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Abstract 

This thesis presents research on modelling, statistical inference and computation for multivariate 

discrete data. I address the problem of how to systematically model multivariate discrete response 

data including binary, ordinal categorical and count data, and how to carry out statistical inference 

and computations. To this end, I relate the multivariate models to similar univariate models al

ready widely used in applications and to some multivariate models that hitherto were available but 

scattered in the literature, and I introduce new classes of models. 

The main contributions in this thesis to multivariate discrete data analysis are in several distinct 

directions. In modelling of multivariate discrete data , we propose two new classification of mul

tivariate parametric discrete models: multivariate copula discrete (MCD) models and multivariate 

mixture discrete (MMD) models. Numerous new multivariate discrete models are introduced through 

these two classes and several multivariate discrete models which have appeared in the literature are 

unified by these two classes. With appropriate choices of copulas, these two classes of models allow 

the marginal parameters and dependence parameters to vary with covariates in a natural way. By 

using special dependence structures, the models can be used for longitudinal data with short time 

series or repeated measures data. As a result, the scope of multivariate discrete data analysis is sub

stantially broadened. In statistical inference and computation for multivariate models, we propose 

the inference function of margins (IFM) approach in which each inference function is a likelihood 

equation for some marginal distribution of a multivariate distribution. Examples where the approach 

applies are the multivariate logit model with the copulas having certain closure properties and the 

multivariate probit model for binary data. This general approach makes the estimation of parame

ters for the multivariate models computationally feasible. The corresponding asymptotic theory, the 

estimation of standard errors by the Godambe information matrix as well as the jackknife method, 

and the efficiency of the IFM approach relative to full multivariate likelihood function approach 

are studied. Particular attention has been given to the models with special dependence structure 
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(e.g. the copula dependence structure is exchangeable or AR(1) type if applicable), and efficient 

parameter estimation schemes based on I F M (weighting approach and pool-marginal-likelihood ap

proach) are developed. We also give detailed assessments of the efficiency of the G E E approach for 

estimating regression parameters in multivariate models; this is lacking in the literature. Detailed 

data analyses of existing data sets are provided to give concrete application of multivariate models 

and the statistical inference procedures in this thesis. 
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Basic Notation and Definitions 

The following notation and definitions are used throughout the thesis. 

1. cdf stands for cumulative distribution function; pdf stands for probability density function, and 

pmf stands for probability mass function; Pr stands for probability of. 

2. rv stands for random variable or random vector depending on the context; iid stands for 

independent and identically distributed. 

3. B V N and M V N are the abbreviations for bivariate normal and multivariate normal respec

tively. 

4. C U O M is the abbreviation for closure under taking of margins. M U B E is the abbreviation 

for model univariate and bivariate expressible. P U B E is the abbreviation for parameter uni

variate and bivariate expressible. M P M E is the abbreviation for model parameters marginally 

expressible. (Definitions given in Section 2.1.) 

5. M L and M L E are the abbreviations for maximum likelihood and maximum likelihood estimates 

or estimation. A n M L E of 6 will usually be denoted by 6. 

6. I F M and I F M E are the abbreviations for inference functions of margins and inference functions 

of margins estimates or estimation. A n I F M E of 6 will usually be denoted by 0. IFS is the 

abbreviation for inference functions of scores. 

7. M C D and M M D are the abbreviations for multivariate copula discrete and multivariate mixture 

discrete. 

8. The symbol " • " indicates the end of a definition, the statement of assumptions, a proof, a 

result, or an example. 
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9. For a vector or matrix, the transpose is indicated with a superscript of T or ', depending on 

convenience in the context. 

10. A l l vectors are column vectors; hence transposed vectors such as X', x' (or XT, xT) are row 

vectors. 

11. Rk = {x : x = (xi,..., Xk)', — oo < Xj < oo for j = l,...,k} denotes the fc-dimensional 

Euclidean space. 

12. d is used for dimension of the multivariate response vector of multivariate distribution. 

13. Boldfaced Roman upper case letter Y = ( Y i , . . . , Yd)', usually with subscripts, is used to 

denote a response random vector and y is used for the observed value of this response vector. 

A vector of explanatory variables or covariates is usually denoted by x or w. 

14. Boldfaced Roman upper case letters X , Y , Z and so on, usually with subscripts, are used 

for (random) vectors, boldfaced Roman lower case letters x, y, z and so on are used for the 

observed vector values. 

15. Roman upper case letters X,Y, Z and so on, usually with subscripts, are used for random 

variables, roman lower case letters x, y, z and so on are used for the observed values. 

16. Greek boldfaced lower case letters, often with subscripts, are used for a collection of parameters 

of families of distributions, e.g. a, 0,6,6. They are in vector format. Greek lower case letters, 

often with subscripts, are used for parameters of families of distributions, e.g. a, 0, 9, 8. 

17. Greek upper case letters 0, E are used for a set of parameters (often dependence parameters) 

in multivariate family, they are mostly in matrix format. 

18. 3? is the symbol for parameter space, usually ft C Rk for some K. 

19. Script Roman upper case letters T and Q are used for classes of functions or distribution 

families. 

20. F, G, H are the symbols for a (multivariate) cdf. 

21. For a d-variate cdf F, the set of its marginal distributions is denoted as {Fs '• S £ Sd}, where 

Sd is the set of non-empty subsets of {1,..., d}. For a specific S, the subscript is written 

without braces, e.g., F\,..., Fd, Fi2, Fi2z, etc.. 
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22. We define the pdf or pmf of Y at y = (yi, . . .,yd) as Pu-d(yi • • -yd) or simply P(yx • • -yd), 

with the corresponding jth marginal Pj(yj), the bivariate (j, k) marginal Pjk{yjl)k), and so 

on. We also write P(yi • • - yd', 0) to denote that the pdf or pmf of Y depends on a parameter 

(or parameter vector) 0. 

23. The frequency of observing a particular outcome ( j / i , • • •, j / d ) ' in a data set is denoted by 

" i 2 - - d ( j / i ' ' - Vd) or simply n(yi • • - yd)- The frequency corresponding to the j th marginal out

come yj is nj(yj), and that corresponding to the (j, k) bivariate marginal outcome yj and J/J, 

is njk(yjyk), and so on. 

24. J2{yj} means the summation over all possible different values of yj. J2{Xl<y! xd<yd] m e a n s 

the summation over all possible different vector values of x = (x\,..., Xd)' which satisfy 

{x\ < j / i , . . . , Xd < yd}. X 2 { y 1 - j / d } \ { ! / J } means the summation over all possible different vector 

value y = ( j / i , . . . , yd)' with the jth component absent, and so on. 

25. U(a, b) denotes the uniform distribution on the interval [a, b]. N(p, a2) denotes the univariate 

normal with mean // and variance a2. Nd(p, S) denotes the d-variate normal with mean 

vector fl and covariance matrix S; $<j(x;/i, S) (or $d(x)) denotes the corresponding cdf and 

<f>d{-x.,U,Y) (or <j>d(x.)) the pdf. 

26. The partial derivative of a scalar function ip(0), dip(9)/d9, is the q x 1 vector 

where 9\,..., 8q are the components of the vector 0. 

27. The partial derivative of a vector function \? = (ipi(6),..., ipr(6))', 8^/06', is the r xq matrix 

(dm dm\ 
V 00i deq ) 

nVvO?)/ 

where 0\,..., 6Q are the components of the vector 6. 
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C h a p t e r 1 
Introduction 

This chapter starts by discussing the structure of the multivariate data for which we are going 

to build appropriate multivariate models. We motivate our thesis research through reviewing and 

criticizing the relevant literature on the modelling of the multivariate discrete data. 

This chapter is organized in the following way. In section 1.1, we introduce the multivariate 

data structure, for which we are going to develop multivariate models. In this section, we discuss in 

detail multivariate binary, multivariate ordinal categorical and multivariate count data. The models 

developed in this thesis are general in nature, but the illustrative examples will be mainly based on 

the forementioned three types of multivariate discrete data. In section 1.2, we briefly summarize and 

criticize the relevant statistical literature on the modelling of data of the types described in section 

1.1, point out the inadequacies thereof, and thus motivate our thesis research. In section 1.3, we 

outline some desirable features of multivariate models and briefly discuss some of my understandings 

about statistical modelling. Section 1.4 provides an overview of the thesis. 

1.1 Multivariate discrete response data 

T h e d a t a s t r u c t u r e 

Many data sets consist of discrete variables. Familiar examples of such variables are religion, na

tionality, level of education, degree of disability, attitude to a social issue, and the number of job 

changes for an individual during a certain period of time. These variables are categorical or count, 

they may be unordered (religion, nationality) or ordered (degree of disability, attitude to a social 

issue). In real life, what is more complicated is that often the discrete data are multivariate and 

1 
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Table 1.1: The structure of general multivariate discrete data 

d-variate resp. margin-indep. cova. margin-dep. cova. 
J/n • • • Vid 

yn • '• • Vid 

Vnl • • • Und 

Xu • •• X i p 

X{1 ' ' ' %ip 

Xnl ' ' ' Xnp 

• • • z u P l , . . . , z\d\ • • • Zldpd 

Zi\\ • • • ZHpi, . . ., Zidl ' ' ' Zidpt 

Znll ' ' ' Z n \ p l , . . ., Zndl ' ' ' Zndpt 

the multiple measurements may be interdependent in some way. The dependence may be general or 

special. The multivariate data structure can be further complicated by having missing data, random 

covariates and so on. 

In this thesis, we shall concentrate mainly on multivariate discrete response data, with or without 

covariates. The general multivariate discrete data set of interest is given in Table 1.1. The data 

structure in Table 1.1 consists of basically three parts: d-dimensional discrete response observations 

= (yn, • • •, yid)': a margin-independent covariate vector of p components x, = (xn,..., Xip)', 

that is, a covariate vector which is constant across margins, and d margin-dependent (or marginal 

specific) covariate vectors z , i , . . . , Zid, where Zij = (ziji,..., ZijPj)' is a vector of pj components for 

the jth margin, j = 1 , . . . , d, i — 1 , . . . , n. In the longitudinal or repeated measures settings, the 

marginals might be defined by successive points in time. In these situations, we can call the margin-

independent covariates time-independent, that is, constant across times, and the margin-dependent 

covariates time-dependent. The response vector yt- can be measures on d variates with general or 

special dependence structure, such as multiple measures from a human, a litter of animals, a piece 

of equipment, a geographical location, or any other unit for which the observations are a collection 

of related measures. The measures can be spatial or temporal. 

One way to make inferences from such a data structure is through a multivariate parametric 

model. (Nonparametric multivariate inference requires much more data than parametric multivariate 

inference.) The development and analysis of suitable models for the multivariate data in Table 1.1 

are the main objectives of this thesis. 

Some typica l mult ivar ia te discrete data 

Binary data. Binary data arises when measurements can have only one of two values. Conventionally 

these are represented by 0 and 1, with 1 usually representing the occurrence of an event and 0 

representing non-occurrence. For example, the reaction of a living organism to some material, often 
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observed as presence or absence of the reaction (usually called quantal response), is binary. Alive 

throughout a specified period or died during the period, won or lost, success or failure in a specified 

task, gender, agree or disagree, are all examples of sources of binary data. Multivariate binary data 

are frequent in statistical applications. Whenever multivariate data are coded, for each dimension, as 

one of two mutually exclusive categories, the data are multivariate binary. In the more complicated 

situation, covariates can be included when one is considering binary response data. A n example of 

multivariate binary data is the Six Cities Study case analyzed in subsection 5.2.1. 

Ordinal categorical data. A n ordinal variable is one that has a natural ordering of its possible values, 

but for which the distances between the values are undefined, such as a four-category Likert scale. 

Ordinal categorical (or ordered categorical) response data, often accompanied with a set of covari

ates, arise frequently in a wide variety of experimental studies, such as in bioassay, epidemiology, 

econometrics and medicine. For example, in medicine it may be possible to classify a patient as, 

say, severely, moderately or mildly ill, when a more exact measurement of the severity of the disease 

is not possible; the covariates may be age, gender and so on. With ordinal variables, the categories 

are known to have an order but knowledge of the scale is insufficient to consider them as forming 

a metric. We may treat the ordinal categories simply as nominal categories - which is unordered 

categorical measures, but by doing so the valuable information of order is lost. So the consideration 

of the order is important for optimal information extraction. For an ordinal variable, it is often 

reasonable to assume that the ordered categories correspond to non-overlapping and exhaustive in

tervals of the real line. Multivariate ordinal data are frequent in applications. Whenever multivariate 

response variables are each ordinal categorical, the data are multivariate ordinal categorical. More 

complicated situations include covariates for each of the response variables. A case of multivariate 

ordinal data from the Three Mile Island (TMI) nuclear power plant accident study can be found in 

subsection 5.2.2. 

Count data. Data in the form of counts appear regularly in life. In the simplest case, the number 

of occurrences of some phenomena on each unit are counted. Because no explanatory variable 

(e.g. time, treatment) distinguishes among these observed events, they can be aggregated as single 

numbers, the counts. Examples of count data are the counts of pest eggs on plant leaves, the counts 

of bacteria in different kinds of bacteria colonies, the number of organic cells with fixed number 

of chromosome interchanges produced by X-ray irradiation, etc.. Consul (1989) discussed many 

count data examples in a variety of situations, including home injuries, and strikes in industries. 

Other examples include the number of units of different commodities purchased by consumers over a 
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period of time, the number of times authors cited over a number of years, spatial patterns of plants, 

the number of television commercials, or the number of speakers in a meeting. Multivariate count 

data are also frequent in applications. Whenever multivariate response variables are each count in 

nature, the data are multivariate count. The more complicated situations also include covariates to 

the response variables. A n example of multivariate count data can be found in subsection 5.2.3. 

1.2 Review of literature and research motivation 

For the data types we have seen in section 1.1, one of the questions is how to build a model or a 

probability distribution as an approximation to the stochastic phenomenon of multivariate nature, 

and based on the available data, to estimate the distribution, and make some inference or predictions. 

For this purpose, the construction of an appropriate probability distribution or statistical model in 

accordance with the available data generated by the stochastic phenomenon is essential. 

Models for univariate discrete data have been studied extensively. The well-known generalized 

linear models for a univariate variable are such examples (McCullagh and Nelder 1989, Nelder and 

Wedderburn 1972). However, general studies on multivariate models for the type of data outlined 

in Table 1.1 are lacking in the statistical literature. One difficulty with the analysis of nonnormal 

multivariate data (including continuous and discrete data) has been the lack of rich classes of models 

such as the multivariate Gaussian. Some isolated studies on the modelling of a particular data set 

or under a particular multivariate setting of the type of data in Table 1.1 have appeared in the 

literature. These studies can be classified in general as being based either on a completely specified 

probability model or on a-partially specified probability model. We overview some of them here, and 

point out their drawbacks or weaknesses. 

Completely specified probability models 

Exponential family: Following Cox (1972), the probability distribution for a binary random vector 

Y can be represented as a saturated log-linear model 

d 

P(y) = exp(w0 + ^Ujyj + 'YJUjkyiyk + h uu...dyi •••yd) (1-1) 

where uo is a normalizing constant. The 2d — 1 parameters « i , . . . , ud, • •., « i 2 , « 1 3 , • • •, U(d-i)d, 

• • •, ui2—d v a r y independently from —oo to co. Expressions similar to (1.1) can also be found in 

Zhao and Prentice (1990), Liang et al. (1992) and Fitzmaurice and Laird (1993). The representation 
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(1.1) is not closed under taking of margins (see Section 2.1 for a definition). In fact, if we write 

P(yiV2) = e x p ( u o + ]Cj=i UjVj + u*22/i2/2), then UQ, U*- and u * 2 must depend on all the parameters 

uo, Uj, Ujk, ..., u\2-d- This fact makes the interpretation of the parameters Uj, Ujk, . •., ui 2--d very 

difficult, and it is not clear how covariates could be included. For the general form, there are too 

many parameters. 

Bahadur representation: Bahadur (1961) gave a representation of the distribution for a binary 

random vector Y, in terms of the moments: 

d 

P(y) = nPj(l)yjPj(0)1~yj[l + J 2 P i k e i e k + 2 PjkiejekeI + --- + P l 2 . . . d e 1 e 2 - - - e d ] (1.2) 
j=l j<k j<k<l 

where e, = (%• - Pj(l))/^/Pj(l)Pj(0), and pjk = E(ejek), ..., p\2...d = E(eie2 • • • ed). This rep

resentation has the closure property under taking of margins, but the parameterization may not 

be desirable since the pjk's and the parameters of higher order are constrained by the marginal 

probabilities (see Prentice 1988), and the extension to include covariates may be difficult. For the 

general form, there are also too many parameters for the model to be useful. 

Multivariate Poisson convolution-closed model: Teicher (1954) and Mahamunulu (1967) discussed a 

class of multivariate Poisson convolution-closed models. For example, a trivariate Poisson convolution-

closed model has the stochastic representation 

(Yx,Y2,Y3)d= (Xi + Xi2 + X13 + X i 2 3 , X2 + X12 + X23 + X \ 2 3 , X3 + X±3 + X23 + Xi23) (1.3) 

where X\, X2, X3, X\2, X\3, X23, X\23 are independent Poisson rv's with parameters A i , A2, A3, A 1 2 , 

^13, A23, Ai 2 3 respectively. These models may be suitable for counts in overlapping regions or time 

periods if the Poisson process is a reasonable model of the underlying count process. The model has a 

closure property under taking of margins, but it is not "model univariate-bivariate expressible" (see 

Chapter 2 and Example 2.5 for further explanation of this expression), and it can only accommodate 

multivariate count data with a limited type of dependence range (positive dependence). 

Exchangeable mixture models: Prentice (1986) gives an expression for a joint distribution of a binary 

random vector Y, with 

where 0 < p < 1, m = Y H \-Yd and 7 > - ( d - l ) _ 1 min{p, 1-p}. The model (1.4) is an extension 

of a beta-Bernoulli model derived from the mixture model P(y) — JQ p y + (1 — p)d~y+ g(p) dp, where 

y+ = Ylj=i %' a n d 9(P) i s t r i e density of a Beta(a, /?) distribution. This model implies equicorrelation 
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of Y with correlation parameter of (1 + 7 - 1 ) - 1 . The representation (1.4) has the closure property 

under taking of margins, but it is limited to equicorrelation of response variables. Joe (1996) 

has discussions on the range of negative dependence on this family. Discussions of extensions to 

incorporate covariates appeared in Prentice (1986) and Connolly and Liang (1988). 

Multivariate probit model: A d-variate probit model for binary data is 

where /(•) is indicator function, Z = (Z\,.. .,Zd)' ~ N(0,Q), 0 = (Ojk) is a correlation matrix. 

The Zj's are often referred to as cut-off points. Ashford and Sowden (1970) used the bivariate probit 

model for binary data to describe a coal miner's status of development of breathlessness (present or 

absent) and wheeze (present or absent) as a function of the miner's age. Anderson and Pemberton 

(1985) used a trivariate probit model for the analysis of an ornithological data set on the three aspects 

of colouring of blackbirds. A general introduction to the multivariate probit model is Lesaffre and 

Molenberghs (1991). The multivariate probit model has many nice properties, such as closure under 

taking of margins, model univariate-bivariate expressibility, and a wide range of dependence. M L E 

is considered but is computationally more difficult as d increases. New approaches to estimation 

and inference are explored in this thesis. 

Multivariate Poisson-lognormal model: Aitchison and Ho (1989) studied a model for count random 

vector Y , with 

where fj{yj\^j) is a Poisson pmf with parameter \j and g(X) is the density of a multivariate 

lognormal distribution. This model also has many nice properties, such as closure under taking of 

margins, model univariate-bivariate expressibility, and a wide range of dependence. Again the M L E 

is computationally difficult. 

Molenberghs-Lesaffre model: A model that may be suitable for binary and ordinal data is studied in 

Molenberghs and Lesaffre (1994). This model can accommodate general dependence structure from 

the Molenberghs-Lesaffre construction (Joe 1996) with bivariate copulas, such as in Joe (1993). The 

multivariate objects in the Molenberghs-Lesaffre construction have not been proved to be proper 

multivariate copulas, but they can be used for the parameters that lead to positive orthant proba

bilities for the resulting probabilities for the multivariate binary vector. 

Other miscellaneous models (some for time series or longitudinal data): 

Yj = I(Zj < ZJ), j = l,...,d, (1.5) 

(1.6) 
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- Kocherlakota and Kocherlakota (1992) provide a good summary of bivariate discrete distribu

tions (including bivariate Poisson, bivariate negative binomial, etc.). 

- Markov chain of first order for binary data with Pr(Yj+i = l|Yj = 0) = PJJ+I(01) and 

Pr(yj+i = l\Yj = 1) = i-jj+i(ll). It can be generalized to higher order Markov chains. Some 

combinations of P,j+i(01), PJJ+I(11) and Pr(Yj+i = 1) could be replaced by logistic functions 

(but not all three) to incorporate covariates. Examples are in Darlington and Farewell (1992), 

Muenz and Rubinstein (1985), Zeger, Liang and Self (1985) and Gardner (1990). 

- Poisson AR(1) time series, as in Al-Osh and Alzaad (1987) and McKenzie (1988). The bivariate 

Poisson margin (for consecutive Y<'s) from this Poisson AR(1) time series is the same as a 

bivariate margin of (1.3). 

- Negative binomial AR(1) time series, as in McKenzie (1986), Al-Osh and Aly (1992) and 

Joe (1996b). The model of Al-Osh and Aly has range of serial correlation depending on the 

parameters of the negative binomial distribution (and hence is not very flexible). 

- When the binary or count variables are observed sequentially in time, one could use a model 

consisting of a product of a sequence of logit models for binary data (logit of Yt given 

Yi,..., Y(_i, x) and of Poisson models for counts (Poisson of Yt given YL, ..., Y (_i, x). This 

is proposed in Bonney (1987) and Fahrmeir and Kaufmann (1987). The advantage of such 

models is that one can use widely available software for univariate logit and Poisson models. 

One disadvantage of such models is that it would be difficult to predict Yt based on x alone. 

- Meester and MacKay (1994) studied a class of multivariate exchangeable models with the 

multivariate Frank copula. The models have limited application since only exchangeable de

pendence structures are considered. 

- Glonek and McCullagh (1995) have a similar bivariate model to the Molenberghs-Lesaffre 

model in that the dependence parameter is linear in covariates and the related bivariate copula 

is the Plackett copula. Their multivariate extension appears to overlap with that of Molen

berghs and Lesaffre (1994), but with a different model construction approach. 

P a r t i a l l y speci f ied p r o b a b i l i t y m o d e l s — genera l ized e s t i m a t i n g equat ions a p p r o a c h 

General application of many of the preceding models was impeded, however, by their mathemati

cal complications and by the computational difficulty usually encountered in multivariate analysis. 
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A different body of methodology, called the generalized estimating equations (GEE) approach, has 

been developed based on moment-type methods which do not require explicit distributional assump

tions. References for this methodology are Liang and Zeger (1986) and Zeger and Liang (1986), Zhao 

and Prentice (1990), Fitzmaurice and Laird (1993), among others. However the G E E approach has 

several disadvantages mainly related to the modelling, inference, diagnostics checking and interpre

tations. Furthermore, the G E E approach does not apply directly to multivariate ordinal data. A 

detailed study of the G E E approach, including a discussion of some of its shortcomings, can be 

found in Chapter 6. 

R e s e a r c h m o t i v a t i o n 

In summary, although some approaches have appeared in the literature to model specific 

instances/examples for the data in Table 1.1, there are at least two major features lacking in the 

statistical literature in terms of modelling multivariate discrete data: 

1. A unified, systematic approach to multivariate discrete modelling, with classes of models for 

multivariate discrete data where some models in the class have nice properties (see section 1.3 

for some desirable features of multivariate models). 

2. A model-fitting strategy with computationally feasible parameter estimation and inference 

procedures, with good asymptotic properties and efficiency. 

This thesis makes contributions to these two lackings in multivariate discrete (more generally, non-

normal) data modelling. We study systematic approaches to the modelling of multivariate discrete 

response data with covariates. The response types include binary, ordinal categorical and count. 

Statistical inference and computational aspects of the multivariate nonnormal models are studied. 

1.3 Statistical modelling 

We discuss here two issues in statistical modelling. One is what we mean by statistical modelling 

in general. The other is the construction of multivariate models with desirable properties. Other 

aspects of statistical modelling as part of data analysis will be discussed in Chapter 5. 

In practice, with a finite sample of data, to capture exactly the possibly complex multivariate 

system which generated the data is impossible. The problem can even be more complicated than 

modelling a system; it might be that the system itself does not exist and it is forever a hypothetical 
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one. In statistical modelling, the specification of a particular model for the data is always somehow 

arbitrary; what we hope is that the stochastic models we use may reflect relatively well the random

ness or uncertainty in the system, as well as the significant features of the systematic relationships. 

The statistical models should be considered as a means of providing statistical inference; they should 

be viewed as tentative approximations to the truth. The most important consideration in using any 

statistical method (or model) is whether the method (or model) can give insight into important 

practical problems. A l l models are subjective in some degree. Often the modeller chooses those 

elements of the system under investigation that should be included in the model as well as the mode 

of representation. Modelling should not be a substitute for thinking and will only be effective if 

combined with an interest in and knowledge of the system being modelled. 

The construction of multivariate nonnormal models is not easy. For modelling purposes, we 

would like to have parametric families of models that (i) cover the different types of dependence, 

(ii) have interpretable parameters, and (iii) apply to multivariate discrete data. Some desirable 

properties of a multivariate model are the following: 

1. The model is natural. That is, the model is interpretable in terms of mixture, stochastic or 

latent variable representations, etc.. 

2. Parameters in the model are interpretable. A parametric family has extra interpretability if 

some of the parameters can be identified as dependence or multivariate parameters, such that 

some range of the parameters corresponds to positive dependence and some corresponds to 

negative dependence, and it is desirable to have the amount of dependence to be increasing as 

parameters increase. 

3. The model allows wide and flexible range of dependence, with interpretable dependence pa

rameters which are flexible to the needs for different applications. 

4. The model extends naturally to include covariates for the univariate marginal parameters as 

well as dependence parameters, in the sense that after the extension, we still have probabilistic 

model and proper interpretations. 

5. The model has marginally expressible properties, such as model parameters expressible by pa

rameters in univariate and bivariate distributions property and closure property with extension 

of univariate to bivariate and to higher order margins. 

6. The model has a simple form, preferably with closed form representations of the cdf and 

density, or at least is easy to use for computation, estimation and inference. 
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Generally, it is not possible to achieve all of these desirable properties simultaneously, in which 

case one must decide the relative importance of the properties and sacrifice one or more of them. 

There is no known multivariate family having all of these properties but the family of multivariate 

normal distributions may be the closest. Multinormal distributions satisfy (1), (2), (3), (4) and 

(5) but not (6) since the multinormal has no closed form cdf. The mixture of max-id copulas (Joe 

and Hu 1996) satisfy'(1), (2), (3), (4) and (6) but only partially (5). In Chapter 3, these desirable 

properties of a multivariate model will be used as criteria to compare different models. 

1.4 O v e r v i e w o f t h e s i s 

This thesis consists of seven chapters. In Chapter 2, we develop the theoretical background for the 

multivariate discrete models, statistical inference and computation procedures. Two general classes 

of multivariate discrete models are introduced; their common feature is that both rely on the copula 

concept. Several new concepts related to multivariate models are proposed. The asymptotic theory 

for parameter estimation based on the inference functions of margins (IFM) is also given in this 

chapter. In Chapter 3, we study and compare many specific models in the two general classes of 

multivariate models proposed in Chapter 2. Mathematical details for parameter estimation for some 

of the models are provided. In Chapter 4, the efficiency of I F M approach relative to the classical 

maximum likelihood approach is investigated. The major advantage of I F M is its computational 

feasibility and its good asymptotic properties. We demonstrate that I F M is an efficient parameter 

estimation approach when it is applicable. We also study the efficiency of the jackknife method of 

variance estimation proposed in Chapter 2. In Chapter 5, some important issues such as a proper 

data analysis cycle, model selection and diagnostic checking are discussed. Data analysis examples 

illustrating modelling and inference procedures developed in this thesis are also carried out. In 

Chapter 6, we study the usefulness and efficiency of the G E E approach which has been the focus of 

many recent statistical applications dealing with multivariate and longitudinal data with univariate 

margins covered by the theory of generalized linear models. In Chapter 7, the final chapter, we 

discuss some further important research topics closely related to this thesis work. Finally, the 

Appendix contains a Maple symbolic manipulation program example used in Chapter 4. 



C h a p t e r 2 

Foundation: models, statistical 

inference and computation 

In this chapter, we propose two classes of multivariate discrete models: multivariate copula dis

crete (MCD) models and multivariate mixture discrete (MMD) models. These two classes of models 

provide a new classification of multivariate discrete models, and allow a general approach to mod

elling multivariate discrete data. The two classes unify a number of multivariate discrete models 

appearing in the literature, such as the multivariate probit model, multivariate Poisson-lognormal 

model, etc. At the same time, numerous new models are proposed under these two classes. We also 

propose an inference functions of margins (IFM) approach to parameter estimation for M C D and 

M M D models. This estimation approach is built on the general theory of inference functions (or 

estimating equations). Asymptotic theory for I F M is developed and applied to the specific models 

in Chapter 3. While similar ideas about the same kind of estimating functions for a specific model 

have appeared in the literature, the general development of the procedure as an approach for the 

parameter estimation for a class of multivariate discrete models, and the related asymptotic results, 

are new. We also show that a jackknife estimate of the covariance matrix of the estimates from the 

I F M approach is asymptotically equivalent to the asymptotic covariance matrix from the Godambe 

information matrix. The jackknife procedure has the advantage of general computational feasibility. 

These results are used extensively in the applications in Chapter 5. The efficiency of I F M versus the 

optimal estimation procedure based on maximum likelihood estimation and the numerical assess

ment of the efficiency of jackknife covariance matrix estimates compared with Godambe information 

11 
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matrix are studied in detail in Chapter 4. 

The present chapter is organized as follows. Section 2.1 introduces the multivariate copula mod

els, some multivariate dependence concepts and a number of new concepts regarding the properties 

of a multivariate model. In section 2.2, we introduce two classes of multivariate discrete models: the 

multivariate copula discrete models and the multivariate mixture discrete models. These two classes 

of models are the focus of this thesis, and specific models in these two classes will be extensively 

studied in Chapter 3. In section 2.3, we propose an inference functions of margins (IFM) approach 

for the parameter estimation of M C D and M M D models; the theoretical foundation is built on the 

theory of inference functions for the multi-parameter situation. Section 2.4 is devoted to the study 

of the asymptotic properties of parameter estimates based on the I F M approach. Under regularity 

conditions, the I F M estimators (IFME) for parameters are shown to be consistent and asymptoti

cally normal with a Godambe information matrix as the variance-covariance matrix. These are done 

for the models with no covariates as well as models with covariates. The extension of models with 

no covariates to models with covariates will be made clear in this section. In section 2.5, we propose 

a jackknife approach to the asymptotic variance estimation of I F M E , and show theoretically that 

the jackknife estimate of variance is asymptotically equivalent to the Godambe information matrix. 

The importance of the jackknife estimate of variance will be demonstrated in Chapter 5 for real data 

analysis. 

2.1 Multivariate copulas and dependence measures 

2.1.1 M u l t i v a r i a t e d i s t r i b u t i o n f u n c t i o n s 

We begin by recalling the definition of a distribution on Md. 

D e f i n i t i o n 2.1 A d-dimensional distribution function is a function F : Md —> IR, which is right 

continuous, with 

(i) lim F(y1,...,yi) = 0, j = l , . . . , d , (ii) lim F ( y i , . . . , y d ) = l 

and which satisfies the following rectangle inequality: For all (ai,..., af), (b\,..., bf) with a,j < bj, 

j = !,•••, d, 

2 2 

Jfei=l kd=l 
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The following are several remarks related to Definition 2.1: 

i . If F has dth order derivatives, then (2.1) is equivalent to ddF/dyi • • -dyd > 0. 

ii . Letting a2, • •., ad —+ —oo, then (2.1) reduces to F(bi, b2,.. .,bd) — F(ai,b2,..., bd) > 0, so F 

is increasing in the first variable. Similarly, by symmetry, F is increasing in the remaining 

variables. 

iii. Let 5 be a subset of {1,..., d}. The margins Fs of F(yi,..., yd) are obtained by letting y,- —» oo 

for i £ S. 

There are two important types of cdf generated from a random vector Y : discrete and continuous. 

In the case of an absolutely continuous random vector Y, there is a corresponding density function 

f(yi ,---,yd) which satisfies / ( y ! , . . . , yd) > 0 and f f ^ • • • f(yx • • • yd)dyx •••dyd = 1. The cdf 

can be written by 

/
yd ryi 

•• f(xi • --x^dxi • --dxd. 
- o o J — oo 

In the case of a discrete random vector Y, the probability that Y takes on a value y = ( j / i , . . . , yd)' 

is defined by the pmf 

P(yi---yd) = Pv(Y1 = y1,...,Yd = yd), 

which satisfies P(yi • • -yd) > 0 and Y^,{yi} ' ' '^{yd} ̂ (v^ •••%) = !• The cdf can be written as 

F{yi,...,yd)- P(xi---xd). 
{xi<y1,...,xd<yd} 

For a discrete random vector, the jth marginal distribution is defined by 

Pj(v:)= E p(y±---yd)-

{yi-yd}\{yj} 
The (j, k) marginal distribution is defined by 

Pjk(yjyk) = P(yi • • • yd)-
{yi-yd}\{yjyk} 

In general, the marginal distributions can be obtained from the previous remark (iii). 

2 .1 .2 Multivariate copulas and Frechet bounds 

The multivariate normal distribution is used extensively in multivariate analysis because of its many 

nice properties (see for example, Seber 1984). The wide range of successful application of the 
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multivariate normal distribution is because of its flexibility in representing different dependence 

structures rather than for physical reasons or as an approximation from the Central Limit Theorem. 

The dependence structure plays a crucial role in multivariate modelling. But the multivariate normal 

model is not sufficient for every multivariate modelling situation. To be able to model multivariate 

data in general, a good understanding of the general parametric families of multivariate distribution 

functions - the constructs which describe the characteristic of the random phenomena, is necessary. 

One useful and well-known approach to understanding a multivariate distribution function F is to 

express F in terms of its marginals and its associated dependence function C ( ) . This C(-) (or simply 

C) is commonly called the copula. 

Definition 2.2 (Copula) C is a copula if 

G(y1,...,yd) = C(G1(y1),...,Gd(yd)). 

is a distribution function, whenever Gi, Gd are all arbitrary univariate distribution functions. 

• 

Let Y — (Yi,..., Yd)' be a d-variate continuous random vector with cdf G(y\,...,yd) and with 

continuous univariate marginal distribution functions Gi(yi), ..., Gd(yd) respectively. Then Ui = 

Gi(Yi), . . . , Ud — Gd(Yd) are uniformly distributed on [0,1]. Let Gj"1, • • •,G d

x be the univariate 

quantile functions, where GJ1 is defined by Gjx(t) = inf{j/: Gj(y) >t},j = l,...,d. The copula, C, 

of Y = (Yi,..., Yd)' is constructed by making marginal probability integral transforms on Y\,..., Yd 

to Ui,..., Ud. That is, the copula is the joint distribution function of U\,..., Ud: 

C { u l , . . . , u i ) = G{G-l

l{ul),...,Gd\ud)). (2.2) 

C is non-unique if the Gj's are not all continuous. This point will be made clear in section 2.2. Sup

pose Y is a continuous random vector with distribution function G(yi,.. - ,yd) and the corresponding 

copula is C ( u i , . . . , ud) with density function c ( u i , . . . , ud). The density function of G(y\,..., yd) in 

terms of copula density function is g(yx ,...,yd) = c(Gi(t/i),..., Gd(yd)) ]T? = 1 9j (%)• 

The copula captures the dependence among the components of the random vector Y ; it contains 

all of the information that couples the d marginal distributions together to yield the joint distribution 

of Y . This understanding is essential for the subsequent development of the multivariate discrete 

models. The copula was first introduced by Sklar (1959). For parametric families of copulas with 

good properties, see Joe (1993, 1996). Through the copula, a distribution function is decomposed 

into two parts: a set of marginal distribution functions and the dependence structure which is 
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specified in terms of the copula. This suggests that one natural way to model multivariate data is 

to find the dependence structure in terms of copula and the univariate marginals separately. This 

important feature will be extended to form multivariate discrete models by using the copula concept 

in section 2.2 and in Chapter 3. 

Next we define the Frechet bounds. 

D e f i n i t i o n 2.3 (Frechet bounds) Let F(x) be a d-variate cdf with univariate margins F \ , . . . , Fd. 

Then for V i i , . . . , xd, 

max{0, J^(a:i) + • • • + Fd{xd) - (d - 1)} < F(xx, ...,xd)< min{ ^ ( s i ) , . . . , Fd(xd)}, (2.3) 

where m i n { i ? i ( x i ) , . . . , Fd(xd)} is the Frechet upper bound, and max{0, F\(xi)+- • -+Fd(xd) — (d—l)} 

is the Frechet lower bound. • 

We state here some important properties of the Frechet bounds. 

Proper t ies 

1. The Frechet upper bound is a cdf. 

2. The Frechet lower bound is a cdf for d = 2. 

3. The Frechet upper bound copula is C{/(u) = m a x { « i , . . .,ud}. For d = 2, the Frechet lower 

bound copula is C^(u) = min{0, u\ + u2 — 1). 

For a proof of the properties 1,2,3 and other properties of Frechet bounds, see Joe (1996). 

Under independence, the copula is 

d 
Cj(ui,...,ud) = J\uj, 

and any copula must pointwise fall between max{0, u\ + • • • + ud — (d — 1)} and m i n { u i , . . . , ud}. 

2.1.3 Dependence measures 

It is desirable for a parametric family of multivariate distributions to have a flexible and wide range 

of dependence. For non-normal random variables, correlation is not the best measure of dependence, 

and concepts based on linearity are not necessarily the best to work with. More general concepts 

of positive and negative dependence and measures of monotone dependence are needed. These are 

necessary for analyzing the type of dependence and range of dependence in a parametric family of 
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multivariate models. For a thorough treatment of dependence concepts and dependence orderings, 

see Joe (1996, Chapter 2). 

In multivariate analysis, one of the most important activities is to model the dependence structure 

among the random variables. The complexity of the dependence structure and its range often 

determines the practical usefulness of the model. The dependence structure of a multivariate model 

can be considered somehow equivalent to the copula; for example, Schweizer and Wolff (1981) 

used copulas to define several natural nonparametric measures of dependence for pairs of random 

variables. The parameters in a multivariate copula reflect the degree of dependence among variables; 

for example, the multivariate normal copula can be adequately expressed in terms of a correlation 

matrix of which the elements consist of the pairwise correlation coefficients of a multinormal random 

vector, with a large correlation coefficients indicating strong dependence among variables. However, 

it is not always possible to express a copula in term of correlation coefficients of a set of random 

variables. There is also a mathematical reason, e.g. mathematical simplicity, not to express a copula 

in terms of correlation coefficients. 

A measure of dependence for two random variables indicates how closely these two random 

variables are related. The extreme situations would be mutual independence and complete mutual 

dependence. Some very useful dependence concepts, such as positive and negative dependence 

concepts, are based on the refinement of some intuitive understanding of dependence among random 

variables. For example, for two random variables X and Y , the positive dependence concept means 

roughly that large (small) values of X tend to accompany large (small) values of Y. Often in practice, 

this knowledge of the amount of dependence is good enough for some modelling purposes. 

Some well-known measures of dependence for two random variables are Pearson's correlation 

coefficient r, Spearman's rho and Kendall's tau. These measures are defined as follows: Let X, Y 

be random variables with continuous distribution function F(x) and G(y) and copula C. We further 

assume that (X\,Yi), ( X 2 , Y 2 ) and (X, Y ) are independent with the same joint distribution. Then 

Pearson's correlation coefficient is r = Co\(X,Y)/CTXCY or 

Kendall's tau is r = CoTr{sgn(Xl - X), sgn^ - Y)) = 2Pr((Xi - X ) ( Y : - Y ) > 0) - 1, or 

and Spearman's rho is p = Covi(sgn(Xi — X), sgn(Y2 — Y)) or 
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where ax and cry stand for the standard deviation of random variables X and Y, sgn(-) denotes 

the sign function. Both Kendall's tau and Spearman's rho are invariant to strictly increasing trans

formations. They are equal to 1 for the Frechet upper bound and -1 for the Frechet lower bound. 

These properties do not hold for Pearson's correlation. Essentially, Pearson's r measures the strength 

of the linear relationship between two random variables X and Y, whereas the Kendall's tau and 

Spearman's rho are measures of monotone correlation (strength of monotone relationship). For bi

variate quantitative data, Spearman's rho corresponds to the rank correlation (Pearson's correlation 

applied to the ranks of the 2 variables). That the copula captures the basic dependence structure 

among the components of Y can be seen by the fact that all nonparametric measures of association, 

such as Kendall's tau, Spearman's rho, are normed distances of the copula from the independence 

copula. In general, it is difficult to judge the intensity of dependence for a given multivariate model 

solely based on one dependence measure; the three common dependence measures can be used as a 

reference for the attainable intensity of the dependences of a given multivariate model. 

For ease of interpretation of the dependence structure, we would like to see the dependence 

structure expressed in easily interpretable parameters. For example, for arbitrary marginals, a 

question is how to express a copula in terms of the most common measures of association, such 

as Pearson's r (from some specific marginals), Spearman's rho, or Kendall's tau, in a natural way. 

For some well-defined classes of distribution, such as the multivariate normal, Pearson's correlation 

coefficient is the measure of choice. In other classes, other measures may be more appropriate. 

(For example, the Morgenstern copula in subsection 2.1.4 is expressed in terms of Kendall's tau 

in a natural way.) A parametric family has extra interpretability if some of the parameters can 

be identified as dependence parameters. More specifically, one would like to be able to say that 

some range of the parameters corresponds to positive dependence and some corresponds to negative 

dependence. Furthermore, it would be desirable to have the amount of dependence to be increasing 

(decreasing) as parameters increase (decrease). 

2.1.4 Examples of multivariate copulas 

Some well-known examples of copula families are: the multivariate normal copula, Morgenstern 

copula, Plackett copula, Frank copula, etc. Joe (1993, 1996) provides a detailed list of families of 

copulas with good properties. In Genest and Mackay (1986), a class of copulas, called Archimedean 

copulas, is studied extensively. Most existing parametric families of copulas represent monotone 

dependence structures where the intensity of the dependence is determined by the value of the 
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dependence parameter. Some families, such as the normal family, possess a complete range of 

dependence intensities whereas others, such as the Morgenstern family, possess only a limited range. 

In fact, the Morgenstern copula never attains the Frechet bounds; Spearman's rho lies between 

— 1/3 and 1/3. For general modelling purposes, we would naturally seek families with a wide range 

of dependence intensities. 

Here we give some examples of multivariate copulas. More examples of multivariate copulas will 

be given in Chapter 3 for constructing multivariate discrete models. 

E x a m p l e 2.1 ( M u l t i v a r i a t e n o r m a l copula) Let $ be the standard normal distribution func

tion and let $<j be the d-variate normal distribution function with mean vector 0, variance vector 1 

and correlation matrix 0 . Then the corresponding d-variate copula is 

where every bivariate copula Cjk(uj,Uk',0jk), 1 < j < k < d, attains the lower Frechet bound, 

the independence case, or the upper Frechet bound according to 8jk = —1,0, or 1. Pearson's 

correlation coefficient for the corresponding bivariate normal distribution is r = 9jk- For Spearman's 

where the Gj's are arbitrary cdfs. For example, we can have GJ(ZJ) = exp(zj)/(l + exp(zj)), 

GJ(ZJ) — $(zj), Gj(zj) = 1—exp(— exp(zj)) or GJ(ZJ) = exp(— exp(—Zj)). GJ(ZJ) can even be taken 

as a mixture distribution function, for example, GJ(ZJ) = TTJ$(ZJ) + (1 — TTJ) f^1 exp(— |x|)/2 dx, 

where 0 < TTJ < 1. These flexible choices of univariate marginal distributions combined with the 

complete range of the dependence parameter matrix 0 make the multivariate normal copula a 

powerful copula for general modelling purposes. In Chapter 3, we will use this copula extensively. 

• 

E x a m p l e 2.2 ( M o r g e n s t e r n copula) In the literature, sometimes the names of several people 

are put together in naming this copula; Farlie-Gumbel-Morgenstern copula is one of them. In this 

thesis, we simply call this copula the Morgenstern copula (Morgenstern 1956)'. One simpler version 

of a d-dimensional Morgenstern copula, which does not include higher order terms, is 

C(uu ..., ud; 0) = $d($-V),..., $-1(Ud); 0) (2.4) 

rho and Kendall's tau, we can also establish the following relationships: r = (2/7r)sin 1 r and 

p = (6/7r) s in _ 1 ( r /2 ) . With this copula, we have 

G(z1, ...,zd) = C7(Gi(zi) , . . •, Gd(zd); 0) = ^ ( ^ ( G i ^ i ) ) , . . . , 3>-\Gd{zd)); 0), 

d d 
(2.5) 
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It has density function 

d 

c(ui,u2,...,ud) = 1 + J~] 6jkQ- ~ 2 « j ) ( l - 2uk). 
j<k 

The conditions on the parameters 0jk so that (2.5) is indeed a copula are straightforward. For d = 

3, the conditions can be conveniently summarized as follows: 1+^12+^13+^23 > 0, l+#i3 > #23+#23, 

1 + O12 > #13 + 023, l + 023 > 9i2 + #13, or more succinctly - 1 + \012 + ^ s l < #i3 < 1 - \0i2 - #231> 

— 1 < 0\2, #13, 2̂3 < 1- Similar conditions for higher dimension d — 4,5,..., can also be obtained by 

considering the 2d cases for uj = 0 or 1, i = 1 , . . . , d, and verifying that c(u\,..., ud) > 0. 

It is easy to see that for any j,k = 1 , . . . , d; j ^ k, 

Cjk(uj,uk;0jk) = [l + 9jk(l - UJ)(1 - uk)]ujuk, - 1 < 0jk < 1, 

with density function 

Cjk(uj,uk) = 1 + 0jk(l - 2UJ)(1 - 2uk). 

The dependence structure between Uj and Uk is controlled by the parameter 0jk. Spearman's rho 

is p = 0jk/3. The maximum Pearson's correlation coefficient over all choices of Gj and Gk is 1/3 

(when 9jk = 1) which occurs for uniform marginals. For normal marginals, the maximum of the 

Pearson's correlation coefficient is l / V ; for exponential marginals it is 1/4; for double exponential 

marginals, the limit is 0.281. Kendall's tau is 20jk/9, with the maximum range of —2/9 to 2/9. 

Because of the dependence range limitation, the Morgenstern copula is not very useful for general 

modelling. Nevertheless, because the Morgenstern copula has such a simple form, it can be used as 

an investigation tool in, for example, simulation studies to check properties of some general modelling 

procedures. A n example of its use is provided in section 4.3. If a new procedure breaks down with 

a distribution based on the Morgenstern copula, then it will probably have difficulties with other 

models that admit a wider range of dependence. 

A version of the d-dimensional Morgenstern copula with higher order terms has the following 

density function 

d 
c(uuu2, . . . , u d ) = l+ ] T Pjd2[l - 2ujJ[l - 2uj2] 

jl<]3<J3 i = l 

This form expands the correlation structure of the Morgenstern distribution (2.5). For more details, 

see Johnson and Kotz (1975, 1977). • 
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2.1.5 C U O M , C U O M ( f c ) , M U B E , P U B E and M P M E concepts 

In this thesis, we are mainly interested in (a) parametric models (or copulas) with wide range 

of dependence intensities, and (b) parametric models (or copulas) with certain types of marginal 

distribution closure properties. In this subsection, we introduce several concepts for the marginal 

behaviour of a distribution. 

Definition 2.4 (Closure under taking of margins, or C U O M ) A parametric model (copula) 

is said to have the property of closure under taking of margins, if the bivariate margins and higher-

order margins belong to the same parametric family. • 

Definition 2.5 (Closure under taking of margins of order k, or CUOM(fe)) A parametric 

model (copula) is said to have the property of closure under taking of margins of order k, if the k-

variate margins belong to the same parametric family. • 

Definition 2.6 (Model univariate-bivariate expressible, or M U B E ) A parametric model 

(copula) is called model univariate-bivariate expressible, or MUBE, if all the parameters in the 

model can be expressed by parameters in the model's univariate and bivariate marginal distributions. 

a 

Definition 2.7 (Parameter univariate-bivariate expressible, or P U B E ) If a parameter in a 

model can be expressed by the model's univariate and bivariate marginal distributions, then this 

parameter is called parameter univariate-bivariate expressible, or PUBE, under the model. • 

Definition 2.8 (Model parameters marginally expressible, or M P M E ) / / all the parame

ters in a model can be expressed by the model's lower dimensional (lower than full) marginal distri

butions, then the model is said to have the property of model parameters being marginally expressible 

or the MPME property. • 

If we are thinking about parameter estimation, then the expressions such as "expressible" and 

"be expressed" in the above definitions should be understood as "estimable" and "be estimated" 

respectively from lower-dimensional margins. 

A model with C U O M is also said to have reproducibility or upward compatibility under taking 

of margins. Basically, the marginal distributions "reproduce" themselves under taking of margins. 

This property is desirable in many applications in multivariate because initial data analysis often 

starts with lower dimensional margins. 
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A model with the M U B E property means that all the parameters appearing in the multivariate 

distribution appear in univariate and bivariate marginal distributions. A model with the P U B E 

property may have multivariate parameters of order higher than 3, but part of its parameters of 

interest can be univariate or bivariate expressed without the involvement of other multivariate 

parameters (e.g. trivariate parameters). A model with the M P M E property means that all of its 

parameters may be expressed marginally. These are important properties of a multivariate model 

that allows for a simplification in the parameter estimation through the I F M approach (defined in 

section 2.3). 

Based on the above definitions, the following implications hold: 

i . If a model has the C U O M property, then it also has the CUOM(&) property. If a model is not 

CUOM(fc), then it is not C U O M . 

ii . C U O M ( r i ) implies CUOM(ro) if r\ > ro- That is, there exists a parameterization of the lower 

dimensional margins so that the lower order closure property hold. 

iii . If a model has the M U B E property, then all the parameters in this model are P U B E . Further

more, this model is also M P M E . 

iv. If every parameter is P U B E , then the model is M U B E . 

No other implications hold in general. 

In the following, a few examples are used to illustrate the above concepts and some of their 

relationships. 

Example 2.3 (Models with C U O M and M U B E properties) A familiar example of a model 

with the C U O M and P U B E properties is the multivariate normal model. The closure under taking 

of margins for the multinormal distribution is somewhat stronger than the C U O M property defined 

here, since it is also closed under taking of univariate margins, which is not required in our definition. 

• 

Example 2.4 (Models with M U B E property) For some copulas, such as (2.4) and (2.5), the 

dependence structure can be expressed by a d x d matrix parameter 0 = (Ojk) with Ojj = 1. For such 

a d-dimensional copula C ( ; 0 ) , the 2-dimensional margins can be expressed by a bivariate copula 

C j ( - ; Ojk) with one dependence parameter Ojk, for j, k = 1 , . . . , d; j ^ k. Thus each element in the 

dependence structure described by the parametric matrix 0 = (Ojk) can be equivalently expressed 
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by a set of bivariate copulas Cjk(-;9jk)- The distribution with this copula is thus M U B E . Some 

copulas such as (2.4) have a wide range of dependence; some such as (2.5) do not. • 

E x a m p l e 2.5 ( M o d e l s w i t h C U O M but not M U B E proper ty ) We give two examples here: 

a. Consider the generalized Morgenstern copula (2.6). This copula has the C U O M property, since 

for any {ji,..., jm} £ {1,..., d} where m < d, it is straightforward to verify that C(UJ1 , Uj2,.,., Ujm) 

has the form (2.6). But this generalized Morgenstern copula is not M U B E . 

b . Another example is the multivariate Poisson distribution. Let us examine the trivariate Poisson 

distribution. Let the random variables X\, X2, X3, X\2, X13, X23, X123 have independent Poisson 

distributions with the mean parameters A i , A 2 , A 3 , A12, A13, A23, A123 respectively. We now construct 

new random variables as follows: 

Y\ = X\ + X\2 + X13 + X\23, 

Y2 — X2 + X12 + X23 + X i 2 3 i 

Y3 = X3 + X13 + X23 + X l 2 3 -

Using the convolution property of the Poisson, we derive that Yi ~ Po(X\ + A i 2 + A13 + A123), 

7 2 ~ Po(A 2 + A 1 2 + A 2 3 + A123), Y3 ~ Po(A 3 + A i 3 + A 2 3 + A 1 2 3 ) , that (YUY2), (yltY3), (Y2,Y3) 

have bivariate Poisson distributions, and that (Yi, Y2, Y3) has a trivariate Poisson distribution. This 

3-dimensional Poisson model has the C U O M property because the bivariate margins have a similar 

stochastic representation. But it is not M U B E nor P U B E . In fact, with univariate and bivariate 

margins, we can only estimate A x + A13, A 2 + A 2 3 and A 1 2 + A i 2 3 from the (1,2) margins, Ai + A i 2 , 

A 3 + A 2 3 and A i 3 + A i 2 3 from the (1,3) margins, and A 2 + A i 2 , A 3 + A i 3 and A 2 3 + A 1 2 3 from the (2,3) 

margins. These nine linear expressions form only six independent linear expressions. Since we have 

seven parameters in the model, thus the model is not M U B E . Furthermore, it can be easily verified 

that no any single parameter can be univariate-bivariate.expressed. • 

E x a m p l e 2.6 ( M o d e l s w i t h M U B E b u t not C U O M ( 2 ) p r o p e r t y ) Consider a trivariate cop

ula constructed in the following way: 

C i 2 3 ( u i , u 2 , ' u 3 ) = / C1\2(u1\x;612)C3\2(u3\x;623)dx, (2.7) 
Jo 

where C\\2 and C 3 |2 are conditional cdfs obtained from two arbitrary bivariate copulas families 

C 1 2 ( u i , «2! ̂ 12) and C 2 3 ( u 2 , u 3 ; <523). This trivariate copula has (1,2) bivariate margin C i 2 ( « i , u 2 ; <5i2), 

(1,3) bivariate margin C i 3 ( « i , u3) = JX Ci| 2 («i|a;; <5i2)C3|2(u3|a:; <523) dx, and (2, 3) bivariate margin 

C ' 2 3 ( u 2 , u3; 623)- Suppose we can let C\2 be the Plackett copula 

C(u,v;6) = Q.bn-1{l + r1(u + v)-[(l + r)(u + v))2 -ASnuv]1!2}, 0 < <5 < 00, (2.8) 
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where n = 5 — 1, and we can let C23 be the Frank copula 

C(u,v;6) = - 6 - 1 l o g ( [ t - ( l - e - s » ) ( l - e - 6 v ) ] / t ) , 0 < 6 < oo, (2.9) 

where £ = 1 — e~s. Then the model (2.7) is well-defined, and is obviously M U B E with 2 bivariate 

dependence parameters 612 and 623- But the model (2.7) is not CUOM(2) , since the Plackett copula 

and the Frank copula are not in the same parametric family. 

Generally speaking, given bivariate distributions ^12,-^23 with univariate margins F\,F2,F3, it 

can be shown that 

£13(^112(2/1 W, O12), F3\2(y3\z2; #23)) ^ 2 ( ^ 2 ) (2.10) 
-00 

is a proper trivariate distribution with univariate margins F\,F2,F3, (1,2) bivariate margin F12, 

and (2,3) bivariate margin i<23- In (2.10), Fi\2,F3\2
 a r e conditional cdfs obtained from F\2,F23, 

and C 1 3 is a bivariate copula associated with the (1,3) margin (it can be interpreted as a copula 

representing the amount of conditional dependence in the first and third univariate margin given the 

second). Specifically, Ci3(ui,u3) = U\u3 corresponds to conditional independence and C i 3 ( u i , W3) = 

m i n { u i , u 3 } corresponds to perfect conditional dependence. The model (2.10) is M U B E , but it may 

not be CUOM(2) - it is enough to see this fact by choosing F\2 and F23 from different parametric 

family. The model (2.7) is a special case of (2.10) obtained by letting F\2, F23 be the Plackett and 

Frank copulas respectively, and C i 3 ( u i , U 3 ) = uiu3. The construction (2.10) is a special case of Joe 

(1996a). • 

E x a m p l e 2.7 ( M o d e l s w i t h C U O M ( 2 ) but not C U O M proper ty ) Let F(u, v; 9) = uv(l + 

9(1 — u)(l - v)), - 1 < 9 < 1, be the bivariate Morgenstern family (2.5). Let Fi2 and F23 are 

in this family with parameters #12 and 023 respectively. Let C i 3 ( u i , w 3 ) = W1W3. The conditional 

distributions are FJ\2(UJ\U2) = Uj + 9j2Uj(l - Uj)(l - 2u2), j = 1,3. Hence by (2.10), we have 

F 1 3 ( u 1 } u 3 ) = j F1\2(ui\z2)F3\2(u3\z2)dz2 = u l U 3 [ l + Z ' ^ ^ ^ l - U l ) ( l - u3)], 
Jo 

which is in the bivariate Morgenstern family (2.5) with parameter 0i2#23/3. Hence the model 
/ • U 2 

Fl23(ui,U2,U3) = ^ ( U l |Z2)-F3|2(U3 l z 2 ) ^ 2 (2.11) 
Jo 

is CUOM(2) . But (2.11) is not C U O M . In fact, we find 

F 1 2 3 ( u l t U2, U3) = U 1 U 2 U 3 [ 1 + 012(1 - U i ) ( l - U2) + 3 - 1 0 i 2 0 2 3 ( l - « l ) ( l - U3) + 

0 2 3(1 - « 2 ) ( 1 - u3) + 20 1 20 2 3(1 - u i ) ( l - u2)(l - u3)(l - 2 « 2 ) / 3 ] , 

which is not in the trivariate Morgenstern family (2.5). • 
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E x a m p l e 2.8 ( M o d e l s w i t h C U O M ( r 0 ) b u t not C U O M ( r i ) property , w h e n r 0 < r i ) Con

sider a 4-variate copula model: 

Fl234(ui,U2,U3,U4) = 

UlU2U3U4[l + 0i2(l - U i ) ( l - u2) + 3 _ 1 0 i 2 0 2 3 ( l - « i ) ( l - u 3) + 014(1 - U l ) ( l - u4) + 

823(1 - u2)(l - u3) + e24(l - u 2 ) ( l - « 4 ) + 6*34(1 - u 3 ) ( l - u 4 )+ 

2^12^23(1 - « i ) ( l - u 2 ) ( l - « 3 ) ( 1 - 2u 2)/3], 

where \914 + e24 + 934\ - 612 - 1 < 0 2 3(1 + M < 1 + 912 - \914 + 624 - 934\, \914 -024 -934\ + 912 - 1 < 

^23 (1 -^12) < 1 — ^12 — 1^14 — ^24 + ^341 and \9jk\ < 1, 1 < j < k < 4. It can be shown that F12, Fi3, 

F14, F23, F24, and F34 are in the bivariate Morgenstern family (2.5), but i ? i 2 3 , i * i 2 4 , F i 3 4 and F 2 3 4 

are not in the same parametric family. In fact, ^124, -P134 and F234 are in the trivariate Morgenstern 

family (2.5), but .F123 is not. • 

E x a m p l e 2.9 ( M o d e l s w i t h P U B E b u t not M P M E proper ty ) We give two examples here: 

a. In the generalized Morgenstern copula (2.6), the parameters (3j1j2 (1 < ji < J2 < d) are P U B E , 

but the model is not M P M E , as the parameter /?i2--d cannot be expressed by any marginal copula. 

b. Another example is the Molenberghs-Lesaffre model in Example 2.17. The parameters r\j (1 < 

j < d) and r]jk (1 < j < k < d) are P U B E , but the model is not M P M E , as the parameter r)i2-d 

cannot be expressed by any marginal pmf. • 

2.2 M u l t i v a r i a t e d i s c r e t e m o d e l s 

Assume T is a parametric family defined on a common measurable space (3^.4), where y is a 

discrete sample space and A the corresponding cr-field. We further assume 

F={P(y;0):6e$i}, ft C JtV, (2.12) 

where $ — (9\,..., 9q)' is a g-component vector, and ft is the parameter space. The parameter space 

is usually a subset of g-dimensional Euclidean space. We presume the existence of a measure fi on y 

such that for each fixed value of the parameter 0, the function P(y; 0) is the density with respect to 

u of a probability measure V on y. For a d-dimensional random discrete vector Y — (Yi,..., Yd)', 

its pmf P(yi • • - yd, 6) (or simply P(y\ • • - yd)) is assumed to be in T. 
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2.2.1 Multivariate copula discrete models 

We define a cdf of a discrete random vector Y = (Y\,..., Yd)' as 

G(yi,...,yd) = C(G1(yl),...,Gd(yd)), (2.13) 

where C is a (/-dimensional copula and Gj (j = 1,. . .,d) is the cdf of the discrete rv Yj. Thus 

G(yi, • • •, yd) is a well-defined cdf for a discrete random vector Y . The pmf of Y = y = (yi,..., yd)' 

is 

2 2 

P(vi---Vd)= J2---H(-l)kl+"+kdC(^'---'x^), (2-14) 

*1 = 1 kd = l 

where Xji = Gj(yj),Xj2 = Gj(y*j) with Gj(yj) < Gj(y*j) and for any x such that yj < x < y*j , we 

have Pr(Yj = x) = 0. We call the model (2.13) for a discrete random vector Y a multivariate copula 

discrete (MCD) model. 

The family of M C D models is a big family. With M C D models, we have flexible choices of 

marginal cdfs, including standard distributions such as Bernoulli, binomial, negative binomial, Pois

son and generalized Poisson, etc., and these allow the models to accommodate a wide range of data. 

We may also have flexible choices of copulas; examples are multinormal copula, Hiisler-Reiss copula, 

Morgenstern copula, etc.. For a summary of properties of M C D models, see subsection 2.2.4. 

For a given d-variate discrete distribution F, we can often find multiple copulas which match F 

into a M C D model. For example, suppose we have a bivariate binary random vector Y = (Yi, Y2)', 

where Yj (j = 1,2) takes values 0 and 1. The probability of observing (1,1), (1,0), (0,1) and 

(0, 0) are P(ll), -P(IO), -P(Ol) and P(00) respectively. Then for any given one-parameter family of 

bivariate copulas C(u\, u2; 0) that ranges from the Frechet lower bound to upper bound, we can find 

a 6 to express the four probability masses in the following way 

C{ux,u2;e) = P(ll), 

< « i = P ( l l ) + P(10), (2.15) 

u2 = P ( l l ) + P(01). 

(2.15) may not hold if C(-;9) cannot attain the Frechet bounds. The above observation suggests 

that to model multivariate discrete data, different copulas could do the modelling job equally well. 

To make the modelling successful in the general sense, it is important that the copula has a wide 

dependence range. Evidently, with different copulas, we will not be estimating the same dependence 

parameters, but nevertheless the fitted model should lead to the similar inference or interpretations. 
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2.2.2 Multivariate mixture discrete models 

Multivariate discrete models can be constructed in different ways than the derivation of M C D models. 

We can envisage circumstances that the multivariate discrete random vector Y at y = ( j / i , . . . , yd)' 

has pmf/ ( j / i • • - yd', A) for a given A. Suppose further that A is a random outcome which we assume 

to be a p-component vector (p may be different from d) subject to chance variation described by a 

certain (continuous) multivariate distribution G ( A i , . . . , A p ) , which in turn can be expressed in terms 

of a copula function C(u\,..., up) with (continuous) univariate marginal distribution Gj j = 1 , . . . , p. 

This is similar to imagining a group of outcomes, with random traits or effects for the individuals in 

the group, and having a common constant trait or element through the distribution of the random 

effects. Then the probability of Y = y, or the pmf of Y at y is 

P(vi---Vd)= / • • • [ f(yi---yd;X)c(G1(X1),...,Gp(Xp))'[[gj(Xj)dX1---dXp. (2.16) 

We call (2.16) a multivariate mixture discrete (MMD) model. We use the word mixture since the 

distribution function is constructed as a mixture of {/(j/i • • - yd', A)} over A. A special case of (2.16) 

obtains by assuming that the outcome of each univariate marginal probability mass corresponding 

to the outcome of Yj, which is Pj{yj), depends on a parameter jj, j = l,...,d, (or a vector of 

parameters), and given jj, the variables Yj are independent. If A = ( A i , . . . , A p ) ' is the p-component 

vector formed by the non-singular components of jj, j = 1 , . . . , d, then the model (2.16) becomes 

P(vi---Vd)= / • • / Y[fj(yj;7j)c(G1(X1),...,Gp(Xp))l[gj(\j)dX1---dXp, (2.17) 
J J j=i j=i 

where fj(yj',jj) — Pr(l} = yj\Tj = Jj). The dependence among the response variables is induced 

through the mixing distribution of A. Usually Xj = jj, j = 1 , . . . , d. A special case is jj = Xj = X 

for all j . 

2.2.3 Examples of M C D and M M D models 

From their definitions, we see that the above two classes are rather general. We can choose any 

appropriate multivariate copula as the copula in the construction of the distribution. The sets of 

M C D and M M D models are not disjoint, as we can see from Example 2.13. 

From practical viewpoint, we need to find some specific multivariate copulas C which offer good 

modelling properties and have a simple analytic form. One such choice is the multivariate normal cop

ula (2.4). With this copula, we have C ( G i ( * i ) , . . . , Gd(zd)) = $ d ( $ " 1 ( G i ( z i ) ) , . . . , *-\Gd(zd));e), 
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where Gj's are arbitrary cdfs. The multivariate normal copula allows us to fully or almost fully ex

ploit the dependence structure among the response variables. Its primary disadvantage may be 

computational difficulties when d is large (e.g. d>7, see Schervish 1984). 

This subsection consists of examples of M C D and M M D models. Discussion concerning the 

inclusion of covariates is given in some cases. More extensive studies of specific M C D and M M D 

models are given in Chapter 3. 

Example 2.10 ( M C D binary model) 

1. General models. Let Yj (j = l,...,d) be a binary random variable taking values 0 or 1, and 

suppose the probability of outcome 1 is pj. The cdf for Yj is 

For a given d-dimensional copula C ( u i , . . . , ud; $), C(G\(yi),..., Gd{yd)', 9) is a well-defined distri

bution for the binary random vector Y = ( Y i , . . . , Yd)'. When d = 2, with a one-parameter copula 

C ( u i , u2; #12), we can write down the pmf of Y as 

where eti = Gi(j / i - 1), 61 = G i ( y i ) , a 2 = G2(y2 - 1) and b2 - G2(y2). The pmf of Y = y for a 

general d is expressed by (2.14). 

One simple way to reparameterize pj in (2.18), so that the new parameter associated to the 

univariate margin has the range in (—00,00), is by letting pj — FJ(ZJ), where Fj is a proper cdf. 

This is equivalent to writing Yj = I(Zj < Zj), where Zj is a rv with cdf Fj, and the random vector 

Z = (Z\,..., Zd)' has a multivariate cdf F^-d- In the literature, this approach is referred to as 

a latent variable model or a multivariate latent model, since Z is an unobserved (latent) vector. 

There is also the option of including covariates to the parameter Zj, as well as to the dependence 

parameters 6 in the copula C ( u i , ...,Ud\0). We will show these by examples. 

2. Multivariate probit model with no covariates. The classical multivariate probit model for the 

multivariate binary response vector Y is (2.14) with the multinormal copula (2.4), where pj is 

reparameterized as pj = $(ZJ) and Gj has form (2.18). This model has the C U O M and M U B E 

properties. Through its latent variable representation, the model can also be written as Yj = 

I(Zj < Zj), j = 1 , . . . , d, where Z = (Zlt..., Zd)' ~ TV(0, 0), 6 = (9jk); Zj is often referred to as 

the cut-off point. 0 is a correlation matrix, which (a) has elements bounded by 1 in absolute value 

' 0, yj < 0, 

Gj(Vj) = I 1 ~Pj, 0 < yj < 1, 

. 1, yj > 1. 

(2.18) 

P{yiV2) = C(blt62; 912) - C(bua2;912) - C(ax,b2;012) + C(ai,a2;912) 
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and (b) is nonnegative definite. To avoid the constraint of the bounds, we can reparameterize Qjk 

through the hyperbolic tangent transform as 

^ = eXP\7jk)~l (2-19) exp (7 j j b ) + l 

so that the new parameter jjk is in the range (—oo, oo). The right hand side of (2.19) is an increasing 

function in jjk- Condition (a) is not sufficient to guarantee 0 be nonnegative definite except when 

d = 2. For d = 2, 0 is always nonnegative definite since the determinant of 0, 1 — ̂ 12 > ^ s always 

nonnegative. For d = 3, 0 is nonnegative definite matrix provided 

det(0) = 1 + 20120i3023 - 0{2 - 6\3 - e 2
3 > 0; (2.20) 

this constraint is satisfied for about 61.7% of the cube [—1,1]3 for (#12, #13, #23)- For d = 4, only 

about 18.3% of the hyper cube [—1,1]6 leads to a nonnegative definite matrix 0 ; see Rousseeuw 

and Molenberghs (1994). Theoretically, the constraint (b) causes no trouble for the usefulness of 

the model. But numerically, this constraint may be a problem, since the space where the numerical 

computation can be carried out is quite limited. For the numerical computation to be successful, 

we have to guarantee that the current values are not out of the space of constraint, which, in some 

situations (e.g. the real parameters are close to the space boundaries), may render the computation 

time consuming or even not possible. In some situations, these problems with the constraint (b) 

can be avoided by limiting consideration to a simple correlation structure, so that the nonnegative 

definite condition is always satisfied. Examples include an exchangeable correlation matrix with all 

correlations equal to the same 9, and an AR(1) correlation matrix with the (j, k) component equal 

to for some 6. 

3. Multivariate probit model with covariates. The classical multivariate probit model for a binary 

response vector Y,-, i = 1 , . . . , n, with covariate vector X{j for the jth univariate marginal parameter, 

if we use the latent variable representation, is that Y,j = I (Zij < atj + ySjXjj), j = 1, . . .,d, i = 

l , . . . , n , where Z,- ~ N(O,0 j ) , 0 S = (Oijk)- A modelling question may be whether dependence 

parameters should also be functions of covariates. If so, what are natural function to choose, so that 

Oi are all correlation matrices? If 0,- does not depend on any covariates, then Zs- are iid N ( O , 0 ) , 

with 0j = 0 = (Ojk). If 0j depends on some covariate vectors, say 8ijk depends on vfijk, then to 

satisfy \0ijk\ < 1> we can let 

o _ e x p ( 7 j M + 7,-fcWjjt) - 1 
uiJk - 7 i T 7 T - ( ^ 1 ) 

e x p ( 7 j M + 7jifcWt,jfc) + l 

Since all 0, , i = 1 , . . . , n, must be nonnegative definite, this may be a very strong restriction on the 

regression parameters ( 7 ^ , 0 , Jjk)- In some situations, choices of the parameters (jjk,o,7jk) i n (2-21) 
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making all 6 t nonnegative definite may not exist. The inclusion of covariates to the dependence 

parameters Oijk as expressed in (2.21) is a mathematical construction. In the Example 2.13, we will 

give a more "natural" way to include covariates to dependence parameters. • 

Example 2.11 ( M C D count model) 

1. General models. Consider a cf-variate random count vector Y = ( Y i , . . . , Yd)'. Let Yj be a random 

variable taking the integer values 0,1, 2 , . . . , oo, j = 1, 2 , . . . , d. Let Pr(Y;- = m) = p^m\ Then we 

have J2m=o P^ = ^ a n < ^ * n e c c u " ° f X?' is 

[y;l 

GJ(yJ)=Y,P<T)> (2-22) 
m = 0 

where [yj] means the largest integer less or equal than yj. Thus for a given d-dimensional copula 

C(u\,..., Ud\ 9), C(G\(yi),..., Gd(yd)\9) is a well-defined distribution for the count random vector 

Y . The.pmf of Y = y for a general d is expressed by (2.14). If we further assume that Yj has a 

Poisson distribution with parameter Xj, that is 
^ ) = A r e x p ( - A , ) 

J ml 

then we will say we have a MCD Poisson model. 

For the M C D Poisson model, the univariate parameter Xj can be reparameterized by rjj = log(Aj), 

so that the new parameter rjj has the range (—00,00). Covariates can be included to r\j in an 

appropriate way. The comments on modelling of the dependence structure in the copula C for the 

M C D binary model are also relevant here. 

To represent the M C D Poisson model by latent variables, let Yj = m if z m _ i < Zj < zm, —00 = 

z_i < ZQ < • • • < Zoo = 00, where Zj is a rv with cdf Fj, and the random vector Z = (Z\,..., Zd)' 

has a multivariate cdf F\2...d- The form of Fj does not have much importance since for count data, 

we are seldom interested in the cut-off points ZQ, Z \ , ..., z^. But the copula related to Fi^-.-d has 

essential importance for the modelling of count data, since it determines the multivariate structure 

of the random count vector Y . Thus we may say that for count data, the M C D representation (2.14) 

is more relevant than the latent variable representation. 

2. Multivariate Poisson model with multinormal copula. The multivariate Poisson model with multi-

normal copula for a count response vector Y is that in (2.14), where the copula is the multinormal 

copula (2.4) and has the form (2.23). This model has the C U O M and M U B E properties. The 

univariate marginal parameters Xj can be transformed to rjj — log(Aj) so that rjj has range (—00,00). 

