Cleveland, 1994). It has been suggested that 

during development, apoptosis is a physiological activity of c-Myc protein and is normally 

inhibited by growth factors or by expression of survival genes such as bcl-2 (Amati and 

Land, 1994; Harrington et al., 1994). As analyzed in the previous paragraphs, Myc 

protein functions as a sequence specific transcription factor that governs the regulation of 

target genes involved in various biological processes (Torres et al., 1992). Indeed, C-Myc 

protein is required for embryonic survival (Davis et al.,~1993). 



46 

PURPOSE OF THE STUDY 

One the major issues concerning the developmental biology of the secondary palate is 

how extracellular factors regulate various biological events such as cell proliferation, ECM 

synthesis, epithelial-mesenchymal interaction, and programmed cell death/cell 

transformation, during morphogenesis of the secondary palate. Previous studies have 

identified the involvement of several growth factors, including EGF, FGF, IGF, PDGF, and 

TGFB, in regulation of proliferation of embryonic palate mesenchymal cells. However, the 

mechanisms by which these growth factors regulate proliferation of palate mesenchymal 

cells are not known. The information is of significance because studies on the development of 

normal palate as well as teratogen-induced cleft palate have led to the concept that cell 

proliferation is one of the crucial biological events for advancement of palate 

morphogenesis. Hence, the present study was undertaken to (1) examine the effects of 

serum, EGF, TGFB,, and their combination on DNA synthesis and proliferation of embryonic 

hamster palate mesenchymal cells (HPMC); and (2) the effects of serum, growth factors, 

and/or their combination on the expression of growth-related immediate early genes (c-

fos, c-jun, and c-myc) in HPMC. 
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MATERIALS AND METHODS 

Animal Maintenance and Breeding 

Golden Syrian hamsters were used in this study. Male and female animals 

(100±10gm), 6-8 weeks old, were caged individually and acclimatized for a minimum of 

one week in an atmosphere of 50±5% humidity, 24±1°C temperature, and alternating cycles 

of light (6.00p.m. to 6.00a.m.) and dark. The food and water were available ad libitum. The 

animals were mated by placing one male and one female in a plastic cage. The male and 

female were allowed to mate from 7.00a.m. to 9.00a.m.. The midpoint of the mating period, 

8.00a.m., was taken as the beginning of day 0 of gestation. 

Collection of Embryonic Palatal Tissue 

To collect embryonic tissue for cell culture, all the procedures were carried out in a 

sterile environment. On day 11:00 of gestation, the pregnant females were anesthetized by 

an intraperitoneal injection of 0.2 ml Sodium Pentobarbital (65mg/ml). The embryos from 

each female were collected and rinsed in a sterile 60mm culture plate containing 3 ml of 

Dulbecco's Modified Eagle Medium [DMEM (high glucose); Gibco/BRL Cat. No. 23700-040]. 

The palatal shelves were dissected using an Olympus dissecting microscope (6.5X 

magnification) and collected in a 60mm culture plate containing calcium magnesium-

free/phosphate buffered saline (CMF/PBS) on ice. 

Preparation of Primary Culture of Hamster Palate Mesenchymal Cells 

To establish a primary culture of embryonic hamster palate mesenchymal cells 

(HPMC), the dissected palatal shelves were first rinsed in sterile ice-cold (0-4°C) 

CMF/PBS. The palates were then pooled, and minced thoroughly using a razor blade, and 

digested by incubation in 3ml of trypsin/EDTA solution [0.025% trypsin/0.27mM EDTA 

(Gibco/BRL; Cat. No. 610-5305AG) in CMF/PBS] in a sterile 15ml polypropylene tube 

(Fisher Scientific; Cat. No.14-956) at 37°C for 10 minutes. During the incubation, the 



48 

tube was gently shaken continuously. Subsequent to the digestion, the tissue homogenate was 

centrifuged at 1,000 rpm (90g) for 5 minutes at room temperature to pellet the cells. To 

inhibit the action of residual trypsin, the pellet was suspended and washed in 6 ml of ice-

cold complete media [CM; DMEM (supplemented with 1mM sodium pyruvate, 44mM sodium 

bicarbonate and antibiotics: 60mg/l penicillin and 100 mg/l streptomycin) + 10% Fetal 

Calf Serum (FCS; Gibco/BRL, Cat. No. 26140-038)]. The cell suspension was then 

centrifuged at 600 rpm (33g) for 15 minutes at room temperature. The supernatant was 

discarded and the cells were re-suspended in 3ml CM. In order to determine the total 

number of cells in the suspension, trypan blue exclusion method was used; 50 of of 

suspension was mixed with 40 (xl of 0.2% trypan blue and 410 JLLI of CM, and vortexed. One 

drop of the mixture was placed on the hemocytometer and the cells were counted. The total 

cell number of cells in the suspension was calculated as the average number of cells/ 

hemocytometer grid x 10 (dilution factor, i.e., 50u1 of cell suspension in 500uJ of 

mixture) x 10 4 (conversion factor for hemocytometer grid to determine the number of cells 

per ml) x 3ml (total volume of suspension). Cells were then suspended in an appropriate 

volume of CM to obtain a density of 2.5 x 10 5 cells/ml and seeded into sterile plastic culture 

plates (Falcon, Cat. No. 3001). Cultures were maintained at 37°C with 5% CO z and 100% 

relative humidity. Media was changed on day 1 of plating, and every second day thereafter. 

Growth Factor Treatment and Proliferation of HPMC in Primary Culture 

In order to analyze the effects of serum and different growth factors on the rate of 

proliferation of HPMC, the cultured cells were maintained in CM for three days post-

plating. They were then rinsed 3 times with 1ml serum-free DMEM, and maintained in 

serum-free DMEM for 24 hours for synchronization. At the end of the synchronization 

period, the cells were again rinsed three times with 1ml serum-free DMEM. 

To analyze the effect of different concentrations of serum on HPMC proliferation, the 

cells were treated with, and subsequently maintained in DMEM containing 1%, 2.5%, 5%, 
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and 10% fetal calf serum for the length of the study. To examine the effects of co-treatment 

of growth factors on proliferation of HPMC, serum-starved cells were treated with either 

EGF (20ng/ml; GIBCO; Cat. No.3247SA), or TGFp, (10ng/ml; Sigma Chemicals; Cat. No. 

T-1654), or with both EGF+TGFp, for 24 hours. 20ng/ml EGF and TOng/ml TGFp, are the 

optimum dosages required to affect embryonic palate mesenchymal cells (D'Angelo and 

Greene, 1.991; Shah et al., unpublished data) 

In a separate experiment, following serum-starvation, cells were pre-treated with 

TGFp, for 30 minutes. Subsequently, the TGFp,-containing DMEM was removed, and the 

plates were rinsed 3 times with serum-less DMEM. Cells were then treated with DMEM 

containing 2.5% serum, EGF, or EGF+2.5% serum (a time-course study indicated that 30 

minutes TGFp, was sufficient to inhibit DNA synthesis in HPMC). 

After 24 hours, the plates were washed three times with fresh serum-free DMEM. 

Subsequently, the cells were maintained in DMEM containing 10% FCS. Growth-curves for 

serum treated and growth factor treated cells were obtained by counting the cells on days 

0, 1, 3, 5, and 7 post-treatment. 

To count the cells, the media from each plate was discarded, 1 ml of trypsin 

(1mg/ml) solution was added to each plate, and the plates were incubated in the water-bath 

at 37°C for 3-5 minutes. Subsequently, the cells were detached by repeated gentle pipetting 

with a pasteur pipette and then transferred into a glass culture tube (Fisher Scientific; Cat. 

No. 14-961-26) containing 0.5 ml of CM. Additional 0.5 ml aliquot of fresh CM was added 

to each plate and the remaining attached cells were scraped off the plate using a plastic 

scraper "Cell Lifter" (COSTAR, Cat. No.3008). The cells with CM from the plate were 

added to the suspension in the glass culture tube. After pipetting up and down a few times, 

95 u.l of cell-suspension and 5 ul of 0.2% trypan blue were mixed and vortexed. One drop of 

suspension was placed on the hemocytometer and the live cells were counted: The total 

number of the cells was determined as the average cell number on hemocytometer grid x 10 4 

(conversion factor for hemocytometer grid to determine number of cells per ml) x 2 ml 
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(total volume of suspension). At each time, at least three plates were counted to determine 

the mean of one experiment. Each experiment was repeated at least three times. The mean 

and standard deviation of the mean were determined. For statistical analysis, 2-tailed 

student t-test was used (Zar, 1984). 

Growth Factor Treatment and DNA Synthesis in HPMC in Primary 

Culture 

HPMC were seeded in CM in 24 well culture plates (Falcon; Cat. No. 3047) at a 

density of 100,000 cells per well. On day 3 post-plating, cells were thoroughly rinsed 

three times with serum-free DMEM and then starved in serum-free DMEM for 24 hours. 

Subsequently, the cells were treated for 24 hours with 0.5 ml of the appropriate 

conditioned media, i.e., DMEM alone (untreated control) or DMEM containing: 2.5% serum, 

EGF (20ng/ml), TGFB, (10ng/ml), EGF+TGFB,, EGF+2.5% serum, TGFB 1+2.5% serum, or 

EGF+TGFB+2.5% serum. 

For the TGFB, pre-treatment time course study, following 24 hour serum-

starvation, HPMC were pre-treated with DMEM alone, or DMEM containing TGFB, for 5, 10, 

20, 30 minutes or 1, 2, 4, or 6 hours. On completion of the pre-treatment, the cultures 

were rinsed three times with serum-less DMEM, and then treated with DMEM containing 

2.5% serurp, EGF, or EGF+2.5% serum for 24 hours. 

At the end of the growth factor treatment, 1u€i/ml 3H-thymidine (ICN; Cat. 

No.2404305) was added to the cultures for 3 hours. The media was then removed and the 

wells were rinsed three times with 0.5 ml of CMF/PBS. The HPMC in the wells were fixed 

by addition of 0.5 ml of 5% trichloroacetic acid (TCA) at 0-4°C for 30 minutes. Next, the 

TCA was removed, and the wells were rinsed three times with ice-cold TCA. To each well, 

0.2 ml of 0.1 M NaOH was added and the cells were incubated at 50°C for 1 hour to dissolve 

the DNA. The content of the wells were spotted on glass microfiber filters (Whatman; Cat. 

No. 1827-866), air dried overnight, and then transferred into 6 ml plastic scintillation 
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vials with 2 ml of scintillation fluid and counted for radioactivity in a Wallac 1410 

Scintillation Counter (LKB). The radioactivity of the samples, indicative of 3H-thymidine 

uptake, was measured as DPM, and the data were plotted for average DPM/well. Three wells 

were designated for each experiment and each experiment was repeated three times. Student 

t-test was used for statistical analysis of the data. 

