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Relevance Weighted Smoothing and a New Bootstrap Method

Abstract

This thesis addresses two quite different topics. First, we consider several relevance

weighted smoothing methods for relevant sample information. This topic can be viewed

as a generalization of nonparametric smoothing. Second, we propose a new bootstrap

method which is based on estimating functions.

A statistical problem usually begins with an unknown object of inferential of interest.

About this unknown object, we may have three types of information (classified in this

thesis): direct information, exact sample information and relevant sample information.

Almost all classical statistical theory is about direct information and exact sample in

formation. In many cases, relevant sample information is available and useful. But

there is no systematic theory about relevant sample information. The problem of this

thesis is to extract “the relevant information” contained in the relevant samples. ThTee

general methods have been developed under three different lines of approach (para

metric, nonparametric and semiparametric approach). In the parametric approach, we

propose the idea of relevance weighted likelihood (REWL). For the nonparametric ap

proach, we develop our theory based on the relevance weighted empirical distribution

function (REWED). In the semiparametric approach, the relevance weighted estimat

ing functions are used to extract “relevant information” from relevant samples. From

asymptotic results, we find that these proposed methods have many desirable properties.

We apply these proposed methods as well as some adjusted methods to generalized

smoothing problems. Theoretical results as well as simulation results show our methods

to be promising.
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We also present a new bootstrap method. It has computational and theoretical advan

tages over conventional bootstrap methods when the data obtain from non-identically

distributed observables. And it differs from conventional methods in that it resamples

components of an estimating function rather than the data themselves.
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Chapter 1

Introduction

This thesis addresses two quite different topics. First, we consider several relevance

weighted smoothing methods for relevant sample information. This topic can be viewed

as a generalization of nonparametric smoothing. Second, we propose a new bootstrap

method which is based on estimating functions.

A statistical problem usually begins with an unknown object of inference. About this

unknown object of inference, we may have three types of information (classified in this

thesis): direct information, exact sample information and relevant sample information.

Almost all classical statistical theory is about direct information and exact sample infor

mation. In many cases, the relevant sample information is available and useful. There

is no systematic theory about relevant sample information.

The problem of this thesis is to extract “the relevant information” contained in the rele

vant samples. Three general methods have been developed under three different lines of

approach (parametric, nonparametric and semiparametric approach). For the paramet

ric approach, we propose the idea of relevance weighted likelihood (REWL). The REWL

plays the same role in relevant sample analysis as the likelihood in classical statistical in
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ference. For the nonparametric approach, we develop our theory based on the relevance

weighted empirical distribution function (REWED). In the semiparametric approach,

the relevance weighted estimating functions are used to extract “relevant information”

from relevant samples. We use estimating functions because of their generality.

We show that the maximum relevance weighted likelihood estimator (MREWLE) is

consistent and asymptotically normal. The asymptotic theory of the nonparametric

approach is also developed. [For the semiparametric approach, the asymptotic theory is

omitted.] By these asymptotic results, we find that these proposed methods have many

desirable properties.

We also apply these proposed methods to generalized smoothing methods. We find

that: (i) the MREWLE has some advantages over current nonparametric regression

methods; (For example, the MREWLE always has a smaller variance which depends

on the Fisher information function. This also indicates that the MREWLE is a kind

of efficient estimator.) (ii) the relevance weighted quantile estimator (based on the

REWED) is usually robust and quite efficient. For generalized smoothing models, we

get some good estimators by some locally polynomial adjustments. Simulations support

our methods.

Various papers (Efron 1979, Bickel and Freedman 1981 and Singh 1981) speak to the

quality of the bootstrap resampling procedure for estimating a sampling distribution in

situations where the sampled observables are independent and identically distributed.

In this thesis we present a new bootstrap method. It has computational and theoretical

advantages when the data obtain from non-identically distributed observables. And

it differs from conventional bootstrap methods in that it resamples components of an

estimating function rather than the data themselves. We apply this bootstrap method
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to ordinary linear regression. By comparing with Efron’s method, Freedman’s pairs

method and Wu’s method, our method gets support from theoretical results as well as

simulations.

Because our new bootstrap method is based on estimating functions, applying this

bootstrap method to relevance weighted smoothing is possible and reasonable. This is

a further research topic.

We organize the thesis as following.

In Chapter 2, we classify the different types of information about the unknown object of

inference (parameter) in statistical way. In classical statistical inference and Bayesian

inference, statisticians usually focus on direct information and exact sample information.

We learn that relevant sample information is very important in statistical inference. Two

possible generalizations of Fisher’s information and Kullback-Leibler’s information for

relevant samples are considered.

For relevant samples, we propose the idea of the relevance weighted likelihood (REWL)

in Chapter 3. Our idea generalizes that of the likelihood function in that the independent

samples going into the likelihood function may be discounted according to their degree

of relevance. The classical likelihood obtains in the special case where the independent

samples are all from the study population whose parameters are of inferential interest.

But more generally, as in metaanalysis, for example, the value of such samples may

be reduced in that their relevance is in doubt because for example, they are noisy or

biased. The relevance weights, which enter as exponents of the component factors in

the sampling density, enable us to tradeoff information against such things as bias in

the samples which may be relevant even if not drawn from the study population.

3



We show how the REWL can obtain from a generalization of the entropy maximization

principle. Using the REWL we define the notion of weak sufficiency and the maximum

REWL estimator (MREWLE). By using the MREWLE in a normal example, we find

the MREWLE has some advantages.

In Chapter 4, we establish the weak and strong consistency of the MREWLE under a

wide range of conditions. My results generalize those of Wald (1948) to both noniden

tically distributed random variables and unequally weighted likelihoods (when dealing

with independent data sets of varying relevance to the inferential problem of interest).

Asymptotic normality of the MREWLE is also proved.

We apply the REWL methods to generalized smoothing models in Chapter 5. By

choosing different weights, four estimators are considered. They are the: Nadaraya

Watson MREWLE, Gasser-Muller MREWLE, k-NN weights MREWLE and locally lin

ear smoother MREWLE. Asymptotic results for these four estimators are developed.

We also compare them by theoretical results as well as simulations.

Chapter 6 concerns situations in which a sample X1 = x, X,-, x of independent

observations is drawn from populations with different CDF’s F1, •, F,, respectively.

Inference is about a quantile of another population with CDF F0 when the data from the

other populations are thought to be “relevant”. Nonparametric smoothing of a quantile

function would typify situations to which our theory applies. We define the relevance

weighted quantile (REWQ) estimator derived from the relevance weighted empirical

distribution (REWED) function. We show that the estimator has desirable asymptotic

properties. A simulation study is also included. It shows that the median estimator is

a robust alternative to the locally weighted averages used in conventional smoothing.

Some further results appear in Chapter 7. We propose a locally polynomial MREWLE.

4



By comparing with locally constant MREWLE (in Chapter 5) and current nonparamet

nc regression methods, we find that the locally linear MREWLE has a simple bias and

smaller variance. Some simulation results also support this locally linear MREWLE. For

our semiparametric approach, we present the method of relevance weighted estimating

functions. We find that the locally linear MREWLE is the best among all locally linear

REW estimating equations (with kernel weights) and the locally linear quasi-MREWLE

(maximum relevance weighted quasi-likelihood estimator) is the best among all locally

linear REW linear estimating equations.

Chapter 8 presents a method of bootstrap estimation. Rather than resampling from the

original sample, as is conventional, the proposed method resamples summands of the

estimating function used to produce the original estimate. The result is computation

simpler than existing competitors. However, its main advantages lie in its treatment

of non-identically distributed observations. Shortcomings of conventional methods are

overcome. An application to ordinary linear regression is worked out in detail along

with the appropriate asymptotic theory. We report as well a simulation study which

provides support for this new bootstrap method.
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Chapter 2

Relevant Sample Information

2.1 Introduction

Information is a key word in statistics. After all, this is what the subject is all about.

As Basu (1975) says:

• A problem in statistics begins with a state of nature, a parameter of interest 0 about

which we do not have enough information. In order to generate further information

about 8, we plan and then perform a statistical experiment E. This generates the

sample x. By the term ‘statistical data’ we mean such a pair (‘,x) where is

well-defined statistical experiment and x the sample generated by a performance of

the experiment. The problem of data analysis is to extract ‘the whole of relevant

information’—an expression made famous by R. A. Fisher—contained in the data

(E,x) about the parameter 0.

However, statistical theory has traditionally been concerned with a narrow interpretation

of the word embraced by Basu’s description. Given data, statisticians would typically
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construct a sampling model with a parameter 0 to describe a population from which the

data were supposedly drawn. Information in the sample about the population comes

out through inference about 0. Alternatively, given a 0 of interest the classical paradigm

sees the statistician as conducting a statistical experiment to generate a sample from

a population defined by a sampling distribution with parameter 9. The sample then

provides information about 9. In either case, statistical infereilce will be based on these

observations and their directly associated sampling model. This is the frequency theory

viewpoint. (See Lehmann 1983).

Bayesians think that we always have some prior distribution for the unknown parameter.

Then we combine the prior information and the ‘statistical data’ information. (See

Lindley 1965).

But these two sources of information are not the only source of information for the

parameter. There is another source of information (relevant sample information as

defined in Section 2.2). This information is very useful in many cases. This can be

clearly seen by the following examples. (We use an example similar to that of Basu

(1975) but for a different purpose).

Example 2.1 Suppose an urn A contains 100 tickets that are numbered consecutively as

o + 1, 0 + ,9 + 100 where 9 is an unknown number. Let E, stand for the statistical

experiment of drawing a simple random sample of n tickets from the urn A without

replacement and then recording the sample as a set of ii numbers x1 < x2 < < x.

Suppose we know that 9 is bounded by 50, this means O 50. This information is a kind

of direct information (or prior information). Consider now the hypothetical situation

where E25 has been performed and has yielded the sample x = (55,57,... ,105), where

55 and 105 are respectively the smallest and largest number drawn. To be specific, with

7



data E, x = (x1,x2,. , x,,), we know without any shadow of doubt that the true value

of 0 must belong to the set

S = {xi — 1, x1 — 2,••• , x1 — m}

where m = 100 — (x — xi). Now with the information from the data we can now

assert that 0 is an integer that lies somewhere in the interval [5, 54]. Combine the direct

information and the ‘statistical data’ information, we could conclude that 0 is an integer

that lies somewhere in the interval [5,50].

Now suppose another urn B contains other 100 tickets that are numbered consecutively

as 0 + 1, 01 + 2, , O + 100 where 0 is another unknown number. But we known that

the difference between 0 and O is smaller than 5, meaning that 0 — Oi < 5. Suppose

now that we draw a simple random sample of 5 tickets from the urn B and find the

sample x’ = (51,80,... , 149). With this information, we can assert that 01 = 50 or

49. Now with the information from the data x’, we can say that 0 is an integer that

lies somewhere in the interval [45, 54]. This is the information from the data x’ for the

parameter 8.

Combining the information from these different sources, we can finally conclude that 0

is an integer somewhere in the interval [45, 50].

From the above example, the data x’ contain some useful information for the parameter

0. But x’ are not from the experiment E with the parameter 0 (the experiment we plan

and perform). The x’ come from the experiment with the unknown parameter 01, which

has some relation with the parameter 0 (in this example, 8
— 01j < 5). This is the

difference between x’ and x. The classical statistical inference usually focuses on the

information from x alone.

8



In this chapter, we will focus on the discussion of this third source of information. We

come out very strongly in support of the use this information for statistical inference

when it is available.

In Section 2.2, we try to classify information about the unknown parameter into two

main types. The first is “direct information” and the second we call “sample infor

mation” (as defined in Section 2.2). We classify sample information into exact sample

information and relevant sample information. Almost all classical statistical theory is

about direct information and exact sample information. Relevant sample information

has only been used in some special contexts of statistics. But systematic theory is not

available and needs to be developed.

We have used the word information many times in this section. But, what is infor

mation? Or how to measure information? As Basu (1975) remarks no other concept

in statistics is more elusive in its meaning and less amenable to a generally agreed

definition. The measure of information plays a very important role in statistics and

communication science. A lot of well-known work has been done in this area (See Fisher

(1925), Shannon (1948), Wiener (1948) and Kullback (1959)). We will review three of

the most important information measures in the Section 2.3.

All these information measurements are used for direct information and exact sample

information for different purposes. In Section 2.4, we discuss how to measure the relevant

sample information. A possible generalization of Fisher information is proposed.

The use of the relevant sample information in the test of hypotheses or discrimination

will be considered in Section 2.5. We propose a reasonable measure of information for

discrimination. This measure is a generalization of the Kuliback-Leibler information

measure.

9



2.2 Classification of Information

Statistics is concerned with the collection of data and with their analysis and interpre

tation. Here we do not consider the problem of data collection but take the data as

given and ask what they tell us. The answer depends not only on the data, but also on

background knowledge of the situation; the latter is formalized in the assumptions with

which the analysis is entered. We review two traditional principal lines of approach.

Classical inference and decision theory. The observations are now postulated to be the

values taken on by random variables which are assumed to follow a joint probability

distribution, F, belonging to some known class P. Frequently, the distributions are

indexed by a parameter, say 8, taking values in a set, , so that

P {F9,8

The aim of the analysis is then to specify a plausible value for 0 (this is the problem of

point estimation) or at least to determine a subset of f of which we can plausibly assert

that it does, or does not, contain 0 (estimation by confidence sets or hypothesis testing).

Such a statement about 0 can be viewed as a summary of the information provided by

the data and may be used as a guide to action.

In this approach, statistical inference about 0 is based on both this directly associated

sampling model (here {P9,}) and the observations.

Bayesian analysis. In this approach, it is assumed in addition that 0 is itself a ran

dom variable (though unobservable) with a known distribution. This prior distribution

(specified prior to the availability of the data) is modified in light of the data to deter

mine a posterior distribution (the conditional distribution of 0 given the data), which

10



summarizes what can be said about 0 on the basis of assumptions made and the data.

This Bayesian approach about the parameter 0 is based on both the directly associated

model, the prior distribution and the data.

It is frequently reasonable to assume that we get some other observations which are not

from F9, but from some F91 where P91 is related to P9. These observations do contain

some information about 0. But the above two traditional principal lines of approach do

not include these observations.

Example 2.2 Assume that we wish to estimate the probability (a parameter OA) of a

penny A showing heads when spun on a flat surface. We usually consider n spins of the

penny as a set of n binomial trials with an unknown probability °A of showing heads.

Suppose, however, that we have m spins of the penny B. If we believe this penny B

is similar to penny A (meaning 0A and 0B are close to each other), to estimate 0A, it

might be reasonable to use the information from the m spins of penny B.

The above discussion leads to the following classification of information about the un

known object of inference (here parameter 0).

Definition 2.1 (Direct information). All the information which is directly related

to the unknown object of inference (parameter) is called direct information of the

parameter 0.

Definition 2.2 (Sample information). We call sample information, the informa

tion about 0 from the sample or the data. If the sample is from the experiment (model)

which is direct to the parameter 0, we call it an exact sample for this parameter 0.

11



The information in the exact sample is called exact sample information. The sample

which is from the experiment (model) related to the parameter 0 (not direct) is called a

relevant sample for parameter 0. The relevant sample information is defined as

the information from a relevant sample.

As in Example 2.1, 0 50 is direct information about 0. The data of E25 is exact

sample information. The data drawn from urn B are relevant sample information.

In classical inference and decision theory, statistical inference about 0 is based on both

the directly associated sampling model {P9,} (direct information) and the observations

(exact sample information). The Bayesian approach based on the directly associated

sampling model (direct information), the prior distribution (direct information) and the

data (exact sample information).

In some cases, we may have relevant sample information about the inferential objective.

This can be well-illustrated by the examples of the following Chapters. Examples 3.1,

3.2, 3.6 and 6.1 all indicate that relevant sample information is available and useful.

In the following examples, we show how information is classified.

Example 2.3 Linear Model. Observations y, considered as an n x 1 column vector,

is a realization of the random vector Y with E(Y) = x3, where x is a known n x q matrix

of rank q n, and /3 is a q dimensional column vector of unknown parameters. /3 are

the parameters of interest.

Because the model involves the unknown parameters directly, the information from the

observations y about /3 is exact sample information.

12



More generally, for the Generalized Linear Model (See McCullagh and Nelder 1989),

the information from the sample is still exact sample information, because in that case,

the experiment involves the unknown parameters directly.

Example 2.4 Let X be from N(8, 1), and let the estimand be 8, 0 has a convenient

prior distribution, say N(O, 1).

Now let us assume Y is from N(01,1), with 01 unknown. But we do know that 0 —

has a prior distribution, say N(O, 1).

The data vaule X is an exact sample for 8. The prior distribution of 0 is direct infor

mation for 8. The data value Y is a relevant sample for 8.

The statistical methods using direct information and exact sample information are well

developed. We can easily find these methods in standard textbooks. However there are

no systematic methods about how to use relevant sample information.

2.3 Measure of Information

In Section 2.2, we classify the different types of information. But what is information?

How can we measure the information? Answers of these questions seem controversial.

The definition of information or entropy goes backed to 1870, and a series of papers

by L.Boltzmann. Since then, statisticians have proposed many different definitions for

different targets. Now we review the three most important definitions of statistical

information.

(I) Shannon and Wiener Information (Entropy).

13



The statistical interpretation of thermodynamic entropy, a measure of the unavailable

energy within a thermodynamic system, was developed by L.Boltzmann around 1870.

His first contribution was the observation of the monotone decreasing behavior in time

of a quantity defined by

f(x,t)
E=j f(x,t)log{ }dx,

where f(x, t) denotes the frequency distribution of the number of molecules with energy

between x and x + dx at time t (Boltzmann, 1872). When the distribution f is defined

in terms of the velocities and positions of the molecules, the above quantity takes the

form

E = fflogfdxdy,

where x and y denote the vectors of the position and velocity, respectively. Boltzmann

showed that for some gases this quantity, multiplied by a negative constant, was identical

to the thermodynamic entropy.

Shannon (1948) proposed the definition of the entropy of a probability distribution: (the

negative of the above quantity)

H = _Jp(x)logp(x)dx, (2.1)

where p(x) denotes the probability density with respect to the measure dx.

Shannon entropy plays a very important role in modern communication theory. There

are almost uncountably many papers and books about the use of Shannon entropy.

The quantity H is simply referred to as a measure of information, or uncertainty, or

randomness.

This definition may be used in the measure of direct information, when the direct

information is Bayes prior. Also it may be used in the case of a posterior distribution.
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However, Savage (1954, page 50) remarks: ‘The ideas of Shannon and Wiener, though

concerned with probability, seem rather far from statistics. It is, therefore, something

of an accident that the term ‘information’ coined by them should be not altogether

inappropriate in statistics.’

(II) Fisher’s Information.

R. A. Fisher’s (1925) measure of the amount of information supplied by data about

an unknown parameter is well-known to statisticians. This measure is the first use of

‘information’ in mathematical statistics, and was introduced especially for the theory of

statistical estimation.

For a real parameter and a density function satisfying Cramer-Rao regularity conditions

it has the form

J(Q)
=

(2.2)

We know that Fisher’s Information has a lot of optimal properties as a measure of

information: (i) Fisher’s information, being specific to a parameter, will stay the same

if we reduce to a sufficient statistic; (ii) Fisher’s information is additive over different

sets of independent data; and (iii) Fisher’s information gives a lower variance bound for

the estimation of the parameter provided some regularity conditions are satisfied.

(III) Kuliback-Leibler’s Information.

Kullback and Leibler (1951) consider a definition of information for ‘discrimination in

favor of H1 against H2’. Here H, i = 1,2, is the hypothesis that X is from the statis

tical population with probability measure p, with 4(x) = f(x)dx. They define the

logarithm of the likelihood ratio, log{fi(x)/f2(x)}, as the information in X = x for
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discrimination in favor of H1 against H2. The mean information for discrimination

in favor of H1 against H2 per observation from H1 is defined as

1(1 :2) = Jfi(x) log ‘1dx. (2.3)

This definition is a departure from Shannon and Wiener’s information. It is widely used

in statistics for discrimination. This can be easily seen from Kullback (1959).

The above three definitions of information are all about direct information and exact

sample information. This is because classical statistics is focused on these two types of

information.

In the following two sections, we will discuss the information measure for relevant sample

information.

2.4 Fisher’s Information of Relevant Sample in Point

Estimation.

It is well-known that Fisher’s information plays a very important role in the theory of

statistical estimation. In the last section, we have discussed Fisher’s information for

exact samples. Now we will propose a possible generalization of Fisher’s information to

the relevant sample case. The bias function and information function in Chapters 4, 5,

and 7 offer other possible generalizations.

Let us begin with the simplest case. Assume that X has density f(x, 8), where 8

is a real parameter. Suppose f(x, O) satisfies the Cramer-Rao regularity conditions;

then the Fisher’s Information for Qo from X as defined in Section 2.3 is (2.2). We

are interested in the parameter 0. As we have claimed in Section 2.2, there is some
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rnformation in X for the parameter 0, if we know that 0 — 00! c for some constant c.

Now it is natural to ask how to measure the information in X for the parameter 0.

Definition 2.3 The information for the parameter 0 in X is defined as Infx(0, 0) =

(Infx(00),0 — 0). Here Infx(00) is the Fisher’s information.

In the above definition, we can see that the information in X for the parameter 0

contains two parts, one is the information part; another is the bias part. If the bias

part is 0, which means that the 0 = 00, then the above information measure becomes

Fisher information, If we know the bias exactly, then the bias can be eliminated. This is

because then we can transform the parameter. Generally, if 0 and O have a one-to-one

relationship, then we always can do the parameter transformation. This will be the case

of exact sample information.

Now we discuss the properties of the above definition of information. In the following

discussion, we always assume the bias is the same, unless we specify otherwise. When

we say Infx(O, 0) equals Infy(0, 0), we mean Oo = 01 and Infx(00) Infy(01). Only

when the bias is the same, can we order the two information indices.

• a. Inf(0, 0) is independent of the a-measure p.

As we know Inf(0, 0) is calculated from the f(x, 0) = dP90(x)/dp. If we can find

another a—measure ii such that {P6 : 0 E O} << v, then we can replace f(x, 0)

by f*(x,00)= dP90(x)/dv. The value Inf(0,00)is not changed.

The proof is easy and we omit it here. D

• b. The information of several independent observations is the sum

(appropriately defined) of the information in these observation, if the

bias of these observations are the same.
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Mathematically, the above statement says suppose X1,• , X, are independent

and X = (X1,. , Xk). If f(x, O) is the density of X, and they satisfy the

Cramer-Rao regularity conditions, then

f(x,80)= fl(x1,00)”fk(xk,80)

satisfies the Crame-Rao regular conditions, and

Inf(O, O) = {Infi(00)+ + Inf(8o) , 0
—

0,}, (2.4)

here Inf(0, 0) are the information function for 8 in X.

The proof of the above result is exactly similar to that of Fisher’s Information.

We omit the proof here. 0

• c. The information will not increase, when we transform the data.

Let Y = T(x) be a statistic, that is , T is a function with domain X and range )“,

and let T be an additive class of subsets of Y. We assume that T is measurable.

Let g(t, 0) be the density of T(X). If f(x, 0) and g(t, 8) satisfy the Cramer-Rao

regularity conditions, then

Infx(O,00) IrifT(8,00), (2.5)

here (x1,y) (x2,y) means x1 x2.

We omit the proof here because it is a direct result from the Fisher’s Information.

0

• d. Under the conditions of c), we have inequality in (2.5), with equality

if and only if the statistic Y = T(x) is sufficient for the parameter 8.

The proof is omitted. 0
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In connection with the basic properties of information, we have the following comments.

1. From (2.4), when we have n iid observations from f(x, 8), then Irif(O, 8) =

(nlnf(00),8
— On).

2. Above, d) implies that we should use the sufficient statistic to do the statistic analysis

for the parameter 0, although this sufficient statistic is for the population indexed by

parameter 0. This result tells us how to reduce the dimension of the data.

3. If we do a one-to-one transformation of the parameter, that is i h(0) and h is

differentiable, the information that X contains about is

Infx(ii, ) = (Infx(00)[h’(00)]2,17
—

where 1o = h(00).

