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ABSTRACT

The subject of modelling the wood composite manufacturing process has recently

attracted more research attention due to the increasing need for a quantitative understanding

of the product formation process. The existing models provide little information about wood

composite mat structure, which is, like that of any other material, very important to the

material properties. In this study, a mathematical model of wood flake mat formation has

been developed using geometric probability theory. This model has been applied to further

predict the compression behaviour of a wood flake mat during pressing. The model is

verified through both experimental observations and computer simulations.

The results show that flake mat formation approximately follows a random process

with random flake positions and orientations. This allows a flake mat structure to be fully

characterized on a probability basis. Mat structural parameters such as flake centroids, flake

coverage and between-flake void sizes are random variables, which are in essence Poisson

distributed. Non-uniform flake coverage distribution is an inherent feature of a randomly-

formed flake mat. This is why a horizontal density variation always exists in a random

flakeboard panel. Due to point-to-point spatial correlation of local flake coverage, the

variation of flakeboard density averages in finite sampling zones depends on the zone size,

flake size, flakeboard thickness and compaction ratio. Such a relationship is known

rigorously through the derivation of a mathematical model and through the visual

presentation of the density variation image created by a computer simulation program.

The structural model of mat compression behaviour shows that the pressure applied
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in a mat during pressing is mainly supported by areas with higher wood coverage. Because

of the random distribution of local flake coverage, a wide stress variation exists among the

constituent wood elements from location to location in the mat field. Considering wood as

a porous material, the void volume in a mat is composed of two components: within- and

between-flake voids. Their relative volumetric change during mat compression is

considerably different. Equations derived for calculating inter-flake bonded area change

indicate a highly nonlinear relationship between the relative bonded area and mat compaction

ratio. Because of the viscoelasticity of wood, a wood flake mat also exhibits time-dependent

compression behaviour during pressing. Using the structure model developed, the stress

relaxation of a flake mat has been explicitly related to that of wood. To correlate the creep

response of a flake mat to that of wood, a new creep evaluation terminology -- relative creep

compaction ratio, should be employed instead of the more common relative creep strain. The

creep of a flake mat seems to be affected by its constituents through their average

viscoelastic responses.
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CHAPTER I. RATIONALE, CONCEPTS AND RESEARCH OUTLINE

1.1 INTRODUCTION

The changing world forest resources and challenges from other materials have forced

wood researchers and manufacturers to improve the existing product quality and develop

more value added wood composites from a lower quality wood base. This requires a

profound understanding of the wood composite manufacturing process, which is a

combination of physical, mechanical and chemical processes involving a number of variables.

For a long time, wood composite manufacture technology has been investigated

predominantly on an empirical basis and a large body of experimental results have been

reported (e.g., Kelly, 1977). These investigations provide some general knowledge about the

relationship between the production variables and the product properties. However, empirical

approaches are usually expensive and time-consuming, and the results are sometimes

inconclusive. Moreover, the limited number of parameters allowed in an individual test may

effectively prevent a systematic analysis of a full manufacturing process. Realization of these

deficiencies has suggested the importance of analytical approaches. Thus the subject of

modelling the wood composite formation process has recently attracted more research

attention (Harless et al, 1987; Humphrey and Bolton, 1989; Kamke and Wolcott, 1991;

Wolcott, 1990; Suchsland and Xu, 1989, 1991).

These models, although still in their development stages, seem to be classified into

three different categories. Firstly, phenomenological models have been presented to predict

the hot-pressing behaviour by treating discrete wood composite mat as a continuum
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(Humphrey and Bolton, 1989; Kamke and Wolcott, 1991; Harless, et al, 1987). Secondly,

fundamental compression properties of solid wood flakes have been modelled to simulate the

consolidation response of wood composite mats during pressing (Wolcott, 1990). Finally,

narrow veneer strips have been used to simulate the effect of mat structure in flakeboard

manufacture (Suchsland and Xu, 1989, 1991). These models appear generally complementary

to each other, since the macro-behaviour of a wood composite mat should be ultimately

related to the mechanical properties of individual wood elements and their spatial

configuration. However, a quantitative analysis of this relationship requires an explicit model

of wood element arrangement in the mat structure. In fact, an appreciation of the structure

of a mat, is definitely a prerequisite for fully understanding the processing and performance

characteristics of wood composites.

The general working hypothesis is that the behaviour of wood composites can be

adequately predicted if the properties of raw wood elements, mat structure, adhesive and hot-

pressing parameters are known. Therefore, the specific objectives in this study are to develop

a mathematical model of a flake mat structure and to further demonstrate how this structural

model can be used to predict other wood composite properties based on the knowledge of

solid wood.

1.2 CHARACTERIZING THE MAT STRUCTURE

Mat Formation as a Random Process

Depending on end-uses, there are many criteria that govern the design of a wood
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composite manufacturing process. No matter what type of products are being made, one

criterion which always affects the way a mat is formed is that wood elements should be

deposited as uniformly as possible. It would be desirable that wood mass content at any point

throughout the mat area is identical. Such an ideal, uniform mat structure may only be

achieved by precisely positioning and orienting each wood element in a pre-determined

arrangement during the formation process. This procedure may not be practically viable.

In real life, a “uniform” mat is produced by randomly dispersing wood elements into

a mat plane whereby individual elements can drop independently and have an equal chance

to be placed at any spot in the mat area, with identical probability to be oriented at any

angle. Thus practical mat formation is essentially a random process, in which the individual

element deposition is not carefully controlled but occurs on a uniformly-random probability

basis. As a result, the whole mat is a random structure with its local geometric properties

being random variables, which, like those in any other random system, are not identical. For

example, as one could imagine the number of wood elements intercepted by a infinitely thin

needle passing vertically through a random mat varies from location to location. This type

of non-uniformity is an inherent feature of a randomly-formed wood composite mat.

Mat Structure and its Importance to Composite Manufacture

In relating wood composite mat formation to processing and the resultant product

performance, three major structural aspects need to be characterized: point-to-point wood

element coverage, inside-mat void volume and inter-element contact area. As mentioned

previously, the most noticeable structural feature of a random mat is the non-uniform wood
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element coverage, i.e., the varying number of elements overlapping at different locations in

the mat area. First of all, non-uniform element coverage contributes structurally to unique

mat consolidation behaviour as the applied pressure is mainly supported by higher wood

coverage areas. The more wood elements a local mat area contains, the greater stress it

shares. Secondly, since the hot-pressing may have little effect on the horizontal mat

configuration, the non-uniform wood distribution will be retained after pressing and govern

the horizontal density variation in the resulting product. Finally, heat and mass transfer in

a mat during hot-pressing may also depend on local wood coverage variation since heat and

moisture movement is affected by mat density.

A loose wood mat contains a large portion of void volume. Considering wood itself

is a porous material, the total void volume may be classified into two parts: between- and

within-element voids. While the characteristic of within-element void volume reflects that

of the solid wood structure, the variation of between-element void determines the heat

convectivity and conductivity and moisture permeability in a mat. Therefore, knowledge

about the void volume inside a mat will help to more fully understand the mechanism of the

heat and mass transfer during the hot-pressing.

One of the most important parts of the wood composite manufacturing process is to

promote bonding through developing intimate element-to-element contact by compacting the

mat structure. The relationship between inter-element contact and the mat compaction ratio

depends on the initial mat formation. Due to the random variation of wood element

coverage, a wide distribution of local inter-element contact is expected in a composite panel.

Hence, characterization of the inter-element contact behaviour in a mat can provide insight
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into how internal bond strength is developed during the wood composite manufacturing

process.

1.3 THEORETICAL BACKGROUND

In seeking a theory to develop a mathematical model of a wood composite mat

structure, probability, or specifically, geometric probability theory is found to be very useful.

This theory is suitable for wood composites because the localized structural properties in a

randomly-formed mat are random variables, which can best be characterized on a probability

basis. Conventional probability theory is created for describing random events independently

occurring in one-dimensional space, for example, time. When it comes to multi-dimensional

space problems, the spatial geometry becomes a factor. In this regard, such common terms

as “geometric probability”, “statistical geometry”, “coverage process” and “random fields”

may be referred to as more or less the same mathematical domain. Since a wood composite

mat is a multi-layered structure with elements being placed in a plane parallel to each other,

a two-dimensional model is considered to be adequate for this study.

Random Coverage Process

A two-dimensional stochastic coverage process is thought of as any random

mechanism governing the positioning and configuration of random flat sets in the plane

(Hall, 1988). Coverage process theory states that if the centroids of the sets are randomly

placed in the plane, the number of the centroids contained in any sampling zone in the plane
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area is Poisson distributed.

If more than one set randomly drop into the plane, random overlap between the sets

will occur. Thus some areas will contain more sets than other areas. Such non-uniform

random set coverage over the plane is characterized by a Poisson distribution, as well. This

distribution describes the relationship between the number of sets overlapping and its

corresponding relative coverage area. Such two-dimensional coverage process is analogous

to our wood composite mat formation process. Therefore, the theory can be applied to the

random mat structure.

Statistical Geometry of a Fibrous Network

The theory on the geometry of a fibrous network, specifically, paper, has also been

found to be closely relevant to the structure of a wood composite mat. This statistical

geometric theory was developed first by Kallmes and Corte (1960), Kallmes et al (1961),

Corte and Lloyd (1966) and later by Dodson (1971).

A random fibre deposition was generally assumed for a paper making process. Under

this assumption, a number of structural parameters of the fibrous network including fibre

coverage were found to follow the Poisson distribution (Kallmes and Corte, 1960), which

is a feature also seen in the random set coverage process (Hall, 1988) as described

previously. A very important structural property in paper is the void size variation in the

fibrous network. Based on the probability geometry of polygons formed by random lines in

a plane (Miles, 1964 a, b), a modified exponential distribution model was developed for

characterizing the sizes of voids in a paper layer (Kallmes and Corte, 1960; Corte and
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Lloyd, 1966).

The formation of paper has often been characterized quantitatively by one parameter -

- the variation of areal density (total fibrous mass in a finite sampling zone divided by zone

area). An analytical model for predicting the spatial variation of areal density has been

developed by Dodson (1971). His analysis was based on the derivation of the isotropic point

autocorrelation function of fibre coverage. Then the variance partition technique by Matem

(1960) was employed to relate the density variance in a finite sampling zone to that at a point

which was known by a Poisson distribution. This analysis suggests a very promising

approach to characterizing the horizontal density distribution in a randomly-formed wood

composite panel.

1.4 OUTLINE OF THE MODEL DEVELOPMENT

For our initial model development, uniform flake-type wood geometry is assumed

with all elements in a mat of the same length, width and thickness. A basic assumption made

during the analysis is that the flake deposition follows a random process, with each flake

being randomly placed at any point in the mat area and randomly oriented at any angle with

respect to an arbitrarily chosen direction. This allows the mat structure to be fully

characterized on a probability basis.

The complete analysis, with the ultimate objective of modelling the flake-type wood

composite manufacturing process, is presented in two parts: mat structure and mat

compression behaviour. In the first part, a number of fundamental structural aspects of a
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random flake mat are characterized in Chapter II. Then Chapter III focuses on the

development of a horizontal density variation model in a random flakeboard panel based on

the concepts of probability geometry. At the same time, a computer program is developed

using the Monte Carlo simulation technique. This program provides a rapid and

comprehensive evaluation of a mat structure using inputs from simple experimental

observations or on a pure simulation basis. The outcomes from the experimentally formed,

computer simulated and mathematically modelled mats are compared.

The second part of the analysis demonstrates how to use the mat structure model to

further simulate the consolidation behaviour of a flake mat during pressing. In Chapter IV,

a theoretical model for predicting instantaneous response of a random flake mat during

pressing is developed based on the mat structure and the mechanical properties of wood

flakes. Equations are also derived for the calculation of structural changes, such as void

volume changes, inter-flake contact area development during mat pressing process. Chapter

V deals with the viscoelasticity behaviour of a flake mat in pressing. A structural model is

developed to predict the time-dependent mat responses.

Finally, a brief summary on the general approach and nature of the proposed model

and the major conclusions drawn from the analysis, as well as the further research work

concerning this area is presented in Chapter VI.
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CHAPTER II. FUNDAMENTALS OF A RANDOMLY-FORMED MULTI

LAYERED FLAKE MAT STRUCTURE

ABSTRACT. A mathematical model for describing the structure of a randomly-formed

multi-layered flake mat network is presented. The structural properties of the flake network

are random variables which are, in essence, characterized by the Poisson and exponential

distributions. The model predicts distribution of: flake centres, flake areal coverage, free

flake length, and void size in the multi-layer flake network. A computer program for

simulating the random flake network and rapidly evaluating structural properties is developed

as well. In addition, the structural properties of hand-formed flake mats are experimentally

measured. Close agreement is found between mathematical model prediction, computer

simulation and experimental measurements.