RNA Extraction from Primary Culture of HPMC 

To collect RNA from serum- and growth factor-treated cells, the HPMC were seeded 

at a density of 500,000 cells/plate in 60mm culture plates (Falcon; Cat. No. 3002). On 

day 12 of culture, when the cells were still in pre-confluent phase of growth, the HPMC 

were rinsed with DMEM and serum-starved for 24 hours for synchronization. The cells 

were then treated with the appropriately conditioned media (serum and/or growth factor) 

for 5, 10, 15, or 30 minutes, or 1, 2, 6, 12, or 24 hours for the c-fos expression, and for 

15 or 30 minutes, or 1,2, or 6 hours for c-jun and c-myc expression. To collect sufficient 

amount of total RNA for Northern blotting (20-30(ig), 4-5 plates were used for each time 

point. At the end of the treatment period, the plates were rinsed three times with sterile 

CMF/PBS, and all the excess liquid was removed. The RNA was isolated by using Trizol 

reagent [(Gibco/BRL, Cat. No. 15596; Trizol reagent is a monophasic solution of phenol and 

guanidine isothiocyanate, which is used for single step RNA isolation (Chomczynski and 

Sacchi, 1987)]. HPMC were lysed directly in culture plates by adding 0.8 ml of Trizol 

reagent to a 60mm culture plate, and repeated pipetting. Each plate was scraped with a 

sterile plastic scraper to collect the lysate from the surface. The lysed sample was then 

transferred to the next plate in the same group, and the procedure was repeated until the 

RNA from all the plates in the group were collected in a sterile 1.5ml eppendorf tube. Next, 

the samples were incubated at room temperature for 5 minutes to permit the complete 

dissociation of nucleoprotein complexes. Subsequently, 0.2ml of chloroform was added to 

each sample. The tubes were shaken vigorously by hand for 15 seconds and incubated at 
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room temperature for 2-3 minutes. The samples were then.centrifuged at 12,00Qg for 15 

minutes at 2-8°C. Following centrifugation, the mixture separated into three phases: a 

lower red, phenol-chloroform phase, a white interphase of DNA, and an upper colorless 

aqueous phase. RNA remains exclusively in the aqueous phase. The volume of the aqueous 

phase was usually about 60% of the Trizol reagent used for cell lysis. The aqueous phase 

was gently transferred into a fresh eppendorf tube. The RNA from the aqueous phase was 

precipitated by adding 0.5ml of isopropyl alcohol. The samples were then incubated at room 

temperature for 10 minutes and centrifuged at 12,000g for 10 minutes at 2-8°C. The RNA 

precipitate often formed a gel-like pellet on the side and bottom of the tube. After 

centrifugation, the supernatant was removed and the pellet was re-suspended with 1ml of 

75% ethanol for a rinse. The sample was vortexed and centrifuged at 7,500g for 5 minutes 

at 2-8°C. The alcohol was discarded and the RNA pellet was air dried for 15-20 minutes. 

The RNA pellet was then dissolved in 0.2ml of RNase-free water by passing the solution a 

few times through a pipette tip (RNase-free water was prepared by adding 0.5ml of 

diethylpyrocarbonate [(DEPC); Sigma, Cat. No.D-5758] to 1L of sterile water overnight 

and autoclaving it). Subsequently, the total amount of RNA in the samples was determined. A 

0.5\i\ aliquot of the RNA samples was added to 0.495ml of RNase-free water and the optical 

density (OD) was measured using a Beckman DU-600 spectrophotometer. To calculate the 

total amount of RNA in the samples, the following formula was used: 

OD at 260nm X 100 (dilution factor)x 40 (conversion factor from OD to jag; a 

solution that has an OD of 1 contains approximately 40|o.g of RNA per ml)X 0.2ml (total 

volume of the RNA samples) = total amount of RNA in sample (ug). 

In order to reconstitute the RNA samples to a desired concentration, the RNA in the 

samples were precipitated by adding 25ul of 3M sodium acetate and 0.7ml of 100% ethanol 

to the samples and left at -20°C over night. Subsequently, the samples were centrifuged at 

12,000g for 15 minutes, and the supernatants were discarded. The samples were air-dried 
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for 15-20 minutes, dissolved in the proper volume of RNase-free water at a concentration 

of 3 or 5u.g/ul, and stored at -70°C. 

Northern Blotting 

a) E lectrophores is of RNA Samples 

For electrophoresis of the RNA samples, 1% agarose gel containing 0.66M 

Formaldehyde and 1X 3-(N-morpholinol) propanesulfonic acid (MOPS) was prepared. In 

detail, 1g of agarose (Gibco/BRL, Cat. No.5510UA) was melted in 100ml of RNase-free 

water and cooled to 60°C. Subsequently, 10ml of 10X MOPS (Sigma, Cat. No.M1254) and 

2.5ml of deionized formaldehyde [Fisher Scientific, Cat. No.F79-500; (Formaldehyde and 

formamide were deionized by adding 1g of AG 501-X8 mixed-bed resin (Bio-Rad, Cat. 

No.142-6424 ) to 20 ml of each solution and stirring on a vortex for 1 hour)]. 

To prepare the RNA samples for loading on the gel, they were denatured in 50% 

deionized formamide, 2.2M formaldehyde, and 20mM MOPS pH 7.0. In detail, 5uJ of each 

RNA sample was mixed (prepared at 3 or 5u.g/uJ) with a sample buffer containing 6u.l of 

deionized formamide (Fisher Scientific, Cat. No.BP227-500), 2uJ of deionized 

formaldehyde and 0.6u.l of 10X MOPS for each sample (total amount RNA loaded on the 

agarose gels was 15^g for the initial studies (c-fos); however, since hybridization of c-jun 

and c-myc transcripts was not successful at this concentration of RNA, 25u.g of RNA was 

loaded on the gels for further studies). The samples were incubated in a 65°C water bath for 

15 minutes, and chilled on ice. They were subsequently centrifuged for 5 seconds to deposit 

all the liquid to the bottom of the eppendorf tube. To each sample, 1uJ of loading dye (a 

mixture solution of 10% xylene cyanole and 10% bromophenol blue) and 1 jxl of ethidium 

bromide [(1mg/ml); Sigma, Cat. No.E8751] were added. As a molecular weight marker, a 

pre-stained 0.24-9.5 Kb RNA ladder (Gibco/BRL, Cat. No.15620-016) was used. The gel 

was casted in a horizontal electrophoresis gel box (Strategene, Cat. N6.40043) inside a 

chemical hood, and was allowed to set for a minimum of 30 minutes at room temperature. 
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1X MOPS was used for running buffer and samples were sequentially loaded on the gel. The 

gel was then run at 80-100V for 1.5-2 hours. 

b) Transfer of Denatured RNA to Nylon Membrane 

After electrophoresis, the gel was washed in RNase-free water and immersed in 10X 

SSC for 45 minutes with gentle agitation to remove the formaldehyde before transfer and 

hence improve the transfer quality. Two methods were employed for transferring denatured 

RNA to nylon membrane: capillary elution and pressure blotting, 

i) Cap i l l a ry B lo t t ing 

For capillary elution blotting the method described by Sambrook et al (1989), in 

which the gel is placed in contact with nylon membrane to facilitate the transfer of RNA to 

the nylon membrane through an ascending flow of buffer, was used. To set the system, a 

glass plate support with a surface area well larger than the gel was placed inside a large 

baking dish (the height of the glass support should be taller than the depth of the dish). The , 

dish was filled with 10X standard saline citrate [(SSC); 0.015 M sodium citrate and 0.15 M 

sodium chloride)] solution until the level of solution reached three-quarter of the height of 

the support. A long strip of 3MM Whatman paper was cut, briefly soaked in 10X SSC, and 

placed over the glass support into the reservoir- the paper was wider than the gel and hung 

over the support to the reservoir. The nylon membrane was cut exactly to the size of the gel 

and soaked in 10X SSC for 2 minutes. The nylon membrane that was used in this study was 

Hybond-N (Amersham, Cat. No.RPN.303N), which has high sensitivity in RNA blotting and 

high physical strength that can endure several stripping and reprobing procedures. The gel 

was placed on the support in an inverted position so that it is centered on the wet 3MM 

paper. The wetted nylon membrane was placed on top of the geL Two pieces of 3MM paper 

(cut exactly to the size of the gel) were wetted in 10X SSC and placed on top of the wet nylon 

membrane. A stack of paper towels (5-8 cm) was cut to the size of the gel and placed on the 

3MM papers. A glass plate and a lead weight of approximately 0.75 kg was put on top of the 



stack. The transfer was allowed to proceed for 16-20 hours. During the transfer, buffer is 

drawn from the reservoir and passes through the gel into the stack of paper towels. The 

nucleic acids elude from the gel by the moving stream of the buffer and deposit on the nylon 

membrane. The weight applied on the top of the paper towels provides a tight connection 

between the layers of material used in the transfer system. 

ii) Pressure Blotting 

The second transfer method was using a pressure blotter, PosiBlot 30-30 system 

(Strategene, Cat. No.400330-3). This method essentially resembles the capillary blotting, 

except that in this technique, pressure is exerted to a reservoir of buffer from the top, 

which eludes the RNA to the nylon membrane by a descending flow of the buffer. Similar to 

the capillary blotting technique, subsequent to electrophoresis, the gel is rinsed in 10X SSC 

for 45 minutes. Two pieces of 3MM Whatman papers and one piece of nylon membrane were 

cut to the size of the gel and soaked in 10X SSC for 2-3 minutes. 

The apparatus is composed of: a box which acts as a buffer collection base, a plastic 

support, a membrane support pad, a PVC mask cut by at least 0.3 cm smaller on all four 

sides than the size of the nylon membrane, and a cellulose sponge that acts as a buffer 

reservoir. The apparatus was set up as described in the company's manual (Strategene, Cat. 

No .400330-3) . 

The sponge was soaked in 10X SSC for about 10 minutes prior to the assembling of 

the apparatus. A wetted 3MM Whatman paper was placed on the center of the support, 

followed by the wetted nylon membrane and the gel. The mask was fixed on top of the 

membrane in a way that the upper edge of the rectangular window lined up below the rows of 

wells and the other edges overlapped the gel. A wetted 3MM whatman paper was laid on the 

gel and all the trapped air bubbles were pushed out. The soaked sponge was gently laid over 

the gel assembly, the lid was closed and the latches were tightly fastened to prevent any air 

leakage. The pressure control station was adjusted to 90-1 OOHg, and the connector hose 
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w a s a t t a c h e d to the b lot ter inlet port. T h e b lot t ing w a s d o n e in 6 0 - 7 5 m i nu t e s , t he 

c o m p l e t i o n of the t r ans f e r w a s c h e c k e d by u s i ng a hand -he l d U V i l luminator . 

