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Abstract

This thesis presents research on modelling, statistical inference and computation for multivariate
discrete data. I address the problem of how to systematically model multivariate discrete response
data including binary, ordinal categorical and count data, and how to carry out statistical inference
and computations. To this end, I relate the multivariate models to similar univariate models al-
ready widely used in applications and to some multivariate models that hitherto were available but
scattered in the literature, and I introduce new classes of models.

The main contributions in this thesis to multivariate discrete data analysis are in several distinct
directions. In modelling of multivariate discrete data , we propose two new classification of mul-
tivariate parametric discrete models: multivariate copula discrete (MCD) models and multivariate
mizture discrete (MMD) models. Numerous new multivariate discrete models are introduced through
these two classes and several multivariate discrete models which have appeared in the literature are
unified by these two classes. With appropriate choices of copulas, these two classes of models allow
the marginal parameters and dependence parameters to vary with covariates in a natural way. By
using special dependence structures, the models can be used for longitudinal data with short time
series or repeated measures data. As a result, the scope of multivariate discrete data analysis is sub-
stantially broadened. In statistical inference and computation for multivariate models, we propose
the inference function of margins (IFM) approach in which each inference function is a likelihood
equation for some marginal distribution of a multivariate distribution. Examples where the approach
applies are the multivariate logit model with the copulas having certain closure properties and the
multivariate probit model for binary data. This general approach makes the estimation of parame-
ters for the multivariate models computationally feasible. The corresponding asymptotic theory, the
estimation of standard errors by the Godambe information matrix as well as the jackknife method,
and the efficiency of the IFM approach relative to full multivariate likelihood function approach

are studied. Particular attention has been given to the models with special dependence structure

il



(e.g. thé copula dependence structure is exchangeable or AR(1) type if applicable), and efficient
parameter estimation schemes based on IFM (weighting approach and pool-marginal-likelihood ap-
proach) are developed. We also give detailed assessments of the efficiency of the GEE approach for
estimating regression parameters in multivariate models; this is lacking in the literature. Detailed
data analyses of existing data sets are provided to give concrete application of multivariate models

and the statistical inference procedures in this thesis.
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Basic Notation and Definitions

The following notation and definitions are used throughoﬁt the thesis.

1. cdf stands for cumulative distribution function; pdf stands for probability density function, and

pmf stands for probability mass function; Pr stands for probability of.

2. rv stands for random wariable or random vector depending on the context; iid stands for

independent and identically distributed.

3. BVN and MVN are the abbreviations for bivariate normal and multivariate normal respec-

tively.

4. CUOM is the abbreviation for closure under taking of margins. MUBE is the abbreviation
for model univariate and bivariate expressible. PUBE is the abbreviation for parameter uni-
variate and bivariate expressible. MPME is the abbreviation for model parameters marginally

expressible. (Definitions given in Section 2.1.)

5. ML and MLE are the abbreviations for mazimum likelihood and mazimum likelihood estimates

or estimation. An MLE of @ will usually be denoted by 8.

6. IFM and IFME are the abbreviations for inference functions of margins and inference functions
of margins estimates or estimation. An IFME of 8 will usually be denoted by 8. IFS is the

abbreviation for inference functions of scores.

7. MCD and MMD are the abbreviations for multivariate copula discrete and multivariate mizture

discrete.

8. The symbol “O” indicates the end of a definition, the statement of assumptions, a proof, a

result, or an example.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

For a vector or matrix, the transpose is indicated with a superscript of T or /, depending on

convenience in the context.

All vectors are column vectors; hence transposed vectors such as X', z’ (or X7, 2T) are row

vectors.

RF = {x: x=(21,...,2),—0 < z; < oo for j = 1,...,k} denotes the k-dimensional

Euclidean space.
d is used for dimension of the multivariate response vector of multivariate distribution.

Boldfaced Roman upper case letter Y = (Y3,...,Ys)’, usually with subscripts, is used to
denote a response random vector and y is used for the observed value of this response vector.

A vector of explanatory variables or covariates is usually denoted by x or w.

Boldfaced Roman upper case letters X,Y,Z and so on, usually with subscripts, are used

' for (random) vectors, boldfaced Roman lower case letters x,y,z and so on are used for the

observed vector values.

Roman upper case letters X,Y,Z and so on, usually with subscripts, are used for random

variables, roman lower case letters z,y, z and so on are used for the observed values.

Greek boldfaced lower case letters, often with subscripts, are used for a collection of parameters
of families of distributions, e.g. &, 8,8,8. They are in vector format. Greek lower case letters,

often with subscripts, are used for parameters of families of distributions, e.g. o, 3,8, 6.

Greek upper case letters ©, ¥ are used for a set of parameters (often dependence parameters)

in multivariate family, they are mostly in matrix format.
R is the symbol for parameter space, usually & C IR for some k.

Script Roman upper case letters F and G are used for classes of functions or distribution

families.
F, G, H are the symbols for a (multivariate) cdf.

For a d-variate cdf F', the set of its marginal distributions is denoted as {Fs : S € Sy}, where
Sq is the set of non-empty subsets of {1,...,d}. For a specific S, the subscript is written

without braces, e.g., Fi,..., Fg, Fia, Fia3, etc..
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23.

24.

25.

26.

27.

We define the pdf or pmf of Y at y = (y1,...,ya) as Pig..q(y1 - - - ya) or simply P(y:1---ya),
with the corresponding jth marginal Pj(y;), the bivariate (7, k) marginal P;x(y;jyx), and so
on. We also write P(y; - -y4;8) to denote that the pdf or pmf of Y depends on a parameter

(or parameter vector) 8.

The frequency of observing a particular outcome (y1,...,¥4)’ In a data set is denoted by
ny2..a(y1 - -ya) or simply n(y; - - - yq). The frequency corresponding to the jth marginal out-
come y; is n;(y;), and that corresponding to the (7, k) bivariate marginal outcome y; and y;

is njx(y;jyx), and so on.

Z{yj} means the summation over all possible different values of y;. E{z1<y1,..‘,x¢<y4} means

the summation over all possible different vector values of x = (z1,...,z4) which satisfy
{r1 <y, .., 2a < ya} z{y;--ya}\{yﬂ means the summation over all possible different vector
value y = (y1,...,¥q4) with the jth component absent, and so on.

U(a, b) denotes the uniform distribution on the interval [a,d]. N(u,0?) denotes the univariate
normal with mean p and variance 0?. N4(p, L) denotes the d-variate normal with mean
vector p and covariance matrix X; ®4(x;p, L) (or ®4(x)) denotes the corresponding cdf and

da(x, p, X) (or ¢4(x)) the pdf.
The partial derivative of a scalar function (), 8v(8)/88, is the ¢ x 1 vector

(3.2

where 6,,...,8, are the components of the vector 8.

The partial derivative of a vector function ¥ = (¢1(8), ..., ¥(8)), 0¥/88', is the r x ¢ matrix

o i(8) - 5vi(6)
i ¥r(0) - v (6)
where 01, ...,68, are the components of the vector 6.
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Chapter 1

Introduction

This chapter starts by discussing the structure of the multivariate data for which we are going
to build appropriate multivariate models. We motivate our thesis research through reviewing and
criticizing the relevant literature on the modelling of the multivariate discrete data.

This chapter is organized in the following way. In section 1.1, we introduce the multivariate
data structure, for which we are going to develop multivariate models. In this section, we discuss in
detail multivariate binary, multivariate ordinal categorical and multivariate count data. The models
developed in this thesis are general in nature, but the illustrative examples will be mainly based on
the forementioned three types of multivariate discrete data. In section 1.2, we briefly summarize and
criticize the relevant statistical literature on the modelling of data of the types described in section
1.1, point out the inadequacies thereof, and thus motivate our thesis research. In section 1.3, we
outline some desirable features of multivariate models and briefly discuss some of my understandings

about statistical modelling. Section 1.4 provides an overview of the thesis.

1.1 Multivariate discrete response data

The data structure

Many data sets consist of discrete variables. Familiar examples of such variables are religion, na-
tionality, level of education, degree of disability, attitude to a social issue, and the number of job
changes for an individual during a certain period of time. These variables are categorical or count,

they may be unordered (religion, nationality) or ordered (degree of disability, attitude to a social

issue). In real life, what is more complicated is that often the discrete data are multivariate and
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Table 1.1: The structure of general multivariate discrete data

d-variate resp. margin-indep. cova., margin-dep. cova.
Y11 - Yid L1 T1p 2111 " A11pyy .-+ 21dl "' Zldpg
Yi1 - Yid Ziy " Tip Zi11 " Zilpys, -+ Zidl " Zidpg
Ynl " Ynd Ini " Tnp Znl1l " Znlpys ) Zndl " zndgd

the multiple measurements may be interdependent in some way. The dependence may be general or
special. The multivariate data structure can be further complicated by having missing data, random
covariates and so on.

In this thesis, we shall concentrate mainly on multivariate discrete response data, with or without
covariates. The general multivariate discrete data set of interest is given in Table 1.1. The data
structure in Table 1.1 consists of basically three parts: d-dimensional discrete response observations
y: = (%i1,...,%a), a margin-independent covariate vector of p components x; = (#;1,...,%ip),
that is, a covariate vector which is constant across margins, and d margin-dependent (or marginal
specific) covariate vectors z;y, . . » Azjfij,Wkle_,re Zij = (’;,-j;, ceny z,:jpj)’ is a vector of p; components for
the jth margin, j = 1,...,d,i=1,...,n. In the longitudinal or repeated measures settings, the
marginals might be defined by successive points in time. In these situations, we can call the margin-
independent covariates time-independent, that is, constant across times, and the margin-dependent
covariates time-dependent. The response vector y; can be measures on d variates with general or
special dependence structure, such as multiple measures from a human, a litter of animals, a piece
of equipment, a geographical location, or any other unit for which the observations are a collection
of related measures. The measures can be spatial or temporal.

One way to make inferences from such a data structure is through a multivariate parametric
model. (Nonparametric multivariate inference requires much more data than parametric multivariate
inference.) The development and analysis of suitable models for the multivariate data in Table 1.1

are the main objectives of this thesis.

Some typical multivariate discrete data

Binary data. Binary data arises when measurements can have only one of two values. Conventionally

these are represented by 0 and 1, with 1 usually representing the occurrence of an event and 0

representing non-occurrence. For example, the reaction of a living organism to some material, often
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observed as presence or absence of the reaction (usually called quantal response), is binary. Alive
throughout a specified period or died during the period, won or lost, success or failure in a specified
task, gender, agree or disagree, are all examples of sources of binary data. Multivariate binary data
are frequent in statistical applications. Whenever multivariate data are coded, for each dimension, as
one of two mutually exclusive categories, the data are multivariate binary. In the more complicated
situation, covariates can be included when one is considering binary response data. An example of

multivariate binary data is the Six Cities Study case analyzed in subsection 5.2.1.

Ordinal categorical data. An ordinal variable is one that has a natural ordering of its possible values,
but for which the distances between the values are undefined, such as a four-category Likert scale.
Ordinal categorical (or ordered categorical) response data, often accompanied with a set of coyari-
ates, arise frequently in a wide va'riety of experimental studies, such as in bioassay, epidemiology,
econometrics and medicine. For example, in medicine it may be possible to classify a patient as,
say, severely, moderately or mildly ill, when a more exact measurement of the severity of the disease
is not possible; the covariates may be age, gender and so on. With ordinal variables, the categories
are known to have an order but knowledge of the scale is insufficient to consider them as forming
a metric. We may treat the ordinal categories simply as nominal categories — which is unordered
categorical measures, but by doing so the valuable information of order is lost. So the consideration
of the order is important for optimal information extraction. For an ordinal variable, it is often
reasonable to assume that the ordered categories correspond to non-overlapping and exhaustive in-
tervals of the real line. Multivariate ordinal data are frequent in applications. Whenever multivariate
response variables are each ordinal categorical, the data are multivariate ordinal categorical. More
complicated situations include covariates for each of the response variables. A case of multivariate
ordinal data from the Three Mile Island (TMI) nuclear power plant a,cci(ientv stud‘y can be found in

subsection 5.2.2.

Count data. Data in the form of counts appear regularly in life. In the simplest case, the number
of occurrences of some phenomena on each unit are counted. Because no explanatory variable
(e.g. time, treatment) distinguishes among these observed events, they can be aggregated as single
numbers, the counts. Examples of count data are the counts of pest eggs on plant leaves, the counts
of bacteria in different kinds of bacteria colonies, the number of organic cells with fixed number
of chromosome interchanges produced by X-ray irradiation, etc.. Consul (1989) discussed many

count data examples in a variety of situations, including home injuries, and strikes in industries.

Other examples include the number of units of different commodities purchased by consumers over a
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period of time, the number of times authors cited over a number of years, spatial patterns of plants,
the number of television commercials, or the number of speakers in a meeting. Multivariate count
data are also frequent in applications. Whenever multivariate response variables are each count in
nature, the data are multivariate count. The more complicated situations also include covariates to

the response variables. An example of multivariate count data can be found in subsection 5.2.3.

1.2 Review of literature and research motivation

For the data types we have seen in section 1.1, one of the questions is how to build a model or a
probability distribution as an approximation to the stochastic phenomenon of multivariate nature,
and based on the available data, to estimate the distribution, and make some inference or predictions.
For this purpose, the construction of an appropriate probability distribution or statistical model in
accordance with the available data generated by the stochastic phenomenon is essential.

Models for univariate discrete data have been studied extensively. The well-known generalized
linear models for a univariate variable are such examples (McCullagh and Nelder 1989, Nelder and
Wedderburn 1972). However, general studies on multivariate models for the type of data outlined
in Table 1.1 are lacking in the statistical literature. One difficulty with the analysis of nonnormal
multivariate data (including continuous and discrete data) has been the lack of rich classes of models
such as the multivariate Gaussian. Some isolated studies on the modelling of a particular data set
or under a particular multivariate setting of the type of data in Table 1.1 have appeared in the
literature. These studies can be classified in general as being based either on a completely specified
probability model or on a-partially specified probability model. We overview some of them here, and

point out their drawbacks or weaknesses.

Completely specified probability models

Ezponential family: Following Cox (1972), the probability distribution for a binary random vector

Y can be represented as a saturated log-linear model

d
P(y) =exp(uo+ Y ujyi + D ujkt¥e + - + U12.ay1 - - Ya) (1.1)
j=1 i<k
where ug is a normalizing constant. The 2¢ — 1 parameters u1,...,uq, ..., Uiz, 413, ey U(d—1)d

.. U12..4 vary independently from —oo to co. Expressions similar to (1.1) can also be found in

Zhao and Prentice (1990), Liang et al. (1992) and Fitzmaurice and Laird (1993). The representation
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(1.1) is not closed under taking of margins (see Section 2.1 for a definition). In fact, if we write
P(y1y2) = exp(uf + Z?:l ujy; + ui,y1y2), then uf, uj and uj, must depend on all the parameters |
%0, %j, Uk, - .., U12...4. This fact makes the interpretation of the parameters u;, u;i, ..., u12...4 very
difficult, and it is not clear how covariates could be included. For the general form, there are too

many parameters.

Bahadur representation: Bahadur (1961) gave a representation of the distribution for a binary

random vector Y, in terms of the moments:

d
P(y) = H P;(1)% P (O)I_yj[l + ijkejek + Z piriejerer + -+ -+ p1a..4€1€2 - - - €4} (1.2)
j=1 J<k j<k<l

where e; = (y; — Pj(l))/\/m, and p;r = E(ejer), ..., p12..a = E(eiez---e4). This rep-
resentation has the closure property under taking of margins, but the parameterization may not
be desirable since the p;;’s and the parameters of higher order are constrained by the marginal
probabilities (see Prentice 1988), and the extension to include covariates may be difficult. For the

general form, there are also too many parameters for the model to be useful.

Multivariate Poisson convolution-closed model: Teicher (1954) and Mahamunulu (1967) discussed a
class of multivariate Poisson convolution-closed models. For example, a trivariate Poisson convolution-

closed model has the stochastic representation
(11,75, Ys)déf(Xx + X12 + X3+ X123, X2 + X12 + Xos + X123, X3 + X3 + Xo3+ X123)  (1.3)

where X, X2, X3, X12, X13, X23, X123 are independent Poisson rv’s with parameters A, Ay, A3, A1,
A13, A2s, A123 respectively. These models may be suitable for counts in overlapping regions or time
periods if the Poisson process is a reasonable model of the underlying count process. The model has a
closure property under taking of margins, but it is not “model univariate-bivariate expressible” (see
Chapter 2 and 4Example 2.5 for further explanation of this expression), and it can only accommodate

multivariate count data with a limited type of dependence range (positive dependence).

Ezchangeable mizture models: Prentice (1986) gives an expression for a joint distribution of a binary

r'andom vector Y, with

o+ 1) 1525 (1 = p +7d)
[1520(1 +74)

where 0 < p<1,m=Y1+---+Yzand ¥ > —(d—1)~! min{p, 1 —p}. The model (1.4) is an extension

P(y) = (1.4)

of a beta-Bernoulli model derived from the mixture model P(y) = fol p¥+(1 — p)4¥+¢(p) dp, where

Yy = E?=1 y; and g(p) is the density of a Beta(a, 8) distribution. This model implies equicorrelation
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of Y with correlation parameter of (1 +71)~1. The representation (1.4) has the closure property
under taking of margins, but it is limited to equicorrelation of response variables. Joe (1996)
has discussions on the range of negative dependence on this family. Discussions of extensions to

incorporate covariates appeared in Prentice (1986) and Connolly and Liang (1988).

Multivariate probit model: A d-variate probit model for binary data is -
Y; =1(Z; <z), j=1,...,d, (1.5)

where I(-) is indicator function, Z = (Zy,...,Z4) ~ N(0,0), © = (;%) is a correlation matrix.
The z;’s are often referred to as cut-off points. Ashford and Sowden (1970) used the bivariate probit
model for binary data to describe a coal miner’s status of development of breathlessness (present or
absent) and wheeze (present or absent) as a function of the miner’s age. Anderson and Pemberton
(1985) used a trivariate probit model for the analysis of an ornithological data set on the three aspects
of colouring of blackbirds. A general introduction to the multivariate probit model is Lesaffre and
Molenberghs (1991). The multivariate probit model has many nice properties, such as closure under
taking of margins, model univariate-bivariate expressibility, and a wide range of dependence. MLE
is considered but is computationally more difficult as d increases. New approaches to estimation

and inference are explored in this thesis.

Multivariate Poisson-lognormal model: Aitchison and Ho (1989) studied a model for count random

vector Y, with
=) oo 4
P(y):/0 /0 T £ 23)9(0) ddy - -dha. (1.6)
ji=1

where f;(y;;A;) is a Poisson pmf with parameter A; and g(A) is the density of a multivariate
lognormal distribution. This model also has' many nice properties, such as closure under taking of
margins, model univariate-bivariate expressibility, and a wide range of dependence. Again the MLE

is computationally difficult.

Molenberghs-Lesaffre model: A model that may be suitable for binary and ordinal data is studied in
Molenberghs and Lesaffre (1994). This model can accommodate general dependence structure from
the Molenberghs-Lesaffre construction (Joe 1996) with bivariate copulas, such as in Joe (1993). The
multivariate objects in the Molenberghs-Lesaffre construction have not been proved to be proper
multivariate cbpulas, but they can be used for the parameters that lead to positive orthant proba-

bilities for the resulting probabilities for the multivariate binary vector.

Other miscellaneous models (some for time series or longitudinal data):
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— Kocherlakota and Kocherlakota (1992) provide a good summary of bivariate discrete distribu-

tions (including bivariate Poisson, bivariate negative binomial, etc.).

~ Markov chain of first order for binary data with Pr(Yj41 = 1}Y; = 0) = P;;41(01) and
Pr(Yj4+1 = 1|Y; = 1) = P;j j4+1(11). It can be generalized to higher order Markov chains. Some
combinations of Pj j4+1(01), Pj j4+1(11) and Pr(Y;41 = 1) could be replaced by logistic functions
(but not all three) to incorporate covariates. Examples are in Darlington and Farewell (1992),

Muenz and Rubinstein (1985), Zeger, Liang-and Self (1985) and Gardner (1990).

- Poisson AR(1) time series, as in Al-Osh and Alzaad (1987) and McKenzie (1988). The bivariate
Poisson margin (for consecutive Y;’s) from this Poisson AR(1) time series is the same as a

bivariate margin of (1.3).

— Negative binomial AR(1) time series, as in McKenzie (1986), Al-Osh and Aly (1992) and
Joe (1996b). The model of Al-Osh and Aly has range of serial correlation depending on the

parameters of the negative binomial distribution (and hence is not very flexible).

— When the binary or count variables are observed sequentially in time, one could use a model
consisting of a product of a sequence of logit.models for binary data (logit of Y; given
Y1,...,Y_1,x) and of Poisson models for counts (Poisson of Y; given Yi,...,Y;_1,x). This
is proposed in Bonney (1987) and Fahrmeir and Kaufmann (1987). The advantage of such
models is that one can use widely available software for univariate logit and Poisson models.

One disadvantage of such models is that it would be difficult to predict ¥; based on x alone.

— Meester and MacKay (1994) studied a class of multivariate exchangeable models with the
multivariate Frank copula. The models have limited application since only exchangeable de-

pendence structures are considered.

— Glonek and McCullagh (1995) have a similar bivariate model to the Molenberghs-Lesaffre
model in that the dependence parameter is linear in covariates and the related bivariate copula
is the Plackett copula. Their multivariate extension appears to overlap with that of Molen-

berghs and Lesaffre (1994), but with a different model construction approach.

Partially specified probability models — generalized estimating equations approach

General application of many of the preceding models was impeded, however, by their mathemati-

cal complications and by the computational difficulty usually encountered in multivariate analysis.
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A different body of methodology, called the generalized estimating equations (GEE) apf)roach, has
been developed based on moment-type methods which do not require explicit distributional assump-
tions. References for this methodology are Liang and Zeger (1986) and Zeger and Liang (1986), Zhao
and Prentice (1990), Fitzmaurice and Laird (1993), among others. However the GEE approach has
several disadvantages mainly related to the modelling, inference, diagnostics checking and interpre-
tations. Furthermore, the GEE approach does not apply directly to multivariate ordinal data. A
detailed study of the GEE approach, including a discussion of some of its shortcomings, can be

found in Chapter 6.

Research motivation

In summary, although some approaches have appeared in the literature to model specific
instances/examples for the data in Table 1.1, there are at least two major features lacking in the

statistical literature in terms of modelling multivariate discrete data:

1. A unified, systematic approach to multivariate discrete modelling, with classes of models for
multivariate discrete data where some models in the class have nice properties (see section 1.3

for some desirable features of multivariate models).

2. A modelfitting strategy with computationally feasible parameter estimation and inference

procedures, with good asymptotic properties and efficiency.

This thesis makes contributions to these two lackings in multivariate discrete (more generally, non-
normal) data modelling. We study systematic approaches to the modelling of multivariate discrete
response data with covariates. The response types include binary, ordinal categorical and count.

Statistical inference and computational aspects of the multivariate nonnormal models are studied.

1.3 Statistical modelling

We discuss here two issues in statistical modelling. One is what we mean by statistical modelling
in general. The other is the construction of multivariate models with desirable properties. Other
aspects of statistical modelling as part of data analysis will be discussed in Chapter 5.

In practice, with a finite sample of data, to capture exactly the possibly complex multivariate

system which generated the data is impossible. The problem can even be more complicated than

modelling a system; it might be that the system itself does not exist and it is forever a hypothetical
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one. In statistical modelling, the specification of a particular model for the data is always somehow
arbitrary; what we hope is that the stochastic models we use may reflect relatively well the random-
ness or uncertainty in the system, as well as the significant features of the systematic relationships.
The statistical models should be considered as a means of providing statistical inference; they should
be viewed as tentative approximations to the truth. The most important consideration in using any
statistical method (or model) is whether the method (or model) can give insight into important
practical problems. All models are subjective in some degree. Often the modeller chooses those
elements of the system under investigation that should be included in the model as well as the mode
of representation. Modelling should not be a substitute for thinking and will only be effective if
combined with an interest in and knowledge of the system being modelled.

The construction of multivariate nonnormal models is not easy. For modelling purposes, we
would like to have parametric families of models that (i) cover the different types of dependence,
(i1) have interpretable parameters, and (iii) apply to multivariate discrete data. Some desirable

properties of a multivariate model are the following:

1. The model is natural. That is, the model is interpretable in terms of mixture, stochastic or

latent variable representations, etc..

2. Parameters in the model are interpretable. A parametric family has extra interpretability if
some of the parameters can be identified as dependence or multivariate parametefs, such that
some range of the parameters corresponds to positive dependence and some corresponds to
negative dependence, and it is desirable to have the amount of dependence to be increasing as

parameters increase.

3. The model allows wide and flexible range of dependence, with interpretable dependence pa-

rameters which are flexible to the needs for different applications.

4. The model extends naturally to include covariates for the univariate marginal parameters as
well as dependence parameters, in the sense that after the extension, we still have probabilistic

model and proper interpretations.

5. The model has marginally expressible properties, such as model parameters expressible by pa-
rameters in univariate and bivariate distributions property and closure property with extension

of univariate to bivariate and to higher order margins.

6. The model has a simple form, preferably with closed form representations of the cdf and

density, or at least is easy to use for computation, estimation and inference.
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Generally, it is not possible to achieve all of these desirable properties simultaneously, in which
case one must decide the relative importance of the properties and sacrifice one or more of them.
There is no known multivariate family having all of these properties but the family of multivariate
normal distributions may be the closest. Multinormal distributions satisfy (1), (2), (3), (4) and
(5) but not (6) since the multinormal has no closed form cdf. The mixture of max-id copulas (Joe
and Hu 1996) satisfy (1), (2), (3), (4) and (6) but only partially (5). In Chapter 3, these desirable

properties of a multivariate model will be used as criteria to compare different models.

1.4 Overview of thesis

This thesis consists of seven chapters. In Chapter 2, we develop the theoretical background for the
multivariate discrete models, statistical inference and computation prc')cedures. Two general classes
of multivariate discrete models are introduced; their common feature is that both rely on the copula
concept. Several new concepts related to multivariate models are p.roposed. The asymptotic theory
for parameter estimation based on the inference functions of margins (IFM) is also given in this
chapter. In Chapter 3, we study and compare many specific models in the two general classes of
multivariate models proposed in Chapter 2. Mathematical details for parameter estimation for some
of the models are provided. In Chapter 4, the efficiency of IFM approach relative to the classical
maximum likelihood approach is investigated. The major advantage of IFM is its computational
feasibility and its good asymptotic properties. We demonstrate that IFM is an efficient parameter
estimation approach when it is applicable. We also study the efficiency of the jackknife method of
variance estimation proposed in Chapter 2. In Chapter 5, some important issues such as a proper
data analysis cycle, model selection and diagnostic checking are discussed. Data analysis examples
illustrating modelling and inference procedures developed in this thesis are also carried out. In
Chapter 6, we study the usefulness and efficiency of the GEE approach which has been the focus of
many recent statistical applications dealing with multivariate and longitudinal data with univariate
margins\ covered by the theory of generalized linear models. In Chapter 7, the final chapter, we

discuss some further important research topics closely related to this thesis work. Finally, the

Appendix contains a Maple symbolic manipulation program example used in Chapter 4.




Chapter 2

Foundation: models, statistical

inference and computation

In this chapter, we propose two classes of multivariate discrete models: multivariate copula dis-
crete (MCD) models and multivariate mizture discrete (MMD) models. These two classes of models
provide a new classification of multivariate discrete models, and allow a general approach to mod-
elling multivariate discrete data. The two classes unify a number of multivariate discrete models
appearing in the literature, such as the multivariate probit model, multivariate Poisson-lognormal
model, etc. At the same time, numerous new models are proposed under these two classes. We also
propose an inferencefunctions of margins (IFM) approach to parameter estimation for MCD and
MMD models. This estimation approach is built on the general theory of inference functions (or
estimating equations). Asymptotic theory for IFM is developed and applied to the specific models
in Chapter 3. While similar ideas about the same kind of estimating functions for a specific model
have appeared in the literature, the general development of the procedure as an approach for the
parameter estimation for a class of multivariate discrete models, and the related asymptotic results,
are new. We also show that a jackknife estimate of the covariance matrix of the estimates from the
IFM approach is asymptotically equivalent to the asymptotic covariance matrix from the Godambe
information matrix. The jackknife procedure has the advantage of general computational feasibility.
These results are used extensively in the applications in Chapter 5. The efficiency of IFM versus the
optimal estimation procedure based on maximum likelihood estimation and the numerical assess-

ment of the efficiency of jackknife covariance matrix estimates compared with Godambe information

11
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maitrix are studied in detail in Chapter 4.

The present chapter is organized as follows. Section 2.1 introduces the mﬁltivariate copula mod-
els, some multivariate dependence concepts and a number of new concepts regarding the properties
of a multivariate model. In section 2.2, we introduce two classes of multivariate discrete models: the
multivariate copula discrete models and the multivariate miziure discrete models. These two classes
of models are the focus of this thesis, and specific models in these two classes will be extensively
studied in Chapter 3. In section 2.3, we propqsé an inference fu_nctz'ons' of margins (IFM) approach
for the parameter estimation of MCD and MMD models; the theoretical foundation is built on the
theory of inference functions for the multi-parameter situation. Section 2.4 is devoted to the study
of the asymptotic properties of parameter estimates based on the IFM approach. Under regularity
conditions, the IFM estimators (IFME) for parameters are shown to be consistent and asymptoti-
cally normal with a Godambe information matrix as the variance-covariance matrix. These are done
for the models with no covariates as well as models with covariates. The extension of models with
no covariates to models with covariates will be made clear in this section. In section 2.5, we propose
a jackknife approach to the asymptotic variance estimation of IFME, and show theoretically that
the jackknife estimate of variance is asymptotically equivalent to the Godambe information matrix.
The importance of the jackknife estimate of variance will be demonstrated in Chapter 5 for real data

analysis.

2.1 Multivariate copulas and dependence measures

2.1.1 Multivariate distribution functions

We begin by recalling the definition of a distribution on R?.

Definition 2.1 A d-dimensional distribution function is a function F : R® — IR, which is right
continuous, with ‘

(l) limooF(yla"')yd):O) jzl,...,d, (u)yhmv]F(yl;,yd)zl
j—0

Yi——

and which satisfies the following rectangle inequality: For all (ay,...,aq), (b, ..., bq) with a; < bj,

j=1,...,d,
2

2
Z Z (=D)Frttha (g o za,) >0, (2.1)

ki=1 ka=1

where 51 = a;,zj2 = b;. m]
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The following are several remarks related to Definition 2.1:
i. If F has dth order derivatives, then (2.1) is equivalent to 84F/8y; - - - Oyq > 0.

ii. Letting az,.. .,dd — —o0, then (2.1) reduces to F(b1,bs,...,b3) — F(a1,bs,...,b4) > 0,80 F
is increasing in the first variable. Similarly, by symmetry, F' is increasing in the remaining

variables.

iii. Let S be a subset of {1, ...,d}. The margins Fg of F(y1, ..., yq) are obtained by letting y; — oo
fori g S.

There are two important types of cdf generated from a random vector Y: discrete and continuous.
In the case of an absolutely continuous random vector Y, there is a corresponding density function

f(y1,...,yq) which satisfies f(y1,...,y4) > 0 and ffooo o ffooo F(y1---ya)dyr - -dyqg = 1. The cdf

can be written by
Ya 1

F(yla"'ayd):/ f(zl"’xd)dzl"'dxd.

In the case of a discrete random vector Y, the probability that Y takes on a value y = (y1,...,y4)

1s defined by the pmf

[e e} bt

P(yr---yq) =Pr(Y1 = w1,...,Ya = ya),

which satisfies P(y;---ya) 2 0and 35, -+ 30,3 P(y1---ya) = 1. The cdf can be written as

F(yl,---;yd)Z Z P(Z’l"'l‘d).
{z1<y1,...,xa<ya}
For a discrete random vector, the jth marginal distribution is defined by
Pi(y)= ), Pl va)
{y1-yal\{y;}
The (j, k) marginal distribution is defined by
Pir(yive) = > P(y1---ya)-
{y1-yaN\{yjuxl}

In general, the marginal distributions can be obtained from the previous remark (iii).

2.1.2 Multivariate copulas and Fréchet bounds

The multivariate normal distribution is used extensively in multivariate analysis because of its many

nice properties (see for example, Seber 1984). The wide range of successful application of the
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multivariate normal distribution is because of its flexibility in representing different dependence
structures rather than for physical reasons or as an approximation from the Central Limit Theorem.
The dependence structure plays a crucial role in multivariate modelling. But the multivariate normal
model is not sufficient for every multivariate modelling situation. To be able to model multivariate
data in general, a good understanding of the general parametric families of multivariate distribution
functions - the constructs which describe the characteristic of the random phenomena, is necessary.
One useful and well-known approach_ to understanding a multivariate distribution function F is to
express I in terms of its marginals and its associated dependence function C(-). This C(-) (or simply

C) is commonly called the copula.

Definition 2.2 (Copula) C is a copula if

Gy, ..., ya) = C(Gi(11), - - -, Ga(ya))-

s a distribution function, whenever Gy, ..., G4 are all arbitrary univariate distribution functions.