2.1 INTRODUCTION

The previous chapter has discussed the rationale for developing a mathematical model

of wood composite mat structure. In this chapter, such a model for describing the structure

of a random flake mat will be developed along with the presentation of a computer

simulation program. The specific objectives are:

1. To explicitly define the random flake deposition process and the nature of

multi-layered mat formation;

2. To apply geometric probability theory to mathematically characterize the

flake-type wood mat structure;
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3. To develop a computer program to simulate the mat formation process and to

evaluate the mat structural properties;

4. To compare the mathematical predictions with the computer simulations and

experimental observations to verify the proposed model.

2.2 MODEL DEVELOPMENT

A randomly-formed flake mat has more or less a layered structure since all flakes

essentially lie parallel to the horizontal plane of the mat. Such a structural feature best

manifests itself in a two, rather than three dimensional geometric model. The approach of

using a two-dimensional model to describe the mat structure has the following advantages:

1). Structure of the geometric model becomes more mathematically tractable. A

complete three-dimensional description of voids inside the mat, for instance,

would encounter almost insurmountable mathematical difficulties;

2). A constituent layer can be prepared in laboratory and the flake arrangement

can be directly measured. This makes it possible to appreciate the nature of

the problems and to experimentally test the mathematical model.

For this descriptive model a multi-layered random flake mat is defined herein as a

summation of NL two-dimensional randomly-arranged flake layers. A random flake layer is

defined here as a plane of area A where a limited number N/NL (N1: total number of flakes

in the mat) of flakes with length ,width a and thickness r are independently and identically

placed by a random process. Thickness r is so thin that all flakes lie parallel to the plane,
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with coverage area (i.e., projected area) of each flake equal to Aw. The number of layers NL

in a mat is determined in such a way that total flake coverage area in each layer, AwN/NL

A. A random flake mat formation process is explicitly defined as follows:

1). Each flake is deposited independently of another;

2). Each flake has an equal opportunity of being placed at any point in the mat

area, i.e., the flake centroid position (or any specified point on the flake) is

randomly distributed in the mat plane; and

3). Each flake has an equal probability of being oriented at any angle in the mat

plane, i.e., the angle between flake length axis (or any specified axis along

the flake surface) and any given reference axis along the mat plane is uniform

randomly valued in range [0, 1801.

Because of its stochastic nature the structure of such a randomly arranged flake

network can be best theoretically characterized by applying geometric probability theory. As

mentioned in Section 1.3, this theory has been successfully utilized to model the structure

of fibrous paper sheets (e.g., Kallmes and Corte, 1960; Kailmes et al, 1961; Kalimes and

Bernier, 1963; Dodson, 1971).

To analyze random systems, mathematicians have created many special distributions

for characterizing the random variables. Thus it is the first step to determine which

distribution form suits the random variables that are of interest in this modelling process.

The one that is most suitable for a random flake deposition process is the Poisson process,

which is an approximation of the well known binomial distribution. In the field of stochastic

processes, the Poisson distribution is preferably used due to the fact that it is well
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documented and easy to manipulate.

2.2.1 Distribution of Flake Centroids

As far as flake position is concerned, a random mat formation means an independent

and uniformly-random distribution of flake centroid points in a two dimensional plane. To

characterize such random point distribution, one could divide the mat plane of area A into

a number of non-overlapping congruent zones with area of s, and evaluate the flake centroid

counts in s and their corresponding probabilities. Let us first consider the simplest case

where only one flake randomly drops onto the plane. Then the chance for an arbitrarily

chosen zone s to contain this flake centroid will equal the zone-to-plane areal ratio, i.e., s/A.

In other words, the probability that the flake centroid does not lie within this zone is 1-s/A.

Therefore, this random-flake-drop case is essentially one trial of a random experiment which

has only two possible outcomes, i.e., “success” which means s contains the flake centroid,

or “failure” which means s does not contain the flake centroid.

For N1 uniformly random distributed flakes (i.e., N1 trials) over the area A as shown

in Fig. 2.1, the actual number of flake centers (i.e., number of successes) contained in a

zone s is a random variable. The probability that any zone s contains exactlyj flake centres,

p(D is given by the binomial distribution, which can be approximated using the Poisson

distribution when N1 increases and s/A becomes very small together in such manner that N/A

—* y (Q<y< 00), i.e. (Hall, 1988),
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p
()=(Nf(s)i(1S)NfJ

j)A A

Nf! (1_)-i
A A (Nf-jHNf5 A

= (ys)(1_s)Nf[(Nr) (Nfl) (Nf 3+1)](1_)-i
A N Nf N A

(ys) e8 (2.1)
3!

since (1-s/A,Y” approaches e ‘ and both (1-s/A)1 and term in square brackets approach.

Hence, the number of flake centers contained in a zone s is Poisson distributed with mean

ys. The parameter y, namely, the mean number of flake centers per unit area content

of A, is defined as the intensity of the point Poisson process.

2.2.2 Distribution of Flake Areal Coverage

Another way of applying the Poisson process to mat formation is to use it to describe

the distribution of flake coverage over the mat area. As will be seen in the following

chapters, the non-uniform flake coverage distribution is an extremely important structural

characteristic of a randomly formed flake mat, which is directly related to a number of

processing and performance properties of wood composites.

Suppose only one flake of length ) and width w randomly drops onto and remains

within the plane of area A. The probability that any point in A is covered by this flake is

merely given by )tw/A, or the chance for the chosen point not being covered by this flake is

1-AcolA. The situation, however, becomes much more complicated in case of N such flakes,
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because of the likelihood of flakes overlapping (Fig. 2.2). Thus, various numbers of flakes

could pile up over each point in the plane. If the flake centroid is Poisson distributed with

intensity y, the probability that any arbitrarily chosen point contains i flakes, p/O, is given

by the Poisson distribution as well, i.e. (Hall, 1988),

(2.2)

(y))1 e”
i!

as N1 increases and )w/A becomes very small but finite. The approximation is justified

because the total number of flakes N1 in a full mat is indeed large (usually > 1000) and the

flake-to-mat areal ratio Arii/A for non-veneer wood composites is very small (usually <0.01).

Thus the number of flakes covering any point over the mat area A is Poisson distributed with

mean u,= yAw. In fact, the mean flake coverage is always equal to the total coverage area

of all flakes divided by the total mat area, no matter how the flakes are distributed, i.e.,

)CJN
(2.3)

A

It is instructive to note that the probability p/i) is also interpreted as the fraction of

mat area containing i flakes. Therefore, the Poisson distribution (Eq.2.2) can easily provide

a quick calculation of fractional area p/i) corresponding to flake coverage number i for a

given average p1, which is, in turn, readily determined (Eq.2.3) if the total flake coverage

area NAw and mat area A are known.
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2.2.3 Void Volume Content and Size Distribution

One feature that makes a randomly formed flake mat a unique material is that it is

extremely porous. Since wood itself is a porous material, void volume inside the mat is

comprised of two parts, i.e., between- and within-flake voids. For a uncompressed flake

mat, the inside-flake void volume can be easily calculated if the solid flake density is known.

Thus the following concerns only the between-flake void volume.

Between-flake Void Volume Content

To calculate the between-flake void volume content in a flake mat, one must know

the mat height. Because of the random distribution of flake coverage, the apparent height of

a mat varies locally from point to point. In addition, flakes are not always flat, therefore,

measurements of overall mat height could be rather arbitrary. The overall mat height H0 is

defined here as the height of mat where the probability of the flake coverage is

approximately 0.001. This permits an analytical approach to estimating H0 by using Eq.(2.2),

i.e.,

( I %/Yn.6), e zO.0O1 (2.4)
(H0/t)

where r is the flake thickness.

The between-flake void volume is the difference between the bulk mat volume and

total flake volume. Thus the between-flake void volume content, VCbJ, is then given by:
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All -N At
bf All0

(2.5)

=1- y)t

H0

Distribution of between-flake void sizes

To mathematically characterize the true shape of voids between flakes in a three-

dimensional mat system can be an extremely difficult task. However, the voids defined by

the uncovered areas in two-dimensional flake layer networks in a multi-layered mat system,

are of much more describable shapes as they are merely various polygons formed by flake

boundaries (Fig.2.2). Therefore, the following analysis will focus on determining how the

uncovered polygon areas are distributed. To do so, the distance between adjacent flake

crossings, i.e., the free flake length (Fig. 2.2), needs to be characterized first.

If a straight line of length L is drawn across the random flake network and intersects

N, flakes (long axes of flakes), the distribution of the number of flakes intersected per unit

length of the line will be also Poisson distributed with the mean N/L (Kailmes and Corte,

1960). As a result, the probability that the distance m between adjacent intersects is between

m and m +dm, p,(m), is given by the exponential distribution, i.e. (Hall, 1988; Kallmes and

Corte, 1960; Kallmes and Bernier, 1963),

m
(2.6)e

I.Li

where p is the mean distance, obtained by: i,=L/N,. If the scanning line is viewed as a long
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axis of a flake, the distance m and, therefore, the distributionp1(m) will reflect the dimension

and distribution of free flake length. Total number of crossings N between N/NL (total

number of flakes in a layer, NL: number of layers in a mat) flakes of length A. is given by

(Miles, 1964a, 19Mb; Kallmes and Corte, 1960):

(AN/N)2 (2.7)L

As each crossing is shared by two flakes, the average number of crossings of a flake,

n is then obtained by:

= 2N _.2yA2 (2.8)
C

Nf/NL IrNL

where N is given by Eq.(2.7) and y is the flake deposition indensity given by NJ/A.

Because n crossings separate a flake with n+ 1 segments, the mean free flake length,

u1, is given by:

= A = IENLA (2.9)
1 2yA2+tN

since n is known by Eq.(2.8).

Even for a two-dimensional flake network, exact distribution of void size is usually

prohibitively complex, although some progress can be made in working out its properties for

the case of one dimension (Hall, 1988). An approximate solution reached by Kallmes and

Corte (1960) for two-dimensional fibre network can be modified for the flake layer structure

in this work. Assuming the area of individual void, a, is proportional, on the average, to

square of the free flake length m, i.e.,
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2 (2.10)
a=cm

where a is a constant of coefficient. Thus, the distribution of a can be obtained through the

following transformation:

iV (2.11)
a,, -—m -_______

a

since the distribution of m is known by Eq. (2.6).

The mean size of void areas, p, is obtained by:

(2.12)
ILv=J a p(a) da=2c12

0

An equation for calculating the total number of polygons formed by infinitely long

lines (Miles, 1964a, 1964b), N0, was modified for predicting that of voids in a fibre network

of paper sheet (Kallmes and Corte, 1960), namely,

- , _

(2.13)
LVf0I e

where N0 is the total number of intersections between N13 fibers or lines and is the mean

fiber coverage. During derivation of the above equation, the effect of fibre width was

neglected. However, such effect needs to be incorporated into the equation for a flake

network. Thus, a modified equation for calculating the total number of voids in a flake layer,

N, is:
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f

L
V ‘ C NL

where /3 is a constant, given by: /3 11(1+ cv!)), and N’ is given by extending ) to cv + A. in

Eq.(2.7), namely:

N’=
((A+)Nf/NL)2 (2.15)

TEA

Note that by definition Eq. (2.15) should not invalidate Eq. (2.7) for computing total

number of flake crossings.

According to Eq.(2.2), the total void area in a flake layer, A, is obtained by:

_ (2.16)
AV=Apf(O) =Ae NL

On the other hand, A is determined by: Thus,

(2.17)
Ae NL

or combining with Eq.(2.14) and (2.15) so that

_J± (-i)

_Ae_NL_ ltNL2e
NL (2.18)

IV
N y2b+)2—TEyN

Combining Eq.(2.18) with Eq.(2.12) and solving for a yield:
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()
IL,

ltNL2e
(2.19)

21.i,2[y2(A+)2-7tyNL]

2.2.4 Inter-flake Bonded Area

The flake areal coverage distribution as given by Eq. (2.2) can lead to the calculation

of inter-flake bonded area, a parameter of interest for predicting the development of internal

bond strength of wood composites during the hot-pressing. A potential bonded area results

wherever an overlap can occur between a pair of flakes. As shown in Fig.2.3, there are (i-i)

interfaces or potential bonded areas in a i-flake stack. The maximum bonded area in a

random flake mat, BA, resulting from complete mat compression, is determined by:

BA (i-l)p/i)A

N:, N:, (2.20)
=A[ p/i)-p,(i)]

N,

ip/i)-[ p1)÷p/t)+p/O) ]÷p/O)

=A( y)—1÷e

zA( y)-l

as yAo. increases. Note that a one-flake “stack” can not form any bonds. The actual bonded

areas in wood composites are always less than BA and are controlled to a great extent by

compaction ratio in addition to the effects of the initial mat formation.
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2.3 METHODOLOGY

There are two ways to evaluate the structural properties of a flake network and verify

the mathematical model developed previously: 1). computer simulation, i.e., the flake

network is numerically simulated and the structural properties calculated. 2). direct

experimental measurements, i.e., the flake mat is physically formed and its structural

properties are measured.