For a random vector Y j , i = 1, . . .,n, if there is a covariate vector x̂ - for Xij, a possible way to 
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include x,j is by letting rjij = ctj + Pj^ij, where rjij — log(Ajj). Similarly, if 0j = (Oijk) with 9ijk 

depending on a covariate vector Wjjfc, a possible way to include vfijk is by letting 9ijk have the 

form (2.21). The difficulties with adding covariates to 0, remain, as in the previous example. • 

E x a m p l e 2.12 ( M M D Poisson model) 

1. General models. Let Y = ( Y i , . . . , Yd) be a random vector of count data, where Yj, j = 1 , . . . , d, 

has a Poisson distribution. The MMD Poisson model for the random vector Y is 

/•oo /.oo d p 
P(vi---Vd)= •• / ]Jfj(yj^j)c(G1(m),...,Gd(rjp))'[[gj(r}j)dm---drlp, (2.24) 

Jo Jo j = 1 j = 1 

where 

fj(yj;\j) = exv-xi\y /yj\ (2.25) 

is the probability mass function of a Poisson distribution for Yj given the parameter Xj. In (2.24), 

T) = (rji,..., r)p)' is a p x 1 vector of the collection of functions of A i , . . . , Xd; it is assumed to be 

random with a density function c(Gi(n{),...,Gp(r)d))\Yj=i 9i(^i)^ where c(-) is the density function 

of a copula C and gj (•) the marginal density of rjj. The model can cover a wide range of dependence 

through appropriate parametric families of the copula C. Through conditional expectations one can 

study the covariances and correlations of Y . If Xj = rjj, j = 1 , . . . , cf, we have 

E ( y i ) = E(E(Y >|A i)) = E(A i ) , 

Var(Y i) = E(Var(Y i | Xj)) + Var(E(Y j [A,-)) = Var(A;) + E(A,-), (2.26) 

[ Cov(Yj, Yk) = E(Cov(Y j , Y^A,-, A*)) + Cov(E(Y j |A,-), E(Y 2|A f c)) = Cov(Xj, Xk). 

Therefore the correlation of Yj and Yk is 

Con(Yj,Yk) = { [ V a r ( ^ } + ^ [ J ^ j + E ( A , ) ] } i / 2 ) (2-27) 

which has the same sign as the correlation of Xj and Xk. Corr(Yj,Yi:) is smaller than Corr(Aj, A*,) 

and tends to Corr(Aj, Afc) when E(Aj)/Var(Aj) and E(Afc)/Var(Afc) tend to zero. When Xj = n, j = 

1 , . . . , d, Y is equicorrelated with Corr(Yj, Yk) = Var(?7)/[Var(^)+E(77)]. The range of dependence for 

this special situation is quite restricted. For the general model (2.24), the parameters are introduced 

by the marginal distribution of r\j and the copula C. Letting the parameters depend on covariates 

is possible, as we can see from the next example with a specific copula. 

2. Multivariate Poisson-lognormal model. The Multivariate Poisson-lognormal model for a random 

Poisson vector Y is that in (2.24), where the copula is the multinormal copula (2.4), and T]J has a 
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lognormal distribution with parameters fij and <Xj. The pmf for Y = y is 

P(yi--yd)= •••/ Y[fj(yj;*j)g(v,i*,<r,Q)dm---dr)i 
Jo Jo 

(2.28) 

where fj(yj; \j) is of the form (2.25), and 

gd(ri;ti,<T, 0) = 
1 

-^(log»?-/i)'(<T /e(T)- 1(logi7-p)} , (2.29) 
(27r)^(7?1...77p)|<T'0(T|l/2 exp 

with rjj > 0, j = 1 , . . . ,p, is a multivariate lognormal density function. The model (2.28) has the 

C U O M and M U B E properties. The parameters in the model are p. = (m,..., Ud)', o = (ax,..., ad)' 

and 0 . By (2.26) and (2.27), we have 

The margins are overdispersed Poisson since Var(Yj)/E(Yj) > 1. |Corr(Y), Yk)\ is less than |Corr(r?j, 

r]k)\ and Corr(Yj, Yk) approaches Corr(?7j, rjk) when a,j, ak —* oo. A covariate vector x can be included 

in the model, say by letting the components of (i be linear functions of x. a can be assumed to have 

some special pattern, for example a\ = • • • — ap — a. It is harder to naturally let the correlation 

matrix 0 depend on covariates, as already discussed for the multivariate probit model for binary 

data. • 

E x a m p l e 2.13 ( M M D m o d e l for b i n a r y data) 

1. General models. Let Y = ( Y i , . . . , Y d ) ' be a binary random vector. Assume that Y has the 

M C D binary model in Example 2.10 for a given cut-off point vector a = (cxi,..., ad)' • a in turn is 

assumed to be a random vector. Let T) = (771,..., t]p) be the collection of functions of a. With the 

latent variable representation, we have that for given t] 

E(Yj) = exp{fij + ^a?}d=aj, 

Var(Y i ) = aj + a][exp(a]) - 1], 

Cov(Yj, Yj,) = ajak[exp(9jkajak) - 1], j ^ k, 
(2.30) 

Y = ( Y i , . . . , Yd)' = ( / (Ai < a i ) , . . . , I(Ad < ad))' (2.31) 

where A = (Ai,..., Ad)' has a multivariate cdf F, and T) has a multivariate cdf G. Thus 

P{yi---yd)= / •••/ P(yi---yd\r,)c(G1(r]l),--.,Gp(r]p))]Jgj(T]j)dri1---dr)1 

J — 00 J— 00 
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where c(G\(rji),..., Gp(rjp)) ]TJ=i 9j(Vj) is the density function of t), with c(-) the density function 

of a copula C and gj(-) the marginal density of r)j. A more general case is when there is a covariate 

vector x. In this situation, we may let ctj = Bjt0 + BjX, j = 1 , . . . , d, where the Bj^s and Bj's are 

random, and Tf is now assumed to be the collection of functions of the random components BJQ'S 

and Bj's. 

2. Multivariate probit-normal model. The M M D probit model is obtained by assuming that in 

(2.31), A = ( A i , . . .,Ad)' ~ Nd(0,Q) and 17 ~ Np(p,T,), where 6 = (Ojk) is a correlation matrix 

and £ = (o-jk) is a variance-covariance matrix. Without loss of generality, let us assume 17 = a. 

Then the M M D probit model of the form (2.31) becomes 

Y = ( Y i , . . . , Yd)' = < zt),... ,I(Zd < z*d))', (2.32) 

where Zj = (Aj - a, - Uj)/^/l + <TJJ, zj = m/y/l + a,,, j = l,...,d, and Z = (Zx,...,Zd)' ~ 

Nd(0,R), where R — (rjk) is a correlation matrix with rjk = (Ojk + fjjfe)/{(l + C j j ) ( l + Ckk)}1^2, 

j ^ k. This is a special class of multivariate probit model in Example 2.10. When Cjj — 0, it 

is the multivariate probit model discussed in Example 2.10. This example demonstrates that the 

intersection of the sets of M C D and M M D models is not empty. It is straightforward to extend such 

a construction to the more general situation with a covariate vector x, such that OLJ = Bj0 + Bj-x. 

with the BjfiS and Bj's random. With one covariate Xj, for example, one might take aj = BJQ + 

BJXJ with B0 = ( B 1 > 0 , 3 d < 0 ) ' ~ Nd(ji0, E 0 ) independent of 8 = (Pi,..., BD)' ~ Nd(p, S) , where 

Mo = (pi,o,---,Ud,o)', S 0 = (<Tjk,o), Ii = (ui,---,ud)' and E = (<Tjk). Now in (2.32), we have 

Zj = (Aj - BIFI - BJXJ - p,ji0 - pjXj)/yJl + (Tjjfi + o-jjxj, with Z = (Zi,...,Zd)' ~ Nd(0,R), 

R = (rjk), such that 

j ~ { l + % , o + W 2 } 1 / 2 ' 3 ~ " " ' ' 
/» V (2-33) 

_ Ojk + tTjJb.O + O'jkXjXk . . . 

r j k ~ {(1 + <Tjj,o + <Tjjx])(l + o-kkfi + <rnx\)Yl* ' 3* • 
The function of rjk in (2.33) can be considered as a "natural" form for the correlation parameters 

as functions of the covariates, since this function representation is derived directly from the linear 

regression for marginal parameters. As long as the conditions for linear regression for marginal 

parameter hold, rjk will always satisfy the constraints for forming a correlation matrix. For R to 

be nonnegative definite, it suffice that 0 , So and E be nonnegative definite. These three matrices 

do not depend on covariates, which is very attractive numerically compared with the nonnegative 

definite requirement on G,- in (2.21). A special case is Ojk = 0 and <Tjkto = 0 (j ^ k), in which 



Chapter 2. Foundation: models, statistical inference and computation 33 

case the only constraint is that £ be nonnegative definite. Finally, we notice that in contrast to the 

conventional univariate probit analysis, the regression function in (2.33) for the cut-off points are 

not linear functions of covariates. Nevertheless, (2.33) can be used in lieu of the multivariate probit 

model with covariates in Example 2.10, since the parameters in (2.33) are also interpretable. To 

use the model (2.33), it is necessary to reparameterize the parameters Cjj.o, Cfcit.o, <Tjk,Q, o-jj, <rkk, o~jk 

and 9jk such that the new parameters have (—oo, oo) as their domain. • 

2.2.4 Some properties of M C D and M M D models 

We summarize some of the properties of M C D and M M D models: 

1. M C D and M M D models, constructed through stochastic or latent variable representation, 

provide a clear probabilistic description of multivariate discrete random phenomenon. In some 

situations, the pmf and cdf have closed forms; in other situations, the pmf or cdf can be 

numerically computed in a reasonably short time. Likelihood inference can be used, with the 

help of the theory in section 2.3 and section 2.4. 

2. M C D and M M D models allow flexible choices of multivariate copulas (Multinormal copula, 

Hiisler-Reiss copula, Morgenstern copula, etc.) as well as flexible choices of all the univari

ate marginal distributions (any discrete distributions: Bernoulli, binomial, negative binomial, 

Poisson and generalized Poisson, etc.), and they allow relevant covariates to be included in 

the appropriate parameters in the models. In this way, these two classes of models are able to 

capture the nature of discrete data in an individual or grouped observation basis, thus they 

allow the drawing of appropriate inferences from the data. 

3. With appropriate copulas, many M C D and M M D models have the C U O M and M U B E prop

erties. The C U O M property, sometimes referred to as "reproducibility" or "upward compati

bility" in the literature, is also sought for modelling longitudinal and repeated measures. With 

appropriate families of parametric copulas, a wide range of dependence, including negative 

dependence, is possible. 

4. With appropriate copulas, the parameters related to the univariate margins structure and the 

parameters related to dependence structure can be allowed to vary independently in separate 

parameter spaces. This is a good property that the multivariate Gaussian model also enjoys. 
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5. By choosing appropriate marginal distributions, the M C D and M M D models can naturally 

account for a variety of situations occuring with discrete data, such as over-dispersion which 

is independent of covariates, skewed distributions, multimodality, etc. 

6. For a given d-variate discrete distribution F, there may be many copulas which match F into 

M C D model class; M C D models are robust in terms of data modelling with copulas of similar 

structure. 

Some of the points above will be made clear in Chapter 3 as well as in Chapter 5. 

2.3 Inference functions of margins 

For a general multivariate model, parameter estimation is often a difficult computational issue. 

Without readily available parameter estimation methods, any model, even though interpretable, will 

not have practical usefulness. For situations involving univariate models, many methods have been 

devised for parameter estimation, ranging from the method of moments through formal maximum 

likelihood to informal graphical techniques. The maximum likelihood approach is used in general 

because it has a number of desirable statistical properties. For example, under general regularity 

conditions, M L estimators are consistent, and asymptotically normal. With some weak additional 

assumptions, the M L E is also asymptotically efficient. However, the method has not been successfully 

applied for estimating the parameters of multivariate models, except for the multivariate normal and 

a few cases with low dimension (e.g. d = 2). A primary cause of this unsatisfactory situation is the 

computational difficulty involved with multivariate models, even with modern powerful computers. 

The M L approach for parameter estimation in multivariate situations is still not routine. The 

•question is: can we have a general effective estimation procedure to estimate parameters for a model 

in the M C D and M M D classes? 

In this section, we first discuss model fitting strategies for multivariate models in subsection 

2.3.1. One strategy leads to the inference functions of margins approach, that we propose as the 

parameter estimation approach for M C D and M M D models with the M U B E , P U B E or M P M E 

properties. In subsection 2.3.2, we introduce some important results in inference function theory 

for multiple parameters needed for developing the inference basis for M C D and M M D models. In 

subsection 2.3.3, we introduce the inference functions of margins (IFM) approach and give some 

examples. 
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2.3.1 Approaches for fitting multivariate models 

There are at least three possible likelihood-based approaches to estimate parameters in a multivariate 

model: 

Approach 1. A l l univariate and multivariate parameters are estimated simultaneously by maximizing 

the full-dimensional likelihood function. This is the M L E approach. 

Approach 2. For a model where all multivariate parameters are in a copula, univariate parameters 

are estimated from the separate univariate likelihoods. The multivariate parameters are then 

estimated from multivariate likelihoods with the univariate parameters fixed as estimated from 

separate univariate likelihoods. 

Approach 3. For a model with the M U B E , P U B E or M P M E property, univariate parameters are 

estimated from separate univariate likelihoods. Bivariate, trivariate and multivariate parame

ters are then estimated from bivariate, trivariate and multivariate likelihoods, with lower order 

parameters fixed as estimated from lower order likelihoods. 

The first approach is general and direct. While this strategy sounds most natural from the likelihood 

point of view, it could be computationally very difficult for most of the multivariate models, even in 

relatively low dimensional situations. The multivariate normal distribution, which can be easily han

dled by this approach, is an exception. The second approach makes the computational task easier, 

but it still has the difficulties of dealing with a multivariate object in general. These difficulties are 

mainly two: the high-dimensional maximization problem and the multivariate probability calcula

tion. The third approach reduces these difficulties by working with lower dimensional maximizations 

or lower dimensional probability calculations. This is a valuable approach if the parametric family 

of interest has the M U B E , P U B E or M P M E properties. It is important because it makes statistical 

inference for multivariate data easier. Computational tractability is an important factor for the 

popularity of certain statistical tools, as we observe in many areas of statistics. The third approach 

to stochastic modeling is often convenient, since many tractable models are readily available for the 

marginal distributions. It is also invaluable as a general strategy for data analysis in that it allows 

one to investigate the dependence structure independently of marginals effects (through copula) and 

computationally only dealing with lower dimensional (often two-dimensional) models. 
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E x a m p l e 2.14 Consider the multivariate probit model for a d-dimensional binary vector Y with 

pmf 

2 2 
P(Vi • • • Vd) = J2 • • • E• '• + * ' ' <M*~ 1 K- , ) . • • •. J ; © ) , (2-34) 

»'i=i »'<i=i 

where 0 = (Ojk), o,ji = Gj(yj — 1) and a,j2 = Gj(yj), with C7j(l) = 1 and Gj(0) = 1 — $(ZJ). 

This model has the C U O M and M U B E properties. For estimation from a random sample of iid 

Y i , . . . , Y „ , the three approaches for fitting multivariate models could be used here: 

Approach 1. Estimate the parameters z — (z\,..., zd)' and 0 by maximizing the multivariate like

lihood L = f]r=i P(yn ''' Vid)- Let the resulting estimates be z and 0 . 

Approach 2. (a) Obtain the estimates z = (z\,..., zd)' by maximizing separately d univariate 

marginal likelihoods, (b) Estimate the parameters 0 from the multivariate likelihood L = 

nr=i P(yn '' ~yid) with the parameters z fixed at the estimated values i from (a). 

Approach 3. (a) Obtain the estimates z = (z\,... ,zd)' by maximizing separately d univariate 

marginal likelihoods, (b) Estimate the parameters Ojk, 1 < j < k < d, by maximizing 

separately d(d— l ) /2 bivariate likelihoods Ljk — Y\7=i Pjk(yijyik) with the parameters Zj,Zk 

fixed at the estimated values Zj,Zk from (a). Let the resulting estimate be 0 . 

Approach 1 is computationally demanding, since it requires the calculation of high-dimensional 

multinormal probabilities and a numerical optimization on many parameters. Approach 2 reduces 

the numerical optimization problem to fewer parameters, but the high-dimensional multinormal 

probability calculation is still required. Approach 3 reduces the numerical optimization in Ap

proach 2 into several numerical optimizations, each involving fewer parameters. Further, the high-

dimensional multinormal probability calculation is no longer required; all that is needed are the binor-

mal probability calculations, which are readily feasible with modern computers. Multi-dimensional 

calculation are needed for predicted or expected frequencies, but this is much less effort compared 

with multi-dimensional numerical integrations within a numerical optimization procedure. 

Since it is computationally easier to obtain z and 0, a natural question is what is the asymptotic 

efficiency of z and 0 compared with z and 0 . In Chapter 4, we will deal with this problem in a 

general context. • 
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2.3.2 Inference functions for multiple parameters 

Introduction 

The common approach to the problem of estimation is to propose an estimator T(x) and then study 

its properties. For estimators with specific properties such as unbiasedness, minimum variance or 

minimum mean squared error, or asymptotic normality, theories for ordering these estimators are 

developed. Standard methods for obtaining the estimator T(x) include least squares (LS), maximum 

likelihood ( M L ) , best linear unbiased, method of moments, uniform minimum variance ( U M V ) , and 

so on. However, many point estimation procedures may be viewed as the solution of an (or some) 

appropriate estimating equation(s). Indeed, any estimator may be regarded as a solution to an 

equation or a set of equations of the form \P(x,0) = 0, where $ is a vector of functions (or a 

single function in the one-parameter case) of the data x and the parameter 6. ty(x,6) is commonly 

called a vector of inference functions or estimating functions. In this thesis, we use mainly the term 

"inference functions". But when we focus more on the use of the inference functions for estimation, 

we also employ the term "estimating functions". 

The theory of inference functions is studied in , for example, Godambe (1960, 1976, 1991), 

McLeish and Small (1988) and Jorgensen and Labouriau (1995). The theory of inference func

tions imposes optimality criteria on the function \S' rather than the estimators obtained from it. The 

approach of considering a class of inference functions and finding the optimal inference function has 

the advantage of retaining the strengths of the estimation method (e.g LS, M L , U M V ) and at the 

same time eliminates some of their weaknesses. For example, in point estimation, the Cramer-Rao 

lower bound is attained only in rare occasions whereas the optimality of the score function among 

inference functions holds merely under regularity conditions (see below). Inference functions may 

be used either as estimating equations to determine a point estimate or as the basis for constructing 

tests or confidence intervals for the parameters. A n example is the maximum likelihood estimators, 

which are obtained as the solutions of estimating equations from the score functions. Thus the 

inference functions for M L E are the score functions. Other examples of the application of inference 

functions are the theory of M-estimators for obtaining robust estimators and the quasi-likelihood 

methods used in generalized linear models. Inference functions have also found application in a wide 

variety of applied fields; examples in biostatistics, stochastic processes, and survey sampling can be 

found in Godambe (1991). 

In the following, we introduce the notion of regular inference functions and study the asymptotic 

properties of resulting estimates in the iid situation. 
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Inference functions for a vector parameter 

In the following, we wil l give a series of definitions for the inference functions for a vector of pa

rameters and a general asymptotic result for the parameter estimates from the defined inference 

functions. 

Let us consider a parametric family T defined on a common measurable space (y ,A), where A 

is the cr-field associated with y. We further assume 

T= {P(y,6) :$£ ft}, ftC (2.35) 

where 6 = (6\,.. .,0q)' is g-component vector, and ft the parameter space. The parameter space is 

usually a subset of (/-dimensional Euclidean space. We presume the existence of a measure p. on y 

such that for each fixed value of the parameter 0 the function P(y; 6) is the density with respect to 

p of a probability measure V on y. 

Definition 2.9 (Inference functions) A Rq-valued vector of functions 

*(y;0) = (V>i(y;0),.-.,^(y;0))T : ^xft^TR* 

is called a vector of inference functions, if the component functions of \&(y; 0) are measurable for 

each fixed 8= (6i,...,0q) ef t . • 

Definition 2.10 (Unbiased inference functions) \P is said to be unbiased if for each 6 E ft and 

j = 1,.. .,q, Efjlijj} = 0, where Eg means expectation relative to P(-;6). • 

Unbiasedness is a natural requirement which ensures that the roots of the equations are close 

to the true values when little random variation is present. Whereas 6 may not have an unbiased 

estimator, unbiased inference functions exist under fairly general circumstances. For any given 

inference function vector ^ and any y E y, an estimator of 0, say 6 — 6(y), can be obtained as the 

solution to \t = 0. 

In order for the estimate 6 to be well-defined and well-behaved, the inference function vector $ 

must satisfy some regularity conditions, that is, * must consist of regular inference functions. 

Definition 2.11 (Regular inference functions) The vector of inference functions $ is said to 

be a vector of regular inference functions if, for all 6 E ft, the following assumptions are satisfied: 

1. The support ofy does not depend on any 6 E ft. 

2. E{i>j} = 0, j = l,...,q. 
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3. The partial derivative dyjj/dOk exists for almost every y £ y, j,k = 1 , . . . , q. 

4- The order of integration and differentiation may be interchanged as follows: 

^- J ^P{y; 0)dp{y) = J [ ^ P ( y ; 6)] dp(y), 

j, k = 1 , . . .,q. 

5. E{ipjij)k} exists, j,k = 1 , . . . , q, and the q x q matrix 

M$(0) = E{WT} 

is positive-definite. 

6. The q x q matrix 

is non-singular. 

• 

A model P(y; 6) in (2.35) is said to be regular, if the score functions are regular inference functions 

and 5ft is an open region of Mq. We are only interested in regular models, such that the asymptotic 

theory concerning M L E s is readily available for use. This is not a strong assumption for applications. 

(The main limitation may be the exclusion of models in 1 of Definition 2 .11.) 

D e f i n i t i o n 2.12 (Fisher i n f o r m a t i o n matr ix ) The Fisher information matrix is the matrix-

valued function I : 5ft —• Ftqxq defined by 

I(6) = E{U(6)UT(6)}, 

where U(6) is the vector of score functions, U{B) = d/dB\ogP(y;6). • 

D e f i n i t i o n 2.13 ( G o d a m b e i n f o r m a t i o n matr ix ) For a regular inference function vector^!, the 

Godambe information matrix is the matrix-valued function J$ : 5ft —• R q x q defined by 

M$) = Dl{6)M^{6)D<i{6), 

where My(6) = E{WT} and £>$(0) = E{dV/dO'}. • 
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Consider n iid observations y x , . . . , y„ from a model P(y; 0) in (2.35). Let ^(y,-; 8) = (ipn,..., ipiq)' • 

The inference function vector based on the n observations is \£„ : yn x ft —• IR9 given by 

n 

8 = 1 

We define the estimator 0 = 0(yi,..., y n) as the solution of \P„ = 0. 

The following theorem establishes the asymptotic normality of the solution 0 based on regular 

inference functions and gives an asymptotic interpretation of the Godambe information matrix. 

Theorem 2.1 Assume that the estimator 0 = 0(y1,... ,yn) associated with the regular inference 

function vector \Pn : yn x ft —+ IR9 is a y/n-consistent estimator of 0, that is, y/n(0j — Oj), j = 

l,...,q, is bounded in probability so that 9j tends to 9j at least at the rate ofl/y/n. We further 

assume that there exist functions Mjki(y) such that \d2ipj/d9kd9i\ < Mjki(y) for all 0 G ft, where 

E{Mjki(y)} < oo for all j,k,l. Then as n —• oo, we have asymptotically 

V^(0-0)°Nq(O,J^(0)) 

under P(-;0). 

Proof. The proof is similar to the corresponding theorem for the asymptotic normality of the M L E . 

We therefore only sketch it. 

* n has the following expansion around 0 

O = Vn(0) = yn(0) + Hn(0)(0-0) + Rn, 

where Hn is a q x q matrix d^n/d0 and R n = Op(||0 — 0\\2) = o p ( n _ 1 ) by assumptions. 

Thus 

^(6 -0) = l-Hn{0) 
n 

1 1 
- = [ - * „ ( * ) - R „ ] . (2.36) 

By the Law of Large Numbers 

-Hn{0)^{0). 
n 

Now for any fixed vector u = ( u i , . . . , uq)'', consider the sequence of one-dimensional rv's 

4 , U l f « + . . . + u f ^ ; « ) 
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By the central limit theorem (Lindberg-Levy), u'9n/y/n is Ni(0, u ' M * u ) . This result leads to 

Applying Slutsky's Theorem to (2.36), we obtain 

y/H(8 - 0)^NQ(O, D^M^D^f) 

or 

V^(e-e)^Nq(o,j^(e)). 

• 

O p t i m a l i t y cr i teria for inference functions 

In this subsection, we will summarize optimality results for inference functions in the multi-parameter 

situation. These results will be referred to later for comparing two sets of regular inference functions. 

Consider a scalar inference function \P. It is natural to seek an unbiased estimating function \t 

for which the variance E{\&2} is as small as possible. This is analogous to the theory of minimum 

variance unbiased ( M V U ) estimation. Since the variance may be changed by multiplying \? with an 

arbitrary constant, some further standardization is necessary for the purpose of comparing variances. 

Godambe (1960) suggested considering the variance of the standardized estimating function \t s = 

^/E{d^/d9], and defined an optimal estimating function to be one which minimizes Var(^ r
J ) = 

E{\t2}/{E(d\E ,/3#)}2, or maximizes Var - 1 ( \T/j) , the Godambe information for <£. Godambe showed 

that in the one-parameter case the usual maximum likelihood estimating equation has this optimal 

property within a wide class of regular unbiased inference functions. Thus Godambe information 

can be used to compare two regular inference functions, and the function with the larger Godambe 

information is generally preferred. 

Given two vectors of inference functions, \P and Q, several different optimality criteria can be 

used to say that fi is preferred (or optimal) to 

D e f i n i t i o n 2.14 ( M - o p t i m a l i t y ) A vector of inference functions is said to have matrix opti

mality or M-optimality versus a vector of inference functions ^ if the difference of the inverses of 

the Godambe information matrices 

is non-negative definite. • 
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Definition 2.15 (T-optimality) A vector of inference functions is said to have trace optimality 

or T-optimality versus a vector of inference functions ^ if the difference of the trace of the inverse 

of Godambe information matrices 

TriJ^(e))-Tr{J^(d)) 

is positive. • 

Definition 2.16 (D-optimality) A vector of inference functions is said to have determinant 

optimality or D-optimality versus a vector of inference functions \P if the difference of determinant 

of the inverse of Godambe information matrices 

\J^(6)\-\J^(6)\ 

is positive. 

Chandrasekar and Kale (1984) proved that M-optimality implies T-optimality and D-optimality. 

Joseph and Durairajan (1991) further proved that the above three criteria are equivalent in the sense 

that if $ is optimal with respect to any one of the three criteria then it is also optimal with respect 

to the remaining two. 

When comparing two sets of regular inference functions, we could examine a slightly different 

version of T-optimality and D-optimality. For example, for T-optimality, we may examine 

Tr(J^(e))' 

and for the D-optimality 

j\Jn\')\ 

In practice and often in simulation studies, only the estimated values of J^1(6) and J^iO) are 

available, M-optimality or T-optimality or D-optimality may be violated slightly numerically based 

on only one set of observations. 

We end this subsection by stating an extended Cramer-Rao inequality for inference functions: 

Theorem 2.2 For any given vector of regular inference functions \P, and for all 6 6 5ft, J$l(8) — 

I - 1 (6) is non-negative definite. 

For a proof of this result, see Jorgensen and Labouriau (1995). Related references include Ferreira 

(1982) and Chandrasekar (1988), among others. • 



Chapter 2. Foundation: models, statistical inference and computation 43 

This theorem states that, for a regular model P(y;6), the vector score functions 

nta\ dlogP(y;fl) fd log P(y,$) dlogP(y;6)\ 

u { 6 ) - dB - 1, del Wk ) 

are M-optimal within the class of all regular unbiased estimating functions. 

2 .3 .3 I n f e r e n c e f u n c t i o n o f m a r g i n s 

We have seen from previous subsection that, under fairly general regularity conditions, the score 

functions are asymptotically optimal among regular inference functions. However, with multivariate 

models, except in a few special cases (e.g multivariate normal), the estimating equations based on 

the score functions are computationally very cumbersome or intractable. It would be an invaluable 

alternative to have inference functions which are computationally feasible in general and also efficient 

compared to the score functions. 

In the ensuing subsection, we introduce a set of inference functions, we call the inference functions 

of margins (IFM). In Chapter 4, we show that I F M shares the asymptotic optimality properties of 

the score functions, and this is particularly true for the multivariate models with M U B E and P U B E 

properties. One major advantage of I F M is that it is computationally feasible in general and more 

flexible for handlinge different types of data. This leads us to develop a new inference theory and 

computationally feasible procedures for many M C D and M M D models. 

Inference f u n c t i o n of scores 

We consider the family (2.35) and assume it is a regular parametric family. The likelihood function 

of 6, given y, is L(6;y) — P(y;6), the corresponding loglikelihood function is £(6;y) — \ogP(y;6). 

Let 

Ln(6) = f[L(6;yi) 
! = 1 

denote the likelihood of 6 based on y 1 ; . . . ,y„ , a sample from y. The loglikelihood function of 6 

based on y l t . . . , yn is 

4(*) = l o g M * ) = £ * ( 0 ; y , . ) . 

»=i 
D e f i n i t i o n 2.17 (Inference functions of scores, or I F S ) The vector of score functions 

dtn{6) = fd£n(6) dtn{6) 

06 V 30i d9q 

is called inference function vector of scores, or IFS. • 
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The maximum likelihood estimate (MLE) is generally determined as the solution to the likelihood 

equations dtn(0)/d0 = 0. The Hessian matrix of the function —£n(6)/n is J(0), where (J(8))jk = 

-(l/n)(d2£n(0)/d0jd9k). The expected value of J(6), 1(6) = E{J(0)}, is the Fisher information 

matrix. The value J(0) of /(•) at the maximum likelihood estimate 0 = 6(y1,...,yn) is referred to 

as the observed information. J(0) will generally be positive definite since 6 is the point of maximum 

likelihood. A consistent estimate of1(0) is 1(0) = J(0). 

Under very general regularity conditions, it is known that the M L E s are asymptotically normal, 

in the sense that as n —• oo, 

V^(0-0)°Nq(O,I(0)-'). 

See Sen and Singer (1993, p.209) for a proof. 

Inference f u n c t i o n of margins 

We now introduce the loglikelihood function of a margin, the inference function of a margin for one 

parameter, and then define the inference functions of margins (IFM) for a parameter vector 6. The 

asymptotic results for the estimates from I F M will be established in the next section. 

Consider the parametric family (2.35) and assume P(y,0) is a d-dimensional density function 

with respect to a probability measure p on y . Let Sd denote the set of non-empty subsets of 

{1,..., d}. For any S € Sd, we use \S\ to denote the cardinality of S. Let Ps(ys) be the 5-margin 

of P(y;0), where y 5 = {yj :. j G S}. Assume Ps(ys) depends on 0s, where 0s is a subvector of 0. 

D e f i n i t i o n 2.18 Let 0 = (9\,..., 9q)'. Suppose the parameter 9k appears in S-margin Ps(ys)- The 

loglikelihood function of the S-margin is 

ts(8s) = logPs(ys). 

An inference function for 9k is 

d£s(0s) 

08k ' 
• 

The inference function of a margin for a parameter 9 is not necessarily uniquely defined by 

the above definition. In this thesis, unless specified otherwise, we always work with the inference 

function from a margin with the smallest \S\. For a specific model, it is often evident when \S\ is the 

smallest for a parameter, so we will not be concerned with the proof of this feature in most applied 

situations. If there are two or more inference functions for 9 with the same smallest \S\, than there 
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is a question of how to combine these inference functions to optimally extract information. We will 

discuss this issue in section 2.6. 

Note that with the assumption of M P M E (or M U B E ) , one can use S with \S\ < q (\S\ < 2 for 

M U B E ) for every parameter Bk. In the case where M P M E does not hold, then one has S = {1,..., d} 

for some 6k in the model. For the new theory below, we assume M P M E or M U B E or P U B E in the 

remainder of this chapter. 

Assume for the parameter vector 8 — {6\,..., 9q)', the corresponding smallest cardinality subsets 

associated with the parameters are Si,.. .,Sq (as q is usually greater than d, there are duplicates 

among the Sk's). 

D e f i n i t i o n 2.19 (Inference funct ions of margins , or I F M ) The vector of inference functions 

'd£n,Sl(8Sl) den,sq(6s,)\' 

is called the inference functions of margins, or IFM, for 6. • 

For a regular model, the inference functions derived from the likelihood functions of margins 

also satisfy the regularity conditions. Thus asymptotic properties related to the regular inference 

functions should apply to I F M . Detailed development of this aspect will be given in section 2.4. 

D e f i n i t i o n 2.20 (Inference funct ions of margins estimates, or I F M E ) Any fl £ $ which is 

the solution of 

- = ( ^ ^ y = ° 

is called the inference functions of margins estimate, or IFME, of the unknown true parameter vector 

8. • 

In a few cases, 6 has an analytic expression (e.g. Example 4.3). In general, 8 has to be obtained 

by means of numerical methods. 

E x a m p l e s of inference functions of margins 

E x a m p l e 2.15 Let X i , . . . , X n be n iid rv's from the distribution C(Gi(xi),...,Gd(xd)',@) with 

GJ(XJ) = $(XJ; Uj,aj), where C is the multinormal copula (2.4). Let p = (pi,..., fid) and a = 

(<TI, . . . , ad). The loglikelihood function is 

n / d \ 

£n(p,(T,0) = J ^ l o g I C ( * ( X J I ) , • • • , * ( * « ) ; © ) X\j>{.Xij;p.j,aj) \ . 
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Thus the IFS is 
vp I F S = (dtn(M,',&) d£n(p,<r,e) d£n{p,<r,Q) 

V dpi ' " ' ' dpd ' 9<TI 

d£n{p,<r,Q) d£n(p,er,0) d£n{p,<r,QY 

do-d ' #012 ded-i,d 
The loglikelihood functions of 1 and 2-dimensional margins for the parameters p., <r, © are 

£nj(pj,o-j) - ^ l o g ^ X i j - ^ j , ^ ) , j = 1, . . .,d, 

n 
tnjk(8jk,Pj,Pk,0-j,0-k) = ^ log (c($(lij), $(liO; S j O ^ 1 ' ! I Pj,^i)<t>{xik\ Pk,<^k)) , 1 < j < k < d. 

Thus the I F M is 

»=i 

* I F M = (d^"1^1'0"1) dtnd(Pd,o-d) d£ni(pi,o-d) d£nd(pd,o-d) 
\ dpi ' ' ' ' ' Q^d ' Q(Tl i • • • > > 

d£n!2(9l2, Pi, P2, Q~l, ̂ 2) d£nd-l,d(9d-l,d, Pd-1, Pd, O'd-lyO'd) 

d9d-l,d 86 12 
It is known that \PIFS and \PIFM lead to the same estimates; see for example Seber (1984). • 

E x a m p l e 2.16 Let Y i , . . . , Y n be n iid rv from the multivariate Poisson model with multinormal 

copula in Example 2.11. The loglikelihood functions of margins for the parameters A and 0 are 

4 j ( A j ) = ^logPjiyij), j = l,...,d, 
8 = 1 

n 

£njk(9jk, Aj, A*) = E l o g P j k i y i i V i k ) , 1 < j < k < d, 

where Pj(yij) = A f J e x p ^ A , - ) / ^ - ! and P j k ( y i j y i k ) = $ 2 ( $ - 1 ( 6 o ) , $ _ 1 ( M ; tyt) - M * - 1 ^ ) . 
^ _ 1 ( a » i f c ) ; î/fc) — *2(^ _ 1(a a-j), ^«~ 1(6ifc); <9jfc) -I- ^ 2 ( ^ _ 1 ( a»i)> ^ _ 1 ( a « J k ) ; ĵJfe). w h e r e aij = Gij(yij - 1), 

bu - Gij(yij), aik - G i k ( y i k - 1) and bik = Gik(yik), with Gij(yij) = YH=opj(x) a n d G i k ( y i k ) = 

Zl=0Pk(x)-

Let r)j = log(Aj). The I F M for rjj, j = 1,..., d, and 6jk, 1 < j < k < d are 

* I F M = f E 
i a P i ( W i ) 1 dPd(yid) 

E 
f^Pi(yn) d m ""'friPdim) dnd ' 

1 dPi2(yayi2) \^ 1 dPd-\,d{yid-iyid) E fr( Pd-lAVid-lVid) d9d-l,d fri Puivnvn) dd12 

For a similar random vector Y,-, i = 1 , . . . , n with a covariate vector x,j for A ^ , a possible way 

to include X ; J is by letting rjij = aj + BjXij, where rjij = log(A,j). We can similarly write down the 

I F M for parameters aj, Bj and 9jk. • 

file:///Pifs
file:///Pifm
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E x a m p l e 2.17 ( M u l t i v a r i a t e b i n a r y Molenberghs-Lesaffre model ) We first define the mul

tivariate binary Molenberghs-Lesaffre model (Molenberghs and Lesaffre, 1994), or M - L model. Let 

Y = ( Y i , . . . , Yd) be a d-variate binary random vector taking values 0 or 1 for each component. A 

model for Y is defined in the following way. Consider a set of 2d — 1 generalized cross-ratios with 

values in (0, oo): rjj, 1 < j' < d, rjjk, 1 < j < k < d, .. ., and r\\i-d such that: 

)?. . _ n( g i l , . . . ,y i ( ,) 6A+ pix-u(Vh • ••«/«) ^ 

where A+ = {(% 1 , . . ., yjq) G {1,0}* | (q - E ? = i W « ) = ° ( m o d 2)> a n d A , = {1.0}«W. a n d 

{ii i • • •! jq} is a subset of {1, 2 , . . . , d} with cardinality q. We can verify for example when q = 1,2,3,4 

that 

* = ^j^d> 
P(11)P(00) , ^ . , ^ , 

^ = P ( 1 0 ) P ( 0 1 ) ' 1 ^ < f c ^ > 
P(111)P(100)P(010)P(001) 

- p(H0)P(101)P(011)P(000)' - 3 < < - ' 
_ P(1111)P(1100)P(1010)P(1001)P(0110)P(0101)P(0011)P(000Q) 

tytzm - p( 1 1 1 0)p(iioi)p(ioil)P(1000)P(0111)P(0100)P(0010)P(0001)' 1 - ^ < * < / < m ^ c ( ' 

(2.38) 

where subscripts on P are suppressed to simplify the notation. 

Molenberghs and Lesaffre (1994) show that the 2d — 1 equations in (2.37) together with ^2 P(yi '"' 

yd) = 1 leads to unique nonnegative solutions for P(yi • • -yd), (yi, • • - ,2/d) G {l,0}d, under some 

compatibility conditions on the d — 1 and lower-dimensional probabilities. If all these conditions in 

the Molenberghs-Lesaffre construction are satisfied, we have a well-defined multivariate Bernoulli 

model. We call this model multivariate M - L binary model. The multivariate M - L binary model is 

not M U B E , but the parameters rjj and ijjk are P U B E . The special case where rjs = 1 for |5| > 3 is 

M U B E . 

Related to the M C D model, it is not clear if there exists a M C D model such that (2.37) is true 

and under what conditions a M C D model is equivalent to (2.37). The difficulty is to prove there 

exists a copula, such that (2.37) is a equivalent expression to a M C D model. The existence of 

a copula is needed in order to properly define this model with covariates (e.g. logistic regression 

univariate margins). For a discussion of whether the Molenberghs-Lesaffre construction leads to a 

copula model, see Joe (1996). Nevertheless, (2.37) in terms of Pjl-jq(yj1 • • - yjq) certainly defines a 

multivariate model for binary data for some ranges of the parameters. 



Chapter 2. Foundation: models, statistical inference and computation 48 

Let Y i , . . . , Y n be n iid binary rv's from-a proper multivariate M - L binary model. Assume the 

parameters of interest are r) = ( 7 7 1 , . . . ,r)d, 7/12,.. . , nd-i,d)' and let 77s be arbitrary for \S\ > 3. The 

loglikelihood functions of margins for r) are 

«=i 
n 

enjk(Vjk,rij, Vk) = E l o S PjkiyijVik), 1 < j < k < d. 

Thus the I F M is 

lT, fd£„i(r]i) d£nd(rid) d£ni2(m2,m>^2) d£nd-i,d(rid-i,d,Vd-i, 
* IFM = — ~ , • • •, — * ' a > • • • > x 

For an interpretation of the parameters (2.37), see Joe (1996). • 

Some advantages of I F M approach 

The I F M approach has many advantages for parameter estimation and statistical inference: 

1. The I F M approach for parameter estimation is computationally simpler than estimating all the 

parameters from the IFS approach. A numerical optimization with many parameters is much 

more time-consuming (sometimes beyond the capacity of current computers) compared with 

several numerical optimizations, each with fewer parameters. In some cases, optimization is 

done with parameters from lower-dimensional margins already estimated (that is, there is some 

order to the sequence of numerical optimizations). I F M leads to estimates of the parameters 

of many multivariate nonnormal models efficiently and quickly. 

2. A potential problem with the IFS approach is the lack of stability of the solution when there 

are outliers or perturbations of the data in one or few dimensions. With the I F M approach, we 

suggest that only the contaminated margins will have such nonrobustness problems. In other 

words, I F M has some robustness properties in multivariate analysis. It would be interesting 

to study theoretically and numerically how outliers perturb the IFS and I F M estimates. 

3. A large sample size is often needed for a large dimension of the responses. This may not be 

easily satisfied in most applied problems. Rather, sparse data are commonplace when there 

are multiple responses; these often create problems for M L estimation. By working with the 

lower dimensional likelihoods, the I F M approach avoids the sparseness problem in multivariate 

situations to a certain degree; this could be a major advantage in small sample situations. 
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4. The I F M approach should be robust against some misspecification in the multivariate model. 

Also some assessment of the goodness-of-fit of the copula can be made after solving part of 

the estimation equations from I F M , corresponding to parameters of univariate margins. 

5. Finally, I F M leads to separate modelling of the relationship of the response with marginal 

covariates, and the association among the response variables in some situations. This feature 

can be exploited to shorten the modelling cycle when some quick answer on the marginal 

behaviour of the covariates is the scientific focus. 

In the above, we listed some advantages of I F M approach. In the next section, we study the 

asymptotic properties of I F M approach. The remaining question of efficiency of I F M will be studied 

in Chapter 4. 

2.4 Parameter estimation with I F M and asymptotic results 

In this section we will be concerned with the asymptotic properties of the parameter estimates from 

the I F M approach. We will develop in detail the parameter estimation procedure with the I F M 

approach for a M C D or M M D model with M U B E or with some parameters of the models having 

P U B E properties. The situations we consider include models with covariates. Sufficient conditions 

for the consistency and asymptotic normality of I F M E are given. Some theory concerning the 

asymptotic variance matrix (Godambe information matrix) for the estimates from the I F M approach 

is also developed. Detailed direct calculations of the Godambe information matrix for the estimates 

based on the data and fitted models are given. A n alternative computational approach, namely the 

jackknife method, for the estimation of the Godambe information matrix is given in section 2.5. This 

technique has considerable importance because of its practical usefulness (See Chapter 5). Later in 

section 2.6, we will propose computational algorithms, which are based on I F M , for the parameter 

estimation where common parameters appear in different inference functions of margins. 

2.4.1 Models with no covariates 

In this subsection, we confine our discussion to the case of samples of n independent observations 

from the same distributions. The case of samples of n independent observations from different 

distributions will be studied in the next subsection. We consider a regular M C D or M M D model in 

(2.12) 

P(yi---yd;6), 0 6% (2.39) 
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where 6 = (di,..., dd, 612, • • •, 8d-\,d)'• The model (2.39) is assumed to have M U B E or to have 

some of its parameters having P U B E properties. In general, we assume that 8j (j = l,...,d) 

is a parameter vector for the j th univariate margin of (2.39) such that Pj(yj) = Pj(yj',8j), and 

Ojk (1 < j < k < d) is & parameter vector for the (j, k) bivariate margin of (2.39) such that 

Pjk(yjVk) = Pjk(yj, Vk\ 8j, 8k, 9jk)- The situation for models with higher order (> 2) parameters are 

similar; the extension of the results here should be straightforward. For the purpose of illustration, 

and without loss of generality, we assume in the following that 8j and 8jk are scalar parameters. 

Let Y , Y i , . . . , Y „ be iid rv with model (2.39). The loglikelihood functions of margins of 0 are 

4 j (9j) = E lo§ Pi(yij) »• 3 = 1 > • • •) d , 
1=1 

n 
tnjk(0j , Ok, Ojk) = E l o S PjkiVij Vik), 1 < j < k < d. 

(2.40) 

«=i 

These expressions can also be rewritten as 

4>j (di) = ]C ni (y>)log Pi )' 3 = 1, • • •, d, 
{yj} 

tnjk(0j, 8k,8jk) - njk{yjyk)\ogPjk(yjyk), 1 < j < k < d, 
{yjVk} 

(2.41) 

based on the summary data rij(yj) and rijk(yjyk). In the following we continue to use the expression 

(2.40) for technical development, for consistency with the case where covariates are present. But 

(2.41) is a more economic form for computation, and should be used for model fitting whenever 

possible. 

Let 

1 d. d - - T H < n = f 1 9 P j i y j ) i 

P j { y j ) . m . . 3 

V l " *' } k ) Pjk(yjyk) d8jk ' . . d e f 1 dPj(yij) . 

1 < j < k < d, 

1pi;jk = 1pi,jk(8j,8k,8jk) 
d e f 1 dPjkjyijyik) 

l<j<k<d, PjkiVijVik) 08jk 

for i = l , . . . , n . Let * = tf(0) = (V>i,..., V d , ^12, • • . , V d - i . d ) ' , and = = ( * „ i * B i , 

* n i 2 , • • • , 9nd-i,d)', where ¥„,• = £ " = 1 (j = 1, • • •, d) and 9njk = £ ? = 1 ^.jk (1 < j < k < d). 
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From (2.40), we derive the I F M for 0 

n 

» = 1 (2.42) 

i=l 
Since (2.39) is a regular model, the regularity conditions of Definition 2.11 are also true for the 

inference functions (2.42). With the I F M approach, an estimate of 0 that we denote by 0 = 

0(vi> • • • J Yn) — • • • > 0d> 012, • • •, 8d-i,d)' is obtained by solving the following system of nonlinear 

equations 

'*„,•=(), j = l , . . . , d , 

^njk =0, 1 < j < k < d. 

Proper t ies of estimators 

We start by examining the simple case (particularly, for notation) when d = 2 to illustrate how the 

consistency and asymptotic normality of 0 can be established. The model (2.39) is now 

^(yi.ifc; ft,02,0i2) (2.43) 

with 0 = (0i, 02,0i2)' G 3J- Without loss of generality, 0i, 02,0i2 are assumed to be scalar parameters. 

Let the random vector Y = (Yi, Yjj)' and Yj = (Y,i, YJ2)' (i — 1,...,n) be iid with (2.43), and y, y,-

be the observed values of Y and Y,- respectively. Thus the I F M for 0i,0 2,0i2 are 

i = l 
n 

*r>12 = y~]ll>i;12-

(2.44) 

i=l 
We denote the true value of 0 = (0i,02,0i2)' by 0O = (0i,o, 02,o, 0i2,o)'- Using Taylor's theorem 

on (2.44) at 0o to the first order, we have 

0 = * „ i(0i) = *„ i(0i , o ) + (Oi ~ 0i,o) 

0 = * n 2 ( 0 2 ) = *„2(^2,0) + (02 - 02,0) 

301 

502 

0 = ¥n12(6~12,h,6~2) = *nl2(012,o) + (#12 ~ »12,o) 
dVnl2 

60 12 

(2.45) 

+ (0i - 0i,o) 
5^„12 

30i r , + ( 0 2 - 0 2 , 0 ) ^ 
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where 0* is some value between 9\ and 01,0, Q\ is some value between 02 and 02,o, and 6** is some 

vector value between 6 and OQ. Note that \ P ni2 also depends on 0i and 02. 

Let 

Hn=Hn{6) = 

0 0 

0 0 

3 » i 
9 * 1 . 1 2 
a s 3 

a * „ , Q 

a « i 2 

and D $ = -D*(0) = E{n 1 i 7 „ } . Since (2.43) is assumed to be a regular model, we have that 

E(\P„) = 0 and non-singular. 

On the right-hand side of (2.45), * „ i , * n 2 , * „ i 2 , d^m/d9u <9#r,2/<902, dVnl2/d912, <9tf„i 2/<90i 

and d^ni2/d92 are all sums of independent identical variates, and as n —• oo each therefore converges 

to its expectation by the strong law of large numbers. The expectations of \?„i (0 i ,o ) , ^n 2(0 2 ,o), and 

*ni 2(0i2,o) a r e zero and the expectations of d^ni/dOx, d^n2/d62, d^ni2/d9i2, are non-zero by 

regularity assumptions. Since all terms on the right-hand side must converge to zero to remain 

equal to the left-hand sides, we see that we must have (0i — 0i,o), (02 — 02,o) and (0i2 — 0i2,o) 

converging to zero a s n - > oo, so that 9\, 92 and 0i2 are consistent estimators under our assumptions 

(for a more rigorous proof along these lines, see Cramer 1946, page 500-504). 

Now let 

HI 

I 

\ 

a*„, 0 0 80! •\ 
0 0 

0 
«; 

0 

8*n,2 0 * n , 12 
a«, B" 682 6" a « i 2 

\ 

3** / 

It follows from the convergence in probability of 6 to 6Q that 

Hn{0) - Hn(60) >0. 

Since each element of n~1Hn(6) is the mean of n independent identically-distributed variates, by 

the strong law of large numbers, it converges with probability 1 to its expectation. This implies that 

n~1Hn(6o) converges with probability 1 to Dy(0o)- Thus 

-Hn(6)^D9(60). 
n 

Now we rewrite (2.45) in the following form 

y/n(0 - 00) = 
n - 7 = [ - * » ( « o ) ] - (2.46) 

Since 6\ lies between $i and 0i ] O , 02 lies between 02 and 02,o, and 0** lies between 6 and 0O, thus 

we also have 

-H^D9(e0). 
n 
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Along the same lines as the proof in Theorem 2.1, we see that 

4=M0o)-^iV3(O,M*(0o)), 

where M*(0 O ) = E(tftf'). Applying Slutsky's Theorem to (2.46), we obtain 

v ^ ( * - 0O)^N3(O, D*\do)M*(6o)(Dy\0o))T), 

or equivalently 

Vt(8-0o)°N3(O,Jyl(6o)). 

Thus we can extend to the following theorem for the I F M E of model (2.43): 

Theorem 2.3 Consider the model (2.43) and let the dimension ofOj (j = 1, 2) be pj and that of 612 

be P12. Let 6 denote the IFME of 6 under the IFM corresponding to (2-44)- Then 0 is a consistent 

estimator of 0. Furthermore, as n —• 00, 

y/H(9-e)^NPl+Pa+Pia(0,J^), 

where J * = J*(0) = D^M^1 , with M * = E{W} and D<z = E{9^/90'}. • 

Inverting the Godambe information matrix J$ yields the asymptotic variances and covariances 

of 0 = ( f li,02, f li2)- We provide the calculations for the situation where 0i,02,0i2 are scalars. The 

asymptotic variance of Oj, j = 1,2, is n~1\Evb'j]\E9il>j/90j]~2 and the asymptotic covariance of §1,92 

is ra-^EVi^tE^Vi/^i]-1^^/^]"1. The asymptotic variance of 0 1 2 is 

12 
30 12 

2 r EV2
2 + £ E EV? 

- 2 E E 
<9Vj_ -1 

E 12 [EVi2 -̂]+2n 
3 = 1 

and the asymptotic covariance of 0i2, Oj is 

E dip 12 E av_i 
(90J 

Eyj12ipj 

•n E 
50* 

E <9V 12 
30* 

E a_Vj_ 
90j 

[ 99j \ 

90~. 

-1 'M12 
90j \ 

'diPj 
d9~ 

-1 'M\2 
[ 90j \ 
-1 

EV1V2 

[EV1V2 

Furthermore, from the calculation steps leading to the asymptotic variance expression, we can see 

that 0i, 02 and ,0i2 are ^/n-consistent. 
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Now we turn to the general model (2.39) where d is arbitrary. As we can see from the detailed 

development for d — 2, it is straightforward to generalize Theorem 2.3 to the case where d > 3, since 

in the general situation of the model (2.39), the corresponding I F M are 

n 

*nj=X]^»:J' J = 1> •••><*, 
t=l 

®njk = ^2 1 < J < k < d-
t=l 

In (2.39), 0j (j — 1 , . . . , d) and 9jk (1 < j < k < d) can be scalars or vectors, and in the latter case, 

ipj(0j) and ipjk(8jk) are function vectors. 

The asymptotic properties of 0 for a general d is given by the following theorem: 

Theorem 2.4 Consider the model (2.39) and let the dimension of Oj (j = 1, . . .,d) be pj and that 

of 9jk (1 < j < k < d) be pjk. Let 0 denote the IFME of 6 under the IFM corresponding to (2.42). 

Then 0 is a consistent estimator of 6. Furthermore, as n —• oo, we have asymptotically 

M6-6)^Nq(0,J^), 

where q = £ ? = 1 pj + J2i<j<k<dPi>°> J * = J*(d) = D^M^D*, with M * = M*(0) = Eg{VW'} 

and = E{8V/80}. • 

For many models, we have pjk = 1; that is 9jk is a scalar (see Chapter 3). 

The asymptotic variance-covariance of 6 is expressed in terms of a Godambe information matrix 

J$(0). Assume 9j (j = 1, . . .,d) and 9jk (1 < j < k < d) are scalars. Let us see how we can 

calculate the Godambe information matrix J$. We first calculate the matrix M $ and then 

Since M $ = E(\P\I>'), we only need to calculate its typical components E(ipjtpk) (1 < j, k < d), 

E(i/>>ipkm) {k < m) where j may be equal to k or m, and E(ipjkiptm) (j < k,l < m), where j may be 

equal to / and k may be equal to m. 

For E(ipjtpk), we have 

\pj(yj) pj(yk) 99j 09k j 
pik(yjVk) OPj[yj)0Pk{yk) 

It can be estimated consistently by 

{ s ^ }
 pi(yj)pk(yk) d9j 89k 

dPj(ya) 8Pk(yik) l ^ U 1 _ 
n h i pj(yij)pk(Vik) de{j 89i]k 

(2.47) 
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or equivalently by 

1 njk(VjVk) 9Pj(yj) dPk(yk) 

based on the summary data. For the case j = k, we need to replace Pjk(yjUk) by Pj(yj), {yjyk} by 

{yj} and rijk(yjyk) by nj(yj) in the above expressions. 

For E(ipjtpkm) (k < m), we have 

E ( ^ k m ) = E ( 1 dPj(yj)dPkm(ykymy 
Pj(yj) Pkm(ykym) 96) d9km 

_ y - Pjkm(yjykym) 9Pj(yj) dPkm(ykym) 

. ^ , Pj(yj)Pkm(ykym) 96'j d6km 

\y jykymj 

It can be estimated consistently by 

}_ A 1 dPj(yij) 9Pkm(yikyim) (2.48) 
n Pj(yij)Pkm(yikyim) 96j d6km 

For the case j = k or j = m, a slight modification on the above expression is necessary. For example 

for j = k, we need to replace Pjkm(yjykym) by Pjm(yjym), {yjykym} by {%ym} and njkm(yjykym) 

by rijm(yjym) in the above expressions. 

For E(tpjkipim) (j < k, I < TO), we have 

1 1 dPjk(yjyk) 9Pim(yiymY 
E ( ^ m ) - E K p . k { y . y k ) Plm{yiym) OOjk 99lm 

y . Pj * i ~ (V< Vk. VIVm) 9Pik(Vi Vk ) dPlm (Mm) 
~ ^ , Pjk(yjyk)Pim(yiym) 96jk 99lm 

{yjykyiymi 

It can be estimated consistently by 

I 9Pjk(yijyik) dPim (mmm) i f 
" i^i PJk(yijyik)Plm(yiiyim) 99jk 99,„ 

(2.49) 

For the particular case j — l,k ^ m (or similarly j = m or k = / or j ^ /, k = m cases), we 

need to replace Pjkim(yjykyiym) by Pjkm(yjykym), {yjykyiym} by {yjykym} and njklm(yjyky,ym) 

by njkm(yjykym) in the above expressions. For the particular case j = I, k = m, we need to replace 

Pjkim(yjykyiym) by Pjk(yjyk), {yjykyiym} by {yjyk} and njkim(yjykyiym) by rijk(yjyk) in the above 

expressions. 

Now let us calculate £ ) $ . Since Z)$ = D^(6) is a matrix with (p, q) element E(dipp/89 q) (1 < 

j, k < q), where xjjp is the pth components of \£ and 9q is the gth component of 6, we only need to 

calculate its typical component E(8ijjj / 89m) (1 < j,m < d), E(8t}>j/86im) (1 < j < d; 1 < / < ra < 
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d), F,(dipjk/d6m) (1 < j < k < d; 1 < m < d), and E(dyjjk/dOim) (1 < j < k < d; 1 < / < m < d). 

Since 
dipj 
d9„ 

1 dPjjyj) dPjjyj) 1 d^Pjjyj) 

Pj{yj) d9j dOm
 + Pj(yj) ddjdem ' 

we have 

E 
1 dPMdPjjyj) 1 d2Pj(yj)\ 

= i_dPMdPj(yj) 

It can be estimated consistently.by 

n PfiVii) d6j 80m 

(2.50) 

Because Pj depends only on univariate parameter Oj, thus yjj does not depend on the parameter 

Oim- So dvjj(0j)/d0im = 0; this also leads to 

Since 

we have 

dipjk _ 1 dPjk(yjyk) dPjk(yjyk) 1 d2Pjk(yjyk) 

ddm ~ PjMvjVk) dOjk 80m
 + Pjk(yjVk) d0jkd0m ' 

E 
fdjpj£\_ 1 urjkyyj 

\dOmJ Pjk(yjyk) dOjk 

9Pjk(yjyk) 9Pjk(yjyk) 

{yjyk} 
dOr, 

It can be estimated consistently by 

_I f 1 dPjk(yjjyik) dPjk(yjjyik) 

n fr[ P-k(yijVik) dOjk dom 

(2.51) 

Similarly, we find 

Er̂ ,=< 
80, lm 

sr 1 fdPjk(yjyk)\ . _ , , 

0, otherwise, 

where E(dyjjk/dOjk) can be estimated consistently by 

9Pjk(yijyik) 

n tt PUVHV") V dOjk 
71 

(2.52) 

8j8k9jk 
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2.4.2 Models with covariates 

In this subsection, we consider extensions of models to include covariates. Under regularity con

ditions, the I F M E for parameters are shown to be consistent and asymptotically normal and the 

form of the asymptotic variance-covariance matrix is derived. One approach for asymptotic results 

is given in this subsection, a second approach is given in the next subsection. Our objective is to 

set forth results as simply as possible and in useful forms; more general theorems for multivariate 

models could be obtained. 

Let Y i , . . . , Y „ be a sequence of independent random vectors of dimension d, which are denned 

on the probability measure space (y,A,P(Y;0)), 6 G Sr. C Mq. The marginal probability measure 

spaces are defined as (yj,Aj,P(Yj\6)) (j = l , . . . , d ) for j th margin, and (yjk,Ajk,P{Yj,Yk\0)) 

(1 < j < k < d) for the (j, k) bivariate margin and so on. Particularly, the random vectors Y j 

(i = 1 , . . . , n) are assumed to have the distribution 

P(yn---yid\0i), 0i e% (2.53) 

where P(yn • • -yid',9i) is a M C D or M M D model with univariate and bivariate expressible (PUBE) 

parameters 0,- = • • •, 6%,d, 8i-,i2, • • •, 0»;d-i,d)- We also assume that Oij (j = l,...,d) is the 

parameter for the j th univariate margin of Y,- such that Pj(yij) depends only on the parameter Oij, 

and Oi-jk (1 < j < k < d) is the parameter for the (j, k) bivariate margin of Y,- such that Oijk is 

the only bivariate parameter appearing in Pjk(yijyik)- Oij and Oi-jk can both be vectors, but for 

the purpose of illustration, and without loss of generality, we assume they are scalar parameters. 

Furthermore, we assume for i = 1 , . . . , ra, 

= 9j(<*'jXij), j = 1 ,2, . . . , d, 
(2.54) 

Gijk - hjk(Bjkyfijk), 1 < j < k < d, 

where the functions gj(-) and hjk(-) are usually monotonic increasing (or decreasing) and differen-

tiable functions (for examples of the choice of gj(-) and hjk(-) in a specific model, see Chapter 3), 

called link functions. They link the model parameters to a set of covariates through a functional 

relationship. In (2.54), otj = (otji, • • •, ajpj)' is a pj x 1 parameter vector, X j j = (a ; , j i , . . . , Xijpj)1 is 

a pj x 1 vector of observable covariates corresponding to the response y ; . 3jk = (djki, • • •, Pjkqjk)' 

is a qjk x 1 parameter vector, and Wijk = (wijki, • • •, wijkqjk)' is a qjk x 1 vector of observable co

variates corresponding to the response y,-. Usually ^ . pj + J2j<k 9J* i s m u c n smaller than the total 

number of observations n. x,j and Wijk may or may not include the same covariate components. 

In terms of margins, the covariates X{j and vfijk may be margin-dependent, or margin-independent, 
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or partly margin-dependent and partly margin-independent. The marginal parameters may also be 

margin-dependent or margin-independent. 

We consider the problem of how to estimate the regression parameters in the statistical model 

defined by (2.53) and (2.54). We assume we have a well-structured data set as in Table 1.1. Problems 

such as the misspecification of the link function, the omission of one or several important covariates, 

the random nature of some covariates, missing values, and so on will not be dealt with here. 

From (2.54) and the P U B E assumption, Pj can be considered as a function of atj and Pjk can 

be considered as a function of ctj, otk, and /3jk. Let y x , . . . , y„ be the observed values of Y i , . . . , Y „ . 

The loglikelihood functions of margins of the parameter vectors Qfj and f}jk based o n y l l . . . , y „ are 

Let 

and 

lni(ai) = E log-P,(j/«j), j = l,...,d, 

tnjk(otj,ak,0jk) = J^logPjkiyijVik), 1 < j < k < d. 

, . d e f 1 9Pj(yij) . 

= ^jk(eijkpp , l °p^yik), i<j<k<d, 
PjkiyijVik) oVijk 

tediPi.j(pi.j) 

^ j k J dl~j—• < P i ^ k 5 ^ — 1 * w de—,—' l<3<k<d, 

(2.55) 

and 
. . d e f 1 dPjiyij) . , , n 

,n N d e f 1 9Pjk(yijyik) . . . ^ , . , , . = **.JM») = p.k(yijyik) dpikt • l<J<k<d;t = l,...,qjk. 

Let 7 = (.aflt...,e/d,p12,...,pd-lidy, and y0 = (a'h0,a'2fi,pl2fi,... ,#,_ M i 0 ) ' . where y0 is 

the true vector value of 7. Let 7 = (a[,... ,ad,p'l2,... ,/?'d_i,d)' be the I F M E . Assume 7, 7 0 and 7 

are all q x 1 vectors. Let 

= *,a(ai) - (il>i-ju • • •,il>i-jPj)', 

Vijk = VijkiPjk) - (V't-jtl, • • •. 1pi\jkqjk)', 

*„,• = *„,-(«i) = (*„,-!, • • • , *»j, P i)', 

Vnjk = VnjkiPjk) - ( * n i t l , • • • , ^njk.qjj, 
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where * n j s = Yl"=i^i-J> (s = and ̂ njkt = H)"=i V'iyJfct (t = l , . . . , ? j jb) . Let tf<;(7) = 

( ^ j i C o i i ) ' , . . . , *<jd(otd)', *i;i2(/?i2)', • • •, *,- id-i,d(Ai-i 1d) /) ,> * » ( 7 ) = E?=i *.-;(7), and we define 

M „ ( 7 ) = n - 1 ^ E ( * i ; ( 7 ) ^ ; ( 7 ) / ) and £ > „ ( 7 ) = n ^ E [ . ( 2 . 5 6 ) 

From (2.55), the I F M for a ; and /? J j t are 

t=i 

datj 
(2.57) 

and the estimating equations based on I F M are 

jvnj = o, j = l,...,d, 
\ * „ i t = 0 , 1 < j < k < d. 

(2.58) 

With the I F M approach, estimates of a j and 0jk, denoted by otj — ( S j i , . . .,djiPj)' and /? j jb = 

(^jibi, • • • ,Pjk,qjk)'', are obtained by solving the nonlinear system of equations (2.58). 

We next give several necessary assumptions for establishing asymptotic properties of otj and (3jk. 

A s s u m p t i o n s 2.1 For 1 < j < k < d, 1 < / < m < d and i = 1 , . . . , n, we make the following 

assumptions: 

1. (a) For almost all y,- G y and for all 0; G ft, 

tPi-j, fi-jk, <Pijj, <Pi;jk,j, <Pi-jk,k, <Pi;jk,jk 

exist. 

(b) For almost all yt- G y and for every 0,- G ft, 

dei;j < I<i;j; 

< Sij; 

dPjkjyijyik) 
Mi 

d2Pjk(yijyik) 

d PjkiyijVik) 

dei]k < Li;k', 
dPjkjyijVik) 

dOijk 
d2 Pjk(ynyik) 

d2 PjkjyijVik) 
ddhk ^ -̂ i;j k j 

d2 PjkiyijVik) 
dOijkdOij ^i'jkj j 

d2Pjk(vijyik) 
dOijkdO^k 

< Tijk,k: 

where Kij, Lij, Li-k, Lijk, Sij, T{j, Ti-k, T{jk, Ti-jkj andTijk,k are integrable (summable) 

over y , and are all bounded by some positive constants. 
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2. (a) 

and 

E E Pi(v<j) = opM, 
i = 1 {ya • \<Pi-,j\>n} 

n 
E E PjkivijVik) = o p ( i ) , 

l 8 = 1 {ya,yik • \<Pi-,jk\>n} 

E E <Pi-jP}(Vij) = Op(.n2), 
»' = 1 {Vij l̂ ii>l<"} 

n 

E E <Pi;j<Pi;kPjk(yijyik) = Op(n2), 
i = l {ya.yik •• sup(|ipi ; i|,|V J ; f c|)<n} 

n 

E E <PiJ<Pi;lmPjlm(yijyuyim) = Op(n2), 
i = 1 {y*i ,y ; i ,yim : sup(|v3 i ij|,|^ i ; l m|)<n} 

n 

E E <pljkpjk(yijyik) = op{n2), 
* = 1 {j/ii.yifc : \<Pi;jk\<n} 

n 

E E <Pi;jk<Pi;imPjkim(yijyikyuyim) = op(n2): 

I i = 1 {yij,yik,yil,yim • BUp(.\<f>i;jk\,\<Pi;lm\)<n} 

(b) 

E E Pj(yn) = opi1)' E E Pjk(y>jyik) = op(l), 
» = 1 {yij ; l^ - i i , i l>" } » = 1 {ya,yik • \vi-,jk,j\>n} 

E E Pjkiytjyik) = op(l), E E pik{yayik) 

I » = 1 {yn,yik • Iviijfc.fc|>n> !=i {ytj.yik • \<Pi;jkjk\>n} 
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and 

X) YI 'Pi-Jj PJ ( ) = oP{n2), 
i = \ {vu • \v>i;jj\<n} 

n 

E J2 <pl,jk,jpjk(yijyik) = op(n2), 
, = 1 {ya.yik •• \<i>i;jk,j\<n] 

n 

E (pl,jk,kpjk(yijyik) = op(n2), 

i = 1 {yi]<yik • \<Pi;jk,k\<n} 
n 

J2 '?hkjkpjk(yijyik) = op(n2), 
, = 1 { y i i . y . fc : \<fii-,jk,jk\<n} 
n 

E E <Pi;j,j<Pi;k,kPjk{yijyik) = op(n2), 

« = 1 {yijVik • ™p(\'f>i;j,j\,\<Pi;k,k\)<n} 
n E E 

Pij J<Pijm,l Pjlm(yij yiiyim) — Op(n2), 

1 = 1 {yij,yu,yim • sup(|0 i ; ;, i J|,|0 j ; i r n,,|)<n} 

E E <Pi;j,j(Pi;!m,'mPjlm(yijyuyim) = Op(n2), 
i = 1 { y u , y i ! , y i m : sup(|vi ;j, J|,|^ i ; l m,,m|)<n} 

n 
E E <Pijk,j<Pi;jk,kPjk(yijyik) = Op(n2), 
! = 1 {yij.Vik • s u p ( | ( / i i ! j f c , J | , | ¥ > i l i f e , f e | ) < n } 

n 

E E 
<PiJk,j'Pi;lm,lmPjklm(yijyikyiiyim) = Op(n2), 

* = 1 { y i i , y i k , y i i , y i m : sup(|v> i ; i k, i|,|v. i. I m, ! m|)<n} 
n E E 

*Pijk,jk<PiIm,lmPjklm(yijyikyiiyim) = 0p(n2). 

I » = 1 {yij,yik,yu,yim •. sup(|^i i f c | J k|,|0 j I m i ! m|)< n} 

• A s s u m p t i o n s 2.2 Let Q G J ? * is the parameter space of y, where 7 is assumed to be vector of 

length q. Suppose Q is an open convex set. 

1. Each gj(-) and hjk{-) is twice continuously differentiable. 

2. (a) The covariates are uniformly bounded, that is, there exist an Mo, such that ||x,j|| < Mo, 

W^ijkW < Mo- Furthermore, ^ , X , J X ? J - , J2iyfijkwTjk have full rank for n > no, where n0 

is some positive integer value. 

(bj In the neighborhood of the true 7 defined by 

B(8) = {y*eg : "||7* - Til < *}, «5 i 0, 

9j(')i 9j('):9j(')i hjk(-), frjfcO and hjk(-) are bounded away from zero. 
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• 

A s s u m p t i o n 2.3 For all e > 0 and for any fixed vector ||u|| ^ 0, the following condition is satisfied 

i i j S S ^ i : £ K , ( r . ) fP(Y;r . ) = o. 
v nwoy ; •=i{|u'f j(70)|>£(u'Af.(70)u)i/»} 

• 
Assumptions 2.1 and 2.2 are needed so that we may apply some weak law of large numbers 

theorem to prove the consistency of the estimates. Assumption 2.3 is needed for applying the central 

limit theorem for deriving the asymptotic normality of the estimates. These conditions appear to 

be complicated, but for special cases they are often not difficult to verify. For instance, for the 

models we will use in Chapter 5, if the covariates are bounded and have full rank in the sense of 

Assumptions 2.2, with appropriate choice of the link functions, the conditions are almost empty. 

Related to statistical literature, Bradley and Gart (1962) studied the asymptotic properties of 

maximum likelihood estimates (MLE's) where the observations are independent but not identically 

distributed (i.n.i.d.). Hoadley (1971) established general conditions (for cases where the observations 

are i.n.i.d. and there is a lack of densities with respect to Lebesque or counting measure) under 

which maximum likelihood estimators are consistent and asymptotically normal. Assumptions 2.1, 

2.2 and 2.3 are closely related to the conditions in Bradley and Gart (1962) and Hoadley (1971), 

but adapted to multivariate discrete models with M P M E property. In particular, the Assumptions 

2.1 reflect the uniform integrability concept (for discrete models) employed in Hoadley (1971). 

Proper t ies of estimators 

As with the model (2.39) with no covariates, we first develop the asymptotic results for the simplest 

situation when d — 2 such that Y j = (Yu, Y,-2)' (i = 1 , . . . , n) has the distribution 

P{ynyi2\0i), (2.59) 

where 6{ = (0j ; 1, 0j ; 2 , 0j ;i 2). Without loss of generality, 0j ;i, 0j ; 2 , 0 j ; i 2 are assumed to be scalar 

parameters. We further assume 

= 9j(<Xj*-ij), J = 1,2, 
(2.60) 

A;12 = /ll2O0i2Wj12), 

where the functions gj(-) and fti2(-) are monotonic increasing (or decreasing) and differentiable 

functions. In (2.60), otj = (ctji,...,ctjPj)' is a pj x 1 parameter vector and XJJ = ( z j j i , . . . , X i j P j ) ' 
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is a pj x 1 vector of covariates corresponding to the response variables Yij (j — 1,2). Similarly, 

/?12 = (/?i2i, • • • , / ? i 2 g i 2 ) ' is a gi2 x 1 parameter vector and w , i2 = ( w i m , • • •, u>ti2 4 l 3)' is a ? 1 2 x 1 

vector of covariates corresponding to the response vector y,-, where yj = (yn, yi2) is the observed 

value of Y j . 

Theorem 2.5 Consider the model (2.59) together with (2.60) and let y = (ot[, d' 2 , J312)' denote the 

IFME ofy corresponding to IFM (2.57). Assume y is a q x 1 vector. Under Assumptions 2.1 and 

2.2, 7 is a consistent estimator ofy0. Furthermore, under Assumptions 2.1, 2.2 and 2.3, as n —> 00, 

we have 

^ - 1 ( 7 - 7 o ) ^ ( 0 , / ) , 

where An = Dn1/2(y0)M^/2(y0)(Dn 1 / 2 (7o)) T , with Dn(y0) and Mn(y0) defined in (2.56). 

Proof: Using Taylor's theorem to the first order, we have 

* „ i ( a i ) = * „ i ( a i , o ) + ( 0 1 - ari.o) 

*n2(Q!2) = *n2 («2 , o ) + ( « 2 . - «2,o) 

0 * m 

dati a-

3 * „ 2 

da2 

* n l 2 ( / ? 1 2 ) = *nl 2(/Vo) + (Pl2 ~ Plifi) 
3 * „ 1 2 

12 

+ (di - a i , 0 ) 
dati 

dfi12 

+ ( d 2 - a2,o) 

(2.61) 

V 
3 * „ 1 2 

da2 V 
where ot\ is some vector value between d i and Qfi,o, &2 is some vector value between d2 and a 2 ] o, 

and 7** is some vector value between 7 and 70. 