0

Let Y = (Y1,...,Ys) be a d-variate continuous random vector with cdf G(y1,...,y4) and with
continuous univariate marginal distribution functions G1(y1), ..., Ga(ya) respectively. Then U; =
G1(Y1), ..., Us = G4(Yq) are uniformly distributed on [0,1]. Let Gi',...,G;' be the univariate
quantile functions, where Gj_l is defined by Gj_l(t) =inf{y: G;(y) > t},5=1,...,d. The copula, C,
of Y = (Yi,...,Ys) is constructed by making marginal probability integral transforms on Y3, ..., Yy

to Uy, ..., Uq. That is, the copula is the joint distribution function of Uy, ..., Uy:
C(uy,...,uq) = G(GT (w),...,G7 (uq)). (2.2)

C' is non-unique if the G;’s are not all continuous. This point will be made clear in section 2.2. Sup-
pose Y is a continuous random vector with distribution function G(yi, ..., y4) and the corresponding
copula is C(uy, ..., uq) with density function ¢(uy, ..., uq). The density function of G(y1, .. .,yq) in
terms of copula density function is g(y1,...,ya) = ¢(G1(v1), ..., Ga(ya)) H;l:l 9;(¥5)-

The copula captures the dependence among the components of the random vector Y; it contains
all of the information that couples the d marginal distributions together to yield the joint distribution
of Y. This understanding is essential for the subsequent development of the multivariate discrete
models. - The copula was first introduced by Sklar (1959). For parametric families of copulas with

good properties, see Joe (1993, 1996). Through the copula, a distribution function is decomposed

into two parts: a set of marginal distribution functions and the dependence structure which is
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specified in terms of the copula. This suggests that one natural way to model multivariate data is
to find the dependence structure in terms of copula and the univariate marginals separately. This
important feature will be extended to form multivariate discrete models by using the copula concept
in section 2.2 and in Chapter 3. '

Next we define the Fréchet bounds.

Definition 2.3 (Fréchet bounds) Let F(x) be a d-variate cdf with univariate margins Fy, ..., Fy.
Then for Vz,,..., x4,

max{0, Fi(z1) + -+ Fa(zq) — (d = 1)} < F(z1,...,24) < min{Fi(z1),..., Fa(zqd)}, (2.3)

where min{F1(z1), ..., Fa(xq)} is the Fréchet upper bound, and max{0, Fi(z1)+- - -+F4(zq)—(d—1)}

is the Fréchet lower bound. a

We state here some important properties of the Fréchet bounds.

Properties

1. The Fréchet upper bound is a cdf.
2. The Fréchet lower bound is a cdf for d = 2.

3. The Fréchet upper bound copula is Cy(u) = max{ui,...,us}. For d = 2, the Fréchet lower

bound copula is Cr(u) = min{0, u; + u; — 1}.

_ For a proof of the properties 1,2,3 and other properties of Fréchet bounds, see Joe (1996).

Under independence, the copula is

d
C’I(ul,...,ud) = HUj,
j=1

and any copula must pointwise fall between max{0,u; + - - - + uqg — (d — 1)} and min{uy, ..., uq}.

2.1.3 Dependence measures

It is desirable for a parametric family of multivariate distributions to have a flexible and wide range
of dependence. For non-normal random variables, correlation is not the best measure of dependence,
and concepts based on linearity are not necessarily the best to work with. More general concepts

of positive and negative dependence and measures of monotone dependence are needed. These are

necessary for analyzing the type of dependence and range of dependence in a parametric family of
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multivariate models. For a thorough treatment of dependence concepts and dependence orderings,
see Joe (1996, Chapter 2).

In multivariate analysis, one of the most important activities is to model the dependence structure
among the random variables. The complexity of the dependence structure and its range often
determines the practical usefulness of the model. The dependence structure of a multivariate model
can be considered somehow equivalent to the copula; for example, Schweizer and Wolff (1981)
used copulas to define several naturaLl nonparametric measures of dependence for pairs of random
variables. The parameters in a multivariate copula reflect the degree of dependence among variables;
for example, the multivariate normal copula can be adequately expressed in terms of a correlation
matrix of which the elements consist of the pairwise correlation coefficients of a multinormal random
vector, with a large correlation coefficients indicating strong dependence among variables. However,
it is not always possible to express a copula in term of correlation coefficients of a set of random
variables. There is also a mathematical reason, e.g. mathematical simplicity, not to express a copula
in terms of correlation coefficients.

A measure of dependence for two random variables indicates how closely these two random
variables are related. The extreme situations would be mutual independence and complete mutual
dependence. Some very useful dependence concepts, such as positive and negative dependence
concepts, are based on the refinement of some intuitive understanding of dependence among random
variables. For example, for two random variables X and Y, the positive dependence concept means
roughly that large (small) values of X tend to accompany large (small) values of Y. Often in practice,
this knowledge of the amount of dependence is good enough for some modelling purposes.

Some well-known measures of dependence for two random variables are Pearson’s correlation
coefficient r, Spearman’s rtho and Kendall’s tau. These measures are defined as follows: Let X, Y
be random variables with continuous distribution function F'(z) and G(y) and copula C. We further
assume that (X1,Y1), (X2,Y2) and (X,Y) are independent with the same joint distribution. Then
Pearson’s correlation coefficient is » = Cov(X,Y)/ox0oy or

1 1,1 i .
/0 /0 [C(u, v) — uv] dF~1(u) dG~}(v),

Ox0y

r=

Kendall’s tau is 7 = Corr(sgn(X; — X),sgn(¥; —Y)) = 2Pr((X1 — X)(Y1 - Y)>0) -1, or

T:4/01/()10(u,v)dC(u,v)—1,

and Spearman’s rho is p = Corr(sgn(X; — X), sgn(Y2 = Y)) or

1 g1
p= 12/ / [C(u,v) — uv] dudv,
. o Jo
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where ox and oy stand for the standard deviation of random variables X and Y, sgn(-) denotes
the sign function. Both Kendall’s tau and Spearman’s rho are invariant to strictly increasing trans-
formations. They are equal to 1 for the Fréchet upper bound and -1 for the Fréchet lower bound.
These properties do not hold for Pearson’s correlation. Essentially, Pearson’s r measures the strength
of the linear relationship between two random variables X and Y, whereas the Kendall’s tau aﬁd
Spearman’s rho are measures of monotone correlation (strength of monotone relationship). For bi-
variate quantitative data, Spearman’s rho corresponds to the rank correlation (Pearson’s correlation
applied to the ranks of the 2 variables). That the copula captures the basic dependence structure
among the components of Y can be seen by the fact that all nonparametric measures of association,
such as Kendall’s tau, Spearman’s rho, are normed distances of the copula from the independence
copula. In general, it is difficult to judge the intensity of dependence for a given multivariate model
solely based on one dependence measure; the three common dependence measures can be used as a
reference for the attainable intensity of the dependences of a given multivariate model.

For ease of interpretation of the dependence structure, we would like to see the dependence
structure expressed in easily interpretable parameters. For example, for arbitrary marginals, a
question is how to express a copula in terms of the most common measures of association, such
as Pearson’s r (from some specific marginals), Spearman’s rho, or Kendall’s tau, in a natural way.
For some well-defined classes of distribution, such as the multivariate normal, Peafson’s correlation
coeflicient is the measure of choice. In other classes, other measures may be more appropriate.
(For example, the Morgenstern copula in subsection 2.1.4 is expressed in terms of Kendall’s tau
in a natural way.) A parametric family has extra interpretability if some of the parameters can
be identified as dependence parameters. More specifically, one would like to be able to say that
some range of the parameters corresponds to positive dependence and some corresponds to negative
dependence. Furthermore, it would be desirable to have the amount of dependence to be increasing

(decreasing) as parameters increase (decrease).

2.1.4 Examples of multivariate copulas

Some well-known examples of copula families are: the multivariate normal copula, Morgenstern
copula, Plackett copula, Frank copula, etc. Joe (1993, 1996) provides a detailed list of families of -
copulas with good properties. In Genest and Mackay (1986), a class of copulas, called Archimedean

copulas, is studied extensively. Most existing parametric families of copulas represent monotone

dependence structures where the intensity of the dependence is determined by the value of the
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dependence parameter. Some families, such as the normal family, possess a complete range of
dependence intensities whereas others, such as the Morgenstern family, possess only a limited range.
In fact, the Morgenstern copula never attains the Fréchet bounds; Spearman’s rho lies between
—1/3 and 1/3. For general modelling purposes, we would naturally seek families with a wide range
of dependence intensities.

Here we give some examples of multivariate copulas. More examples of multivariate copulas will

be given in Chapter 3 for constructing multivariate discrete models.

Example 2.1 (Multivariate normal copula) Let ® be the standard normal distribution func-
tion and let &4 be the d-variate normal distribution function with mean vector 0, variance vector 1

and correlation matrix ©. Then the corresponding d-variate copula is
C(ut, .., ug;0) = ®4(d" (u1),..., 07 (ug); 0), (2.4)

where every bivariate copula Cji(uj,ur;01), 1 < j < k < d, attains the lower Fréchet bound,
the independence case, or the upper Fréchet bound according to 6;; = —1,0, or 1. Pearson’s
correlation coefficient for the corresponding bivariate normal distribution is » = 6;¢. For Spearman’s
rho and Kendall’s tau, we can also establish the following relationships: 7 = (2/7)sin™!r and

p = (6/m)sin~*(r/2). With this copula, we have
G(z1,...,24) = C(Gi(z1),...,G4(24);0) = Qd(Q'l(Gl(zl)), e, <I>'1(Gd(zd)); 0),

where the Gj;’s are arbitrary cdfs. For example, we can have Gj(z;) = exp(z;)/(1 + exp(z;)),
Gj(zj) = ®(z;), Gj(2;) = 1—exp(—exp(z;)) or Gj(z;) = exp(—exp(—z;)). G;(z;) can even be taken
2

o exp(=[z])/2 dz,

where 0 < 7; < 1. These flexible choices of univariate marginal distributions combined with the

as a mixture distribution function, for example, Gj(z;) = m;®(z;) + (1 — m;)

complete range of the dependence parameter matrix © make the multivariate normal copula a

powerful copula for general modelling purposes. In Chapter 3, we will use this copula extensively.

O

Example 2.2 (Morgenstern copula) In the literature, sometimes the names of several people
are put together in naming this copula; Farlie-Gumbel-Morgenstern copula is one of them. In this
thesis, we simply call this copula the Morgenstern copula (Morgenstern 1956): One simpler version

of a d-dimensional Morgenstern copula, which does not include higher order terms, is

d d
C(ui,ug,...,uq) = 1+Zﬁjk(1—uj)(1—uk) Huh. (2.5)
i<k h=1
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It has density function

d
c(ut, uz, ..., ug) =1+ Zﬁjk(l — 2u;)(1 — 2ug).
i<k

The conditions on the parameters 6 so that (2.5) is indeed a copula are straightforward. For d =
3, the conditions can be conveniently summarized as follows: 14615+ 813+023 > 0, 14013 > 023+83,
14 612 > 013 + b3, 1 + 023 > 612 + 613, or more succinctly —1 + |f12 + 23] < 613 < 1 — [612 — ba3],
—1 < 612,013,023 < 1. Similar conditions for higher dimension d = 4,5, ..., can also be obtained by
considering the 2¢ cases for u; =0 or 1, i = 1,...,d, and verifying that c(uy,...,uq) > 0.

It is easy to see that for any j,k=1,...,d;j # k,
Cjk(u]‘,uk;ejk) = [1 +0jk(1 - Uj)(l — uk)] Ujug, -1< Hj)c <1,

with density function
cik(uj,ur) = 14 0;1(1 — 2u;)(1 — 2ug).

The dependence structure between U; and Ug is controlled by the parameter 6;;. Spearman’s rho
is p = 6;1/3. The maximum Pearson’s correlation coefficient over all choices of G; and Gj is 1/3
(when 6 = 1) which occurs for uniform marginals. For normal marginals, the maximum of the
Pearson’s correlation coefficient is 1/7; for exponential marginals it is 1/4; for double exponential
marginals, the limit is 0.281. Kendall’s tau is 26;;/9, with the maximum range of —2/9 to 2/9.
Because of the dependence range limitation, the Morgenstern copula is not very useful for general
modelling. Nevertheless, because the Morgenstern copula has such a simple form, it éan be used as
an investigation tool in, for example, simulation studies to check properties of some general modelling
procedures. An example of its use is provided in section 4.3. If a new procedure breaks down with
a distribution based on the Morgenstern copula, then it will probably have difficulties with other
models that admit a wider range of dependence.

A version of the d-dimensional Morgenstern copula with higher order terms has the following

density function

d
c(ur,ug, .. ua) =1+ D By, [l — 2uj,][1 — 2ujo]
J1<j2

) , (2.6)
D Biradall = 205, )[1 — 2uj,)[1 = 2u5, )+ - + Praea [J (1 - 2u5).
J1<j2<js Jj=1

This form expands the correlation structure of the Morgenstern distribution (2.5). For more details,

see Johnson and Kotz (1975, 1977). O
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2.1.5 CUOM, CUOM(k), MUBE, PUBE and MPME concepts

In this thesis, we are mainly interested in (a) parametric models (or copulas) with wide range
of dependence intensities, and (b) parametric models (or copulas) with certain types of marginal
distribution closure properties. In this subsection, we introduce several concepts for the marginal

behaviour of a distribution.

Definition 2.4 (Closure under taking of margins, or CUOM) A parametric model (copula)
15 satd to have the property of closure under taking of margins, if the bivariate margins and higher-

order margins belong to the same parametric family. m]

Definition 2.5 (Closure under taking of margins of order k, or CUOM(k)) A parametric
model (copula) is said to have the property of closure under taking of margins of order k, if the k-

variate margins belong to the same parametric family. a

Definition 2.6 (Model univariate-bivariate expressible, or MUBE) A parametric model
(copula) is called model univariate-bivariate expressible, or MUBE, if all the parameters in the
model can be expressed by parameters in the model’s univariate and bivariate marginal distributions.

a

Definition 2.7 (Parameter univariate-bivariate expressible, or PUBE) If a parameter in a
model can be expressed by the model’s univariate and bivariate marginal distributions, then this

parameter is called parameter univariate-bivariate expressible, or PUBE, under the model. m|

Definition 2.8 (Model parameters marginally expressible, or MPME) If all the parame-
ters in a model can be expressed by the model’s lower dimensional (lower than full) marginal distri-
butions, then the model is said to have the property of model parameters being marginally expressible

or the MPME property. m]

If we are thinking about parameter estimation, then the expressions such as “expressible” and
“be expressed” in the above definitions should be understood as “estimable” and “be estimated”
respectively from lower-dimensional margins.

A model with CUOM is also said to have reproducibility or upward compatibility under taking
of margins. Basically, the marginal distributions “reproduce” themselves under taking of margins.

This property is desirable in many applications in multivariate because initial data analysis often

starts with lower dimensional margins.
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A model with the MUBE property means that all the parameters appearing in the multivariate
distribution appear in univariate and bivariate marginal distributions. A model with the PUBE
property may have multivariate parameters of order higher than 3, but part of its parameters of
interest can be univariate or bivariate expressed without the involvement of other multivariate
parameters (e.g. trivariate parameters). A model with the MPME property means that all of its
parameters may be expressed marginally. These are important properties of a multivariate model
that allows for a simplification in the parameter estimation through the IFM approach (defined in
section 2.3).

Based on the above definitions, the following implications hold:

i. If a model has the CUOM property, then it also has the CUOM(k) property. If a model is not
CUOM(k), then it is not CUOM.

il. CUOM(r;) implies CUOM(rg) if »; > rg. That is, there exists a parameterization of the lower

dimensional margins so that the lower order closure property hold.

iii. If a model has the MUBE property, then all the parameters in this model are PUBE. Further-
more, this model is also MPME.

iv. If every parameter is PUBE, then the model is MUBE.

No other implications hold in general.
In the following, a few examples are used to illustrate the above concepts and some of their

relationships.

Example 2.3 (Models with CUOM and MUBE properties) A familiar example of a model
with the CUOM and PUBE properties is the multivariate normal model. The closure under taking
of margins for the multinormal distribution is somewhat stronger than the CUOM property defined

here, since it is also closed under taking of univariate margins, which is not required in our definition.

0

Example 2.4 (Models with MUBE property) For some copulas, such as (2.4) and (2.5), the
dependence structure can be expressed by a d x d matrix parameter © = (6;;) with ;; = 1. For such
a d-dimensional copula C(-;©), the 2-dimensional margins can be expressed by a bivariate copula

Cjk(-;0;1) with one dependence parameter 6, for j,k = 1,...,d;j # k. Thus each element in the

dependence structure described by the parametric matrix © = (;¢) can be equivalently expressed
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by a set of bivariate copulas Cji(-;8;%). The distribution with this copula is thus MUBE. Some

copulas such as (2.4) have a wide range of dependence; some such as (2.5) do not. m|

Example 2.5 (Models with CUOM but not MUBE property) We give two examples here:
a. Consider the generalized Morgenstern copula (2.6). This copula has the CUOM property, since
for any {j1,...,Jm} € {1,...,d} where m < d, it is straightforward to verify that c(u;,, uj,, ..., u;,)
has the form (2.6). But this generalized Morgenstern copula is not MUBE.
b. Another example is the multivariate Poisson distribution. Let us examine the trivariate Poisson
distribution. Let the random variables X 1, X2, X3, X12, X13, X923, X123 have independent Poisson
distributions with the mean parameters A1, Az, Az, Ar2, A13, A23, A123 respectively. We now construct
new random variables as follows:

Y1 = X1 + X1z + Xu3 + X3,

Y, = X3 + X12 + Xo3 + Xi23,

Ys = X3 + X153 + Xas + X123.
Using the convolution property of the Poisson, we derive that Y7 ~ Po(A1 + A1z + A1z + Ai23),
Ys ~ Po(Az + A1z + A2z + A123), Y3 ~ Po(Az + A1z + A2z + Aq23), that (¥1,Y2), (Y1,Ys), (Yo, Ys)
have bivariate Poisson distributions, and that (¥7,Y3, Y3) has a trivariate Poisson distribution. This
3-dimensional f”oissoh model has the CUOM property because the bivariate margins have a similar
stochastic representation. But it is not MUBE nor PUBE. In fact, with univariate and bivariate
margins, we can only estimate A; 4+ A3, Az + A2z and Ay3 + Aq23 from the (1,2) margins, A\; + A1,
A3+ Agz and A1z + Aqz3 from the (1, 3) margins, and Ay + A12, Az + A1z and Aoz + 123 from the (2,3)
margins. These nine linear expressions form only six independent linear expressions. Since we have
seven parameters in the model, thus the model is not MUBE. Furthermore, it can be easily verified

that no any single parameter can be univariate-bivariate expressed. a

Example 2.6 (Models with MUBE but not CUOM(2) property) Consider a trivariate cop-

ula constructed in the following way:

U2
0123(U1,U2,u3)=/ Cij2(us|z; 612)Caja(us|e; 623) de, (2.7)
0

where Cjjz and Cj; are conditional cdfs obtained from two arbitrary bivariate copulas families
Ci2(w1, ug; 612) and Ca3(uz, uz; 623). This trivariate copula has (1, 2) bivariate margin Cia(uy, us; 612),
(1, 3) bivariate margin Cy3(u1, u3) = fol Chja(uz; 612)C3)2(us|x; 823) dz, and (2, 3) bivariate margin
C23(uz, us; 623). Suppose we can let Cy3 be the Plackett copula

C(u,v;6) = 0.5p" {1+ n(u +v) — [(1 4 n(u + v))? — 46nuv]'/?}, 0< 6 < oo, (2.8)
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where 7 = § — 1, and we can let C3 be the Frank copula
C(u,v;6) = =61 log([¢ — (1 — ™) (1 —e%)]/€), 0< 6 < oo, (2.9)

where € = 1 — e~%. Then the model (2.7) is well-defined, and is obviously MUBE with 2 bivariate
dependence parameters 615 and 623. But the model (2.7) is not CUOM(2), since the Plackett copula
and the Frank copula are not in the same parametric family.

Generally speaking, given bivariate distributions Fi,, Fo3 with univariate margins Fy, F, F3, it

can be shown that

Y2
F123(y1, Y2, ¥3; 012,013, 023) = / C13(F1j2(y1l22; 612), Faj2(ys|z2; 023)) Fa(dzz) (2.10)

is a proper trivariate distribution with univariate margins Fy, F3, F3, (1,2) bivariate margin Fs,
and (2,3) bivariate margin F33. In (2.10), Fyj3, F3)2 are conditional cdfs obtained from Fj, Fas,
and C13 is a bivariate copula associated with the (1,3) margin (it can be interpreted as a copula
representing the amount of conditional dependence in the first and third univariate margin given the
second). Specifically, C13(u1, us) = uyug corresponds to conditional independence and Ci3(u1, u3) =
min{u;, u3} corresponds to perfect conditional dependence. The model (2.10) is MUBE, but it may
not be CUOM(2) - it is enough to see this fact by choosing Fy2 and Fy3 from different parametric
family. The model (2.7) is a special case of (2.10) obtained by letting Fy2, Fo3 be the Plackett and
Frank copulas respectively, and C13(u1, u3) = uius. The construction (2.10) is a special case of Joe

(1996a). D

Example 2.7 (Models with CUOM(2) but not CUOM property) Let F(u,v;8) = uv(l +
6(1 —u)(1 —v)), —1 < 8 < 1, be the bivariate Morgenstern family (2.5). Let Fj; and Fy3 are
in this family with parameters 8,3 and 8,3 respectively. Let Ci3(u1,u3) = ujug. The conditional
distributions are Fj|a(ujluz) = u; + 052u;(1 — u;)(1 — 2us), j = 1,3. Hence by (2.10), we have
1
Fiz(u1, u3) = / F1j2(u1|22) Fa2(usle2) dza = urus[l + 371012023(1 — w1 )(1 — ua)],
0
which is in the bivariate Morgehstern family (2.5) with parameter 612623/3. Hence the model
Uz
Fia3(u1, ug, us) =/ Fyj2(u1|22) Faa(us|22) dzo (2.11)
0

is CUOM(2). But (2.11) is not CUOM. In fact, we find

Fia3(uy, ug, us) =ujugua[l + 012(1 — up)(1 — ug) + 3f1912923(1 —u1)(1 — uz)+
023(1 — U2)(1 - U3) + 2912023(1 - ul)(l - U2)(1 - U3)(1 - 2“2)/3],

which is not in the trivariate Morgenstern family (2.5). , o
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Example 2.8 (Models with CUOM(ry) but not CUOM(r;) property, when rq < r;) Con-

sider a 4-variate copula model:

Fi234(u1, ug, u3, ug) =
urtouata[l + 012(1 — u1)(1 — u2) + 3‘1012023(1 —u1)(1 — uz) + 014(1 — uq)(1 — ug)+
B23(1 — uz)(1 — ug) + Oga(1 — ug)(1 — ug) + O34(1 — ug)(1 — ug)+ '
2012623(1 — u1)(1 — u2)(1 — u3)(1 — 2uz)/3],

where [014+ 6024 +034]| —012—1 < 023(1+612) < 14612 —|614+ 024 — O34, |14 — 024 — O34} + 0121 <
023(1 —012) < 1 =015 — 014 — 024 +034] and |6;5| < 1,1 < j < k < 4. It can be shown that Fy,, Fy3,
Fy4, Fa3, Fs4, and F34 are in the bivariate Morgenstern family (2.5), but Fi33, Fi24, F134 and Fpzg
are not in the same parametric family. In fact, Fi24, Fi34 and Fy34 are in the trivariate Morgenstern

family (2.5), but Fj23 is not. )

Example 2.9 (Models with PUBE but not MPME property) We give two examples here:
a. In the generalized Morgenstern copula (2.6), the parameters §;,;, (1 < j1 < j2 < d) are PUBE,
but the model is not MPME, as the parameter f8;2...4 cannot be expressed by any marginal copula.
b. Another example is the Molenberghs-Lesaffre model in Example 2.17. The parameters 7; (1 <
J <d)and njr (1 <j <k <d)are PUBE, but the model is not MPME, as the parameter 7;3...4

cannot be expressed by any marginal pmf. O

2.2 Multivariate discrete models

Assume F is a parametric family defined on a common measurable space (Y, A), where Y is a

discrete sample space and A the corresponding o-field. We further assume
F={P(y;0):0 R}, RC R, (2.12)

where 8 = (64,...,6;) is a g-component vector, and R is the parameter space. The parameter space
is usually a subset of g-dimensional Euclidean space. We presume the existence of a measure y on Y
such that for each fixed value of the parameter @, the function P(y;#) is the density with respect to

p of a probability measure P on ). For a d-dimensional random discrete vector Y = (Y1,..., Yy,

its pmf P(y; - - -ya;8) (or simply P(y; - - -ya)) is assumed to be in F. '




Chapter 2. Foundation: models, statistical inference and computation 25

2.2.1 Multivariate copula discrete models

We define a cdf of a discrete random vector Y = (Y1,...,Yy) as

G(yl,...,yd) = C(Gl(yl),...,Gd(yd)), . (2.13)

where C' is a d-dimensional copula and G; (j = 1,...,d) is the cdf of the discrete rv Y;. Thus
G(y1,...,ya) is a well-defined cdf for a discrete random vector Y. The pmfof Y =y = (y1,...,ya)

18

Plyi---ya) =, - 3 (D) ROy, .. za,), (2.14)

Fi=l k=1
where zj1 = G;(y;), zj2 = G;(y}) with G;(y;) < Gj(y;) and for any z such that y; < z < yf, we
have Pr(Y; = z) = 0. We call the model (2.13) for a discrete random vector Y a multivariate copula
discrete (MCD) model.

The family of MCD models is a big family. With MCD models, we have flexible choices of
marginal cdfs, including standard distributions such as Bernoulli, binomial, negative binomial, Pois-
son and generalized Poisson, etc., and these allow the models to accommodate a wide range of data.
We may also have flexible choices of copulas; examples are multinormal copula, Hiisler-Reiss copula,
Morgenstern copula, etc.. For a summary of properties of MCD models, see subsection 2.2.4.

For a given d-variate discrete distribution F', we can often find multiple copulas which match F
into.a MCD model. For example, suppose we have a bivariate binary random vector Y = (Y1, Ya2)’,
where Y; (j = 1,2) takes values 0 and 1. The probability of observing (1,1), (1,0), (0,1) and
(0,0) are P(11), P(10), P(01) and P(00) respectively. Then for any given one-parameter family of
bivariate copulas C(u1, ug; 8) that ranges from the Fréchet lower bound to upper bound, we can find

a § to express the four probability masses in the following way

C(u1,u2;0) = P(11),
w1 = P(11) + P(10), (2.15)
uy = P(11) + P(01).
(2.15) may not hold if C(:;6) cannot attain the Fréchet bounds. The above observation suggests
that to model multivariate discrete data, different copulas could do the modelling job equally well.

To make the modelling successful in the general sense, it is important that the copula has a wide

‘dependence range. Evidently, with different copulas, we will not be estimating the same dependence

parameters, but nevertheless the fitted model should lead to the similar inference or interpretations.
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2.2.2 Multivariate mixture discrete models

Multivariate discrete models can be constructed in different ways than the derivation of MCD models.
We can envisage circumstances that the multivariate discrete random vector Y at y = (y1,...,y4)
has pmf f(y: - - -y4; A) for a given A. Suppose further that A is a random outcome which we assume
to be a p-component vector (p may be different from d) subject to chance variation described by a
certain (continuous) multivariate distribution G(Aq, ..., Ap), which in turn can be expressed in terms
of a copula function C(uy, .. ., up) with (continuous) univariate marginal distribution G; j = 1,...,p.
This is similar to imagining a group of outcomes, with random traits or effects for the individuals in
the group, and having a common constant trait or element through the distribution of the random

effects. Then the probability of Y = y, or the pmfof Y at y is

P(y1---ya) =/---/f(y1 3 )e(Gi()s -, Gp () [T 95 (0g)dh - -ddp. (2.16)

ji=1
We call (2.16) a multivariate mizture discrete (MMD) model. We use the word mixture since the
distribution function is constructed as a mixture of {f(y1 - - -ya; A)} over A. A special case of (2.16)

obtains by assuming that the outcome of each univariate marginal probability mass corresponding

to the outcome of Y;, which is Pj(y;), depends on a parameter v;, j = 1,...,d, (or a vector of
parameters), and given 7;, the variables Y; are independent. If A = (Ay,..., ;)" is the p-component
vector formed by the non-singular components of v;, j = 1,...,d, then the model (2.16) becomes

d p
P(yl---yd):/---/ TL £ @ism)e(G10), - GoOp)) TL a5 s -y, (2.17)

where f;(y;;7v;) = Pr(Y; = y;|T; = v;). The dependence among the response variables is induced
through the mixing distribution of A. Usually A; = v;, j = 1,...,d. A special case is y; = A; = A
for all j.

2.2.3 Examples of MCD and MMD models

From their definitions, we see that the above two classes are rather general. We can choose any
appropriate multivariate copula as the copula in the construction of the distribution. The sets of
MCD and MMD models are not disjoint, as we can see from Example 2.13.

From practical viewpoint, we need to find some specific multivariate copulas C' which offer good

modelling properties and have a simple analytic form. One such choice is the multivariate normal cop-

ula (2.4). With this copula, we have C(G1(z1), ..., Ga(2q)) = ®a(®~1(G1(z1)), ..., 2~ 1(Ga(24)); ©),
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where Gj’s are arbitrary cdfs. The multivariate normal copula allows us to fully or almost fully ex-
ploit the dependence structure among the résponse variables. Its primary disadvantage may be
computational difficulties when d is large (e.g. d > 7, see Schervish 1984).

This subsection consists of examples of MCD and MMD models. Discussion concerning the
inclusion of covariates is given in some cases. More extensive studies of specific MCD and MMD

models are given in Chapter 3.

Example 2.10 (MCD binary model)
1. General models. Let Y; (j = 1,...,d) be a binary random variable taking values 0 or 1, and

suppose the probability of outcome 1 is p;. The cdf for Y; is

0, y; <0,
Gi(yj)=4q1-pj, 0<y <1, (2.18)
1, yj 2 L.

For a given d-dimensional copula C(uq,...,uq4;8), C(G1(v1),- .., Ga(ya); 0) is a well-defined distri-
bution for the binary random vector Y = (Y1,...,Yy)’. When d = 2, with a one-parameter copula

C(u1, uz; 012), we can write down the pmf of Y as
P(y1y2) = C(by, ba;612) — C(b1, az;012) — C(a1, ba; 012) + C(a1, az; 612),

where a; = G1(y1 — 1), by = G1(y1), a2 = Ga(y2 — 1) and by = Ga(yz). The pmfof Y = y for a
general d is expressed by (2.14).

One simple way to reparameterize p; in (2.18), so that the new parameter associated to the
univariate margin has the range in (—o0,0), is by letting p; = F;(z;), where Fj is a proper cdf.
This is equivalent to writing Y; = I(Z; < z;), where Z; is a rv with cdf Fj, and the random vector
Z = (Z1,...,24) has a multivariate cdf F1a..4. In the literature, this approach is referred to as
a latent variable model or a multivariate latent model, since Z is an unobserved (latent) vector.
There is also the option of including covariates to the parameter z;, as well as to the dependence ‘

parameters @ in the copula C(uy, ..., u4;8). We will show these by examples.

2. Multivariate probit model with no covariates. The classical multivariate probit model for the
multivariate binary response vector Y is (2.14) with the multinormal copula (2.4), where p; is

reparameterized as p; = ®(z;) and G; has form (2.18). This model has the CUOM and MUBE

properties. Through its latent variable representation, the model can also be written as Y; =
I(Z; £ 2),§=1,...,d, where Z = (Z,,...,23) ~ N(0,0), © = (0;&); 2; is often referred to as

the cut-off point. © is a correlation matrix, which (a) has elements bounded by 1 in absolute value




Chapter 2. Foundation: models, statistical inference and computation 28

and (b) is nonnegative definite. To avoid the constraint of the bounds, we can reparameterize 6,y
through the hyperbolic tangent transform as

0. — exp(yjr) — 1
ik = 3
exp(vjx) + 1

so that the new parameter v; is in the range (—o0, 00). The right hand side of (2.19) is an increasing

(2.19)

function in ;. Condition (a) is not sufficient to guarantee © be nonnegative definite except when
d = 2. For d = 2, © is always nonnegative definite since the determinant of ©, 1 — 6%,, is always

nonnegative. For d = 3, O is nonnegative definite matrix provided
det(©) = 1 + 2012613023 — 02, — 625 — 62, > 0; (2.20)

this constraint is satisfied for about 61.7% of the cube [—1,1]3 for (8;2,613,6023). For d = 4, only
about 18.3% of the hyper cube [—1,1]° leads to a nonnegative definite matrix ©; see Rousseeuw
and Molenberghs (1994). Theoretically, the constraint (b) causes no trouble for the usefulness of
the model. But numerically, this constraint may be a problem, since the space where the numerical
computation can be carried out is quite limited. For the numerical computation to be successful,
we have to guarantee that the current values are not out of the space of constraint, which, in some
situations (e.g. the real parameters are close to the space boundaries), may render the computation
time consuming or even not possible. In some situations, these problems with the constraint (b)
can be avoided by limiting consideration to a simple correlation structure, so that the nonnegative
definite condition is always satisfied. Examples include an exchangeable correlation matrix with all
correlations equal to the same #, and an AR(1) correlation matrix with the (j, k) component equal

to 07 =*! for some 6.