2.3.1 Monte Carlo Simulation

A C x D mm2 plane representing the area of a layer onto which flakes were to be

deposited, was digitized to a resolution unit of lxi mm2 in a two dimensional XY coordinate

system. The higher the resolution, the more accurate the simulation. The flake deposition

process was numerically simulated by three sets of random variables, x# y1. 0

(1=1,2,.. . , N,,). Variables and y1 were real numbers generated from a random uniform

distribution in the range [0, C] and [0, D] respectively and in the orientation range [0, 2T].

A FORTRAN program for executing the whole simulation process was developed, with

inputs to the program being: flake length A, width co and total flake number N and total mat

area A. A typical output featuring a flake network is illustrated in Fig.2.4. In addition, a

number of sub-programs for calculating the geometric properties of the structure were

written. The calculations included: number of flake centres in a given area (e.g. 25x25

mm2), total void area and total flake overlap areas, total number of flake crossings, free flake
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length and its distribution, size of voids and its distribution. The results of the outputs were

compared with the experimental measurements and the mathematical model predictions.

2.3.2 Experimental Measurements

The experiments were conducted first by directly measuring the configuration of

random flake layer networks and then indirectly evaluating the structure of a multi-layer

flake mat using the computer simulation program described previously.

For testing a flake layer, in total 80 aspen flakes of length 83.8 ± 3.1 mm, width

9.31±1.12 mm and thickness 0.8±0.1 mm were prepared. The reason for choosing 80

flakes was to make the expected total flake coverage area 83.8x9.31x80 (= 62414.24 mm2)

approximately equal to that of the layer, which was 62500 mm2. Each flake was marked with

its geometric centre and length-wise central axis. A layer area of 250x250 mm2 was ruled

on the surface of a clear plastic plate. Each sample was hand-formed. During the formation

process, efforts were made to disperse flakes as randomly as possible and to keep all flake

centres inside the ruled area.

A forming box was not used in this process, because the edges of the box could

interfere with the randomness of flake deposition. It was not intended to consider this “edge

effect” in the present study. However, this created another problem due to the fact that an

undetermined portion of flakes would lie out of the defined layer area despite their centres

being restricted to inside, resulting in less flake areal coverage than designed. To solve this

problem the so-called “torus convention” concept (Hall, 1988) was introduced. Here one
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could imagined that each flake which protruded out one side of the layer area entered again

from the opposite side (Fig.2.5). This concept became more logical when the present layer

square was considered as a structural unit of a much larger network in which flakes

protruding out of one unit inevitably entered another or vice-versa. It should be noted that

the same treatment was made in the Monte Carlo simulation program.

Flake centre positions, flake orientations and some other structural properties were

directly measured from the prepared samples with a ruler or angle gauge. To facilitate the

determination of void area and regions of one-, two-, three-, four-flake overlap the whole

layer network was projected onto a screen and flake outlines drawn onto a piece of paper.

By determining the arrangement of overlapping flakes, the nature of individual polygons was

differentiated in terms of voids, one-, two-, three-, and four-flake overlap area (see Fig. 2.2).

The area of each polygon was measured with a planimeter. Besides experimental errors this

type of measurement was extremely tedious and time-consuming. To avoid it, the previously

described simulation programs were extended to allow to input flake centre positions and

orientations of the samples from direct measurements and to calculate the structural

properties of interest. Comparison between direct measurements and calculations showed less

than 10% discrepancy.

For the test of a 10-layer mat, a total of 800 flakes of the same size were prepared,

each marked with a length-wise axis and a geometric centre. These flakes were deposited

manually in a random fashion to form a mat (area: 250x250 mm2). Their orientations and

centre positions were measured. The data were entered into a computer program where the

configuration of the mat was calculated.
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2.4 RESULTh AND DISCUSSION

2.4.1 Randomness of the Flake Deposition Process

A key hypothesis made in the model development is that an ordinary flake mat

formation mathematically follows a random process, in which flake centroid positions are

regarded as the Poisson points in a two-dimensional field, and flake angle with any fixed

reference axis is random. This assumption was tested first by directly counting the number

of flake centres per 25x25 mm2 zone area in five hand-felted flake layers, the distribution

of which was then compared with the model prediction (Eq.2.1) and computer simulation

results as shown in Fig.2.6a. The experimental results are correlated to those of the Monte

Carlo simulations and both are reasonably well predicted by the Poisson distribution. The

flake centroids become more closely Poisson distributed when the total number of flakes

increased as seen from the comparison between Fig.2.6a (80 flakes) and Fig.2.6b (800

flakes).

The randomness of flake orientation was checked by comparing the number of flakes

intersected respectively by two sets of mutually perpendicular scanning lines. The results

from both hand-formed and computer-simulated layers (Fig.2.7) indicate no significant

preferential flake alignment in either x-axis or y-axis direction. Thus the assumption of

randomness of the flake deposition is verified.
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2.4.2 Distribution of Structural Properties

Poisson Distribution of Flake Coverage

The distribution of flake areal coverage of 1-layer flake networks (80 flakes) and a

10-layer mat (800 flakes) were compared in Fig.2.8. Again the experimental observations

for single layer are fairly well predicted by the computer simulations and mathematical

calculations (Eq.2.2) and an excellent agreement is found as the number of layers increase

to 10. Thus flake coverage in a random mat is a Poisson variable, which, for example, can

vary from as small as 2 to as high as 20 with average of 10 (Fig.2.8b). As will be discussed

in the following chapters, such structural variation directly results in a non-uniform

horizontal density distribution in the final wood composite products (Chapter 3), and it is

also responsible for a unique mechanical behavior of wood flake mats in pressing (Chapter

4 and 5).

According to Eqs. (2.2) and (2.3), the Poisson flake areal coverage distribution p/i)

depends on the distribution of flake size only through their total coverage area CA (= AwN).

Thus, it is not affected by changes in either flake length or width provided that CA is kept

constant. In a real flakeboard manufacturing process, CA, is usually controlled by the flake

thickness r. Therefore, V is a determining factor on how flake elements are distributed in the

random mat field.

Another interesting fact about the Poisson distributed flake coverage, according to

Hall (1988), is that it is not influenced by the alignment of flakes, even though this may have

a significant effect on pattern of voids and local flake covered areas. This statement stays
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true, of course, only if the flake alignment does not interfere with the randomness of flake

position distribution during the mat formation process.

Exponential Distribution of Void Sizes

The distribution of void sizes in a two-dimensional flake layer was predicted through

the transformation (Eq. 2.11) of the exponential distribution of free flake length (Eq. 2.6). The

results from the experimental measurements and computer simulations were compared with

those from the model predictions in Fig. 2. 9a for free flake length and in Fig. 2. 9b for void

size, and satisfactory agreements between the three procedures exist.

Aside from being useful for estimating void size distribution, the exponential

distribution of free flake length is also critical for evaluating the bending stresses of flakes

which occur in a mat under pressing. As suggested in Eqs. (2.6) and (2.9), the free length

distribution depends on flake length ) and flake deposition intensity y, and is independent

of flake width o. However, void size distribution is affected by all three flake geometric

factors.

Overall and Average Geometric Properties

The experimentally measured, computer-simulated and mathematically predicted

overall and average geometric properties are presented in Table 2.1. The model predictions

are in excellent agreement with Monte Carlo simulations, and both provide a good estimation

of experimental data. This in general justifies the applicability of random probability theory

to flake mat formation and verifies the distributional models developed in this work.
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2.5 CONCLUSIONS

The geometric probabilistic structure of a randomly formed multi-layered flake mat

including distribution of flake centroids, flake area! coverage, free flake length and void

volumes was investigated by both mathematical and experimental procedures. A computer

program for structural simulation and experimental data acquisition was also developed. The

findings of this study are summarized as follows:

1. Formation of a flake mat can be approximated as a random process. A non

uniform distribution of flake coverage over the mat area is the inherent

characteristic of such a process.

2. The expected geometric properties of a random flake mat can be adequately

modelled by flake length A. and width co, total flake number N and total mat

area A.

3. The Poisson distribution and exponential distribution are the essence of all the

structural mathematical models.

4. Monte Carlo simulation provides an effective technique for simulating flake

networks and rapidly evaluating their structural arrangements.

5. The results of the experimental measurements, the computer simulation and

the mathematical prediction are in good agreement. These concepts will be

further extended to study the horizontal density ditribution in flakeboards and

the structure-processing property relationship of a multi-layered flake mat.
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Figure 2.1. Schematic diagram of uniformly random distribution of 500 flake centroids

over lxi mat area.

0 0.2 0.4 0.6 0.8 1



32

Legend

Figure 2.2 Schematic diagram of a two-dimensional randomly-
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formed flake network.
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Figure 2.3 Schematic diagram of the potential flake-to-flake

bonded interfaces in an i-flake stack.
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Figure 2.4 The image of a simulated random flake network illustrating overlap and void

areas, a) two dimensional version and b) three dimensional version.
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Figure 2.5 The torus convention in a random flake mat to keep the total flake coverage

area constantly equal to

250 mm
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Figure 2.6a The distribution of number of flake centres per 25x25 mm2 of layer area as

experimentally measured, computer simulated and mathematically predicted.

Total layer area A=250x250 mm2;Flakes: N,=80, )=83.8 mm and ca=9.31 mm.
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Figure 2.6b The distribution of number of flake centres per lOxlO mm2 mat area as

experimentally measured, computer simulated and mathematically predicted.

N,8OO, other conditions as in Fig.2.6a.
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Figure 2.7 The distibution of number of flakes encountered by randomly selected

scanning lines parallel to x-axis (line 1-4) and parallel to y-axis (line 5-8).

Conditions as in Fig.2.6a.
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Figure 2.8a The distribution of number of flakes covered at any point in a layer as

experimentally measured, computer simulated and mathematically predicted.

Conditions as in Fig.2.6a.
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Figure 2.8b The distribution of number of flakes covered at any point in a multi-layered

mat as experimentally measured, computer simulated and mathematically

predicted. Conditions as in Fig.2.6b.
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Figure 2.9a The distribution of free flake length in a flake layer as experimentally

measured, computer simulated and mathematically predicted. Conditions as in

Fig.2. 6a.

0 10 20 30 40 50 60 70 80 90

Free flake length (mm)



(I,

C)

.0
c
.0
2
0

42

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0
600

Figure 2.9b The distribution of void size in a flake layer as experimentally measured,

computer simulated and mathematically predicted. Conditions as in Fig.2.6a.
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Table 2.1. The expected structural properties of a random flake layer.

Values
Properties Symbol Unit Eq. No.

Math. Comp. Expi.

Ave. flake length mm 83.8 83.8 83.8

Ave. flake width mm 9.31 9.31 9.31

Total no. of
flakes N1 80 80 80

Total area of
layer A mm2 62500 62500 62500

Total fraction
of void area p/O) (2.2) 0.368 0.365 0.332

Total fraction of
1-flake area p/i) (2.2) 0.368 0.375 0.414

Total fraction of
2-flake area p/2) (22) 0.184 0.183 0.197

Total fraction of
3-flake area p/3) (22) 0.061 0.060 0.047

Total fraction of
4-flake area p/4) (2.2) 0.015 0.013 0.009

Ave. no. of flake
coverage (2.3) 0.999 0.999 0.999

Total no. of flake
crossings N (2.7) 229 222 194

Ave. no. of crossings
per flake (2.8) 5.73 5.55 4.85

Ave. free flake
length Ii, mm (2.9) 12.46 11.36 13.08

Total no. of
voids N (2.14) 80 79 95

Ave. void area mm2 (2.18) 285 288 218

• The values listed from computer simulation and experimental measurements are the averages of five samples,
respectively.



CHAPTER III. HORIZONTAL DENSITY VARIATION IN RANDOMLY-

FORMED FLAKEBOARDS

ABSTRACT. A probability-based mathematical model describing the formation of a

flakeboard panel in terms of the variances of point density and zone density averages is

presented. Due to within-zone spatial correlation of flake coverage, variance of horizontal

density averages in any finite zone depends on the zone size, and is a function of such

production variables as flake size, flake density, board compaction ratio and board thickness.

With the development of the present model this relationship is explicitly known. In addition,

typical flakeboard density variation patterns, in the forms of three-dimensional colour images

produced by a computer simulation program, are also presented. This program is also

capable of calculating flakeboard density statistics and therefore can be used to check the

validity of the mathematical model. Close agreement is found between model prediction,

computer simulation and experimental measurement.

3.1 INTRODUCTION

As pointed out in Chapter II, an ordinary flake mat formation in a wood composite

manufacturing process follows a two-dimensional random process. As a result, flake

coverage in the mat field is not uniform. In this chapter, a further step will be taken to

examine how such non-uniform flake coverage contributes to horizontal density variation in

flakeboards. This will be achieved by using random field theories to model the spatial

correlation of flake coverage from one point to another and the random variation of local
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density averages in finite sampling zones in the two-dimensional flakeboard field.

Density is one of the most important physical characteristics of wood or wood-based

composites, affecting nearly every other physical and mechanical property of the material.