Note that in (2.61), \Pf,i 2(/?i 2) also depends on d i and d 2 , and ̂ ni2(0\2,o) depends on o^o and 

at2to- Furthermore, in (2.61), we have 

f = E ^ ; l ( ^ ; l ) ( ^ K x . - l ) ) 2 + ^ ; l (^ ; l )^Kxj 1 ) ]x j 1 xf 1 , 
i = l 

^ f ^ 1 = iyi.4°iMi(«S*>))2 + ^ ; 2 ( ^ ; 2 ) < ( ^ X i 2 ) ] x j 2 X ? 
T 
2> 

•=1 

= E [ ^ ; i 2 ( ^ ; i 2 ) ( ^ f c ( ^ 2 W i i 2 ) ) 2 + W i i a ^ - i a J ^ O T a W a s M w a a w f ^ , (2.62) 
0 7 , 1 2 ,-=i 

^ n l 2 Q 9 i 2 ) _ ^ 

9a 1 
1=1 

0 t t n l 2 ( £ l 2 ) = f 

da2 «=i 

cVt;l2(#i;l2) / , ; x , / / j 0 T \ 
'gg ' ' 9j(<XlXil)h'jk(012Wil2) 

dfi-i2(9i\2) , . , . , r >. 
- ^ ( a 2 x « ) ^ i ( i 8 i 2 W i i 2 ) 90j;: 

Wj^Xj^ , 

Wj l2x f 2 , 
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and 3 * „ i ( o i ) / a«2 = 0, 0 * „ i ( a i ) / d 0 1 2 = 0, d^n2{a2)/da1 = 0 and d*n2(a2)/d/312 = 0. 

To establish the consistency and asymptotic normality of y, note that with Assumptions 2.1, we 

have that n- 2 E(<M«i,o)*»j(«i ,o) T ) 0 (j = 1,2), and n- 2 E(tf„ 1 2 (/?i2 ,o)*ni 2 (/?i2 ,o) T ) 0. 

By the assumed monotonicity (e.g. /*) and differentiability of gj(-) and hi2(-), g'j(-) is a non-

negative function of the unknown orj and the given X j j , and /i'12(-) is a non-negative function of 

the unknown B12 and the given w , i 2 . From Assumptions 2.1 and 2.2, d^nj(otj)/daj (j = 1,2) and 

d^ni2(0i2)/d0i2 have full rank. By Markov's weak law of large numbers (see for instance Petrov 

1995, p.134), we obtain that n - 1 * „ i ( a i ] 0 ) - ^ p 0 , n " 1 * „ 2 ( a 2 , o ) - > p O and n~11'ni2(/?12|0)-'-P0. Since 

^ni(Q!i) = 0, \Pn2(<*2) = 0 and ^n\2(S\2) = 0, by following similar arguments as for the consistency 

of 6 in the model (2.39), we establish the consistency of y. 

Now let 

*n(7) 

/ *» l (« l ) \ 

* n 2 ( « 2 ) 

V*nl2(^12) / 

Hn{y) = 

I 9 Q t i 

x aa. 

0 0 

0 dOtQ 

and 
/ 9 t t i 

0 

aa 3 

(2.61) can be rewritten in the following matrix form 
T* 

0 

0 

\ 

Vn(y - y0) = -HI h*n(7o)]. (2.63) 

It follows from the convergence in probability of 7 to y0 that 

±[Hn(y) - Hn(y0)]^0. 

Since each element of n~1Hn(y0) is the mean of n independent variates, under some conditions 

for the law of large numbers, we have 

1 
-Hn(y0)-Dn(y0)^0, (2.64) 

where Dn(y0) = n- 1 E{i?„(7 0 )}. 

Assumptions 2.1 and 2.2 imply that 

lim ra-2Var(#„(70)) = 0. (2.65) 
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Thus by Markov's weak law of large numbers, we derive that 

^H*n - Dn(y0)^0. (2.66) 

Next, we note that ^ n (7o) involves independent centered summands. Therefore, we may directly 

appeal to the Lindberg-Feller central limit theorem to establish its asymptotic normality. From 

Assumption 2.3, by the Lindberg-Feller central limit theorem, we have 

" ' * n ( 7 o ) D 
(u>Mn(y0)uy/2 

Applying Slutsky's Theorem to (2.63), we obtain 

v ^ ^ 1 ( 7 - 7 o ) ^ « ( 0 , / ) , 

where An = £ > - 1 / 2 ( 7 0 ) M „ 1 / 2 ( 7 o ) ( £ > - 1 / 2 (7o) ) T , 

and J is a q x q identity matrix. • 

Next we turn to the general model (2.53) where d is arbitrary. With the Assumptions 2.1, 2.2 

and 2.3, Theorem 2.5 can be generalized to the case d > 2. Compared with the d = 2 situation, 

the I F M for the general model (2.53) is a system of equations (2.58), which do not introduce any 

complication in terms of the asymptotic properties for I F M E . Thus we have the following: 

T h e o r e m 2.6 Consider the general model (2.53) with arbitrary d. Lety denote the IFME ofy under 

the IFM (2.58). Under Assumptions 2.1 and 2.2, y is a consistent estimator of y. Furthermore, 

under Assumptions 2.1, 2.2 and 2.3, as n —+ oo, we have 

v ^ A - 1 ^ - 7 0 ) ^ ( 0 , 7 ) , 

where An — £ » „ 1 / 2 ( 7 0 ) M „ 1 / 2 ( 7 0 ) ( J D „ 1 / 2 ( 7 0 ) ) T , with Dn(y0) and Mn(y0) are defined in (2.56) • 

We now calculate the matrix Mn(y) and Dn(y) (or just part of the matrices, depending on the 

need) corresponding to the I F M for aj and 0jk. For example, suppose a,-; is a parameter appearing 

in Pj(yij) and a k m is a parameter appearing in Pk(y(k). Then the element of the matrix Mn(y) 

corresponding to the parameters ctji and a k m can be estimated by 

1 " 1 dPjjyjj) dPk(yik) (2.67) 
OtjOt* n JT[ Pj(Vij)Pk(yik) daji dak 

where j may equal to k. 

If ctji is a parameter appearing in Pj{yij), and Bkms is a parameter appearing in Pkm{yikyim), 
then the element of the matrix Mn(y) corresponding to the parameters ctji and Bkms can be estimated 

by 

l . f 1 dPjjyij) dPkm(yikyim) 
n ~[ Pj(yij)Pkm(yikyim) da^ dBkms 

. , (2.68) 
ajakamBkm 
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where k < m and j may equal to k or m. Furthermore, if Pjks is a parameter appearing in PjkiyijVik) 

and fiimt a parameter appearing in Pim(Vi\Vim), then the element of the matrix Mn(y) corresponding 

to the parameters Pjks and Pimt can be estimated by 

1 " dPjkiyijVik) dPlmjyuVim) 
. . , (2.69) 

dr idr l l a Idrm 0 i l k 0 I m n ^ Pjk(Vijyik)Plm(yilVim) df3jk, dPlmt 

where j < k, I < m and (j, k) = (/, m) is allowed. 

For the elements of the matrix Dn(y), suppose ctji and ctjm are parameters appearing in Pj(yij)-

Then the element of the matrix Dniy) corresponding to the expression d^fnji{aji)/dajm can be 

estimated by 

1 ^ 1 dPjjyjj) dPj(yij) 
(2.70) 

" i^l Pj(y>i) dai< d0Cjm 

If ctji is a parameter appearing in Pj(vij) and /?jjts is a parameter appearing in PjkiyijVik), then the 

element of the matrix Dn(y) corresponding to the expression d^nj(ctji)/dPjks is 0. 

If Pjks is a parameter appearing in PjkiyijVik) and ai is a parameter corresponding to a univariate 

margin, then the element of the matrix Dn(y) corresponding to the expression diinjksiPjks)/dai 

can be estimated by 

1 " 

n t—' 
dPjkivijyik) dPjkiyijVik) 

JT[ PjkiVijyik) dfijk* dai 
(2.71) 

If Pjks is a-parameter appearing in PjkiyijVik) and /3t is a parameter corresponding to a bivariate 

margin, then the element of the matrix Dniy) corresponding to the expression d^njksiPjks)/'dPt 

can be estimated by 

dPjkiyijVik) dPjkjyijVik) l y ^ 1_ 

n fri Pjkiyayik) dpjks dpt 

(2.72) 

However, as in section 2.5 and the data analysis examples in Chapter 5, it is easier to use the 

jackknife technique to estimate M„iy) and Dniy). 

2.4.3 Asymptotic results for the models assuming a joint distribution for 

response vector and covariates 

The asymptotic developments in subsection 2.4.2 treat x , i , . . . , x*d and w , i 2 , . . . , W j d - i , d as known 

constant vectors. A n alternative would be to consider the covariates as marginal stochastic outcomes 

of a vector V* , and to consider the distribution of the random vector formed by the response vector 
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together with the covariate vector. Then the-model (2.53) can be interpreted as a conditional 

model, i.e., (2.53) is the conditional mass function given the covariate vectors, where the Y t- are 

conditionally independent. Specifically, let 

Zs- = I I , i = 1, . . . , n , 

be iid with distribution F$ belonging to a family T = {F^,6 G A} . Suppose that the distributions F$ 

possess densities or mass functions (or the mixture of density functions and mass functions) with sup

port Z; denote these functions by /(z; 6). Let 6 = (y' ,r)')', where y = (o^ , . . . , a'd, /3' 1 2 , . . . ,0'd_1 d)' • 
Assume that the conditional distribution of Y t- given V,- = vt-, 

P(yi;6i\vi = vi), (2.73) 

is as in (2.53), that is P(yi;0i\'Vi = v,) is a M C D or M M D model with univariate and bivariate 

expressible parameters (PUBE) 

Oi = (<?!(<*;, v , ) , . . . , ed{a'd, v,-), M / ? i 2 , v,) , • • •, Od-iAP'd-i.d, v,-)), 

where Oi is assumed to be completely independent of 17 (defined below), and is a function of y. We 

also assume that 9j (j = l,...,d) is the parameter for the jth univariate margin Pj(ytj) of Y,-

from the conditional distribution (2.73), such that Pj(yij) depends only on the parameter Qj, and 

9jk (1 < j < k < d) is the parameter for the (j,k) bivariate margin PjkiyijVik) of Y,- from the 

conditional distribution (2.73) such that 6jk is the only bivariate parameter. In contrast to (2.54), 

here we only need to assume that Bj is a function of otj and v, j = 1, 2 , . . . , d, and 9jk is a function 

oi Pjk and v, 1 < j < k < d, without explicitly imposing the type of link functions in (2.54). 

The marginal distribution of V ; is assumed to depend only on the parameter vector JJ, which is 

treated as a nuisance parameter vector. Its density or mass function (or the mixture of the two) is 

denoted by gj (v,-; rj). Thus 

/(z,-; 6) = P(yi;0i\Vi = v,-)#(v i ; t,). (2.74) 

Under this framework, weak assumptions on the support of V,-, in particular not requiring any 

special feature of the link function, are sufficient for consistency and asymptotic normality of the 

I F M E in the conditional sense. 

Let the density of Z = (Y' , V ' ) ' be f(z;6), and that of V be gj(v;rj). Based on our assumptions 

on P(yi',0i\Vi = V J ) , we see that the joint marginal distribution of Yj and V is 

^•,v = P , (%|V = v)^(v ;r ? ) 
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and the joint marginal distribution of Yj, Yk and V is 

Pjky = Pjk(yjVk\V = V)3J(V;JJ). 

For notational simplicity, in the following, we simply write Pj(yj) and Pjk(yjyk) in lieu of Pj(yj |V = 

v) and Pjk(yjyk|V = v). The corresponding marginal distributions for Z; are 

P j , V i = Pj(yij)9j(v>;r}), 

Pj k,\i = Pjk (ytj yik )9j (v,-; >?). 

Thus we obtain a set of loglikelihood functions of margins for 7 

t=i >'=i »'=i 
n n n 

Injk = ^ l o g P _ , j f c , V i = E l o g P^J / . - j J / j * ) + E f f j ( V ' ; , ? ) ' 1 < J < ^ < rf-

(2.75) 

8 = 1 i=l s = l 

Let 
, .def 1 dPjy 

Uj,s = Wj,,(Q!j-,) = ^ L L - , J = l,...,d; s = l,...,pj, 
Fjy OOLjs 

u>jk,t = Ujk,t(0jk,t)d= 9 ^ k ' V , 1 < j < k < d; t = 1 

and 

"j.Vi OCtj, 

Ui-jk,t - ^i;jk,t(0jkt)'=-^:—d^ik'Vi, 1<3 <k <d; t = l , . . . , q j k , 

^jk.Xi OPjkt 
for i = 1 , . . . , n. From (2.75), we derive the I F M for aj and 8jk 

- 2^ W ' ;J> - 2^ P . v 5 a . = 2^ p.(v..\ d a . =2^Vi-jB, J = l,...,d; s = l,...,Pj 

8 = 1 8 = 1 3 , X i 3° 8 = 1 r]{y*j' 0 0 ! 1 S i = l 

1 3P J(;/, J) 

njk,t 
- V * 1 dpjk,vi 1 dPjk(yijyik) L 

8 = 1 fr[Pjk,Yi dPjkt fr( Pjk(yijyik) dpjkt 

jkt, 
8 = 1 

1 < 3 < k < d; t = l , . . . , q j k , 

and the estimating equations for aj and 3jk based on I F M are 

ttnj,s = 0, j - l , . . . , d ; s = l , . . . , p j , 

(2.76) 

(2.77) 
ftnjM = 0, 1 < j < < d ; t = 1 , . . . , qjk. 

With the I F M approach, estimates oiaj,j = and 8jk, 1 < j < k < d, denoted by 

aj = (ctji, • • •,&j,pj)' a n d Pjk ~ (Pjki, • • •>Pjk,qjk)', are obtained by solving the nonlinear system 
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of equations (2.77). Note that (2.77) is computationally equivalent to (2.57); they both lead to the 

same numerical solutions (assuming the link functions given in (2.54)). 

Let fi„j = (firy.i, • • •>tonj,pj)' and £l„jk = (£lnjk,i, • • • ,^njk,qjk)'• Then (2.76) can be rewritten 

in function vector form 

{ &nj=0, j = l , . . . , d , 

Vnjk = 0, l < j < k < d . 

Let Qj = (wj . i , . . . , U j , P j ) ' and Qjk = (ujk,i, • • -^jk^J- Let 0 = ( f i i , . . . , Q'd, fi'12>ft'd_M)'. 

Let M n = E(Qfl ') , Dn = dCl/dy. Under some regularity conditions similar to subsection 2.4.1, 

consistency and asymptotic normality for y can be established. 

Basically, the assumptions that we need are those making 0 a regular inference function vector. 

A s s u m p t i o n s 2.3 

1. The support ofZ, Z does not depend on any 6 £ A. 

2. Es{Sl) = 0; 

3. The partial derivative dCl/dy exists for almost every z G Z; 

4- Assumed andy areqxl vectors respectively, and their components have subindex j = l , . . . , q . 

The order of integration and differentiation may be interchanged as follows: 

Wi JZ
U^^'^DTI^ = ^ ^ [ W J A Z ; * ) ] D M Z ) ; 

5. E(j{QQ'} G M q x q and the q x q matrix 

Mn = Es{£in'} 

is positive-definite. 

6. The q x q matrix = dd(6)/dy is non-singular. 

• 

Assumptions 2.3 are equivalent to assuming that Mn(y) in (2.56) is positive-definite and Dn(y) 

in (2.56) is non-singular for certain n > no, where no is a fixed integer. 

We have the following theorem 
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Theorem 2.7 Consider the model (2.73) and let y denote the IFME of y under the IFM (2.77). 

Under Assumptions 2.3, y is a consistent estimator ofy. Furthermore, as n —»• oo, we have asymp

totically 

where Jn = D^M^1 Da-

Proof. Under the model (2.74) and the Assumptions 2.3, the proof is similar to that of Theorem 2.3 

We believe this approach for deriving asymptotic properties of an estimate has not appeared 

in the statistical literature. The assumptions are suitable for an observational study but not an 

experimental study in which one has control of the v's. 

Theorem 2.7 is different from Theorem 2.6 in that M n and £>n both depend on the distribution 

function of V . Nevertheless, because Uij^ = ipij,s and Wijk,t = ipi;jk,t, the numerical evaluation of 

M n and Mn(y) in (2.59) based on data are the same because only the empirical distribution for ^ 

is needed. For example, suppose or; is a parameter of Pj(yij) and ctm a parameter of Pk{yik), then 

the element of the matrix M n corresponding to the parameters a; and ctm can be estimated by 

which is the same as (2.67). We can similarly obtain (2.68) and (2.69). The same result is true for 

D n versus Dn(y) in (2.56); they both lead to the same numerical results based on the data. We 

thus derive the same formulas (2.70)-(2.72) for numerical evaluation of D n -

2.5 The Jackknife approach for the variance of I F M E 

The calculation of the Godambe information matrix based on regular I F M for the models (2.39) 

and (2.53) is straightforward in terms of symbolic representation. However, the actual computation 

of the Godambe information matrix requires many derivatives of first and second order, and in 

terms of computer implementation, considerable programming effort would be required. With this 

consideration, an alternative jackknife procedure for the calculation of the I F M E asymptotic variance 

is developed. The jackknife idea is simple, but very useful, especially in cases where the analytical 

answer is very difficult to obtain or computationally very complex. This procedure has the advantage 

of general computational feasibility. 

V ^ ( 7 - 7 0 ) ^ ( 0 , J n 1 ) . 

and 2.4. • 
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In this section, we show that our jackknife method for calculating the corresponding asymptotic 

variance matrix of 0 is asymptotically equivalent to the Godambe information matrix. We examine 

the situation for models with covariates and with no covariates. Our main interest in using the 

jackknife is to obtain the SE of an estimate and not for bias correction (because for multivariate 

statistical inference the data set cannot be small), though several results about jackknife parameter 

estimation are also given. 

The jackknife estimate of variance may be preferred when the appropriate computer code is 

not available to compute the Godambe information matrix or there are other complications such 

as the need to calculate the asymptotic variance of a function of an estimator. Some numerical 

comparisons of the,Godambe information and the jackknife variance estimate based on simulations 

are reported in Chapter 4. The jackknife procedure is demonstrated to be satisfactory. Some general 

references about jackknife methods are Quenouille (1956), Miller (1974), Efron and Stein (1981), 

and Efron (1982), among others. A recent reference on the use of jackknife estimators of variance 

for parameter estimates from estimating equations is Lipsitz et al. (1994), though their one-step 

jackknife estimator is not as general as what we are studying here, and their main application is to 

clustered survival data. 

In the following, we assume that we can partition the n observations into g groups with m 

observations each so that n = ra x g, m is an integer. We discuss two situations for applying 

jackknife idea: leaving out one observation at a time and leaving out more than one observation at 

a time. 

2.5.1 Jackknife approach for models with no covariates 

Let Y , Y i , . . . , Y „ be iid rv's from a regular discrete model 

P(yi---yd;6), 6 e » 

in (2.12), and y, y i , . . . , y „ be their observed values respectively. Let 9(6) = (tpi(6),...,ipq(6)) 

be the I F M based on y, = (i>i-i(6),..., ipi-q(6)) be the I F M based on yit and 9n(6) = 

(¥„ i (0 ) , . . . , ¥ „ , ( * ) ) be the I F M based on y l t . . . , y „ , where 9nj(6) - £ ? = 1 ^;j(0) (j = 1, • • •, «)• 

Let 6 - 0i,..., eq) be the estimate of 6 from 9n(6) = 0. 

Leave out one observation at a t ime 

Let be an estimate of 0 based on the same set of inference functions \P„ but with the ith 

observation yt from the data set y1,..., yn deleted, i = 1 , . . . , n. In this situation, we have m = 1 
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and g — n. That is, we delete one group of size 1 each time and calculate the same estimate of 0 

based on the remaining n — 1 observations. Let 0,- = nO — (n — 1)0(«), and 0(.) = X2"=1 0({)/n. 0,- are 

called "pseudo-values" in the literature. The jackknife estimate of 0 is defined as 

-!)*(•)• (2-78) 
i = l 

The jackknife estimator has the property that it eliminates the order l / n term from a bias of the 

form E{6) = 0 + u\/n + U2/n2 + • • •, where the functions u i,U2, . . . do not depend upon n (see Miller 

1974). In fact, the jackknife statistic Oj often has less bias than the original statistic 0. 

The early version of the jackknife estimate of variance for the jackknife estimator Oj was sug

gested by Tukey (1958). It is defined as 

Vj = ̂ nhf) ~ ~6j)ih ~ h ) T = ̂  B * « - *<•>)(*«> - * 0 ) T - ( 2 J 9 ) 

In (2.79), the pseudo-values 0,- are treated as if they are independent and identically distributed, 

disregarding the fact that the pseudo-values 0t- actually depend on the common observations. To 

justify (2.79), Thorburn (1976) proved that under rather natural conditions on the original statistic 

0, the pseudo-values are asymptotically uncorrelated. 

In practice, the pseudo-values have been used to estimate the variance not only of the jackknife 

estimate 0j, but also 0. But if the bias correction in jackknife estimate is not needed, we propose 

to use a simpler estimate of the asymptotic variance (matrix) of 0: 

^ = D * ( o - W o - * ) T - (2-8°) 
« = 1 

In our context, unless stated otherwise, we always call Vj defined by (2.80) the jackknife estimate 

of variance. In the following, we first prove that the asymptotic distribution of a jackknife statistic 

6j is the same as the original statistic 0 under the same model assumptions; subsequently, we prove 

that Vj defined by (2.80) is a consistent estimator of inverse of the Godambe information matrix 

MO). 
Theorem 2.8 Under the same assumptions as in Theorem 2.4, the jackknife estimate 0j in (2.78) 

has the same asymptotic distribution as 0. That is, as n —• oo, 

Mh-0)°Nq(0,M(0)), 

where J*(0) = D%{0)M^(0)D9(0), with M*(0) = £{tf(0)tf T(0)} and £>*(0) = 89(0)/dO. 
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Proof. We sketch the proof. For * n (0) = ( t f „ i ( 0 ) , * „ , ( 0 ) ) : y n x $ ^ M9 has the following 

expansion around 0 

o = = + - 0) + R „ , 

where Hn(0) — 3 * „ ( 0 ) / 3 0 is a g x g matrix and R N = 0P(||0 — 0\\2) = O p ( n _ 1 ) by assumptions. 

Thus 

Vn~(0 -0)= [-Hn(0)) ^ ( - * „ ( « ) - R „ ) . 

Let 4,(i)(0) be ^ n (0) calculated without the ith observation, and H^(0) be the g x q matrix 

d'9n(0)/d0 calculated without the ith observation. Similarly, we have 

where Rn_i,< = Op{\\~0(i) - 0\\2) = o ^ n " 1 ) . 

Since 

Vn~(0i -0) = n (yn~(0 - 0 ) - x/^(0(i) - 0)) + y/nffi^ - 0), 

we have 

yfrih -ey=n (vn-(0 - 0) -1>/»(*(.•) -')) + ̂  E v̂ (*(o - ') 
\ i=l / i=l 

Thus 

Vn(0 j -0) = n 

+ 

By the Law of Large Numbers, we have 

and 

From the central limit theorem, 

-Hn(0)^D^(0), n 

— f f ( O ( 0 ) A £ > , ( * ) . 

-±=yn(0)ZNq(o,M*). 
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We further have 

This, together with the -yn-consistency of 0 (Theorem 2.4), lead to 

-Hn(0)) 1 - i= ( - * „ ( « ) - R „ ) 

^ T T ; E { ( ^ T F F ( ' ) C ) )
 ( " * ( ' > ( ' l ) " " M J ° " . ( ° . D ; ' M . ( C ; ' ) T ) . 

Thus by applying Slutsky's Theorem, we obtain 

^(ej-0)^Nq(o,j^(0)). 

• 

Theorem 2.9 Under the same assumptions as in Theorem 2-4, the sample size n times the jackknife 

estimate of variance Vj defined by (2.80) is a consistent estimator of J^1(0). 

Proof. We have 

- *)(*(0 - Of = - *)(*(.•) - of 
i=l 

Recall that 

i=l 

L» = l 

(fl _ fl)T -{0-0) n(O-0)(0-Of. 

0-0 = H-1(6)(-9n(O)-Kl), 

and 
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where R n = Op{\\9 - 6\\2) = Opin'1) and R „ _ l i 8 - = Op(\\6(i) - 6\\2) = Op{n-1). Thus 

J2(h) ~ * ) ( ' « ) -~0)T=J2 H^(6) ( - * ( 0 ( * ) - R n - i , i ) ( -*( , •)(«) - R n - i , 0 T 

i = l t'=l 
n 

Li=l 

-1 
H~\6) ( - * „ ( * ) - R „ ) E ^ j M (-*(,)(*)-Rn-i,,) 

«=i 

+ n / / - 1 ^ ) ( - * „ ( * ) - R n) ( - * „ ( « ) - R n ) T {H-\e)f . 

(2.81) 

As * ( 0 ( t f ) = * „ ( * ) - *,,(*), thus E : = i * ( . - ) (») = ( « " ! ) * » ( * ) and £ ? = 1 ^oC*)*^*) = (n -

2 ) * „ ( 0 ) ^ ( 0 ) + £ " = 1 (*)• % t h e L a w of Large Numbers, we have 

-Hn(B)^*D9(9), 
n 

1 

and 

»=1 

From (2.81), we have 

i=i 

and this implies that 

t = l 

i=l 

In other words, we proved that nVj is a consistent estimator of J^1(0). • 

Leave out m o r e t h a n one observation at a t ime 

Now for general g > 1, we assume a random subdivision of y l t . . . , yn into g groups (n = gm). Let 

0(„) = 1,...,(/) be an estimate of 0 based on the same set of inference functions \P from the data 

set y : , . . . , y n but deleting the u-th group of size m (m is fixed), thus is calculated based on a 

subsample of size m(g — 1). The jackknife estimate of 6 in this general setting is the mean of Bv, 

which is 
1 3 

OJ =-52** = g*- (g- i)h)> (2-82) 
9 v=\ 
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where = g 1 YH=i ^0)> a n d ̂ v = gO — (g — 1)6^ {y = 1 , . . . , g) are the pseudo-values. 

In this situation, the jackknife estimate of variance for 6, Vj, is defined as 

(2.83) 
i/=i 

Theorem 2.8 and 2.9 can be easily generalized to the situation with fixed m > 1. 

Theorem 2.10 Under the same assumptions as in Theorem 2.4, the jackknife estimate 6j defined 

by (2.82) with m fixed has the same asymptotic distribution as 6. That is, as n —• oo (thus g —• oo^, 

Vn-(0j-6)°Nq(O,J*\0)), 

where Jy{6) = D%{6)M^l(6)Diil{6), with M*(0) = Ee{9{6)9T (6)} and D*(6) = 89(6)/86. 

Proof. We sketch the proof. Let \P(„)(0) be 9n(6) calculated without the l/th group, and H^(6) be 

the q x q matrix 89n(6)/d6 calculated without the uth group. We have 

- l 
\/n — m(0(v) - 6) = -H{v){6) 

1 
( - * ( „ ) ( * ) - R „ - m , „ ) 

where R n _ m , „ = Op{\\6{v) - 6\\2) - Op(n-1). Recall that 

- 6) = g (yg(6 -6)- ^{6{v) - 6)) + ^{6{l/) - 6), 

we thus have 

y/g&j -6) = g (jg-{6 -6)-l-J2 - 9)) + - E v W w - 6) 
\ 9 v = l ) 9 v = l 

this implies that 

9 1 

yft(h -6) = g [^{6 - 6 ) - ]f^1~ E Vn~^(6(v) - 6)^ + yj^~ E v^=^(0 ( l O - *). 

Thus 

Vn~{0j -6) = g ^ ( ^ ' ^ ( - • n W - R n ) -

+ (2.84) 
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By the Law of Large Numbers, we have 

and 

From the central limit theorem, 

We also have 

±Hn(6)^D*(6), 
n 

1 H(l>)($)**D9(0). 
n — m 

4=*(0)-̂ W,(O,M»). 

This, together with the \/n-consistency of 6 (Theorem 2.4), lead to 

-#„(*)) - L ( _ * „ ( « ) _ R „ ) 

' i j E { ( s r ^ ' w w ) " ^ (-t(.,(») - a.-.,)} 

\ ^ £ { ( ^ " « w ) T T = (-*«(') - )} -".0. V « * W)T). 

Applying Slutsky's Theorem to (2.84), we obtain 

^(8j-6)^Nq(0,J^(6)). 

• 

Theorem 2.11 Under the same assumptions as in Theorem 2.4, the sample size n times the jack-

knife estimate of variance Vj defined by (2.83) is a consistent estimator of J^1(6), when m is fixed 

and g —• oo. 

Proof: We use the same notation as in the proof of Theorem 2.10. We have 

9 9 
- 6)(6{v) - 6f = - 6)(6{v) - 6? 

vzzl I / = l 

(6 - 6)T - ( 6 - 6 ) + g(6-6)(6-6f 
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and 

Thus 

*(„) - 0 = H(V)(0) ( - * ( „ > ( * ) - R „ _ m , „ ) . 

y y r 

- ~0)(O{V) -6)T = J2 H^){0) ( - * ( „ ) ( « ) - R „ _ m , „ ) ( - * ( „ ) ( ' ) - R n - m , , ) T 

i / = i 

9 

( - * „ ( * ) - R n f ( / / n " 1 ^ ) ) 5 

£/frU<?) ( - * < „ ) ( * ) - R n - m , „ ) 

E#w(*) ( - * W ( 0 ) - R „ _ m , , ) | 

- T / " 1 ^ ) ( - * „ ( » ) - R n ) 

+ gH-\d) ( - * „ ( * ) - R „ ) ( - * „ ( ' ) - R . ) T ( / f " 1 ( * ) ) T 

Let V}(0) = * „ ( * ) - * ( „ ) ( « ) . Then 

i«MW=(fl-i)*»(f) 

(2.85) 

v = l 

and 

£ *wW*fv)(tf) = (9 - 2)*„(«)C(«) + E *;(*)(*; W)3 

i / = i 

By the Law of Large Numbers, we have 

-^—H{v){O)^D*{0). 
n — m y ' 

We also have £{<^(0)(tf * (0))T/m} = E{9(0)#T(0)}, thus by the Law of Large Numbers, 

±£*;(*)(*;(«))T = iZ{*JW(*^W)T/m>^(*(*)*TW)-
ra v 

From (2.85), we have 

D*oo - - *)T - E w«: ( ^ i ^ 
i / = i 

which implies that 

«E(*(") " W « 0 - *)TI*D*(B)-1M9(B)(D9(B)-1)T. 
1=1 

In other words, we proved that n ^f_ 1( f l( 1/) - 0)(9(v) ~ ^ ) T is a consistent estimator of 1 (0), when 

m is fixed and # —• oo. • 
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The main motive for the leave-out-more-than-one-observation-at-a-time approach is to reduce 

the amount of computation required for the jackknife method. For large samples, it may be helpful 

to make an initial random grouping of the data by randomly deleting a few observations, if necessary, 

into g groups of size ra. The choice of the number of groups g may be based on the computation 

costs and the precision or accuracy of the resulting estimators. As regards of computation costs, 

the choice (m,g) = ( l ,n) is most expensive. For large samples, g = n may not be computationally 

feasible, thus some values of g less than n may be preferred. The grouping, however, introduces a 

degree of arbitrariness, a problem not encountered when g — n. This results in an analysis that is 

not uniquely defined. This is generally not a problem for SE estimation for application purposes, 

as usually then a rough assessment is sufficient. As regards the precision of the estimators, when 

the sample size n is small to moderate, the choice (m,g) = ( l ,n) is preferred. See Chapter 5 for 

examples. 

2.5.2 J a c k k n i f e f o r a f u n c t i o n o f 0 

The jackknife method can also be used for estimates of functions of parameters, such as the asymp

totic variance of P(yi • • - yd', 0) for a M C D or M M D model. The usual delta method requires partial 

derivatives of the function with respect to the parameters, and these may be very difficult to obtain. 

The jackknife method eliminates the need for these partial derivatives. In the following, we present 

some results on the jackknife method for functions of 0. 

Suppose h(0) = (bi(0),..., bs(6))' is a vector-valued function defined on 5ft and taking values in 

s-dimensional space. We assume that each component function of b, bj(-) (j = 1,... .,s), is real 

valued and has a differential at 0Q, thus b has the following expansion as 0 —• 0o'. 

b(0) = b(6o) + (0-Oo)(j^y+ o(\\0-0o\^ (2.86) 

where db/d0'o — (db/d0')\Q_Qo is of rank t = min(s, q). 
By Theorem 2.4, 0 has an asymptotic normal distribution 

Similarly by Theorem 2.8 and 2.10, 0j has an asymptotic normal distribution in the sense that 

Vn-(0j- 0)°Nq(0, J * 1 ) . 

We have the following results for b(0) and b(0j): 
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T h e o r e m 2.12 Let b be as described above and suppose (2.86) holds. Under the same assumptions 

as in Theorem 2.4, b(0) has the asymptotic distribution given by 

Proof. See Serfling (1980, Ch.3). • 

T h e o r e m 2.13 Let b be as described above and suppose (2.86) hold. Under the same assumptions 

as in Theorem 2.4, b(6j) has the asymptotic distribution given by 

Proof. See Serfling (1980, Ch.3). • 

As in the previous subsection, let t9(„) be the estimator of 0 with the i/-ih group of size m deleted, 

v = 1 , . . . , g. We define the jackknife estimate of variance of h(0), which we denote by Vjb, as 

VJb = J2 (*>(*(,)) - b (*)) ( b ( ^ ) ) - b ( * ) f • (2-87) 
i/=i 

We have the following theorem. 

T h e o r e m 2.14 Let b be as described above and suppose (2.86) holds. Under the same assumptions 

as in Theorem 2.4, the sample size n times the jackknife estimate of variance Vj\> defined by (2.87) 

is a consistent estimator of 

dB'JJ* \d6'J • 

Proof. The proof is similar to that of Theorem 2.11, and thus omitted here. • 

To carry out the above computational results related to the estimates of functions of parameters, 

it would be desirable to maintain a table of the parameter estimates for the full sample and each 

jackknife subsample. Then one can use this table for computing estimates of one or more functions 

of the parameters, and their corresponding SEs. 

The results in Theorems 2.12, 2.13 and 2.14 have immediate applications. One example is given 

next. 

E x a m p l e 2.18 For a M C D or M M D model in (2.12), say P(yi • • -yd]6), we could apply the above 

results to say something about the asymptotic behaviour of P(yi • • • ya',6) and P(yi • • - yd',6j). From 

Theorems 2.12 and 2.13, we derive that as n —• oo 
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and 

yfrWvi • y d ; h ) - P(V1 • ••yd;0))$N (o, J*1 {^f^j . 

Furthermore, by Theorem 2.14, we obtain a consistent estimator of (dP/d0')J^1(dP/d0')T, i.e. 

g 2 

n £ {p(yi • • • - • '• • ')) • 
i/=i 

Also see Chapter 5 for direct application in data analysis. O 

2 .5 .3 J a c k k n i f e a p p r o a c h f o r m o d e l s w i t h c o v a r i a t e s 

Suppose we have the model defined by (2.53) and (2.54). Let (v = 1,..., g) be an estimate of 

7 based on the same set of inference functions ^ n (7) from the data set y l t . . . , y n but deleting the 

f - th group of size m (m is fixed). The jackknife estimate off is 

1 9 

T ; = - D " = ^ - ( « - % ' ( 2- 8 8) 
9 v = l 

where 7 ( . } = 1/g £ * = 1 7 ( l / ) , and yv = gy - (g - l ) 7 ( l / ) (v=l,...,g). 

We define the jackknife estimate of variance Vj:y for y as follows: 

^ 7 = E ( 7 W - 7 ) ( 7 W - 7 ) T . . (2.89) 
i/=i 

Under the assumptions for the establishment of Theorem 2.6, in parallel to Theorems 2.10 and 

2.11, we have the following theorems for the models with covariates. The proofs are generalizations 

of the proofs for Theorem 2.5, 2.6, 2.10 and 2.11. We omit the proofs and only state the results 

here. 

T h e o r e m 2.15 Consider the general model (2.53) with d arbitrary. Let y denote the IFME of y 

under the IFM corresponding to (2.57). Under Assumptions 2.1, 2.2 and 2.3, the jackknife estimator 

7 J defined by (2.88) is asymptotically normal in the sense that, as n —• oo, 

V ^ ^ 1 ( 7 J - 7 O ) ) ^ ( 0 , / ) , 

where An = Dn1/2(y0)M^2(yQ)(D- 1 / 2 ( y 0 ) ) T , Dn(y0) and Mn(y0) are defined by (2.56). • 

T h e o r e m 2.16 Under the same assumptions as in Theorem 2.7, we have 

nVj,y - J D - 1 ( 7 o ) M „ ( 7 o ) p - 1 ( 7 o ) ) T - 0 ! 

where Vj:y is the jackknife estimate of variance defined by (2.89), and Ai(7o) a n d Mn(y0) are 

defined by (2.56). • 
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T h e o r e m 2.17 Let b be as described in subsection 2.5.2 and suppose (2.86) hold. Under the same 

assumptions as in Theorem 2.7, b(y), a function of IFME y, has the asymptotic distribution given 

by 

VnB'1 (b(y) - b(y))^Nt (0,1), 

where Bn = [(db/8y'0) D;l(y0)Mn(y0)(D;l(y0))T (db/dy'0f] ^ , and Dn{y0) and Mn(y0) are 

defined by (2.56). • 

T h e o r e m 2.18 Let b be as described in subsection 2.5.2 and suppose (2.86) hold. Under the same 

assumptions as in Theorem 2.7, b(yj), of the jackknife estimate yj derived fromy, has the asymp

totic distribution given by 

v^5- 1 (b(7 J )-b( 7 ))^Ar ( (o,7) , 

where Bn = T | l / 2 
(db/dy'0)D-\y0)Mn(y0)(D-1(y0))T(db/dy'0Y , and Dn(y0) and Mn(y0) are 

defined by (2.56). • 

We define the jackknife estimate of variance of b(7), Vjb, as follows: 

VJb = £ (b (7 W ) - b(7)) (b(7(„)) - b( 7)) T . (2.90) 
v = \ 

T h e o r e m 2.19 Let b be as described in subsection 2.5.2 and suppose (2.86) hold. Under the same 

assumptions as in Theorem 2.6, we have 

nVJh - D - 1 ( 7 o ) M „ ( 7 o ) P „ - 1 ( 7 o ) f (jfif 

where the jackknife estimate of variance Vjt, defined by (2.90) and Dn(y0) and Mn(y0) are defined 

by (2.56). • 

2.6 Estimation for models with parameters common to more 

than one margin 

One potential application of the M C D and M M D models is for longitudinal or repeated measures 

studies with short time series, in which the interest may be on how the distribution of the response 

changes over time. Some common characteristics, which carry over time, may appear in the form of 

common regression parameters or common dependence parameters. There are also general situations 

in which the same parameters appear in more than one margin. This happens with the M C D and 
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M M D models, for example, when there is a special dependence structure in the copula C, such as 

in the multinormal copula (2.4), where 0 = (Ojk) is an exchangeable correlation matrix with all 

correlations equal to 0, or 0 is an AR(1) correlation matrix with the (j, k) component equal to 

0|J"*I for some 0. 

Example 2.19 Suppose for the d-variate binary vector Y j with a covariate vector for the jth 

univariate margin can be represented as Yjj = I(Zij < ctj+/3jXij), i = 1 , . . . , n, where Zj ~ N(0,0). 

This is a multivariate probit model. Assume /3j — /?, then the common regression coefficients appear 

in more than one margin. We could estimate /? from the d univariate margins based on the I F M 

approach, but then we have d estimates of /?. Taking any one of them as the estimate of /? evidently 

results in some loss of information. Can we pool the information together to get a better estimate 

of /3? The same question arises for the correlation matrix 0 . Assume there is no covariate for 0 . 

When 0 has certain special forms, for example exchangeable or AR(1), the same parameter appears 

in d(d—1)/2 bivariate margins. Can we get a more efficient estimate from the I F M approach? There 

are also situations where a parameter is common some margins, such as 0i2 = 023 = • • • = 0d,d-i in 

0 . The same question about getting a more efficient estimate arises. • 

A direct approach for common parameter estimation is to use the likelihood of a higher-order 

margin, if this is computationally feasible. Otherwise, the I F M approach for model fitting can be ap

plied. With the I F M approach, appropriately taking the information about common parameters into 

account can improve the efficiency of the parameter estimates. Analytical and numerical evidence 

supporting this claim are given in Chapter 4 for these two approaches of information pooling for 

I F M that we propose here. The first approach, called the weighting approach (WA), is to form a new 

estimate based on some weighting of the estimates for the same parameter from different margins. 

A special case is the simple average. The second approach, called the pool-marginal-likelihoods ap

proach ( P M L A ) , is to rewrite the inference function of margins under the assumption that the same 

parameter appears in several margins. In the following, we outline the two estimating approaches 

in general terms. 

2.6.1 W e i g h t i n g a p p r o a c h 

W A is a method to get an efficient estimate based on a weighted average of different estimates for 

the same parameter. We state this approach in general terms. Assume yi,. • - ,yq are estimates of 

the same parameter 7, but from different inference functions. Let 7 = (71,... ,yq)', and let Y,y be 
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the asymptotic variance-covariance matrix based on Godambe information matrix. One relatively 

efficient estimate of the parameter 7 is based on the following result, which easily obtains from the 

method of Lagrange multipliers. 

Result 2.1 Suppose X is a q-variate random vector with mean vector px = (p, • • - tP)' = / ^ l and 

Var(X) = E x , where p is a scalar and 1 = (1,..., 1)'. A linear unbiased estimate of p, u'X, has 

the smallest variance when 

E ^ l 
u = 

• 

Applying the above result to our problem, the resulting estimate of 7 is 

7 = , 7 , . (2.91) 

If 7jS are consistent estimates of 7 , then 7 is also a consistent estimate of 7 and it has smaller 

asymptotic variance than any of the individual estimates of 7 from one particular inference function. 

The asymptotic variance of 7 is 

4 = 1 1 ^ 1 1 = ^ ^ - . (2.92) 

A computationally simpler but slightly less efficient estimate of 7 is 

l'diagfCI 1}? 

and an approximation of the asymptotic variance of 7 from (2.93) is <r| = l / ( l 'diag{S^ 1 } l ) . A 

naive estimate of 7 is 7 = l ' 7 / l ' l , which is just the simple average. In some special situations, such 

as in the Example 4.4, the estimate of (2.91) reduces to a simple average. 

In practice, E^, may not be available. We may have to estimate it based on the data. The 

following algorithm may be useful for getting a final estimate of 7 . Assume we already have 7 and 

Computation algorithm: 

1. Let u = E ^ l / l ' E r 1 ! . 
7 ' 7 

2. Find 7 = u '7 . 

3. Set 7 = ( 7 , . . . , 7 ) , and update E-y with this new 7 . 
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4. Go back to step 1 until the final estimate of 7 satisfies a prescribed convergence criterion. 

The asymptotic variance of 7 at the final iteration can be calculated by (2.92). 

• 

2 . 6 . 2 T h e p o o l - m a r g i n a l - l i k e l i h o o d s a p p r o a c h 

In this approach, different inference functions for the same parameter are pooled together as a sum, 

where each inference function is the loglikelihood of some margin. We use the model (2.54) to 

illustrate the approach. Suppose that in (2.54), otj = Ot, j = 1 , . . . , d and bjk = P , l < j < k < d , 

then more efficient estimators of a and /? may be obtained. For example, we can sum up the the 

loglikelihood functions of margins corresponding to the parameter vectors a and /? in the following 

way: 
n d 

5 ( « ) = £ 5 > g ^ ( « y ) . 

C ( M ) = £ £ l ° g ^ * ( w ; W * ) -

(2.94) is an example of P M L A . The inference functions of margins from (2.94) corresponding to ot 

and /? are 

« - i f f 1 dpj(yjj) 1 dPj(yij) 
IFM \hihp^ dai

 ' " " k k p ^ da> ' 
n d 

E E ^ J dPjkjyijyik) 

and the estimating equations based on I F M is 

n d 

EE 
i=lj<k 

dPjkjyijyik) 

(2.95) 

PjkiyijVik) dfiq 

EE—-—dFi,{KV"-) 
PjkiyijVik) d/3t 

= 0, s = l , . . . , p , 

= 0, t = l , . . . , q . 
i=lj<k 

If we consider (2.95) as inference functions, we see that asymptotic theory on the estimates from 

the P M L A can be established by applying the general inference function theory. 

For completeness, we give here algebraic expressions on I F M with the P M L A for the Godambe 

information for the model (2.39) with 6 = (#i, . . . , Bd, 9i2,. • •, 0d-i,d)', where we assume 9\,..., 0d 
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are each a function of one parameter A, and #12,• • •, are each a function of one parameter p. 

The loglikelihood functions of margin corresponding to the parameter vectors A and p are 
n d 

C ( A ) = £ E l o g p ; t o 
»=i j=i 

n d 

C(x, p) - E E l o s PjkiyijVik), 
i-l j,k = l;j<k 

and the estimating equations based on I F M is 
n d 

(2.96) 

1 dPjjyij) 
0, 

y^y^ 1 dPjk(yijyik) 

\ i=lj<k 
The I F M corresponding to one observation is 

Pjk(yijVik) dp 
= 0. 

1 dPjkjyjyk) 
iVk) dp 

The Godambe information matrix is a 2 x 2 matrix. To calculate the Godambe information matrix 

we need the matrices 

My 

For E (V 2 ) , we have 

' E(V?) E O i l f e ) ' 
and Dy 

/ E ( 3 V i / 3 A ) 0 

V 0 
E(dy>2/dp) 

It can be estimated consistently by 

1 A / A • 1 fliMw,-) 
»SL? j^ (Wi) ^A 

(2.97) 

Similarly, we have 

E(V2
2) = E Z 

1 dPjkjyjyk) 
Pjk(yjVk) dp 
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f=iPj(yj) d\ 

1 dPjjyj) \ 1 dPjk(yjyk) 

Pjk(yjyk) dp 

= £ P(yi--w) £ 1 dPj(yj) £ 1 dPjk(yjyk) 

friPiivj) dx / yf^PMyjyk) dp 

For E (5Vi /3A) , 

chp_ 
ex r = E 1 f d P M \ \ 1 d2Pj(yj) 

Pf(yj) \ dX J + Pj(yj) dX2 

E(d^/dX)= ^(w-w)E 
{ y i - y d } J = 1 

Similarly, we find 

E(di>2/dP)= p(yi•••w)E 
{ y i - y d } i < * 

1 f-dPjMY } 1 a2p,-(y,-) 
P,-(W) 3A 2 

^ • f c C y j ^ j ^ " , 1 d2Pjk(yjyk) 

PjkiVjVk) dp2 

Consistent estimates for E ^ ^ ) , E(ipiip2), E(dipi/dX) and E(drp2/dp) can be similarly written as 

in (2.97). 

2.6.3 E x a m p l e s 

We give two examples of W A and P M L A . 

Example 2.20 1. A trivariate probit model with exchangeable dependence structure: Suppose 

we have a trivariate probit model with known cut-off points and P ( l l l ) = $3(0,0,0,p,p,p) . It 

can be shown (see Example 4.4) that the asymptotic variance of p from one bivariate margin is 

[(7r 2 — 4 (s in _ 1 p)2)(l — p 2)]/4n, and the asymptotic variance of p from W A or P M L A is [(1 — p2)(ir + 

6 s i n - 1 p)(n — 2 s i n - 1 p)]/12n. The ratio of the former to the latter is [3(7r + 2 s i n - 1 /5)]/[7r + 6 s i n _ 1 p], 

which decreases from 0 0 to 1.5 as p increases from —0.5 to 1. In this example, the optimal weighting 

is equivalent to a simple average (see Example 4.4 for details). 

2. A trivariate probit model with AR(1) dependence structure: Suppose we have a trivariate probit 

model with cut-off points known, such that -P( l l l ) = $3(0, 0, 0, p, p2, p). Let u2

w be the asymptotic 

variance of p from W A , a2 be the asymptotic variance of p from P M L A , a 2

2 be the asymptotic 

variance of p from the (1, 2) margin, and <r2
3 be the asymptotic variance of p from the (1, 3) margin. 

In Example 4.5, we show that C p / c 2 > 1, with a maximum value of 1.0391, which is attained at 
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p = 0.3842 and p — —0.3842; cr2
2/<r2 increases from 1.707 to 2 as p goes from —1 to 0 and from 2 

to 1.707 as p goes from 0 to 1; and <X2

3/<T2 increases from 1.207 to oo as p goes from —1 to 0, and 

decreases from oo to 1.207 as p goes from 0 to 1. • 

P M L A in the form presented in this section can also be considered as a simple weighted likelihood 

approach. More complicated weighting schemes for the P M L A can be sought. In general, as long as 

a reasonable efficiency is preserved, we prefer the simple weighting schemes. 

2.7 Numerical methods for the model fitting 

From previous sections, we see that the I F M approach for parameter estimation leads to the problem 

of optimization of a set of loglikelihood functions of margins. The typical system of functions for 

the models with no covariates in the form of loglikelihood functions of margins are 

tnj(Xj) = Y^lo&pi(Vij)' j = l , . . . , d , 

i-l n 
tnjk(Qjk) - Elog PJk(yijyik), 1 < j < k < d, 

•=1 

and the estimating equations (derived from the loglikelihood functions of margins) are 

,d. 

(2.98) 

(2.99) 

For the models with covariates, the typical system of functions in the form of loglikelihood functions 

of margins are 

Lj(otj) = ^2logPj(yij), j = 1, . . .,d, 

i = \ (2.100) 

tnjk(Pjk) = ^2^ogPjk(yijyik), 1 < j < k < d 

i=i 
and the estimating equations are 

f * (a) - V 1 - 0 i - l 
1 n A l ) ~ h p ^ da> 

1 dPjkjyijyik) 
(2.101) 

fr[ pjk(yijyik) dBjk 
0, 1 < j < k < d. 
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N e w t o n - R a p h s o n m e t h o d 

The traditional approach for numerical optimization or root-finding is the Newton-Raphson method. 

This method requires the evaluation of both the first and the second derivations of the objective 

functions in (2.98) and (2.100). This method, with its good rate of convergence, is the preferred 

method if the derivatives can be easily obtained analytically and coded in a program. But in many 

cases, for example with £njk(6jk) or £njk(0jk)i where bivariate objects involve non-closed form 

two-dimensional integrals, application of the Newton-Raphson method is difficult since analytical 

derivatives in such situations are very hard to obtain. The Newton-Raphson method can only be 

easily applied for a few cases with £nj(Xj) or £nj(otj), where only univariate objects are involved. For 

example, the Newton-Raphson method may be used to solve 9nj(Xj) = 0 to find Xj, j — 1 , . . . , d. 

In this case, based qn Newton-Raphson method, for a given initial value Xj,o, an updated value of 

Xj is 

' 'dVnjjXjY 
dXj •V.new Aj,o — *nj(Xj) (2.102) 

This is repeated until successive A^new agree to a specified precision. In (2.102), we need to be able 

to code 
n 

*nj(Xj) = YtlVPjiynWPjiyn)/9^] (2.io3) 

and 
0*n,-(A;) 

dXj £ 1 (dPjiVij) 

PfiVij) V dXj 
(2.104) 

tiPjiVii) dX] 

This is for the case with no covariates. For the case with covariates, similar iteration equations to 

(2.102) can be written down. We need to calculate 

*«;(<*;) = T,[VPi(vij)][dPj{vij)/d"i], 
8 = 1 

which is apj x 1 vector and 

dotj E 
i=i L 

1 d2Pj(yij) 1 dPj(yij) (dPjjyjj) 

Pj(yij) dctjdet'j Pf{mj) dotj \ dctj 

(2.105) 

(2.106) 

which is a pj x pj matrix. It is equivalent to calculate the gradient of Pj(j)ij) at the point otj, which 

is the pj-vector of (first order) partial derivatives: 

d d $ M T 
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and the Hessian of Pj(ytj) at the point aj, which is &pj xpj matrix of second order partial derivatives 

with (s,t) (s,t = 1 , . . . ,pj) component (d2/da„dat)Pj(yij). 

To avoid the often tedious algebraic derivatives in (2.103) - (2.106), modern symbolic computa

tion software, such as Maple (Char et al., 1992), may be used. This software is also convenient in 

that it outputs the results in the form of C or Fortran code. 

Q u a s i - N e w t o n m e t h o d 

For many multivariate models, it is inconvenient to supply both first and second partial derivatives of 

the objective functions as required by the Newton-Raphson method. For example, to get the partial 

derivatives of the forms (2.104) - (2.106) may be tedious, particularly with function objects such as 

(•njk{9jk) or (.njki,Pjk), where 2-dimensional integrations are often involved. A numerical method for 

optimization that is useful for many multivariate models in this thesis is the quasi-Newton method (or 

variable-metric method). This method uses the numerical approximation to the derivatives (gradients 

and Hessian matrix) in the Newton-Raphson iteration; thus it can be considered as a derivative-free 

method. In many situations, a crude approximation to the derivatives can lead to convergence in the 

Newton-Raphson iteration as well. Application of this method requires only the objective functions, 

such as those in (2.98) and (2.100), to be coded. The gradients are computed numerically and the 

inverse Hessian matrix of second order derivatives is updated after each iteration. This method has 

the advantage of not requiring the analytic derivatives of the objective functions with respect to the 

parameters. Its disadvantage is that convergence could be slow compared with the Newton-Raphson 

approach. A n example of a quasi-Newton routine, which is used in the programs written for this 

thesis work, is a quasi-Newton minimization routine in Nash (1990) (Algorithm 21, pl92). This is a 

modified Fletcher variable-metric method; the original method is due to Fletcher (1970). 

With the quasi-Newton methods, all we need to do is to write down the optimization (min

imization or maximization) objective function (such as £njk{Pjk)), a n d then let a quasi-Newton 

routine take care of the rest. A quasi-Newton routine works fine if the objective function can be 

computed to arbitrary precision, say eo- The numerical gradients are then based on a step size (or 

step length) e < eo- The calculation of the optimization objective function with multivariate model 

often involves the evaluation of multiple integration at some arbitrary points. One-dimensional and 

two-dimensional numerical integrals can usually be computed quite quickly to around six digits of 

precision, but there is a problem of computational time in trying to achieve many digits of precision 

for numerical integrals of dimension three or more. When the objective function is not computed 
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sufficiently accurately, the numerical gradients are poor approximations to the true gradients and 

this will lead to poor performance of the quasi-Newton method. On the other hand, for statistical 

problems, great accuracy is seldom required; it is often suffice to obtain two or three significant 

digits, and we expect that in most of situations, we are not dealing with the worst cases. 

S tar t in g points for n u m e r i c a l o p t i m i z a t i o n 

In general, an objective function may have many local optima in addition to possibly a single global 

optimum. There is no numerical method which will always locate an existing global optimum, and 

the computational complexity in general increases either linearly or quadratically in the number of 

parameters. The best scenario is that we have a dependable method which converges to a local 

optimum based on initial guesses of the values which optimize the objective function. Thus good 

starting points for the numerical optimization methods are important. It is desirable to locate a 

good starting point based on a simple method, rather than trying many random starting points. 

A n example based on method of moments estimation for deciding the starting points is for the 

multivariate Poisson-lognormal model (see Example 2.12), where the initial values for an estimate 

of pj arid <Tj based on the the sample mean (yj), sample variance (s2) and sample correlations (rjk) 

are = {log[(«? - yj)/y] + I]}1'2, $ = logy,- - 0.5(«T?) 2 and 0]k = log[rjkSjSk/(yjyk) + 

respectively. If the problem involves covariates, one can solve some linear equation systems with 

appropriately chosen covariate values to obtain initial values for the regression parameters. Initial 

values may also be obtained from prior knowledge of the study or by trial and error. Generally 

speaking, it is easier to have a good starting point for a model with interpretable parameters or 

parameters which are easily related to interpretable characteristics of the model. In the situations 

where closed-form moment characteristics of the model are not available, we may numerically com

pute the model moments. 

N u m e r i c a l integrat ion 

There are several methods for obtaining numerical integrals, among them are Romberg integration, 

adaptive integration and Monte-Carlo integration. The latter isg especially useful for high dimen

sional integration provided the accuracy requirements are modest. With the I F M approach, as often 

only one or two-dimensional integrations are needed, the necessary numerical integrations are not a 

problem in most cases. (Thus I F M can be considered as a tractable computational method, which 

alleviates the often extremely heavy computational burdens in fitting multivariate models.) For 
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this thesis work, an integration routine based on the Romberg integration method in Davis and 

Rabinowitz (1984) is used; this routine is good for two to about four dimensional integrations. A 

routine in Fortran code for computing the multinormal probability (or multinormal copula) can be 

found in Schervish (1984). Joe (1995) provides some good approximation methods for computing 

the multinormal cdf and rectangle probabilities. 

2.8 Summary 

In this chapter, two classes of models, M C D and M M D , are proposed and studied. The I F M is 

proposed as a parameter estimation and inference procedure, and its asymptotic properties are 

studied. Most of the results are for the the models with M U B E or P U B E properties. But the results 

of this chapter should apply to a very wide range of inference problems for numerous popular models 

in M C D and M M D classes. The I F M E has the advantage of computational feasibility; this makes 

numerous models in the M C D and M M D classes practically useful. We also proposed a jackknife 

procedure for computing the asymptotic covariance matrix of the I F M E , and demonstrated the 

asymptotic equivalence of this estimate to the Godambe information matrix. Based on the I F M 

approach, we also proposed estimation procedures for models with parameters common to more 

than one margin. One problem of great interest is that of determining the efficiency of the I F M E 

relative to the conventional M L E . Clearly, a general comparison would be very difficult and next to 

impossible. Analytic and simulation studies on I F M efficiency will be given in Chapter 4. Another 

problem of interest is to see how the jackknife procedure compares with the Godambe information 

calculation numerically. A study of this is also given in Chapter 4. Our results may have several 

interesting extensions; some of these will be discussed in Chapter 7 as possible future research topics. 



Chapter 3 

Modelling of multivariate discrete 

data 

In this chapter, we study some specific models in the class of M C D and M M D models and develop 

the corresponding I F M approach for fitting the model based on data. The models are first discussed 

for the case with no covariates and then for the case with covariates. For the dependence structure 

in the models, we distinguish the models with general dependence structure and the models with 

special dependence structure. Different ways to extend the models, especially to include covariates 

for the dependence parameters, are discussed. 

This chapter is organized as the following. In section 3.1, we study M C D models for binary 

data, with emphasis on multivariate logit models and probit models for binary data. In section 3.2, 

we make some comparison of the models discussed in section 3.1. The general ideas in this section 

should also extend to other M C D and M M D models. In section 3.3, we study M C D models for 

count data, and in section 3.4, we study M C D models for ordinal data. M M D models for binary 

data are studied in section 3.5, and M M D models for count data are studied in section 3.6. Finally 

in section 3.7, we discuss the use of M C D and M M D models for longitudinal and repeated measures 

data. In each section, only a few parametric models are given, but many others can be derived. For 

data analysis examples with different models presented in this chapter, see Chapter 5. 

93 
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3.1 Multivariate copula discrete models for binary data 

3.1.1 M u l t i v a r i a t e l o g i t m o d e l 

A multivariate logit model should be based on a multivariate logistic distribution. As there is no nat

ural multivariate logistic distribution, we construct multivariate logit models by putting univariate 

logistic margins into a family of copulas with a wide range of dependence, and simple computa

tional form if possible. As a result, multivariate logit models for binary data are obtained by letting 

Gj(0) = 1/[1 + exp(zj)] and Gj(l) — 1 in the model (2.13), with arbitrary copula C. Some choices 

of the copula C are: 

• Multinormal copula 

C ( « i , . . . , U d ; e ) = $ d ( $ - 1 ( U l ) , . . . , $ - 1 ( U d ) ; 0 ) , (3.1) 

where © = (6jk) is a correlation matrix (of normal margins). The bivariate margins of (3.1) 

are Cjk(uj,uk) = $ 2 ( * _ 1 ( u j ) . * - 1 ( u * ) ; O j k ) 

• Mixture of max-id copula (id for infinitely divisible, see Joe and Hu 1996) 

C(u) = V> ( - ^ l o g ^ , ( e - ^ " 1 ( " i ) > e - P ^ " 1 ( ^ ) ) + ^ ^ f t V ' - 1 K ) ) , (3-2) 

where Kjk are max-id copulas, pj = (VJ +d— l ) - 1 , Vj > 0. For interpretation, we may say that 

ip can be considered as providing the minimal level of (pairwise) dependence, the copula Kjk 

adds some pairwise dependence to the global dependence, and i/j's can be used for bivariate 

and multivariate asymmetry (the asymmetries are represented through Vj/(i/j + uk), j ^ k). 

(3.2) has the M U B E and partially C U O M properties. With ip(s) = -9~l log(l - [1 - e-e)e-'), 

0 > O , 
d 

^-(^-e-e)l[Kjk(xj,xk)l[xy , (3.3) 
j<k j=l 

where Xj = [(1 - e-9u')/(l - e~B)]p', pj = (VJ +d - The bivariate margins of (3.3) 

are Cjk(uj, uk) - -Q~l log[l - (1 - e~e)xl/

j

i+d~2xu

k

k+d~2Kjk(xj, xk)]. One good choice of Kik 

would be Kjk(xj,xk) = (xj 6 j k + x k

b 3 k — \)~ll6'k, 0 < 6jk < oo; because the resulting copula 

is simple in form. (See Kimeldorf and Sampson (1975) and Joe (1993) for a discussion of this 

bivariate copula.) 

C(u) = - r M o g 
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• Molenberghs-Lesaffre (M-L) construction (Joe 1996). The construction generates a multivari

ate "copula" with general dependence structure. A n example for a 4-dimensional copula is the 

following: 

=

 x(x-ao)Ui<j<k<4(x-aJk) ^ ^ 

(Cl23 - ar)(Cl24 - z)(Cl34 - X)(C234 - x) Ilj = i ( a i - x ) ' 

where x = C1234 is the copula, a0 = C123 + C124 + C134 + C234 — C\i — C13 — C14 — C23 — 

C24 — C34 + wi + u2 + «3 + U4 — 1, a i = u i — C12 — C13 — C14 + C123 + C124 + C134, a 2 = 

U2 — C\2 — C23 — C24 + C123 + Cl24 + C234, «3 = U3 — C13 — C23 — C34 + C123 + C134 + C234, 

a 4 = u 4 — C14 — C24 — C34 + C i 2 4 + Ci34-|-C234, and ajk = Cjki + Cjkm — Cjk, for 1 < j < k < 4 

and 1 < /, m ^ j, k < 4. In (3.4), C i 2 3 , C i 2 4 , C134 and C 234 are compatible trivariate copulas 

such that 

vikl = h h h h ' (3-5^ O4O5O6&7 

where z = CJU, &i = Uj - Cjk - Cji + z, b2 = uk - Cjk - CM + z, 63 = u; - Cji - CM + z, 

64 = Cjk — z, 65 = Cji — z, b6 = Cki — z and 67 = 1 - Uj — Uk — u\ + Cjk + Cji + Cki — z, for 

l < j < k < l < 4 . The bivariate copulas C12, Ci3, Ci4> C23, C24, C34 are arbitrary compatible 

bivariate copulas. Examples are the bivariate normal, Plackett (2.8) or Frank copula (2.9); see 

Joe (1993, 1996) for a list of bivariate copula families with good properties. The parameters in 

C1234 are the parameters from the bivariate copulas, plus rjjki, l < j < k < l < 4 , and 771234. 

The generalization of this construction to arbitrary dimension can be found in Joe (1996). 

Notice that we have quotation marks on the word copula, because the multivariate object 

obtained from (3.4) and (3.5) or the corresponding form for general dimension has not been 

proven to be a proper multivariate copula. But they can be used for the parameter range that 

leads to positive orthant probabilities for the resulting probabilities for the multivariate binary 

vector. 

• Morgenstern copula 

C ( u i , ...,ud) 
d 

I+EM1-^1-"*) 
j<k 

d 
Y[uh, (3.6) 

ft=i 

where 6jk must satisfy some constraints such that (3.6) is a proper copula. The bivariate 

margins of (3.6) are Cjk{uj,uk) — [I + Ojk(l - Uj)(l - uk)]ujUk, \0jk \ < 1. 

The permutation symmetric copulas of the form 

C{uu...,ud) = <f> ^X>-1(u'-)) > (3J) 



Chapter 3. Modelling of multivariate discrete data 96 

where 4> : [0,oo) —>• [0,1] is strictly decreasing and continuously differentiable (of all orders), 

and <j>(0) = 1, ^(oo) = 0, (-l)J>Ci) > 0. With ^(s) = -6~l log(l - [1 - e-e]e~s), 6 > 0, (3.7) 

is 

C(uu ..., ud) = ^ £ = - \ log ( l - y ^ J - ! ) ^ ) • (3-8) 

This choice of ip(s) leads to 3.8 with bivariate marginal copulas that are reflection symmetric. 

It is straightforward to extend the univariate marginal parameters to include covariates. For 

example, for z,j corresponding to the random vector Y,-, we can let Z{j — otjXij, where otj is a 

parameter vector and Xjj is a covariate vector corresponding to the jth margin. But what about the 

dependence parameters in the copula? Should the dependence parameters be functions of covariates? 

If so, what are the functions? These questions have no obvious answers. It is evident that if the 

dependence parameters are functions of covariates, the form of the functions will depend on the 

particular copula associated with the model. A simple way to deal with the dependence parameters 

is to let the dependence parameters in the copula be independent of covariates, and sometimes this 

may be good enough for the modelling purposes. If we need to include covariates for the dependence 

parameters, careful consideration should be given. In the following, in referring to specific copulas, 

we give some discussion on different ways of letting the dependence parameters depend on covariates: 

- With the multinormal copula, the dependence structure in the copula for the ith response 

vector Y, is Q{ = (Oijk)- It is well-known that (i) 0,- has to be nonnegative definite, and (ii) 

the component 6ijk of has to be bounded by 1 in absolute value. Under these constraints, 

different ways of letting 0 ; depend on covariates are possible: (a) let Oijk = [exp(/?Jj.WjJfc) — 

l]/[exp()9jjfcw,Jjfe)"+ 1]; (b) let 0j have a simple correlation structure such as exchangeable 

and AR(1); (c) use a representation such as z,j - [otjXij]/[l + x^-Xjj] 1 / 2 , 6ijk — fjk/[(l + 

x- J x ! J ) ( l + x ^ X j i ) ] 1 / 2 ; (d) use a more general representation such as 6ijk = r^w^ jkvfi,jk; or 

(e) reparameterize 0j into the form of d— 1 correlations and (d— l)(d—2)/2 partial correlations. 

The extension (a) satisfies condition (ii), but not necessarily (i). The extension (b) satisfies 

conditions (i) and (ii), but is only suitable for data with a special dependence structure. The 

extension (c) is more natural, as it is derived from a mixture representation (see section 3.5 

for a more general form) and it satisfies condition (ii) and also condition (i) as long as the 

correlation matrix (rjk) is nonnegative definite. This is an advantage in comparison with (a), 

as in (a), for (i) to be satisfied, all n correlation matrices must be nonnegative definite. The 

disadvantage of (c) is that the dependence range may be limited once a particular formal 
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representation is chosen. The extension (d) is similar to the the extension (c), except that 

now the 0,-jjbS are not required to depend on the same covariate vectors as z 8 j . The extension 

(e) completely avoids the matrix constraint (i), thus relieving a big burden on the constraint 

for the appropriate inclusion of covariate to the dependence parameters. But this extension 

implicitly implies an indexing of variables, which may not be rational in general, although this 

is not a problem in many applications as the indexing of variables is often evident, such as 

with time series; see Joe (1996). 

- With the mixture of max-id copula (3.3), extensions to parameters 6, Vj, 6jk as functions of 

the covariates are straightforward. For example, for 0,-, Sijk corresponding to the random 

vector Y,-, we may have 9i, Vij constant, and 6ijk = exp(3jkVfi,jk)-

- With the Molenberghs-Lesaffre construction, the extension to include covariates is possible. 

In applications, it is often good enough to let the bivariate parameters be function of 

covariates, such as Sijk = exP(/^jfcws,jfc) for bivariate Plackett copula, or Frank copula, and 

to let the higher order parameters be constant values, such as 1. This is a simple and useful 

approach, but there is no guarantee that this leads to compatible parameters. (See Joe 1996 

for a maximum entropy interpretation in this case.) 

- With the Morgenstern copula, the extension to let the parameters Oijk be functions of some 

covariates is not easy, since the Oijk must satisfy some constraints. This is rather complicated 

and difficult to manage when the dimension is high. The situation is very similar to the 

multinormal copula where 0,- should be nonnegative definite. 

- With the permutation symmetric copula (3.8), the extension to include covariates is to let 0,-

be function of covariates, such as to let 0,- = exp(/3'wj). 

We see that for different copulas, there are many ways to extend the model to include covariates. 

Some are obvious and thus appear to be natural, others are not easy or obvious to specify. Note 

also that an exchangeable structure within the copula does not imply an exchangeable structure 

for the response variables. For M C D models for binary data, an exchangeable structure within the 

copula plus constant cut-off points across all the margins implies an exchangeable structure with 

the response variables. The A R dependence structure for the discrete response variables should 

be understood as latent Markov dependence structure (see section 3.7). When we mention an 

AR(1) (or A R ) dependence structure, we are referring to the latent dependence structure within the 

multinormal copula. 
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In summary, under "multivariate logit models", many slightly different models are available. For 

example, we have multivariate logit model with 

i . multinormal copula (3.1), 

ii . multivariate Molenberghs-Lesaffre construction 

a. with bivariate normal copula, 

b. with Plackett copula (2.8), 

c. with Frank copula (2.9), 

iii . mixture of max-id copula (3.3), 

iv. Morgenstern copula (3.6), 

v. the permutation symmetric copula (3.8). 

Indeed, such multiple choices of models are available for any kind of M C D model. For a discrete 

random vector Y , different copulas in (2.13) lead to different probabilistic models. The question is 

when is one model preferred to another? We will discuss this question in section 3.2. In the following, 

as an example, we examine estimation aspects of the multivariate logit model with multinormal 

copula. 

The multivariate logit model with multinormal copula can also be called multivariate normal-

copula logit model to highlight the fact that multinormal copula is used. For the case with no 

covariates, the estimating equations for multivariate normal-copula logit model based on I F M can 

be written as the following 

f * n ; ( * j ) = K ( l ) ( l + e x p ( - Z i ) ) - n,-(0)(l + exp(-z j ))exp(z j )] ^}~(

Zj\.2 = 0, j = 1,..., d , i {i -r exp^—Zj)) 

^ 2 ( $ - 1 ( U j ) , $ - 1 ( U f c ) , ^ , ) = 0, 

1 < j < k < d, 

where Pjk(ll) = Cjk(uj, uk; 9jk), Pjk(10) = Uj - Cjk(uj ,uk;9jk), Pjk{\l) - uk - Cjk(uj ,uk;9jk), 

Pjk{U) = 1 - Uj - uk + Cjk{uj,uk;9jk) with Cjk(uj,uk;9jk) = ^2(^~1{uj),^~1(uk),9jk), Uj = 

1/[1 + exp(—Zj)], uk = 1/[1 + exp(—zk)], and (j>2 is the B V N density. We obtain the estimates 

Zj = log(nj(l)/n ;(0)), j = 1 , . . . , d, and 9jk is the root of the equation $2(<b~1(uj), $ - 1 (uj ; ) , 0jk) = 

rijk(ll)/n, 1 < j < k < d, where Uj = 1/(1 + exp(—Zj)) and uk = 1/(1+ exp(—zk)). 

9„jk(9jk) 
njk(ll) njk(lQ) njk(01) n j t (00) + Pjk(U) J W 1 0 ) Pjk(01) P,*(00) 
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For the situation with covariates, we may have the cut-off points depending on some covariate 

vectors, such that 

= ctjoXijo + ctjiXiji -\ 1- ctjPjXijPj = ot'jXij, (3.9) 

where Xjjo = 1, and possibly 

Vijk - 73̂  \~T~7> (3.10) 

where 0]k = (bjk,o, • • •, bjklPjk). We recognize that (3.10) is one of the form of functions of 

dependence parameters (in multinormal copula) on covariates that we discussed previously. We use 

this form of functions for the purpose of illustration. Other function forms can also be used instead. 

Because of the linearity of (3.9) and (3.10), the regression parameter vectors otj, /3jk have marginal 

interpretations. The loglikelihood functions of margins are 

Znj(otj) = £ log Pj(yij), j - 1,..., d, 

n 
£njk(otj,otk,l3jk) = ^logPjk(yijyik), 1 < j < k < d, 

where 
exp(zij) 1 . 

1 + exp(ztj) 1 + exp(zij) 

^ ( ^ ( a y ) , * _ 1 ( ^ ) i + * 2 ( * _ 1 f o ) . ^-\aik);ejk), 

where =-Gi,(yij - 1), 6,j = Gij(yij), a i k = Gik(yik - 1) and bik = Gik(yik), with G , j ( l ) = 1 and 

Gij(0) — 1/1 + exp(zjj). We can apply quasi-Newton minimization to the loglikelihood functions of 

margins for getting the estimates of the parameters otj and (i]k. The Newton-Raphson method can 

also be used for getting the estimates of otj (what we used in our computer programs). In this case, 

we have to solve the estimating equations 

For applying Newton-Raphson method, we need to calculate dP(yij)/dajt and d2P(yij)/dctjsdajt. 