Now we are going to discuss the generalized information inequality, which generalizes

the information inequality to the relevant sample case.

Theorem 2.1 (Relevant Information Inequality) Suppose that Cramer-Rao regu

larity conditions are satisfied. Let 6 be any statistic with E90(62) < oo for which the

derivative with respect to 8 of h(00) = E90(6) exists and can be obtained by differenti

ating under the integral sign. Then

E(6 - 0)2 + (h(00) - 9)2 (2.6)

Proof. The result follows directly from

— 9)2 = Var(6) + (h(00) —
9)2

and the Information Inequality. D
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Usually we can control the value of 10— Ol, but not lh(00)— 01. We would like to choose

h(00) = 00. From the above Theorem, we obtain.

Corollary 2.1 Under the conditions of Theorem 1, for any 00 ‘s unbiased estimator 5,

E(6 — 0)2
Inf(00)

+ (0 — 0)2 (2.7)

From the Corollary, we can see that our definition of information for relevant samples is

reasonable. The lower bound of the mean square error depends both on the information

and the bias.

Now we consider how to combine the information from relevant samples having different

bias parts. Let X have density f(x,00) and Y, the density g(y,Oi). Both f(x,00)and

g(y, 0) satisfy the Cramer-Rao regularity conditions. 0 is the parameter of interest.

Both X and Y contain some information about 0, so we need to combine their informa

tion.

From Definition 2.3, we get Infx(0, 0) and Infy(0, 0k). Then the information from

(X,Y) is defined as {I(00,01),B(00,01)},here I(0,0) diag(Infx(00),Infy(0i)) and

B(00,0) (0—0, O_01)t. This is similar to Fisher’s information for the multiparameter

case except for our inclusion of the bias.

We can easily obtain the following result.

Theorem 2.2 Let 6(X, Y) be any statistic with E(6(X, Y)2) < oo such that deriva

tive with respect to 00 and 0 of h(00,0) = E(6(X, Y)) exists and can be obtained by

differentiating under the integral sign. Then

E(5(X,Y) — 9)2 /3t I’(0 Oi)/3+ (h(00,01)—
9)2 (2.8)
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where /3t
= (öh(00,0)/90, ãh(00,01)/a0).

We stop this section here. Further theory is under development but not yet complete.

2.5 Kuilback and Leibler’s Information in Relevant

Sample in Discrimination

Let us begin with the following example.

Example 2.5 Simple null hypothesis. Assume X1 is a sample from N(0, 1). The

null hypothesis is H0: 0 = 0 and the alternative Ha: 0 = 2. From the Neyman-Pearson

Lemma, we can easily get the most powerful test of level a = .05 as: if Xi > 1.645, we

reject the null hypothesis H0. Otherwise, we accept the H0. The power of this test is

= .639.

Now suppose we get another sample X2 from N(00,1). We know that 10 — 001 .5. We

construct a new test: if X1 + X2 > 2.826, we reject the null hypothesis H0. Otherwise

we accept H0.

For the second test, we have supPH0(reject H0) .05 and infPH(reject H0) .683 >

.639. So the second test is more powerful than the first one. This means the observation

X2 contains some information about the simple null hypothesis.

Example 2.5 tells us that the relevant sample is useful for testing. In this section, we

will consider the information of the relevant sample for discrimination. We will use an

idea similar to that underlying Kuilback-Leibler information.
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As we know, Kuliback and Leibler (1951) define the logarithm of the likelihood ratio,

log{f1(x)/f2(x)}, as the information in X = x for discrimination in favor of H1 against

H2. Now we suppose that the sample X is from some density distribution g1(x) which

may have some relationship to {fi(x),f2(x)} (X is a relevant sample).

Definition 2.4 The mean information for discrimination in favor of H1 against H2 per

observation from gi(x) is defined as

1(1 : 2;X) = fgi(x) log dx.D (2.9)

This definition is a departure from Kuliback and Leibler information; Kuliback and

Leibler information is about the sample fromf1(x). We generalize this to the relevant

sample case. If 1(1 : 2;X) > 0, then the sample from g1(x) favors H1.

We can easily see that

1(1: 2;X) Jgi(x)log’dx_Jg1(x)log1dx.
(2.10)

The term fgi(x)log(gi(x)/fi(x))dx is the bias part of this information. Ifg1(x)

then the bias part vanishes.

Now we discuss the properties of this information.

• a. Inf(O, O) is independent of the u-measure t.

This is similar to the property a) in Section 2.4.

• b. The information could be negative, and the negative value means

this sample favors 112.
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• c. The information for discrimination in independent observations is

additive.

This means that if we have some independent observations X1, , X, from den

sitiesg1(x),. ,g,(x) and let X = (X1,. ,Xk); then

1(1 : 2;X) = 1(1: 2;Xi) + + 1(1: 2;Xk).

The proof is easy and we omit it here.

2.6 General Remarks

As suggested in Section 2.2, there are three types of information. What is the rela

tionship among these types of information? The relevant sample information contains

two parts: one is the relation between the two experiments (models); another is the

observations. The relation between two experiments is a kind of direct information with

an unknown parameter. When the number of relevant samples goes to infinity, the

relevant sample information becomes direct information. For example, in Example 2.2,

the similarity of 8A and °B indicates a relationship between the two experiments. When

m (spins of the penny B) goes to infinity, we can get an exact value of 0s. Then the

relevant sample information would mean 0A is close to some known value (this is direct

information).

The relation between °A and OB can be of several types. Here we list some of them: (1)

— OBI c for some constant c (Example 3.1); (2) °A — 0B is small (Example 2.2 and

Example 3.2); and (3) °A — 8B is a random variable with a known distribution.

The information measures proposed in Section 2.4 and 2.5 need further study.
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Chapter 3

Relevance Weighted Likelihood
Estimation

3.1 Introduction

In this chapter we generalize the classical likelihood as the Relevance Weighted Likelihood

(REWL). The REWL arises in parametric inference when in addition to (or instead of)

the sample from the study population, relevant but independent samples from other

populations are available. By down-weighting them according to their relevance, the

REWL incorporates the information from these other samples. We have characterized

such “relevant “ sample information in Chapter 2. To motivate the likelihood theory

presented below, we merely illustrate situations where such information arises.

Example 3.1 Let ‘ 1), i = 1, 2, be independent random variables, the {j}

being unknown parameters. We want to estimate j. Two estimators present themselves.

(i) Classical likelihood-based estimation theory suggests the MLE which uses just Y1.
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Then we get

1%1=Y1. (3.1)

(ii) However, if2 was deemed to be “close” to ,a, intuition suggests we use the infor

mation in Y2 in some way. Yet the classical theory still yields the result in (i). Even

when we add the structural condition that — < c for a specified constant c > 0,

the MLE still uses just Y1 unless the condition IY’ —

Y2j c is violated. If that condition

fails, j = {Y1 + (Y2 — c)}/2 or = {Yi + (Y2 + c)}/2 according as Y1 < (Y2 — c)

or Y1 > (Y2 + c). So then the MLE does bring Y2 into the estimation of But it

does so crudely only through truncation. So instead we turn to a seemingly more natural

alternative which uses Y2 more fully:

1+c2 1
2+c2Y1+2+c2Y2 (3.2)

Under the mean squared error criterion, we find

- )2 1> E( )2 (3.3)

From (3.3), we can conclude that the estimator (3.2) based on both }‘ and Y2 always

has a smaller mean squared error than that (3.1) based on Y1 alone.

The last example demonstrates that in certain cases, we can profitably incorporate the

information from samples drawn out of populations different from that under study. In

other words, all “relevant” information must be used in inferences about the parameters

of interest.

Example 3.2 Nonparametric Regression Model. If n data points {(X, )} have

been collected, the regression relationship between Y and X can be modeled as

= m(X1)+ e, i = 1,• . . , (3.4)
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using the unknown regression function m and observation errors e. Assume that c1,• ,

are iid from some unknown density function f(x) with E(ei) = 0. The function rn are

the parameters we want to estimate.

About the situation embraced by this last example, Eubank,R.(1988, p.7) says “If m is

believed to be smooth, then the observations at X near x should contain information

about the value of rn at x. Thus it should be possible to use something like a local

average of the data near x to construct an estimator of m(x).” Reasoning like this

and the last example itself motivates our work. Developments of recent years in the

theory and application of nonparametric regression validate Eubank’s argument. These

developments show nonparametric regression to be a useful explanatory and diagnostic

tool. Eubank (1988), Hardle (1990) and Muller (1988) discuss nonparametric regression

where observations at x near x are used to infer m at x because they contain relevant

information.

However, the domain encompassed by the heuristics of nonparametric regression theory

appears much broader than that currently encompassed by that theory. In fact, Example

3.2 immediately suggests a number of unanswered questions. (i) If the error-distribution

associated with (3.4) had a known (parametric) form with unspecified parameters, how

would all “relevant” information be used in inference about m(x)? More specifically, is

there a likelihood based approach which would permit the use of that information?

(ii) If we were interested in estimating some unknown x- population attribute other than

its mean, m(x) = E(YIX = x), what could we do in either the parametric case of (i) or

more generally in the nonparametric case?

(iii) How can the information about m(x) in the observations at x near x be described

or quantified?
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We have explored possible answers to question (iii) in Chapter 2. We will address

question (ii) for the nonparametric case in Chapter 6; a solution for the parametric case

implicitly derives from the theory of this chapter. Finally, the method of this chapter

gives an answer to question (i) (see details in Chapter 5).

In this Chapter, we propose the idea of the relevance weighted likelihood (REWL) for

the relevant sample situations. In Section 3.2, we construct the REWL function. After

looking at several examples, we discuss there the relationship between the usual and

relevance weighted likelihood function.

For the traditional purpose of data reduction, we define “weakly” sufficient statistics

using the REWL in Section 3.3 (weakly because of their dependence on the relevance

weights chosen in the construction of the REWL). We show that weakly sufficient statis

tics have some of the properties of their sufficient relatives.

In Section 3.4, we introduce the MREWLE, the maximum relevance weighted likelihood

estimator. The MREWLE’s obtained in some specific applications are new. In others,

the theory merely enables us to rederive known estimators albeit from a more basic

starting point.

We can justify the idea of the REWL by appealing in entropy and prediction much as

in the classical case. This we do in Section 3.5. We first extend there the entropy

maximization principle to embrace all relevant samples. The resulting extension then

yields the relevance-weighted likelihood principle.

We use relevance weighted likelihood under normal theory assumptions in Section 3.6.

We show that maximizing the REWL yields a reasonable estimator. In this example,

the MREWLE has advantage over MLE which is available in some special cases. The
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application of the MREWL estimation to generalized smoothing models appears in

Chapter 5. Some general remarks are made in Section 3.7.

3.2 The Relevance Weighted Likelihood

3.2.1 Definition.

Let y = ...,
y,) denote a realization of the random vector Y = (Y1, ..., Y,) and

fjFj, i i,•• , n, the unknown probability density functions (PDF) of the Y which are

assumed to be independent. We are interested in the PDF fF of a study variable X

measurable on items of our study population (with PDF f). At least in some qualitative

sense, the f are thought to be “like” f. Consequently the yj’s are thought to be of value

in our inferential analysis even though the ‘ are independently drawn from a population

different from our study population.

In the familiar paradigm of repeated sampling, we impose the condition f, = f for all i

in deriving the likelihood. In reality, this condition represents an approximation which

may be more plausible for some of the i’s than others. It may even seem desirable to

downweight certain of the likelihood components, f(y) in some way, when the qual

ity of the associated approximation seems low. But how should those components be

weighted?

A heuristic Bayesian analysis suggests a way of assigning relative weights to the likeli

hood components. This analysis leads us to the REWL. Suppose we take logarithms of

the various PDF’s (assumed to be positive for these heuristics) to put them on an affine

scale: (—cc, cc). In the log-likelihood, the correct term associated with yj is log[f(y)j.

If we are to replace this with a term involving only 1og[f(y)], we might plausibly use
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the best linear predictor (BLP) of log[f(y)] based on log[f(y)j. This gives us

in place of f(y) in the likelihood. Here p, represents the coefficient of log f(y) in the

BLP. In other words, p represents the covariance between log f(y) and log f(y) (if we

ignore a multiplicative rescaling factor). [Our analysis also ignores an irrelevant additive

factor in the BLP.]

This leads us to define the REWL at y = (yi,” ,

Wlik{fQ),y} = llf(y), for f e . (3.5)

The REWL, like the classical likelihood, allows the data to jointly assess the credibility

of any hypothesized candidate f for the role of the study population PDF. But here

the yj’s from the study population itself would be given the greatest weight in this joint

assessment. As the relevance of the other yj’s decline in their relevance (measured by

their pj’s) so does the weight accorded to them in the assessment.

Usually it is convenient to work with the natural logarithm, denoted by Wl{fQ), y} and

called the log relevance weighted likelihood:

Wl{f(),y} = plogf(y), for f F. (3.6)

Conventionally we take = F for all i and index F by a finite dimensional (unknown)

parameter 0 = (0k, ..., Oq) e Q. Then f(t) = f(t; 0), f(.;.) having a known form. Then

(3.5) and (3.6) become for 0

Wlik{0,y} flf’(y;0), Wl{0,y} = plogf(y;8). (3.7)
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3.2.2 Examples.

The following examples illustrate the REWL and reveal differences between likelihood

and the REWL.

Example 3.3 Continuation of Example 3.1. The usual likelihood function in this

problem would be

lik(R; y) = (2ir)’ exp(—[(yi
—

I.Li)2 + (Y2 — R2)]/2). (3.8)

This likelihood would ignore prior information like Ri — 1L21 is “small”. Now define the

REWL by putting pi = 1 and P2. (1 +c2) as the relevance weights when inference is

about the study population parameter i1. Then

Wlik(i;y) = (2’exp(—
2t1)

)((2)_1exp(_2
t)

(3.9)

The likelihood (3.8) contains the parameters for both of the populations from which the

data were obtained. None of the information from Y2 would be used to estimate j even

when that information was deemed relevant. In contrast, the REWL in (3.9) contains

ollly the parameter of inferential interest, Ri• And Y2 would be used in estimating Ri

to the extent determined by the size of c.

Example 3.4 Continuation of Example 3.2. Here define the likelihood to be

fJf(y - m(x)). (3.10)

We find the result of no use in estimating m(x). Yet as we argued earlier, if rn(.) were

thought to be smooth, observations near x should contain information about the PDF,

f(y — m(x)). The REWL can reflect this heuristic through the relevance weights pj in

llf(u - m(x)). (3.11)
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The next example differs from the last two in that we allow the relevance weights to

depend on the data themselves.

Example 3.5 Robustness. Assume Y1,. , Y, are iid observations with PDF f(y, 0)

parametrized by 8 so that the likelihood is

1[ f(y, 0).

We may believe some of the yj to be outliers effectively coming from some other popula

tion than that under study. The information from such data needs to be downweighted.

To do this we may: (i) order the data as y(1),..• , y(n); and (ii) assign relevance weights

i depending on the degree to which we regard the associated data as outlying. The

REWL becomes

fi fPi (y(i), 8). (3.12)

In the extreme case, when a fraction 2€ are deemed to be outliers, we could choose p, = 0,

when i < [ne] or i [n(1 — e)]. [Here [.] denotes the greatest integer less than x.] Then

the REWL becomes a “trimmed likelihood.” The trimmed mean would then be obtained

in certain cases as a MREWLE. This case will be discussed again in Section 3..

In “parametric-nonparametric regression” we would postulate PDF’s in parametric form

with a smoothly varying regression (mean) function. Yet other parameters like quantiles

and variances for example may also be of interest in this setting. The following general

approach to smoothing through the REWL enables us to deal with this diversity of

possible inferential objectives within a unified framework.

Example 3.6 Generalized Smoothing Suppose {, X} are n data pairs, for given

X, Y has PDF f{y, 0(X)} with parameter 0(X). Interest lies in the study population
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corresponding to a fixed value X = x and fitting the associated PDF. The relevance

weights i enable us to represent the degree to which the information from the populations

corresponding to X should be used in fitting f{y, O(x)}. The REWL becomes

II f{y, O(x)}. (3.13)

Generally choosing the {p } will be like choosing a kernel and bandwidth in nonpara

metric regression theory. Indeed, in the domain of that theory, we can find the {pj}

directly from the corresponding kernels [and their bandwidths] making our task easy in

that case.

3.2.3 Remarks

Here we discuss the relationship between the likelihood and the REWL. Then we con

sider some properties of the MLE retained by the REWL.

3.2.1 The likelihood is obtained from the REWL as a special case when all the data are

independently drawn from the study population. However, even here there may

be a role for the REWL as Example 3.5 demonstrates.

2.2 The likelihood is usually derived from the sampling density by inverting what is

fixed and what is varying. In particular, conditional on f (or the parameter of

f), the likelihood integrates over the sample space to 1. This duality between

likelihood and sampling density may be useful for determining the likelihood.

However, it does not seem intrinsic. We could in the usual case of iid sampling, take

the nth root of the inverted sampling density without apparent loss and without

preserving the aforementioned property. Moreover, in the Bayesian framework the

32



sample space need not even be specified, once the data have been obtained. Yet

the likelihood can certainly be defined.

So we do not see the lack of duality with sampling as a shortcoming of our proposed

extension of the likelihood. The usual asymptotic theory, appropriately modified

still obtains as shown in the next Chapter.

3.2.3 The REWL depends on the relevance weights and work remains to be done on how

these may be chosen. As noted above, in the case of nonparametric regression,

standard theory for kernel smoothers suggests reasonable possibilities.

3.2.4 We can easily show that the REWL is preserved under arbitrary differentiable

data-transformations (with non- vanishing Jacobian) when the sampling densi

ties are absolutely continuous with respect to Lebesgue measure. So the REWL

inherits this important property of the likelihood.

3.3 Weakly Sufficient Statistics

3.3.1 Definition.

The very important likelihood principle of classical statistical inference tells us that the

likelihood embraces all relevant information about the parameter. Indeed, according to

the factorization theorem sufficiency may be defined through the likelihood. Standard

constructions of minimally sufficient statistics rely on the likelihood.

The counterpart of the likelihood theory in our setting would be the REWL principle.

Lacking the invertibility of likelihood and sampling density found in standard frequency

based theory of the likelihood, we must resort to a REWL based definition of sufficiency.
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Lacking a basis for claiming our likelihood captures all relevant information in the data,

we call our notion of sufficiency “weak sufficiency”. That notion enables us to reduce

the dimension of the observation vector to that of any (weakly) sufficient vector-valued

function of the data, while retaining all information in the REWL.

Definition. We call weakly sufficient any vector- valued statistic which determines the

REWL up to an arbitrary multiplicative factor which does not depend on f. Weakly

minimal-sufficient statistics are functions of every other weakly sufficient statistic.

A weakly minimal-sufficient statistic yields the maximal data reduction. Such a statistic

need not be unique. The factorization theorem remains true for weak sufficiency.

Theorem 3.1 A necessary and sufficient condition that S be weakly sufficient for the

parametric family, F, indexed by 8 is that there exist functions mi(s, 8) and m2(y) such

that for all 8 E 1,

Wlik(8,y) = mi(s,O)m2(y). (3.14)

Accepting the REWL as the basis for inference makes reliance on weakly sufficient statis

tics inevitable. The seemingly reasonable estimators we obtain below depend on the data

only through a weakly sufficient statistic, thereby offering “empirical support” for our

principle. Just as the conventional likelihood (regarded as a function) is sufficient, the

REWL is weakly sufficient. [This fact follows from the factorization theorem.] However,

weakly sufficient statistics lack the property of conventional sufficiency which renders

the conditional sampling distribution of the data given a sufficient statistic independent

of 0. [Our REWL does not derive from a sampling density function.]
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3.4 Maximum Relevance Weighted Likelihood Es.

timation (MREWLE)

In this section we generalize the MLE.

Definition: Call any 0 E f which maximizes the REWL, a maximum REWL estimator

(MREWLE).

Before discussing the properties of MREWLE, we reconsider one of our examples.

Continuation of Example 3.5. Assume the density f(y0) is that of a normal distri

bution with mean 0. Then the MREWLE of 0 is

[n(1—e)]

[nE]

when we choose the {pj} in Example 3.5. This is a trimmed mean. Other choices yield

L-statistics as the MREWLE’s.

The MREWLE inherits some of the properties of the MLE.

• Under certain weak conditions, the MREWLE is consistent. We will prove this

fact in the next Chapter by generalizing to the non-iid and more general weighted

case the well-known theory of Wald (1949).

• The asymptotic normality of MREWLE under certain conditions is proved in

Chapter 4.

• The MREWLE always relies on the data only through weakly sufficient statistics.

• the MREWLE possesses the familiar property of invariance under one-to-one pa

rameter transformations.
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• The goal of establishing the asymptotic efficiency of MREWLE in some appropri

ate general sense has eluded us. At this time we can give that property only in

the special case of nonparametric regression (Chapter 5 and Chapter 7).

3.5 The Entropy Maximization Principle.

In a series of papers, Akaike (1977, 1978, 1983,1985) discusses the importance of the

entropy maximization principle in unifying conventional and Bayesian statistics. We

generalize this principle to the framework of relevant samples in this section. This

generalization enables us to prove that the method of MREWL may be viewed as a

realization of that principle to an important but limited extent.

3.5.1 The generalized entropy maximization principle.

To recall the conventional entropy maximization principle, suppose we draw

x = (x1,x2,. . . , xk)’ from a multivariate distribution with density f. Suppose we intend

to estimate f by g(. : x) and view this estimate as a predictive distribution for a future

vector drawn from f. As the index of the quality of g( : z), use the entropy of f with

respect to g( :

B(f;g)=— f(z)log dz.

The entropy maximization principle asks us to find the g(• : x) which maximizes the

expected entropy EB(f; g) = J’ B(f; g)f(x)dx. We may view the result as giving us an

“optimum” estimator of f, regarded as the object of inferential interest. We would note

in passing that Fisher’s maximum likelihood method and the AIC (Akaike information

criterion) are two very important implications of the entropy maximization principle.
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For simplicity of exposition, consider now only the univariate case. [The vector variable

case is an obvious generalization.] Suppose Yi, , Yn respectively, are independently

drawn from distributions with densities f(y),.. , f(y) thought to be related to the

density of inferential interest f. [The relevance of f to f could be described by B(f; f) >

—c for all i where the {c} are positive constants. This inequality means f is not far

from f. For the special iid case, f = f for all i or equivalently, B(f; f) = 0 for all i.]

Let g(• : y) denote an estimate of f where y = (yi,• , yj. Once again we may view g

as an estimated predictive distribution of a future observation z from f.

Because the relevance of the f to f varies with i, we assign different relevance weights,

pj, to them. We then get the weighted entropy measure:

pB(f;g) = _pjJfj(z)1og g[()dZ•

[Because we do not know f, we choose the above index to force g to lie “close” to the

densities we do know, {f}, and which we deem to be close to f.]

Our generalized entropy maximization principle may now be stated. All inference about

f may be based on the g obtained by maximizing the expected weighted entropy of the

predictive distribution where the expected weighted entropy is

E,pB(f; g) = — f pB(f; g)f(y)dy.

3.5.2 The MREWLE and generalized entropy maximization
principle.

We know that

pB(f;g) =p1Jf(z)logg(z : y)dz — Epiffi(z)logfi(z)dz.

37



The second term on the right, a constant, depends on only {f}. For assessing g we

need only consider the first term. However, we cannot evaluate that unknown term

so estimate it by pj log g(yj : y). This amount uses what in Chapter 6 we call the

Relevance Weighted Empirical Distribution function which puts mass p2 at y, for all

i. If we specify a family of feasible g( : y)’s the one which maximizes the estimated

expected weighted entropy at y defines the maximum REWL estimate of f. Obviously

the performance of the MREWLE of f depends on both the choice of the feasible family

and the statistical characteristics of the simple and natural estimator. If for the feasible

family we choose the parametric family of the f(y0), then we find that the estimate

obtained from the generalized entropy maximization principle is just the MREWLE.

For brevity we will not pursue further our discussion of the generalized entropy maxi

mization principle. However many questions about the generalized entropy maximiza

tion principle remain to be answered.