In the case of flakeboards, these properties are significantly affected not only by overall

panel density, but also by the distribution of board density within the panel. For a

conventionally pressed flakeboard, density variation can occur in both the vertical and

horizontal plane of the panel, commonly known as vertical density distribution and horizontal

density distribution.

While vertical density distribution results primarily from interactions between flake

mat compression and temperature and moisture conditions during hot-pressing, horizontal

density variation is determined by flake size and the mat formation process, in addition to

the density variability of raw materials. In fact, density and its variations in flakeboards are

both the cause of board properties and the effect of manufacturing variables.

To date, research to study the board density distribution has focused on the vertical

density distribution. Only limited attention has been given to the horizontal density

distribution, despite the increasing recognition of its importance in determining board

manufacturing process and product performance (Smith, 1982; Bolton et al, 1989; Au and

Gertjejansen, 1989; Liu and McNatt, 1991). Suchsland is a prominent researcher who has

investigated the horizontal density distribution in flakeboards. His initial work (Suchsland,

1959, 1962) showed that the non-uniformity of density distribution was the inevitable

consequence of the discontinuity of flake elements. He proposed a binomial distribution of

local board density, the variance of which was further assumed to depend on flake size.
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density variation and its effect on flakeboard properties. The results showed a significant

effect of horizontal density variation on flakeboard properties, especially on internal bond

strength and thickness swelling.

Suchsland’s work has contributed to the recognition of horizontal density variation

and its importance to product performance. However, to quantitatively analyze the flakeboard

manufacturing process a more rigorous and systematic approach is needed.

Within this context, the objectives of the present work are:

1. To apply two-dimensional random field theory to mathematically model the

horizontal density distribution in a flakeboard;

2. To demonstrate typical horizontal density variations in a flakeboard through

computer generated images;

3. To compare the mathematical predictions with computer simulations and

experimental measurements; and

4. To present the typical predictions on how horizontal density variation is

affected by production variables.

3.2 MATHEMATICAL MODEL

In the following analysis, horizontal density variation in a flakeboard panel will be

considered only to be a result of an idealized manufacturing process in which variation due

to raw material quality, equipment limitations and other unpredictable factors are excluded.

Flake elements with length A, width co, thickness r and density ô are deposited in a random
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process, i.e., random positions and random orientations.

For flake-type wood composites, it can be reasonably assumed that the random flake

configuration is retained after the hot-pressing operation, and the flake elements are parallel

to the board surfaces in the layered panel structure. Under these assumptions, the flakeboard

panel is essentially a two-dimensional random field. A key feature about the variation of

random variable in this field is that it strongly depends on the spatial scale on which the

variables are evaluated (Vanmarcke, 1983). In the case of flakeboard, it is intuitive that the

board density averages in finite zones vary with the sampling zone sizes, namely, the smaller

the sampling zones, the higher the density variations, or vice versa. To mathematically

characterize this phenomena, one needs to formulate how local point flakeboard densities are

distributed and how they spatially correlate with each other.

3.2.1 Variation of Point Density

If an infinitely thin needle passes vertically through a random flakeboard, the number

of flakes it hits i will be equivalent to the number of flakes overlapping at a point over the

panel field. Since the random flake configuration is presumably not affected by the hot

pressing process, the flake overlaps i will be also Poisson distributed as given by Eq.(2.2).

A characteristic feature of a Poisson distribution is that the variance Var[i] equals the

mean Eli], or:
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Var[1]=E[1Jf=
A

(3.1)

For a flakeboard with thickness H and compaction ratio CR (ratio of overall board

density to raw material density), the total number of flakes N1 is determined by:

N
- AHCR (3.2)

and combining Eq. (3.1) with Eq.(3.2) yields:

(3.3)
Var[i] = E[i] = J.L

= HCR

Thus the point flake coverage I is fully characterized by the Poisson distribution with

mean and variance equal to the board-to-flake thickness ratio (Hh) multiplied by the

compaction ratio CR. It is independent of flake length ) and width w.

Assume the flakeboard density at any point is D. Neglecting effect of resin and other

additives, the overall (or mean) flakeboard density, E[D], is then given by dividing total

weight of flakes by total board volume, i.e.,

2 (3.4)
r v N t 8

E[D] =

__________

= — ELi]
AH H

This equation allows a point density, D, to be defined as board density at a given

point, where there are I flakes overlapping, i.e.,

D_t 8 (3.5)
H

Since distribution of flake coverage i is known by Eq. (2.2), the distribution of point
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flakeboard density D can then be obtained through linear transformation according to

Eq.(3.5), i.e.,

(D)=
(y).ø) e’ (3.6)

p
(::P)I
tô

Thus, the point board density also follows a Poisson distribution, with the variance

Var[D] determined by:

Var[D] = VarI-! j]

= Va.r[iJ
H2

= t CR 52

H

This point density variance, as given by the above equation, represents the maximum

possible density variation of a flakeboard. It depends on flake thickness and is independent

of flake length and width.

3.2.2 Point-to-point Spatial Correlation

Because of the Poisson distribution of flake coverage, the point flakeboard densities

are random variables which are also characterized by a Poisson distribution. The fact that

a flake of finite area content covered at one point can always contribute to the coverage of

its neighbouring points make the random densities at different locations in the flakeboard

field spatially correlated. The degree of such coverage contribution from one point to another

depends on the distance between the two points. This feature is measured by the correlation
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coefficient of the flake coverage.

Consider the number of flakes covered at any arbitrarily chosen point e is i and at

both point e and f which are r distance apart. Then the correlation coefficient at the two

locations e andf is (Dodson, 1971),

Var[i )r(r; )..,G)) (3.8)
Var [i]

where Var[i] and Var[ie) are variance of flake coverage i and, respectively.

It is known that i is Poisson distributed with the mean p1 and variance Var[i] equal

to y)w. An instructive explanation of the Poisson parameter yw for i is that it in fact equals

the product of the flake centroid intensity y and the centroid locus )co for a flake to cover

location e, as shown in Fig.3. la. Similarly, the calculation of the Poisson parameter for i

can be made, if the centroid locus area for a flake to cover both location e and f, a, is

known.

As indicated in Fig. 3. ib, the flake centroid locus a is a rectangle with side lengths

equal to u and v. Assuming the angle between the line ef and flake length is q, then u = A-r

cos(4) and v = o-r sin(). Thus the locus area is

a=[.—r cos(4)] [w—r sin(4)] (3.9)

Since flake orientations are randomly distributed over the mat area, the variance Var[ie) is

Var[iefJ=2-Xf[)._r cos(4)] [ci-r sin(4)]d (3•’Q)

or the correlation coefficient q(r; A, a) becomes
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ri(r; ).., =-.f[1--cos(4)] [i—-sin())d4 (3.11)

where is the integral range. Depending on how far e and f separate in reference to the

flake size and because the locus a is symmetrical with respect to the flake lengthwise

direction (Fig. 3.2), ‘ can fall into following three ranges:

1)whenO< r co, Q={O< q x/2};

2) when o < r A, Q = { 0< <arc sin (coir) };

3) when ) < r (A9 + o1)°, Q = { arc cos(AJr) < q arc sin(w/r) }.

Accordingly, the correlation coefficient fr; ), co) is obtained as follows (Dodson,

1971):

2Z
(O<r)

It A ‘) 2A

112 ,w)—rsin ——+(—1)) (<rA)
it z 2X

(3.12)

it r r 2A 20 2Ao

+ (r 1) 0.5k (1 —1) 0.5) (A<r (A2+o2)0.5)

A2

and i(r; A, co) =0 for r (‘A,2+co2)°’5. A typical calculated result of q(r; A, co) is plotted in

Fig.3.3. The correlation coefficient is in value range of 0 i(r; A,w) 1. It decreases with

an increase in the distance and becomes nil as the distance r exceeds the maximum linear

length of the flake (A,2+
(,)2)O.5• The maximum correlation occurs when r approaches 0.
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3.2.3 Distribution of Local Density Averages

Although the point density distribution can provide in detail the local point-to-point

variation occurring on a high level micro-scale in the horizontal plane of a flakeboard, it is

usually more useful to model the distribution of local density averages. This is because point

density is not observable in practice and details of the microstructure of the wood composites

may affect behaviour on the macro-scale only through their effect on local average.

In modelling the variation of local density averages, the whole flakeboard area can

be viewed as a two-dimensional random field provided that flakes are deposited in a random

fashion. Thus, based on the known point variance the derivation of the local average variance

model can be carried out through the application of random field theory (Vanmarcke, 1983).

According to this theory, if the point is extended to a finite zone, say a rectangle with side

length of a and b, the variance of regional density average in the zone, Var[DJ, is expressed

as:

Var[Dal= p(a,b) Var[D]
(3 13)

= p(a,b) t CR8
H

where (a, b) is defined as the variance function of zone density average Da, which measures

the reduction of the point variance Var[D] under regional averaging. It is a dimensionless

function of value range: 0 (a, b) 1. The upper limit occurs when the sampling zone

shrinks to a point.

The reduction of variance of regional density average is merely due to the spatial

correlation of the flake coverage between points within the zone. Assuming stationary and
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isotropic properties, the variance function (a,b) is given by (Matern, 1960; Dodson, 1971):

/a2+b2 (3.14)
p(a,.b)

= f ii(r; ),co) p(r; a,b) dr

where i(r; A, o) is the correlation coefficient of flake coverage between pairs of points which

are a distance r apart, given by Eq. (3.12). It depends only on the distance r, flake length )

and width Co. The function p(r; a, b) is the probability density for the distance r between two

points arbitrarily chosen in the rectangle, and depends only on the shape and size of the

inspection zone.

The probability density functionp(r; a, b) for rectangular zone with side length a and

b (ab) is given by (Ghosh, 1951):

p1(r;a,b) = (
4r (itab_z(a÷b)+1r2) (0 z b)
ab 2 2

p2Cna,b) = ( 4r
ab r 2

(b r a) (3.15)

p3(r,a,b) =
r (ab(arcsin(-)-arccos(-))
a2.b2 r

÷a(r2_b2)0÷b(r2_a2)0.5_--(r2+a2-’-b2))

(a r (a2-’-b2)0.5)

For square zones, a =b, and the central range for r is non-existent.

The density function p(r; 20,20) for a square 20x20 mm2 is plotted in Fig.3.4. It

should be noted that the exact solution to the integral (Eq. 3.14) cannot be derived and the

approximation can be obtained using numerical methods.

The distribution of board density averages in a finite zone can be obtained by fitting

the mean density E[DJ (equal to E[DJ) and its variance Var[DJ with a normal distribution.
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The normal distribution of the zone density is assumed here as a result of a direct application

of the Central Limit Theorem (01km et at, 1980). According to this theorem, the normal

distribution can provide a good approximation for the probabilistic characterization of a

Poisson associated distribution as the mean of the distribution increases. This mean is

represented here by the average flake coverage ,Uj.

3.3 RESULT AND DISCUSSION

3.3.1 Computer Simulated Images of Flakeboard Density

The previously described Monte Carlo simulation program was extended to allow for

the calculation of flakeboard density based on the simulated local flake coverage i, flake

density (5, board compaction ratio CR and board thickness H. Then the extended program

was interfaced with an image program so that the digital data could be transferred into colour

images. In addition, the density statistics associated with the images could also be obtained

from the program. The input parameters allowed a quick visual and numerical evaluation of

how flakeboard density distribution is affected by the production variables, such as flake

length A, width ai, thickness t’, density (5, board compaction ration CR, board thickness H,

and even flake orientation.

Figure 3.5, for example, shows some typical computer simulated images of

flakeboard density variation patterns as affected by changes of flake sizes. The random flake

deposition in the initial mat formation makes it no surprise to see the mountain-lilce density
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variation with irregular “peak” and “valley” alternations. The spatial transition from the

density “peaks” to “valleys” is gradual due to the nature of flake coverage correlation. If

such density variation field is viewed as a two-dimensional fluctuation system, then the

frequency (number of “peaks” per unit sampling distance) and scale (density difference

between “peaks” and “valleys”) of the variation change with the flake sizes. The frequency

appears to related to the flake length A. and width co, whereas the scale seems to depend on

flake thickness r. Comparison between Fig.3.5a and Fig.3.5b shows that greater slenderness

ratio, A.Iw, results in higher variation frequency. The differences between Fig.3.5a and

Fig.3.5c indicates a larger variation scale resulting from thicker flakes.

3.3.2 Distribution of Flakeboard Density

The density variation in a flakeboard was evaluated by calculating the density average

statistics in finite zones using the computer program mentioned above. The calculations were

based on the flake centroid position and orientation data either directly measured from an

800-flake mat as described in Sect.2.3.2 or simulated using Monte Carlo technique. The

results for sampling zone size lxi and 5x5 mm2, were compared in Fig.3.6 with

mathematical predictions. The density of the hand-formed mat is close to that of the

computer simulated mat, and both are nearly normally distributed with a slightly positive

skewness, which stems from the Poisson distribution of the point density (Eq.2.6). Such

skewness becomes more noticeable as the zone size and the mean flake coverage decrease

and less so as they increase (compare (a) and (b) in Fig.3.6).
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Nevertheless, the most characteristic parameter for describing variation of horizontal

density in a flakeboard is numerically expressed as the variance of the density distribution,

which is independent of the shape of the distribution. In Table 3.1 the variances of density

averages of different sampling zone size are compared between experimental, simulated and

predicted data. Again a close correlation is found between the three procedures. The results

also show that density variance is a monotonically decreasing function of sampling zone size.

