BIOCHEMICAL AND MOLECULAR STUDIES ON PHENYLALANINE AMMONIA LYASE IN THE PHYTOPATHOGENIC FUNGUS USTILAGO MAYDIS

by

SEONG HWAN KIM

B.Sc., Korea University, 1986 M.Sc., Korea University, 1988 1. J. 199

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES (Biotechnology Laboratory/Department of Plant Science)

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

April, 1997

© Seong Hwan Kim, 1997

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Plant Science

The University of British Columbia Vancouver, Canada

Date <u>April 30, 1997</u>

ABSTRACT

Phenylalanine ammonia-lyase (PAL) is the entrypoint enzyme into phenylpropanoid metabolism in plants. Little is known about PAL in fungi. In order to explore the role PAL plays in the growth and survival of fungi, the structure and regulation of fungal PAL were investigated in the phytopathogen *Ustilago maydis*, the causal agent of corn smut.

PAL was purified from liquid-cultured cells of *U. maydis* using ion-exchange and gel filtration chromatography, and preparative PAGE. Its native molecular mass was estimated as 320 kDa and its subunit molecular mass was 80 kDa. No isoforms of the enzyme were detected, and there was no evidence of glycosylation of the protein. The enzyme was most active at pH 8.8-9.2 and 30°C and had a K_m for L-phenylalanine of 1.05 mM. The enzyme did not deaminate L-tyrosine. The synthetic PAL inhibitor 2-aminoindan-2-phosphonic acid (AIP) strongly inhibited the enzyme, as did sulfhydryl reagents and carbonyl reagents, whereas *t*-cinnamic acid was only moderately inhibitory. *Ustilago* PAL activity had no requirement for metal ion cofactors, but was inhibited by heavy metal ions (Ag⁺, Cu²⁺, and Hg²⁺). Polyclonal antibodies were raised against the purified PAL protein.

Using degenerate oligonucleotide primers and polymerase chain reaction, a PAL clone was isolated from a *U. maydis* genomic library and 3047 bp of its nucleotide sequence was determined. It contained 495 bp of 5' untranslated sequence, a 2172 bp open reading frame encoding 724 amino acids, and 380 bp of 3' untranslated sequence. No introns in the PAL-encoding gene were detected. In *U. maydis*, PAL was shown to be

ii

encoded by a single gene. This is the first work on the structure of a PAL gene from a pathogenic fungus. Substantial differences in PAL gene sequence and organization were found compared to PAL genes of other species. *U. maydis* PAL showed low amino acid sequence identity with other PALs (23-26% with plant PALs, 39-40% with yeast PALs). The level of amino acid identity (25%) with bacterial histidine ammonia-lyase (HAL) suggests a possible relatedness between *U. maydis* PAL and bacterial HAL. Western blot and immunological enzyme inhibition assay confirmed that PAL and HAL enzymes are immunologically related. Overall, protein sequence analysis suggests that modern PAL and HAL genes share a common ammonia-lyase ancestor.

In *U. maydis*, PAL is constitutively produced at a low level but its regulation can be influenced by aromatic amino acids. L-tryptophan apparently induced the lyase enzyme. The inducibility of PAL by L-tryptophan was also demonstrated in six other *U. maydis* strains and three *Ustilago* species tested. The enzyme is most readily induced during the early stationary phase of growth and the induced activity remains relatively constant during stationary stage. PAL induction was repressed by glucose but not by its reaction product *t*-cinnamic acid. Induction did not require *de novo* protein synthesis, suggesting that some form of post-translational protein modification or a metabolic effect may be the basis of the induction of *Ustilago* PAL by L-tryptophan. PAL was detected only in cell extracts and not in the growth medium.

A putative biosynthetic pathway of *Ustilago* melanin was deduced from the examination of the metabolic fate of L-phenylalanine. Overall, the pattern of regulation of PAL induction in *U. maydis* was very different from patterns known for plants and other fungi.

iii

These results, together with evidence for genetic divergence, are consistent with a unique role for PAL in *U. maydis*. It remains to be determined whether this role is essential for survival and pathogenicity of this plant pathogen.

TABLE OF CONTENTS

(

Abstract	ii
Table Of Contents	v
List Of Tables	viii
List Of Figures	ix
List Of Abbreviations	xiii
Acknowledgments	xvi
CHAPTER 1 - GENERAL INTRODUCTION	1
1.1 Phenylalanine metabolism	1
1.1.1 The biosynthesis of L-phenylalanine	1
1.1.2 The metabolic fate of L-phenylalanine	3
1.1.2.1 In mammals	3
1.1.2.2 in plants	8
1.1.2.3 In microorganisms	10
1.2 Phenylalanine ammonia-lyase (PAL)	12
1.2.1 Introduction	12
1.2.2 Commercial and medical potential of PAL	14
1.2.3 Active site and enzyme mechanism	15
1.2.4 Structural properties	16
1.2.4.1 PAL proteins	16
1.2.4.2 PAL-encoding genes	19
1.2.4.3 PAL promoter	19
1.2.5 Functional properties	20
1.2.6 Regulation	22
1.2.6.1 Factors influencing on PAL levels	22
1.2.6.2 Mechanisms for the regulation of PAL activity	23
1.2.6.3 Regulation of PAL gene expression	24
1.2.6.4 Co-ordinate regulation	27
1.3 Ustilago mavdis	28
1 3 1 Corn smut disease	28
1.3.2 The life cycle and mating of <i>U maydis</i>	29
1 3 3 11 maydis as a model fungus	31
1 A Rationale and Objectives	33
CHAPTER 2 - PURIFICATION AND CHARACTERIZATION OF PHENYLALANINE	
AMMONIA-I YASE FROM USTILAGO MAYDIS	35
2.1 Introduction	35
2.2 Materials and methods	36
2.2.1 Materials	36
222 Fundal cultures	37
2.2.2 Purification of <i>II maydis</i> phenylalanine ammonia-lyase	37
2.2.0 Fortune assav	38
2.2.7 LILYING 0330y	00

	2.2.5. Polyachylamide del electronhoresis	39
	2.2.6 Antibody production and immuno-affinity chromatography	40
	2.2.7 Western blot	40
2.3 Res		41
2.0 1100	2.3.1 Purification of PAL	41
	2.3.2 Antibody production and characterization	47
	2.3.3 Western blotting	49
	2.3.4 Stability	49
	2.3.5 pH optimum	53
	2.3.6 Catalytic properties	53
	2.3.7 Inhibitors and activators	53
2.4 Disc	ussion	59
CHAPTER 3		
	FROM USTILAGU MAYDIS: RELATIONSHIPS WITH UTHER	
		60
	BACTERIAL HISTIDINE AMMONIA-LYASES	02
3.1 Intr	oduction	62
3.2 Mat	terials and methods	66
0.2 1.14	3.2.1 Microorganisms and media	66
	3.2.2 Materials	66
	3.2.3 Nucleic acid manipulation	68
	3.2.4 cDNA library screening	68
	3.2.5 Design of oligonucleotide primers	69
	3.2.6 PCR amplification of a putative <i>U. mavdis</i>	
	PAL gene fragment	69
	3.2.7 Cloning of putative U. maydis PAL PCR product	71
	3.2.8 DNA sequencing	72
	3.2.9 Sequence comparison and analysis	72
	3.2.10 Genomic-cosmid library screening	73
	3.2.11 Southern hybridization	74
	3.2.12 Total RNA isolation and Northern blot hybridization	75
	3.2.13 N-terminal and internal peptide sequencing	
	of U. mavdis PAL	75
	3.2.14 Enzymes and antibodies	76
	3.2.15 Western blot and enzyme inhibition	76
	3.2.16 Assav of enzyme activity	77
3.3 Res	sults	77
0.0 1.0	3.3.1 PCR amplification of a <i>U. maydis</i> PAL sequence	
	from genomic DNA	77
	3.3.2 Isolation and sequencing of PAL genomic-	
	cosmid clones	78
	3.3.3 Nucleotide sequence and deduced amino acid	
	sequence of U. mavdis PAL	83
	3.3.4 Genomic organization of PAL in <i>U mavdis</i>	88
	3.3.5 Northern blot analysis of PAL transcript	88

.

3.4 Discussion 110 CHAPTER 4 - REGULATION OF PHENYLALANINE AMMONIA-LYASE BY L-TRYPTOPHAN IN USTILAGO MAYDIS 4.1 Introduction 118 4.2 Materials and methods 120
CHAPTER 4 - REGULATION OF PHENYLALANINE AMMONIA-LYASE BY L-TRYPTOPHAN IN USTILAGO MAYDIS 4.1 Introduction 118 4.2 Materials and methods
CHAPTER 4 - REGULATION OF PHENYLALANINE AMMONIA-LYASE BY 118 4.1 Introduction 118 4.2 Materials and methods 120
CHAPTER 4 - REGULATION OF PHENYLALANINE AMMONIA-LYASE BY 118 4.1 Introduction 118 4.2 Materials and methods 120
L-TRYPTOPHAN IN USTILAGO MAYDIS
4.1 Introduction
4.1 Introduction
4.2 Materials and methods 120
4.2.1 Fungal strains and cultures
4.2.2 Chemicals 122
4.2.3 Enzyme extraction and assay 122
4.2.4 Immuno-blot analysis 123
4.2.5 Immunoprecipitation of radiolabeled PAL protein 123
4.2.6 Phenylalanine catabolism analysis 124
4.3 Results
4.3.1 Induction experiments 125
4.3.2 PAL induction period 128
4.3.3 PAL inducibility by tryptophan isomers,
precursors, and metabolites
4.3.4 Tryptophan effect on PAL induction in other U. maydis
strains and <i>Ustilago</i> species
4.3.5 Effect of carbon and nitrogen sources
on PAL activity induction
4.3.6 Effect of inhibitors and cAMP on PAL activity <i>in vivo</i> 142
4.3.7 Influence of physical environments
4.3.8 No evidence for <i>de novo</i> synthesis in PAL induction 145
4.3.9 Metabolic fate of L-phenylalanine in <i>U. maydis</i> cultures 149
4.4 Discussion
4.4.1 PAL induction by L-tryptophan
4.4.2 Regulatory features of PAL 153
4.4.3 Metabolic features of phenylalanine catabolism
in the context of the host-pathogen interaction
4.4.4 Potential roles of PAL in <i>U. maydis</i>
CHAPTER 5 - CONCLUSIONS AND FUTURE DIRECTIONS
5.1 Conclusions
5.2 Future directions
Bibliography
Appendix A: Cloning and sequencing of a cDNA encoding aspartate
semialdehyde dehydrogenase in Ustilago mavdis
Appendix B: A partial cDNA sequence encoding the Ustilago mavdis
catalase-peroxidase

LISTS OF TABLES

Table No.	Table title	<u>Page</u>
Table 2.1.	Purification of PAL from <i>U. maydis</i> cells	42
Table 2.2.	Effect of chemical modification reagents and substrate analogues on <i>U. maydis</i> PAL activity	56
Table 2.3.	Effect of metal ions and chelators on U. maydis PAL activity	57
Table 3.1.	Escherichia coli strains used in this study	67
Table 3.2.	PCR primer combinations tested for possible amplification of PAL DNA fragments from <i>U. maydis</i> and predicted size of the amplified products	79
Table 3.3.	BLAST search results with the deduced <i>U. maydis</i> PAL protein sequence	86
Table 3.4.	Deduction of potentially biologically significant sites in the protein sequence (724 aa) of <i>U. maydis</i> PAL	89
Table 3.5.	Codon usage in the <i>U. maydis</i> PAL gene	90
Table 3.6.	Inferred amino acid composition of <i>U. maydis</i> PAL	91
Table 3.7.	Comparison of protein sequence identity and similarity of phenylalanine ammonia-lyase (PAL) and histidine ammonia-lyase (HAL) among different organisms	96
Table 3.8.	Inhibition of PAL and HAL activity by antisera raised against the two ammonia-lyases	108
Table 4.1.	Ustilago species and U. maydis strains used in the study	121
Table 4.2.	Effect of tryptophan analogs and tryptophan-related metabolites on PAL induction in <i>U. maydis</i>	133
Table 4.3.	Effect of actinomycin D and cycloheximide on <i>U. maydis</i> PAL activity	146
Table 4.4.	PAL protein synthesis in L-tryptophan-induced and -uninduced conditions	147
Appendix B Table 1.	BLAST search results with the protein sequence deduced from the <i>U. maydis</i> 1725-bp cDNA in Fig. 1.	196

LIST OF FIGURES

Figure No.	Figure title	Page
Figure 1.1.	The pathway from erythrose 4-phosphate to chorismic acid	2
Figure 1.2.	The pathway from chorismic acid to aromatic amino acids	4
Figure 1.3	The conversion of phenylalanine to tyrosine and other metabolites	6
Figure 1.4.	The conversion of tyrosine to catecholamines	7
Figure 1.5.	Schematic representation of general phenylpropanoid metabolism	9
Figure 1.6.	Deamination of aromatic amino acids by ammonia-lyases	13
Figure 1.7.	Schematic representation of the life cycle of Ustilago maydis	30
Figure 2.1.	Elution profiles of <i>U. maydis</i> PAL and protein after DEAE cellulose chromatography (upper) and Bio-Gel A-0.5m gel filtration (lower)	43
Figure 2.2.	Native PAGE analysis of purified PAL from U. maydis	44
Figure 2.3.	Native molecular weight determination of <i>U. maydis</i> PAL by non-denaturing PAGE	45
Figure 2.4.	Isoelectric focusing PAGE (A) and SDS-PAGE (B) analysis of <i>U. maydis</i> PAL enzyme	46
Figure 2.5.	Inhibition of <i>U. maydis</i> PAL activity by <i>U. maydis</i> PAL antibodies	48
Figure 2.6.	Western blot analysis of reciprocal cross-reactivity between recombinant poplar PAL, <i>U. maydis</i> PAL and their respective antisera	50
Figure 2.7.	Western blot analysis of <i>U. maydis</i> PAL subunit sizes at different stages of enzyme purification	51
Figure 2.8.	Effect of temperature on <i>U. maydis</i> PAL activity	52
Figure 2.9.	Effect of pH on <i>U. maydis</i> PAL activity	54
Figure 2.10.	Kinetic analysis of partially purified <i>U. maydis</i> PAL	55

Figure 3.1.	Schematic diagram indicating generic structure of a PAL gene and locations of primers (\Rightarrow) used in PCR to amplify parts of the <i>U. maydis</i> PAL gene	70
Figure 3.2.	PCR amplification of putative PAL DNA fragment from <i>U. maydis</i> genomic DNA using various PAL primer combinations	80
Figure 3.3.	PCR screening of <i>U. maydis</i> cosmid library pools using UMPAL3 and UMPAL2 primers	81
Figure 3. 4.	Strategy employed in the nucleotide sequencing of the <i>U. maydis</i> PAL genomic-cosmid clone	82
Figure 3.5.	Complete nucleotide sequence of <i>U. maydis</i> PAL gene	85
Figure 3.6.	Deduced amino acid sequence of <i>U. maydis</i> PAL	87
Figure 3.7.	Hydropathy profile of <i>U. maydis</i> PAL from amino acid 1 to amino acid 724	92
Figure 3.8.	Southern blot analysis of the U. maydis PAL gene	93
Figure 3.9.	Northern blot analysis of PAL transcript	94
Figure 3.10.	Comparison of the deduced amino acid sequence of the <i>U. maydis</i> PAL with the deduced amino acid sequences of PAL and HAL from various organisms	103
Figure 3.11.	Dendrogram of the inferred protein sequences of PALs and HALs from various organisms using PC-GENE Clustal Program	104
Figure 3.12.	Native page (top) and western blots (center and bottom) of fungal PAL, plant PAL and bacterial HAL using polyclonal antibodies raised against <i>U. maydis</i> PAL (A), popular PAL (B), PAL (C), <i>P. fluorescens</i> HAL (D), and <i>P. putida</i> HAL (E)	105
Figure 3.13.	Hydrophilicity profiles of PALs and HALs from different organisms	109
Figure 4.1.	U. maydis cell growth and PAL activity in different media	126
Figure 4.2A.	Effect of aromatic amino acids on PAL induction in <i>U. maydis</i>	127

Figure 4.2B.	Cell growth and PAL activity of <i>U. maydis</i> grown on tryptophan or phenylalanine as sole carbon and nitrogen sources	127
Figure 4.3.	Induction of <i>U. maydis</i> PAL at different concentrations of L-tryptophan	129
Figure 4.4.	Effect of tryptophan addition on cell growth and PAL induction in <i>U. maydis</i>	131
Figure 4.5.	Comparison of PAL inducibility in <i>U. maydis</i> by different optical isomers of tryptophan	132
Figure 4.6.	Effect of L-tryptophan supplement on PAL induction in different <i>U. maydis</i> strains	135
Figure 4.7.	Effect of L-tryptophan supplement on PAL induction in different <i>Ustilago</i> species	136
Figure 4.8.	Effect of various carbon sources on <i>U. maydis</i> cell growth and PAL activity	137
Figure 4.9A.	Effect of glucose on <i>U. maydis</i> PAL induction by L-tryptophan	139
Figure 4.9B.	Effect of time of glucose addition on <i>U. maydis</i> PAL induction	139
Figure 4.10.	Effect of nitrogen source on <i>U. maydis</i> cell growth and PAL activity	140
Figure 4.11.	Effect of the ratio of NH₄ ⁺⁺ :NO₃ ⁻ on PAL activity in <i>U. maydis</i>	141
Figure 4.12.	Effect of cAMP (1mM), AIP (100μM), and <i>t</i> -cinnamic acid (0.3mM)on cell growth and PAL activity of <i>U. maydis</i>	143
Figure 4.13.	Effect of L-tryptophan supplement on PAL induction in the <i>U. maydis</i> adenylate cyclase-deficient (uac1) and protein kinase A-deficient (ubc1, adr1) mutants	144
Figure 4.14.	Western blot analysis of PAL production in <i>U. maydis</i> growth in L-tryptophan-induced and -uninduced conditions	148

Figure 4.15.	Autoradiogram of the radioactive metabolites recovered from <i>U. maydis</i> growing in L-[U- ¹⁴ C]-phenylalanine or [U- ¹⁴ C]- <i>t</i> -cinnamic acid	150
Figure 4.16.	Schematic diagram of catabolic pathway for phenylalanine in <i>U. maydis</i>	151
Appendix A Figure 1.	The nucleotide sequence and deduced amino acid sequence (upper case) of the <i>U. maydis</i> ASADH cDNA (GenBank accession No. D11111)	186
Figure 2.	Southern blot analysis of the <i>U. maydis</i> ASADH gene	188
Figure 3.	PCR amplification and Southern blot analysis of ASADH gene from <i>U. maydis</i> genomic DNA and ASADH cDNA	189
Figure 4.	Conserved regions in ASADH-encoded amino acid sequences from Um (<i>U. maydis</i>), Bs (<i>Bacillus subtilus</i>), Cg (<i>Corynebacterium glutamicum</i>), Li (<i>Leptospira interogans</i>), Sm (<i>Streptococcus mutans</i>), Sc (<i>Saccharomyces cerevisiae</i>), and Vc (<i>Vibrio cholerae</i>)	190
Appendix B Figure 1.	Nucleotide sequence of a 1725-bp cDNA contained in a positively selected cDNA clone during the immunoscreening of <i>U. maydis</i> PAL cDNA clone (chapter 3)	195

LIST OF ABBREVIATIONS

5', 3'	denotes 5'-hydroxy or 3'-phosphate end of sequence
аа	amino acid
A, C. G, T	nucleotides adenosine, cytosine, guanosine, thymidine
AIP	2-aminoindan-2-phosphonic acid
AOPP	L - α -aminooxy- β -phenylpropionic acid
ASADH	aspartate semialdehyde dehydrogenase
bp	base pair
BSA	bovine serum albumin
cAMP	adenosine-3', 5'-monophosphate
cDNA	complementary deoxyribonucleic acid
C4H	cinnamic acid 4-hydroxylase (EC1.14.13.11)
СНІ	chalcone isomerase
CHS	chalcone synthase (EC 2.3.1.74)
Ci	Curie
4CL	4-coumarate:CoA ligase (EC6.2.1.12)
CAPS	3-(cyclohexylamino)-1-propanesulphonic acid
Da	Dalton
DMSO	dimethyl sulphoxide
DTT	dithiothreitol
EC	enzyme classification
EDTA	ethylenediaminetetra-acetic acid
GUS	β-glucuronidase
hr	hour(s)

IEF	isoelectric-focussing
kb	kilobase
kDa	kilodalton
K _{m,}	the Michaelis-Menten constant
λΖΑΡΙΙ	lambda ZAPII phagemid vector (Stratagene)
μ	micro
m	milli
Μ	molar
M _r	relative molecular mass
min	minute(s)
mRNA	messenger ribonucleic acid
MW	molecular weight
No.	number
nt	nucleotide
O.D.	optical density
ORF	open reading frame
PAGE	polyacrylamide gel electrophoresis
PAL	phenylalanine ammonia-lyase (EC 4.3.1.5)
PBS	phosphate buffered saline
ρ	para
PCR	polymerase chain reaction
PDA	potato dextrose agar
PEG	polyethylene glycol
Phe	phenylalanine

xiv

pl	isoelectric point
PMSF	phenylmethanesulphonyl fluoride
PVDF	polyvinylidene difluoride
PVP	polyvinyl-pyrrolidone
RT	room temperature
S.D.	standard deviation
SDS	sodium dodecyl sulfate
sp	species
t	trans
TCA	trichloroacetic acid
TLC	thin layer chromatography
Tris	tris-(hydroxymethyl)-aminoethane
Тгр	tryptophan
Tyr	tyrosine
UV	ultraviolet
V _{max}	maximum velocity
Vol	volume
w/w	weight by weight
w/v	weight by volume

.

-

ACKNOWLEDGMENTS

It is a great pleasure to acknowledge the experienced and excellent guidance of my supervisor, Dr. Brian Ellis for his advice, encouragement, dedication throughout my Ph.D. program from beginning to end. He has also given me the opportunity to present parts of the results of this thesis work at various conferences of scientific societies such as The Phytochemical Society of North America, The Canadian Phytopatholoical Society, International Mycological Congress, and The International Society of Plant Molecular Biology. I valued Brian's enthusiasm and interest in the work and science, and his willingness to generously give of his time and to share of his years of experience. Without his help, this thesis shouldn't be completed.

I would like to express my appreciation to my advisory committee members Dr. Bob Copeman, Dr. Jim Kronstad, and Dr. Helene Sanfacon for their insightful suggestion, invaluable instruction, and sound advice.

Special thanks are expressed to Dr. Jim Kronstad for his helpful ideas, sharing Lab facilities, and providing all the *Ustilgo* fungal cultures used in this study.

I wish to thank Dr. Richard Dixon (Samuel Robert Noble Foundation, USA) for his gift of alfalfa PAL antiserum, Dr. J. Zon (Technical University Wroclaw, Poland) for his gift of AIP, Dr. Allen Phillips (Pennsylvania State University, USA) for his gift of *Psedomonas* HAL antiserum, Dr. Robin Taylor (University of Toronto) for his gift of rat HAL cDNA clone, and Dr. Andre Levesque (Pacific Agri-Food Research Centre, Summerland), for the use of an automatic DNA Sequencer for the DNA sequencing of *Ustilago* PAL gene.

Thanks are also extended to Dr. Neil Towers (Botany Department, UBC) for his concern, interest, and suggestions, and Prof. Tae-Ju Choi (Botany Department, UBC) for his encouragement and for providing yeast cultures.

Appreciation is expressed to the former and the present members of Plant Biochemistry and Plant Molecular Biology Lab Group (including Monica Lam, Leroy Scrubb, Shawn Wang, Grant McKegney, Amrita Singh, Dr. Aviva Pri-Hadash, Jennifer Norton, Stefanie Butland, Jason Galpin, Kim MacDonald, Bjorn Orvar, Marcus Samuel and Pat Harrison), Fungal Molecular Genetics Lab Group (Dr. Guss Bakkeren, Dr. Scott Gold, Dr Luc Giasson, Dr. Franz Durrenberger, Arthur Lee, Katherine Barrett, Barbara Kukan), and the former members of Phenylalanine Ammonia-Lyase Discussion Club (including Dr. Carl Douglas, Dr. Beth Molitor) for their assistance, understanding, sharing ideas and techniques, valuable discussion, and fruitful relationship. I am indebted to Plant Science Staff (Robyne Allan, Bev Busch, Ashley Herath, and Derek White) for their kindness, generosity, and support. I am also grateful to other graduate colleagues of Department of Plant Science, UBC, for their kind and constructive assistance in conducting my Ph.D. program. Gratitude is due to the Natural Sciences and Engineering Research Council of Canada for financial support, and the UBC authorities for providing a University Graduate Fellowship (UBC).

Special gratitude is extended to Stefanie Butland for the contribution of her time and resources with patience and kindness throughout my Ph. D. study, including critical reading of this thesis, and to Dong Suk Park (National Agricultural Science and Technology Institute, Korea) for assistance during the immunoscreening work. My gratitude is also sent to the congregations of Korean Presbyterian Deung-Dae Church for their love, encouragement, and prayer for me.

Sincere appreciation is given to my parents, brother, sister, and parents-in-law for their invaluable assistance, encouragement, and perseverance. Most of all, my heartfelt thank and gratitude are expressed to my wife Ji-Hwan, son Hyun Woo, and daughter Yoo Min for their endless love, patience, and understanding.

Finally, I am deeply thankful to God who helps me in various ways.

CHAPTER ONE

General Introduction

1.1 PHENYLALANINE METABOLISM

1.1.1 The biosynthesis of L-phenylalanine

L-phenylalanine is one of the essential amino acids which cannot be synthesized in mammals in adequate amounts to meet the requirements for protein synthesis. L-tyrosine is not an essential amino acid for mammals, since it is synthesized by the hydroxylation of phenylalanine. In mammals, phenylalanine and tyrosine are required for the synthesis of adrenaline, noradrenaline, catecholamine, and dopamine, as well as the thyroid hormones, thyroxine and triiodothyronine, and the pigment melanin.

Plants and most microorganisms are able to synthesize phenylalanine via the shikimic acid pathway (Braus, 1991; Hrazdina and Jensen, 1992; Schmid and Amrhein, 1995). The initial stages of phenylalanine biosynthesis (prechorismic acid pathway) are common in plants and microorganisms, as shown in Fig. 1.1. The first step in the biosynthesis of phenylalanine is the condensation of erythrose 4-phosphate and phospho*enol*-pyruvate to form 3-deoxy-D-*arabino*-heptulosonic acid 7-phosphate (DAHP). The cyclization of DAHP to 3-dehydroquinic acid requires cobalt ions and uses bound NAD⁺ as cofactor. Dehydration of this 3-dehydroquinic acid yields 3-dehydroshikimic acid. 3-dehydroshikimic acid is reduced to shikimic acid in an NADP-

Fig. 1.1. The pathway from erythrose 4-phosphate to chorismic acid.

The enzymes are; 1: 3-deoxy-D-*arabino*-heptulosonic acid 7-phosphate synthase, 2: 3-dehydroquinic acid synthase, 3: 3-dehydroquinic acid dehydratase, 4: shikimic acid:NADP oxidoreductase, 5: shikimic acid kinase, 6: 5-*enol*pyruvylshikimic acid 3-phosphate synthase, and 7: chorismic acid synthase.

dependent reaction catalyzed by shikimic acid dehydrogenase. After phosphorylation, shikimic acid 3-phosphate condenses with phosphoenol-pyruvate. This condensation product, 5-enolpyruvylshikimic acid 3-phosphate, is converted to chorismic acid in a reaction catalyzed by chorismic acid synthase.

Beyond chorismic acid, the pathway leading to the synthesis of phenylalanine or tyrosine branched from that which produces tryptophan pathway (Fig. 1.2). In plants, the biosynthesis of phenylalanine proceeds from chorismic acid via prephenic acid and arogenic acid. In fungi, synthesis proceeds from chorismic acid via prephenic acid and either phenylpyruvic acid or arogenic acid. In bacteria, either of these pathways, or sometimes both pathways, can be operative (Bender, 1985; Jensen, 1986).

1.1.2 The metabolic fate of L-phenylalanine

1.1.2.1 In mammals

Phenylalanine can be transaminated to phenylpyruvic acid, but this is normally only a minor route of phenylalanine catabolism because the K_m of the aminotransferase is relatively high. Phenylpyruvic acid can be further catabolized via reduction to phenyllactic acid, or decarboxylation to phenylacetic acid.

Fig. 1.2. The pathway from chorismic acid to aromatic amino acids.

The enzymes are; 1: chorismic acid mutase, 2: anthranilic acid synthase, 3: prephenic acid aminotransferase, 4: arogenic acid dehydrogenase, 5: arogenic acid dehydratase, 6: prephenic acid dehydratase, and 7: phenylpyruvate aminotransferase. Dashed arrows indicate multiple enzyme steps.

Under normal conditions, phenylalanine is metabolized by way of hydroxylation to tyrosine. Phenylalanine hydroxylase (a biopterin-dependent mixed function oxidase), dihydrobiopterin reductase, and a stimulator protein, are all involved in this hydroxylation (Fig.1.3). Failure in this hydroxylation process results in phenylketonuria (Ambrus *et al.*, 1978), an inborn metabolic disorder. In affected children, the phenylalanine concentration in blood is very high and tyrosine is low. In almost all cases of phenylketonuria, the defect is in phenylalanine hydroxylase, but a few cases, the defect is an inability to synthesize methyl-biopterin or a lack of dihydropterin reductase (Kaufman *et al.*, 1975, 1978). Under these conditions, a substantial portion of phenylalanine undergoes transamination to phenylpyruvic acid, which is further metabolized to phenylacetic acid and phenyllactic acid. These three phenylalanine metabolites are excreted in the urine.

The formation of tyrosine from phenylalanine can lead to catabolism by transamination of tyrosine to yield p-hydroxyphenylpyruvic acid (Fig.1.3). Normally, p-hydroxyphenylpyruvic acid is metabolized by way of homogentisic acid, which is cleaved eventually to fumaric acid and acetoacetic acid as shown in Fig. 1.4. p-Hydroxyphenylpyruvic acid can also be reduced to p-hydroxyphenyllactic acid, however, and this reaction becomes important when the homogentisic acid pathway from p-hydroxyphenylpyruvic acid to maleyl acetoacetic acid is blocked. This block results in alcaptonuria (Bender, 1985), a metabolic disorder that arises from a genetic defect in homogentisic acid oxidase. In

Fig. 1.3 The conversion of phenylalanine to tyrosine and other metabolites.

The enzymes; 1: dihydropterin reductase, 2: stimulator protein, 3: phenylalanine hydroxylase, 4: tyrosine aminotransferase, 5: *p*-hydroxyphenylpyruvic acid reductase, 6: *p*-hydroxyphenylpyruvic acid hydroxylase, 7: homogentisic acid oxidase, 8: maleyl acetoacetic acid isomerase, and 9: fumaryl acetoacetic acid hydrolase.

Fig. 1.4. The conversion of tyrosine to catecholamines. The enzymes; 1: tyrosine hydroxylase, 2: DOPA decarboxylase, 3: dopamine β -hydroxylase, and 4: phenylethanolamine-N-methyltransferase. Dashed arrows indicate multiple enzyme steps.

alcaptonuria patients, high amounts of *p*-hydroxyphenyllactic acid are formed and excreted in the urine.

The other important metabolic conversion of tyrosine is hydroxylation to 3,4dihydroxyphenylalanine (DOPA), which is further metabolized to many physiologically important compounds. As shown in Fig. 1.4., DOPA serves as the precursor for the neurotransmitter, dopamine, and for the noradrenaline and adrenaline hormones (Martin, 1972). It also serves as the precursor for melanin formation, a process catalyzed by tyrosinase, a copper-dependent oxygenase, rather than by tyrosine hydroxylase (Giuseppe, 1992).

Another important product of mammalian tyrosine metabolism is the thyroid hormone thyroxine and its metabolite triiodothyronine, which stimulate energy metabolism through increasing the rate of electron transport (Metzler, 1977).

1.1.2.2 In plants

L-Phenylalanine, derived from the shikimic acid pathway, is used directly for protein synthesis in plants or metabolized through the phenylpropanoid pathway. This phenylpropanoid metabolism leads to the biosynthesis of a wide array of phenylpropanoid secondary products. The first few steps in this metabolic sequence are known as the "general phenylpropanoid pathway" (Fig. 1.5). These steps involve the actions of phenylalanine ammonia-lyase (PAL), cinnamic acid 4-hydroxylase (C4H), and

Fig. 1.5. Schematic representation of general phenylpropanoid metabolism. Dashed arrows indicate multiple enzyme steps. PAL: phenylalanine ammonia-lyase, C4H: cinnamic acid 4-hydroxylase, and 4CL: 4-coumaric acid: Coenzyme A ligase.

4-coumaric acid:CoA ligase (4CL). Following these core reactions, diverse phenylpropanoid products are derived through individual branch pathways (Hahlbrock and Scheel, 1989). These products include anthocyanins, coumarins, furanocoumarins, flavonoids, isoflavonoids, lignin, salicylic acid, stilbenes, suberin, soluble esters, tannins and other phenolics. Many of these phenylpropanoid compounds are known to have functions in allelopathy, color pigmentation, UV-protection, insect repellents, antimicrobial phytoalexins, and signaling in plant-microbe interactions. They also function as cell-wall components, waterproofing agents, and a source of structural rigidity.

Some alkaloids also arise from phenylalanine. Examples are colchicine, produced by the Liliaciae family, and ephedrine in *Ephedra* spp.. In barley, phenylalanine is converted to tyrosine and thence, via tyramine and N-methyltyramine into hordenine (Mann, 1987). Phenylalanine- or tyrosine-derived alkaloids may be grouped as four main structural types. These are simple monocyclic compounds (e.g. mescaline from 'peyote' cactus), isoquinolines (e.g. pellotine from 'peyote' cactus), benzylisoquinolines (e.g. morphine from opium poppy), and Amaryllidaceae alkaloids (e.g. lycorine from the daffodil family) (Mann, 1987).

1.1.2.3 In microorganisms

While the metabolism of phenylalanine in vascular plants and animals has been well documented, much less is known about the microbial degradation of phenylalanine. Some of the known pathways of animal and plant metabolism of phenylalanine are also

used in microorganisms. In some microorganisms, phenylalanine has often been found to be converted to homogentisic acid through the intermediary formation of phenylpyruvic acid and *p*-hydroxyphenylpyruvic acid by transamination and hydroxylation, as in the case of animals (Meister, 1965; Wat and Towers, 1979).

The discovery of PAL enzyme in fungi (Power et al., 1965) and the detection of ¹⁴CO₂ production from ¹⁴C-ring-labeled phenylalanine, cinnamic acid, and benzoic acid (Moore and Towers, 1967), demonstrated that certain fungi and Streptomyces bacteria can degrade phenylalanine by a pathway involving an initial deamination to cinnamic acid, as happens in plants. In Streptomyces verticillatus, trans-cinnamamide is formed from transcinnamic acid derived from phenylalanine (Bezanson et al. 1970). A metabolic pathway for the metabolism of phenylalanine via cinnamic, benzoic, p-hydroxybenzoic, and protocatechuic acids has been reported in several basidiomycete fungi, including Rhodotorula (Uchiyama et al., 1969), Ustilago hordei (Moore et al., 1967), Schizophyllum commune (Moore and Towers, 1967), and Sporobolomyces roseus (Moore et al., 1968). Schizophyllum commune can also metabolize phenylalanine through phenylpyruvic acid, phenylacetic acid and o-hydroxyphenylacetic acid (Moore and Towers, 1967). Interestingly, it has been reported that another basidiomycete, Lentinus lepideus forms phenylpropanoid compounds (e.g. p-coumaric acid, caffeic acid, isoferulic acid, phloretic acid, and p-methoxycinnamic acid) via cinnamic acid derived from phenylalanine (Towers, 1969). In this fungus, a number of these compounds accumulate in the medium as methyl esters, but the physiological significance of these compounds is not known. The conversion of phenylalanine to benzoic acid derivatives through cinnamic acid has also been reported in Deuteromycete fungi such as Alternaria (Nambudiri et al., 1970),

Rhizoctonia solani (Kalghatgi et al., 1974), and Penicillium brevicompactum (Campbell et al., 1987).

The fungus *Gliocladium* produces gliotoxin, an antibiotic and antiviral cyclic peptide, derived in part from phenylalanine and modified by the addition of sulfur across the peptide ring (Griffins, 1994). The conversion of phenylalanine to fungal melanin has received little attention, but was suggested to occur in *Alternaria* (Pridham and Woodhead, 1977).

1.2 PHENYLALANINE AMMONIA-LYASE (PAL)

1.2.1 Introduction

PAL (E.C. 4.3.1.5) catalyzes the nonoxidative deamination of L-phenylalanine to form *trans*-cinnamic acid and a free ammonium ion (Fig. 1.6) (Koukol and Conn, 1961). As described above, the conversion of the amino acid phenylalanine to *trans*-cinnamic acid is the entrypoint step for the channeling of carbon from primary metabolism into phenylpropanoid secondary metabolism in plants. PAL has been extensively studied because of its role in plant development and its response to a wide variety of environmental stimuli. The importance of this enzyme in plant metabolism is demonstrated by the huge diversity, and large quantities of phenylpropanoid products found in plant materials (Jones, 1984). In fungi, there is no direct evidence for the significance of this enzyme except as a catabolic function (Marusich *et al.*, 1981).

The presence of PAL has been reported in plants (Koukol and Conn, 1961; Camm and Towers, 1973; Jorrin *et al.*, 1988) including certain algae, e.g. *Dunaliella marina* (Czichi and Kindl, 1975), fungi (Bandoni *et al.*, 1968; Moore *et al.*, 1968; Hodgins, 1971; Sikora and Marzluf, 1982), and a prokaryotic organism, *Streptomyces verticillatus* (Emes and Vining, 1970). In plants, PAL activity has been detected in many species, representing monocots, dicots, gymnosperms, ferns, and lycopods (Young *et al.*, 1966). In fungi, PAL activity has been detected only in a few basidiomycetes and deuteromycetes, and in one ascomycete, *Nectria cinnabarina* (Bandoni *et al.*, 1968; Vance *et al.*, 1975). There have been no reports of PAL in animals.

1.2.2. Commercial and medical potential of PAL

The therapeutic potential of using PAL enzyme against neoplasms has been suggested because of its selectivity for phenylalanine (Stith *et al.*, 1973). PAL substantially inhibited neoplastic cell growth *in vitro* (Abell *et al.*, 1972), and produced cures in some mice that were inoculated with a lymphoblastic leukemia (Abell *et al.*, 1973). However, PAL is of special interest to clinicians primarily due to its potential as a treatment for the inherited metabolic disorder, phenylketonurea. A treatment involving the oral ingestion of PAL (Hoskins *et al.*, 1980) were proposed to patients to consume a normal diet, but this has not been brought to clinical trials yet.

With the increasing consumption of the aspartic acid-phenylalanine dipeptide artificial sweetener, Aspartame, the commercial demand for L-phenylalanine has led to mass

production of this amino acid (Klausner, 1985). Since the reaction is reversible, PAL can be used in a large-scale bio-conversion to produce L-phenylalanine from *trans*-cinnamic and ammonium salts acid (Hamilton *et al.*, 1985).