3.6 MREWLE for Normal Observations

In this section, we develop a method of estimating the mean of a normal population

using data from relevant samples, thereby extending Example 1 above. We use the

MREWLE and compare it with other estimators.

Let Y and Y1 be observations from normal populations with known variances and

unknown means 0 and 01, respectively. Without essential loss of generality, suppose

Var(Y) 1 and Var(Yi) = a. Assume 0 — 0 E [—c, c] for some fixed c> 0, 0 being

the parameter of interest. We readily find the MREWLE of 0 to be

Y+
1

Y1, (3.15)
1+c2+o? 1+c2+of
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if we choose the relevance weights P1 =
and P2 +2’+ for Y and Y1, respec

tively. Here we choose the relevance weights by minimaxing the mean square error of

MREWLE.

Now we compare the MREWLE with the maximum likelihood estimator.

In agreement with intuition, we find that the MREWLE loses the advantage over the

MLE as —p oo or c —* . The extra information in Y1 becomes useless in these

extreme cases because of the uncontrolled bias or noise in the second sample. When

c = 0, the MREWLE becomes the MLE for the full data set. In all these cases, the

MREWLE is the minimax estimator.

If o —* 0, then the problem under consideration becomes that of estimating a bounded

normal mean. However, the MREWLE differs from the MLE. Without loss of generality,

assume 0 = 0. From (3.15), the MREWLE of 0 is

0= Y
1 + c2

and the MLE is
—c, ifY<—c

0(MLE)= Y if—c<Y<c

c, ifc<Y.

The mean square error for these two estimators are

maxE(O — 0)2 = c2/(1 + c2),

and

E(Ô(MLE) — 0)2 = 2(c)(1 — c2) + 2c2 — 1 + 2cexp(_c2/2)/J

for only 0 = 01. There is no closed form of the maximum mean square error for the

MLE over all the parameter space. We compare them in the following Figure 3.1.
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Figure 3.1: A comparison of MREWLE and MLE under a1 = 0. Curve A represents
the MSE of MLE at line 0 = O. Curve B represents the Maximum MSE of MREWLE
over whole parameter space. Curve C represents the MSE of MREWLE at line 0 = 0.
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Assume cr = 1. From (3.15), the MREWLE of 0 is

= :::+22Y1,

and the MLE becomes

(Y+Yi+c)/2, ifY1<Y—c
0(MLE)= Y ifY—c<Yj<Y+c

(Y+Yi—c)/2, ifYi>Y+c.

The comparison of the MREWLE with the MLE is showing in the Figure 3.2.

From the above comparison, we find that the MREWLE has the advantage over the

MLE for the two normal relevant samples, when the mean square error criterion is used.

With several relevant samples for 0 with differing means, the analytical calculation of

the MLE of 0 proves nearly impossible. By choosing relevance weights, we can easily

calculate the MREWLE.

3.7 General Remarks

In Example 3.5 of Section 3.2, we show that we can use the REWL for robustness. This

idea is similar to the work of weighted partial likelihood by Sasieni (1992) for the Cox

model (exact sample case). In that paper, he considers robustness and efficiency of the

weighted partial likelihood method. So even for the iid sample case, we may used the

REWL for both robustness and efficiency.

The weak sufficient statistics defined in Section 3.3 depend on the relevance weights.

This agrees with our intuition. For different relevance weights (i.e. different views of

relative importances), the weak sufficient statistics should be different.
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The REWL proposed in this Chapter depends on the relevance weights, {pt}. These

weights express the statistician’s perceived relationships among the populations and

usually can be chosen on intuitive grounds. For different problems, the relevance weights

were chosen in different ways. In Section 3.6, we choose these weights by minimaxing

the mean square error. In the Example 3.5, we may choose these weights by considering

both robustness and efficiency. For the generalized smoothing model, we will used the

weights similar to these of nonparametric regressions. This is in Chapter 5.

The asymptotic theory of REWL in the next Chapter also give a guide line for the

choice of relevance weights. In the following Chapters, we will further discuss the choice

of these weights.
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Chapter 4

The Asymptotic Properties of the
Maximum Relevance Weighted

Likelihood Estimator

4.1 Introduction

In Chapter 3, we gave a very general method for using relevant sample information in

statistical inference. We base the theory what we call the relevance weighted likelihood

(REWL). The REWL function plays the same role in the case of relevance sample

information as the likelihood in that of exact sample information.

The maximum relevance weighted likelihood estimate (MREWLE) studied in this pa

per, plays the role of the maximum likelihood estimator (MLE) in conventional point

estimation. The consistency of the MLE has been investigated by several authors (c.f

Cramer 1946 and Wald 1948). Here we prove the consistency of MREWLE under gen

eral conditions. But in many cases, the consistency of the MREWLE is not enough; we

need to get the asymptotic distribution of the MREWLE. The asymptotic normality of
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the MREWLE is considered in this Chapter.

I first consider the weak consistency of the MREWLE and show: (i) there exists a

weakly consistent sequence of roots for the log REWL equation (Theorem 4.2); (ii) the

MREWLE is weakly consistent (Theorem 4.4). I then go on to the strong consistency

of the MREWLE (Theorem 4.5). My analysis relies heavily on the work of Chow and

Lai (1973) as well as Stout (1968) who deal with the almost sure behavior of weighted

sums of independeilt random variables. Finally, we prove the asymptotic normality of

the MREWLE (Theorem 4.7).

I organize the paper as follows. The main results on weak and strong consistency are

stated in Sections 4.2 and 4.3, respectively. We state the asymptotic normality in Section

4.4. [The proofs of these theorem are in Section 4.7]. Section 4.5 proposes two estimators

of the variance of the MREWLE. In Section 4.6, I discuss possible extensions and make

some concluding remarks.

4.2 Weak Consistency

In Chapter 3, we have defined the REWL and the MREWLE. In this Chapter, we

will treat only the parametric case so that interest focuses on a single parameter 0 for

simplicity.

Let X1,. . . , X be random variables with probability density functions (PDF’s)

fi, f2,. . . , f. We are interested in the PDF f(x, 0): 0 of a study variable X. 0 is an

unknown parameter. To state the Theorem, we begin with the following assumptions.

Assumptions 4.1 4.1.1 {F9 : 9 E } represents a family of distinct distributions
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with common support and dominating measure i.

Let f(x,0) denote the PDF ofF9.

4.1.2 The distributions of the independent sample observations, X, i = 1,. . . , n, have

the same support as the {P9}.

4.1.3 The relevance weights pj corresponding to X, i 1,. . . , n, and incorporated in

the vector P, = (Pnl,Pn2,...,pnn) play a central role in our theory. They satisfy the

formal requirements 0 and = 1. As well, with the “true” value of 0 denoted

by 00, we require that

,‘ 0 as n ,‘ cc (4.1)

and for any 0

) 0 as n cc. (4.2)

4.1.4 Q contains an open interval 0 of which the true parameter0o is an interior point.

Let K = (X1,X2, ..., X). For fixed K = , the function, 0 -‘--f i-; fn(x, 0) will be

called the REWL function.

Theorem 4.1 Assumptions imply

P9o{f1(X1,00)...fm(X,00)>f’(X1,0)...f’(X,0)} _* 1 (4.3)

as n —* cc for any fixed 0 0. D
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From (4.3), the value of the REWL function at 0 (regarded as depending of K) exceeds

its value at any other fixed 0 with high probability when n is large. We do not know Oo,

but we can determine the point, 0 called the MREWLE, at which the REWL function

for fixed K = is maximized. Suppose the observations are from distributions with

PDF’s like that of the true sampling distribution f(x, 0) (and that Conditions (4.1)

and (4.2) hold). Then the last theorem suggests that the MREWLE of 0 should be close

to the true value of 0 if the REWL function of varies smoothly with 0. Hence the

MREWLE should be a reasonable estimator.

Remark A.

(i) Assumption 4.1.2 seems quite reasonable. If the distributions did not have the same

support, we could not construct a useful REWL function. For example, if X1 had

support [0,2] and f(x, 0) had support [0,1], the REWL function would be identically 0

when X1 was in (1, 2].

(ii) The independence assumed in 4.1.2 greatly simplifies our problem which would

otherwise be insurmountable.

(iii) Condition (4.1) underlies the construction of a useful REWL function. Recall that

[the Kullback-Leibler (KL) functional] E log{f(X)/f(X2,0)} measures the discrepancy

between f and f(., Oo). That condition insures that the weighted KL discrepancy of the

observations converges to zero when the sample size grows large. When the PDF’s of the

observations are quite different from f(x, 9), we usually cannot get a good estimator of

the true parameter. Our difficulty arises then because we do not get enough information

about the unknown parameter from the observations.

This condition is easily satisfied as when E1og{f(X)/f(X, 0)} is uniformly boullded
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while 1imj Elog{f(X)/f(X,Oo)} —* 0. For then P can easily be chosen to make

(4.1) hold.

(iv) Condition (4.2) commonly holds as when max{p} —÷ 0 while

Var(1og(f(X)/f(X, 6))) is uniformly bounded for each 6. This is because that

j%Var[1og{f(X)/f(X,O)}] pC(O) max{p}C(O).

Here the C(8) is a constant depend on 0. The first inequality follows from uniform

boundedness and the second inequality because p7, = 1.

(v) Conditions (4.1) and (4.2) hold respectively, when (X1,X2, ..., X) are independent

and identically distributed with PDF f(., Oo) and when Var[log{f(Xi,80)/f(X1,O)}]

exists while maxt{pmj} —+ 0.

Corollary 4.1 If is finite, Assumptions 4.1.1-4.1.3 imply that the MREWLEO: (i)

exists; (ii) is unique with probability tending to 1 and (iii) is weakly consistent.

Proof: The result follows immediately from the Theorem and the fact that

P(Alfl...flAk)—*1asn-—*ooifP(A)-—*1fori=1,...,k. C

Theorem 4.2 Suppose: (i) = (X1,X2,...,X) satisfies Assumptions 4.1; and (ii)

for 8 E 0 and almost all x, the function 0 --+ f(x, 0) is differentiable with derivative

f’(x, 0). Then with probability tending to 1 as n —* oo, the relevance weighted likelihood

(REWL) equation

ö/ö8{fJf(x,0)} = 0

has a root, O, = . .,x), which tends to 0.
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Note that the REWL equation in the last theorem may equivalently be stated as

WL’(9,) = 0. (4.4)

The following comments also relate to Theorem 4.2.

1. Its proof shows incidentally that with probability tending to 1, the {9}, can be

chosen to be local maxima. Therefore we may take the 9 to be the root closest to a

maximum.

2. But the Theorem does not establish the existence of a consistent estimator sequence

since, with the true value unknown, the data do not enable us to pick a specific consistent

sequence.

3. Theorem 4.2 only gives us the existence of a consistent root of the REWL equation.

But only in very special cases is this root the MREWLE, in which case it is then

consistent (see Corollary 4.2 below)

4. To prove Theorem 4.2, we require that 0 -s-f f(x, 0) be differentiable, 0 0. We will

give some conditions (similar to the conditions given by Wald (1949) for the lid case)

which avoid the requirement that 0 -‘--f f(x, 0) be differentiable.

Corollary 4.2 If the weighted likelihood equation has a unique root 6 for each n and all

. the hypotheses of Theorem 4.2 imply that {6} is a consistent sequence of estimators

of 0. If in addition, the parameter space is any open interval (a, b) then with probability

tending to 1, 5 maximizes the weighted likelihood, (3, is the MREWLE), and is therefore

consistent.

Proof: The first statement is obvious. To prove the second suppose the probability
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of 6 being MREWLE does not tend to 1. Then for sufficiently large n, the weighted

likelihood must, with positive probability, tend to a supremum as 0 tends toward a or

b. Now with probability tending to 1, is a local maximum of the weighted likelihood,

which must then also possess a local minimum. This contradicts the assumed uniqueness

of the root. D

The conclusion of Corollary 4.2 holds when the probability of multiple roots tends to 0

as n —* co.

We have already discussed the consistency of a root of the REWL equation. Now we

are going to study the consistency of the MREWLE.

Before formulating our assumptions, we introduce some notation. For any 0 and p, r > 0

let: f(x,0,p) = sup{f(x,0’): 0’—0 p}; (x,r) = sup{f(x,8): 101 > r}; f*(x,o,p) =

f(x,8,p) or 1 according as f(x,0,p) > 1 or < 1, respectively; y*(x,r) y(x,r) or 1

according as (x, r) > 1 or 1, respectively.

Assumptions 4.2 4.2.1 For any 0 and p, x —‘--* f(x, 0, p) is measurable.

4.2.2 For any 0, 0o E 0, there exists a > 0, such that zf 0 <p < p0, the expected

value of J’° log f*(x, 8, p)dF(x, 0) is finite. Similarly, f log *(x, r)dF(x, 0) < oc

for sufficiently larger r (depending on Oo); here F(., 0) represents the CDF for P60.

4.2.3 For any 0 E 0, f° logf(x,0)If(x,0)dt(x) <00.

4.2.4 There exists A, a Borel set, such that for any 0 € 0, fA f(x, 0)4(x) = 0 and

for x A, lim101 f(x, 0) = 0.
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4.2.5 If9 O then i({x: f(x,Oi) f(x,02}) > 0.

4.2.6 For any 0 E 0, there exists B9, such that lB9 f(x, 0o)d(x) 0 for any 0 E 0,

and for x E B8, f(x, 0’) —* f(x, 0) for any 0’ —* 0.

4.2.7 In the observation vector, = (X1,X2,...,X), the X are independent with

PDF f(x) with respect to the same dominating measure

4.2.8 Let F,-, = (Pnl,pn2, ...,p,) denote the respective important weights satisfying

p 0 and p, = 1. Assume

0 as n oc. (4.5)

4.2.9 Let gn(x) = Assume there exists a Borel measurable function G,

such that gn(x) < G(x) , fG(x)logf(x,0o)I4(x) < oc and fG(x)1og(x,r)I4(x) <

oc for sufficiently large r.

4.2.10 For each 0 and p(O),

— 0 as n —* oc. (4.6)

For each r,

0 as n oc. (4.7)

The Assumptions 4.2.1-4.2.6 are similar to Wald’s assumptions for the i.i.d case. These

assumptions insure the validity of the lemmas of Wald (1948). Assumption 4.2.8 is

essential for constructing a useful REWL. Assumption 4.2.9 and Assumption 4.2.10 are

for the Dominated Convergence Theorem and Weak Law of Large Numbers.
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Theorem 4.3 If 0 w a closed subset of 0, Assumptions 4.2 imply that for any

C> 0,

> 0 48fPn1(Xi,00)...fPnn(X,00) } —

. ( . )

Here the probability F,., denotes that of the {X} obtained from {f1(x) : i = 1,.. . , n}. D

Theorem 4.4 Suppose Assumptions 4.2 obtain. Let O(X1,. . . ,X,.,) be any function of

the observations, X1,. . . ,X,,., such that

c> 0 all n and all X1,. .. ,X. (4.9)

Then 0,., is a weakly consistent estimator of 00. 0

Observe that the MREWLE always satisfies the conditions of Theorem 4.4 if we choose

c = 1. So we have proved the weak consistency of MREWLE.

4.3 Strong Consistency

For the strong consistency of MREWLE, we use almost sure results on linear combina

tions of independent random variables such as those of (see Chow and Lai (1973), Stout

(1968)).

For simplicity, define: (I) A = (ii) D, = log f(X:,00)— log f(X,0,p(8)) —

E(logf(X,0o) — log f(X,0,p(0))) from (4.24) and the proof of Theorem 4.3; (iii)

= log f(X, 0) — log r0) — E(log f(X, 0) — log c(X1,r0)) from (4.25) and the

proof of Theorem 4.3, where i = 1,. . . , n and j = 1,. . . , k. In the next theorem, D will

generically denote all D3 and D.

52



Theorem 4.5 Suppose Assumptions obtain, and there exists a constant K >

0, such that pj Kn for some a> 0 and that one of the following conditions hold:

(i) ED(1 Dj)’ K for some > 0 and /3,

(1 + a + /3)/a 2, ED2(log IDD2 K, A Kn;

(ii) ED2 <K, ED = 0, and p6 <J(a(2_S)_1 for some 0 < 6 < 2 and > 0,

(iii) E)D(l )Ic(1og+ D)1 K for some > 0 and /3,

1 <(1 + a + /3)/a <2, Kn7,A Kn

for some 7 > 0;

(iv) ED(l /°(log DI)1 K for some > 0 and /3,

0 < (1 + a + /3)/a < 1, Kn, A Kn

forsome7>0andp=0fori>nwhere<7(1+a+/3)/a. Then

su ‘1X O OFl urn “ I• ‘
= 01 = 1 D (4 101n—oo fPni(X1,O0)...fPnn(X,90)

Theorem 4.6 Under the conditions of Theorem .5, let O(X1,.. . ,X,,j be any function

of the observations X1,. . . ,X, such that (.9) holds. Then O is a strongly consistent

estimator of °o

We now state without proof a direct corollary of the last Theorem.

Corollary 4.3 Under the conditions of Theorem .5, the MREWLE is strongly consis

tent.
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The weak conditions of Theorem 4.5 are not easily verified. In contrast, the stronger

conditions in the following corollaries are easy to verify (but the results are not then as

general as those of the Theorem).

Corollary 4.4 Under the assumptions of Theorem 4., let pj <Kn for some a> 0.

IfEIDI2/ K for some 0< a < 1 then (.1O) holds.

Proof: Let 3 = 0. Then (i) of Theorem 4.5 is satisfied. 0

In the case of independently and identically distributed observations, the assumptions

of Theorem 4.5 can be quite unrestrictive. We will not go into detail here because our

observation follows immediately from Theorem 1 of Stout (1968).

4.4 The Asymptotic Normality of the MREWLE

In the last section, we have shown that under regularity conditions, the MREWLEs are

consistent and strongly consistent. In this section, we shall show that the MREWLEs

are asymptotically normal under some conditions.

As we know, the asymptotic normality of MLE have been discussed by Cramer (1946)

among others. Our results generalize Cramer’s to both non-i.i.d and unequal Pni.

Assumptions 4.3 4.3.1 For each E 0, the derivatives

ôlogf(x,O) 92logf(x,O) ô3logf(x,8)
00 ‘ 802 ‘
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exist, all x.

4.3.2 For each 0o e €, there exist functions g, h and H (possibly depending on O)

such that for 0 in a neighborhood N(00) the relations

ãf(x)
g(x)j

ô2f(x,O)
I h(x)j
ã3logf(x,0)

< H(x)

hold, all x, and

J g(x)4(x) < ,f h(x)4(x) <oo,E90H(x) <00.

4.3.3 For each 0 e 0

0 <1(0)
= [{alof(x;o)}2] <

4.3.4 —*0.

4.3.5 Define b = f{Dlog f(x; 0o)/O0o}f(x)dt(x) as the biased functions for each ob

servation. Then

(p)’ —* 0.

4.3.6 Let gn(x) = Zpf(x). Assume there exists a Borel measurable function G such

that g(x) G(x),

J G(x) I
Ologf(x,0o)

I d1t(x)
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J G(x)
ö21ogf(x,9)

d(x) <cc,

and

J G(x)H(x)4(x) <cc.

4.3.7 Let g(x) = (p)’>pf(x). Assume g(x) —+ f(x,Oo) almost surely and

there exists a Borel measurable function G*(x) such that g,(x) G*(x) and

f (){ ogf,00)}24()
<cc.

4.3.8
2i :fv n

2 (.1 iogjy,uopVar( ) —* 0

and

pVar(H(X)) —+0

as n —* cc.

Some interpretations of these conditions as following. Assumption 4.3.1 insures that

the function ãlogf(x, 0)700 has, for each x, a Taylor expansion as a function of 0. As

sumption 4.3.2 insures (justifies) that ff(x,0)d1t(x) and f{O1ogf(x,0)/O0}dp(x) may

be differentiated with respect to 0 under the integral sign. Assumption 4.3.3 states that

Fisher’s information is positive. Assumption 4.3.4 insures a sufficiently fast asymptotic

rate and Assumption 4.3.5 insures that the weighted bias go to 0. Assumptions 4.3.6,

4.3.7 and 4.3.8 insure the validity of the Dominated Convergence Theorem and Weak

Law of Large Numbers.

Theorem 4.7 Under the Assumptions 4.1 and 4.3, the relevance weighted likelihood

equations admit a sequence of solutions {O} satisfy:
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(i) Ô,., — Oo in probability ri
—

(ii) (pj_1/2{ê
— Oo — b/I(00)} —* N(O, 7-)).

Here b = as the asymptotic bias of the MREWLE.

Further, for any consistent sequence O, of roots of the REWL equations, (ii) is true.

Theorems 4.5 and 4.7 insure that the MREWLEs are asymptotically normal, when the

MREWLEs are roots of REWL equations. By comparing this result with the asymptotic

normality of the MLE for the case of iid sampling, we find that the MREWLE has a

kind of asymptotic efficiency, because the variance is the inverse of Fisher Information.

The convergence rate of the MREWLE is (p)’12, which depends on the relevance

weights. The best convergence rate is _h/2 obtained by choosing Pni = 1/n, But in

most of relevant sample information cases, we cannot use ptj = 1/n for condition (4.1)

and Assumption 4.3.5.

A straight forward result from the above Theorem is

Corollary 4.5 When X1, ...,X,,. are iid from f(x,Oo) and the Assumptions i.1 and 4.3

obtain, then any consistent sequence {O} of roots of the REWL equation (4.4) satisfies

(p2.)-1/2(â - o) ,‘ N(o,
i(O)•

(4.11)

To get the best convergent rate, we always choose p = 1/n for the iid exact sample

case.
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4.5 Estimated Variance of the MREWLE

It was seen in Subsections 4.2, 4.3 and 4.4 that the MREWLE’s are consistent and

asymptotically normal under certain conditions. The variance of this asymptotically

normal distribution provides a reasonable measure of the accuracy of the estimator

sequence. But in most cases, we do not know this variance, so an estimator of this

variance will be useful.

From Theorem 4.7, there are several possible estimators of the variance. We only discuss

two of them. They are

zpii
V1

— Zpö2logf(x.9)/öO2I8=8 (4.12)

and

V2
{Zp.ö2logf(x.8)/ö02}28=6 (4.13)

For the estimator , we try to estimate the Fisher Information. The is obtained

directly from the Taylor expansion of the REWL equation (4.4). Under the conditions

of Theorem 4.7, we can show that both estimators are consistent.

In Theorem 4.7, the b — 0, so we can use the above variance estimator to construct

asymptotic confidence intervals. We do not discuss these variance estimators further in

this thesis.

4.6 Some Possible Extensions and Remarks

The method given in this report can be extended to establish the consistency of the

MREWLE’s for certain types of dependent random variables for which the weak and
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strong law of large numbers remain valid.

Assumption 4.1.4 about the importance weights P can be extended to general cases

where we drop the requirements 0 and >p = 1. But then Conditions (4.1) and

(4.2) need to be changed. We could for example replace condition (4.1) by the following

stronger conditions:

0 as n oo. (4.14)

In Chapter 5, we describe plausible situations where we might want to choose negative

weights.

The consistency of MREWLE’s can be extended to REWME’s defined in Chapter 6.

The results of this Chapter apply in several important subdomains of estimation theory

indicated by Chapter 5. Of particular note is that of nonparametric smoothing methods.

For simplicity, our treatment in this chapter is confined to the case of a one-dimensional

parameter. The multivariate extension is similar and we omit it for brevity.

4.7 Proofs

To prove Theorem 4.1, we need the following two important lemmas about Kuliback

Leibler information (KU; see Kullback 1959).

Lemma 4.1 Let f(x) i = 1,. . . , n and g(x) be n + 1 general PDF’s with the same

support andq1 0 i = 1,...,n be such that q +q2 + ... +qn = 1. If f(x) = qifi(x)+

+qf(x), then

qffi(x)log{}d(x) > Jf(x)log{}d(x) (4.15)
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with equality if and only if fi(x) = f2(x) = ... = f(x) almost everywhere with respect

to measure t.