3. Multivariate probit model with covariates. The classical multivariate probit model for a binary
response vector Y;, i = 1,...,n, with covariate vector x;; for the jth univariate marginal parameter,
if we use the latent variable representation, is that Yj; = I(Z;; < «; + Bixij), i =1,...,d, i =
1,...,n, where Z; ~ N(0,0;), ©; = (f;;r). A modelling question may be whether dependence
parameters should also be functions of covariates. If so, what are natural function to choose, so that
O; are all correlation matrices? If ©; does not depend on any covariates, then Z; are iid N(0,©),
with @,-. = © = (0;&). If ©; depends on some covariate vectors, say 0; ;& depends on w; ji, then to
satisfy |0; ;1] < 1, we can let

o exp(Yjk,0 + ¥jEWi gx) — 1
"5 exp(Yik,0 + YjWige) + 1

Since all ©;, ¢ = 1,...,n, must be nonnegative definite, this may be a very strong restriction on the

(2.21)

regression parameters (7;&,0,7;k). In some situations, choices of the parameters (y;0, vjk) in (2.21)
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making all ©; nonnegative definite may not exist. The inclusion of covariates to the dependence
parameters 0; ;i as expressed in (2.21) is a mathematical construction. In the Example 2.13, we will

give a more “natural” way to include covariates to dependence parameters. o

Example 2.11 (MCD count model)
1. General models. Consider a d-variate random count vector Y = (Y1,...,Yy)". Let Y; be a random
variable taking the integer values 0,1,2,...,00, j = 1,2,...,d. Let Pr(Y; = m) = §m). Then we
have 3°%°_, p™ = 1 and the cdf of Y is

ly;]

Gily) = > p™, (2.22)
m=0

where [y;] means the largest integer less or equal than y;. Thus for a given d-dimensional copula
C(uy,...,uq;0), C(Gi(y1), - .., Ga(ya); #) is a well-defined distribution for the count random vector
Y. The.pmf of Y = y for a general d is expressed by (2.14). If we further assume that Y; has a
Poisson distribution with parameter A;, that is

AP exp(= )

m!

™ = A >0, (2.23)

then we will say we have a MCD Poisson model.

For the MCD Poisson model, the univariate parameter A; can be reparameterized by 7; = log(};),
so that the new parameter n; has the range (—oo,00). Covariates can be included to 7; in an
appropriate way. The comments on modelling of the dependence structure in the copula C for the
MCD binary model are also relevant here.

To represent the MCD Poisson model by latent variables, let Y; = m if 2,1 < Z; < 2, —00 =
z2_1 <29 £+ £ 20 = 00, where Z; is a rv with cdf F}, and the random vector Z = (74, ..., Z4)’
has a multivariate cdf Fia..4. The form of F; does not have much importance since for count data,
we are seldom interested in the cut-off points zg, z1,...,20. But the copula related to Fys..4 has
essential importance for the modelling of count data, since it determines the multivariate structure
of the random count vector Y. Thus we may say that for count data, the MCD representation (2.14)

is more relevant than the latent variable representation.

2. Multivariate Poisson model with multinormal copula.' The multivariate Poisson model with multi-
normal copula for a count response vector Y is that in (2.14), where the copula is the multinormal
copula (2.4) and p{™ has the form (2.23). This model has the CUOM and MUBE properties. The

univariate marginal parameters A; can be transformed to n; = log(A;) so that n; has range (—o0, 00).

For a random vector Y;, i = 1,...,n, if there is a covariate vector x;; for A;;, a possible way to
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include x;; is by letting 7;; = o + B;xi;, where 7;; = log(Xi;). Similarly, if ©; = (6; ;) with 6; jx
depending on a covariate vector w; ji, a possible way to include w; ;i is by letting 0; ;x have the

form (2.21). The difficulties with adding covariates to ©; remain, as in the previous example. O

Example 2.12 (MMD Poisson model)
1. General models. Let Y = (Y7,.. .,‘Yd) be a random vector of count data, where Y;, 7 =1,...,d

)

has a Poisson distribution. The MMD Poisson model for the random vector Y is
o0 o d P
Py1-ya) = /0 /0 1 7@ A)e(Gi(m), - -, Ga(mp)) [T 95 (n5) dm - - -dmp, — (2:24)
ji=1 ji=1
where
filyiA5) = gxp_)‘j /\gj/yj! (2.25)
is the probability mass function of a Poisson distribution for Y; given the parameter A;. In (2.24),
N = (n1,...,mp) is a p x 1 vector of the collection of functions of Ay, ..., As; it is assumed to be
random with a density function ¢(G1(m), . .., Gp(n4)) [1j=; 95 (n;), where c(-) is the density function
of a copula C and g;(-) the marginal density of 7;. The model can cover a wide range of dependence

through appropriate parametric families of the copula C. Through conditional expectations one can

study the covariances and correlations of Y. If A\; = #;, 7 =1,...,d, we have
E(Y;) = E(E(Y;1}))) = E(};),
Var(Y;) = E(Var(Yj|;)) + Var(E(Y;|);)) = Var(};) + E(};), (2.26)
COV(Y}' y Yk) = E(COV(Y} , Ykl/\j, /\k)) + COV(E(Y] |/\j), E(Yzll\k)) = COV(AJ' s /\k)-

Therefore the correlation of ¥; and Y} is
Cov(Aj, Ar)
Corr(Y;,Y:) = L
(33, %) {[Var(3;) + E(X;)][Var(Ae) + E(A)]}/2,
which has the same sign as the correlation of A; and A;. Corr(Yj, Yx) is smaller than Corr(};, A¢) ]
and tends to Corr(A;, A\¢) when E(};)/Var(};) and E(A;)/Var(Ax) tend to zero. When X; =17, j =
1,...,d,Y isequicorrelated with Corr(Yj, Y;) = Var(n)/[Var(n)+E(n)]. The range of dependence for

(2.27)

this special situation is quite restricted. For the general model (2.24), the parameters are introduced
by the marginal distribution of n; and the copula C. Letting the parameters depend on covariates

1s possible, as we can see from the next example with a specific copula.

2. Multivariate Poisson-lognormal model. The Multivariate Poissen-lognormal model for a random

Poisson vector Y is that in (2.24), where the copula is the multinormal copula (2.4), and 7; has a
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lognormal distribution with parameters p; and ¢j. The pmffor Y =y is
P(y1 - -ya) =/ / I 7iCwis 2i)g(n; 0, ©) dny - - - dy, (2.28)
. 0 0 j=1
where f;(yj; A;) is of the form (2.25), and

1 1 _ -
gd(ﬂ;l‘»aa e) = (2,”_)4/2(7]1 - )|U"60'|1/2 exP{_E(logﬂ_p)/(aled) l(logﬂ_p)} ) (229)
P

with #; > 0, j = 1,...,p, is a multivariate lognormal density function. The model (2.28) has the
CUOM and MUBE properties. The parameters in the model are pp = (p1,...,p4), 0 = (01,...,04)
and ©. By (2.26) and (2.27), we have

1 o def
} E(Y;) = exp{p; + 50']? =aj,
Var(Y;) = a; + a]?[exp(a]?) -1],
) (2.30)
Cov(Y;,Yr) = ajar[exp(Ojko50) = 1), j#k,
exp(ﬁjkajak) -1

{lexp(0}) = 1+ a7 '][exp(o}) — 1+ a; ']}1/2

Corr(Y;,Y;) =

The margins are overdispersed Poisson since Var(Y;)/E(Y;) > 1. |Corr(Yj, Yx)| is less than |Corr(n;,
7% )| and Corr(Y;, Y;) approaches Corr(7;, nx) when vaj ,ar — 00. A covariate vector x can be included
in the model, say by letting the components of g be linear functions of x. & can be assumed to have
some special pattern, for example 0y = --- = 0, = ¢. It is harder to naturally let the correlation
matrix © depend on covariates, as already discussed for the multivariate probit model for binary

data. O

Example 2.13 (MMD model for binary data)

1. General models. Let Y = (Y1,...,Y3) be a binary random vector. Assume that Y has the
MCD binary model in Example 2.10 for a given cut-off point vector @ = (a1,...,a4)'. @ in turn is
assumed to be a random vector. Let n = (71,...,%p) be the collection of functions of a. With the

latent variable representation, we have that for given 5
Y=M,...,Ys) = {{(A < a1),...,I(As < aq)), (2.31)

where A = (Ay,...,A4) has a multivariate cdf F', and 5 has a multivariate cdf G. Thus

o]

Pww)= [ o [ P waleGam), . Glp)) TL st s -y,
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where ¢(G1(m),...,Gp(np)) H;’:l gi(n;) is the density function of 5, with ¢(-) the density function
of a copula C and g;(-) the marginal density of ;. A more general case is when there is a covariate
vector x. In this situation, we may let o; = f;0 + B;x, j = 1,...,d, where the §; ¢’s and B;’s are
random, and 1 is now assumed to be the collection of functions of the random components f3;¢’s
and B;’s.

2. Multivariate probit-normal model. The MMD probit model is obtained by assuming that in
(2.31), A = (A4,...,Aq) ~ N4(0,0) and n ~ Np(p,X), where © = (0;1) is a correlation matrix
and ¥ = (ojk) is a variance-covariance matrix. Without loss of generality, let us assume = a.

Then the MMD probit model of the form (2.31) becomes
Y=M,...,Ya) =(I(Z1 < #),..., 1(Z4 < z3)Y, (2.32)

where Z; = (A — o — pj)/\/1+ 05, 2} = pi/\/T+oi5,i=1,...,d, and Z = (Z1,...,23) ~
N4(0, R), where R = (rj) is a correlation matrix with r;j5 = (855 + 05%)/{(1 + 05;)(1 + o) }*2,
Jj # k. This is a special class of multivariate probit model in Example 2.10. When o;; = 0, it
is the multivariate probit model discussed in Example 2.10. This example demonstrates that the
intersection of the sets of MCD and MMD models is not empty. It is straightforward to extend such
a construction to the more general situation with a covariate vector x, such that a; = 80 + B;x
with the §jo’s and B;’s random. With one covariate z;, for example, one might take a; = ;0 +
Bjz; with By = (Br,0,...,B40) ~ Nd(#_o, ¥o) independent of B = (B1,...,Ba) ~ Na(p, L), where
o = (H1,0,---,140), To = (6jk,0), #p = (1,...,p4a) and £ = (o). Now in (2.32), we have
Zj = (Aj — Bjo — Bijzj — pjo — uja:j)/\/l + 0550 + 05523, with Z = (Z1,...,23) ~ Na(0, R),
R = (7j1), such that

o= Hi0 + 1i%;
- b
T {1+ 0jj,0+ 0j523}/?

Oix + ojk0+ OjrTi Lk

Tik = ,
T+ 0350+ 05581 + Okk0 + orrzy) /2

ji=1,...,d,
(2.33)

i#k

The function of r;; in (2.33) can be considered as a “natural” form for the correlation parameters
as functions of the covariates, since this function representation is derived directly from the linear
regression for marginal parameters. As long as the conditions for linear regression for marginal
parameter hold, r;r will always satisfy the constraints for forming a correlation matrix. For R to
be nonnegative definite, it suffice that ©, ¥o and DX be nonnegative definite. These three matrices

do not depend on covariates, which is very attractive numerically compared with the nonnegative

definite requirement on ©; in (2.21). A special case is §j; = 0 and ojr0 = 0 (j # k), in which
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case the only constraint is that ¥ be nonnegative definite. Finally, we notice that in contrast to the
conventional univariate probit analysis, the regression function in (2.33) for the cut-off points are
not linear functions of covariates. Nevertheless, (2.33) can be used in lieu of the multivariate probit
model with covariates in Example 2.10, since the parameters in (2.33) are also interpretable. To
use the model (2.33), it is necessary to reparameterize the parameters ;; 0, 6,0, 05,0, jj; Okk, Ok

and 6;; such that the new parameters have (—00, 00) as their domain. O

2.2.4 Some properties of MCD and MMD models

We summarize some of the properties of MCD and MMD models:

1. MCD and MMD models, constructed through stochastic or ‘latent variable representation,
provide a clear probabilistic description of multivariate discrete random phenomenon. In some
situations, the pmf and cdf have closed forms; in other situations, the pmf or cdf can be
numerically computed in a reasonably short time. Likelihood inference can be used, with the

help of the theory in section 2.3 and section 2.4.

2. MCD and MMD models allow flexiblé choices of multivariate copulas (Multinormal copula,
Hiisler-Reiss copula, Morgenstern copula, etc.) as well as flexible choices of all the univari-
ate marginal distributions (any discrete distributions: Bernoulli, binomial, negative binomial,
Poisson and generalized Poisson, etc.), and they allow relevant covariates to be included in
the appropriate parameters in the models. In this way, these two classes of models are able to
capture the nature of discrete data in an individual or grouped observation basis, thus they

allow the drawing of appropriate inferences from the data.

3. With appropriate copulas, many MCD and MMD models have the CUOM and MUBE prop-
erties. The CUOM property, éometimes referred to as “reproducibility” or “upward compati-
bility” in the literature, is also sought for modelling longitudinal and repeated measures. With
appropriate families of parametric copulas, a wide range of dependence, including negative

dependence, is possible.

4. With appropriate copulas, the parameters related to the univariate margins structure and the

parameters related to dependence structure can be allowed to vary independently in separate

parameter spaces. This is a good property that the multivariate Gaussian model also enjoys.
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5. By choosing appropriate marginal distributions, the MCD and MMD models can naturally
account for a variety of situations occuring with discrete data, such as over-dispersion which

is independent of covariates, skewed distributions, multimodality, etc. 4

6. For a given d-variate discrete distribution F', there may be many copulas which match F into
MCD model class; MCD models are robust in terms of data modelling with copulas of similar

structure.

Some of the points above will be made clear in Chapter 3 as well as in Chapter 5.

2.3 Inference functions of margins

For a general multivariate model, parameter estimation is often a difficult computational issue.
Without readily available parameter estimation methods, any model, even though interpretable, will
not have practical usefulness. For situations involving univariate models, many methods have been
devised for parameter estimation, ranging from the method of moments through formal maximum
likelihood to informal graphical techniques. The maximum likelihood approach is used in general
because it has a number of desirable statistical properties. For example, under general regularity
conditions, ML estimators are consistent, and asymptotically normal. With. some weak additional
assumptions, the MLE is also asymptotically efficient. However, the method has not been'successfully
applied for estimating the parameters of multivariate models, except for the multivariate normal and
a few cases with low dimension (e.g. d = 2). A primary cause of this unsatisfactory situation is the
computational difficulty involved with multivariate models, even with modern powerful computers.
The ML approach for parameter estimation in multivariate situations is still not routine. The
‘question is: can we have a general effective estimation procedure to estimate parameters for a model
in the MCD and MMD classes? ‘

In this section, we first discuss model fitting strategies for multivariate models in subsection
2.3.1. One strategy leads to the inference functions of margins approach, that we propose as the
parameter estimation approach for MCD and MMD models with the MUBE, PUBE or MPME
properties. In subsection 2.3.2, we introduce some important results in inference function theory
for multiple parameters needed for developing the inference basis for MCD and MMD models. In

subsection 2.3.3, we introduce the inference functions of margins (IFM) approach and give some

examples..
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2.3.1 Approaches for fitting multivariate models

There are at least three possible likélihood—based approaches to estimate parameters in a multivariate

model:

Approach 1. All univariate and multivariate parameters are estimated simultaneously by maximizing

the full-dimensional likelihood function. This is the MLE approach.

Approach 2. For a model where all multivariate parameters are in a copula, univariate parameters
are estimated from the separate univariate likelihoods. The multivariate parameters are then
estimated from multivariate likelihoods with the univariate parameters fixed as estimated from

separate univariate likelihoods.

Approach 3. For a model with the MUBE, PUBE or MPME property, univariate parameters are
estimated from separate univariate likelihoods. Bivariate, trivariate and multivariate parame-
ters are then estimated from bivariate, trivariate and multivariate likelihoods, with lower order

parameters fixed as estimated from lower order likelihoods.

The first approach is general and direct. While this strategy sounds most natural from the likelihood
point of view, it could be computationally very difficult for most of the multivariate models, even in
relatively low dimensional situations. The multivariate normal distribution, which can be easily han-
dled by this approach, is an exception. The second approach makes the computational task easier,
but it still has the difficulties of dealing with a multivariate object in general. These difficulties are
mainly two: the high-dimensional maximization problem and the multivariate probability calcula-
tion. The third approach reduces these difficulties by working with lower dimensional maximizations
or lower dimensional probability calculations. This is a valuable approach if the parametric family
of interest has the MUBE, PUBE or MPME properties. It is important because it makes statistical
inference for multivariate data easier. Computational tractability is an important factor for the
popularity of certain statistical tools, as we observe in many areas of statistiés. The third approach
to stochastic modeling is often convenient, since many tractable models are readily available for the
marginal distributions. It is also invaluable as a general strategy for data analysis in that it allows

one to investigate the dependence structure independently of marginals effects (through copula) and

computationally only dealing with lower dimensional (often two-dimensional) models.
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Example 2.14 Consider the multivariate probit model for a d-dimensional binary vector Y with

pmf
2

2
P(yl ce yd) = Z e E(_1)il+m+idq>d(q>—1(alh): (R Q_l(adia); @), (2'34)

i1=1 i4=1
where © = (0;i), aj1 = Gj(y; — 1) and aj2 = Gj(y;), with Gj(1) = 1 and G;(0) = 1 — ®(2;).
This model has the CUOM and MUBE properties. For estimation from a random sample of iid

Yi1,...,Y,, the three approaches for fitting multivariate models could be used here:

Approach 1. Estimate the parameters z = (21 ,A. .., 24)" and © by maximizing the multivariate like-

lihood L =[], P(i1 - - - ¥ia). Let the resulting estimates be z and ©.

Approach 2. (a) Obtain the estimates z = (Z,...,%4)’ by maximizing separately d univariate
marginal likelihoods. (b) Estimate the parameters © from the multivariate likelihood L =

IT5, P(yii - - - yia) with the parameters z fixed at the estimated values Z from (a).

Approach 3. (a) Obtain the estimates z = (%1,...,%;) by maximizing separately d univariate
marginal likelihoods. (b) Estimate the pafameters 0ix, 1 £ j < k < d, by maximizing
separately d(d — 1)/2 bivariate likelihoods L;x = [];—; Pjr(%ijyix) with the parameters z;, z¢

fixed at the estimated values 7;, % from (a). Let the resulting estimate be ©.

Approach 1 is computationally demanding, since it requires the calculation of high-dimensional
multinormal probabilities and a numerical optimization on many parameters. Approach 2 reduces
the numerical optimization problem to fewer pararneters, but the high-dimensional multinormal
probability calculation is still required. Approach 3 redﬁces the numerical optimization in Ap-
proach 2 into several numerical optimizations, each involving fewer parameters. Further, the high—
dimensional multinormal probability calculation is no longer required; all that is needed are the binor-
mal probability calculations, which are readily feasible with modern computers. Multi-dimensional
calculation are needed for predicted or expected frequencies, but this is much less effort compared
with multi-dimensional numerical integrations within a numerical optimization procedure.

Since it is computationally easier to obtain z and (:), a natural question is what is the asymptotic

efficiency of z and © compared with z and ©. In Chapter 4, we will deal with this problem in a

general context. m|
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2.3.2 Inference functions for multiple parameters
Introduction

The common approach to the problem of estimation is to propose an estimator 7'(x) and then stﬁdy
its properties. For estimators with specific properties such as unbiasedness, minimum variance or
minimum mean squared error, or asymptotic normality, theories for ordering these estimators are
developed. Standard methods for obtaining the estimator T'(x) include least squares (LS), maximum
likelihood (ML), best linear unbiased, method of moments, uniform minimum variance (UMV), and
so on. However, many point estimation procedures may be viewed as the solution of an (or some)
appropriate estimating equation(s). Indeed, any estimator may be regarded as a solution to an
equation or a set of equations of the form ¥(x,0) = 0, where ¥ is a vector of functions (or a
single function in the one-parameter case) of the data x and the parameter 8. ¥(x,8) is commonly
called a vector of inference functions or estimating functions. In this thesis, we use mainly the term
“inference functions”. But when we focus more on the use of the inference functions for estimation,
we also employ the term “estimating functions”.

The theory of inference functions is studied in, for example, Godambe (1960, 1976, 1991),
McLeish and Small (1988) and J¢rgensen and Labouriau (1995). The theory of inference func-
tions imposes optimality criteria on the function ¥ rather than the estimators obtained from it. The
approach of considering a class of inference functions and finding the optimal inference function has
the advantage of retaining the strengths of the estimation method (e.g LS, ML, UMV) and at the
same time eliminates some of their weaknesses. For example, in point estimation, the Cramér-Rao
lower bound is attained only in rare occasions whereas the optimality of the score function among
inference functions holds merely under regularity conditions (see below). Inference functions may
be used either as estimating equations to determine a point estimate or as the basis for constructing
tests or confidence intervals for the parameters. An example is the maximum likelihood estimators,
which are obtained as the solutions of estimating equations from the score functions. Thus the
inference functions for MLE are the score functions. Other examples of the application of inference
functions are the theory of M-estimators for obtaining robust estimators and the quasi-likelihood
" methods used in generalized linear models. Inference functions have also found application in a wide
variety of applied fields; examples in biostatistics, stochastic processes, and survey sampling can be
found in Godambe (1991).

In the following, we introduce the notion of regular inference functions and study the asymptotic

properties of resulting estimates in the iid situation.
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Inference functions for a vector parameter

In the following, we will give a series of definitions for the inference functions for a vector of pa-
rameters and a general asymptotic result for the parameter estimates from the defined inference
functions.

Let us consider a parametric family F defined on a common measurable space (¥, .A), where A

is the o-field associated with J. We further assume
F={P(y;0):0 R}, RC R, : (2.35)

where 6 = (61, ...,0,) is g-component vector, and R the parameter space. The parameter space is
usually a subset of ¢g-dimensional Euclidean space. We presume the existence of a measure g on Y
such that for each fixed value of the parameter 8 the function P(y;#) is the density with respect to
n of a probability measure P on V.

Definition 2.9 (Inference functions) A R?-valued vector of functlions
U(y;0) = (1(¥30), -, %e(¥;0)T : Y x R — R

is called a vector of inference functions, if the component functions of ¥(y;8) are measurable for

each fized 8 = (01,...,0,) € R. a

Definition 2.10 (Unbiased inference functions) ¥ is said to be unbiased if for each 6 € R and
i=1,...,¢, Eg{ty;} = 0, where Ey means expectation relative to P(-;6). O

Unbiasedness is a natural requirement which ensures that the roots of the equations are close
to the true values when little random variation is present. Whereas # may not have an unbiased
estimator, unbiased inference functions exist under fairly general circumstances. For any given

inference function vector ¥ and any y € Y, an estimator of 8, say 6= é(y), can be obtained as the

solution to ¥ = 0.
In order for the estimate 8 to be well-defined and well-behaved, the inference function vector ¥

must satisfy some regularity conditions, that is, ¥ must consist of regular inference functions.

Definition 2.11 (Regular inference functions) The vector of inference functions ¥ is said to

be a vector of regular inference functions if, for all @ € R, the following assumptions are satisfied:

1. The support of y does not depend on any 6 € R.

2. BE{¢;}=0,7=1,...,q.
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3. The partial derivative 01; /00y ezxists for almost everyy €Y, j,k=1,...,q.

4. The order of integration and differentiation may be interchanged as follows:

iz [, 4sPi0)u) = [ o P30 du),
ik=1,...,q. '
5. E{jhr} emists, j,k=1,...,q, and the ¢ x ¢ matriz
My (6) = E{w¥T}
s positive-definile.
6. The g X ¢ matriz

Dg(&):E{%}

s non-singular.

0

A model P(y; ) in (2.35) is said to be regular, if the score functions are regular inference functions
and R is an open region of IR?. We are only interested in regular models, such that the asymptotic
theory concerning MLEs is readily available for use. This is not a strong assumption for applications.

(The main limitation may be the exclusion of models in 1 of Definition 2.11.)

Definition 2.12 (Fisher information matrix) The Fisher information mairiz is the matriz-

valued function I : R — R?*? defined by
1(6) = E{U(6)UT (8)},
where U(B) is the vector of score functions, U(a)“éfa/ao log P(y;6). o

Definition 2.13 (Godambe information matrix) For a regular inference function vector U, the

“Godambe information matriz is the matriz-valued function Jg : R — R?*? defined by

Ju(6) = Dy(8)Mz" (6) Dy (8),

where Mg(0) = E{U¥T} and Dg(8) = E{0¥/56'}. m
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Consider n iid observations y,, . . ., y, from amodel P(y;6)in (2.35). Let ¥(y;;0) = (%1, ..., %ig)".

The inference function vector based on the n observations is ¥,, : Y* x ® — IR? given by
n
U= ¥(y;h).
i=1

We define the estimator § = 6(y1, ..., ¥n) as the solution of ¥,, = 0.
The following theorem establishes the asymptotic normality of the solution 6 based on regular

inference functions and gives an asymptotic interpretation of the Godambe information matrix.

Theorem 2.1 Assume that the estimator 6 = 9(y1, ..y ¥Ygn) associated with the regular inference
function vector ¥, : Y* x ® — IR? is a \/n-consistent estimator of 8, that is, \/ﬁ(él —-6;), 7=
1,...,q, is bounded in probability so that éj tends to 0; at least at the rate of 1/\/n. We further
assume that there exist functions Mjpi(y) such that |0%¢; /88,001 < Mjri(y) for all 8 € R, where

E{M;ri(y)} < 0o for all j,k,I. Then as n — oo, we have asymptotically
V(B — 0)"N,(0,75(6))
under P(-;0).

Proof. The proof is similar to the corresponding theorem for the asymptotic normality of the MLE.
We therefore only sketch it.

¥,, has the following expansion around 8
0=10,(0) =V, (8) + Ha(6)(0 — ) + R,

where H,, is a ¢ X ¢ matrix 0¥, /08 and R, = Op(||5 —0]|?) = 0,(n~1!) by assumptions.
Thus
. 1 !
Vb6 = [LH0®)]  Jol-u.0) -] (2.36)
By the Law of Large Numbers
~Ho (65 D3 (0).

Now for any fixed vector u = (u1,...,u,), consider the sequence of one-dimensional rv’s

e~ Ya(yisf) | =~ Yig(¥536)
u\/ﬁ_ulg NG + +uqiz=;—q\/7_l

" uiin (¥ 0) + -+ ugig(y;;6)
__.2“1 ¥ig\¥i;¥)
\/ﬁ

i=1
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By the central limit theorem (Lindberg-Lévy), u'¥,, /1/n is N;(0,u’Mgu). This result leads to

1
/n

Applying Slutsky’s Theorem to (2.36), we obtain

T, 2N, (0, My).

V(6 — 8)5N,(0, Dy My (D5h)T)

or

V(B - 8)>N, (0,75 (9))-

Optimality criteria for inference functions

In this subsection, we will summarize optimality results for inference functions in the multi-parameter
situation. These results will be referred to later for comparing two sets of regular inference functions.

Consider a scalar inference function ¥. It is natural to seek an unbiased estimating function \II
for which the variance E{¥?} is as small as possible. This is analogous to the theory of minimum
variance unbiased (MVU) estimation. Since the variance may be changed by multiplying ¥ with an
arbitrary constant, some further standardization is necessary for the purpose of comparing variaﬁces.
Godambe (1960) suggested considering the variance of the standardized estimating function ¥, =
W/E{0¥/06}, and defined an optimal estimating function to be one which minimizes Var(¥,) =
E{¥?}/{E(0¥/88)}?, or maximizes Var~'(¥,), the Godambe information for ¥. Godambe showed
that in the one-parameter case the usual maximum likelihood estimating equation has this optimal
property within a wide class of regular unbiased inference functions. Thus Godambe information
can be used to compare two regular inference functions, and the function with the larger Godambe
information is generally preferred.

Given two vectors of inference functions, ¥ and €2, several different optimality criteria can be

used to say that Q is preferred (or optimal) to V.

Definition 2.14 (M-optimality) A vector of inference functions € is said to have matriz opti-
mality or M-optimality versus a vector of inference functions ¥ if the difference of the inverses of

the Godambe information matrices

J3'(6) - J15(6)

is non-negative definite. )
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Definition 2.15 (T-optimality) A vector of inference functions Q is said to have trace optimality
or T-optimality versus a vector of inference functions ¥ if the difference of the trace of the inverse

of Godambe information matrices

T(Jg'(8)) — Tr(J5'(6))
s positive. O

Definition 2.16 (D-optimality) A vector of inference functions § is said to have determinant
opltimality or D-oplimality versus a vector of inference functions ¥ if the difference of determinant

of the inverse of Godambe information matrices

1751 (0)1 = 175" (0)]
1s positive.

Chandrasekar and Kale (1984) proved that M-optimality implies T-optimality and D-optimality.
Joseph and Durairajan (1991) further proved that the above three criteria are equivalent in the sense
that if ¥ is optimal with respect to any one of the three criteria then it is also optimal with respect
to the remaining two.

When comparing two sets of regular inference functions, we could examine a slightly different
version of T-optimality and D-optimality. For example, for T-optimality, we may examine

Tr(Jg'(8)
Tr(Jq'(6)’
and for the D-optimality
/175" (6))
/175" (6)]

In practice and often in simulation studies, only the estimated values of J3'(8) and J;(8) are

available, M-optimality or T-optimality or D-optimality may be violated slightly numerically based

on only one set of observations.

We end this subsection by stating an extended Cramér-Rao inequality for inference functions:

Theorem 2.2 For any given vector of regular inference functions ¥, and for all 0 € R, J5'(6) —

I=1(8) is non-negative definite.

For a proof of this result, see J¢rgensen and Labouriau (1995). Related references include Ferreira

(1982) and Chandrasekar (1988), among others. ]
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This theorem states that, for a regular model P(y;#), the vector score functions

dlog P(y;8)  (0log P(y;0) dlog P(y; 0))
o8 - 86, ey a6

U®) =

are M-optimal within the class of all regular unbiased estimating functions.

2.3.3 Inference function of margins

We have seen from previous subsection that, under fairly general regularity conditions, the score
functions are asymptotically optimal among regular inference functions. However, with multivariate
models, except in a few special cases (e.g multivariate normal), the estimating equations based on
the score functions are computationally very cumbersome or intractable. It would be an invaluable
alternative to have inference functions which are computationally feasible in general and also efficient
compared to the score functions.

In the ensuing subsection, we introduce a set of inference functions, we call the inference functions
of margins (IFM). In Chapter 4, we show that IFM shares the asymptotic optimality properties of
the score functions, and this is particularly true for the multivariate models with MUBE and PUBE
properties. One major advantage of IFM is that it is computationally feasible in general and more
flexible for handlinge different types of data. This leads us to develop a new inference theory and

computationally feasible procedures for many MCD and MMD models.

Inference function of scores

We consider the family (2.35) and assume it is a regular parametric family. The likelihood function
of 8, given y, is L(8;y) = P(y;#), the corresponding loglikelihood function is £(8;y) = log P(y; 6).
Let

Ln.(8) = HL(f’;yi)

denote the likelihood of # based on yy,...,y,, a sample from Y. The loglikelihood function of 8

based on yy,...,y, is

£,(0) = log Ln () = Zn:f(ﬁ; ¥i)-
i=1

Definition 2.17 (Inference functions of scores, or IFS) The vector of score functions

00,(8) _ (06,(0)  04,()
0 ‘( 56, '8, )

1s called inference function vector of scores, or IFS. o
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The maximum likelihood estimate (MLE) is generally determined as the solution to the likelihood
equations 0¢,(8)/00 = 0. The Hessian matrix of the function —£€,(8)/n is J(8), where (J(8));r =
—(1/n)(8%£,(8)/860;06). The expected value of J(6), I(6) = E{J(#)}, is the Fisher information
matrix. The value J(8) of J(-) at the maximum likelihood estimate 8 = 8(y,, . ..,y,) is referred to
as the observed information. J (@) will generally be positive definite since 6 is the point of maximum
likelihood. A consistent estimate of I(8) is I(8) = J(f).

Under very general regularity conditions, it is known that the MLEs are asymptotically normal,

in the sense that as n — oo,

VD - 0)2,(0,10)Y)

See Sen and Singer (1993, p.209) for a proof.

Inference function of margins

We now introduce the loglikelihood function of a margin, the inference function of a margin for one
parameter, and then define the inference functions of margins (IFM) for a parameter vector 8. The
asymptotic results for the estimates from IFM will be established in the next section.

Consider the parametric family (2.35) and assume P(y;6) is a d-dimensional density function
with respect to a probability measure g on y Let S4 denote the set of non-empty subsets of
{1,...,d}. For any S € Sy, we use |S| to denote the cardinality of S. Let Ps(yg) be the S-margin
of P(y;0), where yg = {y; : j € S}. Assume Ps(yg) depends on g, where @g is a subvector of 8.

Definition 2.18 Let 8§ = (0y,...,0,). Suppose the parameter 6y, appears in S-margin Ps(yg). The
loglikelthood function of the S-margin is

£5(0s) = log Ps(ys)-

An inference function for 0y is
04s(0s)
06,

0

The inference function of a margin for a parameter 6 is not necessarily uniquely defined by
the above definition. In this thesis, unless specified otherwise, we always work with the inference
function from a margin with the smallest |.S|. For a specific model, it is often evident when |S]| is the

smallest for a parameter, so we will not be concerned with the proof of this feature in most applied

situations. If there are two or more inference functions for  with the same smallest |S|, than there
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is a question of how to combine these inference functions to optimally extract information. We will
discuss this issue in section 2.6.

Note that with the assumption of MPME (or MUBE), one can use S with |S| < ¢ (|S| < 2 for
MUBE) for every parameter ;. In the case where MPME does not hold, then one has S = {1,...,d}
for some 6; in the model. For the new theory below, we assume MPME or MUBE or PUBE in the
remainder of this chapter.