1.2.3 Active site and enzyme mechanism

PAL is one of the few amino acid-transforming enzymes not containing the cofactor pyridoxal 5'-phosphate. Instead, PAL contains the unusual prosthetic group dehydroalanine (Hodgins, 1971). The role of this post-translationally modified amino acid in catalysis is assumed to be the activation of the amino group of phenylalanine to form a better leaving group than NH₃⁺ (Hanson and Havir, 1972). Modification of an electrophilic center at the active site of PAL by electrophilic reagents such as borohydride, cyanide, bifulfite or nitromethane, results in the complete inactivation of the enzyme. The identity of [³H]-alanine and [¹⁴C]-aspartic acid released following acid hydrolysis of PAL enzyme inactivated with radiolabeled reagents, NaB³H₄ and ¹⁴CN⁻, provide evidence for the presence of dehydroalanine in the active site (Hanson and Havir, 1985; Hodgins, 1971). Studies on the ability of substrates and substrate analogs of PAL to prevent inactivation by these reagents provide further evidence to support the idea that the active site contains dehydroalanine (Hanson, 1970; Hodgins, 1971). Recently, an alternative model for the role of dehydroalanin in PAL catalysis has been proposed (Schuster and Retey, 1995)

The mechanism of formation of dehydroalanine has not been determined yet. In cases of other proteins which contain dehydroalanine e.g. subtilin (Banerjee and Hansen, 1988),

thyroglobulin (Ohmiya *et al.*, 1990), and pyruvoyl enzymes (Recsei and Snell, 1984), a serine residue is considered to be the precursor of dehydroalanine. PAL amino acid sequences contain a serine residue which is completely conserved among different species (Taylor *et al.*, 1990), and is presumed to be associated with the active site of the enzyme. Recently, the precursor of the dehydroalanine residue has been identified as serine in parsley (Schuster and Retey, 1994) and poplar (McKegney *et al.*, 1996) PAL. In fungal PAL, it is likely that a similar process would account for the formation of the active site dehydroalanine from serine, but a role for serine as the precursor of dehydroalanine has not been directly demonstrated yet. Expression of PAL in *Escherichia coli* (Schulz *et al.*, 1989; Orum and Rasmussen, 1992) produced active PAL enzymes in cells in which PAL is not normally produced. The expressed PAL proteins showed similar enzyme properties compared to endogenous PAL from other sources. This suggests that the formation of dehydroalanine may be an autocatalytic process, although it cannot be ruled out that a widespread modifying enzyme is involved in the dehydroalanine formation.

1.2.4 Structural properties

1.2.4.1 PAL proteins

PAL has been isolated and characterized from a number of plant species, some fungi and one bacterial source. Source tissues used for PAL isolation are diverse. They include seedlings (Nari *et al.*, 1972), shoots (Koukol and Conn, 1961), leaf-sheath (Havir and Hanson, 1973), cell culture (Jorrin *et al.*, 1988; Bernards and Ellis, 1991; Campbell and Ellis, 1992), fruit (Given *et al.*, 1988), and mycelium (Pridham and Woodhead, 1974;

Kalghatgi and Subba Rao, 1975). Most known PAL sources for enzyme isolation and its properties are well tabulated and documented in reviews by Camm and Towers (1973), Hanson and Havir (1981), and Schomburg and Salzmann (1990). Difficulties in purification are often encountered, partly resulting from the low abundance of PAL in cells and changes in size and properties that occur during purification. Although an apparently homogeneous protein preparation can often be obtained in non-denaturing conditions, additional polypeptide bands are usually detected in analytical PAGE gel under denaturing conditions. This can create confusion in the estimation of PAL subunit sizes.

Most PALs reported range in size from 300 to 340 kDa in native molecular mass. Some examples of exceptions are reported masses of 152 kDa in *Ocimum basilicum* (Hao *et al.*, 1996), 226 kDa in a bacterium, *Streptomyces* (Emes and Vining, 1970), 250 kDa in *Helianthus annuus* (Jorrin *et al.*, 1988), 266 kDa in *Fragaria ananassa* (Given *et al.*, 1988), and 560 kDa in *Alternaria* (Pridham and Woodhead, 1974). PAL is normally a homo-tetrameric protein consisting of 4 identical subunits. Hetero-tetrameric PAL as a complex of two hetero-dimers has been reported from *Helianthus annuus* (2 × 58 kDa and 2 × 68 kDa, Given *et al.*, 1988) and *Rhizoctonia solani* (2 x 70 kDa and 2 x 90 kDa, Kalghatgi and Subba, 1975). Neumann and Schwemmle (1993) reported that *Oenothera* seedlings have two PAL isoenzymes with four identical subunits each of 75.5 kDa and 79.2 kDa. *Rhodosporidium toruloides* PAL has been reported to be a dimer being composed of two identical subunits with a mass of 80 kDa (Adachi *et al.*, 1990).

Iso-electric points (pl) for PAL are usually in the acid range from 2.5 (Neumann and Schwemmle, 1993) to 5.75 (Campbell and Ellis, 1992). Isoforms with different pls have been reported from some sources; three isoforms ranged between pl 4.8 and 5.4 in *Leptosphaeria maculans* (Dahiya, 1993), several isoforms between pl 5.1 and 6.1 in alfalfa (Jorrin and Dixon, 1990), and two isoforms between pl 4.8 and 5.4 in bean (Bolwell and Rodger, 1991). Interestingly, expression of a single cDNA of poplar PAL in a baculovirus expression system produced two isoforms with different pls (McKegney *et al.*, 1996).

Most PALs are considered to be hydrophobic proteins. This property has led to the use of hydrophobic affinity column chromatography for the purification of PAL from cotton (Dubery and Smit, 1994) and *Rhodotorula glutinis* (D'Cunha *et al.*, 1996). Alfalfa PAL has been reported to be highly hydrophobic (Jorrin and Dixon, 1990) and consistent with this, the hydropathy profile of the protein sequence deduced from the cDNA sequence also predicted that alfalfa PAL would be hydrophobic (Gowri *et al.*, 1991).

The association of carbohydrate with PAL has been reported for the maize and potato enzymes (Havir, 1979; Shaw *et al.*, 1990). Through the analyses of PAL gene sequences, the presence of potential glycosylation sites has been reported from bean (Cramer *et al.*, 1989) and parsley (Lois *et al.*, 1989), but the importance of glycosylation in PAL function has not been explored extensively. The production of active PAL in *E. coli* cells transformed with PAL genes from the yeast *Rhodosporidium* (Orum and Rasmussen, 1992) and from parsley (Shulz *et al.*, 1989; Appert *et al.*, 1994) suggests that PAL catalysis is not likely to be influenced by glycosylation. It has not been excluded
that glycosylation is involved in enzyme stability and in localization of the enzyme within cells (Havir, 1979; Shaw *et al.*, 1990).

1.2.4.2 PAL-encoding genes

Following the isolation of PAL cDNA from bean (Cramer *et al.*, 1989), parsley (Lois *et al.*, 1989) and sweet potato (Tanaka *et al.*, 1989), PAL genes have been isolated from many sources. Currently, information on the partial or full sequences of the genes and cDNAs encoding PAL is available from several nucleic acid databases. In most plants, PAL is encoded by a small gene family of 3-5 genes. Exceptions to this are the potato PAL gene family which is made up of 40-50 genes (Joos and Hahlbrock, 1992), and the loblolly pine PAL which has been reported to be encoded by a single gene (Whetten and Sederoff, 1992). In yeasts, PAL is encoded by single gene (Anson *et al.*, 1987). In general, the sizes of PAL genes have been reported in the range from 2.1 kb to 2.4 kb. The presence of introns has been reported both in plant and yeast PAL genes. Plant PAL genes generally contain only one intron, while yeast PAL genes have five (Anson *et al.*, 1987) or six introns (Valslet *et al.*, 1988). There are two exceptions; two introns have been found in the *Arabidopsis* PAL gene (Wanner *et al.*, 1995), while no introns occur in jack pine and loblolly pine PAL genes (Campbell, 1991; S. Butland, personal communication; Sederoff *et al.*, 1994).

1.2.4.3 PAL promoter

The organization of PAL promoters has been studied by analyses of the 5' flanking regions of plant PAL genes using DNA footprinting, S1 mapping, and primer extension methods. The presence of a TATA box in PAL gene promoters has been reported from bean (Cramer *et al.*, 1989), parsley (Lois *et al.*, 1989), and rice (Minami *et al.*, 1989). Bean and rice PAL promoters contain a CAAT box, and a GC-rich segment is present in the rice PAL promoter. As in the cases of some other phenylpropanoid enzyme-encoding genes e.g. *4CL* and *CHS* (Dron *et al.*, 1988; Zhang and Mehdy, 1994), there are H [CCTACC(N)₇CT] and AC Boxes upstream from the PAL transcription start site (Hatton *et al.*, 1995; Loake *et al.*, 1992; Lois *et al.*, 1989). However, none of these sequences were found in the upstream region of a yeast PAL gene (Anson *et al.*, 1987).

1.2.5 Functional properties

PAL enzymes from many sources, especially from monocots and certain fungi, have activity towards L-tyrosine and can thus produce *trans-p*-coumaric acid. This has been described as tyrosine ammonia-lyase (TAL, Fig. 1.6) activity (Neish, 1960; Young *et al.*, 1966, Camm and Towers, 1973). In most PAL preparations, TAL activity is very low. The PAL/TAL ratio in PAL preparations varied from 1.35 to 5 in *Sporobolomyces pararoseus* (Parkhurst and Hodgins, 1971), from 4 to 20 in wheat (Young *et al.*, 1966), and from 0.6 to 1.3 in bean (Scott *et al.*, 1992). An even larger range in PAL/TAL ratios from several different plant species was reported by Jangaard (1974). No TAL enzyme without PAL activity has been purified. Recently, it has been demonstrated in *E. coli*-expressed maize PAL that PAL and TAL activities reside in the same polypeptide (Rösler *et al.*, 1997).

PAL preparations from a number of sources are reported to have only one Michaelis constant (K_m), but the kinetic properties of other preparations suggested that the enzyme is negatively cooperative with respect to substrate binding (Nari et al., 1974). Two different K_m values for PAL have therefore been reported from many sources (Hanson and Havir, 1981). However, when individual isoforms were highly purified, kinetic analysis of each isoform revealed normal Michaelis-Menten saturation kinetics (Bolwell et al., 1985; Jorrin and Dixon, 1990). The K_m values for L-phenylalanine have been reported to range from 0.011 mM (Nagai et al., 1988) to 1.7 mM (Koukol and Conn, 1961). Most PAL shows no metal ion requirement although slight stimulation of PAL activity by metal ions such as Mg^{2+} and Ba^{2+} has been reported (Jorrin *et al.*, 1988). Inhibition of PAL activity can be induced by a wide range of compounds including carbonyl, sulfhydryl and thiol reagents, phenolic acids and heavy metal ions (Schomburg and Salzmann, 1990). Most PALs tested are sensitive to the synthetic PAL inhibitors such as (S)-2-aminooxy-3-phenylpropanoic acid (AOPP), (R)-(1-amino-2phenylethyl)phosponic (APEP) acid, and 2-aminoindan-2-phosphonic acid (AIP) and thus these inhibitors have often been used to block the biosynthesis of phenylpropanoid compounds in plant cells and tissues (Hanson and Havir, 1981, Zon and Amrhein, 1992).

The pH optimum for PAL is generally in the range from 8.2 to 9.0 (Pridham and Woodhead, 1974; Hanson and Havir, 1981). The temperature optimum for PAL has been reported to be 35°C in tobacco (Nagai *et al.*, 1988), 55°C in sunflower (Jorrin *et al.*, 1988), and 44-46°C in *Rhizoctonia* (Kalghatgi and Subba Rao, 1975). Plant PAL enzymes are generally sensitive to repeated freezing and thawing and lose activity as the temperature approaches 60°C. In contrast, fungal PAL is more thermally stable too

(Kalghatgi and Subba Rao, 1975). *Rhodotorula* PAL is apparently stable for at least six months when it is kept at -60°C (Fritz *et al.*, 1976).

1.2.6 Regulation

PAL enzyme activity is generally regulated at two levels - PAL synthesis, and inactivation or degradation. PAL synthesis is determined through the processes of transcription, transcript processing, and translation. PAL inactivation or degradation is mediated by several factors such as stability of enzyme, proteolytic enzyme, inhibitors, and modification of the enzyme. The rate of each process and the degree of mediation by each factor described above can affect the levels of PAL activity. These modes of PAL activity regulation are reviewed in the following sections (1.2.6.1-3).

1.2.6.1 Factors influencing PAL activity levels

PAL activity levels in plants are influenced by several environmental factors including light, pathogen attack, wounding, temperature, oxygen (Hanson and Havir, 1981; Jones, 1984). The levels also depend on the genotype, plasmotype, age, organ and tissues of the plant (Camm and Towers, 1973). In microorganisms, by contrast, there is almost no information on environmental factors involved in modulating PAL activity levels.

Light generally has a stimulatory effect on PAL activity levels although exceptions have been reported. An increased level of extractable PAL activity in response to wounding has been displayed in many plant species including bean axes, pea seedlings, potato and sweet potato tubers, and sunflower leaves (Camm and Towers, 1973; Hanson and Havir, 1981; Shaw *et al.*, 1990). In diseased plants, increased synthesis of phenolics, lignin and isoflavonoid phytoalexins is concomitant with the increased PAL activity (Friend, 1981; Vance *et al.*, 1980; Grisebach and Ebel, 1978).

Hormonal effects on PAL activity also have been demonstrated, and these may link responses to pathogen infection with those associated with plant development. Endogenously produced ethylene appears to trigger increased PAL production in bean and tobacco infected with viruses, and in parsley, rice, sweet potato, and soybean infected with fungal pathogens (reviewed by Camm and Towers, 1973; Chappell *et al.*, 1984; Haga *et al.*, 1988). Inhibition of PAL induction by indole acetic acid (IAA) and abscisic acid has been reported in tobacco tissue cultures and soybean seedlings infected with a fungal pathogen, respectively (Innerarity *et al.*, 1972; Ward *et al.*, 1989).

1.2.6.2. Mechanisms for the regulation of PAL activity

There are many examples of PAL activity regulation at the protein level. Up-regulation could involve enhancement of *de novo* PAL synthesis and substrate pools, conversion of PAL from inactive to active forms, reduction of active PAL degradation, and/or an increase in enzyme turn-over. Among these mechanisms, the major mechanism for the increase of PAL activity levels appears to be increased *de novo* synthesis of PAL proteins. *De novo* PAL synthesis in response to environmental stimuli has been demonstrated by radio-labeling of newly synthesized PAL or by use of a protein synthesis inhibitor, cycloheximide (Lawton *et al.*, 1983; Hahlbrock and Ragg, 1975).

Down-regulation of PAL activity levels would be possible through reversal of the processes responsible for up-regulation. Namely, reduction of new PAL synthesis and depletion of substrate pools, and an increase in the inactivation and/or degradation of PAL enzyme. The direct inactivation of PAL activity by proteinaceous factors has been described in extracts from apple skin (Tan, 1980), sunflower leaves (Gupta and Creasy, 1984), and sweet potato (Tanaka *et al.*, 1977). Bolwell (1992) has indicated that cAMP-dependent phosphorylation could be involved in suppressing the induction of PAL activity. In *Phaseolus*, phosphorylation of PAL subunits was associated with a smaller subunit size (70 kDa), but with the normal size of subunit (77 kDa), suggesting that PAL degradation and inactivation may be triggered by phosphorylation of the enzyme. Bolwell and his colleagues (1986,1988) have reported that in bean suspension cultures, cinnamic acid can decrease the levels of PAL activity by increasing the degradation of PAL. In tomato, in contrast, it has been proposed that production of truncated gene products, which would presumably yield disfunctional PAL proteins, might lead to changes in PAL activity (Lee *et al.*, 1992).

1.2.6.3. Regulation of PAL gene expression

PAL activity is commonly regulated at the genetic level in response to various stimuli. PAL gene expression has been observed to be activated in plants infected with tobacco mosaic virus (Pellegrini *et al.*, 1994), bacteria (Huang and McBeath, 1994), and fungi (Bell *et al.*, 1986; Bernards and Ellis, 1991; Lamb *et al.*, 1989; Joos and Hahlbrock, 1992). Many of the responses to pathogen attacks can be mimicked by elicitors derived

from fungal cell walls or culture filtrates (Edwards *et al.*, 1985; Rohwer *et al.*, 1987; Dixon and Lamb, 1990). It has been shown that elicitor treatments can also induce PAL gene expression in bean (Shufflebottom *et al.*, 1993), parsley (Dangl *et al.*, 1987; Lois *et al.*, 1989), and in suspension cultured cells of alfalfa (Orr *et al.*, 1993; Farrendorf *et al.*, 1996), rice (Zhu *et al.*, 1995) and poplar (Moniz de Sa *et al.*, 1992).

Hormonal effects on PAL gene expression in association with pathogen infection or elicitor treatments have been reported. ABA repressed the accumulation PAL mRNA in fungal pathogen-infected soybean (Ward *et al.*, 1989), while in bean suspension cultures treated with elicitor, auxin and ethylene increased the levels of PAL mRNA (Hughes and Dickerson, 1989). Ethylene treatment increased PAL mRNA accumulation in carrot suspension cultures (Ecker *et al.*, 1987).

Parsley is one of the best studied plants with respect to the relationship between PAL gene expression and illumination. A rapid transient increase of PAL transcripts has been observed in parsley cell suspension cultures (Betz *et al.*, 1978; Shröder *et al.*, 1979) and protoplasts (Ohl *et al.*, 1990) following UV irradiation. Accumulation of PAL mRNA in tissues exposed to light has been demonstrated in dark-grown parsley seedlings which were then transferred to the light (Wu and Hahlbrock, 1992). Accumulation of PAL mRNA has also been observed in *Arabidopsis* seedlings illuminated by UVB or blue light (Kubasek *et al.*, 1992) and hybrid poplar leaves irradiated by UV (Osakabe *et al.*, 1995). Liang and his colleagues (1989) have shown that in etiolated transgenic tobacco plants, white light increases GUS activity which is expressed from a PAL promoter-GUS fusion transgene.

The response of PAL genes to wounding and heavy metals has also been studied. Increased PAL gene transcription in response to wounding has been detected in *Arabidopsis* (Ohl *et al.*, 1990), melon (Diallinas and Kanellis, 1994), parsley (Lois and Hahlbrock, 1992), and sweet potato (Tanaka *et al.*, 1989). PAL genes in *Arabidopsis* and pea respond to HgCl₂ and CuCl₂ exposure, respectively, with enhanced mRNA production (Ohl *et al.*, 1990; Preisig *et al.*, 1991).

PAL gene expression is also regulated developmentally and in a tissue-specific fashions. During stem growth in *Populus kitakamiensis*, PAL genes *PAL g1* and *PAL g2a* were expressed in a tissue-specific manner. The highest levels of *PAL g1* were detected in young tissue near the shoot bud, but *PAL g2a* mRNA was mainly accumulated in mature stems (Osakabe *et al.*, 1995). *PAL* transcript changes in association with development of vascular tissue and other tissue-specific patterns of expression have been observed in other plant systems including alfalfa, *Arabidopsis* (Wanner *et al.*, 1995), bean (Leyva *et al.*, 1992), parsley (Wu and Hahlbrock, 1992), and pea (Yamada *et al.*, 1994). In melon fruit, PAL is transcriptionally induced in response to fruit ripening (Diallinas and Kanellis, 1994). The analyses of tissue-specific expression of the bean *PAL2* and *PAL3* promoters in transgenic tobacco have revealed that the AC elements play a key role in regulation of tissue-specific expression of the bean *PAL* gene family (Hatton *et al.*, 1995, 1996).

1.2.6.4 Co-ordinate regulation

It has been shown that, like other phenylpropanoid enzymes and their genes, expression of PAL enzyme is coordinately regulated with other enzymes of the phenylpropanoid pathway (reviewed by Logemann et al., 1995). Cramer et al. (1985) have reported that PAL, chalcone synthase (CHS), and chalcone isomerase (CHI) are coordinately regulated in elicitor-treated bean cultures. Co-ordinate regulation of PAL and CHI has also been observed in illuminated mustard seedlings (Beggs et al., 1987). In parsley cell suspension cultures. UV irradiation and elicitor treatment produced a coordinate increase in PAL and 4CL transcript levels (Chappel and Hahlbrock, 1984; Schmelzer et al., 1985). A similar coordinate expression of PAL and 4CL mRNAs in response to elicitor has been observed in alfalfa (Dalkin et al., 1990) and potato (Fritzemeier et al., 1987). The expression of PAL with 4CL and with other pathogenesis-related (PR) and elicitor-related (EL) genes is regulated coordinately in parsley leaves challenged with a fungal pathogen (Schmelzer et al., 1989). The observation that the AC elements found in both the PAL1 and CHS promoters are involved in activation of transcription in parsley (Lois et al., 1989; Schulze-Lefert et al., 1989), provides a possible mechanism by which phenylpropanoid metabolism could be coordinately regulated (Cramer et al., 1989; Logemann et al., 1995).

1.3 USTILAGO MAYDIS

1.3.1 Corn smut disease

Smut fungi are basidiomycetes of the order Ustilaginales. These fungal pathogens cause severe economic losses of cereal grains (such as barley, corn, millet, oats, sorghum, and wheat), other crops (such as onions, spinach), and some ornamentals (such as carnation). The most common smuts belonging to the genus *Ustilago* are smuts of barley (*U. hordei, U. nuda, U. nigra*), corn (*U. maydis*), oats (*U. avenae*), sugarcane (*U. scitaminea*), and wheat (*U. tritici*).

The infection of corn (*Zea mays*) by *U. maydis* is characterized by distinct galls (plant tumors) on stems, leaves, ears, and tassels (Christensen, 1963). The disease symptoms also include stunting, and chlorosis and anthocyanescence on stems and leaves, especially in the areas developing tumors. The fungus reproduces primarily in embryonic and protein-rich tissues of its host, and stimulates its host cells to divide and enlarge. In the end, this proliferation produces tumors containing dark, sooty, masses of black teliospores, from which the name of the disease, corn smut, is derived. *U. maydis* is distributed world-wide, but is particularly prevalent in warm and moderately dry areas, where it causes serious damage to susceptible varieties (Agrios, 1988). Losses from this disease vary from one area to another, but can reach 10% or more. Control of the disease is mainly reliant on use of resistant corn varieties, and to a lesser extent on sanitation and crop rotation measures. In addition, the maintenance of well-balanced soil fertility can reduce disease incidence (Ullstrup, 1961).

1.3.2 The life cycle and mating of *U. maydis*

Several phases of the life cycle of *U. maydis* are outlined in Fig. 1.7. The fungus produces two types of cells in its life cycle. The unicellular haploid phase is saprophytic (non-pathogenic), grows by budding, and forms compact colonies with yeast-like morphology. This cell type can be easily cultured *in vitro* and produces a colony of sporidia by budding. Another type of cell is the dikaryon which is pathogenic, parasitic and dependent on growth in host tissues by infection. The dikaryon arises from mating between two compatible haploid sporidia. Through karyogamy (nuclear fusion) within the dikaryotic hyphae inside the host plant, diploid cells are produced which develop into black teliospores within galls. The teliospores are released from ruptured plant galls and dispersed by wind. After germination of teliospores, meiosis occurs and haploid sporidia are produced. Compatible mating of these sporidia leads to a new life cycle of *U. maydis* (Banuett, 1992).

The intertwined association of life cycle and pathogenicity has provided opportunities to explore the processes that govern mating, filamentous growth, and pathogenicity. It has been found that to undergo the pathogenic process involving infection and development of disease symptoms, fusion of two compatible yeast-like haploid cells is essential. Compatibility is determined by the alleles present at two different mating-type loci, the *a* locus with two alleles (*a1* and *a2*), and the *b* locus with multiple alleles (Rowell and

Fig. 1.7. Schematic representation of the life cycle of Ustilago maydis.

Devay, 1954; Puhalla, 1968, 1969; Day *et al.*, 1971). Considerable progress has been made in clarifying the mode of action of these different mating loci. The *a* mating-type locus, encoding a pheromone (*a1*) and a pheromone receptor (*a2*), has been determined to be involved in the control of haploid cell fusion (Bölker *et al.*, 1992). The *b* mating-type locus apparently has at least 25 alleles, and controls pathogenicity and dimorphism (Rowell and Devay, 1954; Day *et al.*, 1971). Two genes are found at the *b* locus, *bE* and *bW*, each encoding a protein containing a homeodomain motif (Kronstad and Leong, 1990; Schulz *et al.*, 1990). It is thought that *b* gene products have a DNA-binding function, leading to the idea that interactions between the products of the *bE* and *bW* genes from alleles of different *b* specificities are required for pathogenic development in this smut organism (Gillissen *et al.*, 1992).

1.3.3 U. maydis as a model fungus

The phytopathogenic fungus *U. maydis* has been used to study many aspects of eukaryotic genetics, including recombination mechanisms (Holliday, 1974), nitrogen metabolism (Lewis and Fincham, 1970), and developmental regulation (Froeliger and Kronstad, 1990). Classical genetic approaches have been productive with this fungus for several reasons. Both yeast-like haploid and diploid cell cultures can be maintained on nutrient media; teliospores germinate *in vitro*, making analysis of meiotic products reliable, and diploid strains can be constructed for the study of genetic complementation and dominance (Puhalla, 1968, 1969; Holliday, 1974). Furthermore, molecular genetic approaches are also possible in *U. maydis*, with the development of such molecular tools

as efficient transformation (Wang *et al.*, 1988); autonomously replicating vectors (Tsukuda *et al.*, 1988), genes for selection markers (Wang *et al.*, 1988; Banks and Taylor, 1988; Gold *et al.*, 1994b), and gene disruption (Kronstad *et al.*, 1989). These techniques allow genes of interest to be cloned, manipulated, silenced and/or reintroduced at a desired location in the genome. These resources have greatly facilitated analysis of the structure, expression, and function of *U. maydis* genes (Froeliger and Kronstad, 1990).

1.4 RATIONALE AND OBJECTIVES

While a huge amount of information has been accumulated on the structure, expression and function of PAL in plants, the biological role of PAL in fungi has not been established, and, in general, information on fungal PAL is very limited. Most commonly, a catabolic function for fungal PAL has been suggested, in which the enzyme is used to obtain carbon and nitrogen from external supplies of amino acids. However, fungi can also obtain carbon and nitrogen from L-phenylalanine through phenylalanine aminotransferase or amino acid oxidase, which raises the question: what selective advantage does PAL offer that has led to its retention in this group organisms? It appears that the ability to synthesize cinnamic acid is important in the life cycle of fungi.

The rationale for this work was to develop knowledge and tools that would enable me to rationalize the existence of PAL in the fungus *U. maydis*. As mentioned in the previous section, *U. maydis* is both an agriculturally important fungus and a very versatile model species in which to study the structure, expression, and function of eukaryotic genes.

Once it was established that *U. maydis* also produces PAL, I undertook detailed structural, functional and metabolic studies of this PAL. This work enabled me to clone the *U. maydis* PAL gene, which make it possible to consider gene replacement. This should reveal whether PAL is essential in *Ustilago* physiology and/or especially reveal links, if any, between PAL activity and pathogenesis. The following chapters describe the work that was carried out to these ends.

Chapter two describes the purification and characterization of the *U. maydis* PAL enzyme. *U. maydis* PAL protein data and anti-PAL antibodies were important tools that would provide a unique opportunity to pursue molecular genetic studies of PAL in a fungal species largely unrelated to the red yeasts.

Chapter three describes the isolation and sequencing analysis of a *U. maydis* genomic clone which contains a gene encoding PAL. A comparative analysis of its predicted protein sequence with some of the published PAL sequences, and with sequences for a related enzyme, histidine ammonia-lyase (HAL); provided direct evidence for the extent of evolutionary divergence in this family. Immunological evidence regarding the relatedness of the two ammonia-lyases is also presented.

Chapter four describes the *in vivo* regulation of *U. maydis* PAL by L-tryptophan, and provides an initial look at L-phenylalanine metabolism in this fungus. A biosynthetic pathway for *Ustilago* melanin formation is proposed and potential biological roles for *Ustilago* PAL are discussed in this context.

• •

CHAPTER TWO

Purification and Characterization of Phenylalanine Ammonia-lyase

from Ustilago maydis

2.1. INTRODUCTION

Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) catalyzes the nonoxidative deamination of L-phenylalanine to form *trans*-cinnamic acid and a free ammonium ion. The enzyme occurs in plants (Koukol and Conn, 1961; Camm and Towers, 1973; Jorrin *et al.*, 1988), fungi (Bandoni *et al.*, 1968; Moore *et al.*, 1968; Hodgins, 1971; Sikora and Marzluf, 1982), and Actinomycetes (Emes and Vining, 1970), but not in animals. PAL has been used in experimental treatments and diagnosis of phenylketonurea, a human syndrome characterized by high levels of circulating phenylalanine (Ambrus *et al.*, 1978), and the enzyme has industrial application in the production of L-phenylalanine from *trans*-cinnamic acid, i.e. the reverse of the normal *in vivo* reaction (Yamada *et al.*, 1981).

In plants, PAL is the entrypoint enzyme into phenylpropanoid metabolism and it regulates the biosynthesis of a wide range of phenylpropanoid secondary compounds, including lignin, flavonoids, furanocoumarin and isoflavonoid phytoalexins, and wound protectant hydroxycinnamic acid esters (Jones, 1984).

Ustilago maydis is the causal agent of corn smut. The fungus reproduces primarily in embryonic and protein-rich tissues of its host (*Zea mays*), and produces galls on any above-ground part of the host plant (Agrios, 1988). The presence of PAL in the related

species, *U. hordei*, was reported earlier by Subba Rao *et al.* (1967), but nothing is known about the role of PAL in the *Ustilago* life cycle or pathogenesis.

In a yeast, *Rhodosporidium toruloides,* phenylalanine can act as the sole source of carbon, nitrogen, and energy (Marusich *et al.*, 1981). Since PAL catalyzes the initial reaction in the catabolism of the amino acid in this organism, the enzyme plays a key role in regulating phenylalanine-dependent metabolism. However, the biological function of PAL in *R. toruloides, U. maydis* and other fungi during normal (i.e. non-phenylalanine-dependent) growth and development is unclear. It is now possible to conduct gene replacement and gene disruption experiments in *U. maydis* (Kronstad *et al.*, 1989), and these techniques provide a unique opportunity to address the role of PAL. In a preliminary study, it has been established that, like *U. hordei*, cultured cells of *U. maydis* grown in synthetic medium produce substantial amounts of PAL, and the present chapter describes the purification and characterization of the *U. maydis* enzyme.

2.2 MATERIALS AND METHODS

2.2.1 Materials

DIG-Glycoprotein Detection kit and p/ markers were purchased from Boehringer Mannheim (Laval, Canada). Molecular mass markers for native PAGE and HiTrap-NHS matrix were purchased from Pharmacia Biotechnology Products (Uppsala, Sweden). DEAE cellulose and Freund's adjuvant were purchased from Sigma (St. Louis, U.S.A.). Bio-Gel A-0.5m agarose beads, Ampholyte, alkaline phosphatase-conjugated goat anti-

rabbit antibody, SDS-PAGE molecular markers, and BCIP (5-bromo-4-chloro-3-indoyl phosphate ρ -toluidine salt)/NBT (ρ -nitro blue tetrazolium chloride) were purchased from Bio-Rad (Mississauga, Canada). Westran PVDF (polyvinylidine difluoride) membrane and Centriprep Concentrator were purchased from Schleicher & Schuell (Keene, U.S.A.) and Amicon (Beverly, U.S.A.), respectively.

2.2.2 Fungal cultures

Ustilago maydis strain 518 was maintained on potato dextrose agar medium (PDA) and grown in complete liquid medium (cm) as described by Holliday (1974). For enzyme isolation, cm (50 ml) in 250 ml Erlenmeyer flasks was inoculated with sporidia of the fungus grown on PDA and incubated at 30°C for 24 hr on a gyratory shaker (250 rpm).

2.2.3 Purification of *U. maydis* phenylalanine ammonia-lyase

All procedures were carried out at 4°C, unless otherwise mentioned. The fungal cells were harvested by centrifugation (10000 × g, 10 min), washed twice with distilled water, frozen in liquid nitrogen and stored at -70°C until needed. Cells (30 g) were mixed with 60 g alumina and homogenized for 30 min in a mortar and pestle. The homogenate was extracted with 120 ml 50 mM sodium phosphate buffer (pH 8.0) by stirring for 1 hr, and centrifuged (20000 × g, 30 min). The supernatant (115 ml) was heated at 50°C for 10 min, cooled in ice and centrifuged (20000 × g, 30 min). Protamine sulfate (2%, pH 7.0) was slowly added to the supernatant (final concentration 0.1%) and stirred for 30 min.

After centrifugation (20000 \times g, 30 min), the pellet was discarded, and the supernatant was fractionated between 30% and 60% saturation with (NH₄)₂SO₄ The pellet was dissolved in 10 ml buffer A (1 mM sodium phosphate, pH 7.0) and dialyzed against 3 L buffer A (16 hr with 3 changes). The centrifuged dialyzate was applied to a DEAE cellulose column (2×28 cm), washed with buffer A, and eluted with buffer A containing NaCl in a linear 0-0.5 M gradient. The highest PAL activity fractions were pooled and brought to 70% (NH₄)₂SO₄ saturation. After centrifugation, the pellet was dissolved in 4 ml buffer A, dialyzed, centrifuged, and concentrated on a Amicon Centriprep concentrator. The concentrate (1 ml) was applied to a Bio-Gel A-0.5m column (1 \times 110 cm) and eluted with 100 ml buffer A. The highest PAL activity fractions were combined. concentrated, and dialyzed. A cooled 6% preparative vertical polyacrylamide slab gel was used for the final purification step (see below for electrophoresis). Two 0.5 cm wide vertical strips were excised from the center of each gel. One was silver stained and the other was divided into 0.5 cm wide segments. Each segment was minced separately in 300 µl K-borate buffer (pH 8.8), shaken for 30 min, ground with a mini-pestle, centrifuged, and assayed for PAL activity and protein.

2.2.4 Enzyme assay

PAL activity was measured radiometrically as previously described (Bernard and Ellis, 1989) using L-[U-¹⁴C]-phenylalanine as substrate. Protein concentration was estimated by the dye-binding method (Bradford, 1976), with bovine serum albumin as standard. All assays were done in triplicate. To test the effect of inhibitors and activators on *in vitro* activity of PAL, Bio-Gel purified PAL in PAL assay buffer was mixed with compounds to

be tested. After a 20 min incubation, the mixture was filtered through a Sephadex G25 column and assayed with the standard reaction mixture. For the detection of tyrosine ammonia-lyase (TAL) activity, crude and Bio-gel purified PAL enzyme preparations were assayed by the spectrophotometric method and by the radiometric method using tritium-labeled L-tyrosine as substrate.

2.2.5 Polyacrylamide gel electrophoresis

Vertical slab gels were used for all PAGE analyses. Polyacrylamide gels (5, 6, 7 and 8% (w/v)) were prepared for native PAGE and run with the Laemmli discontinuous buffer system (Laemmli, 1970) in which SDS was omitted from the loading and running buffer. To determine native molecular weight (M_r) of PAL protein, the mobility of PAL at each gel concentration was compared with that of thyroglobulin (660 kDa), ferritin (440 kDa), catalase (232 kDa), lactate dehydrogenase (140 kDa), and BSA (67 kDa). Subunit Mr was determined by mobility in 7.5% SDS-PAGE gels, compared to that of myosin (205 kDa), β-galactosidase (116 kDa), phosphorylase b (97 kDa), BSA (66 kDa) and ovalbumin (43 kDa). Separated protein bands were detected by Coomassie Brilliant Blue R-250 or silver staining. To detect PAL charge isoforms, the purified PAL was run in a native IEF-PAGE system (Robertson et al., 1987) using pH 3-10 Ampholyte, and silver stained. For isoelectric point (pl) determination, the mobility of the PAL band was compared with that of cytochrome c (horse heart, pl 10.6), myoglobin met (whale sperm, pl 8.3), myoglobin met (horse, pl 7.3), myoglobin met (porcine, pl 6.45), trifluoracetylated myoglobin met (porcine, pl 5.92), azurin (P. aeruginosa, pl 5.65,) and C-phycocyanin (A. nidulans, pl 4.75 and 4.85).

2.2.6 Antibody production and immuno-affinity chromatography

PAL protein-containg bands excised from preparative PAGE gels were minced in 0.5 ml Freund's adjuvant and New Zealand White rabbits were immunized with one subcutaneous and three intramuscular injections of 50 µg PAL at 10 day intervals. Specificity of the antiserum was assayed by double diffusion in agar and the titer was determined by dot immuno-blot assay. The γ -globulin fraction was isolated from *U. maydis* PAL antiserum by DEAE cellulose chromatography (Johnston and Thorpe, 1982). After incubation of a mixture of purified *U. maydis* PAL and the γ -globulin fraction at 25°C for 1hr, the solution was assayed directly for PAL activity. For affinity purification of the *U. maydis* PAL enzyme, the isolated γ -globulin was coupled to a HiTrap-NHS matrix according to the supplier's protocol. *U. maydis* PAL purified through the DEAE cellulose step was applied to the affinity column and eluted with 0.1 mM Nacitrate buffer, pH 3.0.

2.2.7 Western blot

PAL proteins separated on a 7.5% native or SDS-PAGE gel were electrophoretically transferred to Westran polyvinylidene fluoride membrane(100 V, 1 hr, 4°C). Tris-glycine buffer (25 mM Tris-HCI, 190 mM glycine, pH 8.3) was used as transfer buffer for native PAGE gels. Methanol (10%) was included in the transfer buffer for SDS-PAGE gels. After electro-blotting, the M_r marker lane was cut off the membrane and stained with Coomassie Brilliant Blue R-250. The remaining blot was washed twice with TBS (100 mM

Tris-HCl, 150 mM NaCl, pH 7.5), blocked with 3% BSA in TBS-Tween buffer (0.1% Tween-20 in TBS) for 1 hr and probed with *U. maydis* PAL polyclonal antibodies for 2 hr at room temperature. After washing three times with TBS-Tween buffer, the blot was incubated (1 hr) with an alkaline phosphatase-conjugated goat anti-rabbit antibody. The blot was washed again and the secondary antibody detected with NBT/BCIP staining.

2.3 RESULTS

2.3.1 Purification of PAL

The enzyme was most readily extracted from cultured *U. maydis* cells by grinding the cell mass with alumina powder. The degree of purification and the yield of PAL activity at each purification step are shown in Table 2.1. The elution profiles from the DEAE cellulose and Bio-Gel gel filtration columns showed one major PAL activity peak in each case (Fig. 2.1). Following chromatographic fractionation, the most active fractions were electrophoresed under non-denaturing conditions and the resulting gels were sliced and assayed. PAL was detected as a strongly trailing band of activity (Fig. 2.2), and electrophoresis in gels of different acrylamide concentrations (5-8%) showed that the mobility of the zone containing the highest PAL activity corresponded to a mass of 320±20 kDa (Fig. 2.3). Isoelectric focusing of the chromatographically purified PAL yielded one major protein band with a pl of 6.3 (Fig. 2.4A). No PAL isoforms were detected during either electrophoresis or chromatography, and the purified enzyme gave a negative reaction in the glycoprotein detection assay.

Purification Step	Total Activity (pkat)	Protein (mg)	Specific Activity (pkat/mg protein)	Purification (-fold)	Recovery (%)
Crude extract	17670	3442	5	1	100
Protamine Sulfate	14102	2174	6.5	1.3	80
30-60% (NH ₄) ₂ SO ₄	5552	328	17	3.4	31
DEAE Cellulose	5132	50	103	20.6	29
Bio-Gel A-0.5m	3331	2.1	1586	318	19
Preparative PAGE	530	0.090	5889	1178	3

Table 2.1. Purification of PAL from U. maydis cells

Fig. 2.1. Elution profiles of *U. maydis* PAL and protein after DEAE cellulose chromatography (upper) and Bio-Gel A-0.5m gel filtration (lower).

Fig. 2.2. Native PAGE analysis of purified PAL from *U. maydis*. After preparative native PAGE (6% gel), one lane was silver stained (left) and another was sliced into 0.5 cm sections and assayed for PAL activity (histogram, right).

Fig. 2.4. Isoelectric focusing PAGE (A) and SDS-PAGE (B) analysis of *U. maydis* PAL enzyme. Marker proteins (left lane) and enzyme (right lane) eluted from the native PAGE gel slice revealing highest PAL activity in Fig. 2.2, were electrophoresed, side by side, and then silver stained. Arrow indicates the location of PAL enzyme.