This is generally true in practice that the measured density of smaller flakeboard samples

always varies more than that of bigger ones. A decrease in between-zone variance with

increase in zone size is due to the within-zone spatial correlation of flake coverage.

The slightly higher values for simulation compared to that of mathematical prediction

in Table I are due to the digitization process from real numbers in practice to integers in

simulation. This difference will decrease as digitization resolution is increased.

It is important to note that the variance of the hand-formed mat is slightly greater than

that of both simulated and model mats (Table 1). This means less uniformity and, therefore,

less randomness of the hand-formed mat structure. A similar scenario seems to occur for

most machine-formed flake mats in wood composite manufacturing processes due to the

likelihood of such non-random effects as flocculation and preferential orientation of flakes

in the machine direction. Thus, completely random mat formation would provide the

maximum uniform structure which could possibly be achieved by a practical flakeboard

manufacturing process. This offers a standard of maximum uniformity to which present

commercial flakeboards can be compared.
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3.3.3 Typical Predicted Results

Effect of Flake Sizes

The maximum uniformity or the minimum density variance, as a function of sampling

zone size, depends on such production variables as flake geometry (length A, width a and

thickness ), flake density I), board compaction ratio CR and board thickness Tb. With the

development of the present model, the relationships are explicitly known. Figure 3.7, for

example, exhibits markedly different effects of flake length A, width co and thickness r,

respectively, on the density variances of different zone sizes, with r being the most

significant factor followed by a).

While an increase in flake size generally results in higher density variance, the

sensitivities of the variance change with the flake dimension depend on the zone size. For

example, changing flake thickness has little impact on the variance of bigger zone densities,

but a considerable effect occurs when the sampling zone becomes small (Fig. 3. 7a). The

relationship between density variance and flake width is highly nonlinear (Fig.3.7b). The

small-zone variances increase very rapidly with flake width at the start and then level off,

whereas more gradual relationships result as the zones becomes bigger. Flake length, in this

case where flake width is not narrow, seems to have little influence on how the local

densities vary (Fig.3.7c).

Understanding how flakeboard density variation is influenced by flake size and

sampling zone size is without doubt of great significance for evaluating and controlling the

quality of flake-type wood composites during the manufacturing processes. Firstly, it helps
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composite designers to choose the right flake size from the standpoint of optimizing the

product uniformity. In this regard, thinner and narrower flake geometry, according to this

model prediction, appear to be among the better choices. Secondly, this type of prior

knowledge can be used to determine the right sampling zone size to more effectively evaluate

flakeboard density uniformity, because the sensitivities of the board density variances

changing with flake size depend on the zone size. For example, using lxi mm2 zone is good

for measuring the effect of flake thickness in any value range, but not so for detecting the

influence of flake width with a value greater than 5 mm (compare Fig.3.7a with Fig3.7b).

Effect of Flakeboard Thickness

According to Eq. (3.13), flakeboard density variance is inversely proportional to the

board thickness. As shown in Fig.3.8, the density variance can be very high on small scale

if the board is not very thick. Therefore, it may not be suitable to manufacture too thin

flakeboard, say less than 10 mm, unless a reduced flake thickness is also used.

3.4 SUMMARY AND CONCLUSIONS

The horizontal density variation in a random flakeboard is characterized in terms of

local point density distribution, point-to-point flake coverage correlation coefficient and

variance of density averages between finite sampling zones. The model has been developed

using the prior knowledge about the Poisson flake mat formation process and the concepts

of two-dimensional random field theory. In addition, computer simulated images of typical
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flakeboard density distribution have been presented. The program is also capable of

calculating the flakeboard density statistics based simulated or experimentally obtained flake

mat configuration. The model prediction agrees well with experimental results and computer

simulation. This overall verifies the proposed theory and methodology, and leads to the

following main findings:

1. Because of the Poisson flake coverage distribution, the point density of a

randomly formed flakeboard is also Poisson distributed;

2. Due to the spatial correlation of flake coverage at neighbouring points, the

variance of density averages between finite zones is always less than the

point-to-point density variance, and the larger the zone size, the smaller the

between-zone density variance;

3. The zone density variation depends on such production variables as flake

geometry (length A., width o and thickness t), flake density D1, board

compaction ratio CR and thickness H. With the development of the present

model, such relationship is explicitly known;

4. A completely random flakeboard appears to provide a maximum product

uniformity that a practical manufacturing process can possibly achieve.

Therefore, it can establish a uniformity standard to which present commercial

flakeboards can be compared.
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Table 1. Comparison of the variances of density averages in different-size zones
(Flake: )t83.8 mm, co=9.31 mm, T=O.8 mm and D=O.4 g/cm3; flakeboard:

Tb=5 mm and CR=1.6).

Zone size Experiment Simulation Prediction
(mm2) ( (g/cm3)2)

lxi 0.04.44 0.0416 0.0392
5x5 0.0368 0.0336 0.0320
lOxlO 0.0292 0.0264 0.0244
25x25 0.0176 0.0136 0.0116
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_________

Flake centroid locus

Figure 3.1 (b) Schematic diagram of the centroid locus of a

flake to cover both points e and f.

e
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-. e

_______

Flake centriod locus

Figure 3.1 (a) Schematic diagram of the centriod locus of

a flake to cover only one point e.



65

EZ

Figure 3.2 Schematic diagram of the integral range as related

to the distance r in a flake.
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Figure 3.3 A typical predicted correlation coefficent as a

function of the distance between two locations.
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Figure 3.5 Computer simulated image of horizontal density variation in a random
flakeboard panel. (a). Flake: ) = 85 mm, w =10 mm, and r = 0.8mm; (b).
Flake: )=85 mm, a=5 mm, and t=0.8 mm; (c). Flake: )=85 mm, cv 10
mm, and r = 1.2 mm; Other conditions: D1=0.4 g/cm3; board: CR =1.6 and

Tb=lO mm.

Legend

color density (glcm3)

green 0.2 0.4
blue 0.4 - 0.6
red 0.6 - 0.8
pink 0.8 - 1.0
yellow 1.0 - 1.2
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Figure 3.5 a
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Figure 3.5 b
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Figure 3.5 c
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Distribution of flakeboard density averages in a finite zone as experimentally
measured, computer simulated and mathematically predicted. (a) Zone size:
lxi mm2, and mean flake coverage: Mj=10; (b) zone size: 5x5 mm2, and mean
flake coverage: ji,=2O. Flake: =83.8 mm, co=9.31 mm and t=O.8 mm; 6).4
g/cm3. Board CR=1.6.
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Figure 3.6
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Figure 3.7 Predicted effect of flake size on horizontal density variation in a random

flakeboard. (a). Effect of flake thickness, =85 mm and co=lO mm, (b). Effect

of flake width, =85 mm, and t=O.8 mm and (c) Effect of flake length, o=1O

mm and t=O.8 mm. Side length of sampling zone a=b. Other conditions as in

Fig. 3.6.
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CHAPTER IV. COMPRESSION BEHAVIOUR OF RANDOMLY-FORMED

WOOD FLAKE MATh

ABSTRACT. A theoretical model for predicting the compression response of a randomly-

formed wood flake mat is developed. The model rigorously relates the overall mat response

to local mat structure and individual flake properties. The compression behaviour of single

flakes, flake columns and random flake mats is experimentally determined. Satisfactory

agreement is found between the predicted and experimentally obtained results. Equations are

also derived for the calculation of the relative volumetric change of between- and within-

flake voids in a mat and the change of relative flake-to-flake bonded area during the course

of mat densification. Typical predictive outputs are presented and discussed.

4.1 INTRODUCTION

In the next two chapters, the mat structure model developed in Chapter II will be

further applied to formulate the compression behaviour of a flake mat in cold pressing based

on the mechanical properties of original wood flakes. In doing so, a mathematical

relationship between the marco-behaviour of a flake mat, its localized responses and the solid

flake properties will be established. Chapter IV will be concerned with instantaneous

responses and Chapter V will examine time-dependent properties.

From a material science standpoint, significant differences exist between production

of wood and non-wood composite materials. Wood composites are typically manufactured

by first applying relatively small quantities of adhesive to wood elements, mechanically
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forming these constituents into a loose mat structure and then consolidating the mat under

heat and pressure. Development of adequate strength properties requires application of

pressure which densifies the loose structure and results in permanent wood deformation. In

contrast, non-wood composite materials usually consist of reinforcing elements dispersed in

large quantities of resin matrix. Effective bonding of this structure is achieved without

densification. Therefore, the compression behaviour of the mat structure of wood

constituents, in the form of flakes, particles or fibres, is critical to wood composite

manufacture.

Other important aspects of mat compression behaviour of flake mats related to wood

composite processing and performance characteristics can be summarized as follows:

1. Changes in internal structure, such as void volume reduction and wood

densification which occur during mat compression, strongly affect heat and

mass transfer processes during hot-pressing (Humphrey and Bolton, 1989;

Kamke and Wolcott, 1991);

2. The physical, chemical and mechanical interactions between mat compression,

heat and moisture variation and adhesive cure can result in a non-uniform

densification through the thickness of the manufactured panel, often referred

to as the vertical density distribution (Suchsland, 1962; Harless et al, 1987;

Wolcott et a!, 1990);

3. Due to a random variation in mat structure as discussed in Chapter II and

Chapter III, highly localized wood compression stresses and densification

result from overall mat compression (Suchsland, 1962; Bolton et al, 1989;
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Smith, 1980);

4. Upon press opening the compressed wood composites can springback and also

exhibit non-reversible excessive dimensional change as a result of varying

moisture conditions (Suchsland, 1973; Beech, 1975; Liu and McNatt, 1991).

Realizing the importance of the above, it is surprising to learn of the limited

published information on compression behaviour of wood flake or fibre mats. Even for solid

wood, little is known about transverse compression and viscoelasticity at the loading levels

and over the ranges of moisture contents and temperatures that are encountered during wood

composite manufacture (Humphrey and Bolton, 1989).

Suchsland (1959, 1962) appears to be the only researcher to study this wood

composite mat behaviour. In his analysis, a random flake mat was treated as a system of

independent, horizontally-stacked flake columns with varying flake content. The compression

stresses developed in individual flake columns within the pressed mat were shown to be very

high, and were a function of transverse compression stress-strain relationships of solid wood.

Although the analysis was not mathematically rigorous, it provided a valuable insight into

the flakeboard manufacturing process. Kunesh (1961) experimentally investigated the

inelastic behaviour of solid wood under conditions of perpendicular-to-grain compression

similar to the hot-pressing operation in wood composite manufacture. More recently, the

transverse compression behaviour and viscoelasticity of wood blocks and wood flakes has

been tested and modelled by Kasal (1989) and Wolcott (1990) using theories of cellular

solids.

Knowledge about the compression behaviour of wood generally contributes to
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understanding such mat-compression-related product properties as panel density variation,

springback on press opening and thickness swelling. However, it is unsuitable for

quantitative analysis of wood composite manufacturing processes unless the relationship

between individual wood constituent properties, spatial arrangement of wood elements in a

mat and overall mat response is explicitly established. With the development of a random

mat structure model (Chapter II), it is now possible to derive such a relationship.

Within this context, the objectives of the present work are:

1. To develop a theoretical model which predicts the overall pressure-

deformation relationship of random flake mats in compression based on solid

flake compression properties and mat structure;

2. To experimentally test the compression behaviour of wood flakes and flake

mats, and compare these measurements with results predicted from the model;

and

3. To quantitatively describe changes of mat internal structural properties, such

as between-flake void volume and flake-to-flake bonded area, during

compression.

4.2 THEORY

A uni-directional compression of a mat of materials such as natural or synthetic

fibres, particles or flakes can simultaneously result in bending, shear, friction and

compression responses in the constituents. Among these stress modes, bending stress is the
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dominant component at the early stage of mat compression when low pressure is applied. At

higher pressure the mat constituents are mainly subject to transverse compression (Jones,

1963; Ellis et al, 1983; van Wyk, 1946). The latter scenario appears to be encountered in

wood composite manufacture where the densification pressure can range as high as 4 to 7

MPa. Thus, in the following analysis, bending and other possible stresses are ignored, and

the whole flake mat is treated as a system of compression units, which are the elements of

flake columns. The flake mat formation is also assumed to be strictly random with regards

to individual flake positions and orientations.