WehavedP(yij)/dajs - (2yij-l){exp(zij)/(l+exp(zij))2}xijs, s - 0 ,1 , . ..,pj, a n d d 2 P ( y i j ) / d a j s d a j t 

= (2ytj — l ){exp(z, j)( l - exp(z, j)) /( l + exp(zij))3}xijsXijt, s,t = 0 , 1 , . . .,pj. For details about 

Newton-Raphson and quasi-Newton methods, see section 2.7. 

M $ and Dy can be calculated and estimated by following the results in section 2.4. In applica

tions, to avoid the tedious coding of M $ and , we may use the jackknife technique to obtain the 
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asymptotic variance of Zj and Ojk in case there are no covariates, or that of otj and $jk in case there 

are covariates. 

3.1.2 Multivariate probit model 

The general multivariate probit model, similar to that of multivariate logit model, is obtained by 

letting Gj(0) = 1 — $ ( Z J ) and G j ( l ) = 1 in the model (2.13). The multivariate probit model in 

Example 2.10 is the classical multivariate probit model discussed in the literature, where the copula 

in (2.13) is the multinormal copula. A l l the discussion of the multivariate logit model is relevant and 

can be directly applied to the multivariate probit model. For completeness, we give in the following 

some detailed discussion about the multivariate probit model when the copula is the multinormal 

copula, as a continuation of Example 2.10. 

For the multivariate probit model in Example 2.10, it is easy to see that E(Y}) = <&(ZJ), Var(Y}) = 

<3>(z,)(l - $ ( Z J ) ) , Cov(Yj, Yfc) = $2(2/, Zk, Ojk) - $(zj)$(zk), j 7 ^ k. The correlation of the response 

variable Yj and Yj is 

C o t t ( y Y x = cov(y;-,n) ^ . ^ . M 
( 3 ' k> {VM ^ O V a r f Y * ) } 1 / 2 {$(ZJ)(1 - $(zj))$(zk)(l -

The variance of Yj achieves its maximum when Zj = 0. In this case E(Yj) = 1/2, Var(Y}) = 1/4. If 

Zj =0,zk= 0, we have Cov(Y}, Yk) = ( s i n - 1 0jk)/(2ir), and Corr(Yj, Yk) = (2 s i n - 1 0jk)/TT. Without 

loss of generality, assume Zj < zk, then when 0jk is at its boundary values, 

f {*(z,-)(l - $(z*))/(l - *(z,.))4(z*)} 1 / 2, Ojk = 1 , 

-{(1 - $(z,))(l - *(zt))/*(*;)*(*0}1/2. 0jk = - 1 , -Zk < ZJ , 

-{*(Zj)*(zk)/(l - *{Zj))(l - ^Zk))}1'2, Ojk = - 1 , Zj < -Zk , 

{ 0, Ojk = 0 . 

From Frechet bound inequalities, 

- m i n i y / 2 , * ! - 1 / 2 } < Cou(Yj,Yk) < minjfc 1 / 2 , 6"1/2}, 

where a = [Pj(l)Pk{l)}/[Pj(0)Pk(0)], b = [Pj(l)Pk(0)]/[Pj(0)Pk{l)], we see that Con(Yj}Yk) attains 

its upper and lower bound when Ojk = 1 and 0jk = —1 respectively. Corr(Yj,Yfc) is an increasing 

function in Ojk, it varies over its full range as Ojk varies over its full range. Thus in a general situation 

a multivariate probit model of dimension d consists of d univariate probit models describing some 

marginal characteristics and d{d—l)/2 latent correlations 0jk, 1 < j < k < d, expressing the strength 

of the association among the response variables. Ojk = 0 corresponds to independence among the 

Corr{Yj,Yk) 
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response variables. The response variables are exchangeable if 0 has an exchangeable structure and 

the cut-off points are constant across all the margins. Note that when 0 has exchangeable structure, 

we must have 0jk = 0 > —l/(d — 1). 

The estimating equations for the multivariate probit model with multinormal copula, based on 

n response vectors y,-, i = 1 , . . . , n, are 

•-<<-'> = ( 2 $ - r ^ W ^ - <• 
qn.k{e.k) = ( ni"(n) " i * ( 1 0 ) nM01) , 

n »jt(00) 
-^j foizj, zk,6jk) = 0, 1 < j < k < d. 

1 - Q(Zj) - $(**) + ^2{Zj,Zk,9jk)i 

These lead to the solutions Zj = $ _ 1 (rij(l)/n), j = 1, . . .,d, and Ojk is the root of the equation 

$2(zj,zk,9jk) = njk(ll)/n, 1 < j < k < d. 

For the situation with covariates, the details are similar to the multivariate logit model with 

multinormal copula in the preceding subsection, except now we have 

PiAvu) = yijHzij) + (1 - -

Pijk(VijVik) = $2{$~l(bij), $ - 1(6ijt); Ojk) - $2($~1(bij), $ _ 1 (a l j f c ) ; 0jk)-

* 2 ( * _ 1 ( a y ) . ®~l(bik); Ojk) + * 2 ( S - r ( a y ) , ^(atk); 0jk), 

with dij - Gij{yij - 1), bij = Gij(yij), aik = Gik(yik - 1) and bik = Gik(yik), with G,j(l) = 1 

and Gij(O) = 1 - $(z.j). We also have dP(yij)/dajs = (2yij - l)4>(zij)xijs, s = 0,1,...,pj and 

d2P(yij)/dajsdctjt = (1 — 2yij)<j>(zij)zijXijaXijt, s,t = 0 ,1 , . . -,Pj\ these expressions are needed for 

applying the Newton-Raphson method to get estimates of otj. 

M $ and D $ can be calculated and estimated by following the results in section 2.4. For example, 

for the case with no covariates, we have E(ip2(zj)) = <f>2(zj)/{<b(zj)(l — $(ZJ))} and E(ip2(0jk)) = 

[ l /^-^llJ+l /P^Cloy+l /P^COlJ+l /^tCOOM^^llJ /a^i] 2 , where dPjk(n)/d0jk = d^2(zj,zk, 

0jk)/90jk — <t>2{zj,zk,0jk), a result due to Plackett (1954). In applications, to avoid the tedious 

computer coding of and Dy, we may use the jackknife technique to obtain the asymptotic 

variance of Zj and 0jk in case there are no covariates, or that of d ;- and /3jk in case there are 

covariates. 
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3.2 Comparison of models 

We obtain many models under the name of multivariate logit model (also multivariate probit model) 

for binary data. A n immediate question is when is one model preferred to another? 

In section 1.3, we outlined some desirable features of multivariate models; among them (2) and 

(3) may be the most important. But in applications, the importance of a particular desirable feature 

of multivariate model may well depend on the practical need and constraints. As an example, we 

briefly compare the multivariate logit models and the multivariate probit models with different 

copulas studied in the section 3.1. 

The multivariate logit model with multinormal copula satisfies the desirable properties (1), (2), 

(3) and (4) of a multivariate model outlined in section 1.3, but not (5). The multivariate probit 

model with multinormal copula is similar, except that one has logit univariate margins and the other 

has probit univariate margins. In applications, the multivariate logit model with multinormal copula 

may be preferred to the multivariate probit model with multinormal copula, as the multivariate logit 

model with multinormal copula has the advantage of having a closed form univariate marginal cdf. 

This consideration also leads to the general preference of multivariate logit model to multivariate 

probit model when both have the same associated multivariate copula. For this reason, in the 

following, we concentrate on discussion of multivariate logit models. 

The multivariate logit model with the mixture of max-id copula (3.3) satisfies the desirable 

properties (1), (3) and (5) of a multivariate model outlined in section 1.3, but only partially (2) 

and (4). The model only admits positive dependence (otherwise, it is flexible and wide in terms of 

dependence range) and it is CUOM(fc) (k > 2) but not C U O M . The closed form cdf of this model is 

a very attractive feature. If the data exhibit only positive dependence (or prior knowledge tells us 

so), then the multivariate logit model with mixture of max-id copula (3.3) may be preferred to the 

multivariate logit model with multinormal copula. 

The multivariate logit model with the M - L construction satisfies the desirable properties (1), 

(2), (3) and (4) of a multivariate model outlined in section 1.3, but not (5). The computation of 

the cdf may be easier numerically than that of multivariate logit model with multinormal copula 

since the former only requires solving a set of polynomial equations, but the latter requires mul

tiple integration. The disadvantage with this model, as stated earlier, is that the object from the 

construction has not been proven to be a proper multivariate copula. What has been verified nu

merically (see Joe 1996) is that (3.4) and its extensions do not yield proper distributions if 771234 and 

Vjki (1 < j < k < I < 4) are either too small or too large. In any case, the useful thing about this 
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model is that it leads to multivariate objects with given proper univariate and bivariate margins. 

The multivariate logit model with the Morgenstern copula satisfies the desirable properties (1), 

(4) and (5) of a multivariate model outlined in section 1.3, but not (2) and (3). This is a major 

drawback. Thus this model is not very useful. 

The multivariate logit models with the permutation symmetric copulas (3.7) are only suitable for 

the modelling of data with special exchangeable dependence patterns. They cannot be considered as 

widely applicable models, because the desirable property (2) of multivariate models is not satisfied. 

Nevertheless, this model may be one of the interesting considerations in some applications, such as 

when the data to be modelled are repeated measures over different treatments, or familial data. 

In summary, for general applications, the multivariate logit model with the multinormal copula 

or the mixture of max-id copula (3.3) may be preferred. If the condition of positive dependence 

holds in a study, then the multivariate logit model with the mixture of max-id copula (3.3) may be 

preferred to the multivariate logit model with multinormal copula because the former has a closed 

form multivariate cdf; this is particularly attractive for moderate to large dimension of response, 

d. The multivariate logit model with Molenberghs-Lesaffre construction may be another interesting 

option. When several models fit the data about equally well, a preference for one should be based 

on which desirable feature is considered important to the successful application of the models. In 

many situations, several equally good models may be possible; see Chapter 5 for discussion and data 

analysis examples. 

In the statistical literature, the multivariate probit model with multinormal copula has been 

studied and applied. A n early reference on an application to binary data is Ashford and Sowden 

(1970). A n explanation of the popularity of multivariate probit model with multinormal copula is 

that the model is related to the multivariate normal distribution, which allows the multivariate probit 

model to accommodate the dependence in its full range for the response variables. Furthermore, 

marginal models follow the simple univariate probit models. 

3 .3 Multivariate copula discrete models for count data 

Univariate count data may be modelled by binomial, negative binomial, logarithmic, Poisson, or 

generalized Poisson distributions, depending on the amount of dispersion. In this section, we study 

some M C D models for multivariate count data. 
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3.3.1 Multivariate Poisson model 

The multivariate Poisson model for Poisson count data is obtained by letting Gj(yj) = Ylm'loPf"^' 

yj = 0 ,1 ,2 , . . . , oo, j = 1,2, in the model (2.13), where p^ — [XJ1 exp(—Aj)]/m!, Xj > 0. 

The copula C in (2.13) is arbitrary. Copulas (3.1)—(3.8) are some interesting choices here. 

The multivariate Poisson model has univariate Poisson marginals. We have E(Yj) = Var(Y)) = 

Xj, which is a characterizing feature of the Poisson distribution called equidispersion. There are 

situations where the variance of count data is greater than the mean, or the variance is smaller than 

the mean. The former case is called overdispersion and the latter case is called underdispersion. 

We will see models dealing with overdispersion and underdispersion in the subsequent sections. A l 

though the multivariate Poisson model has Poisson univariate marginal distribution, the conditional 

distributions are not Poisson. 

The univariate parameter A, in the multivariate Poisson model can be reparameterized by taking 

t]j = log(Aj) so that the new parameter rjj has the range (—00,00). It is also straightforward to 

extend the univariate marginal parameters to include covariates. For example, for Xij corresponding 

to random vector Y,-, we can let A,-,- = exp(a(jX,j), where aj is a parameter vector and x,j is a 

covariate vector corresponding to the j th margin. The discussion on modelling the dependence 

parameters in the copulas in section 3.1 are also relevant here. Most of the discussion in section 3.2 

about the comparisons of models is also relevant here as the comparison is essentially the comparison 

of the associated multivariate copulas. 

In summary, under the name "multivariate Poisson models", we may have multivariate Poisson 

model with 

i . multinormal copula (3.1), 

ii . multivariate Molenberghs-Lesaffre construction 

a. with bivariate normal copula, 

b. with Plackett copula (2.8), 

c. with Frank copula (2.9), 

iii . mixture of max-id copula (3.3), 

iv. Morgenstern copula (3.6), 

v. the permutation symmetric copula (3.8). 
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These are similar to the multivariate logit models for binary data. 

For illustration purposes, in the following, we provide some details on the multivariate Poisson 

model with the multinormal copula. The multivariate Poisson model with the multinormal copula 

can also be called the multivariate normal-copula Poisson model. This model was already introduced 

in Example 2.11. For the multivariate normal-copula Poisson model, the Frechet upper bound is 

reached in the limit if 0 = J , where J is matrix of I's. In fact, when Ojk = 1 and Aj = A^, the 

correlation of the response variable Yj and Yk is 

A j <A j 

When 0 has an exchangeable structure and Aj does not depend on j, then there is also an exchange

able correlation structure in the response vector Y . 

The loglikelihood functions of margins for the parameters A and 0 based on n observed response 

vectors y,-, i = 1 , . . . , n, are: 

(3.11) 

tnj k(0jk) = Y,lo& Pi kiVijVik), l < j < k < d , 
i=l 

where Pj(yij) = A j i J e x p ( - A j ) / 2 / i j ! and PjkjVijVik) = * 2 ( * _ 1 ( ^ ) , flj*) ~ * 2 ( * _ 1 ( M . 

$ " H a i k ) ; M - $ 2 ( $ ~ H a o O . $ " H 6 < * ) ; ^ w h e r e a u = Gij(yij-i), 

bij = Gij(yij), aik = GikiVik - 1) and 6,-* = Gik(yik), with Gij(yij) = J2V=opj(x) a n d Gik(yik) = 

Tjx=o pk(x)- The estimating equations based on I F M are 

•«<*> = t J 5 7 ^ ^ = o. > = ' * 

„ (3-!2) 
,T, ra ^ 1 dPjkijJijyik) „ 1 . . ^, , , , 
9njk(0jk) - x — L = 0, 1 < 3 < k < d, 

~[ pjk{yijyik) oOjk 

which lead to Aj = 5 Z " = 1 Vij/n> a n d Ojk c a n be found through numerical computation. A n extension 

of the multivariate normal-copula Poisson model with covariate x,j for the response observation y,j 

is to let A,j = hj(yj, X; J ) for some function hj in the range [0,00). A n example of the function hj is 

A,j = exp(7jX 5 j ) (or log(A,j) = 7 j X j j ) . The ways to let the dependence parameters Ojk be functions 

of covariates follow the discussion in section 3.1 for the multivariate logit model with multinormal 

copula. We can apply quasi-Newton minimization to the loglikelihood functions of margins (3.11) 

to obtain the estimates of the parameters 7 j - and the dependence parameters Ojk (or the regression 
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parameters for the dependence parameters if applicable). The Newton-Raphson method can also be 

used to obtain the estimates of fj from ^nj(Xj) = 0. Let log(A,j) = ~fjo + ~fji%iji + • • ' + ljpjxijpj For 

applying the Newton-Raphson method, we need to calculate dP(yij)/djjs and d2P(yij)/djjsdjjt-

If we let xij0 = 1, we have dP(yij)/dfjs = { A ^ exp(-A,j)/?Aj\}[y tj - Xij]xijs, s = 0,1,. ..,pj, and 

d2P(yij)/dyj,dfjt = {Xy

{jj exp(-A, J)/j/ ij!}[(y 1j - A*,) 2 - Xij]xijsXijt, s,t = 0 ,1 , . . .,Pj. For details 

about numerical methods, see section 2.7. 

3.3.2 Multivariate generalized Poisson model 

The multivariate generalized Poisson model for count data is obtained by letting Gj(yj) = X^/ijj P^'\ 

yj =0 ,1 ,2 , . . . , oo, j = 1, 2 , . . . , d, in the model (2.13), where 

where Xj > 0, max(— 1, — Xj/m) < ctj < 1 and m (> 4) is the largest positive integer for which 

Xj + maj > 0 when ctj is negative. The copula C in (2.13) is arbitrary. The copulas (3.1)—(3.8) are 

some choices here. 

The multivariate generalized Poisson model has as its jth (j = 1 , . . . , d) margin the generalized 

Poisson distribution with pmf (3.14). This generalized Poisson distribution is extensively studied in 

a monograph by Consul (1989). Its main characteristic is that it allows for both overdispersion and 

underdispersion by introducing one additional parameter ctj. The generalized Poisson distribution 

has the Poisson distribution as a special case when ctj — 0. The mean and variance for Yj are 

E(Yj) = A j ( l — ctj)-1 and Var(Yj) = A ; ( l — ctj)~3, respectively. Thus, the generalized Poisson 

distribution displays overdispersion for 0 < ctj < 1, equidispersion for ctj = 0 and underdispersion 

for max(—l,Aj/m) < ctj < 0. The restrictions leading to underdispersion are rather complicated, 

as the parameters ctj are restricted by the sample space. It is easier to work with the overdispersion 

situation where the restrictions are simply Aj > 0, 0 < ctj < 1. 

The details of applying the I F M procedure to the generalized Poisson model are similar to that 

of the multivariate Poisson model. For the situation with no covariates, the univariate estimating 

equations for the parameters Aj and aj, j = 1 , . . . , d, are 

Pj 

Xj(Xj + saj)s 1 exp(—Aj — J 

0 for s > m, when aj < 0, 

saj) 
S = 0 , l , 2 , . . . 

(3.14) 

(3.15) 
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They lead to 

f^l y+j + (nyij - y+jjctj 

{ y+j(1 - otj) - nXj = 0, 

where y+j = 5 Z " = 1 S/ij. When there is a covariate vector x,j for the response observation y ^ - , we 

may let A,j = aj(yj,x.ij) for some function aj in the range [0,oo), and let a,j = 6j (fy, x,j) for 

some function bj in the range [0,1]. A n example is A,j = exp(7jXjj) (or log(A,j) = 7j-x,j) and 

ctij — 1/[1 + exp(—Jjj-Xjj)]. The discussion on modelling the dependence parameters in the copulas 

in section 3.1 is also appropriate here. Furthermore, most of the discussion in section 3.2 about the 

comparisons of models is also relevant here since the comparison is essentially the comparison of the 

associated multivariate copulas. 

3.3.3 Multivariate negative binomial model 

The multivariate negative binomial modelfor count data is obtained by letting Gj(yj) = Y^s=oP*f\ 

yj = 0 ,1 ,2 , . . . , oo, j = 1,2, . . . , d, in the model (2.13), where 

^ ' ^ w t + V ' ' 1 - * ' ' ' ""^ (3'16) 

with aj > 0 and 0 < pj < 1. The mean and variance for Yj are E(Yj) = atj(l — Pj)/pj and 

Var(Yj) = Q !j(l— Pj)/p], respectively. Since aj > 0, we see that this model allows for overdispersion. 

When there is a covariate vector x,-j for the response observation y t J - , we may let a,j = aj (yj, x,-j) 

for some function aj in the range [0,oo), and let pij — bj(r)j,x,j) for some function bj in the range 

[0,1]. See Lawless (1987) for another way to deal with covariates. Other details are similar to that 

of the multivariate generalized Poisson model. 

3.3.4 Multivariate logarithmic series model 

The multivariate logarithmic series model for count data is obtained by letting Gj(yj) = Y^a=iPj'\ 

yj = 0 ,1 ,2 , . . . , oo, j = 1 ,2, . . . , d, in the model (2.13), where 

p^ = ajp'j/s, 8=1,2,..., (3.17) 

with aj = — [ l o g ( l ^ p j ) ] - 1 and 0 < pj < 1. The mean and variance for Yj are E(Y,-) = ajPj/{l — aj) 

and Var(Yj) = otjPj(l — a , p j ) / ( l — Pj)2, respectively. This model allows for overdispersion when 

Pj > 1 — e _ 1 and underdispersion when pj < 1 — e _ 1 . Note that for this model to allow a zero count, 

we need a shift of one such that p^ = c*jpj + 1/(t + 1) for t = 0 ,1 ,2 , . . . . 
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For the situation where there is a covariate vector x,j for the response observation y,-,-, we may 

let pij = Fj (fj, x,j) where Fj is a univariate cdf. 

A n unattractive feature of this model is that is a decreasing function of s, which may not 

be suitable in many applications. 

3.4 Multivariate copula discrete models for ordinal data 

In this section, we shall discuss the modelling of multivariate ordinal categorical data with mul

tivariate copula discrete (MCD) models. We first briefly discuss some special features of ordinal 

categorical data before we introduce the general M C D model for ordinal data and some specific 

models. 

When a polytomous variable has an ordered structure, we may assume the existence of a latent 

continuous random variable that measures the level of the ordered polytomous variable. For a binary 

variable, models for ordered data and unordered data are equivalent, but for categories variables 

with more than 2 categories, ordered data and unordered data are quite different. The modelling of 

unordered data is not as straightforward as the modelling of ordered data. This is especially so in the 

multivariate situation, where it is not obvious how to model the dependence structure of unordered 

data. We will discuss briefly the modelling of multivariate polytomous unordered data in Chapter 

7. One aspect of ordinal data worth noticing is that it is possible to combine one category with 

an adjacent category for data analysis. But this practice may not be as meaningful for unordered 

categorical data, since the notion of adjacent category is not meaningful, and arbitrary clumping of 

categories may be unsatisfactory. 

We next introduce the M C D model for ordinal data. Consider d-dimension ordinal categorical 

random vectors Y with rrij categories for the jth margin (j — 1,2,. . .,d) and with the categories 

coded as 1,2, . . . , rrij. For the jth margin, the outcome yj can take values 1,2, . . . , rrij, where rrij 

can differ with the index j. For Yj, suppose the probability of outcome s, s = 1, 2 , . . . , rrij, is p('\ 

We define 

{ 0, yj < 1, 

E ^ i P J 0 . !<%•<">,-, (3.18) 

1, yj > rrij , 

where [yj] means the largest integer less or equal than yj. For a given d-dimensional copula 

C(ui,..., u^, $), C(G\(yi),..., Gd{yd)\fl) is a well-defined distribution for the ordinal random vector 
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Y . The pmf of Y is 

2 2 
P(yi • • • Vd) = J2 • • • E ( - l ) ' l + " ' + < 'C(a i , - 1 , . . . , a d i i ; 9), (3.19) 

»i=i «d=i 

where ciji — Gj(yj — 1), Oj2 = Gj(yj). (3.19) is called the multivariate copula discrete models for 

ordinal data. 

Since Yj is an ordered categorical variable, one simple way to reparameterize p^'\ so that the 

new parameter associated to the univariate margin has the range in the entire space, is to let 

Gj (%•) = Fj (ZJ (yj)) where Fj is a cdf of a continuous random variable Zj. Thus p^ = Fj (ZJ (y^)) — 

Fj(zj(y^'~1^)). This is equivalent to 

•Yj = l iff ZJ(0) < Zj < ZJ(1), 

Yj=2 iffzj(l)<Zj <ZJ{2), 

(3.20) 

. Yj = rrij iff Zj(mj — 1) < Zj < Zj(rrij), 

where —oo = Zj(0) < zy(l) < • • • < Zj(rrij — 1) < Zj(rrij) — oo are constants, j = 1, 2 , . . . , d, and the 

random vector Z = (Z\,..., Zf)' has a multivariate cdf Fi2-d- In the literature, the representation 

in (3.20) is referred to as modelling Y through the latent random vector Z, and the parameter Zj(yj) 

is called the yj th cut-off point for the random variable Zj. 

As for the M C D model for binary data, the choices of Fj are abundant. It can be standard logistic, 

normal, extreme value, gamma, lognormal cdf, and so on. Furthermore, FJ(ZJ) need not to be in the 

same distribution family for different j. Similarly, in terms of the form of copula C ( u i , . . . , ud\ 0), 

it can be the multivariate normal copula, a mixture of max-id copula, the Molenberghs-LesafFre 

construct, the Morgenstern copula and a permutation symmetric copula. 

It is also possible to express the parameters Zj(yj) as functions of covariates, as we will see 

through examples. For the dependence parameters 6 in the copula C ( u i , . . . , ud; 6), there is also 

the option of including covariates. The discussion in section 3.1 on the extension for letting the 

dependence parameters in the copulas be functions of covariates is also relevant here, since this only 

depends on the associated copulas. In the following, in parallel with the multivariate models for 

binary data, we will see some examples of multivariate models for ordinal data. 

3 . 4 . 1 M u l t i v a r i a t e l o g i t m o d e l 

The multivariate logit model for ordinal data is obtained by letting Gj(yj) — exp(z;-(yj))/[l + 

exp(zj(yj)] in (3.19), where - o o = Zj(0) < Zj(l) < • • • < Zjjmj - 1) < Zj(rtij) = oo are constants, 
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j = 1, 2 , . . . , d. It is equivalent letting Fj(z) = exp(z)/[l + exp(z)], or choosing Fj to be the standard 

logistic cdf. The copula C in (3.19) is arbitrary. The copulas (3.1)—(3.8) are some choices here. 

It is relatively straightforward to extend the univariate marginal parameters to include covariates. 

For example, for ZJJ corresponding to random vector Y j , we can let ZJ,(?/J,-) = 7,-(WJ,) + gj (oij, X j , ) , 

for some constants —oo = 7,(1) < 7,(2) < • • • < 7,(m,- — 1) < 7,(w,) = oo, and some function 

gj in the range of (-co, oo). A n example of the function gj is gj(x) = x. As we have discussed for 

the multivariate copula discrete models for binary data, a simple way to deal with the dependence 

parameters is to let the dependence parameters in the copula be independent of covariates. To extend 

the model to let the dependence parameters be functions of covariates requires specific knowledge 

of the associated copula C. The discussion on the extension of letting the dependence parameters 

in the copulas be functions of covariates for the multivariate logit models for binary data in section 

3.1 are also relevant here. As with the multivariate logit models for binary data, we may also have 

multivariate logit model for ordinal data with 

i. multinormal copula (3.1), 

ii . multivariate Molenberghs-Lesaffre construction 

a. with bivariate normal copula, 

b. with Plackett copula (2.8), 

c. with Frank copula (2.9), 

iii . mixture of max-id copula (3.3), 

iv. Morgenstern copula (3.6), 

v. the permutation symmetric copula (3.8). 

For illustrative purposes, we give some details on the multivariate logit model with multinormal 

copula for ordinal data. The multivariate logit model with multinormal copula for ordinal data is also 

called the multivariate normal-copula logit model for ordinal data. Let the data be y,- = (yu,..., y,d), 

i — l,...,n. For the situation with no covariates, there are E j = i ( m i — 1) univariate parameters 

and d(d— l ) /2 dependence parameters. The estimating equations from (2.42) are 

\ .(z.(v.))- ( UiM : U 

*n,(z,{y,)) - {F{z.{yj))_F{zjiy. _ 1 ) } F { z . { y j + 

vr, / f l \ _ V V n(VjVk) dPjk(yjyk) 

'.VJ + 1) \ exp(-z,(y,)) 

l ) ) - - F ( * ; ( V i ) ) y (l+exp(-z,(j/,)))2 
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where F(z) = 1/[1 + exp(—z)], and 

PMvjVk) =$ 2($- 1(« j), V ) , ojk) - ^ ( a - 1 ^ ) , ojk)-

$2($-1(Uj), $-!«), ojk) + ̂ 2 ( ^ _ 1 K ) , Ojk) 

with U j = 1/[1 + exp(-2j(j/j))], uk = 1/[1 + exp(-Zfc(w,t))], = 1/[1 + exp(-zj(yj - 1))], uj; = 

1/[1 + exTp(-zk(yk - 1))]. From tf„;(zj(j/j)) = 0, we obtain 

P(,j(2/j + 1)) - F(zj(yj)) = nj[yi+,1] (F(zj(yj)) - F(zj(yj - 1))) = + ^ ( l ) ) . 
nj(l) 

This implies that 

ffl;-l 

which leads to 

£ (F(zj(yj + l))-F(zj(yj)))= £ „ , . ( w + l ) ^ M _ 0 , 
yi=0 y i = 0 ^ ̂  

^ ( 1 ) ) = ^ . 

where n = X ^ = i nj(Vj)- It is thus easy to see that 

' F(zj(yj)) = S y = W r ) , 

which means that the estimate of £J(J/J) from I F M is 

^(%) = l o S 
, n - E r i i » ; ( r ) . 

The closed form of Ojk is not available. We need to numerically solve 9njk{0jk) = 0 to find Ojk-

For the situation with covariate vector x,j for the marginal parameters zj (yij) for Y,j , and a 

covariate vector vfijk f ° r the dependence parameter Oijk, » = l,...,n, one way to extend the model 

to include the covariates is as follows: 

zij{yij) = JiiVij) + J = 1. 2> • • •. d , 

e x p ( ^ W i j f c ) - l 
0i,ik = 7̂ 7 T7T' l<J<k<d. 

exP{Pjkwi,jk) + 1 

(3.21) 

The loglikelihood functions of margin for the parameter vectors yj = (7j(2),.. • ,7j(mi — 1))', otj 

(j - 1 , . . . , d) and 0jk (1 < j < k < d) are 

^nj(yj,aj) = ^2\ogPj(yij), 

i=i 
n 

tnj k(yj,yk, Otj ,Otk,Pjk) = Y^ l 0 S P i j k (Vij ) > 

(3.22) 

1 = 1 
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where Pi,j(yij) = F(zij(yij)) - F(zij(yij - 1)) and 

Pijk(VijVik) =*2 ( * _ 1 (6 i i . ) , * _ 1 (6 , - * ) ;^* ) - M $ - 1 ( M > $ ~ V i * ) ; 0 u i f c ) -

with a,-j = F(zj(yij -1)) , &,•_,• = F(zj(yij)), aik = F(zk(yik - 1)) and bik = F(zk(yik)). We can apply 

quasi-Newton minimization to the loglikelihood functions of margins (3.22) to obtain the estimates [ 

of the parameters fj, aj and the dependence parameters 6jk (or the regression parameters for the 

dependence parameters, 0jk, if applicable). The Newton-Raphson method can also be used to obtain 

the estimates of yj from * n j ( 7 j ) = 0, and the estimates of aj from 9nj(aj) = 0. For applying 

the Newton-Raphson method, we need to calculate dPj(yij)/dfj, dPj(yij)/daj, d2 Pj(yij) / dyjdyj, 

d2Pj(yij)/dajdaJ and d2Pj(ytj)/dyjdaJ. The mathematical details for applying the Newton-

Raphson method are the following. Let Zij (yij) = yj (y,-,j) + aj i Xij i H h ajPj XijPj. For y,j ^ 1, mj, 

we have Pj(yij) = exp(zy(y tj))/[l + exp(zij(y0-))] - exp(z i j(y1 J- - 1))/[1 + exp(z, J( 2/ i j - 1))], thus 

dPj(yij)/dajs = {[exp(zij(yij))/(l+exp(zij(yij)))2]-[exp(zij(yij - l ) ) / ( l+exp(z i j (y , j - l ) ) ) 2 ] }^* , 

s = l , . . . , p j , and d2Pj{yij)/daj,dajt = {[exp(z, J(y, i))(l - exp(z 8 J (y i j ))) / ( l + exp(z i j(j/, i))) 3] -

[exp(z0-(s/ij - 1))(1 - exp(zij(yij - 1)))/(1 + exp(z i j(y i j- - l)))3]}^-^,-,-,, s,< = l , . . . , p ; - . For 

r = 1, 2 , . . . , mj — 1, we have 

<9Tj(r) 

expt (l+exp^o-Cyo-)))3 

e x p ( ^ j ( y < j - l ) ) 
( H - e x p ^ C y ^ - ! ) ) ) * 

and for r i , r2 = 1,2, . . . , m,-

10 

1, we have 

if r = yfj , 

if r = ytj - 1 

otherwise , 

djj{ri)dyj(r2) 

' exp îjCy^Xl-exp^yfai,-))) 
(l+exp îĵ yij)))3 

< exp îl(yi,-l))(l-exp( î,(y;,-l))) 
(l+exp^^Cy -̂l)))3 

.0 

if r i = r 2 = y,-j , 

if n = r 2 = - 1 

otherwise , 

and 

d2Pj{yij) 

dyj(r)dajs 

( exp(^ij(yij))(l-exp(^<.,-(y;j))). 

= < 
(l+exp(*ii(yji)))3 

h%2 s 
exp(*O -0 / i j - l ) ) ( l -exp(*i j (yi . , - - l ) ) ) 

( l + e x p ^ i ^ y ^ - 1 ) ) ) 3 

if r = 2/ij , 

if r = - 1 , 

0 otherwise . 

For y{j = 1, -Pj(y,j) = exp(z 0-(y,j))/[l + exp^^y,-,-))] and for j/,-,- = , Pj{yij) = 1 - exp(z ! i(j/ ij -

1))/[1 + exp(zij(ytj — 1))], thus corresponding slight modification on the above formulas should be 

made. For details about numerical methods, see section 2.7. 

M $ and Dy can be calculated and estimated by following the results in section 2.4. In applica

tions, to avoid the tedious coding of M $ and D $ , we may use the jackknife technique to obtain the 
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asymptotic variance of Zj(yj) and Ojk when there is no covariates, or that of fj, a , and 8jk when 

there are covariates. 

3.4.2 Multivariate probit model 

Similar to the multivariate probit model for binary data, the general multivariate probit model is 

obtained by letting Gj(yj) — $(zj(yj)) in (3.19), where —oo = Zj(0) < Zj(l) < • • • < Zj(rrij — 1) < 

Zj(rrij) = oo are constants, j = 1, 2 , . . . , d. It is equivalent to letting Fj{z) = 3>(z), or choosing Fj to 

be the standard normal cdf. The copula C in (3.19) is arbitrary. The copulas (3.1)—(3.8) are some 

choices here. The multivariate probit model with multinormal copula for ordinal data is discussed in 

the literature (see for example Anderson and Pemberton 1985). The discussion of the multivariate 

logit model for ordinal data in the previous subsection is relevant and can be directly applied to the 

multivariate probit model for ordinal data. For completeness, we provide some detailed discussion 

for the multivariate probit model for ordinal data when the copula is the multinormal copula. 

Let the data be yt- = (yu,..., yid), i = 1 , . . . , n. For the situation with no covariates, there are 

Ej=i( r ai — 1) univariate parameters and d(d— l ) /2 dependence parameters. As for the multivariate 

logit model, with the I F M approach, we find that Zj(yj) = $ - 1(Er=i n j ( r ) l n ) , a n d Ojk must be 

obtained numerically. 

For the situation with covariate vector Xjj for the marginal parameters Zj(yij) for Y{j, and a 

covariate vector vfijk for the dependence parameter 0,-jjt, i = l , . . . , n , the details on I F M for 

parameter estimation are similar to the multivariate logit model for ordinal data in the preced

ing subsection. We here provide some mathematical details for this model. We have Pi,j(yij) = 

$(zij(Vii)) ~ ®(zij (y>j ~ !)) a n d 

Pijkivijm) =*2(*- 1(6o),$- 1(6 iO ;0u*) - *2($- 1(feo),$- 1(aa);0. J*)-

$ 2($ _ 1(ao), $ _ 1 ( M ; Oijk) + $2($ _ 1K-)> ®~\aiky, Oijk), 

where a t j = <b{zj(yij - 1)), = $(zy(«,•_,)), a i k - <&(zk{yik - 1)) and bik = <b(zk(yik))- The 

mathematical details for applying the Newton-Raphson method are the following. For yij ^ l .m,- , 

we have Pj(yij) = <S>{zij{yij))-<b{zij{yij -1)) , thus dPj(yij)/dajs = [<t>{zij{yij))-<t>(zij(yij-l))]xijs, 

s = l,...,pj, and d2Pj(yij)/dajsdajt = [-<f>(zij(yij))zij(yij) + <f>(zij(yij - l))zij(yij - l)]xijsxijt, 

s,t — 1 , . . . ,pj. For r = 1 ,2, . . . , — 1, we have 

dPjjyij) 

djj(r) 

' 4>{zij(yij)) Hr = yij , 

= s -Hzij(yij -!)) i f r = y>j - !> 
. 0 otherwise , 
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and for r\, r2 = 1, 2 , . . . , rrij — 1, we have 

djj(ri)djj(r2) 

' -<P(zij(yij))zij(yij) i f n = r2 = yij , 

< <i>(zij(yij - l))zij{yii -!) if n = r2 = y{j - 1 
. 0 otherwise , 

and 

d2P:(Vij) 

djj(r)dajs 

' -4>{zij{yij))zij{yij)xijs if r = yij , 

' <l>(zij(yij - l))zij(yij - tyxijs if r = yij - 1 

otherwise . 

For = 1, Pj(yij) = ®(z%j(yij)) and for ytj - rrij, Pj(ytj) = 1 - $(zij(yij - 1)), thus the 

corresponding slight modification on the above formulas should be made. For details on numerical 

methods, see section 2.7. 

My and Dy can be calculated and estimated by following the results in section 2.4. For example, 

for the case with no covariate, we have E(ip2(zj(yj))) = {[Pj(yj + 1) + Pj(yj)]<l>2(zj{yj))}/{Pi{yj + 

tyPj(%')}> where Pj(yj) = $(zj(yj)) — $(zj (yj — 1)), and so on. In applications, to avoid the tedious 

coding of My and Dy, we may use the jackknife technique to obtain the asymptotic variances of 

zj(yj) and djk in case there is no covariates, or those of yj, aj and 8jk in case there are covariates. 

The multivariate probit model with multinormal copula for ordinal data has been studied and 

applied in the literature. For example, Anderson and Pemberton (1985) used a trivariate probit 

model for the analysis of an ornithological data set on the three aspects of colouring of blackbirds. 

3.4.3 Multivariate binomial model 

In the previous subsections, we supposed that for Yj, the probability of outcome s is p^'\ s = 

1 , 2 , . . . ,rrij, j = 1 , . . . ,d, and we linked the rrij probabilities p ^ to rrij — 1 cut-off points Zj(l), Zj(2),..., Zj(rrij 

1 ) . We keep as many independent parameters within the margins and between the margins as pos

sible. In some situations, it is worthwhile to reduce the number of free parameters and obtain a 

more parsimonious model which may still capture the major features of the data and serve the 

inference purpose. One way to reduce the number of free parameters for the ordinal variable is to 

reparameterize the marginal distribution. Because J2T=i — 1 a n d P^ ^ O i w e m a v l e t 

This reparameterization of the distribution of Yj reduces the number of free parameter to one, namely 

Pj. The model constructed in this way is called the multivariate binomial model for ordinal data. 

(3.23) 

for some 0 < pj < 1. In other words, we assume that Yj follows a binomial distribution Bi(m_,- — l,Pj). 
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By treating Pj(yj) as a binomial probabilities, we need only deal with one parameter pj for the j th 

margin. (3.23) is artificial for the ordinal data as s in (3.23) is based on letting Yj take the integer 

values in {0,1,..., rrij} as its category indicator. But s is a qualitative quantity; it should reflect 

the ordinal nature of the variable Yj, not necessarily take on the integer values in {0,1,..., mj}. 

In applications, if one feels justified in assuming the binomial behaviour in the sense of (3.23) for 

the univariate margin, then this model may be considered. (3.23) is a more natural assumption if 

the categorical outcome of each univariate response can be considered as the number of realizations 

of an event in a fixed number of random trials. In this situation, it is a M C D model for binomial 

count data. When there is a covariate vector x,j for the response observation y,-j, we may let 

Pij = bj(r/j,Xij) for some function bj in the range [0,1]. Other details are similar to the multivariate 

logit model for binary data. 

3.5 Multivariate mixture discrete models for binary data 

The multivariate mixture discrete models (2.16) or (2.17) are flexible for the type of discrete data and 

for the multivariate structure by allowing different choices of copulas. However, they generally do 

not have closed form pmf or cdf. The choice of models should be based on the desirable features for 

multivariate models outlined in section 1.3, among them, (2) and (3) are considered to be essential. 

In this and the next section, we study some specific M M D models. The mathematical develop

ment for other M M D models with different choices of copulas should be similar. 

3.5.1 Multivariate probit-normal model 

The multivariate probit-normal model for binary data is introduced in (2.32) in Example 2.13. 

Following the notation in Example 2.13, the corresponding cut-off points a,j is a,j = 0'jX.ij for 

a more general situation, where x,j is a covariate vector, j = l,...,d and i = l,...,n. As

sume Bj ~ NPi{pj,Y,j), j = l,...,d. Let 7 = {Bl,...,Bd)' ~ Nq(p,T,), where q = and 

Gov{Bj,Bk) — S j . From the stochastic representation in Example 2.13, we have 

' * ? , = ^ -"-I -
« {l + x^.E,^-} ! / 2 ' 

_ Ojk + X-jSjjfcXjfc 
i ' j k ~ {(l + x^SJ•xl•j)(l + x ^ X i , ) } 1 / 2 , J t • 
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The jth and (j, k) marginal pmf are 

HAW) = i/y + (! - -

Pi,jk(yijyik) = *2 ($ - 1 (6 , - j ) , * - 1 (6<j fe ) ; r i j t ) - <M$_1(M>$_1(ai*0; r»•J•*)-

$2($"~ 1 ( a • .;•)> nj*) + $ 2 ( $ - 1 ( a , j ) , $~1(a,-Jb); r , j*) , 

where ay = G,-j(y,j - 1), btj = Gy(j/y) , a,-* = Gik(yik - 1) and 6»fc = Gik{yik), with G y ( l ) = 1 and 

Gjj(O) = 1 — $(z*j). We can thus apply quasi-Newton minimization to the log-likelihood functions 

of margins 

inj(Pj, £,•) = £ l o g P , - ( » y ) > J = 1. • • •, d. 
»=i 

n 
4jfc(Pj ,S j , pk,T,k,ejk,Ejk) = £ l o g Pjk(yijyik), l < j < k < d , 

«=i 

to obtain the estimates of the parameters / i ^ , E j , /ij., E j , fyi and Eyj,. 

From appropriate assumptions, many simplifications of (3.24) are possible. For example, if E j = I 

and E j * = 0, j ^ fc, then (3.24) simplifies to 

1.1/2 ' ^ i . , . . . , u, 

(3.25) 
* {1 + x ^ x y } ^ ' 

11/2 ' 
, J * {(l + x<.x t i)(l+x< f cx i ,)} 1 

which is a simple example of having the dependence parameters be functions of covariates in a natural 

way, as they are derived. The numerical advantage is that as long as 0 = (9jk) is positive-definite, 

then all R{ = (ujk), i = 1 , . . . , n, are positive-definite. 

A n extension of (3.24) is to let 

z*j=lt'iXi}> J = l> •••'d> 

rijk 11/2 ' J ' ^ ' 

(3.26) 

{(l + w{ , .E i w i i ) ( l + w;. i E t w,- t ) } 1 

where xy and wy may differ. However this does not obtain from a mixture model. 

3.5.2 Multivariate Bernoulli-Beta model 

For a d-variate binary random vector Y taking value 0 or 1 for each component, assume we have 

the M M D model (2.17), such that 

P(yi---Vd)= t •• f ^f{yi-,Pj)<GM,...,Gi(pq))'[{gj{pj)dpl---dpq) (3.27) 
Jo Jo „•_-, 
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where f(yj',Pj) = pJ J (l— Pj)l~Vi • If in (3.27), Gj is a Beta(a?j, Bj) distribution, with density gj(pj) = 

[B(aj, Bj)]~1Pj3~1(l— PjY'-1, 0 < pj < 1, then (3.27) is called a multivariate Bernoulli-Beta model. 

The copula C in (3.27) is arbitrary; a good choice may be the normal copula (2.4). With the normal 

copula, the model (3.27) is M U B E , thus the I F M approach can be applied to fit the model. We can 

then write the jth and (j, k) marginal pmf as 

Pi (%) = / Pfi1 ~ Pif~Vi9j (Pj)dpj = B ( a j + y j , B j + l - yj)/B(aj, Bj), 
Jo 

PjkiVjyk) = Pi''(l - P j ) 1 _ W P 2 * ( l -Pk)l-ykHx,y\6jk)9j{Pi)9k{Pk)dpjdpk, 

where x = $~1(Gj(pj)), y = 3>~l(Gk(pk)), and <p2(x,y;0) is the density of the bivariate normal, 

and gj the density of Beta(a, ,Bj). Given data y,- = (yu,..., ytd) with no covariates, we may obtain 

aj, fa and Ojk with the I F M approach. For the case of an individual covariate x,j for Yij, an 

interpretable extension of (3.27) is 

^(y.O = f •• f HM*ii>Pj)]yii[l ~ h j i x i j ^ j t f - ^ c i G M , G q ( P g ) ) n gj(Pj)dPl • • • dPq, Jo Jo j = 1 j = 1 

(3.28) 

for some function hj with range in [0,1]. A large family of such functions is hj (xtj ,pj) = Fj (Ff1 (Pj)+ 

P'j'X-ij) where Fj is a univariate cdf. Pj(yij) and Pjk(yijVik) can be written accordingly. For ex

ample, if Fj(z) = exp(—e~z), then hj(xij,Pj) = p^XP^ ^ j X , : ' ^ and we have that when y,j = 1, 

Pj(yij) = B(ctj + exp(—3jXij),3j)/B(ctj,8j). If covariates are not subject dependent, but only 

margin-dependent, an alternative extension is to let a,,- and depend on the covariates for some 

functions aj and bj with range in [0,oo], such that a,-,- = a,j(fj,Xj) and = bj(t)j,Xj). In this sit

uation, we have, for example, Pj(yij) = B(aj(y'jXj) + yij, bj(rr,jXj) + l-yij)/B(aj(y'jXj), bj(tfjXj)). 

A n example of the functions aj and 6, is a,j — exp(y'jXj) and /?,-,- = exp(t]'jXj). When apply

ing the I F M approach to parameter estimation, the numerical computation involves 2-dimensional 

integration which would be feasible in most cases. 

A special case of the model (3.27), where pj = p, j = 1 , . . . , d, is the model (1.1), studied in 

Prentice (1986). The pmf of the model is 

P(vi---Vd)= I' py+(l-P)d-y+g(p)dp, : (3.29) 
Jo 

where y+ = J2j=iVj a n d 9(P) * s the density of a Beta(a,/?) distribution. The model (3.29) has 

exchangeable dependence and admits only positive dependence. A discussion of this special model, 

with extensions to include covariates and to admit negative dependence, can be found in Joe (1996). 
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3.5.3 Multivariate logit-normal model 
For a d-variate binary random vector Y taking value 0 or 1 for each component, suppose we have 

the M M D model (2.17), such that 

rl rl d 

P(yi---yd)= •••/ J\f{yj\Pj)g{pi,-•-,Pd)dpi-•-dPd, (3.30) 
Jo Jo j = 1 

where f(yj ;pj) = py' (1 —pj)l~yi, and g(-) is the density function of a normal copula, with univariate 

marginal cdf Gj 

Jo V °~j 

In other words, if pj is the outcome of a rv Pj, and Zj = logit(Pj) = l o g ( P , / l — Pj), j = 1,...', d, 

then (Z\,..., Zd)' has a joint d-dimensional normal distribution with mean vector ji, variance vector 

<r2 and a correlation matrix 0 = {Ojk). We have 

9(Pi, ...,Pd)= , d / 2 , i r . >J2T1d T. r exp { - J(z - p)'{<T'Qa)-\z - p)\ , 

(2Tr)d'2\a'e(T\1/2Ylj=lpj(l-pj) L 2 J 

where z = ( z i , . . . , z^)', with Zj = log(pj/l — pj). We call this model the multivariate logit-normal 

model. The Frechet upper bound is reached in the limit if 0 = J, where J is matrix of I's and 

c2 —• oo. The multivariate probit model obtains in the limit as a goes to oo, by assuming 0 be a 

fixed correlation matrix and the mean parameters pj = CjZj where Zj is constant. 

The j'th and the (j, k) marginal pmf are 

PjiVi) = t ^ 7 l p f _ 1 ( l " Pj)-y^(xj)dpj, j = l,...,d, 
Jo 

Pjk(yjyk) =11 (o-jo-kr'py _ 1 ( 1 -Pj)-y'plk-\l -Pk)-ykfo(xj,xk;Ojk) dPjdpk, l < j < k < d , 
Jo Jo 

where XJ = {[log(pj/(l — pj)) — Pj]/o-j}, j = 1 , . . . , d, cf> is the standard univariate normal density 

function and <f>2 the standard bivariate normal density function. Given data = (yn,..., yid) with 

no covariates, we may obtain pj, aj and Ojk by the I F M approach. For the case of different covariates 

for different margins, similar to the multivariate Bernoulli-Beta model, an interpretable extension 

of (3.30) is obtained by letting 

rl rl d 
P(yn---Vid)= / •••/ X\[hj{*ij,Pi)]yii[l-hj(xij,pj)]1-yi>g{p1,...,pd)dpl---dpd, (3.31) 

Jo Jo j = l 

for some function hj with range in [0,1]. Pj{yij) and Pjk{yijy%k) can be written accordingly. If 

covariates are not different, an interpretable extension to include covariates to the parameters in 

c(l - x) 
dx, 0 < pj < 1, j = 1,. 
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(3.30) obtains by letting ptj = aj{fj,Xj) and Cij = bj(r)j,Xij) for some functions aj and bj. The 

loglikelihood functions of margins for the parameters are now 

£nj(Pj,CTj) = ^logPjjyij), j = l , . . . , d , 

n 

enjk(8jk) = E \°&pjk{yiiyik), i < j < k < d , »=i 

where 

J-oo l + exp(/iy+<7,ja;) 

D / \ r°° r°° exp{yij(pij + aijx)} exp{yik(pik + o-iky)} , , a , , , 
Pjk(yijVik)= / / . , , , \ 7 7 '—<l>2{x,y\6jk)dxdy. 

J-oo J-oo 1 + exp(^ij + cr^z) 1 -)- exp(pik + <riky) 

A n example of the functions a, and 6, is / i 8 j = 7,Xj and <r,j = e x p ^ x , ) . It is also possible to 

include covariates to the dependence parameters 0jk; a discussion of this can be found in section 

3.1. Again, when applying the I F M approach to parameter estimation, the numerical computation 

involves 2-dimensional integration, which should be feasible in most cases. 

3.6 Multivariate mixture discrete models for count data 

3.6.1 Multivariate Poisson-lognormal model 

The multivariate Poisson-lognormal model for count data is introduced in Example 2.12. The pmf 

of y,- = , . . . , yid), i = 1, • • •, n, is 

P(yn---yid)= •••/ T[f(yij;Xij)g(il-,l*i,<ri,®i)dT)i---driP, (3.32) 
Jo Jo *_ i 

where ; A,-j) = exp(-A,j)A??V2/0'!> a n d 

(3.33) 

with ?7j > 0, j = l,...,p, is the multivariate lognormal density. For simple situation with no 

covariates, fa = / i , fl-,- = c and 0,- = 0 . This model is studied in Aitchison and Ho (1989). 

The model (3.32) can accommodate a wide range of dependence, as we have seen in Example 2.12. 

Corr(Y}, Yk) is an increasing function of 9jk, and varies over its full range when 9jk varies over its full 

range. Thus in a general situation a multivariate Poisson-lognormal model of dimension d, consists 

of d univariate Poisson-lognormal models describing some marginal characteristics and d(d — l ) /2 
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dependence parameters 9jk, 1 < j < k < d, expressing the strength of the associations among the 

response variables. Ojk = 0 for all j ^ k correspond to independence among the response variables. 

The response variables are exchangeable if 0 has an exchangeable structure and pj and <TJ are 

constant across the margins. We will see another special case later which also leads to exchangeable 

response variables. The loglikelihood functions of margins for the parameters are now 

£nj(pj, (Tj) = £ logPj(yij), j = l , . . . , d , 

i = l 
n 

Znjk(Ojk,Hj,Pk,aj,ak) = £logPjk{yijVik), 1 < j < k < d, 

where 

Pj{yij) = r e M y i j ( T j Z j - e ^ o i ) e M _ z 2 / 2 ) d Z j ! 

VtTVijl J-oo 

P „ ^ f°° f°° exp [yij(pj + ajZj) + yik(pk + akzk)] 

PjkiyijVik) = / 7^ , u + a . z . , U k + a . z . \ <t>2{Zj,Zk\9jk)dZjdzk, 

J-oo J-oo y»j!2/,A;!exp(e^+^^ + e' i fc+CTfcZk) 

where <j>2 is the standard binormal density. To get the I F M E of p., a and 0 , quasi-Newton mini

mization method can be used. Good starting points can be obtained from the method of moments 

estimates. Let yj, s2 and rjk be the sample mean, sample variance and sample correlations re

spectively. The method of moments estimates based on the expected values given in (2.30) are 

= {log[(«? - yj)/y] + l]} 1 ' 2 , p] = logy,- - 0.5(<7?)2 and 9% = logfokS jS k / ( y j y k ) + l}/(a]a0
k). 

When there is a covariate vector xy for the response observation y i ;-, we may let pij = a, (7,, xy) 

for some function aj in the range (—00,00), and let <r,j = 6J(JJJ,X;J) for some function 6, in the 

range [0,oo). A n example of the functions a, and bj is mj = 7jX,j and cy = exp()jjX,j). It is also 

possible to let the dependence parameters 0jk be functions of covariates; a discussion of this can 

be found section 3.1. For details on numerical methods for obtaining the parameter estimates, see 

section 2.7. 

A special situation of the multivariate Poisson-lognormal model is to assume that / (yj jAj) = 

e~xi\y'/yj\, where Aj = A/?j. /?j > 0 is considered as a scale factor (known or unknown) and the 

common parameter A has the lognormal distribution LN(p, a2). In this situation we have 

V 2 7 T [ \ j = 1 Vj! J-00 exp(e"+^ Pj) 

and the parameters p and a are common across all the margins. To calculate P(yi • • - yd), we need 

only calculate a one-dimensional integral; thus full maximum likelihood estimation can be used to get 

the estimates of p, a and /3j (if it is unknown). By the formulas in (2.26), it can be shown that there 
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is an exchangeable correlation structure in the response vector Y , with the pairwise correlations 

tending to 1 when p or a tend to infinity. Independence is achieved when a —• 0. The model (3.34) 

does not admit negative dependence. 

3 . 6 . 2 M u l t i v a r i a t e P o i s s o n - g a m m a m o d e l 

The multivariate Poisson-gamma model is obtained by letting Gj(r)j) in (2.24) be the cdf of a 

univariate gamma distribution with shape parameter aj and scale parameter Bj, with the density 

function gj(x;aj,8j) = B~a'xAJ~1e~x/Pi/T(CXJ), x > 0, aj > 0 and Bj > 0. The Gamma family 

is closed under convolution for fixed B. The copula C in (2.24) is arbitrary; (3.1)—(3.8) are some 

choices here. For example, with the multinormal copula, the multivariate Poisson-gamma model is 

M U B E . Thus the I F M approach can be applied to fit the model. The j th marginal distribution of 

a multivariate Poisson-gamma distribution is 

f°° Je~zizVizaj~1e-z^Pi dzj 
pj(Vj)= / fiVj; ZJ)9j(zj) dzj = 

Jo yj\pj3T(aj) 

_ T ( y j + a j ) f 1 Y * / Bj \ » 

y,-!r(tti) \l + 8j) \l + 8j) ' 

which implies that Yj has a negative binomial distribution (in the generalized sense). We have 

E(Yj) — ajBj and Var(Yj) = otj8j(l + Bj). The margins are overdispersed since Var(Yj)/E(Yj) > 1. 

Based on (3.35), if a , is an integer, yj can be interpreted as the number of observed failures in yj +aj 

trials, with aj a previously fixed number of successes. 

The parameter estimation procedure based on I F M is similar to that for the multivariate Poisson-

lognormal model. Some simplifications are possible. One simplification for the Poisson-gamma model 

is to hold the shape parameter aj constant across j. In this situation, we have E(Yj) — pj = aBj 

and Var{Yj) = pj(l + Pj/a). Similarly, we can also require Bj be constant across j and obtain the 

same functional relationship between the mean and the variance across j. By doing so, we reduce 

the total number of parameters. With this simplification in the number of parameters, the same 

parameter appears in different margins. The I F M approach for estimating parameters common 

to more than one margin discussed in section 2.6 can be applied. Another special case is to let 

Aj = \Bj, where Bj > 0 is considered to be a scale factor (known or unknown) and the common 

parameter A has a Gamma distribution. This is similar to the multivariate Poisson-lognormal model 

(3.34). Negative dependence cannot be admitted into this special situation, which is similar to the 

multivariate Poisson-lognormal model (3.34). 
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3.6.3 Multivariate negative-binomial mixture model 

Consider d-dimensional count data with yj = rj, rj + 1 , . . . , rj > 1, j = 1,2 . . . , d. For example, 

with given integer value rj, yj might be the total number of Bernoulli trials until the r ,th success, 

where the probability of success in each trial is pj; that is 

If Pj is itself the outcome of a random variate Xj, j = 1 , . . . , d, which have the joint distribution 

G(p\,.. -,Pd), then the distribution for Y = ( Y i , . . . , Y<j) is called the multivariate negative-binomial 

mixture model. If the inverse of 1/Xj has a distribution with mean pj and variance aj, then simple 

calculations lead to E(Yj) = rjpj and Var(Yj) = rjpj(muj — 1) -I- rj(rj + 1)<T?. This multivariate 

negative-binomial mixture model for count data is similar to the multivariate Bernoulli-Beta model 

for binary data in section 3.5. Thus the comments on the extensions to include covariates apply 

here as well. 

A more general form of negative binomial distribution is (3.16), such that 

P j i V j l P i ) = Y{0%{yj + l/ji{l ~ ̂ ' # > ° . W = °. L 2> • • • • 

Using the recursive relation T(x) = (x — l)T(x — 1), Pj(yj\pj) can be written as 

yj 
I 

pj(yj\pj) = Pi 

(3j + k - - Pj) 

k=l 

1, yj = 0. 

The multivariate negative-binomial mixture model can be denned with this general negative binomial 

distribution as the discrete mixing part. Bj, j — 1, . . .,d, can be considered as parameters in the 

mo del. 

3.6.4 Multivariate Poisson-inverse Gaussian model 

The multivariate Poisson-inverse Gaussian model is obtained by letting Gj(rjj) in (2.24) be the cdf 

of a three-parameter univariate inverse Gaussian distribution with density function 

9j(*j) = -JTi—\Xrlexp[(^/2)(CJ/AJ- + \j/ij)), Xj > 0, (3.36) 

where uij = f? + a? — aj > 0, £j > 0 and —oo < jj < oo. In the density expression, Kv(z) 

denotes the modified Bessel function of the second kind of order v and argument z. It satisfies the 
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relationship 
2v 

Ku+1(z) = —Kv(z) + Kv.1(z), 
z 

with K-i/2(z) = K 1/2(2) = yJ!Tf2zexp(—z). The copula C in (2.24) is arbitrary; interesting choices 

are copulas (3.1)—(3.8). With the multinormal copula, the multivariate Poisson-inverse Gaussian 

model is M U B E ; thus the I F M approach can be applied to fit the model. 

A special case of the multivariate Poisson-inverse Gaussian model results when f(yj\Zj) = 

e~ZiZj1 /yj\, where Zj = Xtj, with tj > 0 considered as a scale factor (j = l , . . . , d ) . Then the 

pmf for Y is 

K k + 1 (y/w(w + 2tZt:) ( u> V*+7)/2
 TT (&i)yi 

Ky(w) V w + 2 ^ E ^ y / = i yj-

where k = J^j=i extensive study of this special model can be found in Stein et al. (1987). 

3.7 Application to longitudinal and repeated measures data 

Multivariate copula discrete ( M C D ) and multivariate mixture discrete ( M M D ) models can be used 

for longitudinal and repeated measures (over time) data when the response variables are discrete 

(binary, ordinal and count), and the number of measures is small and constant over subjects. The 

multivariate dependence structure has the form of time series dependence or of dependence decreas

ing with lag. Examples include M C D and M M D models with special copula dependence structure 

and special patterns of marginal parameters. These models include stationary time series models 

that allow arbitrary univariate margins and non-stationary cases, in which there are time-dependent 

or time-independent covariates or time trends. 

In classical time series analysis, the standard models are autoregressive (AR) and moving average 

(MA) models. The generalization of these concepts to M C D and M M D models for discrete time series 

is that "autoregressive" is replaced by Markov and "moving average" is replaced by fc-dependent 

(only rv's that are separated by a lag of k or less are dependent). A particularly interesting model 

is the Markov model of order one, which can be considered as a replacement for AR(1) model in 

classical time series analysis; and these types of Markov models can be constructed from families of 

bivariate copulas. For a more detailed discussion of related topics, such as the extension of models 

to include covariates and models for different individuals observed at different times, see Joe (1996, 

Chapter 8). 
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If the copula is the multinormal copula (3.1), the correlation matrix in the multinormal copula 

may have patterns of correlations depending on lags, such as exchangeable or A R type. For example, 

for exchangeable pattern, Ojk = 0 for all 1 < j < k < d. For AR(1), djk = 6^3~h\ for some \0\ < 1. 

For AR(2), 6jk = ps, with s = \j — k\. ps is the autocorrelations of lag s; the autocorrelation satisfy 

Ps = <i>iP,-i+<f>2P,-2, s >%,<}>!= px(l- p2)/(l- pj), <f>2 = (P2 - pl)/{l- p\), and are determined 

from pi and p2-

Some examples of models suitable for modelling longitudinal data and repeated measures (over 

time) are the multivariate Poisson-lognormal model, multivariate logit-normal model, multivariate 

logit model with multinormal copula or with M - L construction, multivariate probit model with 

multinormal copula, and so on. In fact, the multivariate probit model with multinormal copula is 

equivalent to the discretization of A R M A normal time series for binary and ordinal response. For 

the discrete time series and d > 4, approximations can be used for the probabilities Pr(Y} = yj, j — 

1 , . . . , d) which in general are multidimensional integrals. 

3.8 S u m m a r y 

In this chapter, we studied specific M C D models for binary, ordinal and count data, and M M D 

models for binary and count data. ( M M D models for ordinal data are not presented, since there 

is no natural simple way to represent such models, however M M D models for binary data can be 

extended to M M D models for nominal categorical data.) Extension to let the marginal parameters 

as well as the dependence parameter be functions of covariates are discussed. We also outlined the 

potential application of M C D and M M D models for longitudinal data, repeated measures and time 

series data. However, this chapter does not contain an exhaustive list of models in the family of 

M C D and M M D classes. Many additional interesting models in M C D and M M D classes could be 

introduced and studied. Our purpose in this chapter is to demonstrate the richness of the classes 

of M C D and M M D models, and to make several specific models available for applications. Some 

examples of the application of models introduced in this chapter can be found in Chapter 5. 



Chapter 4 

The efficiency of I F M approach 

and the efficiency of jackknife 

variance estimate 

It is well known that under regularity conditions, the (full-dimensional) maximum likelihood esti

mator (MLE) is asymptotically efficient and optimal. But in multivariate situations, except the 

multinormal model, the computation of the M L E is often complicated or impossible. The I F M 

approach is proposed in Chapter 2 as an alternative estimation approach. We have shown that 

the I F M approach provides consistent estimators with some good asymptotic properties (such as 

asymptotic normality of the estimators). This approach has many advantages; computational fea

sibility is main one. It can be applied to many M C D and M M D models (models with M U B E , 

P U B E properties) with appropriate choices of the copulas; examples of such copulas are multinor

mal copula, M - L construction, copulas from mixture of max-id distributions, copulas from mixture 

of conditional distributions, and.so on. The I F M theory is a new statistical inference theory for 

the analysis of multivariate non-normal models. However, the efficiency of estimators obtained from 

I F M in comparison with M L estimators is not clear. 

In this chapter, we investigate the efficiency of the I F M approach relative to maximum likelihood. 

Our studies suggest that the I F M approach is a viable alternative to M L for models with M U B E , 

P U B E or M P M E properties. This chapter is organized as follows. In section 4.1, we discuss how to 

assess the efficiency of the I F M approach. In section 4.2, we carry out some analytical comparisons 

125 
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of the I F M approach to M L for some models. These studies show that the I F M approach is quite 

efficient. A general analytical investigation is not possible, as closed form expressions for estimators 

and the corresponding asymptotic variance-covariance matrices from M L and I F M are not possible 

for the majority of multivariate non-normal models. Most often numerical assessment of their 

performance must be used. In section 4.3, we carry out extensive numerical studies of the efficiency 

of I F M approach relative to M L approach. These studies are done mainly for M C D and M M D models 

with M U B E or P U B E properties. The situations include models without and with covariates. In 

section 4.4, we numerically study the efficiency of I F M approach relative to M L approach for models 

with special dependence structure. The I F M approach extends easily to the models with parameters 

common to more than one margin. Section 4.5 is devoted to the numerical assessment of the 

efficiency of the jackknife approach for variance estimation of I F M E . The numerical results show 

that the jackknife variance estimates are quite satisfactory. 

4.1 The assessment of the efficiency of I F M approach 

In section 2.3, we have given some optimality criteria for inference functions. We concluded that in 

the class of all regular unbiased estimating functions, the inference functions of scores (IFS) is M -

optimal (so T-optimal or D-optimal as well). For the regular model (2.12), the inference function in 

the I F M approach are in the class of regular unbiased inference functions; thus all the (asymptotic) 

properties of regular inference functions apply to I F M . 

To assess the efficiency of I F M relative to IFS, at least three approaches are possible: 

A l . Examine the M-optimality (or T-optimality or D-optimality) of I F M relative to IFS. 

A2. Compare the M S E of the estimates from I F M and IFS based on simulation. 

A3 . Examine the asymptotic behaviour of 2£($) - 2£{6) based on the knowledge that 2£(6) - 21(0) 

has an asymptotic \ 2
q distribution when 6 is the true parameter vector (of length q). 

A l is along the lines of inference function theory. As an estimator may be regarded as a solution to 

an equation of the form \£(y; 6) = 0, we study the inference functions instead of the estimators. This 

approach can be carried out analytically in a few cases when both the Godambe information matrix of 

I F M and the Fisher information matrix for IFS are available in closed form, or otherwise numerically 

by computing (or estimating) the Godambe information matrix and the Fisher information matrix 

(based on simulation). With this approach, we do not need to actually find the parameter estimates 
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for the purposes of comparison. The disadvantage is that the Godambe information matrix or 

Fisher information matrix may be difficult to calculate, because partial derivatives are needed for 

the computation and they are difficult to calculate for most multivariate non-normal models. Also 

this is an asymptotic comparison. A2 is a conventional approach, it provides a way to investigate the 

small sample properties of the estimates. This possibility is especially interesting in comparison with 

A l , since although M L E s are asymptotically optimal, this may not generally be the case for finite 

samples. The disadvantage with A2 is that it may computationally demanding with multivariate 

non-normal models, because for each simulation, parameters estimation based on I F M and IFS are 

carried out. A3 is based on the understanding that if the estimates from I F M are efficient, we would 

envisage that the full-dimensional likelihood function evaluated at these estimates should have the 

similar asymptotic behaviour as when the full-dimensional likelihood function is evaluated at the 

M L E . More specifically, suppose the loglikelihood function is £(0) = Yl7=i l°S/(yi|0)> where 6 is a 

vector of length q. Under regularity conditions, 2(£(8) —£(8)) has an asymptotic x\ distribution (see 

for example, Sen and Singer 1993, p236). Thus a rough method of assessing the efficiency of 0 is to 

see if 2(£(0) — £(0)) is in the likelihood-based confidence interval for 2(1(0)— £(0))\ this interval of 1 —a 

confidence is (x2.a/2> Xji -a/2) ' where Xqtp is the lower 0 quantile of a chi-square distribution with 

q degrees of freedom. The assessment can be carried out by comparing the frequency of (empirical 

confidence level of) 2(1(0) —1,(0)) in the ( x 2
a / 2 ' ^ j i _ a / 2 ) with 1 — a. In other words, we check the 

frequency of 

and 0 is considered to be efficient if the empirical frequency is close to 1 — a. The advantage of this 

efficiency of 0 in comparison with 0 in relatively small sample situations. In our studies, A3 will not 

be used. We mention this approach merely for further potential investigations. 

To compare I F M with IFS by A l , we need to calculate the Fisher information (matrix) and the 

Godambe information (matrix). Suppose P(y\ • • -yd',0), 0 6 5ft, is a regular M C D or M M D model 

in (2.12), where 0 = ..., 6q)' is g-component vector, and 5ft is the parameter space. The Fisher 

information matrix from one observation for the parameter vector 0, I, has the following expression 

8£{6--xl,a/2<2(t(0)-l(0))<X2., 

approach is that only 0, 1(0) and £(0) need to be calculated; this leads to much less computation 

compare with finding 0. The disadvantage is that this approach may not be very informative about 
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where 

dPi-q(yi •••ya) 
1, 

1 dPx...q(yi •••yd) dPi...g(yi •••yd) 

Pi-q(yi •••yd) d6j d9k 

1 < j < k < q. 

{yi---y*} 
Assume the I F M for one observation is $ = (^I, • • - ,4>q)- The Godambe information matrix Jy 

based on I F M for one observation is = D<$M^1 Dl%, where 

/ M u ••• M l q \ /Dn 

,9,J 

Dlq\ 

D q q / 

# *), Djj = EWj/dBj) (j = with Mj, = E(rl>]) (j = 1 , . . . , « ) , Mjk = E ( ^ k ) (j, k = 1, 

1 , . . . , q), and Djk = E(dipj/dOk) (j,k = 1 , . . . , q, j ^ k). The detailed calculation of the elements 

of M $ and D $ can be found in section 2.4 for the models without covariates. The M-optimality 

assessment examines the positive-definiteness of J^1 — I~l. It is equivalent to T-optimality which 

examines the ratio of the trace of the two information matrices, Tr ( J^ ' 1 ) /Tr (7 _ 1 ) , and D-optimality 

which examines the ratio of the determinant of the two information matrices, det(J^' 1 )/det(7 _ 1 ) . T -

optimality is a suitable index for the efficiency investigation as it is easier to compute. A n equivalent 

index to D-optimality is ^ d e t ( J 

* )/det(I l ) . In our efficiency assessment studies, we will use M -

optimality, T-optimality or D-optimality interchangeably depending on which is most convenient. 

In most multivariate settings, A l is not feasible analytically and extremely difficult computa

tionally (involving tedious programming of partial derivatives). A2 is an approach which eliminates 

the above problems as long as M L E s are available. As M L E s and IFMEs are both unbiased only 

asymptotically, the actual bias related to the sample size is an important issue. For an investigation 

related to sample size, it is more sensible to examine the measures of closeness of an estimator to 

its true value. Such a measure is the mean squared error (MSE) of an estimator. For an estimator 

6 = 9(X\,..., Xn), where X\,..., Xn is a random sample of size n from a distribution indexed by 

9, the M S E of 9 about the true value 9 is 
MSE(<?) = E(9 - 9f = Var{9) + \E{9) - 9]2. 

Suppose that 9 has a sampling distribution F, and suppose 9i,..., 0m are iid of F, then an obvious 

estimator of M S E ( £ ) is 

MSE(0) = E £ i ( f t - g ) 2 

m 
(4-1) 
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If 9 is from the I F M approach and 9 from the IFS approach, A2 suggests that we compare MSE(0) 

and MSE(0). For a fixed sample size, 9 need not be the optimal estimate of 9 in terms of M S E , 

since now the bias of the estimate is also taken into consideration. The measure MSE(0)/MSE(0) 

thus gives us an idea how I F M E performs relative to M L E . The approach is mainly computational, 

based on the computer implementation of specific models and subsequent intensive simulation and 

parameter estimation. A2 can be easily used to study models with no covariates as well as with 

covariates. 

4.2 Analytical assessment of the efficiency 

In this section, we study the efficiency of the I F M approach analytically for some special models 

where the Godambe information matrix and the Fisher information matrix are available in closed 

form, or computable. 

E x a m p l e 4.1 ( M u l t i n o r m a l , general) Let X ~ Nd(p, E) . Given n independent observations 

x i , . . . , x „ from X , the M L E s are 

.*»' — H A * * — H 
i=l i = l 

It can be easily shown that the I F M E p and E are equal to p and E respectively, so M L E and I F M E 

are equivalent for the general multinormal distribution. • 

E x a m p l e 4.2 ( M u l t i n o r m a l , c o m m o n m a r g i n a l mean) Let X ~ Nd(p, £ ) , wherep = (pi,..., 

pdy = pi for a scalar parameter p and E is known. Given n independent observations x i , . . . , x „ 

with same distributions as X , the M L E of p is 

The I F M of p = (p\,..., pd)' are equivalent to 

$ . - V X i j ~ ^ i - l d 

i = l ai 

which leads to p,j — n~l E " = i x»j> o r A* = n _ 1 E i = i x « - simple calculation leads to J ^ 1 ^ ) = 

n _ 1 E . Thus if we incorporate the knowledge that pi,...,pd are the same value, with W A and 

P M L A , we have 
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i . W A : the final I F M E of p is 

P-w = l ' E - i l ' 

which is exactly the same as p since ft = " - 1 E r = i x » - So m this situation, the I F M E is 

equivalent to the M L E . 

ii . P M L A : the final I F M E of p is 

. l ' jdiagtS) } - 1 / ! E o - r - V 
^ l ' { d i a g ( £ ) } - i l y > r / ' 

With this approach, I F M E is not equivalent to M L E . The ratio of Var(/ip) to Var(/i) is 

l / { d i a g ( S ) } - 1 S { d i a g ( S ) } - 1 l l / S - 1 l 
(l ' {diag(E)}-il)2 

There is some loss of efficiency with simple P M L A . 

• 

E x a m p l e 4.3 (Trivariate p r o b i t , general) Suppose we have a trivariate probit model with known 

cut-off points, such that P ( l l l ) = $3(0, 0, 0, p\2, P13, p23)- We have the following (Tong 1990): 

P i ( l ) = P 2 ( l ) = P3(l) = * ( 0 ) = 

(4.2) 

^ + ^ ( s i n 1,912+sin 1 p13 + sin 1 p23). 