When the native PAGE gel slice corresponding to the zone of greatest enzyme activity was electro-eluted and subjected to SDS-PAGE, a single band of protein with a mass of 55 kDa was detected by Coomassie Blue staining. Silver staining, however, revealed three additional minor bands (84, 73, and 30 kDa) (Fig. 2.4B).

2.3.2 Antibody production and characterization

Polyclonal antibodies raised against *U. maydis* PAL protein eluted from preparative nondenaturing PAGE gels produced a precipitin arc in immuno-double diffusion assays, with reaction to proteins from the crude extracts and from PAL-active fractions derived from ion-exchange and gel filtration separations (data not shown). The antibody titre was 12,000-fold as measured by dot immuno-blot assay.

To test the effect of the *U. maydis* PAL antibodies on PAL enzyme activity, the *U. maydis* PAL enzyme was co-incubated with the γ -globulin fraction of the *U. maydis* PAL antiserum. The PAL activity decreased linearly with increasing amounts of antibody, whereas the preimmune antibodies had no effect (Fig. 2.5). Immobilization of the anti-PAL γ -globulin fraction to form an immunoaffinity matrix, and chromatography of partially purified *U. maydis* PAL preparations on this matrix, allowed recovery of low levels of PAL activity. The active fractions migrated as a single protein on non-denaturing PAGE and displayed the same mobility as conventionally purified PAL (data not shown).

Fig. 2.5. Inhibition of *U. maydis* PAL activity by *U. maydis* PAL antibodies. The purified γ -globulin fractions from *U. maydis* PAL antiserum and from preimmune serum (control antibody) were incubated with PAL enzyme for 1 hr at 25 °C and assayed for PAL activity. Activity is expressed as a percentage of a control not treated with antibodies.

2.3.3 Western blotting

On Western blots, *U. maydis* PAL polyclonal antiserum detected a 320 kDa band in crude cell extracts, and in gel filtration-purified *U. maydis* PAL preparations, as well as an equivalent band in recombinant poplar PAL preparations (Fig. 2.6). When poplar PAL polyclonal antiserum (McKegney *et al.*, 1996) was used as a probe, a weak band at 320 kDa was detected in purified *U. maydis* PAL (Fig. 2.6), but not in crude *U. maydis* cell extracts (data not shown). Activity assay of gel slices excised from the zone corresponding to the 320 kDa protein band detected on Western blots confirmed that the highest PAL activity was associated with this protein (data not shown). SDS-PAGE fractionation and Western blotting (Fig. 2.7) of *U. maydis* PAL preparations at different points in the purification revealed two strong protein bands (80 kDa and 52 kDa) and one weak band (160 kDa), with the 52 kDa protein predominating as the purification proceeded.

2.3.4 Stability

When PAL enzyme in 0.01M Na-phosphate buffer (pH 7.0) was heated for 10 min at 50 °C, cooled to room temperature and assayed at 30°C, no significant activity was lost (Fig. 2.8). Heating at 60°C or 70°C, however, resulted in activity losses of 30% and 100%, respectively (Fig. 2.8). When stored at 4°C, the enzyme retained 95% activity for a week, and 60% activity after one month.

Fig. 2.6. Western blot analysis of reciprocal cross-reactivity between recombinant poplar PAL, *U. maydis* PAL and their respective antisera. *U. maydis* PAL (1 or 10 μ g) from Bio-Gel filtration and purified recombinant poplar PAL (1 or 10 μ g) (McKegney *et al.*, 1996) were separately electrophoresed in 7.5% native polyacrylamide gels and electroblotted onto PVDF membrane. The blots were probed with either *U. maydis* PAL antiserum (1 μ g sample of *U. maydis* PAL and 10 μ g sample of poplar PAL), or poplar PAL antiserum (10 μ g sample of *U. maydis* PAL and 10 μ g sample of poplar PAL). After being probed with alkaline phosphatase-conjugated secondary antibodies, both the blots were developed with NBT/BCIP. Lane1: 1 μ g *U. maydis* PAL antiserum1:10⁴. Lane 2: 10 μ g poplar PAL/*U. maydis* PAL antiserum1:10³. Lane 3: 10 μ g antiserum1:10⁴. Arrow indicates the location of PAL enzyme.

Fig. 2.7. Western blot analysis of *U. maydis* PAL subunit sizes at different stages of enzyme purification. Samples of PAL were taken from different purification stages, separated in 7.5% SDS polyacrylamide gels, and electro-blotted onto PVDF membrane. The molecular weight marker lane in the blot was stained with Coomassie Blue. Other lanes in the blot were probed with *U. maydis* PAL antibodies and alkaline phosphatase-conjugated secondary antibodies, followed by color development with NBT/BCIP. Lane 1: molecular weight markers. Lane 2: crude extract. Lane 3: 30-60% ammonium sulfate precipitate. Lane 4: Bio-Gel A-0.5m eluate. Lane 5: electro-eluate from a single band on a preparative native PAGE gel.

2.3.5 pH optimum

The optimal pH for PAL activity was pH 8.8-9.2 (Fig. 2.9). The enzyme displayed 50% of maximum activity at pH 7.2.

2.3.6 Catalytic properties

U. maydis PAL partially purified by DEAE cellulose ion-exchange chromatography displayed normal Michealis-Menten kinetics (Fig. 2.10). The apparent K_m value for L-phenylalanine was 1.05 mM, and the V_{max} was 51 pkat. mg⁻¹. The enzyme displayed no detectable activity against L-tyrosine using either the spectrophotometric or radiometric assay methods.

2.3.7 Inhibitors and activators

U. maydis PAL was readily inactivated by carbonyl reagents such as NaCN and NaBH₄ (Table 2.2), as well as by the sulfhydryl reagent, ρ -chloromercuribenzoate. The enzyme was moderately sensitive to its reaction product, *t*-cinnamic acid (K_i = 0.41 mM), and to the product of cinnamic acid hydroxylation, ρ -coumaric acid, but the synthetic substrate analogue, 2-aminoindan-2-phosphonic acid (AIP) (Zon amd Amrhein, 1992), was a very effective inhibitor (K_i = 0.33 µM).

None of the metal ions tested produced any enhancement of PAL activity, but heavy metal ions generally inhibited the enzyme (Table 2.3). Treatment with EDTA was not

Fig. 2.9. Effect of pH on *U. maydis* PAL activity. To measure the optimum pH, the enzyme was preincubated at each different pH for 30 min and reacted with substrate for a subsequent 30 min at 30° C.

Fig. 2.10. Kinetic analysis of partially purified *U. maydis* **PAL.** The most active fractions from DEAE cellulose ion-exchange chromatographed PAL were analyzed. Data were plotted on Michaelis-Menten (A) and Lineweaver-Burke (B) plot.

Inhibitor	Concentration	Relative Activity (%)			
None	_	100			
NaCN	5 mM	0			
NaBH₄	5 mM	13			
Phenylhydrazine HCl	5 mM	91			
Iodoacetate	5 mM	109			
N-Ethylmaleimide	5 mM	32			
ρ -Chloromercuribenzoate	1 mM	11			
β -Mercaptoethanol	25 mM	40			
AIP	0.1 μM	55			
	10 μM	1			
t-Cinnamic acid	1 mM	75			
	10 mM	8			
ho-Coumaric acid	10 mM	97			
	30 mM	0			

 Table 2.2. Effect of chemical modification reagents and substrate analogues on *U. maydis* PAL activity

Chemicals	Concentration (mM)	Relative Activity (%)			
None	~	100			
AgNO ₃	5	3			
Cd(CH ₃ CO ₂) ₂	10	38			
CoCl ₂	10	62			
CuCl	6	6			
CuCl₂	3	1			
HgCl₂	1	0.5			
ZnCl₂	10	54			
8-Hydroxyquinoline	12.5	15			

Table 2.3. Effect	of meta	l ions and	chelators	on U. ma	ydis PAL activity
-------------------	---------	------------	-----------	----------	-------------------

 $CaCl_{2}$, $FeSO_{4}$, $MgCl_{2}$, $MnCl_{2}$, $Na_{2}Cr_{2}O_{7}$, NaF, and EDTA at 10 mM concentrations did not reduce activity below 90% of control.

inhibitory, but the copper chelator, 8-hydroxyquinoline (12.5 mM), produced a moderate level of inhibition. PAL inhibition produced by Hg^{2+} could be partially reversed by treating the inhibited enzyme with β -mercaptoethanol, but 8-hydroxyquinoline was unable to reverse the inhibition produced by Cu⁺ or Cu²⁺ ions. Although PAL requires a low level of a thiol protectant for long-term stability, high concentrations (>25 mM) of β -mercaptoethanol also inhibited the enzyme.

2.4 DISCUSSION

Phenylalanine ammonia-lyase has been purified to varying degrees from numerous higher plant species but only from a limited number of fungi (Schomburg and Salzmann, 1990). It is a relatively low abundance protein and obtaining homogeneous preparations usually requires extensive fractionation of initial cell extracts. PAL is also prone to degradation during purification, and this lability can generate confusion concerning the native and subunit structure of the enzyme.

The estimated molecular mass of native *U. maydis* PAL (320 kDa) is similar to most other known PAL enzymes, which typically range in mass from 300 to 340 kDa, although exceptions have been reported for PAL from *Streptomyces* (226 kDa) (Emes and Vining, 1970), strawberry (266 kDa) (Given *et al.*, 1988), and *Alternaria* (556 kDa) (Pridham and Woodhead, 1974). There is convincing evidence from studies of the heterologous expression of both fungal and plant PAL cDNAs that PAL is normally a homotetrameric protein consisting of four copies of the same gene product (Orum and Rasmussen, 1992; Appert *et al.*, 1994). This implies that the subunit of the *U. maydis* enzyme should have a mass of 80 kDa and a protein of this size is prominent on Western blots of preparations obtained at various points during the purification procedure (Fig. 2.7). The Western blots show, however, that the original 80 kDa subunit population is accompanied by a strongly immunoreactive 52 kDa fragment throughout the normal purification process. The most highly purified active *U. maydis* PAL preparations (Fig. 2.2) consist of holoenzyme that yields almost exclusively this smaller fragment upon denaturation (Fig. 2.4.B, Fig. 2.7).

It is interesting to note that the undenatured enzyme appears to retain its native M_r even when the results of SDS-PAGE and Western blot analysis suggest that most of the subunits in the population have been cleaved to yield a discrete, substantially smaller, polypeptide fragment. This behavior, which has also been observed in other systems (Bolwell *et al.*, 1986; Dubery and Smit, 1994), implies that the cleavage fragments remain firmly bound within the tetrameric structure of PAL. Heterotetrameric quaternary structures for PAL have been reported from *Rhizoctonia* (Kalghatgi and Subba Rao, 1975) and sunflower (Jorrin *et al.*, 1988), but partial degradation of the enzyme cannot be ruled out in either case.

The *U. maydis* PAL antiserum has a high affinity for both the native fungal enzyme and its denatured subunits. The *U. maydis* PAL antiserum was also able to recognize a higher plant PAL protein, although the reaction was far weaker than with the homologous protein. The reciprocal cross-reaction between poplar PAL antiserum and *U. maydis* PAL protein (Fig. 2.6) was similarly detectable but weak. While antisera have been raised to several plant and fungal PAL proteins (e.g. alfalfa (Jorrin and Dixon, 1990), bean (Bolwell *et al.*, 1985), and *Mycosphaeria maculans* (Dahiya, 1993)), I am unaware of any other reports on the degree of cross-reactivity between plant and fungal PAL. The cross-reactivity observed here is consistent with the presence of some short stretches of highly conserved sequence within plant and fungal PAL genes (Taylor *et al.*, 1990), but the weakness of the cross-reaction also emphasizes the extent to which the structures of the *Ustilago* and higher plant PAL proteins may have diverged.

Many of the physico-chemical properties of *U. maydis* PAL are typical of this enzyme from other sources (e.g. M_r, pH optimum, sensitivity to carbonyl reagents, requirement for thiol protectants). Other properties are more unusual, including the temperature stability, a relatively high apparent K_m for phenylalanine, and a pl of 6.3. PAL proteins from other species have been reported to display apparent K_m values ranging from 11 μ M to 450 μ M L-phenylalanine, while the reported pl values range from 2.5 (Neumann *et al.*, 1991) to 5.75 (Campbell and Ellis, 1992).

PAL preparations from some sources, including sweet potato (Minamikawa and Uritani, 1965), tobacco (O'Neal and Keller, 1970), and yeast (Parkhurst and Hodgins, 1972), are strongly inhibited by the reaction product, *t*-cinnamic acid, but cinnamic acid has comparatively little effect on the activity of the *U. maydis* enzyme. In this, the *Ustilago* PAL resembles the enzyme from *Streptomyces* (Emes and Vining, 1970), alfalfa (Jorrin and Dixon, 1990), pine (Campbell and Ellis, 1992), and tomato (Bernard and Ellis, 1991). Like most known PALs, the *Ustilago* enzyme is sensitive to heavy metal ions and displays no metal ion requirement for catalytic activity (Table 2.3). Again, there is considerable interspecific variability in these responses, since Hg²⁺ completely inhibited the *U. maydis* PAL enzyme at 0.5 mM, whereas sunflower PAL was less strongly inhibited, retaining some activity even in 2 mM Hg²⁺ (Camm and Towers, 1973). Similarly, Cu²⁺ (1mM), was a potent inactivator of the *U. maydis* PAL but had no effect on the sweet potato enzyme (Minamikawa and Uritani, 1965). The significance, if any, of these patterns will become apparent only when more is learned about the detailed structure of PAL proteins and their active site(s).

CHAPTER THREE

Cloning and Characterization of the PAL Gene from Ustilago maydis : Relationships with Other Phenylalanine Ammonia-lyases and with Bacterial Histidine Ammonia-lyase.

3.1 INTRODUCTION

Since its discovery by Koukol and Conn (1961), L-phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) has been studied extensively both from the perspective of its biochemistry and its molecular biology. Plant PAL activity levels respond to an array of stresses such as wounding, chemicals, microbial infection, and UV light (Jones, 1984). By catalyzing the conversion of L-phenylalanine to t-cinnamic acid, the enzyme regulates the biosynthesis of a huge class of phenylpropane skeleton-based natural products (Hahlbrock and Scheel, 1989). Partial or full-length genes encoding PAL have been isolated from a number of plant species, mostly from cultivated crops but including trees and Arabidopsis. PAL is encoded by a small gene family in most plants except in potato, where PAL is encoded by 40-50 genes (Joos and Hahlbrok, 1992), and in loblolly pine (Pinus taeda), where PAL is reported to be encoded by only one gene (Whetten and Sederoff, 1992). In general, PAL coding sequences range from 700 to 725 amino acids in length, with some exceptions such as 682 amino acids in poplar PAL (Osakabe et al., 1995), 694 in Arabidopsis PAL (Wanner et al., 1995), and 752 in loblolly pine PAL (Zhang and Chiang, GenBank accession no. U39792). The fungal PAL genes sequenced to date contain five or six introns (Anson et al., 1987; Vaslet et al., 1988), in contrast to plant PAL sequences which generally contain only one intron. Two exceptions are the *Arabidopsis* PAL gene, which has two introns (Wanner *et al.*, 1995), and a *Pinus banksiana* PAL gene which appears to lack introns (Campbell, 1991; S. Butland, personal communication). The strict sequence conservation in the second exon of PAL genes among different plant species implies that important catalytic sites of the enzyme may be encoded in this region (Cramer *et al.*, 1989; Joos and Halbrock, 1992).

While PAL has been well-studied in plants, relatively little is known about PAL in fungi. The enzyme has been purified from a limited number of fungi (Schomburg and Salzmann, 1990), and fungal PAL genes have only been isolated from the two closely related red yeasts, *Rhodosporidium toruloides* and *Rhodotorula rubra* (Anson *et al.*, 1987; Vaslet *et al.*, 1988). The role of PAL in fungi is an area which is largely unexplored. Investigation of the structure, function, and regulation of fungal PAL will enable us to better understand the role PAL plays in fungal biology and may help us learn more about the mechanisms by which PAL is controlled in different eukaryotic systems such as plants and fungi.

The phytopathogenic fungus *Ustilago maydis* provides a good model system in which address the above question. This species has been used to study many aspects of eukaryotic genetics, including recombination mechanisms (Holliday *et al.*, 1974), nitrogen metabolism (Lewis and Fincham, 1970), and developmental regulation (Froeliger and Kronstad, 1990). Molecular genetic approaches are also possible, with the development of such molecular tools as efficient transformation (Wang *et al.*, 1988), autonomously replicating vectors (Tsukuda *et al.*, 1988), genes for selection markers

(Wang *et al.*, 1988; Banks and Taylor, 1988), and gene disruption (Kronstad *et al.*, 1989). The availability of *U. maydis* PAL protein data and anti-PAL antibodies (chapter 2) provided a unique opportunity to pursue the molecular genetic studies of PAL in a versatile fungal species largely unrelated to the red yeasts.

Histidine ammonia-lyase (HAL, EC 4.3.1.3) and PAL are the sole members of the dehydroalanine class of ammonia-lyases. HAL catalyzes the nonoxidative deamination of L-histidine to *trans*-urocanic acid and ammonia. This is the first step in the catabolism of L-histidine, which is eventually metabolized to L-glutamic acid. HAL occurs generally in bacteria and animals but may occur universally, since HAL activity has been detected in a few fungi (Hollman and Dekker, 1971; Polkinghorne and Hynes, 1975) and plants (Ruis and Kindl, 1970 and 1971; Kamel and Maksoud, 1978). In bacteria, HAL allows utilization of histidine as a carbon and/or nitrogen source. In mammals, HAL is under complex regulation that controls activity in a developmental, hormonal, and tissue-specific manner (Feigelson, 1973; Lamartiniere, 1979; Armstrong and Feigelson, 1980).

For both HAL and PAL there is strong indirect evidence that the enzyme active site contains a catalytically essential dehydroalanine (DHA) residue (Hanson and Havir, 1970; Hodgins, 1971; Consevage and Phillips, 1985). Recently, the precursor of the dehydroalanine residue in HAL and PAL has been identified as serine located at position 143 in *Pseudomonas putida* HAL (Hernandez *et al.*, 1993; Hernandez and Phillips, 1994; Langer *et al.*, 1994), 254 in rat HAL (Taylor and McInnes, 1994), and 202 in parsley (Schuster and Retey, 1994) and in poplar PAL (McKegney *et al.*, 1996). Substantial amino acid sequence conservation between HAL (from rat, *Bacillus subtilus*, and *P*.

putida) and PAL (from yeast, parsley, and kidney bean) was noted by Taylor *et al.* (1990). On the basis of functional similarity, the presence of DHA at the active site, and the observed overall sequence conservation, these researchers proposed that the present-day genes for HAL and PAL could have evolved from a common ancestral ammonia-lyase gene.

Since this proposal has been made, more HAL and PAL genes have been cloned from other sources. The relatedness of the two enzymes has been inferred from recent studies of their mechanism of action (Schuster and Retey, 1995) and the comparison of some coding sequences (Wu *et al.*, 1992), but many questions about these DHA ammonia-lyases remain unresolved, including the mechanism of active site formation and the functional significance of their multimeric structure. At this point, there have been no X-ray crystallographic analyses reported that might provide insight into these issues. However, a better understanding of the structural features common to both HAL and PAL should provide useful insights into the way an active DHA ammonia-lyase is formed.

This chapter describes the isolation and sequencing analysis of a *U. maydis* genomic clone which contains a gene encoding PAL, and a comparative analysis of its protein sequence with some of the published PAL and HAL protein sequences. Immunological evidence regarding the relatedness of the two ammonia-lyases is also presented.

3.2 MATERIALS AND METHODS

3.2.1 Microorganisms and media

Escherichia coli strains employed in this study are listed in Table 3.1. *E. coli* strains were grown in LB or TB medium with appropriate antibiotics as described (Sambrook *et al.*, 1989) and *Ustilago maydis* 518 strain was grown on potato dextrose broth or agar (PDB or PDA, Difco) and on complete medium (CM) described by Holliday (1974). *Rhodosporidium toruloides* UBC 75-0941 was grown in malt extract agar (Difco).

3.2.2 Materials

Restriction and DNA modifying enzymes were purchased from Bethesda Research Laboratories (BRL), Boehringer Mannheim and Pharmacia. The 1 Kb DNA Ladder, RNA size markers and agarose were obtained from GIBCOBRL. [α -³²P]dATP was from Amersham. Zeta-Probe blotting membranes for Southern and Northern blot analysis, Bio-Gel A-0.5m agarose beads, alkaline phosphatase-conjugated goat anti-rabbit antibody, SDS-PAGE molecular markers, and BCIP (5-bromo-4-chloro-3-indoyl phosphate ρ -toluidine salt)/NBT (ρ -nitro blue tetrazolium chloride) were purchased from Bio-Rad (Mississauga, Canada). Westran PVDF (polyvinylidine: difluoride) membrane was purchased from Schleicher & Schuell (Keene, U.S.A.). Freund's adjuvant and other chemicals were purchased from Sigma. Degenerate oligonucleotide primers were synthesized by Nucleic Acids and Protein Services (NAPS) unit, Biotechnology Lab.,

Strain	Genotype											
DH5α	endA1, hsdR17(r_{k} , m_{k}), supE44, thi-1, recA1, gyrA96, relA1, Δ lacU169 (ϕ 80d/acZ Δ M15)											
DH10B	F' mcrA Δ(mrr-hsdRMS-mcrBC) ϕ 80d/acZΔM15), ΔlacX74, deoR, recA1, araD139, Δ(ara, leu)7697, galU, galK, λ^- , rpsL, endA1, nupG											
HB101	supE44, hsdS2(r_B^- , m_B^-), recA13, ara-14, proA2, lacY1, galK2 rpsL20, xyl-5, mtl-1											
SOLR	e14 $$ (mcrA), Δ (mcrCB-hsdSMR-mrr)171, sbcC, recB, recJ, umuC::Tn5(kan ^r),											
	uvrC, lac, gyrA96, relA1, thi⁻1, endA1, λ^{R} , [F΄, proAB, lacl ⁴ Z∆M15], Su⁻ (non-suppressing)											
XL1-Blue	endA1, hsdR17(r _k ⁻, m _k ⁺), supE44, thi⁻1, lambda⁻, recA1, gyrA96, relA1, lac⁻, [F́, proAB, lacl ^q Z∆M15, Tn10(tet ^R)]											

Table 3.1. Escherichia coli strains used in this study

University of British Columbia and specific primers were synthesized using an Oligo-1000M DNA Synthesizer (Beckman).

3.2.3 Nucleic acids manipulation

Protocols used for recombinant DNA manipulations and for small scale, boiling-lysis, plasmid preparations are from Sambrook *et al.* (1989). DNA mini-preps were done by the method of Zhou *et al.* (1990). Restriction digests and ligations were carried out according to manufacturers' instructions using commercially supplied enzymes and buffers. pUC19 vector and DH5 α competent *E. coli* cells were used for subcloning. Genomic DNA of *U. maydis* and *R. toruloides* was isolated as described by Wang *et al.* (1988). *U. maydis* RNA was isolated using the hot phenol method as described in Ausubel *et al.* (1995). Concentration of nucleic acids was determined by measuring the absorbance at 260 nm using a GeneQuant nucleic acids quantifier (Pharmacia).

3.2.4 cDNA library screening

A λ ZAPII cDNA expression library (Gold *et al.*, 1994a) constructed from poly(A)⁺ RNA from *U. maydis* cells grown on mating media was used as the source for PAL cDNA clone screening. *E. coli* XL-1 blue cells (Stratagene) were infected with the phage library, *lacZ* fusion protein expression was induced with isopropyl- β -D-thiogalactopyranoside (IPTG), and positive clones were selected by immunoscreening with antibodies specific for *U. maydis* PAL. Immunoscreening was carried out with a

*pico*Blue immunoscreening kit (Stratagene) using alkaline phosphatase-conjugated goat anti-rabbit antibodies with BCIP and NBT as substrates for color detection. Putative positive plaques were isolated through several rounds of screening and processed to homogeneity. The plaques giving a positive signal were excised *in vivo* with the EXASSIST helper phage (Stratagene) and rescued to produce the pBluescript SKplasmid using the *E. coli* strain, SOLR (Stratagene) which prevents coinfection of the helper phage, according to the Stratagene EXASSIST/SOLR system protocol. Transformed cells were stored as glycerol stocks at -70 °C.

3.2.5 Design of oligonucleotide primers

χı

The DNA coding sequences and amino acid sequences for known PAL genes were compared using PC/Gene software (IntelliGenetics) and assessed to identify consensus regions which could be used as PCR primers. The sequences employed for comparison were four plant PAL sequences: *Ipomea batatas* (Genbank/EMBL accession M29232), *Oryza sativa* (accession X16090), *Phaseolus vulgaris* (accession M11937), and *Petroselinum crispum* (Lois *et al.*, 1989), and two yeast PAL sequences: *Rhodotorula rubra* (accession X13094) and *Rhodosporidium toruloides* (accession M28261). Degenerate primers (PAL1, 2, 5, 6, and 7) and yeast PAL-specific primers (RTPAL3 and 5) were synthesized based on consensus region sequences (Fig. 3.1). 5' *Eco*RI or 3' *XbaI* restriction sites were incorporated in the primers to allow unidirectional cloning of amplified products.

Generic PAL Gene (coding region)

- PAL7 5'- CG<u>GAATTC</u> ATC[AT]CGGCGTCGGGGGA[CT][CT]T 3' EcoRI
- RTPAL3 5'- GC<u>TCTAGA</u> CGCAAGGGGTAGCGGTCCT -3' Xbal
- RTPAL5 5'- CG<u>GAATTC</u> CACTCGGCTGTCCGCCTCGT -3' EcoRI

Fig. 3.1. Schematic diagram indicating generic structure of a PAL gene and locations of primers (\Rightarrow) used in PCR to amplify parts of the *U. maydis* PAL gene. Degeneracy of primers is indicated by square brackets and the inosine nucleotide is indicated as I.

3.2.6 PCR amplification of a putative U. maydis PAL gene fragment

U. maydis genomic DNA and $\lambda ZAPII$ -cDNA from the cDNA library were prepared using the yeast DNA isolation method and the plate lysate method, respectively, as described in Current Protocols in Molecular Biology (Ausubel et al., 1995). PCR reactions (50 μl) contained 200 ng of U. maydis genomic DNA or 20 ng of \u03c8ZAPII-cDNA as template, 40 pM PAL primer pairs, 50 µM dNTPs, 1X reaction buffer (10mM Tris-HCl pH 8.0, 1.5 mM MgCl₂, 50 mM KCl), and 1 unit Taq polymerase (Appligene). Each reaction was overlayed with 1 drop of mineral oil. The combinations of primers and templates for PCR reactions are listed in Table 3.2. PCR reactions were incubated in a Techne PHC2 thermal cycler. The thermal cycling conditions were as follows: initial denaturation, 94°C/4 min; followed by 35 cycles of denaturation, 94°C/1 min; annealing, 55°C/1 min; and primer extension, 72°C/2 min. The reaction product (30 µl) was analyzed by electrophoresis on a 1% agarose gel in Tris-acetate EDTA (TAE) buffer including ethidium bromide, visualized under UV light, and documented with an Image Analyzer (IS-500 Digital Imaging System, Alpha Innotech Co.). After identification of the desired size band from amplification products, this band was excised, purified using the GeneCleanII (Bio101) kit, and subcloned for further analysis.

3.2.7 Cloning of putative U. maydis PAL PCR product

The purified PCR amplified product was digested with *Eco*RI and *Xb*al, ligated with pUC19 vector digested with the same enzymes, and transformed into DH5 α *E. coli* cells. Transformant colonies were screened using blue/white selection based on the insertional

inactivation of β -galactosidase. Twenty white colonies were picked for plasmid DNA minipreps (Zhou *et al.*, 1990), digested with *Eco*RI and *Xb*al, and subjected to electrophressis on 1% agarose gels to verify the insert presence and size. The identities of transformants with an insert size corresponding to the amplified PAL DNA fragment were confirmed by Southern blot analysis of plasmid DNA from the selected clone using the PCR-amplified PAL fragment as a probe. The amplified putative *U. maydis* PAL fragment DNAs in the confirmed clones were sequenced and their sequences were compared with other known PAL sequences. A fragment showing substantial sequence homology with yeast PALs was used as a probe to screen a *U. maydis* genomic-cosmid library.

3.2.8 DNA sequencing

Double-stranded plasmid DNA or cosmid DNA from selected clones was prepared following a mini alkaline lysis/PEG precipitation procedure (Ausubel *et al.*, 1995). Both strands of the insert were sequenced with M13 universal and/or synthetic oligonucleotide primers as needed to extend the sequence. Sequencing reactions were carried out in a DNA Thermal Cycler (Perkin Elmer Cetus) using ABI AmpliTaq dye termination cycle sequencing chemistry according to manufacturer's instructions (Applied Biosystems) and nucleotide sequences were analyzed on Applied Biosystems' ABI 373 DNA sequencer (NAPS unit) or ABI 310 capillary DNA sequencer (at the former Pacific Agriculture Research Centre, Agriculture and Agri-Food Canada, Vancouver Station).

3.2.9 Sequence comparison and analysis

Database searches for sequence homology and comparisons of nucleotides and amino acids were performed on sequences from Genbank, EMBL, PDB, PID, PIR, and SWISS-PROT using BLAST (Altschul *et el.*, 1990). Nucleotide and amino acid sequence analysis of *U. maydis* PAL was done using PC/Gene software.

3.2.10 Genomic-cosmid library screening

A cosmid library had been constructed earlier (Barrett, 1992) in the U. maydis vector pJW42, using total genomic DNA isolated from U. maydis strain 518. The total DNA was partially digested with Sau3AI to produce 30 to 40 kb fragments and these fragments were ligated into the BamHI site of pJW42. After being packaged in vitro using the Gigapack packaging extract (Stratagene), ligated DNA was transfected into E. coli DH5a strain. Approximately 10⁶ individual transfectants were randomly pooled from transfection plates (LB/ampicillin (50 µg/ml) medium), cultured for six hours in LB/ampicillin medium, and harvested for DNA preparation (Ish-Horowicz and Burke, 1981). DNA from these nine divided pools was used as a source of genomic-cosmid library for U. maydis genomic PAL screening. To identify the cosmid DNA pool containing a PAL gene, PCR was employed, using nested primers (UMPAL2 and UMPAL3), which had been designed on the basis of sequence information from the PCR-amplified putative PAL DNA fragment. Cosmid DNA from the pools giving a PCR amplification product with the nested primers was transformed into E. coli HB101 or DH10B strain by electroporation, using a Bio-Rad Gene Pulser according to the supplier's manual, and transformants were selected on LB/ampicillin plates. The selected transformants were screened

according to Amersham's colony-lift hybridization manual using the PCR-amplified putative *U. maydis* PAL DNA fragment cloned above as a probe. After growing on antibiotic selective medium plates, bacterial DNA was transferred and fixed onto nylon membrane (Hybond N⁺, Amersham). Membranes were prehybridized for 1 hour at 68°C and hybridized with the DNA probe overnight at 68°C. After washing with 2XSSC (10 min, twice) at room temperature and 0.1X SSC/0.1% SDS at 68°C (30 min, twice), the membranes were exposed to Kodak X-OMAT film. Colonies giving positive signals on autoradiograms from duplicate membranes were picked and purified to homogeneity through two more rounds of screening. Cosmid DNA from these selected clones was subjected to further analysis by PCR with UMPAL2/UMPAL3 primers to confirm the presence of target template DNA and the confirmed cosmid DNA was used for sequencing analysis.

3.2.11 Southern hybridization

U. maydis genomic DNA was digested overnight at 37°C with various restriction enzymes, fractionated in a 0.7 or 1% agarose gel, denatured in 0.25M HCl for 10 min, and transferred to a Zeta-Probe GT blotting membrane using 0.4M NaOH solution. The membrane was prehybridized at 65°C for 1 hour in 10 ml of hybridization solution (7% SDS, 0.25M Na₂HPO₄, pH 7.2) and transferred to new hybridization solution. After addition of a DNA probe which was labeled with [α -³²P]dATP using the Random Primers DNA Labeling System (GIBCOBRL), the membrane was incubated overnight at 65°C. The membrane then washed twice for 30 min each at 65°C in 5% SDS/20 mM Na₂HPO₄,

pH 7.2, followed by washing in the same manner in 1% SDS/20 mM Na₂HPO₄, pH 7.2, and subjected to autoradiography using Kodak X-OMAT AR film.

3.2.12 Total RNA isolation and Northern hybridization

Cells of *U. maydis* grown in complete medium were harvested 16 hr after inoculation, washed two times with sterile DEPC-treated distilled water, and frozen in liquid nitrogen. Total RNA was isolated using the hot phenol extraction method as described by Ausubel *et al.* (1995). Total RNA was fractionated on a denaturing 1% agarose gel (Sambrook *et al.*, 1989) and transferred to Zeta-Probe GT membrane using 10X SSC. The membrane was incubated in prehybridization solution (50% formamide, 0.12M Na₂HPO₄, 0.25M NaCl, and 7% SDS) for 10 min at 42°C and hybridized overnight with a random-primed radiolabeled probe in the same conditions. Following a brief rinse in 2X SSC, the membrane was washed successively in 2X SSPE/0.1% SDS, 1X SSPE/0.5% SDS, and 0.3X SSPE/1% SDS solution at 55°C for 30 min each. A 0.24- to 9.5-kb RNA ladder was used to estimate RNA size. Autoradiography was performed in the same manner as for the Southern blot.

3.2.13 N-terminal and internal peptide sequencing of U. maydis PAL

The purified *U. maydis* PAL (chapter 2) was run in 7.5% SDS-PAGE gels (Laemmli, 1970) and subjected to electroblotting onto Immobilon P^{sq}-PVDF membrane (Millipore) using CAPS buffer. After staining with Coomassie blue, the appropriate 80 kD and 52 kD protein bands were excised for N-terminal and internal sequencing analysis, respectively.

Protein sequencing analysis by automated Edman degradation was performed on an Applied Biosystems 470A gas phase sequencer with on-line PTH-HA analysis at the NAPS unit.

3.2.14 Enzymes and antibodies

Partially purified *Pseudomonas fluorescens* HAL, *R. glutinis* PAL, and potato PAL were purchased from Sigma. *P. fluorescens* HAL was further purified from the commercial enzyme by 7.5% native PAGE gel separation and polyclonal antibodies were raised in rabbits. *U. maydis* PAL was purified by (NH₄)₂SO₄ precipitation, DEAE ion-exchange chromatography and Bio-Gel A-0.5m filtration (described in chapter 2). Poplar PAL was purified from baculovirus-expressed proteins (Mckegney *et al.*, 1996) by Pharmacia FPLC Mono-Q column. Polyclonal antibodies to *U. maydis* and poplar PAL were raised in New Zealand White rabbits. Anti-alfalfa PAL and anti-*P. putida* HAL polyclonal antibodies were generously provided by R.A. Dixon (The Samuel Robert Noble Foundation, Ardmore, USA) and A.T. Phillips (Pennsylvania State University, University Park, USA), respectively.

3.2.15 Western blots and enzyme Inhibition

The same amounts of protein of each PAL and HAL enzyme were electrophoresed on a 7.5% native PAGE gel, electroblotted onto PVDF membrane and probed with anti-PAL or anti-HAL antiserum. After washing, the membrane was reacted with alkaline phosphatase-conjugated secondary antibodies and immune complexes were detected with NBT/BCIP solution (Young and Davis, 1983). For enzyme inhibition by antiserum,

HAL and PAL were incubated with anti-HAL and anti-PAL antisera for 1hr at room temperature and the enzyme-antiserum reaction mixtures were assayed for HAL and PAL activity. Pre-immune sera were used as controls.

3.2.16 Assay of enzyme activity

HAL assays were done by the spectrophotometric method with L-histidine as a substrate (Rechler and Tabor, 1969) and PAL assays were done by the radiometric method with L - $[U-^{14}C]$ -phenylalanine as a substrate (Bernards and Ellis, 1991). Protein concentrations were determined using the Bio-Rad dye-binding reagent with microtiter plates, based on the Bradford method (Bradford, 1976).

3.3 RESULTS

3.3.1 PCR amplification of a U. maydis PAL sequence from genomic DNA

Initial attempts at screening available *U. maydis* cDNA libraries with either *U. maydis* PAL polyclonal antibodies (chapter 2), or with a yeast *R. toruloides* PAL DNA fragment (PCR amplified from *R. toruloides* genomic DNA with primer RTPAL3 and RTPAL5 in this study), or with a *Pinus banksiana* PAL cDNA clone (Lam, 1995) as probe were unsuccessful. This failure may have been due to the low abundance of the PAL message in the mRNA pools from which the libraries were made or to low nucleotide sequence homology between the target *U. maydis* cDNA in the cDNA library and the

heterologous probes. This led me to choose a PCR approach, generating primers (Fig. 3.1) based on conserved amino acid sequences among several PAL proteins. Among the combinations of primers and template DNA tested (Table 3.2), only the PAL7 and RTPAL3 primer combination with genomic DNA as template amplified a fragment of the expected size (about 0.45 kb) (Fig. 3.2). This DNA fragment was isolated, subcloned into pUC19, transformed into DH5 α *E. coli* cells, and sequenced. A BLAST database search showed that the 0.45 kb-sequence has homology with most known PAL genes, especially with yeast PALs (40% amino acid identity). Therefore, the PCR-amplified DNA was considered a putative *U. maydis* PAL DNA fragment and was used to screen a genomic-cosmid library.

3.3.2 Isolation and sequencing of PAL genomic-cosmid clones

Based on the sequence of the above 0.45 kb PCR product, two sequence-specific (5'primers (UMPAL2 5'-ACGCAGCGTTCCGTTGTCTTC-3') and UMPAL3 AGCTACGTAGCCGGTGCGCTT-3') were synthesized and used for initial screening of nine genomic-cosmid pools. A 0.43 kb fragment was amplified from three pools (pool 1, 7, and 8) out of nine pools (Fig. 3.3). After transformation of DNAs of these three pools into HB101 or DH10B cells, PAL genomic clones were isolated from the transformants by colony-lift hybridization, using the 0.45 kb DNA as probe. One clone was selected for sequencing after rescreening of the above isolated PAL clones by PCR with the UMPAL2/UMPAL3 primers. DNA sequencing of both strands of this clone was performed using synthetic oligonucleotide primers designed from the DNA sequences resulting from each sequencing run (Fig. 3.4).

Primer combination	Predicted cDNA template	d size (bp) Genomic DNA template
PAL1-PAL2	400	≥ 400
PAL1-PAL6	420	≥ 420
PAL5-PAL2	1100	≥1100
PAL5-PAL6	1120	≥1120
PAL5-RTPAL3	700	≥ 700
PAL7-PAL2	840	≥ 840
PAL7-PAL6 PAL7-RTPAL3	860 450	≥ 860 450
RTPAL5-PAL2	950	≥ 950
RTPAL5-PAL6 RTPAL5-RTPAL3 PAL1-M13 PAL5-M13 PAL7-M13 RTPAL5-M13	970 550 1050 1740 1480 1590	≥ 970 550

 Table 3.2. PCR primer combinations tested for possible amplification of PAL DNA fragments from *U. maydis* and predicted size of the amplified products

Fig. 3.2. PCR amplification of putative PAL DNA fragment from *U. maydis* genomic DNA using various PAL primer combinations. The amplified products were separated electrophoretically in a 1% agarose gel and visualized under UV following ethidium bromide staining. Lane 1: 1kb DNA ladder, Lane 2: primer PAL7/RTPAL3, Lane 3: primer PAL7/PAL2, Lane 4: primer PAL5/RTPAL3, Lane 5: primer PAL5/PAL2, Lane 6: primer PAL1/PAL2, and Lane 7: primer RTPAL5/RTPAL3.

Fig. 3.3. PCR screening of *U. maydis* genomic-cosmid library pools using UMPAL3 and UMPAL2 primers. PCR products were separated electrophoretically in a 1% agarose gel and visualized under UV following ethidium bromide staining. Lane 1: 1kb DNA ladder, Lane 2: genomic-cosmid pool 1, Lane 3: pool 2, Lane 4: pool 3, Lane 5: pool 4, Lane 6: pool 5, Lane 7: pool 6, Lane 8: pool 7, Lane 9: pool 8, Lane 10: pool 9.