Assume for the parameter vector 8 = (6y,...,6,)’, the corresponding smallest cardinality subsets
associated with the parameters are Sy,...,S; (as g is usually greater than d, there are duplicates

among the Si’s).

Definition 2.19 (Inference functions of margins, or IFM) The vector of inference functions

0y s,(0s,) 9n,s,(0s,)\’
96 66,

YipMm = (
is called the inference functions of.margins, or IFM, for 8. m]

For a regular model, the inference functions derived from the likelihood functions of margins
also satisfy the regularity conditions. Thus asymptotic properties related to the regular inference

functions should apply to IFM. Detailed development of this aspect will be given in section 2.4.

Definition 2.20 (Inference functions of margins estimates, or IFME) Any 0 € % which is

the solution of

0fn 5,(0s,) 0tn5,(0s,)\" 0
S5 90, =

is called the inference functions of margins estimate, or IFME, of the unknown true parameter vector

6. )

YirMm = (

In a few cases, 6 has an analytic expression (e.g. Example 4.3). In general, 8 has to be obtained

by means of numerical methods.

Examples of inference functions of margins

Example 2.15 Let X;,...,X, be n iid rv’s from the distribution C(G1(1),...,Gd(z4); ©) with
Gj(z;) = ®(zj; pj,0}), where C is the multinormal copula (2.4). Let g = (p1,...,p4) and o =
(01,-..,04). The loglikelihood function is

n d
fn(l‘; a, e) = Z log C(‘I)((I}il), CRKE! ‘b(zid); @) H ¢($1]a“]a 0])
i=1

j=1
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Thus the IFS is

(aln00) | Ohapoe.0) dhapir.0)
Yipg =

8”1 RN aﬂd ’ 60’1 )
0L, (p,0,0) 8,(p,0,0) b, (p, 0, O))
deg ' 061 7 004-14 )

The loglikelihood functions of 1 and 2-dimensional margins for the parameters u,a,0 are
j(pj,05) = Y _logé(zij; uj,05), j=1,...,d,

bnjx(Oik, 1y, BE, 05, Ok) = Zlog (c(®(15), B(xir); 9:k)¢(17z1,ﬂ:,”J)d’(mzk,ﬂk,ffk)) 1<j<k<d
=1

Thus the IFM is
0fn1(p1, 01) O0fna(pa, 0a) 331:1(/11,001) 0lna(pa, 04)

YirM = (

Ay o Opa ’ 9oy ER Oy ’
631;12(012,#1,/12,61,02) 0lna—1,d(Pa-1,d, fd—1, Bd, Cd— 1,%1))
6912 e 60d 1,d
It is known that Uips and ¥irMm lead to the same estimates; see for example Seber (1984). m]
Example 2.16 Let Y;,...,Y, be niid rv from the multivariate Poisson model with multinormal

copula in Example 2.11. The loglikelihood functions of margins for the parameters A and © are
n
(X)) = Zlog Pi(wij), i=1,...,d,

n
Lajk(Bik, Aj, Ar) = Zlog Pie(yijuie), 1<j<k<d,
i=1

where P;j(yij) = A" exp(=);)/vi;! and Pji(wijvie) = ®2(71(bi), 7 (bix); 65) — D2(271(bi5),

™ (air); O5) — B2(® 7 (aij), @7 (bir); 0k) + 2(® (ai;), @ (air); Oj1), where ai; = Gij(yi; — 1),

bij = Gij(%ij), air = Gir(yix — 1) and bix = Gir(yir), with Gi;(yi;) = Yoo Pi(2) and Gir(yix) =
it Py(z). |
Let n; = log(A;). The IFM for 5;, j =1,...,d, and 6;;, 1 < j < k < d are

1 6P1(y,1) 1 an(yzd)
g =
o (Z Pily) om Zmy,d) 2

Z 1 5P12(yi1yi2) Z OPy_1,d(Yia-1Yid)
Pya(yiryi2) 061 Py 1d(yzd 1Yid) 084_1,a '

For a similar random vector Y;, ¢ = 1,...,n with a covariate vector x;; for A;;, a possible way

to include x;; is by letting 7;; = «; + B;%i;, where 7;; = log(Ai;). We can similarly write down the

IFM for parameters «;, B; and 6. m]



file:///Pifs
file:///Pifm

Chapter 2. Foundation: models, statistical inference and computation 47

Example 2.17 (Multivariate binary Molenberghs-Lesaffre model) We first define the mul- |
tivariate binary Molenberghs-Lesaffre model (Molenberghs and Lesaffre, 1994), or M-L model. Let
Y = (Y1,...,Ys) be a d-variate binary random vector taking values 0 or 1 for each component. A
model for Y is defined in the following way. Consider a set of 2¢ — 1 generalized cross-ratios with

values in (0,00): 5;, 1 < j <d, njx, 1 <j< k<d, ..., and 72...q such that:

_ H(yn,m,yjq)efi? Piy-jq (Y7 - ¥5,)
H(yn,~-,yjq)6A; Pjyje W0 - 95,)

(2.37)

77j1~--jq

where AY = {(yj,,-.-,¥;,) € {1,0}¢ | (¢ - >y ¥i,) = 0(mod 2)} and A7 = {1,0}1\A}, and
{j1,..-,Jq} is asubset of {1,2,...,d} with cardinality g. We can verify for example when ¢ = 1,2, 3,4

that

P e

77.7 - P(O)’
_ P(11)P(00) .
Ujk—m, 1<j<k<d,

_ P(111)P(100) P(010) P(001)
kL= P(110)P(101)P(011)P(000)’
_ P(1111)P(1100)P(1010) P(1001) P(0110) P(0101) P(0011) P(0000)
Miklm = p(1110) P(1101)P(1011)P(1000) P(0111)P(0100)P(0010)P(0001)’

1<j<k<i<Ld,

1<j<k<i<m<d,
(2.38)
where subscripts on P are suppressed to simplify the notation.

Molenberghs and Lesaffre (1994) show that the 2¢ —1 equations in (2.37) together with 3~ P(y; - - -
ya) = 1 leads to unique nonnegative solutions for P(y;---ya), (v1,---,¥4) € {1,0}¢, under some
compatibility conditions on the d — 1 and lower-dimensional probabilities. If all these conditions in
the Molenberghs-Lesaffre construction are satisfied, we have a well-defined multivariate Bernoulli
model. We call this model multivariate M-L binary model. The multivariate M-L binary model is
not MUBE, but the parameters 5; and 7;; are PUBE. The special case where ng = 1 for |S| > 3 is
MUBE.

Related to the MCD model, it is not clear if there exists a MCD model such that (2.37) is true
and under what conditions a MCD model is equivalent to (2.37). The difficulty is to prove there
exists a copula, such that (2.37) is a equivalent expression to a MCD model. The existence of
a copula is needed in order to properly define this model with covariates (e.g. logistic regression
univariate margins). For a discussion of whether the Molenberghs-Lesaffre construction leads to a

copula model, see Joe (1996). Nevertheless, (2.37) in terms of P;,..; (y;, - - - yj,) certainly defines a

multivariate model for binary data for some ranges of the parameters.
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Let Y1,...,Y, be niid binary rv’s from-a proper multivariate M-L binary model. Assume the
parameters of interest are 9 = (91,...,14, M2, .. .,Md-1,4) and let ns be arbitrary for |S| > 3. The

loglikelihood functions of margins for n are
n
an(nj)zzlong(yij), j:l,...,d,
i=1
n
Lok (ik, M5, M) = ) log Pie(uijuie), 1<j<k<d.

i=1

Thus the IFM is

Teons — (afm(m) 0lna(ng) GCn12(mz, m,n2) 0lnd—1,d(Nd—1,d, Nd—1, 774))
IFM — PR ’ PIERE) .
om 0na O0n12 O0Nd—1,4

For an interpretation of the parameters (2.37), see Joe (1996). o

Some advantages of IFM approach

The IFM approach has many advantages for parameter estimation and statistical inference:

1. The IFM approach for parameter estimation is computationally simpler than estimating all the
parameters from the IFS approach. A numerical optimization with many parameters is much
more time-consuming (sometimes beyond the capacity of current computers) compared with
several numerical optimizations, each with fewer parameters. In some cases, optimization is
done with parameters from lower-dimensional margins already estimated (that is, there is some
order to the sequence of numerical optimizations). IFM leads to estimates of the parameters

of many multivariate nonnormal models efficiently and quickly.

2. A potential problem with the IFS approach is the lack of stability of the solution when there
are outliers or perturbations of the data in one or few dimensions. With the IFM approach, we
suggest that only the contaminated margins will have such nonrobustness problems. In other
words, IFM has some robustness properties in multivariate analysis. If would be interesting

to study theoretically and numerically how outliers perturb the IFS and IFM estimates.

3. A large sample size is often needed for a large dimension of the responses. This may not be
easily satisfied in most applied problems. Rather, sparse data are commonplace when there
are multiple responses; these often create problems for ML estimation. By working with the

lower dimensional likelihoods, the IFM approach avoids the sparseness problem in multivariate

situations to a certain degree; this could be a major advantage in small sample situations.
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4. The IFM approach should be robust against some misspecification in the multivariate model.
Also some assessment of the goodness-of-fit of the copula can be made after solving part of

the estimation equations from IFM, corresponding to parameters of univariate margins.

5. Finally, IFM leads to separate modelling of the relationship of the response with marginal
covariates, and the association among the response variables in some situations. This feature
can be exploited to shorten the modelling cycle when some quick answer on the marginal

behaviour of the covariates is the scientific focus.

In the above, we listed some advantages of IFM approach. In the next section, we study the
asymptotic properties of IFM approach. The remaining question of efficiency of IFM will be studied
in Chapter 4.

2.4 Parameter estimation with IFM and asymptotic results

In this section we will be concerned with the asymptotic properties of the parameter estimates from
the IFM approach. We will develop in detail the parameter estimation procedure with the IFM
approach for a MCD or MMD model with MUBE or with some parameters of the models having
PUBE proberties. The situations we consider include models with covariates. Sufficient conditions
for the consistency and asymptotic normality of IFME are given. Some theory concerning the
asymptotic variance matrix (Godambe information matrix) for the estimates from the IFM approach
is also developed. Detailed direct calculations of the Godambe information matrix for the estimates
based on the data.and fitted models are given. An alternative computational approach, namely the
jackknife method, for the estimation of the Godambe information matrix is given in section 2.5. This
technique has considerable importance because of its practical usefulness (See Chapter 5). Later in
section 2.6, we will propose computational algorithms, which are based on IFM, for the parameter

estimation where common parameters appear in different inference functions of margins.

2.4.1 Models with no covariates

In this subsection, we confine our discussion to the case of samples of n independent observations
from the same distributions. The case of samples of n independent observations from different
distributions will be studied in the next subsection. We consider a regular MCD or MMD model in

(2.12)

P(y1---ya;0), 6€R, ' (2.39)
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where 8 = (61,...,04,012,...,04-1,4)". The model (2.39) is assumed to have MUBE or to have
some of its parameters having PUBE properties. In-general, we assume that 6; (j = 1,...,d)
is a parameter vector for the jth univariate margin of (2.39) such that P;(y;) = P;(y;;0;), and
b;r (1 < j < k < d) is a parameter vector for the (j, k) bivariate margin of (2.39) such that
Pir(yjyr) = Pjx(yj, yx; 05,0k, 0;%). The situation for models with higher order (> 2) parameters are
similar; the extension of the results here should be straightforward. For the purpose of illustration,
and without loss of generality, we assume in the following that f; and 6;; are scalar parameters.

Let Y,Yy,...,Y, beiid rv with model (2.39). The loglikelihood functions of margins of 8 are

an(ﬂj)=Zlong(y,~j), j=1,...,d,
i=1

n (2.40)
€nji(05,0%,05%) = ) _log Pix(vijyar), 1<ij<k<d.
i=1
These expressions can also be rewritten as
£j(65) = Y ni(y;)log Pi(wi), §=1,....,4,
{vi} | (2.41)
£nin(65,0,056) = Y nik(yive) log Pix(yime), 1<j<k<d,

{9}
based on the summary data n;(y;) and njx(y;yx). In the following we continue to use the expression
(2.40) for technical development, for consistency with the case where covariates are present. But

(2.41) is a more economic form for computation, and should be used for model fitting whenever

possible.
et 1 8P;(y;)
def i(yi) .
¢:¢ 6;)= ]—) lea"')dy
3 =9i) P;(y;) - 06;
def 1 0P (y;yx) )
b= Vin(0;, 0, 0;5)% i) << k<,
Yik = ¥jk(65, 0k, 05x) Paluyoe) 003 <j<k<
and 1 8Pi(y;)
def (i
Yis; :¢,:;~(9-)— ]—-, =1,...,d,
T Pi(wg) 06
def 1 OP;k(yii yi .
bisik = $i;ik(05, 0k, 055) = i (Wistit) -y <ji<k<d,

P (yiyir) 00 ’

for i = 1,...,71. Let ¥ = \11(0) = (wl,...,¢d,¢12,...,¢d_1,d)’, and ¥, = \Iln(O) = (\I’nl, e .,\Ifnd,
U,10,.. -,\I’nd—l,d)/; where V,; = Z?:l ¢,~;j (] =1,.. .,d) and Wk = Z?:l d)i;jk (1 <j<k< d)
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From (2.40), we derive the IFM for 8

n
‘I’nj=2¢i;j, i=1,...,d,

<. (2.42)
‘I’njk=z¢i;jk, 1<j<k<d.

i=1
Since (2.39) is a regular model, the regularity conditions of Definition 2.11 are also true for the
inference functions (2.42). With the IFM approach, an estimate of # that we denote by 6 =
é(yl, cen¥Yn) = (0], eiy0q,019,.. .,éd_l,d)’ is obtained by solving the following system of nonlinear

equations

\I’n]’:O, j:]-)""d;
Por=0, 1<j<k<d

Properties of estimators

We start by examining the simple case (particularly, for notation) when d = 2 to illustrate how the

consistency and asymptotic normality of 8 can be established. The model (2.39) is now

P(y11y2;61302y012) (243)

with 8 = (61,6, ,\912)I € R. Without loss of generality, 81, 82, 612 are assumed to be scalar parameters.
Let the random vector Y = (¥1,Y2)’ and Y; = (Y;1,Yi2) (¢ = 1,...,n) be iid with (2.43), and y, y;
be the observed values of Y and Y; respectively. Thus the IFM for 6,,85, 8,5 are

Vo = iy, i=12,

=1 (2.44)

Y12 = Z¢i;12-
i=1

We denote the true value of 8 = (61, 6, 015)' by 8o = (61,0,602,0,612,0)- Using Taylor’s theorem
on (2.44) at g to the first order, we have

( ~ ~ oy,
0="n1(61) = ¥n1(61,0) + (61 — 61,0) 30 =1
1 8%
~ ~ ov,
0= na(62) = ¥n2(b2,0) + (82 — 62,0) BTZ )
2 e 50 (2.45)
0= Up19(12,01,6) = o19(012,0) + (612 — 612,0) 60"12
12 9“
~ 6\1’"12 ~ 6‘1’7112
by — 6, 0) L2n12 _
\ + (61— 61,0) 39, |g + (62 — 02,0) 39, |ge’
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where 07 is some value between ; and 8 0, 5 is some value between 02 and 63, and 8" is some

vector value between 8 and 0y. Note that ¥, 1, also depends on 6#; and #,.

Let
[APSY 0 0
86,
2w
H,=H,(8) = 0 W;;z 0
W2 8¥nia 9%
38, 86, 8013

and Dg = Dgy(8) = E{n"'H,}. Since (2.43) is assumed to be a regular model, we have that
E(¥,) = 0 and Dy non-singular. |

On the right-hand side of (2.45), ¥,1, Wpna, Vn12, 0V,1/801, 0Vs2/002, 0U,12/06012, 09,12/060;
and 0W,1,/88; are all sums of independent identical variates, and as n — oo each therefore converges
to its expectation by the strong law of large numbers. The expectations of ¥,,1(81,0), ¥n2(f2,0), and
U,12(f12,0) are zero and the expectations of 0¥,1/001, 0W,2/003, OWn12/0012, are non-zero by
regularity assumptions. Since all terms on the right-hand side must converge to zero to remain
equal to the left-hand sides, we see that we must have (61 — 61 0), (62 — 820) and (612 — 012,0)
converging to zero as n — oo, so that 51, 52 and 512 are consistent estimators under our assumptions

(for a more rigorous proof along these lines, see Cramér 1946, page 500-504).

Now let ow 0 0
201 g
H) = 0 %52 |, 0
2
Va2 0¥,12 [sA\ YD
391 ott 692 aot 86,2 att
It follows from the convergence in probability of 8 to 8y that
1

2 P
= [Ha(8) - Ha(80)] Bo.
Since each element of n=!H,(8) is the mean of n independent identically-distributed variates, by

the strong law of large numbers, it converges with probability 1 to its expectation. This implies that

n~1H,(6,) converges with probability 1 to Dg (). Thus
1 N
L1, )% D (0.
Now we rewrite (2.45) in the following form

V(8 - 6o) = [1

n

* - L _ ’
Hn] \/ﬁ[ U,(60)). (2.46)

Since 6} lies between 51 and 6y o, 03 lies between éz and 07, and 6** lies between 8 and 8y, thus

we also have

1.
~H;, 5Dy (60).
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Along the same lines as the proof in Theorem 2.1, we see that
1

vn

where Mg (8o) = E(¥¥’). Applying Slutsky’s Theorem to (2.46), we obtain

U, (80)>N3(0, My (8o)),

V(B — 80)>N3(0, Dg* (80) M (80)(D* (80))7),

or equivalently
V(8 — 80)™N5(0, J51(80))-

Thus we can extend to the following theorem for the IFME of model (2.43):

Theorem 2.3 Consider the model (2.43) and let the dimension of 0; (j = 1,2) be p; and that of 614
be p1o. Let 6 denote the IFME of @ under the IFM corresponding to (2.44). Then 0 is a consistent

estimator of 8. Furthermore, as n — oo,
-~ D _
V(8 = 0)= Ny, 4p34912(0, 751,
where Jg = Jg(0) = DY Mg Dy, with My = E{U¥'} and Dy = E{0¥/00'}. o

Inverting the Godambe information matrix Jg yields the asymptotic variances and covariances
of § = (51,52, 512). We provide the calculations for the situation where 61,85, 815 are scalars. The
asymptotic variance of §;, j = 1,2, is n~Ey][Edp;/06;]~* and the asymptotic covariance of 61,0,
is n™![Et1 1] [E6¢1/601]“1[E6¢2/602]‘1. The asymptotic variance of 8 is

Pl e S e b
_2223[ 6%] [Ea%] [E¢12¢J]+21i[[ 6%] [ 5¢12][E ¢1¢2]}

and the asymptotic covariance of 0~12, éj 18
[ 09i2] 7! 3¢‘]_1 61/)'] 6¢12
1 i hah B . hah
[E aom] [E a6, 12 86, [ 6, ] By}

6¢k 6’(/}12 aw -1 61/)12 -
_H <[ ‘%k] E60k> ([ 6_0:] an) E"M’Z}‘

Furthermore, from the calculation steps leading to the asymptotic variance expression, we can see

that 6y, 6, and 6,5 are \/n-consistent.
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Now we turn to the general model (2.39) where d is arbitrary. As we can see from the detailed
development for d = 2, it is straightforward to generalize Theorem 2.3 to the case where d > 3, since

in the general situation of the model (2.39), the corresponding IFM are
‘I’anZ’J)i;j, j:l,...,d,
i=1

\I’njk=z¢i;jk, 1<j<k<d.

i=1
In (2.39),60; ( =1,...,d) and 0 (1 < j < k < d) can be scalars or vectors, and in the latter case,
¥;j(0;) and ¥;x(;z) are function vectors.

The asymptotic properties of 8 for a general d is given by the following theorem:

Theorem 2.4 Consider the model (2.839) and let the dimension of 6; (j =1,...,d) be p; and that
of b;x (1 <j <k <d) bepjk. Let 8 denote the IFME of 6 under the IFM corresponding to (2.42).

Then 8 is a consistent estimator of 8. Furthermore, as n — oo, we have asymptotically
V(B — 02N, (0,75,

where ¢ = 3°1_1 pj + YicjcrcaPits Ju = Ju() = Dy Mg Dy, with My = My(8) = Eg{¥¥'}
and Dg = E{0V/56}. O

For many models, we have p;; = 1; that is 6;; is a scalar (see Chapter 3).

The asymptotic variance-covariance of 8 is expressed in terms of a Godambe information matrix
Ju(0). Assume 0; (j = 1,...,d) and 6; (1 < j < k < d) are scalars. Let us see how we can
calculate the Godambe‘ information matrix Jy. We first calculate the matrix Mg and then Dy.
Since My = E(¥V’), we only need to calculate its typical components E(y;¢r) (1 < j,k < d),
E(¥;Yrm) (k < m) where j may be equal to k or m, and E(¢;5%im) (7 < k,1 < m), where j may be
equal to [ and k may be equal to m.

For E(v;¢), we have

E(¢j¢k)=}3( 1 1 5Pj(yj)3Pk(yk))

Pi(y;) Pi(ye) 09; 06
Pi(yye) OP;(y;) OPs(ye)
Pi(y;)Pe(yx) 06; 08

{viyx}
It can be estimated consistently by

1 - 1 OP;(yi;) OPr(yix)
n o Pi(yi;)Pe(yir) 06;; 0

, (2.47)
5,6
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or equivalently by
1 nik(yiye) OP;(ys) OP:(yr)

"ty P;(yj)Pe(ye) 99 905

based on the summary data. For the case j = k, we need to replace Pjx(y;yx) by Pj(y;), {v;yx} by

)
0;6x

{y;} and n;(y;yx) by n;(y;) in the above expressions.
For E(v;¢¥rm) (k < m), we have

E(¢j¢km) =E < 1 1 aPJ(y]) aPkm(ykym))

f?‘(yj) 13kn1(1/k3h01) é)ej é?ﬁk,n
Pikm(¥59cym)  OP;(y;) OPim(yym)
Pj(yj)Pkm(ykym) 60] Oxm

{y59xym}

It can be estimated consistently by

1 - 1 OP;(Yi;) OPrm (YikYim)
n = Pj(4i;) Pem(Yicyim)  00; B%rm

(2.48)

8;6k8xm
For the case j = k or j = m, a slight modification on the above expression is necessary. For example

for j = k, we need to replace Pjrm(yjyrym) bY Pim(¥i¥m), {¥i¥r¥m} by {yjym} and njim(y; Yeym)

by 7jm(¥jym) in the above expressions.

For E(¢jxtim) (j < k,1 < m), we have

1 1 OP; (Y yr) 6P1m(y1ym))
E(%; =E LIS
(Wjibum) (ij(yj Ye) Pim(viym)  00;k 00im,
_ Pirim (Y ¥k 91Ym)  OPjr(Yiyr) OPim (Y1Ym)
itemeyn} P (Y ye) Pim(niym)  00;k 00im
It can be estimated consistently by
1 Z": 1 OP;k(yijYir ) OPim (Yir¥im) (2.49)
n 4 Pik(vij¥yie ) Pm (vityim) 005 00im 53661801

For the particular case j = I,k # m (or similarly j = mor k = lor j # [,k = m cases), we
need to replace Pjrim(Yjyk¥iym) bY Pikm(Yi¥k¥m), {4i¥evi¥m} by {yiveym} and njrim (yj vk viym)
by 7jxm(¥j ykym) in the above expressions. For the particular case j = I, k = m, we need to replace
Pikim (Y5 Yev1ym) by Pir(yiye), {05k 91ym} by {yjyx} and nim (Y5 Yk v19m) by njx(y;yx) in the above
expressions. _

Now let us calculate Dy. Since Dy = Dg(#) is a matrix with (p,q) element E(8v,/06,) (1 <
4,k < q), where ¢, is the pth components of ¥ and 6, is the gth component of 8, we only need to
calculate its typical component E(9v;/00m) (1 < j,m < d), E(0¢;/00im) (1 <j<d;1<l<m<
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d), E(0%;1/00m) (1 < j < k< d;1 <m <d), and E(0%j2/00m) 1<j<k <di1<l<m<d).

Since
Oy _ __ 1 OPiy) 0Fily) 1 O°Fi(yy)
80m sz(yj) 60]' 6(9m Pj(yj) 60]'60”, ’
we have .
8%; ' 1 9P;(y;) 0P;(y;) 1 9°Pi(y)
E<_f): Pi(y;) | - i\Yi Yi) i\Yj
69m {%1:} ]( J) sz(yj) 60]' Bem Pj(yj) Bejaem
— _ 1 an (yj) 6Pj (yj) )
{yj} Pj (yj) 69]' 60,,,

It can be estimated consistently by

_l . 1 OP;(yi;) OP;(yij)

n i—1 sz(y,-j) 39j 60,,,

1=

(2.50)

179m

Because P; depends only on univariate parameter ¢;, thus 1; does not depend on the parameter

Bim . So 0;(0;)/06im = 0; this also leads to
E (61/}1'(91)) —0

aelm
Since '
i _ 1 9P(yiye) OP;x(ysyr) + 1 02Pjy(yjuk)
Om szk(yjyk) 90, 00m Pir(yjye) 00;100,,
we have
E(a‘bf’“): __ 1 OPir(yyx) OP;r(ysyr)
m ) Sty Pin(yime) 005 0

It can be estimated consistently by

1 z": 1 OPji(wijyir) 0Pk (yijyir) (2.51)
n =1 P]?k(yijyik) ag]k 6677; éjékg.me.jk
Similarly, we find
1 3ij(yjyk))2 . '
- 3 = I) k = )
i\ _ Z Pix(yiyx) ( 005 I "
E =< {vive}
aalm
0, otherwise,
where E (0v;1/00;1) can be estimated consistently by
1 1 (ank(yijyik)>2
DD x o . : (2.52)
n i=1 ])jk(y”y‘k) 60]k éjékgjk
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2.4.2 Models with covariates

In this subsection, we consider extensions of models to include covariates. Under regularity con-
ditions, the IFME for parameters are shown to be consistent and asymptotically normal and the
form of the asymptotic variance-covariance matrix is derived. One approach for asymptotic results
is given in this subsection, a second approach is given in the next subsection. Our objective is to
set forth results as simply as possible and in useful forms; more general theorems for multivariate
models could be obtained.

Let Y1,...,Y, be a sequence of independent random vectors of dimension d, which are defined
on the probability measure space (¥, A, P(Y;0)), 8 € ® C R?. The marginal probability measure
spaces are defined as (Y;,A;, P(Y;;0)) ( = 1,...,d) for jth margin, and (YVj, Ajx, P(Yj,Y%;0))
(1 € j < k < d) for the (j, k) bivariate margin and so on. Particularly, the random vectors Y;

(i=1,...,n) are assumed to have the distribution
P(yi1---4ia; 05), 60; € R, (2.53)

where P(yi1 - yiq;05) is a MCD or MMD model with univariate and bivariate expressible (PUBE)
parameters 8; = (6i;1,...,60i4,0i12,...,0i,0-1,4). We also assume that 6;; (7 = 1,...,d) is the
parameter for the jth univariate margin of Y; such that P;(y;;) depénds only on the parameter 6;.;,
and B;.;: (1 < j < k < d) is the parameter for the (j, k) bivariate margin of Y; such that 6;.; is
the only bivariate parameter appearing in Pjx(yi;yix). 0i; and 6;,5 can both be vectors, but for
the purpose of illustration, and without loss of generality, we assume they are scalar parameters.
Furthermore, we assume fori =1,...,n,

0;; = gj(a;-x;j), i=12,....d, (2'54)

Oiik = hix(Bipwijk), 1<j<k<d, ‘
where the functions g;(-) and h;.(-) are usually monotonic increasing (or decreasing) and differen-
tiable functions (for examples of the choice of g;(-) and hjx(-) in a specific model, see Chapter 3),

called link functions. They link the model parameters to a set of covariates through a functional

. . _ .. _ , .
relationship. In (2.54), @; = (j1,...,@jp;)’ is a p; x 1 parameter vector, x;; = (Zij1,. .., Zijp;)’ is
a pj x 1 vector of observable covariates corresponding to the response y;. B;r = (Bjk1, - - -, Bikesn)
is a gjx x 1 parameter vector, and Wiz = (Wijk1, ..., Wijkey) 15 @ gjx X 1 vector of observable co-

variates corresponding to the response y;. Usually Ej p; + EK,C g;x is much smaller than the total

number of observations n. x;; and w;j; may or may not include the same covariate components.

In terms of margins, the covariates x;; and w;;; may be margin-dependent, or margin-independent,
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or partly margin-dependent and partly margin-independent. The marginal parameters may also be
margin-dependent or margin-independent.

We consider the problem of how to estimate the regression parameters in the statistical model
defined by (2.53) and (2.54). We assume we have a well-structured data set as in Table 1.1. Problems
such as the misspecification of the link function, the omission of one or several important covariates,
the random nature of some covariates, missing values, and so on will not be dealt with here.

From (2.54) and the PUBE assumption, P; can be considered as a function of @; and Pjj can
be considered as a function of e;, @y, and B;,. Let y,,...,y, be the observed values of Y1,...,Y,.

The loglikelihood functions of margins of the parameter vectors a; and B;; based on yy,...,y, are

an(aj):Zlong(y,-j), j:l,...,d,
i=1

) (2.55)
Lnjr(ay, ax, Bix) = Zlogpjk(yijyik)’ 1<j<k<d
i=1
Let : 1 0P;(w;)
def i (Yij
= 0 (0. )2 —L R i=1,...,d,
Piii = pii (0;5) P;(vi;)  06s; J
def 1 OP;k (yi;yir) .
o = s (O ) TLACLY , 1<ji<k<d,
Pisik = Pisjk (k) Py (vi; vix) 86;.5% =J =
and ‘
defa(,p,'-j (9;’-]') .
g = W :1,...,d,
Pisjg 69i;j J
def Opi;ik (k) . defOpiik(Bijx) . def 8,5k (058 ) :
ik = e EL g = i I ey = WP 1 < < k< d,
Piijk,j 69,';]' i;5k,k aei;k Pijk,jk agi;jk s =
and

def 1 OPj(yij)

¢i;’s:¢i;'s Qjs :_‘__#')
J J ( J ) ])J(y”) 6ajs

_ def 1 OP;r(¥i;Yir)

’wt;]kt - ¢t;]kt(ﬂ]kt) -lec(yijyik) aﬂjkt )

Let v = (a},...,a),B1,,. -":3:1-1,d)/) and 7o = (@] o, . --aalz,o,ﬁ’lz,m . .,,ﬂ;_l,dyo)’, where 4, is
~

the true vector value of 4. Let ¥ = (&, ...,84, 8,5, .. .,B;_l,d)’ be the IFME. Assume %, v, and ¥

1<j<k<d t:l,...,qjk.

are all ¢ x 1 vectors. Let

;i = (@) = (Yii1, - Yisip,)
Uik = Viik(Bix) = Wik, - s Yisikgsn) s
Unj = Vpj(@;) = (Ynj1s -, Ynjp;),

Voik = Yik(Bie) = (Tnjkt, - -, Ynik,gin) s
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where \I’njs = Z?:l ’l/},’;j, (S = 1,...,pj) and \I’njkt = Z?:l 1/),';]'}” (t = 1,...,qjk). Let \I’i;(‘)‘) =
(Tin(en), ..., Via(aa), Uina2(Br2), - .., Wia—1,a(Ba—1,4)"), ¥n(¥) = >i=1 ¥i;(7), and we define

Ma(2) = 11 Y E(Wi(1)¥:(7)) and Da(y) = n~'E {‘”6—7(”} | (2.56)

i=1

From (2.55), the IFM for «; and B;; are

- 0g; (- .
\I’anZQO' gJ() .7:11"')d,

157 Sa; y
i= J
! oha() (2.57)
Ui = ikt 1<j<k<d
njk ;‘Pmk aﬂJk 3 LJI<k<laq,
and the estimating equations based on IFM are
v, =0, j=1,...,d,
™ (2.58)
V=0, 1<j<k<d

With the IFM approach, estimates of @; and B;;, denoted by &; = (&;j1,...,&;,;) and ﬁjk =
(Bik1, - -+ Bjk,q;.)' s are obtained by solving the nonlinear system of equations (2.58).

We next give several necessary assumptions for establishing asymptotic properties of &; and 3]- k-

Assumptions 2.1 For1 < j< k <d,1<l<m<dandi=1,...,n, we make the following

assumptions:

1. (a) For almost ally; € Y and for all §; € R,
Pisjr Pisiks Pisjjs Pisjkgs Pisikks Pisjk,jk

exist.