(4.3) 

P ( l l l ) = $3(0,0, 0,pi2,/»13,A>23) 

The full loglikelihood function is 

In = n ( l l l ) l o g P ( l l l ) + n(110) log P(110) + n(101) log P(101) + n(100) logP(100) 

n(011) logP(Oll) + n(010) log P(010) + n(001) log P(001) + n(000) log P(000). 

Even in this simple situation, the M L E of pjk is not available in closed form. The information matrix 

for P12, P13 and p23 from one observation is 

/In I12 I13 \ 

I = I12 I22 I23 , 

\Ii3 I23 hs I 

where, for example, 

'11 
d P ( l l l ) 

+ 

P(ll l ) V dpi2 

1 fdP{011)\2 

+ 
1 /<9P(110)\ /ap(ioi)V fdP(100)\ 

P(110) V d P l 2 J + P(101) ^ d P l 2 ) + P(100) d P l 2 ) 

/<9P(010)\ / d P ( 0 0 1 ) V fdP(000)\ 

p(oii) I, d P l 2 J + P(OIO) V d P l 2 ) + p(ooi) ^ aPi2 ) + P(OOO) ^ d P l 2 ) 
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Simple calculation gives us 5 P ( l l l ) / c V i 2 = 1/(4^-^/1 — p f 2 ) ; a n d other terms also have similar 

expressions. After simplification, we get 

7T3 + 64a - 16TT6 

""C 1 - P2i2)cdef ' 

where 
a = s i n 1 p i 2 s i n 1 / 9 i 3 s i n 1 p23, 

6 = (sin V i 2 ) 2 + (sin 1 pi3f + (sin 1 p23)2, 

c = 7T + 2 s i n - 1 pi2 + 2 s i n - 1 piz + 2 s i n - 1 p23, 

d= 7r + 2 s i n - 1 pi2 — 2 s i n - 1 P13 — 2 s i n _ 1 p23, 

e = 7r — 2 s i n - 1 p\2 + 2 s i n - 1 p\3 — 2 s i n - 1 p23, 

/ = 7T — 2 s i n - 1 pi2 — 2 s i n - 1 p13 + 2 s i n - 1 p23. 

Other components in the matrix I can be computed similarly. The inverse of / , after simplification, 

is found to be 
/ « n ai2 a 1 3 \ 

r1 = a\2 a22 a23 

\ a i 3 a 2 3 a 3 3 

where 

a n = 

<222 = 

a33 = 

a i 2 = 

a i 3 = 

023 = 

( T 2 - 4 ( s i n - V i 2 ) 2 ) ( l -Ph) 

( T 2 -

4 

4 ( s i n - 1 p i 3 ) 2 ) ( l -Piz) 
4 

4 ( s i n - 1
/ > 2 3 ) 2 ) ( l -pis) 

(2 s i n 
4 

_ 1 p i 2 s i n _ 1 p13 - 7 r s i n _ 1 P23)(l - P 2
2 ) 1 / 2 ( l - P213)1/2 

(2 s i n - 1 P i 2 s i n _ 1 p23 -
2 

7 r s i n - 1 Pis)(l - P 2
2 ) 1 / 2 ( l ~ Ph)1/2 

(2 s i n _ 1 / ? i 3 s i n _ 1 / ? 2 3 -

2 
w s i n - 1 P12 ) ( l - p ? 3 ) 1 / 2 ( l ~ Ph)1'2 

For the I F M approach, we have 

'n , - t ( l l ) + n > t(00) n,-*(10) + n,-t(01)\ dPjk(U) 
njk 

9njk = 0 leads to 

Pjk = s i n 

1 / 2 - ^ ( 1 1 ) 

7T n , - t ( l l ) + njt(OO) ~ njfc(lO) - "jfc(Ol) 

3p 

, 1 < j < k < 3. 
2 n 

If the I F M for one observation is 9 = (^12, ^13, ^23), then from section 2.4, we have 

E(tl>- VJ ) = V p:kim{yjykyiym) dPjk{yjyk) dPim(yiym) 
j" ' m {y^v-} P i * ( W » ) f l m ( » y » ) dpjk 8p,m 
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where 1 < j < fc < 3, 1 < / < m < 3, and 

'dj>jk\ i 
E 

We thus find that 

dpjk E 
{yjyk} 

1 < j < fc < 3. 

My = 

/ on bi2 bi3' 

bi2 b22 623 
\ ^13 &23 &33' 

and Dy = 

/ - 6 1 
0 

V 0 

0 

-622 
0 

° \ 
0 

-633/ 
where 

bn 

&22 

633 

bl2 

&13 

b23 = 

(TT2 — 4(sir 

( T T 2 — 4(sin" 

(7r 2 — 4(sin" 

(w2 — 4(sin" 

(7r 2 — 4(sin" 

pi2)2)(i-pi2y 
4 

P 1 3 ) 2 ) ( 1 - P 2
3 ) ' 

4 

P23) 2)(wy 
1 6 s i n - 1 p i 2 s i n - 1/3i 3 — 87rsin - 1 P23 
Pi2?){*2 - 4(sin - 1 p 1 3 ) ' ) ( l - p ? 2 ) 1 / 2 ( l - p\3fl2 ' 
16 s i n - 1 pi2 s i n - 1 p 2 3 — 87r s i n - 1 p\3 

P12)2)(*2 ~ 4(sin" 1
 P23) 2)(l - Pl2)1/2(1 - P223)1/2 ' 

16 s i n - 1 P13 s i n - 1 P23 — 87rsin - 1 P12 

(n2 - 4 (s in - 1 p 1 3) 2)(7r 2 - 4(sin - 1 p23)2)(l - ? 2
3) 1 / 2(1 - ph)1'2 ' 

After simplification, J^1 = D^1 My(D~^l)T turns out to be equal to I - 1 . Therefore by M-optimality, 

the I F M approach is as efficient as the IFS approach. 

The algebraic computation in this example was carried out with the help of the symbolic manip

ulation software Maple (Char et al. 1992). Maple is also used for other analytical examples in this 

section. For completeness, the Maple program for this example is listed in Appendix A . The Maple 

programs for other examples in this section are similar. • 

Example 4.4 (Trivariate probit, exchangeable) Suppose now we have a trivariate probit model 

with known cut-off points, such that P(lll) = $3(0,0,0, p, p, p). That is, the latent variables are 

permutation-symmetric or exchangeable. With (4.2), we obtain 

P1(1) = P2(1) = P3(1) = *(0)=|, 

Pi 2 (H) = Pi 3 (H) = P 2 3 (H) = $ 2(0,0 , p ) = ] + ±- s i n - 1 p, 

P(lll) = $3(0,0,0, p, p, p) = I + A s i n " 1 p. 
o 47T 

The M L E of p is 
7r(4niii +4n0 0o -n) 
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Based on the full loglikelihood function (4.3), we calculate the Fisher information for p (using Maple). 

The asymptotic variance of p is found to be 

(1 - P2)(TT + 6 s i n - 1 p)(7r - 2 s i n - 1 p) 
Var(p) = 

12n 

Let the I F M for one observation be \P = (ip\2,1P13, ^23) • We use W A and P M L A to estimate the 

common parameter p: 

i . W A : We have 
/ a b / - a 0 0 \ 

b a b and £>$ = 0 —a 0 

\b b a) I 0 0 - a ) 

where 

a = 
( 7 r 2 - 4 ( s i n _ 1 p ) 2 ) ( l - p 2 ) 

6 = 
! sin 1 p 

(TT - 2 s i n _ 1 p)(w + 2 s i n - 1 p)2{\ - p2) 

Thus 
/ a - 1 a~2b a~2b\ 

J * 1 = D^MviDy1) 1\T a 2b a 1 a 2b 

\a~2b a~2b a'1 J 

Assume the I F M E of pn, P13, P23 are p\2, P13, P23 respectively. With W A , we find the weighting 

vector u = (1/3,1/3,1/3)'. So the I F M E of p, pw> is 

Pw = ^ (Pl2 + Pl3 + P23), 

and the asymptotic variance of pw is 

Var(p) = — u ' J ^ 1 u 

_ l ( l - / ? 2 ) ( 7 r 2 - 4 ( s i n - 1 p ) 2 ) 2 ( l - p 2 ) ( 7 r - 2 s i n - 1

/ 9 ) s i n - 1 p 
+ 3 9 4n 

_ (1 - p2)(ir + 6 s i n " 1 p)(ir - 2 s i n " 1 p) 

12n 

ii . P M L A : The I F M is * = V12 + ^13 + fe- Thus 

= £(̂ 12 + ̂ 13 + V"23) 

2n 

£ P ( y i * « , ) ( £ * / P ( . w w ) ) 

(4.4) 
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and 

D9 = E(d(ilil2 + V>13 + i>23)/dp) 
3 

{l/iyaya} j,k=VJ<k 

We find (using Maple) 

My — 

Dy = 

Pfkivm) V dp 

12(TT + 6 s i n - 1 p) 

+ 
d2Pjk(yjyk) 

Pjk(yjVk) dp2 

(4.5) 

(1 - P2)(TT - 2 s i n - 1 P)(TT + 2 s i n - 1 p)2 ' 
12 

(TT 2 - 4 ( s i n - V ) 2 ) ( l -p2)' 

The evaluation of J^1 = £ ) ^ 1 M $ ( Z ) ^ 1 ) T leads to the asymptotic variance of pp 

(1 - p2)(ir + 6 s i n - 1 p)(% - 2 s i n - 1 p) 
Var(pp) 

12n 

We have so far shown that Var(p) = Var(p t t,) = Var(p p), which means that the I F M with W A 

and P M L A lead to an estimate as efficient as that from IFS approach. 

Any single estimating equation from I F M also gives an asymptotically unbiased estimate of p, 

and the p from each of these estimating equations has the same asymptotic properties because of 

the exchangeability of the latent variables. The ratio of the asymptotic variance of the I F M E of 

p from one estimating equation to the asymptotic variance of the M L E p is found to be [3(7T + 

2 s i n - 1 P)]/[TT + 6 s i n - 1 p]. Figure 4.1 is a plot of the ratio versus p £ [—0.5,1]. The ratio decreases 

from oo to 1.5 as p increases from —0.5 to 1. When p = 0, the ratio value is 3. These imply that the 

estimate from a single estimating equation has relatively high efficiency relative to the M L E when 

there is high positive correlation, but performs poorly when there is high negative correlation. 

• 

Example 4.5 (Trivariate probit, AR(1)) Suppose we have a trivariate probit model with known 

cut-off points, such that -P ( l l l ) = $3(0,0,0, p, p2, p). That is, the latent variables have AR(1) cor

relation structure. With (4.2), we obtain 

P 1(1) = P 2(1) = P 3(1) = *(0) = ^ 

P i 2 ( H ) = P 2 3 ( l l ) = $2(0,0, p) = \ + ^ - s i n - 1 p, 

P 1 3 ( l l ) = $ 2(0,0,p 2) = I + J - s i r r V , 

P ( l l l ) = $3(0,0,0, p, P\P)=\ + ^ s i n " 1 p + ^ s i n " 1 p 2 . 
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1 1 1 1 1— 
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

Figure 4.1: Trivariate probit, exchangeable: The efficiency of p from the margin (1,2) (or (1,3), 
(2,3)) 

Based on the full loglikelihood function (4.3), the asymptotic variance of p is found (using Maple) 

to be 
7r(l - p 4 ) a 1 a 2 a 3 

Var(p) = 
8 [p 2 a 4 + (1 + p 2 )a 5 + p(l + p2y/2a6] ' 

(4.6) 

where 
ai = 7r — 2 s i n - 1 p2, 

a2 = 7r — 4 s i n - 1 p + 2 s i n - 1 p2, 

a,3 = ir + 4 s i n - 1 p + 2 s i n " 1 p2, 

a 4 = 2TT2 - 16(sin - 1 p)2 + 47rsin _ 1 p2, 

a5 = 7r 2 - 4 (s in _ 1 p 2 ) 2 , 

ag = 16 s i n - 1 p s i n - 1 p 2 — 87rsin _ 1 p. 

Let the I F M for one observation be 9 = (V"i2, i>i3, ̂ 23)- We use W A and P M L A to estimate the 

common parameter p: 

i . W A : We have 

My = 

I a c d^ 

c b c I and Dy = 

\ d c a. 

/ - a 0 0 \ 

0 - 6 0 V 0 0 - a I 
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where 

a ( 7 r 2 - 4 ( s i n - V ) 2 ) ( i - / > 2 ) ' 

( 7 r 2 - 4 ( s i n-V ) 2 ) ( l - / > 4 ) ' 

16/jsin - 1 p 

d = 

( T T 2 - 4(sin- 1 P) 2 )(TT + 2 s i n " 1 p2)(l - p2)(l + p2)1/2 ' 

87rsin _ 1 /9 2 - 16(sin - 1/?) 2 

- 1 n\2\2( ( 7 r 2 - 4 ( s i n - 1
/ 9 ) 2 ) 2 ( l - / ' 2 ) 

Thus 
c(afc)- 1 da~2 \ 

J * 1 = Dy1 My (Dy1 )T = c(ab)-1 ciab)-1 

\ da~2 c(ab)-1 a - 1 / 

Assume the I F M E of p12, P\3, P23 are p12, P13, f>23 respectively, and let p = (p\2,p\3, P23)'• With 

W A , the I F M E of p, pw, is 

Pw = u'p, 

where the weighting vector u = « 2 , "3)' = Jyl/(l' Jyl). We find that 

01020307 
Ui = U3 

«2 

2o 8 [p2a4 + (1 + p 2 )o 5 + p{l + p2y/2a6] 

(2/>2o4 + p{\ + /9 2 ) 1 / 2 a 6 ) a 2 a 3 

2a 8 [p 2 a 4 + (1 + p2)a5 + p(l + p2y'2a6} ' 

where ai , 02, 03, 04, 05, and ae as above, and 

a7 = TT + irp2 + 2 s i n - 1 p2 + 2p2 s i n - 1 p2 - 4p(p2 + 1 ) 1 / 2 s i n - 1 p, 

a8 = T T 2 + 47rs in _ 1 p2 + 4 ( s in - 1 p2)2 - 16(sin _V) 2-

Figure 4.2 is a plot of the weights versus p 6 [—1,1]. The asymptotic variance of p is 

Var(p) = V j - y 

which turns out to be the same as (4.6). 

ii . P M L A : The I F M is \P = tp12 + rp13 + tp23. Following (4.4) and (4.5), we calculate (using 

Maple) the corresponding My and Dy, and then Var(/?p) = J^1. The algebraic expression 

for Var(pp) is complicated, so we do not display it. Instead, we plot the ratio Var(/>p)/Var(/5) 

versus p 6 [—1,1] in the Figure 4.3. The maximum of the ratio is 1.0391, which is attained at 

p = 0.3842 and p = -0.3842. 
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1 . 0 - 0 . 5 O . O 0 . 5 1 . 0 - 1 . 0 - 0 . 5 O . O 0 . 5 1 . O 

Figure 4.4: Trivariate probit, AR(1): (a) The efficiency of p from the margins (1,2) or (2,3). (b) 
The efficiency of p from the margin (1,3). 

The above results show that I F M with W A leads to an estimate as efficient as the IFS approach 

in the AR(1) situation, and I F M with simple P M L A leads to a slightly less efficient estimator 

(ratio< 1.04). 

The p from the estimating equations based on margin (1,2) (or (2,3)) is different from the p 

based on margin (1,3). For p from I F M with the (1,2) (or (2,3)) margin, the ratio of the asymptotic 

variance of the I F M E of p to the asymptotic variance p is 

2(,r2 - 4(sin- 1 p)2) [p2aA + (1 + p2)a5 + p(l + p2)^2a6] 

7r(l + p2)aia2a3 

For p from I F M with (1,3) margin, the corresponding ratio is 

( T T 2 - 4(sin- 1 p2)2) [p2aA + (1 + p2)a5 + p(l + p2)1'2^} 
7>2 — 

2itp2aia.2a3 

We plot r\ and r2 versus p 6 [—1,1] in Figure 4.4. We see that when p goes from —1 to 0, r i 

increases from 1.707 to values around 2. When p goes from 0 to 1, r*i decreases from values around 

2 to 1.707. Similarly, r2 increases from 1.207 to oo as p goes from —1 to 0, and decreases from oo 

to 1.207 as p goes from 0 to 1. We conclude that the (1,3) margin by itself leads to an inefficient 

estimator in a wide range of the values of p. We notice that r2 > ri when p < 0.6357, r2 < r\ when 

p > 0.6357, and rx = r2 = 1.97 when p = 0.6357. 

• 
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Example 4.6 (Trivariate M C D model for binary data with Morgenstern copula) Suppose 

we have a trivariate M C D model for binary data with Morgenstern copula, such that 

P ( l l l ) = ulU2u3[l + e12(l - m ) ( l - u2) + 013(1 - ui)(l - u3) + 023(1 - u2)(l - u3)}, \0{j\< 1, 

where the dependence parameters 0i2, #13 and 023 obey several constraints: 

1 + 012 + $13 + 023 > 0, 1 + #13 > 023 + #23, 
(4-7) 

1 + #12 > #13 + #23, 1 + #23 > #12 + #13-

We have Pj(l) = Uj, j = 1,2,3, and P,fc(ll) = [1 + 0jk(l - Uj)(l - uk)]ujUk, 1 < j < k < 3. 

Assume Uj are given, and the parameters of interest are #12, #13 and #23. The full loglikelihood 

function is (4.3). The Fisher information matrix for the parameters #i2, #13 and #23 is I. Assume 

we have I F M for one observation \P = (ipi2,ipi3,ip23). The Godambe information for \P is Jy = 

DyM^1(Dy)T. We proceed to calculate My and Dy. The algebraic expression of I and Jy are 

extremely complicated. We used Maple to output algebraic results in the form of C code and then 

numerically evaluated the ratio 

r - T r ( ^ " 1 ) 
9 ~ Tr(I-i)' 

where rg means the general efficiency ratio. For this purpose, we first generate n\ uniform points 

(#12, #13, #23) from the cube [—1, l ] 3 in three dimensional space under the constraints (4.7), and then 

order these «i points based on the value of |#i2| + |#i3| + |̂ 231 from the smallest to the largest. For 

each one of the ni points (#12,#13,#23), we generate n2 points of (ui,u2,u3) with (#12,#13,#23) as 

given dependence parameters in a trivariate Morgenstern copula in (2.5) (see section 4.3 for how to 

generate multivariate Morgenstern variate), and then order these n2 points based on the value of 

u\+u2+u3 from the smallest to the largest. Each generated set of (u\, u2, u3, #12, #13, #23) determines 

a trivariate M C D model with Morgenstern copula for binary data. We calculate rg corresponding 

to each particular model. Figure 4.5 presents the values of rg at n\X n2 = 300 x 300 "grid" points. 

We can see from Figure 4.5 that the I F M approach is reasonably efficient in most situations. It 

is also clear that the magnitude of |#i2| + |#i3| + |#23| has an effect on the efficiency of the I F M 

approach, with generally speaking higher efficiency (rg's value close to 1) when |#i2| + |#i3| + |#23| 

is relatively smaller. The magnitude of u\ + u2 + u3 has some effect such that the efficiency of 

the I F M approach is lower at the area close to the boundary of u\ + u2 + u3 (that is close to 0 or 

3). The following facts show that the general efficiency of I F M approach is quite good: in these 

90,000 efficiency (rg) evaluations, 50% of the rg values are less than 1.0196, 90% of the rg values 

are less than 1.0722, 99% of the rg values are less than 1.1803 and 99.99% of the rg values are less 
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•JOO 

Figure 4.5: Trivariate Morgenstern-binary model: Relative efficiency of I F M approach versus IFS 
approach. 

than 1.4654. The maximum is 1.7084. The minimum is 1. The two plots in Figure 4.6 are used to 

clarify the above observations. Plot (a) consists of the 90,000 ordered rg values versus their ordered 

positions (from 1 to 90,000) in the data set. Plot (b) is a histogram of the rg values. Overall, we 

consider the I F M approach to be efficient. 

It is also possible to examine the efficiency ratio in some special situations. We study two of them 

here. The first one is the situation where ui = u2 — u3 — u and 0 i 2 = #13 = #23 — 9 (—1/3 < 0 < 1). 

The ratio of the asymptotic variance of 9 (based on WA) versus the asymptotic variance of 9 is found 

to be 
0,10,20,3 

n(u,9) = 
6i6 2 

where 

ai = 270 2u 4 - 540 2 u 3 + 330 2 u 2 - 1O0U2 - 60 2u + 1O0U - 3 9 - 1 , 

a 2 = 36>V - 9 0 V + 903u4 - 110V - 3 0 3 u 3 + 220 2 u 3 - 1202M2
 + 9u2 + 9 2 u - 9 u - 9 - l , 

a 3 = 9u2 -0u + l, 

61 = (S9u2 - 69u + 30 + l ) (30u 2 - A9u + 9 + 1), 

62 = (30u 2 - 20w + l ) (30u 2 + l ) (0u 2 - 9u - l ) 2 . 

Figure 4.7 is a plot of r i (« , 0) versus u (0 < u < 1) and 0 (—1/3 < 0 < 1). We observe that at the 

boundaries, when 0 = 1, r\{u, 9) is in the interval (1,1.232), and the maximum 1.232 is attained at 
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Figure 4.6: Trivariate Morgenstern-binary model: (a). Ordered relative efficiency values of I F M 
approach versus IFS approach; (b) A histogram of the efficiency value rg. 

u = 0.2175 o r u = 0.7825. When 9 = —1/3, ri(u, 9) is in the interval (1,2), and the maximum 2 is 

attained at u = 0 or u = 1. Since the maximum ratio is 2 at some extreme points in the parameter 

space and for the most part the ratio is less than 1.1, we consider the I F M approach to be efficient. 

The second special situation is where u\ = u2 = 1*3 = u, 9\2 = #23 = 9 and #13 = 92. The 

algebraic expression of the ratio r2(u, 9) of the asymptotic variance of 9 (based on WA) versus the 

asymptotic variance of 9 extends to several pages. We thus only present a plot of r2(u, 9) versus u 

(0 < u < 1) and 9 (—1 < 9 < 1) in Figure 4.8. We observe that at the boundaries when 9 = 1 , 

the ratio r2(u,9) is in the interval (1,1.200097), and the maximum is attained at u = 0.2139 or 

u = 0.7861. When 9 = —1, the ratio r2(u,9) is in the interval (1,1.148333), and the maximum is 

attained at u = 0.154 or 0.846. Overall, the I F M approach is demonstrated again to be efficient. • 

Example 4.7 (Trivariate normal-copula model for binary data) In Examples 4.3, 4.4 and 

4.5, we studied the efficiency of the I F M approach versus the IFS approach in the special situations 

of P ( l l l ) = $3 (0 ,0 ,0 ,p 1 2 , /> i3 , />2 3 ) , P(U1) = $3(0,0,0,p,p,p) and P ( l l l ) = $ 3 (0,0,0,p,p 2 ,p) . 

We found that the I F M approach was fully efficient in these situations. For a general trivariate 

normal-binary model 

P ( l l l ) = $ 3 ( $ 1(ui),$ 1(w 2),$ 1{U3),P12,P13,P23), (4.8) 
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Figure 4.7: Trivariate Morgenstern-binary model: Relative efficiency of I F M approach versus IFS 
approach when u\ = u2 = «3 and 9\2 = #13 = #23-

Figure 4.8: Trivariate Morgenstern-binary' model: Relative efficiency of I F M approach versus IFS 
approach when m = u2 — 113, 9\2 — $23 = 9 and #13 = 92. 
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the closed form efficiency evaluation, as provided for the trivariate Morgenstern-binary model in Ex

ample 4.6, is not possible because $ 3 ( $ _ 1 ( u i ) , $ - 1 ( u 2 ) , $ - 1 ( u 3 ) , P 1 2 , P 1 3 , P 2 3 ) does not have closed 

form. Nevertheless, since a high precision multinormal probability calculation subroutine (Schervish 

1984) is available, we can evaluate the efficiency numerically. 

With the model (4.8), we have Pj(l) = ujt j - 1,2,3 and Pjk(ll) = $2(3>_ 1(u;)> $ - 1(ujfe); Pjk), 

1 < j < k < 3. Assume Uj are given, and the parameters of interest are p i 2 , P13 and P23- Let 

61 — P i 2, #2 = P13 and 63 — p23- The Fisher information matrix from one observation for the 

parameters 61, 62 and O3, I, has the following expression 

/hi I12 Ii3\ 

I = I12 I22 I23 

V ^13 ^23 ^331 

where 
2 

T - ST 1 (^123(2/12/22/3)'\ . _ 1 9 „ 

" " , ^ , PMvittoVs) { d9j J 
{yiyaya} 

T 1 5Pl23(2/l2/22/3) 5Pl23(2/l2/22/3) , . 

I i k - "5—7 \ ?SZ l < j < k < 6 . 

r
 z - ' , ^123(2/12/22/3) ddj 36k 

We can similarly calculate the Godambe information matrix J$ based on the I F M approach for one 

observation. We then numerically evaluate the ratio (T-optimality) 

T r ( J ^ ) 
9 T r ^ - 1 ) 

in the joint trinormal copula sample space and its parameter space. Similar to Example 4.6 for the 

trivariate Morgenstern-binary model, we first generate rti uniform points of (pi2, Pi3> P23) from the 

cube [—1, l ] 3 in three dimensional space under the constraints 1 + 2pi2Pi3/>23 — P12 — P13 — P23 > 0 

(which guarantees that the determinant of a trinormal correlation matrix is positive) and order 

these ni points based on the value of \pn\ + \pi3\ + |/>231 from the smallest to the largest. Then 

for each one of the n\ points (P12, P13, P23), we generate n 2 points ( u i , « 2 , U 3 ) with (P12,P13,P23) 
as given dependence parameters in a trinormal copula, and order these ri2 points based on the 

value of U i + U2 + U3 from the smallest to the largest. Each generated set of (ui, 112, 113, P12, P13, P23) 

determines a trivariate normal-binary model. We evaluate rg corresponding to each particular model. 

The plot in Figure 4.9 presents the values of rg at ni x 712 = 300 x 300 "grid" points for the trivariate 

normal-copula model for binary data. We observe from the plot that the I F M approach is reasonably 

efficient in most situations. It is also clear that the magnitude of |pi2| + \pi3\ + \P23\ has an effect 

on the efficiency of the I F M approach, with generally higher efficiency (rg's value close to 1) when 
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Figure 4.9: Trivariate normal-binary model: Relative efficiency of I F M approach versus IFS ap
proach. 

\pn\ + \pi3\ + \P23\ is smaller. The magnitude of ui -f u2 + u3 has some effect such that the efficiency 

of I F M approach is lower at the area close to the boundaries of u\ + u2 + u3 (that is close to 0 or 

3). In general the I F M approach is quite efficient: in these 90,000 efficiency (rg) evaluation, 50% of 

the rg values are less than 1.0128, 90% of the rg values are less than 1.0589, 99% of the rg values 

are less than 1.1479 and 99.99% of the rg values are less than 1.3672. The maximum is 1.8097. The 

minimum is 1. The two plots in Figure 4.10 are used to clarify the above observations. Plot (a) 

consists of the 90,000 ordered rg values versus ordered positions (from 1 to 90,000) in the data set. 

Plot (b) is a histogram of the rg values. Overall, we draw the conclusion that the I F M approach is 

efficient. 

In the situation where ui = u2 = u3 = u and p\2 = pi3 = p23 = p (—1/2 < 9 < 1), let us denote 

r\(u,p) the ratio of the asymptotic variance of p (based on WA) versus the asymptotic variance of 

9. ri(u, p) has to be evaluated numerically. Figure 4.11 shows a plot of ri(u, p) versus u (0 < u < 1) 

and p (—1/2 < p < 1). It is difficult to evaluate ri(u,p) numerically when the values of u and p 

are near the boundaries of the sample space and the parameter space, but generally speaking, the 

efficiency is lower when the values of u and p are close to the boundaries. 

In the situation where ui = u2 = u3 = u, p\2 = p23 = p and p\3 — p2 (p £ [—1,1]), we observed 

similar efficiency behaviour. These results are not presented here. • 
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Figure 4.11: Trivariate normal-binary model: Relative efficiency of I F M approach versus IFS ap
proach when ui = u2 = U3 and p\2 = P13 = p2z-
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We have seen from the trivariate normal-copula model for binary data and the trivariate Morgenstern-

copula model for binary data that, in some situations, I F M is as efficient as IFS (e.g. when u = 0.5 

for normal-binary model and u = 0, 0.5 or 1 for Morgenstern-binary model). In other situations, 

the efficiency of I F M relative to IFS varies from 1 to a value very close to 1. It is hoped the above 

results may help to develop intuition for the efficiency of I F M . We would guess that the relative 

efficiency of I F M to IFS for a model with the M U B E property should be good, as we have seen with 

the trivariate normal-copula model for binary data and the trivariate Morgenstern-copula model for 

binary data. However, a general exhaustive analytical investigation such as above is not possible; 

we have to rely on numerical investigation based on simulation for most of the complicated (higher 

dimensions or models with covariates) situations. 

4.3 Efficiency assessment through simulation 

In this section, we give efficiency assessment results through simulation studies with various models. 

The following are the steps in the simulation and computation: (1) a M C D or M M D model (with 

M U B E property) is chosen; (2) different sets of model parameters are specified; (3) with a given set 

of parameters, a sample of size n is generated from the model, and I F M and IFS approaches are 

used on the same generated data set to estimate the model parameters; (4) with the same set of 

parameters, step (3) is repeated m times; (5) for any single parameter in the model, say 9, if the 

estimates of 9 with the I F M approach from step (3) and (4) are 0\,...,6m, and the estimates of 9 

with IFS approach from step (3) and (4) are 9\,..., 9m, then we compute 

£ = 2 X i A M S E ( i ) = £ £ i ( g < - g ) 2 (4.9) 
m m 

and 

m m 

The relative efficiency of I F M E to M L E is defined as the ratio r where r 2 = MSE(#)/MSE(#). The 

values of 9, ^ M S E ( 0 ) , 6, ^ M S E ( 0 ) and r are tabulated, with yJlMSE(6) and ^ M S E ( 0 ) presented 

in parentheses. 

For a fixed sample size, a parameter estimation approach is said to be good if 9 (or 9) is close to 9, 

and if ^ M S E ( f l ) (or y /MSE(#)) is small. There is no "good" in the strict sense, it should be under

stood in terms of inference, interpretation (i.e. no misleading interpretation or false inference would 

be derived, assuming the model is correct) and in comparison with conventional, well-established 
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approach. The main objective of this section is to show that with fairly complex models, the I F M 

approach still has high efficiency. 

M u l t i v a r i a t e copula discrete models for b i n a r y data 

In this subsection, we study the M C D models for binary data. The parameters are assumed to be 

margin-dependent. In our simulation, we use the M V N copula, and simulate (/-dimensional binary 

observations y,- (i = 1 , . . . , n) from a multivariate probit model 

Yij = I(Zij < z^), j = 1 , . . . , d, i = l , . . . , n , 

where Zj = (Zn,.. .,Zn)' ~ MVNd(0,Qi) with z,, = £ j x y , and 0* = (Oijk) assumed to be free 

of covariates, that is 0,- = 0 or Oijk = #jA, V i. We transform the dependence parameter 6jk with 

$jk = (exp(ajfc) — l)/(exp(ajfc) + l) , and estimate ajk instead of Ojk- We use the following simulation 

scheme: 

1. The sample size is n, the number of simulations is N; both are reported in the tables. 

2. For d = 3, we study the two situations: Yij = I(Zij < Zj) and Y,;- = I(Zij < fyo + fij\Xij). 

For each situation, two general dependence structures are chosen: #12 = #13 = #23 = 0.6 (or 

a12 = a13 = a 2 3 = 1.3863) and 012 = 023 = 0.8 (or a 1 2 = a 2 3 = 2.1972), 013 = 0.64 (or 

a i 3 = 1.5163). Other parameters are: 

(a) With no covariates, with z = (0,0,0)'. 

(b) With covariates, with 0O = (/?1 0,/3 2 0,/?3 0)' = (0.7,0.5,0.3)' and & = (/3n,/?21,/?31)' = 

(0.5,0.5,0.5)'. Situations where Xij is discrete and continuous are considered. For the 

discrete situation, X{j = I(U < 0) where U ~ U(—1,1); for the continuous situation, XijS 

are margin-independent, that with Xi ~ N(0,1/4). 

3. For d = 4, we only study Y,j = I(Z{j < Zj). Two dependence structures in the study are 

#12 = #13 = #14 = #23 = #24 - #34 = 0.6 (or C*12 = c*i3 = a i 4 = a 2 3 = a 2 4 = <*34 - 1.38 63) 

and #12 = #23 = #34 = 0.8 (or a i 2 = a 2 3 = a 3 4 = 2.1972), # i3 = #24 = 0.64 (or a i 3 = a 2 4 = 

1.5163) and #i4 = 0.512 (or a i 4 = 1.1309). The cut-off points are (a) z = (0,0,0,0)', (b) 

z = (0.7,0.7,0.7,0.7)', (c) z = (0.7,0,0.7,0)'. 

The numerical results from M C D models for binary data are presented in Table 4.1 to Table 

4.5. These tables lead to two clear conclusions: i) The I F M approach is efficient relative to the 
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Table 4.1: Efficiency assessment with M C D model for binary data: d = 3, z = (0,0,0)', N = 1000 

n 
m a r g i n 

parameters 
1 2 3 (1,2) (1,3) (2,3) 

Zl Zi Z3 « 1 2 « 1 3 C*23 
a i 2 = « 1 3 = « 2 3 = 1.3863 

100 I F M 

M L E 

r 

0.003 -0.002 0.005 1.442 1.426 1.420 
(0.131) (0.121) (0.128) (0.376) (0.380) (0.378) 
0.002 -0.003 0.004 1.441 1.426 1.420 

(0.131) (0.121) (0.128) (0.376) (0.380) (0.378) 
0.998 0.999 0.999 0.999 0.999 0.999 

1000 I F M 

M L E 

r 

-0.0006 -0.0016 -0.0008 1.3924 1.3897 1.3906 
(0.040) (0.038) (0.039) (0.114) (0.114) (0.113) 
-0.0018 -0.0028 -0.0019 1.3919 1.3893 1.3902 
(0.040) (0.038) (0.039) (0.114) (0.114) (0.113) 
0.997 0.997 0.997 1.000 1.001 1.000 

a 1 2 = a 2 3 = 2.1972, c*i3 = 1.5163 
100 I F M 

M L E 

r 

0.0027 -0.0006 0.0003 2.2664 1.5571 2.2586 
(0.131) (0.123) (0.130) (0.454) (0,377) (0.453) 
0.0015 -0.0020 -0.0012 2.2646 1.5552 2.2579 
(0.131) (0.123) (0.131) (0.453) (0.377) (0.452) 
0.999 1.000 0.999 1.001 1.001 1.002 

1000 I F M 

M L E 

r 

-0.0006 -0.0001 -0.0005 2.2009 1.5174 2.2043 
(0.040) (0.038) (0.039) (0.135) (0.118) (0.136) 
-0.0023 -0.0020 -0.0022 2.2003 1.5166 2.2036 
(0.040) (0.038) (0.039) (0.135) (0.118) (0.137) 
0.996 1.000 0.996 0.999 1.000 1.000 

M L approach, for small to large sample sizes. The ratio values r are very close to 1 in almost 

all the situations studied. These results are consistent with the results from the analytical studies 

reported in the previous section, ii) The M L E may be slightly more efficient than the I F M E , but 

this observation is not conclusive. We would say that I F M E and M L E are comparable. 

Multivariate copula discrete models for ordinal data 

In this subsection, we study the M C D models for ordinal data. The parameters are assumed to be 

margin-dependent. In our simulation, we use the M V N copula. We simulate d-dimensional ordinal 

observations (i = 1 , . . . , n) from a multivariate probit model for ordinal data, such that 

' Yj = 1 i f f Z j(0) < Zj < Zj(l), 

Yj =2iftzj(l)<Zj <Zj(2), 
< 

Yj — rrij iff Zj(m,j — 1) < Zj < Zj(rrij), 

where —co — 2/(0) < z ; ( l ) < • • • < Zj(mj — 1) < Zj(rn,j) = oo are constants, j = 1,2,. . . , d , and 

Zj = (Zn,.. .,Zid)' ~ MVNd(0,®i) with Zijfaj) = fj(yij) + 3'jXij. Qi - (Oijk) is assumed to 

be free of covariates, that is, 0,- = 6 or 9ijk = Ojk, V i. We transform the dependence parameters 
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Table 4.2: Efficiency assessment with M C D model for binary data: d = 3, 0o = (0.7,0.5,0.3)', 
0i = (0.5,0.5,0.5)', Xij discrete, N = 1000 

n 
margin 

parameters 
1 2 3 (1,2) (1,3) (2,3) 

010 020 021 030 031 " 1 2 " 1 3 " 2 3 
"12 = " 1 3 = 0 2 3 = 1-3863 

100 I F M 

M L E 

r 

0.694 0.559 0.496 0.547 0.294 0.526 1.446 1.447 1.435 
(0.199) (0.385) (0.192) (0.335) (0.186) (0.282) (0.530) (0.492) (0.455) 

0.692 0.557 0.495 0.545 0.293 0.526 1.447 1.450 1.438 
(0.198) (0.347) (0.192) (0.319) (0.185) (0.282) (0.498) (0.490) (0.458) 

1.005 1.108 1.001 1.050 1.001 1.001 1.064 1.004 0.993 
1000 I F M 

M L E 

r 

0.700 0.501 0.498 0.509 0.298 0.503 1.395 1.386 . 1.385 
(0.063) (0.100) (0.058) (0.089) (0.058) (0.085) (0.145) (0.136) (0.131) 

0.699 0.500 0.497 0.508 0.298 0.503 1.395 1.387 1.387 
(0.063) (0.099) (0.058) (0.089) (0.058) (0.085) (0.145) (0.136) (0.131) 

1.002 1.013 1.000 1.006 0.998 1.001. 1.001 1.001 1.001 
a 1 2 = aas = 2.1972, a 1 3 = 1.5163 

100 I F M 

M L E 

r 

0.694 0.559 0.496 0.540 0.293 0.534 2.392 1.599 2.314 
(0.199) (0.385) (0.198) (0.312) (0.186) (0.289) (0.790) (0.592) (0.669) 

0.692 0.558 0.494 0.542 0.292 0.534 2.352 1.591 2.314 
(0.199) (0.344) (0.198) (0.309) (0.187) (0.290) (0.675) (0.548) (0.597) 

1.001 1.117 0.999 1.007 0.995 0.996 1.171 1.081 1.119 
1000 I F M 

M L E 

r 

0.700 0.501 0.499 0.503 0.299 0.502 2.205 1.521 2.201 
(0.064) (0.100) (0.058) (0.092) (0.057) (0.086) (0.167) (0.141) (0.155) 

0.699 0.501 0.498 0.503 0.297 0.502 2.207 1.523 2.204 
(0.063) (0.098) (0.058) (0.092) (0.057) (0.086) (0.167) (0.141) (0.155) 

1.005 1.019 1.000 1.008 0.998 1.001 0.999 1.001 0.999 

Table 4.3: Efficiency assessment with M C D model for binary data: d = 3, 0O = (0.7,0.5,0.3)', 
0i = (0.5,0.5,0.5)', Xij = Xi continuous, N = 100 

n 
margin 

parameters 
1 2 3 (1,2) (1,3) (2,3) 

010 011 020 021 030 031 " 1 2 0 1 3 " 2 3 
ai2 = "13 = " 2 3 = 1.3863 

100 I F M 

M L E 

r 

0.722 0.529 0.488 0.520 0.312 0.524 1.453 1.403 1.473 
(0.136) (0.326) (0.144) (0.278) (0.137) (0.310) (0.398) (0.402) (0.401) 

0.722 0.532 0.486 0.519 0.311 0.522 1.458 1.407 1.476 
(0.137) (0.320) (0.144) (0.278) (0.138) (0.308) (0.402) (0.412) (0.406) 

0.999 1.019 0.999 1.002 0.993 1.005 0.990 0.976 0.989 
1000 I F M 

M L E 

r 

0.704 0.495 0.501 0.504 0.306 0.504 1.413 1.380 1.391 
(0.042) (0.089) (0.046) (0.084) (0.041) (0.093) (0.140) (0.109) (0.124) 

0.703 0.494 0.500 0.503 0.305 0.503 1.415 1.381 1.393 
(0.042) (0.090) (0.045) (0.084) (0.040) (0.093) (0.139) (0.109) (0.124) 

1.004 0.988 1.004 0.993 1.007 1.001 1.000 1.006 0.999 
a i , = a 2 3 = 2.1972, a , 3 = 1.5163 

100 I F M 

M L E 

V 

0722 0.529 0.490 0.543 0.300 0.544 2.303 1.556 2.303 
(0.136) (0.326) (0.133) (0.272) (0.131) (0.309) (0.494) (0.362) (0.525) 

0.721 0.532 0.488 0.542 0.298 0.538 2.318 1.550 2.310 
(0.136) (0.317) (0.134) (0.279) (0.131) (0.306) (0.504) (0.371) (0.533) 

1.000 1.028 0.993 0.976 1.002 1.010 0.981 0.978 0.985 
1000 I F M 

M L E 

r 

0.704 0.495 0.502 0.500 0.303 0.506 2.220 1.541 2.213 
(0.042) (0.089) (0.045) (0.076) (0.041) (0.091) (0.155) (0.123) (0.142) 

0.703 0.494 0.499 0.498 0.301 0.505 2.222 1.541 2.215 
(0.042) (0.089) (0.045) (0.075) (0.041) (0.091) (0.156) (0.124) (0.142) 

l . O l l 1.002 1.008 1.015 1.010 1.010 0.991 0.997 0.997 
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Table 4.4: Efficiency assessment with M C D model for binary data: d — 4, c*i2 = « i 3 = c*i4 = «23 = 
a 2 4 = a 3 4 = 1.3863, N = 1000 

n 
margin 

parameters 
1 2 3 4 (1,2) (1,3) (1,4) (2,3) (2,4) (3,4) 

Z\ Zi Z3 Z 4 <*12 "13 «14 <*23 «24 «34 
z = (0,0,0,0)' 

100 I F M 

M L E 

r 

0.002 -0.008 0.002 -0.002 1.417 1.421 1.419 1.420 1.406 1.397 
(0.121) (0.122) (0.128) (0.125) (0.369) (0.374) (0.374) (0.370) (0.374) (0.3 66) 
0.001 -0.009 0.000 -0.003 1.417 1.419 1.418 1.419 1.405 1.395 

(0.121) (0.123) (0.128) (0.125) (0.369) (0.374) (0.374) (0.370) (0.373) (0.3 65) 
0.997 0.996 0.999 0.999 1.001 0.999 1.000 1.000 1.002 1.003 

1000 I F M 

M L E 

r 

-0.001 -0.001 -0.001 -0.003 1.388 1.386 1.392 1.385 1.391 1.387 
(0.040) (0.037) (0.039) (0.039) (0.108) (0.112) (0.112) (0.115) (0.114) (0.1 18) 
-0.002 -0.003 -0.002 -0.004 1.388 1.386 1.392 1.385 1.390 1.387 
(0.040) (0.037) (0.039) (0.039) (0.108) (0.112) (0.112) (0.115) (0.114) (0.1 17) 
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

z = (0.7,0.7,0.7,0.7)' 
100 I F M 

M L E 

r 

0.709 0.703 0.710 0.708 1.447 1.403 1.444 1.405 1.401 1.404 
(0.139) (0.139) (0.140) (0.139) (0.444) (0.443) (0.466) (0.430) (0.431) (0.4 44) 
0.707 0.702 0.709 0.706 1.447 1.402 1.442 1.403 1.401 1.403 

(0.138) (0.139) (0.140) (0.139) (0.442) (0.441) (0.465) (0.430) (0.429) (0.4 45) 
1.002 1.000 0.998 1.000 1.005 1.004 1.001 1.000 1.005 0.997 

1000 I F M 

M L E 

r 

0.700 0.703 0.699 0.700 1.388 1.384 1.390 1.380 1.383 1.389 
(0.043) (0.044) (0.043) (0.045) (0.134) (0.130) (0.131) (0.131) (0.136) (0.1 32) 
0.699 0.701 0.698 0.699 1.389 1.385 1.390 1.382 1.384 1.390 

(0.043) (0.044) (0.043) (0.044) (0.133) (0.130) (0.131) (0.130) (0.136) (0.1 32) 
1.000 1.001 1.000 1.004 1.001 0.999 1.001 1.004 1.000 1.000 

z = (0.7,0,0.7,0)' 
100 I F M 

M L E 

r 

0.709 -0.007 0.710 -0.002 1.464 1.403 1.480 1.463 1.406 1.454 
(0.139) (0.122) (0.140) (0.124) (0.567) (0.443) (0.596) (0.533) (0.374) (0.5 74) 
0.708 -0.009 0.709 -0.003 1.458 1.400 1.472 1.459 1.405 1.447 

(0.138) (0.122) (0.140) (0.124) (0.512) (0.445) (0.541) (0.493) (0.373) (0.5 18) 
1.002 0.999 0.998 1.000 1.107 0.996 1.102 1.081 1.003 1.108 

1000 I F M 

M L E 

r 

0.700 -0.001 0.699 -0.002 1.392 1.384 1.398 1.386 1.391 1.392 
(0.043) (0.037) (0.043) (0.039) (0.128) (0.130) (0.132) (0.133) (0.114) (0.1 31) 
0.699 -0.002 0.698 -0.004 1.394 1.385 1.399 1.387 1.390 1.393 

(0.043) (0.038) (0.043) (0.039) (0.128) (0.129) (0.132) (0.133) (0.114) (0.1 31) 
1.002 0.999 1.001 0.996 1.000 1.008 1.001 0.999 0.999 1.001 
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Table 4.5: Efficiency assessment with M C D model for binary data: d = 4, a i 2 = « 2 3 = <*34 = 2.1972, 
a i 3 = a 2 4 = 1.5 1 63, a 1 4 = 1.1309, N = 1000 

n 
margin 

parameters 
1 2 3 4 (1,2) (1,3) (1,4) (2,3) (2,4) (3,4) 

Z\ Z2 Z3 Z4 «12 «13 «14 Q!23 a 2 4 <*34 
z = (0,0,0,0)' 

1000 I F M 

M L E 

r 

0.002 0.001 0.001 0.001 2.210 1.518 1.137 2.198 1.516 2.204 
(0.039) (0.038) (0.039) (0.041) (0.135) (0.116) (0.106) (0.131) (0.115) (0.128) 
-0.000 -0.002 -0.001 -0.001 2.209 1.517 1.136 2.197 1.515 2.204 
(0.039) (0.039) (0.039) (0.041) (0.135) (0.115) (0.106) (0.131) (0.115) (0.127) 
1.000 0.996 1.004 0.997 1.000 1.002 1.001 1.000 1.000 1.000 

z = (0.7,0.7,0.7,0.7)' 
1000 I F M 

M L E 

r 

0.700 0.701 0.700 0.701 2.206 1.514 1.136 2.205 1.521 2.206 
(0.042) (0.043) (0.043) (0.044) (0.154) (0.132) (0.125) (0.153) (0.134) (0.159) 
0.699 0.699 0.699 0.700 2.207 1.514 1.135 2.206 1.521 2.208 

(0.042) (0.044) (0.043) (0.044) (0.154) (0.130) (0.124) (0.153) (0.132) (0.159) 
1.000 0.999 1.003 0.999 1.000 1.010 1.008 1.000 1.011 1.001 

z = (0.7,0,0.7,0)' 
1000 I F M 

M L E 

r 

0.700 0.001 0.700 0.001 2.212 1.514 1.139 2.209 1.516 2.214 
(0.042) (0.038) (0.043) (0.041) (0.159) (0.132) (0.122) (0.162) (0.115) (0.162) 
0.699 -0.001 0.699 -0.001 2.215 1.513 1.140 2.214 1.515 2.218 

(0.042) (0.039) (0.043) (0.041) (0.159) (0.130) (0.121) (0.163) (0.115) (0.162) 
0.996 0.994 0.998 0.997 0.999 1.014 1.009 0.996 1.008 1.001 

9jk with 6jk = (exp(ajjt) — l)/(exp(ajfc) + 1), and estimate ctjk instead of 0jk- In our simulation 

study, we only examine the situation where no covariates are involved in the marginal parameters, 

and further assume that rrij — 3. In these situations, for each margin, we need to estimate two 

parameters: Zj(l) and Zj(2). We use the following simulation scheme: 

1. The sample size is n, the number of simulations is N; both are reported in the tables. 

2. For d = 3, we study two situations of marginal parameters: 

(a) z(l) = (-0.5,-0.5,-0.5)' , z(2) = (0.5,0.5,0.5)' 

(b) z(l) = (-0.5,0, -0.5)', z(2) = (0.5,1,0.5)' 

and for each situation, two dependence structures are used in the simulation study: 0 i2 = 

913 - 023 = 0.6 (or a 1 2 = a 1 3 - a 2 3 - 1.3863) and 612 = 023 = 0.8 (or a 1 2 = a 2 3 = 2.1972), 

013 = 0.64 (or or is = 1.5163). 

3. For d — 4, we similarly study two situations of marginal parameters: 

(a) z(l) = (-0.5, -0.5, -0.5, -0.5)', z(2) = (0.5,0.5,0.5,0.5)' 

' (b) z(l) = (-0.5,0, -0.5,0)', z(2) = (0.5,1,0.5,1)' 
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Table 4.6: Efficiency assessment with M C D model for ordinal data: d = 3, z(l) = (—0.5, —0.5, —0.5)', 
z(2) = (0.5,0.5,0.5)', N = 1000 

n 
m a r g i n 

p a r a m e t e r s 

1 2 3 (1,2) (1,3) (2,3) 
Zi(2) Z 2 ( l ) Z2(2) 2 3 (D 2fc(2) Oi2 «13 "23 

«12 = <*13 = «23 = 1.3863 
100 I F M 

M L E 

r 

-0.500 0.508 -0.508 0.500 -0.507 0.508 1.413 1.407 1.414 
(0.135) (0.135) (0.130) (0.133) (0.134) (0.137) (0.275) (0.284) (0.287) 

-0.503 0.507 -0.511 0.498 -0.510 0.507 1.413 1.408 1.415 
(0.134) (0.135) (0.130) (0.133) (0.134) (0.136) (0.275) (0.284) (0.287) 

1.004 1.003 1.000 1.003 1.006 1.003 1.000 0.999 0.998 
1000 I F M 

M L E 

r 

-0.501 0.498 -0.501 0.499 -0.502 0.500 1.390 1.386 1.387 
(0.043) (0.041) (0.041) (0.041) (0.042) (0.042) (0.086) (0.089) (0.088) 

-0.504 0.497 -0.504 0.498 -0.504 0.498 1.390 1.386 1.387 
(0.043) (0.041) (0.041) (0.041) (0.042) (0.042) (0.085) (0.089) (0.088) 

0.998 1.002 0.998 1.002 0.997 1.006 1.005 1.004 1.005 
a „ = ttM = 2.1972, a 1 3 = 1.5163 

100 I F M 

M L E 

r 

-0.500 0.508 -0.506 0.502 -0.509 0.508 2.251 1.542 2.242 
(0.135) (0.135) (0.132) (0.136) (0.136) (0.134) (0.323) (0.282) (0.324) 

-0.504 0.506 -0.512 0.500 -0.513 0.506 2.252 1.539 2.243 
(0.136) (0.136) (0.132) (0.136) (0.138) (0.135) (0.321) (0.285) (0.322) 

0.990 0.999 0.997 1.005 0.991 0.999 1.005 0.992 1.005 
1000 I F M 

M L E 

r 

-0.501 0.498 -0.500 0.498 -0.502 0.500 2.202 1.516 2.199 
(0.043) (0.041) (0.041) (0.040) (0.042) (0.041) (0.093) (0.088) (0.097) 

-0.505 0.496 -0.504 0.496 -0.506 0.498 2.203 1.516 2.200 
(0.043) (0.041) (0.041) (0.040) (0.042) (0.041) (0.093) (0.088) (0.097) 

0.997 0.999 1.005 1.008 0.998 1.001 0.999 1.004 1.000 

and for each situation, two dependence structures are used in the simulation study: # i 2 = 

#13 — flu — 023 = 024 = 034 = 0.6 (or a i 2 - c*i3 — « i 4 = a 2 3 — a 2 4 — a 3 4 -• 1.3863) and 

0 1 2 = 0 2 3 = 0 3 4 = 0.8 (or « 1 2 = a 2 3 = a 3 4 = 2.1972), 0 1 3 = 0 2 4 = 0.64 (or a j 3 = a 2 4 = 1.5163) 

and 0 i4 =0.512 (or a i 4 = 1.1309). 

The numerical results from M C D models for ordinal data are presented in Table 4.6 to Table 

4.11. Again, from these tables, we have the following two clear conclusions: i) The I F M approach 

is efficient relative to the M L approach, for small to large sample sizes. The ratio values r are very 

close to 1 in almost all the studied situations, ii) M L E may be slightly more efficient than I F M E , 

but this observation is not conclusive. We would say that I F M E and M L E are comparable. 

Multivariate copula discrete models for count data 

In this subsection, we study the M C D models for count data. The parameters are assumed to be 

margin-dependent. In our simulation, we use the M V N copula. We simulate d-dimensional Poisson 

observations y,- (i = 1 , . . . , n) from a multivariate normal-copula Poisson model 

2 2 

P(yi • • • %) = E • • • E ( - l ) * ' 1 + - + < < C ( a U l a d i d ; 6 ) , 
« ' i = i » < i = i 
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Table 4.7: Efficiency assessment with M C D model for ordinal data: d = 3, z(l) = (—0.5,0,-0.5) 
z(2) = (0.5,1,0.5)', N = 1000 

n 
margin 

parameters 
1 2 3 (1,2) (1,3) (2,3) 

Zi ( l ) Zi(2) z 2 ( l ) z2(2) z 3 ( l ) *3(2) "12 "13 "23 
"12 = "13 = "23 = 1.3863 

100 I F M 

M L E 

r 

-0.500 0.508 -0.002 1.01 -0.507 0.508 1.429 1.407 1.416 
(0.135) (0.135) (0.121) (0.16) (0.134) (0.137) (0.294) (0.284) (0.298) 

-0.503 0.507 -0.004 1.00 -0.510 0.507 1.430 1.408 1.417 
(0.134) (0.135) (0.120) (0.16) (0.134) (0.136) (0.293) (0.284) (0.297) 

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1000 I F M 

M L E 

r 

-0.501 0.498 -0.002 0.998 -0.502 0.500 1.393 1.386 1.389 
(0.043) (0.041) (0.038) (0.049) (0.042) (0.042) (0.089) (0.089) (0.090) 

-0.503 0.497 -0.003 0.996 -0.504 0.498 1.393 1.385 1.389 
(0.043) (0.041) (0.038) (0.049) (0.042) (0.042) (0.089) (0.089) (0.090) 

0.998 1.000 0.996 1.000 0.997 1.005 1.006 1.004 1.004 
a i 2 = a M = 2.1972, ais = 1.5163 

100 I F M 

M L E 

r 

-0.500 0.508 -0.001 1.012 -0.509 0.508 2.261 1.542 2.247 
(0.135) (0.135) (0.123) (0.164) (0.136) (0.134) (0.343) (0.282) (0.344) 

-0.504 0.505 -0.004 1.011 -0.513 0.505 2.268 1.538 2.254 
(0.136) (0.136) (0.121) (0.166) (0.139) (0.135) (0.345) (0.290) (0.347) 

0.994 0.995 1.016 0.989 0.984 0.997 0.993 0.975 0.991 
1000 I F M 

M L E 

r 

-0.501 0.498 -0.000 0.999 -0.502 0.500 2.204 1.516 2.199 
(0.043) (0.041) (0.038) (0.049) (0.042) (0.041) (0.099) (0.088) (0.101) 

-0.504 0.496 -0.003 0.996 -0.505 0.498 2.204 1.516 2.199 
(0.043) (0.041) (0.038) (0.049) (0.042) (0.041) (0.099) (0.087) (0.100) 

0.998 0.999 1.018 1.002 0.998 1.002 1.002 1.006 1.011 

Table 4.8: Efficiency assessment with M C D model for ordinal data: d = 4, z(l) = (—0.5,-0. 
-0.5, -0.5)', z(2) = (0.5,0.5,0.5,0.5)', a 1 2 = aX3 = a M = a 2 3 = a 2 4 = a 3 4 = 1.3863, TV = 100 

n 
margin 

parametei •s Z i ( l ) 
1 2 3 4 

zi(2) z 2 ( l ) z2(2) z 3 ( l ) z3(2) z 4 ( l ) z4(2) 
100 I F M 

M L E 

r 

-0.4928 0.5025 -0.5037 0.4820 -0.4997 0.4986 -0.5088 0.4890 
(0.1238) (0.1345) (0.1139) (0.1377) (0.1145) (0.1293) (0.1365) (0.1349) 

-0.4930 0.5023 -0.5043 0.4819 -0.5007 0.4983 -0.5101 0.4877 
(0.1225) (0.1325) (0.1145) (0.1368) (0.1149) (0.1292) (0.1373) (0.1361) 

1.011 1.015 0.995 1.006 0.996 1.001 0.994 0.991 
1000 I F M 

M L E 

r 

-0.4954 0.5044 -0.5068 0.4981 -0.4987 0.5015 -0.4966 0.5016 
(0.0433) (0.0415) (0.0457) (0.0436) (0.0413) (0.0413) (0.0459) (0.0414) 

-0.4973 0.5026 -0.5094 0.4963 -0.5008 0.4998 -0.4988 0.4998 
(0.0431) (0.0416) (0.0463) (0.0439) (0.0413) (0.0413) (0.0460) (0.0419) 

1.003 0.999 0.987 0.993 1.000 1.001 0.997 0.988 

n p 
margin 

arameters 
(1,2) (1,3) (1,4) (2,3) (2,4) (3,4) 
tv-2 a i 3 a 1 4 a 2 3 0:94 a 3 4 

100 I F M 

M L E 

r 

1.4489 1.4332 1.4174 1.4539 1.4050 1.4149 
(0.2741) (0.2858) (0.2906) (0.2903) (0.3005) (0.3088) 
1.4498 1.4351 1.4203 1.4562 1.4070 1.4175 

(0.2732) (0.2842) (0.2903) (0.2928) (0.3019) (0.3042) 
1.003 1.006 1.001 0.991 0.995 1.015 

1000 I F M 

M L E 

r 

1.3939 1.3937 1.3942 1.3828 1.3739 1.3785 
(0.0786) (0.0815) (0.0869) (0.0833) (0.0775) (0.0822) 
1.3949 1.3950 1.3958 1.3827 1.3745 1.3800 

(0.0795) (0.0817) (0.0886) (0.0834) (0.0790) (0.0823) 
0.988 0.997 0.980 0.999 0.981 0.998 
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Table 4.9: Efficiency assessment with M C D model for ordinal data: d = 4, z(l) = (—0.5,-0.5, 
-0.5,-0.5) ' , z(2) = (0.5,0.5,0.5,0.5)', a n = a 2 3 = " 3 4 = 2.1972, a 1 3 = " 2 4 = 1.5163, a 1 4 = 
1.1309, N = 100 

n 
margin 

parametei ts Z i ( l ) 
1 2 3 4 

zi(2) z2(l) z2(2) z3(l) z3(2) z 4 ( l ) z4(2) 
100 I F M 

M L E 

r 

-0.4928 0.5025 -0.5032 0.4924 -0.5038 0.4917 -0.5142 0.4909 
(0.1238) (0.1345) (0.1156) (0.1357) (0.1155) (0.1342) (0.1349) (0.1424) 

-0.4965 0.5050 -0.5049 0.4945 -0.5122 0.4936 -0.5203 0.4936 
(0.1265) (0.1339) (0.1162) (0.1322) (0.1238) (0.1328) (0.1388) (0.1457) 

0.979 1.005 0.994 1.026 0.933 1.011 0.972 0.978 
1000 I F M 

M L E 

r 

-0.4954 0.5044 -0.5047 0.5018 -0.5011 0.5019 -0.5035 0.5012 
(0.0433) (0.0415) (0.0454) (0.0435) (0.0417) (0.0401) (0.0433) (0.0391) 

-0.4986 0.5017 -0.5079 0.4988 -0.5047 0.4989 -0.5069 0.4984 
(0.0433) (0.0416) (0.0460) (0.0434) (0.0412) (0.0408) (0.0436) (0.0394) 

0.999 0.999 0.988 1.004 1.014 0.984 0.992 0.992 

n p 
margin 

arameters 
(1,2) (1,3) (1,4) (2,3) (2,4) (3,4) 

a U a 1 3 " 1 4 " 2 3 " 2 4 " 3 4 
100 I F M 

M L E 

r 

2.2807 1.5610 1.1782 2.2764 1.5603 2.2516 
(0.3091) (0.2732) (0.2897) (0.3453) (0.3270) (0.3331) 
2.2754 1.5503 1.1795 2.2750 1.5491 2.2477 

(0.2933) (0.2621) (0.2802) (0.3354) (0.3263) (0.3291) 
1.050 1.040 1.030 1.030 1.000 1.010 

1000 I F M 

M L E 

r 

2.2190 1.5263 1.1396 2.1868 1.5055 2.1851 
(0.0915) (0.0803) (0.0790) (0.0884) (0.0874) (0.0957) 
2.2217 1.5267 1.1394 2.1887 1.5055 2.1865 

(0.0916) (0.0791) (0.0789) (0.0871) (0.0865) (0.0951) 
0.999 1.015 1.002 1.014 1.011 1.007 

Table 4.10: Efficiency assessment with M C D model for ordinal data: d = 4, z(l) — (—0.5, 0, —0.5, 0)', 
Z(2) = (0.5, 1, 0.5, 1)', "12 = " 1 3 = " 1 4 = " 2 3 = " 2 4 = " 3 4 = 1.3 8 63, N = 100 

n 
margin 

parameters *i ( l ) 
1 2 3 4 

Zl(2) z2(l) z2(2) z3(l) z3(2) z 4 ( l ) z4(2) 
100 I F M 

M L E 

r 

-0.4928 0.5025 -0.01817 0.9924 -0.4997 0.4986 -0.0108 0.9994 
(0.1238) (0.1345) (0.12289) (0.1507) (0.1145) (0.1293) (0.1159) (0.1528) 

-0.4939 0.5020 -0.01733 0.9886 -0.5013 0.4979 -0.0115 0.9964 
(0.1217) (0.1318) (0.12165) (0.1505) (0.1141) (0.1296) (0.1146) (0.1532) 

1.018 1.020 1.010 1.002 1.003 0.998 1.011 0.997 
1000 I F M 

M L E 

r 

-0.4954 0.5044 -0.0076 1.0021 -0.4987 0.5015 -0.0017 1.0044 
(0.0433) (0.0415) (0.0437) (0.0450) (0.0413) (0.0413) (0.0405) (0.0474) 

-0.4975 0.5026 -0.0095 0.9996 -0.5009 0.5000 -0.0037 1.0018 
(0.0431) (0.0413) (0.0436) (0.0448) (0.0414) (0.0413) (0.0404) (0.0473) 

1.003 1.005 1.001 1.005 0.998 1.000 1.003 1.002 

n 
margin 

parameters 
(1,2) (1,3) (1,4) (2,3) (2,4) (3,4) 
" 1 2 " 1 3 " 1 4 " 2 3 " 2 4 " 3 4 

100 I F M 

M L E 

r 

1.4398 1.4332 1.4428 1.4452 1.4228 1.4345 
(0.2874) (0.2858) (0.2801) (0.2866) (0.2966) (0.3429) 
1.4468 1.4363 1.4467 1.4509 1.4313 1.4341 

(0.2888) (0.2838) (0.2781) (0.2882) (0.2971) (0.3409) 
0.995 1.007 1.007 0.995 0.998 1.006 

1000 I F M 

M L E 

r 

1.4060 1.3937 1.3907 1.3866 1.3798 1.3756 
(0.0822) (0.0815) (0.0891) (0.0806) (0.0940) (0.0919) 
1.4067 1.3947 1.3924 1.3877 1.3813 1.3769 

(0.0820) (0.0811) (0.0911) (0.0808) (0.0941) (0.0908) 
1.003 1.005 0.978 0.997 0.999 1.012 
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Table 4.11: Efficiency assessment with M C D model for ordinal data: d — 4, z(l) = (—0.5,0, —0.5, 0)', 
z(2) = (0.5,1,0.5,1)', a n = a 2 3 = " 3 4 = 2.1972, a 1 3 = a 2 4 = 1.5163, " i 4 = 1.1309, TV = 100 

n 
margin 

parameters 
1 2 3 4 

Zl(2) z2(l) z2(2) z3(l) z3(2) z 4 ( l ) zA(2) 
100 I F M 

M L E 

r 

-0.4928 0.5025 -0.0217 0.9877 -0.5038 0.4917 -0.01462 0.9791 
(0.1238) (0.1345) (0.1241) (0.1516) (0.1155) (0.1342) (0.10744) (0.1439) 

-0.4944 0.5010 -0.0189 0.9796 -0.5090 0.4892 -0.01577 0.9780 
(0.1274) (0.1342) (0.1244) (0.1548) (0.1176) (0.1319) (0.11106) (0.1449) 

0.972 1.002 0.998 0.979 0.981 1.018 0.967 0.994 
1000 I F M 

M L E 

r 

-0.4954 0.5044 -0.0006 0.9995 -0.5011 0.5019 -0.0013 1.0018 
(0.0433) (0.0415) (0.0406) (0.0476) (0.0417) (0.0401) (0.0382) (0.0489) 

-0.4985 0.5010 -0.0034 0.9956 -0.5046 0.4988 -0.0044 0.9988 
(0.0433) (0.0410) (0.0396) (0.0476) (0.0416) (0.0405) (0.0392) (0.0482) 

0.999 1.013 1.025 0.999 1.003 0.991 0.974 1.014 

n 
. margin 

parameters 
(1,2) (1,3) (1,4) (2,3) (2,4) (3,4) 
" 1 2 " 1 3 " 1 4 " 2 3 " 2 4 " 3 4 

100 I F M 

M L E 

r 

2.2370 1.5610 1.1717 2.2543 1.5524 2.2616 
(0.2871) (0.2732) (0.2737) (0.3444) (0.3290) (0.3438) 
2.2484 1.5582 1.1819 2.2640 1.5540 2.2616 

(0.2867) (0.2743) (0.2832) (0.3330) (0.3279) (0.3406) 
1.001 0.996 0.966 1.034 1.003 1.010 

1000 I F M 

M L E 

r 

2.2143 1.5263 1.1385 2.1965 1.5095 2.1807 
(0.0957) (0.0803) (0.0811) (0.0980) (0.0842) (0.0951) 
2.2180 1.5268 1.1377 2.1988 1.5102 2.1812 

(0.0941) (0.0799) (0.0814) (0.0953) (0.0841) (0.0975) 
1.018 1.005 0.996 1.028 1.001 0.975 

where o,ji = Gj(y,j — 1), o,j2 = Gj(yj). C is d-dimensional normal copula. Gj(-) is defined as 

0, i % < 0, 

V. 3=0 

where p^ = [A? exp(-Aj)]/s!, s = 0,1 ,2 , . . . , oo. In general, we assume X,j = e x p ( ^ X j j ) , and 

0j- = (#jjfc) to be free of covariates. We further transform the dependence parameters Ojk with 

Ojk = (exp(ajjt) — l)/(exp(aJ-j.) + l ) , and estimate ctjk instead of Ojk- We use the following simulation 

scheme: 

1. The sample size is n, the number of simulations is N; both are reported in the tables. 

2. For d = 3, we study the two situations: log(Ajj) = Bj and log(A,j) = Bj0 + PjiXij. For each 

situation, we chose two dependence structures: 0\2 = t9 1 3 = 023 = 0.6 (or cti2 = c*i3 = 0/23 = 

1.3863) and 0l2 = 023 = 0.8 (or « 1 2 = a 2 3 = 2.1972), 013 = 0.64 (or e*i3 = 1.5163). Other 

parameters are 

(a) 0O = ( / ? i o , / W 3 o ) ' = (1,1,1)' and 0X = (0u,02i,031)' = (0.5,0.5,0.5)'. Situations 

where Xij is discrete is considered. For the discrete situation, Xij = I(U < 0) where 
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Table 4.12: Efficiency assessment with M C D model for count data: d = 3, 0o = (1,1,1)' and 
0 i = (0.5,0.5,0.5)', discrete, N = 1000 

n 
margin 

parameters 
1 2 3 (1,2) (1,3) (2,3) 

/?10 011 020 021 030 031 " 1 2 6*13 " 2 3 
" 1 2 = " i s - " 2 3 = 1.3863 

100 I F M 

M L E 

V 

1.0054 0.490 1.0017 0.493 1.0029 0.493 1.423 1.412 1.420 
(0.0867) (0.109) (0.0883) (0.110) (0.0870) (0.106) (0.198) (0.191) (0.188) 

1.0018 0.488 0.9985 0.491 0.9998 0.491 1.422 1.409 1.417 
(0.0876) (0.111) (0.0892) (0.112) (0.0872) (0.107) (0.194) (0.183) (0.187) 

0.990 0.985 0.990 0.979 0.997 0.993 1.019 1.041 1.009 
1000 I F M 

M L E 

r 

1.0007 0.4991 1.0013 0.4975 1.0014 0.4984 1.3953 1.3864 1.3896 
(0.0287) (0.0358) (0.0271) (0.0343) (0.0278) (0.0352) (0.0625) (0.0564) (0.0595) 

0.9976 0.4993 0.9984 0.4977 0.9983 0.4987 1.3918 1.3849 1.3875 
(0.0292) (0.0362) (0.0274) (0.0343) (0.0283) (0.0354) (0.0578) (0.0563) (0.0574) 

0.983 0.988 0.989 0.998 0.983 0.995 1.081 1.003 1.035 
a 1 2 = a 2 3 = 2.1972, a 1 3 = 1.5163 

100 I F M 

M L E 

r 

1.0054 0.490 1.0044 0.490 1.0046 0.491 2.242 1.551 2.236 
(0.0867) (0.109) (0.0884) (0.110) (0.0870) (0.107) (0.190) (0.196) (0.186) 

1.0006 0.489 0.9993 0.488 0.9998 0.489 2.239 1.545 2.233 
(0.0878) (0.111) (0.0895) (0.112) (0.0881) (0.109) (0.187) (0.180) (0.185) 

0.987 0.986 0.987 0.981 0.987 0.980 1.015 1.087 1.007 
1000 I F M 

M L E 

r 

1.0007 0.4991 1.0013 0.4979 1.0014 0.4982 2.2055 1.5185 2.1975 
(0.0287) (0.0358) (0.0272) (0.0350) (0.0277) (0.0351) (0.0555) (0.0620) (0.0572) 

0.9962 0.4992 0.9963 0.4981 0.9971 0.4984 2.2037 1.5156 2.1952 
(0.0291) (0.0364) (0.0279) (0.0355) (0.0279) (0.0354) (0.0553) (0.0553) (0.0569) 

0.985 0.983 0.977 0.986 0.993 0.990 1.003 1.121 1.006 

U ~ uniform(—1,1). 

(b) ( A , 1 , A i 2 , A , - 3 ) = (5,3,5) (or (0i,02,03) = (1.6094,1.0986,1.6094)). 

3. For d = 4, we only study log(A;j) = 0,-. Two dependence structures are considered: #i2 = 

#13 = #14 = #23 - #24 — #34 — 0.6 (or Q i 2 = «13 = " 1 4 = " 2 3 = " 2 4 — " 3 4 " 1.3863) and 

# 1 2 = #23 = #34 = 0.8 (or a n = a 2 3 = " 3 4 = 2.1972), #i3 = #24 = 0.64 (or a l 3 = " 2 4 = 1.5163) 

and #14 = 0.512 (or a i 4 = 1.1309). Other parameters are 

(a) ( A i i , A i 2 , A i 3 , A i 4 ) = (5,5,5,5) (or equivalent^ (0i,0 2 )0 3,0 4) = (1.6094,1.6094,1.6094, 

1.6094)). 

(b) ( A , - i , A i 2 , A , - 3 l A M ) = (4,2,5,8) (or equivalent^ (0i,0 2,03,0 4) = (1.3863,0.6931,1.6094, 

2.0794)). 