A f t e r t he a l l o t ted b lo t t ing t ime for e i the r m e t h o d , u s i n g a h a n d - h e l d U V i l l umina to r , 

the pos i t i on of the we l l s a n d R N A l adde r w a s penc i l m a r k e d on the m e m b r a n e . T h e ny l on 

m e m b r a n e w a s t hen r e m o v e d f r om the d e v i c e a n d p i a c e d o n a c l e a n 3 M M W h a t m a n p a p e r to 

a l l ow the e x c e s s buf fer to be a b s o r b e d . O n c e the m e m b r a n e w a s f ree of s t a nd i n g l iqu id, but 

sti l l d a m p , it w a s w r a p p e d in s a r a n w r a p a n d e x p o s e d to U V light o n a 3 1 2 n m 

t r ans i l l um ina to r for abou t 3 m inu t e s to f ix the R N A oh the m e m b r a n e s . T h e m e m b r a n e w a s 

t hen w a s h e d in 1% S D S for 5 m inu te s , s e a l e d in p las t i c b a g a n d s t o r ed in -20°C f r e e z e r . 

c) Hybridization of Radio-labelled Probes to Immobilized RNA Samples 

F o r hyb r i d i z a t i on , t he m e t h o d by S a m b r o o k et a l (1989) w a s e m p l o y e d . In brief, 

t he m e m b r a n e s w e r e s u b m e r g e d in 6 X s t a n d a r d s a l i n e p h o s p h a t e / E D T A [ ( S S P E ) ; 0 . 0 1 5 M 

s o d i u m c i t rate , 0 . 2M s o d i u m p h o s p h a t e , a n d 0 . 2M E D T A ] for 2 m i nu t e s . S u b s e q u e n t l y , t h e 

m e m b r a n e s w e r e t r a n s f e r r e d to a R N a s e - f r e e - s e a l a b l e hyb r i d i z a t i on b a g , w h i c h w a s f i l led 

w i t h 1 0 m l of p r e - h yb r i d i z a t i o n s o l u t i o n c o n t a i n i n g 5 0 % f o r m a m i d e , 2 X D e n h a r d t ' s 

s o l u t i o n [ 2 % of e a c h of F i co l l ( type 4 0 0 P h a r m e c i a ) , p o l y v i n y l p y r r o l i d one , a n d b o v i n e 

s e r u m a l bum in ] , 5 X S S P E , a n d 0 . 1 % S D S for 5-8 hou r s at 42°C. S u b s e q u e n t l y , for 

h y b r i d i z a t i o n , 10u.Ci 3 2 P - d C T P o l i g o l a be l l e d D N A p r o b e (c-fos, c-jun, c-myc, o r G A P D H ; 

s e e be l ow) w a s a d d e d to the p re -hybr i d i za t i on so l u t i on . T h e m e m b r a n e s w e r e h y b r i d i z e d 

o v e r n igh t ( 16 -18 h ou r s ) at 42°C. 

O n c o m p l e t i o n of hybr i d i za t i on , m e m b r a n e s w e r e w a s h e d a s f o l l ows to r e m o v e the 

u n b o u n d D N A p r obe s . W h e n hyb r i d i z ed with G A P D H or c-fos, m e m b r a n e s w e r e w a s h e d o n c e 

w i th 1 X S S C / 0 . 1 % S D S at r o o m t e m p e r a t u r e for 3 0 m inu t e s , t h en tw i c e w i th 0 . 2 X 

S S C / 0 . 1 % S D S at 55°C for 4 5 m inu t e s , a n d f ina l ly , o n c e wi th a h i gh - s t r i n gen cy s o l u t i o n of 

0.1 X S S C / 0 . 1 % S D S at 55°C for 3 0 m inu t e s . L o w e r s t r i ngency c ond i t i o n s w e r e u s e d w h e n 

m e m b r a n e s w e r e h y b r i d i z e d w i th c-jun, o r c-myc: m e m b r a n e s w e r e f irst w a s h e d w i th 2 X 
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SSC/0.1% SDS, then twice with 1XSSC70.1% SDS at 55°C for 45 minutes, and finally with 

0.5%X SSC/0.1% SDS at 55°C for 30 minutes. The membranes, were then dried, wrapped in 

Saran Wrap, and exposed to Crovex 4 X-ray film (Dupont, Cat. No. 100 NIF) with an 

intensifier screen at -70°C. The exposure time varied depending on the probe and the 

specific activity of the isotope used. Generally, the exposure time was 2-3 days for GAPDH, 

3-4 days for c-fos, and 7-10 days for c-jun and c-myc. X-ray films were developed in an 

automatic developer machine. The autoradiograms were then scanned, using Ophoto 

program. Subsequently, the intensity of expression of the genes were quantified by 

performing densitometry analysis on the scanned images, using Image (NIH) program. The 

values obtained for c-fos, c-jun, and c-myc signals were corrected for the variations in 

amount of RNA loaded on agarose gels, using GAPDH signals. 

When not examined, the membranes were wrapped in Saran Wrap, and kept at -20°C 

until the next hybridization. Prior to rehybridization with a new probe, the membranes 

were stripped using the method described by Sambrook et al (1989). Briefly, membranes 

were immersed in a solution of 50% formamide and 2X SSPE for 1 hour at 65°C. 

Subsequently, membranes were rinsed briefly with 0.1X SSPE at room temperature and 

dried. At regular intervals, stripped membranes were exposed to X-ray films to ensure that 

all the signals were removed. 

d) Preparation of Radio-labelled Probes 

The cDNA probes for c-fos, c-jun, and GAPDH were received as gifts from Dr. P. 

Rathana Swami (Bio-medical Research Center, University of British Columbia), and Dr. 

Wong (Dental School, Harvard University). The cDNA probe for c-myc was purchased from 

ONCOR company (Cat No. P2110; 3rd exon, Eco R1/CH4A excised 1.4kb fragment isolated 

from human Burkitt's lymphoma genomic library). Probes were radio-labelled using the 

Gibco/BRL random primer labelling system (Gibco/BRL; Cat. No. 18187-013). To 

prepare the probes for hybridization, 10ng of probe was dissolved in 13uJ of RNase-free 
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water, and heat-denatured at 98°C for 5 minutes. Subsequently, 9u1 of oligomix (a mixture 

of: 1uJ of Q.5mM solution from each dATP, dGTP, and dTTP, and 6u.l of random primers 

buffer mixture containing, 0.67M HEPES, 0.17M Tris-HCL, 17mM MgCL 2, 33mM 2-

mercaptoethanol, 1.33mg/ml BSA, 18 O D 2 6 0 units/ml oligonucleotide primers 

(hexameres), pH 6.0), 2.5u1 of [a-32P]-dCTP, and 0.5uJ of Klenow fragment (large 

fragment of DNA polymerase I in 100mM potassium phosphate buffer (pH 7.0), 10mM 2-

mercaptoethanol, 50% (v/v) glycerol) were added to the probe and incubated at room 

temperature for 3-5 hours. The probes were heat-denatured at 98°C for 5 minutes, prior 

to addition to the hybridization solution. 
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RESULTS 

A) Effects of serum and growth factors on proliferation of hamster 

palate mesenchymal cells (HPMC) 

1. Effects of different concentrations of serum on proliferation of HPMC 

The data on the proliferation of HPMC following treatment with media (DMEM) 

containing 1%, 2.5%, 5%, and 10% serum are outlined in figure 9. 

When HPMC were treated with 1% serum in the culture media the cell number 

declined by 65% between days 0 and 7 post treatment (P<0.05). 

In the presence of 2.5% serum in the culture media, however, the cell number 

increased 2.4 fold between days 0 and 7 post-treatment (P<0.005). 

When the concentration of serum in culture media was raised to 5% and 10%, the 

number of HPMC increased 4.3 fold and 5.6 fold, respectively, between days 0 and 7 post-

treatment (P<0.005). 

These results indicate that in vitro rate of proliferation of HPMC depends on 

concentration of serum in culture media. The data also shows that at least 2.5% serum is 

required in culture medium to sustain the survival and growth of HPMC. 

2. Effects of growth factors EGF, TGFp,, and their combination on 

proliferation of HPMC 

The data on the proliferation of HPMC, following 24 hour treatment with media 

(DMEM) alone or media containing 10% serum, EGF (20ng/ml), TGFp^lOng/ml), or their 

combination (EGF+TGFp,) are presented in figure 10. 

The serum-starved DMEM-treated HPMC showed a 2.9 fold increase in cell number between 

days 0 and 7 post-treatment. Treatment of HPMC with 10% serum or EGF (20ng/ml) 

increased the cell number 5.6 fold and 4.3 fold, respectively, between days 0 
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Days post-treatment 

Figure 9. Effects of different concentrations of serum on HPMC proliferation. HPMC 
were grown in DMEM containing 10% serum for 3 days. Cells were then serum starved 
for 24 hours, and maintained in presence of media containing DMEM and 1%, 2.5%, 5%, 
or 10% of serum for 7 days. Media was changed every second day. Using trypan blue 
exclusion method, cells were counted on days 0, 1,3, 5, and 7 post-treatment to obtain 
a growth curve. 
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Figure 10. Effect of EGF, TGFB,, and their combination on HPMC proliferation. HPMC 
were serum starved for 24 hours, and treated with DMEM alone, or DMEM containing 
10% serum, EGF, TGFB,, or EGF+TGFB, for 24 hours. Subsequently, cells were 
maintained in media containing 10% serum for the duration of the culture period. Media 
was changed every second day. Using trypan blue exclusion method, cells were counted 
on days 0, 1,3, 5, and 7 post-treatment to obtain a growth curve. 
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and 7 post-treatment (P<0.001). On the other hand, treatment of HPMC with TGFp, alone, 

or in combination with EGF did not affect the cell number (P<0.05). 

In comparison to the serum-starved controls, EGF and 10% serum exposed cultures 

grew faster and were 1.5 and 2 folds higher in number on day 7 of treatment (P<0.005), 

whereas TGFp, and EGF+TGFp, treated ones were 70% and 60% less in number, respectively 

(P<0.001). 

These observations suggest that EGF exerts mitogenic effects on HPMC, whereas 

TGFp, does not support proliferation of HPMC. Furthermore, when HPMC are co-treated 

with TGFp, and EGF, TGFp, overcomes the mitogenic effects of EGF by exerting its growth 

inhibitory effects on cells. 