Lemma 4.2 If the PDF’s {gn(x)} and g(x) have the same support then

lim+ fg(x)log{g(x)/g(x)}dp(x) = 0 if and only if lim g(x)/g(x) = I [] uni

formly.

We can now apply these results.

Lemma 4.3 Let f(x) i = 1,. . . , oc and g(x) be PDF’s with common support and F, =

(Pnl,Pn2, ...,pnn) denote the respective importance weights, > 0 and = 1. Let

gn(x) = pf(x). If

pniJfi(X)l0g{}d(x) ‘0 (4.16)

then gn(x) — g(x) almost surely.

Proof: By Lemma 4.1,

Epniffi(x)1og{}d(x) Jgfl(x)1og{(}d(x) 0.

The second inequality follows from the positivity of the KU.

The assumptions of Lemma’s 4.1 and 4.2 imply that 1im(g(x)/g(x)) = 1 [i’], uni

formly. Now for each x e A = {x : lim,(g(x)/g(x)) = 1}, we have lim g(x) =

g(x). Because 1t(A) = 0, the conclusion follows. 0

Lemma 4.4 Let f(x) i = 1,. . . , oc and g(x) be PDF’s with common support and P =

(pnl,pn2, ...,p,) denote the respective importance weights. Suppose condition (4.16)
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holds and 1u{x : h(x) g(x)} > 0. Here h(x) is another PDF with the same support as

g(x). Then there exists a 6> 0 and an N(6) such that for n > N(6)

pniJfi(x)log{}4(x) >6. (4.17)

Proof: The KU is always positive. If the inequality (4.17) is not true, then there exists

a subsequence n(j) such that

n(j)
f

__

Pn(j)i f f(x) log{ }4(x) ‘ 0 as j .‘ oo.

Now let gn(x) = By the last Lemma, we get gn(j)(x) —* h(x) almost surely.

Also by the same Lemma, gn(x) —* g(x) almost surely, so g(j)(x) —* g(x) almost surely.

Therefore {x : h(x) g(x)} = 0. This contradicts the assumption and completes the

proof. D

Proof of Theorem 4.1: The inequality in (4.3) is equivalent to

plogf(X,8o) — p1ogf(X,9) > 0.

Now

log f(X, Oo) — log f(X, &)

= Pnilo{f(9)}

= (I)+(II)

From (4.1) and lemma 4.2, pjf(x) —f f(x,Oo) almost surely. Now because f(x,8)

and f(x, O) are distinct densities, then by Lemma 4.4, there exists a 6 > 0 such that

for n large enough

ZPniElo{f(0)} 6.
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Now from Assumption 4.1.4,

(I) — PfliE1o{f(0)} 0 in probability.

Therefore (I) > 6 in probability. Similarly, (II) —* 0 in probability. This means

plogf(X,Oo) —pnj1ogf(Xj,0) 0

in probability. That observation completes the proof. D

Proof of Theorem 4.2: Let a be small enough so that (O — a, O + a) contains in 0

and let

= {x: WL(00,) > WL(00 — a,) and WL(00,) > WL(0o + a,)}.

By Theorem 4.1, Fe0 (Sn) —f 1. For any . E 5,, there thus exists a value O — a <

0,, < 0o + a at which WL(0) has a local maximum, so that WL’(O,,) 0. Hence for

any a > 0 sufliciently small, there exists a sequence 0,, = 0,,(a) of roots such that

P90(O,, — Oo <a) —p 1.

It is remains to show that we can determine such a sequence, which does not depend on

a. Let 0 be the closest root to 00. [This root exists because the limit of a sequence of

roots is again a root by the assumed continuity of WL(0).] ThenP90(O — 0o < a) —* 1

and this completes the proof. 0

Before we prove Theorem 4.3, we state the following Lemmas.

Lemma 4.5 cp(O, r), f*(x, 0, p) and *(o, r) are Borel measurable functions.

This last lemma follows from immediately from Assumption 4.2.1 and we omit it for

brevity. The next two lemmas follow from Wald (1949).
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Lemma 4.6 For any 0 0 in 0 we have

limE90 log f(X,O,p) = E90 log f(X,0). (4.18)
p—,0

Lemma 4.7 For any 00 E 0 we have

lim E90 log(X,r) = —00. (4.19)

Lemma 4.8 For any 6 > 0, there exist r0(6) > 0 and N(6, r0), such that for every

n> N(6,r0) and r r0,

pElogf(X,0o) >6. (4.20)

Proof: From (4.15), we have

pE log f(X,00)

-

log (Xr)

= PmiE10{f(0)}

> I gfl(x) log{ }dJL(x) - pflE1og{f)}

= fn(x)lo{f )}d(x) +fg(x)logf(x,0o)4(x)

_fgn(x)log(x,r)4(x) - pfliElog{f[)}

= (I) + (II)
—

(III) — (IV)

By Assumption 4.2.8, (I) —* 0 and (IV) —* 0.

Now we prove (II) — E90 log f(X, 0w). From Lemma 4.3, we know that gn(x) _* f(x, 0w).

The result now follows from the Assumption 4.2.9 and the Dominated Convergence

Theorem. We can prove (III) —* E90 log(X,r). in a similar fashion. From (4.19),

we can choose r0 such that E90 log r0) < —(56 + E00 log f(X, 0)). Now choose
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N1, N2, N3 and N4 such that: (i)when n > N1, j(I) < 6; (ii)when n > N2, 1(11) —

E00 log f(X,U0) < 6; (iii)when n > N3, (III) — E90 log y(X,r0) < 6; and (iv)when

n > N4, (IV) < 6, respectively. Let N(6,r0) = max{Ni,N2,N3,N4},we have prove

(4.20) for r = r0. Because p(X, r) decreases with r, the proof is complete. D

Lemma 4.9 For any 0 0 in 0, there exist 6 > 0, p(O, 6) > 0 and N(p(8, 6), 6) such

that forn > N(p(0, 6), 6),

pE1ogf(X,0o) — pE1ogf{X,0,p(0,6)} >6. (4.21)

Proof: The proof of this lemma is similar to that of the last. The oniy difference is

that we use (4.18) instead of (4.19). 0

Proof of Theorem 4.3: From Lemma 4.8, we know there exist r0 and N(r0) such that

pE1ogf(X,0o) —p1E1og(X,r0)>1. (4.22)

Let w1 = o fl {0 : 0H r0}. Then by Lemma 4.9, for any 0 E , there exist p(O) > 0,

6(0) > 0 and N(0,p(0),6(0)) such that n> N(8,p(0),6(0)) and

pjE log f(X, 0) — p,E log f(X, 8, p(O, 6)) > 6(0). (4.23)

Now let S(8, p) denote the sphere with center 0 and radius p. Since is compact, by

the Finite Covering Theorem, there exists a finite number of points {0,. . . , Ok} in

such that S(81,p(01))U... U S(Ok,p(Ok)) contains as a subset. Clearly, we have

0< sup
6Ew

k

< f’{Xi,0,p(8)} . . .f{X,0,p(0)} + y’(Xi,r0)..
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Hence, the theorem is proved if we can show that

fPnl(Xi,Oj,p(Oj))...fPnn(Xn,8j,p(Oj))
> k 1 0 1 k

fPni(Xi,O0)...fPnn(X,O0) } —

e/( + )j ,‘
z

—

and
r ) r ) c/(k+ 1)1 0.

Proving these last results is equivalent to showing that for i = 1,. . . , k

n{p1logf(X1,Oo) — oc in probability. (4.24)

and

n{plogf(X1,Oo) — oc in probability. (4.25)

Under our assumptions, (4.22), (4.23) and the weak law of large numbers, we can prove

(4.24) and (4.25). This completes the proof of this theorem. D

Proof of Theorem 4.4: For any > 0, let

= {(X1,X2,...) : 8(X1,. . . ,X,) E S(8o,E) for sufficient large n}.

From (4.9), we obtain

AcC={(X1,X2,...):

sup19_901>.fPni (X1,0) . . . f’(X, 0)
fPrti(X1,0o) .. . f(x,0) } c for infznztely many n}

By Theorem 4.3, we have lim F(C) = 0, then lim P(A) = 0. Therefore,

lim Pn(Ae) = 1. This completes the proof. D

Proof of Theorem 4.5: If we can prove (4.24) and (4.25) with probability 1, then from

the proof of Theorem 4.3, we obtain the asserted result. But Theorem 4 of Stout (1968)

and our conditions on P imply this result and hence the conclusion of our theorem. D
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The proof of Theorem 4.6 is similar to Theorem 4.4 and hence we omit this for brevity.

Proof of Theorem 4.7: By Assumption (4.3.1) and (4.3.2), we have for 0 in the

neighborhood N(00) a Taylor expansion of ôlog f(x, 0)/ö0 about the point 0 = 0 as

follows:

ölogf(x,8) 8logf(x,0) O21ogf(x,0) 1 2

80 — 80 — °‘
8O 6=6 +8 — 0) H(x

where < 1. Therefore, putting

ãlog f(X, 0)
A =

90

82 log f(X, 0)
B = pnj

882

and

= pH(X).

We have

—A = B(Ô — 0) + — Oo)2

where < 1.

From Theorem 4.2, we know that there exist a sequence of 8,-, such that 8, —* so

o o —n
°Bn+*Cn(n_0o)

Now we prove:

(i) A .-.‘ AN(pbj, (pjI(Oo)).

As we know
s—.. Ologf(X:,0)

A = 80
Ozz6
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so EA = — pj b and

Var(A) =
log f(X, 0)6=80)2 — pb

00

=

800

By Assumption 4.3.5, 4.3.7 and Dominated Convergence Theorem

Var(A) — (p)I(0o) + o(p).

Now let

0logf(X,Oo)
= O0i=1

E
0logf(X,0o)

= E I 000i=1

max(p)J
Ologf(x,00)

I

By Dominated Convergence Theorem

f Ologf(x,0o) c Ologf(x,8o)
f(x,0o)4(x),000 (x)J

so 1’ —* 0 (max(p) —* 0). Then by Theorem 7.1.2 of Chung (1974, p200) and Assump

tion 4.3.4, we get

(ii) B —* —I(0) in probability.

02 log f(X, 0)
B = oo

O2logf(XOo) — O2logf(x,0o)
oog oog

—* —I(0)

by Dominated Convergence Theorem.

So from Assumption 4.3.8, B,-, —* I(0) in probability.
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(iii) C,. —*E90H(X) in probability. The proof is similar to (ii).

Therefore O,
—

= —A,./[B,. + *C,.(O,. — 9)]. Since Or, — Oü —÷ 0 in probability.

B,. +
—

O) —* —I(O)

Further, —A,. - AN(— (ZpjI(Oo)). Consequently, by Slutsky’s Theorem,

(p){êr,
-

-

____

‘ N(0,

establishing the theorem.
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Chapter 5

The MREWLE for Generalized

Smoothing Models

5.1 Introduction

As we have mentioned in the Chapter 2 and 3, the nonparametric regression (NR)

paradigm motivates much of our work on relevance weighted inference. Methods devel

oped in NR use relevant information in relevant samples (see Chapter 2). Nonparametric

regression provides a useful explanatory and diagnostic tool for this propose. See Eubank

(1988), Hardle (1990), and Muller (1988) for good introductions to the general subject

area. Several methods have been proposed for estimating m(x): kernel, spline, and

orthogonal series. Recently, local likelihood was introduced by Tibshirani and Hastie

(1987) as a method of smoothing by ‘running lines’ in nongaussian regression models.

Staniswalis (1989) carried out a similar generalization of the kernel estimator.

In this Chapter, we apply the method of MREWLE to capture the relevant sample

information for generalized smoothing models. Both local likelihood and Staniswalis’s

method can be viewed as special cases of our methods. We wish to demonstrate the
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applicability of our methodology, whose primary advantage over individual methods

which have been developed in NR, lies in its generality. However, we are able to establish

secondary advantages as well. The MREWLE always has a smaller variance which

depends on Fisher information.

Usually NR is used for the location parameter and it also assumes the mean and variance

of the observations exist. But in many cases, we are interested in some other param

eters, for example, the variance of a normal distribution or parameters of the Weibull

distribution in Section 5.5. In some cases, even when we are interested in the location

parameter, the mean and variance of the observations may not exist. The Cauchy dis

tribution in Section 5.5 is an example. The method of MREWLE works well in these

situations.

Under the model of Example 3.6, we know that given X, Y has density f(y, 0(X1))

(assumed known up to the unknown parameter 8(X1)). We seek to estimate 8(x) at

the fixed point X = x. After choosing the relevance weights, we get the MREWLE by

maximizing over 8(x),

fJ f(, 0(x))(x).

The next straightforward result shows how locally weighted regression estimators obtain.

Theorem 5.1 . If f(y,0(X1)) is the density for a normal distribution with mean p(X1)

and variance cr2(X1) [here 8(x) = {t(x),u2(x)}], then the MREWLE is

(x) = pni(x)) (5.1)

and

= Pni(x){ - (x)}2.D (5.2)
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Thus the MREWLE in the normal case of the last theorem, is the linear smoother of Fan

(1992). Obviously we can get Nadaraya-Watson kernel estimators, k-nearest neighbor

estimates, Gasser-Muller estimators and locally linear regression smoothers by choosing

appropriate relevance weights. These smoothers include those generated by the use of

spline and orthogonal series methods. This means that the MREWLE method subsumes

current nonparametric smoothing methods when the error distribution is normal. The

variance estimator in (5.2) is the same as the variance estimate in Hardle (1990). Here

it is a direct result of the MREWLE.

We now study the MREWLE in relation to current nonparametric smoothing methods

in situations where the error distribution family is known. Our discussion addresses

both asymptotic and non-asymptotic issues.

We organize this chapter as follows. Small sample properties are considered in Section

5.2. The main asymptotic results are shown in Section 5.3. Also in Section 5.3, we

compare the MREWLE with current NR methods. How to choose the relevant weights

is considered in Section 5.4. Finally in Section 5.5, we give some simulation results.

5.2 Small samples.

Our earlier discussion leads us to wonder about the difference between the MREWLE

and other linear smoothers for nonnormal error models. The following theorem partially

addresses this issue. There we refer to conventional sufficiency with respect to the joint

sampling distribution of all the data.

Theorem 5.2 . Suppose the sufficient statistics for the error distribution family are

not linear in the data. If X = X, for some i j, then with respect to quadratic loss,
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the linear smoother is inadmissible.

Proof. We easily obtain the conclusion using Rao-Blackwell Theorem and sufficiency

at the replication points. 0

The last theorem shows that if we have replicate observations in a designed experiment,

we can achieve a uniformly smaller risk than that of any linear smoother (which depends

linearly on the data when sufficiency shows it should not). For instance, the one param

eter exponential family has sufficient statistics based on { T(1’)} for some function

T) where the sums are taken at the replication points. Obviously basing any smoother

on the {1’} would violate the sufficiency principle in this case.

It could be argued that this claim is unfair. Linear smoothers are proposed in a

nonparametric-nonparametric framework where neither the error distribution nor the

regression function has parametric form.

That argument ignores Theorem 5.1 which shows that these linear smoothers are con

sistent with normal error models. Indeed, in Chapter 6 we obtain smoothers in the

nonparametric- nonparametric setting which are very different than linear smoothers.

So the argument fails to blunt the impact of the last theorem. Rather that theorem

points to the nonrobustness of linear smoothing methods. Theorem 5.2 emphasizes the

importance of the vehicle which carries the data into a smoothing procedure. And it

tells us how to improve on a linear smoother if we have repeated observations at some

points.

We know by weak sufficiency that the MREWLE must depend only on the sufficient

statistics. So it evades the difficulty confronted above by linear smoothers.
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When the {X}’s are continuous covariates, we cannot (in principle) have repeated ob

servations at any point, so cannot improve on linear smoothers by invoking the last

Theorem. But we may nevertheless have near ties among the {X}’s in which case the

heuristics underlying that theorem still obtain. Large sample theory below will lead to

further discussion of this issue.

In Chapter 2 and 3, we emphasized the NR paradigm because it provided a context

wherein some information from the relevant samples have been used to advantage. The

last theorem suggests that these methods fail to use all the relevant informatioll available

when the error distribution cannot be assumed to be normal. In this way, these linear

smoothers seem analogous to moment estimators in classical estimation theory; the

MREWLE would then be analogous to the MLE.

5.3 Asymptotic Properties

We begin with the generalized smoothing models described in Example 3.6. Let

(X1,Y1), ..., (X, Y) be a random sample from a population (X, Y). For given X =

Y has density function f{y, O(x)}.

Because we have used relevant sample information for estimation, the MREWLE is

usually biased. We define the bias function as

B(z) = E9()l3 log f{Y O(x)}/O(x). (5.3)

This bias function indicates the bias when we used the information from YX = z to

estimate 8(x). Under some conditions, we can get B(x) = 0 and

B(z) = I{O(x)}{8(z) — 8(x)} + o{O(z) — O(x)}, (5.4)
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where I{0(x)} is the Fisher information function for 0(x). Equation (5.4) indicates

the meaning of this bias function. Also this bias function is a special case of the bias

function in Chapter 4.

In the next four subsections we present classes of possible relevance weights suggested

by results in modern NR theory. We study one of these classes, that suggested by

Nadaraya-Watson, in some detail. For the rest, some expected results will merely be

sketched for brevity.

(I) Kernel weights (Nadaraya-Watson).

The weight sequence for kernel smoothers (for a one dimensional x) is defined by

pni(X) = Kh(x — X)/{nh(x)}, (5.5)

where

gh(x) = n1 Kh(x — X) and Kh(u) =h1K(u/h). (5.6)

The kernel K is a continuous, bounded and symmetric real function which integrates to

one,

f K(u)du = 1. (5.7)

Because the form (5.5) of kernel weights pj(x) has been proposed by Nadaraya (1964)

and Watson (1964), we call these Nadaraya-Watson weights.

The MREWLE with Nadaraya-Watson weights obtains from maximizing

n_i
— X) log f{1’;, 0(x)}.

We now consider the asymptotic properties of this MREWLE. In the sequel, we always

let

CK
= i_:u2K(u)du, dK

= L K2(u)du. (5.8)
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We need the following assumptions:

Assumptions 5.1 5.1.1 The bias function B(z) has a bounded and continuous sec

ond derivative for every fixed x.

5.1.2 Let B(x) = Es(2) log{f(Y,9(z))/f(Y0(x))}. B(x) has a bounded and continu

ous first derivative for every fixed x.

5.1.3 The marginal density g(x) of the covariate X has continuous first derivative and

is bounded away from zero in an interval (a0,b0).

5.1.4 j’uK(u)du = 0 and fu4K(u)du < cc.

5.1.5 The density function f(y, 0)) satisfies the following regularity conditions:

(i) log f(y, 0) has three continuous partial derivatives with respect to 9;

(ii) for each Oo E e, there exists integrable functions H(y) such that for 9 in a neigh

borhood N(90) the relations

I
öf(,0)

H(y), ãf(mO)
iH2(y),I
ö3logf(y,0)

H3(y)

hold, for all y, and

f Hi(y)dy < oc,fH2(y)dy < co,E9(H3(Y)) <cc

for 9 N(0o);

(iii) the Fisher information I{0(x)} is continuously differentiable and bounded away

from zero.

We state the following pointwise properties of the MREWLE.
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Theorem 5.3 Under the Assumption 5.1, assume h —*0 and nh —* oo. If x is afixed

point in (a0,b0), then the REWL equations admit a sequence of solutions {O} satisfying:

rnhg(x)I{o(x)} 1/2

{ B’(x) B(x)g’(x)

L dK j [Ô(x) - 0(x)
- 21{0(x)} + g(x)I{0(x)} } + O(h)}]

N(0, 1). (5.9)

Proof: For x (a0,b0), similar to the proof of Theorem 4.2, we can show that the

REWL equations admit a sequence of solutions {O} satisfy 8 —* 0(x) in probability.

As in the proof of Theorem 4.7, putting

ôlog f{, 0(x)}
A = pni(X)

90(x)

ö2 log f{}’, 0(x)}
Bp(x) ao(x)2

and

=

yields

-A B{&(x) - 0(x)} + *Cn{On(x) - 0(x)}2.

Here ‘K 1< 1. Now

-A

B + *Cn{8(x) -

We prove:

AN[(B(x)/2 + B(x)9’(x)) h2{1 + O(h)}
I{0(x)}dK1

(5.10)
nhg(x)

As we know

8 log f{1, 0(x)}
= pni(x)

80(x)
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= Khfl(x_Xi)Olof{YO(x)}
ngh(x) 00(x)

______

Olog f{1’, 0(x)}
flYh(X) 00(x)

Here Kh(x — X)0logf{,0(x)}/00(x) are iid random variables with expectation

a =

80(x)
Ologf(y, ,0(x))

= fKhn(x_Z) f{y,0(z)}g(z)dydz

= f K(x — z)B(z)g(z)dz

= J K(u)B(x — hu)g(x — hu)du

= {B(x)g(x)/2 + B(x)g’(x)}cKh{l + O(h)}.

The variance is

b
=

00(x)
0 log f(y, O(x))]2f{Y 0(z)}g(z)dydzJ[Khn(X—Z)

00(x)

— [EKh(x
— )alof{l/;o(x)}]2

00(x)
= I{0(x)}dK(x){1

+ O(h)}.

From the Central Limit Theorem, we have

— a} —* N(O, 1) (5.11)

As we know that (x) = n1 Kh (x — Xi), the

EKh(x—X) = fKh(x_z)g(z)dz

= f K(u)g(x — hu)du = g(x){1 + O(h)}

and Var{Kh(x — X1)} = diç-g(x)h1j’{l + O(h)}. By the Central Limit Theorem,

nh
g(x)d

{.‘h(x) — g(x){1 + O(h)}} ,‘ N(O, 1). (5.12)
K
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Now

A
a — g(x){1 +O(h)}(h(x)A—a) —a[h(x) —g(x){1 +O(h)}]

g(x){1 + O(h)} - gh(x)g(x){l + O(h)}

So

g(x)[A
- {1 O(h)}1

N(0, 1) (5.13)

by (5.11), (5.12) and Slutsky’s Theorem (h(x) —* g(x) in probability and a —* 0). We

get result (5.10) from (5.13).

As in the above proof, by the SLLN and Slutsky’s theorem,

B —f —I{O(x)} in probability (5.14)

and

E9H(Y) in probability. (5.15)

By (5.10), (5.14), (5.15) and Slutsky’s theorem, we get the conclusion of the theorem.

D

In Theorem 5.3, we only prove that the REWL equations admit a sequence of solutions

which is asymptotically normal. As we have discovered in Chapter 4, the MREWLE is

a consistent sequence of solutions under certain conditions. In the following discussion,

we always assume that the MREWLE is a consistent sequence of solutions of the REWL

equations.

The last theorem gives us the asymptotic bias and variance for 0. Then they can formally

be combined to give a conditional MSE (mean square error) result for the MREWLE of

0. The result suggested heuristically through that combination suggests the MREWLE

has the conditional MSE

E[{Ô(x) -0(x)}2X1,...,Xj
=

+ J{0}1cKhfl
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+
nhg(x)I{O(x)}

+ o(h + ---)‘ (5.16)

when x is any fixed point in (a0,b0).

Similar results are suggested for the case of fixed design variables of the form X3 =

G’(j/n) + o(1/n), where the function G is the cdf of g(x). We defer for future work,

the formal proof of these and other results which are stated below.

When 0(x) is a location parameter, then we can use the ordinary Nadaraya-Watson

kernel estimator. The MSE of Nadaraya-Watson kernel estimator is (Hardle 1990, P77)

MSE
= {O(X) + O’(’(x) }2c2 h4

+
+ o(h + --). (5.17)

Comparing (5.16) with (5.17) suggests tentatively that:

(i) the MREWLE usually has smaller variance which depends on Fisher information

(like the Fisher information bound for exact sample case);

(ii) the bias of the MREWLE depends on the bias function B(z) and Fisher informa

tion function, while the bias of the Nadaraya-Watson kernel estimator depends on the

regression function 6(x). [But it is hard to compare the biases of these two method.]