4.2.1 Compression Stress-strain Relationship of Flakes

Wood, as a natural cellular material, exhibits a unique mechanical behaviour when

subjected to high compression in the perpendicular-to-grain direction. Because of the cellular

structure, a typical complete deformation process goes sequentially through three stages:

initial linear cell wall bending, non-linear cellular structure collapse and final cell wall

densification (Gibson and Ashby, 1988). The linear and nonlinear stress-strain relationship

of wood can be modelled by a modified Hooke’s Law (Rusch, 1969; Wolcott, 1990):

(4.1)
o=q (e) Ec

where

a = stress, MPa.

2 = strain.
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E = Young’s modulus, MPa.

= nonlinear strain function.

The function q(e) equals unity when s is in the initial linear compression range, then,

it starts to monotonically decrease and reaches a minimum when the cell wall totally

collapses, and finally increases to infinity as the cell wall starts to densify.

For most synthetic polymer foams (Meinecke and Clark, 1973) and wood (Wolcott,

1990), the strain function q(2) is independent of the properties of matrix material or cell wall

and depends only on the cellular structure. Therefore, effect of loading conditions,

temperature and moisture content should not influence the strain function q(E), but only

Young’s modulus E.

4.2.2 Pressure-thickness Relationship of Flake Mats

The flake compression stress ci, as defined by Eq. (4.1), depends on the corresponding

strain s. Even under the same overall mat compression, the strain 8 of individual flakes at

different locations in a mat can be substantially different. Similar strain variations can also

exist within one flake of finite dimension. This unique behaviour is solely a result of the

non-uniform mat structure which, for a randomly-formed flake mat, is explicitly known in

the previous chapters.

A force F, applied on a random flake mat causes the mat to deform to thickness H.

Because of the random distribution of flake number in columns, F can be only supported by

those flake columns with flake count i greater than Hit (r: average flake thickness), or:
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(4.2)
F= a1a1

I =H/t

where a1 is the flake stress in columns with i flakes.

As mentioned in Section 2.2.2, the probability that any point in a mat is covered by

I flakes, p/V, can be referred to as the fractional mat areas, a/A, in which the number of

flakes overlapping is i. Thus, combining Eqs. (4.1) and (2.2) with Eq. (4.2), the nominal

overall compression stress, o, which equals the applied pressure, can be obtained by:

=E a.-- (4.3)
I H/t

=Ee p(e1)1
1.

where e is the flake strain in columns with i flakes, and is determined by:

r—H/i_.it—H (4.4)
.1 it

So far, a theoretical model for predicting the mat pressure-deformation relationship

is developed using fundamental mathematical and mechanical concepts. This theory can

further be applied to calculate relative void volume and flake-to-flake bonded area changes

with mat thickness during the course of densification.

4.2.3 Void Volume Change

Assuming wood cell wall density 6, (typically 1.5 g/cm3), the total void volume



84

content VC is readily given by:

w (4.5)
1000 HAÔQ

where and W are the overall mat density (g/cm3) and weight (g), respectively.

Considering wood as a porous material, the total void volume in a loose flake mat

may be classified into two components: between-flake voids and within-flake voids.

Differentiation between the two types of void appears to be necessary since the

environmental conditions inside flakes may not always be equilibrated with conditions

between flakes during hot-pressing (Kamke and Wolcott, 1991). This may not be achieved

without taking into account the horizontal flake coverage variation.

At any mat thickness H, between-flake voids can only occur in the columns with flake

count less than H/tj. Thus, neglecting the lateral expansion in compressed flakes, the

between-flake void volume content VCbJ is obtained by:

Hit

VC’bf=-A (H—it) a1

Hit
=V’ (i---.)-

HA
Hit

.

=e (1-!!) ‘“‘

H 1!

since a/A is known by Eq. (2.2)

The within-flake void volume content VC1 is merely given by subtracting the

between-flake void volume from the total void volume, or:

—
— (4.7)

VCWE- VC VC
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4.2.4 Inter-flake Bonded Area Change

It seems clear that the only purpose of highly compacting flake mats during the

manufacture of wood composites is to increase flake-to-flake contact and promote bonding.

Thus, it is of great importance to predict how the inter-flake contact area relates to mat

compaction. The maximum inter-flake bonded area BA of a flake mat resulting from an

ideal complete mat compaction has been given by Eq. (2.20).

For a partially compacted mat at thickness H, the actual bonded area is always less

than BA because effective flake-to-flake contact can only occur in columns with total solid-

flake thickness greater than H. As such, the relative bonded area RBA can be defined by:

RBA= 1 (.i-1)a.
B4 1H/t

1

(4.8)

=
(1—1)

(yAw)1
yAwl i=H/

4.3 EXPERIMENT

The following experiment was designed to provide a data base for estimating the

parameters of model input and to verify the proposed model. It consists of determining:

perpendicular-to-grain compression stress-strain relationships for single flakes and flake

columns, and pressure-deformation relationship of random flake mats.
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4.3.1 Materials

Aspen (Populus tremuloides) veneers of thickness 0.79 mm were prepared by slicing

along the grain direction. The veneers were cut into 25x25 mm2 square flakes and

rectangular flakes with average length 37.51 mm and width 6.09 mm. The flakes were then

conditioned to a 9.1% moisture content at 20°C. Square flakes were used for single flake

compression tests and also randomly selected to form 6-, 10-, 14-, and 18-flake columns for

column compression tests.

All flake mats were prepared by hand felting 72 g of rectangular flakes into a forming

box with inside area 152x152 mm2. A highly compressible foam wall was placed around the

mat perimeter to contain the flakes during testing. Efforts were made to ensure the

randomness of mat formation during each packing process.

To compare compression responses of mats constructed from different sizes of flakes,

the 37.5 1x6.09 mm2 flakes were further cut in half either along length or width to give two

different sizes: 37.51x3.05 mm2 and 18.76x6.09 mm2.

4.3.2 Procedures

All tests were conducted on a computerized, hydraulic press interfaced with an MTS

(Material Test System) controller at an ambient temperature of about 20°C. The computer

control and monitoring system allowed the complete testing procedure to be programmed and

compression pressure and deformation data to be acquired in real time.
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Prior to testing the samples, the machine compliance was measured and the pressure-

deformation of the platens was found to be linear. This deformation was subtracted from the

overall gross displacement to obtain the real compression of samples. Samples of single and

multi-flake columns were compressed at a loading rate of 0.5 mm/mm while 25 mm/mm was

used for flake mats.

4.4 RESULTh AND DISCUSSION

4.4.1 Flake Compression Modulus and Strain Function

Considerable variation is found among the compression responses of individual flakes

(Fig.4. 1). This may result from wood heterogeneity and the variance induced by the flake

preparation process, namely, the effects of the principal material orientation (tangential and

radial) (Bodig, 1963), sapwood-to-heartwood and earlywood-to-latewood ratio (Kennedy,

1968) and thickness variation and surface roughness (Wolcott et al, 1989). However, such

effects are dramatically reduced when flake columns are compressed (Fig.4.2). The exact

reason for such variation reduction is unknown. A universal statistical law relevant to this

phenomenon is that the variance of an average value of several independent variables is

always smaller than that of individual variables. In this regard, the stress-strain relationship

of a flake column is indeed an average response of all flake elements of which the column

is made, and should accordingly vary less.

In evaluating the average compression modulus E and the nonlinear strain function
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p(E) of flakes, 10-flake column data is used. E is estimated at approximately 25 MPa, which

is much less than the corresponding modulus of a wood block. This seems to be a result of

the dominance of surface roughness effects as the specimen thickness becomes very small

(Wolcott et al, 1989). However, this deviation may not invalidate the use of the modified

Hooke’s law (Eq.4.1) for this application. q2(2) can be obtained by determining the constants

in the following equation through a computer program:

(4.9)

The results of b. are listed in Table 4.1. It should be noted that this estimation

involves an approximation in designating cp(2) equal to unity in the linear range, as both

Fig.4. 1 and Fig.4.2 show slight nonlinearity of the stress-strain curves prior to the beginning

of linear range. It appears that this discrepancy has little impact on the prediction accuracy,

especially for higher mat compression regions where the induced error accounts for a

negligible portion of total predicted stresses.

4.4.2 Compression Response of Flake Mats

Validation of the Model

Based on the estimated flake compression modulus and strain function, the mat

compression response can be predicted using Eqs. (4.3) and (4.4). As shown in Fig.4.3, a

close agreement is found between the predicted response and experimental measurement,

except at pressure less than 1.5 MPa. This discrepancy seems to relate to the fact that the
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pressure against a flake mat during the initial compression stage is mainly resisted through

flake bending, not transverse compression. A prediction of initial flake bending stresses

could be made by treating the whole mat as a system of bending units with the span of each

unit being determined by the distribution of free flake length, i.e., the distance along a flake

between adjacent contacts with other flakes as defined in Section 2.2.3. This calculation is

not considered here since our present interest lies in mat compression ranges of greater than

2 MPa, which is normally seen in the hot-pressing of wood composites.

According to Eq. (4.3), for a randomly-formed flake mat, compression response

depends on the flake size only through the total coverage area content yAm. Thus, it is not

affected by any change of flake length A or width cv as long as the total flake coverage area

is kept constant. This has been demonstrated experimentally by determining the compression

pressure-deformation relationship of mats of flakes with different sizes (Fig.4.4). Again the

region of initial discrepancy arises because the early compression pressure on a mat is

dominated by flake bending resistance, not flake compression. The bending response is

strongly affected by the flake slenderness ratio (ratio of length to width) (Jones, 1963).

Effect of Flake Properties

An important feature of the proposed model is that it establishes an explicit

relationship between individual flake compression properties and overall mat response, as

well as a relationship between local compression strain and stress and overall mat

densification. According to Eq. (4.3), the mat densification response is a linear function of

flake compression modulus E, as presented in Fig.4.5 which indicates the relationship
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between the applied pressure and compaction ratio (ratio of mat density to flake density). For

a given species and flake thickness in a mat, the modulus E, during hot-pressing, is a

temporal and spatial function of temperature and moisture content inside the mat. Therefore,

with the development of this model, the success of predicting the vertical density profile of

flakeboard may be achieved by incorporating a heat and mass transfer model (e.g.,

Humphrey and Bolton, 1989) and the compressive viscoelasticity of flakes (Wolcott, 1990)

into Eq.(4.3).

Local Stress Distribution

At any given mat densification (or mat thickness H), the distribution of local

compression stresses can be obtained by incorporating the compression stress-strain

relationship of flakes in Eq. (4.1) into the Poisson distribution of flakes counts in individual

columns (Eq.2.2). As shown in Fig.4.6, local stresses can vary markedly from as small as

zero to as high as more than 40 MPa, with the variances increasing as applied pressure on

mat increases. This is a characteristic stemming from the parentage of the Poisson

distribution.

The level and variability of local stresses will directly relate to the severity of residual

stresses in the compressed panel. The residual stresses, in turn, determine the minimum

pressing time needed to give the panel an acceptable internal bond strength, and affect the

springback and thickness sweffing (Bolton et al, 1989). Furthermore, since such a wide

distribution of local stresses is transferred to flake interfaces during pressing, the flake-resin

bond development within the composite varies (Humphrey and Ren, 1989). As a result, a
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distribution of localized bonding strength in the final board is expected. Therefore, a

quantitative characterization of the local stresses in the pressed mat may lead to the

prediction of optimum pressing time and variability of board properties.

4.4.3 Predicted Results of Internal Mat Structure Change

Void Volume Content

Figure 4.7 shows a typical result of predicted (Eqs.4.5, 4.6, 4.7) total void volume

content VC, the between-flake void volume content VCbJ and the within-flake void volume

content VCWJ during the course of mat densification. While VC linearly decreases with the

compaction ratio CR, the two components VCbJ and VC,1exhibit markedly different patterns.

Without doubt, the absolute volume of both between- and within-flake voids always decreases

with an increase in CR. The initial rapid increase in VC is merely a result that rate of

decease in within-flake void volume with CR is much less than that of total mat volume.

According to this prediction, less than 10% of between-flake void volume likely exits in

random flakeboards, where the core CR is usually greater than 1.

Inter-Flake Bonded Area

As discussed previously, mat compression response is independent of flake length and

width. For the same reason, any change in flake length and width should not affect the

relative flake bonded area for a randomly-formed flake mat.

The predicted relative flake-to-flake bonded area, RBA, with mat densification with



92

respect to flake thickness is displayed in Fig.4.8. It is interesting to note that an increase in

flake thickness results in higher RBA at lower CR while a less important role is played by

flake thickness at higher CR. This result may shed some light on how flake thickness affects

the development of internal bond strength in flakeboard. Increasing the flake thickness

appears beneficial for enhancing panel bond strength, not only by increasing area! resin

concentration but also by promoting flake-to-flake contact, especially for low density

products (Suda et al, 1987).

4.5 SUMMARY AND CONCLUSIONS

In modelling the compression behaviour of a randomly-formed flake mat, the mat

structure is viewed as a system of horizontally arranged flake columns with infinitely small

cross-sectional area. Pressure applied on the mat is primarily resisted through transverse

compression of flakes in those columns with total solid-flake thickness greater than current

mat thickness. With prior knowledge of the Poisson distribution of column flake count, a

model has been developed to predict the mat compression response based on the compression

characteristics of flakes.