3. Effects of TGFp, pre-treatment on serum- and EGF-induced proliferation 

of HPMC 

To further analyze the effect of interacting growth factors on proliferation of HPMC, 

cells were pre-treated with TGFp, for 30 minutes followed by 2.5% serum, EGF, or 

EGF+2.5% serum. The data on the proliferative behavior of serum- and/or EGF-treated 

HPMC following pre-treatment with TGFp,, are shown in figure 11. 

When HPMC were maintained in presence of 2.5% serum or 10% serum without 

TGFp, pre-treatment, they showed 2.3 and 5.2 fold increase in cell number, respectively, 

between day 0 and 7 post-treatment (P<0.005). When HPMC were, however, pre-treated 

with TGFp, for 30 minutes prior to treatment with 2.5% serum, EGF, or EGF+2.5% serum, 

the cell number did not change between day 0 and 7 post-treatment (P<0.05). 

These data indicate that 30 minutes of TGFp, pre-treatment is sufficient to inhibit 

cell proliferation in HPMC, and to overcome the mitogenic effects of serum and EGF in these 

cells. 
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Days post-treatment 

Figure 11. Effect of TGFp, pre-treatment on serum- and/or EGF-induced HPMC 
proliferation. HPMC were serum starved for 24 hours, and treated with TGFp, for 30 
minutes. Cells were then rinsed with serum-less media, and treated with 2.5% serum, 
EGF, or EGF+2.5% serum for 24 hours. Subsequently, HPMC were maintained in media 
containing 10% serum for the duration of culture period. Media was changed every 
second day. Using trypan blue exclusion method, cells were counted on days 0, 1,3, 5, 
and 7 post-treatment to obtain a growth curve. 
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B) Effects of serum and growth factors on DNA synthesis in HPMC 

1. Effects of serum (2.5%) and growth factors EGF, TGFB, and their 

combination on DNA synthesis of HPMC 

The data on DNA synthesis in HPMC following 24 hour treatment with media 

containing 2.5% serum, EGF, TGFB,, or their combinations are outlined in figure 12. 

Following treatment with 2.5% serum, the DNA synthesis in HPMC (as measured by 

3H-thymidine incorporation) was 3.3 fold higher than untreated serum-starved group 

(P<0,001). 

. Treatment of HPMC with EGF alone did not affect DNA synthesis. When cells were 

treated with EGF in the presence of 2.5% serum, however, DNA synthesis was increased by 

1.6 fold in comparison to the 2.5% serum-treated control (P<0.005). These data suggest 

that presence of serum is necessary to support the EGF-induced DNA synthesis in HPMC. 

On the other hand, treatment of HPMC with TGFB, alone or with TGFB, in the presence 

of 2.5% serum reduced the DNA synthesis by 70-80%, in comparison to serum-starved or 

2.5% serum treated control (P<0.005). Thus, the data suggest that TGFB, inhibits DNA 

synthesis both in presence or absence of serum. 

Similarly, co-treatment of HPMC with both EGF and TGFB,, in the presence/absence 

of serum resulted in a decrease in DNA synthesis by 70-72% in comparison to the controls 

(P<0.005). 

These results suggest that EGF (in presence of serum) supports, whereas TGFB, does 

not support DNA synthesis in HPMC. Furthermore, presence or absence of serum modulates 

the effect of EGF, but not TGFB, on DNA synthesis. 
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Figure 12. Effects of serum, and growth factors on DNA synthesis in HPMC. Cells 
were serum starved for 24 hours, and treated with DMEM alone, or DMEM containing 
2.5% serum, EGF, EGF+2.5% serum, TGFp,, TGFp,+2.5% serum, EGF+TGFp,, or 
EGF+TGFp 1+2.5% serum. 3H-thymidine (1uCi/ml) was added to the culture media, 
during the last 3 hour of serum/growth factor treatment. The incorporation of 3 H -
thymidine into acid-insoluble material was measured by liquid scintillation counting. 
Values are presented as DPM means + SD. 



66 

2. Effects of TGFB, pre-treatment on serum- and EGF- induced DNA synthes is 

of HPMC 

To further analyze the effects of interacting growth factors on DNA synthesis of 

HPMC, cells were pre-treated with TGFB,. A time course study was performed to determine 

the minimum optimum time required for TGFB, to exert its inhibitory effects on the 

EGF/serum-induced DNA synthesis in HPMC (figure 13a-i). In comparison to controls 

(TGFB, un-treated), pre-treatment of HPMC with TGFB, for 5, 10, or 20 minutes, followed 

by treatment with 2.5% serum, EGF, or EGF+2.5% serum did not affect DNA synthesis 

significantly (P<0.05; figure 13a-c). 

On the other hand, following 30 minutes pre-treatment of HPMC with TGFB,, DNA 

synthesis in 2 ;5% serum-, EGF-, and EGF+2.5% serum-treated cells was reduced 

significantly (58%, 81%, and 61%), respectively, in comparison to the cells without 

TGFB, pre-treatment (P<0.05, figure 13d). 

Extending the duration of TGFB, pre-treatment of HPMC for up to 12 hour also 

resulted in significantly decreased DNA synthesis as compared to the controls (P<0.05; 

figure 13e-i). 

These results show that pre-treatment of HPMC with TGFB, for at least 30 minutes 

is sufficient to inhibit the serum- or EGF-induced DNA synthesis in HPMC. 



Figure 13. Time course study showing the effects of TGFB, pre-treatment on serum-
and EGF-induced DNA synthesis in HPMC. Cells were serum-starved for 24 hours, and 
treated with DMEM alone, or DMEM containing TGFB, for 5, 10, 20, or 30 minutes, and 
1, 2, 4, 6, and 12 hours. Control cells were treated with DMEM alone for the same 
durations. Subsequently, cells were treated with 2.5% serum, EGF, or EGF+2.5% 
serum for 24 hours alone. 3H-thymidine (1uCi/ml) was added to the culture media 
during the last 3 hour of treatment. The incorporation of 3H-thymidine into acid-
insoluble material was measured by scintillation counting. Values are presented as DPM 
means ±SD. 
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C) Northern blot analysis of effects of serum and growth factors (EGF 

and T G F ^ ) on the expression of immediate early genes c-fos, c-jun, 

and c-myc in HPMC 

During the course of this study, the physiological state of the cells and the variations 

in the amount of RNA loaded on agarose gels were controlled by measuring the expression of 

GAPDH, a house-keeping gene, which encodes an enzyme in the glycolytic pathway, and its 

mRNA expression is not affected by serum and growth factors. 

1. Effects of serum: 

1a. Effects of different concentrations of serum on expression of c-fos 

mRNA 

The autoradiograms showing the expression of. c-fos in HPMC following treatment 

with media containing 2.5% and 10% serum are depicted in figure 14. 

The serum-starved, DMEM-treated HPMC did not show c-fos expression (lane C, of 

figures 14a and 14b). Treatment of HPMC with 2.5% serum showed a signal for c-fos 

expression at 30 minutes. The signal persisted until 1 hour, albeit at a lower level, and 

subsequently disappeared. Exposure of HPMC to 10% serum, on the other hand, depicted 

c-fos mRNA signal at 15 minutes, which gradually increased in intensity until 1 hour, and 

disappeared thereafter. . 

The data on densitometric analysis revealed that, following treatment of HPMC with 

2.5% serum, the expression of c-fos mRNA decreased by 63% between 30 minutes and 1 

hour. In contrast, after exposure of HPMC with 10% serum, the expression of c-fos mRNA 

increased approximately 4 fold between 15 minutes and 1 hour. 

These data indicate that the serum concentration in the culture media modulates c-fos gene 

expression; higher concentration of serum results in early and increasingly intense 

expression of c-fos mRNA. 
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1b. Effects of different concentrations of serum on expression of c-jun 

mRNA 

The autoradiograms showing the expression of c-jun in HPMC following treatment 

with media containing 2.5% and 10% serum are shown in figure 15. 

Expression of c-jun mRNA was not detectable in HPMC treated with DMEM alone or 

2.5% serum (lane C, figures 15a and 15b; figure 15a). On the other hand, when cells were 

treated with 10% serum, c-jun mRNA was expressed within 15 minutes. Subsequently, the 

intensity of c-jun signal increased until 1 hour and then gradually declined by 6 hours 

post-treatment (figure 15b). 

The densitometry analysis of HPMC exposed to 10% serum showed that expression of 

c-jun mRNA signal intensified 2.4 fold by 1 hour, but decreased thereafter. 

These data suggest that serum concentration in the culture media modulates 

transcription of c-jun: whereas 2.5% serum is not sufficient to stimulate c-jun expression 

in HPMC, 10% serum rapidly triggers c-jun expression in HPMC. 

1c. Effects of different concentrations of serum on expression of c-myc 

mRNA 

The autoradiograms showing the expression of c-myc in HPMC following treatment 

with media containing 2.5% and 10% serum are presented in figure 16. 

Serum-starved HPMC treated with DMEM alone do not show c-myc expression (lane 

C, figures 16a and 16b). HPMC treated with 2.5% serum expressed c-myc within 30 

minutes, albeit at low levels. Subsequently, c-myc mRNA signal was intensified by 1 hour, 

but declined thereafter by 6 hours (figure 16a). When treated with 10% serum, HPMC 

expressed c-myc mRNA within 1 hour. The signal intensity then reduced but persisted up to 

at least 6 hours (figure 16b). 
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The densitometry observations indicated that in 2.5% serum-treated HPMC, the 

intensity of c-myc expression increased approximately 2 fold between 30 minutes and 1 

hour. Subsequently, the signal decreased 31% by 2 hours, and remained unchanged at 6 

hours post-treatment. Similarly, following treatment of HPMC with 10% serum expression 

of c-myc declined 33% between 1 and 6 hour. 

These data indicate that both 2.5% and 10% serum induce c-myc expression in 

HPMC. In presence of 2.5% serum, however, c-myc seems to be induced more rapidly than 

in the presence of 10% serum. 

2. Effects of Growth factors: 

2a. Effects of EGF, TGFp,, and their combination on expression of c-fos 

mRNA 

The autoradiograms showing the expression of c-fos in HPMC following treatment 

with media containing EGF, TGFp,, or their combination (EGF+TGFp,) are depicted in figure 

17. 

When HPMC were treated with EGF alone or in combination with TGFp,, the signal for 

c-fos mRNA was expressed between 30 minutes and 1 hour, but disappeared thereafter. In 

contrast, when exposed to TGFp, alone cells did not show signal for c-fos expression. 