(b) For almost ally; €Y and for every 8; € R,

OP;(yi;) . | 0P (v vix) | 0P r(vij k) OP;r(yij Yir)

B0 | < Kij; 0 < Lij; s < Lig; |52 L0 < Liji;
82 P; (yij) 02 Pjk (vijvix) 0% Pk (vij vik)
ORis)| g . |OFirWisbe)| g ik (Yig Yi "

o, | <% | aez, | < T |Tae, | < T
9 Py (yij yin) 8 Py (vijvir) 8 Py (wij vir)
OFinyisyin) | | WYR) | g i (Yis Yi y

00, | T [ Toigeany | ST | TBa0, | < TR

where Ky, Lis, Lisk, Liix, Sij, Tisj, Tisk, Tijr, Tijr,y and Tige x are integrable (summable)

over Y, and are all bounded by some positive constants.
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2. (a) i
Z Z P;(yij) = 0p(1),

i=1 {yij @ lpuil>n}

n .
> > Pjk(%ijyir) = 0p(1),
=1 {yij,¥ir ¢ liik]>n}

and

4 n
> > 0%, Pi(%ij) = op(n®),
i=1 {y; : |pij l<n}
n
> > i;j Pik Pik(Yijyix) = op(n?),
i=1 {yij,yix ¢ sup(leisl,lwix])<n}
n

> > isi Pistm Piim (Y15 Yir¥im) = 0p(n?),
=1 {yij,9a,¥im : sup(leisl|wiim|)<n}

n
> > 07 ik Pik(Yijvir) = 0p(n?),

i=1 {yi5,9ix : lpisike|<n}

n

2
E ©iikPisim Pikim (Yij Yik YitYim) = op(n):
\ =1 {yis.vie vivim 0 sup(leisklleiiml)<nl

(t)

> > Pi(yi) = 0p(1), > > Pix(yi5yix) = 0p(1),
=1 {yij : |¢i;5,51>n) i=1{yij,yix : |Pisik,51>n}
n

> > P(wisyir) = 0p(1), Y > Pyi(uij vir) = 0p(1),

=1 {yij,¥ix ¢ |Piik,x|>n} i=1 {yij,¥ix © |@iin,5x|>n}
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and

4 n
Z Z Sb?;j,jpf(yﬁ) = Op("z),

i=1 {yij : |@is.4l<n}

n
> 67 ix.; Pik(¥ii vir) = op(n®),
i=1 {yi,yix ¢ |Pi58,5]1<n}
n
> PFik kPik(vijyir) = op(n?),
i=1 {yi5,9ik ¢ |@iin,k|<n}
n
> PFik ik Pin(yijvin) = 0p(n?),
=1 {yij,9ik ¢ |@ign,axl<n}
n
Z Bisji ik k Pik(Uij Yin) = 0p(n?),

2

1 {yijyin + sup(|@iss s @ik, k) <n}

3

. . _ 2
Soi;j,j‘Pi;Im,IPjIm(yijyz'lyim) = Op(n ),
1{yii,9it,¥im © sup(|@isz,iL,1@iima})<n}

2

S

Z Pij,j Pistrm im Pitm (% Yittim) = op(n?),

=1 {yi5,9i,Yim : sup(|@65,5],|@iamam|)<n}

3

> Gisjk,iPisik b Pk (Y5 Yir) = 0p(n?),

=1 {yi5,9i ¢ sup(|@isin, sl @isin,k[)<n}

2

: : 2
E : Pisik,jPistm,im Pikim (Vij Yik Vit ¥im ) = 0p(n®),
iy it yim @ sup(I@4s5x,5 1@ 650m,0m|)<n} :

1

3

. . 2
Z Pijk,jkPitm,im Pjkim (Vi Yik Vit Yim) = 0p(n®).
1 {yi;,9ic,9,9im : sup(|@isk, x|, @itm,1m|)<n}

kX

O

Assumptions 2.2 Let G € IRt is the parameter space of 7y, where 7y is assumed to be vector of

length q. Suppose G is an open convez set.
1. Each g;(-) and hj(-) is twice continuously differentiable.

2. (a) The covariates are uniformly bounded, that is, there exist an My, such that ||x;;|| < Mo,
|lwijill < Mo. Furthermore, 37, xijx%;, 3o, Wijk Wiz, have full rank for n > no, where ng

s some positive integer value.

(6) In the neighborhood of the true y defined by

Bl)={reg :llrv-7ll<é} 610,

9 ("), 95(-),97 (), Rjk(-), h5(-) and Ry () are bounded away from zero.
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0

Assumption 2.3 For all € > 0 and for any fized vector ||[u|| £ 0, the following condition is satisfied

. 1 1e, 2 . —
nlirglo W Z Z [u 51(70)] P(Y"YO) =0.

0O
Assumptions 2.1 and 2.2 are needed so that we may apply some weak law of large numbers
theorem to prove the consistency of the estimates. Assumption 2.3 is needed for applying the central
limit theorem for dei‘iving the asymptotic normality of the estimates. These conditions appear to
be complicated, but for special cases they are often not difficult to verify. For instance, for the
models we will use in Chapter 5, if the covariates are bounded and have full rank in the sense of
Assumptions 2.2, with appropriate choice of the link functions, the conditions are almost empty.
Related to statistical literature, Bradley and Gart (1962) studied the asymptotic properties of
maximum likelihood estimates (MLE’s) where the observations are independent but not identically
distributed (i.n.i.d.). Hoadley (1971) established general conditions (for cases where the oBservations
are i.n.i.d. and there is a lack of densities with respect to Lebesque or counting measure) under
which maximum likelihood estimators are consistent and asymptotically normal. Assumptions 2.1,
2.2 and 2.3 are closely related to the conditions in Bradley and Gart (1962) and Hoadley (1971),
but adapted to multivariate discrete models with MPME property. In particular, the Assumptions
2.1 reflect the uniform integrability concept (for discrete models) employed in Hoadley (1971).

Properties of estimators

As with the model (2.39) with no covariates, we first develop the asymptotic results for the simplest

situation when d = 2 such that Y; = (Y;1,Yi2)' ({ = 1,...,n) has the distribution
P(yiyiz; 0:), (2.59)

where 8; = (6;,1,0;;2,0;,12). Without loss of generality, 6;.1,0;.2,6;,12 are assumed to be scalar

parameters. We further assume

0ij = gj(ajxi;), j=1,2,

(2.60)
0312 = h12(BaWir2),

where the functions g;(-) and hia(-) are monotonic increasing (or decreasing) and differentiable

functions. In (2.60), @; = (j1,...,@jp;) is a p; x 1 parameter vector and x;; = (%451, . . ., Zijp;)’
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is a p; x 1 vector of covariates corresponding to the response variables Yj; (j = 1,2). Similarly,

- TR - 7 s
Bia = (B121, - .-, Pi24y,) 18 @ q12 X 1 parameter vector and wi13 = (Wi121, - - ., Wit2qy,) 1S @ g12 X 1
vector of covariates corresponding to the response vector y;, where y; = (yi1,¥i2) is the observed

value of Y;.

Theorem 2.5 Consider the model (2.59) together with (2.60) and let ¥ = (&'1,&'2,&/12)’ denote the
IFME of 7y corresponding to IFM (2.57). Assume % is a ¢ X 1 vector. Under Assumptions 2.1 and
2.2, 4 is a consistent estimator of yo. Furthermore, under Assumptions 2.1, 2.2 and 2.3, as n — oo,

we have
1~ D
\/EAn 1(7 - 70)_’Nq(0’ I);
where An = D7 M2 (y0) Ma 2 (40) (D7 2 (40))T, with Dy (7o) and My (7o) defined in (2.56).

Proof: Using Taylor’s theorem to the first order, we have

- - ov,,
U,1(@1) = Tni(ar0) + (@1 —ay0) 3 . ,
(s 3} a:
. . ov,
Uaa(an) = ¥na(ago) + (G2 — az,0) 60:22 )
| 6‘;" (2.61)
V,12(B12) = ¥n12(B12,0) + (B12 — Bi2,0) Fnll;
yer
- oy, - ov
+ (@1 — a10) a2 + (a2 —az) nlz )
6a1 L 6&2 L

where @} is some vector value between &; and e, &} is some vector value between &, and as,
and 9** is some vector value between ¥4 and 7,.
Note that in (2.61), \Ilnlg(ﬁlz) also depends on @; and @3, and ¥,,15(B42 o) depends on @ o and

@5 . Furthermore, in (2.61), we have

oV, (e n
P = e G e o)+ ) (e e,
V(e =
e = Y letallia)j @ x)" + e e
v, ..,
PtalB2) = 3 letaalOian) u (FTwinn)? + pins Giad e Bmardweszwliy, (262
%1, j ;
i=1 .

B\I’n ﬁ - 6 1; 03" / /
6;2(1122 = ; [%ﬂ'n\)gj(alxu)h}k(ﬂfngn)] Wit9X]),
OVn12(B12) _ Xn: [69017;12(91';12) '

T
das 36;.5 gj(a'zxiz)h}k(ﬂlgwuz)] W.‘12X,Tz,
i

i=1
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and 8¥n1(a1)/0az = 0, 8¥n1(21)/0B12 = 0, OWna(@3)/0ar = 0 and 0¥nz(a2)/0B1, = 0.

To establish the consistency and asymptotic normality of 4, note that with Assumptions 2.1, we
have that n=2E(¥,,; (e 0)¥s;(a;0)T) — 0 (j = 1,2), and n~2E(¥pn12(B12,0)¥n12(B12.0)T) — 0.
By the assumed monotonicity (e.g. /) and differentiability of g;(-) and hia(:), g}(-) is a non-
negative function of the unknown @; and the given x;;, and hi,(-) is a non-negative function of
the unknown B,, and the given w;1s. From Assumptions 2.1 and 2.2, 0%,;(e;)/0a; (j = 1,2) and
0% pn12(B12)/0B12 have full rank. By Markov’s weak law of large numbers (see for instance Petrov
1995, p.134), we obtain that n=1Wp;(ay,0)—P0, n~ ¥, (a2 0)—P0 and n"l\Ilnlg(,Bm’o)—*pO. Since
Uo1(a1) =0, ¥pp(a) = 0 and \Ilnlg([?lz) = 0, by following similar arguments as for the consistency

of 8 in the model (2.39), we establish the consistency of 7.

Now let
T (a) e 0 0o
Ua() = | Una(e2) |, Haly)= 0 P 0 :
AT 12 v, v,

‘I’nlz(ﬂlz) 5a(lﬂ ) . (;:x(zﬂu) 612!5 12)

and . . 0

. aQY, a:
H: = 0 3‘1’33?2 o 0
2
3‘1’,.,;(ﬂ12) a‘I’nlz(ﬁu) 3‘I’n12(ﬂ12)
.00 . o, e aﬁlz oy

(2.61) can be rewritten in the following matrix form

3 N |
Vagi-m) = 18| STl (2.69)
It follows from the convergence in probability of 4 to ¥, that
1 ~ P
~ [Ha(3) — Ha(10)] 20,

Since each element of n=1H,,(7;) is the mean of n independent variates, under some conditions

for the law of large numbers, we have
1 P
;Hn(‘YO) - Dn(‘YO)_’O) (2-64)

where Dy, (7o) = n™"E{Hn(¥0)}-
Assumptions 2.1 and 2.2 imply that

nlergo n~2Var(H,(70)) = 0. (2.65)
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Thus by Markov’s weak law of large numbers, we derive that
1 ., P
—Hy; = Dn(70)=0. (2.66)

Next, we note that ¥, (7,) involves independent centered summands. Therefore, we may directly
appeal to the Lindberg-Feller central limit theorem to establish its asymptotic normality. From

Assumption 2.3, by the Lindberg-Feller central limit theorem, we have

Applying Slutsky’s Theorem to (2.63), we obtain
—1/~ D
VRAZHF = 70) >N, (0, 1),
where A, = ;1/2(70)M,}/2(70)(D;1/2(70))T, and I is a ¢ x ¢ identity matrix. ‘ m]
Next we turn to the general model (2.53) where d is arbitrary. With the Assumptions 2.1, 2.2
and 2.3, Theorem 2.5 can be generalized to the case d > 2. Compared with the d = 2 situation,

the TFM for the general model (2.53) is a system of equations (2.58), which do not introduce any

complication in terms of the asymptotic properties for IFME. Thus we have the following:

Theorem 2.6 Consider the general model (2.53) with arbitraryd. Lety denote the IFME of ¥ under
the IFM (2.58). Under Assumptions 2.1 and 2.2, ¥ is a consistent estimator of ¥. Furthermore,

under Assumptions 2.1, 2.2 and 2.8, as n — oo, we have
1~ D
\/ﬁAn 1(7 - 70)—’Nq(0, I);
where An = D;l/z(70)M5/2(70)(D;1/2(70))T, with Dp(70) and My (7o) are defined in (2.56) O

We now calculate the matrix M,(y) and D, (%) (or just part of the matrices, depending on the
need) corresponding to the IFM for @; and B;;. For example, suppose «;; is a parameter appearing
in Pj(yi;) and agm is a parameter appearing in Pg(y). Then the element of the matrix M, ()
corresponding to the parameters a;; and ag., can be estimated by

1 1 OP;(yij) OPs(yir)
n & Pi(yi;)Pe(yix) Oaji Oogm

n

o (2.67)
&,

where j may equal to k.
If oj; is a parameter appearing in P;(y;;), and Bims is a parameter appearing in Prp (YikYim ),
then the element of the matrix My, () corresponding to the parameters ;; and Bems can be estimated

by
1 OP;(yij ) OPsm (YirYim)

, (2.68)

1 n
n ; P;(¥ij ) Prm (Yikyim) Oy OBrms ;60,6 ,
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where k < m andj may equal to k or m. Furthermore, if §;;, is a parameter appearing in Pjx(yi;yir)
and fim: a parameter appearing in Piy (Yi¥im ), then the element of the matrix M, (y) corresponding

to the parameters Bjz, and Bim: can be estimated by

Z 0P (yi; yir) OPrm (YirYim) (2.69)

pet P]k(ytjyzk)PIm(ytlyzm) 0B;ks 0Bimt &j&ka,&mﬁjkﬁlm’

where j < k, I < m and (j, k) = (I, m) is allowed.
For the elements of the matrix Dy, (7), suppose «;; and o, are parameters appearing in P;(yi;).
Then the element of the matrix D, (y) corresponding to the expression ¥,;i(aj;)/0cajm can be

estimated by

Z 5 1 0P (wi;) OP;(wi;) (2.70)

(¥ij) Oaji Oatjm

i
Ifajisa parametier appearing in P;j(yi;) and Bjk, is a parameter appearing in Pjx(yi; ¥ix), then the
element of the matrix D, () corresponding to the expression 0¥, ;(a;1)/0B;ks is 0.

If Bjks is a parameter appearing in Pji(y;;yix) and a; is a parameter corresponding to a univariate
margin, then the element of the matrix D, () corresponding to the expression 0W,;ks(Bjks)/0cu

can be estimated by

(2.71)

d.‘idkpjk

2 Z 1 OP;(yijyir) OPjk(¥isyix)
im1 Pk(yuyxk) OBjks Jay

If Bjxs is a-parameter appearing in Pjx(y;;yix) and B is a parameter corresponding to a bivariate
margin, then the element of the matrix D,(¥) corresponding to the expression O¥niks(Biks)/ 0B

can be estimated by

1 OP;i(yi;yix) OPjr(yij yix)
; 7 (2.72)

k(yz] yzk) 6,lecs 0B

dj&kﬂjk
However, as in section 2.5 and the data analysis examples in Chapter 5, it is easier to use the

jackknife technique to estimate My () and D, (7).

2.4.3 Asymptotic results for the models assuming a joint distribution for

response vector and covariates

The asymptotic developments in subsection 2.4.2 treat x;1,...,Xiq and Wi12,...,Wi4_1,4 as known

constant vectors. An alternative would be to consider the covariates as marginal stochastic outcomes

of a vector V;, and to consider the distribution of the random vector formed by the response vector
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together with the covariate vector. Then the.model (2.53) can be interpreted as a conditional
model, i.e., (2.563) is the conditional mass function given the covariate vectors, where the Y; are

conditionally independent. Specifically, let

Y;
Z;, = s i:l,...,n,
V;

be iid with distribution Fg belonging to a family 7 = {Fg,6 € A}. Suppose that the distributions Fg
possess densities or mass functions (or the mixture of density functions and mass functions) with sup-
port Z; denote these functions by f(z;6). Let § = (v, n')’, where ¥ = (&}, ..., &, 815, . - .,,B:i_lyd)’.

Assume that the conditional distribution of Y; given V; = v;,
P(yi; 0:[Vi = vi), (2.73)

is as in (2.53), that is P(y,;8;|Vi = v;) is a MCD or MMD model with univariate and bivariate
expressible parameters (PUBE)

8; = (61(a}, vi), ..., 0a(ey, vi), 012(B12, vi), . - -, 0a—1,a(By_1 4, Vi) ,

where 8; is assumed to be completely independent of 5 (defined below), and is a function of y. We
also assume that 6; (j = 1,...,d) is the parameter for the jth univariate margin P;(y;;) of Y;
from the conditional distribution (2.73), such that P;j(y;;) depends only on the parameter 6;, and
0ir (1 < j < k < d) is the parameter for the (j, k) bivariate margin Pji(yijyix) of Y; from the
conditional distribution (2.73) such that 6;; is the only bivariate parameter. In contrast to (2.54),
here we only need to assume that §; is a function of @; and v, j =1,2,...,d, and §;; is a function
of B;; and v, 1 < j < k < d, without explicitly imposing the type of link functions in (2.54).

The marginal distribution of V; is assumed to depend only on the parameter vector 5, which is
treated as a nuisance parameter vector. Its density or mass function (or the mixture of the two) is
denoted by g;(vi;n). Thus '

f(2i;6) = P(y;;0:[Vi = vi)g;(vi;n). (2.74)
Under this framework, weak assumptions on the support of V;, in particular not requiring any
special feature of the link function, are sufficient for consistency and asymptotic normality of the
IFME in the conditional sense.

Let the density of Z = (Y', V'Y be f(z;6), and that of V be g;(v;n). Based on our assumptions
on P(y;;8;|V; = v;), we see that the joint marginal distribution of ¥; and V is

P v = Pj(y;|[V = v)g;(v;n)
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and the joint marginal distribution of Y;,Y; and V is
Pikv = Pie(yjye|V = v)gi(v;n).

For notational simplicity, in the following, we simply write P;(y;) and Pjx(y;yx) in lieu of Pj(y;|V =

v) and P;i(y;yx|V = v). The corresponding marginal distributions for Z; are

Pj v, = Pi(yij)9i(vi;n),
Pjkv; = Pik(yijir)9; (vi; ).

Thus we obtain a set of loglikelihood functions of margins for 5y

n n n
boj =) logPiv, =Y log Pi(wi;) + > gi(vism), i=1,...,4d,
i=1 i=1 i=1

n o n (2.75)
£oji = Y _log Pixv, = Y _log Pix(uijvir) + > gj(vism), 1<j<k<d
= i=1 i=
Let 1 8P
LU].g—w].s(a]s)d—e-f aJ’v, ]:1,...,d;8=1,...,pj,
Pjv Oajs
1 OPjyv .
ikt = W; ; = _— 1< k<d;t=1,...,q;
Wikt w]k,t(ﬂ]k,t) ij’v aﬂjk,t » LI1< kL aq ’ y diks
and 1 ap
def 7, Vi .
= =——b7 =1,...,d;s=1,...,p;
w'v]n’ w‘;]y (a]-’) -P]V. an, ’ J y , @5 8 3 7p];
def 1 OPji v, .
= W;.; ; = —_—t 1< k<d;t=1,...,¢q;
Wiijk,t wz,]k,t(,gjkt) ij,v,» 6,Bjkt 3 SI<k<ld 1) y dik,
fori=1,...,n. From (2.75), we derive the IFM for a; and B;;
{ n n n n
Qio= Wi, = Vi _ A = iis, J=1,...,d; s=1,...,p;;
nj,s E ij,s zz; Pj,v.- aajs ; Pj(yij) 60’_7'3 iZ;"/}z,Js J ’ ) yPj;
1 OPikvi _ v 1 OP;k(yijyir)
ikt = Wik, = Tkt
i Z k= ;;ka 0Bkt ;ij(yijyik) 0Bkt zz;%]kt
{ lSj(de;t:l,...,q]'k,
(2.76)
and the estimating equations for @; and B;; based on IFM are
Qnjs=0, g=1,...,d; s=1,...,pj,
R ! (2.77)

ank,t:()) 1§J<k§d:t:1;,q]k

With the IFM approach, estimates of @;,j = 1,...,d, and Bz, 1 < j < k < d, denoted by

a; = (&j1,...,&;p;) and Bjk = (,éjkl, . --;Bjk,qjk)l, are obtained by solving the nonlinear system
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of equations (2.77). Note that (2.77) is computationally equivalent to (2.57); they both lead to the
same numerical solutions (assuming the link functions given in (2.54)).

Let Qnj = (Qnmj,1,- .-, Qnjp,;) and Qujx = (Qnjr,1, - -+, Unjk,g;)- Then (2.76) can be rewritten
in function vector form

Q;=0, j=1,...,d,
{ank:O, 1<j<k<d

Let Q; = (wj,1,--.,wj,p;) and Qjx = (Wjik,1,- -, Wik,g;n) - Let Q@ = (..., 94, -, Q5 2)'-
Let Mg = E(QQ'), Dg = 69/37.. Under some regularity conditions similar to subsection 2.4.1,
consistency and asymptotic normality for 4 can be established.

Basically, the assumptions that we need are those making €2 a regular inference function vector.
Assumptions 2.3

1. The support of Z, Z do;zs not depend on any § € A.

2. Eg{Q}=0;

3. The partial derivative 0Q/ 8% exists for almost every z € Z;

4. Assume Q and v are ¢x 1 vectors respectively, and their components have subindez j = 1,...,q.

The order of integration and differentiation may be interchanged as follows:
oo [ s i0ute) = [ o0 fos (e By,
6ﬂ] z J ‘ ) N z aﬂ] J ) }‘ ]

5. Bg{QQ'} € R™? and the ¢ x ¢ matriz
Mg = Eg{QQ'}
1s posttive-definite.
6. The q¢ x ¢ matriz Do = 0Q(0)/0% is non-singular.

0
Assumptions 2.3 are equivalent to assuming that My, (y) in (2.56) is positive-definite and D, (7)

in (2.56) is non-singular for certain n > ng, where ng is a fixed integer.

We have the following theorem
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Theorem 2.7 Consider the model (2.73) and let 4 denote the IFME of ¥ under the IFM (2.77).
Under Assumptions 2.3, ¥ is a consistent estimator of 4. Furthermore, as n — oo, we have asymp-

totically
~ D —
V(¥ - Y0) =Ny (0,Jg 1),

where Jo = DpMg' Daq.

Proof. Under the model (2.74) and the Assumptions 2.3, the proof is similar to that of Theorem 2.3
and 2.4. _ m|

We believe this approach for deriving asymptotic properties of an estimate has not appeared
in the statistical literature. The assumptions are suitable for an observational study but not an
experimental study in which one has control of the v’s.

Theorem 2.7 is different from Theorem 2.6 in that Mn and Dg both depend on the distribution
function of V. Nevertheless, because w;; , = ¥i.;,s and wijr: = ¥ijr,¢, the numerical evaluation of
Mgq and M, (¥) in (2.59) based on data are the same because only the empirical distribution for ¥
is needed. For example, suppose «; is a parameter of P;(y;;) and a., a parameter of Py(y;x), then

the element of the matrix Mg corresponding to the parameters o; and a4, can be estimated by

H

1 z": 1 OP;(yij) 0Pk (yir)

n & Pi(yij)Pe(yir)  Oou doam  |a,a,
which is the same as (2.67). We can similarly obtain (2.68) and (2.69). The same result is true for
Dgq versus Dy, (%) in (2.56); they both lead to the same numerical results based on the data. We

thus derive the same formulas (2.70)-(2.72) for numerical evaluation of Dgq.

2.5 The Jackknife approach for the variance of IFME

The calculation of the Godambe information matrix based on regular IFM for the models (2.39)
and (2.53) is straightforward in terms of symbolic representation. However, fhe actual computation
of the Godambe information matrix requires many derivatives of first and second order, and in
terms of computer implementation, considerable programming effort would be required. With this
consideration, an alternative jackknife procedure for the calculation of the IFME asymptotic variance
is developed. The jackknife idea is simple, but very useful, especially in cases where the analytical

answer is very difficult to obtain or computationally very complex. This procedure has the advantage

of general computational feasibility.
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In this section, we show that our jackknife method for calculating the corresponding asymptotic
variance matrix of 8 is asymptotically equivalent to the Godambe information matrix. We examine
the situation for models with covariates and with no covariates. Our main interest in using the
jackknife is to obtain the SE of an estimate and not for bias correction (because for multivariate
statistical inference the data set cannot be small), though several results about jackknife parameter
estimation are also given.

The jackknife estimate of variance may be preferred when the appropriate computer code is
not available to compute the Godambe information matrix or there are other complications such
as the need to calculate the asymptotic variance of a function of an estimator. Some numerical
comparisons of the Godambe information and the jackknife variance estimate based on simulations
are reported in Chapter 4. The jackknife procedure is demonstrated to be satisfactory. Some general
references about jackknife methods are Quenouille (1956), Miller (1974), Efron and Stein (1981),
and Efron (1982), among others. A recent reference on the use of jackknife estimators of variance
‘for parameter estimates from estimating equations is Lipsitz et al. (1994), though their one-step
jackknife estimator is not as general as what we are studying here, and their main application is to
clustered survival data.

In the following, we assume that we can partition the n observations into ¢ groups with m
observations each so that n = m x g, m is an integer. We discuss two situations for applying
jackknife idea: leaving out one observation at a time and leaving out more than one observation at

a time.

2.5.1 Jackknife approach for models with no covariates
Let Y,Yq,...,Y, beiid rv’s from a regular discrete model
P(yi---ya;0), 0 R

in (2.12), and y,y;,...,¥y, be their observed values respectively. Let ¥(8) = (1(8),...,1,(8))
be the IFM based on y, ¥;;(8) = (¥4,1(8),...,%i,4(0)) be the IFM based on y;, and ¥,(8) =
(Un1(8),...,U,,(6)) be the IFM based on yy,...,y,, where ¥,;(6) = 30 ;(0) (= 1,...,9).
Let 8 = (61,...,6,) be the estimate of 8 from ¥, (6) = 0.

Leave out one observation at a time

Let 5(,-) be an estimate of # based on the same set of inference functions ¥,, but with the ith

observation y; from the data set y,,...,y, deleted, i = 1,...,n. In this situation, we have m = 1




Chapter 2. Foundation: models, statistical inference and computation 72

and ¢ = n. That is, we delete one group of size 1 each time and calculate the same estimate of 8
based on the remaining n — 1 observations. Let ; = nf — (n— l)é(,-), and 6(.) =50, é(;)/n. 0; are
called “pseudo-values” in the literature. The jackknife estimate of 8 is defined as

n

> 6; =nb — (n—1)f,. (2.78)

n <

~ 1
6, =
The jackknife estimator has the property that it eliminates the order 1/n term from a bias of the
form E(é) =0+u;/n+uy/n?+- -, where the functions uj, uz, ... do not depend upon n (see Miller
1974). In fact, the jackknife statistic 51 often has less bias than the original statistic 6.
The early version of the jackknife estimate of variance for the jackknife estimator ] J was sug-

gested by Tukey (1958). It is defined as

n

Vi = n(nl—— 1 > (6~ 05)(6: - 65)" = — - > 6 - 5(-))(9(;) —8)7. (2.79)

In (2.79), the pseudo-values 8; are treated as if they are independent and identically distributed,
disregarding the fact that the pseudo-values 6; actually depend on the common observations. To
Jjustify (2.79), Thorburn (1976) proved that under rather natural conditions on the original statistic
8, the pseudo-values are asymptotically uncorrelated.

In practice, the pseudo-values have been used to estimate the variance not only of the jackknife
estimate 8 7, but also 6. But if the bias correction in jackknife estimate is not needed, we propose

to use a simpler estimate of the asymptotic variance (matrix) of 8:
n -~ -~ -~ -~
Vi=> (6G)—0)0i)—6)T. (2.80)
i=1

In our context, unless stated otherwise, we always call V; defined by (2.80) the jackknife estimate
of variance. In the following, we first prove that the asymptotic distribution of a jackknife statistic
8, is the same as the original statistic 8 under the same model assumptions; subsequently, we prove

that V; defined by (2.80) is a consistent estimator of inverse of the Godambe information matrix

Jg(6).

Theorem 2.8 Under the same assumptions as in Theorem 2.4, the jackknife estimate f), in (2.78)

has the same asymptotic distribution as 8. That 18, as n — 00,

V(B — 6)2N,(0,75(9)),

where Jg(0) = DT (8)M;(8) Dy (8), with Mg (6) = E{¥(8)¥T(8)} and Dy(8) = 5¥(8)/58.
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Proof: We sketch the proof. For ¥,(0) = (¥,1(0),...,¥n,(0)) : Y* x R — IR? has the following
expansion around @

0=0,(0)=V,(8) + Ha(0)( — ) + R,
where H,(0) = 0¥,(8)/98 is a ¢ x ¢ matrix and R, = p(||é —8]1*) = O,(n~') by assumptions.
Thus .

~ 1 1

Vi -0)= ($H®) = (-0.(0) - o).

Let W(;)(#) be ¥,(#) calculated without the ith observation, and H;() be the ¢ x ¢ matrix
0V, (8)/00 calculated without the ith observation. Similarly, we have

1
vn—1

ViTTo -0 = (1 H0©) (=¥ (8) = Ruos)

where Rp—1; = Op(||é(,~) —0)|%) = op(n~1).
Since

V(i - 6) = n (Va(® - 6) - Va(B) - 8)) + v - 0),

we have

\/—(opo)_n(f(o 0)——Zf(9<z)—9)> Z\/_("@)"’)

( VAd-0)— -2 Z;\/n— o(,)—a)> 1/ni1%2\/n—1(5(,-)—6).

Thus

By the Law of Large Numbers, we have
1
—~H,(6)> Dy (6),

a.r;d

1 P
L 1(6)2Du 0).

From the central limit theorem,

%\pn(o)ﬂzvq(o, Ma).
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We further have

\/n_an ﬁww) fw A (0).

This, together with the y/n-consistency of ] (Theorem 2.4), lead to
1 |
~H,(0 — (—¥,(8) — R,
n[(n 6) Iz (%0~ Rn)

\/:n { ( H(z)((’)) h \/771—_——1 (—¥y(6) — Rpie1) }] 50
\/:" { (7Er00) g (¥o®) R } S Ny(0, Dg* My (D)),

Thus by applying Slutsky’s Theorem, we obtain

V(B — 0)2N,(0, 75(8)).
O

Theorem 2.9 Under the same assumptions as in Theorem 2.4, the sample size n times the jackknife

estimate of variance Vy defined by (2.80) is a consistent estimator of J5*(6).
Proof. We have

n - R - n - -

> 66— 6)(Biy—6)" =D (8) — )8y — 6)”

i=1 i=1

T
+n(8—0)6-06).

- lZ(é(i) - 0)] 6-86)7 — (5-0) lZ(é(i) - 0)
Recall that ‘
6—0=H;'(6)(-V.(0) - R,),

and

0(,) -6 = H 1(0) (—\II(,-)(G) — Rn_l,,-) )
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where Ry = 0, (/|8 — 8]|?) = Oy(n™1) and Rpn—1,; = O,(||8iy — 8]|%) = Op(n~1). Thus
n N o . n -_ T _ T
> (B = 0) 6y = 8)" =3 Hi (6) (~¥(3)(6) — Rn-1) (—¥(3)(8) = Rn-1,) (H(,-)l (9))
i=1 i=1

~ |30 H ) (~2(®) = Ror) | (-a(0) — Ra)T (H:1(8)"

n T
— H;'(8) (—¥n(6) ~ Rn) ZH&)I(") (—¥:)(0) - Rn_l,,-)]

+nH;(6) (~¥a(8) - Rn) (~¥a(8) - Rn)” (H;1(8))" .
(2.81)
As U(i)(8) = Wn(6) — Wii(6), thus 350, Uiy(8) = (n — 1)Wa(8) and 300, ¥(i)(8)¥(;)(6) = (n —
2),,(6)T(6) + 37, ¥i;(8)¥T(8). By the Law of Large Numbers, we have
1

n

Hn(0)5Dy(8),

1
——H(6)% Dy (6)

n —
and

LS w, 0)47 (0> 5 (0)37(0))

i=1

From (2.81), we have
g@s) ~ BBy )" - gH(:;w)w.-;w)w,-;(e)T (ri5:®)" 20
and this implies that
n Z":(% —8)(8G;) - 8)" HD3 ()M (6)(Do(8) 1)
i=1
In other words, we proved that nV; is a consistent estimator of J3*(8). w

Leave out more than one observation at a time

Now for general g > 1, we assume a random subdivision of y,,...,y, into g groups (n = gm). Let
5(,,) (v =1,...,9) be an estimate of 8 based on the same set of inference functions ¥ from the data
set ¥q,...,Y, but deleting the v-th group of size m (m is fixed), thus é(,,) is calculated based on a
subsample of size m(g — 1). The jackknife estimate of @ in this general setting is the mean of 8,

which is

~ 1<~ ~ ~
8 = ;Za, = g8 — (g - 1), (2.82)
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where é(.) =gy é(,,), and 8, = g6 — (g9— 1)6(,,) (v =1,...,9) are the pseudo-values.

In this situation, the jackknife estimate of variance for 6, Vs, 1s defined as

vy = Z (6y—8) (B -5)" | (2.83)

Theorem 2.8 and 2.9 can be easily generalized to the situation with fixed m > 1.

Theorem 2.10 Under the same assumptions as in Theorem 2.4, the jackknife estimate é_; defined

by (2.82) with m fized has the same asymptotic distribution as 6. That is, as n — oo (thus g — 00),
V(B — 6)>N,(0,15(8)),
where Jg(0) = DE ()M (0)Dg(8), with My () = E’a{\IJ(G)\IIT(O)} and Dy (6) = 0%(0)/00.