Fig. 3.4. Strategy employed in the nucleotide sequencing of the *U. maydis* PAL genomic-cosmid clone. Arrows indicate the direction and extent of DNA that was sequenced. The dotted line represents total sequenced nucleotides of the PAL genomic clone. The thick black line above the dotted line indicates the 2172 bp open reading frame encoding PAL. The sites for the presumed PAL translation initiation and termination are indicated. The box indicates the location of the PCR-amplified 0.45 kb product from Fig. 3.2.

3.3.3 Nucleotide sequence and deduced amino acid sequence of U. maydis PAL

A total of 3047 bp nucleotide sequence of a genomic PAL clone was determined (Fig. 3.5). This contains 495 bp of 5' untranslated sequence, a 2172 bp open reading frame encoding 724 amino acids, and 380 bp of 3' untranslated sequence. A BLAST database search for homology of the 2172 bp sequence with known genes showed that this sequence has highest homology with known PAL genes (Table 3.3). A putative 'TATA box' is present 349 bp upstream from the start codon. However, typical eukaryotic promoter sequences are not found in the usual locations upstream from the *U*. *maydis* PAL gene start codon. The GC content of the coding sequence is 58%. No introns are located in the *U. maydis* PAL sequence. The 3' untranslated region does not possess any of the consensus transcriptional termination signals of the higher eukaryotes (AATAAA) or of *Neurospora* (TGTCGA).

Conceptional translation of the 2172 nucleotide sequence of this *U. maydis* PAL gene is presented in Fig. 3.6. The molecular weight and isoelectric point of the translated 724 amino acid protein are estimated as 79277 and 6.3, respectively, which are in good agreement with the previously estimated subunit size and isoelectric point of purified PAL (molecular weight 80000 and pl 6.3 in chapter 2). The known enzyme active site serine residue is found at position 206 within the strictly conserved motif SGDL found in PAL genes (Schuster and Retey, 1994) (Fig. 3.6). An internal peptide fragment sequence from the purified *U. maydis* PAL matches positions 384-391 (underlined) of the deduced amino acid sequence (Fig. 3.6). Interestingly, *N*-glycosylation sites, a cAMP- or GMP-dependent protein kinase phosphorylation site, and a ATP/GTP-binding site motif

GGTGCTCCCCAACAAATGGCGCGCGTTTTTTCGGTAGCATGCAGGATAATCTGTTCATCAC	-436
TGTGAGGGTTCACGTTCGTAATTAAACAAAGCGCACATTLCCTGTTTGGATGTCATCGGA	-376
TATTCCGCGACAACTCGGTATATTATTAGTGTAGTTTGACAGAGGGAGTGGACGCGGCTG	-316
AGATGGGACCGTTCCGTGTCAGGAGAGTGGACAACGCATTGCGCGGAATGAAGTCAGAAT	-256
CGATGCATCAATGATTCACGATTGTTGCTCTGACGATCGGCTCGCCCGTTCCGTTCGCGG	-196
TGCGCATCCTGATTGCCAGATAGCCAGAGACGTGGAGCCTGAAGGTGACTATAGTATGGG	-136
ACAGCAATCCTAGCCGACTTTCTCACCTCCTATCCGCCCATATCTGCGTGCCGTGCCTCT	-76
TCGATCGTCTCTACACGACCATAACAGCTGTCCTCTCGCGTCCATACCGTTCCTCTTCCC	-16
ACCGCATCTGGCATCATGGCTCCCAACCGCAGACGTGCTCCCCTCCCGTCGAGGCATCCACG	45
M A P T A D V L P P V E A S T	15
CGTCCAGGCTTGCTCGTCCAGCCTTCGGATACCAAACTTCGCAAAGCATCGTCCTTCCGA	105
R P G L L V Q P S D T K L R K A S S F R	35
ACCGAGCAGGTCGTTATCGACGGCTACAATCTCAAGATCCAGGGTCTCGTCGCTTCCGCT	165
T E Q V V I D G Y N L K I Q G L V A S A	55
CGATACGGTCACGTTACCCGTCCTCGACCCTCCGCTGAGACGCGAAAGCGTATTGATGAC	225
RYGHVTRPRPSAETRKRIDD	75
TCGGTCCAGTCCTTAATCGCCAAGCTCGACGGTGGCGAGTCAATCTACGGCATCAACACG	285
S V Q S L I A K L D G G E S I Y G I N T	95
GGGTTCGGTGGGTCCGCCGACTCGAGGACCGCCAACACGTGCGCTTCAGCTGGCCTTG	345
G F G G S A D S R T A N T R A L O L A L	115
CTCCAGATGCAGCAGTGTGGCGTGCCTCCCCGTGCCATCCACATTCCCCCACGGGCGAACCC	405
IOMOOCGVIPVPSTFPTGEP	135
AGCTCGGCACCCTTTGCACTCCCTTTGACGGACACAGAGTCTTCACTGATCATGCCGGAG	465
S S A P F A I. P I. T D T E S S I. T M P E	155
	525
	175
	585
V P W F V I D K M O K I F I O N N V T P	195
	645
GTCGTACLAGTCAGGTCGAGTATCTCGGCCAGTGGTGATCTTAGCCCACTTAGCTACGTA	045
V V P V R S S I S A S G D L S P L S Y V	215
GCCGGTGCGCTTGCCGGTCAGCGTGGCATCTACTGCTTTGTCACCGACGGCCGTGGTCAG	705
A G A L A G Q R G I Y C F V T D G R G Q	235
CGTGTCAAGGTGACTGCGGATGAGGCTTGTCGCATGCACAAGATCACCCCCGTCCAGTAT	765
R V K V T A D E A C R M H K I T P V Q Y	255
GAGCCCAAGGAGGCGCTTGGTCTGCTCAACGGCACCGCTTTTTCAGCCTCTGTTGCGGGT	825
E P K E A L G L L N G T A F S A S V A G	275
CTCGCTACCTACGAGGCCGAAAATCTAGCCTCTCTGACGCAGCTCACCACCGCTATGGCC	885
LATYEAENLASLTOLTTAMA	295
GTCGAAGCCCTCAAGGGTACCGATGCCAGCTTTGCTCCTTTCACGAAATCGCCCGC	945
	315
	1005
CCGCATCCTGGTCAGATCAAGAGCGCCCAAGTTTATCCGCGCGCATCTTTCCGGCTCTAGG	1005
PHPGQIKSAKFIRAHLSGSR	335
CTAGCAGAGCATCTCGAAAAACGAAAAGCACGTCCTCTTCTCCGAAGACAACGGAACGCTG	1065
LAEHLENEKHVLFSEDNGTL	355
CG TCAGGACCGTTACACGCTGCAAACCGCCTCCCAGTGGGTCGGCCCGGGTCTCGAGGAC	1125
R Q D R Y T L Q T A S Q W V G P G L E D	375
ATCGAAAACGCAAAGCGATCCGTCGACTTTGAGATTAACAGCACCACAGATAACCCCATG	1185
I E N A K R S V D F E I N S T T D N P M	395
ATCGACCCGTACGACGGCGACGGTCGCATCCACCACGGAGGCAACTTCCAGGCCATGGCC	1245
I D P Y D G D G R I H H G G N F O A M A	415
	410
84	

ATGACGAATGCCGTCGAGAAGATCCGCCTCGCCTTGTGTGCTATGGGCAAAATGACGTTC	1305
M T N A V E K I R L A L C A M G K M T F	435
CAGCAGATG1CAGAGCTCGTCAACCCGGCAATGAACCGAGGATTGCCCGCCAACTTGGCT	1365
Q Q M T E L V N P A M N R G L P A N L A	455
TCCACGCCTGATCTGTCGCTCAACTTCCACGCCAAGGGAATCAATATTGCGCTTGCCAGT	1425
S T P D L S L N F H A K G I N I A L A S	475
GTCACTTCGGAACTCATGTTCCTCGGCAACCCCGTTTCAACGCATGTACAAAGTGCAGAG	1485
V T S E L M F L G N P V S T H V O S A E	495
ATGGCCAACCAGGCCTTCAACTCGCTGGCGCTCATCAGC1GCCGCCAGACGCTGCAGGCG	1545
M A N Q A F N S L A L I S G R Q T L Q A	515
ATCGAGTGCCTCTCGATGATTCAGGCTTGGTCGCTCTACCTCTTGTGCCAAGCACTCGAT	1605
I E C L S M I Q A W S L Y L L C Q A L D	535
ÀTTCGCGCTTTGCAGTATAAGGTTGCTGAGCAGCTGCCCACGCTCATCTTGGCATCGCTG	1665
IRALQYKVAEQLPTLILASL	555
CACAGTCACTTTGGCGAGTGGATGGATGAGACCAAGCAGCAGGAGATTGCAGCACAGGTG	1725
H S H F G E W M D E T K O O E I A A O V	575
CTCAAGAGCATGAGCAAGCGTCTCGACGAAACCTCGTCCAAGGACCTTCGCGATCGACTG	1785
L K S M S K R L D E T S S K D L R D R L	595
GTCGAGACGTACCAAGACGCGTCGTCTGTGCTTGTGAGGTACTTTTCCGAGCTGCCTAGC	1845
V E T Y O D A S S V L V R Y F S E L P S	615
GGTGGTGGTGCGGATCCGCTGAGGAACATTGTCAAGTGGCGCGCCACCGGTGTAGCTGAC	1905
G G A D P L R N I V K W R A T G V A D	635
ACGGAAAAGATTTACAGGCAGGTAACGATCGAATTTCTTGACAACCCATACGCTTGCCAT	1965
T E K I Y R O V T I E F L D N P Y A C H	655
GCCAGCCACCTGTTGGGCAAGACCAAGCGCGCCTACGAGTTTGTCAGGAAGACGCTGGGT	2025
A S H L L G K T K R A Y E F V R K T L G	675
GTGCCCATGCATGGTAAGGAGAACCTCAACGAATTCAAGGGCGAATTTGAGCAATGGAAC	2085
V P M H G K B N L N E F K G E F E Q W N	695
ACGACGGGCGGTTACGTCTCGGTCATCTATGCTAGTATTCGAGATGGCGAGTTGTATAAC	2145
T T G G Y V S V I Y A S I R D G E L Y N	715
ATGCTGAGCGAGCTCGAAAGGGATTTG TAA AGGGGTGCAAGCAGCGTATTAATAGTTAGT	2205
	724
ATAAATTGGCCATCTACGGTGACAAATTGCGTGTGAGTGCCAAAAGGGCCATCGAAATGA	2265
TCATGGACAGCGACAGACTGTGTGTGTGATTTGTCAAAGTGATTTGGCACTACCGAATATG	2325
ACCGTGTGTACCGGCACCAAGGCGAGGTGATGCGAATGCATGTTTTTGCGTGGCGTCAAA	2385
GGGGGATGCAGGACATGGTCGACTGCTTGTCGGAGCTGATGAGGTCGTAGCGGATTCGGA	2445
ATTTGGGTTCGAGGGCTGTGAAGGGATGTTGAGGTGTATCAAAGGGACTTGGCTTGTGCT	2505
GCGCTTGGGAGTGGGAGGGACATTTCAGGTGCATCTGCTTTCGGGAT	2552

Fig. 3.5. Complete nucleotide sequence of *U. maydis* **PAL gene.** Deduced amino acid sequence of the PAL protein is indicated below their respective codons. Numbers in the right margin indicate position relative to the A nucleotide of the start codon, or amino acid position. The start codon (ATG) and stop codon (TAA) are underlined. The putative TATA box in the 5' untranslated leader sequence is boxed. The PCR-amplified sequence is lettered in bold.

Table 3.3. BLAST search results with the deduced U. maydis PAL protein sequence.The results show the 30 most similar protein sequences in the GenBank for the deducedU. maydis PAL protein sequence.

Rank	Accession Number	Organism	Sequence Description	Probability
1	P11544	Rhodosporidium toruloides	PAL	2.7e-178
2	P10248	Rhodotorula rubra	PAL	1.2e-172
3	P27991	Glycine max	PAL 1	9.9e-94
4	P27990	Medicago sativa	PAL	1.8e-90
5	P45726	Solanum tuberosum	PAL	6.4e-90
6	P35510	Arabidopsis thaliana	PAL 1	1.4e-89
7	P45732	Stylosanthes humilis	PAL	1.5e-89
8	P31426	Camellia sinensis	PAL 2	5.6e-89
9	P45730	Arabidopsis thaliana	PAL	2.6e-88
10	P45728	Petroselinum crispum	PAL 2	9.1e-88
11	P24481	Petroselinum crispum	PAL 1	1.4e-87
12	P19142	Phaseolus vulgaris	PAL Class II	2.5e-87
13	P25872	Nicotiana tabacum	PAL	2.8e-87
14	P45729	Petroselinum crispum	PAL 3	1.6e-86
15	Q01861	Pisum sativum	PAL 1	4.3e-86
16	P45734	Trifolium subterraneum	PAL	1.0e-85
17	P26600	Lycopersicon esculentum	PAL	3.5 e -84
18	P14717	Oryza sativa	PAL	5.9e-84
19	P45733	Nicotiana tabacum	PAL	7.0e-84
20	P45724	Arabidopsis thaliana	PAL 2	1.7e-82
21	Q04593	Pisum sativum	PAL 2	1.4e-82
22	P31425	Solanum tuberosum	PAL 1	4.2e-82
23	P35511	Lycopersicon esculentum	PAL	1.9e-81
24	P35513	Nicotiana tabacum	PAL	3.9e-81
25	P45725	Arabidopsis thaliana	PAL 3	6.5e-79
26	P45727	Persea americana	PAL	5.6e-78
27	P45731	Populus kitakamiensis	PAL	1.4e-77
28	P19143	Phaseolus vulgaris	PAL Class III	4.7e-77
29	P14166	Ipomea batatas	PAL	1. 4e-75
30	P07218	Phaseolus vulgaris	PAL Class I	3.4e-58

1 MAPTADVLPP VEASTRPGLL VQPSDTKLRK ASSFRTEQVV IDGYNLKIQG LVASARYGHV T 61 TRPRPSAETR KRIDDSVQSL IAKLDGGESI YGINTGFGGS ADSRTANTRA LQLALLQMQQ 121 CGVLPVPSTF PTGEPSSAPF ALPLTDTESS LIMOEAWVRG AIVVRLAALM RGHSGVRWEV 181 LDKMQKLFLQ NNVTPVVPVR SSISASGDLS PLSYVAGALA GORGIYCFVT DGRGQRVKVT ADEACRMHKI TPVQYEPKEA LGLLNGTAFS ASVAGLATYE AENLASLTQL TTAMAVEALK 241 GTDASFAPFI HEIARPHPGQ LKSAKFIRAH LSGSRLAEHL ENEKHVLFSE DNGTLRQDRY 301 361 TLQTASQWVG PGLEDIENAK RSVDFEINST TDNPMIDPYD GDGRIHHGGN FQAMAMTNAV 421 EKIRLALCAM GKMTFQQMTE LVNPAMNRGL PANLASTPDL SLNFHAKGIN IALASVTSEL 481 MFLGNPVSTH VQSAEMANQA FNSLALISGR QTLQAIECLS MIQAWSLYLL CQALDIRALQ YKVAEQLPTL ILASLHSHFG EWMDETKQQE IAAQVLKSMS KRLDETSSKD LRDRLVETYQ 541 601 DASSVLVRYF SELPSGGGAD PLRNIVKWRA TGVADTEKIY RQVTIEFLDN PYACHASHLL GKTKRAYEFV RKTLGVPMHG KENLNEFKGE FEQWNTTGGY VSVIYASIRD GELYNMLSEL 661 721 ERDL

Fig. 3.6. Deduced amino acid sequence of *U. maydis* PAL. Amino acid sequence of an internal peptide fragment of the purified *U. maydis* PAL is underlined and the enzyme active site is indicated as \Downarrow . Phenylalanine and histidine ammonia-lyases signature motif is boxed. Predicted N-glycosylation sites (* above line), cAMP- or cGMP- dependent protein kinase phosphorylation site (†), and ATP/GTP-binding site motif A (letters in bold) are shown.

are also predicted in the sequence (Fig. 3.6). The other potentially biologically significant sites are given in Table 3.4. Many putative phosphorylation sites are predicted. Codon usage of the *U. maydis* PAL gene is shown in Table 3.5. Codons that have a A in the wobble position are used infrequently, indicating that codon bias is operative in the *U. maydis* PAL gene, as in other fungal genes. Leucine, alanine, and serine appear as the three major amino acids in the deduced amino acid composition of *U. maydis* PAL (Table 3.6), while cysteine and tryptophan constitute less than 1% of the gene. The hydropathic index of the PAL amino acid sequence in Fig. 3.7 shows that most of the amino acids are located in the positive end of the scale, suggesting the *U. maydis* PAL is a hydrophobic protein.

3.3.4 Genomic organization of PAL in *U. maydis*

Southern blot hybridization using the 0.45 kb PAL fragment DNA as a probe was carried out to determine the number of PAL genes in the *U. maydis* genome. A single band was observed in each restriction digestion (Fig. 3.8). This suggests that *U. maydis* PAL is present as a single copy gene, as in the case of *Rhodosporidium* yeast PAL (Anson *et al.*, 1987).

3.3.5 Northern blot analysis of PAL transcript

Northern blot hybridization was performed by analyzing total RNA from the *U. maydis* cells harvested at the mid-log phase of growth. The ³²P-labeled 0.45 kb PAL DNA probe hybridized to a 2.2 kb size of RNA (Fig. 3.9). This detected size is consistent with the

Site	Location : aa residues
Tyrosine sulfation	399 : pmidp Y dgdgr 714 : rdgel Y nmlse
Protein kinase C phosphorylation	<pre>14 : ppvea S trpgl 69 : dpsad T rkrid 323 : pgqik S akfir 354 : sedng T lrqdr 508 : slali S grqtl 580 : vlksm S krlde 587 : rldet S skdlr 636 : tgvad T ekiyr 663 : hllgk T kraye 707 : sviya S irdge</pre>
Casein kinase II phosphorylation	32 : klrka S sseps 145 : falpl T dtess 240 : qrvkv T adeac 389 : dfein S ttdnp 456 : panla S tpdls 587 : rldet S skdlr 598 : drlve T yqdas 707 : sviya S irdge 718 : lynml S elerd
N-myristoylation	<pre>92 : gesiy G intgf 99 : ntgfg G sadsr 217 : lsyva G alagq 262 : pkeal G llngt 266 : lglln G tafsa 301 : vealk G tdasf 319 : arphp G qiksa 333 : rahls G srlae 409 : rihhg G nfqam 449 : pamnr G lpanl 468 : nfhak G inial 484 : elmfl G npvst 632 : kwrat G vadte 698 : qwntt G gyvsv</pre>

Table 3.4. Detection of potentially biologically significant sites in the proteinsequence (724 aa) of U. maydis PAL. The putative sites were identified usingPROSITE program from PC/GENE software system.

 Table 3.5. Codon usage in the U. maydis PAL gene

CD	AA	No.	PC	CD	AA	No.	PC	CD	AA	No.	PC	CD	AA	No.	PC	
mmm	Dhe	1 1	1 60	mcm	Sor	6	00	መአመ	Tur	4	5.2	тст	Cue	3	18	
	Phe	10	1.50	maa	Ser	14	.00		T Y L	1 5		TGI	Cys	1	. 10	
TTC	Pne	12	1.08	TCC	Ser	14	1.98	TAC	туг	10	20		Cys	~		
TTA	Leu	T	• 1.8	TCA	Ser	4	.5*	TAA		T	.1*	TGA		0	08	
$\mathbf{T}\mathbf{T}\mathbf{G}$	Leu	12	1.6%	TCG	Ser	17	2.38	TAG		0	0%	TGG	Trp	1	.98	
CTT	Leu	12	1.6%	CCT	Pro	8	1.18	CAT	His	7	.9%	CGT	Arg	11	1.5%	
CTC	Leu	33	4.5%	CCC	Pro	13	1.78	CAC	His	10	1.3%	CGC	Arg	12	1.6%	
СТА	Leu	2	.28	CCA	Pro	7	.98	CAA	Gln	6	.88	CGA	Ara	8	1.18	
CTG	Leu	18	2.4%	CCG	Pro	6	.8%	CAG	Gln	29	48	CGG	Ara	0	08	
010	Dea	10	2.10	000	110	Ŭ		0.10	0111				9	•		
АТТ	Ile	10	1.38	ACT	Thr	3	.48	ААТ	Asn	4	.5%	AGT	Ser	6	.88	
ATC	Tle	23	3.1%	ACC	Thr	18	2.48	AAC	Asn	24	3.38	AGC	Ser	13	1.7%	
מידב	Tle	0	08	ACA	Thr	5	68	222	LVS	- 3	.4%	AGA	Ara	0	08	
	MED	21	2 06	ACC	THE	20	2 78	7001	Typ	27	2 7 2	ACC	Arg	10	1 3.9	
AIG	MEN	21	2.90	ACG	1111	20	2.10	ANG	цуз	21	J./0	700	лгу	τU	1.00	
ርጥጥ	Val	6	88	CCT	دالا	17	2 38	ርልሞ	Asin	13	1.7%	GGT	Glv	24	3.38	
CTTC	Vul Val	22	· · · · · · · · · · · · · · · · · · ·	CCC	7110	20	19	CAC	Acr	20	2 7 2	CCC		21	2 98	
GIC	var	23	3.18	GCC		14	100	GAC	Asp	10	2.70	000	C1.	21	2.JU	
GTA	val	6	.88	GCA	ALA	14	1.98	GAA	GIU	12	23	GGA	GTÀ	4	. ၁ ซ	
GTG	Val	11	1.58	GCG	Ala	11	1.5%	GAG	Glu	29	48	GGG	GLÄ	2	.28	

CD: codon, AA: amino acid, No.: number of given codons in the PAL gene, PC: percentage of given codons in the PAL gene, and ---: stop codon.
Amino Acid	No.	%
Ala	71	9.8
Ara	41	5.6
Asn	28	3.8
Asp	33	4.5
Cys	7	.9
Gln	35	4.8
Glu	44	6.0
Gly	51	7.0
His	17	2.3
Ile	33	4.5
Leu	78	10.7
Lys	30	4.1
Met	21	2.9
Phe	23	3.1
Pro	34	4.6
Ser	60	8.2
Thr	46	6.3
Trp	7	.9
Tyr	19	2.6
Val	46	6.3

Table 3.6. Inferred amino acid composition of U. maydis PAL

۴

No.: number of times an amino acid occurs.

and the second second

Fig. 3.7. Hydropathy profile of *U. maydis* PAL from amino acid 1 to amino acid 724. Computation of the hydropathic index was performed with an interval of 5 amino acids, using the SOPE program in PC/GENE software system. A line at the -5 value divides hydrophobic regions above it from hydrophilic regions below. Arrow indicates the position of active site.

Fig. 3.8. Southern blot analysis of the *U. maydis* **PAL gene.** Genomic DNA from *U. maydis* strain 518 cells was digested with *Bam*HI (lane 1), *Eco*RI (lane 2), *Xba*I (lane 3), and *Xho*I (lane 4), fractionated by electrophoresis in a 0.7% agarose gel, transferred to Zeta-Probe membrane, and hybridized with ³²P-labeled 0.45 kb PAL DNA fragment. Sizes of DNA markers are indicated in kb.

Fig. 3.9. Northern blot analysis of PAL transcript. Total RNA (20 μ g) was resolved in a 1% agarose-formaldehyde gel, blotted onto Zeta-Probe membrane, and hybridized with ³²P-labeled 0.45 kb *U. maydis* PAL DNA fragment. Sizes of RNA markers are indicated in kb.

size of the open reading frame in the PAL DNA sequence in Fig. 3.5, and confirms that no introns are present in the *U. maydis* PAL gene.

3.3.6 Protein sequence comparison

Protein sequences were obtained from the PIR and SWISS-PROT databases and used for the alignment and sequence identity comparison, using PC/GENE software. Four HAL protein sequences used were from Streptomyces griseus (a bacterium, database accession P24221), Pseudomonas putida (a bacterium, P21310), Rattus norvegicus (rat, P21213), and Homo sapiens (human, P42357). The ten PAL protein sequences were from Rhodosporidium toruloides (yeast, P11544), Rhodotorula rubra (yeast, P10248), Arabidopsis thaliana (P35510), Pinus taeda (pine, g1143312), Oryza sativa (rice, P14717), Triticum aestivum (wheat, g1483610), Bromheadia finlaysoniana (orchid, g1491619), Solanum tuberosum (potato, P31426), Populus trichocarpa × Populus deltoides (poplar, P45730), and Medicago sativa (alfalfa, P27990). The percentage of protein sequence identity and similarity from a pairwise comparison of the above four HAL and eleven PAL protein sequences (including U. maydis PAL sequence) shows the extent of homology over various organisms (Table 3.7). As expected, sequences from closely- related organisms display the greatest protein sequence identity and similarity, e.g. between human and rat, or among potato, poplar and alfalfa. The lowest sequence conservation values (13-18%) are found between mammalian HALs and plant PALs. Overall, the U. maydis PAL shows low amino acid sequence identity with other PALs (23-26% with plant PALs, 39-40% with yeast PALs). It is guite noticeable that the level of homology (25%) shown between U. maydis PAL and bacterial HALs is similar to its

Table 3.7. Comparison of protein sequence identity and similarity of phenylalanine ammonia-lyase (PAL) and histidine ammonia-lyase (HAL) among different organisms. Numbers indicate the percentages of protein sequence identity/similarity. Sequences were analyzed based on inferred amino acid sequences from cDNAs encoding the two enzymes, using PALIGN program in the PC/GENE sequence analysis software.

	Plants							Fungi		Bact	eria	Mam	mals	
	Alfalfa	A. t.	Potato	Orchid	Wheat	Rice	Pine	U. m.	<i>R. t.</i>	R. r.	S. g.	Р. р.	Rat	Human
	PAL	PAL	PAL	PAL	PAL	PAL	PAL	PAL	PAL	PAL	HAL	HAL	HAL	HAL
Poplar PAL	86/92	85/91	82/90	80/89	77/85	69/80	64/76	25/37	31/42	31/42	21/31	25/40	18/25	16/22
Alfalfa PAL		80/88	79/88	79/88	76/84	68/78	64/75	24/35	34/44	30/42	22/32	27/41	15/20	16/22
A. t. PAL			78/88	81/89	76/85	68/79	63/75	23/35	32/43	33/43	22/32	26/40	13/18	17/25
Potato PAL				78/88	76/85	68/79	63/75	24/35	31/41	28/38	19/30	24/39	15/21	15/21
Orchid PAL					77/86	69/80	64/76	26/38	30/42	27/38	19/30	26/39	14/20	15/21
Wheat PAL						70/81	65/76	25/36	33/45	31/42	22/31	24/37	13/18	13/19
Rice PAL							60/70	23/37	33/45	31/42	23/34	27/40	14/21	15/23
Pine PAL								25/38	28/39	28/39	22/32	22/34	14/20	13/17
<i>U. m</i> . PAL									40/54	39/53	25/36	25/36	14/21	15/23
R. t. PAL										77/87	25/36	25/38	20/27	18/25
R. r. PAL											25/36	26/39	17/26	17/26
S. g. HAL												38/53	37/52	38/52
<i>Р.</i> р. HAL													41/55	42/55
Rat HAL														94/97

A.t.: Arabidopsis thaliana, U. m.: Ustilago maydis, R. t.: Rhodosporidium toruloides, R. r.: Rhodotorula rubra, S. t.: Streptomyces griseus, and, P. p.: Pseudomonas putida.

identity with plant PALs (23-26%). This suggests a possible relatedness between *U. maydis* PAL and bacterial HAL. The protein sequence alignment results are in Fig. 3.10. The major conserved motifs are YGXXXGFG (X is any amino acid), ASGDLXPLS, PKEGLXXXNG, and EXNSXXDNP. Except for the ASGDLXPLS active site motif, the functional importance of these conserved motifs remains unknown. More variation among sequences is associated with in the amino- and carboxyl-terminal regions. The overall relation between HAL and PAL sequences over diverse organisms is displayed as a dendrogram in Fig. 3.11, which illustrates the divergence of these two ammonia-lyase enzymes from the putative ancestral form.

3.3.7 Immunological relationships

To obtain further insights into the structural relationships between PAL and HAL proteins from different sources, Western blot analysis was used to determine the extent of cross-reactivity between these proteins from different species. Cross-reactivity was found among all the PAL proteins tested, using antibodies raised against both plant and fungal PALs (Fig. 3.12). Both samples of plant PAL antibodies strongly recognized plant PALs but only weakly recognized fungal PALs. Interestingly, however, antibodies raised against another fungal PAL (*Ustilago*), only weakly recognized the *Rhodotorula glutinis* (yeast) fungal PAL. Even more strikingly, although the anti-*U. maydis* PAL antibodies showed low affinity for the plant PALs, they bound strongly to *Pseudomonas* bacterial

POPLARPAL	METVTKNGYQNGSLESLC	18
PALY_MEDSA	METISAAITKNNANESFCLIHA	22
PALY ARATA	MEINGAHKSNGGGVDA-MLCGGDI	23
PAL1_SOLTU	MAPSIAQNGHVNGEVEE-VL	19
ORCHIDPAL	MEEN-GLCL	11
WHEATPAL	MACAWRS	7
PALY_ORYSA	MAGNGPGNGP	6
PINEPAL	MVAAAEITQANEVQVKSTGLC	21
PALY_USTMA	MAPTADVLPPVEASTRPGLLVQ	22
PALY_RHOTO	MAPSLDSISHSFANGVASAKQAVNG	25
PALY RHORB	MAPSVDSIATSVANSLSNGLHAAAA	25
HUTH STRGR	MDMHTVVV	8
HUTH_PSEPU	ME	2
HUTH_RAT	MPRYTVHVRGEWLAVPCQDGKLSVGWLGREAVRRYMKNKPDNGGFTSVDE	50
HUMHISP	MPRYTVHVRGEWLAVPCQDAQLTVGWLGREAVRRYIKNKPDNGGFTSVDD	50
POPLARPAL	VNQRDPLSWGVAAE-AMKGSHLDEVKR	44
PALY_MEDSA	KNNNNMKVNEADPLNWGVAAE-AMKGSHLDEVKR	55
PALY_ARATA	KTKN-MVINAEDPLNWGAAAE-QMKGSHLDEVKR	55
PAL1_SOLTU	WKKSIHDPLNWEMAVD-SLRGSHLDEVKK	47
ORCHIDPAL	QGRDPLNWGAAAA-ELQGSHLDEVKK	36
WHEATPAL	RSRADPLNWGKAAE-ELSGSHLEAVKRDPLNWGKAAE-ELSGSHLEAVKR	33
PALY_ORYSA	INKEDPLNWGAAAA-EMAGSHLDEVKR	32
PINEPAL	TDFGSSGSDPLNWVRAAK-AMEGSHFEEVKA	51
PALY_USTMA	PSDTKLRK	30
PALY_RHOTO	ASTNLAVAGSHLP-TTQVTQVDIVEK	50
PALY_RHORB	ANGGDVHKKTAGAGSLLP-TTETTQLDIVER	55
HUTH_STRGR		8
HUTH_PSEPU		2
HUTH_RAT	VRFLVRRCKGLGLLDNEDLLEVALEDNEFVEVVIEGDVMSPDFIPSQPEG	100
HUMHISP	AHFLVRRCKGLGLLDNEDRLEVALENNEFVEVVIEGDAMSPDFIPSQPEG	100
POPLARPAL	MVADYRKPVVKLGGETLTTAOVASIAGHDTGDVKVELSESA-RP	87
PALY MEDSA	MVAEYRKPVVRLGGETLTISOVAAIAAHDHG-VOVDLSESA-RD	97
PALY ARATA	MVAEFRKPVVNLGGETLTIGOVAAISTIGNS-VKVELSETA-RA	97
PAL1 SOLTU	MVDEFRKPIVKLWGETLTVAOVASIANADNKTSGFKVELSESA-RA	92
ORCHIDPAL	MVEEFRRPVVKLEGVKLKTSOVAAVAFGGGASAVELAESA-RA	78
WHEATPAL		73
PALY ORYSA	MVAOFREPIVKTOGATI.RVGOVAAVA-OAKDAARVAVELDEEA-RP	76
PINEPAL	MUDSYFGAKE-ISIEGKSLT-SDVAAVABRSOVKVKLDAAAAKS	93
DALY USTMA		71
PALY PHOTO		92
PALY RHORB		98
HUTH STRCP		37
HITH DOFDI		34
HUTH RAT		145
HUMHTSP	VYLYSKYPEPEKYTELDCDELTTEDLVNLCKCRYKTKLTPTAEKR	145
nomitor		145
POPLARPAT.	GVKASSDWVMDSMDKGTDS YG V TTGFG ATSHRRTKOGGALOKFLIPFL	1 3 5
PALY MEDGA	CVKASSEWVMESMUKCTDSVCVVVCCATORALSHAR INGGGALQABLARI	1/15
	CIDIN CODER MECONICODO COMERCE DE CODER MONOLO LO CODER A LO CODER A LO CODER	145
FALLARATA	GVNASSDWVMESMINGIDSIGVIIGEGATSHKK-TKNGVALQKELIKFL	140
PALI_SOLTU	GVKASSDWVMDSMSKGTDSYGVTTGFGATSHRRTKNGGALQKELIKFL	140
ORCHIDPAL	GVKASSDWVLESVDKGTDS YG V TTGFG ATSHRRTKQGGALQKELIKFL	126
WHEATPAL	RVKESSDWVMNSMMNGTDSYGVTTGFGATSHRRTKEGGALQRELIRFL	121
PALY _ORYSA	RVKASSEWILTCIAHGGDI YG V TTGFG GTSHRRTKDGPALQVELLRYL	124
PINEPAL	RVEESSNWVLTQMTKGTDTYGVTTGFGATSHRRTNQGAELQKELIRFL	141
PALY USTMA	RIDDSVQSLIAKLDGGESIYGINTGFGGSADSRTANTRALQLALLQMQ	119

.