The densitometry evaluation on c-fos expression revealed that following treatment of 

HPMC with EGF, the signal was reduced by 68% between 30 minutes and 1 hour. In 

contrast, when HPMC were co-treated with EGF and TGFp, the expression of c-fos mRNA 

increased 44% between 30 minutes and 1 hour. 
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The effects of EGF and TGFp, oh c-fos expression were further assessed in the 

presence of 2.5% serum. The autoradiograms showing the expression of c-fos in HPMC 

following treatment with media containing EGF+2.5% serum, TGFp,+2.5% serum, or their 

combination (EGF+TGFp1)+2.5% serum are depicted in figure 18. 

In the presence of EGF+2.5% serum, or TGFp,+2.5% serum, HPMC showed signal 

for c-fos mRNA expression only at 1 hour. On the other hand, when HPMC were co-treated 

with EGF and TGFp, in the presence of 2.5% serum, c-fos mRNA was expressed at 30 

minutes. The intensity of c-fos expression then increased by 1 hour, and subsequently 

reduced at 2 hours before disappearing. 

The densitometry data showed that between 30 minutes and 1 hour post-treatment, 

the increase in the intensity of c-fos expression in EGF+TGFp,+2.5% serum treated HPMC 

was 3.2 fold. 

These results indicate that EGF alone or in combination with serum and/or TGFp, 

induces c-fos transcription in HPMC, within 30 minutes to 1 hour. In contrast, TGFp, alone 

does not support c-fos expression in these cells. 

2b. Effects of EGF, TGFp,, and their combination on expression of c-jun 

mRNA 

The autoradiograms showing the expression of c-jun in HPMC following treatment 

with media containing EGF, TGFp,, or their combination (EGF+TGFp,) are presented in 

figure 19. 

Following treatment of HPMC with EGF alone, c-jun was expressed between 30 

(very faintly) minutes and 1 hour, but subsequently disappeared. When treated with TGFp, 

alone, HPMC did not show expression of c-jun mRNA. On the other hand, when HPMC were 

exposed to a combination of EGF and TGFp,, c-jun was expressed within 30 minutes, but at 
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very low levels. Subsequently, c-jun signal peaked at 1 hour, and was detected at least until 

6 hours post-treatment, albeit with low intensity. 

The densitometry analysis showed that when HPMC were treated with EGF alone, the 

intensity of c-jun signal increased 3.2 fold between 30 minutes and 1 hour post-treatment. 

In contrast, when cells were treated with both EGF and TGFp,, the intensity of c-jun 

expression increased 2.4 fold between 30 minutes and 1 hour, and then decreased by 72% at 

6 hours post-treatment. 

The effects of growth factors on c-jun mRNA expression in HPMC were also examined 

in the presence of 2.5% serum. The autoradiograms showing the expression of c-jun in 

HPMC following treatment with media containing EGF+2.5% serum, TGFp,+2.5% serum, or 

combination of EGF+TGFp,+2.5% serum are shown in figure 20. 

Following treatment of HPMC with EGF+2.5% serum, c-jun expression was 

observed between 1 and 2 hours post-treatment (figure 20a). Exposure of HPMC with 

TGFp,+2.5% serum, however, did not show any c-jun expression (figure 20b). On the 

other hand, cells co-treated with EGF, TGFp, and 2.5% serum expressed c-jun mRNA within 

15 minutes. Subsequently, the intensity of signal increased until 1 hour, and then gradually 

declined by 6 hours post treatment (figure 20c). 

The densitometry analysis suggested that EGF+2.5% serum-exposed HPMC showed 

52% reduction in c-jun mRNA expression between 1 and 2 hour post-treatment. On the 

other hand, following simultaneous exposure of cells to EGF, TGFp,, and 2.5% serum the 

intensity of c-jun mRNA signal increased 3.75 fold between 15 minutes and 1 hour, and 

then declined by 30% at 6 hours post-treatment. 

9. 

These data suggest that EGF alone, or in association with TGFp, and/or 2.5% serum 

triggers c-jun transcription in HPMC. Furthermore, although the peak of c-jun expression 

always remains at 1 hour, when cells are treated with a combination of EGF and TGFp, 
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and/or 2.5% serum, the c-jun mRNA signal tends to be sustained for long duration. 

In contrast, TGFp, alone or in combination with 2.5% serum does not support c-jun 

expression in HPMC. 

2c. Effects of EGF, TGFp,, and their combination on express ion of c-myc 

mRNA 

The autoradiograms showing the expression of c-myc in HPMC following treatment 

with media containing EGF, TGFp,, or their combination (EGF+TGFp,) are presented in 

figure 21. 

Following treatment of HPMC with EGF, c^myc signal was observed at 30 minutes. 

The signal intensity then increased at 1 hour post-treatment, but disappeared altogether 

thereafter (figure 21a). After treatment of cells with TGFp,, however, expression of c-myc 

was not detectable (figure 21b). On the other hand, simultaneous treatment of HPMC with 

EGF and TGFp, resulted in expression of c-myc mRNA between 1 and 6 hours post-treatment 

(figure 21c). 

The densitometry data showed that following treatment of HPMC with EGF alone, 

there was a 3.6 fold increase in the intensity of c-myc signal between 30 minutes and i 

hour. In contrast, when cells were treated with EGF and TGFp, simultaneously, c-myc 

expression declined by 37% between 1 hour and 6 hours post-treatment. 

Furthermore, the effects of growth factors on c-myc mRNA expression in HPMC 

were examined in the presence of 2.5% serum. The autoradiograms showing the expression 

of c-myc in HPMC following treatment with media containing EGF+2.5% serum, 

TGFp,+2.5% serum, or combination of EGF+TGFp,+2.5% serum are presented in figure 22. 
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HPMC treated with either EGF+2.5% serum or TGFB1+2.5% serum showed c-myc 

mRNA expression between 1 and 6 hours post-treatment. The highest c-myc expression 

signal was at 2 hours post-treatment. Co-treatment of cells with EGF and TGFB, in the 

presence of 2.5% serum also showed c-myc mRNA signal at 1 hour, which gradually 

increased and reached the highest level of intensity at 6 hours. 

The densitometry data revealed that the intensity of c-myc expression in HPMC 

treated with EGF+2.5% serum increased 2.4 fold between 1 and 2 hours, and then declined 

by 35% at 6 hour post-treatment. Similarly, when cells were exposed to TGFp,+2.5% 

serum, the c-myc expression initially increased 2.3 folds between 1 and 2 hour, and 

reduced by 38% at 6 hours post-treatment. Oh the other hand, when cells were treated 

simultaneously with EGF, TGFp, and 2.5% serum, the expression of c-myc mRNA increased 

gradually by 74% between 1 and 6 hours post-treatment. 

These observations show that, whereas EGF alone or EGF+2.5% serum stimulates 

c-myc transcription, TGFp, alone does not support c-myc expression An HPMC. However, 

when cells are treated with TGFp, in the presence of EGF and/or 2.5% serum, c-myc 

expression is observed. Additionally, when cells are exposed with growth factors in the 

presence of 2.5% serum, c-myc expression is present for a longer time, in comparison to 

cells treated with EGF alone. 

3 . Effects of TGFp, pre-treatment: 

3a. Effects of TGFp, pre-treatment on expression of c-fos mRNA 

The autoradiograms depicting the expression of c-fos in HPMC following pre-

treatment with TGFp, for 30 minutes, followed by exposure to 2.5% serum, or EGF alone, or 

EGF+2.5% are shown in figure 23. 
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Following pre-treatment with TGFB, for 30 minutes, HPMC did not express c-fos 

mRNA (lane C, figures 23a, b, and c). Also, when the TGFB, pre-treated cells were exposed 

to 2-5% serum, c-fos expression was not detected. In contrast, after exposure to EGF for 30 

minutes or 1 hour, HPMC showed c-fos mRNA signal, which subsequently disappeared. 

Furthermore, when treated with EGF and 2.5% serum simultaneously, TGFB, pre-treated 

cells expressed c-fos within 15 minutes post-treatment. The expression of mRNA peaked at 

1 hour, declined by 2 hours and disappeared there after. 

The densitometry data showed that when TGFB, pre-treated HPMC were exposed to 

EGF, the c-fos signal intensity increased 25% between 30 minutes and 1 hour. Treatment 

of cells with EGF+2.5% serum, showed a 3 fold increase in c-fos mRNA expression between 

15 minutes and 1 hour, followed by a 67% decline at 2 hours. 

These results show that following pre-treatment of HPMC with TGFB, for 30 

minutes, exposure to 2.5% serum is not sufficient to trigger c-fos transcription. In 

contrast, when TGFp, pre-treated cells are exposed to EGF alone or to EGF+2.5% serum, 

they express c-fos mRNA. In the presence of both EGF and 2.5% serum HPMC show more 

rapid and prolonged c-fos expression. Furthermore, in comparison to EGF treatment alone, 

the intensity of c-fos expression seems to be augmented in presence of both EGF+2.5% 

serum. 

3b. Effects of TGFB, pre-treatment on expression of c-jun mRNA 

The autoradiograms showing the expression of c-jun in HPMC following pre-

treatment with TGFp, for 30 minutes, followed by exposure to 2.5% serum, EGF, and 

EGF+2.5% are depicted in figure 24. , 

When TGFp,-pre-treated HPMC were exposed to 2.5% serum, they expressed c-jun 

within 30 minutes. The expression of c-jun mRNA then increased at 1 hour, and then 
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gradually declined by 6 hour post-treatment. Treatment of cells with EGF alone also 

resulted in expression of c-jun between 30 minutes and 6 hours; however, c-jun 

expression intensity was highest at 6 hours post-treatment. On the other hand, exposure of 

TGFp, pre-treated cells to EGF and 2.5% serum simultaneously showed c-jun transcription 

between 15 minutes and 6 hours post-treatment, with a peak at 1 hour. 

The results of densitometry analysis revealed that when TGFpi pre-treated HPMC 

were exposed to 2.5% serum, c-jun expression increased 50% between 30 minutes and 1 

hour. Subsequently, the gene expression was gradually decreased by 58% at 6 hours post-

treatment. When TGFp, pre-treated cells were treated with EGF, c-jun signal intensity 

increased 42% between 30 minutes and 1 hour, and then a further 2 fold between 2 and 6 

hours post-treatment. On the other hand, when treated with EGF+2.5% serum, c-jun 

expression increased 3.5 fold between 15 minutes and 1 hour, and subsequently decreased 

87% at 6 hours after treatment. 

These results indicate that exposure of HPMC to EGF, 2.5% serum, or EGF+2.5% 

serum, following TGFp, pre-treatment, stimulates c-jun transcription in these cells. When 

HPMC are treated with both EGF and 2.5% serum c-jun expression at 1 hour is further 

augmented, in comparison to the condition when TGFp, pre-treated HPMC are treated with 

EGF or 2.5% serum alone. 