The numerical results from M C D models for count data are presented in Table 4.12 to Table 

4.15. We obtain the similar conclusions to those for the M C D models for binary data and ordinal 

data. 
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Table 4.13: Efficiency assessment with M C D model for count data: d = 3, (0i, 02,03) = (1.6094, 
1.0986,1.6094), TV = 1000 

n 
margin 

parameters 
1 2 3 (1,2) (1,3) (2,3) 

01 02 03 " 1 2 " 1 3 " 2 3 
" 1 2 = " 1 3 = " 2 3 - 1.3863 

100 I F M 

M L E 

r 

1.6075 1.1000 1.6076 1.415 1.403 1.408 
(0.0465) (0.0593) (0.0456) (0.194) (0.190) (0.195) 
1.6024 1.0943 1.6032 1.413 1.398 1.403 

(0.0519) (0.0648) (0.0490) (0.191) (0.189) (0.192) 
0.896 0.915 0.929 1.018, 1.003 1.018 

1000 I F M 

M L E 

r 

1.6098 1.0988 1.6095 1.3885 1.3885 1.3880 
(0.0141) (0.0185) (0.0140) (0.0597) (0.0575) (0.0586) 
1.6077 1.0963 1.6076 1.3877 1.3855 1.3869 

(0.0146) (0.0191) (0.0143) (0.0588) (0.0577) (0.0574) 
0.966 0.967 0.975 1.015 0.996 1.021 
a , , = a 9 3 = '2.1972, a 1 3 = 1.5163 

100 I F M 

M L E 

r 

1.6075 1.0991 1.6089 2.234 1.539 2.219 
(0.0465) (0.0599) (0.0455) (0.187) (0.187) (0.188) 
1.6017 1.0912 1.6032 2.231 1.533 2.217 

(0.0509) (0.0667) (0.0490) (0.187) (0.181) (0.188) 
0.913 0.897 0.929 0.999 1.033 0.995 

1000 I F M 

M L E 

r 

1.6098 1.0992 1.6097 2.2027 1.5176 2.2002 
(0.0141) (0.0182) (0.0140) (0.0565) (0.0579) (0.0547) 
1.6063 1.0944 1.6063 2.1992 1.5149 2.1968 

(0.0155) (0.0197) (0.0152) (0.0563) (0.0567) (0.0551) 
0.915 0.924 0.923 1.003 1.021 0.993 

Table 4.14: Efficiency assessment with M C D model for count data: d = 4, (0i,02,03,0i) — 
(1.6094,1.0986,1.6094,1.6094), N = 1000 

n 
margin 

parameters 
1 2 3 4 (1,2) (1,3) (1,4) (2,3) (2,4) (3,4) 

01 02 03 04 " 1 2 " 1 3 " 1 4 " 2 3 " 2 4 " 3 4 
" 1 2 = " 1 3 = " 1 4 = " 2 3 — " 2 4 = " 3 4 = 1.38 63 

100 I F M 

M L E 

r 

1.6072 1.6099 1.6076 1.6085 1.417 1.410 1.413 1.402 1.407 1.398 
(0.0434) (0.0443) (0.0459) (0.0451) (0.179) (0.188) (0.190) (0.185) (0.183) (0.186) 
1.6016 1.6044 1.6023 1.6031 1.415 1.410 1.413 1.401 1.404 1.401 

(0.0477) (0.0494) (0.0495) (0.0490) (0.179) (0.189) (0.193) (0.184) (0.183) (0.184) 
0.910 0.895 0.927 0.920 1.001 0.991 0.986 1.009 1.003 1.008 
a i a = a , 3 = a.* = 2.1972, a 1 3 = a 9 4 = 1.5163, a 1 4 = 1.1309 

100 I F M 

M L E 

r 

1.6072 1.6090 1.6084 1.6084 2.228 1.546 1.159 2.218 1.536 2.215 
(0.0434) (0.0445) (0.0454) (0.0456) (0.176) (0.184) (0.195) (0.183) (0.179) (0.177) 
1.5996 1.6003 1.5993 1.5999 2.228 1.538 1.153 2.215 1.527 2.217 

(0.0499) (0.0513) (0.0544) (0.0525) (0.176) (0.187) (0.193) (0.184) (0.177) (0.177) 
0.871 0.867 0.835 0.867 0.997 0.982 1.015 0.995 1.009 1.001 
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Table 4.15: Efficiency assessment with M C D model for count data: d = 4, (/?i, /?2,/?3, A ) = 
(1.3863,0.6931,1.6094,2.0794), N = 1000 

T1T2T 
"12 

w 
" 1 3 I P 7 

" 2 3 " 2 4 
W 

" 3 4 

margin 
parameters 

1 2 3 
J 3 _ 

4 

= a 2 4 = " 3 4 = 1 
TOO" ~JFW 

M L E 

1.3835 0^918 1,1.607^ 2.07*8*7 l 2 l l 8 !' 
(0.0489) (0.0705) (0. 

1.414 1.405 
(0.185) (0.194) 
1.411 1.405 

(0.185) (0.193) 
0.998 1.002 

1.406 
(0.189) 
1.407 

(0.187) 
1.011 

1.398 
(0.186) 
1.402 

(0.183) 
1.017 

1.3772 0.6840 1 
(0.0549) (0.0756) (0. 

0.891 0.932 0 

0459) (0.0356) 
6024 2.0744 
0496) (0.0384) 
.927 0.927 

1.418 1.411 
(0.185) (0.189) 
1.415 1.411 

(0.185) (0.188) 
1.003 1.005 

= " 2 3 =_Q!34 ==2.1972̂ , 0:13 = Q2j = 1.5163, a j 4 =1.131)9 
TOO" ~ T F M ~ 

M L E 

l . f e F.69061. 
(0.0489) (0.0693) (0. 
1.3758 0.6792 1. 

(0.0550) (0.0764) (0. 
0.890 0.907 0 

A » i a = 
6084 2.0790 
0454) (0.0361) 
6006 2.0735 
0524) (0.0412) 
.866 0.876 

27239 1.546 
(0.191) (0.184) 
2.236 1.537 

(0.191) (0.184) 
1.001 0.997 

T 5 3 T " 
(0.191) 
1.529 

(0.186) 
1.023 

2.216 
(0.173) 
2.216 

(0.174) 
0.991 

155 2.219 
(0.194) (0.198) 
1.152 2.221 

(0.188) (0.202) 
1.032 0.981 

Multivariate mixture discrete models for count data 

We now consider a M M D model for count data with the Morgenstern copula 

J J j=l j=l 
l + £ ^ * ( l - 2 G ( A i ) ) ( l - 2 G ( A l t ) ) 

3<k 

d\\ •••d\d, 

(4.11) 

where f(yj',Xj) = e — A j ' A j J / J / J ! is the Poisson frequency function with parameter Aj (Aj > 0), g(X) 

a Gamma density function, having the form fl'(Aj) = {l/[/?" , r(aj)] }Aj J - 1 e - A 3 ' / ' 3 j ' , Aj > 0, with /?j 

being a scale parameter, and G(Aj) is a Gamma cdf. We have -E'(Aj) = «j/?j and Var(Aj) = ctjPj. 

(4.11) is a multivariate Poisson-Morgenstern-gamma model. The multiple integral in (4.11) over the 

joint space of A i , . . . , A^ can be decomposed into a product of integrals of a single variable. The 

calculation of P(y\ • • - yd) can thus be accomplished by calculating 2d univariate integrals. In fact, 

we have 

d d 

p(2/i---̂)=np(%-)+x>*{ 
j=l j<k m=l 

and 

PjkiVjVk) = P(yj)P(y*) + 0jk[P(Vj) ~ 2Pw(yj)][P(yk) - 2Pw(yk)}, 

where P(yj) = / f{yj] Xj)g(Xj) dXj and Pw(yj) = f f(y,; Xj)g(\j)G(Xj) dXj. Now 

1

 A « i - l . - A , / * . n ^n-3+yj) 
% ) = / /?rT (aj) ' 

"Pi dXj 
(/3j + l )^+^T(aj)2/j ! ' 

(4.12) 
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Further, as f(yj; Xj)g(Xj) is proportional to the density of a Gamma(y + a, 3/(8+ 1)) random 

variable, if we let pj = Bj(yj + ctj)/(8j + 1), cr? = (yj + aj)8j/(8j + l ) 2 , then the upper and lower 

integration ranges of Pw(yj) can be set up as Lj = pj — 5aj and Uj = pj + haj for numerical 

evaluation of the integrals. 

To carry out the efficiency assessment through simulation, we need to simulate the multivariate 

Poisson-Morgenstern-gamma distribution. Let C be the Morgenstern copula, and G(x) be the cdf 

of a univariate Gamma distribution. The following simulation algorithm is used: 

1. Generate U\, • • -,Ud from C(U\,..., Ud)-

2. Let A,- = G~l(Uj), j = l,...,d. 

3. Generate Yj from Poisson(Aj), j — 1 , . . . , d. 

In the above algorithm, the difficult part is the generation of U\,..., Ud from C(Ui,..., Ud)- The 

conditional distribution approach to generate multivariate random variates can be used here. The 

conditional distribution approach is to obtain x = (x\,..., Xd)' with F(xi) = V i , F(x2\xi) = V2, 

. . . , F(xd\xi,..., Xd-i) — Vd, where V\,..., Vd are independent uniform(0,1). With the Morgenstern 

copula, for m < d, 

f " m / ( « ! , - . . , U m - l , u ) C ( u m \ U 1 - u 1 , . . . , U m - i = u m - i ) = I 
Jo 

• du, 
/ ( « ! , . . . , « m _ l ) 

where f ( u x u m ) = 1 + J2f<k ®ik^ ~ 2 u i ) ( 1 _ 2uk). S i n c e > • • • > u " 0 = , • • • > «m-i) + 

J2f=~i ejm(l ~ 2UJ)(1 - 1um), it follows that 

/ ( « ! , • • - l i m ) = 1 + H7=ldirn(l-2Uj) _ 2 ( ^ 0 ^ ( 1 - 2 ^ ) ) ^ 

/ ( U l , . . . , « m - l ) / ( « l , - - - , « m - l ) • • - , « m - l ) 

Hence 

•\m — 1 / E r = ~ i l ^ m ( i - 2 « j ) \ 
C ( W m | £ / l = C / m _ l = U m _ i ) = 1 + — 7 7 7 « „ 

\ / ( U l , . . . , U m _ i ) J 

Er="l gjm(l-2ti,-) 2 

~ 1/ 
/ ( u i , . . . , u m _ i ) m 

Let A = / ( « ! , . . . , u m _i ) , 5 = E J L / 9jm(l-2uj), and D = B / A From Du2

n — (D+l)um+Vm = 0, 

we get 

•_•(£> + 1) ± V ( D + l ) 2 - 4 £ > V m 

2£> 

Thus the algorithm for generating U\,.. .,Ud from C ( « i , . . . , is as the following: 

1. Generate V\,..., Vd from Uniform(0,1). 
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2. Let Ui = Vi. 

3. Let A = 1 if m = 2 and A = 1 + £ " 7 / M 1 ~ 2 u i X 1 ~ 2 u O i f m > 2 - L e t B = T%=7i eim{l -

IUJ), and D = B/A. 

4. For m > 2, if £) = 0, Um = Vm. If D ^ 0, (7m takes one of the values of [(£> + 1) ± 

\/{D + l ) 2 — 4DVm]/[2D] for which it is positive and less than 1. 

The efficiency studies with the multivariate Poisson-Morgenstern-gamma model are carried out 

only for the dependence parameters Ojk, in that univariate parameters are fixed. We use the following 

simulation scheme: 

1. The sample size is n = 3000, the number of simulations is N = 200. 

2. The dimension d is chosen to be 3, 4 and 5. 

3. The marginal parameters aj and f3j are fixed. They are aj = f3j = 1 for j = 1 , . . . , d. 

4. For each dimension, two dependence structures are considered: 

(a) For d = 3, we have (0 1 2 ,0 1 3 ,0 2 3 ) = (0.5,0.5,0.5) and (0 1 2 ,0 1 3 , 0 2 3 ) = (0.6,0.7,0.8). 

(b) For d = 4, we have (612,6>i3,014.623,024,034) = (0.5,0.5,0.5,0.5,0.5,0.5) and 

(0 i2 ,0 i3 ,0 i4 ,023 ,024 ,0 3 4 ) = (0.6,0.7,0.8,0.6,0.7,0.6). 

(c) For d = 5, we have 

(012,013,014,015,023,024,025,0 3 4 ,0 3 5 ,0 4 5 ) = (0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5) and 

(012 ,013 ,014 ,015 ,023 ,024 ,0 2 5 , 0 3 4 , 0 3 5 , 0 4 5 ) = (0.6,0.7,0.8,0.8,0.6,0.7,0.8,0.6,0.7,0.8). 

The numerical results from the M M D models for count data with the Morgenstern copula are 

presented in Table 4.16 to Table 4.18. We obtain similar conclusions to those for the M C D models 

for binary, ordinal and count data. Basically, they are: i) The I F M approach is efficient relative to 

the M L approach; the ratio values r are very close to 1 in almost all the situations studied, ii) M L E 

may be slightly more efficient than I F M E , but this observation is not conclusive. I F M E and M L E 

are comparable. 
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Table 4.16: Efficiency assessment with multivariate Poisson-Morgenstern-gamma model, d = 3 

parameters 012 013 023 
(012,6 ' l 3 , 023) = (0.5,0.5,0.5) 

I F M 

M L E 

r 

0.495 
(0.125) 
0.494 

(0.122) 
1.022 

0.500 0.501 
(0.125) (0.124) 
0.499 0.500 

(0.124) (0.123) 
1.008 1.003 

(012,6 ' l 3 , 023) = (0.6,0.7,0.8) 
I F M 

M L E 

r 

0.603 
(0.127) 
0.600 

(0.127) 
1.000 

0.699 0.792 
(0.118) (0.119) 
0.697 0.790 

(0.120) (0.119) 
0.985 0.995 

Table 4.17: Efficiency assessment with multivariate Poisson-Morgenstern-gamma model, d = 4 

parameters 0 1 2 013 014 023 024 034 
( 0 1 2 , 0 1 3 / 0 i 4 , 0 2 3 , 0 2 4 , 0 3 4 ) = 0.5,0.5,0.5.0.5,0.57o.5) 

I F M 0.500 0 9 5 0.513 UMB 0.494 0.488 
(0.131) (0.128) (0.124) (0.133) (0.134) (0.138) 

M L E 0.501 0.493 0.512 0.497 0.495 0.485 
(0.130) (0.124) (0.122) (0.131) (0.132) (0.135) 

r 1.008 1.026 1.014 1.021 1.018 1.019 
~ ( 0 1 2 , 0 1 3 , 0 1 4 , 0 2 3 , 0 2 4 , 0 3 4 ) =_(0-6,0.7,0.8,,0.6,0.7,0 6) 

I F M — 0.593 —freJSO"— 0.794 0.589^— 0.692 0.599 
(0.130) (0.127) (0.120) (0.121) (0.133) (0.124) 

M L E 0.589 0.678 0.792 0.585 0.689 0.598 
(0.127) (0.124) (0.117) (0.118) (0.129) (0.124) 

r 1.017 1.026 1.024 1.025 1.037 1.006 

Table 4.18: Efficiency assessment with multivariate Poisson-Morgenstern-gamma model, d — 5 

parameters 012 013 014 015 023 024 025 034 035 045 
(012, 013, 0 1 4 , 0 1 5 , 0 2 3 , 0 2 4 , 0 2 5 , 0 3 4 , 0 3 5 , 0 4 5 ) = (0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5) 
I F M 

M L E 

r 

0.501 0.496 0.477 0.486 0.511 0.467 0.478 0.504 0.493 0.495 
(0.122) (0.131) (0.137) (0.132) (0.123) (0.130) (0.123) (0.128) (0.131) (0.116) 
0.495 0.493 0.473 0.482 0.508 0.466 0.475 0.503 0.489 0.494 

(0.121) (0.125) (0.134) (0.128) (0.122) (0.125) (0.119) (0.127) (0.128) (0.113) 
1.012 1.046 1.023 1.026 1.002 1.043 1.037 1.011 1.026 1.018 

(012, 013, 0 i 4 , 0 1 5 , 0 2 3 , 0 2 4 , 0 2 5 , 0 3 4 , 0 3 5 , 0 4 5 ) = (0.6,0.7,0.8,0.8,0.6,0.7,0.8,0.6,0.7,0.8) 
I F M 

M L E 

r 

0.595 0.667 0.775 0.767 0.597 0.693 0.778 0.590 0.693 0.602 
(0.140) (0.137) (0.132) (0.130) (0.127) (0.139) (0.118) (0.136) (0.126) (0.125) 
0.590 0.666 0.772 0.766 0.593 0.690 0.778 0.588 0.687 0.604 

(0.137) (0.132) (0.128) (0.126) (0.119) (0.135) (0.115) (0.132) (0.124) (0.113) 
1.023 1.036 1.029 1.032 1.067 1.029 1.028 1.028 1.018 1.103 
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4.4 I F M efficiency for models with special dependence struc

ture 

The I F M approach may have important applications for models with special dependence struc

ture. Data with special dependence structure arise often in practice: longitudinal studies, repeated 

measures, Markov type dependence data, fc-dependent data, and so on. 

The analytical assessment of the efficiency of the I F M approach for several models with special 

dependence structure were studied in section 4.2. In the following, we give some numerical results 

for I F M efficiency for some more complex models with special dependence structure. The estimation 

approach that we used here is P M L A . We only present representative results from the M C D model 

for binary data, with the M V N copula of exchangeable and AR(1) dependence structures. Results 

with other models are quite similar, as we also observed in section 4.3 for various situations with a 

general model. We use the following simulation scheme: 

1. The sample size is n = 1000, the number of simulations is TV = 200. 

2. The dimension d are chosen to be 3 and 4. 

3. For d = 3, we considered two marginal models Yij = I(Zij < Zj) and Yij = I(Z{j < ctjo + 

oijiXij), with Xij = I(U < 0) where U ~ uniform(— 1,1), and with the regression parameters 

(a) with no covariates: z = (0.5,0.5,0.5)' and z = (0.5,1.0,1.5)'; 

(b) with covariates: a0 = ( « i o . " 2 0 , « 3 o ) ' = (0.5,0.5,0.5)', (*i = ( a n , a 2 l , a 3 l ) ' = (1,1,1)' 

and ot0 = (c*io, a 2 0 , " 3 0 ) ' = (0.5,0.5,0.5)', ori = ( a n , a 2 i , a 3 l ) ' = (1,0.5,1.5)'. 

For each marginal model, exchangeable and AR(1) dependence structures in the M V N copula 

are considered, with the single dependence parameter in both cases being 0,- = [exp(/?o+/?iif«) — 

l]/[exp(/?o +/?iu>,-) +1], with Wi = I(U < 0) where U ~ uniform(—1,1), and parameters /?o = 1 

and /?i = 1.5. 

4. For d = 4, we only study Yij = I (Zij < Zj), with the marginal parametersz = (0.5,0.5,0.5,0.5)', 

and z = (0.5,0.8,1.2,1.5)'. For each marginal model, exchangeable and AR(1) dependence 

structures in M V N copula are considered. The single dependence parameter in both cases is 

Bi = [exp(/?0) - l]/[exp(/?0) + 1], with /?0 = 1.386 and /30 = 2.197 for both situations. 

The numerical results from these models with special dependence structure are presented in 

Table 4.19 to Table 4.26. We basically have the same conclusions as with all other general cases 
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Table 4.19: Efficiency assessment with special dependence structure: d = 3, z = (0.5,0.5,0.5)' 

parameters zi z 2 Z3 Bp ti\ 
exchangeable, tin = 1, B\ = 1.5 

I F M 0.496 0.497 —0^97 ITSSB 1.511 
(0.043) (0.041) (0.042) (0.118) (0.194) 

M L E 0.494 0.496 0.496 0.996 1.520 
(0.041) (0.040) (0.041) (0.118) (0.195) 

r 1.047 1.021 1.015 1.003 0.998 
AR(1), Ai, = 1, 0i = 1.5" 

T F M 0.496 0.497 0.496 UM2 O W ~ 
(0.043) (0.041) (0.041) (0.123) (0.185) 

M L E 0.494 0.497 0.495 0.994 1.512 
(0.042) (0.040) (0.041) (0.119) (0.183) 

r 1.034 1.027 1.012 1.031 1.015 

Table 4.20: Efficiency assessment with special dependence structure: d = 3, z = (0.5,1.0,1.5)' 

parameters zi zi Z3 tin ti\ 
exchangeable, tin — 1, ti\ — 1.5 

TFM 0.496 0.997 —TAW 0T9"9"S 1.531 
(0.043) (0.047) (0.064) (0.154) (0.249) 

M L E 0.496 0.996 1.499 0.997 1.534 
(0.043) (0.047) (0.063) (0.156) (0.247) 

r 1.009 0.999 1.010 0.986 1.008 
AR(1) 0o, = 1, A = 1.5 ~ 

I F M 0.496 0:997 1.500 0^91 1.509 
(0.043) (0.047) (0.063) (0.158) (0.250) 

M L E 0.496 0.996 1.500 0.993 1.518 
(0.043) (0.046) (0.062) (0.156) (0.249) 

r 1.017 1.013 1.018 1.011 1.003 

studied previously. These conclusions are: i) The I F M approach ( P M L A ) is efficient relative to the 

M L approach; the ratio values r are very close to 1 in almost all the studied situations, ii) M L E 

may be slightly more efficient than I F M E , but this observation is not conclusive. I F M E and M L E 

are comparable. 

4.5 Jackknife variance estimate compared with Godambe 

information matrix 

Now we turn to numerical evaluation of the performance of jackknife variance estimates of I F M E . 

We have shown, in Chapter 2, that the jackknife estimate of variance is asymptotically equivalent 

to the estimate of variance from the corresponding Godambe information matrix. The jackknife 

approach may be preferred when the appropriate computer packages are not available to compute 
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Table 4.21: Efficiency assessment with special dependence structure: d = 3, ct$ = (0.5,0.5,0.5)', 
Of! = (1,1,1)' 

~parameters am Qn apn Q21 Qan "31 Po 01 ~ 
exchangeable, Bn = 1, Pi = 15 

I F M 0.500 1.020 0.499 i .ulO 0.500 1.002 UM0 1.536 
(0.055) (0.109) (0.060) (0.108) (0.059) (0.104) (0.153) (0.242) 

M L E 0.500 1.018 0.498 1.010 0.500 0.999 0.978 1.556 
(0.052) (0.104) (0.059) (0.107) (0.058) (0.102) (0.152) (0.250) 

r 1.052 1.048 1.011 1.007 1.018 1.028 1.002 0.968 
AR(1) Bp = " l p\ = 1.5 

I F M 0.500 1.020 0.499 1.010 0.497 1.002 0^88 1.529 
(0.055) (0.109) (0.060) (0.108) (0.058) (0.101) (0.158) (0.233) 

M L E 0.501 1.017 0.499 1.009 0.497 0.999 0.985 1.545 
(0.052) (0.104) (0.059) (0.105) (0.058) (0.100) (0.157) (0.235) 

r 1.043 1.047 1.023 1.022 1.004 1.004 1.008 0.991 

Table 4.22: Efficiency assessment with special dependence structure: d — 3, oro = (0.5,0.5,0.5)', 
cti = (1,0.5,1.5)' 

"parameters am a n qpn 021 0:30 « 3 i Pa Pi 
exchangeable, pp = 1, Pi = 1.5 

I F M 0.500 1.020 0.499 6.H0 0.500 1.512 UME 1.528 
(0.055) (0.109) (0.060) (0.089) (0.059) (0.141) (0.160) (0.238) 

M L E 0.500 1.017 0.498 0.510 0.500 1.506 0.983 1.539 
(0.052) (0.103) (0.059) (0.089) (0.058) (0.132) (0.159) (0.239) 

r 1.047 1.050 1.011 1.002 1.017 1.070 1.004 0.996 
AH(1), 00 = 1 Pi = 1-5 ~ 

I F M 0.500 1.020 0.499 0.510 0.497 1.514 0^9r3 T 3 T 8 -

(0.055) (0.109) (0.060) (0.089) (0.058) (0.140) (0.159) (0.225) 
M L E 0.500 1.017 0.499 0.510 0.497 1.510 0.994 1.530 

(0.053) (0.104) (0.059) (0.089) (0.057) (0.133) (0.158) (0.223) 
_r 1.041 1.045 1.021 1.003 1.006 1.049 1.007 1.010 

Table 4.23: Efficiency assessment with special dependence structure: d= 4, z = (0.5,0.5,0.5,0.5)' 

parameters Zi Z2 z 3 24 Jo 
exchangeable, Po = 1.386 

I F M 

M L E 

r 

0.502 0.499 
(0.041) (0.043) 
0.501 0.499 

(0.041) (0.043) 
1.000 1.002 

0.501 
(0.042) 
0.500 

(0.042) 
1.005 

0.501 
(0.042) 
0.500 

(0.042) 
1.003 

1.387 
(0.071) 
1.389 

(0.070) 
1.013 

AR(1), A, = 1.386 
I F M 

M L E 

r 

0.502 0.499 
(0.041) (0.043) 
0.502 0.499 

(0.041) (0.043) 
0.996 1.000 

0.501 
(0.041) 
0.500 

(0.041) 
0.998 

0.497 
(0.042) 
0.496 

(0.042) 
0.998 

1.385 
(0.072) 
1.387 

(0.069) 
1.047 
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Table 4.24: Efficiency assessment with special dependence structure: d = 4, z = (0.5, 0.8,1.2,1.5)' 

parameters 2 l 2 3 2 4 Bo 
exch angeable, 0o = 1.386 

I F M 

M L E 

r 

0.502 
(0.041) 
0.502 

(0.041) 
0.998 

fi.803 
(0.045) 
0.802 

(0.045) 
1.004 

1.199 
(0.052) 
1.198 

(0.052) 
1.002 

1.494 
(0.061) 
1.492 

(0.061) 
1.007 

1.389 
(0.087) 
1.391 

(0.087) 
1.004 

A R I D , 0O 
= 1.386 

I F M 

M L E 

r 

0.502 
(0.041) 
0.502 

(0.041) 
0.999 

0.803 
(0.045) 
0.802 

(0.045) 
1.006 

1.20 
(0.05) 
1.20 

(0.05) 
1.00 

1.495 
(0.067) 
1.494 

(0.065) 
1.017 

1.388 
(0.085) 
1.389 

(0.083) 
1.025 

Table 4.25: Efficiency assessment with special dependence structure: d = 4, z = (0.5,0.5,0.5,0.5)' 

parameters Z\ Z2 2.3 2 4 00 
exch angeable, 0o = 2.197 

I F M 

M L E 

r 

0.502 
(0.041) 
0.500 

(0.041) 
0.999 

' Q.501 
(0.042) 
0.499 

(0.042) 
1.000 

0.501 
(0.042) 
0.499 

(0.042) 
0.999 

0.501 
(0.042) 
0.499 

(0.042) 
1.000 

2.200 
(0.093) 
2.202 

(0.092) 
1.015 

AR(1), 0o = 2.197 
I F M 

M L E 

r 

0.502 
(0.041) 
0.501 

(0.041) 
0.995 

0.501 
(0.042) 
0.499 

(0.043) 
0.993 

0.501 
(0.042) 
0.499 

(0.042) 
1.000 

0.499 
(0.042) 
0.498 

(0.042) 
0.999 

2.194 
(0.086) 
2.199 

(0.084) 
1.025 

Table 4.26: Efficiency assessment with special dependence structure: d = 4, z = (0.5,0.8,1.2,1.5)' 

parameters Zl 22 2 3 2 4 0o 
exchangeable, 0o = 2.197 

I F M 

M L E 

r 

0.502 0.802 
(0.041) (0.046) 
0.501 0.801 

(0.041) (0.046) 
0.996 1.002 

1.201 
(0.056) 
1.199 

(0.055) 
1.005 

1.499 
(0.060) 
1.496 

(0.059) 
1.003 

2.203 
(0.114) 
2.204 

(0.111) 
1.031 

AR(1), 0o = 2.197 
I F M 

M L E 

r 

0.502 0.802 
(0.041) (0.046) 
0.501 0.801 

(0.041) (0.046) 
0.997 1.005 

1.198 
(0.052) 
1.196 

(0.052) 
0.993 

1.500 
(0.060) 
1.500 

(0.060) 
1.000 

2.200 
(0.110) 
2.200 

(0.100) 
1.040 
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the Godambe information matrix or when the asymptotic variance in terms of Godambe informa

tion matrix is difficult to compute analytically or computationally. For example, to compute the 

asymptotic variance of P(yi • • -yd',0) by means of Godambe information is not an easy task. To 

complement the theoretical results in Chapter 2, in this subsection, we give some analytical and nu

merical comparisons of the variance estimates from Godambe information and the jackknife method. 

The application of jackknife methods to modelling and inference of real data sets is demonstrated 

in Chapter 5. 

Analytical comparison of the two approaches 

Example 4.8 (Multinormal, general) Let X ~ Nd(p, £ ) , and suppose we are interested in esti

mating p. Given n independent observations x i , . . . , x n from X, the I F M E of p is p = n - 1 ^ " = 1 x,-, 

and the corresponding inverse of the Godambe information matrix is J ^ 1 = E . A consistent estimate 

of Jy1 is 
n 

» = 1 

The jackknife estimate of the Godambe information matrix is 

nVj = n J2(hi) ~ fi&V) ~ ^)T> 
i=l 

where p^ = (n — l ) _ 1 (n/2 — x,). Some algebraic manipulation leads to 

n2 1 n 

n ^ = (^Ti)2^D*'-«(«'-«T. 
which is a consistent estimate of S. Furthermore, we see that 

n2 -_, 

which shows that the jackknife estimate of the Godambe information matrix is also good when the 

sample size is moderate to small. • 

Example 4.9 (Multinormal, common marginal mean) Let X ~ Nd(p, E) , where p = (pi,..., 

pd)' = pi and £ is known. We are interested in estimating the common parameter p. Given n 

independent observations x i , . . . , x„ with same distributions as X, the I F M E of p by the weighting 

approach is (see Example 4.2) 
_ _ I/IT 1 / ! 
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The inverse of Godambe information of pw is 

j - 1 1 

The jackknife estimate of the Godambe information is 

iVj = « ^ ( j i B ( i ) - K ) ( j i B ( i ) - / i t J f , 
8 = 1 

where = l ' E 1 / i ^ \ i / l / E 11. Some algebraic manipulation leads to 

l ' E " 1 

nVj = T^i L 8 = 1 

TAT , „ ; + u „ 2 _ i \ 2 * 

l ' E - 1 ! 

We replace n J2"=i(h) ~ Mh) ~ # with n 2 / ( n - 1) 2 E. Thus 

n V j ~ ( n - 1 ) 2 l ' E - i l ' 

and 
" 2 - i 

* (^31)2- J* > 

which shows that the jackknife estimate of the Godambe information is also good when the sample 

size is moderate to small. • 

N u m e r i c a l compar ison of the two approaches 

In this subsection, we numerically compare the variance estimates of I F M E from the jackknife 

method and from the Godambe information. For this purpose, we use a 3-dimensional probit model 

with normal copula. The comparison studies are carried out only for the dependence parameters 

8jk- For the chosen model parameters, we carry out TV simulations for each sample size n. For each 

simulation s (s = 1 , . . . , TV) of sample size n, we estimate model parameters #12, #13, #23 with the 

I F M approach. Let us denote these estimates 6$ % 813, &23- We then compute the jackknife estimate 

of variance (with g groups of size m such that g x m = n) for > 1̂3̂ ) 2̂3̂  • We denote these 
(s) (s) (s) • . ~ ~ ~ 

variance estimates by v\2 , v\3 , 1*23• Let the asymptotic variance estimate of t?i2, ^13, ^23 based on 

the Godambe information matrix from a sample of size n be V12, ^13, ^23. We compare the following 

three variance estimates: 

(i) . MSE: i £ f = 1 $ ' 2 > - M 2 , * £ f = i $ 3 - M 2 , ' * E T = i ( ^ - M 2 ; 
(ii) . Godambe: v 1 2 , vi3, v23] 
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(iii). Jackknife: 1v[s
2\ ££iLiwis> wT,1=iv23-

The M S E in (i) should be considered as the true variance of the parameter estimate assuming 

unbiasedness. (ii) and (iii) should be compared with each other and also with (i). Table 4.27 and 

Table 4.28 summarize the numerical computation of the variance estimates of 0 1 2 , #i3 , 0 23 based 

on approaches (i), (ii) and (iii). For the jackknife method, the results for different combinations 

of (g, m) are reported in the two tables. In total four models with different marginal parameters 

z = (21,22,23) and different dependence parameters 6 = (0i2, #13, 0 2 3) are studied. The details 

about the parameter values are reported in the tables. We have studied two sample sizes: n = 500 

and n = 1000. For both sample sizes, the number of simulations is N = 500. From examining 

the two tables, we see that the three measures are very close to each other. We conclude that the 

jackknife method is indeed consistent with the Godambe information computation approach. Both 

approaches yields variance estimates which are comparable to M S E . 

In conclusion, we have shown theoretically and demonstrated numerically in several cases that 

the jackknife method for variance estimation compares very favorably with the Godambe information 

computation. We are willing to extrapolate to general situations. The jackknife approach is simple 

and computationally straightforward (computationally, it only requires the code for obtaining the 

parameter estimates); it also has the advantage of easily handling more complex situations where the 

Godambe information computation is not possible. One major concern with the jackknife approach 

is the computational time needed to carry out the whole process. If the computing time problem is 

due to an extremely large sample size, appropriate grouping of the sample for the sake of applying 

the jackknife approach may improve the situation. A discussion is given in Section 2.5. Overall, we 

recommend the general use of the jackknife approach in applications. 

4.6 S u m m a r y 

In this chapter, we demonstrated analytically and numerically that the I F M approach is an efficient 

parameter estimation procedure for M C D and M M D models with M U B E or P U B E properties. 

We have chosen a wide variety of cases so that we can extrapolate this conclusion to the general 

situation. Theoretically, we expect I F M to be quite efficient because it is closely tied to M L E in 

that each inference function is a likelihood score function of a margin. For comparison purposes, 

we carried out M L estimates for several multivariate models. Our experience was that finding 

the M L E is a difficult and very time consuming task for multivariate models, while the I F M E is 
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Table 4.27: Comparison of estimates of standard error, (i) true, (ii) Godambe, (iii) jackknife with g 
groups; N = 500, n = 1000 

approach" | Pi 2 
(0.0,0.7,0.0)', f= (-

(9,™) 
(1000,1) 
(500,2) 
(250,4) 
(125,8) 
(100,10) 
(50,20) 

(0.0 0.7,0 

(m) 

0.002079 
0.002012 

0.002030 
0.002028 
0.002025 
0.002058 
0.002046 
0.002089 

0.5,0.5,-0.5) 
Z23_ 

0.001704 
0.001645 

0.001646 
0.001653 
0.001658 
0.001653 
0.001663 
0.001685 

0.002085 
0.002012 

0.002038 
0.002043 
0.002047 
0.002046 
0.002046 
0.002089 

z = (0.7,0.0 0.7)', 6 = (0.5,0.9,0.5) 
i 0.002090 0.000281 0.002200 

0.002012 0.000295 0.002012 
(g,m) (iii) 
(1000,1) 

(iii) 
0.002026 0.000299 0.002023 

(500,2) 0.002027 0.000300 0.002021 
(250,4) 0.002036 0.000300 0.002035 
(125,8) 0.002056 0.000302 0.002049 
(100,10) 0.002063 0.000301 0.002054 
(50,20) 0.002088 0.000301 0.002067 

z = (0.7,0.7,0.7)', 6 = (0.9,0.7,0.5) 

i) 0.000333 0.001218 0.002319 
(ii) 0.000295 0.001239 0.002187 

(9,m) (iii) 
(1000,1) 

(iii) 
0.000302 0.001254 0.002208 

(500,2) 0.000303 0.001257 0.002210 
(250,4) 0.000302 0.001260 0.002212 
(125,8) 0.000303 0.001267 0.002216 
(100,10) 0.000305 0.001261 0.002214 
(50,20) 0.000310 0.001252 0.002220 

9, rn) A 
(m) 1000,1) 
A 
(m) 

500,2) 
250,4) 
125,8) 
100,10) 
50,20) 

z = (1Q, 0.5.0.0)', 0 = (0.8,0.6,0.8) 
0.000821 
0.000869 

0.000873 
0.000874 
0.000877 
0.000884 
0.000887 
0.000899 

0.002147 
0.002089 

0.002129 
0.002118 
0.002108 
0.002119 
0.002138 
0.002151 

0.000766 
0.000666 

0.000683 
0.000683 
0.000681 
0.000688 
0.000687 
0.000690 
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Table 4.28: Comparison of estimates of standard error, (i) true, (ii) Godambe, (iii) jackknife with 
groups; N = 500, n = 500 

o.oy,gy= U approacn 13_ Z23_ 
= (0.0,0.7, 

(m) 

( -0.5,0.5,-03) 

( f lS™) 
(500.1) 
(250.2) 
(125,4) 
(50,10) 

0.004158 
0.004024 

0.004085 
0.004071 
0.004053 
0.004115 

0.003135 
0.003290 

0.004262 
0.004024 

0.003315 0.004104 
0.003333 0.004122 
0.003331 0.004119 
0.003396 0.004176 

z = (0 7,0.0,0.7)', 0 = (0.5,0.9,0.5) 

(9,™) 
(500.1) 
(250.2) 
(125,4) 
(50,10) 

(m) 

0.003998 
0.004024 

0.004062 
0.004062 
0.004091 
0.004123 

0.000602 
0.000591 

0.003768 
0.004024 

0.000604 0.004049 
0.000601 0.004054 
0.000607 0.004103 
0.000617 0.004171 

: (0.7,0.7, 0.7)', 6 = (0.9,0.7,0.5) 

I 
(m) 

(9,™) 
(500.1) 
(250.2) 
(125,4) 
(50,10) 

0.000632 
0.000591 

0.002688 
0.002479 

0.004521 
0.004374 

0.000607 
0.000611 
0.000616 
0.000622 

5,0.0)', 0 = (0.8,0.6,0.8) 

0.002501 0.004410 
0.002510 0.004425 
0.002533 0.004467 
0.002539 0.004501 

(i 0.001634 0.003846 0.001413 
(ii) 0.001738 0.004179 0.001332 
(iii) 

500,1) 
(iii) 

0.001821 0.004397 0.001365 
(250,2) 0.001837 0.004407 0.001368 
(125,4) 0.001846 0.004433 0.001360 
(50,10) 0.001876 0.004476 0.001388 
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computationally simple and results in significant saving of computing time. We further demonstrated 

numerically that the jackknife method yields SEs for the I F M E , which are comparable to the SEs 

obtained from the Godambe information matrix. The jackknife method for variance estimates has 

significant practical importance as it eliminates the need to calculate the partial derivatives which 

are required for calculating the Godambe information matrix. The jackknife method can also be 

used for estimates of functions of parameters (such as probabilities of being in some category or 

probabilities of exceedances). 

The I F M approach together with the jackknife estimation of SE's make many more multivariate 

models computationally feasible for working with real data. The I F M theory as part of statistical 

inference theory for multivariate non-normal models is highly recommended because of its good 

asymptotic properties and its computational feasibility. This approach should have significant prac

tical usefulness. We will demonstrate its application in Chapter 5. 



Chapter 5 

Modelling, data analysis and 

examples 

Possessing a tool is one thing, but using it effectively is quite another. In this chapter, we explore the 

possibility of effectively using the tools developed in this thesis for multivariate statistical modelling 

(including I F M theory, jackknife variance estimation, etc.) and provide data analysis examples. 

In section 5.1, we first discuss out view of the proper data analysis cycle. This is an important 

issue since the interpretation of the results and maybe the possible indication of further studies 

are directly related to the way that the data analysis was carried out. We next discuss several 

other important issues in multivariate discrete modelling, such as how to make the the choice of 

models and how to deal with checking the adequacy of models. We also provide some discussion 

on the testing of dependence structure hypotheses, which is useful for identifying some specific 

multivariate models. In section 5.2, we carry out several data analysis examples with the models and 

inference procedure developed in the previous chapters. We show some applications of the models 

and inference procedures developed in this thesis and point out difficulties related to multivariate 

nonnormal analysis. 

172 
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5.1 Some issues on modelling 

5.1.1 Data analysis cycle 

A proper data analysis cycle usually consists of initial data analysis, statistical modelling, diagnostic 

model assessment and inferences. 

The initial data analysis may consist of computing various data summaries and examining various 

graphical representation of data. The type of summary statistics and graphical representations 

depend on the basic features of the data set. For example, for binary, ordinal and count data, we 

can compute the empirical frequencies (and percentages) of response variables as well as covariates, 

separately and jointly. If some covariates are continuous, then standard summaries such as the mean, 

median, standard deviation, quartiles, maximum, minimum, as well as graphical displays such as 

boxplots and histograms could be examined. To have a rough idea of the dependence among the 

response variables, for binary data, a check of the pairwise log odds ratios of the responses could be 

helpful. Another convenient empirical pairwise dependence measure for multivariate discrete data, 

which is particularly useful for ordinal and count data, is a measure called gamma. This measure, 

for ordinal and count data y ; = (yn, yii), i= 1 , . . . , n, is defined as 

where C = £ " = 1 E"=i1 ( y n > yin) * I(yi2 > yi'2) and D = J2"=1 E " = i < &'i) * Kyi2 > yi'2), 

and / is the indicator function. In (5.1), C can be interpreted as the number of concordant pairs 

and D the number of discordant pairs. The gamma measure is studied in Goodman and Kruskal 

(1954), and is considered as a discrete generalization of Kendall's tau for continuous variables. The 

properties of the gamma measure follow directly from its definition. Like the correlation coefficient, 

its range i s — 1 < 7 < 1 : 7 = 1 when the number of discordant pairs D = 0 , 7 = — 1 when the number 

of concordant pairs C = 0 , and 7 = 0 when the number of concordant pairs equals the number of 

discordant pairs. Other dependence measures as the discrete generalizations of Kendall's tau or 

Spearman's p can also be used for ordinal response and count response as well as binary response. 

Furthermore, summaries such as means, variances and correlations could also be meaningful and 

useful for count data. Initial data analysis is particularly important in multivariate analysis, since 

the structure of multivariate data is much more complicated than that of univariate data, and the 

initial data analysis results will shed light on identifying the suitable statistical models. 

Statistical modelling usually consists of specification, estimation, and evaluation steps. The 

specification formulates a probabilistic model which is assumed to have generated the observed 

7 = 
C - D 

C + D 
(5.1) 
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data. At this stage, to choose appropriate models, relevant questions are: "What is the nature of 

the data?" and " How have the data been generated?" The chosen models should make sense for the 

data. The decision concerning which model to fit to a set of data should, if possible, be the result of 

a prior consideration of what might be a suitable model for the process under investigation, as well 

as the result of computation. In some situations, a data set may have several suitable alternative 

models. After obtaining estimation and computation results, model selections could be made based 

on certain criteria. 

Diagnostics consist of assessments of the reliability of the estimates, the fit of the model and the 

overall performance of the model. Both the fitting error of the model and possibly prediction error 

should be studied. We should also bear in mind that often a small fitting error does not lead to a 

small prediction error. Sometimes, it is necessary to seek a balance between the two. Appropriate 

diagnostic checking is an important but not easy step in the whole modelling process. 

At the inference stage, relevant statements about the population from which the sample was 

taken can be made based on the statistical modelling (mainly probabilistic models) results from 

the previous stages. These inferences may be the explanation of changes in responses over margin 

or time, the effects of covariates on the probabilities of occurrence, the marginal and conditional 

behaviour of response variables, the probability of exceedance, as well as of hypothesis testing as 

suggested by the theory in the application domain, and so on. Some relevant questions are: "How 

can valid inference be drawn?", "What interpretation can be given to the estimates?", "Is there a 

structural interpretation, relating to the underlying theory in the application?", and "Are the results 

pointing to further studies?" 

5.1.2 M o d e l s e l e c t i o n 

When modelling a data set, usually it is required only that the model provide accurate predictions 

or other aspects of data, without necessarily duplicating every detail of the real system. A valid 

model is any model that gives an adequate representation of the system that is of interest to the 

model user. 

Often a large number of equally good models exist for a particular data set in terms of the specific 

inference aspect of interest to the practitioner. Model selection is carried out by comparing alterna

tive models. If a model fits the data approximately as well as the other more complex models, we 

usually prefer the simple one. There are many criteria to distinguish between models. One suitable 

criterion for choosing a model is the associated maximum loglikelihood value. However, within the 
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same family, the maximum loglikelihood value usually depends on the number of parameters esti

mated in the model, with more parameters yielding a bigger value. Thus maximizing this statistic 

cannot be the sole criterion since we would inevitably choose models with more parameters and 

more complex structure. In application, parsimonious models which identify the essential relations 

between the variables and capture the major characteristic features of the problem under study are 

more useful. Such models often lead to clear and simple interpretation. The ideal situation is that 

we arrive at a simple model which is consistent with the observed data. In this vein, a balance 

between the size of the maximum loglikelihood value and the number of parameters is important. 

But it is often difficult to judge the appropriateness of the balance. One widely used criterion is the 

Akaike Information Criterion (AIC), which is defined as 

A I C =-2^(0;y) + 2s, 

where £(6; y) is the maximum loglikelihood of the model, and s is the number of estimated param

eters of the model. (With I F M estimation, the A I C is modified to A I C = -2£(6;y) + 2s.) By 

definition, a model with a smaller A I C is preferable. The A I C considers the principles of maximum 

likelihood and the model dimensions (of number of parameters) simultaneously, and thus aims for 

a balance of maximum likelihood value and model complexity. The negative of A I C / 2 is asymp

totically an unbiased estimator of the mean expected loglikelihood (see Sakamoto et al. 1986); thus 

A I C can be interpreted as an unbiased estimator of the -2 times the expected loglikelihood of the 

maximum likelihood. The model having minimum A I C should have minimum prediction error, at 

least asymptotically. In the use of A I C , it is the difference of A I C values that matters and not the 

actual values themselves. This is because of the fact that A I C is an estimate of the mean expected 

loglikelihood of a model. If the difference is less than 1, the goodness-of-fit of these models are almost 

the same. For a detailed account of A I C , see Sakamoto et al. (1986). The A I C was introduced by 

Akaike (1973) for the purpose of selecting an optimal model from within a set of proposed models 

(hypotheses). The A I C procedure has been used successfully to identify models; see, for example, 

Akaike (1977). 

The selection of models should also be based on the understanding that it is an essential part 

of modelling to direct the analysis to aspects which are relevant to the context and to omit other 

aspects of the real world situation which often lead to spurious results. This is also the reason that 

we have to be careful not to overparameterize the model, since, although this might improve the 

goodness-of-fit, it is likely to result in the model portraying spurious features of the sampled data, 

which may detract from the usefulness of the achieved fit and may lead to poor prediction. The 
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selection of models should also be based on the consideration of the practical importance of the 

models, which in turn is based on the nature and extent of the models and their contribution to our 

understanding to the problem. 

Statistical modelling is often an iterative process. The general process is such that after, a 

promising member from a family of models is tentatively chosen, parameters in the model are next 

efficiently estimated; and finally, the success of the resulting fit is assessed. The now precisely 

defined model is either accepted by this verification stage or the diagnostic checks carried out will 

find it lacking in certain respects and should then suggest a sensible modified identification. Further 

estimation and checking may take place, and the cycle of identification, estimation, and verification 

is repeated until some satisfactory fits obtain. 

5.1.3 D i a g n o s t i c c h e c k i n g 

A model should be judged by its predictive power as well as its goodness-of-fit. Diagnostic checking 

is a procedure for evaluating to what extent the data support the model. The A I C only compares 

models through their relative predictive power; it doesn't assess the goodness-of-fit of the model 

to the data. In multivariate nonnormal analysis, it is not obvious how the goodness-of-fit checking 

could be carried out. We discuss this issue in the following. 

There are many conventional ways to check the goodness-of-fit of a model. One direct way to 

check the model is by means of residuals (mainly for continuous data). A diagnostic check based 

on residuals consists of making a residual plot of the (standardized) residuals. Another frequently 

applied approach is to calculate some goodness-of-fit statistics. When the checking of residuals is 

feasible, the goodness-of-fit statistics are often used as a supplement. In multivariate analysis, direct 

comparison of estimated probabilities with the corresponding empirical probabilities may also be 

considered as a good and efficient diagnostic checking method. 

For multivariate binary or ordinal categorical data, a diagnostic check based on residuals of 

observed data is not meaningful. However statistics of goodness-of-fit are available in these situations. 

We illustrate the situation here by means of multivariate binary data. For a d-dimensional random 

binary vector Y with a model P, its sample space contains 2d elements. We denote these by 

k = 1,..., 2d with k representing the kt\x particular outcome pattern and Pk the corresponding 

probability, with Efc=i — 1- Assume n is the number of observations and n i , . . . , n2i are the 

empirical frequencies corresponding to k = 1,.. .,2d. Let Pk be the estimate of Pk for a specified 

model. Under the hypothesis that the specified model is the true model and with the assumption of 
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some regularity conditions (e.g. efficient estimates, see Read and Cressie 1988, §4 .1) , Fisher (1924) 

shows, in the case if Pk depends on one estimated parameter, that the Pearson \ 2 type statistic 

x 2 = ^ ( n ^ n h l ( 5 . 2 ) 

is asymptotically chi-squared with 2d — 2 degrees of freedom. If Pk depends on s (s > 1) estimated 

parameters, then the generalization is that (5.2) is asymptotically chi-squared with 2d — s — 1 degrees 

of freedom. A more general situation is that Y depends on a covariate of g categories. For each 

category of the covariate, it has the situation of (5.2). If we assume independence between the 

categories of the covariate, we can form an overall Pearson x2 type test statistic for the goodness-

of-fit of the model as 

t i t ! nWpW 

where v is the index of the categories in the covariate. Suppose we estimated s parameters in the 

model; thus P^ depends on s parameters. Under the hypothesis that the specified model is the 

true model, the test statistic X2 in (5.3), with some regularity conditions (e.g. efficient estimates), 

is asymptotically X^2d-i)-3> w n e r e 9 is the number of categories of the covariate, and s is the total 

number of parameters estimated in the model. Similarly, an overall loglikelihood ratio type statistic 

G2 = 2 £ E »<"> -og[n^/(n^P^)} (5.4) 
v=lk=l 

is also asymptotically X^2<«-i)-»- ^ 2 and G2 are asymptotically equivalent, but there are not the 

same in finite sample case, so sometimes there is a question of which statistic to choose. Read and 

Cressie (1988) may shed some light on this matter. The computation of the test statistic X2 or 

G2 requires the calculation of Pk"\ which may not be easily obtained, depending on the copula 

associated with the model (for example, it is generally feasible with mixture of max-id copula but 

only feasible with relatively low dimension for multinormal copula, unless approximations are used). 

One frequently encountered problem in applications with multivariate binary or ordinal cate

gorical data (also count data) is that when the dimension of the response is relatively high, the 

empirical frequency for some particular outcomes of the response vector is relatively small or even 

zero. Thus Pk or P^ would usually be very small for any particular model, and (5.2) or (5.3) with 

its related statistical inferences are not suitable in these situations. What we may still do in terms 

of goodness-of-fit checking in these situations is to limit the comparison of Pfc(x,) with nfc(x;)/n(x,-) 

by tables and graphics to outcomes of non-zero frequency (where x,- is the covariate vector), or to 
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calculate 

4o= E (nk lk

hk? o r G « = 2 E »*i°g(»*/aO, (5-5) 
{nfc>a} { " k > « } 

where hk = J2l=i -Pfc(xt')> where k represent the kth patterns of the response variables, and plot X^ 

(or G 2
a ^) versus a = {1, 2, 3,4,5} to get a rough idea of how the model fits the non-zero frequency 

observations. The data obviously support the model if the observed values of X2
a^ (or G2

a^) go down 

quickly to zero, while large values indicate potential model departures. 

Obviously, in any case, some partial assessments using (5.2) or (5.3) may be done for some lower-

dimensional margins where frequencies are sufficiently large. Sometimes, these kinds of goodness-

of-fit checking may be used to retain a model while (5.5) is not helpful. 

The statistics in (5.5) and related analysis can be applied to multivariate count data as well. 

Furthermore, a diagnostic check based on the residuals of the observed counts is also meaningful. If 

there are no covariates, quick and overall residual checking cab be based on examining 

iij =yij-Y,[Yij\Yii-i~9] (5.6) 

for a particular fixed j, where Y t ] _ j means the response vector Y , with the j th margin omitted. The 

model is considered as adequate based on residual plot in terms of goodness-of-fit if the residuals 

are small and do not exhibit systematic patterns. Note that the computation of E f Y i j l Y ^ - j , ^ ] 

may not be a simple task when the dimension d is large (e.g d > 3). Another rough check of the 

goodness-of-fit of a model for multivariate count data is to compare the empirical marginal means, 

variances and pairwise correlation coefficients with the corresponding means, variances and pairwise 

correlation coefficients calculated from the fitted model. 

In principle, a model can be forced to fit the data increasingly well by increasing its number of 

parameters. However, the fact that the fitting errors are small is no guarantee that the prediction 

errors will be. Many of the terms in a complex model may simply be accounting for noise in the 

data. The overfitted models may predict future values quite poorly. Thus to arrive at a model which 

represents only the main features of the data, selection and diagnostic criteria which balance model 

complexity and goodness-of-fit must be used simultaneously. As we have discussed, often there are 

many relevant models that provide an acceptable approximation to reality or data. The purpose 

of statistical modelling is not to get the "true" model, but rather to obtain one or several models 

which extract the most information and better serve the inference purposes. 
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5.1.4 T e s t i n g t h e d e p e n d e n c e s t r u c t u r e 

We next discuss a topic related to model identification. Short series of longitudinal data or repeated 

measures with many subjects often exhibit highly structured pattern of dependence structure, with 

the dependence usually becoming weaker as the time separation (if the observation point is time) 

increases. Valid inferences can be made by borrowing strength across subjects. That is, the consis

tency of a pattern across subjects is the basis for substantive conclusions. For this reason, inferences 

from longitudinal or repeated measures studies can be made more robust to model assumptions than 

those from time series data, particularly to assumptions about the nature of the dependence. 

There are many possible structures for longitudinal or repeated measures type dependence. The 

exchangeable or AR(l)-like dependence structures are the simplest. But in a particular situation, 

how to test to see if a particular dependence structure is more plausible? The A I C for model 

comparison may be a useful index. In the following, we provide an alternative approach for testing 

special dependence structures. For this purpose, we first give a definition and state two results that 

we are going to use in the later development. A reference for these materials is Rao (1973). 

D e f i n i t i o n 5.1 (Genera l ized inverse of a matr ix ) A generalized inverse of an n x m matrix A 

of any rank is an m x n matrix denoted by A~ which satisfies the following equality: 

AA~ A = A. 

• 

Resul t 5.1 (Spectral decomposi t ion theorem) Let A be a real n x n symmetric matrix. Then 

there exists an orthogonal matrix Q such that Q'AQ is a diagonal matrix whose diagonal elements 

Ai > A 2 > • • • > A„ are the characteristic roots of A, that is 

/ Ai 0 ••• 0\ 

0 A 2 ••• 0 
Q'AQ 

V 0 0 • •• A„ / 

• 

Resul t 5.2 / / X ~ Np(p, Ex) , and E x is positive semidefinite, then a set of necessary and sufficient 

conditions for X ' A X ~ xl{&2) is (i)tr(AL-x) = r and p.'Ap = S2, (ii) E X A E X ^ E X = E X A E X , (iii) 

p!AH-ynAp = p'Ap, (iv) p'(AT,x)2 = p'AH. X2{&2) denotes the non-central chi-square distribution 

with noncentality parameters2. • 
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In the following, we are going to build up a general statistical test, which in turn can be used to 

test exchangeable or AR(l)-type dependence assumptions. 

Suppose X ~ Np(p, £ x ) where E x is known. We want to test if / i = pi, where p is a constant. 

Let a = E ^ l / l ' E x 1 ! , then 

X - a'Xl = {Xi - a'X,..., Xp - a'X)' = B X , 

where B = I - H'E^1/l"E^l, and / is the identity matrix. Thus BX ~ Np(Bp, BZXB'). It is 

easy to see that Rank(B) = p — 1, it implies that Rank(BExB') = p — 1. 

By Result 5.1, there is an orthogonal matrix Q, such that 

^ A j . . . 0 0^ 

J 3 E X B ' = Q 
0 

\ 0 

A p - i 0 
0 0/ 

Q', 

where Ai > A 2 > • • • > A p _ i > 0. Let 

A = Q 
0 

V o 

0 0 \ 

0 

• o 1 / 

then A is a full rank matrix. It is also easy to show that A is a generalized inverse of 5Ex-B ' , and 

all the conditions in Result 5.2 are satisfied, we thus have 

X'B'ABX-xl-iV2), 

where S2 = p'B'ABp, S2 > 0. b2 = 0 is true if and only if Bp = 0, and this in turn is true if 

and only if p = pi, that is p should be an equal constant vector. Thus under the null hypothesis 

p = pi, we should have 

X'B'ABX-xl-i, 

where xP-i means central chi-square distribution with p — 1 degrees of freedom. 

Now we use an example to illustrate the use of above results. 

Example 5.1 Suppose we choose the multivariate logit model with multinormal copula (3.1) with 

correlation matrix 0 = (Ojk) to model the d-dimensional binary observations y 1 ; . . . , y „ . We want 

to know if an exchangeable (that is Ojk = 0 for all 1 < < k < d and for some \0\ < 1) or an AR(1) 
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(that is 9jk = 0^ for all 1 < j < k < d and for some |t9| < 1) correlation matrix in the multinormal 

copula is the suitable assumptions. The above results can be used to test these assumptions. Let 

$W be the I F M E of 0 from the (j,k) bivariate margin, and ~6 = (0~(12\ 0~(13\ ..., fifa-1.*)). By 

Theorem 2.4, we have asymptotically 

~6~ Nd{d_1)/2(01,X0), 

where is the inverse of Godambe information matrix of 0. Thus under the exchangeable or AR(1) 

assumptions of 0 , we have asymptotically 

where 

0B'AB~e~x\i-i),2-i, 

a -
5 = 7 - 1 

l ' E r 1 

6 

6 
A = Q 

0 

\ 0 

^ d ( c i - l ) / 2 - l 

0 

0 

1 / 

Q', 

and Q is an orthogonal matrix from the spectral decomposition 

/ A x . . . 0 0\ 

where Ai > A 2 > • • • > Xd(d-i)/2-i > 0. 

0 ••• A d ( d _ 1 ) / 2 _ i 0 

\ 0 ••• 0 0 / 

The above results are valid for large samples, and can be used in the applications for a rough 

judgement about the special dependence structure assumptions, though would typically have to 

be estimated from the data. 

5.2 Data analysis examples 

In this section, we apply and compare some models developed in Chapter 3 on some real data sets, 

and illustrate the estimation procedures of Chapter 2. Following the discussion in section 5.1, the 

examples show the stages of the data analysis cycle and the special features related to the specific 

type of data. 
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5.2.1 Example with multivariate/longitudinal binary response data 

In this subsection, several models for multivariate binary response data with covariates are applied 

to a subset of a data set from the "Six Cities Study" discussed and analyzed by Ware et al. (1984) 

and Stram et al. (1988). 

The Six Cities Study is a longitudinal investigation of the effects of indoor and outdoor air 

pollution on respiratory health. As in'most longitudinal studies, there were missing data for some 

subjects. In this analysis we consider a subset of data with no missing values, gathered in the study 

on the occurrence of persistent wheeze (graded as wheeze 1 and none 0) of children (total number 

of 1020) followed from ages 9 to 12 yearly in two different cities: Kingston-Harriman, Tenessee 

( K H T ) , and Portage, Wisconsin (PW) in the US. The outdoor air pollution is measured by the 

children's residence location, that is, the two cities. These two cities have very different ambient air 

quality. K H T (coded as 1 in the data set) is influenced by air pollution from several metropolitan 

and industrial areas, and thus has relatively high average concentrations of fine particulate matter 

and acid aerosols. P W (coded as 0 in the data set) is located in a region that has relatively low 

concentrations of these polluants. Indoor pollution is measured by level of maternal smoking graded 

as 1 (> 10 cigarettes) or 0 (< 10 cigarettes). Let us call the outdoor air pollution variable "City" , 

and the indoor pollution variable "Smoking". Smoking is a time-dependent covariate since level of 

maternal smoking may vary from year to year, and City is considered as time-independent covariate 

(for the four-year period) since no one in the study moved over the four years. More documentation 

of the study can be found in Ware et al. (1984) and Stram et al. (1988). Some of the potential 

scientific questions are: (1) Does the prevalence of wheeze differ between cities or smoking groups? 

If so, does the difference change over time. If the effects are constant over time, how should they 

be estimated? (2) How should the rate of respiratory disease for children whose mothers smoke be 

compared to the rate for children whose mothers do not smoke? 

Tables 5.1 - 5.3 summarize the initial data analysis. Table 5.1 provides the univariate summaries 

of the data, with the percentages of I's for the binary response and predictor variables (City and 

Smoking at 4 time points which we denote by Smoking9, SmokinglO, Smokingll and Smokingl2). 

We see, from response variables Age 9 to Age 12, that the incidence of persistent wheeze for ages 

9 to 12 decreases slightly across the ages. The same is true for the maternal smoking levels. Table 

5.2 contains the frequencies of the response vector of the 4 time points when ignoring the effects 

of the covariates. Table 5.3 has the pairwise log odds ratio for the response variables, ignoring the 

covariates; it gives some indication of the amount of dependence in the response variables in addition 
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to Table 5.2. Table 5.3 indicates that the dependence for consecutive years is larger. 

Multivariate binary response models that were used to model the data include 

1. The multivariate logit model from section 3.1, with 

a. multinormal copula (3.1), 

b. multivariate Molenberghs-Lesaffre construction 

i. with bivariate normal copula, 

ii . with Plackett copula (2.8), 

iii . with Frank copula (2.9). 

c. mixture of max-id copula (3.3), 

d. the permutation symmetric copula (3.8). 

2. The multivariate probit model with multinormal copula. 

The Multivariate logit-normal model (a M M D model) is also used to model this data set, but since 

in this model fitting, the variance parameters estimates (CTJ , j = 1,2,3,4) all go to 0, it reduces this 

model in fact to a M C D model, thus we will not pursue the M M D models fitting with this data set 

further. Only the results with M C D model fitting are reported here. 

Since we have the covariates City and Smoking, there is a question of how to include these 

variables into the models. For subject i (i = 1 , . . . , 1020), the cut-off points are Z{j (j = 1,2,3,4) 

for an univariate probit or logit model. A suitable approach for the cut-off points to be functions 

of covariates is to let Zij = ctjo + ctji * City,- + ctj2 * Smoking^. To let the dependence parameters 

be functions of covariates is more complicated. Many possibilities are open. A simple approach 

is to let the dependence parameters be independent of covariates. This may serve the general 

modelling purpose in many situation while keeping the model simple. Besides this simple approach, 

partly for illustrative purposes, we also examine the situation where the dependence parameters 

depend on the covariate City. For model (la), the dependence parameters are Oijk for the subject i, 

1 < j < k < 4. There are many ways to include covariates to the dependence parameters Oijk, as we 

have discussed in section 3.1 for model (la). For a general dependence structure, we may simply let 

Oijk = [exp(/?jtio+/? ;'fcii*Cityi) — l]/[exp(/?jj;]o+/?jifc,i*Cityi)+l]. Another two dependence structures 

appropriate (suggested by the nature of the study and the initial data analysis) for this data set 

are exchangeable and AR(1) type structure with 0,- = (Oijk) for the ith subject. The exchangeable 

situation is that Oijk = Oi for some < 1. The AR(1) situation is Oijk = o\J~k^ for some \9i\ < 1. In 
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both situations, we let 0,- = [exp(/?o-|-/?i*City,-) — l]/[exp(/?o+/?i*City i) + l]. For models (lbi), (lbii), 

(lbiii), we first let higher order (> 3) parameters rjijki a n d ?7i,i234 be constant, say 1. (This is usually 

good enough for practical purposes, refer to section 3.1.) We next let the parameters appearing in the 

bivariate copulas be functions of covariates. Assume that for model (lbi), the dependence parameters 

in the bivariate copulas are Oijk- Since Oijk are correlation coefficients in bivariate normal copulas, 

we let 6ijk = [exp(8jkfi + 0jk,i * City,-) - l]/[exp(0jk,o + 0jk,i * C i t y J + 1]. For model (lbii), 

assume are the parameters in the Plackett copulas; we let 6ijk = exp(0jk,o + Pjk,i * City,-). 

For model (lbiii), assume <5,-jfcS are dependence parameters in the bivariate Frank copulas; we 

let 8ijk = exp(/?jjto + Pjk,i * City,) . For model (lc), the dependence parameters are 6*,- and S{ jk 

(1 < j < k < 4). (We let the parameter of asymmetry vij = 0 for all i and j.) t9,- represent 

a general minimum level of dependence, and Sijk represent bivariate dependence exceeding the 

minimum dependence. For the dependence parameters, we let Sijk — exp(0jkfl + 0jk,i * City,) and 

6i = exp(/?o) be independent of covariates. For model (Id), the dependence parameters are We 

let 9i = exp(0o + 0i * City,) . For model (2), the dependence structure is the same as model (la). 

We use "1" to denote the logit model and "p" to denote the probit model. For the univariate 

marginal regressions, at least two situations could be considered: regression coefficients differ across 

margins (or times), denoted by " m d " ; and regression coefficients common across margins (or times), 

denoted by "mc". For the regression of the dependence parameters, for models (la) and (2), we 

consider the general (denoted by "g"), exchangeable (denoted by "e") and AR(1) (denoted by "a") 

dependence structures. We also consider the situations with covariate (denoted by "wc") and with 

no covariate (denoted by "wn") for the dependence parameters. Thus a total of 12 submodels of 

model (la) are considered; they are l.md.g.wc, l.md.g.wn, l.md.e.wc, l.md.e.wn, l.md.a.wc, l.md.a.wn, 

l.mc.g.wc, l.mc.g.wn, l.mc.e.wc, l.mc.e.wn, l.mc.a.wc and l.mc.a.wn, where for example "l.md.g.wc" 

stands for the multivariate logit model with marginal regression coefficients differ across margins and 

general dependence structure with covariates. There are also 12 submodels for the model (2): these 

are p.md.g.wc, p.md.g.wn, p.md.e.wc, p.md.e.wn, p.md.a.wc, p.md.a.wn, p.mc.g.wc, p.mc.g.wn, 

p.mc.e.wc, p.mc.e.wn, p.mc.a.wc and p.mc.a.wn. For models (lbi), (lbii), (lbiii), (lc) and (Id), the 

AR(1) type latent dependence structure may not be well-defined. In any case, for not repeating 

similar analysis, we will only consider possible models within the models (lbi), (lbii), (lbiii), (lc) 

and (Id) with similar structure of models retained by the analysis with models (la) and (2). 

For all the models except (Id), the I F M estimation theory is applied. That is, the univariate (re

gression) parameters are estimated from separate univariate likelihoods (using the Newton-Raphson 
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method), and bivariate and multivariate (regression) parameters are estimated from bivariate like

lihoods, using a quasi-Newton optimization routine, with univariate parameters fixed as estimated 

from the separate univariate likelihoods. Furthermore, for the situation of "mc" for common marginal 

regression coefficients and exchangeable (or AR(1) if applicable) dependence structure, W A of (2.93) 

in section 2.6 for parameter estimation based on I F M is used. It is also used for estimating the pa

rameter 0o in 8 = exp(/?o) in the model (lc) since 8 is an overall parameter and common across 

all margins. Notice that only one choice of parametric families for ip and Kjk's were used, but it 

is expected that other choices could lead to a better fit according to A I C . The model (Id) has a 

copula with closed form cdf and there is only one dependence (or regression parameters related to 

it) parameter in the model, thus MLE(s) are computed in this situation. Model (Id) here is used 

to compare a simple permutation symmetric M C D model with the other models which all allow a 

general dependence structure. Model (lc) and (Id) have the advantage of having a copula with 

closed form cdf; this is particularly convenient for dealing with multivariate discrete data of high 

dimension, as it leads to faster computation in computing probabilities of the form Pr(Y = y) or 

Pr(Y = y|x). 

For standard errors (SEs) of parameter estimates and prediction probabilities, the jackknife 

method from Chapter 2 is used with 255 random groups of 4. Furthermore, the weights used for 

W A for common parameter estimation are based on the jackknife SEs, and these weights in turn are 

used, based on (2.93), to each step of jackknife parameter estimation. 

Summaries of the fits of the models are given in several tables. Table 5.4 contains the esti

mates and SEs of the regression parameters for the marginal parameters with the logit model when 

the regression parameters are considered to be differ and common across the margins. Table 5.5 

contains the estimates and SEs of the regression parameters for the dependence parameters under 

various settings for the multivariate logit model with multinormal copula (model (la)). Table 5.6 

contains A I C values and X2 (calculated based on (5.5) with a = 0) values for all the submodels of 

multivariate logit and probit models with multinormal copula (that is models (la) and (2)). Care 

must be taken in the comparison since the AICs here are not calculated from the M L of all pa

rameters simultaneously, the parameters estimates are I F M E . The A I C values and X2 values for 

the corresponding submodel of models (la), (2) are comparable; this echoes the well-known fact 

that the univariate probit and logit models are comparable. We thus only compare the submodels 

within the multivariate logit model. From examining the A I C and X2 values for the 12 models, 

the models l.md.g.wn, l.md.e.wc, l.md.e.wn and l.mc.g.wn seem to stand out as interesting choices. 
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Since l.md.e.wc and l.md.e.wn are about the same in terms of A I C and X2 values, and l.md.e.wn 

is simpler than l.md.e.wc, we only consider l.md.e.wn. At this stage, three models are retained for 

further inspection: l.md.g.wn, l.md.e.wn and l.mc.g.wn. Table 5.7 contains A I C values and Table 5.8 

contains X2 values of submodels l.md.g.wn, l.md.e.wn and l.mc.g.wn of models (la), (lbi), (lbii), 

(lbiii), (lc) and (Id). These two tables suggest that the models are comparable in general, with 

models (lc) and (Id) performing relatively poorly; possibly other parametric families of mixture of 

max-id copulas would do better. The model (lbi) seems to be the best for this data set. Note that 

since there is only one dependence structure with model (Id), the submodel l.md.g.wn and l.md.e.wn 

are equivalent in this case. Table 5.9 contains estimates and SEs of the bivariate dependence pa

rameters of the submodel l.md.g.wn of models (lbi), (lbii), (lbiii) and (lc). This and Table 5.5 also 

suggest that the models are comparable; the conclusion about which bivariate margins are more or 

less dependent are the same from the models. They show that the dependence for consecutive years 

is slightly stronger; this is also observed in Table 5.3 for the initial data analysis. (Note also the 

closeness of the dependence parameter estimates with the model (lbii) to the empirical pairwise log 

odds ratio in Table 5.3.) For comparison, the estimate of the dependence parameter for model (Id), 

with an permutation symmetric copula, is 1.719 with S E equal 0.067. As we have pointed out, the 

model (Id) does not perform as well as other models with this data set. This may indicate that, 

even though a model with exchangeable dependence structure may be acceptable, a better model is 

to have a general dependence structure. A l l these models are quite similar in term of computer time 

for the parameter estimation (because of the I F M approach), but models (la) and (2) used much 

more computer time than the other models to compute A I C , X2 and the prediction probabilities 

since 4-dimensional integrations were involved. 

For the predicted probabilities and inference, and also as a supplement of X2 values for an 

assessment of goodness-of fit, Table 5.10 contains estimates of probabilities of the form Pr(Y = y) 

for all possible y from submodels l.md.g.wn, l.md.e.wn and l.mc.g.wn of the model (la), Table 

5.11 contains estimates of probabilities of the form Pr(Y = y) for all possible y from submodels 

l.md.g.wn of models (la), (lbi), (lbii), (lbiii), (lc) and (Id), and these Pr(Y = y) are estimated with 

X^i=i°Pr(Y = y|xj)/1020. Table 5.12 contains estimates of probabilities of the form Pr(Y = y|x) 

for various y and x from submodels l.md.g.wn, l.md.e.wn and l.mc.g.wn of the model (la), and Table 

5.13 contains estimates of probabilities of the form Pr(Y = y|x) for various y and x from submodels 

l.md.g.wn of models (la), (lbi), (lbii), (lbiii), (lc) and (Id). In Table 5.12, the n* is the subset sizes 

for the specific value of x and "rel. freq" is the observed relative frequency for the given y under 
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that value of x. In Table 5.13, to save space, for each line, only the maximum estimated S E over the 

different models is given; actually the SEs are quite close to each other. The selected x and y values 

in the Table 5.12 and Table 5.13 are common values in the data set. Tables 5.10 - 5.13 suggest 

that the submodels l.md.g.wn, l.md.e.wn and l.mc.g.wn are all adequate for predictive purposes, 

since the prediction probabilities are comparable when the SEs are taken into account. These three 

submodels can be used to complement each other for a slightly different inference purposes. The 

large divergences in estimated probabilities occur with the model (Id) and only in the case where the 

vector x is at the extreme of the covariate space, for example x = (1, 0, 0, 0, 0) and x = (0, 0, 0, 0, 0) 

for y = (1,1,1,1). There is a simple exchangeable dependence model l.md.e.wn among the three 

submodels l.md.g.wn, l.md.e.wn and l.mc.g.wn. A n explanation for this may be that the dependence 

in the bivariate margins are different but not different enough to make a difference in prediction 

probabilities. Another possibility may be due to the dominance of the response vector (0,0,0,0). 

The analysis (e.g. from submodel l.md.g.wn) indicates a slight decline in the rate of wheeze 

over time (the intercepts in Table 5.4 for regression parameters differing across margins decrease 

gradually over time from —1.090 to —1.564) and a moderate increase in wheeze for children of 

mothers who smoke (the corresponding regression parameters increases over time from 0.144 to 

0. 444) and for the city with pollution (the corresponding regression parameters increase in time 

from 0.003 to 0.209). There is an indication that the excess of maternal smoking and the city with 

pollution both increase significantly the probability of the occurrence of wheeze (e.g. from submodel 

1. mc.g.wn). This is also consistent with the observation in Ware et al. (1984), where it is believed 

that maternal smoking is predictive of respiratory illness. If we study the model with covariate 

(city) for the dependence (e.g. the submodel l.md.e.wc), we see that high city pollution level has 

a negative effect on the correlation; it possibly means that the low level city pollution leads to a 

slightly higher correlation on the occurrence of persistent wheeze. We can interpret this as the wheeze 

occurrence situation not caused by pollution is more stable over time. The analysis indicates that 

the dependence for consecutive years is stronger and the dependence (pairwise) are all significant. 

