UBJECT:ORIENTED MODELLING: FROM ANALYSIS TO\LDGICAL DESIGN |
‘ _ . ..: Ty o ,
DARRELL JUNG .
| 'B. Com The Umversxty of British Columbla 1994
B A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF .
. THE REQUIREMENTS FOR THE DEGREE OF :
| MASTER OF SCIENCE IN BU_SINESS ADMINISTRATION :
* THE FACULTY OF GRADUATE STUDIES L

(Faculty of Commerce and Busmess Admlmstratlon)

We accept thlS theS1s as conforrmng

to the requlred standard

THE UNIVERSITY OF BRITISH COLUMBIA -
August 1997

" ©Darrell Jung, 1997

in presenting this: thesrs in partial fulfllment of the requirements’ for an. advanced‘
wdegree at the Umversrty of British - Columbla A agree "that the Library" shall make
(freely available for- reference and study *further agree that permission for. extensive
copymg of thls thesis for scholarly * purposes’ may be granted by the head of my .
-department or by his . or her representatrves Itois understood that copying or -
) 'publlcatlon of this * thesis for financial- gam shall not be. allowed wrthout my wntten'- ‘

" permission.

) Fc«c»ul{:g ag Commerce or\c\ %u&-\egg [-\é,.\m‘;,(’ cdion
- Department. of Mamo\ement I. ‘Qormoi\o«\ Sys{,cms ’

S . The" University. of Brmsh Columbla
g Vancouver, Canada :

Date "/-\ua\u.s{ 211|967
. e r D N

DE-6 (2/88)

Abstract

,le)ject-oriented'concepts have recently _heen adapted'for lenterpri'se modélling'.‘ Because,
man'y of the existing object-oriented analysis and design'methods were developed from‘software

engmeenng roots, they lack fundamental rules and pnncrples for modelling orgamzatlonal

jact1v1t1es To remedy this s1tuatlon, Object Onented Enterpnse Modellmg (OOEM), based on an

ontologlcal foundatlon, was developed to provrde the rules and pnncrples for enterprise. analysrs ;

: modellmg Th1s thesis’ contmues the work in the development of OOEM by prov1dmg extensrons |
to the analysxs modelling rules to encompass de_srgn concepts. The des1gn prmcrples provxde a.
) hridge for the transitiOn from an enterprise' model to an initial design of a.logical inforrnation
' system model The work proposes three ‘types of concepts decomposrtron delegatmn and statrc '

' ob)ects, to prov1de a structured method for reasonmg about de51gn when one. proceeds from an

enterpnse model.

ST

Table.of Contents

i -

ABSTRACT ., |
" TABLE OF CONTENTS I
LisT OF FIGURES A, O
LIST OF TABLES.... v
1. INTRODUCTION. .1
1L BACKGROUNDooorvvensinionsseesstssessssssssssssssssssssosssmsasssnssssasos oassseseseseseg et sssessnsessssnsesassesnssssnsesronees 1
- 1.2 PROBLEMS WITH CURRENT OBJEC[‘-ORIENTED MODELLING METHODS 2
1 3 OBJECI'IVES ... 2
,1-4 THE APPROACH S O S R SIS
.2. THE OBjECT4OmENTED APPROACH: VANALYSIS AND DESIGN' d
2.1 MODELLING IN GENERALoooveeieieeniiieeieieseesiinsinessnonsessiansssssabonsassensiessssseiessnssesasans sssessessesnsesosbes 4
2 2 MODELLING AND SYSTEMS ANALYSIS ...oivinireeestenteiesaestssesaetesesiasesstasesssenssssssassssassesssstassassosassassssseses) 5’
23 MODELLING AND SYS'I‘EMS DESIGN ... o
24 OBJEC'I‘-ORIENTED ANALYSIS AND DESIGN ..0.....ccooeveeseonnssenionssssesmsssssssassestessmsesessiessssessasessessmmesseees 6‘
- 24.1 Coad and Yourdon's 00A/00b memsiso s R Y
2.4.2 Jacobson’s Object-OrIented Busmess Engmeermg Based on Use Cases..;............:..A RN * 2
L2 4 3 Object-OrIented Modellmg wzth Fuswn.....;.'. et sans ceensnenes 10
3. OBJECT—ORIENTED ENTERPRISE MODELLING 13
3.1 MODELLING PRINCIPLES............lecoe oo oceen st sestseeneeesesessionsierseetsessessoaeeseesessesstSoesssecimmmseeeeseesnsns 13
3.2 ONTOLOGICAL FOUNDATIONooovcn.fereeresess eeeverbieemensesesesessiessseesesssesesensssesesessesesesemeaassssssissseeseememnian 14 .
3.3 MODELLING CONSTRUCTS. ... 0ucuceremeiseseseiessnssnsserssersssssssasssssonssssasinivesssssssainsnsssassassivessessssenssmosessosnsss 15
3.3.1 Ontological MOAEIng CONSIIUCESi...'eeevevevessveessessssnsosssessssssssinssmsessssmsssssssssssssssssamasssson 16 -

+-.3.3.2 Object-Oriented Modelling CONSIPUCES eoveveeeeeeeeeessiereeestoseeeesessseessssssemesnee —

v

16
3.3.3 Mapping Ontological Constructs to.Object-Orientéd Cbnstructs 17
| 13331 Objects ana Things...l; Ceaned - ersassnensonns e v foree 17 ‘
3:3.3.2 Attribuies and Properties........c.eeeseeesereserseenne erresereseenes R v 18 |
3.3.33 Services and Lawful Transformations......... s s 9
3.3.3.4 Réquests and Evcnts I — eenerrssensinnans L 19
33.3.5 System 'of Interacting Objects and System 2b
3.3.3.6 External Objects and System ERVATOBMEN oo 20
3.4 OBJECT-ORIENTED ANALYSIS RULESoocceccceersessecrroereessseneeresons IR Np— et 21 |
| 3.4.I\Rul'e #1 Scope‘ Idéntiﬁcat‘ion ettt inens O S 21
3.4.2 Rule #2: Object Identification ... e | et 2
3.4.3 Rule #3: Service INCIUSIONicoocovrrore e 22
3.4.4 Rule #4: Attribute Inclusion et T2 4 ;
3:4.5 Rule #5: AHTIDUIE OWNETSHID RULE oo 23
' 3.4.6 Rule #6: Aggregation and Dea;mposition e 23'
347 Rule #7: Geﬁeralization and Specializan’on....v..‘............................‘..'.; I rersssessenivenes 23
3.4.8 Service and Request Propagqtion.....-......l.'..;.'.. R _2-;1
4. OBJECT-ORIENTED DESIGN.., et -4 25 '
4.1 FOUNDATIONS FOR DESIGN MODELLING e ’ 25 =
. 4.1.1 quelling li’riﬁciﬁlesfor; Desig(l eerivenenenas | S j26“ ’
4.1.2 The Fundamentals beecompdsition N <27
- 4.13 Thé Process ofDecompbsitién crieisuesssaeenaaianes S — : 29
4.2 DESIGN Momzﬁ.mq CONSTRUCTS oo ot 30 .
43 dBJEd—ORIENTEQ DESIGN RULES...... R 30
. 4.3.1 Object Decomposit;'qn Rules........... v —— e - 33
4.3.2 Delegation Rule ... S oo — 37
4.3.3 Static Object Rule — R

44
- 5. CASE EXAMPLE: ACME WAREHOUSE MANAGEMENT INC. . .45
5.1 OBIECT-ORIENTED ANALYSIS........oooeersereseesseessrrene e sensene eeeereereenn s ssennesessene el 4T
5.1.1 Object DeCOMPOSILiONoceeeeeeeveneveesivissresssssessssssne g 49
5.1.2 Static Objects........oovoen... et s nsse s e st s 52
-5.1.3 Requirements Andlysik and Delegqtion, Objects 54
5.2 OBJECT-ORIENTED DESIGN ...ccvvvssvssssssssssssssssssersinsesssssesssssons eeeeesessese e vsseessseerinese seeveenns ST
6. EVALUATION OF OOEM-DESIGN... 61
o 6.1 COMPARISON WITH COAD AND YOURDON OOA/OOD................ RN SO 61 -
6.2 COMPARISON WITH JACOBSON’S USE CASE METHOD0.:.ce.sfosresessnresnersnses eeeessesresssnesns 62
6.3 COMPARISON WITH THE FUSION ME’I’HOD...'.‘...........}.. e poe e reveensenenenesenes 63
6.4 SUMMARY evieseees ssA RS ARRA RSP s RRRRRSSRSsA AR SSenen et ettt 64
7. CONCLUSION AND FUTURE RESEARCH 66
~ 7.1 CONTRIBUTION......covovevrrrrrnne g L e r e R e e T 66
72 LIMITATIONS ANDFUTURERESEARCH....» et e menmnes e R 7
- REFERENCES.. 69
APPENDIX I BUNGE’S ONTOLOGICAL CONSTRUCTS: 12
APPENDIX II bBJECT—ORIENTED MODELLING IN TEMPLATE FQRM 76
APPENDIX I1I OBJECT-ORIENTED ORGANIZATIONAL DESIGN 80

List Of Figures -

FIGURE, 1 INITIAL OOA OF THE REGISTRAR CASE e s S .33
FIGURE 2 TYPES OF DECOMPOSITION........srcror. — S S 35
FIGURE 3 DECOMPOSITION O'FVTHE_ REGISTRAR’S omcr_s;l : 37
FIGURE 4 REGISTRAR’S OFFICE WITHA DELEGATION OBJECT.....[..... 39°
FIGURE 5 THE 4 BASIC fATTER&s of' DE;;E_GATED COMMUNI‘CATIOI\}:~.:...;..l;'....;....‘.:;;.i','., 41.
FIGURE 6 REGISTRAR'S GFFICE WITH A STATIC OBJECT. ... oo " 43
“FIGURE] INITIAL ENTERPRISE MoDEL OF ACME WAREHOUSE...... S 47
FIGURE 8 DECOMPOSITION OF THE WAREHOUSE O'BJECT.... S e reesemeseressasenens 52
FIGURE 9 ENTERPRISE MODEL WITH STATIC OBIECTS..vccvreceveseere-ereseseesseneee e 54
FIGURE 10 ENTERPRISE M_dDEL WITH DELEGATION OBJECTS - seereeans S 57
HGURrRe 11 PROPbSED ENTERPRISE MODEL .WITH DELEGATED OBJECT COMMUNICAI‘ION PA"I'HS 59
FIGURE 12 THE PgopdéEp ACME INFORMATION SYSTEM S TR 60 .
FIGURE 13 E&'fERP#fSE Mo_b’x-:l; II'EDESXGI;...; - '..‘.V.._,..v S .)
v

vi

List o_f Tables

. TaBLE 1 MAPPING OF OBJECT CONSTRucrs TO ONTOLOGICAL CONSTRUC'I'S21 |
TABLEZSUMMARY OF METHODS COMP4R150N oo veesessrenes S : 64
“TABLE3 INTERNAL OBJECT TEMPLATE (IOT) ' 76
TABLE4EXTE§&A'I; OBJECT TEMPLATE (EOT) S ——
TABLE 5 EOT FOR THE CUSTOMER OBIECT ..o S s 77
. TABLE 6 10T FOR THE OFFICE CLERK e S, 1T
TABLE 7 IOT FOR ﬁE WAREHOUSE..‘OBY}'ECT 77
- TAﬁLESIOT_FoRmE PLANNER O‘BJECT.._.....'....; e et ——
TABLE 9 IOT FOR THE TRUCK DRIVER'OBJEC’I‘.:-...............,....., e o 78
TABLE 10 10T OFTHEWAREHO'USE‘MANAGER OBIECT ...veieeveisiveerrieeeereesaeesees 78
TABLE 1110T OFA'I.‘VHE WARFHOUSE WbRKER OBJECT........ — 79,
T/;ELE 1210T OF THE FORKLIFT OPERA’I’OROBJECTL 79

vii

1. IntroduCtion

Object-orrented analysrs and des1gn are essentlally modellrng act1v1t1es Analy31s‘-
“examines existing systems, and des1gn mvolves prescrrbmg or planmng for future systems (Olle et
al 1991 p. 2) Object-orrented modellmg methods for, these actrvrtres arose from software

programrmng roots. Apphcatlon of ObjCCt orrented methods to enterpnse modellmg is the latest '

. focus that has Jomed the foray into object-orrented modelhng Zhao (1995) expanded on the _' '

ob_]ect-orrented enterpnse modelling (OOEM) rules, proposed by Wand and Woo (1993) based
on ontologlcal foundatrons OOEM compnses a foundatron of pnncrples and rules that ‘cover the
- analysis modellmg of organrzatronal,actrvrtres. The.ne‘xt_'phase- in modellmg would encompass

deslgn activities. ”_l‘o.'co'ntinuerfrom‘ an' OOEM model to a '.desi’gn‘model, onie - will require
principles to guide the transition from analysis modelling to design modelling. A .
1.1 Background B
: The obJect-orrented paradlgm ongmated from developments in software programmmg‘

approaches Dunng the 1970 S and 1980's the emphasrs shifted from programmmg to design; and

then ﬁnally to analysrs issues. More recently, the ob]ect-orzented approach was’ further abstracted o

o and adapted to 1nformat1on systems analysrs., 'l‘here is, {howev’er, a growrng _concentratlon in
enterprise modellin‘g._vln'enterpﬁse'modelling, t..he‘;emphasis is on modellingﬁ-the application_ o
| domam before bemg concemed wrth specrfymg the requrrements for 1mplementatlon The notlon -
'behmd begmnmg ‘with an- enterprrse model is- that the global model (busmess overvrew)
vlnﬂuences the enterprise model, which in turn mﬂuences the ~bus1ness plan, Wthh 1mpa¢ts thev‘
analys1s, desrgn, and 1mplementatron of the mdlvrdual software system (Yourdon 1992 p. 276). A

(NB: Although one may begm by constructmg an enterprrse model that is a reflectron of a

busmess plan, the enterpnse model can be used as 1nput for anew busmess plan.)

1.2 Problems with Current Object-Oriented Mdd_élling Methods

There exist various proposed .‘m‘ethods and'techlniqlues for ohject-oriented, analysis and
design; however, there is a fundamental weakneSS'-in cur'r'ent methods ‘concerning how one -
transforrns one model into ianothervwhen one goes from enterprise analysis to design and ﬁnally to
» .1mplementat10n Proposed methods. model the software domain. Software desrgn activities
remould analysis results to fit a spemﬁed 1mplementat10n env1ronment Current methods do not
-, provide basic principles to 'guide how. one can think about'or‘model the problem domain from the -
, perspective of the enterprise or real world ﬁ | | .

The roots for th1s problem he in the software programmmg origins of the obJect-onented

approach Analy51s and des1gn modelhng evolved from obJect-onented programmmg languages R

. Expenence and constructs taken from the programmmg world were brought mto the development |
of analysxs andvdeslgn methods.‘Because these r‘_method‘s were oriented. and derived with the"
purpose of mapping out software development reduirements, they pArovide no clear set of rules, for
using obje'cts‘in modelli‘ng.how an.enterpris_e worlcs; There is amblguity as _to how one would
identify object,s.; determine which objlect properti_esto include; and evaluate the correctness of a
.model. It is common for forrnalized. approaches, to rely on non~object;oriented concepts (e.g.
- .entities, functions, data flows) to 'provide constru'cts for conceptual rn'odelling (Wand and Woo
1996 p-4). In addxtlon, Embley et al. (1995) state that “many so called ana1y81s methods are
| really prehmmary design methods.... [M]any of thelr features are more appropnate for des1gn‘

- than analys1s” (p. 19)..

13 Objectivesj |

ThlS work proposes a method for transforrmng an object-orxented enterprxse analys1s,
: model (OOEM) to a log1cal obJect-orlented des1gn (OOD) model ‘The transformatxon will be : |

made pOSSlble by applylng a set of de31gn rules Th1s work proposes a set of well grounded obJect-‘

oriented desigﬁ rules. These 'n_llés will have the effgct’ of extending the origi_nal OOEM rules, -
whxch ‘were used for Objegt-oriented gnalysis médélling," to‘encompass. object-oriented design ‘

modélling. ‘

14 The Approach ,
o v-‘This'. work takes thé fo_llo\ying general é_pbfoach fbr prpposjng the' ruiés' qu objéct-oriented '
dé'sign: | | o

; } suggest we}l-_deﬁned sefnantics for _object‘ de;,composition, dynamics anci stati_cs .

* introduce a notiéh of delegdtion in Which ccrtain_ activities of an objéct are delegated

‘tbvar‘iother objéct (.e. égc:nt), .
e examine aﬁ& illt;stratg the-dés.ivgnj‘)xi'rlciplés/r‘ules with a case e);véilm‘ple:’_ ‘

The 'réét of the ;,vérk is presented asAfoll.ows: chapter 2 discusses the object-oriented
approach an.dﬂsome' of the éuneﬁt formalized 6bject-orientéd analysis and ‘de.sig4n‘ modeliing
. abpfoaéhes; -c‘hapt_er 3 provides a éummafy of object-oriented enterprise modeliing tOOEM) and
- the undérlyiné oﬁtoibéi_cal féhndationb. OOEM séﬁes asﬁ‘tﬁe Baéis fromwﬁich‘_a desigﬁ model 1s to
be built. Chapter 4 lays out the OOD modelling rules and pripcipies. Chép_tef 5 presents a case -
; study to illustrate the uée of the OOD rules. Chaptef 6 compares t.he proédséd ;lesign rules to
‘some of t.'he current OOD metho'd's.. Qhapter 7 outlines fﬁture research work and concludes the

paper.