3c. Effects of TGFp, pre-treatment on expression of c-myc mRNA 

The autoradiograms showing the expression of c-myc in HPMC following pre-

treatment with TGFp, for 30 minutes, followed by exposure to 2.5% serum, EGF, and 

EGF+2.5%, are presented in figure 25. 

When TGFp, pre-treated HPMC were exposed to 2.5% serum, they expressed c-myc 

mRNA between 1 to 6 hours post-treatment. However, when pre-treated cells were treated 
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with EGF alone, or EGF+2.5% serum, c-myc expression was observed within 15 minutes. 

The intensity of c-myc signal in both groups increased by 1 hour and persisted at least up to 

6 hours post-treatment. 

The densitometry data showed that in 2.5% serum-treated HPMC, there was a 2.5 

fold increase in the intensity of c-myc expression between 1 and 2 hours post-treatment, 

followed by a 75% decline by 6 hours. On the other hand, EGF-treated cells showed 3 fold 

increase in c-myc expression between 15 minutes and 1 hour. The signal subsequently 

decreased by 40% at 6 hours post-treatment. Following treatment of TGFp,-exposed HPMC 

with EGF+2.5% serum, there was a 10 fold increase in c-myc signal intensity between 15 

minutes and 1 hour, followed by an additional 1.5 fold increase between 1 and 2 hours post-

treatment. The signal intensity subsequently declined by 53% at 1 hour. 

These observations suggest that 2.5% serum, EGF, or their combination is sufficient 

to trigger c-myc expression in TGFp, pre-treated HPMC. In comparison to EGF or 2.5% 

serum alone, treatment of cells with a combination of EGF and 2.5% serum, seems to 

promote highest expression of c-myc within 2 hours. 
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Discussion 

In order to analyze proliferative behavior of embryonic secondary palate 

mesenchymal cells, free from the complexities of the in vivo environment, a primary cell 

culture system was used in the present study. The results showed that HPMC were capable 

of survival and sustained growth when seeded on plastic culture plates. Previously, other 

investigators have made similar observations on embryonic palate, mesenchymal cells from 

other mammals (human, mice, and rat) (Yoneda and Pratt, 1981; Wee et al., 1981, Greene 

et al., 1981b; Chepenik and Greene, 1981; Zimmerman et al., 1983; Kukita and Kurisu, 

1986; Yano et al., 1996b), and bird (quail) (Izadnegahdar et al., 1995; Hehn et al., 

1996). Indeed, recent studies have shown that palate mesenchymal cells proliferate more 

rapidly on a plastic surface than those on or within an ECM substratum (Sharpe et al., 

1992; 1993; Dixon et al., 1993a, b). In addition, primary cultures of embryonic cells 

obtained from mouse and chick limb bud mesenchymal cells (Paulsen and Solursh, 1988; 

Biddulph and Dozier, 1989; Capehart and Biddulph, 1991), rat lung fibroblast (Nunez and 

Torday, 1995), skin mesenchyme (Polakiewicz et al., 1992), and chick mandibular, 

maxillary, and frontonasal mesenchyme (Langille et al., 1989) have been shown to grow 

well on plastic surfaces. The results of the present study further showed that the rate of 

proliferation of HPMC was dependent on the concentration of serum in the culture media: the 

rate of proliferation was highest in the presence of 10% serum and lowest in 2.5% serum. 

In the presence of 1% serum, HPMC did not grow. Previous studies on embryonic mouse 

palate mesenchymal cells also suggested that the presence of at least 2.5% serum in culture 

media was required for survival and sustained growth of cells (Sharpe et al., 1992a, b; 

1993; Dixon et al., 1993a, b). These observations suggest that culture conditions are 

important determinants of in vitro growth behavior of embryonic palate mesenchymal cells. 
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Next, the effects of growth factors EGF, TGFp,, or their combination, on the 

proliferative behavior of HPMC, were evaluated by growth curve analysis and measurement 

of DNA synthesis (as determined by 3H-thymidine incorporation). Several studies have 

previously reported the mitogenic effects of EGF on embryonic mammalian palate 

mesenchymal cells (Yoneda and Pratt, 1981; Kukita and Kurisu, 1986; Kukita et al., 1987; 

Pisano and Gereene, 1987; Chepenik and Gunwald, 1988; Gawel-Thompson and Greene, 

1989; London et al., 1989; Sharpe et al., 1992a, b; Dixon et al., 1993b; Chepenik et al., 

1994). The data of the present study, indicated that, when treated at sub-confluent stage, 

EGF accelerated the proliferation of HPMC, but did not enhance DNA synthesis in 24 hours. 

When HPMC were treated with EGF in the presence of 2.5% serum, however, DNA synthesis 

was increased compared to the controls. Also, the presence of serum seem to be essential for 

EGF to exert its mitogenic effects on sub-confluent (Sharpe et al., 1992b; Dixon et al., 

1993b, present study), but not on confluent cultures of mammalian embryonic palate 

mesenchymal cells (Yoneda and Pratt, 1981; Kukita and Kurisu, 1986; Kukita et al., 1987; 

London et al., 1989). The current analysis of the effects of EGF on palate mesenchymal cells 

supports the previously held notion that in order to stimulate-cell cycle under sub-

confluent culture condition, EGF may require the presence of other factor(s) in serum 

(Stiles et al., 1979). Taken together, these data support the hypothesis that EGF is a 

positive regulator of HPMC proliferation. 

In contrast to EGF, TGFp, inhibited DNA synthesis and arrested proliferation of 

HPMC. These findings are in line with previously reported data in the literature, in which 

TGFp,, in the presence or absence of serum, was shown to inhibit proliferation of embryonic 

palate mesenchymal cells in mice (Linask et al., 1991; Sharpe et al., 1992a, b), as well as 

of embryonic rat and human fibroblasts, and rat intestinal epithelial cells in primary 

culture (Anzano et al., 1986; Booth et al., 1995; Kletsas et al., 1995). It is well 
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recognized in the literature that TGFp, is perhaps one of the best known physiological 

inhibitors of cell proliferation (Moses and Leof, 1986; Roberts and Sporn, 1990; Massague 

and Polyak, 1995). TGFp, is able to inhibit both in vivo and in vitro growth of several 

different cell types including epithelial, endothelial, fibroblast, neuronal, lymphoid, and 

hematopoietic cells (Massague, 1992). A number of studies, however, have also shown that 

TGFp, exerts mitogenic effects on some cell types . For instance, TGFp, has been shown to 

induce proliferation of human embryonic palate mesenchymal cells (perhaps due to the 

altered phenotype of these cells) (Linask et al., 1991), as well as of senescent human 

fibroblasts, corneal endothelial cells, or smooth muscle cells (Kletsas et al., 1995; Rieck et 

al., 1995). In addition, TGFp, has been reported to accelerate proliferation of established 

fibroblast cell lines (such as NRK, AKR-2B, and Rat-1), as well as transformed cells (such 

as lung carcinoma) (Roberts et al., 1985, Moses and Leof, 1986). It has been suggested 

that the mitogenic effects of TGFp, may occur indirectly possibly through induction,of other 

mitogenic molecules such as PDGF, FGF, or their receptors (Leof et al., 1986; Plouet and 

Gospodarowicz, 1989; Kletsas et al., 1995; Reick et al., 1995). Thus, the positive or 

negative effects of TGFp, on cell proliferation appears to be complex, and seems to depend on 

cell type, stage of phenotypic differentiation, and the availability of other factors in culture 

medium. , 

The data of the present study also demonstrated that when sub-confluent HPMC were 

treated with both EGF and TGFp, simultaneously, TGFp, overcame the mitogenic effects of 

EGF. These observations are in line with the data reported by Sharpe and colleagues 

(1992a) in murine palate mesenchymal cells, and suggest that interaction among growth 

factors may be important in regulating the proliferation of palate mesenchymal cells. 

Previously, TGFp, has been shown to antagonize the mitogenic effects of serum or exogenous 

growth factors such as EGF, PDGF, or FGF in cultured fibroblasts, endothelial, epithelial, 
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and neuronal cells (Takehara et al, 1987; Coffey et al., 1988; Mulder et al., 1990; 

Yoshiura et al., 1994; Kletsas et al., 1995; Vergelli et al., 1995). In general, however, 

the inhibitory effect of TGFB, on cell proliferation of most cell types seems to be reversible, 

and cells resume growth upon removal of TGFB, from culture media (Moses and Leof., 1986; 

Polyak, 1996). 

To further study whether the anti-proliferative effect of TGFB, on HPMC was 

reversible or not, the cells were pre-treated with TGFB,. The results showed that the anti

proliferative effect of TGFB, was exerted rapidly: pre-treatment of HPMC with TGFB, for 30 

minutes was sufficient to inhibit both serum- and/or EGF-induced DNA synthesis and 

proliferation. Also, these data indicated that the effects of TGFB, on the proliferative -

behavior HPMC was irreversible. After 30 minutes of exposure to TGFB,, and its subsequent 

removal from the culture media, the growth of HPMC was arrested and they were unable to 

respond to the mitogenic effects of serum and/or EGF. Pre-treatment of HPMC with TGFB, 

for different durations of up to 12 hours also resulted in consistent repression of DNA 

synthesis. Previously, Sharpe and colleagues (1992a) also observed inhibition of DNA 

synthesis following TGFB, pre-treatment of murine embryonic palate mesenchymal cells for 

24 hours. An irreversible inhibitory effect of TGFB, on the proliferation of endothelial cells 

(Takehara et al., 1987) and myoblasts (Zentella and Massague, 1992) have also been noted. 

The foregoing analyses suggest that the presence of at least 2.5% serum is required-

for survival and sustained growth of HPMC in primary culture. In addition, whereas EGF is 

a positive regulator of DNA synthesis and proliferation of these cells, TGFB, arrest the 

proliferation of HPMC. TGFB, also prevents the proliferative response of HPMC to EGF 

and/or serum, suggesting that interaction among growth factors may play an important role 

in regulation of proliferation, and thus cell cycle progression, of HPMC. 
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It is now well recognized in the literature that the regulation of cell proliferation 

requires sequential activation of several interacting intracellular signaling pathways that 

subsequently induce series of immediate early genes putatively involved in regulation of 

various events determining cell cycle progression (Edwards, 1994; Seger and Krebs, 

1995). The discussion so far has focused on the ability of EGF and TGFp, to modulate the 

proliferation of embryonic palate mesenchymal cells. However, there are no reports in the 

literature analyzing their effects on the expression of immediate early genes in these cells. 

The present study provides the first report on expression of immediate early genes, and 

their modulation by growth factors, in embryonic palate mesenchymal cells. 