(II) Gasser-Muller type weights. Let us now use the weights derived from those of

Gasser and Muller (1979). Their results formally suggest the following conclusion for

the resulting MREWLE:

[2nhn(X)I{o(x)}]lI2[()- 0(x) - 2}CK{1 + O(h)}]

—* N(0, 1), (5.18)

if x is a fixed point in (a0,b0). We leave verification of this result to future work.
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(III) k-NN weights. Use of the k-NN weights defined in Hardle (1989, page 42), and

his results heuristically suggest that the MREWLE sequence, {0} with k-NN weights

satisfies:

kI{0(x)} 1/2 - k2B(x)g(x) + 2B(x)g’(x) k
2dK

[0(x) — 0(x)
— (;;) 8g3(x)I{0(x)}

CK{l + O()}]

—* N(0, 1) (5.19)

for fixed x.

(IV) Locally linear smoother weights. Locally linear smoother weights are defined

by Fan (1992) for nonparametric regression. Using those weights to define the MREWLE

for generalized smoothing models, suggests that

[nhn(x)I{o(x)}]l/2[()
- 0(x)

- 210
}CK{1 + O(h)}]

—* N(0, 1) (5.20)

by analogy Fan’s results, for any fixed x.

Now we compare the MREWLE smoothers with the nonparametric regression smoothers.

In the following discussion, assume 0(x) is a location parameter. So nonparametric

regression smoothers are applicable. For comparison, we summarize the asymptotic

pointwise bias and variance of nonparametric smoothers in Table 5.1 (See Hardle 1989

and Fan 1992). We also give in Table 5.2 the results stated above (but not yet proved)

about the MREWLE smoothers.

Tables 5.1 and 5.2 suggest that the results for the MREWLE smoothers are simi

lar to their corresponding nonparametric regression smoothers. The variances of the

MREWLE smoothers would seem to depend on Fisher information function while the
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Table 5.1: Pointwise Biases and Variances of Regression Smoothers

Method Bias Variance

Nadaraya-Watson ( 9” (x) +
e’ ‘ )hc

u2 ()dic
g(x) hg(x)

Gasser-Muller 8”(x)hcK 2nhg(z)

K-NN weights
S”(x)g(r)+29’(x)g)

.

8g(2;) n k

Local linear smoother 0”(x)hcK u2(r)
2nhgfr)

Table 5.2: Conjectured Pointwise Biases and Variances of the MREWLE Smoothers

Method Bias Variance

B’()g’(x) dKNadaraya-Watson (B”(x) + g(x) )hcK/I{0(x)} nhngfr)I{6(x)}

3dKGasser-Muller B” (x) hcK /I{0(x) } 2nhg(x)I{9fr)}

B”()gx)+2B’(x)g’(x) 2dKK-NN weights
8g3(x)I{6(xfl n K kI{8fr)}

dKLocal linear smoother B” (x ) hcK /I{0(x) } 2nhg(x)I{6(x)}

variances of nonparametric regression smoothers are based on the variance function.

This suggests that the MREWLE smoothers usually have smaller variances. But the

biases of the MREWLE smoothers depend on the bias function and Fisher information

function while the biases of the nonparametric regression smoothers depend on the pa

rameter function 0(x). It is hard to compare them. Our tentative findings remain to be

confirmed by rigorous analysis.

In nonparametric regression models, the comparison of these four smoothers has been

considered by several authors (see Chu and Marron 1991; Fan 1992; Hardle 1989; Mack

and Muller 1988; and among others).

Now we compare again in a heuristic fashion, the four MREWLE smoothers. The

Nadaraya-Watson MREWLE seems essentially similar to the k-NN MREWLE. By

81



choosing k = 2g(x)nh, they have the same apparent variance and bias. The bias of

the Nadaraya-Watson MREWLE depends on both B(x) and B(x)g’(x)/g(x). Keeping

B(x) fixed, we first remark that in a highly clustered design where g’(x)/g(x) is large,

the bias of the Nadaraya-Watson MREWLE is large. Note also that when B(x) is

large, so is the bias of that estimator. The Gasser-Muller MREWLE appears to have

an asymptotic variance 3/2 times as large as that of that of the Nadaraya-Watson

MREWLE. On the other hand the bias of the Gasser-Muller MREWLE seems sim

pler; it does not share the drawbacks mentioned above. The locally linear smoother

MREWLE appears to overcome the disadvantages of these two methods. As noted

above, the biases of the MREWLE smoothers seem to depend on the bias function, not

the parameter function. This makes it hard to compare with other methods. In Chap

ter 7, we propose a MREWLE which have both simple bias (depends on the parameter

function 9) and small variance.

5.4 Bandwidth Selection

For generalized smoothing models, the selection of weights to construct the REWL is

analogous to getting a proper bandwidth. It is well known that the bandwidth plays a

very important role in the trade-off between reducing bias and variance in nonparametric

regression. Often the user will be able to choose the bandwidth satisfactorily by eye

with interactive graphics. Moreover it is also desirable to have a reliable data—driven

rule for selecting the value of h. Here we list some possible methods.

Cross-Validation (Wahba and Wold, 1975) may be used to select the bandwidth, in

which case h is chosen to maximize

logf(,Ô).
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Here is the maximizer with respect to 0 of

p7(x) log fOl, 0).
tj

This is a global bandwidth selection procedure, whose asymptotic optimality properties

are not known.

Alternatively the bandwidth may be selected by the ‘plug-in’ procedure, based on the

asymptotic expansion of the squared error for kernel smoothers:

MSE
— n’h’dK

+
h4[cK{B”(x)/2 + B’(x)(g’/g)(x)}]2

— I{O(x)}g(x) 12(0(x))

An ‘optimal’ bandwidth minimizing this expression would be

= {
dKI3(0(x))/g(x)

2}n.
4[CK(B (x)/2 + B (x)(g /g)(x)]

This bandwidth is proportional to n1’5 with constants depending on the unknown

I{0(x)}, B’(x), B”(x) and so on.

This has been shown to be more stable in both theoretical and practical performance

in NR (see e.g. Park and Marrron 1990). Indeed, Fan and Marroll (1992) show that, in

the density estimation case, the ‘plug-in’ selector is an asymptotically efficient method

from a semiparametric point of view. We expect the ‘plug-in’ procedure will perform as

well in the MREWLE case.

5.5 Simulation

We have shown, via asymptotics, that the MREWLE possesses a number of desirable

properties. Now we use three simulated experiments to illustrate its finite sample be

havior. Two methods are considered here: the Nadaraya-Watson MREWLE and the

locally linear smoother, MREWLE.
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Simulation 1. A random sample of size n is simulated from the model

Y = X(1 — X) + 0.Oh, (5.21)

with ‘•‘-‘ Cauchy(0,1) independent of X “-‘ Uniform(0,1). The nonparametric regression

kernel smoothers do not work here, because the mean and variance of the Cauchy(0,1)

do not exist. We use the MREWLE smoothers here. A typical realization when n = 200

is shown in Figure 5.1. The bandwidth used here is h = 0.1. Gaussian kernel function is

used here and in the sequel. The Nadaraya-Watson MREWLE based on five simulations

from Model (5.21) is shown in Figure 5.2. Figure 5.3 shows the locally linear smoother

MREWLE based on five simulations from Model (5.21).

From the above Figures, both the Nadaraya-Watson MREWLE and the locally lin

ear smoother MREWLE perform reasonable. The Nadaraya-Watson MREWLE has

large boundary effects, and may require boundary modifications. But the locally linear

smoother MREWLE seems accurate over the whole interval.

Simulation 2. A random sample of size ri is simulated from the model

Y = sin(X) + 0.01, (5.22)

with f ‘-s’ Cauchy(0,1) independent of X N(0, cT2). When o is small, the quantity

g’(x)/g(x) gets large. Thus we anticipate that the Nadaraya-Watson MREWLE does

not behave well for small a.

We estimate the parameter function in the interval x € [—2a, 2u], two standard devia

tions away from its normal mean. Figure 5.4 plots the estimates for the case n = 200

and a = 0.25. The bandwidth is Ii = .15. The Nadaraya-Watson MREWLE has a large

bias. The locally linear smoother MREWLE provides a suitable estimation.

Simulation 3. Instead of estimating the location parameter function, consider the fol
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x

Figure 5.1: A comparison of the Nadaraya- Watson MREWLE with the locally linear

smoother MRE WLEfrom Model (5.21) with n = 200. The true curve is a, the Nadaraya

Watson MREWLE, b, and the locally linear smoother MREWLE, c.
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Figure 5.2: The Nadaraya-Watson MREWLE based on five simulations from Model
(5.21) with n=200.
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Figure 5.3: The locally linear smoother MREWLE based on five simulations from Model
(5.21) with n=200.
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Figure 5.4: A comparison of the Nadaraya- Watson MREWLE with the locally linear

smoother MRE WLEfrom Model (5.2) with n = 200. The true curve is a, the Nadaraya

Watson MREWLE, b, and the locally linear smoother MREWLE, c.
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lowing model:

fyix=(y) y’exp(
(x)

(5.23)

with a = 1, 3(x) = 2 + 4x(1 — x) and X Uniform(O,1). A typical realization with

n = 200 is shown in Figure 5.5. The bandwidth used here is h = 0.25. The Nadaraya

Watson MREWLE has a large bias, while the locally linear smoother MREWLE per

forms reasonably well in tails.
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Figure 5.5: A comparison of the Nadaraya- Watson MREWLE with the locally linear

smoother MRE WLEfrom Model (5.23) with n = 200. The true curve is a, the Nadaraya

Watson MREWLE, b, and the locally linear smoother MREWLE, c.
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Chapter 6

A Relevance Weighted

Nonparametric Quantile Estimator

6.1 Introduction

This Chapter concerns situations in which a sample X1 = x1, ..., X, = x of inde

pendent observations are drawn from populations with different CDF’s F, ..., F,

respectively. Inference is about an attribute Oo of another population with CDF Fo; an

observation may be available from the latter population as well. In this Chapter 9 will

be a quantile of Fo; elsewhere we address other problems of interest within the same

general framework. The {F} are unknown, so that we are in the nonparametric case.

The special character of the problems investigated in this problem derives from the be

lief that there is relevant information in the X, i = 1 ,..., ii about Oo. However this

information is deemed to be “inexact”. By this we mean it cannot be translated into

a prior distribution from which a marginal posterior distribution for Oo could be con

structed. And we mean there are no known structural constraints among the attributes

of the various populations to force the x, . ., x into inferences about 00.
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The example given below illustrates the problem. That example reflects the situation

underlying nonparametric regression. In fact, our approach may be thought of as gen

eralized smoothing. In nonparametric smoothing it leads to locally weighted regression

quantile estimators 00(t), — < t < cc, for even rough regression quantile functions

—cc < t < cc, if the relevance of the x(t)’s corresponding to ti’s remote from

t can be ascertained. Our method bears on other problems like those of meta analysis

where there is no well defined underlying mathematical structure. In Section 6.8, we

briefly discuss linkages with standard statistical methods.

As we have noted in Chapter 2, there are problems where relevant sample information

about 0 may be used to advantage. Yet there does not seem to be a general theory

underlying such problems. How to use the relevant sample information like that en

countered in metaanalysis, thus becomes an important topic which seems to have been

addressed largely on a piecemeal basis.

In Chapter 3, we introduced the “relevance weighted likelihood” (REWL) as a general

device for using relevant sample information in parameter estimation. However, when

we cannot specify the population CDF’s parametric form the REWL based theory is

of no avail. To cope with such problems we introduce in this paper a nonparametric

but general theory based on an extension of the empirical distribution function which

we call the REWED (“Relevance Weighted Empirical Distribution”). We then tackle

the problem of quantile estimation within that framework which is examplified by the

following example.

Example 6.1 Distribution Smoothing. Let X(t) have distribution function Ft;

o < t < 1, i = 1,. . . ,n. Assume that X(t1), ... , X(t) are independent and that F

changes smoothly with t, ‘smooth” meaning sup Ft(x) — Ft+(t)(x) —* 0 as A(t) —+ 0.
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We seek to estimate F for a fixed t.

In general, let F0 be an unknown distribution function describing the population of

interest. The classical paradigm would assume independent and identically distributed

(hereafter iid) observations from F0. Here instead, only observations from other pop

ulations described by CDF’s F, i = 1, 2, ..., n are available. If we believe the {F},

i = 1,2, ..., n are related to F0, x1,x2, ... , x, may be used for inference about attributes

of F0. The question is how.

In this Chapter, our answer to this question uses the REWED, defined in Section 6.2.

From the REWED we can construct moment estimators for parameters defined in terms

of the moments of F0 [this idea will be discussed elsewhere]. But here we consider only

the estimation of the quantiles of F0.

In Section 6.2, the REW quantile estimator will be defined in addition to REWED for

the problem identified by the last example. And we will offer generalizations along with

some examples.

Strong consistency of the REWED and the quantile estimators are stated in Section 6.3

and proved in Section 6.9 under mild conditions. These results generalize the results for

iid sampling. Some other asymptotic properties are given in Section 6.3.

R.R. Bahadur (1966) gives a useful asymptotic representation of the sample quantile as

a simple sum of random variables by using the empirical distribution function. We give

a generalization of Bahadur’s results for general weights {pni} in the non-iid case. This

is the subject of Section 6.4.

We discuss the asymptotic normality of the REW quantile estimator in Section 6.5. In
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Section 6.6, we apply the theory of this paper. We get reasonable estimators for location

parameters for several distributions. By comparing them with the weighted sample

mean, we find their asymptotic relative efficiency (ARE) in the iid case to be fairly

high. Section 6.7 presents the results of a simulation study, using the REW quantile

estimator for the nonparametric smoothing model. The proofs of our Theorems appear

in Section 6.9.

6.2 The REWED and REW Quantile Estimation

Let us reconsider Example 6.1. Because t —* F changes smoothly, we could hypo

thetically use pFt(x) to approximate Ft(x). The choice of the weights pj would

depend on the perceived relationship between Ft: and Ft(x). [The {pt} might plausibly

be generated from a kernel.] But the {F1} are unknown. So instead we must use the

data, X(t), i = 1, ..., ii to estimate Ft(x), say by1pI(X(t) x), I(.) being

an indicator function. This empirical distribution we will call the relevance weighted

empirical distribution (RE WED).

Estimating F(x) by the REWED results in two errors from: (i) using pjFt(x) to

approximate F(x); (ii) using1pI(X(t1) x) to estimate Much of

this Chapter will be concerned with (ii).

To generalize the ideas in the above example, let

X [X1, . .., X,]; n> 1

be a triangular array of row-independent random variables with associated array of

distribution functions, F ( [F1, ..., F,]; n > 1 and nonnegative constants

def
Pn — [Pni, .., Pnnl, 1
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satisfying 1. Define:

• the relevance weighted empirical distribution function (REWED) by

F(x) =

• the relevance weighted average distribution function (REWADF) for —cc < x <cc

by

=

• the pth quantile of i by

p(n) = inf{x : ,(x) p} 0 <p < 1;

• the pth relevance weighted quantile (REWQ) estimator by

= inf{x : F(x) > p}

for a sample {X1,...,

To illustrate the use of these REW quantile estimators, we offer the following example.

Example 6.2 Nonparametric Regression. Let

= f(x) + e x E [a, b] i = i, 2, ... , n;

here e, e2, ... , e are iid, symmetric, E(e) = 0 for all i, and f(x) is a smooth function.

To estimate f(x) we may use the median of the RE WED. This kind of estimator is

usually robust and it often quite efficient.
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6.3 Strong Consistency of REW Quantile Estima

tors

In this section, we describe strong and uniform consistency properties of the REWED.

Then we describe the strong consistency of the quantile estimators derived from the

REWED. In the following discussion, we assume that F is the CDF of interest and
,

its pth quantile.

Theorem 6.1 (Strong Consistency of F(x)). a) Suppose exp(—e2K) < for

all e> 0, where I =
(1p)—1. Then F(x) — F(x)I —*0 a.s. for all x.

b) Further, if IF(x) — —* 0 for all x, then IF(x) — F(x)I —* 0 a.s. for all x.

Corollary 1. If log(n)/K = o(1), then

F(x) — F(x)I —* 0 a.s. for every x. D

The hypothesis of the theorem is easily satisfied. If, for example, maxj{pni} =

then the hypothesis is satisfied. The assumption F(x) — —* 0 for all x is essen

tial; without this, we cannot get a consistent estimator of the CDF F(x). Qualitatively

this condition is the one which gives operational meaning to the notion of “relevance

weights”.

Theorem 6.2 (Uniformly Strong Consistency of F(x)) a) Under the hypothesis of

Theorem 6.1 a), and the further assumptions that (i) sup,f(x) is bounded and, (ii)

limsupM,supfl{(1 — (M)),(—M)} —*0, where f(x) is the derivative of F(x),

then

sup F(x) — —* 0, a.s..
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b) Further, if sup F(x) — —* 0, then

sup F(r) — F(x) — 0, a.s..

When the distributions underlying our investigation derive from the same family, the

conditions of the last theorem are usually satisfied.

Theorem 6.3 (Strong Consistency of ) Under the conditions of Theorem 6.2 a),

suppose x = solves uniquely the inequalities F’(x—) <p < (x). Then

np — p(n) 0 a.s. for n —* cc.

b) Further, if sup IF(x) — —* 0, then

— , —* 0 a.s. for n —* cc.

The uniqueness condition on ‘p(n) imposed in the last theorem cannot be dropped.

We finish this section with the following theorem giving a probabilistic inequality for

quantile estimators. This theorem will be used in next section.

Theorem 6.4 Suppose x = p(n) solves uniquely the inequalities P’,(x—) p (x)

for any given p E (0, 1). Then

p(n) > e) 2exp{—2(n)K}

for every e > 0 and n, where 5’(n) = min{P’(() + e) — p,p — —

The last theorem shows P() p(n)1 > e) converges toO exponentially fast. The value

of e (> 0) may depend upon K if desired. These bounds hold for each n = 1, 2,

and so may be applied for any fixed n as well as for asymptotic analysis.
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6.4 Asymptotic Representation Theory.

For the case of iid data and pj = 1/n, i = 1,..., n, Bahadur (1966) expresses sample

quantiles asymptotically as sums of independent random variables by representing them

as a linear transform of the sample distribution function evaluated at the relevant quan

tile. From these representations, a number of important properties ensue. (see Bahadur

1966 and Serifing 1980 for details). We now generalize this asymptotic representation

to the cases of non-iid observations and general p,1.

Theorem 6.5 Let 0 <p < 0 and m = maxi<:<n{pn}. Suppose:

1. F has bounded second derivative in the neighbourhood of() with F,()) =

2. there exists c> 0, such that inf J(()) > c;

3. there exists c > 0 , such that < cc;

4. F has a uniformly bounded first derivative in the neighbourhood of();

5. m,, =o{K3/4(logK)’/4}.

Then
p—F(())

np = p(n) + + R.
JnIcp(n))

where

= O{K,314(logK)314}, n —* cc, with probability 1.

The Bahadur representation is a special case of this theorem suggesting the result of

our theorem may be fairly accurate, that is hard to improve upon.
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The distribution of REW sample quantile is usually hard to find, but the REW sample

distribution relatively easy. By this theorem, we can use the REW sample distribution

function evaluated at the relevant quantile to study the REW sample quantile asymp

totically. A simple example is that we can use this representation to prove quite easily

the asymptotic normality of the REW sample quantile.

6.5 Asymptotic Normality of

Except for the case of iid random variables, we cannot always find the exact distribution

of . The asymptotic distribution of given in the following theorem may therefore

be useful.

Theorem 6.6 Let 0 < p < 1 and V = — Assume P’

is differentiable at p(n), inf > c > 0 and maxi<j<n(pnj’/2)—* 0 as n —* co.

Then

llm - ())V”2<t} = (t)

where (t) is the distribution function of N(0, 1).

6.6 Applications

In this section, we use REW sample quantiles to estimate location parameters, and

compare these estimators with the weighted sample mean estimators.

Example 6.3 Let {X} be an independent sample with X N(,u,o) i = 1, ... ,

the a being known and it unknown. An estimate of it is required.
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Analysis of Example 6.3 Using the weighted sample mean to estimate seems nat

ural:

i%=YZcX, c=1andc>0.

We easily deduce that c = [o2]/[Z1u2] minimizes the mean squared error. Then

AN{, ( 1/u’}.

Now let us try using the median to estimate . Let be the distribution of X and

= pF,,j. The median of F is t and we use the sample median med to estimate

i’• By the results of Section 6.5, we get

-‘n 2
A7.Tf

_________________

cmed ‘‘ i-iJv1fL,
,1i—n .c .1i=iPnjnPii

here fT(Iu) =

We want to minimize the variance of the asymptotic distribution subject to p = 1.

We easily obtain =
/o

The asymptotic relative efficiency of these two estimators is

ARE(I%,Imed) =

Remarks 1 1. For the iid normal case, the ARE of the sample mean estimator

relative to the sample median estimator is . Here we have proved that when

the samples are from normal distributions with the same mean, but different

variances, the ARE of the weighted sample mean estimator relative to the

weighted sample median estimator yields the same value .

. The weights used in the sample mean are different from the weights used in

the sample median. We only compare the two best estimators here. If we use

the same weights, the ARE can be larger or smaller than .
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3. The weighted sample median should be more robust than the weighted sample

mean.

Example 6.4 Consider the double exponential family. Assume the density of X to be

1/2r exp(—x — /r); the r are known while j is unknown i — 1,. . . , n. We again use

the weighted sample mean and weighted sample median of Example 6.3 to estimate t.

Analysis of Example 6.4. Choose c = (r2)/(1r2) to minimize the mean

squared error. Then

AN{, 2/( 1/r)}.

By choosing = (1/r)/(11/ri), we get the weighted sample median med From

the results of Section 6.5,

med AN(,

The asymptotic relative efficiency of these two estimators is

ARE(I2,*med) = 2.

Remarks 2 1. The ARE of the best sample mean estimator relative to the best

sample median estimator does not depend on the {r} ‘s. The median is a

more efficient estimator.

2. As in the normal case, the weights used in the sample mean do not equal the

weights used in the sample median.

3. The weighted sample median should be more robust.
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6.7 Simulation Study

We have shown via asymptotics that the REW quantile estimator possesses a number

of desirable asymptotic properties. In this section we use two simulated examples to

obtain insight into its performance with a finite sample.

The model in Example 6.2 is used in this simulation where we compare the REW quantile

estimator with the Nadaraya-Watson estimate. The Gaussian kernel function is used to

generate the relevance weights.

Simulation Study 1. A random sample of size n is simulated from the model

Y=X(l—X)+,

with N(0, 0.5) independent of X U(0, 1). A typical realization when n = 1000

is shown in Figure 6.1. The bandwidth used here and in all subsequences is h = 0.1 (
choosed by eye). Let us next add 50 outliers from N(2, 0.5) to the simulation experiment

just described. The result is shown in Figure 6.2. We have not used the boundary

corrections.

Simulation Study . In the model of Simulation 1, instead of using the normal error,

we get the from a double exponential distribution with r = 0.1. Figure 6.3 shows the

results of a curve fit based on 100 simulated observations. The simulation results with

10 outliers from N(— .5, 0.25) are shown in Figure 6.4.

For the data of Simulation 1 without outliers, the quantile curve estimate obtained by

using the REW quantile estimator is shown in Figure 6.5 with 0.25 quantile.

The results of the simulation can be summarized as follows:
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Figure 6.1: A comparison of the Nadaraya- Watson estimate with REW quantile estima

tor. The model is Y = X * (1 — X) + e, where X is uniform (0,1) and e is N(0,0.5).
The sample size n = 1000 and the bandwidth, h = 0.1. The true curve is a, the REW
quantile estimator, b, and the Nadaraya- Watson, c.
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Figure 6.2: A comparison of the Nadaraya- Watson estimate with REW quantile estima
tor with outliers. To the data depicted in Figure 6.1, we add 50 c-outliers from N(2, 0.5).
The true curve is a, the REW quantile estimator, b, and the Nadaraya- Watson, c.
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Figure 6.3: A comparison of the Nadaraya- Watson estimate with REW quantile estima

tor. The model is Y = X*(1—X)-I-e, where X is from uniform (0,1) and e from a double

exponential distribution with r = 0.1. The sample size is n = 100 and the bandwidth,

h = 0.1. The true curve is a, the REWquantile estimator, b, and the Nadaraya- Watson,

C.
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Figure 6.4: A comparison of the Nadaraya-Watson estimate with REW quantile es

timator with outliers. To the data depicted in Figure 6.3, we add 10 c-outliers from

N(—.5, .25). The true curve is a, the REW quantile estimator, b, and the Nadaraya

Watson, c.
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Figure 6.5: A REW quantile estimator of a quantile curve. The .25 quantile curve is
estimated for the data depicted in Figure 1. The true quantile curve is a, and the REW
quantile estimator is b.
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1. In the model of Example 6.2, when the error has the double exponential distri

bution, the REW quantile estimator performs a little better than Nadaraya

Watson estimate, see Figure 6.3. Even when the error is normal, the REW

quantile estimator performs about as well as the Nadaraya-Watson estimate

(see Figure 6.1).