2. Th'e'Ohject-Oriented'Approac'h: Analysis and Desi"’gn’ |
Object-oriented rnode_lling (OOM) methods provide.a speciﬁc language to' document and
communicate about information systems. These methods have traditionally be‘en used in software -
development efforts Systems analysis produces either a software requlrements report or a
conceptual model and systems des1gn produces a mapping for software code implementation
" The traditional modellmg methods provrde,a language for model representatlon,~ and heuristics to
-guide_one’s ‘use of the language. This chapter provides an overview of the object-oriented

- approach in systems analysis and design.’ |
2.1 Modelling in General

We use models to capture particular aspects ofa problem domain for the purpose of analysis -

~ and/or design; A model is defined as “an_abstract representation of reality that excludes much'of *

" the world’s infinite detail. The purpose of a model is to reduce the complexity of understanding or

interacting with a phenomena by eliminating the detail that does not inﬂuence its relevant”

behavror Therefore a model reveals what 1ts creator believes is 1mportant in understandmg or

‘ predictlng the phenomena modeled” (Curtis 1992) Models are also known as scr1pts (Wand and' ‘

Weber 1995) Models or scripts are generated through grammars Wthh employ a set of symbols for‘« -

representatlon The models we work w1th prov1de a semantic mappmg from modelling constructs to .
the problem domain. Wand and Weber (1995) term this mamfestatlon of meamng the deep structure. "
, of an infonnation system. | | N h |
Zhao (1:995‘,_pv.r 5) deﬁnes_ an enterprise :model as “a.symbOIic system which captures the' _

essential and abstract relations and properties, both structure and dynamics, of an organization, usually

. as a whole.” Enterprise modelling produces an abstract representationvof-a business that is used to

reason about the function of an‘orgamzatlon' For our purposes, the model may be used to repnesent
eithera complete orgamzation or-a-part of it.
2.2 Modellingand Systems Analysis |
: ‘i&nalysis is,the understanding of a'system’s beliaviour.<More formally, the .Houghton
Mifflin Dictionary (1980).states: “[Analysis is] the separ'ation of an intellectual or substantial
' whole into constituents for individual g@:z In terms, .of enterprise modelling: “[AJnalysis calls
for examination and study of the existing state :of affairs in a given business area of .:the enterprise”
(Olle etal. 1991 p- 15) Operatlonally, “[s]ystems analy31s is the study of a system for the purpose :
of understandmg and documentmg its essentlal charactenstlcs” (Embley et al 1995 p. 19)
Tradltlonal systems analys1s methods focused on modellmg mformation content and :
system components for software engmeenng purposes The: empha51s“ was on SOllCltlﬂg the"
| reqmrements for a software design. The ana1y51s process results in a prov131on of a list of software
dehverables This focus is evident in traditional structured analys1s techmques (DeMarco 1979 '
Gane and Sarson 1986, Yourdon 1989) -whlch spec1ﬁcally states 'the software developmentf
intentions of these techmques ThlS software engmeermg focus has contmued in the development"
of obJect-onented analy51s methods (Booch 1993, Coad and Yourdon 1991a, Coleman et al 1994
" Rumbaugh et al. 1991).
OOEM models organizational actiVi_ties. Objects in an COEMi Irnodel represent things in V_ .
an organization, and do not represent software components. Parsons.and Wand (1993) argue that ._
| “the;key to a commonly accepted and natural -objectiparadigr‘n of 'systems analysis'should be a
view, of ol)jects as representation‘ constrlu-cts independent'of implementation' considerations” (p.
1. Furthermore, Rumbaugh et. al state, “Object-oriented development is a conceptual process'

1ndependent of a programmmg language until the ﬁnal stages. [It] .. 1s,fun_damentally a new way

' represented in an OOEM as an object.

of th1nk1ng and not a programmmg technique.” In accordance, a software system may be

2.3 Modelling and Systems Design |

_ Design involves the creation of a plan for a system that must haVe a certain speciﬁed'
behavrour Tradmonal systems des1gn 1nvolves generatlng a detalled plan for the constructron ofa
software artlfact The results from systems analysrs provrdes the 1nput for creatmg a model whrch

consists of modules or obJect classes that gurded a programmer’s 1mplementatlon of the software

“code.

Design, from this paper’s 'perspective, is not:restricted to SOftware alone. The design
process begins from the enterprise-model, and may eventually works its way down to software

construction. At the end, the process produces a design model or specification.

' 24 Object-Oriented‘Analysis and 'Design |

ObJect-onented modellmg is an approach to modellmg a problem domain using. obJect- o

onented constructs. The approach is centred on the concept of an object. W1th the prohferatlon of

- proposed methods, the term ObjCCt has been defined and 1nterpreted in many ways, and “there is

some dlspute about exactly what characteristics are requlred by an obJect-onented approach”

» (Rumbaugh et al. .1991, p 1) However there is an 1mphc1t basrc agreement that all obJects

embody an abstractlon (Synder 1993) An abstractron is defined as “a srmphfied descnptron, or

specrﬁcatron, of a system that emphas1zes some of the system s details or propertres while

suppress1ng others. A good abstractlon is one that emphasrzes details that are s1gn1ﬁcant to the

R reader or user and suppresses detalls that are, at least for the moment 1mmater1a1 or d1vers1onary’

* (Shaw 1984).

Tradltional methods model software requrrements and 1mplementatlon Object-oriented" o

analys1s (OOA) is used to gather the software requrrements to plan a software 1mplementatlon '

plan OOD produces a model bu11t from 00A results that encompass 1mp1ementationv o

- ‘ consrderations OOEM approaches the problem domaln from a dlfferent angle. Instead of
- modelling from’ the perspective of software development OOEM is used to develop models at the ,
B org_an_izatlonal level. a | |

| Inthe OO‘E'Mlapproach, the obiect construct represents an organizational unit function, :

. or r role. A role is relative to what you ask the object to’ do For example, 1f we had objects called "

| clerk and receptlonlst these two roles may be played by the same person We would view these as)

'two objects that represent two. orgamzatlonal roles.

"In our model, information technology can serve two roles:
- 1) to process lcnowledge o ' . resources which reflects knowle»dg'e‘ :
- services that operate on these resources
: 2)-.,.,t° proyide communication . - information carried or requests
- im‘plies shared resources
The followmg sections prov1de a summary of three well known object-oriented modellmg

’approaches ‘These approaches include Coad and Yourdons s OOA/OOD Coleman et al.’s |
Fusron, and Jacobson et al s use case dnven approach These three were chosen to provide a bnef -

. survey of general trends in system modellmg Both Coad and Yourdon s OOA/OOD and the :

J ~'Fus1on approach, mod_el.on the basis of creating a conceptual model of the problem domam for
:‘the software ‘environment. ThlS approach is srmilar to modellmg in the database domain where :

one creates a semantrc entity-relatlonship model of a problem domaln (typlcally conceptual'

,analys1s model). This model is then mapped into a data (typically relational) deS1gn model The

approach is centred on software des1gn and- 1mp1ementation Jacobson S use cases approach

provrdes ‘one of the few methods that emphasrzes the modellmg of orgamzational actrvrtles

However, as with ,most approaches,'these-‘ three lack an ontological foundation of principles and

rules that can be used to gurde the constructron of models. Because tradrtronal methods lack th1s ;

' basrs for analysrs modelhng, they do not prov1de methods to proceed from an orgamzatlonal

. analys1s model toward_s deslgn.

2.4.1 Coad and .Yourdon’:s OOA/O_OD

Coad and Yourdon s (l991a) OOA method uses four basrc modellmg constructs class &

: obJect attnbute, servrce, and class relatlonshrp The method cons1sts of ﬁve prrmary act1v1t1es

‘,ﬁndrng classes & obJects, 1dent1fy1ng structures, 1dent1fy1ng subjects, deﬁnmg attrrbutes, and

deﬁmng services. These activities prov1de a structure for bu11d1ng an OOA model whrch consrsts’ h

of five layers: subject layer, class & obJect layer structure layer, attrrbute layer and service layer .

The subject layers serve as a partmomng mechamsm the class & object layer captures classes and

~ objects; the structure layer captures 1nher1tance and whole-part structural relatronshrps, the

attribute layer captures attrrbutes and 1nstance connectlons between classes & objects; and the

“service layer captures methods/serv1ces and message connectrons between class & ob]ects : :

Coad and Yourdon s (1991b) OOD model 1s an extensron of the OOA model OOD uses

* four addltronal components whrch mclude the problem domam component human 1nteractlon
. component task management component and data management component The problem doma1n ‘
‘ .component houses the OOA results, and 1t is used to. 1mprove and add to the O0A results dunng

the OOD phase. The human 1nteract10n component captures how a human wrll command the .

system and how the system w111 present 1nformatlon to the user. The task management component;

~is used to desrgn multltaskmg requrrements for the system The data management component B

provides the basis for storage and retr'reval of obJects from a data management system.

242 Jacohson’s Object-Oriented Business Engineeringv Based‘on Use Cases

| :Jacobson '(1992) prop_oses' ‘a modelling technique- Called : »object-orfented busines’s
-engmeermg based on the notion of use cases. The technrque consists of two interrelated models
_ the use case model and the object model. Use cases 1dent1fy, at a high level how .a customer uses .
the company through busmess processes Each way of using a busmess 1s represented as a use:
case. The-object model clarrﬁes. the inner workings of a. company’s processes, products, services,
resOurces,'and thei'r'relationships. : | | .

ObJects are classrﬁed mto three types: interface object, controls obJect and entrty obJect

h An 1nterface ob_]ect represents the way in whrch the business system commumcates with the - -

| extemal envrronment. They portray a set of operations whrch have direct cbntact with the outside
. world A control object represents a set of tasks whrch must be performed durmg a. ﬂow of events.
They represent a set of operatlons lrke the mterface object but do not have direct responsrbrhtres
for contact with the business environment. An entrty obJect represents occurrences of such thmgs
as products, delrverables, documents, and other thmgs handled in - the busmess that are
used/consumed durrng a flow of events (p. 340)

When constructmg a busmess model one starts - by‘ generatrng a use case model. Thxs-;
model descrrbes what the busmess does. Then for each 1dent1ﬁed use case, an object model is
created The obJect model descnbes the 1nner most core of the busmess One 1dent1f1es the.. '
busrness use cases through the_envrronment (i.e.. actors).}Every stimulus from the actor to the~.
business lmplles a tnggenng of a use case, and every stlmulus sent to a use case 1mplres a
tnggermg of an object The process can be summanzed as such |

1. Burld a Use Case Model-

o ﬁnd actors (eg customer, busmess partner suppher govemment subsrdrary,,

etc.)

http://must.be

e find use cases
.. p‘n’oritrze‘use cases -
- o . describe use cases
°" select metrics and review -
2. Build ani(')bjectModel |
. ﬁnd subsystems
=3 -des‘Cribe use cases in retatron to subsystems ‘ |
‘e find objects | |
Jacobson’s approach proceeds to a logical destgn' by ‘formi.ng use cases for the softyvare
: development process A systematlc algorlthm is presented for developmg an information system "
model by usmg the business object model as the basis. One starts 1dent1fy1ng mformatlon system
~ use cases by starting with the interface and control objects in the busmess system object model
. The next step is- to 1solate business- interface- and control objects that wrll use the 1nformatlon '
: .system If the busmess system obJect has respons1b1ht1es that 1nvolves the use of the 1nformatlon'
system, one would 1dent1fy an 1nformat10n system use: case for it. Theseuse'cases will form the -
. basis for the infonnation system» object:'model (p. 273").- |
243 Object-Oriented Modelling with Fusron
Fusion (Coleman et al 1994) is an'integration and extension -of existing object—oriented
‘.' approaches, and is based on a set of dlagrammmg techmques (notatlons) for descnbmg analysxs and . ;
design decisions. Fusion consists of three phases analys1s, design and 1mplementat10n The steps in
each phase provide a sequence for decmons_. The deliverables of each step are mputs for the next step.
For each step, Fusion providesvrules for checkin‘g‘the consistency andjcompleteness of a model as it

develops.

10

The analys1s phase defines’ the intended behaviour of the system by usmg a customer supphed

initial requlrements document for input. Models in tlus phase describe classes of objects; relatronshlps

' between classes; operatxons that can be performed on the system, and allowable sequences of those

' operatlons The analys1s is 1ntended to prov1de a specrﬁcatlon document

The design phase produces models that show how ‘system operatlons are 1mplemented by

: 1nteract1ng objects, references between classes, 1nher1tance relat10nsh1ps, attnbutes of classes and

operatlons on classes The result of the desrgn phase is an architecture document
The analys1s phase ends with . operanon models and des1gn begms w1th making ob_]ect
1nteract10n graphs and is ﬁmshed by maklng mhentance graphs Descnptlons of the modelhng_ '
techniques are summanzed below ‘
Analysis Models
1. Object models'-bdeﬁne_ the staticfstructure of the.information in the system. These represent 'the‘
. concepts in the problem domam and their relatmnslups Thé obJect model notation is based on the .
extended entlty relanonshlp notatron
2. System object model a subset of an obJect model that corresponds to the system in development
It is formed by excludmg all the classes and relatlonshlps that belong to the env1ronment
3. Interface models - deﬁne the commumcanon of the system with the env1ronment The descrrptlon'
is in terms of events and the’ change of state that the events cau’se The 1nterface of a systemlls
composed ,Of the set of system operatlons which 1t can receive and the set of events that it can *
transmit.v Different’aspects -of b'eha-vio.ur.a‘re described inv two models: “
a) Lifecycle models characterise' the allowable sequencinglof System operations and events‘
A lifecycle express1on defines a pattem of communication by showmg the allowable:

sequences of i 1nteract10ns that a system may participate 1n over its lifetime.

ST

oy

o

L b) Operatlon models descnbe, through the use of precondltlons and post condmons, the .

effect of each system operatlon in terms of the state change 1t causes and the output events

1tsends S

7 Desrgn Models DR,

: -1'.‘ ' ObJect 1nteractlon graphs constructed for each system operatlon They deﬁne the sequences of

messages that occur between obJects to reahze a partlcular operatlon

2;:? V1s1b1hty graphs - show the . reference structure of classes m the system It shows the

‘commumcanon paths that are requlred for obJects to have access to other ob_]ects (1 €. message
sendmg) The followmg 1s 1dent1ﬁed for each class obJects that class mstances need to reference

; _and appropnate kmds of reference to those obJects

-3'.' Class descnptlons - one class descnptlon is made for each class It descnbes both the class

- methods and attnbutes These descnptlons serve as foundatlons for 1mplementat10n

4., Inhentance graphs - show generahzatron—specmhzatmn relatxons between classes

3. Object-OrientedfEnterprise_ Moﬂdelli'ng |
Object-onented enterpnse modellmg (OOEM), based on Wand and Woo (1993) and Zhao
‘-(1995) presents a method for constructing object-oriented models of orgamzations grounded on

ontological princ1ples OOEM provrdes a formalized set of obJect-oriented analysis (OOA) rules,
| a request propagation algonthm, and a model representation technique Because discussion of
, design will expand on-only the OQA rules and propagation rules, only these two topics will be

summarized here. A sample of the model representation technique is provided 1n Appendix II (i.e.

with external .and internal object teniplates). A discus‘sion of modelling principles, ontology, and
'rnodelling consltruc-ts will provide _the f;oundation for principles for object—oriented design.
| Modelling principles specify what type of model we are trying to ‘build. Ontology provides a basis.
for what there is to model in the real'WO_rld. Modelling constructs provide us with a set of
constructs that we can uSe to- represent reality. Ontological con'structs can be mapped to their
" object‘-o_riented ‘counterparts, and thus lay out the foundation for object-oriented rnodelling. The
OOA rules provide the properties, or-characteristics for a correct QOA model, and instruction for

- composing a model.

3.1 Modelling Principles

The followmg modelling pr1nc1ples lay out the basic assumptions for the type of model
R that the OOEM method is intended to build (Wand and Woo 1993) The first two principles are

; general statements about the relationship among information systems organizations, and models
‘Prmc1ple 3 and 4 are construct 1ndependent statements about models. Principle 5 tles the object

'construct to modelling, and pnnmple 6 sets the boundary or scope of a model.

13

~Ceneral '
1. Information processmg act1v1t1es are part of the reéular activities of the orgamzat1on The
OOEM method models both 1nformation-processmgr and non-information processmg actxv1t1es |
‘2 An mformation system is a representation of another system (the real world system) An
. mformatlon system is an abstractlon or model of some part of the real world as. perceived (ex1st1ng‘
'or imagined). A model,lsuch as an OOEl\/I model, uses_ constructs that directly mapto the problem
domajri. Such a model emphasizes the meaning of .the real world system that is captured.
Basic___Constructs _ | |

3. The modelled | system is viewed’ as made of clearly deﬁned (discrete) c.omponents. : This
- principle ensures that a model does not contain com'ponents that have ambiguou's meaning. :
- | 4. All actions in the systein..result from_ external stimuli. Thus‘, the purpose of a system 1s défined
by the external stimuli to which it responds. _Intern_al_system events avr'ei»triggered' by.e)‘ctern‘al

stimuli:

5 Every orgamzational component and every thmg mteractmg w1th the system is modelled asan

' obJect The object construct is the basic component for buildmg models.
: Mmimallty
| 6. Only aspects directly relevant to the purpose of modellmg the system should be modelled |
Relevance is determmed by the extemal stimuli to which the system has to respond The model

: boundary is limited by the requests from external objects. ‘

3 2 Ontological Foundatlon

Ontology, a branch of ph1losophy (metaphysms) is the study or theory of bemg (1 e. basic ‘
‘traits of all reality). Bunge states, “Me_taphys1cs studies the generic (nonspeciﬁc) traits of every
" mode of being _and becoming as well as the peculiar features of the major genera of "existents

(1977, p. 5). Metaphysics can render service by analyzing fashionable but obscure notions such as

14

- those of a system hierarchy, structure, eyent information ” (1977 p 24) Bunge's ontologrcal ‘
"approach (1977,11979), Wthh has been adapted to mformatron systems (Wand and Weber 1995)
is used as the foundatlon for OOEM (Wand 1989) Such an approach provrdes a base of reference |
- on- how to model the world Because an enterpnse model captures 1nformat10n about '

- organizational th1ngs such as customers, products, employees, and equrpment a theory of the
" nature of thrngs can functlon as the foundatlon for enterprrse modelling. Ontology" prov1des the‘:‘ A;

concepts for‘how we -c\an reason about the world and thus we wrll use ontology as the basrs to .l‘ '

model and talk about orgamzatlonal act1v1t1es The followmg is a summary of the ontologlcal ‘

principles which serve‘as a basrs for rnodellrng W and and Woo 1993):
0'. 'The world is cdmposed of. things that possess propertie's
. Attnbutes are charactenstrcs humans assrgn‘ to thmgs
o Every property can be modelled as an attnbute
. Everythrng abides by laws whrch are invariant relatrons among propemes of the
thing. These laws lrmrt the poss1ble states and state transitions. |
e Systems are 1nteract1ng thmgs

e Everythlng changes and every change isa change of states of thmgs .

33 Modﬁelling_’h('?onstructs o

Modellmg constructs prov1de a way to represent somethmg in the world Ontology

. provides constructs for descnbrng the real world These constructs can be mapped onto obJect- ,

onented constructs, and allow as to represent and reason about the problem domain-using obJect-

~oriented concepts and constructs (Wand 1989)

15

| .‘3 3 1 Ontologlcal Modellmg Constructs '

' Wand and Weber (1990) adapted Bunges ontology to 1nformatlon systems The
ontolog1ca1 constructs (Wand 1989) for IS were categonzed mto four categones as descnbed by

Zhao (1995) The constructs are listed below and are further descrlbed in Appendlx I

» ,Statlc model ofa thmg th1ng, property, state, compos1te thmg, law class

- Dynamxc model of a thmg events, transformatlon, hlstory

Static model ofa _system -_c'ouphng, system, compos_ltlon, environment, structure, stbsystem

- Dynamic model of a.s'ystem - stable state, unstable state, 'ekternal event, internal event, well-

. .ujdeﬁnedevent,xpoorly defined event

332 Object-Oriented Modelling Constructs

There are various ohje'ct-oriented analysis and desi‘gn methods that . present their own -

‘bas1c constltuents of object-onented constructs Although there is. no agreed upon standard there

_are constructs that are con51stent1y used throughout most methods Constructs such as object

attribute, opcratlon/functwn hlerarchy, and message are used in many of the methods. :

' Although these formal methods may not present a un1form set-of concepts, the 1dea of

encapsulatlon and objects are at the center of most methods Informally, objects are packages of S
'Vb‘oth attnbutes/state vanables and funcuons/operatlons The object construct entaxls the
, encapsulatlon of attnbutes (state vanables) and operatxons by forcmg access to these vanables to
'go through its pubhcly access1b1e mechamsms Objects commumcate w1th each other by sendmg

' »messages to one another OOEM uses the concept of an obJect as the startmg pomt to bulld a set =

of ob_]ect-onented constructs from the set of ontologxcal,constructs.