Proof. We sketch the proof. Let ¥(,)(#) be ¥,(8) calculated without the vth group, and H(,)(#) be
the ¢ x ¢ matrix 0¥, (8)/00 calculated without the vth group. We have

Vi) -0 = (=B ®) S (¥ = Raoms)
where Ry, = 0,,(||é(,) —0]|2) = Op(n~1). Recall that
Vi@, - 0) = g (Vi@ - 0) - vabe) - ) + va(be) - 9),
we thus have

Vi, -0 =g | /a0 - o)——Zfo(,)—0)>+ Z\/"(ﬂ(u)—ﬂ)

[
( 36 -0)- /L2 \/Fw(u)—o)) \/:—ZF(M 0)

this implies that

«/_(91—0)—9(\/_(9 0 ,/— \/n— (0(,,)—9)) \/——ZV"— m(b,) - 6).

Thus
~ 1 -1
Vn(l;—0)=g l ;H,,(o)) 7 (-¥,.(8) —R,) -
g -1 ‘
Q{"Ifql' Zl { (n _1 mH(,,)(o)) nl_ — (=) (6) - Rn—m,u)} +  (2.84)
gi_lé Z_:l { (n mH(")(a)) _ \/nl_—m (=% (6) - Rn—m,v)} .
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By the Law of Large Numbers, we have
1 P
~Ha(6)2-D3(0)

and

Hey(8)5 Dy ().

n—m
From the central limit theorem,

1 D
We also have

g 1< 1 1
—= ———“‘P(v)(o)=—%

This, together with the 1/n-consistency of ] (Theorem 2.4), lead to

¥, (6).

g [(%Hnw)) JENEACES

—\/}—S é { (n - mH<v)(9)> B ‘nl_ = (~¥()(6) - Rm—m,v)}] 50

and
V gi_lé 2 { (n - mH(V)(0)> _ \/nl——% (=%0)(0) - Rn—m,u)} =Ny(0, Dy My (Dg")").

Applying Slutsky’s Theorem to (2.84), we obtain

V(B — 82N, (0,731(6)).
]

Theorem 2.11 Under the same assumptions as in Theorem 2.4, the sample size n times the jack-
knife estimate of variance Vy defined by (2.83) is a consistent estimator of J5'(8), when m is fized

and g — 0.
Proof.: We use the same notation as in the proof of Theorem 2.10. We have
9 o - 9 _
>80y =86y - 0) =3 8wy — 0)0c) — 6)7
v=1 v=1

T
+9(8-6)(8-0)T,

g B ) g
- [D"m - 0)] 6-0)7-(@-0) lZ(Ou) - 6)
v=1 =1
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and
8,y — 8= H}(8) (~9()(8) — Rnorm,v)

Thus

> 0wy - 8)b) - 8)" = Z HG50) (—¥0)(6) = Rn_my) (—¥()(6) = Rn_my)” (H(-,;(m)T

(—¥a(8) — Ra)” (H(6))"

ZH@)«)) ~¥(,)(6) ~ Rn—m,y)
g T
— H7'(6) (~¥(6) — Rn) | 3" H3(6) (~()(6) - Rn-m,u)]
v=1

+ gH;(8) (—¥a(8) — Rn) (—¥a(8) — Ra)” (H;(0)"

(2.85)
Let W% (6) = ¥, (8) — ¥(,)(8). Then

3" Twy(0) = (9 — 1)Ta(8)

and

Z Ty (0)95,1(8) = (9 — 2) ()T (0) + > W3 (6)(¥5 ()7

v=1
By the Law of Large Nurnbers, we have

~HA(6)5Ds (),

1
—H(,)(6)"Du(6).

n—

We also have E{¥}(8)(¥}(8))T/m} = E{¥(8)¥7(8)}, thus by the Law of Large Numbers,
-~ Z U3 (0)(L;(0))" = Z{‘I’* (6)(¥5(8)T /m}HE(¥(6)¥7 (6)).

From (2.85), we have
g . . B g
> ) = -0 - L HS OGO O (133®)" 2o,

which implies that

nY (O~ 0)B) — 07Dy (8) Mg (8)(Da (6))7.

i=1

In other words, we proved that ny 7 1(0(,,) - 0)(0(,,) - 0) is a consistent estimator of Jg(8), when

m is fixed and g — oo. m]
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The main motive for the leave-out-more-than-one-observation-at-a-time approach is to reduce
the amount of computation required for the jackknife method. For large samples, it may be helpful
to make an initial random grouping of the data by randomly deleting a few observations, if necessary,
into g groups of size m. The choice of the number of groups g may be based on the computation
costs and the precision or accuracy of the resulting estimators. As regards of computation costs,
the choice (m,g) = (1,n) is rﬁost expensive. For large samples, ¢ = n may not be computationally
feasible, thus some values of ¢ less than n may be preferred. The grouping, however, introduces a
degree of arbitrariness, a problem not encountered when g = n. This results in an analysis that is
not uniquely defined. This is generally not a problem for SE estimation for application purposes,
as usually then a rough assessment is sufficient. As regards the precision of the estimators, when
the sample size n is small to moderate, the choice (m,g) = (1,n) is preferred. See Chapter 5 for

examples.

2.5.2 Jackknife for a function of 8

The jackknife method can also be used for estimates of functions of parameters, such as the asymp-
totic variance of P(y1 - - - ya; 6) for a MCD or MMD model. The usual delta method requires partial
derivatives of the function with respect to the parameters, and these may be very difficult to obtain.
The jackknife method eliminates the need for these partial derivatives. In the following, we present
some results on the jackknife method for functions of 6.

Suppose b(8) = (b1(8), ..., b,(8))’ is a vector-valued function defined on R and taking values in
s-dimensional space. We assume that each component function of b, b;(-) (7 = 1,...,s), is real
valued and has a differential at 8, thus b has the following expansion as § — 8;:

b(8) = b(do) + (6 — b) (%’)T +oll0 - 6oll), (2.86)
where 6b/08;, = (0b/60’)|‘9=00 is of rank ¢ = min(s, ¢).

By Theorem 2.4, 0 has an asymptotic normal distribution
V(8 - 8)2N,(0,75%).
Similarly by Theorem 2.8 and 2.10, 6, has an asymptotic normal distribution in the sense that

VB - 8)=N,(0,75%).

We have the following results for b(8) and b(f,):
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Theorem 2.12 Let b be as described above and suppose (2.86) holds. Under the same assumptions
as in Theorem 2.4, b(é) has the asymptotic disiribution given by
~ D b ob\”
b(#) - b(8))—=N; [0, | — J“l(—) )
Va(b(6) - b(6) > ( (57) 7 (57
Proof: See Serfling (1980, Ch.3). O

Theorem 2.13 Let b be as described above and supp.ose (2.86) hold. Under the same assumptions
as in Theorem 2.4, b(é_}) has the asymptotic distribution given by

5 b ob\7
6,)-b@)>N: [0, (o ) T3t (=) |-
Va(b(@s) - b(®) ( (57) 7% (37) )
Proof: See Serfling (1980, Ch.3). a

As in the previous subsection, let 5(,,) be the estimator of @ with the v-th group of size m deleted,

v=1,...,g9. We define the jackknife estimate of variance of b(é), which we denote by Vjy,, as

g

V=3 (b)) - b®) (b(E) - b@)) - (287)

v=1

We have the following theorem.

Theorem 2.14 Let b be as described above and suppose (2.86) holds. Under the same assumptions
as in Theorem 2.4, the sample size n times the jackknife estimate of variance Vv defined by (2.87)

(6_b>J-1(_@_p_)T
00,) " \oa6,)

Proof. The proof is similar to that of Theorem 2.11, and thus omitted here. a

1s a consistent estimator of

To carry out the above computational results related to the estimates of functions of parameters,
it would be desirable to maintain a table of the parameter estimates for the full sample and each
Jjackknife subsample. Then one can use this table for computing estimates of one or more functions
of the parameters, and their corresponding SEs.

The results in Theorems 2.12, 2.13 and 2.14 have immediate applications. One example is given

next.

Example 2.18 For a MCD or MMD model in (2.12), say P(y1 - - -y4;8), we could apply the above
results to say something about the asymptotic behaviour of P(y; - - - yq; é) and P(y; - - yd; éJ) From

Theorems 2.12 and 2.13, we derive that as n — co

o6’ o6’
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and
3 aP\ ._, /0P\T
06 00
Furthermore, by Theorem 2.14, we obtain a consistent estimator of (6P/60’)J£1(6P/30’)T, ie.
2

g ~ ~
ny (P(y1 - ya;0y) — Py~ ‘yd;o))
v=1

Also see Chapter 5 for direct application in data analysis. (]

2.5.3 Jackknife approach for models with covariates

Suj)pose we have the model defined by (2.53) and (2.54). Let 4,y (¥ =1,...,9) be an estimate of
4 based on the same set of inference functions ¥, (y) from the data set yq,...,y, but deleting the
v-th group of size m (m is fixed). The jackknife estimate of 7 is

. 1E. N .
¥, = EZ‘YV = 97— (9 — DAy (2.88)

v=1
where 7y = 1/g Sy Yoy and ¥, = g% — (9 — V¥y (v=1,...,9).
'We define the jackknife estimate of variance Vi~ for 4 as follows:
g T
Viy = Z (7@) - 7) (’r(y) - ’y) - (2.89)
v=1
Under the assumptions for the establishment of Theorem 2.6, in parallel to Theorems 2.10 and
2.11, we have the following theorems for the models with covariates. The proofs are generalizations

of the proofs for Theorem 2.5, 2.6, 2.10 and 2.11. We omit the proofs and only state the results

here.

Theorem 2.15 Consider the general model (2.53) with d arbitrary. Let ¥ denote the IFME of ¥
under the IFM corresponding to (2.57). Under Assumptions 2.1, 2.2 and 2.3, the jackknife estimator
v defined by (2.88) is asymptotically normal in the sense that, as n — oo, _

—1/x D
\/;l-An 1(7] - 70))_+NQ(0) I):
where Ay = D (7o) M (7o) (D (%6))T, Da(0) and M, (7o) are defined by (2.56). 0
Theorem 2.16 Under the same assumptions as in Theorem 2.7, we have

o = Da e (‘Yo)(D;l(‘Yo))Tﬂ’O,

where Vi~ is the jackknife estimate of variance defined by (2.89), and Dn(yo) and My(7,) are
defined by (2.56). m|
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Theorem 2.17 Let b be as described zn subsection 2.5.2 and suppose (2.86) hold. Under the same
assumptions as in Theorem 2.7, b(¥), a function of IFME ¥, has the asymptotic distribution given
by

VaB; (b(F) — b)) N (0,1),
where By = [(9b/615) Dyt (Yo)Ma(10) (D5 (vo)) (9b/075)"] ", and Dulye) and Ma(yo) are
defined by (2.56). |

Theorem 2.18 Let b be as described in subsection 2.5.2 and suppose (2.86) hold. Under the same
assumptions as in Theorem 2.7, b(¥ ), of the jackknife estimate 4; derived from ¥, has the asymp-

totic distribution given by

VAB; (b(7s) = b(1) >N (0, 1),

/
where B, = [(8b/075) D (1o)Ma(10)(D5 (vo))T (9b/01)7] ", and Da(xo) and My (o) are
defined by (2.56). o

We define the jackknife estimate of variance of b(¥), Vip, as follows:

g

Vi =3 (b)) - b@) (bFe) ~ b)) - (2.90)

v=1
Theorem 2.19 Let b be as described in subsection 2.5.2 and suppose (2.86) hold. Under the same

assumptions as in Theorem 2.6, we have

db ob\"
Vip — D7 (7o) M (7o) (D1 T( ) 2o,
Vo= (o) D5 (o) Mo 1) 05 ()T (5

where the jackknife estimate of variance Vyy, defined by (2.90) and Dy,(y,) and M, (7,) are defined
by (2.56). ]

2.6 Estimation for models with parameters common to more

than one margin

One potential application of the MCD and MMD models is for longitudinal or repeated measures
studies with short time series, in which the interest may be on how the distribution of the response
changes over time. Some common characteristics, which carry over time, may appear’in the form of

common regression parameters or common dependence parameters. There are also general situations

in which the same parameters appear in more than one margin. This happens with the MCD and
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MMD models, for example, when there is a special dependence structure in the copula C| such as
in the multinormal copula (2.4), where © = (6;;) is an exchangeable correlation matrix with all
correlations equal to 8, or © is an AR(1) correlation matrix with the (j,k) component equal to

gli=*| for some 6.

Example 2.19 Suppose for the d-variate binary vector Y; with a covariate vector for the jth
univariate margin can be represented as Y;; = I(Zi; < a;+f;x;5),i=1,...,n, where Z; ~ N(0,0).
This is a multivariate probit model. Assume 8; = B, then the common regression coefficients appear
in more than one margin. We could estimate B from the d univariate margins based on the IFM
approach, but then we have d estimates of 8. Taking any one of them as the estimate of # evidently
results in some loss of information. Can we pool the information together to get a better estimate
of B? The same question arises for the correlation matrix ©. Assume there is no covariate for ©.
When © has certain special forms, for example exchangeable or AR(1), the same parameter appears
in d(d—1)/2 bivariate margins. Can we get a more efficient estimate from the IFM approach? There
are also situations where a parameter is common some margins, such as 13 =3 = --- =834-1 In

O. The same question about getting a more efficient estimate arises. O

A direct approach for common parameter estimation is to use the likelihood of a higher-order
margin, if this is computationally feasible. Otherwise, the IFM approach for model fitting can be ap-
plied. With the IFM approach, appropriately taking the information about common parameters into
account can improve the efficiency of the parameter estimates. Analytical and numerical evidence
supporting this claim are given in Chapter 4 for these two approaches of information pooling for
IFM that we propose here. The first approach, called the weighting approach (WA), is to form a new
estimate based on some weighting of the estimates for the same parameter from different margins.
A special case is the simple average. The second approach, called the pool-marginal-likelihoods (th-
proach (PMLA), is to rewrite the inference function of margins under the assumption that the same
parameter appears in several margins. In the following, we outline the two estimating approaches

in general terms.

2.6.1 Weighting approach

WA is a method to get an efficient estimate based on a weighted average of different estimates for

the same parameter. We state this approach in general terms. Assume 71, .. ., 74 are estimates of

the same parameter v, but from different inference functions. Let ¥ = (41,...,%,)’, and let 2.7 be
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the asymptotic variance-covariance matrix based on Godambe information matrix. One relatively
efficient estimate of the parameter 7 is based on the following result, which easily obtains from the

method of Lagrange multipliers.

Result 2.1 Suppose X is a g-variate random vector with mean vector ux = (g, ..., p) = pl and
Var(X) = Zx, where p is a scalar and 1 = (1,...,1)'. A linear unbiased estimate of u, w'X, has

the smallest variance when

-1
u= oAy
1'23'1
a
Applying the above result to our problem, the resulting estimate of v is
1’251‘?
7 = ) 2.91
7 llz:rll ( )

If 4;5 are consistent estimates of v, then ¥ is also a consistent estimate of v and it has smaller
asymptotic variance than any of the individual estimates of 4 from one particular inference function.

The asymptotic variance of ¥ is

X
2 _ Ly —
0',-’, = u'E.yu = H (292)
.l 7
A computationally simpler but slightly less efficient estimate of v is
1’diag{z;yl}»7
V= ————, 2.93
7 1’diag{2;yl}1 (2.93)

and an approximation of the asymptotic variance of 7 from (2.93) is 02 = 1/(1’diag{)3§1}1). A
naive estimate of v is ¥ = 1'4/1'1, which is just the simple average. In some special situations, such
as in the Example 4.4, the estimate of (2.91) reduces to a simple average.

In practice, E,s, may not be available. We may have to estimate it based on the data. The
following algorithm may be useful for getting a final estimate of y. Assume we already have ¥ and

27.

Computation algorithm:
1. Let u= )57;11/1’53,;11.

2. Find ¥ = u'%.

3. Set ¥ = (%,...,9), and update f).y with this new ¥.
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4. Go back to step 1 until the final estimate of ¥ satisfies a prescribed convergence criterion.

The asymptotic variance of ¥ at the final iteration can be calculated by (2.92).

2.6.2 The pool-marginal-likelihoods approach

In this approach, different inference functions for the same parameter are pooled together as a sum,
where each inference function is the loglikelihood of some margin. We use the model (2.54) to
illustrate the approach. Suppose that in (2.54), @j =@, j=1,...,dand bjs = B8, 1 < j <k < d,
then more efficient estimators of & and # may be obtained. For example, we can sum up the the
loglikelihood functions of margins corresponding to the parameter vectors a and 8 in the following
way:

n d
£(a) =Y log Pi(ij),

i=1j=1

n d
(@, B) = " log Pix(yijyir)-

i=1 i<k

(2.94)

(2.94) is an example of PMLA. The inference functions of margins from (2.94) corresponding to a

and B are
n d n d
~ 1 9P;(yy) 1 OP;(yi)
YiFpM = __l__l_"'q __i__LU
= ; P;(yij)  Oon P ; Pi(wij)  Oop
o o (2.95)
» 1 OPjk(yijyir) »Y 1 OP;x (yij vir)
oo Pielwive) - 0p T i< Fie(wwe) 0B, ,

and the estimating equations based on IFM is

n d
1 9Pi(yi;)
) g s—1,..p,
2L )

d
[Vn_: 1 OP;k(yijgir) _ 0. =1
Pir(yijyix) 0B ' ’

0y q.
i=1j<k :

If we consider (2.95) as inference functions, we see that asymptotic theory on the estimates from
the PMLA can be established by applying the general inference function theory.
For completeness, we give here algebraic expressions on IFM with the PMLA for the Godambe

information for the model (2.39) with 8 = (6y,...,04,60:2,...,04-1,4)', where we assume 6y, ...,0,



Chapter 2. Foundation: models, statistical inference and computation 86

are each a function of one parameter A, and 0, ...,84-1,4 are each a function of one parameter p.

The loglikelihood functions of margin corresponding to the parameter vectors A and p are

n d
6,0 =Y log Pi(u;s),

i=1j=1

n d
) =Y. > log Pie(vijtix),

i=1 j k=1;j<k

(2.96)

and the estimating equations based on IFM is

1 aP (y,])
ZZP(%]) o 0

i=1j=1
ZZ 1 OP;(Yij vir) -0
= 75 Pielviivin) dp

The IFM corresponding to one observation is

~_1 0Py 1 9Py
W:(¢1’¢2):(;Pj(y] Og\y)ZPk( ka(zy'“)).

Y; yk)
The Godambe information matrix is a 2 x 2 matrix. To calculate the Godambe information matrix
Jg = D%,'M‘Ileq,, we need the matrices
E(¥]) E($14: E(8%, /0 0
MF((Q 92) g p, o (FORIOY |
E(¢1v2) E(¥3) 0 E(8v2/0p)
For E(t,bf), we have

2
) S 1 9B)
E('“)zE(;Pj(w) 2

d 2
= Y Py -va) (ij(lyj)anE\yj)) _

{v1--ya}

It can be estimated consistently by

1 1 8P;(uij) ’
D (ZPJ-(W) ’m’) - (2.97)

Similarly, we have

j<k

d 2
= > Pik(y1---9a) (ZP 1. ank(yjyk))

{y1--ya} i<k Jk(y]yk) 6p

2
1 OPix(yiyx)
1/)2) = (Z Pix(yjvx) Op )
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and

_ d1 8Py ) [ 1 OPju(y;us)
B(Urv2) = E{ (Z:: i(y;) OA ) (Z; Pix(yjys)  Op
_ 1 0P (yJ 1 O0Pjr(yjve)
) {yga} [(] 1 F5w) ) (K'c Firlyiwe) - 0p )] |

For E(8v1/0X),
1 <3Pj(yj)>2 4L 0Fiy)
P2(y;) \ 0A Pi(y;) 0OA

™=

0 o
A

Jj=1

)

SO

E(041/0A)= ) Py yd)z

{y1-y4}

1 (an(y,-))2+ 1 9°Pi(y;)
Pi(y;) \ 0 Pi(y;) 0N

Similarly, we find

d 2
E(dv2/0p) = Y P(yl'--yd)Z[— . (an'“a(gjyk)) Fp— 6P’0’“[Ey’yk)]

2 (0, (s
{y1-ya} i<k Pl (y5yk) Pir(yiyr)

Consistent estimates for E(¢2), E(¥1¢2), E(8v1/8)) and E(8v2/8p) can be similarly written as
in (2.97).

2.6.3 Examples

We give two examples of WA and PMLA.

Example 2.20 1. A trivariate probit model with ezchangeable dependence structure: Suppose
we have a trivariate probit model with known cut-off points and P(111) = $3(0,0,0,p,p,p). It
can be shown (see Example 4.4) that the asymptotic variance of g from one bivariate margin is
[(7? — 4(sin™* p)2)(1 — p?)]/4n, and the asymptotic variance of 5 from WA or PMLA is [(1 — p?)(7 +
6sin~' p)(r—2sin~' p)]/12n. The ratio of the former to the latter is [3(7+2sin™* p)]/[7 +6sin™? p],
which decreases from oo to 1.5 as p increases from —0.5 to 1. In this example, the optimal weighting

is equivalent to a simple average (see Example 4.4 for details).

2. A trivariate probit model with AR(1) dependence structure: Suppose we have a trivariate probit
model with cut-off points known, such that P(111) = ®3(0,0, 0, p, p%, p). Let 02 be the asymptotic
variance of § from WA, o2 be the asymptotic variance of 5 from PMLA, o2, be the asymptotic

variance of  from the (1,2) margin, and 0?5 be the asymptotic variance of § from the (1, 3) margin.

In Example 4.5, we show that ag/a?u > 1, with a maximum value of 1.0391, which is attained at
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p = 0.3842 and p = —0.3842; 02,/02% increases from 1.707 to 2 as p goes from —1 to 0 and from 2
to 1.707 as p goes from 0 to 1; and %5/02 increases from 1.207 to oo as p goes from —1 to 0, and

decreases from oo to 1.207 as p goes from 0 to 1. |

PMULA in the form presented in this section can also be considered as a simple weighted likelihood
approach. More complicated weighting schemes for the PMLA can be sought. In general, as long as

a reasonable efficiency is preserved, we prefer the simple weighting schemes.

2.7 Numerical methods for the model fitting

From previous sections, we see that the IFM approach for parameter estimation leads to the problem
of optimization of a set of loglikelihood functions of margins. The typical system of functions for

the models with no covariates in the form of loglikelihood functions of margins are

n
gnj(Aj)zzlong(yij)) j:l,...,d,

= (2.98)
je(058) = Y _log Pir(wijyar), 1<3j<k<d,

i=1

and the estimating equations (derived from the loglikelihood functions of margins) are

=SS L 9Ps) o L
\I’M(/\J)—ZP'(yij) a)‘j =0, j=1,...,d,

1 3ij(yijyik) .
] E = < .
n]lc(o_,k) P k(yz]yzk) agjk 0, 1<j<k<d

(2.99)

For the models with covariates, the typical system of functions in the form of loglikelihood functions

of margins are

loj(e;) = log Pi(yi;), j=1,...,d,
i=1

" (2.100)
bnik(Bix) = ) log Pin(uijyr), 1<j<k<d
i=1
and the estimating equations are
"1 8P;(y) .
U,i(a;) = — 12—, j=1,...,d,
i(a;) ; Pi(vi;) Oa; 101

1 OP;x(yij vix)

=0, 1<j<k<d.

an(ﬂJk) Z P;r(yij yir) 6ﬁjk
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Newton-Raphson method

The traditional approach for numerical optimization or root-finding is the Newton-Raphson method.
This method requires the evaluation of both the first and the second derivations of the objective
functions in (2.98) and (2.100). This method, with its good rate of convergence, is the preferred
method if the derivatives can be easily obtained analytically and coded in a program. But in many
cases, for example with £,;z(0;%) or £,;1(B;x), where bivariate objects involve non-closed form
two-dimensional integrals, application of the Newton-Raphson method is difficult since analytical
derivatives in such situations are very hard to obtain. The Newton-Raphson method can only be
easily applied for a few cases with £,;(A;) or £,;(@;), where only univariate objects are involved. For
example, the Newton-Raphson method may be used to solve ¥,,;(};) = 0 to find 5\]-, i=1,...,d
In this case, based on Newton-Raphson method, for a given initial value A; ¢, an updated value of

Aj is

. 0%, (A)] 71
Ajnew = Ajo— { [#] ‘I’nj()‘j)}

This is repeated until successive :\j,new agree to a specified precision. In (2.102), we need to be able

(2.102)

Aj0

to code
| Wai (05) = D 0/Bi (i IOP 3s) /0N (2.103)

and

0Uni(Ni) _N~_ 1 OPilyy) 1 (an(y‘f))2, (2.104)

0% & Pi(yy) 0N PXyij) \  0Xj
This is for the case with no covariates. For the case with covariates, similar iteration equations to

(2.102) can be written down. We need to calculate
i :
Ynj(ag) = D [1/Pi(wii|[OF; (34)/0exs), (2.105)
=1

which is a p; x 1 vector and

0¥nj(a) _ v
6aj

— 2.106
Prlw;) Oaydal ~ Piuy) da;  \ da (2.106)

i=1

1 0*Pi(yi) 1 0P;i(yij) (al’j(y«'j))']

which is a p; x p; matrix. It is equivalent to calculate the gradient of P;(y;;) at the point e;, which

is the p;-vector of (first order) partial derivatives:

) 8 0 !
aTij(yij) = [——Pj(yz'j), e aa—Pj(yij)]

JpPj

aajl
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and the Hessian of Pj(y;;) at the point e;, which is a p; x p; matrix of second order partial derivatives
with (s,t) (s,t = 1,...,p;) component (8%/8a,;8c:)P;(ys;).

To avoid the often tedious algebraic derivatives in (2.103) — (2.106), modern symbolic computa-
tion software, such as Maple (Char et al., 1992), may be used. This software is also convenient in

that it outputs the results in the form of C or Fortran code.

Quasi-Newton method

For many multivariate models, it is inconvenient to supply both first and second partial derivatives of
the objective functions as required by the Newton-Raphson method. For example, to get the partial
derivatives of the forms (2.104) — (2.106) may be tedious, particularly with function objects such as
£k (01) or £n;k(B;k), where 2-dimensional integrations are often involved. A numerical method for
optimization that is useful for many multivariate models in this thesis is the quasi-Newton method (or
variable-metric method). This method uses the numerical approximation to the derivatives (gradients
and Hessian matrix) in the Newton-Raphson iteration; thus it can be considered as a derivative-free
method. In many situations, a crude approximation to the derivatives can lead to convergence in the
Newton-Raphson iteration as well. Application of this method requires only the objective functions,
such -as those in (2.98) and (2.100), to be coded. The gradients are computed numericzﬂly and the
inverse Hessian matrix of second order derivatives is updated after each iteration. This method has
the advantage of not requiring the analytic derivatives of the objective functions with respect to the
paramefers. Its disadvantage is that convergence could be slow compared with the Newtoh—Raphson
approach. An example of a quasi-Newton routine, which is used in the programs written for this
thesis work, is a quasi-Newton minimization routine in Nash (1990) (Algorithm 21, p192). This is a
modified Fletcher variable-metric method; the original method is due to Fletcher (1970).

With the quasi-Newton methods, all we need to do is to write down the optimization (min-
imization or maximization) objective function (such as £,;:(B;%)), and then let a quasi-Newton
routine take care of the rest. A quasi-Newton routine works fine if the objective function can be
computed to arbitrary precision, say ¢g. The numerical gradients are then based on a step size (or
step length) € < €. The calculation of the optimization objective function with multivariate model
often involves the evaluation of multiple integration at some arbitrary points. One-dimensional and
two-dimensional numerical integrals can usually be computed quite quickly to around six digits of

precision, but there is a problem of computational time in trying to achieve many digits of precision

for numerical integrals of dimension three or more. When the objective function is not computed
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sufficiently accurately, the numerical gradients are poor approximations to the true gradients and
this will lead to poor performance of the quasi-Newton method. On the other hand, for statistical
problems, great accuracy is seldom required; it is often suffice to obtain two or three significant

digits, and we expect that in most of situations, we are not dealing with the worst cases.

Starting points for numerical optimization

In general, an objective function may have many local optima in addition to possibly a single global
optimum. There is no numerical method which will always locate an existing global optimum, and
the computational complexity in general increases either linearly or quadratically in the number of
parameters. The best scenario is that we have a dependable method which converges to a local
optimum based on initial guesses of the values which optimize the objective function. Thus good
starting points for the numerical optimization methods are important. It is desirable to locate a
good starting point based on a simple method, rather than trying many random starting points.
An example based on method of moments estimation for deciding the starting points is for the
multivariate Poisson-lognormal model (see Example 2.12), where the initial values for an estimate
of p; and o; based on the the sample mean (;), sample variance (sjz) and sample correlations (7j)
are 59 = {log[(s? — §;)/5? + 1]}/2, i = log §; — 0.5(52)? and 8%, = log[r;is;se/(F;Te) + 11/(5959)
respectively. If the problem involves covariates, one can solve some linear equation systems with
appropriately chosen covariate values to obtain initial values for the regression parameters. Initial
values may also be obtained from prior knowledge of the study or by trial and error. Generally
speaking, it 1s easier to have a good starting point for a model with interpretable parameters or
parameters which are easily related to interpretable characteristics of the model. In the situations
where closed-form moment characteristics of the model are not available, we may numerically com-

pute the model moments.

Numerical integration

There are several methods for obtaining numerical integrals, among them are Romberg integration,
adaptive integration and Monte-Carlo integration. The latter isg especially useful for high dimen-
sional integration provided the accuracy requirements are modest. With the IFM approach, as often
only one or two-dimensional integrations are needed, the necessary numerical integrations are not a

problem in most cases. (Thus IFM can be considered as a tractable computational method, which

alleviates the often extremely heavy computational burdens in fitting multivariate models.) For
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this thesis work, an integration routine based on the Romberg integration method in Davis and
Rabinowitz (1984) is used; this routine is good for two to about four dimensional integrations. A
routine in Fortran code for computing the multinormal probability (or multinormal copula) can be
found in Schervish (1984). Joe (1995) provides some good approximation methods for computing

the multinormal cdf and rectangle probabilities.

2.8 Summary

In this chapter, two classes of models, MCD and MMD, are proposed and studied. The IFM is
proposed as a parameter estimation and inference procedure, and its asymptotic properties are
studied. Most of the results are for the the models with MUBE or PUBE properties. But the results
of this chapter should apply to a very wide range of inference problems for numerous popular models
in MCD and MMD classes. The IFME has the advantage of computational feasibility; this makes
numerous models in the MCD and MMD classes practically useful. We also proposed a jackknife
procedure for computing the asymptotic covariance matrix of the IFME, and demonstrated the
asymptotic equivalence of this estimate to the Godambe information matrix. Based on the IFM
approach, we also proposed estimation procedures for models with parameters common to more
than one margin. One problem of great interest is that of determining the efficiency of the IFPME
relative to the conventional MLE. Clearly, a general comparison would be very difficult and next to
impossible. Analytic and simulation studies on IFM efficiency will be given in Chapter 4. Another
problem of interest is to see how the jackknife procedure compares with the Godambe information

calculation numerically. A study of this is also given in Chapter 4. Our results may have several

interesting extensions; some of these will be discussed in Chapter 7 as possible future research topics.




Chapter 3

Modelling of multivariate discrete

data

In this chapter, we study some specific models in the class of MCD and MMD models and develop
the corresponding IFM approach for fitting the model based on data. The models are first discussed -
for the case with no covariateé and then for the case with covariates. For the dependence structure
in the models, we distinguish the models with general dependence structure and the models with
special dependence structure. Different ways to extend the models, especially to include covariates
for the dependence parameters, are discussed.

This chapter is organized as the following. In section 3.1, we study MCD models for binary
data, with emphasis on multivariate logit models and probit models for binary data. In section 3.2,
we make some comparison of the models discussed in section 3.1. The general ideas in this section
should also extend to other MCD and MMD models. In section 3.3, we sfudy MCD models for
count data, and in section 3.4, we study MCD models for ordinal data. MMD models for binary
data are studied in section 3.5, and MMD models for count data are studied in section 3.6. Finally
in section 3.7, we discuss the use of MCD and MMD models for longitudinal and repeated measures
data. In each section, only a few parametric models are given, but many others can be derived. For

data analysis examples with different models presented in this chapter, see Chapter 5.