The results of the Northern blot analysis indicated that under serum starved 

conditions, transcripts of c-fos, c-jun, and c-myc were undetectable in HPMC. These data 

are consistent with the observation that the mRNA levels of these proto-oncogenes are at 

extremely low levels in quiescent fibroblasts (Kelly et al., 1983; Coffey et al., 1988; 

Waters et al., 1991; Campisi, 1992; Kim et al., 1993), indicating that serum starved cells 

were in GO state. 

Treatment of quiescent HPMC with serum resulted in rapid but transient induction of 

all three proto-oncogenes whose transcript size were comparable to those found in other 

cell types (Muller et al., 1984; Almendral et al., 1988). When HPMC were exposed to 

2.5% or 10% serum, expression of c-fos mRNA occurred within 15-30 minutes, but the 

signal disappeared by 2 hours. On the other hand, c-jun expression was not detectable with 

2.5% serum. In presence of 10% serum, however, c-jun mRNA was induced within 15 

minutes, and subsequently declined at 6 hour, thus further reinforcing the proposition made 

earlier in the Discussion that culture conditions play an important role in regulation of 

specific gene expression in embryonic palate mesenchymal cells. Treatment of HPMC with 

2.5% or 10% serum also induced c-myc expression by 30-60 minutes, which peaked at 1 
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hour, and gradually declined at 6 hours. These observations on the induction of immediate 

early genes in HPMC by serum corroborate those in quiescent fibroblasts where similar 

rapid and transient induction of immediate early genes were associated with cell 

proliferation (Greenberg and Ziff, 1984; Lau and Nathans, 1985; 1987; Almendral et al., 

1988; Ryseck et al., 1988). Since, in the present study, serum treatment also induces both 

the immediate early genes and proliferation in HPMC in that order, it is plausible that 

induction of these genes may be required for the transition of HPMC from a quiescent to 

proliferating state. 

Previously, mitogens such as EGF, PDGF, and FGF have been shown to induce 

expression of c-fos, c-jun, and c-myc quiescent fibroblasts as efficiently as serum (Kelly 

et al., 1983; Cochran et al., 1984; Kruijer et ai., 1984; Muller et al., 1.984; Quantin and 

Breathnatch; 1988; Ryseck et al., 1988; Hudson and Gill). The data of the present study 

also showed that treatment of serum-starved HPMC with EGF; both in presence and absence 

of 2.5% serum, induced expression of c-fos, c-jun, and c-myc. When cells were exposed to 

EGF alone, the expression all three proto-oncogenes were expressed rapidly and transiently. 

Similar observations have been made by Muller and associates (1984), in NIH 3T3 

fibroblasts where c-myc mRNA reached basal levels rapidly after treatment with EGF alone. 

Expression of c-jun and c-myc, however altered depending on the presence or absence of 

serum in culture media: in the absence of serum, EGF was able to induce c-jun and c-myc 

signals only between 30 minutes and 1 hour, in the presence of 2.5% serum, EGF-induced 

expression of these genes was seen between 1 and 6 hours. Clearly, the presence or absence 

of serum appears to regulate the temporal expression of at least c-myc and c-jun, which, in 

turn, may be associated with the non-mitogenic response of serum-starved HPMC following 

their exposure to EGF alone. This would further support the notion expressed above that 
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simultaneous availability of other factors in culture media is essential for EGF-induced 

stimulation of proliferation of HPMC. 

On the other hand, the results of the present study showed that in the absence of 

serum, TGFp, was unable to induce immediate early gene expression in HPMC. Even though 

there are no reports in the literature on the effects of TGFp, on expression of immediate 

early genes in embryonic mesenchymal cells in primary culture, previous studies on other 

cell types have shown that TGFp, exerts diverse effects on expression of c-fos, c-jun, and 

c-myc. Whereas in some cell types, including BALB/MK keratinocytes, BALB 3T3 

fibroblasts, Swiss 3T3 fibroblasts, and Pig leydig cells, TGFp, alone does not affect proto-

oncogene expression (Coffey et al., 1988; Hall et al., 1991; Chatani et al., 1995), in other 

cell types such as embryonic rat L2, NIH 3T3, ARK 2B, mouse embryonic fibroblasts, mink 

lung epithelial cells, and mouse keratinocytes, TGFp, can rapidly stimulate or inhibit the 

expression these genes (Liboi et al., 1988; Petrovaraara et al., 1989; Pietenpol et al., 

1990; Hall et al., 1991; Kim et al., 1993). In addition, the effect of TGFp, on immediate 

early gene expression in different cell type does not correlate with its effects on cell 

proliferation. For example, c-jun expression was observed in both human adenocarcinoma 

cells, in which proliferation was inhibited by TGFp, and in AKR-2B mouse embryo 

fibroblasts, which were stimulated by TGFp, (Petrovaara et al., 1989). Furthermore, 

TGFp, stimulated the proliferation of BALB 3T3 and Swiss 3T3 fibroblasts without inducing 

c-fos expression (Chatani et al., 199). wheras in endothelial cells TGFp, induced c-fos , 

expression, but inhibited cell proliferation (Takehara et al.., 1987). Thus, the effect of 

TGFp, on immediate early gene expression, like that on cell proliferation, also seem to be 

varied depending on cell types and culture conditions. 

To further analyse whether the TGFp, arrest of serum- or EGF-induced HPMC 

proliferation had affected the expression of the proto-oncogenes, the effects of growth factor 
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combination and TGFp, pre-treatment on c-fos, c-jun, and c-myc expression were 

examined. When ceils were treated with TGFp, iri the presence of 2.5% serum, mRNA 

expression was observed for c-fos (peak at 1 hour) and c-myc (peak at 2 hour), but not 

c-jun, indicating that TGFp, does not interfere with serum-induced expression of immediate 

early genes. 

Following co-treatment of HPMC with EGF and TGFp, in the presence or absence of 

2.5% serum, the mRNA of all three genes was expressed, indicating that abrogation of 

mitogenic response of EGF by TGFp, may have not been exerted through inhibition of 

immediate early gene expression. Earlier literature also demonstrates that the growth 

inhibitory effect of TGFp, on mitogen-induced proliferation of different cell types does not 

inhibit mitogen-induced c-fos or c-jun expression. For example, TGFp, inhibits mitogen-

induced proliferation of hamster lung fibroblasts (Chambard and Puyssegur, 1988), 

neonatal human fibroblasts (Paulsson et al., 1988; Keltsas et al., 1995), BALB/MK 

keratinocytes (Coffey et al., 1988), rabbit gastric epithelial cells (Yoshiura et al., 1994), 

and human renal mesengial cells (Schoeckleman et al., 1997) in culture, without inhibiting 

mitogen-induced expression of c-fos or c-jun in these cel|s. Therefore, it is possible that 

in these cell types, including HPMC (present study), TGFp, may arrest EGF-induced 

proliferation through other mechanisms, which do not interfere with mitogen-induced c-fos 

or c-jun expression. 

In comparison to the effects of TGFp, on mitogen-induced expression of c-fos and 

c-jun, the effect of this growth factor on c-myc expression seems to be dependent on the cell 

type. For instance, in HPMC (present study), hamster lung fibroblasts (Chambard and 

Pouyseggur, 1988), and rat intestinal epithelial cells (Ko et al., 1994), TGFp, does not 

affect the mitogen-induced expression of c-myc, but in other cell types such as human 

mammary carcinoma (Franandez-Pol et al., 1987), BALB/MK keratinocytes, secondary 
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cultures of human keratinocytes (Coffey et al., 1988, Pientepol et al., 1990a, b; Munger et 

al., 1992), colon carcinoma cells (Mulder et al., 1990), or rabbit gastric epithelial cells 

(Yoshiura et al., 1994) TGFp, reduced mitogen-induced c-myc expression. Also, over-

expression of c-myc in keratinocytes leads to TGFp, resistance (Alexandrov et al., 1995), 

further indicating that TGFp, may be exerting its growth inhibitory effects through down-

regulation of c-myc expression (Pientepol et al., 1990; Zentella et al., 1991; Munger et 

al., 1992), a proposition that is in contrast to the observations of the present study. 

The data of the present study also revealed that cb-treatment of HPMC with EGF and 

TGFp, (in presence or absence of serum) affected the temporal expression of all three 

proto-oncogene mRNAs. For example, in contrast to exposure to EGF alone or EGF + serum, 

when c-jun was no longer detectable after 1.-2 hours, co-treatment of HPMC with EGF and 

TGFp, (+ serum) resulted in expression of c-jun mRNA for up to 6 hours. Similarly, when 

HPMC were co-treated with EGF, TGFp,, and serum, c-fos expression persisted up to 2 

hours in comparison to 1 hour duration following EGF/serum treatment. The expression of 

c-myc in HPMC was also prolonged in presence of both EGF and TGFp,, compared with EGF 

alone. Previously, several investigators have also reported sustained expression of 

mitogen-induced c-fos in the presence of TGFp, in other cell types (Liboi et al.,1988; 

Paulsson et al., 1988; Kletsas et al., 1994). Whether the prolonged expression of 

immediate early genes in HPMC in the presence of TGFp, is due to an increased rate of gene 

expression or a decreased rate of mRNA degradation, remains to be clarified. However, since 

TGFp, by itself does not stimulate transcription of immediate early genes in HPMC, it is 

possible that TGFp, might exert post-transcriptional effects on immediate early gene mRNA 

(Coffey et al., 1988) to prolong the expression of these mRNA transcripts. This could 

imply that the altered temporal expression of mitogen-induced immediate early genes by 

TGFp, may be associated with growth arrest. 
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With the exception of c-fos, which was not stimulated by 2.5% serum in TGFP, pre-

treated HPMC, pre-treatment of HPMC with TGFp, followed by treatment with 2.5% serum, 

EGF, or their combination, supported mRNA expression of all three proto-oncogenes, as 

appropriate. In addition, the mRNA expression of all three proto-oncogenes, although 

occurring very rapidly (within 15 minutes), was prolonged, with c-myc and c-jun 

expression lasting for up to at least 6 hours; and c-fos expression until 2 hours. Studies on 

the modulatory effect of TGFp, pre-treatment on other growth factors are scant. Earlier, 

Miki and associates (1994) showed that 30 minutes of TGFp, pre-treatment potentiated 

neurotransmitter-induced c-fos expression in myocardial cells. In endothelial cells, TGFp, 

pre-treatment does not alter EGF-induced c-fos expression, but reduces c-myc expression 

(Takehara et al., 1987), whereas in endometrial carcinoma cells, it reduces c-fos 

expression within 1 hour of TGFp, pre-treatment (Bergman et al., 1997). These 

observations would indicate that the effect of TGFp, pre-treatment on mitogen-induced 

expression of immediate early genes may be cell type-specific. 