PALY RHOTO	KIDKSVEFLRSQLSMSV YGVTTGFG GSADTRTEDAISLQKALLEHQ	138
PALY RHORB	KIDASVEFLRTOLDNSVYGVTTGFGGSADTRTEDAISLOKALLEHO	144
HUTH STRGR	-LAAARLTVDALAAKPEPVYGVSTGFGALASRHTGTELRAOLORNTVRSH	86
HUTH DSEDI	-TDASVACVEOTTAFDETAVGTNTGTGLIASTETASHDLENLOPSLVI.SH	83
		10/
		104
HUMHISP		194
POPLARPAL	NAGI FGNGTETCHTLPHSATRAAMLVRINT	165
PALY MEDSA	NAGI FONGTESNHTLPKTATRAAMI.VRINT	175
PALY ARATA	NAGI FGSTKETSHTLPHSATBAAMI.VRINT	75
PAL1 SOLTU	NAGVEGNGTESTHTLPHSATRAAMLVRINT	170
ORCHIDPAL	NAGIFGSGNSNTLPSAATRAAMLVRINT	154
WHEATPAL	NAGAFGTGTDG-HVLPAAATRAAMLVRVNT	150
PALY ORYSA	NAGIFGTGSDG-HTLPSETVRAAMLVRINT	153
PINEPAL	NAGVLGKCAAMLVRTNT	168
PALY USTMA	OCGVLPVP-STFPTGEPSSAPFALPLTDTESSLIMPEAWVRGAIVVRLSS	168
PALY RHOTO	LCGVLPSSFDSFRLGRGLENSLPLEVVRGAMTIRVNS	175
PALY RHORB	LCGVLPTSMDGFALGRGLENSLPLEVVRGAMTIRVNS	181
HUTH STRGR	AAGMGPRVEREVVRALMFLRLKT	109
HUTH PSEPU	AAGIGAPLDDDLVRLIMVLKINS	106
HUTH RAT	SSGVGKPLSPERCRMLLALRINV	217
HUMHISP	SSGVGKPLSPERCRMLLALRINV	217
	*	
		014
POPLARPAL	LLQGYSGIRFEILEAITRL-LNNNITPCLPLRGTIT ASGDLVPLS YIAGL	214
PALY_MEDSA	LLQGYSGIDFEILEAITKP-LNKTVTPCLPLRGTIT ASGDL V PLS YIAGL	224
PALY_ARATA	LLQGFSGIRFEILEAITSF-LNNNITPSLPLRGTIT ASGDL V PLS YIAGL	224
PAL1_SOLTU	LLQGYSGIRFEILEAITKL-INSNITPCLPLRGTVT ASGDL VPLSYIAGL	219
ORCHIDPAL	LLQGYSGIRFEILKAIATL-LNKNITPCLPLRGTIT ASGDL V PLS YLAGI	203
WHEATPAL	LLQGYSGIRFEILETIATL-LNANVTPCLPLRGTIT ASGDL V PLS YIAGL	199
PALY ORYSA	LLQGYSGIRFEILEAITKL-LNTGVTPCLPLRGTIT ASGDL V PLS YIAGL	202
PINEPAL	LLQGYSGVRWDILETVEKL-LNAWLTPKLPLRGTIT ASGDL V PLS YIAGL	217
PALY USTMA	LMRGHSGVRWEVLDKMOKLFLONNVTPVVPVRSSIS ASGDL S PLS YVAGA	218
PALY RHOTO	LTRGHSAVRLVVLEALTN-FLNHGITPIVPLRGTISASGDLSPLSYIAAA	224
PALY RHORB	LTRGHSAVRIVVLEALTN-FLNHGITPIVPLRGTISASGDISPLSYTAAS	230
HUTH STRCP	VASCHTCUPPFVAOTMADVINACITPVV/HFYCSI.CCSCDIADI.SHCAI.T	158
UUTU DEEDU		155
HUIN_FSEFU		155
HUTH_RAT	LAKGISGISLETLKQVIEVF-NASCLSIVPEKGIVGASGDLAPLSHLALG	200
HUMHISP	LAKGYSGISLETLKQVIEME-NASCLPYVPEKGTVG ASGDLAPLS HLALG	266
POPLARPAL	LTGRPNSKATGPTGEVLDAAEAFKAAGIESGFFELQ PKEGL ALV NG	260
PALY_MEDSA	LTGRPNSKAHGPSGEVLNAKEAFNLAGINAEFFELQ PKEGL ALV NG	270
PALY_ARATA	LTGRPNSKATGPNGEALTAEEAFKLAGISSGFFDLQ PKEGL ALV NG	270
PAL1_SOLTU	LTGRPNSKAVGPSGSKLDADEAFRVAAVSGGFFELQ PKEGL ALV NG	265
ORCHIDPAL	LTGRPNSKARTPNGSTVDATTAFRLAGISSGFFDLQ PKEGL ALV NG	249
WHEATPAL	VTGRPNSMATAPDGSKVNAAEAFKIAGIQHGFFELQ PKEG LAMV NG	245
PALY ORYSA	ITGRPNAQAISPDGRKVDAAEAFKLAGIEGGFFTLN PKEGL AIVNG	248
PINEPAL	LTGRPNSRVRSRDGIEMSGAEALKKVGLEKPF-FLO PKEGL ATVNG	2.62
PALY USTMA		266
PALY PHOTO		200
DATA DRUDD		272
HITH STDCD		213
JOIN DICCL		200

HUTH_PSEPU	LLGEGKARY-KGQWLSATEALAVAGLEPLTLAA KEGL ALL NG	196
HUTH RAT	LIGEGKMWSPKSGWADAKYVLEAHGLKPIVLK PKEGL ALING	308
HUMHISP	LVGEGKMWSPKSGWADAKYVLEAHGLKPVILK PKEGL ALING	308
	- * **-***	
POPLARPAL	TAVGSGLASMVLFETNVLAVLSELLSATFAEVMNGKPE-FTDHLTHKLKH	309
PALY MEDSA	TAVGSGLASIVI.FEANTLAVI.SEVI.SAIFAEVMOGKPE-FTDHLTHKI.KH	319
PALY ARATA	TAVGSGMASMVLFETNVLSVLAETLSAVFAEVMSGKPE-FTDHLTHRLKH	319
PALL SOLTH	TAVGSCHASTVILYDSNILAVMEEVISAIFAEVINGCKES TIDHIITMAKK	314
OPCHIDPAL	TAVGSGNASIVE FETNILAVMAFILSALFGEVMOGKEE TEDIETMEM	208
WHEATPAL	TAVGSGVASIVEFENVLSLLAFVLSCUFCEVMQGKFEFTDHETHKLKH	294
PALY ORYSA	TSVGSDLASTVMFDANTLAVLSEVLSAVFCEVMNGKPE-YTDHLTHKLKH	297
PINEPAL	TSVGDALASIVCEDANVIALLSEVISAMECEVMNCKPE-FTDDLTHKI.KH	311
DALY USTMA	TARSASVACIATVERENIASITOITTAMAVEALKCTDASFADETHETADD	316
PALY PHOTO		321
		323
HUTH STDCD	TRY SASHAILALIDANY LOLLAVALIALIY LAWY GRASSINIIDANY IR MDCMICMINANINDIDNI VESDIAVALIY SIRNIICEDVIA DEL-VAIDD	240
HUTH DEFDU	ΤΟ Ο ΜΕΙΟΜΕΙΟ ΜΑΙΑΡΟΕΚΝΕΙΙ ΤΟ ΧΡΙΙΤΑΑΕΟ ΕΑΕΕΟΙ Ο ΚΥ ΕΑΕΕΕΕ-ΠΑΙΚΕ ΠΟΛ ΩΠΑΛΙΟΙ ΕΛΙΕΥΛΕΓΙ ΥΛΛΛΙΛΟ Ο Ο Ο ΕΕΛΙΟΙ Ο ΚΥ ΕΑΕΕΕΕΙΑΙΑΙ Ο Ο Ο ΕΕΛΙΟΙ Ο Ο Ο ΕΕΛΙΟΙ Ο Ο Ο ΕΕΛΙΟΙ Ο Ο Ο Ο Ο Ο	249
HUTH DAT		24J 257
		257
NUMHISP	TOWITSDECEAVERASATARQADIVAADIDEVDAGITAAFDIDI-AADA	337
POPLARPAL	HPGQ-IEAAAIMEHILDGSAYMKAAKKLHETDPLQKP~KQDRYALR	353
PALY_MEDSA	HPGQ-IEAAAIMEHILDGSSYVKAAKKLHEIDPLQKPKQDRYALR	363
PALY_ARATA	HPGQ-IEAAAVMEHILDGSSYMKLAQKLHEMDPLQKPKQDRYALR	363
PAL1_SOLTU	HPGQ-IEAAAIMEHILDGSSYVKAAQKLHEMDPLQKPKQDRYALR	358
ORCHIDPAL	HPGQ-IEAAAVMEHILEGSSYMKMAKKLHEMDPLQKPKQDRYALR	342
WHEATPAL	HPGQ-IEAAAIMEHILEGSSYMMLAKKLGELDPLMKPKQDRYALR	338
PALY_ORYSA	HPGS-IDAAAIMEHILAGSSFMSHAKKVNEMDPLLKPKQDRYALR	341
PINEPAL DATY USTMA	HEAD TREVERIDARI SCEDIARRI E-VERMA REDUCAL DODDALIO	355
PALY BHOTO	HPTO-IFVAGNIRKLIFGSRFAVHHEFEVKVKDDEGILRODRYPLR	366
PALY RHORB	HPTO-IEVARNIRTILEGSKYAVHHETEVKVKDDEGILRODRYPLR	368
HUTH STRGR	HPGOGVSADNMSRVLAGSGLTGHHODDAPRVODAYSVR	287
HUTH PSEPU	QRGO-IDTAACFRDLLGDSSEVSLSHKNCDKVQDPYSLR	283
HUTH RAT	HRGQ-IEVAFRFRSLLDSDHHPSEIAESHRFCDRVQDAYTLR	398
HUMHISP	HRGQ-IEVAFRFRSLLDSDHHPSEIAESHRFCDRVQDAYTLR	398
	** *	
POPLARPAL	TSPOWLGPOIEVIRESTKSIEREI-NSVNDNPLIDVSRNKAIHGGNFO	400
PALY MEDSA	TSPOWLGPLVEVIRESTKSIEREI-NSVNDNPLIDVSRNKALHGGNFO	410
PALY ARATA	TSPOWLGPOIEVIRYATKSIEREI-NSVNDNPLIDVSRNKAIHGGNFO	410
PALI SOLTU	TSPOWLGPOTEVTRAATKMTERET-NSVNDNPLTDVSRNKATHGGNFO	405
ORCHIDPAL	TSPOWLGPOIEVIRAATKSIEREI-NSVNDNPLIDVSRNKALHGGNFO	389
WHEATPAL	TSPOWLGPOIEVIRAATKSIEREI-NSVNDNPI.TDVSRGKAIHGGNFO	385
PALY ORYSA	TSPOWLGPOTOVIRAATKSIEREV-NSVNDNPVIDVHRGKALHGGNFO	388
PINEPAL	TSPOWLGPOVETIRSATHMIERET-NSVNDNPVIDVARDKALHGGNFO	402
PALY USTMA	TASOWVGPGLEDIENAKRSVDFET-NSTTDNPMTDPYDGDGRIHHGGNFO	412
PALY RHOTO	TSPOWLGPLVSDLIHAHAVLTIEAGOSTTDNPLIDVENKTSHHGGNFO	414
PALY RHORB	CSPOWLGPLVSDMIHAHAVLSL E AGO S TT DNP LIDLENKMTHHGGAFM	416
HUTH STRGR	CAPOVNGAGRDTLDHAALVAGR E L-A S SV DNP VVLPD-GRVESNGNFH	333
HUTH PSEPU	CQPQVMGACLTQLRQAAEVLGIEA-NAVSDNPLVFAAEGDVISGGNFH	330
HUTH RAT	CCPQVHGVVNDTIAFVKDIITTEL-NSATDNPMVFASRGETISGGNFH	445
HUMHISP	CCPQVHGVVNDTIAFVKNIITTEL-NSATDNPMVFANRGETVSGGNFH	445
	* * * *****	

POPLARPAL	GTPIGVSMDNVRLAIASIGKLLFAQFSELVNDFYNNGLPSNLTASRNPSL	450
PALY MEDSA	GTPIGVSMDNTRLALASIGKLMFAOFSELVNDFYNNGLPSNLSASRNPSL	460
PALY ARATA	GTPIGVSMDNTRLATRATGKLMFAOFSELVNDFYNNGLPSNLTASRNPSL	460
PALI SOLTH	GTPTGVSMDNTBLALASTGKLMFAOFSELVNDYYNNGLPSNLTAGRNPSL	455
ORCHIDPAL	CTPICVSMDNTPLATAAICKIMFAOFSFLVNDFVNNCLPSNLSSCRNPSL	439
WUFATDAT	CTDICUSMINITALIATIONIMA SI SHEVADI IMUGH SALSSONI SH CTDICUSMINITALIATIATICKI MENOFSEI MIDEVNINCI DSNI SCCDNDSI.	135
DALA UDAGY	CTDICUSMDNI RIAIAAIGKIMEAQESELVNDE INNGLESNISGGRUESE	433
DINEDNI		450
PINEPAL DAIX MORNA	GTPIGVSMDNLRLSISAIGKLMFAQFSLLVNDIINGGLPSNLSGGPNPSL	452
PALI_USTMA	AMAMTNAVEKIRLALCAMGKMTFQQMTELVNPAMNRGLPANLASTPDLSL	462
PALY_RHOTO	AAAVANTMEKTRIGIAQIGKINFTQITEMINAGMNRGIPSCIAAE-DPSL	403
PALY_RHORB	ASSVGNTMEKTRLAVALMGKVSFTQLTEMLNAGMNRALPSCLAAE-DPSL	465
HUTH_STRGR	GAPVAYVLDFLAIVAADLGSICERRTDRLLDKNRSHGLPPFLADDAGV	381
HUTH_PSEPU	AEPVAMAADNLALAIAEIGSLSERRISLMMDKHMSQ-LPPFLVENGGV	377
HUTH_RAT	GEYPAKALDYLAIGVHELAAISERRIERLCNPSLSE-LPAFLVAEGGL	492
HUMHISP	GEYPAKALDYLAIGIHELAAISERRIERLCNPSLSE-LPAFLVAEGGL	492
	* *	
POPLARPAL	DYGFKGAEIAMASYCSELQYLANPVTTHVQSAEQHNQDVNSLGLISSRKT	500
PALY_MEDSA	DYGFKGAEIAMASYCSELQYLANPVTTHVQSAEQHNQDVNSLGLISARKT	510
PALY_ARATA	DYGFKGAEIAMASYCSELQYLANPVTSHVQSAEQHNQDVNSLGLISSRKT	510
PAL1_SOLTU	DYGFKGAEIAMASYCSELQFLANPVTNHVQSAEQHNQDVNSLGLISARKT	505
ORCHIDPAL	DYGFKGAEIAMASYCSELQALANPVTNHVQSAEQHNQDVNSLGLISSRKT	489
WHEATPAL	DYGFKGAEIAMASYCSELQFLGNPVTNHVQSAEQHNQDVNSLGLISSRKT	485
PALY ORYSA	DYGFKGTEIAMASYSSELQYLANPITNHVQSAEQHNQDVNSLGLVSARKT	488
PINEPAL	DYGLKGAEIAMASYTSELLYLANPVTSHVQSAEQHNQDVNSLGLVSARKS	502
PALY USTMA	NFHAKGINIALASVTSELMFLGNPVSTHVQSAEMANQAFNSLALISGRQT	512
PALY RHOTO	SYHCKGLDIAAAAYTSELGHLANPVTTHVOPAEMANOAVNSLALISARRT	513
PALY RHORB	SYHCKGLDIAAAAYTSELGHLANPVSTHVOPAEMGNOAINSLALISARRT	515
HUTH STRGR	DSGLMTAOYTOAALVSEMKRLAVPASADSTPSSAMOEDHVSMGWSAARKL	431
HUTH PSEPU	NSGEMIAOVTAAALASENKALSHPHSVDSLPTSANOEDHVSMAPAAGKRI.	427
HITH BAT	NSCENTAHCTAAALVSESKALCHPSSVDSLSTSAATEDHVSMCGWAARKA	542
HIMHTSP	NSGEMTAHCTAAADVSHSKALCHDSSVDSLSTSAATEDHVSMCGWAARKAT	542
normitor		012
POPLARPAL	AEAVDILKLMSTTFLVALCQAIDLRHLEENLKSAVKNTVSQVSKRVLTTG	550
PALY MEDSA	NEAIEILQLMSSTFLIALCQAIDLRHLEENLKNSVKNTVSQVAKKTLTMG	560
PALY ARATA	SEAVDILKLMSTTFLVAICOAVDLRHLEENLROTVKNTVSOVAKKVLTTG	560
PAL1 SOLTU	AFAVDILKIMSSTYLVALCOATDLEHLEENLKSVVKNTVSOVAKETLTIG	555
ORCHIDPAL	AFAVDILKIMSTTFIVGLCOAVDLBHLEFNLKNAVKNTVSOVAKBVLTMG	539
WHEATDAL.	AFAIDILKIMSSTELVALCOAIDI DHI FENVKNAVKSCVKTVADKTI STD	535
DALA UDAGY		538
DINEDNI	DEAVDIDREMISITIVALOQAVDDRHEEDAIRSSVRACVIQVARAVDIRM	550
PINEPAL DIAL	AEAIDILKLMLSTILTALCQAVDLKHLEENMLAIVKQIVSQVAKTILSIG	552
PALY_USTMA	LQAIECLSMIQAWSLYLLCQALDIRALQYKVAEQLPTLILASLHSHFGEW	562
PALY_RHOTO	TESNDVLSLLLATHLYCVLQAIDLRAIEFEFKKQFGPAIVSLIDQHFGSA	563
PALY_RHORB	AEANDVLSLLLATHLYCVLQAVDLRAMEFEHTKAFEPMVTELLKQHFGAL	565
HUTH_STRGR	RTAVDNLARIVAVELYAATRAIELRAAE-GLTPAPASEAVVAALRAA	477
HUTH_PSEPU	WEMAENTRGVPAIEWLGACQGLDLRK-GLKTSAKLEKARQALRSE	471
HUTH_RAT	LRVIEHVEQVLAIELLAACQGIEFLR-PLKTTTPLEKVYDLVRSV	586
HUMHISP	LRVIEHVEQVLAIELLAACQGIEFLR-PLKTTTPLEKVYDLVRSV	586
POPLARPAL	ANGELHPSRFCEKELLKVVDREYVFAYVDDPCSATYPLMQKLRQVFV	597
PALY_MEDSA	VNGELHPSRFCEKDLLKVVDREHVFAYIDDPCSATYPLSQKLRQVLV	607
PALY_ARATA	VNGELHPSRFCEKDLLKVVDREQVYTYADDPCSATYPLIQKLRQVIV	607
PAL1_SOLTU	AIGELHPARFCEKELLRVVDREYLFTYADDPCSSTYPLMQKLRQVLV	602
ORCHIDPAL	VNGELHPSRFCEKDLIKVIDREYVFAYADDPCSSTYPLMQKLRAVIV	586
WHEATPAL	NNGHLHNARFCEKDLLLTIDREAVFAYADDPCSANYPLMQKMRAVLV	582

ALY ORYSA	PTGDLSSARFSEKNLLTAIDREAVFSYADDPCSANYPLMQKLRAVLV
PINEPAL	LNGELLPGRFCEKDLLQVVDNEHVFSYIDDPCNASYPLTQKLRNILV
ALY USTMA	MDETK-QQEIAAQVLKSMSKRLDETSSKDLRDRLVETYQDASSVLVRYFS
PALY RHOTO	MTGSNLRDELVEKVNKTLAKRLEOTNSYDLVPRWHDAFSFAAGTVVEVLS
ALY RHORB	ATAEVEDKVRKSIYKRLOONNSYDLEORWHDTFSVATGAVVEALA
IUTH STRGR	GAEGPGPDRFLAPDLAAADTFVREGRLVAAVEPVTG
IUTH PSEPU	-VAHYDRDRFFAPDIEKAVELLAKGSLTGL
IUTH RAT	-VRPWIKDRFMAPDIEAAHRLLLDQKVWEVAAPYIEKYR
HUMHISP	-VRPWIKDRFMAPDIEAAHRLLLEQKVWEVAAPYIEKYR
OPLARPAL	DHALENGENEKNFSTSVFOKIEAFEEELKALLPKEVESARAAYDSGNSAI
PALY MEDSA	DHALVNGESEKNFNTSIFOKIATFEEELKTLLPKEVESARTAYESGNPTI
PALY ARATA	DHALVNGESEKNAVTSIFHKIGAFEEELKAVLPKEVEAARAAYDNGTSAI
AL1 SOLTU	DHAMKNGESEKNINSSIFOKIGAFEDELNAVLPKEVESARALLESGNPSI
RCHTDPAL	EHALNNGVKEKDSNTSIFOKISSFENELKAALPKEVEAARAEFENGSPAI
HEATPAL	EHALANGE-EAHVETSVFAKLAMFEOELRAVLPKEVEAARSAVENGTAAO
ALY ORYSA	EHALTSGDR-RARGLRVLODHOVRGGAPLCAAPGDRGRPRRRROR-TAPV
INEPAL	EHAFKNAEGEKDPNTSIFNKIPVFEAELKAOLEPOVSLARESYDKGTSPL
ALY USTMA	ELPSGGGADPLRNIVKWRATGVADTEKIYROVTIEFLDNPYACHAS
ALY RHOTO	STSLSLAAVNAWKVAAAESAISLTROVRETFWSAASTSSPA
PALY RHORB	GQEVSLASLNAWKVACAEKAIALTRSVRDSFWAAPSSSSPA
IUTH STRGR	
IUTH PSEPU	
IUTH RAT	
IUMHISP	
OPLARPAL	DNKIKECRSYPLYKFVREELGTVLLTGEKVOSPGEEFDKVFTAMCOGKII
ALY MEDSA	PNKINGCRSYPLYKFVREELGTGLLTGENVISPGEECDKLFSAMCOGKII
ALY ARATA	PNRIKECRSYPLYRFVREELGTELLTGEKVTSPGEEFDKVFTAICEGKII
AL1 SOLTU	PNRITECRSYPLYRLVRQELGTELLTGEKVRSPGEEIEKVFTAMCNGQIN
RCHIDPAL	ENRIKDCRSYPLYKFVKE-VGSGFLTGEKVVSPGEEFDKVFNAICEGKAI
VHEATPAL	QNRIAECRSYPLYRFVRKELGTEYLTGEKTRSPGEEVDKVFVAMNQGKHI
ALY ORYSA	ANRIVESRSFPLYRFVREELGCVFLTGEKLKSPGEECNKVFLGISQGKLI
PINEPAL	PDRIQECRSYPLYEFVRNQLGTKLLSGTRTISPGEVIEVVYDAISEDKVI
ALY USTMA	HLLG-KTKRAYEFVRKTLGVPMHGKENL
PALY RHOTO	LSYLSP-RTQILYAFVREELGVKAR-RGDV
ALY RHORB	LKYLSP-RTRVLYSFVREEVGVKAR-RGDV
IUTH_STRGR	PLA
IUTH_PSEPU	LPAGVLP
IUTH RAT	MEHIPESRPLSPTAFSLESLRKNSATIPESD
UMHISP	MEHIPESRPLSPTAFSLQFLHKKSTKIPESE
	-
POPLARPAL	DPMLECLGEWNGSPLPIC
PALY_MEDSA	DPLLECLGEWNGAPLPIC
ALY_ARATA	DPMMECLNEWNGAPIPIC
PAL1_SOLTU	DPLLECLKSWNGAPLPIC
RCHIDPAL	DPMLDCLKEWNGAPLPIC
HEATPAL	DALLECLKEWNGEPLPLC
PALY_ORYSA	DPMLDCLKEWNGEPLPIN
PINEPAL	VPLFKCLDGWKGTLAHSEINNLPRSPLYNDCYDLSPRMLLLMLLFSDPEF
ALY_USTMA	NEFKGEFEQWNTTGGYVSVIYASIRDGELYNMLSELER
ALY RHOTO	FLGKQEVTIGSNVSKIYEAIKSGRINNVLLKM
PALY_RHORB	
ALY_RHORB	SLSL

POPLARPAL		715
PALY MEDSA		725
PALY ARATA		725
PAL1 SOLTU		720
ORCHIDPAL		703
WHEATPAL		699
PALY ORYSA		701
PINEPAL	DWS	752
PALY USTMA	D-L	724
PALY RHOTO	L-A	716
PALY RHORB	M-A	713
HUTH_STRGR		516
HUTH_PSEPU		509
HUTHRAT		657
HUMHISP		657

Fig. 3.10. Comparison of the deduced amino acid sequence of *U. maydis* PAL with the deduced amino acid sequences of PAL and HAL from various organisms.

PALs; Poplar (POPLARPAL), Alfalfa (PALY_MEDSA), *A. thaliana* (PALY_ARATA), Potato (PAL1_SOLTU), Orchid (ORCHIDPAL), Wheat (WHEATPAL), Rice (PALY_ORYSA), Pine (PINEPAL), *U. maydis* (PALY_USTMA), *R. toruloides* (PALY_RHOTO), and *R. rubra* (PALY_RHORB). HALs; *S. griseus* (HUTH_STRGR), *P. putida* (HUTH_PSEPU), Rat (HUTH_RAT), and Human (HUMHISP). The amino acid sequences are in one-letter code and have been aligned using the Clustal program in PC/GENE software. The protein sequences were obtained from the SWISS-PROT database. Their database accession numbers are described in Materials and Methods. Perfectly conserved and well- conserved positions in the alignment are indicated as * and -, respectively. Bold sequences indicate highly conserved regions.

Organisms

Fig. 3.11. Dendrogram of the inferred protein sequences of PALs and HALs from various organisms using PC-GENE Clustal Program. PALs; Poplar (POPLARPAL), Alfalfa (PALY_MEDSA), *Arabidopsis thaliana* (PALY_ARATA), Potato (PAL1_SOLTU), Orchid (ORCHIDPAL), Wheat (WHEATPAL), Rice (PALY_ORYSA), Pine (PINEPAL). *U. maydis* (PALY_USTMA), *R. toruloides* (PALY_RHOTO), and *R. rubra* (PALY_RHORB). HALs; *S. griseus* (HUTH_STRGR), *P. putida* (HUTH_PSEPU), Rat (HUTH_RAT), and Human (HUMHISP).

Fig. 3.12. Native PAGE (top) and Western blots (center and bottom) of fungal PAL, plant PAL and bacterial HAL using polyclonal antibodies raised against *U. maydis* PAL (A), poplar PAL (B), alfalfa PAL (C), *P. fluorescens* HAL (D), and *P. putida* HAL (E). Proteins loaded: Lane1-*U. maydis* PAL, Lane 2-*R. toruloides* PAL, Lane 3-poplar PAL, Lane 4-potato PAL, and Lane 5-*P. fluorescens* HAL. Arrow indicates the location of PAL or HAL protein.

HAL. Significant cross-reactivity between two plant PAL antibodies and the bacterial HAL was also observed.

Immunological enzyme inhibition tests were conducted to see whether the pattern of cross-reactivity observed on western blots carried over to solution reactions (Table 3.8). In this system, both the anti-*Ustilago* PAL and the anti-poplar PAL antibodies displayed similar enzyme inhibition patterns, including moderate inhibition of bacterial HAL activity. However, the bacterial HAL antibody inhibited only *Ustilago* PAL. The PAL and HAL antibodies tested showed no inhibition against yeast PAL.

The hydrophilicity profiles of the entire deduced amino acid sequences of poplar PAL, alfalfa PAL, *Rhodotorula* yeast PAL, *Ustilago* PAL, *Pseudomonas* bacteria HAL and rat HAL were analyzed using PC/GENE software program to compare the location of putative antigenic determinant sites (Fig. 3.13). *Ustilago* PAL contains two sites with high hydrophilicity but the other sequences contain only one site, suggesting that at least some antigenic determinant sites of *Ustilago* PAL would be different from those of the other enzymes compared. An overall pattern of similarity is present only between the two plant PALs and yeast PAL in that the most hydrophilic point is located in the middle of the sequences in each case. By contrast, the most hydrophilic sites of *U. maydis* PAL are located closer to the amino- and carboxyl-terminal ends. It is noticeable that the most hydrophilic site of bacterial HAL is located closer to the carboxyl-terminal of the sequence, as in *Ustilago* PAL.

Enzymes	<i>P. fluorescens</i> HAL antiserum	<i>U. maydis</i> PAL antiserum	Poplar PAL antiserum
P. fluorescens HAL	+ (68%)	+ (84%)	+ (80%)
<i>U. maydis</i> PAL	+ (90%)	+ (60%)	+ (92%)
R. toruloides PAL	-	_	-
Potato PAL	- .	+ (39%)	+ (67%)
Poplar PAL	-	+ (74%)	+ (80%)

Table 3.8. Inhibition of PAL and HAL activity by antisera raised against the two ammonia-lyases

΄,

+: Inhibition, -: no inhibition, (%): inhibition of enzyme activity by antiserum expressed as a percentage of a control activity with preimmune serum.

Fig. 3.13. Hydrophilicity profiles of PALs and HALs from different organisms. A: alfalfa PAL, B: poplar PAL, C: *R. toruloides* PAL, D: *U. maydis* PAL, E: *P. putida* HAL, and rat HAL. Positive values indicate hydrophilic regions. Vertically dotted lines indicate the most hydrophilic amino acid residues. Arrows indicate the position of acive site.

3.4 DISCUSSION

PAL genes have been cloned from numerous cultivated plant species as well as two trees and a weed but only from two red yeasts. Today many potential methods are available to clone PAL genes from plants and yeast. So far, most PAL genes described in the literature have been cloned by one of three approaches: 1) using antibodies raised against the purified enzyme from the same species, 2) using heterologous DNA probes from other species, or 3) using PCR amplification with degenerate oligonucleotide primers based on amino-terminal peptide sequences of purified PAL or conserved amino acid sequences among different species. Initial trials with these approaches for the isolation of a PAL cDNA clone from U. maydis cDNA libraries were unsuccessful. Immunoscreening of libraries with anti-U. maydis PAL antibodies produced non-specific background, while no hybridization signal was detected with poplar and yeast PAL DNA probes. Purified U. maydis PAL enzyme was found to be blocked at the amino terminus, preventing protein sequencing. Internal peptide sequences obtained by tryptic digestion were found to have high codon degeneracy and primers based on these sequences had low calculated annealing temperatures, so cloning based on this information was also unsuccessful.

Based on the known primary structure of PAL genes from plants and yeast, several degenerate oligonucleotide primers were designed, and two of these succeeded in amplifying a *U. maydis* PAL DNA fragment (0.45 kb) by PCR from a *U. maydis* genomic DNA template. Subsequently, a PAL gene was isolated by using this 0.45 kb fragment as a probe to screen a *U. maydis* genomic library. As shown in Fig. 3.2, this PCR approach

was successful only with the combination of the enzyme active-site primer, UMPAL7, and a yeast sequence-specific primer, RTPAL3. It is worth noting that combinations of oligonucleotide primers based on other highly conserved sequences among PAL genes from various species failed to amplify *U. maydis* PAL in PCR. PAL is known to be a difficult enzyme to purify sufficiently for the production of antibodies (Jones, 1984), and even then, the antibody screening methods are not always successful (as in the case of this study). The failing of most of the degenerate primer combinations shows how challenging the cloning of highly diverged PAL genes can be.

The 2172 bp nucleotide genomic DNA sequence determined in this study is confirmed to be a PAL gene on the basis of its homology with other known PALs, conservation of enzyme active site sequences, identity with the internal peptide sequence of purified PAL protein, and similarity of physico-chemical properties (e.g. molecular weight and isoelectric point) predicted from the deduced protein sequence with those of the purified enzyme. Among PAL enzymes purified to date, the isoelectric point of 6.3 found for purified *U. maydis* PAL (chapter 2) makes this the least acidic of the known PAL proteins. Interestingly, this value corresponds to the calculated value of 6.3 from the deduced protein sequence. Protein data from many sources show that PAL is a homotetrameric protein consisting of four identical subunits with molecular weights in the range of 72000-83000 (Schomburg and Salzmann, 1990). In a previous study (chapter 2), it was estimated that *U. maydis* PAL protein has a 80000 subunit size. This is essentially identical to the calculated molecular weight (79277) of the deduced protein. *U. maydis* PAL, consisting of 724 deduced amino acids, is longer than most known PALs

but shorter than the 752 amino acids of pine (Zhang and Chiang, GenBank accession no. U39792), and the 725 amino acids of alfalfa PAL (Gowri *et al.*, 1991).

PAL from maize and potato are known to be glycoproteins (Havir, 1973; Shaw et al., 1990). Analysis of PAL gene sequences from alfalfa (Gowri, 1991), bean (Cramer et al., 1989), parsley (Lois et al., 1989), and Ustilago (this study) reveal several potential Nalvcosylation sites, but their functional significance remains to be elucidated. Protein data from SDS-PAGE (chapter 2) suggest that posttranslational modification through glycosylation is unlikely in Ustilago PAL, as it migrates at a molecular weight corresponding to the size of deduced protein. Heterologous expression in E. coli of PAL genes from yeast (Orum and Rasmussen, 1992) and parsley (Shultz et al., 1989; Appert et al., 1994) has demonstrated that glycosylation is not essential for the catalytic activity of the enzyme. However, it has been postulated that glycosylation may contribute to enzyme stability, to the correct localization of the enzyme within the cell, and to positioning of the active sites for optimal activity (Havir, 1973; Shaw et al., 1990). Bolwell (1992) reported a role for phosphorylation in the regulation of PAL from bean. Detection of a number of phosphorylation sites in the U. maydis PAL sequence provides the possibility that phosphorylation may have a role in modulating the Usilago PAL protein activity. The observation of a synergistic effect of cAMP with tryptophan on PAL induction in U. maydis cell cultures (chapter 4), and the presence of a cAMP-dependent protein kinase phosphorylation site in the U. maydis PAL sequence, support this possibility, but the process and mechanisms of any such phosphorylation remain unknown.

In contrast to most plant PAL genes or yeast PAL genes, no A+C- or C+T- rich sequences are found in the upstream region of the Ustilago PAL coding sequence. As in bean (Cramer et al., 1989), parsley (Lois et al., 1989), and rice PALs (Minami et al., 1989; Zhu et al., 1995), a TATA box is present upstream from the translation start site in Ustilago PAL. In contrast, the Rhodosporidium PAL gene has no TATA box (Anson et al., 1987). The higher eukaryotic consensus polyadenylation signal AATAAA in the 3' noncoding region is found in most plant PAL genes and in the Rhodosporidium PAL gene. The absence of this sequence in Ustilago PAL genes is one of the structural features which distinguishes the Ustilago PAL gene from other known PAL genes. Amino acid sequence identities of 39-40% with yeast fungal PALs and 23-26% with plant PALs (Table 3.7) indicate that the Usilago PAL structure has diverged markedly from other PALs. Furthermore, the absence of introns in the Ustilago PAL coding region is in striking contrast to virtually all known PAL genes. Thus far, most PAL-encoding genes in plants contain a single intron in the 5' end of the gene; the exception is an Arabidopsis gene, PAL3 (Wanner et al., 1995), which contains a second intron further downstream. The tendency in other fungi seems to be the retention of numerous introns, since the R. rubra PAL gene has five introns (Filpula et al., 1988) while that of R. toruloides has six (Anson et al., 1987). Interestingly, as in the case of Ustilago, there is apparently no intron in PAL genes in conifers, *Pinus banksiana* (Campell, 1991; S. Butland, personal communication) and Pinus taeda (Sederoff et al., 1994).

PAL is encoded by a small gene family in most plants, with the exceptions of the large PAL gene family (40-50 genes) in potato (Joos and Hahlbrock, 1992) and the single PAL gene in *Pinus taeda* (Whetton and Sederoff, 1992). In fungi, the only report available is

from *R. toruloides*, which possesses a single copy of the PAL gene in its gemome (Gilbert *et al.*, 1985). Genomic Southern blot analysis (Fig. 3.8) indicates that only one PAL gene is present in the *U. maydis* genome. The substantial difference in gene sequence and organization, and the distinct kinetic (i.e. high K_m) and physico-chemical (i.e. high pl) properties (chapter 2), are all consistent with the highly diverged *Ustilago* PAL gene appearing as a distinct branch in the PAL dendrogram (Fig. 3.11). These unique features of *U. maydis* PAL raise the interesting question of how these differences might influence the function and regulation of PAL activity in *Ustilago*.

Examination of the patterns of conserved sequences between all the HALs and PALs analyzed in this study showed that sequence conservation is restricted to relatively few regions within the protein, consistent with the analysis of Taylor *et al.* (1990). Given that both proteins catalyze a similar reaction, albeit with different substrates, it seems likely that these conserved regions are important for establishing the architecture and function of a dehydroalanine-containing catalytic centre. Regions of sequence divergence, on the other hand, would be predicted to reflect the ability of the two enzymes to utilize different substrates, as well as differing patterns of regulation and cellular organization. I have confirmed (using *P. fluorescens* HAL, *U. maydis* PAL and poplar PAL) that there is no evidence of HAL activity associated with PAL, and *vice versa* (data not shown). It thus appears that modern HAL and PAL genes share a common ammonia-lyase ancestor, but have diverged extensively to serve very different functions in different organisms, or within the same organisms, as shown in the dendrogram of Fig. 3.11. Unfortunately, information on HAL in plants and fungi is very limited, as is sequence data for PAL in *Streptomyces* and the true fungi. A more detailed evolutionary study of these two

enzymes will require cDNA sequence data from more taxa, particularly in the fungi and prokaryotes.

Immunological comparison of proteins can provide useful indications of tertiary and quaternary structural relatedness between proteins from different sources. The patterns of weak recognition (Fig. 3.12) between the *U. maydis* fungal PAL antibodies and plant PALs, and between plant PAL antibodies and fungal PALs, are consistent with the divergence observed between fungal PAL and plant PAL protein sequences (Fig. 3.11). In addition, the weak detection of yeast fungal PAL by *Ustilago* PAL antibodies correlates with the extensive protein sequence divergence between these two fungi, as shown in Fig. 3.11.

U. maydis PAL and *Pseudomonas* HAL differ greatly in their properties (e.g. *Ustilago* PAL has a subunit molecular mass of 80 kDa, whereas the *Pseudomonas* HAL subunit has a mass of 55 kDa). However, the strong binding of the *Ustilago* PAL antibodies to *Pseudomonas* HAL implies that both enzymes possess common epitopes. Their sequence homology (25% identity in protein sequence), and the presence of the most hydrophilic residues closer to the carboxy terminus location in their hydrophilicity profiles (Fig. 3.12. D and E) of the deduced amino acid sequences, also suggest that there could be an unexpected level of structural relatedness between the *Ustilago* PAL and *Pseudomonas* HAL. Significant cross-reactivity between the three PAL antibodies tested and the bacterial HAL confirms that the two enzymes are immunologically related. Curiously, however, cross-reactivity was not observed between antibodies raised against bacterial HAL (from either *Pseudomonas putida* or *P. fluorescens*) and PAL proteins from

Ustilago, yeast, poplar or potato. The reason for this lack of reciprocity is unknown, and may require identification of the main epitopes on both groups of proteins. There has been little success to date in raising stable monoclonal antibodies to PAL proteins, for reasons that are not clear. The immunological enzyme inhibition tests corroborated the presence of immunological relationships between PAL and HAL enzymes detected by Western blot analysis. Again, in this test system, while the anti-bacterial HAL antiserum did not inhibit any of the plant or yeast PALs, it did react with *Ustilago* PAL, providing further evidence for surprising structural relatedness between this *Ustilago* PAL and *Pseudomonas* HAL. None of the anti-PAL or anti-HAL antibodies tested were able to inhibit yeast PAL activity, consistent with the other data showing that yeast PAL is immunologically distinct from PAL of *Ustilago* and higher plants. To extend the array of antibody probes available for these immunological comparisons, antibodies generated against the mammalian class of HAL would be very useful.

Considering the very weak cross-reactivity that the *Ustilago* PAL protein displays with plant PALs, and even with yeast PAL, these results imply that it may be quite distinct from all other known PALs. This conclusion is supported by the sequencing of the *U. maydis* PAL gene, which revealed very low sequence homology with other PAL genes. This likely accounts for the failure to clone the *U. maydis* PAL gene from a *U. maydis* cDNA library using either plant PAL cDNA or yeast PAL DNA as heterologous probes. Together, the DNA sequence data and the immuno cross-reactivity data should help define those common structural features of PAL and HAL that have been retained during their long period of divergence.

To date, PAL genes have not been cloned from plant pathogens and even information on the properties of PAL from plant pathogens is extremely limited. With the cloning of PAL gene from the corn smut pathogen, *U. maydis*, in this study, and from its host plant, corn (Rösler *et al.*, 1997), the tools are now available to explore the role and the functional divergence of both PALs in the metabolic and physiological context of this plant-pathogen interaction.

CHAPTER FOUR

Regulation of Phenylalanine Ammonia-lyase by L-Tryptophan

In Ustilago maydis

4.1 INTRODUCTION

Flow of materials through metabolic networks is effected by controlling the presence of enzymes or by controlling the activities of these enzymes. Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), the first enzyme in the major catabolic pathway of L-phenylalanine in plants and some microorganisms, catalyzes the conversion of L-phenylalanine to transcinnamic acid. In plants, this reaction forms the initial step of the phenylpropanoid pathway, a major secondary metabolic pathway that provides precursors for a number of unique and important metabolites (Hanson and Havir, 1981). PAL thus controls the channeling of a substantial portion of carbon from primary into secondary metabolism in plants (Jones, 1984). Plant PAL activity is induced by pathogen attack, and by environmental stresses such as wounding and light (Hahlbrock and Scheel, 1989). The enzyme activity is modulated during plant development in different tissues (Camm and Towers, 1973; Wanner, 1995), in response to hormones (Hughes et al., 1990; Reid et al., 1972; Ward et al., 1989) and in response to heavy metals (Ohl et al., 1990; Preisig et al., 1991). In gherkin and mustard, PAL induction is reported to result from the activation of a constitutive pool of inactive enzyme (Attrige et al., 1974), but in other plant species, PAL induction is the result of de novo synthesis of the enzyme (Hahlbrock and Schröder, 1975), or of a decrease in the rate of degradation of the enzyme (Zucker, 1971). PAL

activity is regulated, at least in part, at the level of transcription (Lawton and Lamb, 1987), but can also be regulated by the protein components of a system that inactivates the enzyme in apple skin (Tan, 1980), gherkin hypocotyls (French and Smith, 1975), lettuce (Ritenour and Saltveit, 1996), potato tuber (Zuker, 1968), sunflower leaves (Gupta and Creasy, 1984), and sweet potato roots (Tanaka, 1977).

Studies on PAL induction and regulation in microorganisms have been limited to the fungi *Rhodosporidium toruloides* (formerly *Rhodotorula glutinis*), *Rhizoctonia solani* and *Neurospora crassa*, although phenylalanine catabolism is reported in many microbial species. In *R. toruloides*, the enzyme is induced by L-phenylanine or L-tyrosine, and growth with glucose or ammonium salts represses enzyme synthesis (Gilbert and Tully, 1982). This regulation of PAL activity by phenylalanine, ammonia, and glucose has been shown to occur at the level of transcription (Gilbert *et al.*, 1983). *R. toruloides* PAL is also inducible in response either to a signal of nitrogen deprivation or to a signal of carbon limitation (Marusich *et al.*, 1982). In *N. crassa*, PAL synthesis requires specific induction by L-phenylalanine and nitrogen derepression (Sikora and Marzluf, 1982). *R. solani* PAL synthesis requires induction by L-phenylalanine, L-tyrosine or L-tryptophan (Kalghatgi and Subba Rao, 1976).

The properties and genetic control of PAL in both plants and fungi are important factors in our general understanding of the metabolic processes that yield phenylpropanoid secondary metabolites and energy. The substrate inducibility of fungal PAL activity, and the very different symbiotic or parasitic microenvironments in which fungi exist, raise the

question of how the regulation of PAL differs among fungi, and between plants and fungi, and how these differences might be reflected in the properties of the PAL protein.

The PAL protein of *Ustilago maydis* has been characterized and its gene structure described in Chapters 2 and 3, respectively. In this chapter I describe the distinct pattern of regulation of *Ustilago* PAL, which is very different from the patterns known for plants and other fungi. The *Ustilago* PAL gene is expressed constitutively, but the enzyme activity can be induced by L-tryptophan. The metabolic fate of L-phenylalanine in this fungus has also been briefly examined.

4.2 MATERIALS AND METHODS

4.2.1 Fungal strains and cultures

Ustilago strains used in this study are listed in Table 4.1. Cultures were grown on potato dextrose agar (PDA, Difco) and on complete (Holliday, 1974) or basal medium (2% glucose, 20 mM NH₄NO₃, and salt solution (Holliday, 1974), pH 7.0). A sporidial suspension (1 ml) (Absorbance \geq 2.2 at 600 nm) was inoculated into 50 ml complete or basal medium in 250 ml Erlenmeyer flasks and grown for 24-48 hr at 30°C with shaking (250 rpm). Alternatively, 100 µl sporidial suspension was inoculated into 5 ml complete or basal medium in 15 ml culture tubes and grown for 16-36 hr. Unless otherwise indicated, *U. maydis* strain 518 and basal medium were used for the experiments on PAL

Species/Strain	Relevant Genotype		
U. maydis 518	a2b2		
U. maydis 521	a1b1		
U. maydis UM031	a1b2		
U. maydis UM032	a2b1		
U. maydis D132	a1/a2 b1/b2		
U. maydis D132-9	a1/a2 b2/b1::HygB ^r		
<i>U. maydis</i> uac1	a2b2 uac1		
U. maydis ubc1	a2b2 ubc1		
<i>U. maydis</i> adr1	a2b2 adr1		
U. hordei	MAT1		
U. nigra	wild type field isolate		
U. aegilopsidis	wild type field isolate		
Sporisorium reilianum	wild type field isolate		

Table 4.1. Ustilago species and U. maydis strains used in this study

regulation. Fungal cell growth was measured by counting the number of sporidia using a haemocytometer, with five replicates. Mesurements for cell growth are illustrated in Figures with column (average value) and vertical bar (\pm standard deviation).