93
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3.1 Multivariate copula discrete models for binary data

3.1.1 Multivariate logit model

A multivariate logit model should be based on a multivariate logistic distribution. As there is no nat-
ural multivariate logistic distribution, we construct ;nultivariate logit models by putting univariate
logistic margins into a family of copulas with a wide range of dependence, and simple computa-
tional form if possible. As a result, multivariate logit models for binary data are obtained by letting
G;(0) = 1/[1 4+ exp(z;)] and G;(1) = 1 in the model (2.13), with arbitrary copula C. Some choices
of the copula C are:

e Multinormal copula
C(u1,...,uq0) = (2 H(wy), ..., 0" (uq); ©), (3.1)

where © = (;z) is a correlation matrix (of normal margins). The bivariate margins of (3.1)

are Cj(uj, ug) = ®2(3 (u;), @~ (ur); b5)

e Mixture of max-id copula (id for infinitely divisible, see Joe and Hu 1996)

. d
C'(u) =% |- Z IOngk(e_pj¢_l(uj), e_pkd)_l(uk)) + Z I/jpj’l/}-l(u]‘) , (32)
i<k ' i=1
where K are max-id copulas, p; = (vj +d—1)"1, v; > 0. For interpretation, we may say that
¥ can be considered as providing the minimal level of (pairwise) dependence, the copula Kjj
adds some pairwise dependence to the global dependence, and v;’s can be used for bivariate
and multivariate asymmetry (the asymmetries are represented through v;/(v; + i), j # k).
(3.2) has the MUBE and partially CUOM properties. With 9(s) = —8~!log(1—[1—e"%]e™*),
6 >0,
d
C(u)=—0""log |1— (1 — ) [] Kjn(zj,z) [[ 7|, (3.3)
i<k j=1
where z; = [(1 — e=?%)/(1 — e=®)]P4, p; = (v; + d — 1)~!. The bivariate margins of (3.3)
are Cjx(uj,ux) = —6~log[l — (1 - e‘o)x;j+d_2mzk+d_2Kjk(mj,:ck)]. One good choice of K
would be Kji(z;,zx) = (:L‘]-_éjk + m,:&jk —1)=%x* 0 < 6;1, < 0o; because the resulting copula

is simple in form. (See Kimeldorf and Sampson (1975) and Joe (1993) for a discussion of this

bivariate copula.)
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e Molenberghs-Lesaffre (M-L) construction (Joe 1996). The construction generates a multivari-
ate “copula” with general dependence structure. An example for a 4-dimensional copula is the

following;:
z(z — ag) H1gj<k<4(~"Ic — a;k)

(Ci23 — 2)(C124 — 2)(C1a34 — ©)(Caaa — ) [[j=1 (a5 — 2)
where z = C334 is the copula, ag = Ci23 + Ci24 + Ci3s + Ca3q — C12 — C13 — C14 — Ca3 —
Coa— Css+ur +up+uzgt+ug—1, a1 = ug — Cr2 — C13 — Crg + Cr23 + Cr24 + Ciaq, a2 =
uy — C12 — C23 — Caq + Cr23 + Chr2a + Ca34, a3 = uz — C13 — Ca3 — C34 + C123 + Cras + Caaa,
aq = ug—Cra—C24— C34+C124+ Cr34+ Cazy, and a5 = Cjri+ Cjpm—Cip,for 1 < j < k < 4

(3.4)

N1234 =

and 1 <I,m# j,k < 4.In (3.4), Ci23, Ci24, C134 and Ch34 are compatible trivariate copulas

such that
. Zb1b2b3
Nikl = b4b5b6b7’

where 2 = Cjp1, b1 = u; —Cjp —Cji+ 2, ba = upg — Cjpy — Cri+ 2, b3 = w1 — Cj1 — Cri + 2,

(3.5)

bs=Cijr—2, b5 =Cji—2,bs =Cri—zand by =1 —u; —ur —ur + Cjr + Cji + Cpy — 2, for
1 < j < k <1< 4. The bivariate copulas C15, C13, C14, C23, C24, C34 are arbitrary compatible
bivariate copulas. Examples are the bivariate normal, Plackett (2.8) or Frank copula (2.9); see
Joe (1993, 1996) for a list of bivariate copula families with good properties. The parameters in
C1234 are the parameters from the bivariate copulas, plus 7z, 1 < j < k < 1 < 4, and n1234.
The géneralization of this construction to arbitrary dimension can be found in Joe (1996).
Notice that we have quotation marks on the word copula, because the multivariate object
obtained from (3.4) and (3.5) or the corresponding form for general dimension has not been
proven to be a proper multivariate copula. But they can be used for the parameter range that
leads to positive orthant probabilities for the resulting probabilities for the multivariate binary

vector.

¢ Morgenstern copula

d d
C(ul,...,ud): 1+Z€,~k(1—uj)(1—uk) Huh, (36)
h=1

i<k
where 0;; must satisfy some constraints such that (3.6) is a proper copula. The bivariate

margins of (36) are Cjk(u]‘,uk) = [1 + ﬁjk(l - Uj)(l - uk)]ujuk, |0jk| <1.

¢ The permutation symmetric copulas of the form

d
C(ul,...,ud) =¢ (Z ¢_1(u,~)) , (37)
i=1
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where ¢ : [0,00) — [0, 1] is strictly decreasing and continuously differentiable (of all orders),
and ¢(0) = 1, ¢(00) = 0, (=1Y ¢U) > 0. With 9(s) = =0 log(1 — [1 —e~%]e™*), 8 > 0, (3.7)

is
d C fu
1 [;(A—e™)
— EYCTAR I J
Clui,...,uq) = ¢ (;_1 ¢ (u,)) = —glog (1 T et | (3.8)
This choice of 9(s) leads to 3.8 with bivariate marginal copulas that are reflection symmetric.

It is straightforward to extend the univariate marginal parameters to include covariates. For
example, for z;; corresponding to the random vector Y;, we can let z; = a;x;;, where @; is a
parameter vector and x;; is a covariate vector corresponding to the jth margin. But what about the
dependence parameters in the copula? Should the dependence parameters be functions of covariates?
If so, what are the functions? These questions have no obvious answers. It is evident that if the
dependence parameters are functions of covariates, the form of the functions will depend on the
particglar copula associated with the model. A simple way to deal with the dependence parameters
is to let the dependence parameters in the copula be independent of covariates, and sometimes this
may be good enough for the modelling purposes. If we need to include covariates for the dependence
parameters, careful consideration should be given. In the following, in referring to specific copulas,

we give some discussion on different ways of letting the dependence parameters depend on covariates:

- With the multinormal copula, the dependence structure in the copula for the ith response
vector Y; is ©; = (6; k). It is well-known that (i) ©; has to be nonnegative definite, and (ii)
the component 0; ;5 of ©; has to be bounded by 1 in absolute value. Under these constraints,
different ways of letting ©; depend on covariates are possible: (a) let 8; ;1 = [exp(8;, Wi ;i) —
1]/[exp(B;xwi k) + 1]; (b) let ©; have a simple correlation structure such as exchangeable
and AR(1); (c) use a representation such as z;; = [a}x;;]/[1 + x{;xi;]'/2, 6; 5k = rjx/[(1 +
x;;%i;)(1 4 x4 x2)]*/%; (d) use a more general representation such as 6; j; = riEWi ;Wi jk; OF
(e) i'eparameterize ©; into the form of d—1 correlations and (d—1)(d—2)/2 partial correlations.
The extension (a) satisfies condition (ii), but not necessarily (i). The extension (b) satisfies
conditions (i) and (ii), but is only suitable for data with a special dependence structure. The
extension (c) is more natural, as it is derived from a mixture representation (see section 3.5
for a more general form) and it satisfies condition (ii) and also condition (i) as long as the
correlation matrix (r;z) is nonnegative definite. This is an advantage in comparison with (a),

as in (a), for (i) to be satisfied, all n correlation matrices must be nonnegative definite. The

disadvantage of (c) is that the dependence range may be limited once a particular formal
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representation is chosen. The extension (d) is similar to the the extension (c), except that
now the 6; ;s are not required to depend on the same covariate vectors as z;;. The extension
(e) completely avoids the matrix constraint (i), thus relieving a big burden on the constraint
for the appropriate inclusion of covariate to the dependence parameters. But this extension
implicitly implies an indexing of variables, which may not be rational in general, although this
is not a problem in many applications as the indexing of variables is often evident, such as

with time series; see Joe (1996).

- With the mixture of max-id copula (3.3), extensions to parameters 6, v;, 6;; as functions of
the covariates are straightforward. For example, for 6;, v;;, 6; j5 corresponding to the random

/
vector Y;, we may have 6;, v;; constant, and &; jx = exp(B;; Wi jk).

- With the Molenberghs-Lesaffre construction, the extension to include covariates is possible.
In applications, it is often good enough to let the bivariate parameters 6; ;z be function of
covariates, such as 6; jr = exp(ﬁ; kWi i) for bivariate Plackett copula, or Frank copula, and
to let the higher order parameters be constant values, such as 1. This is a simple and useful
approach, but there is no guarantee that this leads to compatible parameters. (See Joe 1996

for a maximum entropy interpretation in this case.)

- With the Morgenstern copula, the extension to let the parameters 6; ;; be functions of some
covariates is not easy, since the 6; ;; must satisfy some constraints. This is rather complicated
and difficult to manage when the dimension is high. The situation is very similar to the

multinormal copula where ©; should be nonnegative definite.

- With the permutation symmetric copula (3.8), the extension to include covariates is to let 6;

be function of covariates, such as to let 6; = exp(8'w;).

We see that for different copulas, there are many ways to extend the model to include covariates.
Some are obvious and thus appear to be natural, others are not easy or obvious to specify. Note
also that an exchangeable structure within the copula does not imply an exchangeable structure
for the response variables. For MCD models for.binary data, an exchangeable structure within the
copula plus constant cut-off points across all the margins implies an exchangeable structure with
the response variables. The AR dependence structure for the discrete response variables should
be understood as latent Markov dependence structure (see section 3.7). When we mention an

AR(1) (or AR) dependence structure, we are referring to the latent dependence structure within the

multinormal copula.
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In summary, under “multivariate logit models”, many slightly different models are available. For

example, we have multivariate logit model with
i. multinormal copula (3.1),
il. multivariate Molenberghs-Lesaffre construction

a. with bivariate normal copula,
b. with Plackett copula (2.8),

c¢. with Frank copula (2.9),
iii. mixture of max-id copula (3.3),
iv. Morgenstern copula (3.6),
v. the permutation symmetric copula (3.8).

Indeed, such multiple choices of models are available for any kind of MCD model. For a discrete
random vector Y, different copulas in (2.13) lead to different probabilistic models. The question is
when is one model preferred to another? We will discuss this question in section 3.2. In the following,
as an example, we examine estimation aspects of the multivariate logit model with multinormal
copula.

The multivariate logit model with multinormal copula can also be called multivariate normal-
copula logit model to highlight the fact that multinormal copula is used. For the case with no
covariates, the estimating equations for multivariate normal-copula logit model based on IFM can

be written as the following

Wnj(25) = [nj (1)(1 + exp(—z;)) — n;(0)(1 + exp(—z;)) exp(z;)] (1 2l

+exp(~z))?
njk(ll) _ njk(lo) _ njk(Ol) n]-k(OO)
Pip(11)  Pjr(10)  Pjr(01) * Pjr(00)

=0,5=1,...,d,

Voik(05x) = $2(®7 1 (u;), @ (ur), bjx) = 0,

1<j<k<d,

where Pjr(11) = Cjr(uj, ur; 0;k), Pix(10) = u; — Cjr(uj, uk; 05i), Pjr(11) = ugp — Cir(u;, ur; 0x),
Pir(11) = 1 — uj — ug + Cjr(uy, ug; 0jx) with Cjr(uj, uk; 0jx) = D2(®71(uj), @~ (ur), 0jx), uj =
1/[1 4 exp(—2;)], ux = 1/[1 4 exp(—=2x)], and ¢; is the BVN density. We obtain the estimates
zj = log(nj(1)/n;(0)), = 1,...,d, and 6; is the root of the equation ®(®~1(4;), ®~(it), 0;1) =
njk(11)/n, 1 < j < k < d, where %; = 1/(1 + exp(—%;)) and @ = 1/(¥+ exp(—Zk)).
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For the situation with covariates, we may have the cut-off points depending on some covariate
vectors, such that

Zij = @jo%ijo + 0j1%ij1 + -+ @ Tijp; = CGXij, (3.9)

where z;;0 = 1, and possibly .

exp(Brwijr) — 1

exp(B;rwi k) + 1’

where B;; = (bjk,0,b5k,1,- -, 0jk,p; ). We recognize that (3.10) is one of the form of functions of

(3.10)

ik =

dependence parameters (in multinormal copula) on covariates that we discussed previously. We use
this form of functions for the purpose of illustration. Other function forms can also be used instead.
Because of the linearity of (3.9) and (3.10), the regression parameter vectors a;, B;; have marginal

interpretations. The loglikelithood functions of margins are

E,,j(aj):ZlogIDj(y;j), j:l,..l.,d,

i=1 i
Ljr(, an, Bix) = Y log Pix(wijyir), 1<j<k<d,
i=1

where

Pij(%i5) = y‘j% +(1- yz‘j)m,

Py jr(tijyie) = ©2(7"(bij), B (bik); 0ji) — @227 (bsj), @ (aur); 1) —

(@7 (aij), @ (bik); 058) + @2(27" (as), @7 (air); B5x),

where a;; = Gij(yi; — 1), bij = Gij(¥ij), air = Gir(yir — 1) and b = Gix(yir), with-G;;(1) = 1 and
G;;(0) = 1/1 + exp(zi;). We can apply quasi-Newton minimization to the loglikelihood functions of
margins for getting the estimat‘es of the parameters &; and B;;. The Newton-Raphson method can
also be used for getting the estimates of @; (what we used in our computer programs). In this case,
we have to solve the estimating equations

~ 1 3Pi(yy)
U, = i) _
=2 P(v;) da5

i=1
For applying Newton-Raphson method, we need to calculate OP(yij)/0a;s and 0% P(yij)/Ocjs0ajs.
We have 0P (yi;)/0aj, = (2yij—1){exp(zi;)/(14+exp(zij))? }zijs, s = 0,1, ..., p;, and 82 P(yi;) /Ot s e
= (2yi; — 1){exp(z,-j)(1 — exp(zi;))/(1 + exp(zi;))3}zijszije, s,t = 0,1,...,p;j. For details about
Newton-Raphson and quasi-Newton methods, see section 2.7.

Mg and Dy can be calculated and estimated by following the results in section 2.4. In applica-

tions, to avoid the tedious coding of Mg and Dg, we may use the jackknife technique to obtain the
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asymptotic variance of Z; and f; in case there are no covariates, or that of &; and B;; in case there

are covariates.

3.1.2 Multivariate probit model

The general multivariate probit model, similar to that of multivariate logit-model, is obtained by
letting G;(0) = 1 — ®(z;) and Gj(1) = 1 in the model (2.13). The multivariate probit model in
Example 2.10 is the classical multivariaté probit model discussed in the literature, where the copula
in (2.13) is the multinormal copula. All the discussion of the multivariate logit model is relevant and
can be directly applied to the multivariate probit model. For completeness, we give in the following
some detailed discussion about the multivariate probit model when the copula is the multinormal
copula, as a continuation of Example 2.10.

For the multivariate probit model in Example 2.10, it is easy to see that E(Y;) = ®(z;), Var(Y;) =
D(2;)(1 — ¥(z;)), Cov(Yj,Yi) = ®a(zj, 2k, 0j1) — ®(2;)®(2x), j # k. The correlation of the response
variable Y; and Y5 is

Corr(Y;, Y) = Cov(Y;,Y3) _ @o(zj, zk; 05k) — P(25)P(2k) .
{Var(Y;)Var(Ye)}'/2 — {®(2)(1 — (2;))2(2x)(1 — B(2))}/?
The variance of Y; achieves its maximum when z; = 0. In this case E(Y;) = 1/2, Var(Y;) = 1/4. If
zj = 0,2, = 0, we have Cov(Y;,Yx) = (sin™! 0;;)/(27), and Corr(Y;,Y;) = (2sin~! 8;;)/x. Without

loss of generality, assume 2; < zj, then when 6;; is at its boundary values,

{®(z;)(1 - ®(21))/(1 - ®(2))@(z)}/?, =1,
—{(1 = @(z))(1 — B(21))/®(2;)B(2)}/?, O = ~1, —21 < 75,
—{®(2;)®(zk)/ (1 — ®(2))(1 — ®(2x))}/?, G2 = =1, 2 <~z ,
0, 6 =0.

Corr(Y;,Yx) =

From Fréchet bound inequalities,
— min{a'/?, 071/} < Corr(¥;, Yi) < min{b'/2,671/%},

where a = [P;(1)Pg(1)]/[P;(0)Px(0)], b = [P;(1)P:(0)]/[P;(0)Pr(1)], we see that Corr(Y;, Yz) attains
its upper and lower bound when 6;; = 1 and §;; = —1 respectively. Corr(Y;,Y%) is an increasing
function in 6, it varies over its full range as 0k varies over its full range. Thus in a general situation
a multivariate probit model of dimension d consists of d univariate probit models describing some

marginal characteristics and d(d—1)/2 latent correlations 65, 1 < j < k < d, expressing the strength

of the association among the response variables. #;; = 0 corresponds to independence among the
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response variables. The response variables are exchangeable if © has an exchangeable structure and
the cut-off points are constant across all the margins. Note that when © has exchangeable structure,
we must have 6;; =6 > —-1/(d - 1).

The estimating equations for the multivariate probit model with multinormal copula, based on

n response vectors y;, 1 =1,...,n, are
n;(1) n;(0) .
i) = (- 12 Yoy =0, =1,
I ®(z) 1-®(z) I
4 ‘I’n'k(e'k):( nje(1) nj%(10) _ _n;k(01)
7 ®a(zj, 2k, 0ik)  R(z7) — ®alzj, 28, 058)  P(2k) — Pa(2j, 2k, bjk)
n;£(00) ) .
z,21,0i) =0, 1<j<k<d.
\ 1—<I>(zj)-—<I>(zk)+<1>2(zj,zk,0jk) ¢2( 2%k ]k) J

These lead to the solutions Z =& 1 (nj(1)/n),j=1,...,d, and 5jk is the root of the equation
®4(%;, 2, 05%) = njx(11)/n, 1< j < k < d.
For the situation with covariates, the details are similar to the multivariate logit model with

multinormal copula in the preceding subsection, except now we have

Pii(%i5) = 45 ®(zi5) + (1 — i )(1 — ®(2i5)),
Py ji(yij vik) = D2(77(bis), @77 (bik); Ok) — @2(® 7 (bij), @7 ik ); Ojk)—
Ox(®7 (as;), @7 (bir); Ojk) + B2(®™ (as;), D™ H(aix); O51),
with a;; = Gij(yi; — 1), bi; = Gij(ij), aix = Gik(yix — 1) and b = Gix(vix), with Gi;(1) = 1
and Gi;(0) = 1 — ®(2;;). We also have 0P(yi;)/00;, = (2yi; — 1)é(2ij)zijs, s = 0,1,...,p; and
2 P(yi;)/0cjs0ctjy = (1 — 2455 )(2i5)2ij Tijsije, 5,8 = 0,1,...,pj; these expressions are needed for
applying the Newton-Raphson method to get estimates of ;.

Mg and Dy can be calculated and estimated by following the results in section 2.4. For example,
for the case with no covariates, we have E(¥?(z;)) = ¢%(2;)/{®(z;)(1 — ®(2;))} and E(¢%(8;z)) =
[1/P;x(11)+1/ Pjr(10)+1/ P;x(01)+1/P;(00)][0P;k(11)/06;]?, where OP;k(11)/86;r = 0®2(z;, 2k,
0;k)/00;x = ¢2(2j, 2k, 0k), a result due to Plackett (1954). In applications, to avoid the tedious
computer coding of My and Dy, we may use the jackknife technique to obtain the asymptotic

variance of Z; and 6;; in case there are no covariates, or that of &; and-B;; in case there are

covariates.
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3.2 Comparison of models

We obtain many models under the name of multivariate logit model (also multivariate probit model)
for binary data. An immediate question is when is one model preferred to another?

In section 1.3, we outlined some desirable features of multivariate models; among them (2) and
(8) may be the most important. But in applications, the importance of a particular desirable feature
of multivariate model may well depend on the practical need and constraints. As an example, we
briefly compare the multivariate logit models and the multivariate probit models with different
copulas studied in the section 3.1.

The multivariate logit model with multinormal copula satisfies the desirable properties (1), (2),
(3) and (4) of a multivariate model outlined in section 1.3, but not (5). The multivariate probit
model with multinormal copula is similar, except that one has logit univariate margins and the other
has probit univariate margins. In applications, the multivariate logit model with multinormal copula
may be preferred to the multivariate probit model with multinormal copula, as the multivariate logit
model with multinormal copula has the advantage of having a closed form univariate marginal cdf.
This consideration also leads to the general preference of multivariate logit model to multivariate
probit model when both have the same associated multivariate copula. For this reason, in the
following, we concentrate on discussion of multivariate logit models.

The multivariate logit model with the mixture of max-id copula (3.3) satisfies the desirable
properties (1), (3) and (5) of a multivariate model outlined in section 1.3, but only partially (2)
and (4). The model only admits positive dependence (otherwise, it is flexible and wide in terms of
dependence range) and it is CUOM(k) (k > 2) but not CUOM. The closed form cdf of this model is
a very attractive feature. If the data exhibit only positive dependence (or prior knowledge tells us
s0), then the multivariate logit model with mixture of max-id copula (3.3) may be preferred to the
multivariate logit model with multinormal copula.

The multivariate logit model with the M-L construction satisfies the desirable properties (1),
(2), (3) and (4) of a multivariate model outlined in section 1.3, but not (5). The computation of
the cdf may be easier numerically than that of multivariate logit model with multinormal copula
since the former only requires solving a set of polynomial equations, but the latter requires mul-
tiple integration. The disadvantage with this model, as stated earlier, is that the object from the
construction has not been proven to be a proper multivariate copula. What has been verified nu-

merically (see Joe 1996) is that (3.4) and its extensions do not yield proper distributions if ;234 and

nixt (1 < j < k <1< 4) are either too small or too large. In any case, the useful thing about this
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model is that it leads to multivariate objects with given proper univariate and bivariate margins.

The multivariate logit model with the Morgenstern copula satisfies the desirable properties (1),
(4) and (5) of a multivariate model outlined in section 1.3, but not (2) and (3). This is a major
drawback. Thus this model is not very useful.

The multivariate logit models with the permutation symmetric copulas (3.7) are only suitable for
the modelling of data with special exchangeable dependence patterns. They cannot be considered as
widely applicable models, because the desirable property (2) of multivariaté models is not satisfied.
Nevertheless, this model may be one of the interesting considerations in some applications, such as
when the data to be modelled are repeated measures over different treatments, or familial data.

In summary, for general applications, the multivariate logit model with the multinormal copula
or the mixture of max-id copula (3.3) may be preferred. If the condition of positive dependence
holds in a study, then the multivariate logit model with the mixture of max-id copula (3.3) may be
preferred to the multivariate logit model with multinormal copula because the former has a closed
form multivariate cdf; this is particularly attractive for moderate to large dimension of response,
d. The multivariate logit model with Molenberghs-Lesaffre construction may be another interesting
option. When several models fit the-data about equally well, a preference for one should be based
on which desirable feature is considered important to the successful application of the models. In
many situations, several equally good models may be possible; see Chapter 5 for discussion and data
analysis examples.

In the statistical literature, the multivariate probit model with multinormal copula has been
studied and applied. An early reference on an application to binary data is Ashford and Sowden
(1970). An explanation of the popularity of multivariate probit model with multinormal copula is
that the model is related to the multivariate normal distribution, which allows the multivariate probit
mode] to accommodate the dependence in its full range for the response variables. Furthermore,

marginal models follow the simple univariate probit models.

3.3 Multivariate copula discrete models for count data

Univariate count data may be modelled by binomial, negative binomial, logarithmic, Poisson, or

generalized Poisson distributions, depending on the amount of dispersion. In this section, we study

some MCD models for multivariate count data.
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3.3.1 Multivariate Poisson model

The multivariate Poisson model for Poisson count data is obtained by letting G;(y;) = ZE’,"’;]O pg-m),

y; =0,1,2,...,00, j = 1,2,...,d, in the model (2.13), where pg-m) = [AT exp(—A;))/m!, A; > 0.
The copula C in (2.13) is arbitrary. Copulas (3.1)—(3.8) are some interesting choices here.

The multivariate Poisson model has univariate Poisson marginals. We have E(Y;) = Var(Y;) =
Aj, which is a characterizing feature of the Poisson distribution called equidispersion. There are
situations where the variance of count data is greater than the mean, or the variance is smaller than
the mean. The former case is called overdispersion and the latter case is called underdispersion.
We will see models dealing with overdispersion and underdispersion in the subsequent sections. Al-
though the multivariate Poisson model has Poisson univariate marginal distribution, the conditional
distributions are not Poisson.

The univariate parameter A; in the multivariate Poisson model can be reparameterized by taking
n; = log(};) so that the new parameter 7; has the range (—o00,00). It is also straightforward to
extend the univariate marginal parameters to include covariates. For example, for A;; corresponding
to random vector Y;, we can let A;; = exp(a}x;;), where a; is a parameter vector and x;; is a
covariate vector corresponding to the jth margin. The discussion on modelling the dependence
parameters in the copulas in section 3.1 are also relevant here. Most of the discussion in section 3.2
about the comparisons of models is also relevant here as the comparison is essentially the comparison
of the associated multivariate copulas.

In summary, under the name “multivariate Poisson models”, we may have multivariate Poisson

model with
i. multinormal copula (3.1),
1i. multivariate Molenberghs-Lesaffre construction

a. with bivariate normal copula,
b. with Plackett copula (2.8),

c. with Frank copula (2.9),
ili. mixture of max-id copula (3.3),

iv. Morgenstern copula (3.6),

v. the permutation symmetric copula (3.8).
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These are similar to the multivariate logit models for binary data.

For illustration purposes, in the following, we provide some details on the multivariate Poisson
model with the multinormal copula. The multivariate Poisson model with the multinormal copula
can also be called the multivariate normal-copula Poisson model. This model was already introduced
in Example 2.11. For the multivariate normal-copula Poisson model, the Fréchet upper bound is
reached in the limit if © = J, where J is matrix of 1’s. In fact, when 6;; = 1 and A; = A, the
correlation of the response variable Y; and Y} is

E{yj} ngP(yj)—’\]z A +/\]z —,\]2. _1
Aj - Aj -

Corr(Y;,Y;) =

When O has an exchangeable structure and A; does not depend on j, then there is also an exchange-
able correlation structure in the response vector Y.
The loglikelihood functions of margins for the parameters A and © based on n observed response

vectors y;, ¢t = 1,...,n, are:

n
bj(N) =D log Pi(wij), i=1,...,d,
i:ln (3.11)
njk(05k) = ZIOngk(yijyik), 1<j<k<d,
i=1
where Pj(yij) = /\g"' exp(—X;)/ui;! and Pjr(viiyir) = P2(D™(bij), D7 (bik); O5x) — P2(D1(bij),
71 (air); k) — B2(® (aiz), 21 (bir); 0k) + B2(@ (as5), @~ (air); 65), where aij = Gij(yi; — 1),
bij = Gij(vij), aix = Gie(vir — 1) and b = Gix(yix), with Gij(vi;) = Y09, Pi(z) and Gix(yix) =

Yik
r=

o Pr(z). The estimating equations based on IFM are

- 1 8P;j(y;y) .
U,.:(A;) = I =1,...
J( J) ;-P](yzj) a)\J 0’ J 1) ;d)

. 1 OP;x(¥i; Vir) )
U, (0:) = JE\Yij —
UDED :P,vk(y,-jy,-k) 9651 0, 1<j<k<d,

i=1

(3.12)

which lead to )~\j =y i ¥j/n,and 5]- & can be found through numerical computation. An extension
of the multivariate normal-copula Poisson model with covariate x;; for the response observation Yij
is to let A;j = h;(7;,%i;) for some function h; in the range [0,00). An example of the function h; is
Aij = exp(‘y;x,-j) (or log(Aij) = ‘y} xij). The ways to let the dependence parameters 6;; be functions
of covariates follow the discussion in section 3.1 for the multivariate logit model with multinormal

copula. We can apply quasi-Newton minimization to the loglikelihood functions of margins (3.11)

to obtain the estimates of the parameters 7; and the dependence parameters 6;; (or the regression
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parameters for the dependénce parameters if applicable). The Newton-Raphson method can also be
used to obtain the estimates of 4; from W,,;(};) = 0. Let log(Ai;) = vj0+ 751251+ - - +7jp; Lijp; For
.applying the Newton-Raphson method, we need to calculate 0P(y;;)/8v;s and 82P(yi;)/07;s07j1-
If we let z;jo = 1, we have OP(yi;)/075s = {A}" exp(—=Ai;)/vij Y wij — Mijlzijs, s = 0,1,...,p;, and
2 P(yi5)/ 07507t = {)\y" exp(—Xi; ) /v H(wi; — Aij)? — Aijlaijszije, s, = 0,1,...,p;. For details

about numerical methods, see section 2.7.

3.3.2 Multivariate generalized Poisson model

The multivariate generalized Poisson model for count data is obtained by letting G;(y;) = Z[sy’%) pJ
y; =0,1,2,...,00,j=1,2,...,d, in the model (2.13), where
Ai(A + saj)"_l exp(—A; — saj)’ s=01,2,...,

Pg'a) — 8! (3.14)
0 for s >m, when o <0,

where A; > 0, max(—1,—-A;/m) < a; < 1 and m (> 4) is the largest positive integer for which
Aj + maj > 0 when «; is negative. The copula C' in (2.13) is arbitrary. The copulas (3.1)-(3.8) are
some choices here.

The multivariate generalized Poisson model has as its jth (j = 1,...,d) margin the generalized
Poisson distribution with pmf (3.14). This generalized Poisson distribution is extensively studied in
a monograph by Consul (1989). Its main characteristic is that it allows for both overdispersion and
underdispersion by introducing one additional parameter o;;. The generalized Poisson distribution
has the Poisson distribution as a special case when a; = 0. The mean and variance for Y; are
E(Y;) = Aj(1 — e;)7! and Var(Y;) = Aj(1 — )73, respectively. Thus, the generalized Poisson
distribution displays overdispersion for 0 < «; < 1, equidispersion for &; = 0 and underdispersion
for rha,x(—l, Aj/m) < a; < 0. The restrictions leading to underdispersion are rather complicated,
as the parameters a; are restricted by the sample space. It is easier to work with the overdispersion
situation where the restrictions are simply A; > 0, 0 < o; < 1.

The details of applying the IFM procedure to the generalized Poisson model are similar to that

of the multivariate Poisson model. For the situation with no covariates, the univariate estimating

equations for the parameters A; and o, j =1,...,d, are
1 8P;(uij)
Uoi(A5) — LA/
.7( Z P. (yij) 6/\ 0:

(3.15)

1 OP;(w;
n](a])_ZP éi]J):

5 (i)
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"They lead to
Zn: nyi;(yi; — 1)

= yui + (005 — y45)ay

=Y+ =0,

y+i(1 — ;) —nd; =0,
where yy; = > ., ¥ij. When there is a covariate vector x;; for the response observation Yij, we
may let A;; = a;(7;,%;;) for some function a; in the range [0,00), and let o;; = bj(q},x;j) for
some function b; in the range [0,1]. An example is A;; = exp(7;xi;) (or log(Xi;) = ‘y}xij) and
aij = 1/[1 + exp(—1;x;;)]. The discussion on modelling the dependence parameters in the copulas
in section 3.1 is also appropriate here. Furthermore, most of the discussion in section 3.2 about the
com\pa.risons of models is also relevant here since the comparison is essentially the comparison of the

associated multivariate copulas.

3.3.3 Multivariate negative binomial model

The multivariate negative binomial model for count data is obtained by letting G;(y;) = Z[sy’%, p; ?),

¥y, =0,1,2,...,00,j=1,2,...,d, in the model (2.13), where

s I'(aj +s) s
Pg) T(a,)T(s + 1) J(1—pj),

with o; > 0 and 0 < p; < 1. The mean and variance for Y; are E(Y;) = «;(1 — p;)/p; and

s=0,1,2,..., (3.16)

Var(Y;) = o;(1 —pj)/pJ?, respectively. Since a; > 0, we see that this model allows for overdispersion.
When there is a covariate vector x;; for the response observation y;;, we may let a;; = a;(7;,xi;)
for some function a; in the range [0, 00), and let p;; = b;(n;,x;;) for some function b; in the range
[0,1}. See Lawless (1987) for another way to deal with covariates. Other details are similar to that

of the multivariate generalized Poisson model.

3.3.4 Multivariate logarithmic series model

The multivariate logarithmic series model for count data is obtained by letting G;(y;) = ZEy’]l p; *)
¥y, =0,1,2,...,00,5=1,2,...,d, in the model (2.13), where

)

()=a]p]/s s=1,2,..., (3.17)

with a; = —[log(1—p;)]~* and 0 < p; < 1. The mean and variance for Y; are E(Y;) = a;p; /(1 —«;)

and Var(Y;j) = ajp;(1 — e;p;)/(1 — pj)?, respectively. This model allows for overdispersion when

p; > 1—e~! and underdispersion when p; < 1—e~!. Note that for this model to allow a zero count,

we need a shift of one such that pg.t) = a_,-p;-“/(t +1)fort=0,1,2,....
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For the situation where there is a covariate vector x;; for the response observation y;;, we may
let p;; = F;(¥;,%i;) where Fj; is a univariate cdf.
()

An unattractive feature of this model is that p;

;7 1s a decreasing function of s, which may not

be suitable in many applications.

3.4 Multivariate copula discrete models for ordinal data

In this section, we shall discuss the modelling of multivariate ordinal categorical data with mul-
tivariate copula discrete (MCD) models. We first briefly discuss some special features of ordinal
categorical data before we introduce the general MCD model for ordinal data and some specific
models.

When a polytomous variable has an ordered structure, we may assume the existence of a latent
continuous random variable that measures the level of the ordered polytomous variable. For a binary
variable, models for ordered data and unordered data are equivalent, but for categories variables
with‘more than 2 categories, ordered data and unordered data are quite different. The modelling of
unordered data is not as straightforward as the modelling of ordered data. This is especially so in the
multivariate situation, where it is not obvious how to model the dependence structure of unordered
data. We will discuss briefly the modelling of multivariate polytomous unordered data in Chapter
7. One aspect of ordinal data worth noticing is that it is possible to combine one category with
an adjacent category for data analysis. But this practice may not be as meaningful for unordered
categorical data, since the notion of adjacent category is not meaningful, and arbitrary clumping of
categories may be unsatisfactory.