Because variations in single flakes are much greater than flake columns, a more

accurate estimation of flake compression stress-strain relationship as model input parameters,

is provided by the flake column data. The model prediction is in good agreement with

experimental results except at pressure less than 1.5 MPa. The predicted mat compression

response is not affected by flake length and width.
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With the development of this model, a quantitative relationship between individual

flake compression properties and overall mat response as well as the relationship between

local compression and stresses and overall mat densification are established. This essentially

provides a new approach to investigating the role played by individual flakes in defining

overall flakeboard properties and how localized material properties affect overall panel

behaviour.

Equations are also derived for the calculation of relative volumetric changes of total,

between- and within-flake voids, and relative flake-to-flake bonded area during mat

densification. A quantitative description of internal mat structure change is necessary to fully

understand the mechanism of heat and mass transfer and the development of internal bond

strength during the hot-pressing operation. The establishment of the present model may also

provide a basis for predicting such flakeboard properties as vertical density distribution,

springback on press opening and even thickness swelling. To achieve this, further work is

needed to extend the present model to incorporate viscoelasticity of the mat under

compression at loading levels and over ranges of temperature and moisture content

experienced during hot-pressing.
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Table 4.1. The regression results for strain function (p(e)

strain (e) strain function ( q(c))

0-0.16 1

> 0.16 Eq. 12

i b1

0 -18.41
1 455.24
2 -4361.09
3 21797.65
4 -57902.60
5 54472.87
6 131485.66
7 -512553.08
8 748850.68
9 -541248.47
10 160504.47



98

35

:
30*,4

*
- : : : 1: *‘**

• : : :25
-.

:*.t*

20 -

strain

Figure 4.1 Experimentally measured stress-strain relationship for single aspen flakes

under transverse compression. Flake size: 25mm x 25mm x 0.79mm, 9.1%MC,

20°C, and 0.5 mm/mm loading rate.
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Figure 4.2 Experimentally measured compression stress-strain relationship for aspen flake

columns (10-flake). Other conditions as in Fig.4.1.
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Figure 4.3 Comparison between experimental measurements and model prediction of

pressure-mat thickness relationship of a randomly-formed flake mat in

compression . Flake size: 37.51mm x 6.09mm x 0.79mm, total flakes: 72g.

9.1%MC, 20°C and 25mm/mm loading rate.
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Figure 4.4 Experimentally measured pressure-mat thickness relationship for flake mats of

different flake sizes compared to model prediction. AU flake thickness:

0.79mm and other conditions as in Fig.4.3.
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Figure 4.5 Predicted compression response of a random flake mat as affected by flake

compression modulus. Flake size and other conditions as in Fig.4.3.
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Figure 4.6 Predicted local stress distribution of a flake mat under three different

compression levels. Conditions as in Fig.4.3.
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Figure 4.7

3

Predicted relative volumetric change of total, between- and inside-flake voids

in an aspen flake mat under compression. Flake density: 0.38 g/cm3 and other

conditions as in Fig.4.3.
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compression as affected by flake thickness. Other conditions as in Fig.4.3.
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CHAPTER V. VISCOELASTICITY OF RANDOM WOOD-FLAKE MATS

DURING PRESSING

5.1 INTRODUCTION

In the preceding chapter, the unique compression behavior of a flake mat has been

proved to be a combined result of the nonlinear mechanical response of wood under

perpendicular-to-grain compression and the random mat structure. Like many other natural

or synthetic polymers, wood is a viscoelastic material. Hence a wood-flake mat subjected to

compression pressure will also exhibit time—dependent load-deformation characteristics. Mat

viscoelasticity affects the vertical density formation in a wood composite panel, and

presumably the springback upon press opening and thickness swelling as related to changing

moisture conditions.

The main objective of this chapter is to develop a viscoelasticity model for a flake

mat in compression. To derive such a model, one could use either a phenomenological

approach or a structural approach. While the phenomenological constituent equations are

based solely on experimental observations where the material is treated as a continuum, the

structural ones are obtained from the structure model and the constituent properties. In the

following analysis, the structural procedure is applied and the mat viscoelasticity model is

based on the known mat structure and the nonlinear viscoelastic properties of wood flakes.

Such a model offers a structure-properties relationship.
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5.2 BACKGROUND

5.2.1 Viscoelasticity of Wood and other Cellular Materials

The viscoelasticity of wood has long been recognized as one of the most important

properties in structural applications where wood is under long term static loading, or in the

press drying process where wood is under a static pressure and subject to high temperature

and humidity. In these situations, wood can be adequately treated as a linear viscoelastic

material, because the applied load is under certain limits within the linear range. A

considerable literature has accumulated on linear viscoelasticity of wood, which is

represented in several good reviews (Schniewind, 1968; Pentoney and Davidson, 1962;

Bodig and Jayne, 1982; Holzer et a!, 1989).

During the production of non-veneer wood composites, wood elements coated with

thermosetting adhesives are compressed under high pressure to form an integrated panel.

Such high pressure in combination with the random mat structure results in a highly

nonlinear and nonuniform mechanical response of the flake components.

Youngs (1957) and Kunesh (1961) are two of the earliest researchers who investigated

the nonlinear viscoelastic behavior of wood under perpendicular-to-grain compression. Such

important phenomena as the time-dependent stress-strain relationship, instantaneous and

delayed strain recovery, permanent deformation, and temperature and moisture dependent

stress relaxation were observed. These phenomena were related to the destruction of cellular

structure within the wood samples. Bolton and Breese (1987) attempted to interpret
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viscoelastic behavior of wood loaded at right angles to the grain by relating strain

development to microstructural change in cell wall material. They concluded that the

majority of strain development involved bond breakage and reformation in regions containing

less ordered cellulose, hemicellulose and lignin.

The relationship of the nonlinear viscoelastic behavior of wood to its corresponding

cellular structure also has been readily observed in other natural and synthetic cellular

materials (e.g., Gibson and Ashby, 1988; Meinechke and Clark, 1973; Rusch, 1969). The

nonlinearity was attributed to the interaction between linear viscoelastic response of cell wall

polymers and geometric nonlinearities of cellular collapse (Meinechke and Clark, 1973;

Rusch, 1969). This interpretation along with the relevant nonlinear viscoelasticity model was

adopted by Wolcott (1990) to explain response of wood flakes during the pressing of wood

composites.

According to these researchers, the nonlinear stress relaxation modulus E(t) of

synthetic cellular polymers and wood was adequately predicted by multiplying the linear

response of the polymer, E’(t), by nonlinear strain function, q(&, or:

E(t) =p(e)E’(t) =p(e)Kt (5.1)

where the strain function, qK&, depends only on strain but not on time t. The constant K

is the relaxed modulus of the material at a certain time (usually 1 sec.). The constant is

the slope in the double logarithmic plot of modulus E(t) versus time elapsed t, which is

indicative of the rate of stress relaxation. It depends only on the cell wall polymer.

The usefulness of Eq. (5.1) implied a possibility of extending the linear Boltzmann
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superposition principle to modelling the response of nonlinear cellular material to successive

loads, provided that the stress-relaxation rate was not too large (Meinecke and Clark,

1973). The stress at any time t was then given by:

0(t) =c0E(t) +(p(C)fE(t_t’) de(t’) dt’ (5.2)

where and 2(t) are the initial strain and the strain at time t, respectively.

Compared with stress relaxation, the nonlinear creep response of cellular materials

seems much more complicated. So far, according to the available literature, there has been

very limited success in developing a compression creep model for wood (Wolcott, 1990) or

other cellular materials (Meinecke and Clark, 1973; Gibson and Ashby, 1988). Under this

circumstance, the focus of model development in the present work will be on stress

relaxation, whereas the creep response of wood flakes and mats will be experimentally

measured and compared.

5.2.2 Rheological Behavior of Wood Composite Mats

Despite its critical importance to the formation of composite boards, the rheological

behavior of wood-furnish mats in compression has only been investigated to a very limited

extent. Wolcott (1990) used theories of the viscoelastic behavior of amorphous polymers

(Ferry, 1980) to explain the vertical density profile formation in flakeboard. The glass

transition temperature of the lignin component in wood was estimated from experimentally

measured temperature and vapour gas pressure at different locations inside the flake mat
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during hot-pressing. Mat strain development was related to the external pressure profile

through the difference between the actual flake temperature and the calculated glass transition

temperature. The information provided from this analysis is insightful but only qualitative.

A quantitative prediction of density gradient formation in wood composites certainly requires

a more comprehensive treatment of wood viscoelasticity.

More recently, the thermo-hydro rheological behavior of randomly-formed wood fiber

mats was experimentally investigated by Ren (1991). Samples were measured under a wide

range of temperature and moisture content conditions encountered in a typical wood

composite hot-pressing process. The data was then fit to a five-element “spring and dashpot”

model. The model parameters were determined as functions of the temperature, moisture

content conditions inside the mat, and the mat density. Such a model has an immediate

capability for predicting compression strain development in fiber mats of the same structure

and constituents as the tested samples. However, the model’s predictability for other types

of wood furnish mats is doubtful because wood furnish type and mat structure can strongly

affect the mechanical response of the mat. To incorporate the effects of such mat production

factors as wood element geometry, orientation and species, a more rigorous and integrated

approach is needed.

5.3 A STRUCTURAL MODEL OF FLAKE-MAT STRESS RELAXATION

As discussed in section 4.2.3, the total stresses imposed on a mat with thickness of

H, are supported only by a part of the mat areas, where the effective flake coverage
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count i is greater than Hit (r: flake thickness). Similar to Eq. (4.5), the relationship between

the time-dependent mat stresses, cijt), and the stresses shared by local flake columns, cY/’t),

is given by the following expression:

a(t)=01(t)pf(I) (5.3)
iH/t

where the relative area of i-flake columns, p/i), is a Possion variable given by Eqs. (4.2) and

(4.3).

For a standard relaxation test in which a compression deformation is suddenly

applied to a flake mat, the mechanical responses of supporting flake columns take place

simultaneously, i.e., the column stress G(t) = 0, for t <0 and a/t) = lL fort >0. The stress

relaxation in individual flake columns is then given by Eq.(5.1). Thus the mat stress

relaxation can be further defined by substitutingp/i) and a1(t) in Eq. (5.3) with Eqs.(4.2) and

(5.1), respectively, i.e.,

a(t) =Ke
(p(e.)e.(y?.ø)’ (5.4)

iH/v 1 !

During hot-pressing, compression load is usually applied successively onto the mat.

The strain histories of individual flake columns in a mat vary in accordance with their flake

coverage counts. The higher the flake count, the sooner the column areas come under

compression. To calculate the compression stresses in flake columns produced under the

linear loading strain histories as shown in Fig.5.1, we need to resort to the extended

Boltzmann superposition principle as given by Eq. (5.2). But first, the strain and time

parameters pertinent to the loading histories need to be determined.
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The maximum strain in the highest effective flake columns, EN, is given by:

_Nr—H (5 5
Nt

where N is the number of flakes contained in the highest effective flake columns. It can be

estimated by designating p(i) = 0.001 in Eq. (3.1) and solving the equation for i ( =N).

Likewise, the maximum compression strain in i-flake columns, E, is given by:

s_it—H (5.6)
it

If a flake mat is compressed with constant crosshead speed V during the initial

loading period, the time required for all supporting flake columns to reach their maximum

strain, t0, is determined by:

_Nt—H 5 7

The time period from the external load being applied onto the mat to i-flake columns

coming under compression, t1’, is given by:

(5.8)

The time taken for i-flake columns to reach their maximum strain, t, is obtained by:

tj=1t (59)

Thus the strain history in i-flake columns can be described by the following

expression:
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e1(t)= 0 (t<t)

t—ti I
e (t1<t<t0)

e1(t)= c1 (t>t0)

Taking derivative of s(t) with respect to tin Eq. (5.10) and substituting and t1 with

Eq.(5.6) and (5.9) yields:

de.(t) v /.1
— Ii-.

dt it (5 11)
de.(t)

______

= 0 otherwise

Now, we can use the extended Boltzmann superposition integral to calculate the flake

column stresses. Since the stress of wood flakes under a standard relaxation test is given by

Eq. (5.1), the integral (Eq. (5.2)) for determining the stress under successive loading strain

histories as described by Eq. (5.10) and Eq. (5.11) then becomes, in the range t < to,

a( t) =O+ (c1) fK(t—t’)

(5.12)

— K¼p(e1)
(t—t’)’

it(1—1)

For t t0, the integral becomes:

o1(t)=0÷(E1)fK(t—t1)idtI

t (5.13)

=
(c1)

[(t—t) ( t-t ) ‘]
it (1—) 1 0

Substituting a/’t) in Eq. (5.3) with Eqs. (5.12) and (5.13) andp/i) with Eq. (4.2) yields:
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= KVe’ (P (e1)
(t—t’) ‘an L. 1’i—’’ 1

i=H/r ‘ ‘i’

(t< t0)
(5.14)

o(t) = 1CVe [(t—t)1—(t—t0)’’]
i=H/t j 1.