16

-

- , 3 3 3 Mapplng Ontologlcal Constructs to Ob_]ect Orlented Constructs

Cye

Mappmg ontologlcal constructs to obJect-onented constructs prov1des us w1th the obJect o

constructs we can use to reason about a problem domaln Ontology prov1des a means of Justlfymg .
o or: reasomng for why certam obJect-orlented concepts should be 1ncluded in an enterprlse model 3 " ,

i

and"a rnearnng for each of these concepts. k e

: 3 3. 3 1 Objects and Thrngs o

A thmg is cons1dered the bas1c umt of ex1stence in our ontologlcal model In accordance, L
. “'OOEM asserts that the world 1s made of objects The object is the umt of analys1s and its bas1s is -

rooted in the ontolog1cal prmc1p1e that states that the world i is. composed of thmgs An ob_]ect is :

: :deﬁned asa model of a substantlal thmg that 1nteracts thh other thmgs (Ob_]CCtS) in the problem o

S domam (Zhao 1995 p 12) (See also Wand 1989) Object types or classes represent roles that are -
. played in an orgamzatlon 1n an OOEM A role represents a funct1onal schema or view, and thus
an object can be modelled as. a functlonal schema A functlonal schema is. a set of attnbute-

,functxons that represent mtrms1c and mutual (shared) propertles in objects The model of a thmg

L ; ,f'(1ts functlonal schema) reﬂects the purpose of the modelled thmg ObJects and their dynam1cs are S

descnbed by the1r states (attnbutes) state changes (serv1ces/methods/operatxons), and obJect |
o flnteractlons (extemal events/requests for serv1ce) | H
Ontologlcally, a class is a set of obJects that have common propertxes The class
| p corresponds to the. concept of a natural kmd in ontology A natural kmd is a group of thmgs that

B “share the same laws and propertles In OOEM the class construct 1s used to refer to a group of

‘ ob]ects that share the same attnbutes and serv1ces and hence play the same role Ind1v1dual objects.-: S

_are commonly called mstances OOEM uses the class construct in 1ts model representatlon even 1f" B

" only one obJect is 1n the model

17

' There‘ are two 'general’ types 'of ohjects: internal. objects and external ohjects. Intemal
objects are considered part of the system and must provide at least one service in response to an
 external request. External. objects are objects that interact w1th the system but are not con31dered' |
part of it. They can either generate _requests or' be requested hy‘the hsystem to perforrn a‘certaint '

action.

3.3.3.2 Attrihutes and Properties. 4
Attrihutes model properties of things. Anattribute is ba characteristic that o_ne assignsto an..

. ‘object. Such anlattribute would reflect a property of the object: An_object Aproperty is comprised of =

" state and state‘transformation'laws ‘(functio.'nal scherna) Attributes describe the state of objects |

- Attnbutes represent both the state of the ob_]ect itself and its knowledge of the problem domam"

. (which is part of the state) OOEM d1v1des attrrbutes mto two type: mtemal attrlbutes and-

. 1nterface attnbutes Internal attnbutes are not pubhcly known to .other Ob_]CCtS They can. only be

accessed or changed through the serv1ces of the owner Ob_]CCt Interface attnbutes are publlclyv-)
access1ble by other obJec_ts and are the means for comrnumcatlon." “
'Intern_all attrihutesmodel the intrinsicvp‘roperties of ‘a thing." lnternal attn'butes.need- not be-

. ’included m an .lobject rnOdel slnce :it is sufficient for other objects to interact with an object
through the lnterface attributes. Internal attrihutes are usually :in‘cluded in the inter'nal view of the .
model to show the additional ‘knoyvledge of the analy‘st‘. |

) | Interface attributes model mutual propertles of things. They are shared by all
comrnumcatlng objects Interface objects are the means by Wthh obJects communrcate w1th one

 another. An obJect communrcates with another by sendmg a request to another object The request (

. modifies theinterface attributes -of the recipient, and.thus‘ changes the state history of the

- recipient. This change in the interface attributes trlggers a_service that results in further state

' transformations. This type of object interaction reflects the ontological concept of coupling.

18

Interface attributes are divided into two types: incoming interface attributes and returning
interface attribute. Incoming interface attributes model messages that sent from a requester to the

recipiént. Returning interface attributes model the message returned to the requester in response

‘ to the initial request.

3.3.3.3 Services and Lawful Transformations

Services model the state transition-law of a thing. A service is a series of well-defined

-. actions taken by an object to fulfill a request. A service may access or modify’ the objécts own

attributes, or generate requests to other objects.

3.3.3.4 Requests and Events

Requests model the interactions among objects. Interaction is the change of history of a '

thing as a result of the existence of another thing. An object interacts' with oth_efbbjécts by

- sending requests. ‘A request changes the interface attributes of the recipient object, and -

consequently triggers the ‘correspondih_g service. The outcome of a request can chaﬁge the

recipient's state; the state of the sender; the state of both recipient and sender, or neithier the

. recipient’s nor sender’s state.

Requests are categorized into two types: external requests and inteémal requests. Requests

can be external or internal to either the system or object.

External system requests are those events that originate from external objects which are

outside (environment) the modelled system. External object requests -are _thdSe events that an.

~ objects receives due to its interaction with other objects.

Intémal system requests model internal evénts_of the system. Internal sys‘ter'n‘ events

" reflect the interaction of objects within the modelled system. Internal events to objects are those -

-events that arise within an object by virtue of lawful state transformations. Such events are .

triggered, directly or indirectly, by external requests into the system. As a result of extenial_ system

19 -

_requests, the system becomes unstable, and may trigger a number of internal "'system requests to

. reach a stable state.

13335 System of Interacting Objects and System

A"group of interacting objects form an aggregate that is known as a systerrl. A systenr of

: mteractmg objects models a real world system (ex1stmg or 1mag1ned) Object interaction models ‘

the couphng between thmgs ObJect mteraction are modelled as either submlttmg requests or

' prov1d1ng- services. Objects m OOEM actively participate in organization's activities, and are not

" just suhjects about which information is kept. OOEM’s emphasis is on modelling aspects releyant

to a model’s purpose. External systeru requests‘deﬁ'ne the services, and thus the purpose, of the
system.‘v‘Ontologically, such. a request from an external object would cause a state change in an

internal object through the Vmodiﬁcat'ionl of a mutual attribute, and cause both the system and

affected object to.go into an uhstable state. As the object proceeds with its internal operations to

satisfy the request other mutual attrlbutes may change (w1thm the bounds of state laws). This

‘ vchange w111 be detected by other obJect wh1ch share these attributes and may make them go into

an unstable state. ThlS course of state transformatlon p_ropagates throughout the system until the

system reaches a stable state. This process is referred to as request prOpagatiori.

3.3'.3.'6, 'External Objects and System Environment ‘
- External objects model the systein enyiroumeht.z External objectsfpr”oyide th'e requests tthat _
define the purpose of the modelled system or enterpi'ise;

- "The following table summarizes the mapping of ontological constructs to object-oriented

- - modelling constructs:

20 .

Object Constructs

|| Ontological Constructs .-

- »Objects

‘| Things "=~

. Classes —

c Natural Kincls':, T

1 Attnbutes

1 Propertles

' Intemal Attnbutes

: ‘Intrmsxc Propertles

Inter_fac‘e Attrrbutes‘. S

o AMutual Propertles B

- \.’_Ser'vices.

- Lawfu_l Transforrnatlo'n_

A ‘Request

Bvent

i Extemal Request to Objects

‘ External' Events 10 Things

Extemal Requests to the System

K External Events to the System

-Intemal Requests to ObJects P

) Intemal Events to Objects

PR

Intemal Request to the System

'Internal Ev_ents to-the Systemf £

o System of Interactmg Objects '

k System

. '3 4 1 Rule #1 Scope Identlficatlon [

Extemal Objects ‘System Envirohment -

. Tablel Mappin_gr.ol'_f(‘)bjeet Const'ruets toqontologicallconstructs‘ c

34 'Objé'c't-;ofién.te&i'A.nalysis. Rules

K =

Thrs sectron prov1des a summary of the OOEM modellmg rules There are a total of seven ';

ma

‘»" "

ontologlcally based rules that deﬁne the course of modellmg a domam (Wand and Woo 1996)

The rule states that the analyst should deﬁne the purpose of the modelled system (1 e the. ,

v

boundary of the enterpnse model It d1st1ngu1shes between the envrronment and the enterpnse ’

s

N problem domaln) in. terms of orgamzatlonal act1v1t1es to be supported Th1s rule deﬁnes the, o

. The env1ronment is represented w1th extemal obJects that mteract w1th the modelled system by o o

o sendlng extemal requests to the system These requests define the scope of the modelled system
'The problem domain becomes the scope of the model and determmes whrch aspects of the

domain should be modelled.

342 Rule #2: Object Identification

The rule States that an object is included in the model rf and only if it provides at leastrone
s‘erv'ice, or _makes_ at least one‘ request to Ithe _system. -Th_is rule deter__rnines the things
- '(org’anizationall units or actors) that should be modelled as.objects The rule ensures that every‘
' change is tied to a change of state of thlngs and everything changes An 1ntemal object is an
object that is part of the system and provxdes at least one service. An extemal object is part of the '

" environment that interacts with the system.
3.4.3 Rule #3: Service In_clubsion
The rule states that a service is included in 'the 'system.if and only if it is invoked by at’
* least one request in the system Thxs rule determmes Wthh Ob_]CCt dynamlcs should be mcluded in -

the model Such a request may come- from cither extemal obJects or 1ntemal objects Serv1ces'

reflect.mternal transforrnatrons (state changes) of}thmgs. o
3.4.4 Rule #4: Attribute Inclusion .

The rule states that an 1nterface attnbute must be used or affected by at least one serv1ce, "
and known to at least one other object ThlS rule determmes Wthh Ob]CCt attnbutes should be L

included in a model. An internal attribute must be affected by at least one service of the object and

‘is unknown to other objects. - - o I

- 22

345 Rule #5: Attribute OWnership Rule

The rule states that there are no attnbutes that do. not belong to any obJect This rule -

g detemunes which object is responsrble for an attnbute value The value of every attrrbute can only

be modlfied or obtamed by the services of one objec_t. 'l"hls obJect is known as the custodtan of the
attribute. Other objects can only access or modify the value of an attribute through the actions of -

the custodian object. Properties always belong to things.

| 3'.'4.6" Rule #6: Aggregation an,d‘DecompoSition o

* . The rule states that a composlte'object is included in the model if and only if it provides
services that are not provided by any'of its components. '_I‘his rule deterrnines when to include
composite (aggregation) or cornponent (decomposition) objects in the‘ model. When rnodelling the .-

propert1es of a compos1te, 1nclude those propertles not modelled in a component A composrte

: obJect must have emergent propertres

3.4.7 Rule #7: Generalization and Specialization |
“The rule sltate'sr that >if t‘wo or more object classes provlde one or more common services,'
. ‘.one can generate a general obJect class. Th1s rule: determmes when tol form super-classes -
‘ (generallzatlon) or sub-classes (spec1ahzatlon) A class (natural kmd - See Append1x Dis deﬁned
by a set of shared properties (same laws) The general obJect class prov1des the common servrces
-and is known as the super-class of the ongmal classes. The ongmal classes are known as sub-
clas__ses of the general class. All ‘serylces prov1ded by the super-class should be el1m1nated from the
sub-c{lasses, Alternatively, one can 'form a sub'-classv only 1f it 'includes' new’.service.s and attributes '
with‘ resoectto the.super-class.'ln accordance with Rule #1"- object identification, the super-

classes ‘and sub-classes must receive requests from other objects.

- 23

3.4.8 Service and Request 'Prop.agat.i‘on

OOEM's service and request pfopagation algorithm provides a systematic method for

applying the OOA rules to find and détermine .the- objects to include. in an entefpris'e model.

- Tracing the request propagation process identifies all the objects with their associated services,

' iﬁterface attributes, internal attributes, and request connections. In the process of performing a

~ service, an object may generate requests to. other objects. Request propagation begins with a

‘request from ‘an external object “and ends On. external objects or on objects ‘which do not need to

propagate requests The followmg prov1des a smphﬁed summary of the recursive process

1

2.

Identify extemal chents con31der all thmgs submlttmg requests to the system
Identify requests from clients .

Identify the object that receives the reqﬁest - consider all things mentioned in the case

that provide some useful services or request.some service.

Identify the interface attribute - reco_rd- for a change of state, request for state

1nformat10n -
Identify ’se_fvices - consider all actions taken_ by an 'objeet as a result of‘ all requests
“‘s‘ubmi‘tted: to it, Include only acﬁeas that ame triggereci slirecfl;.i;3 "
'Identify internal att'ributes used by serviees o .
. 1denﬁfy requests geaerated by a service '
. _Recurs tostep3 |

' Apply Rule #6 and #7 |

24

R Object-Oriented ‘Desi‘gn» -
Whereas systems analys1s encompasses both the study of current systems and the c
- ¥ "requlrements analys1s for a new system, systems de51gn deals w1th laymg out plans for systems' :

r development Decomposrtlon is a. pnncrpal act1v1ty of systems analy81s and desrgn (Wand and ‘

Weber 1991) In analy31s, decomposrtlon is used to further break down a system into: 1ts‘ 4

o o 'components for further analysrs In de31gn, decomposmon is used to plan the constructlon of an' o

' ,aggregate from components Thus, a major aspect of, the desrgn of an orgamzatlon or 1nformattonr o

- vsystem w111 be based on the process of decomposrtlon Wand and Weber (1991) state, “Good o

Lt decomposmon is consrdered a major requrrement and frequently the essence of good desrgn” (p -

101) Furthermore, Booch (1993) says,,.“ObJect-onented desrgn is a. method of deS1gn . _:

o encompassmg the process of object-onented decomposmon R (p 39).

More formally, the Houghton leﬂm Drctronary states, “[Des1gn 1s] the rnventlon and , ‘; .

‘” d1spos1tron of the, forms, parts, or detarls of somethlng accordlng to plan [It 1s] a drawmg orv :

' E sketch” (1980) In term of 1nformat10n systems desrgn mvolves the creatlon of a plan for a system',: ’

” that must have a certam spec1ﬁed behavrour (Wand and Weber 1991 p: 102) From these two '
- deﬁmtlons we see that des1gn 1nvolves a model of a thmg, the decomposrtlon of a thmg, and‘
g speclﬁed bounded behavrour ofa thmg Once the foundatron of decomposmon is estabhshed we)

- can use the ob_]ected onented constructs to express a desrgn model
S 4.1 *Foundations t_‘or.Design Modelling ,'

The model from the requlrements analysrs feeds the process of desrgn Once the overall." |

; aggregate behav1our of a system 1s deﬁned the system is decomposed 1nto components Each. R

',component posses behavrour and 1nteracts w1th other components to prov1de the aggregate o

) behavrour of the system Each component is 1tself a subsystem that can be decomposed mto ﬁner

components Decomposmon will be based on a set of common formal foundations, and the -
process of ﬁndmg the parts of a system is gulded by the process of request propagation The N
fundamental rules and pr1nc1ples for analys1s modelhng will continue to be applied in the design

modelling process.
'4.1.1 Modelling Principles for Design .
. The modelling pl‘inciples used to lay out the basic.modelling assnmptions for object-

oriented enterprise mddelling will provide the starting point from which we will form modelling

' , prmc1ples for des1gn From those analys1s modellmg prmcxples, we can distil prmc1p1es that are

o . more spec1ﬁc to de51gn These pr1nc1p1es spec1fy the type of model we are trymg to blllld as we

progress . from the ana‘lysxs“model to 'the_ design model. We focus on the _foIlowing list of
piinciples: “ |
Basic Constrncts h
1 The modelled object is viewed as. made of cleatly deﬁned cornp,on_ents;f This indicates thvat
. self-contained objects are systems that canlbe decomposed and ainalyzed in further detail by
. breaking them down into finer components;. |
2. ‘All actions-in the obJect result from extemal stimulus or requests The purpose of the obJect is
defined by the extemal st1mu11 to Wthh is ’has to respond.- This prmcxple mdlcates that
. components of objects can be discovered by followmg theirequest_propagatlon since the
A __pdrpose of the component objects-are deﬁned by external requests' for services.
3 : Every system component and everythlng 1nteractmg w1th the system is modelled as an’ object |
This suggests that objects are composed of finer obJects To examine an obJect without

decomposmg it, will require the examination of the object’s attributes and services. ,

2%

' Minilﬁality ‘ _

_4. Only aspects directly relevant to the purﬁose 'of fn'c)delling thc.:'object should be modelled. The
purpose. of thc'a. modelled dbject is deﬁn'ed'by external stimuli to whi(;h the object has to
respond; Thislpdnciple irﬂplieé that. only Comi)onent objects thét are relevant to the scope of
ahalysis should be included in the model. This is the principle of minimality. -

The presented modelling principles set out the basi;: assumptions from which we can prdcegd

with design through decomposition.

4.1.2 The Fundamentals of Decomposition

[Clomplex systems, [such as information systems], might be expected to be constructed'in‘ a
hierafcﬁy of levels. The basic idea is that several components in any complex éystem will perform
particular subfqnctions that contribute to the oyef-ali functi‘on...:‘Té-;lesigr.l such a 4complex

| étructu‘rg, one powefful technique is to discover- viable ways of decomposing" it into semi-

| independent corhponents éorres_ponding to many functional parts. The design of each cbmpohent
can thep be carried out with some degre¢ of indepehdence of the design of éthers, sinée Qaéh will
affect the others largely 'tﬁroughits function and independently ovf the detéilis of the' ;pechanisnls i

;h.at accomplish the function” (Simon 1981, p. 148).