The rate of respiratory disease for children whose mothers smoke heavily is higher than the rate for 

children whose mothers do not smoke or only smoke slightly, these can be seen from Table 5.12 (with 

l.md.g.wn submodel), where for example for y = (1,1,1,1), P(y|x(a)) = 0.099 > 0.071 = P(y|x<*)) 

where x(a) = (0,1,1,1,1) and x<6> = (0,0,0,0,0), and P(y|x(c)) = 0.118 > 0.085 = P(y|x(d)) 

where x(c) = (1,1,1,1,1) and x(d) = (1,0,0,0,0). Similarly, we also observe that rate of persistent 

wheeze for children whose mothers smoke is lower than the rate for children whose mothers do not 
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Table 5.1: Six Cities Study: Percentages for binary variables 

Variables # I's Percentage 

Age 9 266 26.07% 
Age 10 256 25.09% 
Age 11 241 23.62% 
Age 12 217 21.27% 
City 512 50.19% 
Smoking9 325 31.86% 
SmokinglO 313 30.68% 
Smokingll 311 30.49% 
Smokingl2 309 30.29% 

Table 5.2: Six Cities Study: Frequencies of the response vector (Age 9, 10, 11, 12) 

Response 
pattern 

Observed 
numbers 

Relative 
frequency 

1 1 1 1 95 0.093 
1 1 1 0 30 0.029 
1 1 0 1 15 0.015 
1 1 0 0 28 0.027 
10 11 14 0.014 
10 10 9 0.009 
10 0 1 12 0.012 
1 0 0 0 63 0.062 
0 1 1 1 19 0.019 
0 1 1 0 15 0.015 
0 10 1 10 0.010 
0 10 0 44 0.043 
0 0 11 17 0.017 
0 0 10 42 0.041 
0 0 0 1 35 0.034 
0 0 0 0 572 0.561 

smoke (e.g. for y = (0,0,0,0), P(y|x(e)) = 0.606 > 0.541 = P(y|x<')) where x ^ = (0,0,0,0,0) 

and = (0,1,1,1,1)). Also similarly, the rate of persistent wheeze for children who reside in 

the city with more pollution is higher than the rate for children who reside in the city with less 

pollution, e.g., for y = (1,1,1,1), P ( y | x M ) = 0.118 > 0.099 = P ( y | xW) where x W = (1,1,1,1,1) 

and xW = (0,1,1,1,1), or P(y|x«) = 0.085 > 0.071 = P(y|xW)) where x « = (1,0,0,0,0) and 

x0') = (0,0,0,0,0). More detailed comparisons for different situations can be made. 

Similar results to the partial interpretations given above are also obtained in the literature on the 

analysis of a similar data set from the same study; see for example Fitzmaurice and Laird (1993), 

Zeger et al. (1988) and Stram et al. (1988). 
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Table 5.3: Six Cities Study: Pairwise log odds ratios for Age 9, 10, 11, 12 

Pair odds log odds 

Age 9,10 T2T97 JM~ 
Age 9,11 8.91 2.19 
Age 9,12 8.69 2.16 
Age 10,11 13.63 2.61 
Age 10,12 10.45 2.35 
Age 11,12 14.83 2.69 

Table 5.4: Six Cities Study: Estimates of marginal regression parameters for multivariate logit model 

margin intercept (SE) city (SE) smoking (SE) 

differ across the margins 
1 -1.090 (0.113) 0.003 (0.150) 0.144 (0.144) 
2 -1.229 (0.120) 0.080 (0.148) 0.293 (0.155) 
3 -1.412 (0.136) 0.311 (0.161) 0.237 (0.166) 
4 -1.564 (0.123) 0.209 (0.155) 0.444 (0.166) 

common across the margins 
-1.308 (0.061) 0.144 (0.077) 0.270 (0.078) 

Table 5.5: Six Cities Study: Estimates of dependence regression parameters for multivariate logit 
model with multinormal copula 

margin intercept (SE) city (SE) 

general dependence, with covariate 
12 2.156 (0.217) -0.373 (0.288) 
13 1.740 (0.183) -0.178 (0.249) 
14 1.583 (0.209) 0.041 (0.288) 
23 2.334 (0.210) -0.628 (0.287) 
24 1.891 (0.214) -0.294 (0.281) 
34 2.079 0.224) -0.109 (0.287) 
general dependence, without covariate 
12 1.960 (0.143) 
13 1.645 (0.124) 
14 1.604 (0.143) 
23 1.987 (0.143) 
24 1.733 (0.139) 
34 2 020 (0.142) 

exchangeable dependence, with covariate 
1.948 (0.085) -0.254 (0.114) 

exchangeable dependence, without covariate 
1.815 (0.057) 

AR(1) dependence, with covariate 
2.380 (0.086) -0.258 (0.115) 

AR(1) dependence, without covariate 
2.236 (0.057) -, 
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Table 5.6: Six Cities Study: Comparisons of A I C values and X2 values from various submodels of 
models (la) and (2) 

Logit 
Models A I C X2 

Probit 
Models A I C 

Trn~<I 
l.md 
l.md 
l.md 
l.md 
l.md 
l.mc 
l.mc 
l.mc 
l.mc 
l.mc 
l.mc 

3642.882 
3637.415 
3659.683 
3660.126 
3641.662 
3641.637 
3646.339 
3640.444 
3661.238 
3660.876 
3647.731 
3646.785 

7.862 
7.992 

42.472 
42.329 
19.941 
19.926 
21.031 
21.119 
52.281 
51.942 
37.758 
37.687 

p.md 
p.md 
p.md 
p.md 

md 
md 
mc 
mc 
mc 

p.mc 
p.mc 
p.mc 

3642.810 
3637.347 
3659.615 
3660.063 
3641.585 
3641.561 
3646.396 
3640.499 
3661.308 
3660.938 
3647.784 
3646.833 

X2 

g.wc 
g.wn 
a.wc 

.a.wn 
e.wc 

.e.wn 
g.wc 
g.wn 
a.wc 
a.wn 
e.wc 
e.wn 

g.wc 
g.wn 
a.wc 
a.wn 

.e.wc 

.e.wn 
g.wc 
g.wn 
a.wc 
a.wn 
e.wc 
e.wn 

7.863 
7.993 

42.480 
42.331 
19.950 
19.939 
21.086 
21.175 
52.386 
52.044 
37.839 
37.771 

Table 5.7: Six Cities Study: Comparisons of A I C values from various models 

Models (la) (lbi) (lbii) (lbiii) (lc) (Id) 

l.md.g.wn 
l.md.e.wn 
l.mc.g.wn 

3637.415 
3641.637 
3640.444 

3631.991 
3637.184 
3633.903 

3634.040 
3638.884 
3635.855 

3636.773 
3642.080 
3638.423 

3668.059 
3663.932 
3674.095 

3703.763 

3708.404 

Table 5.8: Six Cities Study: Comparisons of X2 values from various models 

Models (la) (lbi) (lbii) (lbiii) (lc) (Id) 

l.md.g.wn 
l.md.e.wn 
l.mc.g.wn 

7.992 
19.926 
21.119 

1.765 
15.832 
13.959 

1.795 
15.485 
14.249 

1.866 
16.131 
14.436 

31.747 
36.315 
50.613 

77.157 

96.223 

Table 5.9: Six Cities Study: Estimates (SE) of dependence regression parameters from the submodel 
l.md.g.wn of various models 

margin (lbi) (lbii) (lbiii) (lc) 

"12 1.960 (0.143) 2.556 (0.173) 1.861 (0.094) 2.715 (0.202) 
13 1.645 (0.124) 2.183 (0.153) 1.654 (0.090) 2.181 (0.183) 
14 1.604 (0.143) 2.150 (0.178) 1.638 (0.107) 2.066 (0.179) 
23 1.987 (0.143) 2.605 (0.173) 1.893 (0.095) 2.621 (0.188) 
24 1.733 (0.139) 2.316 (0.173) 1.737 (0.101) 2.362 (0.215) 
34 2.020 (0.142) 2.681 (0.173) 1.953 (0.095) 2.833 (2.996) 
log(fl) 1.513 (0.051) 
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Table 5.10: Six Cities Study: Estimates of Pr(Y = y) from various submodels of model (la) 

y freq. rel. freq. 
l.md.g.wn 
pred. prob 

l.md.e.wn 
pred. prob. 

l.mc.g.wn 
pred. prob. 

l l l l 95 0.093 0.087 0.087 0.089 
1 1 1 0 30 0.029 0.029 0.027 0.023 
1 1 0 1 15 0.015 0.017 0.021 0.017 
1 1 0 0 28 0.027 0.031 0.023 0.024 
10 11 14 0.014 0.015 0.018 0.017 
10 10 9 0.009 0.013 0.020 0.011 
10 0 1 12 0.012 0.013 0.015 0.015 
10 0 0 63 0.062 0.055 0.049 0.045 
0 1 1 1 19 0.019 0.021 0.017 0.025 
0 1 1 0 15 0.015 0.018 0.018 0.017 
0 10 1 10 0.010 0.010 0.014 0.012 
0 10 0 44 0.043 0.037 0.044 0.034 
0 0 11 17 0.017 0.018 0.012 0.024 
0 0 10 42 0.041 0.034 0.038 0.035 
0 0 0 1 35 0.034 0.031 0.028 0.042 
0 0 0 0 572 0.561 0.569 0.568 0.570 

Table 5.11: Six Cities Study: Estimates of Pr(Y 
models 

= y) from the submodel l.md.g.wn of various 

1 1 1 1 
1 1 1 0 

rel. freq. (la) (lbi) 
prob 
(lbii) (lbiii) (lc) (Id) 

0.093 
0.029 
0.015 
0.027 
0.014 
0.009 
0.012 
0.062 
0.019 
0.015 
0.010 
0.043 
0.017 
0.041 
0.034 
0.561 

0.087 
0.029 
0.017 
0.031 
0.015 
0.013 
0.013 
0.055 
0.021 
0.018 
0.010 
0.037 
0.018 
0.034 
0.031 
0.569 

0.092 
0.028 
0.016 
0.029 
0.014 
0.011 
0.011 
0.060 
0.020 
0.016 
0.008 
0.042 
0.016 
0.039 
0.036 
0.561 

0.092 
0.028 
0.016 
0.029 
0.014 
0.012 
0.011 
0.060 
0.020 
0.016 
0.008 
0.042 
0.017 
0.039 
0.036 
0.561 

0.091 
0.028 
0.016 
0.029 
0.014 
0.012 
0.011 
0.060 
0.020 
0.016 
0.008 
0.043 
0.017 
0.039 
0.036 
0.560 

0.087 
0.026 
0.018 
0.030 
0.014 
0.022 
0.019 
0.045 
0.016 
0.020 
0.016 
0.038 
0.018 
0.032 
0.025 
0.574 

0.064 
0.036 
0.029 
0.027 
0.026 
0.023 
0.018 
0.039 
0.024 
0.021 
0.016 
0.034 
0.015 
0.028 
0.021 
0.580 

0 1 
0 0 
1 1 

0 1 0 
0 0 1 

10 0 0 
1 1 1 
1 1 0 
1 0 1 

0 10 0 
0 0 11 
0 0 10 
0 0 0 1 
0 0 0 0 

1 0 
1 
1 
1 
0 
0 
0 
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Table 5.12: Six Cities Study: Observed frequencies in comparison with estimates of Pr(Y = y|x) 
from various models, x =(City, Smoking9, SmokinglO, Smokingll , Smokingl2). 

rel. freq. 
l.md.g.wn 

pred. prob (SE) 
l.md.e.wn 

pred. prob. (SE) 
l.mc.g.wn 

pred. prob. (SE) 

(0,1,1,1,1) 
0,1,1,1,1 
0,1,1,1,1 
0,1,1,1,1 
0,1,1,1,1 

(0,0,0,0,0) 
(0,0,0,0,0) 
(0,0,0,0,0) 
(0,0,0,0,0) 
(0,0,0,0,0) 

(1,1,1,1,1) 
1,1,1,1,1 
1,1,1,1,1 
1,1,1,1,1 
1,1,1,1,1 

(1,0,0,0,0) 
(1,0,0,0,0) 
(1,0,0,0,0) 
(1,0,0,0,0) 
(1,0,0,0,0) 

118 
118 
118 
118 
118 
344 
344 
344 
344 
344 

131 
131 
131 
131 
131 
306 
306 
306 
306 
306 

(1,1,1,1) 
1.1.1.0 
1,1,0,0 
(1,0,0,0) 
(0,0,0,0) 
1.1.1.1 
1,1,1,0 
1,1,0,0 
(1,0,0,0) 
(0,0,0,0) 
(1,1,1,1) 
1.1.1.0 
1,1,0,0 
(1,0,0,0) 
(0,0,0,0) 
1.1.1.1 
1,1,1,0 
1,1,0,0 
(1,0,0,0) 
(0,0,0,0) 

0.076 
0.025 
0.025 
0.059 
0.534 
0.087 
0.035 
0.026 
0.076 
0.608 

0.145 
0.015 
0.046 
0.076 
0.397 
0.085 
0.023 
0.016 
0.049 
0.592 

0.099 
0.027 
0.035 
0.054 
0.541 
0.071 
0.028 
0.035 
0.063 
0.606 

0.118 
0.028 
0.026 
0.043 
0.505 
0.085 
0.031 
0.027 
0.052 
0.574 

0T015) 
'0.007) 
'0.008) 
'0.011) 
'0.030) 
'0.010) 
'0.005) 
0.006) 
0.009) 
;0.023) 

0.015) 
'0.007) 
0.006) 
'0.009) 
'0.028) 
0.011) 
0.006) 
0.005) 
0.009) 
0.023) 

0.099 
0.025 
0.026 
0.049 
0.541 
0.070 
0.027 
0.027 
0.058 
0.606 

0.118 
0.026 
0.019 
0.037 
0.504 
0.085 
0.028 
0.020 
0.046 
0.573 

U0T5) 
0.006) 
0.006) 
0.009) 
0.030) 
0.010) 
0.004) 
0.004) 
0.008) 
0.023) 

0.015) 
0.006) 
0.005) 
'0.008) 
'0.028) 
'0.011) 
'0.004) 
'0.004) 
'0.007) 
'0.023) 

0.101 
0.024 
0.025 
0.046 
0.542 
0.074 
0.020 
0.022 
0.043 
0.609 

0.118 
0.027 
0.027 
0.047 
0.505 
0.087 
0.022 
0.024 
0.045 
0.574 

U015) 
'0.004) 
'0.003) 
0.005) 
'0.030) 
0.011) 
'0.003 
0.003) 
'0.004) 
;0.023) 

0.015) 
'0.004) 
0.003) 
'0.005) 
0.028) 
0.012) 
0.003) 
0.003) 
0.004) 
0.023) 
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Table 5.13: Six Cities Study: Estimates of Pr (Y = y|x) from the submodel l.md.g.wn of various 
models, x =(City, Smoking9, SmokinglO, Smokingll , Smokingl2). 

X rel. freq. y (la) (lbi) (lbii) 
prob. 
(lbiii) (lc) (Id) 

maxSE 

(0,1,1,1,1) 0.076 (1,1,1,1) 0.099 0.104 0.105 0.106 0.099 0.076 0.017 
0,1,1,1,1 0.025 1,1,1,0 0.027 0.025 0.025 0.024 0.024 0.035 0.010 
0,1,1,1,1 0.025 1,1,0,0 0.035 0.033 0.033 0.033 0.033 0.028 0.011 
0,1,1,1,1 0.059 (1,0,0,0) 0.054 0.059 0.058 0.058 0.043 0.037 0.011 
0,1,1,1,1 0.534 (0,0,0,0) 0.541 0.533 0.535 0.537 0.549 0.557 0.030 

(0,0,0,0,0) 0.087 1,1,1,1 0.071 0.076 0.074 0.071 0.070 0.046 0.012 
(0,0,0,0,0) 0.035 1,1,1,0 0.028 0.027 0.027 0.028 0.025 0.035 0.008 
(0,0,0,0,0) 0.026 1,1,0,0 0.035 0.033 0.034 0.034 0.034 0.032 0.007 
(0,0,0,0,0) 0.076 (1,0,0,0) 0.063 0.068 0.069 0.068 0.054 0.048 0.009 
(0,0,0,0,0) 0.608 (0,0,0,0) 0.606 0.598 0.595 0.591 0.608 0.611 0.023 

(1,1,1,1,1) 0.145 (1,1,1,1) 0.118 0.121 0.125 0.128 0.118 0.097 0.017 
1,1,1,1,1 0.015 1,1,1,0 0.028 0.027 0.026 0.025 0.025 0.035 0.009 
1,1,1,1,1 0.046 1,1,0,0 0.026 0.024 0.024 0.024 0.024 0.020 0.011 
1,1,1,1,1 0.076 (1,0,0,0) 0.043 0.048 0.047 0.047 0.032 0.026 0.009 
1,1,1,1,1 0.397 (0,0,0,0) 0.505 0.498 0.503 0.507 0.515 0.525 0.028 

(1,0,0,0,0) 0.085 1,1,1,1 0.085 0.090 0.090 0.089 0.085 0.061 0.012 
(1,0,0,0,0) 0.023 1,1,1,0 0.031 0.029 0.030 0.030 0.027 0.037 0.007 
(1,0,0,0,0) 0.016 1,1,0,0 0.027 0.025 0.025 0.025 0.027 0.023 0.007 
(1,0,0,0,0) 0.049 (1,0,0,0) 0.052 0.057 0.057 0.058 0.042 0.036 0.009 
(1,0,0,0,0) 0.592 (0,0,0,0) 0.574 0.566 0.566 0.564 0.578 0.584 0.024 
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5 . 2 . 2 E x a m p l e w i t h m u l t i v a r i a t e / l o n g i t u d i n a l o r d i n a l r e s p o n s e d a t a 

In this subsection, several models for multivariate ordinal response data are applied to a longitudinal 

data set from Fienberg et al. (1985) and Conaway (1989) from a study on the psychological effects 

of the accident at the Three Mile Island (TMI) nuclear power plant in 1979. 

The study focuses on the changes in levels of stress of mothers of young children living within 

10 miles of the plant. Four waves of interviews were conducted in 1979, 1980, 1981, 1982, and the 

levels of stress (categorized as low, medium, or high from a composite score of 90-item checklist) 

of 268 mothers at each time point are measured. Hence stress is treated as an ordinal response 

variables with three categories, now labelled as 1 for low, 2 for medium, and 3 for high (levels of 

stress). Respondents were stratified into two groups, those living within 5 miles (labelled as 0) of 

the plant and those living between 5 and 10 miles (labelled as 1) from the plant. Let we call this 

variable "Distance". Some of the potential issues of interest are: (1) to compare the groups with 

respect to the changes in stress levels over time; (2) to assess the degree of stress associated with 

the accident. 

The response vectors are 4-dimensional ordinal categorical measures with three levels. There are 

81 possible four-tuples of the form (1,1,1,1) to (3,3,3,3). Table 5.14 lists the frequencies of the four-

tuples by group (based on distance); only the 35 four-tuples with non-zero frequency in at least one 

the groups are listed. The variable ID is used to identify the non-zero frequency response patterns 

in the table. There are 115 mothers in the group within 5 miles of the plant and 153 in the group 

exceeding 5 miles. The table shows that there is only one subject (ID= 11) with a big change in 

the stress level (3 to 1 and 1 to 3) from one year to another. 42% of the subjects are categorized 

into the same stress level (ID= 1,19,35) in all four years; 80.5% of these subjects are in the medium 

stress category (ID= 19). The frequencies by univariate margin (year) are given in Table 5.15. The 

medium stress category predominates and there is a higher relative frequency of subjects in the high 

stress category for the group within 5 miles of the plant. From Table 5.15, there are not big changes 

over time, but there is slight trend towards lower stress level for the group exceeding 5 miles. Table 

5.16 has the pairwise gamma measures (5.1) for the response variables, for the group within 5 miles, 

the group exceeding 5 miles and also ignoring the covariate "Distance"; this gives a more detailed 

indication of the dependence in the response variables than Table 5.14. Table 5.16 indicates the 

dependence for consecutive years are larger, and all the gamma measures are larger for the group 

within 5 miles of the plant. 

Multivariate ordinal response models that were used to model the data are: 
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1. The multivariate logit model from section 3.5, with 

a. multinormal copula (3.1), 

b. multivariate Molenberghs-Lesaffre construction 

i . with bivariate normal copula, 

ii . with Plackett copula (2.8), 

iii . with Frank copula (2.9), 

c. mixture of max-id copula (3.3), 

d. the permutation symmetric copula (3.8). 

2. The multivariate probit model with multinormal copula. 

In this data set, the single dichotomous covariate "Distance" can be considered as margin-

independent (or time-independent). For subject i {i = 1,... ,268), the cut-off points are —oo = 

Zij (0) < Zjj(l) < Zjj(2) < z,j(3) = oo (j = 1, 2, 3,4), where z,j(l) and z,j(2) need to be modelled and 

estimated. A suitable approach to let the cut-off points •Zjj(l) and Z{j(2) be functions of covariates 

(see section 3.5) is to let z,j(l) = jj(l) + aj * Distance and ztj(2) = jj(2) + ctj * Distance. The ways 

for the dependence parameters be functions of covariates are similar to that of multivariate binary 

response examples in subsection 5.2.1. The simplest approach is to let the dependence parameters be 

independent of covariates. The various situations for the dependence parameters depending on the 

covariate are the following. We here only list the models, for details please refer to subsection 5.2.1. 

For model (la), let 9itjk = [exp(0jk:O + 0jk>1 * Distance,) - l]/[exp(0jk>o + Pjk,i * Distance,) +1] for a 

general dependence structure and 0,- = [exp(/?0 + /?i * Distance,) — l]/[exp(/?0 +Pi* Distance,) +1] for 

exchangeable and AR(1) dependence structure. For models (lbi), (lbii), (lbiii), we first let higher 

order (> 3) parameters 5ijki and <5,',i234 be 1 (see explanation in the example in subsection 5.2.1). We 

then let 9ijk = [exp(/3jk,o + Pjk,i * Distance,-) - l]/[exp(0jklo + Pjk, l * Distance*) + 1] for model (lbi), 

b~i,jk = exp^-j^o + 0jk,i * Distance;) for model (lbii), and for model (lbiii). For model (lc), we let 

Sijk = exp(/?j4]o + 0jk,i * Distance,) and 0,- = exp(/?o) be independent of covariate. (The parameter 

of asymmetry Vij is set to 0 for all i and j.) Again, notice that only one choice of parametric families 

for tfi and Kjk's were used, but it is expected that other choices could lead to a better fit according 

to A I C . For model (Id), the dependence parameters are 9i and let 0,- = exp(/?o *Distancej). For 

model (2), the dependence structure is the same as model (la). 

As for the example in subsection 5.2.1, we study 12 submodels for the model (la). They are: 

l.md.g.wc, l.md.g.wn, l.md.e.wc, l.md.e.wn, l.md.a.wc, l.md.a.wn, l.mc.g.wc, l.mc.g.wn, l.mc.e.wc, 
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l.mc.e.wn, l.mc.a.wc and l.mc.a.wn. The 12 submodels for the model (2) are: p.md.g.wc, p.md.g.wn, 

p.md.e.wc, p.md.e.wn, p.md.a.wc, p.md.a.wn, p.mc.g.wc, p.mc.g.wn, p.mc.e.wc, p.mc.e.wn, p.mc.a.wc 

and p.mc.a.wn. For models (lbi), (lbii), (lbiii), (lc) and (Id), the AR(1) type latent dependence 

structure may not be well-defined. In any case, to avoid repeating similar analysis, we will only 

consider possible models within the models (lbi), (lbii), (lbiii), (lc) and (Id) with similar structure 

of models retained by the analysis with models (la) and (2). 

For all the models except (Id), the I F M estimation theory is applied. That is, the univariate 

(regression) parameters are estimated from separate univariate likelihoods, and bivariate and multi

variate (regression) parameters are estimated from bivariate likelihoods, with univariate parameters 

fixed as estimated from the separate univariate likelihoods. For "mc" models involving common 

marginal regression coefficients and exchangeable (or AR(1) if applicable) dependence structure, 

W A of (2.93) in section 2.6 for parameter estimation based on I F M is used, and it is also used for 

estimating the parameter Bo in 9 = exp(Bo) in the model (lc). M L E s are computed in the model 

(Id). For standard errors (SEs) of parameter estimates and prediction probabilities, the (deletev 

one) jackknife method from Chapter 2 is used. These are all similar to the use of these models in 

subsection 5.2.1. 

Summaries of the model fits are given in several tables. Table 5.17 contains the estimates and SEs 

of the regression parameters for the univariate parameters with the logit model when the regression 

parameters are considered to be different and common across the univariate margins. Table 5.18 

contains the estimates and SEs of the regression parameters for the dependence parameters under 

various settings for the multivariate logit model with multinormal copula (the model (la)). Table 

5.19 contains A I C values and . X ^ (calculated based on (5.5) with a = 2) values for all the submodels 

of multivariate logit and probit models with multinormal copula (that is, models (la) and (2)). The 

A I C values and (not only a = 2, but for all a) values for the corresponding submodel of models 

(la), (2) are comparable, similar to what we have observed for the models examples in subsection 

5.2.1. We thus only compare the submodels within the multivariate logit model. From examining 

the A I C values and X2

2^ values for the 12 models, the models l.md.g.wn, l.md.a.wc seem to stand 

out as interesting choices, with l.md.a.wc appearing to be the better one. Since there is no equivalent 

way to express the AR(1) structure with the models (lbii), (lbiii), (lc) and (Id), for the comparison 

study, we focus on the submodel l.md.g.wn. Table 5.20 contains A I C values and X2

2^ values of 

submodel l.md.g.wn of models (la), (lbii), (lbiii), (lc) and (Id). The A I C value and X2

2^ value are 

not available for (lbi) model, since the dependence parameter estimates obtained from I F M deviate 
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slightly from forming a compatible set of dependence parameters for a proper Molenberghs-Lesaffre 

construction multivariate object evaluation. Based on the available A I C values and X2

2^ values, 

Table 5.20 suggests that the models (la), (lbii), (lbiii) are comparable in general, with models (lc) 

and (Id) fitting relatively poorly. Table 5.21 contains estimates and SEs of the bivariate dependence 

parameters of the submodel l.md.g.wn of models (lbi), (lbii), (lbiii) and (lc). This and Table 

5.20 also suggest that the models (la), (lbi), (lbii), (lbiii) are comparable. The conclusion about 

which bivariate margins are more dependent or less dependent are the same from models (la), (lbi), 

(lbii), (lbiii). They show that the dependence for consecutive years are slightly stronger; this is 

consistent with the gamma measures in Table 5.16 for the initial data analysis. The dependence 

parameter estimates for model (lc) reveal that this model leads to a domination of dependence 

by the overall dependence (log0 = 1.808 with SE=0.073), which is close to assume a permutation 

symmetric copula. For comparison, for the model (Id) with a permutation symmetric copula, the 

dependence parameter estimate is log0 = 1.700 with SE= 0.111. From the above comparisons, it 

seems that the model (la) is an adequate and better model for this data set. Thus in the following, 

we will concentrate on comparing the two submodels l.md.g.wn, l.md.a.wc of model (la). 

Table 5.19 suggests that the submodel l.md.a.wc is a better model than the submodel l.md.g.wn; 

it also indicates that there is a justifiable AR(1) latent dependence structure, which describes the 

data set better than a general or exchangeable dependence structure. The exchangeable dependence 

structure assumption would be the least acceptable hypothesis. To compare the submodel l.md.a.wc 

and l.md.g.wn, Table 5.22 lists the values of X2

a^ for different values of a (a = 1,2, . . . , 10). This 

table reveals that the submodel l.md.a.wc fits the response vectors with higher frequency (> 5) 

better, while the submodel l.md.g.wn fits the response vectors with lower frequency (< 4) better. In 

other words, neither submodel is clearly better. Different models capture the data set equally well 

in certain way; and they may be together useful to reveal the features of the data set and lead to 

some useful interpretations. 

As a complement to the X2 values for assessment of goodness-of fit, Table 5.23 contains estimates 

of probabilities of the form Pr(Y = y) for all possible y and the corresponding frequencies from 

the submodels l.md.g.wn and l.md.a.wc of model (la), and these Pr(Y = y) are estimated with 

Xw=i P~r(Y = y|ai»)/268. Table 5.24 contains estimates of frequencies and probabilities of the form 

Pr(Y = y|;r) for various y at x = 1 (distance bigger than 5 miles) and at x = 0 (distance less 

than 5 miles) from submodels l.md.g.wn and l.md.a.wc of the model (la). In Table 5.24, to save 

space, for each line, only the maximum estimated SE over models is given; actually the SEs are 
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quite close to each other. Table 5.23 and Table 5.24 suggest that the submodels l.md.g.wn and 

l.md.a.wc are both adequate for predictive purposes, since the prediction probabilities are comparable 

when the SEs are considered. These two submodels can be used to complement each other for 

slightly different inference purposes. The largest divergence in estimated probabilities with observed 

frequency occurs when x = 1 for y = (1,1,1,1). The submodel l.md.a.wc, with a AR(1) latent 

dependence structure with dependence parameters depend significantly on the covariate, indicates 

that not only the dependence for consecutive years are larger significantly, but the strength of 

dependences also differ for those who live within 5 miles from those who live between 5 and 10 miles 

of the plant. 

The analysis (e.g. from submodels l.md.g.wn as well as l.md.a.wc) indicates that, comparing 

the stress levels of the mothers living less 5 miles from the plant, there is a slight trend over time 

towards lower stress level for mothers living between 5 and 10 miles from the plant. There are no 

large changes of stress levels over time, but the stress levels of mothers living between 5 and 10 

miles from the plant are a bit higher in the first year following the accident; they decrease in the 

second year and remain stable over the subsequent years. If we study the model with covariate 

(distance) for the dependence (e.g. the submodel l.md.a.wc), we see that living far from the plant 

has a negative effect on the dependence; it indicates that the dependence parameters are larger for 

those who live within 5 miles from the plant. This means that the mothers living within 5 miles 

from the plant are in probability more consistent over time in the original 90-item checklist; there 

could be a number of reasons for this. We can interpret this as the stress symptoms caused by 

the accident being more persistent over time for the group living closer to the plant. The analysis 

indicates that the dependence for consecutive years are larger and the dependence (pairwise) are 

all significant. The rate of a persistent high stress level is higher for mothers living closer to the 

plant. This can be seen from Table 5.24 (e.g. with l.md.a.wc submodel), where for example for 

y = (3,3,3,3), P(y\x = 0) = 0.076 > 0.037 = P(y\x = 1). The rate for a persistent medium stress 

level (y = (2,2,2,2)) is slightly higher for the group living closer to the plant, while the rates of 

persistent low stress level (y = (1,1,1,1)) is comparable for the two groups. 

Similar results to the partial interpretations given above are also obtained in Fienberg et al. 

(1985) and Conaway (1989). They conclude that mothers within the five mile radius were in fact ex

periencing greater stress symptom than mothers living between 5 to 10 miles away; this is consistent 

with our observations. 
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Table 5.14: T M I Accident Study: Stress levels for 4 years following accident at T M I . Responses 
with non zero frequencies. 

Distance 
ID Response 

pattern 
< 5 mi. > 5 mi. 

1 3 3 3 3 12 7 
2 3 3 3 2 5 2 
3 3 3 2 3 0 2 
4 3 3 2 2 2 7 
5 3 3 2 1 1 1 
6 3 2 3 3 4 0 
7 3 2 3 2 1 0 
8 3 2 2 3 3 0 
9 3 2 2 2 4 13 
10 3 2 2 1 0 1 
11 3 1 1 3 0 1 
12 2 3 3 3 1 1 
13 2 3 3 2 1 3 
14 2 3 2 3 0 1 
15 2 3 2 2 2 1 
16 2 2 3 3 3 1 
17 2 2 3 2 2 5 
18 2 2 2 3 4 6 
19 2 2 2 2 38 53 
20 2 2 2 1 2 6 
21 2 2 12 2 2 
22 2 2 11 3 2 
23 2 12 3 0 1 
24 2 12 2 4 15 
25 2 12 1 1 5 
26 2 1 1 2 1 4 
27 2 1 1 1 5 4 
28 12 2 2 4 3 
29 12 2 1 2 0 
30 12 12 1 0 
31 12 11 0 1 
32 1 1 2 2 3 0 
33 1 1 2 1 2 2 
34 1 1 1 2 0 2 
35 1 1 1 1 2 1 
Total 115 153 
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Table 5.15: T M I Accident Study: Univariate marginal (and relative) frequencies. 

margin 

Outcomes IW7$ T 9 8 D 1581 IW2" 
< 5 mi. 

3 32 (0.278) 24 (0.209) 29 (0.252) 27 (0.235) 
2 69 (0.600) 73 (0.635) 72 (0.626) 70 (0.609) 
1 14 (0.122) 18 (0.157) 14 (0.122) 18 (0.157) 

> 5 mi. 
3 34 (0.222) 25 (0.163) 19 (0.124) 20 (0.131) 
2 110 (0.719) 93 (0.608) 117 (0.765) 110 (0.719) 
1 9 (0.059) 35 (0.229) 17 (0.111) 23 (0.150) 

sn 
3 66 (0.246) 49 (0.183) 48 (0.179) 47 (0.175) 
2 179 (0.668) 166 (0.619) 189 (0.705) 180 (0.672) 
1 23 (0.086) 53 (0.198) 31 (0.116) 41 (0.153) 

Table 5.16: T M I Accident Study: Pairwise gamma measures for Year 1979, 1980, 1981, 1982 

Pair < 5 mi. > 5 mi. all 

(1979, 1980) 0.894 0.829 0.852 
(1979, 1981) 0.831 0.635 0.758 
(1979, 1982) 0.782 0.595 0.702 
(1980, 1981) 0.907 0.882 0.887 
(1980, 1982) 0.756 0.638 0.700 
(1981, 1982) 0.924 0.738 0.851 

Table 5.17: T M I Accident Study: Estimates of univariate marginal regression parameters for mul
tivariate logit models 

margin Tj-(1) (SE) 7j(2) (SE) distance (SE) 

differ across the margins 
1 -2.376 (0.304) 1.109 (0.227) 0.017 (0.272) 
2 -1.629 (0.215) 1.291 (0.203) 0.384 (0.250) 
3 -2.349 (0.299) 1.250 (0.234) 0.497 (0.287) 
4 -1.938 (0.263) 1.343 (0.232) 0.368 (0.273) 

common across the margins 
-1.984 (0.131) 1.250 (0.112) 0.315 (0.135) 
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Table 5.18: T M I Accident Study: Estimates of dependence regression parameters for multivariate 
logit model with multinormal copula 

margin intercept (SE) distance (SE) 

general dependence, with covariate 
12 1.960 (0.289) -0.240 (0.422) 
13 1.594 (0.250) -0.470 (0.391) 
14 1.430 (0.304) -0.386 (0.414) 
23 2.079 (0.310) -0.092 (0.424) 
24 1.428 (0.321) -0.271 (0.425) 
34 2 358 (0.363) -0.960 (0.505) 
general dependence, without covariate 
12 1.824 (0.212) 
13 1.356 (0.192) 
14 1.243 (0.195) 
23 2.032 (0.219) 
24 1.277 (0.205) 
34 1.779 (0.273) 

exchangeable dependence, with covariate 
1.772 (0.123) -0.377 (0.174) 

exchangeable dependence, without covariate 
1.546 (0.086) 

AR(1) dependence, with covariate 
2.208 (0.124) -0.385 (0.178) 

AR(1) dependence, without covariate 
2.008 (0.088) 

Table 5.19: T M I Accident Study: Comparisons of A I C values and X2^ values from various submodels 
of models (la) and (2) 

Logit 
Models A I C 

Probit 
Models A I C 

T m Z 
l.md 
l.md 
l.md 
l.md 
l.md 
l.mc 
l.mc 
l.mc 
l.mc 
l.mc 
l.mc 

1542.443 
1537.235 
1549.740 
1550.219 
1534.116 
1535.942 
1568.305 
1563.332 
1568.103 
1570.950 
1557.114 
1562.229 

28.018 
29.786 
98.795 

117.144 
26.547 
28.551 
83.795 
86.916 

197.711 
217.573 
77.743 
80.869 

p.md.g.wc 
p.md.g.wn 
p.md.e.wc 
p.md.e.wn 
p.md.a.wc 
p.md.a.wn 
p.mc.g.wc 
p.mc.g.wn 
p.mc.e.wc 
p.mc.e.wn 
p.mc.a.wc 
p.mc.a.wn 

g.wc 
g.wn 
.e.wc 
.e.wn 
.a.wc 
.a.wn 
g.wc 
g.wn 
e.wc 
e.wn 
a.wc 
a.wn 

1542.788 
1537.499 
1549.977 
1550.403 
1534.388 
1536.168 
1568.351 
1563.416 
1568.324 
1571.111 
1557.288 
1562.378 

27.975 
29.600 
97.138 

115.501 
26.594 
28.479 
85.011 
88.284 

204.103 
226.992 
78.831 
81.990 
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Table 5.20: T M I Accident Study: Comparisons of A I C values and X2^ values from the submodel 
l.md.g.wn of various models 

Models A I C Xf2) 

TTal 1537.235 29.786 
(lbi) 
(lbii) 1540.846 23.485 
(lbiii) 1542.312 33.303 
(lc) 1566.475 970.756 
(Id) 1553.640 422.000 

Table 5.21: T M I Accident Study: Estimates (SE) of dependence regression parameters from the 
submodel l.md.g.wn of various models 

margin (lbi) (lbii) (lbiii) (lc) 

T 2 1.824 (0.212) 2.697 (0.289) 1.960 (0.158) -8.250 (0.172) 
13 1.356 (0.192) 2.035 (0.262) 1.628 (0.171) -8.996 (0.010) 
14 1.243 (0.195) 1.928 (0.273) 1.485 (0.184) -8.397 (0.001) 
23 2.032 (0.219) 2.857 (0.289) 2.122 (0.150) -7.495 (0.202) 
24 1.277 (0.205) 2.014 (0.271) 1.495 (0.185) 0.927 (1.910) 
34 1.779 (0.273) 2.710 (0.290) 1.978 (0.190) 1.084 (1.827) 
log(fl) 1.808 (0.073) 

Table 5.22: T M I Accident Study: Comparisons of X2^ values from the submodels l.md.g.wn and 
l.md.a.wc of model (la) 

l.md.g.wn l.md.a.wc 
a 

*('.) 

1 623.507 4390.084 
2 29.786 26.547 
3 15.809 16.243 
4 10.339 11.766 
5 9.086 7.453 
6 8.217 7.240 
7 7.583 6.798 
8 4.625 3.575 
9 2.983 2.481 
10 2.467 2.310 
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Table 5.23: T M I Accident Study: Estimates of P r ( Y = y) and frequencies from the submodels 
l.md.g.wn and l.md.a.wc of model (la) 

Response 
pattern 

Observed 
numbers 

l.md.g.wn 
Expected 
numbers 

l.md.a.wc 
Expected 
numbers 

Observed 
prob. 

l.md.g.wn 
Expected 

prob. 

l.md.a.wc 
Expected 

prob. 

3 3 3 3 19 14.1 14.4 0.071 0.053 0.054 
3 3 3 2 7 7.3 7.5 0.026 0.027 0.028 
3 3 2 3 2 3.0 2.5 0.007 0.011 0.009 
3 3 2 2 9 8.3 9.8 0.034 0.031 0.037 
3 3 2 1 2 0.2 0.4 0.007 0.001 0.002 
3 2 3 3 4 3.7 2.9 0.015 0.014 0.011 
3 2 3 2 1 2.6 2.7 0.004 0.010 0.010 
3 2 2 3 3 5.3 3.0 0.011 0.020 0.011 
3 2 2 2 17 19.2 19.5 0.063 0.072 0.073 
3 2 2 1 1 1.0 2.0 0.004 0.004 0.007 
3 1 1 3 1 0.0 0.0 0.004 0.000 0.000 
2 3 3 3 2 3.7 4.5 0.007 0.014 0.017 
2 3 3 2 4 4.3 2.9 0.015 0.016 0.011 
2 3 2 3 1 1.1 1.3 0.004 0.004 0.005 
2 3 2 2 3 6.3 5.4 0.011 0.023 0.020 
2 2 3 3 4 5.1 6.7 0.015 0.019 0.025 
2 2 3 2 7 7.0 6.3 0.026 0.026 0.024 
2 2 2 3 10 9.9 10.4 0.037 0.037 0.039 
2 2 2 2 91 86.0 87.4 0.340 0.321 0.326 
2 2 2 1 8 12.5 11.6 0.030 0.047 0.043 
2 2 12 4 3.4 3.2 0.015 0.013 0.012 
2 2 11 5 3.4 4.1 0.019 0.013 0.015 
2 12 3 1 0.9 0.8 0.004 0.003 0.003 
2 12 2 19 17.1 16.6 0.071 0.064 0.062 
2 12 1 6 4.3 4.6 0.022 0.016 0.017 
2 1 1 2 5 6.0 4.7 0.019 0.022 0.018 
2 1 1 1 9 7.2 8.1 0.034 0.027 0.030 
12 2 2 7 3.7 3.6 0.026 0.014 0.014 
12 2 1 2 1.4 0.6 0.007 0.005 0.002 
12 12 1 0.2 0.2 0.004 0.001 0.001 
12 11 1 0.5 0.3 0.004 0.002 0.001 
1 1 2 2 3 4.8 6.3 0.011 0.018 0.024 
1 1 2 1 4 2.5 1.9 0.015 0.009 0.007 
1 1 1 2 2 2.5 2.9 0.007 0.009 0.011 
1 1 1 1 3 6.7 6.3 0.011 0.025 0.023 
others 0 2.8 2.6 0.000 0.009 0.008 



Chapter 5. Modelling, data analysis and examples 204 

Table 5.24: T M I Accident Study: Estimates of Pr(Y = y\x) and frequencies from the submodels 
l.md.g.wn and l.md.a.wc of model (la) 

l.md.g.wn l.md.a.wc l.md.g.wn l.md.a.wc 
Response Observed Expected Expected maxSE Observed Expected Expected maxSE 
pattern numbers numbers numbers prob. prob. prob. 

< 5 miles 
3 3 3 3 12 7.5 8.7 2.4 0.104 0.065 0.076 0.021 
3 3 3 2 5 3.6 3.8 1.2 0.043 0.031 0.033 0.010 
3 3 2 2 2 3.4 4.0 1.0 0.017 0.030 0.035 0.009 
3 3 2 1 1 0.1 0.1 0.1 0.009 0.001 0.001 0.001 
3 2 3 3 4 1.7 1.4 0.7 0.035 0.015 0.012 0.006 
3 2 3 2 1 1.2 1.0 0.5 0.009 0.010 0.009 0.004 
3 2 2 3 3 2.1 1.0 0.8 0.026 0.018 0.009 0.007 
3 2 2 2 4 6.9 6.8 1.5 0.035 0.060 0.059 0.013 
2 3 3 3 1 2.3 2.6 0.7 0.009 0.020 0.023 0.006 
2 3 3 2 1 2.5 1.5 0.9 0.009 0.022 0.013 0.008 
2 3 2 2 2 3.2 2.4 0.9 0.017 0.028 0.021 0.008 
2 2 3 3 3 2.9 3.4 0.9 0.026 0.025 0.030 0.008 
2 2 3 2 2 3.8 3.0 1.2 0.017 0.033 0.026 0.010 
2 2 2 3 4 4.7 4.5 1.3 0.035 0.041 0.039 0.011 
2 2 2 2 38 37.3 40.6 3.8 0.330 0.324 0.353 0.033 
2 2 2 1 2 4.8 4.4 1.3 0.017 0.042 0.038 0.011 
2 2 12 2 1.2 0.8 0.6 0.017 0.010 0.007 0.005 
2 2 11 3 1.2 1.3 0.6 0.026 0.010 0.011 0.005 
2 12 2 4 6.3 5.8 1.5 0.035 0.055 0.050 0.013 
2 12 1 1 1.5 1.6 0.6 0.009 0.013 0.014 0.005 
2 1 1 2 1 1.8 1.3 0.7 0.009 ' 0.016 0.011 0.006 
2 1 1 1 5 2.1 2.5 0.8 0.043 0.018 0.022 0.007 
12 2 2 4 2.0 1.6 0.8 0.035 0.017 0.014 0.007 
12 2 1 2 0.7 0.2 0.3 0.017 0.006 0.002 0.003 
12 12 1 0.1 0.1 0.1 0.009 0.001 0.001 0.001 
1 1 2 2 3 2.2 2.8 0.8 0.026 0.019 0.024 0.007 
1 1 2 1 2 1.0 0.8 0.5 0.017 0.009 0.007 0.004 
1 1 1 1 2 2.3 2.8 0.9 0.017 0.020 0.024 0.008 
others 0 4.5 3.9 - 0.000 0.039 0.034 -

> 5 miles 
3 3 3 3 7 6.6 5.7 1.7 0.046 0.043 0.037 0.011 
3 3 3 2 2 3.7 3.7 0.9 0.013 0.024 0.024 0.006 
3 3 2 3 2 1.7 1.4 0.6 0.013 0.011 0.009 0.004 
3 3 2 2 7 4.7 5.8 1.4 0.046 0.031 0.038 0.009 
3 3 2 1 1 0.2 0.3 0.2 0.007 0.001 0.002 0.001 
3 2 2 2 13 12.4 12.7 2.1 0.085 0.081 0.083 0.014 
3 2 2 1 1 0.8 1.5 0.5 0.007 0.005 0.010 0.003 
3 1 1 3 1 0.0 0.0 0.0 0.007 0.000 0.000 0.000 
2 3 3 3 1 1.4 1.8 0.5 0.007 0.009 0.012 0.003 
2 3 3 2 3 1.8 1.4 0.8 0.020 0.012 0.009 0.005 
2 3 2 3 1 0.5 0.8 0.3 0.007 0.003 0.005 0.002 
2 3 2 2 1 3.1 3.1 0.9 0.007 0.020 0.020 0.006 
2 2 3 3 1 2.3 3.2 0.8 0.007 0.015 0.021 0.005 
2 2 3 2 5 3.4 3.4 1.1 0.033 0.022 0.022 0.007 
2 2 2 3 6 5.0 5.8 1.4 0.039 0.033 0.038 0.009 
2 2 2 2 53 48.7 46.8 4.9 0.346 0.318 0.306 0.032 
2 2 2 1 6 7.7 7.2 1.7 0.039 0.050 0.047 0.011 
2 2 12 2 2.1 2.3 0.9 0.013 0.014 0.015 0.006 
2 2 11 2 2.3 2.9 0.9 0.013 0.015 0.019 0.006 
2 12 3 1 0.6 0.6 0.3 0.007 0.004 0.004 0.002 
2 12 2 15 10.9 10.9 2.3 0.098 0.071 0.071 0.015 
2 12 1 5 2.9 3.1 0.9 0.033 0.019 0.020 0.006 
2 1 1 2 4 4.1 3.5 1.4 0.026 0.027 0.023 0.009 
2 1 1 1 4 5.2 5.5 1.2 0.026 0.034 0.036 0.008 
12 2 2 3 1.7 2.0 0.8 0.020 0.011 0.013 0.005 
12 11 1 0.3 0.2 0.2 0.007 0.002 0.001 0.001 
1 1 2 1 2 1.5 1.1 0.6 0.013 0.010 0.007 0.004 
1 1 1 2 2 1.5 1.8 0.6 0.013 0.010 0.012 0.004 
1 1 1 1 1 4.4 3.5 1.1 0.007 0.029 0.023 0.007 
others 0 11.6 11.2 - 0.000 0.076 0.073 -
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5.2.3 Example with multivariate count response data 

In this subsection, several models are applied to a data set of trivariate counts of pathogenic bacteria 

at 50 different sterile locations measured by three different air samplers. Aitchison and Ho (1989) 

studied this data set. One of the objectives of the study is to investigate the relative effectiveness 

of three different air samplers to detect pathogenic bacteria. 

The response vectors are 3-dimensional count measures. Table 5.25 lists the count measures of 

the three samplers from the 50 locations. The table shows that there are no duplicate trivariate 

response observations. The frequencies by univariate margin (or by sampler) given in Table 5.26 

indicate that sampler 3 is more variable than sampler 1 and 2. The pairwise gamma measures in 

Table 5.27 indicate that the samplers 1 and 3 and the samplers 2 and 3 are negatively associated. 

Summary statistics (means, variance, quartiles, maximum, minimum and pairwise correlations) are 

given in Table 5.28. This initial data analysis indicates that there is some extra-Poisson variation 

as the variance to mean ratio for the margins (or sampler) range from 2 to 5, with the sampler 3 

more variable than the other two samplers. 

This initial data analysis suggests that the M C D models with Poisson variation may not be 

suitable, but for illustrative purposes, we applied the multivariate count model with Poisson variation 

as well as multivariate count model with extra Poisson variation. The multivariate count response 

models that were used to model this trivariate count data are: 

1. The multivariate Poisson model with multinormal copula (3.1). 

2. The multivariate Poisson-lognormal model in section 3.6. 

This data set has no covariates, we thus directly estimate the parameters in the multivariate 

Poisson model with multinormal copula (see section 3.3) and the multivariate Poisson-lognormal 

model (see section 3.6). The multivariate Poisson model has Poisson marginals. The univariate 

parameter Xj (j = 1,2,3) in the multivariate Poisson model is reparameterized by taking log-

transformation, rjj = log(Aj), such that the new parameter rjj has the range ( — 0 0 , 0 0 ) . For the 

dependence parameters Ojk in the multinormal copula, we let Ojk = [exp(Bjk) — l]/[exp(0jk) + 1] 

such that 0jk has the range ( — 0 0 , 0 0 ) . We proceed to estimate rjj and 3j\-. For the multivariate 

Poisson-lognormal model, the marginal parameters are p = (pi,P2,Pz) and tT = (<Ti, C T 2 , 0 3 ) . The 

dependence parameters are Ojk which are similar to those of the multivariate Poisson model with 

multinormal copula. 

For the univariate marginal parameters, at least two situations could be considered: parameters 



Chapter 5. Modelling, data analysis and examples 206 

differ across margins, denoted by "md" , and parameters common across margins, denoted by "mc". 

For the dependence parameters, for both models (1) and (2), we consider the general (denoted by 

"g") and exchangeable (denoted by "e") dependence structures. Thus 4 submodels for both model 

(1) and (2) are considered: md.g, md.e, meg, mc.e. 

For all the models, the I F M estimation theory is applied. That is, the univariate (regression) 

parameters are estimated from separate univariate likelihoods, and bivariate and multivariate (re

gression) parameters are estimated from bivariate likelihoods, with univariate parameters fixed as 

estimated from the separate univariate likelihoods. For the situation of "mc" for common marginal 

parameters and exchangeable dependence structure, W A of (2.93) in section 2.6 for parameter es

timation based on I F M is used. For standard errors (SEs) of parameter estimates and prediction 

probabilities, the (delete-one) jackknife method from Chapter 2 is used. These are all similar to the 

use of these models in subsection 5.2.1 and 5.2.2. 

Summaries of the modelling are given in several tables. Table 5.29 contains the estimates and 

SEs of the regression parameters for the marginal parameters with the multivariate Poisson model. 

Table 5.30 contains the estimates and SEs of the dependence parameters for multivariate Poisson 

model with multinormal copula. Table 5.31 contains A I C values for all the submodels of multivariate 

Poisson models multinormal copula. The X2

a^ for a > 2 are not available since all the 3-tuples in 

the data set have frequency 1. X2^ is very large since many estimated probabilities for the 3-tuples 

of frequency 1 are very close to zero. In this situation, because of the frequency 1 occurrence for all 

3-tuples, the X2 measure as well as the estimated probabilities of the form Pr (Y = y) may not be 

suitable measures for a rough assessment of the goodness-of-fit. Instead, residual measures such as 

(5.6) should be considered if feasible. Other rough goodness-of-fit checks may consist of comparing 

some empirical statistics (means, variances, correlations, etc.) with the counterparts estimated from 

the fitted model. The latter approach would rule out all submodels of model (1) for the goodness-

of-fit of this data set, since the extra-Poisson variation demonstrated by the empirical statistics are 

not matched by the model (1). For the residual checking based on (5.6), we give an illustration 

here with the submodel md.g. We first compute e,-3 - yi3 — E[Yi3\Yn = yn,Y{2 = yii,X], where 

E[Yi3|*h - yn,Yi2 - Vi2,>] = Y%=i V * P(ynyi2y)/P{ynyi2)- We then plot ei3 versus yn and ei3 

versus y{2 for all i = 1 , . . . , 50. The model would be considered as adequate based on residual plots 

if the residuals are small and do not exhibit systematic patterns. The two plots in Figure 5.1 do not 

show evident systematic patterns (except for a few outliers), but almost all the residuals are quite 

large judging from the observed values of yi3; it indicates that the models do not fit the data well 
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5 1 0 1 5 2 0 O 5 1 0 1 5 

s a m p l e r 1 . s a m p l e r 2 

Figure 5.1: Bacteria Counts: Residuals from the submodel md.g of model (1). 

enough. This is expected since the multivariate Poisson models only fit data with Poisson variation. 

Next we consider fitting the multivariate Poisson-lognormal model to the data. From I F M estima

tion theory, we first estimate the univariate marginal parameters p = (pi,P2, P3) and <r = (r7i , <r2, 0 3 ) 

from separate univariate likelihoods, and then the dependence parameters from bivariate likelihoods, 

with univariate parameters fixed as estimated from the separate univariate likelihoods. For the mul

tivariate Poisson-lognormal model, several hypotheses are possible: pj — p, <jj = cr, Ojk = 0; pj 

margin-dependent; or plus <jj margin-dependent; or plus Ojk margin-dependent, etc.. Similarly to the 

model (1), we consider the four submodels, md.g, md.e, m e g and mc.e of the multivariate Poisson-

lognormal model. For standard errors (SEs) of parameter estimates and prediction probabilities, the 

(delete-one) jackknife method from Chapter 2 is used. 

Summaries of the model fits with the multivariate Poisson-lognormal model are given in several 

tables. Table 5.32 contains the estimates and SEs of the marginal parameters p = (pi,p2,Pz) and 

a = (<TI, (T2,0-3). Table 5.33 contains the estimates and SEs of the dependence parameters f?12, #13 and 

#23. Table 5.34 contains A I C values for all the submodels of multivariate Poisson-lognormal model. 

From examining the A I C values for the 4 submodels, the models md.g and md.e seem to be better 

choices. For a rough assessment of the goodness-of-fit, Table 5.35 contains the estimated means, 

variances and correlations based on the fitted model md.g; they are quite close to the empirical means, 

variances, correlations in Table 5.28. This implies that the multivariate Poisson-lognormal model 

may be considered as a more appropriate model for this data set. To further check the goodness-of-fit 
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5 1 0 1 5 2 0 O 5 1 0 1 5 

s a m p l e r 1 s a m p l e r 2 

Figure 5.2: Bacteria Counts: Residuals from the submodel md.g of trivariate Poisson lognormal 
model. 

of the fitted model, we compute residual measures of the form e~i3 = 3^3—E[Yi3|Yii = yu, Y;2 = yi2, A], 

where E[i;- 3|Yji = yn,Yi2 = yii,X] = Y^T=i y*P(ynyi2y)/P(ynyi2)- We then plot ei3 versus yfl and 

e,3 versus yt2 for all z = 1 , . . . , 50. The two plots in Figure 5.2 are residual plots from the submodel 

md.g; they do not show evident systematic patterns except for a few outliers. The magnitude 

of the residuals are smaller than those obtained with the multivariate Poisson models. In these 

circumstances, we would further study the fitted trivariate Poisson-lognormal submodels md.g and 

md.e. 

The analysis (e.g. from submodels md.g as well as md.e) indicates that sampler 3 tend to 

be negatively correlated with sampler 2 and sampler 1 (based on the submodel md.g), and with 

significantly negative correlation if we based our interpretation on the submodel md.e. The samplers 

appear to have been competing in some way for the capture of bacteria; this competing behaviour is 

particular evident when we compare sampler 3 with sampler 2 or sampler 1. It would be interesting 

to see if there is any practical reason explaining this observation. From the estimates, sampler 2 

seems to be the most effective sampler, and sampler 1 the least. Similar results are also obtained in 

Aitchison and Ho (1989). For a particular model with the assumption of equal <r (that is o-\ = 0-2 = 

c r 3 = a) and exchangeable correlation, the estimates in Aitchison and Ho (1989) are jx\ = 1.39 (0.11), 

p2 = 1-75 (0.10), p3 = 1.70 (0.10), a = 0.56 (0.05), and 9 = -0.28 (0.10) which are quite close to our 

estimates (based on the I F M approach) pi = 1.388 (0.098), p2 = 1.784 (0.098), p3 = 1.660 (0.120), 
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Table 5.25: Bacteria Counts: Bacterial counts by 3 samplers in 50 sterile locations 

y\ v\ \\ v\ v l % % H y) ft *S J H H f r 
8 6 0 3 9 14 1 1 30 2 2 8 5 2 4 
2 13 5 4 2 25 4 5 15 3 15 3 2 0 6 
2 8 1 9 7 3 7 6 3 1 8 2 2 1 1 
5 6 5 5 4 8 8 10 4 4 6 0 4 6 4 

14 1 7 4 4 7 3 2 10 8 7 3 4 9 2 
3 9 2 7 3 2 6 8 5 6 6 6 8 4 6 
7 6 8 1 14 6 2 3 10 4 14 7 3 10 6 
3 4 12 2 13 0 1 7 3 3 3 14 4 7 10 
1 9 7 14 9 5 2 9 12 6 8 3 2 4 6 

Table 5.26: Bacteria Counts: Univariate marginal frequencies 

margin 
1 count 1 2 3 4 5 6 7 8 9 14 22 

freq. 6 9 9 8 3 3 4 4 1 2 1 
2 count 0 1 2 3 4 5 6 7 8 9 10 13 14 15 

freq. 1 3 5 3 5 1 8 4 5 7 3 2 2 1 
3 count 0 1 2 3 4 5 6 7 8 10 11 12 14 15 25 30 

freq. 3 2 5 6 3 5 8 4 3 3 1 2 2 1 1 1 

cr = 0.523 (0.062), and 0 = -0.347 (0.133). 

The I F M approach should be considered as a better approach than M L approach with this data 

set since the sample size is small and all 3-tuple responses have a frequency of 1. It is better not only 

in the sense of efficiency, but in the sense that the I F M approach may lead to more reliable estimates. 

The M L approach may be severely affected by the small sample size and thus lower frequencies of 

response outcome. In contrast, the inference from I F M approach should be more reliable, since I F M 

estimation method is robust marginally, thus the estimated parameters are still able to capture the 

general feature of the data even the full response frequencies are low. 

Table 5.27: Bacteria Counts: Pairwise gamma measures for samplers 1, 2, 3 

Pair gamma 

T72) MW 
1, 3) -0.125 
'2, 3) -0.261 
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Table 5.28: Bacteria Counts: Moment estimate of means, variances, correlations and other summary 
statistics of responses 

margin mean variance min Ql med 03 max margin correlation 
1 
2 
3 

4.7 
6.5 
6.6 

15.07 
13.64 
32.61 

1 2 
0 4 
0 3 

4 
6 
6 

6 
9 
8 

22 
15 
30 

1.2 
1.3 
2,3 

0.0192 
-0.1666 
-0.3667 

Table 5.29: Bacteria Counts: Estimates of marginal parameters for multivariate Poisson model 

margin m (SE) 

differ across the margins 
1 1.469 (0.101) 
2 1.872 (0.081) 
3 1.746 (0.097) 

common across the margins 
1.723 (0.053) 

Table 5.30: Bacteria Counts: Estimates of dependence regression parameters for multivariate Poisson 
model with multinormal copula 

margin. /3jk (SE) 

general dependence 
12 0.009 (1.114) 
13 -0.153 (1.336) 
23 -0.334 (0.207) 

exchangeable dependence 
-0.319 (0.201) 

Table 5.31: Bacteria Counts: Comparisons of A I C values from various submodels of multivariate 
Poisson model with multinormal copula 

Models A I C 

H d ^ 787.924 
md.e 785.600 
m e g 806.351 
mc.e 801.657 
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Table 5.32: Bacteria Counts: Estimates of marginal parameters from multivariate Poisson-lognormal 
model 

margin p (SE) cr (SE) 
differ across the margins 

1 1.388 (0.098) 0.551 (0.122) 
2 1.784 (0.098) 0.425 (0.090) 
3 1.660 (0.120) 0.672 (0.121) 

common across the margins 
1.604 (0.060) 0.523 (0.062) 

Table 5.33: Bacteria Counts: Estimates of dependence parameters from multivariate Poisson-
lognormal model 

margin 9jk (SE) 

general dependence 
12 0.059 (0.315) 
13 -0.260 (0.208) 
23 -0.605 (0.206) 

exchangeable dependence 
-0.347 (0.133) 

Table 5.34: Bacteria Counts: Comparisons of A I C values from various submodels of multivariate 
Poisson-lognormal model 

Models A I C 

813.898 
md.e 813.546 
m e g 818.575 
mc.e 815.568 

Table 5.35: Bacteria Counts: Estimates of means, variances and correlations of responses from the 
submodel md.g of multivariate Poisson-lognormal model 

margin mean variance margin correlation 
I 4.66 12.38 vT 0.031 
2 6.52 14.92 13 -0.143 
3 6.59 31.39 23 -0.315 
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5 .3 S u m m a r y 

In this chapter, we studied some issues on modelling, illustrating the data analysis cycle, model 

selection and diagnostic checking. We also provided three detailed data analysis examples with the 

models developed in Chapter 3. The fact that there are many possibilities with the multivariate 

modelling is highlighted by the examples. A I C is one way to choose any model. In addtion, models 

are compared by their predictibility. The sensitivity analysis from comparison of models is important. 

If inference and prediction are similar, then one does not have to worry so much about the validity 

of SEs, etc., after choosing a model from A I C or another criterion. One finding from our data 

analysis is that there is insensitivity to multivariate models that have similar qualitative dependence 

structure and similar form of univariate margins. 

The models that we used to model the data are just some of the available models. Other examples 

of models include M M D binary models for Six Cities Study and M C D model with univariate Poisson-

lognormal margins for the bacteria counts data. There is still a lot to be investigated in terms of 

the applications of different type of models to the real data. Some of them will be studied in the 

further research. 



Chapter 6 

G E E methodology and its 

comparison with M L and I F M 

approaches 

Partly because of a lack of suitable multivariate non-normal distributions, and the problems of 

mathematical tractibility and computational difficulties in statistical inference with the multivariate 

models, Liang and Zeger (1986), Zeger and Liang (1986) and others have developed the general

ized estimating equations (GEE) approach with a partly specified probability model (some moment 

characteristics of the distribution are specified but not the joint distribution), for the estimation 

of regression parameters. It is claimed, as one of the advantages of G E E , that the G E E approach 

requires no further distributional assumptions other than that the observations across primary units 

(subjects) are independent. Under the correct specification of the marginal expectation for the out

come, consistent and asymptotically normal estimators of regression coefficients can be obtained, 

with or without the correct specification of the dependence among the response variables. However 

the G E E approach has several disadvantages, including (i) limited types of inferences that can be 

made, (ii) incompleteness of the data analysis cycle of initial data analysis, statistical modelling, 

diagnostics and inference, (iii) lack of clear accompanying means of assessing the implicit assump

tions, and (iv) possible interpretability problems. In fact, the main inferences provided by the G E E 

method are for the regression coefficients. Furthermore, G E E only deals with the case of univariate 

margins in the generalized linear model class, and extensions to quasi-likelihood models (and this 

213 
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does not include ordinal response data). The extension of G E E by Zhao and Prentice (1990) allows 

for estimating equations for correlations. This then has some analogy to the I F M approach when 

the model is M U B E . 

The models of the earlier chapters provide a framework for evaluation of the G E E and I F M 

approaches. Both methods can be sensitive to incorrect marginal model specifications but the I F M 

approach has much greater flexibility for a sensitivity analysis. 

In this chapter, we discuss the drawbacks of G E E in the multivariate analysis framework and 

examine the efficiency of the G E E approach. In section 6.1, we briefly introduce the G E E approach. 

In section 6.2, we discuss problems with the G E E approach when it is considered within a multivariate 

analysis framework. In section 6.3, we carry out some comparison studies of G E E with the M L 

approach and the I F M approach to better understand how efficient, or inefficient, the G E E estimates 

can be. These are done analytically and computationally. Finally, in section 6.4, we propose a new 

likelihood-based computational strategy which combines the G E E and I F M approaches to achieve 

greater efficiency for marginal regression parameter estimation, when this is the only inference of 

interest. 

6.1 Generalized estimating equations 

In likelihood analysis, we must specify the actual form of the distribution. In quasi-likelihood 

analysis, one specifies only the relationships between the means of the outcomes and the covariates 

and the relationships between the mean and variance. A univariate quasi-likelihood function can be 

written as 

The estimating equations for some regression parameters 0 = (0i,..., 0q)' (these appear only in m) 

based on the quasi-likelihood function (6.1) are 

where pi = E(Y,). The quasi-likelihood (6.1) can be identified with a loglikelihood corresponding 

to an exponential family distribution in the univariate situation. By adopting a quasi-likelihood 

approach and specifying only the mean-variance structure, such as p = E ( Y ) and Var(Y) = <j>V(p), 

where V(p) is a specified function of p (see McCullagh and Nelder 1989), the estimating equations 

are applicable to different types of variables (continuous and discrete), with no assumptions about 

(6.1) 

«=i 
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the distribution of the response. (Actually the form Var(Y) = <j>V(p) is quite restrictive. We will 

discuss this in section 6.2.) For the rf-dimensional multivariate response, if the responses are naively 

assumed to be independent and 0 is assumed to be common for different Yij or pij, j = l,...,d, 
then the quasi-likelihood estimation equations become 

T 

E(^) V - \ Y i ) ( y i - p i ) = 0, 

where pt = ( p { 1 p i d ) ' = E(Y,) , V(Y{) = diag[Var(Y < 1 ) , . . . , Var(y i d)], and 

/ dpi 9/3, 1 

dpi _ 

00' 

To gain more efficiency in estimating these regression parameters of the univariate margins, Liang 

and Zeger (1986) and Zeger and Liang (1986) propose to estimate 0 from 

U(0) = J2DfVr\yi-pi) = O, (6.2) 

i=l 

where Di = dp,/80'. Here Vi is a "working" or approximate covariance matrix for Y,-, chosen by 

the investigator. The "working" covariance can be expressed in the form: 

Vi = A)l2Ri{*)Ay\ 

where Ai = diag[Var(Y,i) , . . . , Var(lid)] and- Ri(ot) = Corr(Y,). Ri(ot) is termed a "working" 

correlation matrix, with a representing a vector of parameters associated with a specified model for 

Corr(Y,). Note that the correlation matrix can differ from subject to subject, but Ri(ot) is fully 

specified by the vector of unknown parameters, a, which is usually the same for all subjects. Ri(a) 

is referred to as a "working" correlation matrix, as Liang and Zeger argued, because it need not to 

be correctly specified. The equations (6.2) are thus called generalized estimating equations, or G E E . 

The extension in (6.2) made by Liang and Zeger is basically about the specification of the 

"working" correlation matrix. Liang and Zeger (1986) showed that as the sample size tends to 

infinity, the estimates of the regression coefficients obtained from the G E E approach are consistent 

and asymptotically normal, with an asymptotic variance-covariance matrix which can be consistently 

estimated even under misspecification of the dependence structure. 

If Vi = Cov(Y;) is correctly specified, then a consistent estimate of the asymptotic variance of 0 

is given by 

srl(d) = x;^r1A> 
«=i 
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where V{ is Vi evaluated at (0,ot), and D{ is £) ; evaluated at 0, respectively. However, if the 

"working" correlation Ri(ot) is misspecified, T,^[1(0) can give inconsistent estimates. Liang and 

Zeger (1986) suggest using the following "robust" estimate: 

where 

= X > f v r 1 ^ -/>,-)(* -kyv-1^. 
i=i 

This estimate is "robust" since it is consistent even if the "working" covariance Vi is not equal to 

Cov(Yj) . A n alternative approach, which we recommend, is to apply the jackknife method to (6.2) 

to obtain an estimate of E(/?). 

There are several choices for the "working" correlation matrix R{. The simplest choice is to use 

Ri = J, where J is a identity matrix. This is equivalent to assume that the response variables are not 

linearly correlated. One can also assume Ri(ot) = R(ot) for all i, and let R(pt) be fully unspecified. 

Two simple special cases of R(ot) are an exchangeable correlation matrix where Corr(Y;j, Yik) = a 

and an autoregressive correlation matrix where Con (Yi j, Yik) = a'- 7 - *' . If a is known, (6.2) is 

sufficient alone for the estimation of 0. Otherwise, or must be estimated. We discuss this next. 

The "working" correlation matrix may be obtained through additional modelling. Prentice (1988) 

has considered extensions of the G E E in Zeger and Liang (1986) to explicitly estimate the covariances 

of the responses. He proposed to work with 

' t { ^ r ) T Co.'1 (Yi)(yi-p^ = 0 

< 'n1 T (6"3) 

E(S0 C o v - 1 ( W 0 . ( w < - % ) = 0 
> i=l ^ ' 

for finding 0 and a, where W ; = (YnYa, Y ^ i s , • • •, 1 ) ^ ) ' , Hi = E(Y,-), Vi = E(W,-). 0 
characterizes the marginal means pt = (pn, Pi2, • • •, Pidf and a = (a i , a 2 , • • •, ctr)' characterizes 

the marginal pairwise association ty. C o v _ 1 ( Y j ) and C o v - 1 ( W t ) could be replaced by some special 

chosen matrices. Let 6 = (0',a')'. Zhao and Prentice(1990) proposed to work with 

for finding 0 and a. C o v ( ^ ) could be replaced by a "working" covariance matrix for (Y,-, W^)'. 

The main idea here was to add extra estimation equations for the dependence parameters, to improve 

the parameter estimation from (6.2). 



Chapter 6. GEE methodology and its comparison with ML and IFM approaches 217 

6.2 G E E in multivariate analysis 

In this section, the G E E method is illustrated with some examples. Drawbacks of the method are 

discussed. 

E x a m p l e 6.1 Suppose Y j ~ Nd(X.{0, £,•), i = 1 , . . . , n, where X,- is a known d x q matrix and 

is a d x d covariance matrix, and 0 is a q x 1 parameter vector. The maximum likelihood method 

is to minimize £ " = i ( y » - pi)'T,z1(yi - pt) with p{ = (pii,pi2, • ••,Pid)' = X 8 / J . It leads to 

T 

where dpi/80' = X j . In this particular situation, the M L estimating equations are exactly the same 

as G E E . • 

E x a m p l e 6.2 Suppose Y,- has the multivariate probit model with multinormal copula. The mean 

vector is p{ = , . . . , md)', where - <3>(/?XJJ), i = 1 , . . . , n, j = 1 , . . . , d. The G E E for 0, with 

the correct specification of the response variance matrix are 

U(p) = '£iDTvi(Yi)-1(yi-H) = 0, 
«=i 

where D, - dpi/dB', and 
/ <r2i ••• <Xi,ld\ 

V(Yi) (6.5) 

\aitid ••• o-}d ' 

with cr?. = $(0xy ) ( l - $08x,j)), and a i J k = <f>2(fcj,i3-x.i1c;pjk) - $(/?Xij)$(/?x;fc), I < j < k < d. 

The G E E for 0 is different from M L E for 0 in this case. We also notice that in this example, the 

actual correlation among the responses depend on the mean values, and hence Bx.ij, j = 1, . . .,d. 

This is not considered in the G E E assumptions for the "working" correlation matrix. In G E E for 

multivariate binary data, the "working" correlation is usually assumed to be independent of the mean 

parameters. In the next section, more studies to compare G E E with M L E under the multivariate 

probit model assumption will be given. • 

E x a m p l e 6.3 We examine the multivariate Poisson-lognormal model of Example 2.12. Suppose in 

(2.28) - (2.30), pj = v and o-j — rj, j = 1 , . . . , d. Let 0 — (Vji])'. We can obtain the estimates 

of v and rj by M L or I F M . Now we apply the G E E approach. Since for i = l,...,n, E(Yjj) = 
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exp{i/ + r,2/2} = a, Var(Y 8 J ) = a + a 2 [exp(»7 2 ) - 1] = 6 and Cov(Y,j, Yik) = a2[exp(% f c7?

2) - l ] , j ^ k . 

Thus 

fdECYj) 

\ 08 

With the correct specification of the response mean function and the variance-covariance matrix, 

the G E E for the parameters v and 77 are 

where V ( Y , ) has the diagonal component a + a 2 [exp(»j 2 ) — 1], and off-diagonal (j,k) component 

a2[exp(9jkT]2) — 1]. Since the two rows in (5E(Y,)/<9/?)T are proportional, (6.6) reduces to a single 

equation, thus estimates for v and n cannot be obtained with the quasi-likelihood approach. We can 

see this more clearly by examining a special situation where 6jk = 0. In this case (6.6) becomes 

n d 

13 - a) = 0, 
1=1j=i 

which leads only to an estimate of a — exp-jV + r]2/2}. In this situation, we obtain a consistent 

estimator for a, but not for v and 77 separately. This is a situation where consistent estimators of 

the parameters of interest are not obtainable with G E E approach even with the correct specification 

of the mean functions, the variance functions and the correlation structure. Following G E E , if 

the interpretation of the model or parameters are carried out based on a, we will have the same 

interpretation for v + TJ2/2 being constant irrespective of whether v is in fact a relatively big value 

or small value. For if v = h(8x) where 8 is a parameter vector and x is a covariate vector, then the 

correct interpretation of the effect of covariates is not possible from the G E E approach. The problem 

with this example is that v and 77 are confounded in E(Yj), and G E E fails to use the information on 

v and 77 in the second moment of Yj. This is an example showing that the form Var(Y) = <j>V(p) is 

restrictive. • 

The above examples provide some flavor of the G E E approach. It is clear that to use G E E for a 

meaningful purpose, the method requires the correct specification of marginal mean (and possibly 

correct specification of variance). It expects to get useful marginal regression parameter estimates 

with the dependence structure of multivariate data treated as a nuisance. A n attractive feature of 

G E E is the partial requirement on the model through the specification only of lower order moments. 