(tt0)

5.4 MATERIALS AND EXPERIMENTAL PROCEDURE

The objectives of this experiment are fourfold to test the viscoelasticity of wood

flakes under transverse compression to develop a database needed for predicting mat stress

relaxation, to measure the stress relaxation of flake mats and compare with model prediction,

and to relate the creep response of flake mats to that of wood flakes.

All mat samples were hand-felt and made of aspen (Populus tremuloides) flakes with

average length 37.51 mm, width 6.09 mm and thickness 0.79 mm. Each sample weighed 72

g and was of 152 mm by 152 mm square. For testing the viscoelastic properties of wood,

25 mm by 25 mm square flakes with thickness 0.79 mm were hand-cut. To reduce the effect

of wood variation, the samples were prepared by randomly selecting six flakes and stacking

them together. A more detailed description of sample preparation procedures was presented

in Section 4.3.1.

All samples were conditioned to a 9.1% moisture content at 20°c before being tested

on a MTS testing system at room temperature and humidity conditions. Stress and strain

were measured and acquired in real time through a computer data acquisition system.
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The stress relaxation tests on wood flakes were conducted by suddenly imposing

strain on a 6-flake stack and then maintaining this strain for 10 minutes. Several strain levels

were chosen to represent different stress-strain characteristics. During the mat stress

relaxation tests, a crosshead loading speed of 5 mm/sec was used.

To test the creep response of wood flakes, pre-determined stress levels were suddenly

applied to 6-flake stacks and maintained for 10 minutes. The flake mat creep tests were

carried out by first imposing pre-defined stresses at a constant rate of 5 MPa/sec and then

maintaining the stress levels for 10 minutes.

5.5 RESULTS AND DISCUSSION

5.5.1 Flake Stress Relaxation

The stress-strain curve of wood in perpendicular-to-grain compression is generally

nonlinear. Thus the stress relaxation modulus E(t) is not only time dependent but also strain

dependent. This nonlinear stress relaxation behavior was evaluated by testing the relaxed

modulus E(t) at different strain levels, as shown in Fig.5.2a. The double logarithmic plots

of modulus E(t) versus time were straight lines with varying slopes (Fig. 5. 2b). Therefore,

the modulus E(t) model as given by Eq. (5.1) is generally valid and the stress relaxation rates

as indicated by slopes of the lines in Fig.5.2 vary with the strain levels. The former finding

agrees with the results reported by many other researchers (Youngs, 1957; Kunesh, 1961;

Rosa and Fortes, 1988; Wolcott, 1990). However, the latter one, although suggested by the
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observations from Youngs (1957) and Kunesh (1961), is not consistent with the results cited

by Rosa and Fortes (1988) and Wolcott (1990).

The fact that stress relaxation rate varies with the strain level may be explained using

free volume theory in polymers (Ferry, 1980). This theory states that the viscoelasticity of

a polymer is ultimately attributed to the presence of free volume, which may be present as

holes of the order of molecular dimensions or smaller voids associated with packing

irregularities. In the case of wood, such free volume exists in the amorphous sites in the cell

walls. The amount of free volume in wood is affected by imposed stresses, which can results

in bond breakage (Kauman, 1966; Bolton and Breese, 1987). The way stresses influence the

formation of free volume depends on both the stress mode and magnitude. Generally, tensile,

shear, bending and buckling stresses can promote the formation of free volume, whereas

compression stresses hinder the development of free volume (Ferry, 1980). It is known that

wood-cell-wall polymer subjected to transverse compression can sequentially experience three

different stress modes: bending, buckling and compression (Gibson and Ashby, 1988).

Accordingly, free volume in the cell wall polymer increases with loading strain during linear

elastic, nonlinear elastic or plastic buckling ranges and decreases during the cell wall

densification range. As a result, the compression stress relaxation rate increases with the

strain level in the first two ranges and decreases in the last range (Fig. 5.2).

5.5.2 Mat Stress Relaxation

It is known from Chapter IV that the stress-deformation relationship of a randomly



117

formed flake mat in compression is nonlinear. The nonlinear stress relaxation of mats was

determined by compressing the mat samples tinder sustained deformation at different loading

levels, as indicated in Fig. 5. 3a. The log-log plots of the stress relaxation versus time are also

straight lines (Fig.5.3b) and the line slopes indicating the stress-relaxation rates decrease with

the loading levels. This macro-mechanical response of a mat appears to be related directly

to the stress relaxation behavior of its constituents--wood flakes.

The stress relaxation relationship between a mat and flakes was examined by

predicting the time-dependent stresses in the mat from the viscoelasticity of flakes. The log-

log plots of the predicted mat stress relaxation versus time (Eq.5. 14) are shown in Fig.5.4.

The model prediction in trend follows the results from the experimental observation

(compare Fig. 5.3 with Fig. 5.4). It should be noted that the flake stress relaxation rate
,

an

important input parameter to the model, was estimated from the limited experimental

database obtained in this work. The heterogeneity of wood flakes and especially the variation

of climatic conditions under which the tests were conducted, suggest more controlled tests

are needed in order to more accurately determine the flake viscoelastic parameters. The lack

of such controlled tests is believed to largely contribute to discrepancies in stress-relaxation

rate between the model prediction (Fig. 5.4) and the experimental observation (Fig. 5.3).

One of the prediction capabilities of the proposed model is that it can calculate the

effect of the loading rate (or press closing rate) on the time-dependent stresses in a mat.

Figure 5.5, for example, shows that higher loading rate results in higher maximum stress in

the mat for a given mat compression strain and consequently more stress relaxation. Despite

the differences in the initial stress history, the asymptotic stress relaxation approaches a
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common level, which is a function of the mat strain level and independent of the loading

strain rate.

5.5.3 Creep

The nonlinear creep behavior of flakes was tested by suddenly applying and

maintaining different levels of stresses in 6-flake stacks which represented different

characteristics of compression stress-strain relationship. The loading levels and their

corresponding relative creep strain are shown in Fig.5.6. The highest creep strain is found

to be associated with the cell wall yield point (Wolcofl, 1991; Rosa and Fortes, 1988), where

wood starts buckling. The extent to which flakes deform under sustained stresses, however,

decreases as the stress level increases. The creep in both the linear range and the highly

densifiecl range is considerably lower than that in the cell wall buckling range.

While relative creep strain has been commonly used to describe creep behavior for

wood and most other materials, it seems unsuitable for a highly porous flake mat. The mat

creep described by the relative strain as shown in Fig.5.7 is almost an order less than that

of solid wood flakes of which the mats are made. The small mat creep strain directly results

from considerably higher initial deformation, which is, in turn, due to the loose mat

structure.

To compare creep behavior between solid wood flakes and porous flake mats on the

same density basis, a new term -- relative creep compaction ratio is used. Note that

compaction ratio, CR, is the ratio of current material density to original wood density and
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is indicative of the material solidity. Thus, the relative creep compaction-ratio, RCR, is

defined by:

RCR=CR(t)C0) (5.15)
CR(O)

where CR(t) and CR(O) are respectively the compaction ratio at time t and at time 0.

The relative creep compaction ratio of wood flakes and flake mats are compared in

Fig.5.8, from which some noticeable changes as a result of using RCR evaluation can be

seen. Firstly, the effect of loading stress levels on flake RCR is not the same as that on

relative creep strain, for example, “line b” representing the highest relative creep strain in

Fig.5.6b does not give the highest relative creep compaction ratio in Fig.5.8a. This is

because the sensitivity of density change with compression deformation (neglecting the lateral

expansion of compressed wood) is proportional to the initial material density. Higher loading

stress levels result in higher mat density, therefore, the rate at which the mat density

increases with further deformation becomes faster. Secondly, the creep behavior of flake

mats in terms of RCR is quantitatively comparable to that of wood flakes (compare Fig.5.8a

with Fig. 5. 8b). It appears that the macro-creep RCR of a mat in compression is an average

response of its constituents under the same loading mode.

5.6 CONCLUSIONS

A structural model for predicting the stress relaxation of a flake mat in compression

has been developed. This model explicitly relates the time-dependent stresses in a
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compressed mat to the nonlinear stress relaxation behavior of solid wood flakes. The

predicted results agree generally with the experimental observations despite some quantitative

discrepancies in the relaxation rates, which may be due to the lack of accurate estimation of

original flake viscoelastic properties as the model input parameters.

The experimental results obtained in this work confirm that the double logarithmic

relationship between flake stresses and time is linear. The relaxation rate varies with the

loading strain levels. This phenomenon seems to be related to the free volume change in the

cell wall polymers of wood flakes under different compression levels.

The creep behavior of wood flakes and flake mats was tested and compared. The

comparable creep behavior between two materials is found by using the evaluation of relative

creep compaction ratio instead of the more common relative creep strain. The creep of a

flake mat seems to be affected by its constituents through their average viscoelastic

responses.
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Figure 5.1 Linear loading strain histories of flake columns in a mat.

t’ = time elapsed before i-flake columns become

under compression; t= time taken for i-flake

columns to reach maximum strain Ej.
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CHAPTER VI. CONCLUDING REMARKS

6.1 GENERAL REMARKS

The present work has, for the first time, developed a theoretical model of mat

formation which describes the spatial configuration of wood flakes in a randomly-packed

flake mat using the geometric probability theory. The validity of the model has been tested

by direct experimental observations and numerical simulations. This model has been then

applied to predict the consolidation behaviour of a mat during cold pressing, through which

the overall compressive behaviour of a mat is explicitly related to properties of wood flakes

and local mat response. This model provides a fundamental approach to correlating the

product properties to its production variables and may thereby become a basis for a theory

of the wood composite formation. Such a theory is believed to hold a significant promise in

fully understanding the wood composite manufacturing process.

6.2 NATURE AND CONTRIBUTIONS OF THE MODEL

1). The commonly used term “random flake mat formation” is rigorously defined in

terms of the randomness of flake centroid position and flake orientation. Such a random

configuration is tested and verified through the direct measurement of hand-formed mats and,

therefore, is legitimately assumed during the model derivation.

2). Flake elements with uniform geometry are considered to lie parallel to the surface
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of a mat. Such a mat structure best manifests itself in a two-dimensional geometric model.

3). The random mat structure is mathematically described on a probability basis

under the assumptions 1) and 2). Flake centroids and flake areal coverage in mat field are

found to be Poisson distributed, whereas size of between-flake voids in a multi-layered mat

follows a modified exponential distribution.

4). A computer program for simulating and rapidly evaluating mat structural

properties is developed using the Monte Carlo technique. The outputs, which is written in

both numerical forms and colour image presentations, agrees well with the mathematical

predictions. This computer package is believed to play a significant role in the further

development of more comprehensive wood-composite formation models.

5). A mathematical model of horizontal density variation in a random flakeboard is

presented using random fibre network theory. This model rigorously correlates the local

flakeboard density variation to sampling zone size, flake geometry, original wood density,

flakeboard compaction ratio and thickness. The information provided by this model may well

lead to the prediction of variations of other physical and mechanical properties in a

flakeboard panel.

6). A theoretical model for predicting compression behaviour of a randomly formed

wood flake mat is also developed based on the prior knowledge of mat structure and

fundamental mechanical concepts. The significance of this model is that overall flake mat

behaviour is explicitly related to solid wood properties and local mat responses. In addition,

equations are derived for calculating the changes of between- and within-flake void volume

and inter-flake bonded areas in a mat during pressing. These parameters are useful for fully
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understanding the mechanism of the hot-pressing process.

7). The compressive viscoelasticity of a mat and solid wood flakes are

experimentally tested and compared. A structural model of mat stress relaxation is

established. The comparable creep behaviour between a flake mat and flakes is found using

a new evaluation term - relative creep compaction ratio.

6.3 FURTHER RESEARCH WORK

Model Modification and Development

The present model has been developed under the assumption of uniform flake

geometry and random flake orientation. Introducing a distribution or combination of flake

sizes into the model can make it better representative of practical conditions. Changing the

flake orientation from purely random to non-random distribution will enable the model to

simulate the structure of such products as oriented strand board (OSB) and parallel strand

lumber (Parallam). Further modelling effort can also be given to extend the present two

dimensional model to a three-dimensional one to improve the accuracy of characterizing

between-flake void sizes in a mat.

The predictability of the mat compression model may be improved if the effect of

flake bending stresses is incorporated. Further research is also needed to make the present

mat viscoelasticity model a complete one.
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Experimental Tests

Perhaps the bigger challenge in further studies in this area is to develop effective

methodologies and tools to form and test the mat structure. In this regard, a robotic mat

forming system combined with a X-ray detector and an image analyzer is believed to be very

useful.

As for the mat compression behaviour, an environmental chamber, which can be

mounted on a MTS controlled press, is essential for carrying out temperature-elevated

sample tests. Both solid wood flakes and flake mats need to be tested under the same

conditions in order to make quantitative comparisons.