2. When the data have a small fraction of outliers, say about 5 or 10 percent, the

REW quantile is robust (see Figures 6.2 and 6.4). By contrast, the Nadaraya

Watson estimator fails. This observation suggests we use the REW quantile

estimator and Nadaraya-Watson estimate together to diagnose the model and

determine if there are outliers in the data set. If the REW qiiantile estimator

and Nadaraya-Watson estimate disagree, then we should reconsider the model

and the outliers.

3. The REW quantile estimator seems promising judging from these simulation

studies.

4. Computing the REW quantile curve estimator took about one minute in

Simulation Study 1 using Splus in a Sun workstation.

6.8 Discussion

We have presented a general method for estimating a population quantile based on inde

pendent observations drawn from other related but not identical populations. We have

shown the estimator to be strongly consistent and asymptotically normal under mild as

sumptions. Our method derives from a generalization of the empirical distribution (the

REWED), and we have shown that the latter is also strongly consistent under certain

conditions.
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The context of our method includes that of nonparametric regression and smoothing.

Thus our estimator may be viewed as a generalized smoothing quantile estimator. In

the special case of Example 6.2, we obtain a nonparametric-nonparametric quantile

estimator in as much as nothing is assumed about the form of the population distribu

tions involved. In particular, as the Examples of Section 6.6 show, heteroscedasticity is

allowed in the smoothing context.

Our theory depends on the relevance weights, {p} used to construct the REWED.

These weights express the statistician’s perceived relationships among the populations

and would usually be chosen on intuitive grounds. Making F approximate F well is

a primary objective in this choice. Additional restrictions on the {p} stem from the

large sample theory developed in this paper. Theorems 6.1, 6.2, and 6.3 on consistency,

for example, require that exp(—€K) < oc for all > 0 where iç = (
This imposes a requirement that the {p,,} —* 0 fairly rapidly as n —* oc, say faster

than 1/log(n). And for asymptotic normality, we see in Theorem 6.6 the requirement

that maxi<j<n(pj_h/2) —* 0 as n —* oo where V = —

We believe these conditions offer some guidance on the choice of the relevance weights

without unduly restricting it. In the smoothing model, we can usually use the kernel

weights as the relevance weights like we did in the simulation study. The kernel weights

usually satisfy the above conditions. F(x) also arises as a population distribution

estimator in finite population sampling theory (see Sarndal, Swenson and Wretman 1992,

p199) where may be regarded as the distribution function of the subpopulation from

which x is drawn; here p2 =
lrI’, 7t being xi’s selection probability, i = 1,. . . , n..

We would note a Bayesian connection with our theory. If the {p11,} are thought of as prior

weights, then F is just the marginal CDF of the independent observations obtained by

mixing the conditional models {F }. Viewed from this perspective, the weights should
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be chosen to make the CDF for the population of interest, F, that marginal CDF.

We would note that incidentally this paper does provide a large sample theory for the

Bayesian marginal mixture distribution, in particular for the quantiles of that mixture

distribution.

6.9 Proofs of the Theorems

Lemma 6.1 ( Marcus and Zinn, 198). Let {c}, n = 1, ..., oo, be a sequence of real

numbers and {X}, n = 1, ..., oo, a sequence of independent random variables. Define

U(t) by

U(t) = c[I(X <t) — P(X <t)].

Then

> A) exp(—A2/8)(l + 2)

for all A > 0. D

Pro of of Theorem 6.1.

F(x) - = x) - F(x)fi

say. So on applying Lemma 6.1 with A =

P(F(x) - > )
>

(1 + 2/21reK/2)exp(_e2Kn/8)

for every e> 0. The assumption, exp(—c2K) < oo, implies that K,., —* when

n —+ cc. It follows that for every C> 0, there exists N, such that for every n > N

(1 + 2V2KeK2) <(eKfl)
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Consequently

(1 + 2V2eI2)exp(_fl) exp(—).

But > exp(—€2K) < oo for all > 0. So exp(—-) < 00 for every > 0.

Hence

P(F(x) — > ) <00 for all >0.

The Borel-Cantelli Lemma then implies

F(x) — P’(x)I —+ 0 a.s. for every x. 0

Proof of Theorem 6.2. Let M be a large positive integer and

= max IF(i/M) —
—M2<i<M2

By Theorem 1, u —* 0 a.s.. Also monotonicity implies that for (i — 1)/M < t <i/M

— P(t) < F[i/Mj — — 1)/M]

= [F[i/M] — [i/M1] + [.L[i/M] — — 1)/M]].

By similar reasoning,

— P(t) [F[(i — 1)/M] — — 1)/M]] — [P’[i/M] — — 1)/M]].

So

lim sup F(x) — P’(x)I
n—*oo

limsupu+limsup max {() —
1),1 —(M),(—M)}

—M2<<M2 M M

limsupu + 1imsupM’sup,f(x) + limsup{(1 —
n—* n-÷co n—oo

under the assumptions. Since M is arbitrary, the result follows. 0
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Proof of Theorem 6.3. Let e> 0. By the uniqueness condition and the definition of

Pn(p(n) — €) <P < n(pn + c).

By Theorem 6.2, F(() — — — —* 0 a.s. and F(() + e) — + e) —*

0 a.s.. Hence P[Fm(p(m) — 6) <p < Fm(p(m) + e), for all m n] —* 1 as n —* cc.

That is, P(5UPm>n pm — p(m)I > e) —* 0 as n —* cc. This completes the proof. D

To prove the Theorem 6.4, we need the following useful result of Hoeffding (1963).

Lemma 6.2 Let Y1, ..., Y, be independent random variables satisfying P(a < Y <b) =

1 for each i, where a <b. Then fort > 0,

— E()] > t) <exp(_2t2/(b— aj)2). 0

Proof of Theorem 6.4. Fix e > 0. Then

—
> e} + e} + —

But with Y = pI(X > p(n) + e),

p(n) + }
= P{p > F(() + €)}

= > p(n) + e) > 1
—

p}

= — E()) > 1
—

p — pj(1 — + e))}

=
F{(1 - E()) > n(p(n) + e) — p}.

Because P(0 p,j) = 1 for each i, by Lemma 6.2, we have

p(n) + e) exp(—2S/p) = exp(—26K);
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here 6 P’(() + e) — p. Similarly,

p(n) — e) exp(—26/p) = exp(—26K)

where 62 = p —
—

Putting 6E(n) = min{Si, 62}, completes the proof. D

To prove Theorem 6.5, we need the following results (see Shorack and Weliner, 1986,

page 855)

Lemma 6.3 (Bernstein) Let Y1,Y2, ..., Y,., be independent random variables satisfying

PY — E(Y) <m) = 1, for each i, where m < oo. Then, for e> 0,

- E()) 2exP[_2 VarO) +

for all n = 1, 2

Lemma 6.4 Let 0 <p < 1. Suppose conditions 1-3 of Theorem 6.5 hold. Then with

probability 1 (hereafter wpl)

(/7+ 1)K;’/2(log K)1/2
np — p(n)I

Jncp(n)

for all sufficiently large n.

Proof. Since F is continuous at p(n) with F,()) > 0, p(n) solves uniquely P(x—)

p < (x) and p = Put

= (+1)K112(log
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We then have

+ Cfl)
—

p = P(P(fl) + n) — n(p(n))

!n(p(n))en + o(e)

/7(iog Kn)”2/K?’/2

for all sufficiently large n.

Likewise we may show that p —
—

e,) satisfies a similar inequality. Thus, with

as defined in Theorem 6.4, we have

2KflSE(n)2 clogK

for all n sufficiently large. Hence by Theorem 6.4,

2
— p(n) > en)

for all sufficiently large n.

This last result, hypothesis 3 of this theorem and the Borel-Cantelli Lemma imply that

wpl np — p(n) > e holds for only finitely many n. This completes the proof. D

Lemma 6.5 Let 0 <p < 1 and T be any estimator of p(n) for which T — —+ 0

wpl. Suppose F has a bounded second derivative in the neighborhood of p(n). Then

wpl

n(Tn) — Pn(p(n)) Fp(n))(Tn — p(n)) + O((Tn —

as n —* cc.

Proof. The proof is an immediate consequence of the Taylor expansion. D

114



For convenience in presenting the next result, we set

D(x) = [F() + z) — — + x) —

Lemma 6.6 Let {a} be a sequence of positive constants such that

a coK,1”2(log K)

as n —* oo, for some constants c0 > 0 and q 1/2. Let m = maxi<j<n{pnj} and

= sup
IxIan

If m =o(K;3/4(1ogK)(_l)/2),then under the hypothesis of Theorem 6.5, wpl

=

Proof. Let {b} be any sequence of positive integers such that b coK/4(1og K)

as n —+ . For successive integers r = —ba, ..., b, put i = ab’r and cr,n =

P’(() + 97r+i,n) — Pn(p(n) + ?lr,n). The monotonicity of F and i’r, implies that for

“lr,n X 7r+i,n,

D(x) [F(() + ?7r+i,n) — — + ‘7r,n) —

Dn(i7ri,n) + [F(() + llr+i,n) — F(() + ‘lr,n)].

Similarly,

D(x) Dn(ir,n) — [F(() + 77r+i,n) — F(e() +

So

< A +

where A = max{Dn(iir,n) : —b r b} and /3 = max{ar,m : —b r b — 1}.

Since ?lr+1,n — ‘lr,n = ab’ -‘ K314, —b r b — 1, we have by the Mean Value
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Theorem that

[sup + x)](ii,
— ) [sup + x)]K314,

IxIan IxI<an

—b <r < b — 1. Thus

= O(K3I’4), ii —* oo.

We now establish that wpl

A O(I3/4(1ogKn)+1)) as n —*

By the Borel-Cantelli Lemma it suffices to show that

) < oc

where ‘y = ciI/(log K)(1) for some constant > 0. Now

P(A > 7n) P(Dn(ir,n)I 7n)
r=—b

And

IDn(r,n)I = I E + r,n)) — E(I(X E + r,n))))I

by definition. With Y = pI(X E Bernstein’s Lemma (see Lemma

6.3) implies

P(IDn(77r,n)I y,) 2exp(—-y,/D)

where D = 2Z1Var()1) + 2/3in-y.

Choose c2 > sup Then there exists an integer N such that

+ a) — < c2a
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and

— — a) < c2a

both of the above inequalities being for all n > N and i = 1,. . . , n. Then

Var() <Zpc2an = K’c2a.

Hence

‘y/D 7/{2K’c2a+ 2/3m7} c1ogK/(4c2co)

for all sufficiently large n. The last result obtains because of the condition m =

o(KI(1og K)(_l)/2).

Given Co and c2, we may choose c1 large enough that c(4c2Co)’ > c + 1. It then follows

that there exists N* such that

P(Dn(??r,n) y) 2K1)

for all r < b and n > N*. Consequently, for n > N*

P(A > 8bK*+).

In turn this implies

P(A ‘) 8Kv.

Hence P(A,. > ) <oc, and the proof is complete.

Proof of Theorem 6.5. Under the conditions of Theorem, we may apply Lemma 6.4.

This means Lemma 6.5 becomes applicable with T = and we have wpl,

n(np) —
p(n)) = — + O(I log Ku), as n —* oc.

Now using Lemma 6.6 with q = 1/2, and appealing to Lemma 6.4 again, we may pass

from the last conclusion to: wpl

— = — ()) +O(K314(logK)314), as n —p oc.
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Finally, since wpl: = p + O(m), as n —* oc, we have wpl

p — Fn(pn) = fn(p(n))(np — p(n)) + O(K314(1ogK)314), as n ‘

This completes the proof. D

Proof of Theorem 6.6. Fix t, and put

G(t) = P[fn(p(n))(np — tJ = an],

where a = p(n) + Then by the definition of

Gn(t) = P(F(a) > p).

Thus

G(t) = P(pnjI(Xnj a,) p)

= P(V112 pnj(I(Xnj a) — E(I(X a,))) V-’/2— <an))])

= P(Z ca);

here

Z = V”2p (I(X <an) — E(I(X <an)))

and

c = — an))]

We first prove Z —* N(O, 1) in distribution and then that c,., —* —t as n —* oo to

complete the proof. To this end

Z = <an) — F(a)) =

where ij = pV;112(I(X a) —

From the condition maxi<j<n(pnj_h/2)—* 0, we get maxi<j<npnj —+ 0 and V, —+ 0. We

then easily obtain for every > 0 and r > 0:
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1. 11P(ri ) —* 0. (since i7j 2maxi<j<n(pnjT’/2)—* 0);

2. < r)) — (siriceE(rinjI(inj < r)))2] —* 1. (For n large

enough, I77ni <r)) = 1);

3. E(?)niI(ni < r)) —* 0.

So Z,- —* N(0, 1) in distribution by the CLT (see Chung, 1968, page 191) for triangular

independent random variables.

Next we prove Cn + t.

Cn
= V_112 — an))]

= V”2p(F() —

=
“2pni(fni(p(n))(an — p(n)) + o(a — p(n)))

—* —t asn—*oo.

The proof is now complete. D
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Chapter 7

Some Further Results

In this Chapter we discuss some further results about the use of relevant sample infor

mation. In Section 7.1, we consider the locally polynomial MREWLE for generalized

smoothing models. We show that the locally linear MREWLE has many desirable prop

erties.

In Chapter 3, we have considered the full parametric approach to relevant sample anal

ysis. Chapter 6 proposes a kind of nonparametric approach. In Section 7.2, we outline

a semiparametric approach by using estimating functions.

7.1 Locally polynomial maximum relevance weighted

likelihood estimation

Locally regression is a popular form of nonparametric regression, combining excellent

theoretical properties with conceptual simplicity and flexibility to find structure in many

datasets. The method was introduced by Stone (1977) using a rectangular window.

Cleveland (1979) introduced his lowess procedure, which is based on locally polynomial
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fitting and incorporates many important features, such as design adaptiveness , kernel

weighting and robustness. Recently, Fan (1992, 1993) has studied minimax properties

of locally linear regression. A detailed summary of the advantages of locally regression

compared to kernel fitting may be found in Hastie and Loader (1993). Fan, Heckman

and Wand (1993) have studied locally polynomial kernel regression for generalized linear

models and quasi-likelihood functions. Weerahandi and Zidek (1988) present locally

smooth processes from Bayesian viewpoint.

In this section we investigate the generalization of locally polynomial fitting with ker

nel methods for the MREWLE in the case of generalized smoothing models. We are

motivated by the fact that locally regressions are both intuitively and mathematically

simple which allows us to achieve a deeper understanding of their performance.

In the generalized smoothing model of Chapter 5, when we suppose that 8 has q con

tinuous derivatives, then in a small neighborhood of a point x,

() (x)
8(z) = 0(x) +0 (x)(z — x) +... +

q
(z — x) + o{(z — x)}

= o+i(z—x)+ ...+q(z_x) +o{(z_x)}. (7.1)

To estimate 0(x), we want to use the information from {(11,X1)}. As with the relevance

weighted likelihood in Chapter 5, we define the locally polynomial relevance weighted

likelihood at the point x to be

(7.2)

Here {pj} are the relevance weights.

One would then estimate (%,. . . , /3q) by maximizing the local polynomial relevance

weighted likelihood (7.2). This is locally polynomial MREWLE. Because + /3(z —

x) + . + /3q(z —

x) is a better approximation to 0(z) than 8(x), the locally polynomial
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REWL in (7.2) is better than the REWL in Chapter 5. We would expect the locally

polynomial MREWLE to perform better than its locally constant counterpart.

There are many possible strategies for weighting the likelihood (See Chapter 5). Be

cause of their mathematical simplicity we will use kernel weights, the Nadaraya-Watson

weights in Chapter 5.

The locally polynomial kernel MREWLE of 0(x) is then given by

0o(x;q,h)

where (,Bo,. . . , /q) maximizes

— X)logf{}’3o + .
—

Note that in the case q = 0, the estimator of 0(x) is the Nadaraya-Watson MREWLE

in Chapter 5.

Locally polynomial fitting also provides consistent estimates of higher order derivatives

of 0(x) through the coefficients of the higher order terms in the polynomial fit. Thus,

for 0 r < q, we define locally polynomial MREWLE of 0(r)(x) to be

q, h) = r!$r.

We leave the investigation of the asymptotic properties of Or(x; q, h) to future work.

In most applications, we are interested in a low-degree polynomial ( p = 1, 2, or 3).

For brevity, we consider the locally linear MREWLE in this section. The locally linear

MREWLE maximizes

EKh(x —X3)logf{}’,t30+ 3i(x — X)}.
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The corresponding locally linear REWL equations are

ölogf{,f3o + /3i(x — X)}
Kh(x—X) =0

U/Jo

and

=0.

We state the following asymptotic properties of the locally linear MREWLE as conjec

tures. Proof will be left to future work.

Assume that the second derivative of 0 is continuous. If h —* 0 and rih —* co, then

under Assumption 5.1, for x E (a0,b0), the locally linear REWL equations admit a

sequence of solutions {O(x, 1, h)} satisfying:

[flhTh(x)I{O(x)}]l/2[(
1,h) - 8(x)

- 0”(x)cKh{1
+ O(h)}]

N(0, 1).D (7.3)

So the asymptotic bias and variance are 8”(x)cKh/2 and dK/{nhg(x)I{8(x)}] respec

tively.

Now we compare the result of above statement with Theorem 1 of Fan (1992) for locally

linear regression. Fan (1992) proved that under certain conditions, the locally linear

regression estimator 8 has MSE

E{O(x) - o(x)}2 = {8”(x)
}22h4 +

nhgx
+ o(h + ). (74)

From the bias and variance comparison, we find the locally linear MREWLE and the

locally linear regression estimator have the same bias. But the locally linear MREWLE

always has smaller variance which depends on Fisher information. Also the locally

linear regression estimator only works for a location parameter, while the locally linear

MREWLE works for any parameter.

123



Fan (1992) also show that locally linear regression estimator is the best among all the

linear estimators of 8(x). The above result of the locally linear MREWLE tells us that

we usually can find a better estimator than the locally linear regression when the density

f{y:,O(x)} is known.

This result supports the argument in Section 5.2, that when we know the distribution

family, the linear smoother is asymptotic inadmissible. In the next section, we will show

that the locally linear MREWLE is the best among all the locally linear estimators for

estimating functions.

This locally linear MREWLE has all the desirable properties discussed in Fan (1992).

Now we use a simple simulation to illustrate its finite sample behavior.

We use the model given in (5.21). The simulation sample size n = 200, bandwidth

h = 0.1, and Gaussian kernel function are used. Three methods are used: the Nadaraya

Watson MREWLE, the locally linear smoother MREWLE (defined in Chapter 5) and

the locally linear MREWLE. Figure 7.1 shows a comparison among these three methods.

The locally linear MREWLE based on five simulations is shown in Figure 7.2.

From Figure 7.1, both the locally linear smoother MREWLE and the locally linear

MREWLE perform very well. The Nadaraya-Watson MREWLE has large boundary

effects. The locally linear MREWLE works excellent as showing in Figure 7.2. From

the results of Simulation 1 of Chapter 5 and Figure 7.2, We can conclude that the locally

linear MREWLE is the best.
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Figure 7.1: A comparison of the Nadaraya-Watson MREWLE, the locally linear

smoother MREWLE and the locally linear MREWLE from Model (5.21) with n=200.
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7.2 Relevance weighted estimating functions

For the exact sample case, it is well known that in many practical circumstances, where

even though the full likelihood is unknown, one can specify some relationship about

the parameters. For example, if we can specify the relationship between the mean

and variance, then we use a quasi-likelihood function approach. More generally, the

theory of estimating functions (which include quasi-likelihood as a special case) have

been developed in the series papers of Codambe (e.g. Godambe (1960), Godambe and

Thompson (1974), Godambe (1976)). This theory focused initially on the elementary

fact that any point estimator may regard as the solution of an equation

(y, 0) = 0. (7.5)

for data vector y and parameters 0. Unlike traditional approachs, however, which impose

conditions on estimator as unbiasedness, invariance etc., the approach here focuses on

properties of the estimating function itself, rather than the estimator derived from it.

Thus, instead of dealing with linear estimators, unbiased estimators and so on, we deal

with linear estimating functions, unbiased estimating functions and so on.

The simplest condition one might impose on an estimating function is that of unbiased-

ness, i.e.

Ee(Y; 0) = 0.

Note that this does not necessarily imply unbiasedness of the corresponding estimator

unless is linear in 0. However, under suitable regularity conditions it does imply

consistency of the estimator.

Clearly, there will be a great variety of competing estimation functions. Godambe

(1960) suggested that an optimal estimating function (OEF) would be one for which
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the efficiency index

E1
E8(2)

76
— {E(a/ao)}2

takes its smallest possible value among all unbiased estimation functions.

Under the type of regularity conditions used in the Cramer-Rao argument, Godambe

(1960) showed that the least possible value of (7.6) is attained, in the one parameter

case by the score function
— 9logf(y,O)

98

Moreover, the smallest possible value is the reciprocal of Fisher information function.

We thus have a justification for maximum likelihood estimation which unlike more tra

ditional arguments, does not rely explicitly on asymptotics.

This fairly general situation includes many models important in application. Examples

are:

• nuisance parameter model e.g. Neyman and Scott (1948);

• location model i.e. F = {f(x — 0) = f unknown };

• scale model, F {f(x/0) = f unknown };

• semi-parametric models such as Cox’s regression model, Cox (1972);

• generalized linear models with unspecified error distributions (for example, quasi

likelihood models).

In Chapter 2, we have classified different sources of information. For relevant sample

information, the full likelihood approach has been proposed in Chapter 3. Because of

its generality, in this section we investigate the generalization of estimating functions

for the relevant sample, which we call relevance weighted estimating functions.
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Let Y1,• , Yr-, be random variables on a sample space with probability density f(y, 8i),

i = 1,••• , n. Here O is a real- or vector-valued parameter which is assume to be

unknown. Interest lies in the study population corresponding to parameter 8. We know

that there is some relation (see Chapter 2) between O and 8. Our object is to estimate

o on the basis of observed values Yi,• , Y,. If we know the distribution f(y, 0), we can

use the REWL method in Chapter 3. When f(y, 8) is unknown, but we can specify

some relationship about the parameters (for example, E9(Y, 8) = 0), then we should

use the following method of relevance weighted estimating functions instead.

As with estimating equation (7.5) for an exact sample, we define the relevance estimating

equation:

i=1

(7.7)

to estimate the parameter 9 from data Y1, , Y. Here {p} are the corresponding

relevance weights of }‘.

Note that if choose (y, 0) = 8 log f(y, 0)/88, we get the relevance weighted likelihood

equation in Chapter 3. Also if let (y, 8) = y — 0, the relevance weighted estimating

equation become the relevance weighted least square equation.

Since the estimating function (y, 8) is initially used to obtain an estimator by solving

the equation (y, 8) 0, the unbiasedness condition

(7.8)

becomes natural when the sample Y is exact. Now for relevant observations, , from

f(y, O), usually E8(1, 0) 0. This means that relevant samples are usually biased.

This makes us define the bias function for relevant samples as

=E9(Y,0). (7.9)
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Both the bias function in Chapter 4 and 5 are special cases of (7.9).