But the G E E approach has a number of drawbacks if it is considered under the multivariate data 

analysis framework; some of the drawbacks are direct results of its attractiveness: 
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i . The G E E approach is incomplete for the data analysis cycle of initial data analysis, statistical 

modelling, estimation, diagnostics and inference. In published work, G E E focuses mainly 

on the estimation stage with emphasis on some marginal regression parameters estimation, 

which can only be considered as a small part of the whole multivariate analysis process. In 

multivariate data analysis, the proper analysis cycle is important for the interpretation of the 

findings to be statistically meaningful. 

ii . With the G E E approach, the type of inferences can be made from the estimation results are 

limited. G E E is mainly useful for marginal regression parameter estimation, regardless of the 

possible multivariate models for the data. If the objective of scientific investigation is to find 

the probability occurrences of some phenomena, such as in multivariate discriminant analysis, 

G E E is not helpful. G E E also treats the dependence as a nuisance, and then use a "working" 

correlation matrix in estimation. This may deviate from the purpose of multivariate analysis 

which is often motivated by the need to analyze complex dependence among variables and 

objects. G E E does not deal with this question seriously. Furthermore, the correlation often is 

not the "best" notion of dependence for some multivariate non-normal variables. 

iii . With the G E E approach, there is no clear way to assess the assumptions, such as common 0 for 

different univariate margins. The effective use of the G E E resides on the correct specification 

of marginal mean function. If the specifications are not correct, it would not be adequate to 

use the estimation results for the inference purposes. With G E E , when the inference is wrong, 

it is not easy to tell where is wrong, and to what extent the results are useful. The G E E has 

a direct representation within the exponential family, but may not be true for models not in 

the exponential family. Notice that many "interpretable" multivariate models are not in the 

exponential family. 

iv. With the G E E approach, it may be difficult to have sound interpretations in some situations. 

A situation is the Example 6.3, where it is not possible to get an estimate of the parameter (or 

consistent estimate of the parameter) of interest through simple G E E , even under all favorable 

conditions for G E E , such as the correct specification of the mean functions, variance functions 

and the correlation function. 

Then why G E E ? G E E is a simple estimating approach in multivariate situations where only some 

knowledge of lower order moment characteristics are used. It may be considered as an appropriate 

approach when the relationships between covariates and marginal probabilities are of prime interest, 
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and when a proper multivariate model is not available or mathematically difficult to deal with. 

G E E may lead to some gain in estimation efficiency for the marginal regression parameters from a 

sound specification of the dependence among the response variables. In some practical situations, 

we may have some rough knowledge about the dependence structure among response variables; this 

knowledge can be appropriately incorporated into G E E . The G E E approach provides a way to avoid 

the difficulty of dealing with the complex relationship between some model parameters of interests 

and the joint probabilities that define the likelihood in multivariate (longitudinal) situation, while 

still estimating some parameters of interests. 

However, in multivariate analysis, the marginal behaviour is only one of the possible features of 

interest. Others include the dependence structure among the response variables, the prediction of the 

probability for an outcome, the changes within subjects, etc. Within the general multivariate analysis 

framework, G E E should be considered only as a set of estimating equations for some parameters 

in a multivariate situation. Its usefulness is limited without incorporating it properly into the data 

analysis cycle, which mainly consist of initial data analysis, statistical modelling, disgnostics and 

inference. 

Some technical problems related to the G E E approach are: 

1. How efficient is the G E E approach? How it compares with the M L approach? (when a full 

model can be specified.) 

2. How important is the correct specification of the response correlation matrix? If the correla

tions of the response variables do depend on the marginal regression parameters (see Example 

6.2), how does G E E work? 

3. What is the effect of the (correct) specification of variance function? 

4. What is the practical meaning of "large sample size" with G E E to achieve the estimation 

consistency? 

Item 1 is a natural question, since G E E is an approach which uses only the partial information 

of a likelihood model. Item 2 is related to the fact that the true correlation structure for the 

response variables is rarely known in practice. If different specifications of the correlation matrix 

make a difference on the marginal regression parameter estimate, what could we really say about the 

regression parameters? If different specifications of the correlation matrix do not make a difference, 

what else can we say (about the regression parameter estimates and correlations)? Item 4 is also a 

natural question for many statistical methodologies where their good properties are only established 
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in an asymptotic sense. For item 3, the point at issue is best introduced via a simple example. 

Suppose we have a Poisson-lognormal model. In Example 6.3, we have demonstrated that the 

G E E in (6.6) can not lead to an estimate of v and n. We now simply limit our discussion to the 

univariate Poisson-lognormal model to illustrate our points. The G E E for the univariate case (with 

no covariates) is 

E da y{ - a 

. dfi— = °' ( 6 J ) 

8 = 1 

where 3 = (u, rj)1, a = E(Y,-) = exp{z^ + 772/2} and b = Var(Yj) = a + a2[exp(ri2) - 1] = a + r a 2 , 

T = exp(rj2) — 1. (6.7) is equivalent to 

2>< - a) = 0. (6.8) 

i=l 
To estimate v as well as 77, an additional equation to (6.8) is needed. One of a such equation (see 

McCullagh and Nelder 1989) is 
± ( j ^ - ( n - D = 0. (6.9) 
t=i 

We see that in this simple univariate situation, (6.8) and (6.9) lead to the use of sample response mean 

and sample response variance to estimate the response mean and response variance. In the quasi-

likelihood literature, it is usually assumed that the variance of Yj has the form Var(Yj) = <j>V(pi), 

where tj> is an unknown dispersion parameter and V(pi) is a function of m = E(Yj). This is certainly 

not the case for the Poisson-lognormal model. In the Poisson-lognormal model, if we let pi = E(Yj), 

then Var(yj) = m + p2Ti, which cannot be identified with Var(j/j) = cf)V(pi). If we always assume 

Var(j/j) = tf)V(pi), in some situations, it is not possible to have a correct specification of the variance 

function. These arises a question of the effect of the variance function specification on the consistency 

of the marginal parameter estimates. It would be interesting to see how (6.8) and (6.9) estimate v 

and 77 under different specifications of the variance functions. 

In the next section, we will address these issues. For points 1, 2 and 4, we will use multivariate 

probit model for the investigation. For point 3, we will study the univariate Poisson-lognormal 

model. 

6 . 3 G E E compared with the M L and I F M approaches 

In this section, we will study some of the questions concerning G E E arisen at the end of section 6.2. 

We compare the G E E approach with the M L approach and the I F M approach by simulation with 

the knowledge of true models. 
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C o m p a r i s o n a n d s imulat ion schemes 

We study the cases where the regression parameters are common across all margins. We compare 

the G E E estimates with M L E s and IFMEs (from the pool-marginal-likelihood approach). Except for 

the Poisson-lognormal model where we investigate the effect of the specification of variance function, 

in the G E E estimation, we always assume we have the correct specification of the marginal variance 

functions. With the Poisson-lognormal model, we specify different variance functions to investigate 

the importance of correctly specifying the variance functions. 

We use the mean-square error (MSE) of the estimate for a parameter from different approaches 

as the basis of the comparison. For an estimator 6 = 9(X\,..., Xn), where X\,..., Xn is a random 

sample of size n from a distribution indexed by 9, the M S E of 9 about the true value 9 is 

MSE(0) = E{9 - Of = Var(9) + \E{9) - 9}2. 

Suppose that 9 has a sampling distribution F, and suppose $i,..., 9m are iid of F, then one obvious 

estimator of M S E ( t9 ) is 

MSE(g) = ~ g ) 8 . (6.10) 
m 

The average of the parameter estimate is mean(0) = X^Li^>/m- Assume 9gee is from the G E E 

approach, 9pmia is from the I F M approach (with the pool-marginal-likelihood approach) and 9mie 

is the M L E . We examine r\ = M ^ ( i 9 m ( e ) / M S E ( ( 9 f f e e ) and r\ = M ^ ( f 3 p m , a ) / M S E ( ^ e e ) (in all 

tables, r i and r2 are reported). For a fixed sample size, 9 need not be the optimal estimate of 9 in 

term of M S E , since now the bias of the estimate is also taken into consideration. The above two 

ratios may indicate how G E E performs in comparison with the other approaches, and particularly 

how it compares with the M L E . The approach is mainly computational, based on the computer 

implementation of specific models and then the subsequent intensive simulation and parameter 

estimation. 

We will first use the multivariate probit model for investigating the relative efficiency of G E E 

estimates versus M L E s and IFMEs. We describe our simulation scheme and comparison scheme 

here in general terms. We simulate <i-dimensional binary observations y8- (i = 1 , . . . , « ) from a 

multivariate probit model 

- I(Zij < Zij), j = l,...,d, i = l , . . . , n , 

where Z< = (Ziu ...,Zid)' ~ MVNd(G,Qi) with Z i J = 0.^. The response correlation matrix for 
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the i th subject is Ri = (r,-,jfc) where r t j j = 1 and 

- L , P ^ ( l l ) - P o ( l ) P g ( l ) 

where P.-j-j^ll) = $2(2,2; fyfc)) -P.j(l) = -P,jt(l) = $(z) when there is no covariates, and P, j fc( l l ) = 

$2(/^x,j,/3 /

f cx !jt; ^ jb ) , -Ptj(l) = $(0jXij) and = $(/%x,ib) when there is a covariate vector. 

In the expression of F, j j t ( l l ) , we may have Qjk = p or Qjk = />'J~*', depending on the dependence 

structure of the latent variables. 

The following simulation scheme is used: 

1. The sample size is n, the number of simulations is N. Both are reported in the tables. 

2. Situations with covariates for d = 2 and d = 3 and with no covariates for d = 3 and d = 4 are 

considered: 

(a) Wi th no covariates: Zij = z for i = 1 , . . . , n, j = 1 , . . . , d. Two chosen values of z are: 0.5 

and 1.5. 

(b) Wi th covariates: 

i. There are two situations for d = 2: = 0O + 0\X{j with /?o = 0.5, Q\ = 1 and 

•Zjj = A) + Ai^i + 02Xij with /?o = - 0 . 5 , 0\ = 0.5, /?2 = 1, where x,j is margin-

dependent and to,- is margin-independent covariate 

i i . For d = 3, only z,-j = /? 0 + 0ix,j with /?o = 0.5, 0\ = 1 is considered. 

Situations with z t j discrete and continuous and to,- discrete are studied. For w, discrete, we 

choose wi = I(U < 0) where U ~ uniform(— 1,1). For a;,j discrete, we choose x^ = I(U < 

j/(2d)) where U ~ uniform(—1,1); for x^ continuous, we choose Xij ~ N(j/(2d),l/4). 

The continuous covariate case is only studied for d = 2. 

3. We assume the latent correlation matrix 0 , free of covariates. For d = 2, p is chosen to be 

0.9 and 0.5. For d > 3, 0 is chosen to be exchangeable with all correlation equal to p, and 

an AR(1) with (j, k) component equal to In both exchangeable and AR(1) cases, p is 

chosen to be 0.9. 

In G E E , the "working" correlation matrix is chosen by the investigator. There is arbitrariness 

in the choice of the "working" correlation matrix. We want to see how the choice of the "working" 

correlation matrix affects the estimation of the regression parameters in situations where the mean 

functions (also variance functions) are correctly specified. For G E E estimation, we study two type 

of "working" correlation matrix specification: 
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1. The correct specification of correlation matrix of the response variables, that is, rtjk is calcu

lated from (6.11) with the true parameter values. In the tables, we use ng for G E E specification 

of rijk, and ng = c for correct specification of correlation matrix. 

2. The wrong specification of correlation matrix of the response variables: 

(a) For d = 2, let ritl2 = % . W e select rjg = 0.9, 0.5, 0, -0 .5 , -0 .9 . 

(b) When the latent correlation matrix is exchangeable: (i) the "working" correlation matrix 

has exchangeable structure with rijk = Vg> where when d = 3, rjg = 0 and r]g = —0.4, 

and when d = 4, rjg = 0 and ng = —0.3; and (ii) the "working" correlation matrix has 

AR(1) structure when d = 3, with r.-jjb = Jij/ -*' where rjg = 0.9 and ng = —0.9. 

(c) When the latent correlation matrix is AR(1): (i) the "working" correlation matrix has 

AR(1) structure with r,jfc = 77]/~*' where ng = 0 and ng = —0.9 for both d = 3 and 

d = 4; and (ii) the "working" correlation matrix has exchangeable structure when d = 3, 

with r,j<; - - 77̂  where ng = 0.0 and ng = —0.4. 

In the computer implementation, we first simulate d-dimensional binary data from a given d-

dimensional probit model with or without covariates. We then use the G E E , M L and I F M approaches 

to estimate the parameters from each simulation, and then compute the M S E in (6.10) of the 

estimates from each parameter estimation approach. We also compute the mean of the parameter 

estimates. 

Next we discuss the simulation and computation scheme with the univariate Poisson-lognormal 

model to investigate the effects of the specification of variance functions on the estimation consistency 

of the marginal regression parameters. The G E E that we use are (6.8) and (6.9). The true variance 

for Yi is Var(Yi) = a + a 2 r , where a = E(Y;) = exp(f + r?2/2) and r = e x p(ri 2) — 1 for the situation 

with no covariate, and Var(Y t ) = a, + a?r, where a, = E(Y t ) = exp(z/,- + nj/2) and T ; = exp^?) — 1 

for the situation with covariates. In the comparison study, we compare M L E to G E E with 1) correct 

specification of Var(y,) , 2) Var(Yj) = T O , 3) Var(Y,) = TO?, 4) Var(Y,) = TO?. Let o be the mean 

and 6 be the variance from G E E specifications. The simulation scheme is as follows: 

1. The sample size is n; the number of simulation is TV. Both numbers are given within the tables. 

2. We considered the situations of the parameter u independent of covariates and depending on 

a covariate x. The parameters are: 
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i . With no covariates: (v,rj) = (0.99995,0.01). In this case, a = 2.718282, and for the 4 

different variance function specifications above, we have b = 2.719, 0.00027, 0.0007, 0.002 

respectively, where b = 2.719 corresponds to the correct specification of the variance 

function. 

ii . With no covariates: (y,TJ) = (-0.1,1.48324). In this case, a = 2.718282, and for the 4 

different variance function specification above, we have b = 62.02, 21.81, 59.30, 161.19 

respectively, b = 62.02 corresponds to the correct specification of the variance function. 

iii . With covariate: v = a + 3x, where a — 0.5, 0 = 0.5 and x = I(U < 0) with U ~ 

uniform(— 1,1). The parameter rj = 0.01. 

Next we provide the numerical results for the situations outlined above. 

Bivar ia te p r o b i t m o d e l 

For the bivariate probit model with one covariate, the marginal linear regressions are Zij = 0O + 

0\Xij, where 0o, 0i are the common marginal regression parameters. In G E E , we have p{ = 

(Pii(l), Pii(l))' = ($(/?o + 0ixil),$(0o + 0ixi2)y. The numerical results for the bivariate probit 

model with the covariate Xjj continuous and discrete are presented in Table 6.1 and Table 6.2. 

The numerical results for the bivariate probit model with the marginal linear regressions z,j = 

0o + 0iW{ + 02Xij for W{ and x^ discrete are presented in Table 6.3. The results for W{ and Xij 

being continuous are quite similar, so they are not presented. In Table 6.4, we also present a case 

with the marginal linear regressions are z,j = 0O + 0\X{j for the situation where the true parameter 

p = 0.5. From these tables, two clear conclusions emerge: i) the specification of the "working" 

correlation has an effect on the estimation efficiency of G E E , with a major loss of efficiency when 

the specified "working" correlation is far from the true correlation. In fact, when the working 

correlation parameter is far away (particular with the wrong sign of the correlation) from the true 

correlation parameter, the G E E estimator performs poorly, and in some cases, the efficiency can be 

as low as 50%; ii) M L E s are always more efficient than G E E , but G E E is slightly more efficient than 

estimate from I F M when the the "working" correlation is correctly specified; iii) the observations in 

i) and ii) are consistent for the sample size from large to moderate. 

Tr ivar ia te p r o b i t m o d e l 

We first study the trivariate probit model with no covariate. We have P ( l l l ) = $3(2, z, z; pi2, P13, p23), 

wherezisthe common cut-off points for all three margins. In G E E , we have /!,- = (Pi(l), P 2(l), ^3(1))' 
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Table 6.1: G E E assessment: d = 2, 0Q = 0.5,/?i = 1, xtj discrete, p = 0.9, TV = 1000 

n = 1000 200— 
( V M S E ) mean ( \ /MSE) r\ T2_ 

n = 
mean r i ?*2 

M L E 

I F M E 

0.9 

= 0.5 

= -0.5 

-0.9 

ft 
& 
Pi 
Po 
Pi 
Po 
Pi 
Po 
Pi 
Po 
Pi 
Po 
Pi 
Po 

0.501 
1.003 
0.502 
1.001 
0.501 
1.003 
0.500 
1.005 
0.501 
1.003 
0.502 
1.001 
0.503 
1.001 
0.503 
1.000 

0.0525) 
0.0699) 
0.0570) 
0.0788) 
0.0531) 
'0.0707) 
0.0566) 
0.0776) 
'0.0532) 
'0.0707) 
'0.0570) 
'0.0788) 
'0.0687) 
'0.1017) 
0.0818) 
'0.1262) 

0.989 
0.989 
0.929 
0.901 
0.987 
0.988 
0.921 
0.887 
0.765 
0.687 
0.642 
0.554 

1.074 
1.116 
1.009 
1.016 
1.072 
1.115 
1.0 
1.0 

0.831 
0.775 
0.698 
0.625 

0.504 
1.011 
0.507 
1.007 
0.505 
1.010 
0.501 
1.014 
0.504 
1.010 
0.507 
1.007 
0.508 
1.008 
0.506 
1.011 

0.1191) 
0.1553) 
0.1293) 
'0.1792) 
'0.1198) 
'0.1563) 
'0.1280) 
'0.1713) 
'0.1199) 
0.1561) 
0.1293 
0.1791) 
0.1575) 
0.2381) 
0.1906) 
0.3029) 

0.994 
0.993 
0.930 
0.907 
0.993 
0.995 
0.921 
0.867 
0.756 
0.652 
0.625 
0.513 

1.079 
1.146 
1.011 
1.046 
1.079 
1.148 
1.0 
1.0 

0.821 
0.752 
0.678 
0.591 

Table 6.2: G E E assessment: d = 2,p0 = 0.5, pi = 1, x{i continuous, p = 0.9, TV = 1000 

IUOTJ 
(VMSE) 

n = 
mean ri r2 

M L E 

I F M E 

Vg = 0.9 

ng = 0.5 

= 0 

-0.5 

-0.9 

Po 
Pi 
Po 
Pi 
Po 
Pi 
Po 
Pi 
Po 
Pi 
Po 
Pi 
Po 
Pi 
Po 

11 

0.501 
1.000 
0.501 
1.001 
0.501 
1.000 
0.502 
0.998 
0.501 
0.999 
0.501 
1.001 
0.500 
1.004 
0.499 
1.007 

0.0416' 
'0.0651 
'0.0427; 
'0.0730< 

'0.0416 
'0.0653 
'0.0496 
'0.0766 
'0.0421 
'0.0675' 
'0.0427 
'0.0730' 
'0.0463' 
'0.0952 
'0.0512' 
'0.1209 

1.0 1.027 
0 997 1.117 
0 839 0.861 
0 854 0.957 
0 990 1.016 
0 964 1.081 
0 974 1.0 
0 892 1.0 
0 899 0.923 
0 685 0.767 
0 813 0.835 
0 539 0.604 
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Table 6.3: G E E assessment: d = 2, ft = -0.5, ft = 0.5,ft = 1, wit xtj discrete, p = 0.9, N = 1000 

n = 1000 
mean ( V M S E ) r\ 

n = 200 
mean ( V M S E ) r i r-2 

M L E ft -0.496 (0.0647) -0.498 (0.1445) 
ft 0.497 (0.0782) 0.4986 (0.1793) 
ft 0.996 (0.0601) 1.005 (0.1289) 

I F M E ft -0.496 (0.0676) -0.497 (0.1527) 
ft 0.497 (0.0788) 0.498 (0.1806) 
ft 0.997 (0.0664) 1.004 (0.1488) 

Vg =c ft -0.495 (0.0652) 0.993 1.038 -0.495 (0.1447) 0 999 1.056 Vg =c 
ft 0.498 (0.0783) 0.998 1.005 0.498 (0.1786) 1 003 1.012 
ft 0.995 (0.0605) 0.994 1.098 1.001 (0.1294) 0 996 1.150 

Vg = 0-9 ft -0.493 (0.0693) 0.934 0.977 -0.493 (0.1522) 0 950 1.003 Vg = 0-9 
ft 0.498 (0.0827) 0.946 0.953 0.503 (0.1905) 0 941 0.949 
ft 0.992 (0.0676) 0.889 0.982 0.999 (0.1429) 0 903 1.042 

Vg = 0-5 ft -0.495 (0.0655) 0.988 1.033 -0.495 (0.1451) 0 996 1.052 Vg = 0-5 
ft 0.497 (0.0786) 0.994 1.001 0.497 (0.1797) 0 998 1.005 
ft 0.994 (0.0605) 0.994 1.097 1.001 (0.1294) 0 996 1.150 

Vg = 0 ft -0.497 (0.0677) 0.957 1.0 -0.496 (0.1527) 0 946 1.0 Vg = 0 
ft 0.497 (0.0788) 0.993 1.0 0.498 (0.1806) 0 992 1.0 
ft 0.997 (0.0664) 0.905 1.0 1.004 (0.1488) 0 866 1.0 

Vg = -0-5 ft -0.499 (0.0768) 0.843 0.881 -0.499 (0.1762) 0 820 0.867 Vg = -0-5 
ft 0.498 (0.0789) 0.991 0.998 0.498 (0.1816) 0 987 0.995 
ft 1.000 (0.0857) 0.701 0.774 1.008 (0.1977) 0 652 0.753 

Vg = -0-9 ft -0.500 (0.0880) 0.736 0.769 -0.502 (0.2039) 0 709 0.749 Vg = -0-9 
ft 0.498 (0.0790) 0.989 0.997 0.498 (0.1823) 0 983 0.991 
ft 1.003 (0.1067) 0.563 0.622 1.012 (0.2486) 0 519 0.599 

Table 6.4: G E E assessment: d = 2, ft = 0.5, ft = 1, xtj discrete, p = 0.5, N = 1000 

"TOW" 
mean (-y/MSE) r\ r2 

n = 200 
mean ( V M S E ) r-2 

M L E 

I F M E 

Vg 

Vg 

Vg 

0.9 

= 0.5 

Vg = 0 

Vg 

Vg 

= -0.5 

= -0.9 

ft 
ft 
ft 
ft 
ft 
ft 
ft 
ft 
ft 
ft 
ft 
ft 
ft 
ft 
ft 

JL 

0.502 
1.002 
0.502 
1.001 
0.502 
1.002 
0.500 
1.005 
0.501 
1.003 
0.502 
1.001 
0.504 
0.999 
0.504 
0.998 

U053) 
'0.075) 
0.055) 
'0.077) 
0.053) 
'0.075) 
'0.060) 
'0.088) 
0.054) 
'0.077) 
'0.055) 
'0.077) 
'0.063) 
'0.092) 
'0.074) 
'0.112) 

0.999 
0.994 
0.893 
0.849 
0.983 
0.967 
0.977 
0.966 
0.850 
0.807 
0.725 
0.664 

1.022 
1.028 
0.914 
0.878 
1.005 
1.001 

1.0 
1.0 

0.870 
0.835 
0.742 
0.688 

0 504 (0 119 
1 O i l (0 155 
0 507 (0 129 
1 007 (0 179 
0 505 (0 120 
1 010 (0 156 
0 500 (0 135 
1 017 (0 194 
0 503 (0 122 
1 O i l (0 168 
0 506 (0 121 
1 007 (0 169 
0 508 (0 139 
1 005 (0 207 
0 508 (0 164 
1 006 (0 257 

0.994 
0.993 
0.885 
0.898 
0.982 
0.997 
0.986 
0.965 
0.860 
0.788 
0.728 
0.635 

1.079 
1.146 
0.845 
0.875 
0.973 
1.008 

1.0 
1.0 

0.872 
0.817 
0.738 
0.658 
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Table 6.5: G E E assessment: d = 3, z = 0.5, latent exchangeable, p = 0.9, "working" exchangeable, 
TV = 1000 

n = 1000 
mean ( V M S E ) T*I r2 

n = 200 
mean ( \ /MSE) r\ r2 

n = 100 
mean ( \ /MSE) r i r 2 

M L E 
I F M E 
Vg =c 
Vg = 0 
r?a = -0.4 

0.499 (0.0363) 
0.498 (0.0366) 
0.498 (0.0366) 0.992 1.0 
0.498 (0.0366) 0.992 1.0 
0.498 (0.0366) 0.992 1.0 

0.503 (0.0839) 
0.503 (0.0841) 
0.503 (0.0841) 0.997 1.0 
0.503 (0.0841) 0.997 1.0 
0.503 (0.0841) 0.997 1.0 

0.506 (0.1228) 
0.506 (0.1233) 
0.506 (0.1233) 0.996 1.0 
0.506 (0.1233) 0.996 1.0 
0.506 (0.1233) 0.996 1.0 

Table 6.6: G E E assessment: d = 3, z = 1.5, latent exchangeable, p = 0.9, "working" exchangeable, 
TV = 1000 

M L E 
I F M E 
Vg =c 
Vg = 0 
Vo = -0-4 

n = 1000 
mean (\/MSE) ri r 2 

1.500 
1.500 
1.500 
1.500 
1.500 

0.0525) 
0.0525) 
0.0525) 
'0.0525) 
'0.0525) 

0.999 1.0 
0.999 1.0 
0.999 1.0 

n = 200 
mean (VMSE) 
1.510 
1.510 
1.510 
1.510 
1.510 

0.1254) 
0.1256) 
0.1256) 
0.1256) 
0.1256) 

r\ 

0.998 
0.998 
0.998 

r2 

1.0 
1.0 
1.0 

($(2), $(2), $(z))'. The numerical results are presented in Table 6.5 to Table 6.8. The numerical re

sults show that the specification of the correlation of the response variables in these simple situations 

have little effect on the parameter estimates from G E E . G E E is efficient in all cases. 

For the trivariate probit model with one covariate, we have P ( l l l ) = $3(0o+0ixi, 0o+0\x2, 0o + 
P12, Pi3, P23), where /?o, 0i are the common marginal regression parameters. In G E E , we have 

Pi = ( P - i ( l ) , P i ( l ) , P « ( l ) ) ' = Wo+Pixn),m3o + 8lXi2),Q(Po +0ixi3)y. The numerical results 

for the trivariate probit model with covariate are presented in Table 6.9 and Table 6.10. We studied 

models with discrete covariate. Now the specification of the "working" correlation matrix has some 

effect on the estimation efficiency of G E E , with a major loss of efficiency when the specified "working" 

correlation matrix is far from the true correlation matrix. We also notice that G E E is slightly more 

Table 6.7: G E E assessment: d = 3, z = 0.5, latent AR(1), p = 0.9, "working" AR(1), TV = 1000 

n = 1000 
mean ( - \ / M S E ) r x r 2 

n = 200 
mean ( i / M S E ) 7*1 r 2 

n = 100 
mean ( A / M S E ) r\ r2 

M L E 
I F M E 
Vg =c 
Vg = 0 
r]Q = -0.9 

0.499 (0.0355) 
0.498 (0.0357) 
0.498 (0.0357) 0.996 1.0 
0.498 (0.0357) 0.994 1.0 
0.498 (0.0362) 0.982 0.988 

0.503 (0.0822) 
0.503 (0.0822) 
0.503 (0.0821) 1.0 1.0 
0.503 (0.0822) 1.0 1.0 
0.503 (0.0832) 0.989 0.988 

0.506 (0.1192) 
0.505 (0.1198) 
0.506 (0.1192) 1.0 1.0 
0.505 (0.1198) 0.995 1.0 
0.505 (0.1219) 0.978 0.983 
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Table 6.8: G E E assessment: d = 3, z = 1.5, latent AR(1), p = 0.9, "working" AR(1), N = 1000 

n = 1000 
mean ( \ /MSE) r\ r 2 

n = 200 
mean ( \ /MSE) 7*1 r 2 

M L E 
I F M E 
T]g =c 
Vg = 0 
Vo = -0.9 

1.499 (0.0515) 
1.500 (0.0516) 
1.500 (0.0515) 1.0 1.0 
1.500 (0.0517) 0.997 1.0 
1.500 (0.0527) 0.978 0.981 

1.508 (0.1213) 
1.509 (0.1220) 
1.509 (0.1213) 1.0 1.0 
1.509 (0.1220) 0.994 1.0 
1.510 (0.1247) 0.973 0.979 

Table 6.9: G E E assessment: d = 3, 
"working" exchangeable, N = 1000 

00 — 0.5,0\ = 1, xij discrete, latent exchangeable, p = 0.9, 

n r o o — 
(\/MSE)_ 

n = 100 n = 

r-2 

n = 200 
mean (-\/MSE) r i r 2 mean ( V M S E ) r i r 2 

M L E ft 
ft 
ft 
ft 
ft 
ft 
ft 
ft 

JJ, = -0.4 ft 

£ 1 

I F M E 

0.501 
0.998 
0.502 
0.996 
0.501 
0.998 
0.502 
0.996 
0.504 
0.994 

0.0462) 
0.0582) 
0.0502) 
0.0677) 
'0.0463) 
'0.0588) 
0.0502) 
'0.0677) 
'0.0765) 
'0.1219) 

0.997 1.084 
0.991 1.153 
0.920 1.0 
0.860 1.0 
0.604 0.657 
0.478 0.556 

0.499 
1.005 
0.502 
1.001 
0.500 
1.004 
0.502 
1.001 
0.503 
1.001 

0.1057) 
0.1338) 
'0.1148) 
0.1588) 
'0.1066) 
'0.1369) 
'0.1148) 
'0.1588) 
'0.1764) 
'0.2886) 

0.991 1.077 
0.977 1.160 
0.920 1.0 
0.843 1.0 
0.599 0.651 
0.464 0.551 

0.504 
1.015 
0.509 
1.008 
0.505 
1.012 
0.509 
1.008 
0.503 
1.022 

0.1515) 
0.1915) 
0.1680) 
0.2260) 
'0.1528) 
'0.1939) 
'0.1680) 
'0.2261) 
'0.2673) 
'0.4419) 

0.992 
0.987 
0.902 
0.847 

1.100 
1.165 
1.0 
1.0 

0.567 0.628 
0.433 0.512 

efficient than the estimate from I F M when the "working" correlation matrix is correctly specified. 

From the tables, we also notice that G E E and I F M E have the same parameter estimate when % = 0 

and in exchangeable situations. In the following subsection, we will prove this is always true. We 

particularly notice that the G E E behaved very similarly to M L E and I F M , both in terms of marginal 

regression parameter estimates and their MSEs, when the working correlation matrix is chosen to 

be L 

4-variate p r o b i t m o d e l 

The 4-variate probit model is considered for the situation with no covariate. We have P ( l l l l ) = 

$4(2, z, z, z; P12, P13, PM, p23, P24, P34), where z is the common cut-off points for all four margins. In 

G E E , we have p{ = (Pi(l ) , P2(l), P3(l), PA(1))' = ($(z), $(z), $(z), $(2) ) ' . The numerical results 

are presented in Table 6.11 and Table 6.12. The numerical results show that the specification of the 

correlation of the response variables in these simple situations have little effect on the parameter 

estimates from G E E . The G E E approach is efficient in all cases. 

Our simulation results also indicate that for estimation purposes, the estimating equations based 
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Table 6.10: G E E assessment: d = 3, ft = 0.5, ft = 1, x{j discrete, latent AR(1), p = 0.9, "working" 
AR(1), N = 1000 

"TUUO 
(yliaSE) 

=~2U0 

(VMSE) 
T U T 

r2 
mean (\ZMSE) r\ r2 

M L E ft 
ft 
ft 
ft 
ft 
ft 
ft 
ft 

7?, = -0.4 ft 
§i 

I F M E 

% =c 

% = 0 

0.501 
0.999 
0.502 
0.997 
0.501 
0.999 
0.502 
0.997 
0.504 
0.995 

0.0455) 
0.0575) 
"0.0494) 
0.0666) 
'0.0455) 
'0.0580) 
'0.0494) 
'0.0666) 
'0.0688) 
'0.1076) 

1.0 1.087 
0.992 1.149 
0.921 1.0 
0.864 1.0 
0.661 0.718 
0.535 0.619 

0.500 
1.004 
0.502 
1.001 
0.500 
1.003 
0.502 
1.001 
0.502 
1.004 

(0.1042) 
0.1330) 

(0.1123) 
0.1560) 
0.1048) 

(0.1355) 
(0.1123) 
(0.1560) 
(0.1584) 
(0.2573) 

0.994 1.071 
0.981 1.151 
0.928 1.0 
0.852 1.0 
0.658 0.709 
0.517 0.606 

0.505 
1.011 
0.509 
1.006 
0.507 
1.007 
0.509 
1.006 
0.505 
1.020 

0.1517) 
'0.1879) 
'0.1665) 
0.2195) 
'0.1530) 
'0.1899) 
'0.1665) 
'0.2195) 
'0.2367) 
'0.3789) 

0.992 
0.990 
0.911 
0.856 

1.088 
1.156 
1.0 
1.0 

0.641 0.703 
0.496 0.580 

Table 6.11: G E E assessment: d = 4, z = 0.5, latent exchangeable, p • 
N = 1000 

0.9, "working" exchangeable, 

n = 1000 
mean ( V M S E ) T*I r2 

n = 200 
mean ( \ /MSE) r i r2 

M L E 
I F M E 
Vg =c 
Vg = 0 
•qq = -0.3 

0.500 (0.0365) 
0.500 (0.0366 
0.500 (0.0366) 0.997 1.0 
0.500 (0.0366) 0.997 1.0 
0.500 (0.0366) 0.997 1.0 

0.503 (0.0820) 
0.503 (0.0829) 
0.503 (0.0829) 0.989 1.0 
0.503 (0.0829) 0.989 1.0 
0.503 (0.0829) 0.989 1.0 

on an independence working correlation structure behave quite well. 

I F M E or G E E 

We have seen in the preceding subsection that G E E has better performance than I F M E when the 

response correlation matrix is correctly specified, but I F M E has better performance than G E E in 

general. Now we will see some situations where G E E and I F M E are equivalent. 

Table 6.12: G E E assessment: d = 4, z = 0.5, latent AR(1), p = 0.9, "working" AR(1), N = 1000 

n = 1000 
mean ( \ /MSE) r*i r2 

n = 200 
mean ( \ /MSE) rx r2 

M L E 
I F M E 
Vg =c 
Vg = 0 
17, = -0.9 

0.500 (0.0349) 
0.500 (0.0350) 
0.500 (0.0350) 0.997 1.001 
0.500 (0.0350) 0.997 1.0 
0.500 (0.0354) 0.985 0.989 

0.503 (0.0781) 
0.503 (0.0791) 
0.503 (0.0787) 0.992 1.005 
0.502 (0.0791) 0.987 1.0 
0.502 (0.0803) 0.972 0.985 

file:///ZMSE
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Resul t 6.1 For a multivariate probit model with common cut-off points across margins, GEE with 

Ri(a) = R, where R has exchangeable structure, is equivalent to IFM. 

Proof. For a multivariate probit model with common cut-off points across margins, the I F M leads 

to an estimating equation Yl?=i Sj=i(2/« 'j — N) ' 0- This i s equivalent to the G E E with Ri{oi) = R, 

where R has an exchangeable structure. • 

Resul t 6.2 For a multivariate probit model with covariates, GEE with Ri{ot) = I, where I is the 

identity matrix, is equivalent to IFM. 

Proof: Assume p = (pi,.. .,pd)' and pj = $(j3xj). For a multivariate probit model with common 

cut-off points across margins, I F M leads to the estimating equations 

dp j yij - Pj _ 

This is equivalent to the G E E with Ri(a) = I, I is the identity matrix. • 

In this Chapter, we limit study to the G E E for common regression parameters across all margins. 

But G E E can also extended to the situations where parameters differ from margin to margin. We 

here introduce a result about the equivalency of G E E and I F M in some special situations with 

parameters differing from margin to margin. 

Resul t 6.3 For the multivariate probit model with parameters differing from margin to margin and 

with one margin-independent binary covariate, the GEE with Ri(ot) = R is equivalent to IFM for 

the marginal regression parameters. 

Proof. Assume x is the margin-independent binary covariate taking two values a and b. The marginal 

mean vector pt = {pi(a\ + Pix),..., pd(ctd + Pd^)}', i = 1,..., n, takes two distinct vector values: 

Ha = {pi{oci + Pia),...,pd(ad + f3da)}' 

Hb = { r * i ( < * i Pd{ad + 0db)}'. 

Assume there are na observations for x = a and nj for x = b, and let la = {i\xi = a) and 

Ib = {i\Xi = b}. Let a = (ax , . . . , a d) ' , 0 = (/?,,.. .,#,)'. For i € Ia, A , a = dpa/da' does 

not depend on i, thus DTaVi~a

l is a d x d invertible matrix which does not depend on i. Let us 

denote this matrix by A. For i 6 la, we also have E>T^V.~^ = a A ^ a ^ " a = Similarly, for 

i G lb, E)JlaVi~a ^ o e s n o t depend on i. If we denote Df^Vf^ by B for i G lb, we also have 
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Table 6.13: Estimates of v and n under different variance specification 

Spec, of Var(Yi) V V 

a + a 2r 
ar 

a 2r 
a 3r 

»7i={log 
m={ 
*?3={1 
r W l 

(s 2-y)/f 
log[s 2/y + 1 
og[s 2/y 2 + 1 
og\s 2/f + ] 

+ l l } 1 / 2 

nu /2 

logy - 0.5(T7I)2 

logy - 0.5(ry2)2 

logy - 0.5(T?3)2 

logy-0.5(f? 4 ) 2 

E>JpV.-p = bDTaVr£ = bB. The G E E for a and (3 are 

na rib 

A j ^ ( y i a - p a ) + Bj2(yib-pb) = 0 

«.=i ib=l 

aA E (y.-. - + b B - p») = 0 

«b=i 
t„=i 

which simplify to 

i.=l 

E ( y H - / i 6 ) = o. 
t t=i 

(6.12) 

It is straightforward to see that (6.12) is also the estimating equations for a and /? from I F M 

approach. • 

Poisson- lognormal m o d e l 

Let y = YsVil71 be the sample mean, and s2 = J2(v> ~ vY/(n ~ 1) be the sample variance. Using 

the estimating equations (6.8) and (6.9), the estimates of v and n based on different specification of 

the variance functions are listed in Table 6.13 (a = exp(i/ + ?72/2) and r = exp(r?2) — 1). Tables 6.14 

- 6.16 contain numerical results based on the simulation scheme outlined for the Poisson-lognormal 

model previously. From the results in Tables 6.14 - 6.16, we see that quasi-likelihood estimates may 

be fine when the variance function is correctly specified, but may be asymptotically inconsistent if 

the variance function specification is not correct. A similar problem occurs in the multivariate case. 

It is thus critical to assess the form of Var(y) as a function of E(Y) before choosing G E E as the 

estimation method. 
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Table 6.14: G E E assessment: (v,rj) = (0.99995,0.01), E(Y) = 2.718282, Var(Y) = 2.719, n = 1000, 
TV = 500 

fj ( V M S E ) r i v ( V M S E ) r i 
M L E 0.038 (0.0595) 0.997 (0.0190) 

a + O?T 0.047 (0.0705) 0.844 0.996 (0.0190) 1.0 
ar 0.831 (0.8214) 0.072 0.653 (0.3472) 0.055 

a?r 0.559 (0.5491) 0.108 0.843 (0.1587) 0.120 
a3r 0.356 (0.3461) 0.172 0.935 (0.0675) 0.282 

Table 6.15: G E E assessment: (v, n) = (-0.1,1.48324), E(Y) = 2.718282, Var(Y) = 62.02, n = 1000, 
N = 100 

fj ( V M S E ) »*1 v ( V M S E ) 
M L E 1.481 (0.0591) -0.094 (0.0559) 

a + a2r 1.418 (0.1488) 0.397 -0.016 (0.1790) 0.313 
ar 1.724 (0.2743) 0.215 -0.497 (0.4361) 0.128 

a2r 1.436 (0.1347 0.439 -0.042 (0.1621) 0.345 
a3r 1.126 (0.3767) 0.157 0.357 (0.4741) 0.118 

Table 6.16: G E E assessment: a = 0.5, 8 = 0.5, rj = 0.01, n = 1000, N = 500 

a (VMSE) n 8 (VMSE) n fj (VMSE) n 
MLE 

a + a2r 
ar 
a2r 
a3r 

0.492 (0.037) 
0.492 (0.038) 0.985 
0.153 (0.349) 0.107 
0.262 (0.242) 0.154 
0.342 (0.164) 0.227 

0.502 (0.045) 
0.502 (0.045) 0.994 
0.499 (0.049) 0.916 
0.580 (0.096) 0.469 
0.593 (0.107) 0.419 

0.063 (0.078) 
0.071 (0.084) 0.921 
0.832 (0.822) 0.095 
0.624 (0.614) 0.127 
0.458 (0.448) 0.173 
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A p p e n d i x : N e w t o n - R a p h s o n m e t h o d for G E E 

We perform the model simulations and all M L E , I F M and G E E computations using programs in 

C written by the author. The code for the probit model incorporates the cases with covariates 

and with no covariates. For completeness, we provide here some mathematical details about the 

Newton-Raphson method that we used in the G E E estimation. To apply Newton-Raphson method, 

we need to evaluate both the estimating functions and the derivative of the estimating functions at 

arbitrary points of parameter vector. 

When the same regression parameter vector is common to all margins, the marginal mean function 

vector is /i t - = (pn(0),... ,pid(0))' where 0 = (0o,0i, • • • ,0p)''• Assume the correlation matrix in 

G E E for the ith subject is 

Ri — 

( 1 a,-i2 

1 

V 

a»2d 

1 / 

/ 2^i=i2_/j=i a/30 2^k=i oik

 a>,jkJ \ 

Then the estimating functions in G E E are 

t ( t) r^.-'A-(,-,, 

The estimating function corresponding to the mth regression parameter for the ith subject (i — 

1 , . . . , n, m = 0 ,1 , . . . ,p) is 

d 

£ 
J' = l 

1 dptj Uik — Pik 

Vi] 90m tT.fc 

After a few lines of calculations, we then have 

~®i.jk 

d^i„ 

dpq 

d 

E 
i=i L 

2pij - 1 dpij dpij yik - Pik 

2<rf, 60m 80q aik 

~®i,jk 

1 d2pjj ^ yik - pjk 

o-ij d0md0q t = 1 

, - - r .j yik - Uik 1 dpjj y > , , . , , , , .„ , ... 

0~ik 

'{yik - Pik)(2pik - 1) - 2o-jk dpjk 

o-ij dpm £f V 2afk 80q ' 

6.4 A combination of G E E and I F M estimation approach 

In section 6.3, we have observed that in some situations G E E provides a slightly more efficient 

marginal regression parameter estimation than I F M when the correlations of the responses are cor

rectly specified. With the assumption of models, a natural specification of Ri(a) is possible. If Ri(a) 
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can also be reasonably estimated, then G E E can be applied to obtain the marginal regression param

eter estimates. This leads to the new approach for estimating the marginal regression parameters 

(for some models): i) use I F M approach to estimate model parameters, thus obtain Ri(ot), ii) use 

G E E to re-estimate marginal regression parameters. In the following, we provide a few numerical 

results to illustrate this new approach. 

To be more general, we study the situation where regression parameters differ from margin to 

margin. G E E is extended to this situation. We basically compare G E E marginal estimates (when 

Ri(ot) from I F M estimation is used) to I F M estimates. The comparison is carried out by simulation. 

We assume a multivariate probit model, Yij = I(Zij < f3jo + (3j\Xij), as in section 6.3. The 

simulation parameters are d = 3,4,5, /30 = (0.7,0, —0.7,0,0.5)', /3, = (1,1.5,2,0.5, —0.5) with the 

first 3 components of /30, /3i for d = 3, and the first 4 components of fi0, /?, for d = 4, so on. The two 

situations of covariate are i) discrete where x^ = I(U < 0), U ~ uniform(—1,1), ii) continuous 

where Xij ~ /V(0,1/4). The latent correlation matrix is an exchangeable correlation matrix with all 

correlations equal to p = 0.5. The number of observations is 1000 and the number of simulations 

for each scenario is 1000. Table 6.17 contains the ratio r (r 2 = MSE(0,- / m ) /MSE(t? a e e_t7 m )) for a 

parameter 6, where 6gee-ifm means the estimate of 9 from combined G E E and I F M approaches. 

The calculation of M S E is defined in section 6.2. The Table 6.17 shows that there is some gain of 

efficiency with the new approach, since all r > 1. 

Table 6.17: A comparison of I F M to G E E with Ri(a) given 

margin 1 2 3 4 5 
fen fe! fen fei fen fei fen fei fen fei 

Xij discrete 
d= 3 
d = 4 
d= 5 

1.036 1.044 1.018 1.028 1.019 1.038 
1.046 1.047 1.057 1.060 1.042 1.064 1.040 1.082 
1.063 1.061 1.045 1.046 1.032 1.063 1.058 1.094 1.062 1.111 

X{j continuous 
d= 3 
d = 4 
d= 5 

1.000 1.055 1.006 1.053 1.003 1.027 
0.999 1.087 1.005 1.078 1.011 1.064 0.999 1.104 
1.004 1.101 1.009 1.063 1.011 1.082 1.002 1.101 1.002 1.110 

6.5 S u m m a r y 

In this chapter, we discussed the drawbacks of the G E E in a multivariate analysis framework and 

examined the efficiency of G E E approach relative to a model based likelihood approach. The purpose 

of such a study is to partially fill in what is lacking in the statistical literature. Our conclusion is that 
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G E E is sensitive to the specification of dependence (or correlation) structure; when the specification 

of dependence is far from the correct one, there is a substantial loss of efficiency with G E E parameter 

estimation. 

The application of G E E to multivariate analysis (longitudinal studies and repeated measures) 

seems to have grown in relative importance in recent years, but the G E E method does have draw

backs, possible inefficiency, and some assumptions that may be too strong. One should be cautious 

in the use of G E E , particularly for count data, unless one has a way to assess the assumptions. 



Chapter 7 

Some further research topics 

Many new ideas associated with the construction of multivariate non-normal models, and for es

timation and data analysis in multivariate models are advanced in this thesis. The I F M theory 

for dealing with multivariate models makes the parameters estimation and inference in multivariate 

non-normal models possible in many situations. More importantly, the research in this thesis may 

lead to some more potentially fruitful avenues of research. There is much room for further extensions 

of the ideas in this thesis to general multivariate analysis. 

In this final chapter, we mention a variety of research topics of special interest directly related 

to this thesis work. These topics may include: 

1. Comparison of different models and inferences for short and long discrete time series. Long 

discrete time series situations may include (a) n independent long time series Y j (i = 1,2,.. . ,n) , 

where Y j = (Yn, Y , 2 , . . . , Y; < ;) has length t,-; (b) m correlated times series from a single subject; (c) 

n independent subjects (i = l , . . . , n ) , and m* repeated measures are observed on each subject i 

over a long time period. General M C D and M M D models with I F M inference approach may not be 

efficient in investigating either the marginal behaviour or dependence structure with these long time 

series. Adaptation of M C D and M M D to general random effects models together with a relative of 

the I F M approach can be used in these cases of long time series for each subject. Some applications 

would be the modelling in environmental studies and health studies of longitudinal or time series 

nature. 

2. Models and inference for mixed multivariate responses (some continuous and some discrete 

variables). To analyze jointly multivariate discrete and continuous response data, appropriate multi

variate models with desirable properties (see Chapter 1) are required as the foundation for inferences. 

237 
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The analysis of dependence (or associations) between the discrete and continuous response variables 

would be interesting and important part of the modelling and inference process. There are some ob

vious extensions of M C D and M M D models for mixed multivariate response variables. Other classes 

of models based on specified conditional distributions for mixed multivariate response variables may 

also be promising. The extension of the inference procedures based on I F M for mixed multivariate 

response variables is also possible. There is interesting potential to develop applications for real life 

situation. Some recent references on this topic are Catalano and Ryan (1992) and Fitzmaurice and 

Laird (1995). 

3. Models for multinominal categorical responses with covariates. When the polytomous response 

variables do not have an ordered marginal structure, the existence of a M C D model becomes hard 

to justify since we are not able to justify the existence of latent continuous variables associated 

to the response variables. In the univariate situation, Cox (1970) proposed a model for unordered 

polytomous response variable. When the response variable Y takes m distinct values 2/1,2/2, • • • > 2/m 

and p regressor variables x = (xi,..., xp)', then a model for Y is 

E , = i e x p ( « > + Pi*) 

where a i +0'1x is assigned the value 0 for all x to make the parameters identifiable. Now suppose we 

have d correlated polytomous response variables (assume the dependence is well defined). Is there 

any suitable multivariate model for appropriately modelling the marginal behaviour as well as the 

multivariate dependence structure? What about the extension of M C D models? 

4. Extension to multivariate compositional data. Sometimes, the analytical problems of interest 

to scientists produce data sets that consist essentially of relative proportions and thus are subject 

to nonnegativity and constant sum constraints. These situations lead to the compositional data. 

The Dirichlet distribution provides the parametric model of choice when analyzing such data. But 

the covariance structure associated with Dirichlet random vectors is well-known to be limited to 

nonpositive. Hence compositional data that exhibit positive correlations cannot be modeled with 

the Dirichlet. Aitchison (1986) developed classes of logistic normal models partly in response to 

this shortcoming. Unfortunately, Aitchison's logistic normal classes do not contain the Dirichlet 

distribution as a special case. As a result, they exhibit interesting dependence structures but are 

unable to model extreme independence. It is possible to relate the compositional data modelling 

to the big family of multivariate copula model. The questions are: Can we have models which can 

model the complicated dependence or complicated independence structure (see Aitchison, 1986)? 

A n d what about the appropriate estimation and inference procedures? 
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Other research topics include: (i) modelling bf unequally spaced longitudinal data; (ii) modelling 

of multivariate data with spatial patterns; (iii) modelling of multivariate directional data; (iv) adap

tation of M C D and M M D models and the I F M approach to missing data; and (v) further studies of 

families of copulas with given bivariate margins (such as Molenberghs-Lesaffre construction). 

The above topics may accept some obvious extensions of this thesis work. The research ap

proaches for the above topics to be taken may make use of copula models, latent variables, mixtures, 

stochastic processes, and point process modelling. Inference can be based on the expansion of I F M 

approach. 



References 

Aitchison, J . (1986). The Statistical Analysis of Compositional Data. Chapman and Hall, New 

York. 

Aitchison, J . and Ho, C . H . (1989). The multivariate Poisson-log normal distribution. Biometrika, 

76,643-653. 

Akaike, H . (1973). Information theory and an extension of the maximum likelihood principle. In 

2nd Inter. Symp. on Information Theory, Petrov, B. N . and Csaki, F. (eds.), Akademiai Kiado, 

Budapest, 267-281. 

Akaike, H . (1977). On entropy maximization principle. In Application of Statistics, Krishnaiah 

(ed.), North-Holland, 27-41. 

Al-Osh, M . A . and Aly, E . A . A . (1992). First order autoregressive time series with negative 

binomial and geometric marginals. Commun. Statist. A, 21, 2483-2492. 

Al-Osh, M . A . and Alzaid, A . A . (1987). First-order integer-valued autoregressive (INAR(l)) 

process. J. Time Series Anal., 8, 261-275. 

Anderson, J. A . and Pemberton, J . D . (1985). The grouped continuous model for multivariate 

ordered categorical variables and covariate adjustment. Biometrics, 41, 875-885. 

Ashford, J . R. and Sowden, R. R. (1970). Multivariate probit analysis. Biometrics, 26, 535-546. 

Bahadur, R. R. (1961). A representation of the joint distribution of responses to n dichotomous 

items. In Studies in Item Analysis and Prediction, H . Solomon (ed.). Stanford Mathematical 

Studies in the Social Sciences VI . Stanford, California: Stanford University Press. 

Bonney, G . E . (1987). Logistic regression for dependent binary observations. Biometrics, 43, 951— 

973. 

Bradley, R. A . and Gart, J . J . (1962). The asymptotic properties of M L estimators when sampling 

from associated populations. Biometrika, 49, 205-213. 

240 



Catalano, P. J . and Ryan, L . M . (1992). Bivariate latent variable models for clustered discrete 

and continuous outcomes. J. Amer. Statist. Assoc., 87, 651-658. 

Chandrasekar, B. (1988). A n optimality criterion for vector unbiased statistical estimation func

tions. J. Statist. Plann. Inference, 18, 115-117. 

Chandrasekar, B. and Kale, B. K . (1984). Unbiased statistical estimation functions for the param

eters in the presence of nuisance parameters. J. Statist. Plann. Inference, 9, 45-54. 

Char, B. W. , Geddes, K . 0., Gonnet, G . H . , Monagan, M . B. and Watt. S. M . (1992). Maple 

Reference Manual. Watcom, Waterloo, Canada. 

Conaway, M . R. (1989). Analysis of repeated categorical measurements with conditional likelihood 

methods. J. Amer. Statist. Assoc., 84, 53-62. 

Connolly, M . A . and Liang, K . - Y . (1988). Conditional logistic regression models for correlated 

binary data. Biometrika 75 501-506. 

Consul, P. C . (1989). Generalized Poisson Distributions. Marcel Dekker, New York. 

Cox, D . R. (1970). The Analysis of Binary Data. Methuen, London. 

Cox, D . R. (1972). The analysis of multivariate binary data. Appl. Statist., 21, 113-120. 

Cramer, H . (1946). Mathematical Methods of Statistics. Princeton University Press, Princeton, 

NJ . 

Darlington, G . A . and Farewell, V . T . (1992). Binary longitudinal data analysis with correlation 

a function of explanatory variables. Biometrical J., 34, 899-910. 

Davis, P. J . and Rabinowitz, P. (1984). Methods of Numerical Integration, second edition. Aca

demic Press, Orlando. 

Efron, B. and Stein, C . (1981). The jackknife estimate of variance. Ann. Statist., 9, 586-596. 

Efron, B. (1982). T i e Jackknife, the Bootstrap and Other Resampling Plans. Society for Industrial 

and Applied Mathematics, Philadelphia. 

Fahrmeir, L . and Kaufmann, H . (1987). Regression models for non-stationary categorical time 

241 



series, J. Time Series Anal., 8, 147-160. 

Ferreira, P. E . (1982). Sequential estimation through estimating equations in the nuisance param

eter case. Ann. Statist., 10, 167-173. 

Fienberg, S. E . , Bromet, E . J., Follman, D . , Lambert, D . and May, S. M . (1985). Longitudi

nal analysis of categorical epidemiological data: a study of Three Mile Island. Environ. Health 

Perspectives, 63, 241-248-

Fisher, R. A . (1924). The conditions under which x2 measures the discrepancy between observation 

and hypothesis. J. Roy. Statist. Soc, 87, 442-450. 

Fitzmaurice, G . M . and Laird, N . M . (1993). A likelihood-based method for analyzing longitudinal 

binary responses. Biometrika, 80, 141-151. 

Fitzmaurice, G . M . and Laird, N . M . (1995). Regression models for a bivariate discrete and 

continuous outcome with clustering. J. Amer. Statist. Assoc., 90, 845-852. 

Fletcher, R. (1970). A new approach to variable metric algorithms. Computer Journal, 13, 317-

322. 

Gardner, W . (1990). Analyzing sequential categorical data: individual variation in Markov chains. 

Psychometrika, 55, 263-275. 

Genest, C . and MacKay, R. J . (1986). Copules archimediennes et families de lois bidimensionelles 

dont les marges sont donnees. Canad. J. Statist., 14, 145-159. 

Glonek, G . F. V . and McCullagh, P. (1995). Multivariate logistic models. J. R. Statist. Soc. B, 

57, 533-546. 

Godambe, V . P. (1960). A n optimal property of regular maximum likelihood estimation. Ann. 

Math. Statist., 31, 1208-1211. 

Godambe, V . P. (1976). Conditional likelihood and unconditional optimum estimating equations. 

Biometrika, 63, 277-284. 

Godambe, V . P. (1991). Estimating Functions. Oxford University Press, New York. 

242 



Goodman, L. A . and Kruskal, W . H . (1954). Measures of association for cross classifications. J. 

Amer. Statist. Assoc., 49, 732-764. 

Hoadley, B. (1971). Asymptotic properties of maximum likelihood estimators for the independent 

not identically distributed case. Ann. Math. Statist., 42, 1977-1991. 

Joe, H . (1993). Parametric family of multivariate distributions with given margins. J. Multivariate 

Anal., 46, 262-282. 

Joe, H . (1994). Lecture notes, Course given at Department of Mathematics and Statistics, Uni

versity of Pittsburgh, Pittsburgh, U S A . 

Joe, H . (1994). Multivariate extreme-value distributions with applications to environmental data. 

Canad. J. Statist., 22, 47-64. 

Joe, H . (1995). Approximations to multivariate normal rectangle probabilities based on conditional 

expectations. J. Amer. Statist. Assoc., 90, 957-964. 

Joe, H . (1996). Multivariate Models and Dependence Concepts, Draft book and Stat 521 course 

notes. Department of Statistics, University of British Columbia, Vancouver, Canada. 

Joe, H . (1996a). Families of m-variate distributions with given margins and m(m — l) /2 bivariate 

dependence parameters. In Distributions with fixed marginals, doubly stochastic measures and 

Markov operators, Sherwood, H . and Taylor, M . (eds.), IMS Lecture Notes - Monograph Series, 

Hay ward, C A . 

Joe, H . (1996b). Time series models with univariate margins in the convolution-closed infinitely 

divisible class. J. Appl. Probab., to appear. 

Joe, H . and Hu, T . (1996). Multivariate distributions from mixtures of max-infinitely divisible 

distributions. J. Multivariate Anal, 57, 240-265. 

Jorgensen B. and Labouriau, R. S. (1995). Exponential Families and Theoretical Inference, Lecture 

notes. Department of Statistics, University of British Columbia, Vancouver, Canada. 

Johnson, N . L. and S. Kotz (1975). On some generalized Farlie-Gumbel-Morgenstern distributions. 

Communication in Statistics, 4, 415-427. 

243 



Johnson, N . L . and S. Kotz (1977). On some generalized Farlie-Gumbel-Morgenstern distributions 

- II Regression, correlation and further generalizations. Communication in Statistics, A , 6, 485-

496. 

Joseph, B. and Durairajan, T . M . (1991). Equivalence of various optimality criteria for estimating 

functions. J. Statist. Plann. Inference, 27, 355-360. 

Kimeldorf, G . and Sampson, A . R. (1975). Uniform representations of bivariate distributions. 

Comm. Stat.-Theor. Meth., 4, 617-628. 

Lesaffre, E . and Molenberghs, G . M . (1991). Multivariate probit analysis: a neglected procedure 

in medical statistics. Stat, in Medicine, 10, 1391-1403. 

Kocherlakota, S. and Kocherlakota, K . (1992). Bivariate Discrete Distributions. Dekker, New York. 

Lawless, J . F. (1987). Negative binomial and mixed Poisson regression. Canad. J. Statist., 15, 

209-225. 

Liang, K . Y . and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. 

Biometrika, 73, 13-22. 

Liang, K . Y . , Zeger, S. L. and Qaqish, B. (1992). Multivariate regression analysis for categorical 

data. J. Roy. Statist. Soc, B, 54, 3-40. 

Lipsitz, S. R., Dear, K. B. G . and Zhao, L . (1994). Jackknife estimators of variance for parameter 

estimates from estimating equations with applications to clustered survival data. Biometrics, 50, 

842-846. 

Mahamunulu, D . M . (1967). A note on regression in the multivariate Poisson distribution. J. 

Amer. Statist. Assoc., 62, 251-258. 

McCullagh, P. and Nelder, J . A . (1989). Generalized Linear Models, second edition. Chapman and 

Hall, London. 

McKenzie, E . (1986). Autoregressive moving-average processes with negative-binomial and geo

metric marginal distributions. Adv. Appl. Probab., 18, 679-705. 

McKenzie, E . (1988). Some A R M A models for dependent sequences of Poisson counts. Adv. Appl. 

244 



Probab., 20, 822-835. 

McLeish, D . L. and Small, C . G . (1988). T i e Theory and Applications of Statistical Inference 

Functions. Lecture Notes in Statistics 44, Springer-Verlag, New York. 

Meester, S. G . and MacKay, J . (1994). A parametric modelfor cluster correlated categorical data. 

Biometrics, 50, 954-963. 

Miller, R. G . (1974). The jackknife - a review. Biometrika, 61, 1-15. 

Molenberghs, G . M . and Lesaffre, E . (1994). Marginal modeling of correlated ordinal data using 

a multivariate Plackett distribution. J. Amer. Statist. Assoc., 89, 633-644. 

Morgenstern, D . (1956). Einfache Beispeile zweidimensionaler Verteilungen. Mitteilungsblatt fur 

Matiematiscie Statistik, 8, 234-235. 

Muenz, L . R .and Rubinstein, L . V . (1985). Markov models for covariate dependence of binary 

sequences. Biometrics 41 91-101. 

Nash, J . C . (1990). Compact Numerical Methods for Computers: Linear Algebra and Function 

Minimisation, second edition. Hilger, New York. 

Nelder, J . A . and Wedderburn, R. W . M . (1972). Generalized linear models. J. Roy. Statist. Soc. 

A, 135,370-384. 

Prentice, R. L. (1986). Binary regression using an extended beta-binomial distribution, with dis

cussion of correlation induced by covariate measurement errors. J. Amer. Statist. Assoc., 81, 

321-327. 

Prentice, R. L. (1988). Correlated binary regression with covariates specific to each binary obser

vation. Biometrics, 44, 1033-1048. 

Petrov, V . V . (1995). Limit Theorems of Probability Theory. Clarendon Press, Oxford. 

Quenouille, M . H.(1956). Notes on bias in estimation. Biometrika, 43, 353-360. 

Rao, C . R. (1973). Linear statistical inference and its applications. 2nd ed. Wiley, New York. 

Read, T . R. C . and Cressie, N . A . C . (1988). Goodness-of-fit Statistics for Discrete Multivariate 

245 



Data. Springer-Verlag, New York. 

Rousseeuw, P. J . and Molenberghs, G . (1994). The shape of correlation matrices. T i e American 

Statistician, 48, 276-279. 

Sakamoto, Y . , Ishiguro, M . and Kitagawa, G . (1986). Akaike Information Criterion Statistics. 

K T K Scientific Publishers, Tokyo. 

Schervish, M . J . (1984). Multivariate normal probabilities with error bound. Appl. Statist., 33, 

81-87. 

Schweizer, B. and Wolff, E . F. (1981). On nonparametric measures of dependence for random 

variables. Ann. Statist., 9, 879-885. 

Seber, G . A . F. (1984). Multivariate Observation. Wiley, New York. 

Sen, P. K . and Singer, J. M . (1993). Large Sample Methods in Statistics. Chapman k Hall, New 

York. 

Serfling, R. J . (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York. 

Sklar, A . (1959). Fonction de repartition a n dimensions et leurs marges. Publ. Inst. Statist. Univ. 

Paris, 8, 229-231. 

Stein, G . Z., Zucchini, W . and Juritz, J . M . (1987). Parameter estimation for the Sichel distribution 

and its multivariate extension. J. Amer. Statist. Assoc., 82, 938-944. 

Stram, D . O. , Wei, L . J . and Ware, J . H . (1988). Analysis of repeated ordered categorical outcomes 

with possibly missing observations and time-dependent covariates. J. Amer. Statist. Assoc., 83, 

631-637. 

Teicher, H . (1954). On the multivariate Poisson distribution. Skandinavisk Aktuarietidskrift, 37, 

1-9. 

Thorburn, D . (1976). Some asymptotic properties of jackknife statistics. Biometrika, 63, 305-313. 

Tong, Y . L. (1990). The Multivariate Normal Distribution. Springer-Verlag, New York. 

Tukey, J . W . (1958). Bias and confidence in not quite large samples. Abstract in Ann. Math. 

246 



247 

Statist., 29, 614. 

Ware, J . H . , Dockery, D . W. , Spiro, A . Speizer, F . E . and Ferris, B. G . , Jr. (1984). Passive smoking, 

gas Cooking, and respiratory health of children living in six cities. American Review of Respiratory 

Disease, 129, 366-374. 

Zeger, S. L. and Liang, K. Y . (1986). Longitudinal data analysis for discrete and continuous 

outcomes. Biometrics, 42, 121-130. 

Zeger, S. L. , Liang, K . Y . and Albert, P. S. (1988). Models for longitudinal data: A generalized 

estimating equation approach. Biometrics, 44, 1049-1060. 

Zeger, S.L., Liang, K . - Y . and Self, S .G. (1985). The analysis of binary longitudinal data with 

time-independent covariates. Biometrika, 72, 31-38. 

Zhao, L . P. and Prentice, R. L. (1990). Correlated binary regression using a quadratic exponential 

model. Biometrika, 77, 642-648. 



Appendix A 

Maple programs 

This appendix contains a program written in Maple for Example 4.3 in Chapter 4. 

gl2pli := i/4+l/(2*pi)*arcsin(rl2); 

gl2p00 := g l 2 p l l ; g12pl0 := 1/2 - g l 2 p l l ; gl2p01 := gl2pl0; 

dgl2pll := d i f f ( g l 2 p l l , rl2);.dgl2p00 : = dgl2pii ; 

dgl2pl0 := diff(gl2pl0 , r l2 ) ; dgl2p01 := dgl2pl0; 

gl3pll := l/4+l/(2*pi)*arcsin(rl3); 

gl3p00 := g l 3 p l l ; gl3pi0 := i/2 - g l 3 p l i ; gl3p01 := gl3pl0; 

dgl3pll := d i f f ( g l 3 p l l , r l3 ) ; dgl3p00 := dgl3pll ; 

dgl3pl0 : = diff(gl3pl0, r l3 ) ; dgl3p01 := dgl3pl0; 

g23pll := l/4+l/(2*pi)*arcsin(r23); 

g23p00 := g23pll; g23pl0 :=i/2 - g23pil; g23p01 := g23pl0; 

dg23pll := diff (g23pll , r23); dg23p00 := dg23pll; 

dg23pl0 := diff(g23pl0, r23); dg23p01 := dg23pl0; 

g p l l l : = l/8+l/(4*pi)*(arcsin(rl2)+arcsin(rl3)+arcsin(r23)); 

gpllO := g l 2 p l l - g p l i l ; gpOll := g23pl l -gpl l l ; gplOl := g l 3 p i l - g p l l l ; 

gpOOl : = g23p01-gpl01; gplOO := gl2p!0-gpl01; gpOlO := gl2p01-gp011; 
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gpOOO := 1-gplll-gpliO-gpOll-gplOl-gpOOl-gplOO-gpOlO; 

111 := l /gpl l i *di f f (gpl l l , r l2 ) -2+ i /gpl l0*di f f (gpl i0 , r l2 ) -2 

+l/gplOi*diff(gpl01,rl2)-2+l/gp01i*diff(gp0il,rl2)-2 

+l/gplOO*diff(gplOO,rl2)-2+l/gp001*diff(gpOOl,rl2)'2 

+l/gp010*diff(gp010,rl2)-2+l/gp000*diff(gp000,rl2)-2; 

122 := l /gpl l l *di f f (gpl l l , r l3 ) -2+ i /gpl l0*dif f (gpl i0 , r l3 ) "2 

+l/gplOi*diff(gplOl,rl3)-2+l/gp011*diff(gpOil,rl3)~2 

+l/gplOO*diff(gpi00,rl3)-2+l/gp001*diff(gpOOl,rl3)*2 

+l/gp010*diff(gp010,rl3)~2+l/gp000*diff(gp000,rl3)"2; 

133 := l /gpill*diff(gplll ,r23)*2+l/gpll0*diff(gpll0,r23)~2 

+l/gpl01*diff(gpl01,r23)-2+l/gp0il*diff(gpOll,r23)*2 

+l/gpiOO*diff(gplOO,r23)-2+l/gp001*diff(gpOOl,r23)"2 

+l/gp010*diff(gpOlO,r23)*2+l/gp000*diff(gpOOO,r23)"2; 

112 := l / g p l l l * d i f f ( g p l l l , r l 2 ) * d i f f ( g p l l l , r l 3 ) 

+l /gpllO*diff(gpll0 ,r l2)*diff(gpll0 ,r l3) 

+l/gplol*diff(gpl01,rl2)*diff(gpl01,rl3) 

+l/gp011*diff(gp011,rl2)*diff(gp011,rl3) 

+l/gpiOO*diff(gpl00,rl2)*diff(gpl00,rl3) 

+l/gp001*diff(gp001,rl2)*diff(gp001,ri3) 

+l/gp010*diff(gp010,rl2)*diff(gp010,rl3) 

+l/gpOOO*diff(gpOOO,r12)*diff(gpOOO,rl3); 

113 := l / g p l l l * d i f f ( g p l l l , r l 2 ) * d i f f ( g p l l l , r 2 3 ) 

+l /gpllO*diff(gpll0,ri2)*dill (gpll0,r23) 

+l/gpl01*diff(gpl01,rl2)*diff(gpl01,r23) 

+l/gp011*diff(gp011,rl2)*diff(gp011,r23) 

+i/gplOO*diff(gpl00,rl2)*diff(gpl00,r23) 

+l/gp001*diff(gp001,rl2)*diff(gp001,r23) 

+i/gp010*diff(gp010,rl2)*difl(gp010,r23) 

+i/gpOOO*diff(gpOOO,ri2)*diff(gpOOO,r23); 

123 := l / g p l l l * d i f f ( g p l l l , r l 3 ) * d i f f ( g p l l l , r 2 3 ) 

+l/gpllO*diff(gpll0,rl3)*diff(gpll0,r23) 
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+l/gpl01*diff(gpl01,rl3)*diff(gpl01,r23) 

+1/gpO11*dif f(gpO11,r13)*diff(gpO11,r2 3) 

+l/gplOO*diff(gpl00,rl3)*dill(gpl00,r23) 

+l/gp001*diff(gpOOl,r13)*diff(gpOOl,r23) 

+l/gp010*diff(gp010,rl3)*diff(gp010,r23) 

+l/gpOOO*diff(gpOOO,rl3)*diff(gpOOO,r23); 

111 := s i m p l i f y ( I l l ) ; 122 := simplify(I22); 133 : 

112 := simplify(I12); 113 := simplify(113); 123 : 

E l l := l/gl2pll*dgl2pll"2+l/gl2pl0*dgl2pl0-2 

+l/gi2p01*dgl2p01-2+l/gl2p00*dgl2p0(T2; 

E22 := l/gl3pll*dgl3pll-2+l/gl3pl0*dgl3pl0~2 

+l/gl3p01*dgl3p01~2+l/gl3p00*dgl3p0(T2; 

E33 := l/g23pll*dg23pll~2+l/g23pl0*dg23picr2 

-H/g23p01*dg23p01"2+l/g23p00*dg23p00"2; 

E12 := gpll l / (gl2pll*gl3pll )*dgl2pll*dgl3pll 

+gpll0/(gl2pll*gl3pl0)*dgl2pll*dgl3pl0+gpl01/(gl2plO*gl3pll)*dgl2pl0*dgl3pll 

+gplOO/(gl2plO*gl3plO)*dgl2plO*dgl3plO+gp011/(gl2p01*gl3p01)*dgl2p01*dgl3p01 

+gp010/(gl2p01*gl3p00)*dgl2p01*dgl3p00+gp001/(gl2p00*gl3p01)*dgl2p00*dgl3p01 

+gp000/(gl2p00*gl3p00)*dgl2p00*dgl3p00; 

E13 := gplll/(gl2pll*g23pll)*dgl2pll*dg23pll 

+gpllO/(gl2pll*g23plO)*dgl2pll*dg23plO+gpl01/(gl2plO*g23p01)*dgl2plO*dg23p01 

+gplOO/(gl2plO*g23pOO)*dgl2plO*dg23pOO+gp011/(gl2p01*g23pll)*dgl2p01*dg23pll 

+gp010/(gl2p01*g23pl0)*dgl2p01*dg23pl0+gp001/(gl2p00*g23p01)*dgl2p00*dg23p01 

+gpOOO/(gl2p00*g23p00)*dgl2p00*dg23p00; 

E23 := gpiil/(gl3pll*g23pli)*dgl3pil*dg23pll 

+gpll0/(gl3pl0*g23pl0)*dgl3pl0*dg23pl0+gpl01/(gl3pll*g23p01)*dgl3pll*dg23p01 

+gplOO/(gl3plO*g23pOO)*dgl3plO*dg23pOO+gp011/(gl3p01*g23pll)*dgl3p01*dg23pll 

+gp010/(gl3p00*g23pl0)*dgl3p00*dg23pl0+gp001/(gl3p01*g23p01)*dgl3p01*dg23p01 

+gpOOO/(gl3p00*g23p00)*dgl3p00*dg23p00; 

E l l := s impli fy(El l ) ; E22 := simplify(E22); E33 := simplify(E33); 

E12 := simplify(E12); E13 := simplify(E13); E23 := simplify(E23); 

= simplify(133); 

= simplify(123); 



with(linalg); 

I := matrix(3,3, [111,112,113,112,122,123,113,123,133]); 

Iinv := evalm(I~(-1)); 

M:= matrix(3,3, [Ell,E12,E13,Ei2,E22,E23,E13,E23,E33]); 

Minv := evalm(M~(-1)); 

D := matrix(3,3,[Ell,0,0,0,E22,0,0,0,E33]); 

Dinv := evalm(D*(-1)); 

Jinv := evalm(Dinv ft* M ft* Dinv); 

map(simplify,evalm(Jinv-Iinv)); 

det(evalm(Jinv-Iinv)); 