Decorﬁposition ﬁts'the.vontological concept that fhingé cén be combo,séd_ Qf"dther tﬁings
(i.e. inieracting thiﬁgs_fbrm systems and aggregates). In other wordé; thingls‘ can assdciat__c to fonﬂ
‘ composite thingé. Thus, decomposition provides a method for Anaiyzing a thing in ﬁner detall As
a thing is decomposéd, .its state and behaviour are also deconiposed'. As a result, th}eyvslt_ate and
behaviour of the.aggregate thing are divided .among it; components. One may infer from ontolc:>g'y
_ that thé decomposition of thihgs is a possible routé for systems, désig'n .si‘nce one would be .
defining the interacting components things to form the aggregate system. Thé fundamentais of
design decomposition do not prescribe a method for producirig the ideal design model. In cht‘

“there is no reason to expect that the decomposition of the complete design into fuhc_:tional :

27

S “cor'nponents will be'. onidue In important instances . '.there may. ‘_exist‘ alternative‘. feasible -
K . fdecomposmons of radlcally different kinds” (Simon 1981 p- 149) | | |
~ More formally, the approach that will be taken is summanzed in these follow1ng pomts
(Wand and Weber, 1991)
1. A thing or system is v1ewed as:
e ‘A whole thing - an object
. '. o A composite rnade of other things - an object composed of ‘otherv objects S
2. A good decomposition reﬂects the dynamics of the System :_‘ component 'objects, as a whole,
preserve the :services of the aggregate object | | | .
3. The decomposition of ‘an inforrnation- system should reflect a‘decompos‘ed” yiew of ‘the.
" 'represented system. |
N . ~° General principles (Wand and Weber, 1991):
' 4 e * A good decomposition is defined \yith 'respectto‘ behva\'/ionr-ulnder a given set ot; '
: e)rternal events' - | . o
’ | R SR Coe CA good decomposition is related’to;thinés that are “Well-behaved” and “well carve‘d‘;
' : out” of their envrronment A well-behaved thmg responds to each external event in a K
.-predictable way A well carved out thing has some state vanables that are determined‘1 h
‘by,th_e thing only - encapsulation ’of mternai state. - : |
. A good decomposition is an approiimation. |
. -Smne principles for. decomposi_ng a system and for'yie‘wing' 1t _as separated 4-fr_om‘ its, o
environment; | | o |
The necessary conditions for a good decomposrtion for a given set of- extemal events (Wand and

‘ Weber, 1995)

- 28

- 1. Determinism: For a grven set of extemal events at the system level, a decomposmon is good

“only 1f for every subsystem (at every 1eve1 in the level structure. of the system) an event is

“either .(a)' a specrﬁed extemal event*or (b) a well-deﬁned 1ntemal event.

2. Mmrmalrty A decomposmon is good only if for every subsystem (at every level in the level -

structure of the system) there are no redundant state varlables descrlbmg the subsystem.

3 Losslessness: A decomposition is good only if every emergent variable in the system is a

-function of properties of at least one subsystem in the decomposition. This means that one
~ should be able to deduce the behaviour of a whole systems from the interactions and events.of |

the components.

" Given that we have established what is decomposition of an object (what), we may now proceed'

to the process of decomposition (how).

4.1.3 The Process of Decomposition

Object-onented des1gn mvolves the breakdown of a large aggregate Ob_]CCt mto its

component objects: Such a process can be executed recursrvely for each component ob_]ect The

decomposmon begms w1th ﬁndmg obJects that process the extemal requests By tracmg through

one of these requests, the scenario descnptron wrll provrde the details on how the component '

obJect processes the partlcular request Just as for “analysis modellmg, one goes through the

request propagatlon process for desrgn If the 1mt1a1 Ob_]CCt needs servrces it alone cannot provxde,

it will spawn a request to another object for the requrred servrce At the end of the request
propagation trace, we will have a model of all the obJects, w1th their attributes and servrce, that
are needed to process the specxﬁc request When this tracmg is completed for all requests we will

have a complete decomposed model of the aggregate object In analysis, decomposmon is used to

reveal the inner workings of objects. In de31gn, decomposition is used to create a plan for how

‘objects would carry out their inner operations. .

29 -

| 4.2 Design Modelling Constructs -
Design requir'es some.further elaborati»on for some additional modellin‘g‘c'onstructs for the'. |
‘ 'decomposmon process The decompos1t10n process makes - use of two types of obJects the '
delegate object and the static object These two categones of ObJCCtS stlll -correspond to the”.
ontological concept of a thing, but have been c1ass1ﬁed\for the types of roles theyl playt o

‘ A delegate object is an object which has been created to act_ as a representative or a
‘seryice prOvider for the delegator-object. A delegate allows one to- transfer.‘respOnsibiliti'es.'f_or
attrib'ute.s' and services from one object to another. The delegate object provides the primary‘means
for -the transition from an‘ analysis‘model ‘of an'organization to a.-logical deSign model of a
software system. When we delegate responsrbihties to an automated system we reheve the
delegator from havmg to perform former services and knowledge keeplng The delegate obJect is
used to capture this essentlal meanmg. |

A static object isan_obiect with only state (interface attributes) and no seryices. Its 'state is

~. changed by"other objects by altering interface attributes. It only undergoes external events. In

P compariSOn, dynamrc ob’jects,vun.dergo both‘external and 'intemal eyents. Dunng a decomposition

~of an object one may find that a dynar’nic object manipulates a static object in order for the -

dynamic obJect to prov1de its services. For example, we may find that a clerk (dynamlc object) o

looks up and changes the contents of a filing cabmet (static object) in 1ts normal course of .

operations. (N .B. Static obJects will not appear in the analy'srs - OOEM.)
4.3 Object40riented ‘Design' ‘Ru1es'

Given the fundamental prmcrples and condrtlons for des1gn and decomposrtlon, we can
denve rules for ob]ect-orlented desrgn These rules descnbe propert1es that a good object model |

- should possess. Unlike rules of thumb, these rules are based ona _formal foundation of design, and

are properties that a good model should possess. * A

30

) o1 | Object pecomposition Rule
: 5_ Each irequest receive‘d‘by a'co’rnposit'e obJect is ptocessed by at least one,of its component :objects_{ -
2 :DeiegationRule" o “ o kS
i-iach delegation'ohject is‘ modelled with a subset of the attributes and services of the c'lient ohject;
3 Static ObjectRule. | -

o Each static object either uses thas_its state read) and/or is rnanipuiated (has its state"chang’ed) by at

v least' one dynamic objecti | | |

The decomposmon rule prov1des the rneans towards des:gn smce we use decomposmon to ;
.idISCOVCI' and deﬁne the components ofa system The delegation rule prov1des the transmonal hnk
- from a model of an enterprise to a model of an 1nformation system The static object rule prov1des'
: the States and events that need to be reflected in the database design of an information system.
: ?The general sequence for usilng the rules begins with t'he‘ decomposition rule;:folilowed by
_either the delegatio_n i'ule-‘ or st_atic .object rule in any orde'r, in | itelration‘.‘ We _star'_t; w1th the
decomposition rule-fsince the designer r‘e'quires aztr;nor'e detailed makeup of a systein .befo‘re he]she
can begm applying either the delegate or statlc object rule in de51gn

The followmg mini example, about a un1vers1ty s registrar s ofﬁce, W1ll be used to

illuStrate the desxgn_rule_s:)

Students submlt a request to attend a course to the reglstrars oﬁrce The registrar's offrce
checks if the student has the nght to enrol (| e. proper academrc standlng. no default on tultlon)
and then submits the approved requests to’ the-facultres. If the request is rejected, the student is

EE T :

notified.

In the faculty. students are assrgned to course sectrons - pendmg avanlablhty it space is’
Ilmrted priority is given based on program requrrements and credlt accumulated so far. The
registrar’s office is then notified as to-the status of requests and section allocation. Student

‘| requests not approved due to space limitation arej“pIaCed ona waitidg list.

31

The registrar’s office notifies students whether their requests have been apbrové_’d"or not by|’

the faculty and on their fee payable based on the étudent-’s_status and courses approved.

* The notation that will be used to illustraté the mini-example-consists of the following:
. objeét class - rounded reétanglc
. obj'e‘ct'class name - top section éf the rounAded. rectangle
- e attributes - middle section of {he rounded rectangle
* services - bottom section of the rounded rectangle
e ‘:requests - d(;tted arrows
v Thp label at the tail eqd of an iarrow represents. a request, and 'theb lable at the arrow. h_ead
‘;epresents the response to the request. :In sﬁorthand, a reciuest for information (1e Qaiu_e froman
. attribute) is only represented with an arrow and request label. The returned -Tesponse is i'mpliﬁed in
 the display of the attribute that contains the reques;ted information. No épeéific request fqrislgr\‘rice
attribute is necessary.
| Figure 1 shows the initiai 0O0A model for the regist;ar’s ‘ofﬁce r‘nihi-égée(eixarﬁple,‘ The
éxtem'a.l ol;jé;:t - STUDE&T - initiétes the request propagét‘ibn.‘nThe propagaiidn trace pré\{idqs ths‘e- |

objects REGISTRAR'S OFFICE and FACULTY. -

32

*(_Student _request to ST (. Registrar's Office \

attend course _ _ _ _ _ _ _ _ . _ . ___ >
. ' " nofification back ~ | Student requests
. . : _ .~ fromregistrar student credit accumulated -
N Lo e - = (student status)
e : Sl e o {tultion fee table)

process course request

. @ide'student credit accuniulated /

T " : .
. request to assign LA credit accumulated
course section ’

|
|
1
R
1 o
! - - request to obtain

: credit accumulated

|

|

|

|

|

-

(o

. . ‘ .
section allocated |- |
1

[Ry)
course assignment ré‘quests ,
course section assignment record

. (program requirements)
N " (waiting list)

{ssign course section - R j

 Figure 1 Initial OOA of the Registrar Case

43.1 Object Decomposition Rules.
The composition characteristic of d'ohj_ec’ts‘ states that obj'ects- cnn ,.be cornbined to forxn‘
composite objects. The forcelthat hinds the cornponent objects ‘together to fonn a system is their »l
interziction W'hich’is manifested ascomrnunication or requests for each‘ other’s services. -In ‘other
words the obJ'ects are dependent on eech other in order to carrymg out a request asa composxte object .' :
The decomposmon rules enforce the 1dea that for each request that is made of the composrte, there isa o
component object that act_s as an ‘interface to__the service -‘r_eqUesting object,‘ and begins the initial‘ |
«processing-of the request. The initjal.object mayjépawn other service reduést"s to other component
objects. This.proce:s's may result in the decornnosition ot’ attributes and eervicesA of the cornposite

" object.”

33

The decdﬁlpdsidqn rules mamtams t.ilev-cohtbimii.t.y'of’ an object wheh‘o'n"e sWitclicd 1. fmm a .
B whole object view to a decom_poséd object view. E_very Exteﬁd object request must be serviced by at
§ least one component. There all'.e:no requests in th_e whole ‘objec.:t vicw thatare not transferréd to: thg
decomposcd ObJCCt v1ew -
- Flgure 2 deplcts the four basm types of object decomposmon Figure 2(a) deplcts a
redllocanon (d1v1s1on) of attnbutes and serv1ces by -separating them as. whole units among: 1 the
“:,_component obJects Flgure 2(b) depxcts a reallocatlon of attnbutes Wh]Ch reqmres a decomposmon of .
L the service since only one service is used in the comp051te obJect Flgure 2(c) deplcts a reallocatxon of |
services which requires a decomposmon of the attnbute since'it is used by both services. Flgure 2(d)

deplcts a decomposmon of both an attnbute and serv1ce in order for the comp031te object to be

d1v1ded into its componcnt objects

34,

Objoct A
: ATbuTe 1 (" ovjectAl \ [OblectA2
a) Attribute and Attribute 2 ~
service division Attribute 1 Attribute 2
Service 1 -
Service 2 . Service 1 : Service 2
_ Object 8
[ObjectB -
: - objectB1) (OblectB2)
b) Attribute Attribute 1 . -
division & service Attribute 2 Attribute 1 Attribute 2
decomposition — - " F
: Service 1 Qervlce 1.1 . GeMx 12)
‘ _Oblectc
. - OplectC. . e objectc.t’) (~ Objectc2 \
c) Attribute . ' z)
decomposition & Attrbute 1, | Attribute 1.1, Attribute 1.2
service division Service 1 } . o
. Senice2 ‘ \Servlce 1) Qervlce 2 -
7~ - . ObjectD
(" ObjectdD \ (" ObjectD.1) (" ObjectD2)
-+ d) Attribute and | Attribute 1 Attibute 1.1 Attribute 1.2
service decomposition :)
Service 1 "\ Service 1.2 /

(" oObjectA)

\ Service 1.1]

Figuf’e 2 Types of decomposition
Figure 3 illustrates a decornposed vi.ew' of ,the REGISTRAR’S> OFFICE. It is composed of 3
objects: OFFICE CLERK 1, OFFICE CLERK 2, and the MAIL CLERK. Such a decomposmon model is
generated after a further probe 1nto the workmg details of the. REGISTRAR S OFFICE. Such deta11 can be
obtamed either through an interview or a case descnptlon As w1th the request propagatlon used in the
OOA model, the focus of ana1y51s is turned to a spemﬁcally chosen obJect (the REGISTRAR’S OFFICE in

this case) Th1s ObJCCt becomes the scope of analysxs In Flgure 3 OFFICE CLERK 1 is the one that .

N handles all 1mt1al student quenes chuests are complled and handed off to OFFICE CLERK 2 who is’

file:///Servlce

involved in the core activities associated with approving and inquiring whether a request to attend a -

coutse is accepted or rejected. After a course request'is processed,- the STUDENT receives a written
conﬁnnation or rejection through the mail., Thts‘m'e‘ﬁ'l‘ packege is prepared by a MAIL CLERK in the
registrar’s office after OFFICE CLERK 2 is finished with 'processing the course request.
- The decomposed view of the REGISTRAR’S OFFICE object exhibits the necessary conditions
for a good decomposition for e given set of external e{'ents (as discussed in section 4.1.2):
e Determinism - all events (requests) are either external or internal events. -
" e Minimality - all attributes are used by‘ at least one service. There are no redundant’
attributes. R |
. Losslessness - one-is able to deduce the behaviour of the reglstxm' s ofﬁce by examining
the behav10ur of the components “ |
. The type of decomposmon that. Flgure 3 exlublts follows those patterns deplcted in Figure 2
(a) (b) and (d) The attnbutes student status, tultlon fee table and student credit accumulated are
allocated to OFFICE CLERK» 2 ‘as whole units." In ‘addl_tlon, the service provide student credit
accumulated is elso ailocated'to OFFICE CLERK 2 as a whole unit [pattern a]. The composite object’s
attnbute student requests to the REGISTRAR’ S OFFICE becomes decomposed into student requests

(OFFICE CLERK l), course request (OFFICE CLERK 2) and mail request (MAIL CLERK). The process

- course request service becomes decomposed into process course request (OFFICE CLERK 1), process

course request (OFFICE CLERK 2) and send mail (MAIL CLERK) [pattem d]. OFFICE CLERK 2’s serv1ce

process course request uses both. attnbutes Student status and tuttzon fee table [pattem b]

.36

Reglstrar's Office

: (C OfficeClerk 1 N\
Student) request to : course

attend course _ _ - 1y student requests " . roquest

process course request .
— procsscouse et

' f © OffceClerk2 \
course request
. = ==p student credit accumulated

- Mall Clerk N : (student status)
. (- - tequest for | (tuition fee table)
L R e | t 0 | ———— mall delive -
: mall reques < process course request
notification back-. : Qend'mall i . @vlde student credit accumulated /
from registrar — J 7y
: request to assign | ' credit accumulated
. oourse section | ' ’ .
1 i
! i
0 1
} 1
I |
- I r t to obtaln
| . eques
section allocated* . : credit accumulated

[' Faculty - _ \

course assignment requests
course section assignment reco:d
(program requirements)

(walting list)

Q@ign course section j

Figure 3 Decomposition of the registrar’s office -

' 4.3.2 Delegation Rule

A delegatlon obJect‘ is .used to transfer roles from a- chent obJect (delegator) to a server:“
object (delegate) The concept of delegation that is use here is different from the notlon of
delegation used in object—orlented programrning.' In proéramming, delegation refers to oassing a‘f'

. message onto another object in instances where an object could delegate responsibillty of a
* message it-couldn't servtce to obJects that potentially are able (its delegates) Delegatlon is often
applied in 1nhentance where an object 1nher1ts methods (services) from its superclass(es) The
effect of inheritance allows an object of the subclass type to 'pass messages, for which it does not
h’ave'a deﬁned' Iocal tnethod .tol handle, to an object of ‘the superclass type (See Kintl9~_89‘,

pp.9,33,99). .

37

~'Ina model .deleg‘ation‘provides a mechanism»fOr one to start reasoning’ab'out information

systems (i.e. automatron, technology). The delegatlon rule prov1des the path for the transrtxon from _

an enterpnse model to an 1n1t1al desxgn model of an 1nformat10n systems. Each delegate obJect isa

potentlal candidate ,cornponent that can be used in the design of an 1nformat10n system. Delegates .’ :

- can be combined to form an inforr'natiori system, and their attributes provide the linkage to the - '
. database design. As one makes more refined requests to a delegate, the delegate’s attributes would H

- decompose into smaller data items.

- The delegation mechanism involves reallocating or moving attr"ibutes' and 'the_ir‘_-'

v corresponding se‘rv.ices from a delegator»object toa new object called a delegate. Thus, a delegate -

-is derived from the attnbutes and serv1ces of the delegator. Deleganon can be thought of asa type

of decomposmon Instead of delegatmg -attributes and services as whole umts, one may also ’

decompose the attrlbutes and correspondmg serv1ces (as’ deplcted in Flgure 2), and delegate'. :

‘ decomposed or partial attributes and services.

Fmdmg delegate objects isa desrgn declsron The des1gner decides on whether or not to "

',»create delegate obJects One can start lookrng for potentlal delegates by lookrng for those act1v1t1es_ B

that operate on. attnbutes reﬂectmg knowledge An object or a'set of hlghly 1nteract1ve objects that =

are mvolved m mfonnatlon processing act1v1t1es (actions that change the state of knowledge)

’ and/or mformanon transm1ss1on act1v1t1es (services that pnmanly redlrect requests) are cand1dates

;for delegatlon Once roles have been delegated these delegate obJects become candidates fork‘f. ;

a‘utomatlon. As 'one proceeds w1th delegation, the decomposed view of the systems and/or

subsystems willap'pear 'with new objects to carry the roles that have been reassigned. However,

one would not delegate attributes and services that involve unstructured decisiqn making since” -
‘such tasks are not easily automated (i.e. certain decisions and tasks may still require human -

intervention).

38

The delegation rule ensures that when attributes and services are delegated to the server
object, both the client and server'rematin internally coherent anc} cohesive with regards to thte
attributes and services. In other words, the rule ensures that the encaﬁsulation (attribute custodian
rule) of object states is not violated. This means that the be_havio_tlr and state of the system is not
" lost when rhles are de}égated.: Behavidur and state of the systems reméih the same before and aft_ef
the delegation. The delegat10n rule can be ret'med into the followmg statements
| 1. delegatJon of an attnbute should be accompanied with services that use the attribute
2. delegation of a service should be accompamed with attnbutes that are used by the service
3. delegation of both attribute and services that are related

| Figure 4 depictts OFFICE CLERK delegating the student status, ttu'tion Jee table, and student

credit accumulated attributes to an object called STUDENTIS.

Reglstrar's Office o
Student IS \
’ Office Clerk 1 \ student credit accumulated
Student) request to) cou;set h student status
’ attend coursg. _ _ _ Ly student requests | redues tuition fee table

’ ;r) - process course request) X @cess student status queryj
. N . x

o mmdm e

|
1
1 Iquery student academic
| , & financial status
t
Office Clerk 2 \
: Mail Clerk) ‘ :
| | e course request
== === == ——— —{ - mail request € - — - -~ — -~ request student credit accumulated
notification back : - request for '
from registrar Qend mail mail delivery] process course request
: : @vids student credit accumulated
request to assign | - A credit
course section | | accumulated
[: request to
section allocated | , obtain crodit
. 3 accumulated

Facuity . \

course assignment requests
"course section assignment record
(program requirements)
. (waiting list)

Qsign course section

Figure 4 Registrar’s office with a delégation object o,

39

" Delegation can also be used to change the communication linkages between objects.