For competing estimating functions, we define the following efficiency index for estimat

ing function (7.7) as
P(v’ tIv nV2

Eff()
—

(7 10
— [EpO(Y,O)/ãO]2

An optimal estimating function would be one for which the above efficiency index takes

its smallest possible value among all functions which satisfy E9(Y, 0) = 0.

Under certain conditions, we can generalize the results of Chapter 4 to the case of

relevance weighted estimating functions.

We now apply the relevance weighted estimating functions to generalized smoothing

models. Consider a model for the relationship between a dependent variable Y and an

independent variable X. Suppose that Y given X = x satisfy

E(Y0(x)) = 0, (7.11)

where 0 is an unknown smooth function. The NR (Hardle 1990), semiparametric

smoothing models (Severini and Staniswalis 1994), generalized linear smoothing model

(Fan, Heckman and Wand 1993) and generalized smoothing model in Chapter 3 are

special cases of (7.11).

To estimate 8(x), we construct the relevance weighted (REW) estimating equation as

= 0.

As in Chapter 5, we can prove several theorems about the properties of REW estimating

equation. By using the efficiency index (7.10), we can compare the REW estimating

functions.
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Now we extend the idea of locally polynomial approximations to REW estimating equa

tion. For simplicity, we only consider the locally linear REW estimating equations,

which is defined as

p(x){1’,O(x) + 0’(x)(X — x)} = 0 (7.12)

and

+0’(x)(X —x)}(X —x) = 0. (7.13)

The above locally linear REW estimating equations are easily extended to locally poly

nomial REW estimating equations.

If we use the Nadaraya-Watson kernel weights, after some calculation, we get the effi

ciency index for 0(x) to be

O”(x) 2 2 h4
dK E[{Y,0(x)}]2

h4
1

7 14
2

CK fl + nhg(x) [Ea{Y, 0(x)}/ãO(x)]2 + o( + ). (.

The minimum of (7.14) is attained by choosing

o ãlogf(Y,0)

90

This result tells us that the locally linear MREWLE is the best among all locally linear

REW estimating equations (with Kernel weights). So when the likelihood function is

available, we should use MREWLE to extract the relevant sample information from

relevant samples.

Similarly, we can show that the locally linear quasi-MREWLE (maximum relevance

weighted quasi-likelihood estimator) is the best among all locally linear REW linear es

timating equations.

These last two statements ensure that both relevance weighted likelihood and relevance

weighted quasi-likelihood play important roles in generalized smoothing models.

131



Chapter 8

An Approach of Bootstrapping

Through Estimating Equations

8.1 Introduction

This Chapter presents a new bootstrap method. It has computational and theoretical

advantages when the data obtain from non-identically distributed observables. And

it differs from conventional bootstrap methods in that it resamples components of an

estimating function rather than the data themselves.

Various authors explore bootstrap resampling procedures for estimating a sampling dis

tribution in situations where the sampled observables are independent and identically

distributed (c.f. Efron 1979, Bickel and Freedman 1981 and Singh 1981). However,

the potential value of bootstrap methods lies in more complex situations like nonlinear

regression analysis. In such situations standard inferential methods encounter serious

difficulty. A number of authors (Efron 1979, Freedman 1981 and Wu 1986) propose the

use of bootstrap methods instead.
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The recent publications of Hall (1992) as well as Efron and Tibshirani (1993) survey the

literature on bootstrapping. A recent contribution is that of Liu and Singh (1992); it

provides a succinct overview of bootstrapping and assessment of methods for estimating

mean square errors of statistics in heteroscedastic linear regression. Booth, Hall and

Wood (1992) extend the bootstrap to estimate conditional distributions (obtaining con

fidence intervals and hypothesis tests in particular). Lahiri (1992) “fixed “the bootstrap

M-estimator (we offer an alternative in Section 8.6).

However, we describe in Section 8.2 the three principal bootstrapping methods for re

gression; this is necessary to put our results in perspective. Two of these methods

bootstrap residuals. They implicitly assume exchangeability of the residuals and hence

fail to be robust against “heteroscedasticity” of high order moments (the third and

fourth moments, in particular) The third method resamples from the (y, x) pairs and

also encounters major difficulties.

The new bootstrap in Section 8.3 can be used whenever estimating equations define the

estimator. The method, unlike conventional bootstrapping, does not resample the data.

Instead we start with the estimator of interest and generate random estimator to fit

residuals rather than use model to fit residuals. The approximate sampling distribution

for the estimator is then found by taking the empirical distribution of the resulting

estimator plus bootstrapped residuals. A critical feature of our approach is its use

of the components of the estimating function itself to transform the residuals to an

appropriate scale.

For simplicity, we restrict ourselves in this Chapter to estimation for the linear model.

Section 8.4 gives the asymptotic properties of our method, which yield covariance esti

mators having the desiderata listed by Wu (1986, Section 5). In particular, for linear
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regression models (8.1), the proposed covariance estimators are almost unbiased and

consistent for heteroscedastic errors. For homoscedastic errors, we show that one of

these estimators is unbiased for estimating the covariance of the least squares estimator.

The new method is robust against nonhomogeneity, not just of the second, but also of

higher moments. Such robustness is needed in constructing Edgeworth approximations

to the distribution of a bootstrap estimator where consistent third moment estimators

are then essential. Finally, the asymptotic distribution of the new bootstrap estimator

is normal for both random and nonrandom regression design matrices.

In Section 8.5, we give a general comparison of all the principal bootstrap methods for

regression. This comparison shows on heuristic grounds that our new method is more

natural than its competitors in heteroscedastic regression. The simulation reported in

Section 8.5 also shows our bootstrap to advantage. In that simulation, we use the

bootstrap distribution to estimate the true distribution. From the estimate, we can

estimate confidence intervals among other things.

Because our new methods based on the estimating equations, it generalizes readily

to nonlinear regression. The importance of this advantage derives from the growing

importance in practice of nonlinear regression models. Three nonlinear situations are

discussed in Section 8.6. Section 8.8 contains the proofs of our main results.

8.2 Problems with Common Bootstrap Regression

Methods

Define a linear model by Y = x/3 + e, where x is a k x 1 nonrandom vector.

Here /3 denotes a k x 1 parameter vector and the { e }, uncorrelated errors with means
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zero and variances {u}, respectively. Assume the model includes an intercept term so

that the same designated coordinate of x is 1 for all i. With Y = (Y1, ..., y)T,

e = (ej, ..., en)T and X = (zi, ..., x)T, reexpress the linear model as

Y = X3 + e, Gov(e) = = diag(a, ..., o). (8.1)

To reduce clutter, we drop in (8.1) and in the sequel the subscript representing the

fixed parameter in conditional distributions. Thus we use E, var and coy to represent

respectively, the conditional expectation, variance and covariance induced by the model

in equation (8.1) for fixed /3 and ft Assume XTX is nonsingular so that we have the

usual coefficient estimator, $ = (XTX)_1XTY. The observed Y is y = (yi,
...,

Suppose a bootstrap distribution of some parameter & = ‘(/3) is required. Efron (1979)

suggests two methods (described in next subsection) based on either the residuals of the

least squares fit or the complete observation vectors. These methods are studied by

Freedman (1981), Wu (1986) and Hinkley (1988), among others.

8.2.1 Residual Resampling

a) Efron’s Method. The most common method of bootstrapping an ordinary linear

model, that of Efron (1979), exploits the assumed exchangeability of the error terms

when a = a2 for all i. This method is the focus of work by Freedman and Peters

(1984) , Wu (1986) and Hinkley (1988). For the model (8.1), e represents a vector of iid

random variables with mean 0 and covariance a21.

The bootstrap uses the empirical distribution function, Er: mass 1/n at r, i = 1, ...,

here the {rj represent the elements of the residual vector r = [I — X(XTX)XT]y
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where y = (yi,
..., T when the observed responses are {yi, y}. Since an

intercept term is included in the linear model = 0.

The bootstrap (Monte Carlo) approximation obtains from an iid sample of n residuals

from Fr, say {e, ... , e}. Let e* (e, ... , e) and y*
= (yr, , y) where

= + e for all i. Finally define the bootstrap LS Estimator (LSE) as

= (XTX)_1XTy*
= + (XTX)_1XTe*.

Efron (1979) shows that E*
= $ and that vb = E(/*_/)($*_$)T = = &2(XTX)_1

where &2 = r.

We may use L,* = /,(/3*) for estimating b. If b is smooth, we may develop asymptotic

theory for directly from that of 3*. For brevity we will not consider such an extension

of our results here.

Notice that i is the usual maximum likelihood estimator of the covariance of ; it is

biased since Ey(vb) = n’(n — k)u2(XTX)_l. The bias results from the fact that

Vary(r) = u2(1 — hi), where h = x(XTX)_lxj is the ith diagonal element of

X(XTX)_1XT. A bootstrap method which uses standardized residuals, r:(1 —

or r(1 — kn’)’/2 eliminates this bias.

b) Wu’s Method. For unequal a’s in (8.1), vb is not only biased but inconsistent as

well since the true covariance of the least square estimator (LSE), 3, is

Cov(/3) = (XTX)_1 ZcrxixT(XTX)1.This deficiency of vb is intrinsic. Drawing iid

samples from {r} only makes sense for exchangeable residuals {r}; iid sampling wipes

out heterogeneity among the {r} and this heterogeneity will not be reflected in vi,. To

deal with this difficulty, Wu (1986) proposes another bootstrap (see also Efron 1986)

described below.
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Suppose we wish to assess the variability of a statistic computed from the random

vector of observables Y which comes from a specific, but unknown structural/stochastic

mechanism. Here we suppose Y = X3 + e, with unknown parameters 3, o, ..., u and

= (XTX)_1XTY. The general bootstrap method would consist of: (i) estimating

the entire probability mechanism, F, by say P [in this case the F associated with

(, o, ..., ô)]; (ii) after resampling the data vector y from P, recalculating the statistic

of interest, 3* = (XTX)_1XTY*; (iii) and finally using the observed variability of the

/3*)s to estimate the variability of . For (8.1) the bootstrap calculations can be carried

out explicitly and they yield v, = (XTX)_1> ô-x1x(XTX)’.

Wu’s (1986) particular implementation of the general bootstrap described above can

be obtained by choosing ô = (r(1 — h)’/2)2for all i. To explicate these variance

estimators, define y = x”/3 + ôjt, i 1, ..., n; the t” {t} obtain from

resampling (denoted by *) with

Et* = 0, and Cov*(t*) = I. (8.2)

Wu (1986) shows that (8.2) entails E$* = and

= (XTX)_1 r(1 — h)’xx’(XTX)’. The latter is consistent in general.

Remarks

1 When o = u for all i, vb is unbiased and consistent. Indeed Efron’s method

(Efron 1979) may well be best if e1, ..., e,7. are iid. If not and interest focuses

on the distribution of /3 (and not just its covariance), the bootstrap encounters

serious difficulties. A very simple example demonstrates this.

Example 8.1 Consider the one dimensional regression model:

= x/3 + ej. i = 1, ..., n
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with Ee = 0, Var(e) = a2, and Ee = tt3. Interest focuses on 13’s third

moment as when the Edgeworth expansion and related results for the bootstrap

method are required. The LSE is 3 = (x1 > xY and

=

But the bootstrap estimate of the third moment is

—

= (x) xn_1 r. (8.3)

In general, (8.3) is biased and inconsistent. This is not surprising since the {r}

are not exchangeable (the {j} being unequal).

2 The properties of Wu’s bootstrap depend on the distribution of t. Specifying that

distribution becomes a new problem. (Wu’s bootstrap uses information not in the

original samples. This may make this method nonrobust in more general cases).

3 For heteroscedastic errors, Wu’s method encounters the problem identified in (Re

mark 2.1). We can get a consistent third moment estimate by choosing the dis

tribution of t to satisfy E(t*3) = 1. But we may well be interested in other

quantities as well. Manipulating the distribution of t may not simultaneously

provide satisfactory estimators for all quantities of interest.

4 As noted by Wu (1986), bootstrap methods are hard to generalize to nonlinear sit

uations; the heteroscedastic bootstrap is based on resampling the residuals which

is not feasible in the nonlinear case.
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8.2.2 Vector resampling

Freedman (1981) suggests a way of dealing with the correlation model used for a nonho

mogeneous errors model. His method draws a simple random sample with replacement

(* sampling) {(y’, 4T)}? from {(y, xfl}?. The method computes the bootstrap LSE

from {(y, 4T)}?,

= (E64T)Z4y, (8.4)

and the bootstrap covariance estimator

= E($*_$)($*_$)T. (8.5)

This approach suffers from several drawbacks. Firstly injudicious use of this method

can lead to inconsistent covariance estimators (Wu 1986 gives an example). Secondly,

the method fails to incorporate the knowledge that Var(e) changes smoothly with x

when such knowledge obtains. Thirdly, on the general grounds of requiring inference to

be conditional on the design D = (x1, , ..., xj, one should not risk having simulated

data sets whose designs D* = (4, ,
..., x) are very different from D. Fourthly, if n or

k is large, computational costs may be quite high. Fifthly, small sample sizes can entail

singular design matrices, D*.

8.3 A new bootstrap

Let Yi, ..., Y7. be a sequence of independent random variables with observed values,

y,,. Suppose for specified functions {gj}, 0 satisfies Es{g()1, 0)} = 0 for all
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i = 1, ..., n and 0. Here and in the sequel E9 denotes the conditional expectation of

the {} given 0; var represents the corresponding conditional variance. For simplicity

of presentation, we assume 0 is a scalar but our results easily extend to vector-valued

parameters. We let 0 be a solution of the estimating equation

g(y,0) = 0,

and consider the distribution of 0 — 0.

A standard two step method for approximating that distribution when the {1’} are

independent and identically distributed can be described as follows:

1. use the Taylor expansion to get the approximation

{
a(•,o)

0)

2. invoke the Central Limit Theorem to get

— 0) N[0,
flVaro{g(Y,0)}1

The standard bootstrap method exploits this approximation when the {11} are indepen

dent and identically distributed. However, that condition often fails. Then drawing a

bootstrap sample directly from {u, ..., y} proves unproductive, leading us to our alter

native bootstrap method. First replace 0 by 0 in gj(yj, 0). Then define z = gj(yj, ).
Finally:

1. draw the bootstrap sample {z, ..., z,} from {zi, ..., z} as a simple random sample

with replacement;

2. compute the bootstrap estimator as

e*
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3. use the bootstrap, i.e empirical distribution of the (O*
— O)’s obtained after many

repetitions of 1-2 to approximate the distribution of 0 — 0.

Since our method approximates the distribution of 0 — 0, we get approximations to

the distributions needed for inferences based on that distribution. The quality of those

approximations depend of course, on the quality of our underlying approximation to

the distribution. That notwithstanding, our method offers great flexibility. And in a

manner of Liu (1988), we can prove that our bootstrap yields a better approximation

than its competitors under certain conditions. However, our method cannot be used to

estimate the bias.

The following example shows how our method differs from its conventional relative.

Observations are made of n independent and identically distributed random variables,

each with an unspecified probability distribution function, F. Inferential interest focuses

on the mean, [t, of F. The usual bootstrap would: (i) draw the “bootstrap sample”

{y, ..., y} from {yi, ..., y} as a simple random sample with replacement; (ii) calculate

the bootstrap sample mean = y’; and (iii) repeat (i)-(ii) sequentially to obtain

a sequence of y’ values. The empirical distribution of the (*
— )‘s is the bootstrap

approximation to the sampling distribution of —

Our approach begins with the sampling distribution model

i=1,...,n.

Given a sample {yj} generated by this distribution, we readily find that the least squares

estimate of satisfies the “estimating equation “, Z(y
— ) = 0; for simplicity here and

in the sequel we (usually) suppress the upper and lower summation limits, i = 1 and

i = n. This estimating equation relies on the component functions yj — t, i = 1, ...,
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which may be estimated by z — , i = 1,...., n. Our method: (i) draws a bootstrap

sample, {4, ..., 4} from {zi, ..., z,} as a simple random sample with replacement; (ii)

calculates the bootstrap estimator, /i’ 2 + n1 4; and (iii) repeats (i)-(ii) above

sequentially to obtain a sequence of (/*
— )‘s and the bootstrap approximation to the

sampling distribution of fi — u.

From this general discussion of our method we turn in the following sections to linear

regression and describe properties of our bootstrap estimator of the regression coefficient

vector.

8.4 Asymptotics.

8.4.1 Preamble.

For the linear model (8.1), Efron (1979), Freedman (1981) and Wu (1986) have suggested

bootstrap methods described in Section 8.2, based on either the residuals of the least

squares fit or the complete observation vectors. Our method differs from theirs.

We start with the normal equations for the ordinary least squares estimate,

Xi(yi
-

x/3) = 0 (8.6)

and their solution . Let

zj=xj(yj_x$), i=1,...,n.

The bootstrap estimator defined in Section 8.3 becomes

= + (XTX)’ 4, (8.7)

{ z, ..., z,} being a bootstrap sample from {z1, ..., z}.
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8.4.2 Consistency of 3*•

For brevity, we now state our main results. All proofs except that of Theorem 8.1, and

underlying assumptions appear in Section 8.8.

Theorem 8.1 Suppose Assumptions 8.1 and 8.2 hold for model (8.1). Then

E(v) = cov(){1 + O(n_1)},

where v. = — — )T and E represents expectation with respect to the

distribution induced by bootstrap sampling.

Proof. This is an immediate consequence of Lemma 8.1 in Section 8.8. 0

Because we use an estimate of /3 in resampling, we lose degrees of freedom. This suggests

renormalising the terms on the left side of equation (8.6). Two alternatives suggest them

selves, z’ = (1_n_1k)h/2xj(yj_x$) and 2) = (1_hj)_h/2xj(yj_x$), i =

where the {h1} represent the diagonal elements of the hat matrix. The bootstrap estima

tors corresponding to these two renormalisations are *(1) and $*(2) and the covariance

estimators are V*(l) and V*(2). The asymptotic properties of /3’,
/3*(1) and $*(2) are equiv

alent.

The proof of the next theorem, the counterpart of Theorem 8.1 for the renormalized

“bootstrappands”, follows immediately from Lemma 1 and so it is omitted.

Theorem 8.2 For model (8.1), Ev(2) = Cov(/3) if the assumptions in (8.2.q) hold. If

Assumptions 8.1 and 8.3 hold as well, E(v()) = Cov(/3)(1 + O(n1)), for i = 1,2.
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An asymptotic analysis must explore the third moments needed for Edgeworth expan

sions. The use of such expansions in bootstrap regression models seems to be have

been proposed by Navidi (1989) who considers only Efron’s method for independent

and identically distributed errors. Liu (1988) investigates the third moment bootstrap

estimator of 1T/3 based on Wu’s bootstrap for the case of heteroscedastic errors, 1 being

a fixed k x 1 vector. For model (8.1), we also consider the sampling distribution of the

least squares estimator of any such specified linear functional of 3, 1T3•

For model (8.1), let

E(e) = E(e) = [L4,j, i 1, ..., n. (8.8)

From the bootstrap estimate (8.7), the third and fourth moment estimators for 1T/3 are

defined as = E{lT(/3* — Th} and /14,* = E{lT(/3* —

It is easily shown that
n

33
= w r,

i=1

and

= + (8.10)
i=1 ij

where w = lT(XTX)_lx and r = y — x.

With the notation of (8.8), the third and fourth moments of 1T,3 are

= E{lT( — 3

=

(8.11)

and

= E{lT(f —

= Ew4, + (8.12)
i=1 ij

Theorem 8.3 Assume the elements of 1 are bounded. Then under model (8.1) and

(8.8),
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(i) E(,u3,) = j + O(n3) when Assumptions 8.1 and 8.5 hold and

(ii) E(4,) = 1u4 + O(n3)=i4{1 + O(n1)} when Assumptions 8.1 and 8.6 hold.

Remarks:

1 The covariance estimators v,, V*(l) and V*(2) corresponding to the bootstrap es

timator triplet , I3) and *(2) are asymptotically equivalent. As well, in es

timating cov(/3), U*(2) is unbiased for homoscedastic models and consistent for

heteroscedastic models. So it has the desiderata set out by Wu (1986, Section 5).

2 Wu’s method (Wu 1986) fails in general to give a consistent estimator of the third

moment. This difficulty can be overcome with Wu’s approach simply by modifying

the distribution of his random variable t to achieve a consistent third moment

estimator (Liu 1988). But then an inconsistent fourth moment estimator may

result. By contrast, our method yields consistent 3rd and 4th moment estimators.

8.4.3 Asymptotic normality of 8*.

In this section, we describe the asymptotic distribution of /3w’ under general conditions

including the case of independent and identically distributed errors and the correlation

model as special cases. Freedman (1981) investigates the asymptotic theory of Efron’s

residual resampling method for the case of independent and identically distributed errors

and the vector resampling method for the correlation model.

To simplify the statement of our results, denote by £(UV) the distribution of U condi

tional on V for any random objects U and V and P denotes the probability distribution
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condition on {(yj, xfl, i = 1, ..., n}. Let Nk(, 1’) be the multivariate normal distribu

tion with mean and covariance F.

The next result involves two distinct sampling processes, the first leading to the original

data set of size n, and the second created by bootstrap resampling, say m times. With

the original sample fixed classical limit theory applies when m — cc. But complications

arising from the need to allow n —* cc entail more delicate analysis, as emphasized in

the work of Bickel and Freedman (1981). Such analysis leads to the following results.

Theorem 8.4 For the regression model (8.1) with fixed regressor variables, suppose

Assumptions 8.7-8.10 obtain. Then

— ${(yj, x) : i = 1, ..., n}] Nk(O, V’WV’)

for almost all sequences {(y,, x) : i = 1, ..., n} as n —+ cc.

Theorem 8.5 For the regression model (8.1), with random regressor variables, sup

pose Assumptions 8.11-8.13 obtain. Then £[/i(,3* — 3){(y,x) : i = 1,...,n}}

Nk(O, Qj’M11)for almost all sequences {(yj, x) : i = 1, ..., n} as n — cc, where

M = Exx’e?.

Remarks:

3 Freedman (1981) suggests different bootstrap methods for different models. If the

model is changed, the normality of the bootstrap method can be lost. In contrast,

Theorems 8.4 and 8.5 assert that the one bootstrap method discussed in Section

8.4.1 yields asymptotic normality for both models.
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8.5 Comparison and Simulation Study.

In this section we compare our method with those of Efron (1979), Wu (1986) and Freed

man (1981). We do this by highlighting the simple structural differences between these

methods in the way they simulate resampling of the regression coefficient estimation

vectors. Then we present the results of simulation studies in support our method.

Suppose we wish to estimate the distribution of

— /3 = (XTX)_l

Then we need only estimate the distribution of (XTX)_1 being fixed.

Efron’s bootstrap resamples from the residuals r1, ..., r,, r = — x/3 and determines

the corresponding bootstrap estimators by

— = (XTX)

Efron’s {r} are independent and identically distributed samples from {r}. While this

procedure seems natural for exchangeable residuals {r}, doubt about the validity of his

procedure arises when they are not. And these residuals are definitely not exchangeable

in heteroscedastic regression models, where Efron’s estimators can be inconsistent.

In Wu’s approach, bootstrap estimators are found from

— = (XTX)_l

the independent and identically distributed sampling model, denoted by , for t =

(t,
...,

t) satisfying

E(t*) = 0, and cov*(t*) = I.
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So we see that Wu’s method uses > xr1t to simulate > The distribution of >

will depend on the choice of that of the {t}. Specifying that distribution becomes a

new problem and in any event, means that Wu’s bootstrap requires information not in

the original sample. In general the method risks possible nonrobustness. And if n is

insufficiently large, the distribution of > can vary greatly for varying distributions

of t’.

Freedman (1981) suggests a way of dealing with the correlation model used for a non

homogeneous errors model. His “pairs” method draws a simple random sample with

replacement, {(yi,4) i = 1,...,n} from {(yj,xj) i = 1,...,n} and computes the boot

strap least squares estimate from {(y, xfl i = 1, ...,

=

Then the distribution of 3*
— /3 approximates that of /3 — /3. As indicated in Wu (1986),

Hinkley (1988) and Section 8.2, this approach suffers from several drawbacks.

As shown in equation (8.7), our approach uses

—

= (XTX)’ YZz7.