4.2.2 Chemicals

 $[\alpha$ -³²P]-dATP (3000 Ci/mmol) and L-[³H]-amino acid mixtures were purchased from ICN Biomedical Pharmaceuticals, Inc.. L-[U-¹⁴C]-phenylalanine (474 mCi/mmol) was purchased from Amersham International. Hyamine hydroxide was obtained from Fluka G. Laboratories. Diethyl pyrocarbonate (DEPC), cyclic adenosine 5'-triphosphate (cAMP), cycloheximide, actinomycin D, daunomycin, α -amanitin, protein A-Sepharose beads, bovine serum albumin, L-phenylalanine, L-tyrosine, L- or D- or DL-tryptophan, *trans*cinnamic acid, *par*a-coumaric acid, benzoic acid, 4-hydroxybenzoic acid, other phenolics, indole, and indolic derivatives were obtained from Sigma. Westran membrane was purchased from Schleicher & Schuell; Zeta-Probe membrane, from Bio-Rad, and microbial media, from Difco. All other chemicals (analytical reagent grade) used were obtained from Sigma or Aldrich.

4.2.3 Enzyme extraction and assay

Cultures were harvested in a microfuge tube and the fungal cells were washed two times with sterile distilled water. The cell pellet was homogenized for 20 seconds at 4°C with alumina and a mini-pestle (Mandel Scientific Co.). The homogenate was suspended

in 200 μ l ice-cold 0.5 M sodium phosphate buffer, pH 8.0, vortexed for 5 min with frequent cooling in ice and then centrifuged at 14,000 × *g* for 15 min at 4°C. The supernatant was desalted (Pharmacia PD-10 column), and used for PAL assays and other experimental analyses. Unless otherwise described, all experiments were repeated at least twice with three or five replicates. All values illustrated in Tables and Figures are the average ± standard deviation of all mesurements (in Figures, column indicates average and vertical bar indicates ± standard deviation). PAL activity (three replicates per protein extract) was measured by a radiometric method as described by Campbell and Ellis (1992) using L-[U-¹⁴C]-phenylalanine as substrate. Protein was determined by the Bradford method (Bradford, 1976) with bovine serum albumin as a standard.

4.2.4 Immuno-blot analysis

Enzyme extracts previously described were separated on 7.5% sodium dodecyl sulfate (SDS)-polyacrylamide gels as described by Laemmli (1970) and electro-transferred to PVDF membrane. PAL proteins on the blot were detected using *U. maydis* PAL antiserum as described in Chapter 2.

4.2.5 Immunoprecipitation of radiolabeled PAL protein

U. maydis cells were grown in basal medium (50 ml) for 12 or 16 hr with or without Ltryptophan (0.3 mM), supplemented with 50 μ Ci [³H]-radiolabeled amino acids mixture, and further incubated for 4 hr. Following harvest by centrifugation at 6000 × g for 10 min at 4 °C, the cells were washed three times with sterile distilled water and frozen in liquid nitrogen. Protein crude extracts were prepared by grinding the cells with alumina as described in Chapter 2. Radiolabeled PAL proteins were immunoprecipitated with *U. maydis* PAL antiserum (or preimmune serum) and protein A-Sepharose 4B beads , using a protocol described in 'Antibodies: A Laboratory Manual' pp. 466-468, (Harlow and Lane, 1988). After heating in SDS sample buffer at 85°C for 10 min, immunoprecipitated proteins were separated from the beads by centrifugation and the radioactivity was measured using a Beckman LS-5000TA scintillation counter.

4.2.6 Phenylalanine catabolism analysis

U. maydis cells were grown for 16 hr in complete medium (50 ml) which was then supplemented with 5 μ Ci L-[U-¹⁴C]-phenylalanine (sp. act. 474 mCi/mmol) or 2 μ Ci L-[U-¹⁴C]-cinnamic acid (sp. act. 474 mCi/mmol). After two hours incubation, the cultures were separated into medium and cells by centrifugation at 14, 000 × *g* for 15 min at 4°C. Cell extracts were prepared by boiling in 95% ethanol for 10 min, while the culture medium was extracted with diethyl ether after acidification with 6N HCl. Both solvent extracts were concentrated with a stream of gaseous nitrogen and chromatographed by TLC (1st dimension; n-butanol:ethanol:water = 4:1:1, 2nd dimension; toluene:acetic acid = 4:1), and autoradiographed on X-Omat AR film (Kodak). The metabolites produced from phenylalanine were identified on the basis of their R_f values and co-chromatography with authentic samples. ¹⁴CO₂ produced by *U. maydis* cultures growing in the presence of L-[U-¹⁴C]-phenylalanine [0.25 μ Ci] was captured in Hyamine-hydroxide solution and the radioactivity was measured by liquid scintillation counting.

4.3 RESULTS

4.3.1 Induction experiments

In order to determine whether PAL activity is detectable in *U. maydis* cells grown in standard microbial growth media, several nutrient sources were tested. PAL activity was present in cells grown with all the nutrient sources tested, although the level varied (Fig. 4.1). Potato dextrose broth and casamino acids supported higher levels of PAL activity, as well as increased cell growth. Beef extract, on the other hand, supported cell growth but yielded low levels of PAL production in this study. Based on the results shown in Fig. 4.1, regulation of PAL was investigated in two media: a nutrient-rich (complete) medium and a minimal (basal) medium. Depending on inoculum density and freshness, the specific PAL activity levels measured at the early stationary phase of cell growth ranged from 4 to 16 pkatal/mg protein in basal medium, and from 14 to 22 pkatal/mg protein in complete medium.

Since aromatic amino acids have been shown to function as inducers of PAL in some fungi (Kalghatgi and Subba Rao, 1976; Gilbert and Tully, 1982; Sikora and Marzluf, 1982), L-phenylalanine, L-tyrosine, and L-tryptophan were tested for their ablity to induce PAL in *U. maydis* 518 strain. The PAL activity levels obtained from fungal cells grown in 1% glucose media (pH 7.0) with these amino acids (1 mM each) are presented in Fig. 4.2A. The highest PAL activity occurred in cells grown in L-tryptophan-supplemented medium, whereas, L-tyrosine and L-phenylalanine supplementation had very little effect.

Fig. 4.2A. Effect of aromatic amino acids on PAL induction in *U. maydis*. 1 mM of each amino acid was added into 1 % glucose media and the fungal cells were grown for 36 hr, harvested, and assayed for PAL activity. Fig. 4.2B. Cell growth and PAL activity of *U. maydis* grown on tryptophan or phenylalanine as sole carbone and nitrogen sources. The fungal cells were grown for five days in 2% tryptophan- or 2% phenylalanine-only medium containing inorganic salts (Holliday, 1974), and harvested for PAL assay and cell count. Interestingly, PAL induction by L-tryptophan was strongly reduced by co-supplementation with L-phenylalanine.

The fungus was able to grow slowly on either tryptophan or phenylalanine (2% wt/v) as a sole carbon and nitrogen source (Fig. 4.2B). In this case, culture growth was better in tryptophan medium, but PAL activity was higher in phenylalanine medium. In absolute terms, however, these culture conditions did not result in any marked enhancement of PAL specific activity as compared to the results shown in Fig. 4.2A.

To determine whether PAL induction by tryptophan is dependent upon its concentration, different amounts (0.03, 0.1, 0.3, 1.0, and 3.0 mM) of L-tryptophan were used to supplement basal medium cultures. The increase in PAL activity responded linearly to the increase in L-tryptophan concentration up to 0.3 mM amino acid, and then declined (Fig. 4.3). The level of L-tryptophan (0.3 mM) giving the highest PAL induction in *U. maydis* is substantially lower than the level of L-phenylalanine supplemention 15 mM or 6 mM required for PAL induction in *R. toruloides* (Marusich and Zamir, 1981; Wick and Willis, 1982). Based on these results, 0.3 mM L-tryptophan was used for the following PAL regulation study.

4.3.2 PAL induction period

In order to define the time point of highest PAL inducibility during the culture cycle, *Ustilago* cultures were supplemented with 0.3 mM L-tryptophan at various time points in the growth cycle, incubated for two hours, harvested and assayed for PAL activity.

Enhancement of PAL activity by these additions of exogenous L-tryptophan was only observed in cultures that had entered stationary phase (Fig. 4.4). This pattern was also observed when tryptophan was supplemented at the beginning of culture growth, and cultures were harvested at various time points in the growth cycle and assayed for PAL activity (data not shown). In this case, the elevated PAL levels were stable for at least twelve hours during the stationary phase of culture growth (data not shown). This pattern of highest inducibility and longer stability of *Ustilago* PAL during the stationary phase of growth differs slightly from *R. toruloides* PAL, which was highly induced during mid- to late log phase of growth and showed variation in stability during the stationary phase of growth (Wick and Willis, 1982; Gilbert *et al.*, 1983).

4.3.3 PAL inducibility by tryptophan optical isomers, precursors, and metabolites

An array of tryptophan optical isomers, precursors, and metabolites was tested for their ability to induce PAL. All three isomeric forms of tryptophan (L, D, and DL) tested were able to induce higher levels of PAL, and to a similar degree (Fig. 4.5). On the other hand, PAL activity failed to increase in response to the various tryptophan precursors and metabolites tested, although indole-3-pyruvic acid gave a slight positive response. Therefore, PAL induction appears to be tryptophan-specific (Table. 4.2). Indole-3-acetic acid (IAA), which has been reported to occur naturally in *U. maydis* cultures (Navarre, 1990), reduced PAL activity almost 50% below control levels, while, indole (0.3 mM) itself was inhibitory to fungal cell growth, resulting in the failure of that component of the induction study.

Fig. 4.4 Effect of tryptophan addition on cell growth and PAL induction of *U. maydis*. 0.3 mM L-tryptophan was added at different times in the cell cycle. Cells were harvested 2 hr later and assayed for PAL activity.

Fig. 4.5. Comparison of PAL inducibility in *U. maydis* by different optical isomers of tryptophan. 0.3 mM of each tryptophan isomer was added to 1% glucose media and the fungal cells were grown for 36 hr, harvested, and assayed for PAL activity.

Compounds	Relative PAL Activity (%) ^b	
No supplement	100	
Anthranilic acid	110 ± 10	
Indole-3-acetamide	82 ± 9	
Indole-3-acetic acid	55 ± 6	
Indole-3-acetonitril	107 ± 11	
Indole-3-butyric acid	114 ± 12	
Indole-3-carbinol	116 ± 9	
Indole-3-carboxylic acid	101 ± 10	
DL-Indole-3-lactic acid	88 ± 7	
Indole-3-pyruvic acid	135 ± 5	
Kynurenic acid	76 ± 9	
Tryptamine	98 ± 10	
Tryptophol	86 ± 8	
L-Tryptophan	310 ± 12	

4.2. Effect of tryptophan analogs and tryptophan-related metabolites on PAL induction in *U. maydis* ⁴

- ^a Cells were grown in basal medium for 16 hr before addition of the exogenous compounds (0.3 mM each), harvested after 2 hr further incubation, and used for PAL assay.
- ^b Relative PAL activity is presented as the percentage of the value of PAL activity in control which has no supplement of the compounds. Control showed 12 (pkat/mg protein) in PAL activity.

4.3.4 Tryptophan effect on PAL induction in other *U. maydis* strains and *Ustilago* species

The above observation that PAL induction was tryptophan-specific, prompted me to investigate whether PAL induction by L-tryptophan is a common phenomenon in *Ustilago* fungi. For this purpose, several *U. maydis* strains and *Ustilago* species were tested. PAL induction by L-tryptophan was observed in all the *U. maydis* strains tested (Fig. 4.6). However, among the other *Ustilago* species, only *U. nigra* revealed PAL induction by L-tryptophan (Fig. 4.7). All the *Ustilago* species tested did possess PAL, and its expression was detectable even without L-tryptophan supplementation. These results show that although PAL is widespread among *Ustilago* species, its induction by L-tryptophan is confined to certain species.

4.3.5 Effect of carbon and nitrogen sources on PAL activity induction

Various nutritional carbon and nitrogen sources were tested to examine their effect on PAL activity. Different levels of PAL activity and cell growth were obtained from the cells grown with the carbon sources tested (Fig. 4.8). Among these carbon sources, growth on lactose and galactose resulted in the highest PAL activity, even though they proved to be the poorest sources for cell growth. In general, un-induced *U. maydis* cultures displayed higher PAL activity when they were grown on carbon sources that supported poorer growth, and lower activity when grown on more readily metabolized sugars such as glucose, mannose and sucrose.

To understand how carbon sources influence PAL activity under tryptophan-induction conditions, glucose was selected as a representative carbon source and its effect on PAL induction in *U. maydis* was investigated. Glucose supplementation repressed PAL production both in the presence and absence of L-tryptophan, and in both the nutrient rich (complete) and minimal (glutamine only) media (Fig. 4.9A). The repressive effect of glucose was observed under tryptophan-induced conditions if the glucose was present from the beginning of the culture cycle, but not if the extra glucose was added later (16 hr) in the culture cycle (Fig. 4.9B). These results indicate that glucose repression can modulate *Ustilago* PAL expression, but that the repression effect is limited to the early growth stage.

The effects of nitrogen source on *U. maydis* cell growth and PAL activity level are shown in Fig. 4.10. Provision of nitrogen in the form of inorganic salts, or asparagine, reduced PAL activity far below the levels obtained when L-tryptophan or L-phenylalanine was provided as the sole nitrogen source for cultures. For cell growth, peptone was the best source and no significant difference was found among other nitrogen sources. Varying the ratio of ammonium nitrogen to nitrate nitrogen from 1:10 to 10:1 in the non-amino acid media did influence the level of PAL in the cultures after 24 hr growth (Fig. 4.11), but the pattern of change did not suggest a strong preference for one form of inorganic nitrogen.

4.3.6 Effect of inhibitors and cAMP on PAL activity in vivo

Fig. 4.9A. Effect of glucose on *U. maydis* **PAL induction by L-tryptophan.** Complete media and glutamine (20 mM)-only media were treated with 2% glucose or 0.3 mM tryptophan or both. The fungal cells were grown in these media for 36 hr, harvested, and assayed for PAL activity.

Fig. 4.9B. Effect of time of glucose addition on *U. maydis* **PAL induction.** An additional 3% glucose was added to L-tryptophan-supplemented basal media at the beginning (0 hr) or at the mid log phase (16 hr) of cell growth. The fungal cultures were incubated for a total of 36 hr, harvested, and assayed for PAL activity.

It had previously been determined that purified *U. maydis* PAL could be partially inhibited by the reaction product, *t*-cinnamic acid, and strongly inhibited by the synthetic inhibitor, AIP (Chapter 2). When these compounds were added to the L-tryptophan-supplemented culture medium at appropriate concentrations, they were found to have differing effects on growth and extractable PAL activity (Fig. 4.12). Cinnamic acid substantially inhibited culture growth, but had little effect on the levels of PAL induced by 0.3 mM L-tryptophan supplementation. Addition of AIP, on the other hand, completely abolished PAL activity in the cell extracts but had no effect on culture growth over 24 hr. Interestingly, addition of cAMP (1 mM) produced a modest enhancment of PAL induction but did not affect culture growth.

With this observation, further studies were undertaken to gain insight into the possible invovement of the cAMP cascade in the regulation of PAL. For this, a *U. maydis* adenylate cyclase deficient mutant (uac1, Gold *et al.*, 1994a), and protein kinase A (PKA) deficient mutants adr1 (deficient in a catalytic subunit, Orth *et al.*, 1995) and ubc1 (deficient in the regulatory subunit, Gold *et al.*, 1994a), were tested in L-tryptophan-supplemented growth conditions for their PAL induction respose (Fig. 4.13). PAL was induced to similar levels in the adenyl cyclase mutant and in wild-type *U. maydis*, but the PAL induction was reduced by 20-30% in the PKA mutants.

4.3.7 Influence of physical environments

In order to examine the effect of environmental factors on PAL regulation, *U. maydis* cultures were grown in complete medium under various light, pH, and temperature

Fig. 4.13. Effect of L-tryptophan supplement on PAL induction in the *U. maydis* adenylate cyclase deficient (uac1) and protein kinase A deficient (ubc1, adr1) mutants. The mutants were grown in basal media for 36 hr with or without 0.3 mM L-tryptophan, harvested, and assayed for PAL activity.

regions. No apparent PAL induction or inhibition was observed when the cultures were incubated in light or dark, or at different medium pH values (pH 4, 5, 6, 7, 8), and/or at different temperatures (18, 24, 30°C) (data not shown). It seems that expression of *U. maydis* PAL activity is not overtly sensitive to physical environmental factors.

4.3.8 No evidence for *de novo* synthesis in PAL induction

Induction of PAL in most plants and some fungi results from de novo synthesis of the enzyme. The origins of induced PAL activity in U. maydis were investigated by the use of inhibitors of translation and transcription, and with radiotracers and immunoprecipitation. In both the L-tryptophan-induced and uninduced conditions. PAL activity was reduced when U. maydis cells were incubated in the presence of actinomycin D, a transcriptional inhibitor, or cycloheximide, an inhibitor of translation (Table 4.3). This implies that gene transcription and protein synthesis are necessary to maintain PAL levels in both conditions during the log phase of culture growth. However, radiolabeling of newly synthesized proteins showed that there were no differences in PAL protein labeling between the cells grown in L-tryptophan-induced and uninduced conditions (Table 4.4). This result was consistent with Western blot results which showed PAL bands of similar intensity in protein samples from L-tryptophan-induced and uninduced cultures (Fig. 4.14). Taken together, these observations suggest that the induction of increased PAL activity by L-tryptophan supplementation does not result from *de novo* synthesis of PAL, but from activation of the PAL enzyme which has been produced during the log phase of culture growth. The modest inhibition by the actinomycine and cycloheximide treatments may indicate that other proteins needed for PAL activation are turning over in the

Treatment ^a	PAL Activity (pkat/mg protein)				
			Uninduced		
	12hr	16hr	12 hr	16 hr	
No addition	19.6 ± 1.8	32.8 ± 2.2	13.3 ± 1.6	20.5 ± 2.1	
Actinomycin D	13.9 ± 1.9	$\textbf{23.3} \pm \textbf{0.8}$	9.2 ± 1.2	15.1 ± 0.6	
Cycloheximide	16.2 ± 1.7	$\textbf{26.4} \pm \textbf{1.3}$	11.3 ± 1.0	16.8 ± 1.2	

Table. 4.3. Effect of actinomycin D and cycloheximide on U. maydis PAL activity

^a Actinomycin D (100 μ g/ml) and cycloheximide (10 μ g/ml) were added at mid (12 hr) or late (16 hr) log phase in the cell growth cycle, and cells were harvested 4 hr later and used for PAL assay.

and used for PAL assay. ^b Induced: L-tryptophan (0.3 mM) was supplemented to basal medium at the time of inoculation, uninduced: no L-tryptophan was supplemented.

Cell harvest	Newly synthesized PAL (dpm) b		
time	Induced	Uninduced	
16 hr	382 ± 36	388 ± 47	
20 hr	461 ± 56	473 ± 62	

Table 4.4. PAL protein synthesis in L-tryptophan-inducedand -uninduced conditions*

^a Induced: L-tryptophan (0.3 mM) was supplemented to basal medium at the time of inoculation, uninduced: no L-tryptophan was supplemented.
^b Proteins of *U. maydis* were radio-labelled *in vivo* with L-[³H]-

^b Proteins of *U. maydis* were radio-labelled *in vivo* with L-[³H]amino acid mixture. The labelled PAL proteins were immunoprecipitated with anti-PAL antibodies and counted.

Fig. 4.14. Immunoblot detection of PAL production in *U. maydis* grown in L-tryptophan-induced and -uninduced conditions. Protein samples ($20 \mu g$) extracted from the cultures grown for 36 hr in 0.3 mM L-tryptophan-supplemented (lane 1) or unsupplemented (lane 2) basal media, were separated in a 7.5 % SDS-PAGE gel, transferred onto a PVDF membrane and immuno-detected with *U. maydis* PAL antibodies using the NBT/BCIP visualization system.

cells. The fact that the greatest enhancement of PAL activity by exogenous L-tryptophan is obtained in the stationary phase of culture growth (Fig. 4.4), when most protein synthesis has ceased, is consistent with this interpretation.

4.3.9 Metabolic fate of L-phenylalanine in *U. maydis* cultures

Chromatographic analysis of the soluble products of metabolism of L-¹⁴C-phenylalanine or ¹⁴C-*t*-cinnamic acid after 2 hr incubation detected radioactive label at positions on the chromatograms corresponding to *t*-cinnamic acid, benzoic acid, and 4-hydroxybenzoic acid, and possibly other hydroxybenzoic acid derivatives (Fig. 4.15). These products were detected in the culture medium as well as in the cell extracts. Incubation of the *U. maydis* cultures with L-¹⁴C-phenylalanine resulted in a slow release of ¹⁴CO₂ over a 6 hr period, but this amounted to less than 0.2% of the potential label available if the phenylalanine were to be totally catabolized.

No phenylalanine transaminase activity could be detected in cell extracts, whereas 4hydroxycinnamyl Co A-ligase activity is detectable that is active with *t*-cinnamic acid but not with 4-hydroxycinnamic acid as substrate. Taking these observations together, a plausible catabolic pathway for phenylalanine in *U. maydis* could be formulated as shown in Fig. 4.16.

Second

L-Phenylalanine

\downarrow PAL

Cinnamic acid derivatives *c trans*-Cinnamic acid

↓ 4CL

 \downarrow beta oxidation

Benzoic acid

↓ BAHs

4-hydroxy other hydr	4-hydroxybenzoic acid and other hydroxybenzoic acids		
↓ ↓		\downarrow	
Possible Melanin Precursors (i.e. Catechol Derivatives)	⇒⇒	CO2	

Fig. 4.16. Schematic diagram of catabolic pathway of phenylalanine in *U. maydis*. PAL:phenylalanine ammonia-lyase, 4CL:4-coumaryl Co A ligase, BAHs:benzoic aicd hydroxylases. Arrows indicate identified way (\downarrow) and predicted way (\Downarrow) .

4.4 DISCUSSION

4.4.1 PAL induction by L-tryptophan

The influence of aromatic amino acids on fungal PAL regulation has been studied in only a few species. In the red yeast, *R. toruloides*, L-phenylalanine and L-tyrosine acted as PAL inducers (Marusich *et al.*, 1981; Gilbert *et al.*, 1983), while in *N. crassa*, Lphenylalanine (Sikora and Marzluf, 1982), and in *R. solani*, L-phenylalanine, L-tyrosine, and L-tryptophan all served as PAL inducers. In all of these cases, the best PAL inducer was L-phenylalanine. In contrast, the most effective inducer of PAL activity in *U. maydis* was L-tryptophan (Fig. 4.2), although L-phenylalanine had some effect.

However, induction of PAL in *Ustilago* cultures by L-tryptophan does not appear to be a typical microbial catabolic system directed at nutrient scavenging. First, a significant basal level of PAL is always detectable in the cultures, unlike the three fungal species mentioned above, in which PAL activity is detectable only when the fungi are grown in media supplemented with aromatic amino acids which induce PAL. Second, in contrast to other fungi like *R. toruloides* and *N. crassa*, the inducer does not appear to have a logical metabolic connection with the reaction catalyzed by the induced enzyme. L-Phenylalanine, the obvious induction candidate, is much less effective in this role than L-tryptophan. Finally, the L-tryptophan effect on PAL induction is not operative in all the *Ustilago* species tested.

Since PAL induction in *U. maydis* results only from tryptophan supplementation and not from tryptophan precursors or metabolites, it is worth asking whether the endogenous level of tryptophan in the host plants is sufficient for *U. maydis* PAL induction. There are no data for corn, but the level of free tryptophan in tobacco leaves and carrot cell cultures has been reported as 16.7 μ M (Widholm, 1972) and 81 μ M (Widholm, 1974), respectively. In this study, *Ustilago* PAL was measurably induced by 30 μ M tryptophan supplementation (Fig. 4.3), suggesting that *Ustilago* PAL might be inducible by either the endogenous level of tryptophan or enhanced levels of tryptophan resulting from the *Ustilago* fungus infection in its host corn plants.

4.4.2 Regulatory features of PAL

The production of many inducible enzymes by microorganisms is subject to catabolite repression when the organisms are grown in the presence of a potential carbon and energy source. In addition to carbon catabolic enzymes, many proteins, including those involved in bioluminesence, photosynthesis, sporulation, antibiotic biosynthesis, pigment biosynthesis, and extracellular macromolecular degradation, have been shown to be subject to catabolite repression (Saier, 1991). Glucose repression was observed with *U. maydis* in the present study (Fig. 4.9), since both basal PAL levels and the induction of PAL by L-tryptophan were reduced by glucose addition to the medium. A similar phenomenon was reported in *R. toruloides*, where PAL induction by L-phenylalanine was repressed by glucose (Gilbert and Tully, 1982).

cAMP is widespread among eukaryotes and prokaryotes and is implicated in numerous regulatory events in fungi, including carbon catabolism, growth, and developmental phenomena (Pall, 1981; Thevelen, 1988; Uno, 1992), and in the regulation of expression of certain fungal enzymes (Herman et al., 1990; Terenzi et al., 1992). With the observation of a stimulatory effect of exogenously supplied cAMP on PAL activity (Fig. 4.12), the possible role of cAMP in the regulation of Ustilago PAL by tryptophan was investigated using an adenylate cyclase deficient mutant (uac1) and cAMP-dependent protein kinase A (PKA) deficient mutants (ubc1 and adr1). Both types of mutants were able to display PAL induction in the presence of exogenous tryptophan (Fig. 4.13), implying that cAMP and PKA are not essential for this phenomenon. However, the levels of PAL in the mutants defective in *ubc1* and *adr1* were reduced compared to those in the wild type. PKA could, therefore, still be involved in the regulation of PAL induction, either by some pleiotropic effect or perhaps by mediating the phosphorylation of PAL proteins themselves. There are many predicted phosphorylation sites in the amino acid sequence of PAL deduced from the U. maydis PAL gene (Chapter 3), including one cAMPdependent PKA phosphorylation site. Bolwell (1992) has suggested that the inactivation and turnover of PAL in elicitor-treated bean cells is in part regulated by phosphorylation, which is possibly cAMP-dependent. However, the evidence for occurrence of cAMP in plants is not convincing (Bolwell, 1995).

The induction of PAL in *U. maydis* by tryptophan is not likely to result from *de novo* synthesis of the protein, as shown by immunoprecipitation (Table 4.3) and Western blot assay results (Fig. 4.14). The alternative mechanisms would appear to be that some form of post-translational protein modification (such as phosphorylation of the enzyme),

or a metabolic (non-covalent) influence on the *Ustilago* PAL activity. This behavior differs from that seen in *Rhodosporidium* and *Neurospora* (Gilbert *et al.*, 1985; Sikora and Marzluf, 1982), where induction of elevated PAL activity by phenylalanine is controlled primarily at the transcriptional level.

Some aspects of the results obtained in this study are reminiscent of classic microbial secondary metabolism. For example, the tryptophan inducibility of PAL is invoked only during the stationary phase of culture growth, and the induction appears to require tryptophan itself, rather than tryptophan metabolites or precursors. It is noteworthy that IAA is most actively produced at the stationary phase in the culture cycle of *U. maydis* (Navarre, 1990). Considering that tryptophan is the major precursor for IAA production in this fungus, the induction and suppression of PAL by tryptophan and IAA, respectively, suggests that a metabolic control mechanism links phenylalanine metabolism to tryptophan metabolism during the late growing period of *U. maydis*.

It has been clearly estabilished in both prokaryotes and eukaryotes that the synthesis of these two aromatic amino acids, phenylalanine and tryptophan, is derived from chorismate through the shikimate pathway (Braus, 1991; Hrazdina and Jensen, 1992). Logically, the synthesis and catabolism of each amino acid will be regulated to reflect their demands and their levels. From this perspective, it is conceivable that *U. maydis* PAL regulation is indirectly under the influence of tryptophan levels through metabolic feedback mechanisms that control synthesis and catabolism of all the aromatic amino acids. Studies on the effect of tryptophan on the synthesis of the PAL substrate,

phenylalanine, could provide insight into potential metabolic connections between tryptophan metabolism and PAL regulation.

t-Cinnamic acid, the product of the PAL reaction, is moderately inhibitory to *U. maydis* cell growth. Toxicity of *t*-cinnamic acid was also observed in *R. toruloides* cultures (Marusich *et al.*, 1981; Kane and Fiske, 1985). In some plant systems like bean (Bowell *et al.*, 1988) and alfalfa (Orr, 1993) cell suspension cultures, addition of exogenous *t*-cinnamic acid suppressed PAL induction. This has led to the suggestion that feedback inhibition by *t*-cinnamic acid could help control diversion of L-phenylalanine from primary metabolism to secondary metabolism and thereby avoid the accumulation of *t*-cinnamic acid to levels that might become toxic to cells. In *U. maydis*, however, there was no evidence that exogenous cinnamic acid influenced PAL induction.

4.4.3 Metabolic features of phenylalanine catabolism in the context of the hostpathogen interaction

The major metabolites of *t*-cinnamic acid detectable in the *Ustilago* cultures are benzoic acid, and possibly, its derivatives, a pattern consistent with degradation of the phenylpropanoid skeleton by β -oxidation of the side-chain and oxidation of the ring. The detection of 4-coumaryl Co A-ligase (4CL) activity that was active not with *p*-coumaric acid, but with *t*-cinnamic acid, as a substrate suggests that the biosynthetic route to hydroxybenzoic acids in *U. maydis* differs somewhat from that of plants, which use *p*-coumaric acid as a preferred substrate for 4CL.

What are the roles of benzoic acid and its derivatives in *U. maydis* biology? They might serve as precursors for the synthesis of physiological effectors, analogous to signal molecules like salicylate or its derivatives in plants (Malamy *et al.*, 1990). Such roles for hydroxybenzoic acids have not been elucidated in fungi, but the recent finding in tobacco plants (Yalpani *et al.*, 1993) that salicylate is synthesized from phenylalanine via *t*-cinnamic acid and benzoic acid, provides a possible precedent for a similar process in fungi. Several fungi that contain PAL, including *Ustilago hordei*, have been reported to metabolize L-phenylalanine into benzoic acid and its derivatives (Towers *et al.*, 1969), and salicylate and its derivatives have been found in the extracts from *U. maydis* teliospores (Piattelli *et al.*, 1965).

4.4.4 Potential roles of PAL in U. maydis

In contrast to higher plants, the role of PAL in fungi is not obvious. Earlier information on fungal PAL regulation was restricted largely to *R. toruloides* and *N. crassa*, and no definitive biological functions were uncovered in those studies. It seems reasonable to assume, however, that PAL could provide one mechanism for catabolism of L-phenylalanine acquired during parasitic growth of plant pathogens such as *Ustilago*, *Rhizoctonia* or *Alternaria*, or during saprophytic growth of non-pathogenic fungi (e.g. *Rhodosporidium* and *Neurospora*). Those fungal species that possess PAL have been shown to convert exogenous phenylalanine to various phenolic metabolites.

It is also conceivable that cinnamic acid is required as a substrate for biosynthesis of some essential physiological effector or protectant for *U. maydis*, perhaps within a

specific developmental context. Derivatives of cinnamic acid which might function as germination self-inhibitors in spores, would be potential candidates, and inhibitors derived from cinnamic acid have been found in urediospores in rust fungi (Macko *et. al.*, 1970; Macko *et. al.*, 1971). Since PAL activity could also be detected in urediospores of the rust fungus (Moerschbacher *et al.*, 1988), it seems likely that PAL would be involved in the biosynthesis of these endogenous inhibitors. Self-inhibition is overcome by nutrients (including peptone or phenylalanine) in *Glomerella cingulata* (Lingappa and Lingappa, 1965), and is glucose-dependent in *Fusarium solani* (Griffin, 1970a and b), indicating that this process can be metabolically modulated in some cases. These responses at least superficially resemble the pattern of *U. maydis* PAL regulation, as reflected in the glucose repression and aromatic amino acid induction results. Since self-inhibition is also operative in teliospore germination of *Ustilago* fungi (Pritchard and Bell, 1967), *Ustilago* PAL may thus play a role in the regulation of this self-inhibitors. Identification of the chemical nature of the germination self-inhibitors in *Ustilago* fungi would allow this possibility to be tested.

The function of melanin in fungi is still not clear but roles in pathogenicity and virulence (Polak, 1989), resistance against microbial stress such as hydrolytic enzymes (Kuo and Alexander, 1967) and protection from environmental stress (e.g. UV irradiation, Bell and Wheeler, 1986) have all been suggested. Formation of teliospores within the plant in the last stage of the *U. maydis* infection cycle is accompanied by melanization, which creates a UV-impermeable shield for the exposed spores. Catechol derivatives and salicylic acid have both been identified from plant melanin (Yoshida, 1969), and these phenolics were also reported as components of melanin in *U. maydis* teliospores (Piattelli

et al., 1965). Considering that catechol derivatives and salicylic acid might be synthesized via benzoic acid, and thus from phenylalanine, it is very likely that the biosynthetic route to *Ustilago* melanin will require PAL activity. Such a route has been suggested for the biosynthesis of melanin in the fungal pathogen *Alternaria* (Pridham and Woodhead, 1977).

Rhodotorula PAL has been postulated to play a role in the synthesis of another pigment which is very effective in protecting cells from UV light (Ogata *et al.*, 1967). Much more browning (melanin-like) pigmentation was observed in *U. maydis* cells grown in PAL-inducing (tryptophan-supplemented) media than in those grown in PAL-uninducing (tryptophan-unsupplemented) media. It is thus tempting to speculate that, as with plant PALs, a common role for fungal PAL might be formation of aromatic metabolites that enable the fungi to survive environmental stresses.

Clarification of the function of PAL in *U. maydis*, and of the relationship between the PAL reaction and tryptophan metabolism, will probably require a molecular genetic approach. For this, disruption of the *U. maydis* PAL gene cloned in Chapter 3 and evaluation of the resulting null phenotypes would provide valuable insights into the biological function of this well-known, but little understood, enzyme within the corn smut organism.

CHAPTER FIVE

Conclusions and Future Directions

5.1 Conclusions

For the first time, PAL has been purified to apparent homogeneity, and the corresponding gene cloned from *U. maydis*, a filamentous fungus and a plant pathogen. Analysis of the purified protein showed that *U. maydis* PAL resembles other known PALs in many respects, e.g. it is a cytosolic, homotetrameric protein with a molecular mass of 320 kDa, requires no cofactors or no thiol reducing reagents, and is stable in the absence of glycerol. In contrast to yeast PAL (Camm and Towers, 1973), *U. maydis* PAL was not able to deaminate L-tyrosine. In other respects, the *Ustilago* PAL is somewhat unusual. It has a relatively high K_m (1.05 mM) for phenylalanine, a high pl (6.3), and notable temperature stability.

Ustilago PAL appears to be composed of 724 amino acids and be encoded by a single gene. Analysis of amino acid sequence showed that *Ustilago* PAL shares low homology with other known PAL genes. This, together with the weak immunological cross-reaction between *U. maydis* PAL and plant PALs, and between *U. maydis* PAL and yeast PAL, shows that the structures of *Ustilago*, yeast, and higher plant PAL proteins have diverged substantially. It is worth noting that no introns are present in *Ustilago* PAL sequence, a pattern that is quite different from that of angiosperm plants and yeasts.

Ustilago PAL shows a modest level of amino acid sequence identity with the other ammonia-lyase, HAL. The present work also demonstrated, for the first time, the immunological relatedness between PAL and HAL. The immunological cross-reactivity between a *Pseudomonas* bacterial HAL and *Ustilago* PAL (or poplar and alfalfa PALs) is consistent with the amino acid sequence homology, and must reflect common structural features in these two ammonia-lyases that have been retained despite the long time since HAL and PAL diverged. The weakness of the cross-reactivity between *Ustilago* (or yeast) PAL and the plant PALs is consistent with the divergence observed between fungal PAL and plant PAL protein sequences. This may reflect possible divergence of PAL functions in different organisms.

The production of PAL only in phenylalanine-supplemented cultures in saprophytic fungal species suggests that their PAL expression may be dependent upon the amount of the phenylalanine available in their environmental niche. This situation differs from that of pathogenic *Ustilago* fungi which are involved in dynamic interactions with their specific hosts. The endogenous pools of amino acids in hosts are typically small, and may be insufficient to serve as an inductive signal. *Ustilago* fungi may therefore have adopted a different mode of PAL regulation. Unlike other known fungal PALs, *Ustilago* PAL can be produced constitutively at low levels by a range of *Ustilago* fungi when grown in complete media. In contrast to plant PALs, physical environmental factors such as light, pH, and temperature, do not appear to influence the induction and repression of the enzyme activity. Carbon catabolic repression of PAL activity induction is, however, operative in *U. maydis*. Analyses of growth and PAL activity induction indicate that PAL can be induced to higher level by L-tryptophan during the stationary phase of culture

growth. There was no evidence of *de novo* PAL synthesis during PAL induction time by L-tryptophan, suggesting that post-translational activation mechanism may underline this phenomenon.

The intracellular location of PAL in the biotrophic fungus *U. maydis* (this study) is in contrast to the intracellular and extracellular distribution of PAL in the saprophytic fungus *N. crassa* (Sikora and Marzluf, 1982). The secretion of PAL outside the cell can vary between different fungi and perhaps between different developmental states or environmental situation. The possible secretion of PAL by fungi *in planta* would have important implications and merits further investigation. If *U. maydis* secretes PAL during or after the penetration of its host cells, it might affect the outcome of the infection process by modifing the host response.

5.2 Future directions

The followings suggestions may be useful to guide further studies of the biological role of *Ustilago* PAL.

• Extending the present immunological analysis to include mammalian HAL and if possible plant HAL would provide further insight into the pattern of immunological relatedness between PAL and HAL proteins across different phyla.
• One of the most common mechanisms for post-translational modifications of enzyme activity is phosphorylation. Many putative phosphorylation sites can be identified in the deduced *U. maydis* PAL protein sequence. If PAL induction involves phosphorylation, or if other proteins must become phosphorylated in order to act on the PAL protein, it should be possible to interfere with these processes by use of appropriate inhibitors. It may also be possible to detect incorporation of ³²P into PAL in radiotracer studies.

• A tentative metabolic pathway of phenylalanine degradation has been suggested (Fig. 4.17), based on some preliminary radiotracer experiments. This pathway, combined with earlier reports on the components of melanin (Piattelli *et al.* 1965), may suggest a link between PAL and the biosynthetic pathway for melanin in *U. maydis*. Based on our understanding of melanin functions, and other physiological functions of phenolics derived from phenylalanine, PAL could be envisioned to play an important role in development and survival of *U. maydis*. Examinations of the structures and properties of compounds derived from phenylalanine through PAL in *U. maydis* would be useful to test this idea. The ultimate test of the essentiality of PAL would be elimination of the PAL function by creating a *pal*⁻ mutant genotype through gene disruption.

In conclusion, the studies described in this thesis have provided new information concerning the properties, structure and regulation of *Ustilago* PAL, as well as the metabolic fate of L-phenylalanine in this fungus. The availability of *Ustilago* PAL-antibodies and a full-length PAL gene sequence will provide useful tools for further study of the structure and function of PAL, as a self-assembling, post-translationally modified, multimeric protein. *U. maydis* PAL is an unusual member of the PAL family,

163

highly diverged from plant and yeast PALs and sharing interesting similarities with HAL. Study of recombinant *U. maydis* PAL in comparison to both HAL and other PAL species, using X-ray crystallographic analysis and site-directed mutagenesis, would provide definitive insights into the structural features retained by both ammonia-lyases during their evolutionary divergence. From physiological and ecological perspectives, evaluation of the phenotype of PAL-deficient *U. maydis* mutants would help address many remaining questions regarding the role of PAL in this fungus.