E ‘Fvigure 5'illustrates the four l;'asi'c: pattemsl of delegated corrlruuriicati(m These ‘pattemsrepresent R

. degrees of automatlon Frgure 5(a) depxcts the regular seenano of one object makmg a request to A'
.another objects F1gure 5(b) dep1cts a delegatlon that does not change any communication
lmkages Th1s 1llustrates the minimal level of automatlon The delegate is used to store and .

: retneve mformatxon Flgure 5(c) depicts an obJect makmg a request to another obJect] delegate

- object Flgure 5(d) deplcts a delegate obJect makmg or respondmg to another- non- delegate object. - .

Both (c) and (d) illustrate a medium level of automatlon ThlS type of delegat1on adds partlalﬁ

delegatlon of commumcatron to the current delegatxon of mformat1on management. Fxgure 5(e)
d_ep1cts a full delegat1on of object commumcatlon. A delegate object makes a request to another
“;.delegate object. This illustrat‘e_s the allowance of full automation of both data processing and

communication activities. -

40

(" objects)

ObjectA ~
——————— >
N— N
@
(" ObjectA) . obeaB) (~ objecta .\ . Ia="ThY
_________ > : . . i) ___\, i .,W I -
’ . ! v. . \ " n
. - — S SN l 4
| ' S T , , :
\ . | N N | o
. : . \! _ i .
(Delegate A ([Delegate A \ - Delegate B '
' ®) : - NG R -
(" ObjectA) -fA OblectB) (" oObjecta) Object B
| : ., . I I S ‘A : .
. . 7/ '
Delegate A . /’ Delegate B ~ Delegate A - - - . Delegate B
' L _ = /_,‘- ' 1 » [S » ’
' @) - (o) - '

Figure 5 The 4 basic patterns of delegated communication

433 Static Object Rule

Static objects are objects whxch onl)t possess state ;Fhus, b’)" deﬁmtlon, such ob_]ects

‘ nrov1de no services. Thelr states are used or changed by other dynamlc ObJCCtS They represent o
things that do not participate or take part in the _actlvmes of an' orgamzatlon (i.e. they provnde no\
services). These ebjeet's ere not active in an OOEM model since OOEM i used to build models of

organizations and not of information systems.

41

Ontologically,.static‘object cannot occur because all things possess state and behaviour; »
however, they are possrble w1th respect to the scope of a model Ina model, they may represent
the internal and interface attributes of a dynamrc object. A dynamic object’s attnbutes reflect its
own state or the state of another thmg (lje.“knowledge about another thmg). This other thlng may
’-be modelled asa static objectif‘ it doesn’t provide services. One would model such an object if
one is 1nterested in tracking its changes of state, and the events that cause the state changes When

the state of a static object changes, the state of the trackmg object (1 e. the dynamic object that

keeps knowledge of the static object) should also change to reﬂect the static_object] new state. A o

" model with static objects provides a means to track or highlight the events which would alter the -
states of static objects, and thus indicate ‘the need for corresponding events .that must .occur to
bring‘ about state changes to b'e made"in'.the state tracking 'object’ (eg. databasevof an information 4-
system) in order to keep the actual static. object state and knowledge of that state synchronous or
accurate. In addltion, as one proceeds with decompos1t10n one may ﬁnd objects which were .
prev1ously designed to store knowledge. Such objects.may also be modelled as statlc objects. Both
dynamic‘ objects;‘ which track state infonnation held in static objects, and static knowledge .
storages are prlmary candidates for automation through delegate objects

In brief static objects are a helpful 1nd1cator of the type of information that may be stored-
in a database since these objects hold state that we w1sh to keep In addition, they help us learn

'_ which speciﬁc states in the modelled’-“ system are subject to change by which actions. Such
1nformat10n is 1mportant since it can be used in the future development of a database desrg‘n

Because state changes can only be made through a direct mampulation by a- dynamic

. object,,the rule requires that all illustrated static objects must be shown with at least one dynamic

' object that either reads or'changes the state of the static object. The static object rule ensures that

all attributes in a static object are used by at least one other dynamic object. Static objects that do

42

hot have their states changee ‘ar'e not hlodelled,,.iri accordance with the principle of trlini_malit_y, ‘A
since they provide no additional infonnqtioh. |

| Figure 6 shows the static ;torage object RECORD CABINET. _Ite attributes. are cqrhpesed of '
student course request records. OFﬁCE CLERK 2 »cha‘nges and uses the state_preserved in the
RECORD CABINET object. In addition, one rhay include STUDENT as a static dbjeet if the
STUDENT’s state represented in OFFICE CLERK 2’s student credit accumulated, student status, .andv
tuition fee table attributes went through state changes. However, these attributes are .o'nly' ueed to
answer queriee for information, and do not go through state 'chahges in fhis example’s scehar_io,.
and is thus not rep_resented asa statie object. If the STUDENT was tepresented as.a static ebjeet,-
there would be two STUDENT ob_]ects represented in the model The ratlonal for this s1tuat10n is"
that the STUDENT would play two separate.roles: one as an external object and the other as an

internal static object for which we track its state cha’nges.’

g . o Reglstrar's Office . L Lt -
: S - Student IS \ . L .
Offica Clork 1) student credit accumulated (B

requestto’ ° T course studentstatus . . student course request records
_ attend coursg _ _] 5! student requests - - | roguest, tuttion fee table R mq - ‘
K } \ - ,
S J - process course request P : : 4 \ process studem’etalus query) . ?
' ’ ' | . . T R !
| A . : [- A
] | Iquery student academic . : ’
: L : & financial status o Vo
. (" MailClork)] _»(Office Clerk 2 . D
-) === - ———Jupdate - - -
L L | mail request R % S R _ course request _regor_gs___': -
notification back _ _ request for " request student credit nccumulaled
from registrar \send mail . mail dalivery - —— ’
) - . proce! course req
: - + \ provide student credit accumulated: /
\ - T
' L .. request to assign) *credh B
’ o ' course section | : accumulated
! .
. [: request.to '
saction aflocated | . obtain cradit

. ¥ | accumulated
/ . . Faculty. . \

course assignment requests
course section assignment record
(program requirements)

| . (waitirig list)

Qslgn course section ‘ /

Figure 6 Registrar'é office with a static object

43

44 Summary |
The objecthriented_ design prlnciples provide a means for one to reason about design. ‘The |
_ principles provide three areas of rules: decomposition; delegation, and statics. The decomposition
rules do not tell us when to decompose an obJect or system. The prmcxples of decomposmon only
_ tell us the necessary condmons for a good decomposmon We don t have sufﬁment condltxons
'smce there ex1sts no comprehensxve theory on decomposmon However, the desxgn pnncxples do
tell us when to delegate through the delegatlon rule, and they also tells us when to mclude and use
statlc object with the_ statlc object rule. The_ three rules provide _a means to. approach. the ‘
' ":fd.e'velop-ment of logic‘.a'li design models. | | |
. For the purposes o‘t“. database design,ﬁthe l_ogical design model is tied to- the‘entity’-u
relationshjp model ordetailed database design through the attributes of the delegate objects
These attrlbutes reflect knowledge of statlc ob_]ect states The attnbutes reflect the persmtent ‘
..knowledge that can be kept 1n a database ' | ‘ |
. At the end of the 10g1ca1 de51gn, the deSIgner possess the followmg mformatxon
e an 1mual de31gn model of an information system composed of delegate objects
" e adatabase that is held in the attnbutes of the delegate objects, and reﬂected in the states of the‘ o
static obJects ‘As one makes more requests to the delegates, the attributes will fragment and
p_rov1de>the deta;led data for the database. -
R the operatxons that need to be performed by the database These operatlons are 1mbedded in.
't?ythe services of the delegate obJects, and hke attnbutes, will fragment as. one makes more "
. refined requests.' | o
. ,references to the events or requests that- will cause state changes in statlc obje'cts, and thus
; 1nd1cat10ns of the hnkages that w1ll be needed to tngger correspondmg changes to the state of

| knowledge held ina database A

44

S. Case Exarnple: ACME Warehouse Management Inc.
The_ACME .Warehouse Management Inc. (Jacobson et al. 1992)' case illustrates the
application of the pr'oposed object-oriented analysis and design rules: The case begins with an
analysis of ACME Warehouse’s operations through the developrnent of an object-oriented
enterprise model Subsequent details of the busmess operations are revealed through the process '
of object decomposrtion whereby, the objects modelled in the 1n1t1a1 enterprise model are.
‘ 'successrvely broken down into their component_ objects. The design of the required system
commences after the analysis has provided the' elemental enterprise objects. The modelling
notation used to illustrate th'e object models is similar to .that of Coad and. Yourdon (1991a).
Objects are represented as rounded rectangles divided into three regions. The top records an
object S name; the middle region records an object s attributes; and the bottom section records an
object s servrces Requestsor messages are represented as dotted arrows that connect one object
to another In Zhao (1995) object templates are used to represent the OOEM model For
illustrative purposes, Appendix II provides the external and 1ntemal object templates for each
object_ under the OOEM notation for Figure 7 and Figure 8. The initial case description is as

follows:

ACME Warehouse Management Inc. offers storage facilities and redistribution
services (between thelr dlfferent warehouses) across the nation. A customer can request space in
a partlcular warehouse, request items to be transferred to another warehouse, or request|
withdravyal of items from a’..particu[ar wareghouse (even for items not stored'there). Acme is
planning on commission'ing‘an' autom'atic .information system to support warehouse management.
| Theidea is to offer the customers warehouse space and redistribution services with full computer
support. The system needs 1o keep track of information on customers,.items, warehouses, trucks,

and warehouse places. |

45

For the purpose of this case, we only look at the activities mvolved in processrng a withdrawal
request A customer contacts ACME headquarters to request a withdrawal. An office clerk checks
whether the customer has the authority to withdraw the items. The clerk. then passes the

withdrawal request to the warehouse where the customer wants to pick up the items.

If the warehouse does not have the items or does not have enough quantity of the items, the
warehouse manager will contact other warehouses for the requested items. If the items are
located, the warshouse manager will ask the planner to arrange for transportation for the v

requested items.

The planner's responsibility is to schedule the company's truck fleet to accommodate requests
for transportation by taking into account the existing schedule of each truck and its capacity. The

warehouse manager will be notified whether the transportation request can or cannot be satisfied.

The warehouse manager will notify the office clerk if the request can or cannot be fulfilled and
the reason. The office clerk will notify the customer as to the status of the request (approved or

declined due to lack of authonty, no inventory, orno transportation)

" The planner issues transport orders to truck drivers. After receiving a transport order, the truck
driver informs the warehouse about the pickup of the items. The warehouse manager wiII make
arrangements to have the items ready when the truck arrives. When the.tru_ck arrives at the
warehouse, the items are loaded. The truck driver then informs the next warehouse about the |
. delivery. When the truck has arrived at the next Warehouse, the items are unloaded. A warehouse
worker finds space for the items and arranges'to have them moved to the allocated space. The
worker updates the warehouse's inventory information. Truck driversare required to report the

status of the truck and the delivery to the planner after each step.

The customer will come to the warehouse on the required date to pick up the rtems A
warehouse employee wrll check all the. necessary documents and will deliver the items with an’

accompanyrng documentation to the customer.

-5.1 Object-Oriented Analysis
The description of ACME indicates that it is the customer that iristigétes the"_Withdrawal :
'process.' Therefore, the internal ACME Warehouse obj'ects can be discovered by following theb.

. request propagation that originates from the customer s w1thdrawal request The customer is

represented as an external object in the enterpnse model (Rule 2: Object Identxﬁcatlon Rule L

~ external objects), and requests from this ob_]ect deﬁnes‘ the scope of the ana1y51s (Rule 1: Scope ~

Identification Rule). Figure 7 depicts the preliminary enterprise model of ACME W_areh'ouse.

(C)) Warehouse

start unloading - . .
process customer packup requei/ o
' o * : *: ;+ +) exnstence

| 1 [N !.%"e_ly_— .
| [[.
[| | A

ustomer p|ckup request >
items documentation -| inventory information
\ J o " withdrawal requests -
. withdrawal ' : :) - . . prepare loading requests
request) . ’ . ’ . . load items request
| : ' -prepare unloading requests -
| approval/ - _ _unload items request _ o
"1 decline ') customer pickup requests . Lg
W + reason .) " (warehouse worker assignments) - ' |
- ~ehdrewelroquest ___________ » — .
) Offica Clerk 1. approval /decline + reason | check items availability |
withdrawal request ’ ’ process rngrawal request. :
awel i : prepare loading
(customer !nformetlon) < Tra-ns—poiaaon— 1 san loadinlg) . ‘ :
\process withdrawal) reql.Jest prepare unioading X
|
1
|
1
1

AN [
prepare | start) prepare | start

. L B : :zz;;::a”’ Ioadlng | loadipg. unlpadlng| unloadmg
/ " Planner \ +reason ‘ S ——————
‘ - - ‘f-—-——,————‘ (Truck Driver \

| transportation pIanmng requests e : : z

{truck information) . _trins_pczt fdf' . transportation requests

transport status
g) _ transport status
plan,transponation/truck assignment .

@ treospon ‘orders /
_ Figure 7 Initial Enterprise Model of ACME Warehouse
* The CUSTOMER object initiates the withdrawal request by sending a" request to the OFFICE.
CLERK object. If the request is verified, the request continues to propagéte, and the OFFICE CLERK
object would send a withdrawal request to the WAREHOUSE object. Although both warehouse

manager and warehouse worker are mentioned in the descdption, these things are not represented

47

in the model as objects. From the 'perspective of the OFFICE CL'E'RK',V he or she onI)‘{ needs to know
that the request is passed to _the WAREI—IOUSE. The OFFICE CLERK does not need to be concerned
w1th whom or what will handle the withdrawal request inside the WAREHOUSE' however, these
thmgs will be modelled as obJects when the WAREHOUSE Ob_]CCt is decomposed to reveal the

underlying mechamsm of how the. WAREHOUSE obJect prov1des its services. Such an ' abstracted

perspective is used throughout the modelling process. The request propagation continues from the .

) OFFICE CLERK object to the warehouse object; from the WAREHOUSE obJect to the PLANNER

object; from the PLANNER object to the TRUCK DRIVER object and so forth (Rule 2 ObJect
Identification Rule - mternal objects)

Modellmg rules 1 to 5 are used throughout the request propagation process. Attnbutes

and services for each object are 1dent1ﬂed as one proceeds through the request propagatlon A

request ls recorded as an attribute (1 e. mterface attribute) in the object that receives the request,
and the corresponding, service that processes.'that attribute is correspoudingly identified. For
exarnple, whentheCUSTOMER object "in Figure 7 s"ends a withdrawal rééué.s*t to the OFFICE CLERK
ob_]ect the request is recorded as an attribute in OFFICE CLERK (Rule 4: Attribute Inclusion Rule -
mterface) The state change of the thhdrawal _request mterface attribute invokes. the

:“correspondmg process wzthdrawal serv1ce in OFFICE CLERK (Rule 3 Serv1ce Inclusion Rule) The
o Intemal working of the -process w:thdrawal service in turn uses the 1_nternal attrlbute, customer

information, during its execution (Rule4: Attribute Inclusion Rule - internal). The process th_en

continues the request propagation by sending a withdrawal request to the -WAREHOUSE object.

Rule.6 and 7 are satisfied in the current enterprise model, and no additioual changes need to be

made in terms of aggregation and specialization. | -

5.1.1' Object Decomposition
Decomposing an ‘object into its components allows one to probe further into the
operational details of an object. To gain a more in-depth understanding of the warehouses’

operations, it would be necessary'to decompose the warehouse object into its components for

analysrs If the analyst deems 1t necessary, the other internal ACME ob_|ects may also be o

. decomposed but for the purposes “of thlS case, only the warehouse object needs to be -

~decomposed. The same request propagatlon process can be used to find the component objects
Relatrve to the warehouse obJect customer ofﬁce clerk planner and truck dnver are v1ewed as -
extemal objects A full ana1y51s of the request propagatlon w111 take into account all requests sent
by these ob_]ects 'to the warehouse »object. A further probe into the operations of the warehouse

object reveals the following details:

Once the office clerk has recorded the_ items to be withdrawn, he or she torwards the request
to the manager (foreman) of the Warehouse | The warehouse manager is responsible for dtrecting
the redlstnbutlon of items between warehouses If the items are not all available in the warehouse § ’
transport requests are |ssued The warehouse manager fills out a redrstnbutron form with the
‘foIIowmg mformatlon items to- be moved, place from which to take the rtems warehouse to)
transport the items, quantlty to be moved and the. date by when the redlstnbutlon must be. done \
The warehouse manager forwards the- form to the planner to organlze the mterwarehouse
transportation of the |tems The ltems to be moved are.marked as move- pendlng, and the: pIanner
initiates a plan to have the items at the appropnate warehouse at: the given date Once the

mterwarehouse transport plans are finalized, transport requests are issued to the truck dnvers. _ ‘

. The truck driver alerts the wareh‘ouse manager ot the time he or she will be at the wa’.rehouse
to pick up the ltems The warehouse manager gives appropriate requests to the warehouse worker '
on the date of delivery to have the items ready for when the truck is expected When the |
warehouse worker gets a request to fetch items, he or ‘she, at the appropnate time,. orders forklift ’
operators to move the items to the Ioadlng platform The forklift operators execute the mternal

. warehouse transportatlon. When the truck driver arrives, the driver notifies the warehouse worker

49 R

to have the items loaded into the truck. The truck driver notifies the next warehouse manger when
litis .expected to arrive at the next ‘warehouse. The number'of itemsin the current warehouse

. decreases,v and the transport request is marked as on transport.

When the truck has arnved at the riext warehouse the truck dnver notifies the warehouse
worker to unload the items. The truck driver signs off the]Ob The warehouse workers receive the
items vand determine a place for them in the warehouse., Forklift operators are told to move the
‘ items to the new‘piace in the warehouse. When the truck driver confirms the delivery of the items;
the,records are updat'ed to reflect the new place for the items. The transportation time is recorded
and stored. The redistribution and interwarehouse transport request are marked as performed.
The warehouse worker frlis inan inventory update form and sends it to the warehouse manager for . :

confirmation and update of the inventory database.