The permutability of the z1, ..., z in (8.6) leads us to make the {z1} independent and

identically distributed. We see that of the four methods, ours is the most direct in

simulating the distribution of interest.

We now compare the four methods again, this time through a simulation study designed

to compare their performance. From the simulation study of Wu (1986), we know that

our bootstrap method will perform well in variance-covariance estimation. We know

this because our method has the desiderata set out by Wu (1986, Section 5).

148



We study the following regression model:

= j9o + /31x1 + e, i = 1(1)10,

= 0, 1, 1.5, 2, 3, 3.5, 4, 4.5, 4.75, 5.

Two error distributions are used in our study: equal variances e “-‘ N(O, 1) and unequal

variances e ‘-‘s xN(0, 1) i = 1, ..., n. In all cases, the {e} are independent.

We consider four bootstrap methods: (i) Efron’s method; (ii) ‘Nii’s method, the distri

bution of t being given by the “wild bootstrap” (Hardle and Marron 1991); this choice

for the distributioll of the {t} ensures fulfilment of 1st, 2nd and 3rd moments conditions

(Liu 1988); (iii) Freedman’s “pairs” method; (iv) our new bootstrap method.

We have run many simulations and chosen two Figures to illustrate the results obtained

for the homoscedastic and heteroscedastic model simulation experiments. Each figure

displays the cumulative frequency plots for simulated error distributions. They depict

the distributions associated with each of the four methods under investigation, labelled

b through e. That associated with the true estimation error distribution is labelled by

a. The five variables underlying the displays a through e are represented generically by

w = — A single simulation run begins with a from a single sample generated

in accord with the sampling distribution. Then 1000 bootstrap values w of w are

generated by each of the four methods under consideration.

The results in Table 1 and Table 2 unlike those in the Figures offer an aggregate view

of performance and are based on 500 simulations of B = 1000 bootstrap samples.

We use the Kolmogorov-Smirnov statistic to index the accuracy various distribution

estimators. In Table 1, the Kolmogorov-Smirnov statistic is defined as sup F*(w) —

F(w), where F*(.) denotes the empirical distribution of w and F(.) that of the true

149



0

d

(0
0

C
0
t
0

0
0.

0

N
0

0
0

Figure 8.1: A comparison of bootstrap distribution estimators for regression with ho
moscedastic errors. We depict the distributions of w =

— /3o induced by the true
distribution (labelled a), using our bootstrap estimator (b), Efron’s estimator (c), Wu ‘s
estimator (d), and Freedman’s estimator (e).

—a
b
C

—-d
—-e

I I I I I I

-2 -1 0 1 2 3 4

w

150



0

.7iv /
FrI /
/ /1

,//
/1

/3;’ /

(II
/ :1 1(0 j(.o 1/

lii,,

0

2 —a
b

.l. • —-—C
0 / —-d

/ —

I.

/ /
I,o

-I.. .71/
I-.

q .. .

0

-5 0 5

w

Figure 8.2: A comparison of bootstrap distribution estimators for regression with het
eroscedastic errors. We depict the sampling distributions of w

— ,Bo induced by the
true distribution (labelled a), using our bootstrap estimator (b), Efron’s estimator (c),
Wu’s estimator (d), and Freedman’s estimator (e).
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Table 8.1: Averages of the Kolmogorov-Smirnov Statistics for Competing Bootstrap
Distribution m

Equal Variance Unequal Variance

New Method 0.115 (0.0029) 0.080(0.0021)

Efron 0.079(0.0019) 0.136(0.0028)

Wu 0.158(0.0024) 0.113(0.0019)

Pair 0.126(0.0025) 0.095(0.0017)

Table 8.2: Absolute Biases of the Competing Bootstrap Quantile Estimators

Equal Variance Unequal Variance

5% 95% 5% 95%
New Method 0.328(0.009) 0.320(0.009) 0.411(0.014) 0.403(0.014)

Efron 0.224(0.007) 0.220(0.007) 1.298(0.041) 1.276(0.039)

Wu 0.344(0.009) 0.338(0.009) 0.436(0.014) 0.431(0.014)

Pair 0.345(0.012) 0.343(0.011) 0.785(0.033) 0.680(0.030)

distribution. The mean values of the Kolmogorov-Smirnov statistics from these 500

simulations are summarized in Table 1. The value besided the mean is the correspond

standard error.

Since the confidence interval is one commonly used inferential procedure, studying the

quantile estimators obtained from the four methods seemed worthwhile. The absolute

bias of 95%-quantile estimator is defined as q95(F*)
— q.95(F), where q.95(F) denotes

the 95%-quantile for the distribution, F. The mean of the absolute biases of 5%- and

95%-quantile estimators are summarized in Table 2. The value besided the mean is the

correspond standard error.

The results of our simulation studies can be summarized as follows.
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1. As expected, for estimating a distribution Efron’s method performs best when

the error distributions are independent and identically distributed (see Table

1). The new bootstrap method also works well in that case, though not quite

as well as Efron’s. Freedman’s pairs and Wu’s method seem to yield rough

estimators and to be qualitatively poorer than the other two methods. This

may be because Wu’s method stresses consistency of the estimator’s moments

at the expense of estimating the overall distribution (see Figure 1 also).

From Table 1, we see that in regression with heteroscedastic errors, Efron’s

approach does badly, again in accord with our expectations; the model errors

are not exchangeable and Efron’s estimator is not consistent. The new boot

strap method works best, Freedman’s reasonably well and Wu’s not so well

(see also Figure 2).

2. For quantile estimation, Efron’s method performs best for both 5%- and

95%-quantiles when the error distributions are independent and identically

distributed (see Table 2). The new method ranks second and Wu’s third.

For regression with heteroscedastic errors, the new method is best, Wu’s

second and Freedman’s third. However, Efron’s method gives an inconsistent

estimator and seems totally unsatisfactory.

3. Overall, we can conclude that Efron’s method is not robust against het

eroscedastic errors. Wu’s method seems unsatisfactory for estimating a dis

tribution. We found Freedman’s method effective but computationally expen

sive in the examples considered; presumably the method would be unrealistic

for use in nonlinear situations. Even with just two parameters, the method

required much more time than the others.

We next consider the use of pivotal quantities in bootstrapping. The bootstrap-t statistic
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Table 8.3: The Pivot Quantile Estimators

0.05 0.10 0.25 0.50 0.75 0.90 0.95

Equal Variance

New Method -1.72 -1.34 -0.70 0.052 0.72 1.30 1.67

Efron -1.86 -1.36 -0.71 -0.004 0.71 1.49 1.97

Pair -1.51 -1.08 -0.60 0.122 0.58 1.16 1.61

t(8) -1.86 -1.40 -0.71 0 0.71 1.40 1.86

N(0,1) -1.65 -1.28 -0.67 0 0.67 1.28 1.65

Unequal Variance

New Method -1.77 -1.34 -0.69 -0.029 0.68 1.31 1.84

Efron -1.99 -1.55 -0.76 -0.033 0.64 1.36 1.86
Pair -1.63 -1.06 -0.55 -0.011 0.45 0.90 1.17

is constructed as

t*(b) = (*(b) - $)/se*(b), (8.13)

where b denotes bootstrap sample and se means “standard error”. In view of our earlier

findings, we consider only three bootstrap methods, Efron’s, Freedman’s, and ours.

For both the case of equal and that of unequal variances, we ran a single simulation.

The pivot quantile estimators in Table 3 are based on 1000 bootstrap samples. In Table

3, t(8) denotes the t-distribution with degree of freedom 8 and N(0, 1) denotes the

standard normal distribution.

For the case of equal variances, t(8) is a good reference distribution. From Table 3, we

find that both Efron’s method and the new bootstrap method perform well. The pairs

estimator is not as good as that given by the other two methods.

For the case of unequal variances, we do not know a good reference distribution. If we use

t(8) as before, both Efron’s and the new method give good estimators. The pairs method
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fails to give reasonable results. But since Efron’s method yields an inconsistent variance

estimator, we cannot use Efron’s method to construct a useful confidence interval.

8.6 Bootstrapping in Nonlinear Situations

In this section we merely sketch extensions of our bootstrap in the nonlinear situations

considered by Wu (1986). The extensive detail needed for the required analysis of lower-

order terms will be presented elsewhere.

8.6.1 Regression M-estimator

An M-estimate 3 of the regression coefficient vector /3 is found by minimizing

- (8.14)

over /3, where p is usually assumed to be symmetric. Choices of p can be found in Huber

(1981). The M-estimate is found by solving:

— x3) = 0 (8.15)

Call xp’(y—xi3) the “score function”. From the method of Section 8.3, we obtain a

bootstrap sample from the estimated score function with /3 replaced by fi. To be precise,

let z = Xjp’(yj
—

XT/3), j = .., n. Next: (1) draw the bootstrap sample, {4, ..., z}

a simple random sample with replacement from {zi, ..., z}; (2) construct the bootstrap

M-estimator 3* as 3* = 3 + (> xjXp”(j))1 4, where j = — x/3: i = 1, ..., n.
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For estimating Var(’zb), b = b($), we use an analogue of the estimator in Section 8.4,

= — ?)((,* — 7)T where = 3*). Principal interest centers on = /3,

andv = where

v = (XjXp” (e))’(xjxTr)( XjX’p”(j)) (8.16)

and r = p’(yj — xã).

Now let us calculate the asymptotic approximation covariance matrix of 3. Under

appropriate conditions (not stated here for brevity) 0 = xep’ (y — x/9) = Xip (y —

x/3)
— ( — /3)xx’p”(y — x3) + o( — i3). This implies 9 — [xjxp”(yj —

xp’(y — x8). Alternatively, v E(8
— /3)( — /3)T where

v [ xjxp”(ej)]_1[ xxT(p’(ej))2][xjxp”(ej)]’; (8.17)

here e: = — x3: i = 1, ..., n. Comparison of (8.16) and (8.17) suggest the bootstrap

estimator is a reasonable estimate of the covariance matrix of j3.

8.6.2 Nonlinear regression.

In nonlinear regression yj = f(3) + e i = 1, ..., n, where f is a nonlinear smooth

function of /3 and e satisfies (8.1). The LSE /3 is obtained by minimizing (y — f(/3))2.

The score function is xB)(y — f(/3)), where x = af/9,8. Put the LSE into the

score function. The bootstrap method of Section 8.3 is with samples, {z, ..., z7}

from {z = Xj()(yj
—

f()) i = 1, ..., n}. The bootstrap coefficient estimators are

= + (X(/)TX(/))_1 z, where X = (x1,
...,

x). It is easily shown that

= /3 and v = E*(,8*_/3)(/3*_)T, with

= (X()TX())’ (8.18)
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where r = — f(,8).

If we calculate the asymptotic approximation covariance matrix of the LSE, , we get

- (X(/3)TX(/3))’X(/9)e and v =
-

- 9) where

v (X()TX())’ (8.19)

From (8.18) and (8.19), we find that the bootstrap estimator is consistent and robust

in general.

8.6.3 Generalized Linear models

A generalized linear model is characterized by three components (McCullagh and Nelder,

1989):

(i) an error distribution from the exponential family f(y; ) = exp([y’b — a(b) +

b(y, ‘)]/q),

(ii) a systematic component = x/3, and

(iii) a monotonic, differentiable link function i = g(), where t = E(y).

Here we consider generalized linear models with independent observations. Let y =

(yr, ..., y), E(y) = (IL’,
..., IL)T and

Cov(y) = diag(cr,
...,

a,) V(IL) = diag(uv()). (8.20)

The mean, tj, is related to the regressor, xj, by the link function g, i.e. = g(x8). The

full likelihood may not be available. Inference is instead based on the log quasilikelihood
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(see Wedderburn 1974, McCullagh 1983), L(t, y), defined by

= V([L)’(y—LL)

A generalized least squares estimator (GLSE), 3, is defined as a solution of

DTV_l(y
— i(3)) = 0, (8.21)

where it(,3) = ([tj) = (g(x’/3))! and D = d/LL/d/3 = diag(g’(x3))X. Here DTV1(y —

i(i3)) is called the quasi-score function.

Moulton and Zeger (1991) consider two bootstrap methods for generalized linear models.

One corresponds to standardized Pearson residual resampling, which extends Efron’s

residual bootstrapping method using standardized Pearson residuals. The method is

similar to that for the ordinary regression model, with heteroscedastic errors (i.e. un

equal a’s in (8.20)); the bootstrapped covariance estimator is in general inconsistent

for the true covariance of GLSE, 6. The other method of Moulton and Zeger, involves

observation vector resampling; this extends ordinary vector resampling using a one-step

approach.

We use the bootstrap method proposed in Section 8.3. By substituting the estimator

in (8.21) and rewriting it, we find the quasi-score function

—

Let z, = xjg1(xj)vj()_1(yj
— /%j), j = 1, ..., n. The bootstrap is thus based on the

uniform distribution, Fb with support z1, ..., zr-, and the calculation of the bootstrap
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coefficients by

= + (DTV_1D)_lz; (8.22)

here we have inserted the estimator 3 into the righthand side of the (8.22). For estimat

ing Var(), j’ = ib(), the bootstrap covariance estimator is v,, =

For /3, v,. = E(3* — 3)(9* — )T where

v = (DTV_1D)_l(g’(x)vj(1L)_1)2rxjx(DTV_1D)_1,

where {r = —

: i = 1, ..., n} are the prediction errors.

For the GLSE, /3, we have the approximation (McCullagh, 1983)

— /3 (DTV_1D)_1DTV_l(y
—

so that

Cov($) (DTV_1D)_1DTV_bcov(y —u)V1D(DTV’D)1.

Under model (8.20) Cov(y
—

t) = diag(uv(1u)) and

Cov(/3) = (DTVD)_l (g’(x/3))2v1(it)uxx(DTV_i D)’.

We show elsewhere v,. is a consistent estimator for Cov($).

The homoscedastic model (o = u2) is the most interesting special case; then the covari

ance of is Cov($) =u2(DTV_lD) and the bootstrap covariance estimator becomes

v,, = (DTV_lD)_lDV_lDiag{r}V_lD(DTV_lD)_l. (8.23)

The bootstrap covariance estimator (8.23) is the same as that employed by Cox (1961),

Huber (1967), White (1982), and Royall (1986) for handling quite general model mis

specification.
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8.7 Concluding Remarks.

The conventional approach to the bootstrap has been through quasi replicates of the

original sample possibly subject to reweighting or some constraints. The bootstrap

distribution is then obtained from the empirical distribution or some smoothed version

of the empirical distribution of the succession of realized estimators obtained from these

quasi replicate samples.

Even when the resampling population consists of (possibly renormalized) model fit resid

uals the approach has been to construct successive pseudo estimator values and then

the bootstrap distribution for the estimator of interest, through the construction of

bootstrap data sets.

What we have done is to by-pass the data sets. Instead we have taken the estimator of

interest as the baseline, generated successive estimator fit residuals (rather than model

fit residuals). The approximate sampling distribution for the estimator is then found by

taking the resulting empirical distribution of the realizations of estimator plus residual.

A critical feature of our approach is the use of the components of the estimating function

itself to transform to residuals to the appropriate scale. Heuristically, we have perturbed

the estimator by bootstrapped realizations of a normalized first order term from a Taylor

expansion of the estimator about the true value of the parameter. This approach seems

natural. Generating bootstrap replicates of the original sample seems unnecessary when

the object of interest is the sampling distribution of an estimator and it can be realized

directly from suitably expressed estimator fit residuals.

The idea of by-passing the data sets is in itself not new. Moulton and Zeger (1991)

use this idea in what they call their “one step procedure”. They intend their procedure
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for use in estimating coefficients in link functions of generalized linear models. Their

goal is computational simplicity. If they were to follow thw traditional practice of

bootstrapping the data set, they would need to find the bootstrap coefficient estimator

by an iterative process for each successive bootstrap replicate sample. The resulting

intolerable computational burden leads them to use the estimating equations (for the

generalized linear models) directly in much the same way as we suggest in this paper

for the general case.

Apart from the difference in motivation and intended domain of application, our method

differs from that of Moulton and Zeger (1991) in the way we resample residuals. They

use a method like that of Wu described above. Their method then inherits the potential

deficiencies discussed above of Wu’s approach.

Not surprisingly, our bootstrap has the asymptotic properties up to second order which

one might expect from the Taylor expansion heuristic. However, the unexpected robust

ness of our method up to at least nonhomogeneity in four order moments is unexpected

and encouraging. Overall our method has promise. As well, its underlying Taylor ex

pansion heuristic suggests other ways of perturbing the estimator to approximate its

sampling distribution and these are currently under investigation.

We noted above a number of potential applications of our method. In current work we

are adapting our method for use with longitudinal count data series. As well we are

seeing if our method can be used to find standard errors for estimators computed from

data obtained through complex survey designs. Binder (1991), building on the work of

Godambe and Thompson (1986), has shown how estimating equations can be used in

that context. That work provides the platform on which we are attempting to build our

bootstrap variance estimation procedure.
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8.8 Proofs

Our asymptotic theory requires certain conditions.

Assumptions 8.1 For X = X the design matrix in (8.1) for n observations,

max1<<x(XX)’x c/n for some scalar c > 0 independent of n.

Assumptions 8.2 For the error variances in model (8.1), maxi<< u < cc.

Assumptions 8.3 The minimum and maximum eigenvalues of n’XX are uni

formly bounded away from 0 and cc.

Assumptions 8.4 The elements of X are uniformly bounded.

We also require the following lemma.

Lemma 8.1 (Wu 1986) If

= xT(XX)1xj= 0 for any i,j with u aj, (8.24)

then E(r?) = (1 — h)o. More generally, Assumptions 8.1 and 8.2 imply E(r?) =

(1
— h)u? + O(n’) = u + O(n_1).

Comparing (8.9) with (8.11), and (8.10) with (8.12) suggests and /14,* are robust for

estimating the third and four moments, respectively under substantial departures from

the model assumptions. We prove this below under additional assumptions.

Assumptions 8.5 maxi<< I1L3,i <cc;
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Assumptions 8.6 maxi<e<oc, 1t4,jI <00.

To prove the main theorems, we also need the following lemma.

Lemma 8.2 If = x(XTX)_lx = 0 for any i j, then

E(r) = (1 — E(r) = (1 — h)4/L4,, (8.25)

where h = x((XTX)_lxj. More generally, Assumptions 8.1 and 8.5 imply

E(r) (1 — h)33,+ O(n2)= + O(n’) (8.26)

and Assumptions 8.1, 8.2 and 8.6 imply

E(r) = (1 — h)41t4,+ O(n1)= ,j + O(n1). (8.27)

Proof. From r1 = ye — xT/3 = e — xT(XTX)_1XTe,

= — he = (1 — h)e — (8.28)
j=1 ij

From (8.28)

E(r) = (1 — h)3E(e)
— > hE(e) = (1 — h)33,— ht3,3. (8.29)

ij ij

The first equality in (8.29) follows from the independence of e, ..., e,. The second

inequality in (8.25) obtains in a similar way.

Now more generally when 0, i j,

nmax{3,}

Assumptions 8.1 and 8.5 imply the right hand side of these last inequalities is of order n2

since ( /i) by the Cauchy-Schwarz inequality . Therefore, the first equality
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in (8.26) follows from (8.29) and the second from (8.29) and h c/n. This completes

the proof of (8.26).

Now from (8.28)

E(r) (1 — h)41t4,1+ hj1t+ 6(1 — h)2a ho
ji

+ 6
ii(i)i

= (I) + (II) + (III) + (IV),

say. Assumptions 8.1, 8.2 and the Cauchy-Schwarz inequality imply

(IV) <6n2c4maxa (8.30)

(III) < 12(n’c +n3c4)max4. (8.31)

From Assumptions 8.1, 8.5 and the Cauchy-Schwarz inequality,

(II) n3c4maxi4, (8.32)

(I) = (1 — 4h + 6h — 4h + = iti,i + O(n’). (8.33)

The first equality in (8.27) follows from (8.30), (8.31) and (8.32) and the second from

(8.33). This completes the proof. D

Proof of Theorem 8.3 From Lemma 8.2,

= wEr

= + O(n’))

=

wt3,3+9+ wO(n’)

= 3+O(n3)
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The last equality follows from

<nmaxw O(n2).

This proves part (i). Result (ii) is reached by similar reasoning. 0

Let X, denote the X matrix in (8.1). Key assumptions for the case of nonrandom {x}

are:

Assumptions 8.7 The residuals e are independent with distribution F having mean

0 and variance o?, both F and a being unknown, i = 1, ..., n.

def —1 TAssumptions 8.8 There exists a matrix V> 0 such that Vi-, = n X Xi,. —* V.

def —1 2 TAssumptions 8.9 There exists a matrix W> 0 such that W = n o x:; W.

Assumptions 8.10 x2 and E(4) are uniformly bounded, i = 1, ..., n.

For random {x}, the corresponding assumptions are:

Assumptions 8.11 The vectors {(, x)} are independent and identically distributed

with common unknown distribution function F on R’1, and E (, x’) j oc, where

is Euclidean length.

Assumptions 8.12 The k x k covariance matrix Q = E(xix’) is positive definite.

Assumptions 8.13 Exte: = 0, i = 1, ..., n where e = Yi — x’/9.
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def —1 n T2Proof of Theorem 8.4 We will first show W,-, = n xx r —* W almost surely

as n —* cc where r = — xT/3 for all i. Then in bootstrap sampling we may condition

on the set of unit probability where the just asserted convergence takes place and let

m -* cc.

To obtain this almost sure result, observe that

= xjx(yj - xB)2 + n xxflx{j3 -

+ 2n xxxftB - - x/3)

= (I) + (II) + (III)

say. Assumptions 8.8, 8.9 and Kolmogorov’s strong law (c.f. Chung, 1968, p 119 and

the Corollary given there for the case, p = 2) entail /3 — —* 0 almost surely as

n —* cc. Using the trace norm for matrices and the usual norm for vectors, (II)II <

HxI[ HC — ThH2 < c4 I(i3 — )I where c > 0 is a uniform upper bound for

IIxII obtained from Assumption 8.10. So (II) —* 0 a.e.. At the same time, I(111)H =

H2n —
< 2n_ e IxH3 L —

< 2cn_ Z IeHLB — /W for the

same constant c> 0 used above. So Assumption 8.10 and Kolmogorov’s strong law cited

above imply (III) — 0 almost surely. Finally, (I) = n’ Zxxre = n Zxx(e —

c)+n But n’ Zxx(e?—a,) —*0 almost surely by Assumption 8.10 and

Kolmogorov’s strong law of large numbers. Then I —* W almost surely by Assumption

8.9.

Now

- ) 1V’

Let = lTzj, i = 1, ..., n for any fixed k dimensional vector 1 with lH = 1. Observe that

conditional on the actual sample, the{1T4, i = 1, ..., n} are independent and identically
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distributed random variables with zero means and common standard deviation, o =

(lTJ,fl)1/2
(n—’

)1/2. The Berry-Esseen Theorem implies

sup F(u’/’ lTz x) — (x) (8.34)

where p = But n1 i’Wi > 0 a.e.. Moreover,

> —* 0 as n —* oo a.e.. The last result obtains since by our assumptions, the

{E’} are uniformly bounded; we may then invoke a general version of the strong law

of large numbers (Chung, 1968, pll’T, Theorem 5.4.1 with q(.) = (.)4/3 and a = 3/2)

to obtain the result.

Since inequality (8.34) holds for all 1, the conclusion of the theorem now follows. D

Corollary 8.1 Under the assumptions of the last theorem,

- ){(yj,X) : i =1, ...,n}]

converges to the standard normal on R’ for almost all sequences {(yj, x’) : i = 1, ..., n}

as n —* oo.

Proof: This result is an immediate consequence of the result of the last theorem. D

Proof of Theorem 8.5 This proof is similar to that of Theorem 8.4 and the details

will be omitted. That 3 — —* 0 almost surely follows from 8.11 and 8.13 and the

strong law of large numbers. Assumptions 8.11 and 8.12 imply (I) — 0, (II) —* 0, and

(III) —p M almost surely. These results and Assumption 8.12 imply the conclusion of

the Theorem. 0
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