BIBLIOGRAPHY

Abell, C.W., Hodgins, D.S. and Stith, W.J. (1973) An *in vivo* evaluation of the chemotherapeutic potency of phenylalanine ammonia-lyase. Cancer Res. 33:2529-2532.

Abell, C.W., Stith, W.J. and Hodgins, D.S. (1972) The effects of phenylalanine ammonialyase on leukemic lymphocytes *in vitro*. Cancer Res. 32:285-290.

Adachi, O, Matsushita, K, Shinagawa, E. and Ameyama, M. (1990) Crystallization and properties of L-phenylalanine ammonia-lyase from *Rhodosporidium toruloides*. Agri. Biol. Chem. 54:2839-2843.

Agrios, G.N. (1988) The smuts. Pages 474-486 in: Plant Pathology. 3rd ed. Academic Press, Inc., San Diego.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215:403-410

Ambrus, C.M., Ambrus, J.L., Horvath, C., Pederson, H., Sharma, S., Kent, C., Mirand, E., Guthrie, R. and Paul, T. (1978) Phenylalanine depletion for the management of phenylketonurea: use of enzyme reactors with immobilized enzymes. Science 201:837-839.

Anson, J.G., Gilvert, H.J., Oram, J.D. and Minton, N.P. (1987) Complete nucleotide sequence of the Rhodosporidium toruloides gene coding for phenylalanine ammonia-lyase. Gene 58:189-199.

Appert, C., Lagemann, E., Hahlbrock, K., Schmid, J. and Amrhein, N. (1994) Structural and catalytic properties of the four phenylalanine ammonia-lyase isoenzymes from parsley (*Petroselinum crispum* Nym.). Eur. J. Biochem. 225:491-499.

Armstrong, E.G. and Feigelson, M. (1980) Effects of hypophysectomy and triiodothyronine on *de novo* biosynthesis, catalytic activity, and estrogen induction of rat liver histidase. J. Biol. Chem. 255:7199-7203.

Asubel, F.M., Brent, B., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (1995) Current protocols in molecular biology. John Wiley Inc. New York.

Attridge, T.H., Johnson, C.B. and Smith, H. (1974) Density labeling evidence for the phytochrome-mediated activation of phenylalanine ammonia-lyase in mustard cotyledons. Biochim. Biophys. Acta 343:440-451.

Bandoni, R., Moore, K., Subba Rao, P.V. and Towers, G.H.N. (1968) Phenylalanine and tyrosine ammonia-lyase activity in some *Basidomycetes*. Phytochemistry 7:205-207.

Banerjee, S. and Hansen, J.N. (1988) Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem. 263:9608-9514.

Banks, G.R. and Taylor, S.Y. (1988) Cloning the *PYR*3 gene of *Ustilago maydis* and its use in DNA transformation. Mol. Cell. Biol. 8:5417-5424.

Banuett, F. (1992) Ustilago maydis, the delightful blight. Trends Genet. 8:174-180.

Barrett, K. (1992) Complementation of a *REM* mutant in *Ustilago maydis*. M.Sc. Thesis, University of British Columbia, Canada.

Beggs, C.J., Kuhn. K., Boeker, R. and Wellman, E. (1987) Phytochrome-induced flavonoid biosynthesis in mustard *Sinapis alba* L. cotyledons. Enzymic control and differential regulation of anthocyanin and quercitin formation. Planta 172:121-126.

Bell, J.N., Ryder, T.B., Wingate, V.P.M., Bailey, J.A. and Lamb, C.J. (1986) Differential accumulation of plant defense gene transcripts in a compatible and an incompatible plant-pathogen interaction. Mol. Cell. Biol. 6(5):1615-1623.

Bell, A.A. and Wheeler, M.H. (1986) Biosynthesis and function of fungal melanins. Annu. Rev. Phytopathol. 24:411-451.

Bender, D.A. (1985) Amino acid metabolism. John Wiley & Sons, Toronto.

Bernards, M.A. and Ellis, B.E. (1991) Phenylalanine ammonia-lyase from tomato cell cultures inoculated with *Verticillium albo-atrum*. Plant Physiol. 97:1494-1500.

Betz, B., Schafer, E. and Hahlbrock, K. (1978) Light-induced phenylalanine ammonialyase in cell-suspension cultures of *Petroselinum hortense*. Arch. Biochem. Biophys. 190:126-135.

Bezanson, G.S., Desaty, D., Emes, A.V. and Vining, L.C. (1970) Biosynthesis of cinnamamide and detection of phenylalanine ammonia-lyase in *Streptomyces verticillatus*. Can. J. Microbiol. 16:147-151.

Bevan, M., Shufflebottom, D., Edwards, K., Jefferson, R. and Schuch, W. (1989) Tissueand cell-specific activity of a phenylalanine ammonia-lyase promoter in transgenic plants. EMBO J. 8:1899-1906.

Bolwell, G.P. (1992) A role for phosphorylation in the down-regulation of phenylalanine ammonia-lyase in suspension-cultured cells of french bean. Phytochemistry 31: 4081-4086.

Bölker, M., Urban, M. and Kahmann, R. (1992) The a mating type locus of *U. maydis* specifies cell signalling components. Cell 68: 441-450.

Bolwell, G.P. (1995) Cyclic AMP, the reluctant messenger in plants. Trends in Biochem. Sci. 20:492-495. Bolwell, G.P., Bell, J.N., Cramer, C.L., Schuch, W., Lamb, C.J. and Dixon, R.A. (1985) L-Phenylalanine ammonia-lyase from *Phaseolus vulgaris:* characterization and differential induction of multiple forms from elicitor-treated cell suspension cultures. Eur. J. Biochem. 149:411-419.

Bolwell, G.P., Coulson, V., Rodgers, M.W., Murphy, D.L. and Jones, D. (1991) Modulation of the elicitation response in cultured french bean cells and its implication for the mechanism of signal transduction. Phytochemistry 30:397-405.

Bolwell, P., Mavandad, M., Millar, D.J., Edwards, K.J., Schuch, W. and Dixon, R.A. (1988) Inhibition of RNA levels and activities by *trans*-cinnamic acid in elicitor-induced bean cells. Phytochemistry 27: 2109-2117.

Bolwell, G.P. and Rodgers, M.W. (1991) L-Phenylalanine ammonia-lyase from French bean (*Phaseolus vulgaris*). Biochem. J. 279:231-236.

Bolwell, G.P., Sap, J., Cramer, C.L., Lamb, C.J., Schuch, W. and Dixon, R.A. (1986) L-Phenylalanine ammonia-lyase from *Phaseolus vulgaris:* partial degradation of enzyme subunits *in vitro* and *in vivo*. Biochim. Biophys. Acta 881:210-221.

Boudet, A., Ranjeva, R. and Gadal, P. (1971) Propriétés allostériques spécifiques des deux isoenzymes de la phénylalanine-ammoniaque lyase chez *Quercus pedunculata*. Phytochemistry 10:997-1005.

Bradford, M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.

Braus, C.H. (1991) Aromatic amino acid biosynthesis in the yeast *Saccharomyces cerevisiae*: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol. Rev. 55:349-370.

Camm, E.L. and Towers, G.H.N. (1973) Review article: Phenylalanine ammonia-lyase. Phytochemistry 12:961-973.

Campbell, I.M., Gallo, M.A., Jones, C.A., LaSitis, P.R. and Rosato, L. M. (1987) Role of cinnamate in benzoate production in *Penicillium brevicompactum*. Phytochemistry 26:1413-1415.

Campbell, M.M. (1991) Elicited phenylpropanoid metabolism in pine cell cultures. Ph.D. Thesis, Univ. of Guelph, Canada.

Campbell, M.M. and Ellis, B.E. (1992) Fungal elicitor-mediated responses in pine cell cultures: III Purification and characterization of phenylalanine ammonia-lyase. Plant Physiol. 98:62-70.

Chappell, J., Hahlbrock, K. and Boller, T. (1984) Rapid induction of ethylene biosynthesis in cultured parsley *Petroselinum hortense* cells by fungal elicitor and its relationship to the induction of phenylalanine ammonia-lyase. Planta 161:475-480.

بور

Chappell, J. and Hahlbrock (1984) Transcription of plant defense genes in response to UV light or fungal elicitor. Nature 31:76-78.

Christensen, J.J. (1963). Corn smut caused by *Ustilago maydis*. American Phytopathological Society Monograph, No. 2. Saint Paul. pp. 41.

Consevage, M.W. and Phillips, A.T. (1985) Presence and quantity of dehydroalanine in histidine ammonia-lyase from *Pseudomonas putida*. Biochemistry 24: 301-308.

Cramer, C.L., Edwards, K., Dron, M., Liang, X., Dildine, S.L., Bolwell, G.P., Dixon, R.A., Lamb, C.J. and Schuch, W. (1989) Phenylalanine ammonia-lyase gene organization and structure. Plant Mol. Biol. 12:367-383.

Cramer, C.L., Ryder, T.B., Bell, J.N. and Lamb, C.J. (1985) Rapid switching of plant gene expression induced by fungal elicitor. Science 227:1240-1242.

Czichi, U. and Kindl, H. (1975) Formation of *p*-coumaric acid and *o*-coumaric acid from Lphenylalanine by microsomal membrane fractions from potato: evidence of membranebound enzyme complexes. Planta 125:115-125.

Da Costa e Silva, O., Klein, L., Schmelzer, E., Trezzini, G.F. and Hahlbrock, K. (1993) BPF-1, a pathogen-induced DNA-binding protein involved in the plant defense response. Plant Journal 4:125-135.

Dahiya, J.S. (1993) Isolation and chalacterization of phenylalanine ammonia-lyase enzyme from the fungus *Leptosphaeria maculans*. Indian J. Exp. Biol. 31:874-877.

Dalkin, K., Jorrin, J. and Dixon, R.A. (1990) Stress response in alfalfa (*Medicago sativa* L.): VII. Induction of defense-related messenger RNAs in elicitor-treated cell suspension cultures. Physiol. Mol. Plant Pathol. 37:293-308.

Dangl, J.L., Hauffe, K.D., Lipphardt, S., Hahlbrock, K. and Scheel, D. (1987) Parsley protoplasts retain differential responsiveness to u.v. light and fungal elicitor. EMBO J. 6:2551-2556.

Day, P.R., Anagnostakis, S.L. and Puhalla, J.E. (1971) Pathogenicity resulting from mutation at the b locus of *Ustilago maydis*. Proc. Natl. Acad. Sci. USA 68:533-535.

D'Cunha, G.B., Satyanarayan, V. and Nair, P.M. (1996) Purification of phenylalanine ammonia-lyase fron *Rhodotorula glutinis*. Phytochemistry 42:17-20.

Diallinas, G. and Kanellis, A.K. (1994) A phenylalanine ammonia-lyase gene from melon fruit: cDNA cloning, sequence and expression in response to development and wounding. Plant Mol. Biol. 26:473-479.

Dixon, R.A. and Lamb, C. (1990) Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:339-369.

Dron, M, Clouse, S.D., Dixon, R.A., Lawton, M.A. and Lamb, C.J. (1988) Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts. Proc. Natl. Acad. Sci. USA 85:6738-6742.

Dubery, I.A. and Smit, F. (1994) Phenylalanine ammonia-lyase from cotton (*Gossypium hirsutum*) hypocotyls: properties of the enzyme induced by a *Verticillium dahliae* phytotoxin. Biochim. Biophys. Acta 1207:24-30.

Duke, S.O. and Naylor, A.W. (1976) Light control of anthocyanin biosynthesis in *Zea* seedlings. Physiol. Plant. 37:62-68.

Ecker, J.R. and Davis, R.W. (1987) Plant defense genes are regulated by ethylene. Proc. Natl. Acad. Sci. USA 84:5202-5206.

Edwards, K., Cramer, C.L., Bolwell, G.P., Dixon, R.A., Schuch, W. and Lamb, C.J. (1985) Rapid transient induction of phenylalanine ammonia-lyase mRNA in elicitor-treated bean cells. Proc. Natl. Acad. Sci. USA 82:6731-6735.

Emes, A.V. and Vining, L.C. (1970) Partial purification and properties of L-phenylalanine ammonia-lyase from *Streptomyces verticillatus*. Can. J. Biochem. 48:613-622.

Farrendorf, W., Ni.T., Ballance, G.M., Lamb, C.J. and Dixon, R.A. (1996) Stress responses in alfalfa (*Medicago sativa* L.). XX. Transcriptional activation of phenylpropanoid pathway genes in elicitor-induced cell suspension cultures. Plant Mol. Biol. 30:427-438.

Feigelson, M. (1973) Multihormonal regulation of hepatic histidase during postnatal development. Enzyme 15:169-197.

Filpula, D., Vaslet, C.A., Levy, A., Sykes, A. and Strausberg, R.L. (1988) Nucleotide sequence of gene for phenylalanine ammonia-lyase from *Rhodotorula rubra*. Nucleic Acids Res. 16:11381

French, C.J., Smith, H. (1975) An inactivator of phenylalanine ammonia-lyase from gherkin hypocotyls. Phytochemistry 14:963-966.

Friend, J. (1981) Plant phenolics, lignification and plant disease. Prog. Phytochem. 7:197-261.

Fritz, R.R., Hodgins, D.S. and Abell, C.W. (1976) Phenylalanine ammonia-lyase; induction and purification from yeast and clearance in mammals. J. Biol. Chem. 251:4646-4650.

Fritzemeier, K.H., Cretin, C., Kombrink, E., Rohwer, F., Taylor, J., Scheel, D. and Hahlbrock, K. (1987) Transient induction of phenylalanine ammonia-lyase and 4-coumarate coenzyme A ligase messenger RNA in potato leaves infected with virulent or avirulent races of *Phytophthora infestans*. Plant Physiol. 85:34-41.

Gilbert , H.J., Clarke, I.N., Gibson, R.K., Stephenson, J.R. and Tully, M. (1985) Molecular cloning of the phenylalanine ammonia lyase gene from *Rhodosporidium toruloides* in *Escherichia coli* K-12. J. Bacteriol. 161:314-320.

Gilbert, H.J., Stephenson, J.R. and Tully,M.J. (1983) Control of synthesis of functional mRNA coding for phenylalanine ammonia-lyase from *Rhodospondium toruloides*. J. Bacteriol. 153:1147-1154.

Gilbert, H.J. and Tully, M. (1982) Synthesis and degradation of phenylalanine ammonialyase of *Rhodosporidium toruloides*. J. Bacteriol. 150:498-505.

Gillissen, B., Bergemann, J., Sandmann, C., Schroeer, B., Bolker, M. and Kahmann, R. (1992) A two-component regulatory system for self/nonself recognition in *Ustilago maydis*. Cell 68:647-657.

Giuseppe, P. (1992) Melanins and melanogenesis. pp. 1-13. Academic Press, New York.

Given, N.K., Venis, M.A. and Grierson, D. (1988) Purification and properties of phenylalanine ammonia-lyase from strawberry fruit and its synthesis during ripening. J. Plant Physiol. 133:31-37.

Gold, S., Duncan, G. Barrett, K. and Kronstad, J. (1994a) cAMP regulates morphogenesis in the fungal pathogen *Ustilago maydis*. Gene and Development 8:2805-2816.

Gold, S.E., Bakkerren, G., Davies, J.E. and Kronstad, J.W. (1994b) Three selectable markers for transformation of *Ustilago maydis*. Gene 142:225-230.

Gowri, G., Paiva, N.L. and Dixon, R.A. (1991) Stress responses in alfalfa (*Medicago sativa* L.) 12. Sequence analysis of phenylalanine ammonia-lyase (PAL) cDNA clones and appearance of *PAL* transcripts in elicitor-treated cell cultures and developing plants. Plant Mol. Biol. 17:415-429.

Green, N.E., Hadwiger, L.A. and Graham, S. (1975) Phenylalanine ammonia-lyase, tyrosine ammonia-lyase, and lignin in wheat inoculated with *Erysiphe graminis* f. sp. *tritici*. Phytopathology 65:1071-1074.

Griffins, D.H. (1994) Fungal physiology. p. 261. Wiley-Less, Toronto.

Griffin, G.J. (1970a) Carbon and nitrogen requirements for macroconidial germination of *Fusarium solani*: Dependence on conidial density. Can. J. Microbiol. 16:733-740.

Griffin, G.J. (1970b) Exogenous carbon and nitrogen requirements for chlamydospore germination by *Fusarium solani* : Dependence on spore density. Can. J. Microbiol. 16:1366-1368.

Grisebach, H. and Ebel, J. (1978) Phytoalexins, chemical defense substances of higher plants? Angew. Chem. Int. Ed. Engl. 17:635-647.

Gupta, S.C. and Creasy, L.L. (1984) The preparation and activity of a phenylalanine ammonia-lyase inactivator from sunflower leaves. Physiol. Plant 62:260-264.

Haga, M., Haruyama, T., Kano, H., Sekizawa, Y., Urushizaki, S. and Matsumoto, K. (1988) Dependence on ethylene of the induction of phenylalanine ammonia-lyase activity in rice leaf infected with blast fungus. Agri. Biol. Chem. 52:943-950.

Froeliger, E.H. and Kronstad, J.W. (1990) Mating and pathogenesis in *Ustilago maydis*. Dev. Biol. 1:185-193.

Hahlbrock, K. and Ragg, H. (1975) Light-induced changes of enzyme activities in parsley cell suspension cultures. Effects of inhibitors of RNA and protein synthesis. Arch. Biochem. Biophys. 166:41-46.

Hahlbrock, K. and Scheel, D. (1989) Physiology and molecular biology of phenylpropanoid metabolism. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40:347-369.

Hahlbrock, K. and Schröder, J. (1975) Light-induced changes of enzyme activities in parsley cell suspension cultures. Increased rate of synthesis of phenylalanine ammonialyase. Arch. Biochem. Biophys. 166:47-53.

Hamilton, B.K., Hsiao, H.-Y., Swann, W.E., Anderson, D.M. and Delent, J.J. (1985) Manufacture of L-amino acids with bioreactors. Trends Biotechnol. 3:64-68.

Hanson, K.R. and Havir, E.A. (1970) L-Phenylalanine ammonia-lyase. IV. Evidence that the prosthetic group contains a dehydroalanyl residue and mechanism of action. Arch. Biochem. Biophys. 141:1

Hanson, K.R. and Havir, E.R. (1972) The enzymic elimination of ammonia. In: The enzymes, ed by Boyer, P.D., pp. 75-166. Academic Press, New York.

Hanson, K.R. and Havir, E.A. (1981) Phenylalanine ammonia-lyase. In: Biochemistry of plants Vol. 7, Ed by Conn, E.E. and Stumpf, P.K., pp. 577-625. Academic Press, New York.

Hao, Z., Charles, D., Yu, L. and Simon, J.E. (1996) Purification and characterization of a phenylalanine ammonia-lyase from *Ocimum basilicum*. Phytochemistry 43:735-739.

Harlow, E. and Lane, D. (1988) Antibodies, a laboratory mannual. Cold Spring Harbor Laboratory, New York.

Hatton, D., Sablowski, R., Yung, M.-H., Smith, C., Schuch, W. and Bevan M. (1995) Two classes of *cis* sequences contribute to tissue-specific expression of a *PAL2* promoter in transgenic tobacco. Plant Journal 7:859-876.

Hatton, D., Smith, C. and Bevan M. (1996) Tissue-specific expression of the *PAL3* promoter requires the interaction of two conserved *cis* sequences. Plant Mol. Biol. 31:393-397.

Havir, E.A. (1979) L-phenylalanine ammonia-lyase. Binding of polysaccharide by the enzyme from maize. Plant Science Lett. 16:297-304.

Havir, E.A. and Hanson, K.R. (1973) L-phenylalanine ammonia-lyase (maize and potato); evidence that the enzyme is composed of four subunits. Biochemistry 12:1583-1591.

Havir, E.A. and Hanson, K.R. (1975) L-Phenylalanine Ammonia-lyase (Maize, Potato, and *Rhodotorula glutinis*). Studies of the prosthetic group with nitromethane. Biochemistry 14:1620-1626.

Herman, R.P., Luchini, M.M., Martinez, Y.M., Herman, C.A. and Garcia, A.D. (1990) Cycle nucleotides modulate lipoxygenase activity and reproduction in oomycetes. Exp. Mycol. 14:322-330.

Hernandez, D. and Phillips, A.T. (1994) Ser-143 is an essential active site residue in histidine ammonia-lyase of *Pseudomonas putida*. Biochem. Biophys. Res. Comm. 201:1443-1438.

Hernandez, D., Stroh, J.G. and Phillips, A.T. (1993) Identification of Ser¹⁴³ as the site of modification on the active site of histidine ammonia-lyase. Arch. Biochem. Biophys. 307:126-132.

Hijwegen, T. (1963) Lignification, a possible mechanism of active resistance against pathogens. Neth J. Plant Pathol. 69:314-317.

Hodgins, D.S. (1971) Yeast phenylalanine ammonia-lyase: Purification, properties, and the identification of catalytically essential dehydroalanine. J. Biol. Chem. 246:2977-2985.

Holliday, R. (1974) Handbook of Genetics. Ed by King, R.C., p. 575. Plenum, New York.

Holloman, W.K. and Dekker, C.A. (1971) Control by cesium and intermediates of the citric acid cycle of extracellular ribonuclease and other enzymes involved in the assimilation of nitrogen. Proc. Natl. Acad. Sci. 68:2241-2245.

Hoskins, J.A., Jack, G.W., Wade, H.E., Peiris, R.J.D., Wright, E.C., Starr, D.J.T. and Stern, J. (1980) Enzymatic control of phenylalanine intake on phenylketonuria. Lancet 23:392-394.

Hrazdina, G. and Jensen, R.A. (1992) Spatial organization of enzymes in plant metabolic pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:241-267.

Huang, Y. and McBeath J.H. (1994) Bacterial induced activation of an *Arabidopsis* phenylalanine ammonia-lyase promoter in transgenic tobacco plants. Plant Science 98:25-35.

Hughes, R.K. and Dickerson, A.G. (1989) The effect of ethylene on phenylalanine ammonia-lyase (PAL) induction by a fungal elicitor in *Phaseolus vulgaris*. Physiol. Mol. Plant Pathol. 43:361-378.

Hughes, R.K. and Dickerson, A.G. (1990) Auxin regulation of the response of *Phaseolus vulgaris* to a fungal elicitor. Plant Cell Physiol. 31:667-676

Innerarity, L.T., Smith, E.C. and Wender, S.H. (1972) Indoleacetic acid inhibition of a phenylalanine ammonia-lyase preparation from suspension cultures of WR-132 tobacco. Phytochemistry 11:83-88.

Ish-Horowicz, D. and Burke, J.F. (1981) Rapid and efficient cosmid cloning. Nucleic Acids Res. 9:2989-2998.

Jangaard, N.O. (1974) The characterization of phenylalanine ammonia-lyase from several plant species. Phytochemistry 13:1765-1768.

Jensen, R.A. (1986) The shikimic acid pathway. p. 57. Plenum, New York.

Johnston, A. and Thorpe, R. (1982) Immunochemistry in Practice. p. 44. Blackwell Scientific Publications, Oxford.

Jones, D.H. (1984) Phenylalanine ammonia-lyase: regulation of its induction and its role in plant development. Phytochemistry 23:1349-1359.

Joos, H.J. and Halhbrock, K. (1992) Phenylalanine ammonia-lyase in potato (*Solanum tuberosum* L.): Genomic complexity, structural comparison of two selected genes, and modes of expression. Eur. J. Biochem. 204:621-629.

Jorrin, J. and Dixon, R.A. (1990) Stress reponses in alfalfa (*Medicago sativa* L.). Il Purification, characterization, and induction of phenylalanine ammonia-lyase isoforms from elicitor-treated cell suspension cultures. Plant Physiol. 92:447-455.

Jorrin, J., Lopez-Valbuena, R. and Tena, M. (1988) Purification and properties of phenylalanine ammonia-lyase from sunflower (*Helianthus annuus* L.) hypocotyls. Biochim. Biophys. Acta 964:73-82.

Kalghatgi, K.K., Nambudiri, A.M.D., Bhat, J.V. and Subba Rao, P.V. (1974) Degradation of L-phenylalanine by *Rhizoctonia solani*. Indian J. Biochem. Biophys. 11:116-118.

Kalghatgi, K.K. and Subba Rao, P.V. (1975) Microbial L-phenylalanine ammonia-lyase purification, subunit structure and kinetic properties of the enzyme from *Rhizoctonia solani*. Biochem. J. 149:65-72.

Kalghatgi, K.K. and Subba Rao, P.V. (1976) Regulation of L-phenylalanine ammonialyase from *Rhizoctonia solani*. J. Bacteriol. 126:568-578.

Kamel, M.Y. and Maksoud, S.A. (1978) Co-factor requirements and factors affecting Lhistidine ammonia-lyase activity in *Vicia faba*. Z. Pflanzenphysiol. Bd. 88:255-262.

Kane, J.F. and Fiske M. J. (1984) Regulation of phenylalanine ammonia lyase in *Rhodotorula glutinis.* J. Bacteriol. 160:963-966.

Kaufman, S., Holtzman. N.A., Milstein, S., Butler, I.J. and Krumholz, A. (1975) Phenylketonuria due to a deficiency of dihydrobiopterin reductase. New Eng. J. Medicine 293:785-790.

Kaufman, S., Berlow, S., Summer, G.K., Milstein, S., Schulmann, J.D., Orloff, S., Spielberg, S. and Pueschel, S. (1978) Hyperphenylalaninemia due to a deficiency of biopterin. New Eng. J. Medicine 299:673-679.

Klausner, A. (1985) Building for success in phenylalanine. Bio/Technology 3:301-307.

Koukol, J. and Conn, E.E. (1961) The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of *Hordeum vulgare*. J. Biol. Chem. 236:2692-2698.

Kronstad, J.W. and Leong, S.A. (1990) The *b* mating-type locus of *Ustilago maydis* contains variable and constant regions. Genes Dev. 4:1384-1395.

Kronstad, J.W., Wang, J., Covert, S.F., Holden, D.W., Mcknight, G.L. and Leong, S.A. (1989) Isolation of metabolic genes and demonstration of gene disruption in the phytopathogenic fungus *Ustilago maydis*. Gene 79:97-106.

Kubasek, W.L., Shirley, B.W., McKillop, A., Goodman, H.M., Briggs, W. and Ausubel, F.M. (1992) Regulation of flavonoid biosynthetic genes in germinating *Arabidopsis* seedlings. Plant Cell 4:1229-1236.

Kuo, M.J. and Alexander, M. (1967) Inhibition of the lysis of fungi by melanins. J. Bacteriol. 94: 624-629.

Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680-685.

Lam, M.L. (1995) Phenylalanine ammonia-lyase (EC 4.3.1.5) from *Pinus banksiana*: partial cDNA cloning and effect of exogenously supplied *trans*-cinnamic acid on elicitor-inducible expression. M.Sc. Thesis, University of British Columbia, Canada.

Lamartiniere, C.A. (1979) Neonatal estrogen treatment alters sexual differentiation of hepatic histidase. Endocrinology 105:1031-1035.

Lamb, C.J., Lawton, M.A., Dron, M. and Dixon, R.A. (1989) Signals and transduction mechanisms for activation of plant defense against microbial attack. Cell 56:215-224.

Langer, M., Reck, G., Reed, J. and Retey, J. (1994) Identification of serine-143 as the most likely precursor of dehydroalanine in the active site of histidine ammonia-lyase. A study of the overexpressed enzyme by site-directed mutagenesis. Biochemistry 33:6462-6467.

Lawton, M.A., Dixon, R.A., Hahlbrock, K. and Lamb, C.J. (1983) Rapid induction of phenylalanine ammonia-lyase and of chalcone synthase in elicitor-treated plant cells. Eur. J. Biochem. 129:593-601.

Lawton, M.A. and Lamb, C.J. (1987) Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Mol. Cell. Biol. 7:335-341.

Lee, S.W., Robb, J. and Nazar, R.N. (1992) Truncated phenylalanine ammonia-lyase expression in tomato (*Lycopersicon esculentum*). J. Biol. Chem. 267:11824-11829.

Leyva, A., Liang, X., Pintor-Toro, J.A., Dixon, R.A. and Lamb, C.J. (1992) *Cis*-element combinations determine phenylalanine ammonia-lyase gene tissue-specific expression patterns. Plant Cell 4:263-271.

Lewis, C.M. and Fincham, J.R.S. (1970) Regulation of nitrate reductase in the basidiomycete *Ustilago maydis*. J. Bacteriol. 103:55-61.

Liang, X., Dron, M., Schmid, J., Dixon, R.A. and Lamb, C.J. (1989) Developmental and environmental regulation of a phenylalanine ammonia-lyase-beta-glucuronidase gene fusion in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 86:9284-9288.

Lingappa, B.T. and Lingappa, Y. (1965) Effects of nutrients on self-inhibition of germination of conidia of *Glomerella cingulata*. J. Gen. Microbiol. 41:67-75.

Loake, G.J., Faktor, O., Lamb, C.J. Dixon, R.A. (1992) Combination of H-box [CCTACC(N)7CT] and G-box (CACGTG) *cis*-elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate *p*-coumaric acid. Proc. Natl. Acad. Sci. USA 89:9230-9234.

Logemann, J., Parniske, M. and Hahlbrock, K. (1995) Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proc. Natl. Acad. Sci. USA 92:5905-5909.

Lois, R., Dietrich, A., Hahlbrock, K. and Schulz, W. (1989) A phenylalanine ammonialyase gene from parsley: structure, regulation, and identification of elicitor and lightresponsive *cis*-acting elements. EMBO J. 8:1641-1648. Lois, R. and Hahlbrock, K. (1992) Differential wound activation of members of the phenylalanine ammonia-lyase and 4-coumarate CoA ligase gene families in various organs of parsley plants. Zeitschrift Fuer Naturforschung Section C Biosciences 47(1-2): 90-94.

Macko, V., Staples, R.C. Allen, P.J. and Renwick , J.A.A. (1971) Identification of the germination self-inhibitor from wheat stem rust uredospores. Science 173:835-836.

Macko, V., Staples, R.C., Gershon, H.G. and Renwick, J.A.A. (1970) Self-inhibitor of bean rust uredospores: Methyl 3,4-dimethoxycinnamate. Science 170:539-540.

Malamy, J., Carr, J.P., Klessig, D.F. and Raskin, I. (1990) Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002-1004.

Mann, J. (1987) Secondary metabolism. pp. 214-239. Clarendon Press, Oxford.

Martin, L. (1972) Secondary metabolism in plants and animals. pp 317-318. Academic Press, New York.

Marusich, W.C., Jesen, R.A. and Zamir, L.O. (1981) Induction of L-phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source in *Rhodotorula glutinis*. J. Bacteriol. 146:1013-1019.

Mckegney, G.R., Butland, S.L., Theilmann, D. and Ellis, B.E. (1996) Expression of poplar phenylalanine ammonia-lyase in insect cell cultures. Phytochemistry 41:1259-1263.

Messner, B., Boll, M. and Berndt, J. (1991) L-phenylalanine ammonia-lyase in suspension culture cells of spruce (*Picea abies*): Induction by UV-light and fungal elicitor. Plant Cell, Tissue, and Organ Culture 27:267-274.

Minami, E., Ozeki, Y., Matsuoka, M., Koizuka, N., Tanaka, Y. (1989) Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants. Eur. J. Biochem. 185:19-25.

Minamikawa, T. and Uritani, I. (1965) Phenylalanine ammonia-lyase in sliced sweet potato roots. J. Biochem. 57:678-688.

Moerschbacher, B.M., Noll, U.M., Flott, B.E. and Reisener, H-J. (1988) Lignin biosynthetic enzymes in stem rust infected, resistant and susceptible near-isogenic wheat lines. Physiol. Mol. Plant Pathol. 33:33-46.

Moniz de Sa, M., Subramaniam, R., Williams, F.E. and Douglas, C.J. (1992) Rapid activation of phenylpropanoid metabolism in elicitor-treated hybrid poplar (*Populus trichocarpa* Torr. & Gray x *Populus deltoides* Marsh) suspension-cultured cells. Plant Physiol. 98 :728-737.

Moore, K., Subba Rao, P.V. and Towers G.H.N. (1967) Degradation of phenylalanine and tyrosine by basidiomycetes. Life Sciences 6:2629-2633.

Moore, K., Subba Rao, P.V. and Towers, G.H.N. (1968) Degradation of phenylalanine and tyrosine by *Sporobolomyces roseus*. Biochem. J. 106:507-514.

Moore, K. and Towers, G.H.N. (1967) Degradation of aromatic amino acids by fungi. I. Fate of L-phrenylalanine in *Schizophyllum commune*. Can. J. Biochem. 45:1659-1665.

Nagai, N., Kojima, Y., Shimosaka, M. and Okazaki, M. (1988) Effect of kinetin on L-phenylalanine ammonia-lyase activity in tobacco cell culture. Agri. Biol. Chem. 52:2617-2619.

Nambudiri, A.M.D., Subba Rao, P.V. and Bhat, J.V. (1970) Metabolism of aromatic compounds by an *Alternaria* species. Phytochemistry 9:687-693.

Nari, J., Mouttet, F., Fouchier, F. and Ricard, J. (1974) Subunit interactions in enzyme catalysis. Eur. J. Biochem. 41:499-515.

Nari, J., Mouttet, F., Pinna, M.H. and Ricard, J. (1972) Some physico-chemical properties of phenylalanine ammonia-lyase of wheat seedlings. FEBS Lett. 23:220-224.

Navarre, D.A. (1990) Phytohormone production, auxin biosynthesis and electrophoretic karyotypes for *Ustilago maydis* and other smuts. M.Sc. Thesis, Louisiana State University, USA.

Neish, A.C. (1960) Biosynthetic pathway of aromatic compounds. Annu. Rev. Plant Physiol. 11:55-80.

Neumann, G., El-Aschker, A. and Schwemmle, B. (1991) L-Phenylalanine ammonialyase and chalcone synthase in seedlings of *Oenothera*: Plasmotype dependent regulation and tissue specific distribution. J. Plant Physiol. 138:263-269.

Neumann, G. and Schwemmle, B. (1993) Flavonoids from *Oenothera* seedlings: identification and extranuclear control of their synthesis. J. Plant Physiol. 142:135-143.

Ogata, K., Uchiyama, K. and Yamada, Y. (1967) Metabolism of aromatic amino acid in microorganisms. I. Formation of cinnamic acid from phenylalanine. Agri. Biol. Chem. 31:200-206.

Ohmiya, Y., Hayashi, H., Kondo, T. and Kondo, Y. (1990) Location of dehydroalanine residues in the amino acid sequence of bovine thyroglobulin. J. Biol. Chem. 265:9066-9017.

Ohl, S., Hedrick, S.A., Chory, J., and Lamb, C.J. (1990) Functional properties of a phenylalanine ammonia-lyase promoter from *Arabidopsis*. Plant Cell 2:837-848.

O'Neal, D. and Keller, C.J. (1970) Purification and some properties of alanine ammonialyase of tobacco (*Nicotoana tabacum*). Phytochemistry 9:1373-1383. Orr, J.D., Edwards, R. and Dixon, R.A. (1993) Stress responses in alfalfa (*Medicago sativa* L.) XIV. Changes in the levels of phenylpropanoid pathway intermediats in relation to regulation of L-phenylalanine ammonia-lyase in elicitor-treated cell-suspension cultures. Plant Physiol. 101:847-856.

Orth, A.B., Rzhetskaya, M., Pell, E.J. and Tien, M. (1995) A serine (threonine) protein kinase confers fungicide resistance in the phytopathogenic fungus *Ustilago maydis*. Appl. Envir. Microbiol. 61:2341-2345.

Orum, H. and Rasmussen, O.F. (1992) Expression in *E. coli* of the gene encoding phenylalanine ammonia-lyase from *Rhodosporidium toruloides*. Appl. Microbiol. Biotechnol. 36:745-748.

Osakabe, Y., Ohtsubo, Y., Kawai, S., Katayama, Y. and Morohoshi, N. (1995) Structure and tissue-specific expression of genes for phenylalanine ammonia-lyase from a hybrid aspen, *Populus kitakamiensis*. Plant Science 105 :217-226.

Pall, M. L. (1981) Adenosine 3', 5'-phosphate in fungi. Microbiol. Rev. 45:462-480.

Pascholati, S.F., Heim, D. and Nicholson, R.L. (1985) Phenylalanine ammonia-lyase and susceptibility of the maize mesocotyl to *Helminthosporium maydis*. Physiol. Plant Pathol. 25:345-356.

Parkhurst, J.R. and Hodgins, D.S. (1971) Phenylalanine and tyrosine ammonia-lyase activity in *Sporobolomyces pararoseus*. Phytochemistry 10:2997-3000.

Parkhurst, J.R. and Hodgins, D.S. (1972) Yeast phenylalanine ammonia-lyase, properties of the enzyme from *Sporobolomyces pararoseus* and its catalytic site. Arch. Biochem. Biophys. 152:597-605.

Pellegrini, L., Rohfritsch, O., Fritig, B. and Legrand, M. (1994) Phenylalanine ammonialyase in tobacco. Molecular cloning and gene expression during the hypersensitive reaction to tobacco mosaic virus and the response to a fungal elicitor. Plant Physiol. 106:877-886.

Piattelli, M., Fattorusso, E., Nicolaus, R.A. and Magno, S. (1965) The structure of melanins and melanogenesis. Tetrahedron 21:3229-3236.

Polak, A. (1989) Melanin as a virulence factor in pathogenic fungi. Mycoses 33:215-224.

Polkinghorne, M.A. and Hynes, M.J. (1982) L-Histidine utilization in *Aspergillus nidulans*. J. Bacteriol. :931-940.

Power, D.M., Towers, G.H.N. and Neish A.C. (1965) Biosynthesis of phenolic acids by certain wood-destroying basidiomycetes. Can. J. Biochem. 43:1397-1407.

Preisig, C.L., Van Etten, H.D. and Moreau, R.A. (1991) Induction of 6a-hydroxymaackiain 3-O-methyltransferase and phenylalanine ammonia-lyase messenger RNA translational activities during the biosynthesis of pisatin. Arch. Biochem. Biophys. 290:468-473.

Pridham, J.B. and Woodhead, S. (1974) Multimolecular forms of phenylalanine ammonia-lyase in *Alternaria*. Biochem. Soc. Trans. 2:1070-1072.

Pridham, J.B. and Woodhead, S. (1977) The biosynthesis of melanin in *Alternaria*. Phytochemistry 16:903-906.

Pritchard, N.J. and Bell, A.A. (1967) Relative activity of germination inhibitors from spores of rust and smut fungi. Phytopathology 57:932-934.

Puhalla, J.E. (1968) Compatibility reaction on solid medium and interstrain inhibition in *Ustilago maydis*. Genetics 60:461-474.

Puhalla, J.E. (1969) The formation of diploids of *Ustilago maydis* on agar medium. Phytopathology 59:1771-1772.

Rechler, M.M. and Tabor, H. (1969) The purification and characterization of L-histidine ammonia-lyase. J. Biol. Chem 244:551-559.

Recsei, P. and Snell, E.E. (1984) Pyruvyl enzymes. Annu. Rev. Biochem. 53:357-387.

Reid, P.D., Havir, E.A. and Marsh, H.V. Jr. (1972) L-Phenylalanine ammonia-lyase (Maize). Partial purification and response to gibberellic acid and cycloheximide of L-phenylalanine and L-tyrosine ammonia-lyase activities. Plant Physiol. 50:480-484.

Ride, J.P. (1983) Cell walls and other structural barriers in defence. In: Biochemical Plant Pathology, ed. by J.A. Callow. pp. 215-236. John Wiley and Sons, Chichester.

Ritenour, M.A. and Saltveit, M.E. (1996) Identification of a phenylalanine ammonia-lyase inactivating factor in harvested head lettuce *(Lactuca sativa)*. Physiol. Plant. 97:327-331.