When the customer has fetched the items the warehouse workers mark the withdrawal as

ready. The items are removed (decreased) from the information system.

| The_decornposition of the WAREHOUSE object results in the diagrarn depicted in
Figure 8. The jWAREH(tUSE object decomposes into three objects: WAREI—’IOUSE‘WORK,ER,
WAREHOUSE MANAGER, and '-FORKLIFI‘ QPEItATOR. The attributes and operations of the
warehouse object are distributed arnong the three’ component objects. These attributes and
operations‘ may be- divided among ‘the :component objects as either whoie units, or
‘ “altematively, any single attribute oerperation' of the warehouse object may themselves be
_decomposed and d1v1ded among the components (See Flgure 5 - bas1c pattems of
’decomposmon) The dlsmbutlon is determmed in the request propagation process accordlng
to the details of the case description. |

We see that the withdrawal request from the .OFI;ICE CLERK object is processed by the-
WAREHOUSE MANAGEk component objec_t. Thus,' the WitirdraWal request attribute and
3'pr_ocess withd_rawal request operation of the WAREHOUSE- object is assigned to the

" WAREHOUSE MANAGER component object. As we follow the Apath of the request propagation,

50

. we also see the decomposmon of the attributes and operations of the WAREHOUSE obJect For:'

' example, the TRUCK DRIVER ob_]ect s request to e1ther prepare Ioadmg or prepare unloadmg,

is processed by two objects the WAREHOUSE MANAGER and the WAREHOUSE WORKER The

o prepare loading request and prepare unloadmg request attrrbutes, and the prepare loadmg g

~and prepare unloadmg operatlons of the warehouse object are d1v1ded between these two

component objects. The WAREHOUSE's prepare. loading requests, attribute and prepare

‘ 'loadmg operation becomes decomposed into the WAREHOUSE MANAGER s prepare loadmg ,

: :request and prepare loading operatron and into the WAREHOUSE WORKER s prepare loadmg N ‘
schedule attribute and schedule loading operatrons These two component obJects work

together in conjunctron to service the prepare loadmg request by sendrng requests to one .

another. The same breakdown is used to service the prepare unloadmg request

The item exzstence query request that ongrnates from the WAREHOUSE MANAGER ob_]ect is

purposely shown to exit and re-enter the WAREHOUSE composrte object Th1s deplctlon is

used to semantrcally represent the fact that a WAREHOUSE MANAGER sends the request to'“"-'

another WAREHOUSE MANAGER of a separate WAREHOUSE o

The TRUCK DRIVER obJect s request to start loadmg and ‘start unloadmg are~

- processed by three objects WAREHOUSE WORKER, FORKLIFI‘ OPERATOR and WAREHOUSE L

MANAGER The WAREHOUSE comp051te object s load ttems request and unload ttems request
o attrlbutes, and start loadmg and start unloadmg servrces are operatronalrzed through the

servrces and 1nteract10ns between the WAREHOUSE WORKER and FORKLIFT OPERATOR‘-

cornponent objects. Once the 1nventory items are erther loaded or unloade_d, the WAREHOUSE

WORKER requests that the WAREHOUSE MANAGER update the status of the inventory.

51

Warehouse

Warehotse Worker

TTTT T ."itéms documentation] - Gustomer pickup request_

. propare loading schedute

Jmm—mmm——— » load items request)

N i prepare unloading schedule request

e - o] * unload items request T F .

©) update (forklm -warehouse worker-asslgnments)

inventory

request -

o | e —
Office Clerk (un)loadmgl “process load items request

- withdr. "t‘”ﬂl schedules - schedule unloading .
wnhtjrawal.n:ques:io | request : " Warehouse Manager process Ioad items request ";mM
(customer information) (Foreman) A i - status

|
- o A A
process withdrawal)) . : . . withdrawal request : : : N "ForldittOper'ator \
B) N app;gval / inventory information i 1 B _
. o 1 ﬁ:::m prepare loading requests - : P load items request :
V4 -5 prepare unoading requests " € -~ — | ' unfoad items request
update inventory request . ' | i -
S) | I start loading -
process withdrawal request ' 1 | startunloading . -
trafisportation | check items availability | ' [. N - g
. . req]esl' pagdd —* prepare loading N LR
. e i * prepare unloading |) ! ! L
i L. - ...\ update inventory status | : : . ¢
‘ ’ B . . ' . | item existence : "l | .
i : i g . . - : [_ Lo
. : T i D ostad et
[. O el ! " loaging ,unloadi
(. Planner \ approval /¢ . - : : - g “
. . decline 1 . .prepare u,ﬂoad,ng] Truck Driver
BN VT N W ghicgnp o bniell N)
transportation planni uests v, |+reason : 1 . "
(truck i |nfonnat5)n) m e . XN : !] prepare loading | transportation requests .
: . A Ky transport status
plan tmmportanon/trud(assngnment port order -

S TTRTTT T ~ Famsportsatis | doansportorders | |
- Ifigure8 Deconrposition of the Warehouse object

5.1.2" Static Objects:

Statrc ObJCCtS are used to deplct obJects for whrch we w1sh to track state .or to keep’ '
- knowledge about. The states of such objects can only be altered by a dynamlc object since static
» objects have no dynam1c behavrour. Statrc objects -only have interface.attributes. These attributes
may exther be variable or constant since dynamlc obJects may elther mampulate or read a statlc
obJect s state.

Up to this pomt the enterprlse model has been developed w1th only dynamlc ob_]ects :

" Static obJects are added to the model to expllc1tly show the objects whlch we WlSh to track Static

‘objects are dlscovered by proceedmg wrth the request propagatlon, but exclude any references to _-

servic'es. Figure .9 depicts the additions of three' static objects .to_‘th.e_ rnodel:' INVENTORY,
' "FORKLIFI‘ and TRUCK VEHICLE. - ' .
The state of INVENTORY changes every t1me the FORKLIFT OPERATOR either loads or
: ‘unloads items in the warehouse This scenario’ is represent asa dotted arrow from the FORKLIFI‘
' OPERATOR to INVENTORY. The FORKLIFT OPERATOR reports the status of the items movement
.through the transport status response to the WAREHOUSE WORKER who then sends. an update
_znventory request to the WAREHOUSE MANAGER Th1s part1a1 request propagatlon trace prov1des
. the mechamsm for how the knowledge of INVENTORY state is updated by the WAREHOUSE

MANAGER.

With reference to the TRUCK VEHICLE static Ob_]CCt the model shows that the TRUCK ’

e DRIVER is requlred to read the maximum capac1ty and workmg order of the TRUCK VEHICLE and
relay the 1nformatron to the PLANNER The dotted arrow' from the - TRUCK DRIVER to the TRUCK
: 'VEHICLE represents the fact that the TRUCK DRIVER obJect elther changes or. reads the attnbutes of
the TRUCK VEHICLE object. A similar meaning is also applxed in the mterpretatlon of the FORKLIFI"
static obJect The states of the TRUCK VEHICLE Ob_]CCt are tracked by the PLANNER object; and the
~ states of the FORKLIFI‘ obJect are tracked by the WAREHOUSE WORKER ob_]ect The state trackmg
attrlbutes of the PLANNER and WAREHOUSE WORKER objects represent knowledge that can be
utilized in future database des1gns In addrtlon, the events whrch change the state of the static
| obJects help 1dent1fy the necessary tnggers for correspondmgly updatmg the state of the database.
Although the TRUCK and FORKLIPT VCthlCS can be v1ewed as dynamlc obJects that react to
’stlmulu_s from the drivers, these 1nteractions are not of interest for the purposes of this model. The |
model is only concemed w1th the specific changes of state (knowledge) of these obJects,' and are

_ thus modelled as static obJects '

53

" Warehouse * *

Warahouse Worker

Customer
ion] pickup request
N prepare loading request
withdrawal BPE a "=»| load items request ' {unjload
request ! ‘ v prepare unloading request transport
S : | _ unload items request request
' appwva!/-_ H 0) update forklift h worker-assig]
| deciine . prepara . |] i y - !
. + reason (un)loading! | request process customer pickup requast !
(—+\ shedules ! ¥ . schedule loading !
Office Clork - withdrawat . - p load items req I
— requost / L s M. \ achedule unloading . |
rawal request F~ (Foreman) ocess unload items request
{customer information) R - - . X ™ . /stalusl
] R withdrawal request . . A A . g
Qoeass withdrawal request j . inventory information \ . : Forklift Operator .
- prepare loading requests N -
prepare mloadi_ng request load items request
update Inventory request € - -~ r - unload hems request
process withdrawal request . ! startloading .
check ltems avallability : start unloading B
prepare loading . I .
H ‘prepare unloading ' ' .
updata inventory status 'y

Y
s Inventory N Foridift -

II item items status working order
Iaxlstanes — - —
| quary

(* Planner \

transportation requests
_| wansport status

(lmd(r Infonnaliron) .

>
. transport status do transport ordérs
plan transportation/truck . /
\2 S T
- T .Truck Vehicle ' .

" | maximum capacity
special characteristics -~ € — — — — —
working order

Figure 9 Enterprise model w,ith static objects

‘5.1'.3. Requirements Analysis 'tutd_ Delegation .()bjects

At this point, the entetptise modei depicts both th.e- ergediiationai and informatjon system.‘
‘4 ;‘as.;)ects embedded togethert_ Thelorgeniiational- and formal IS components can.be separated by
using the object delegation rule. Th_ese delegation objects corresvpotl.d’ to objeets wltich track the
" state of other objects. These"IS‘ objects form the initial requ‘irer»nents analysis .for. 'the infonnetieti
system that is -to be designed. The iﬁc_or.ning'v requests into t}te ISv. objects casts the requirerrtertts'

specifications that are expected frem a client object. Such IS objects may represent automat'ed,;

L

54

manual-driven or hybrid (combination of automation and manual) information systems. ’Flgure 10

' depicts the enterprise model with the addition of these delegation IS objects. Attributes and their

correspondiﬁg services from the main object are delegated out to an IS objec't.‘These attributes
may mclude the representation of. databases that are used within the orgamzatlon Four delegatlon
objects have been 1dent1fied in the enterprrse model: the OFFICE CLERK obJect delegates out the

CUSTOMER SYSTEM Object WAREHOUSE MANAGER obJect delegates out the INVENTORY SYSTEM

' 'object the WAREHOUSE WORKER Ob_]CCt delegates out. the FORKLIFT SCHEDULE SYSTEM Ob_]CCt

and the PLANNER ob_]ect delegates out the TRUCK SCHEDULE SYSTEM ob_]ect

The delegated IS objects must conform to the delegatlon rule whrch sxmply states that a‘

' delegatlon of each attrrbute must be tied w1th at least one correspondmg servxce, and vice versa.

In addition to delegatm_gv _whole attributes and services, the delegated obJect may also. include

decomposed attributes and services. In Figure 10 the OFFICE'CLERK delegates out the customer

o infonnation attribute to the CUSTOMER SYSTEM object. In addition, the OFFICE CLERK sends an

item withdrawal re(juest to the delegated object. Thus, the CUSTOMER object has an authe’rtticate

customer service to process the item withdrawal request. This service uses the customer.

information attribute to carry out its operation. The original authenticate customer service has

‘been decomposed from and takenfotlt of the original process withdrawal request of the OFFICE

CLERK, and has been delegated to the CUSTOMER SYSTEM object.

The WAREHOUSE MANAGER delegates the inventory mformatton attnbute, and update .

mventory request attnbute to the INVENTORY SYSTEM object Whenever the WAREHOUSE

" MANAGER needs to process a withdrawal request, perform an items existence query, or update the

" inventory status, requests will be sent to the INVENTORY SYSTEM,

W1th the PLANNER 'delegation to the TRUCK SCHEDULE SYSTEM we see that the truck'

-mfomtatzon attrlbute in the PLANNER becomes decomposed and delegated to the TRUCK.

‘ SCHEDULE SYSTEM as truck znformatzon and truck schedules attrlbutes The PLANNER object’s

55 Y L

execution of its plan transportation/truck assignments service will require it to use the TRUCK

' SCHEDULE SYSTEM delegation cbject. -

After the delegation of responsibilities from the WAREHOUSE WORKER to the FORKLIFT

SCHEDULE system, the WAREHOUSE WORKER's execution of either the process load items request

- or process unload items request will result in the following seqUénce of events:

1. WAREHOUSE V\iIOlR-KER "l_ook‘s up the schedule bf forklift Aa.'ss‘ign'ments ;frofn "tvhe
FORKLiFT SCHEDULE S*S'IEM | |
2. | WAREHOUS’E WQRKER dirg:éts the sqhedﬁleq FORKLIPT IOPE'RATORs. to ,théir rgles'f’
3. FORKLIFT OPERATOR; sends baék 1ts ;_tkztu_s after completing t_he (un)lodcf request
4, WAREHOUSEWORKER}ﬁpdétCS the schedule invflo'rmatibn-‘ifi,‘ the FORKL&FI‘ SI(:HEDUI;E:
' svsrew - o . . - S
5. WAREHOUSE WGRKER feciuests_ that ~the'WA~1iEHdUSE MANAGER chéu‘igé the status of

the inventory records

Tli_e scheduling of loading and 'unload:ing'r'equests will requife'the WAREHOUSE WORKER to work

‘with the FORKLIFT SCHEDULE SYSTEM.

Warshouss

query/update Forkiift Sched. Sys.
: Worker . schedule B
Warehouse Worker R o —-—-—— «{ forkiltt aseignments
customer pickup request X
prapare loading request - info, process new schadule info.
. ioad tems request . * - .
o propare unioading request
) unload items request - | _ _ _ _ _ . ___ '
] - —— (unjoad - 'R
. VoA . process customer pickup request transport '
l'dodlm . i Coe propare | 1 . Inventory schadule loading” - . reques - Lo
+reason . (un)londlng'] request process load tems request <o V.
[}
1
}

schedule unloading -
. schedute .
Ofice Clerk wittfrawal : - - process unioad krems request : .
ost Warehouse Manager -
withdrawal roquest i : Foroman) = — : . traneport |

])) etatus |
_© | process withdrawal request : . R withdrawal request . [. -
. \ — S| . i)
- . approval/ prepare loading requests Forkift Operator
. \ :tnm withdrawal : dobiine prepare unioading réquest o L '
. : equest h 4resson_ | upcate inventory roquest -<- . . load Hems raquest
"""" M _ ‘=« = — =1 unload items request
. N . . process withdrawal request o : ! : 1
) { verfication result " transportation | check tems avallabilty : H) : start loading
- N request prepare loading . 9) slartunioading -
(Cusomersys. -\ L= _ 2] vrepareunioading -, o : - :
: : B \mdnlolmomotydntua \ [l 1 ' ’ I
customer information e i / oo] [\
ttem whdrawal request ’ : -,— A 3 1 : :) v v
.\ authenticate customer 1 i vertication : : I;’::;"‘" L : 1 | (toventory) (Foum) -
\)] . ! [[} .
F e — - s) inv. Sys. : : ! : 1 [ltgms slatus . | working order
. : | i | R i | B
[} .. A . . .
¢ inv. info, [: ! : I [T N ~ AN J
:‘ queryiupdate roquoﬂ) : 'y : : : : .
V.
! process query/update / : [: : : :
: - ! 1 \ | 1.
- ; T — T T
- : [it ! oo
) - st) el
) ;ch;:('all . : D'QP_-;E urloading - foadingy \
Vs P ﬁ + reasbn . , - Truck Drivar
. 4 & - | | _Prepare loading -
s IEmmem e trangportation requests
transportation planning requests — e transport status
g status -
i th e (Tyuck oy ﬂ . do {ransport orders *
a query/update -
‘ echedule | . truck status { Truck Vehicle \ !
bmme e P truck schedules j :
schedule info. | pdate echedule request maximum capacity)
. apec N L
process new schedule info. working order '

v Figure 10 Enterp_rise model With delegation objects

5.2 Objeét-Oriented Design
Design involves the layoht of a pmla'n for constructing the speciﬁed components of ACME
warchouse. These components may 1nc1ude both orgamzatlonal and 1nformat10n systems (IS)
-aspects For the purposes of 111ustratmg the des1gn pnnmples only the IS segment of ACME will o
o (be modelled The objectlve of; thls example is to eventually reach a point where an 1nformat10n’.” :

. 'system can be desxgned The 1dent1ﬁed systems w111 be desrgned w1th the mtentlon of automation '

as opposed to a redesxgn of the"orgamzatlo_n w.ith information_ t’eehnology._‘Appendix m 'shows"an' -

example of a possible representation of an organizational redesign, but will fall short of in-depth . .

detail. Organizational design may involve complex negotiations for organizational change and .
will need systems to support chémge xhapagement. These matters are beyond the scope of this -
work.

One of the first IS design decisions is to decide on the level of inter-communication

-deépendency among' the IS objects. It 1s assumed that ACME requires a high-level of inter-

: commuhicgtion amohg its IS objects. Such a design would alter the communication pathways of

the meséégé ,requés'té between objects since éomniunication among objects woﬁldvbc delegaied to
the delégation objects whenever it is possible. Figure 11 dépiéts the new design for the pfopéscd

enterprise model. The modgl shows how the ihfofmatidn system will change the ‘propagation of

‘events within the business. The solid arrows are used to distinguish message requests between the

‘information system objects and the rest of the enterprise objects.

The following list enumerates the communication that has been changed or delegétcd to

the IS objects:

1. withdrawal request: OFFICE .CLER.K‘»'to WAREHOUSE MANAGER => CUSTOMER SYSTEM o
INVEN’i‘ORY SYSTEM V |

27 item existence queryf ‘WAREﬁOUSE MANAGER to WAREHbUSﬁ ‘I‘VIAN.AGE;R =$ II#VEN’fORf(:

. SYSTEM to INVENTORY SYSTEM. N |

3. transport request: WAREHOUSE MANAGER o PLANNiEg =>,:11;1VEN'TORY SYSTEM to TRUCK
SCHEDULE SYSTEM | R

4. prepare (dn)lbading schedule: V‘AWARA‘EHOUSE MANAGEVR. ,to, WAREHOﬁSE .‘WORKI‘Z“R‘ =
WAREHOUSE MA&AGER {0 FORKLIFT SCHEDULE S'YS"I'.EM_‘- o

5. update: inventory ;equest; WAREHOUSE 'WORKER to WAREﬁOUSE "MAANAGER =>‘FO‘R.KLIF‘TL,

SYSTEM to INVENTORY SYSTEM .