The foregoing analysis of the data of the present study, along with that from 

literature clearly indicates that cooperation between EGF and TGFp, is crucial in the 

regulation of proliferation of embryonic palate mesenchymal cells. The question that 

logically follows is how do EGF and TGFp, exert their respective biological effects to regulate 

proliferation of palate mesenchymal cells? 

Previous studies have shown that both the second-messenger dependent pathways 

involving PKA and PKC (Pisano and Greene, 1986; Pisano et al., 1986; Chepenik and 

Grunwald, 1988; Chepenik and Haystead, 1989), and second-messenger independent 

pathways involving CK2, MAPK, and p34cdc2 (Young et al., 1995; 1996a, b), allow 

transduction of extracellular messages from the cell surface to the nucleus to regulate cell 

proliferation and differentiation. These pathways are activated during normal development 
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of secondary palate in mammals as well as other vertebrates (Hehn et al., 1995; 1996 

1997a, b). Although it remains to be determined during palate development, it has been 

shown that in nuclei of other eukaryotic cells, the signaling molecules stimulated by these 

pathways activate transcription factors, which, in turn, stimulate expression of immediate 

early genes (c-fos, c-jun, c-myc, etc.) that seem to be required for progression of cell into 

G1 phase, and for eventual regulation of cell proliferation (Triesman, 1994, 1996). 

It has been shown that ligand-induced phosphorylations of protein kinases regulate 

the activation of early genes (Hunter and Karin, 1992). The pathways through which serum 

or growth factors such as EGF activate immediate early genes appear to be specific (Gupta, 

et al., 1996). For example, c-fos expression seems to be regulated through Ras-MAPK 

pathway (Janknecht et al., 1995), whereas tyrosine kinase Src is an upstream activator of 

only c-myc (Barone and Courtneidge, 1995). Exogenous EGF has been shown to bind to 

receptors on palate mesenchymal cells (Abbott et al., 1988; Shiota et al., 1990; Sharpe et 

al., 1992a), and stimulates their proliferation (Gawel-Thompson and Greene, 1989; 

Sharpe et al., 1992a, b; Shah et al., 1995a). EGF also activates PKC (Chepenik and 

Grunwald, 1988; Chepenik and Haystead, 1989), MAPK, and CK2 (Shah et al., 1995a, b; 

Young et al., 1996) in mammalian palate mesenchymal cells (figure 26). Thus, it is 

plausible that these EGF-induced signaling molecules may activate c-fos, c-jun, and c-myc 

expression (present study) and advance the palate mesenchymal cells in G1 and thus 

contribute to the stimulation of cell proliferation. 
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Figure 26. Induction of signaling cascades and immediate early genes as the palate 
mesenchymal cells advance from GO through G1 phase of the cell cycle. 

On the other hand, when TGFpi binds to embryonic palate mesenchymal cells (Linask 

et, al., 1991), it suppresses their proliferation (Linask et al:, 1991; Sharpe et al., 1992a, 

b; present study) and does not activate c-fos, c-jun, or c-myc expression in HPMC (figure 

27; present study). Earlier, it was shown that TGFp 1 suppresses activation of both MAPK 

and CK2 in HPMC (Young et al., 1996). Taken together, these observations would suggest 

that lack of activation of immediate early genes in HPMC may be related to suppression of at 

least MAPK or CK2 signaling pathways. 
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Figure 27. Effects of TGFpi on signaling molecules and immediate early genes as palate 
mesenchymal cells advance from GO through G1 phase of the cell cycle. 

In addition, although not yet verified during palate development, TGFp, has been 

implicated in suppression of activation of at least two other cell cycle controlling molecules, 
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p53 and retinoblastoma (Rb), as a part of the pathway that leads to the arrest of cell 

proliferation (Cox and Lane, 1995; Beijersbergen and Bernards, 1996; Milcezarek et al., 

1997). Function of p53 is generally associated with the regulation of cell proliferation 

during tumor progression or cell injury (Deppert, 1994; Levine et al., 1991; Sager, 

1992). Rb is a negative regulator of cell cycle; when hypophosphorylated, it binds to and 

inhibits transcription factor E2F, which is required for cell cycle progression (Sanchez and 

Dynlacht, 1996). Phosphorylation of Rb is mediated by protein complexes of G1 cyclins and 

cyclin dependent kinases (cdk) such as cyclin D/Cdk 4 or 6, and cyclin E/Cdk 2, whose 

sequential formation, activation and inactivation are necessary for cell cycle progression 

(Pardee, 1989; Sherr, 1993; 1994; 1995). TGFp, inhibits phosphorylation of ,Rb 

resulting in an accumulation of the under-phosphorylated functional form of the protein 

(Laiho et al., 1990; Munger, et al., 1992; Beijersbergen and Bernards, 1996). Also, 

TGFp, inhibition of Rb seem to be through suppression of the mRNA or protein levels of 

several G1 cyclins and Cdk's, or prevention of the cyclin/cdk complex activity (Massague 

and Polyak, 1995; Yingling et al., 1995; Polyak, 1996) by regulating cyclin dependent 

kinase inhibitors (CKI's) (Polyak et al., 1994; Hannon and Beach, 1994; Datto et al., 

1995). CKI's are low molecular weight proteins that bind cyclin-cdk complexes and inhibit 

their activities (Hunter and Pines, 1994; Sherr, 1994). The known CKI family members 

so far include, p21 (WAF/ Cip 1), p27 (Kip 1), p16 (INK 4/ MTS1) and p15 (INK 

4B/MTS2). TGFp, treatment of cells seems to stimulate p15 gene expression which results 

in an increase in its protein levels (Hannon arid Beach, 1994). At high cellular 

concentration, p15 associates with cyclin D-cdk4 and cdk6, and inhibits their activity 

during G1 (Hannon and Beach, 1994). Similarly, TGFp, increases p21 gene expression, 

which at excess protein levels binds to, and inhibits cyclin D and cdk 2 (Datto et al., 1995). 

On the other hand, TGFp, seems to increase the p27 protein levels through a post-
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translational mechanism (Polyak et al., 1994; Slingerland et al., 1994), and prevent 

formation of catalytically active cyclin E/cdk2 in mink lung epithelial cells (Koff et al., 

1993). Thus, there appears to be multiple interacting mechanisms between TGFp,, and G1 

cyclin-cdk activities indicating that TGFp! may play an important role in regulating at least 

cyclin-cdk cell cycle machinery to exert its anti-proliferative effects. Clearly, 

information on TGFB, regulation of cyclin-cdk activity, and of CKI, is essential to further 

understand the involvement of TGFp, in regulation of proliferation of HPMC. 

Following co- or pre-treatment with TGFp,, EGF and/or serum does induce 

expression of all three immediate early genes but does not reverse the TGFp, suppressed 

proliferation of HPMC (present study). Earlier it was shown that when HPMC were 

co-treated with EGF and TGFp,, MAPK activation was not affected but CK2 activation was 

(figure 28) (Young et al., 1996). It is plausible that EGF-stimulated MAPK in a timely 

manner could induce c-fos, c-jun, and c-myc expression, which was apparently 

insufficient to carry HPMC through G1 phase of the cell cycle possibly because other 

molecules such as CK2 or early G1 cyclins may not have been activated. In fact, several 

investigators have proposed that TGFp, exerts its growth inhibitory effects during G1 stage 

of the cell cycle, without affecting the events of G0-G1 transition (Chambrad and 

Pouyssegur, 1988; Ko et al., 1994; Kletsas et al., 1995; Schoecklman et al., 1997). As 

indicated in the previous paragraph, it is also possible that TGFp, may have simultaneously 

affected early G1 cyclin-cdk complexes to prevent further progress of HPMC through G1. 

Since, EGF and TGFp, act as positive and negative regulators, respectively, to determine 

whether HPMC proliferate or not, and as this decision is made in G1, G1 cyclin-cdk may act 

as integrators of these extracellular signals (Polyak, 1996). These possibilities need to be 

examined further to clarify the mechanism by which EGF and TGFp, interactions regulate the 

proliferation of embryonic palate mesenchymal cells. 
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Figure 28. Effects of EGF+TGFp, on signaling molecules and, immediate early genes as 
palate mesenchymal cells advance from GO through G1 phase of the cell cycle. 

In summary, the results of the present study indicate that EGF and TGFp, are 

important regulators of embryonic HPMC proliferation. Further, this study suggests that 

interaction among extracellular growth factors leads to modulation of the nuclear events that 

may be important in regulation of HPMC proliferation during palate morphogenesis. 

The present study was undertaken on the overall premise that proliferation, 

differentiation, and death represent alternative and mutually exclusive pathways for cells 

during embryogenesis. There is a compelling notion in the literature that proto-oncogenes 

may function at critical control points in decision-making processes that regulate the 

biological phenomena. Hence, an objective of this study was to examine whether proto-

oncogenes are expressed in HPMC as the cells commit themselves to DNA synthesis (i.e. cell 

proliferation). In addition, how EGF and TGFp,, implicated in regulation of cell proliferation 

during embryonic secondary palate development, modulate the activities of immediate early 

genes as the palate mesenchymal cells move from GO to G1 phase of the cell cycle, was 

examined. This study provides hitherto unavailable information on how growth factor 

interaction could regulate the putative biological behavior of embryonic palate mesenchymal 

cells through modulation of the activities of immediate early genes. Clearly, a progress in 

understanding the proliferative/anti-proliferative mode of actions of extracellular factors 

can be achieved once activation of various other genes involved in cell cycle regulation, their 

interaction with inducing agents (such as growth factors) and with the components of basic 
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cell cycle machinery including signaling cascades, are thoroughly evaluated. As analyzed in 

Introduction of this thesis, there is a paucity of reports in the field of the developmental 

biology where regulation of proto-oncogene activity by multi-growth factor treatment has 

been analyzed in the primary culture of embryonic cells. From the perspectives of general 

cell and molecular biology, so far, much of the information on growth factor-regulated 

mechanisms that modulate functional behavior, of cells has been derived from studies on 

transformed or established cell lines. Since these cell lines may have undergone sufficient 

mutations or phenotypic alterations, the application of information derived thence from to 

morphogenesis of a structure such as palate may prove to be complex and difficult. The 

approach outlined in the present study on the interactive effects of growth factors in 

primary culture of cells derived from embryonic palate mesenchyme, whose life history is 

fairly well defined, provides a potentially rewarding strategy to further analyze the 

regulatory cellular and molecular mechanisms in developmental biology, including those of 

normal and cleft palate formation. 
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