Robertson, E.F., Dannelly, H.K., Malloy, P.J. and Reeves, H.C. (1987) Rapid isoelectric focusing in a vertical polyacrylamide minigel system. Anal. Biochem. 167:290-294.

Rohwer, F., Fritzemeier, K.-H., Scheel, D. and Hahlbrock, K. (1987) Biochemical reactions of different tissues of potato (*Solanum tuberosum*) to zoospores or elicitors from *Phytophthora infestans*. Planta 170:556-567.

Rösler, J., Krekel, F., Amrhein, N. and Schmid, J. (1997) Maize phenylalanine ammonialyase has tyrosine ammonia-lyase activity. Plant Physiol. 113:175-179.

Rowell, J.B. and DeVay, J.E. (1954) Genetics of *Ustilago zeae* in relation to basic problems of its pathogenicity. Phytopathology 44:356-362.

Ruis, H. and Kindl, H. (1970) Distribution of ammonia-lyases in organelles of castor bean endosperm. Hoppe-Seyler's Physiol. Chem. 351:1425-1427.

Ruis, H. and Kindl, H. (1971) Formation of α , β -unsaturated carboxylic acids from amino acids in plant peroxisomes. Phytochemistry 10:2627-2631.

Saier, M.H.Jr. (1991) A multiplicity of potential carbon catabolite repression mechanisms in prokaryotic and eukaryotic microorganisms. New Biologist 3:1137-1147.

Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular cloning: A laboratory manual. Second edition. Cold spring Harbor Laboratory Press, New York.

Schmelzer, E., Krüger-Lebus, S. and Hahlbrock, K. (1989) Temporal and spatial patterns of gene expression around sites of attempted fungal infection in parsley leaves. Plant Cell 1:993-1001.

Schmelzer, E., Somssich, I. and Hahlbrock, K. (1985) Coordinated changes in transcription and translation rates of phenylalanine ammonia-lyase and 4-coumarate:CoA ligase mRNAs in elicitor-treated *Petroselinum crispum* cells. Plant Cell Rep. 4:293-296.

Schmid, J. and Amrhein, N. (1995) Molecular organization of the shikimate pathway in higher plants. Phytochemistry 39:737-749.

Schomburg, D. and Salzmann, M. (1990) Class 4: Lyases, Phenylalanine ammonia-lyase in Enzyme Handbook 1, Springer-Verlag, Berlin, Heidelberg.

Schröder, J., Kreuzaler, F., Schafer, E. and Hahlbrock, K. (1979) Concominant induction of phenylalanine ammonia-lyase and flavanone synthase mRNAs in irradiated plant cells. J. Biol. Chem. 254:57-65.

Schulz, B., Banuett, F., Dahl, M., Schlesinger, R., Schafer, W., Martin, T., Herskowitz, I. and Kahmann, R. (1990) The *b* alleles of *U. maydis*, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60:295-306.

Schulz, W., Eiben, H.-G. and Hahlbrock, K. (1989) Expression in *Escherichia coli* of catalytically active phenylalanine ammonia-lyase from parsley. FEBS Lett. 258:335-338.

Schulze-Lefert, P., Dang, J.L., Berker-Andre, M., Hahlbrock, K. and Schulz, W. (1989) Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J. 13:128-137.

Schuster, B. and Retey, J. (1994) Serine-202 is the putative precursor of the active site dehydroalanine of phenylalanine ammonia-lyase. Site-directed mutagenesis studies on the enzyme from parsley (*Petroselinum crispum* L.) FEBS Lett. 349:2562-254.

Schuster, B. and Retey, J. (1995) The mechanism of action of phenylalanine ammonialyase: the role of prosthetic dehydroalanine. Proc. Natl. Acad. Sci. USA 92:8433-8437.

Scott, D.A, Hammond, P.M., Brearley, G.M. and Price, C.P. (1992). Identification by highperformance liquid chromatography of tyrosine ammonia-lyase activity in purified fractions of *Pheseolus vulgaris* phenylalanine ammonia-lyase. J. Chromatography 573:309-312.

Sederoff, R., Campbell, M., O'Malley, D. and Whetten, R. (1994) Genetic regulation of lignin biosynthesis and the potential modification of wood by genetic engineering in loblolly pine. In: Recent advances in phytochemistry vol. 28-Genetic Engineering of Plant Secondary Metabolism, ed by Ellis, B.E., Kuroki, G.W., and Stafford, H.A., pp. 313-355. Plenum Press, New York and London.

Shaw, N.M., Bolwell, G.P. and Smith, C. (1990) Wound-induced phenylalanine ammonialyase in potato (*Solanum tuberosum*) tuber discs. Biochem. J. 267:163-170.

Sherwood, R.T. and Vance, C.P. (1980) Resistance to fungal penetration in gramineae. Phytopathology 70:273-279.

Shufflebottom, D., Edwards, K., Schuch, W. and Bevan, M. (1993) Transcription of two members of a gene family encoding phenylalanine ammonia-lyase leads to remarkably different cell specificities and induction patterns. Plant J. 3(6):835-845.

Sikora, L.A. and Marzluf, G.A. (1982) Regulation of L-phenylalanine ammonia-lyase by L-phenylalanine and nitrogen in *Neurospora crassa.* J. Bacteriol. 150:1287-1291.

Smith, C.G., Rodgers, M.W., Zimmerlin, A., Ferdinando, D. and Bolwell, G.P. (1994) Tissue and subcellular immunolocalization of enzymes of lignin synthesis in differentiating and wounded hypocotyl tissue of French bean (*Phaseolus vulgaris* L.). Planta 192: 155-164.

Stith, W.J., Hodgins, D.S. and Abell, C.W. (1973) Effects of phenylalanine ammonialyase and phenylalanine deprivation on murine leukemic lymphoblasts *in vitro*. Cancer Res. 33:966-971.

Subba Rao, P.V., Moore, K. and Towers, G.H.N. (1967) Degradation of aromatic amino acid by fungi. 2. Purification and properties of phenylalanine ammonia-lyase from *Ustilago hordei.* Can. J. Biochem. 45:1863-1872.

Tan, S.C. (1980) Phenylalanine ammonia-lyase and the phenylalanine ammonia-lyase inactivating system: Effect of light, temperature, and mineral deficiencies. Austral. J. Plant Physiol. 7:169-167.

Tanaka, Y., Matsushita, K. and Uritani, I. (1977) Some investigations on inactivation of phenylalanine ammonia-lyase in cut-injured sweet potato root tissue. Plant Cell Physiol. 18:1209-1216. Tanaka, Y., Matsuoka, M., Yamanoto, N., Ohashi, Y., Kano-Murakami, Y. and Ozeki, Y. (1989) Structure and characterization of a cDNA clone for phenylalanine ammonia-lyase from cut-injured roots of sweet potato. Plant Physiol. 90:1403-1407.

Taylor, R.G., Lambert, M.A., Sexsmith, E., Sadler, S.J., Ray, P.N., Mahuran, D.J. and McInnes. R.R. (1990) Cloning and expression of rat histidase. Homology of two bacterial histidases and four phenylalanine ammonia-lyase. J. Biol. Chem. 265:18192-18199.

Taylor R.G., Levy, H.L. and McInnes, R.R. (1991) Histidase and histidinemia. Clinical and molecular considerations. Mol. Biol. Med. 8:101-116.

Taylor, R.G. and McInnes, R.R. (1994) Site-directed mutagenesis of conserved serines in rat histidase. J. Biol. Chem. 269:27473-27477.

Terenzi, H., Terenzi, H.F. and jorge, J.A. (1992) Effect of cyclic AMP on invertase activity in *Neurospora crassa.* J. Gen. Microbiol. 138:2433-2439.

Thevelein, J.M. (1988) Regulation of trehalase activity by phosphorylationdephosphorylation during developmental transitions in fungi. Exp. Mycol. 12:1-12.

Thomas, D., Barbey, R. and Surdin-Kerjan, Y. (1993) Evolutionary relationships between yeast and bacterial homoserine dehydrogenases. FEBS Lett. 323:289-293.

Towers, G.H.N. (1969) Metabolism of cinnamic acid and its derivatives in basidiomycetes. In: Perspertives in phytochemistry, ed by Harborne, J.B. and Swain, T., pp. 179-191. Academic Press, London.

Tsukuda, T., Carleton, S., Fotheringham, S. and Holloman, W.K. (1988) Isolation and characterization of an autonomously replicating sequence from *Ustilago maydis*. Mol. Cell. Biol. 8:3703-3709.

Uchiyama, K., Kawaguchi, K., Tochikura, T. and Ogata, K. (1969) Metabolism of aromatic amino acids in microorganisms. Part III. Metabolism of cinnamic acid in *Rhodotorula*. Agri. Biol. Chem. 33:755-763.

Ullstrup, A.J. (1961) Corn diseases in the United States and their control. Agricultural Handbook No. 199. pp. 28-29.

Uno, I. (1992) Role of signal transduction systems in cell proliferation in yeast. Int. Rev. Cytol. 139:309-332.

Vance, C.P., Bandoni, R.J. and Towers, G.H.N. (1975) Further observation on phenylalanine ammonia-lyase in fungi. Phytochemistry 14:1513-1514.

Vance, C.P., Kirk, T.K. and Sherwood, R.T. (1980) Lignification as a mechanism of disease resistance. Annu. Rev. Phytopathol. 18:259-298.

Vaslet, C.A., Strausberg, R.L., Sykes, A., Levy, A. and Filpula, D. (1988) cDNA and genomic cloning of yeast phenylalanine ammonia-lyase reveal genomic intron deletions. Nucleic Acids Res. 16:11382.

Wang, J., Holden, D.W. and Leong, S.A. (1988) Gene transfer system for the phytopathogenic fungus *Ustilago maydis*. Proc. Natl. Acad. Sci. USA 85:865-869.

Wanner, L.A., Li, G., Ware, D., Somssich, I.E. and Davis, K.R. (1995) The phenylalanine ammonia-lyase gene family in *Arabidopsis thaliana*. Plant Mol. Biol. 27:327-338.

Ward, E.W.B., Cahill, D.M. and Bhattacharyya, M.K. (1989) Abscisic acid suppression of phenylalanine ammonia-lyase activity and messenger RNA and resistance of soybeans to *Phyophthora megasperma* f. sp. *glycinea*. Plant Physiol. 91:23-27.

Wat, C.K. and Towers, G.H.N. (1979) Metabolism of the aromatic amino acids by fungi. In: Recent advances in phytochemistry vol 12, ed by Swain, T., Tharborne, J.B., and Van Sumere, C.F., pp. 371-432. Plenum Publishing Corporation. New York.

Whetten, R.W. and Sederoff, R.R. (1992) Phenylalanine ammonia-lyase from loblolly pine: purification of the enzyme and isolation of complementary DNA clones. Plant Physiol. 98:380-386.

Wick, J.F. and Willis, J.E. (1982) Phenylalanine-dependent *de novo* synthesis of phenylalanine ammonia-lyase from *Rhodotorula glutinis*. Arch. Biochem. Biophys. 216:385-391.

Widholm, J.M. (1972) Anthranilate synthetase from 5-methyltryptophan-susceptible and - resistant cultured *Daucus carota* cells. Biochim. Biophys. Acta 297:48-57.

Widholm, J.M. (1974) Control of aromatic amino acid biosynthesis in cultured plant tissues: Effect of intermediates and aromatic amino acids on free levels. Physiol. Plant. 30:13-18.

Wu, S-C. and Hahlbrock, K. (1992) *In situ* localization of phenylpropanoid-related gene expression in different tissues of light- and dark-grown parsley seedlings. Z. Naturforsch 47C:591-600.

Wu, P.-C., Kroening, T.A., White, P.J. and Kendrick, K.E. (1992) Histidine ammonialyase from *Streptomyces griseus*. Gene 115:19-25.

Yalpani, N., Leon, J., Lawton, M. and Raskin, I. (1993) Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol. 103:315-321.

Yamada, S., Nabe, K., Izuo, N., Nakamichi, K. and Chibata, I. (1981) Production of Lphenylalanine from *trans*-cinnamic acid with *Rhodotorula glutinis* containing Lphenylalanine ammonia-lyase activity. Appl. Environ. Microbiol. 42:773-778. Yamada, T., Sriprasertsak, P., Kato, H., Hashimoto, T., Shimizu, H.,and Shiriashi, T. (1994) Functional analysis of the promoters of phenylalanine ammonia-lyase genes in pea. Plant Cell Physiol. 35:917-926.

Yoshida, S. (1969) Biosynthesis and conversion of aromatic amino acids in plants. Annu. Rev. Plant Physiol. 20:41-62.

Young, D. and Davis, R.W. (1983) Polymerase II genes: Isolation with antibody probes. Science 222:778-782.

Young, M.R., Towers, G.H.N. and Neish, A.C. (1966) Taxonomic distribution of ammonia-lyases for L-phenylalanine and L-tyrosine in relation to lignification. Can J. Bot. 44:341-349.

Zhang, S., Sheng, J., Liu, Y. and Medhy, M.C. (1993) Fungal elicitor-induced bean proline-rich protein mRNA down-regulation is due to destabilization that is transcriptionand translation-dependent. The Plant Cell 5:1089-1099.

Zhou, C., Yang, Y. and Jong, A.Y. (1990) Mini-prep in 10 minutes. Biotechniques 8:172-173.

Zhu, Q., Dabi, T., Beeche, A., Yamamoto, R., Lawton, M.A. and Lamb, C. (1995) Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase. Plant Mol. Biol. 29:535-550.

Zon, J. and Amrhein, N. (1992). Inhibitor of phenylalanine ammonia-lyase: 2-aminoindan-2-phosphonic acid and related compounds. Liebigs Ann. Chem. 625-628.

Zucker, M. (1968) Sequential induction of phenylalanine ammonia-lyase and a lyaseinactivating system in potato tuber disks. Plant Physiol. 43:365-374.

Zucker, M. (1971) Induction of phenylalanine ammonia-lyase in *Xanthium* leaf discs. Plant Physiol. 47:442-444.

APPENDIX A

Cloning and Sequencing of a cDNA Encoding Aspartate Semialdehyde Dehydrogenase in *Ustilago maydis*

Aspartate semialdehyde dehydrogenase (ASADH) catalyzes a crucial branch point reaction in the microbial amino acid biosynthetic pathway which leads to the production of L-lysine, L-methionine, L-threonine, and L-isoleucine from L-aspartate. The essential nature of the ASADH gene has made it a target for development of new antimicrobial agents (Cirillo *et al.*, 1991). The gene encoding ASADH has therefore been cloned from several pathogenic bacterial species, but the corresponding gene from eukaryotic pathogenic organisms has yet to be cloned.

During the studies on the cloning of the gene encoding phenylalanine ammonia-lyase from *Ustilago maydis* (chapter 3), a ASADH-encoding cDNA clone was isolated while immunoscreening a $\lambda ZAPII U$. maydis cDNA library. Given the novelty of this gene, the full sequence and structural analysis of the ASADH cDNA were conducted.

The nucleotide sequence analysis of the 1182-bp *Eco*RI-*Xho*I fragment insert of the cDNA clone revealed that the cDNA contains a 42-bp 5'-untranslated region, the translation start site, a 1098-bp open reading frame encoding a protein of 366 amino acids, a TAA stop codon, and a 39-bp 3'-untranslated region (Fig. 1). The G+C content is 55%. Southern hybridization of *U. maydis* genomic DNA digested with several different restriction enzymes, using the cloned ASADH cDNA as a probe, suggests that the *U*.

AATTCCGCACGAGCCTTGATCAACAAGAGCACGCATCATACGATGACGTCTTCTTCCTCA 60 6 Т S S S S Μ CAACAGAAGCTCAAAGTCGGCCTGCTCGGCGCTACGGGCACAGTAGGTCAGCGATTCATC 120 GΤ 26 QKLKVGLLGAT v 0 F Т G R Q CTTCAACTTGCTGATCACCCGCAATTCGAGCTCGCCGCTCTGGGTGCATCGTCTTCTTCG 180 Α G Α S S S S 46 D Η Р QF Ε \mathbf{L} Α L L Q L Α 240 GCAGGTAAGCCGTACTTGGAAGCAGTACAAGGGAGGTGGAAGCAGATCCGAAGGGTTCCC 66 A G к Ρ \mathbf{L} Е Α v Q G R W Κ Q Ι R R v Ρ Y GATAATGTTGCACAGATGCCCGTATACGAATGCAAGCCGGAATACTTTGCGAGTGCAGTA 300 86 Κ Е F Α S Α v D Ν v Α Q М Ρ v Υ Е С Ρ Y 360 GTCTCTCCGGTCTGGATTCAGGTCCAGCGGACCGTCGAGGACGCTTTCCGTAGAGCCGAG v D Α F R R Α E 106 v S v Т v 0 R т E Ρ W 0 420 TTGAGAGTGTTTTCCAATGCAAAGAACTACCGTACCGATCCATTGTGCCCATTGGTGGTG 126 Y R т D Ρ L С Ρ \mathbf{L} v v T₁ R v F S Ν Α Κ Ν CCACTGGTCAACCCGGAGCACATGGAGATCTTGCCATTCCAGAGACAGCAAGTGGGGACC 480 146 v G т Ρ L v Ν Ρ Е Η Μ Ε Ι \mathbf{L} Ρ F 0 R Q Q AAGAAGGGATTCATCGTTACCAACGCCAACTGCTCTACCACGGGCATCGTCGTACCGCTG 540 166 KΚ G F Ι v т Ν A (N С S т т G Ι V V Ρ L AAAGCGCTCGAGGCCAAGTTTGGACCGCTGGAAAAGATTCTAGTCAACACGATGCAGGCC 600 E Κ Ι v Ν т м 0 Α 186 KΑ \mathbf{L} Е Α к F G Ρ \mathbf{L} L ATTTCGGGTGCTGGTTACCCTGGAGTTTCTTCGCTCGACATCTTGGACAACGTTGTGCCA 660 206 Ν v v Ρ S G Α Y Ρ G v S S \mathbf{L} D Ι L D Т G 720 TTCATCAGCGGTGAGGAGGAGAAGATCGAGTGGGAGACCGCCAAGATCTTGGGTGGCATC Ι G Е Ε Κ Ι Е W Е Т Α Κ Ι \mathbf{L} G G Ι 226 F S E 780 AAAACGGACAAAACCGCTTTTGACTACCATGAAGAGCACCCACTCAAGGTTTCGGCGCAC 246 Е Η ₽ \mathbf{L} К v S Α Н K т D Κ т Α F D Y Н Е 840 TGCAACCGTGTTCCGGTCATCGATGGCCACATGGAGTGCGTTTCTGTGTCGTTCAAGAAC 266 V V I D G Н М Ε С V S V S F ĸ Ν С Ν R P CGACCTGCACCCTCGGTTGACGAGGTCAAAAAGTGCCTGCAAGGATTTACCACGGAAGCA 900 Ε Α 286 Ρ S V D Ε v Κ Κ С \mathbf{L} Q G F Т т R Р Α CAGACCATCGGCGTTCACTCGGCTCCTAAGCAGGCCATTACGGTGCACGAGGAGCAGGAC 960 306 Е Е Q D т G V · Η S Α К Q Α Ι т v Н Q Ι Ρ 1020 CGCCCGCAACCACGCCTCGATCGTGACTGGCAGAACGGTGCTGGTGTCAATGTCGGAAGG v v R 326 W А G Ν G R Ρ Q Ρ R L D R D Q Ν G GTACGCGAATGTCCCGTGTTTGACATCAAGTTTGTCGTGCTCTCGAACAATGTCATGATC 1080 V Ν V М Ι 346 V R Е С Ρ v F D Ι к F V L S Ν GGTGCTGCTACCAGCTGGTTCATGAACGCAGAGATCGCGCTCGCCAAGGGTTACCTTTCG 1140 \mathbf{L} Α K G Y \mathbf{L} S 366 ААТ W Μ Ν Α Ε Т Α G S F 1182 TAATCATCATGTGTGGTCACCTGAAATCGCATACTTTTCGCC

Fig. 1. The nucleotide sequence and deduced amino acid sequence (upper case) of the *U. maydis* ASADH cDNA (GenBank accession No. D11111). The active site cysteine residue is boxed, a potential N-glycosylation site is circled, and the stop codon is underlined. A potential mitochondrial transit peptide is predicted at amino acid position 1 to 25. The putative pyridine nucleotide binding region (amino acids 13-41) and substrate binding region (amino acids 240-260) are underlined.

maydis ASADH is likely to be encoded by one gene (Fig. 2). PCR amplification of genomic DNA using primers derived from the 5'-terminal and 3'-terminal regions of the open reading frame in the *U. maydis* ASADH cDNA, produced a band similar in length to the full length ASADH cDNA, and Southern blot analysis verified that the PCR product was derived from ASADH (Fig. 3). This implies that no substantial introns are present in the *U. maydis* ASADH gene.

The predicted isoelectric point and molecular mass of the deduced U. maydis ASADH protein are estimated as pH 7.6 and 40.2 kDa, respectively. The amino acid sequence identity between ASADHs in U. maydis and other species ranged from 53% to 21% (Fig. 4). However, conservation of ASADH amino acid identity between fungal and bacterial species is typically limited to a few regions such as the putative pyrimidine nucleotide binding domain in the N-terminal region, the substrate binding region, and the core region containing the active site (Ouyang and Viola, 1995). Interestingly, the strict conservation among ASADHs in bacteria and fungi of a Gly-XX-Gly-XX-Gly (X is any amino acid) motif in the NADP-binding region (Fig. 4) is also found in the N-terminal region of isoflavone reductase, a NADP-dependent oxidoreductase in plants (Paiva et al., 1994). This pattern distinguishes it from other NADP-dependent oxidoreductases which have either a Gly-X-Gly-XX-Gly motif (homoserine dehydrogenases in microorganisms, Thomas et al., 1993) or a Gly-XXX-Gly-X-Gly motif (short-chain alcohol dehydrogenases in animals, Jörnvall et al., 1995). The identification of common structural domains through comparison of conserved sequences may provide the foundation necessary for subsequent structure-function analysis of the ASADH gene product domains.

187

Fig. 2. Southern blot analysis of the *U. maydis* **ASADH gene.** Genomic DNA from *U. maydis* strain 518 cells was digested with *Eco*RI (lane1), *Pst*I (lane2), *Sma*I (lane3), and *Xba*I (lane4), fractionated by electrophoresis in a 0.7% agarose gel, transferred to Zeta-Probe membrane, and hybridized with ³²P-labeled 1.1kb ASADH cDNA. Sizes of DNA markers are indicated in kb.

Fig. 3. PCR amplification and Southern blot analysis of ASADH gene from *U. maydis* genomic DNA and ASADH cDNA. Primers were derived from the 5' terminal (5'-ACGATGACGTCTTCTTCCTC-3') and 3' terminal (5'-CGAAAGGTAACCCTTGGCGA-3') regions of the *U. maydis* ASADH cDNA. PCR was carried out for 35 cycles of denaturation at 94 °C for 1 min, 1 min annealing at 58 °C, 1 min extension at 72 °C, followed by a final extension step for 10 min in the presence of 2.5 units of Taq-DNA polymerase. The amplified products were separated electrophoretically in a 1% agarose gel, visualized under UV following ethidium bromide staining (lane 1, 2, and 3), transferred to Zeta Probe membrane, and hybridized with ³²P-labeled 1.1kb ASADH cDNA (lane 4 and 5). Lane 1: 1kb DNA ladder, Lane 2: PCR product with genomic DNA as template, Lane 3: PCR product with ASADH cDNA as template, Lane 4: autoradiogram of the PCR product of lane 3, and Lane 5: autoradiogram of the PCR

NADP-binding region

Active site(C) and Core region

Um	GLLGATG1	VGQRFILC	LAD	13-31	IVTN	IANCST	FGIVV	PLKAL	EAKFG	151-1	L74
Sc	GVLGATGS	S VGQRFIL I	LAN	8-26	IICI	SNCST	AGLVA	PLKPL	IE KFG	150-1	L73
Li	AVLGATGS	S VGQRF IQI	L DH	7-25	IITN	ISNCTI	MGVTI	SLKPL	LDR FG	142-1	L65
Bs	AVV GATG A	A VGQ QMLKI	LED	8-26	IIAN	PNCST:	I QM V A	ALEPI	rkay g	124-1	L47
Sm	AIV GATG A	A VG TRMIQ Ç	2L EQ	6-24	IIAC	PNCST	IQMM V	ALEPI	RQ KWG	122-1	L45
Vc	AIF GATG A	VG ETMLEV	LQE	8-26	IIAN	IPNCST	IQML V .	A LK PI	YDAVG	126-1	L49
Cg	AVV GATG Ç	Q VG QVMRTI	LEE	6-23	IIAN	IPNCTT	MAAMP	VLKPL	HDAAG	125-1	L48
Consensus	GATG	VG	L		I	NC		L	G		

	Substrate-binding region		Total No. of aa	aa Identity
Um	LKVSAHCNRVPVIDGHMECV	241-260	366	100%
Sc	IKVSAQCNRVAVSDGHTECI	241-260	365	53%
Li	FSISAHCNRVPVFDGHTVCV	226-245	349	43%
Bs	LQVAATCVRLPIQTGHSESV	235-254	346	21%
Sm	LPVSAHCVRVPILFSHSEAV	237-256	357	23%
Vc	IMVNPTCVRVPVFYGHAEAV	230-249	337	25%
Cg	LKVS GTCVRVPVFTGHTLTI	242-261	344	21%
Consensus	CR H			

Fig. 4. Conserved regions in ASADH-encoded amino acid sequences from Um (U. maydis), Bs (Bacillus subtilus), Cg (Corynebacterium glutamicum), Li (Leptospira interogans), Sm (Streptococcus mutans), Sc (Saccharomyces cerevisiae), and Vc (Vibrio cholerae). The amino acid sequence identity was obtained from the PALIGN program in the PC/GENE software. The Swiss-Prot database accession number for ASADH is Q04797 for Bs, P26511 for Cg, P41394 for Li, P10539 for Sm, P13663 for Sc, and P23247 for Vc.

Disruption of the *U. maydis* ASADH gene by insertion of a phleomycin resistant gene has been undertaken. Preliminary data show that disruption of the gene appears to be lethal to *U. maydis* (Kim S.H., Durrenberger F., Kronstad J., and Ellis B., unpublished data), implying that the ASADH gene is essential in this organism.

REFERENCES

Cirillo, J.D., Barletta, R.G., Bloom, B.R. and Jocobs, W.R., Jr. (1991) A novel transposon trap for Mycobacteria: isolation and characterization of IS 1096. J. Bacteriol. 173:7772-7780.

Gold, S.E. and Kronstad, J.W. (1994) Disruption of two genes for chitin synthase in the phytopathogenic fungus *Ustilago maydis*. Molecular Microbiology 11:987-902.

Jörnvall, H., Persson, B., Krook, M., Atrian, S., Gonzàlez-Duarte, R., Jeffery, J. and Ghosh, D. (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34:6003-6013.

Ouyang, J. and Viola, R.E. (1995) Use of structural comparison to select mutagenic targets in aspartate- β -semialdehyde dehydrogenase. Biochemistry 34:6394-6399.

Pavia, N.L., Sun, Y., Dixon, R.A., Van Etten, H.D. and Hrazdina, G. (1994) Molecular cloning of isoflavone reductase from pea (*Pisum sativum* L.): Evidence for a 3R-isoflavone intermediate in (\pm) pisatin biosynthesis. Arch. Biochem. Biophys. 312:501-510.

Thomas, D., Barbey, R. and Surdin-Kerjan, Y. (1993) Evolutionary relationships between yeast and bacterial homoserine dehydrogenases. FEBS Lett. 323:289-293.

APPENDIX B

A Partial cDNA Sequence Encoding the Ustilago maydis Peroxidase-Catalase

During the studies on the cloning of the gene encoding PAL from *U. maydis* (chapter 3), a cDNA clone giving a positive signal during the immunoscreening a $\lambda ZAPII U.$ maydis cDNA library was isolated and its nucleotide sequence was determined.

The nucleotide sequence analysis of the 1725-bp *Eco*RI-*Xho*I fragment insert of the cDNA clone revealed that the cDNA contains a 1593-bp open reading frame encoding a protein of 531 amino acids, a TAA stop codon, and a 132-bp 3'-untranslated region (Fig. 1). BLAST search through the Swiss-Prot database shows that the deduced 551 amino acid sequence has highest homology with the amino acid sequences of catalase-peroxidases from several organisms (Table 1). Based on this homology and the presence of the peroxidase proximal heme ligand (Fig. 1), this cDNA was tentatively designated as a partial cDNA encoding *U. maydis* peroxidase/catalase.

Whether the gene product of this putative peroxidase/catalase gene is bifunctional, exhibiting a catalase and broad-spectrum peroxidase activities, remains to be determined. If it is bifunctional, this represents the first report on the partial structure of peroxidase/catalase-encoding gene from fungi. Cloning of the complete sequence of this gene would enable a more detailed study on the role of these proteins in *Ustilago* biology.

.....

CGC	AAT	стс	GAC	CAC	GCI	CTT	GCC	GCC	TCG	CAC	ATG	GGT	CTT	ATC	TAC	GTC	AAC	ccc	GAG	60
R	N	L	D	Н	Α	L	Α	A	S	Н	М	G	L	I	Y	v	N	Ρ	Ε	20
GGA	CCC	AAC	GGT	GAG	CCI	GAC	ccce	GTI	GNT	GCC	GCC	CAC	GAT	'ATC	CGC	ACC	ACC	TTC	GGC	120
G	Ρ	N	G	E	P	D	P	v	Х	A	A	Н	D	I	R	Т	Т	F	G	40
CGC	ATG	GCC	ATG	AAC	GAC	GAG	GAA	ACC	GTC	GCT	CTT	דידאי	GCC	GGA	GGC	CAC	ACC	TTT	GGC	180
R	М	Α	М	N	D	Ε	E	Т	v	A	L	I	Α	G	G	H	Т	F	G	60
AAG	АСТ	САТ	GGT	GCT	'GGT	AAC	CCF	GAT	стс	GTC	GGC	.ccc	GAA	ccc		GGC	GCT	'ccc	ATC	240
K	т	Н	G	A	G	N	P	D	L	v	G	P	Е	P	N	G	A	P	I	80
GAG	GCT	CAG	GGC	TTC	GGI	TGG	SACO	CAGO	CAAG	CAT	GGI	TCT	GGI	'AAA	GCI	GGC	GAI	GCG	ATT	300
Ε	Α	Q	G	F	G	W	т	S	К	н	G	S	G	к	A	G	D	Α	Ι	100
ACC	TCG	GGT	CTC	GAG	GTI	GTO	TGG	SACI	AGC	AAG	CCT		GAG	TGG	TCC		стс	TAC	CTC	360
т	S	G	\mathbf{L}	Е	v	v	W	т	S	к	Р	т	Е	W	s	N	\mathbf{L}	Y	\mathbf{L}	120
AAG	TAC	CTC	TTT	'GAG	TTC	GAG	STGO	GAG	SCAC	GAC		TCO	sccc	GCT	GGC	GCC		CAG	TTT	420
K	Y	Г	F	Е	F	E	W	E	н	D	K	S	₽	А	G	А	N	Q	F.	140
സ്റ	GCC	ממ	דבב	יהרר	GAC	'GCC	ንጥልግ	ንጥልግ	יררר	יכמיז	יררר	ጥጥር	GAC	CCA	TCC	סממי	:220	CGT	CGT	480
v	A	ĸ	Ň	A	D	A	I	I	P	D	P	F	D	P	s	K	K	R	R	160
					_			-	_	_	_	_	-	_						
CCT	ACT	ATG	CTC	ACC	ACC	GAI	CTA	TCO	TTG	GCGC	TAC	GAI	CCI	'GCC	TAC	GAG	AAG	ATC	TCG	540
P	Т	Μ	\mathbf{L}	т	т	D	L	S	L	R	Y	D	Ρ	А	Y	Ε	к	I	S	180
~ ~ ~	~ ~ ~ ~												_							600
CGT	CGC	TTC	CTT	GAG	iAAC		GAC	GAG	5171	'GCC	GAC	GCC	21'1'1 1	GCC	CGI	'GCC	TGG w	TTC		600
R	ĸ	Ľ	Ц	Е	N	н	U	E	F	A	D	А	r	А	R	А	w	r	r	200
СТС	стс	CAC	CGT	GAC	ATC	GGI	rcci	CGC	GCC	CGC	TGG	CTT	GGA	CCC	GAG	GTG	ccc	AAG	GAG	660
L	L	Н	R	D	M	G	P	R	A	R	W	L	G	P	E	v	P	K	E	220
_	_			-		_	_					_	-	-			_			
ATC	CTT	ATC	TGG	GAG	GAC	ccc	CGTO	SCCI	ACC	GCC	GAI	TAC	CGCI	CTC	GTO	GAC	GAC	CGC	GAC	720
I	\mathbf{L}	Ι	W	Е	D	Р	v	Ρ	Т	Α	D	Y	А	\mathbf{L}	v	D	D	R	D	240
CTT	GCC	GGC	TTG	AAG	CAG	GCI		rtti	rgçc	CACT	GGC	GTC	GAP	CCT	TCC		TTC	CTT	GCC	780
ч	А	G	Ъ	ĸ	Q	А	T	F.	А	т	G	V	E	Р	S	ĸ	E.	Ц	A	260
ACC	GCC	тсс	GCT	יידיר	יהכיז	raco	"DGC	ግግልሰ	പപ	GAC	ימכיד	יהממ	ממי	cac		'GGT	יהכנ	222	GGT	840
T	A	W	A	S	A	A	S	Ŷ	R	D	S	D	K	R	G	G	A	N	G	280
-				-			-	-	•••	-	-	-		•••	-	-				
GCT	CGC	ATC	CGC	CTI	GCA	ACCO	SATO	SAAC	GAC	TGG	GAA	GTC	CAAC	CAAT	'CC'I	CAC	CAG	стс	GCT	900
Α	R	I	R	\mathbf{L}	Α	Ρ	М	K	D	W	Ε	v	N	N	Ρ	Q	Q	\mathbf{L}	Α	300
-		•														- - -				
GAG	GTC	ATC		GCI	CTC	GAC	GGG	GTI	rCAG	CAG	CAC	TTC		TCT	TCC		CAA	GGI	GGC	960
Ľ	v	Т	K	А	Ц	E	G	v	Q	Q	Q	Ę.	N	S	S	N	Q	G	G	320
AAG	AAG	ልጥጥ	ידיכה	: ነ ተካ	יכריז	rgan	ንጥጥ	: እጥ	ገርጥባ	יכידר	GCC	'GG1	יממי	പറപ	GCG	CTT	GAG	:220	GCA	1020
K	K	I	S	I	A	D	L	I	v	L	A	G	N	A	A	L	E	K	A	340

TCG	GGT	СТС	ccc	GTT	CCC	TTC	ACT	CCT	GGT	CGT	ACT	GAT	'GCT	'ACC	CAG	GAG	CAG	ACC	GAG	1080
S	G	\mathbf{L}	Ρ	v	Ρ	F	Т	Ρ	G	R	Т	D	A	Т	Q	Ε	Q	Т	Е	360
GTC	GAC	ACC	TTC	GAG	TTC	CTC	AAG	CCG	GTC	GCC	GAT	GGC	TTC	CGC	AAT	TAC	GGC	CAG	TCC	1140
v	D	Т	F	Ε	F	L	К	Ρ	v	Α	D	G	F	R	N	Y	G	Q	S	380
ACC	GAC	CGT	GTT	TGC	GCT	GAA	CAG	ATC	стс	ATT	GAC	CGC	GCC	AAC	СТС	CTC	ACT	CTC	ACC	1200
Т	D	R	v	С	Α	Ε	Q	I	L	I	D	R	A	N	L	L	Т	L	Т	400
ССТ	ccc	GAG	стс	АСТ	GTC	CTC	ATC	GGC	GGT	стс	CGC	GCT	CTT	GGI	CTC	AAC	TAC	AAC	GGC	1260
Ρ	Ρ	Ε	L	т	v	L	I	G	G	\mathbf{L}	R	A	L	G	L	N	Y	N	G	420
TCG	тса	CAC	GGT	GTC	TTG	ACT	CAC	CGC	CGA	GGC	CAG	стс	TCG	AAC	GAC	TTC	TTT	GTC	AAC	1320
S	S	н	G	v	L	Т	Н	R	R	G	Q	\mathbf{L}	S	N	D	F	F	v	N	440
СТС	стс	GAC.	ATG	AGC.	ACC	GAG	TGG	AAG	GCT	GCT	GAC	GGT	GGC	AAG	GGC	GAA	GTC	TTC	GAC	1380
\mathbf{L}	\mathbf{L}	D	М	S	Т	E	W	к	Α	Α	D	G	G	К	G	Ε	v	F	D	460
GGT	GTC	GAC	CGC	AAG	тса	GGC	CAG	AAG	AAG	TGG	TCT	GCT	ACC	CGI	GCC	GAT	CTT	GTC	TTT	1440
G	v	D	R	к	S	G	Q	к	к	W	S	A	Т	R	A	D	L	v	F	480
GGC	тст	CAG	GCT	GAG	CTT	CGT	GCC	CTC	GCC	GAG	AAC	TAC	GCT	CAG	GCC	GAC		GCC	GAC	1500
G	S	Q	Α	Е	L	R	A	L	A	Е	N	Y	A	Q	Α	D	N	A	D	500
AAG	TTC	AAG	AAG	GAC	TTT	GTG	ACT	GCC	TGG	AAC	AAG	GTT	ATG	AAC	сте	GAT	CGT	TTT	GAC	1560
К	F	К	К	D	F	v	Т	A	W	N	К	v	М	N	L	D	R	F	D	520
GTC	AAG	AAG	AGC	AAC	ATT	GCC	CGT	GCC	AGG	TTC	TAA	CCA	TGC	TCC	GCI	CCA	ATC	ACT	'GAT	1620
v	К	K	S	N	I	A	R	A	R	F		-								531
GCT ATG	GTA GAA	GTA TCT	GTA TAT	GTA TTT	GCC ATT	ATG TTT	ATT TAA	TCC CTT	TTG	CCC AAA	TAT AAA	TCA	GAI	TTP AAP	TGG	SAAT	GTC	TCT	TTT	1680 1725

Fig. 1. Nucleotide sequence of a 1725-bp cDNA contained in a positively selected cDNA clone during the immunoscreening of *U. maydis* PAL cDNA clone (chapter 3). Deduced amino acid sequence of this cDNA is indicated below the respective codons. Numbers on the right margin indicates position relative to the C nucleotide or R amino acid in the beginning of sequences, respectively. Stop codon TAA is underlined. Predicted peroxidases proximal heme ligand signature (boxed), ATP/GTP-binding site motif A (P-loop) (letters in bold), and 2Fe-2S ferredoxin, iron-sulfur binding region signature (marked as •) are shown.

Table 1. BLAST search results with the protein sequence deduced from the U.maydis 1725-bp cDNA in Fig. 1. The results show the ten most similar proteinsequences from the Swiss-Prot database.

Rank	Accessi Numbe	ion Organism r	Sequence Description	Probability
1	P14412	Bacillus stearothermophilus	Peroxidase/Catalase	2.5e-218
2	Q04657	Mycobacterium intracellulare	Peroxidase/Catalase	6.1e-216
3	P13029	Éscherichia coli	Catalase HPI (Hydroperoxidase I)	1.3e-210
4	P46817	Mycobacterium vosis	Peroxidase/Catalase	2.0e-208
5	Q08129	Mycobacterium tuberculosis	Peroxidase/Catalase	5.2e-208
6	P17750	Salmonella typhimurium	Catalase HPI (Hydroperoxidase I)	1.0e-024
7	P37743	Rhodobacter capsultus	Peroxidase/Catalase	9.1e-05
8	P00431	Saccharomyces ceravisiae	Cytochrome C Peroxidase Precursor	2.9e-05
9	Q05431	Arabidopsis thaliana	L-Ascorbate Peroxidase	3.9e-05
10	P48534	Pisum sativum	L-Ascorbate Peroxidase	0.020