58

Forkdift Sched. Sys.

e e »
[forkiift assignments
- - propare loading requests
@ . A o]) update inventory request prepare unioading requests
_ pickup request N i _: ltems documertation - . : update schedule request
_____ ! SR T B iRt gty
— ! Srooesa vt schc it
withdrawal | | Warehouse Worker schecuile loading
request . .
] : ;:I':;"‘I S ?umnm.dlng * | sustomer pickup request -
| 4 reason) : . . lu:h odulos load items request , qu.ry,u pdate wctiodule Info.
(4_\‘ D unload itema request I A R 1
” " OfficeClerk. ' . . Warehouse Manager :
. {Foreman) process customer piciuprequest L _ o L o o o o -
withdrawal request ' process load Rems request {unjload . :
. . prapare loading requests process unicad tems request transport request . . .
process withdrawal request ’ prepare unlondha request 1 ansport
N——— [} [* . [} .
1 ltem withdrawai . - B , ’ -prepare loading . 1. L R - siats .
.)fequest - + |-, \ propare unioading s TN Forkift Operator
: 1 .) 1 1 .
vertfication resul . - " ' : : load itoms request
<] . [} - = unload items
Customer Sys. wihdravial - w. Sys. B 1 1 : u request
roquest ! 1 ! ! 1 start loading
“customer Information . inw, Info. ! | ! ' '
\ | | stant unioading
ftem withdrawal request : withdrawal request - H ! - H 1
" 17| update inventory request H 1 ' i ' .
_\authenticate customer / ldobine . — — | I T ' | !
+ r;amn process withdrawal request 1 8 1 R A . A J ..
: »| check tems ! (" imventory) Forkift
] 6 B \ ' ' d
. B '\ update inventory siatus 1 1] t
N | t [Htem status working order
) ' ' -
N . .) transpqrtation Hem . : ' N
) . [oquos) . |existence [o '
. . — . fquery) ’ | !
. . - : g . N T]
: . . . o ' 1 S
B . [} [} 1
. N | prepare stat | elart
. . . - . [ng loading unloading
propke
4 3 P . foad Truck Oriver
- \ h}?' <] transporiation requests
transportation planning requests __._____‘_________'___?_;__’ transport status -
po — - order y a tranepoit status -)
\plan atlontru anment. J m‘ do trangport orders _ .
T \. X J/
mmyl:zdau : y + raason (Truck Vehicle \ o .
. /- ™~ . e
: Truck Sched. Sys. : maximum capacky '
. special characteristics € - ===~ ~ Il
| truck status . ; :
. . : o o truck Jios . worldno order R
_ schedule inf —=»{ transport request
update schadule request

process new schedule info.
 Process transport request

Figure 11 Proposed enterprise model with delegated object communication paths

The. four 1dent1ﬁed IS ob_]ects in the enterpnse model can be thought of as’ subsystem
cornponents of the ACME Warehouse mformatlon system“ Further decomposmon of each IS
subsystem through the reouest propagatlon process will reveal the component ob_]ects of these

’ four IS subsystems. For the purposes of this case, the focus of the desrgn is based on the customer
w1thdrawa1 process A complete des1gn would take into account all the: possrble events gorng mto

LR

.the subsystems

59

‘

ACME Infor

, 2R ... " ./ Forkift Sched. Sys. -
- ' : (ﬁ B L ‘ o " forklift assignments .
' Y Customer Sys. R T AN R prepare loading requests e - -
item withdrawal - — withdrawal . A . prepare unloading requets *)
requesti . — _ .y Sustomer information . request .) update schedule request . DI .
. verifica ttemwulhdrawalrequest) Do e s . Tt
_ fesult N ; c approval/ |- . " process new sched: ini -~ -—-< ‘
) ‘{M/‘ A . decline : | . schedule loading - .] schedulp gueryl‘lpdale
K Rk — T . yreason o schedule unloading R / info.” | sched le -
: - N N e
' K K I'i“" Sys. . X inventory - .. ' - Worker
I inv.’info. < < Feques T —
trnnspt)tnanon withdrawal' request . .
- . - request new inventory info." :
. . .approuall process withdrawal request - . A
- decline .| check items availability L o R e Lo
PR Y + feason” k \processnewmventorymfo / . o s L
: , /- Truck Sched. Sys. \ o [IR N
[, . s : : e T | existence T : T .
querylupgate "I ["truck status ' T quey P 1
-scheduler , .. i truck schedules —
' L— — — 1 3 transport request
echec e updale schedule request 1. [
info, - . .
.\ process.new schedule info. | . ° .
K process transport request, " /

Y

? Figure--lz _The pr_oposed ?ACM‘E informatiou .syst'emv '

Frgure 12 1llustrates the mteractlon of the four IS ob_]ects (subsystems) that have been

'1dent1ﬁed for the ACME mformatlon system The dlagram deplcts a ﬂrst level decomposxtlon for.
the desrgn of an automated ACME mformatron system The system essentlally prov1des four types | *v
E of serv1ces It tracks the‘ state of 'mventory, schedules mterwarehouse transportatlon, schedules
K _’mtemal warehouse loglstlcs, and organrzes the companyl s mformatron on_its customers These
: four .roles are prov1ded through the four 1dent1ﬁed IS obJects or subsystems as deprcted in Flgure

'6. Evaluation of OOEM-Design
v"This chaptér examings wha_t'we have learned .in ihe proce§s .of dilscox"/.e'l;_in.g ‘désign
principles. .We will look at the 'gene_ral.' similarities and differences with other: methods by -
coﬁlpaﬁhé OOEM.with design rules (OOEM-Design).fo' the design approéches_fr'dni Coad and
Yourdon (OOA/OOD),‘Jacobs‘on (Usé-Ca_sé), and .Coleman (Fusio-n‘)fwhic‘h wére su_niméri_zéd in |
chapter 2. " | | |
The objective is to examine the extent of how each of these methdds deals Witil'.l thé;
proposed modellill)g constrﬁcts, and to explore what each method proposes for the .transitioi; from
-an analysis to a design.mddel. ’fhe criteria which we will exémi}ne ‘will cori‘c:em'.the_folibwing ‘

areas of OOEM-Design: decomposition, delegation, and static objects. .

6.1 Comparison with C.oad and Yoﬁrdo'n 00A/00D
| Co;d and 'Your'don‘d@ﬁyne deéign'as “the practice of @ng .sp.eciﬂlcat‘idns of externally |
‘obse:rvabl_e behéﬁié)t and adding’ details needed for actual éo;.r}'pﬁter sjstc@ impl‘eme‘ntai‘_i()‘n,
ipcluding humah interéctiqn, task man‘agerhent, and data mainjagerﬁeﬁff’ (Cqéd and Y o_urc_léh '1991, ’
13. 5). The emphasis isVLOVn éonstructing a map:or plan for sbftvs'/g‘re cqnstrqétic;n_.ﬂ_Thé foilowiﬂg 'n
criteria, from 'Coaci and Your,don»,}. onvr-. altefing-gthe pfoblem domam éomponent ‘il"lujst‘ra;gvs the
| irﬁpiémentation focus: AA | . |

e reuse 'design'and prograrﬁmirig,classes’
. group problemfdoméiri-Speciﬁc ciasséé together .

~ e establisha pfotoéol by-adding a generalization class
¢ -accommodate the supported level of inhéritance ‘

e improve performance’

61

, multitasking code, and design of the database.

° ‘su‘p'port the data management component . -

e add lower-level c,omponents.

"Coad and Yourdon’s OOD'also*includes the development ‘of th‘e’user ‘interface, design ‘of the

OOEM-Desrgn s obJectrve is to bndge the enterpnselmodel w1th the software model. The.
emphasxs is not on software 1mplementat10n

Coad and Yourdon provrde constructs for deplctmg whole part relatnonshxps ThJs'
corresponds to the decomposrtlon concept of OOEM-Desrgn However Coad and Yourdon does

not approach desrgn through decomposxtron since it’s focus is on 1mplementatxon The analysm

model they produce is in fact a requlrements analysrs for the software system The requrrements

' analys1s model is the output of OOEM Des1gn -

Coad and Yourdon do not provxde any constructs for static obJects and have no concept of

a delegate obJect smce obJects in therr desrgn model only reflect the software domam The objects

that they provide in their examples are 1mplementat10n obJects and not orgamzatronal ob_]ects '
Instead of representmg an orgamzatron, the1r objects represent software entltres In OOEM-,
Desrgn the objects represent orgamzatlonal ent1t1es Software obJects don t come mto play untrl L

- an orgamzatronal entlty delegates thelr respons1b1ht1es to an automated mformatxon system

| 6.2 Comparison w1th Jacohson’s Use Case' Method)

Jacobson S use case approach is s1m11ar to OOEM’s request propagatxon in its approach to g

"ﬁndmg out what servrces the busmess orgamzatlon needs to prov1de 10 its chents Jacobson s

chent or actor construct corresponds to OOEM’s external ochct construct These send

requests/stlmuh to the organlzatlonal system, and -the orgamzatlon operates to satrsfy these :
;_requests/stlmuh Jacobson s approach toward software desrgn uses the same use case method

Actors in the busmess requrre serv1ces from an 1nformat10n system and thus send stlmuh to the

62

ICQmputer system. The need for' an infOrmation systern is determined:in 'the'busines‘s“'modelling S
phase, however, there is no method to direct one to discover what kind- of automated system
would be needed Unhke Jacobson, OOEM-DeS1gn does not assume that a partlcular mformation"
system has been decxded upon. OOEM-Desrgn s approach prov1dcs a method to dlscover what
* type of information system the organization requires. IS :objects‘result Afrom a decisron to use
'.deleg'ate objects to delegate information ‘processin'g tasks. These delegates represent components
for an information system. ' |

The concept of decomposition is captured inJ acobson’s use of the subsystems cOncept. A :
) subsystem is defined as “a packageithatv'contains functionally allied 'objects-and/or subsystems. An
‘object or subsystem'cannot belong to more than one subsystem”‘ (Jacobson et al' 1§95 p. 142)‘
However decomposmon is not used in the same manner as in OOEM-De51gn There are no
princ1ples to guide one in finding subsystems Jacobson uses subsystems to reduce the need to -
model everythmg at once; or to make the model more understandable and eas1er to. present or to
. package obJects into units of responsrbility suitable for one p_erson who is res’ponsiblelfo'r one_or‘ -
: mo‘re tasks | . e

Jacobson does not provide further detalls for design since it goes: 1nto theA realm of» '

' software engmeenng Static ob_]ects and delegates are concepts that do-not- exist 1n Jacobson 'S

4 '\“ ' ;l - method

6.3 Comparison-with thel Fusion, Method
Fu51on offers an approach to object-onented software development Fusxon does not -

model the orgamzation It assumes the need for a specxﬁc 1nformation system Analys1s beglns
from the pomt at which a requrrements analy51s has been completed Fus1on uses the requirements.v ~

- analys1s to develop an analy51s model. Des1gn is used to depicts how operations are 1mp1emcnted

'and has no correspondence to OOEM-Desrgn Des1gn takes the results from analys1s and deﬁnes

63

how functionality is implemented. Fusion does not provide the concept of dek:ompdsition, static

object, nor for the role of a delegate. In addition, Fusion speaks of subsystems, yet there is no

notation for depicting subsystems.

6.4 Suminai‘y

The chépte; provided an anecdotal cbmparisoh of OOEM-Design with the design

approaches of three other object-oriented modelling methods. The comparison examined the

modelling domain, method of trénsition (from analysis to design), decomposition, static objécts,

and delegaté objects. The majof findings are as follows:

. design is mostly approached from the viewpoint of software development ‘

¢ decomposition is not used as a primary approach to design

e the static object and delegate object concepts are not included in the examined methods

e there exists no primary set of rules or principles for approaching design. Heuristics,

experience and intuition are the main factors for making and revealing discoveries during the

_creation of the model.’

- The following table summarizes the findings for the examined modelling approaches to design in

comparison -to OOEM:Design. An (x) sigriiﬁés, that the modelling approach covers the

characteristic and a (-) signifies that the approach excludes the use of the concept:

O0OA/O0D

Use Case

Fusion OOEM-Design
(Coad&Yourdon) || (Jacobson etal.) | (Coleman et al.) ' ‘

Decomposition X X - X

Static Objects - - - X
Delegate Objects - - - X
Modelling Rules - - - X
Organizational - X - X
Viewpoint)

Table 2 Summary of Methods Comparison

- 64

The mzijér@oqtﬁbhﬁ_c’m of OOEM-Désign is its prbvisiog of a Systerﬁafic approach to reasoﬁ abéut
" .design deCiSiO.I.th for ‘thé"tfansitibn,ffom' an enterpi*isé model to the initial logical éof;ware model.

,Oth'er methbds rely 'c‘m hcq_ristics and implementation critériai for ;'l‘evel'bpingva_des'ign .rnodel; The ' .. |
- other ipethods make n0'p£§vi§ion AforAreasoni.ng'. abo{xfa! trénsitiori ;ince they focu_s on bililding an

-implementation model.- .

65

7. Conclusion and Future Research -

This thesis continues | the work in. the deuelonrnent of (‘).bject-Oriente'd. Enterpn'se
Modelling _(O'-OEM)r by providing extensiens .t‘o the analysisj modelling rules to encompass design
concepts. ‘The design prineiples work to provide a :bridge for the transitional 'werlt from"'_an ‘
: enterprise analysis model to an initial logical'infonnation_ system model. The key aspect of the _
werk is to-provide»a structured method for reasoning about design when we examine an analysis
model of an enterprise. : | N

Design wasx.anproached by continuing with the ontologieally derived Object;oriented'
. analysrs modellmg constructs. By expandrng on the concepts and use of request propagatlon and *

, decomposrtlon, we further refine the analys1s model by dlscovenng the inner worklngs of an .
- object. The specxﬁed object becomes the scope of analysrs for which we discover its c_omhonents,
‘the:.‘ cornponents’ attributes, the components" serviees, and interactions{. Deleg.ate o‘bjeetsuare
introduced to prdvide the transition that moves the modelling arena from the business enterprise
to the realm of 1nfonnat10n systems. The attributes of delegate objects provrde the lmkage to the
~data for a database desrgn Statlc objects are used to deprct static entltres in an enterprlse durmg a
decomposmon, and they provrde the events that should lead toa tnggenng of state changes w1th1n

a database;

71 Contribution

GOEM—D_esign extends the origln_al OOEM modelling rules threugh the. addition of three
| new rules to the original seven. The rules cover ‘(l) ohject deeomposition, (2) delegation and (3) ,
stat‘ieohje'ctsv..‘ - | |

. In corresnondence with :-introduction-o‘f the neW rules, further elaberatidn was prdvidiad

for the conééptof aggregation and static objects. The concepts of decdrnposition and delegation

66

Weré defined. The work illustrated four basic tybés of dec":om‘p_ositic’)nA bagtems.and'fOuri bééi(_: typeé' ’
of ddegation patt.ems‘ that corﬁﬁleméﬁi the decomposition and delegatiqh rules;‘ These pattgfns are
ﬂﬁxed,and matched in practice to form more cofnplex 'patterxi\s (.)f decc')mpos_itio‘nénd.deiegz;ﬁén. A
case example was provided to illustrate how one would perfoﬁ'n the miératio;i from analysxs
activities to .design. | | |
The primary Beneﬁt of the new modelliﬁg mle'cxteflsiOns is the provisic:)n»of a metﬂod'for
» a transition between analysis and design ‘models. Much of the current literature on formal models
dégl _with analysis and desig;l bfrom the séftware point of vie-w‘.‘ Metho;ls . ,Which ‘model
. organizations do not provide rules forlthe Uaﬁsiﬁon tb designf By e);tendihg the original OOEM
" rules, the'design_ rules proyide_this transition point from modelling ofgahizatioﬁ to modelling
‘inforr'na.t‘ion systems. Furthermore, the use of délégates and‘ static objects provide us hints"tq
‘compésitibn of a systems databasé fhrough tﬁe attributes. | .
7.2 Limitations and Future Research_ .
» T\l-li“swo‘rk prévidés areas fgr ;ontinped .fﬁture work. The_, probosed’metho& of ;"easbr_ﬁngi
.ab_ou£ design lacks a formalized apli)‘roach» for niodel fepfesentépion. Further wo’ric i{itq a?plying the‘ .
r‘rlgethovd to business process fggngineering (BPR) aﬁd,'détailgd des1gn is alvlso'.warraAntéd.' - | |
| ’fhere is a ‘need«tov cement OOEM-bgsigp in a modelling language. As it stand OOEM- =
Dc’sign.:o.nly‘ presents principlés for which dne éa'n' reason: abouf design <ihaépendt‘=.ntly froni'«i any :
p spgéiﬁc qiodéiliﬂg représen_tation (i;c. language). For effective co'mmunic'atioln’,"onc'may‘wi'sil, t6 B
| develop a st;mdard setpffsymbols to represépt tﬁe modglling constructs.. .
: Th_e 4m241in fc;éus of this work was to jshow the trénsition from anal'ysis‘ té a prclinfin@
) logigal information systems or software design. Another use for this t}"pe of inodellin’g is in tﬁe
area BPR (Jacqbébn et al. _1992, Wah_g 19é4).~ In Appendix m,‘én _exahple is given fora po'ssiiﬂe |

BPR model. Further d'evelophments into BPR modelling are possible from this wOrk:

67

' Furthennore, the work can be taken toWards the development of detail or softWare design '
models One can elther examine current obJect—onented software desrgn approaches and merge it
with OOEM-design, or prov1de a completely new approach to software desrgn by begmnmg with

OOEM-Des1gn prmcrples More recently, object-onented analys1s and design modellmg for.

- software development has entered into a search for a pattem language for obJects ThlS 1dea was

1nﬂuenced by the work of Chnstopher Alexander, an archrtect who wrote. Notes on the Synthesrsv

of Form (1964), The Tlmeless Way of Bu1ld1ng (1979) and A Pattem Language (1977) Coad'

- (1995) new method for OOA/OOD is based on patterns Further study inito OOEM and OOEM- |

-,Desrgn may prov1de a more sol1d groundmg for any type of pattem language based on an

ontological foundation.

68

" References

Alexander, C. (1964). Nete.r on the Synthesis of Form. Cambridge: Harvard University Press. _

Alexander, C., Ishikawa, S., Silversteini M., Jaeobson, M, Fiksdahl—King, L, and Angel', S.(1977).

A Pattern Language: Towns, Buildings, Construction. New York: Oxford University Press.

* Alexander, C. (1979). The Timeless Way of Building. New York: Oxford University Press.

- ‘Booch, G. (1993). Ob]ects-Orzented Analyszs and Deszgn with Applzcatzons (2nd ed.). Redwood Clty,

CA Ben_]armn/Cumrmngs

Dordrecht Re1de1

B Bunge, M (1979). Ontology II A World of Systems Vol 4 of the Treattse on Basic thlosophy

: Dordrecht Re1de1

Coad Peter, and Edward Yourdon (1991a) Object-Onented Analyszs (2nd ed) Englewood Chffs
Prentice Hall.

Coad, Peter, and Edward Yourdon (1991b) Object-Onented Design. Englewood Chffs Prentlce _
Hall '

Coad, Peter, North D., and Mayfield, M. (1995). ObjectModels Strategzes Pattems and’
. Applications. Englewood Cliffs: Prentlce Hall.

~ Oriented Development The Fusion Method Englewood Cliffs: Prentlce Hall.

- Curtis, B., Kellner ML, and OverJ. (1992) Process Modelhng Commumcatzons of the ACM Vol

35 (9), pp. 75—90

DeMarco,T (1979) Structured AnalyszsandSystem Speczﬁcatzon Englewood Chffs, NJ Prentlce '

 Hall

69

Bunge, M. (1977) Ontology I: The Furmture of the World Vol. 3 of the Treatise on Baszc Phtlosophy.

Coleman,D Amold, P., Bodoff S., Dolhn C Gllchnst H Hayes, F., Jeremaes, P. (1994) Object-- _

. Exnbley, D.W,, Jackson, R.B. and Woodfield S.N. (1995). OO Systems Analysxs IsIt or Isn’t It?. B
' IEEE Soﬁ‘ware, Vol 12 (4), 19-32. .

Gane, C., & Sarson, T. (1986). Structured Systems Analysts, Tools and Techmques Englewood
Chffs, NJ Prentice Hall. , ‘

K1m,W & Lochovsky, F. (Eds) (1989). Ob]ect-Onented Concepts Applzcatzons and Databases o

Reading, Mass: Addlson-Wesley

Morris, W1]]1am (Ed.). (1980). The Houghton Mifflin Canadzan Dtcttonary of the Engltsh Language. }
Markham, Ontario: Houghton Mifflin Canada.

Jaeobson, 1., Christerson, M., Jonsson, P., and Overgaard, G. (1992). Object-Oriented Soﬁware
Engineering: A Use Case Driven Approach. Don Mills, Ontario: Addison-Wesley.

. Parsons, J. & Wand, Y. (1993)' Object-Oriented“S'ystenzs Analysts FA Representation View. Worlcing
Paper 93-MIS-001, Faculty of Commerce and Business Adrmmstratmn, The Umversxty of '
Bnnsh Columbla : : e

Rumbaugh J Blaha, M., Premerlini, W., Eddy,F and Lorenson,W (1991). Object-Orzented
Modellzng and Design. Englewood Chffs Prentlce-Hall

Shaw, M. (1984). Abstraction Techmques in Modern Programmmg Languages IEEE Soﬁware Vol.
- 1(@),p. 10. , : .

'_ Simon,» Herbert. (‘198 1). The Sciences ofthe Artijicial (2nd ed.). _Caxnondge: ‘The MIT Press.

Synder, Alan. (1993) The Essence of Objects Concepts and Terms. IEEE Software, January 1993
' pp. 31-42.

Wand Y. (1988). An Ontological Foundation for Information Systems Design Theory Proceedmgs _
_of the IFIP 8.4 Working Conference on Office Information Systems: The Design Process B
LlI]Z, Austna Amsterdam: Elsevier Science Pubhshers B.V. pp 201-222,

| ‘Wand Y. (1989). A Proposal fora Formal Model of Objects Object-Orzented Concepts ,
Applications, and Databases. W. Kim & F. Lochovsky (eds.). Readmg, Mass: Addlson--
~ Wesley, 537-559. N . A -

70

Wand, Y & Woo, C. (1993) Object Oriented Analy31s Is it Really that Slmple Proceedmgs of the
Workshop on Informatton Technology and Systems, Orlando, Florlda pp. 186—195 -

Wand Y. & Woo, C. (1996). Rules for Ob]ect-Onented Enterprzse Modellmg Tutonal Notes : :
University of British Columbia. L

~ 'Wand, Y. & Weber, R. (1989, December). A Model of Systems Decomposition. Proceedings of the
Tenth International Conference on Information Systems. Boston, Mass., pp. 41-51. '

Wand, Y. & Weber, R. (1990). An Ontological Model of an Informauon System IEEE Transactzons
- on Soﬁware Engineering. Vol 16 (11), pp. 1282-1292 .

Wand, Y & Weber, R. (1991). A Uniﬁed Model of Softyvare and Data Decompositien. Proeeedings»
of the Twelth International Conference on Information Systems, New York, pp. 101-110. .

: Wand Y. &Weber,R (1995). On The Deep Structure of Informatlon Systems Joumal of
o Informatlon Systems. 5, pp. 203-223.

- Wang, S. (1984). OO Modehng of Business Process Object-Onented Systems Analys1s Infomwtzon
‘ Systems Analysis. Spring 1984.

Yourdon, E. (1989). Modern Structured Analysi's. Englew()od Cliffs, NI Yourden Press.

Yourdon, E: (1992). Decline & Fall of the Amerzcan Programmer Englewood Chffs Yourdon
’ Press/PrenUce Hall. - : ,

’ 'Zhao, H. (1995) Object-Oriented Enterpnse Modellmg M Sc. Diss. The Umvers1ty of Bntlsh

" Coluimbia.

Appendix I Bunge’s Ontological Constructs

‘The summary of ontological construct definitions in this appendix are was taken from

- Zhao (1995)

The followrng sectxons are ma1n1y an abstractlon of Bunge’s work (1977 1979). Much of

'the wordmg has been taken drrectly as quoted from these books The sectlon regardmg to the .

dynamlc model of system is. from Wand and Weber (1990)

Static model of a substant1al 1nd1v1dual

. Thing A thing is defined as an entity or substantial individual endowed with all its

propetties. The world is made of things that have propertles.

‘Bunge distinguishes thing and constructs. Constructs are creations of the human mind. There

~ are four basic kinds of constructs: concepts, propositions, contexts, and theories. Constructs

do-not have all the properties of tlﬁngs. For exarnple; set‘s add and lntersect but do not move

K around have no energy and no causal efﬁcacy, etc. Constructs even those representmg thlngs

or substantlal propemes, have a conceptual stmcture not a matenal one. In parhcular, a

- p_redrcates_and propositions have semantic properties, such as meanmg, which is a non- -

physical property.

. Properties, Attributes and Functional Schema Properties of substantial individuals are

called substantial properties. Properties of things can be intrinsie or mutual to several things, -

eg. ifa person is employed by a company, employment is a propexty of both the person and

the company. A property 1s modelled v1a an: attnbute functlon that maps the thing mto a set of

‘values Attnbutes are charactenstlcs assrgned to thmg by human therefore they reﬂect a

* certain view pomt of the observer. An attribute can be represented asa functron from a set of
things and a set of observation points into a set of values. This is the base for defining-a

" model of a thing as a functional schema: A functional schema is a set of attribute functions

72

deﬁned over a certain domain, usually time. Similar things'oah be modelled using the same

- functional schema.

“Compeosite things Composite things are things composed of other things. More precisely, an

individual is composite iff it is composed of individuals other than .itself and- t_he- null

: individual. Composite thing has hereditary properties and’eme_r'g‘ent properties. A pro'perty of

a composite thing that belongs to a component_thing is called a hereditary_ propeity.
Otherwise itis called emergent property. A composite thing must have an emergent property.-' '
The notion of cmergent property is an important assumptlon in Bunge's ontology To th

every concrete system is assembled from, or w1th the help of, thmgs in the same or lower

‘ order genera and must possess propertles not ava11able1n the components of the system. The
.hierarchy of system genera can be characterised as: ph.ysic'al, chemical, biological, social, and

' technical.

State and Conceivable State Space Every thing is - at a given time associat_ed with a given .

‘reference frame - in some state or other. The vector of values for all attribute functi_ons ofa” -

" thing is the state of the thing.

The set of all states that the thing might ever assume is thepoonceivﬁable state. space of the -

- thing,

State: Law A state law restricts the values of the propertles of a thmg to a subset that is

' deemed lawful because of natural laws or human laws A law is also consxdered a property ofl
the thing.

"Class, Kind, and Natu_ral Kind A class is a set of things that possess a common property.

A kind is a set of things that possess two or more common properties.

A natural kind is a set of things that share the same laws.

73

Thlngs come in natural kmds ie. classes of tlungs possessmg (obeymg) the same laws. A"
natural kmd constltutes a natuml grouping because it rests on a set of laws, but 1t is not a real

th1ng itisa construct

‘ Dmamic model of a substantial individual

: Event An event isa change of state of a thing.

In order to keep track of the changes undergo by t}ungs, we need the prmczple of nommal »

' mvanqnce which states that a thmg, if named, shall keep its name throughout its h1story as

‘Iong as the lattér does not include chenges in natural kind - changes which call for changes of

name.

- Event Space "Theev‘ent space ofa thing is the set of a11 possible, events that can occur in the
- _thing, Let S(x) be a state space for a thing x. Any pair of points in thls set uvill represent

- .unambiguously a conceivable event in x.

Transformation and Lawful Transformation A transformation is a mapping from a-

‘domain comprising states to a co-domain comprising states.
" Lawful transformation defines which events on a thing are lawful.

* History The chronologically ordered states that a thing traverses are the history of the thing.

. Static Model of a System

Couplmg A thmg acts on another thlng if its existence affects the hlstory of the other thing.
The two thmgs are saJd to be coupled or interact.

System A set of tlungs form a system iff for an'y,bipartition of the set, coupling exists among '

things in the two sets.
- System Composition A decomposition of a system is a set of subsystems such that every -
‘comp,onent in the system is either one of the subsystems in the decomposition or is included -

" inthe compositio‘n of one of the subsystems.

4

. 0 : l.System envxronment Tlungs that are not in the system but mteract w1th tlungs in the. system K
are called the env1ronment of the system | |
e _ System structure The set of couphngs that exist among thmgs in the system and among
" thmgs in the system and thlngs in the env1ronment of the system is called the structure of the
system. | |
o : ».Subsystem A subsystem is a system whose comnonents andv.Structure are. subset of the
‘ components and st:tucture.of another 'sylstem. | - |)
° .Level stﬁ;cture Alevel stmcture deﬁnes a partlal order over the .syst‘ems in..a decomposition
- toshow which subsystemare components of other subs_ystem or the system'itself. |
| Dmi'amic Modelh'ngof ja-'Syistem |
e Stable State and Unstable State A stable state is a state in which a thmg, subsystem or
| system will remain. unless forced to change by v1rtue of the actlon of a th1ng in the-'
- env1ronment (an external event) | |
:An unstable state isa state that w1ll be changed into. another state by v1rtue of the action of
transfonnanon in the system (an 1ntemal event)._ ' ’ B
o ~ External Event An extemal event. is an event that arises ina thing, subsystem ot system by -
virtue of the action of some thmg in the enwromnent on the thmg, subsystem or system The .

before-state of an extemal event is. always stable The after-state may be stable or unstable

. Internal vaent An 1ntemal event is an‘event that arises in a thing, subsystem or system by
virtue of lawful transformatlons in the thmg, subsystem or system " The before-state of an -
1ntema1 event is always unstable The after-state may be stable or unstable

‘. Well Deﬁned Event A well-deﬁned event is an event in Wthh ‘the subsequent state can. '

3

' always be. predlcted g1ven that the pnor state is known

e vPoorly Deﬁned Event A poorly deﬁned event is an event in which the subsequent state can

ot be pred1cted g1ven that the pnor state is known.

75

»Appendlx II ObJect-Orlented Modelllng in Template Form

¥

| | : ' The following are examples of the internal object templates and extemal object templates
that Zhao (1994) uses to represent an obJect model. These templates prov1de samples based on the
ACME warehouse case.. Figure 7 (In1t1a1 enterprxse model of ACME) and Flgure 8
‘(Decomposmon of the warehouse obJect) are presented as an example. (Note Under the area
labelled access mode, the letters M (modlfy) and U (use) are used to des1gnate the mode of

operation on the state of the 1ntema1 attnbute)

Object Name

Requesting Services Interface Internal Attributes Request Receiving ‘|
Objects L Attnbutes ' Generated Objects
Object 1 service 1 incoming /| Internal Access Request Object 3
interface Attributes Mode generated from | - '
attributes . t0 service 1
S support’ .
| returning .| service 1 Request Object 4
interface generated from
- - attributes service 1 -
Object 2 Service 2 .| incoming Internal Access Request Object 5
. :) interface ‘Attributes Mode generated from -
attributes . to support service2 -
. service 2 '
Table 3 Internal Object Template (I0T)
: 2 Object Name ,
Requesting Objects - Requests to system Receiving Objects
: : requestl = Internal Object 1
request 2 ‘ Internal Object 2
- Services Interface Attributes : .
Internal Object 2. Service 1 - Interface attributes of
L Service 1
Internal Object 3 Service 2 - Interface attributes of
' _Service 2 ’

Table 4 Ei(ternal Object Template (EOT)

- Initial Enterprise Model of ACME

" Customer .
Re'questing'Objects ‘ Requests to system Receiving Objects . -
Withdrawal request -7 | officeClerk
Pickup request - ' Warehouse
Services i Interface Attributes .
Table 5 EOT for the Customer Object_
. - A Office Clerk . :
Requesting Services . Co Interface © -] Internal . . . |-Generated ' | Receiving
Objects - Attributes | Attributes Requests- Objects
Customer Process withdrawal Withdrawal .Customer information - | U | Withdrawal Warehouse
request . |request ' request
- " Approval/ 1
.| decline + reason’.
Table 6 IOT for the Office Clerk Object -
‘Warehouse :
Requesting | Services . ‘ Interface Internal Generated Receiving
Objects Attributes’ ' Attributes . . Requests Objects
Office Clerk | Process withdrawal | Withdrawal request o . - | Transport Planner-
' request - R R o request . .
: : ‘Approval/decline '
reason
Warehouse' | Check items Inventory information ST 1 Item existence | Warehouse
‘ < | availability - : RN query -
Truck Driver | Prepare loading Prepare loading Warehouse worker | M
. '] . | request assignments
Truck Driver | Start loading : Load items ' Warehouse:worker | U
. - - . ___ | assighments :
‘ . Truck Driver | Prepare unloading Prepare unloading . Warehouse worker | M
» _ request _.° | assignments
o o || Truck Driver | Start unloading Unload items " | Warehouse worker | U’
} : . ‘ » ‘ o .assignments
Customer Process customer Customer pickup
. pickup request request
[Ttems documentation

_ Table 7 IOT for the Warehouse Object

o

_ - S . " Planner v

‘ S Requesting: | Services- - . ‘| Interface -~ . | Internal = - " | Generated Recelving
| o Fobjects) v 4] Attributes .- | ‘Attributes o Requests " | Objects

! T o ‘Warehouse .| Plan transportation/. | Transportation , | Truck information U} Transport order | Truck
T ' .truck assignment . .| planning request | - ..~ . . | Driver
Lo ‘| Approval/ . Ty
| decline +reason

¢

~ Table 81OT for the Planner Object -

. L "Truck Driver ‘ o .

Requesting | Services o -| Interface - “Internal - - . | Generated - Receiving
Objects - S _© . .| Attributes -~ | Attributes " ‘ Requests ' _Objects
Planner . | Dotransport orders . -’ Transportation: oo " | Prepare loading - | Warehouse -

-‘-'_l'ransport status

- [Sarticading ___|.
* = | Prepare unloading -'| -
-} Start unloading

i .. " " Table9IOT for the Truck Driver Object

" o Decomposition of thé Warehouse iject .'

} Lo e o .. Warehouse Manager ' L . R
e Requesting | Services = - .| Interface . | Internal Generated - | Receiving -
. Objects c o -0 | Attributes - - | Attributes ' Requests __] Objects
|-Office clerk | Process withdrawal .- | Withdrawal e * | Transportation - | Planner
S request' . .. ' |request - .. Cos | request. ' ;

co . e . Approval/
R L L - | decline + reason . . .
| .. . | Warehouse Ttem existence query Inventory SR ' | Ttem existence, Warehouse
) “ -+ .. [.manager o information- ~ | . . - ... Query - | managér

'Truck Driver | Prepareloading . - | Prepareloading ™ | = = ~ . .- | | Prepareloading = - | Warehouse *-
l B request ' - "7] | schedules - - | worker- -
Truck Driver | Prepare unloading - | Prepare unloading | - . S Prepare unloading | Warchouse || -
\ N request . -~ . | " e schedules " | worker)
| . .. = | Warehouse | Update inventory status | Update inventory | ' ’ i
; e Worker . e i'ei]uicst:- g)

‘l(.7 0 7. .. Table 101OT of the Warehouse Manager Object - .. -

Warehouse Worker

Requesting

Services

Generated

Interface Internal '| Receiving
|t Objects Attributes Attributes Requests -Objects
Warehouse Schedule loading . Prepare loading Forklift assignments M
|| manager 3) schedules
Warchouse Schedule unloading Prepare unloading | Forklift assignments - | M
manager - schedules :
.Truck Driver | Process load items - ‘| Load items Forklift assignments U | Transport Forklift
' ' request ‘ M | request operator
|l Truck Driver | Process unload items. Unload items Forklift assignments U | Transport Forklift
) ‘ request ' : M | request operator
Table 11 IOT of the Warehouse Worker Object
Forklift Operator
| Requesting . | Services Interface Internal Generated Receiving
Objects - : i Attributes Attributes Requests ‘Objects’
Warehouse Start loading - Load items -
worker - : request
Warehouse Start unloading Unload items
worker _request
[Transport status

- Table 12 10T of the Forklift Operator Object

79

.Appendix IIl Object-Oriented 'O,rgani.zational' Design

In addition to laymg out plans for. automatmg an orgamzatxon s 1nf0rmat10n system,
desrgn may also 1nvolve the use of mformatlon technology to enable orgamzatlonal changes Such '
changes often require the orgamzatron to break its current busmess rules and assumptlons, and‘
-replace thern W1th new rules Ob]ect-onented desrgn can be used as a tool to illustrate how a
changed orgamzatlonal process w1ll operate For such changes, one may examine the poss1b1ht1es
of ehmmatmg objects, adding new objects (roles), changmg commumcatxon paths, and .
automatmg large parts of the orgamzatlon. Research.mto these matters is a possrble avenuegfor_ o
: future work | : | |

Frgure 13 portrays substant1al changes to- how the ACME warehouse processes a -
'w1thdrawa1 request The example demonstrates only one of many possrble changes one can make
to the- model The warehouse manager object in the process has been e11m1nated Its role has been
drffused by changmg the rules of operatlons and by delegatmg the remalmng responsrblhtles to
the i mventory system and truck scheduhng system. One of the rules that have been changed is that
truck dnvers are expected to arrive at a warehouse at a predetermmed t1me rather than a self- -
determmed tlme Rather than having the truck driver receive a transport order from the planner, .
and then telling a warehouse to prepare for (un)loadmg, the predetermmed t1me is scheduled by
the truck schedule-sy_stem. The: transport order that the plarmer,_ sends to the truck driver will
"i‘ncludea newlyadded amvaltrme ln'a_ddition, the warehouse worker directly requests that the
inVentory system update any changes in the inve'ntory .status,' 'inste‘ad‘ of sending;a request to the

*- warehouse manager to perform this operation.

"80‘

process withdrawal request

Forkilit Sched. Sys.
B forkdift assignments
Wi Worker Query/update echedule | prepam lbading requests
chedule Info. prepare unloading requests
. customer pickuprequest = [T T T TTTT-< lq update schedule request
fm————- e] load feme request 0
unload ftems request roquest - schdeu'e loading
" roquedt - schedule univading
process customer pickup request
arrange lbadling

]

‘ kupdm pins
]

]

] .

]

Figure 13 Enterprise model redesign

do traneport orders /

Truck Vehicle

maximum capacity
special characteristics
working order

81

L} t
] [}
1 1
' 1
Temwithdraval I H Yoad Roms request
request V- — 1 f == unioad items roquest
H . Irfo. 1 1 N - .
.) verlfication approval withdrawal request] 1. 1 start loading
result . decine update Inventory request » ' 1] start univading
- -0] 4 ;r_./
4 Customer Sys. \ + reason process withdrawal requeet |] | |
»{ check ftems ! ! ¥ Yy
| withdrawal
]
e ——__ e s) b1 (o) (Cre)
t)
bamporwhq kem 1] Rem status working order
authenticate customer request existonce h |
. g query [1
. N :
3]
approval / A '
decline ! [
+ reason y . : :
(Truck Sched. Sys. \ 1 '
. } I
—1 prepare
]
o, truck Idovm:tk:n. |twniioaging :
[mmmm—mm— e ——— | transport request ad u
] . update schedule fequest :) :
' .
[} [}
] process now schedule info. “
| .] Ietart
queryiupdate @“‘ anapor requesls " lodding Yunloading
) schedule : - — S
(- . Planner \ de.‘ Driver
transportation planning nqa“u tra_ - o_rd: ---------------- Pt transportation requests
' transport status | {ranspot status
Qlan transportationtruck assignment .