We next introduce the MCD model for ordinal data. Consider d-dimension ordinal categorical
random vectors Y with m; categories for the jth margin (j = 1,2,...,d) and with the categories
coded as 1,2,...,m;. For the jth margin, the outcome y; can take values 1,2,...,m;, where m;
can differ with the index j. For Y;, suppose the probability of outcome s, s =1,2,...,m;, is p(f’).

We define

0; y] < 1,
Gj(y;) = { T P, 1<y <my, (3.18)
L, Y > mj,

where [y;] means the largest integer less or equal than y;. For a given d-dimensional copula

C(uy,...,uq;8), C(G1(41), . .., Gd(ya); 0) is a well-defined distribution for the ordinal random vector
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Y. The pmf of Y is

2

2
P(yr---ya) =Y -+ I (1) *4C(ay,, ..., aai,3 0), (3.19)

ii=1  ig=1 . .
where aj1 = G;j(y; — 1), aj2 = Gj(y;). (3.19) is called the multivariate copula discrete models for
ordinal data.

Since Y; is an ordered categorical variable, one simple way to reparameterize pgs), so that the
new parameter associated t6 the univariate margin has the range in the entire space, is to let
Gj(y;) = Fj(zj(y;)) where Fj is a cdf of a continuous random variable Z;. Thus pg-’) = Fj(z; (ygs))) -
Fi(z (yj(-s—l))). This is equivalent to

| Yi=1 iff z(0) < Z; < (1),
Yi=2 iff (1) < Z; < %(2), (3.20)
Yy =my iff zj(m; - 1) < Z; < z(m;),
where —oo = 2;(0) < z;(1) < - - < zj(m; — 1) < zj(m;) = co are constants, j = 1,2,...,d, and the
random vector Z = (Z1,...,2Z4)" has a multivariate cdf Fy,...4. In the literature, the representation
in (3.20) is referred to as modelling Y through the latent random vector Z, and the parameter z; (y;)
is called the y;th cut-off point for the random variable Z;.

As for the MCD model for binary data, the choices of F; are abundant. It can be standard logistic,
normal, extreme value, gamma, lognormal cdf, and so on. Furthermore, F}(2;) need not to be in the
same distribution family for different j. Similarly, in terms of the form of copula C(u4, ..., uq4;0),
it can be the multivariate normal copula, a mixture of max-id copula, the Molenberghs-Lesaffre
construct, the Morgenstern copula and a permutation symmetric copula.

It is also possible to express the parameters z;(y;) as functions of covariates, as we will see
through examples. For the dependence parameters @ in the copula C(uz,...,uq;8), there is also
the option of including covariates. The discussion in section 3.1 on the extension for letting the
dependence parameters in the copulas be functions of covariates is also relevant here, since this only
depends on the associated -copulas. In the following, in parallel with the multivariate models for

binary data, we will see some examples of multivariate models for ordinal data.

3.4.1 Multivariate logit model

The multivariate logit model for ordinal data is obtained by letting G;(y;) = exp(z;(y;))/[1 +

exp(z;j(y;)] in (3.19), where —oo = z;(0) < z;(1) < --- < zj(m; — 1) < zj(m;) = oo are constants,
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i=1,2,...,d. It is equivalent letting F;(z) = exp(z)/[1+exp(z)], or choosing F}; to be the standard
logistic cdf. The copula C in (3.19) is arbitrary. The copulas (3.1)—(3.8) are some choices here.

It is relatively straightforward to extend the univariate marginal parameters to include covariates.
For example, for z;; corresponding to random vector Y;, we can let z;; (yi;) = v; (vi;) + 95 (;, %),
for some constants —oo = v;(1) < 7;(2) < --- < yj(m; — 1) < vj(m;) = oo, and some function
g; in the range of (—00,00). An example of the function g; is g;j(z) = z. As we have discussed for
the multivariate copula discrete models for binary data, a simple way to deal with the dependence
parameters is to let the dependence parameters in the copula be iﬂdependent of covariates. To extend
the model to let the dependence parameters be functions of covariates requires specific knowledge
of the associated copula C. The discussion on the extension of letting the dependence parameters
in the copulas be functions of covariates for the multivariate logit models for binary data in section
3.1 are also relevant here. As with the multivariate logit models for binary data, we may also have

multivariate logit model for ordinal data with
i. multinormal copula (3.1),
ii. multivariate Molenberghs-Lesaffre construction

a. with ‘bivariate normal copula,
b. with Plackett copula (2.8),

c¢. with Frank copula (2.9),
ili. mixture of max-id copula (3.3),
iv. Morgenstern copula (3.6),
v. the permutation symmetric copula (3.8).

For illustrative purposes, we give some details on the multivariate logit model with multinormal
copula for ordinal data. The multivariate logit model with multinormal copula for ordinal data is also
called the‘ multivariate normal-copula logit modelfor ordinal data. Let the data bey; = (w1, - ., ¥id),
i = 1,...,n. For the situation with no covariates, there are E;=1(mj — 1) univariate parameters

and d(d — 1)/2 dependence parameters. The estimating equations from (2.42) are

() = niy) - n;(y; +1) exp(-2(y;))  _
i (23 (1)) <F<zj(y,->>'—F(z,~<yj—1>) F(Zj(yj+1))—F(Zj(yj))) T+ exp(=z (5

T n(yw) OPu(yiw)
Wnjk(f5k) = Z Z Pix(yiye) 005k =

yi=lyr=1
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where F'(z) = 1/[1 4+ exp(—z)], and
Pix(yjye) =a2(®7 (), @7 (us), 05) — R2(@7(wf), @ (ur), 1) —
Do(dH(uy), @7 (u}), 0ik) + ‘52(@_1(“;),@_1(“;);0”)

with uj = 1/[1 + exp(—2; (y;))], wx = 1/[1 + exp(—ze(yx))], vj = 1/[1 + exp(=z;(y; — )], uf =
1/[1 + exp(—zx(yx — 1))]. From ¥,;(z;(y;)) = 0, we obtain

Py + 1) = P ) = S (P 4) - Py - 1) = 2D p ),
This implies that
> (Pt + D)= P = 3 nylu +p 72D
which leads to )
F(s 1) = 5,

where n = E;’;’zl n;(y;). It is thus easy to see that
I
Flz(y)) = 2=
n

which means that the estimate of z;(y;) from IFM is
i
. Lynj(r)
Zi(y;) = log <—11—) .
n—3 oL ni(r)
The closed form of éjk is not available. We need to numerically solve ¥,;(6;:) = 0 to find éjk.
For the situation with covariate vector x;; for the marginal parameters z;(y;;) for Y;;, and a

covariate vector w; ;i for the dependence parameter ; j¢, i = 1,...,n, one way to extend the model

to include the covariates is as follows:

zij (i) = 7 (vis) + a5xi, §=1,2,...,d,

B exp(ﬁ;-kw,-,jk) -1
1,5k —

(3.21)

, 1<j<k<d
exp(B; Wi k) + 1

The loglikelihood functions of margin for the parameter vectors ¥; = (75(2),...,7;(m1 — 1)), a;

(4J=1,...,d)and Bj; (1<j<k<d)are

£nj(Y;,05) = Y log Pi(ui),
i=1

(3.22)

£nik(Y) Ve @5, @k, Bix) = D log Piji(yijvi),

i=1
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where Py j(yij) = F(zij(yi5)) — F(2i5(yij — 1)) and
Py k(i vir) =®2(®71(bij), @7 (bik); Oiji) — ®2(D71(bi), @~ ain); Oijk ) —
(D ai;), @ H(bir); Oi51) + P2 (® 7 (ai;), @ (air); iji),

with aij = F(zj(yi; —1)), bij = F(2; (%)), aix = F(ze(yix — 1)) and by = F(2i(yir)). We can apply
quasi-Newton minimization to the loglikelihood functions of margins (3.22) to obtain the estimates {
of the parameters 9;, @; and the dependence parameters 6;; (or the regression parameters for the
dependence parameters, ﬁj &, if applicable). The Nev'vton—Raphson method can also be used to obtain
the estimates of y; from W,;(7;) = 0, and the estimates of @; from ¥n;(a;) = 0. For applying
the Newton-Raphson method, we need to calculate 8P;(yi;)/dv;, OP;(vi;)/0a;, 8% P;(vi;)/0%; 67;‘?,
02Pj(yij)/6ajaa;‘~r and 02Pj(yij)/(')7jaa]7-’. The mathematical details for applying the Newton-
Raphson method are the following. Let 2:;(vi;) = v; (%) + o121+ - -+ @jp,&ijp;. For yi; # 1, my,
we have P;(yij) = exp(zij (3:))/[1 + exp (2 (ui;))] — exp(zj (w5 — 1)/[1 + exp(zij (35 — D)), thus
OP;(yij)/0ctjs = {lexp(2i; (1)) / (1+exp(2i; (%)) ] — [exp(zi; (i — 1))/ (1 +exp(2i; (%i; — 1)) D i,
s =1,...,pj, and 0°P;(y:)/ 0050050 = {[exp(zij (4i5))(1 — exp(zi;(v:i5)))/ (1 + exp(2i (8:;)))°] —
lexp(zij (i — 1)1 — exp(zij(wi; — 1)))/(1 + exp(zi(i; — 1)))*I}zijszije, s, = 1,...,pj. For

r=1,2,...,m; — 1, we have

exXpilzij(Yiy . _ ..
OP;(yi5) (1+exp(zij(vi;)))? ifr=u,
L) ) expGy(uii=1) _ if g g — 1
O7;(r) (T+exp(zi;(yi;—1)))2 = Yij .
0 otherwise ,
and for r1,72 = 1,2,...,m; — 1, we have
82 P (s, B (= Ty ifri=r;=y;,
ﬂ — ¢ _exp(zi(yi; =1))(1—exp(2i(yii—1))) 7] =ry = vii — 1
07 (r1)07; (r2) (1+exp(zij(yi;—1)))3 ij )
0 otherwise |
and
exp(zi;j(yi))(1— exp(z.](y,l))) Er = s
62Pj (y'j) ((1+(exP(zu)().'é-J))) (eist ))) =Y
— I - _exp(2ij(yij—1))(1—exp(zij(yij—1 . . o
87 (r)dcjs ](HJ-EXP(z-J(yzj—l)]) * zij, ifr=y; -1,
0 otherwise .

For yij = 1, P;(3i;) = exp(zij (ui))/[1 + exp(z; (3:))] and for ysj = mj, Pj(yij) = 1~ exp(zij(yij —
1))/[1 + exp(zi; (yi; — 1))], thus corresponding slight modification on the above formulas should be
made. For details about numerical methods, see section 2.7.

Mg and Dg can be calculated and estimated by following the results in section 2.4. In applica-

tions, to avoid the tedious coding of My and Dg, we may use the jackknife technique to obtain the
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asymptotic variance of Z;(y;) and 67jk when there is no covariates, or that of ;, @; and B;; when

there are covariates.

3.4.2 Multivariate probit model

Similar to the multivariate probit model for binary data, the general multivariate probit model is
obtained by letting G;(y;) = ®(z;(y;)) in (3.19), where —o0 = 2;(0) < z;(1) < --- < zj(m; — 1) <
zj(m;j) = oo are constants, j = 1,2,...,d. It is equivalent to letting F;(z) = ®(z), or choosing Fj to
be the standard normal cdf. The copula C in (3.19) is arbitrary. The copulas (3.1)—(3.8) are some
choices here. The multivariate probit model with multinormal copula for ordinal data is discussed in
the literature (see for example Anderson and Pemberton 1985). The discussion of the multivariate
logit model for ordinal data in the previous subsection is relevant and can be directly applied to the
multivariate probit model for ordinal data. For completeness, we provide some detailed discussion
for the multivariate probit model for ordinal data when the copula is the multinormal copula.

Let the data be y; = (vi1,---,¥id), § = 1,...,n. For the situation with no covariates, there are
Z;=1(mj —1) univariate parameters and d(d —1)/2 dependence parameters. As for the multivariate
logit model, with the IFM approach, we find that Z;(y;) = ®~1(3°YL, nj(r)/n), and éjk must be
obtained numerically.

For the situation with covariate vector x;; for the marginal parameters z;(y;;) for Y;;, and a
covariate vector w; ;i for the dependence parameter ; i, ¢ = 1,...,n, the details on IFM for
parameter estimation are similar to the multivariate logit model for ordinal data in the preced-

ing subsection. We here provide some mathematical details for this model. We have P; ;(y;;) =
(25 (i) — ®(2i5(vi; — 1)) and :
Piju(yiyie) =P2(® 7 (5i;), 87 (bin); iji) — B2(7 1 (bi5), 7 (air); 6ik)—
D(7"(aij), @7 (bir); Oiji) + 2(®7 (aij), D7 (ain); iz,
where a;; = ®(z(wj — 1)), bij = (2(%:)), aix = ®(z(yix — 1)) and b = (zx(vix)). The
mathematical details for applying the Newton-Raphson method are the following. For y;; # 1, m;,
we have P;(yij) = ®(zi;(vi;))—®(2ij (yij — 1)), thus OP;(yij)/dajs = [¢(i; (7)) — (25 (%35 — 1)]2sjs)
s =1,...,p;, and 0%P;(uij)/0a;s0aje = [—(2ij (i) 2is (i) + S (2ij (Wi5 — 1))2j (ws; — Dlzijeije,

s,t=1,...,p;. Forr=1,2,...,m; — 1, we have

b(zij(vi5)) if r =y,
—@(zij(yi; — 1)) if r=yi; — 1,

otherwise ,

OP;(9ij) _
&7;(r)
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and for 71,79 = 1,2,...,m; — 1, we have
6P (3 = (i (i) (yi5) fri=ra=y;j,
i \Yij .
B (ra) | P~ Dzl =) ifn=re = w1,
otherwise |
and )
5Py (ui5) — (5 (%)) 75 (i) @i ifr=uj,
i\¥ij) _ . .
By (oay, | Pl — D)z (s — Daigs i r = w5 -1,
‘ otherwise .

For yi; = 1, Pj(yi;) = ®(zi5(wi;)) and for yi; = my, Pj(yi;) = 1 — ®(2i5(ys; — 1)), thus the
corresponding slight modification on the above formulas should be made. For details on numerical
methods, see section 2.7.

My and Dy can be calculated and estimated by following the results in section 2.4. For example,
for the case with no covariate, we have E(¥2(z (3))) = {[P;(y; + 1) + Py(ui)1*(z (AP (35 +
1)P;(y;)}, where Pj(y;) = ®(z;(y;)) — ®(z; (y; —1)), and so on. In applications, to avoid the tedious
coding of My and Dy, we may use the jackknife technique to obtain the asymptotic variances of
Z;i(y;) and éj k in case there is no covariates, or those of v;, @; and g; kv in case there are covariates.

The multivariate probit model with multinormal copula for ordinal data has been studied and
applied in the literature. For example, Anderson and Pemberton (1985) used a trivariate probit

model for the analysis of an ornithological data set on the-three aspects of colouring of blackbirds.

3.4.3 Multivariate binomial modél

In the previous subsections, we supposed that for Yj, the probability of outcome s is pg-’), s =
1,2,...,mj,j=1,...,d,and we linked the m; probabilities pj’) tom;—1 cut-off points z; (1), 2;(2), .. ., z; (m; —
1). We keep as mény independent parameters within the margins and between the margins as pos-
sible. In some situations, it is worthwhile to reduce the number of free parameters and obtain a
more parsimonious model which may still capture the major features of the data and serve the

inference purpose. One way to reduce the number of free parameters for the ordinal variable is to

reparameterize the marginal distribution. Because 3 72, pg-’) =1and pg-’) > 0, we may let

s mj — 1\ ,_ m;—s ‘
A = ( . )pj N1 - pj)™ (323)

for some 0 < p; < 1. In other words, we assume that Y; follows a binomial distribution Bi(m; —1, p;).

This reparameterization of the distribution of Y; reduces the number of free parameter to one, né,mely

p;. The model constructed in this way is called the multivariate binomial model for ordinal data.
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By treating P;(y;) as a binomial probabilities, we need only deal with one parameter p; for the jth
margin. (3.23) is artificial for the ordinal data as s in (3.23) is based on letting Y; take the integer
values in {0,1,...,m;} as its category indicator. But s is a qualitative quantity; it should reflect
the ordinal nature of the variable Y;, not necessarily take on the integer values in {0,1,...,m;}.
In applications, if one feels justified in assuming the binomial behaviour in the sense of (3.23) for
the univariate margin, then this model may be considered. (3.23) is a more natural assumption if
the categorical outcome of each univariate response can be considered as the number of realizations
of an event in a fixed number of random trials. In this situation, it is a MCD model for binomial
count data. When there is a covariate vector x;; for the response observation y,;, we may let
pi; = bj(n;,x;;) for some function b; in the range [0, 1]. Other details are similar to the multivariate

logit model for binary data.

3.5 Multivariate mixture discrete models for binary data

The multivariate mixture discrete models (2.16) or (2.17) are flexible for the type of discrete data and
for the multivariate structure by allowing different choices of copulas. However, they generally do
not have closed form pmf or cdf. The choice of models should be based on the desirable features for
multivariate models outlined in section 1.3, among them, (2) and (3) are considered to be essential.

In this and the next section, we study some specific MMD models. The mathematical develop-

ment for other MMD models with different choices of copulas should be similar.

3.5.1 Multivariate probit-normal model

The multivariate probit-normal model for binary data is introduced in (2.32) in Example 2.13.

Following the notation in Example 2.13, the corresponding cut-off points d;j is ay; = ﬁ;-xij for

a more general situation, where x;; is a covariate vector, j = 1,...,d and ¢ = 1,...,n. As-

sume B; ~ Np.(#;,%;), j = 1,...,d. Let ¥ = (By,...,B82) ~ Ny(p,X), where ¢ = > p;, and
Cov(B;,B8:) = X; . From the stochastic repregentation in Example 2.13, we have

z; = I,‘;xﬁ )

{1+ x}; 2% }1/2

Oir + Xi; X5k Xk

i=1,...,d,
(3.24)

Tijk =

. jEk.
{1+ x5 xi5) (1 + xf Dexap ) /2 i#
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The jth and (j, k) marginal pmf are

Pij (i) = i (25) + (1 — wis)(1 — @(2;)),
Py (yij vie) = @2(7 (i), @7 (bir); 7ii) — 2(@ 7 (bij), @ (aik); i k) —
@ (7 (aij), 7 (bir); 7i k) + P2(@ 7 (aif), D7 (aik); i),
where a;; = Gij(yi; — 1), bij = Gij(9i5), air = Gir(yix — 1) and bir = Gix(yix), with G;;(1) = 1 and
Gij(0) = 1 — ®(2};). We can thus apply quasi-Newton minimization to the log-likelihood functions
of margins
fﬂj(l‘jazj):;bgpj(yij)) i=1...4,

n
Luje(B;, Zj, Bi, Tk, Ok, Bjx) = Zlogpjk(yijyik), 1<j<k<d,
. i=1
to obtain the estimates of the parameters p;, ¥;, pg, Lk, 051 and Tji.
From appropriate assumptions, many simplifications of (3.24) are possible. For example, if £; = I

and Zj; = 0, j # k, then (3.24) simplifies to

I ..
* [lsz]

21]:—_———{1+x/ x--}l/z’ j:ll,...,d,
TR}
3.25
o , ” (3.25)
DT 0 )+ a2 1T

which is a simple example of having the dependence parameters be functions of covariates in a natural
way, as they are derived. The numerical advantage is that as long as © = (6;1) is positive-definite,
then all R; = (r; k), ¢ = 1,...,n, are positive-definite.
An extension of (3.24) is to let
z:j:p‘ljxij’ i=1...,4d,

Ok + Wiy EikWik " (3-26)
(A w5Swi) L+ Whsewap2> 775

Tijk =

where x;; and w;; may differ. However this does not obtain from a mixture model.

3.5.2 Multivariate Bernoulli-Beta model

For a d-variate binary random vector Y taking value 0 or 1 for each component, assume we have

the MMD model (2.17), such that

1 1 4 q
P(y1~--yd):/ / Hf(yj;Pj)c(Gl(Pl)’---,Gq(Pq))ng(Pj)dpl"‘dpq’ (3.27)
0 0 i=1

j=1
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where f(y;;p;) = p]y.j(l—pj)l_yi. Ifin (3.27), G; is a Beta(o;, ;) distribution, with density g;(p;) =
[B(ej, B )]_lp?j_l(l—pj Y?i=1,0 < p; < 1, then (3.27) is called a multivariate Bernoulli- Beta model.
The copula C in (3.27) is arbitrary; a good choice may be the normal copula (2.4). With the normal
copula, the model (3.27) is MUBE, thus the IFM approach can be applied to fit the model. We can

then write the jth and (j, ¥) marginal pmf as
1
Pi(y;) = /0 Py (1= pi) "% g;(ps) dpj = B(aj +yj, Bj + 1 — y;)/B(ey, Bj),
1 1
Pir(yive) = /0 /0 Py (1 —p;) ™Y pi* (1 = pi) V" ba(x, v; 051) 95 (s )9k (Pr) dp;dpr,

where z = ®~1(G;(p;)), y = @~ (Gr(pr)), and ¢2(z,y;6) is the density of the bivariate normal,
and g; the density of Beta(a;,f;). Given data y; = (¥i1,...,¥id) with no covariates, we may obtain
a;, ,éj and 6~jk with the IFM approach. For the case of an individual covariate x;; for Y;;, an

interpretable extension of (3.27) is

d : q
0= [ [ TI i mP=hos )FeGa ) Galo) TT ) -,
(3.28)
for some function h; with rangein [0, 1]. A large family of such functionsis k; (x;;, p;) = Fj (Fj_l(pj)—i-
,B;-x,-j) where Fj is a univariate cdf. Pj(yi;) and Pjr(yijyix) can be written accordingly. For ex-

ample, if Fj(z) = exp(—e™?), then h;(xij,p;) = p;xP(_ﬁ"xij)

, and we have that when y; = 1,
Pj(yi;) = B(oj + exp(—ﬂ;-x,-j),ﬂj)/B(aj,ﬂj). If covariates are not subject dependent, but only
margin-dependent, an alternative extension is to let «;; and §;; depend on the covariates for some
functions a; and b; with range in [0, 00], such that a;; = a;(7;,x;) and B;; = b;(n;,%;). In this sit-
uation, we have, for example, P;(y:;) = B(a; (Y;X;) +yij, bj(m;x;) +1—vi;)/Blaj(v;x;), bj(mix;)).
An example of the functions a; and b; is aj; = exp(y;x;) and Bi; = exp(n;x;). When apply-
ing the IFM approach to parameter estimation, the numerical computation involves 2-dimensional
integration which would be feasible in most cases.

A special case of the model (3.27), where p; = p, j = 1,...,d, is the model (1.1), studied in
Prentice (1986). The pmf of the model is

Ply: - ya) = /0 p'+(1 = p)i=¥+g(p) dp, (3.29)

where yy = E?:x y; and g(p) is the density of a Beta(w, ) distribution. The model (3.29) has

exchangeable dependence and admits only positive dependence. A discussion of this special model,

with extensions to include covariates and to admit negative dependence, can be found in Joe (1996).
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3.5.3 Multivariate logit-normal model

For a d-variate binary random vector Y taking value 0 or 1 for each component, suppose we have

the MMD model (2.17), such that

1 1 d
P(yr---ya) = _/0 E /0 I1 #(isp)atps, - - -, pa)dps - - dpa, (3.30)
j=1
where f(y;;p;) = pgj (1—p;)!~¥4, and g(-) 1s the density function of a normal copula, with univariate
‘marginal cdf G;
Pi o (log(e/(1— ) — 1 -
i\Pj) = d i =1,...,d.
GJ(p]) /(; ¢< 0_] G'Jz(l—z‘) z, 0<p] < 1) J 1; )d

In other words, if p; is the outcome of a rv P}, and Z; = logit(P;) = log(Pj/1 — F;), j =1,...,d,
then (Z1,...,Z4)" has a joint d-dimensional normal distribution with mean vector g, variance vector
o? and a correlation matrix © = (6;;). We have

1
(2m)%/2|6'Oa | /2 [T}, pi(1 — pj

g(len»Pd) =

sexp {-je-weoia-w},

where z = (z1,...,24)’, with z; = log(p;/1 — p;). We call this model the multivariate logit-normal
model. The Fréchet upper bound is reached in the limit if ® = J, where J is matrix of 1’s and
0'1Z — 00. The multivariate probit model obtains in the limit as o goes to oo, by assﬁming © be a
fixed correlation matrix and the mean parameters yu; = oj2z; where z; is constant.

The jth and the (j, k) marginal pmf are
1
PJ(yJ) - /0 a-i_lp.!;j_l(l _pJ)_yJ¢(x.7)dp]: ] = 1; e 'ad)

1 1
Pir(yjye) = / / (0508) " PV M1 = )"V P (1 — pi) Y 6o (2, s Oj8) dpsdpr, 1< < k < d,
0 0

where z; = {[{log(p; /(1 — p;)) — pjl/o;}, s = 1,...,d, ¢ is the standard univariate normal density
function and ¢, the standard bivariate normal density function. Given data y; = (yi1, ..., %iqd) with
no covariates, we may obtain ji;, 6; and 0~j r by the IFM approach. For the case of different covariates
for different margins, similar to the multivariate Bernoulli-Beta model, an interpretable extension

of (3.30) is obtained by letting

1 1 d
P(y“'“y“’)zfo / Ttk G, 2 )1# 11 = hy (i3, 201~ 0(pr, . pa) dpr - dpa,  (3.31)
ji=1

for some function h; with range in [0,1]. Pj(y;;) and Pjr(yijyix) can be written accordingly. If

covariates are not different, an interpretable extension to include covariates to the parameters in
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(3.30) obtains by letting u;; = a;(7;,%;) and 0y; = b;(n;,%;;) for some functions a; and b;. The

loglikelihood functions of margins for the parameters are now
n
lnj(pj,05) = ZIOng(yij), ji=1,...,d,
i=1

n
Lojk(O5k) = ) _log Pix(wijwir), 1<j<k<d,

i=1

where

© exp{yij (i; + 0i;2)}
(i) = dz,
P = [ e e LOLY

Pia(isvis) = /°° /°° exp{ysj(pij + oij2)} exp{yur (pir + ”"“y)}qsz(a: v 0:) dady.
IR —ood—oo 14 exp(pi; +oijx) 14 exp(pir + oiry) o

An example of the functions a; and b; is p;; = 7}%; and 03; = exp(n;x;). It is also possible to
include covariates to the dependence parameters 8;; a discussion of this can be found in section
3.1. Again, when applying the IFM approach to parameter estimation, the numerical computation

involves 2-dimensional integration, which should be feasible in most cases.

3.6 Multivariate mixture discrete models for count data

3.6.1 Multivariate Poisson-lognormal model
The multivariate Poisson-lognormal model for count data is introduced in Example 2.12. The pmf
ofy, = (%1, -, %d), 1=1,...,n,is

[e] o d
P(yir+ ) = /0 : /0 11 £ wiss Xii)g(m; s, 05, ©5) dny - - di, (3.32)
j=1

where f(yij;Aij) = exp(—)\,-j))\f;j/y,-j!, and

1
(2m)4/2(ny -+ - mp) |0} Oi0 |1/

g(m; i, 0:,0:) = exp {—%(logn ~ 1) (6:00:) " (logn - m)} ;
(3.33)
with 9; > 0, j = 1,...,p, is the multivariate lognormal density. For simple situation with no
covariates, g; = @, 6; = ¢ and ©; = O. This model is studied in Aitchison and Ho (1989).
The model (3.32) can accommodate a wide range of dependence, as we have seen in Example 2.12.

Corr(Yj, Y) is an increasing function of ij, and varies over its full range when 6;; varies over its full

range. Thus in a general situation a multivariate Poisson-lognormal model of dimension d consists

of d univariate Poisson-lognormal models describing some marginal characteristics and d(d — 1)/2
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dependence parameters 85, 1 < j < k < d, expressing the strength of the associations among the
response variables. §;; = 0 for all j # k correspond to independence among the response variables.
The response variables are exchangeable if © has an exchangeable structure and p; and o; are
constant across the margins. We will see another special case later which also leads to exchangeable
response variables. The loglikelihood functions of margins for the parameters are now

Laj(pj,05) = Zlong(yﬁ), i=1,...,4d,

i=1
. n
£njk(O5k, 1, 1k, 05, 0%) = D _log Pik(yijwir), 1<j<k<d,
i=1

where

exp(y;
Pi(yij) = M/ exp(yijojz; — e*i13% ) exp(—z 2/2)dz.7’

\/__

Pia( )= ® exp [yij (1j + 052;) + yir (pr + or21)]
7kYijYie) = Yij yir! exp(etitoi%i 4 eprtorzr)

b2(zj, 2k; 051 )dzjd2,

where ¢2 is the standard binormal density. To get the IFME of g, ¢ and ©, quasi-Newton mini-
mization method can be used. Good starting points can be obtained from the method of moments
estimates. Let g, s;‘-’ and rj; be the sample mean, sample variance and sample correlations re-
spectively. The method of moments estimates based on the expected values given in (2.30) are
&7 = {logl(s} — #)/9; + U}Y'/%, s} = log §; — 0.5(57) and 0, = log[rjes;sk/(Fd) + 1]/(6957

When there is a covariate vector x;; for the response observation y,;, we may let p;; = a;(y;, xi5)
for some function a; in the range (—o0o,00), and let oy; = b;j(n;,x;;) for some function b; in the
range [0,00). An example of the functions a; and b; is p1;; = ¥ix;; and o5 = exp(nix;;). It is also
possible to let the dependence parameters 6;; be functions of covariates; a discussion of this can
be found section 3.1. For details on numerical methods for obtaining the parameter estimates, see
section 2.7.

A special situation of the multivariate Poisson-lognormal model is to assume that f(y;;A;) =
e=* XY’ [y;!, where A; = AB;. f; > 0 is considered as a scale factor (known or unknown) and the

common parameter A has the lognormal distribution LN (u,¢2). In this situation we have

Py -ya) =

d  gYi oy d exp(oz 9 y;
oo B o0 B ) [* PO T t) oy apyas, (a0

d
Vo [[i-; ys! oo exp(ertzo E -1 055)
and the parameters p and ¢ are common across all the margins. To calculate P(y; - - -yq), we need

only calculate a one-dimensional integral; thus full maximum likelihood estimation can be used to get

the estimates of y, o and §; (if it is unknown). By the formulas in (2.26), it can be shown that there
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is an exchangeable correlation structure in the response vector Y, with the pairwise correlations
tending to 1 when u or o tend to infinity. Independence is achieved when ¢ — 0. The model (3.34)

does not admit negative dependence.

3.6.2 Multivariate Poisson-gamma model

The multivariate Poisson-gamma model is obtained by letting G;(n;) in (2.24) be the cdf of a
univariate gamma distribution with shape parameter a; and scale parameter 3;, with the density
function g;(z; aj,8;) = ﬂ;ajz“i“le‘”/ﬁf/l"(aj), z >0, a; >0and f; > 0. The Gamma family
is closed under convolution for fixed 8. The copula C in (2.24) is arbitrary; (3.1)—(3.8) are some
choices here. For example, with the multinormal copula, the multivariate Poisson-gamma model is
MUBE. Thus the IFM approach can be applied to fit the model. The jth marginal distribution of

a multivariate Poisson-gamma distribution is

oo ' s — fe"iz]yjz;’j—le‘zi/ﬂi dz;
.Pj(yj)‘—/o f(yi52)95(2) dzj = 31T (@)

=F(yj+aj)( 1 )aj( Bi )yj
yi'T(e;) \1+5; 1+8;)

which implies that Y} has a negative binomial distribution (in the generalized sénse). We have

(3.35)

E(Y;) = a;f; and Var(Y;) = «;3;(1+5;). The margins are overdispersed since Var(Y;)/E(Y;) > 1.
Based on (3.35), if «; is an integer, y; can be interpreted as the number of observed failures in y; +«;
trials, with o; a previously fixed number of successes. '

The parameter estimation procedure based on IFM is similar to that for the multivariate Poisson-
lognormal model. Some simplifications are possible. One simplification for the Poisson-gamma model
is to hold the shgpe parameter o; constant across j. In this situation, we have E(Y;) = p; = af;
and Var(Y;) = pj(1 + p;j/a). Similarly, we can also require 8; be constant across j and obtain the
same functional relationship between the mean and the variance across j. By doing so, we reduce
the total number of parameters. With this simplification in the number of parameters, the same
parameter appears in different margins. The IFM approach for estimating parameters common
to more than one margin discussed in section 2.6 can be applied. Another special case is to let
A; = Apj, where §; > 0 is considered to be a scale factor (known or unknown) and the common
parameter A has a Gamma distribution. This is similar to the multivariate Poisson-lognormal model

(3.34). Negative dependence cannot be admitted into this special situation, which is similar to the

multivariate Poisson-lognormal model (3.34).
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3.6.3 Multivariate negative-binomial mixture model

Consider d-dimensional count data with y; = rj,7; +1,..., r; > 1, j = 1,2...,d. For example,
with given integer value r;, y; might be the total number of Bernoulli trials until the r;th success,

where the probability of success in each trial is p;; that is
— (%~ Y\ VYT
P;(yjlps) = p;’(1 —pj) :
T — 1

If p; is itself the outcome of a random variate X;, j = 1,...,d, which have the joint distribution
G(p1, - . -,Dpa), then the distribution for Y = (Y1, ..., Yy) is called the multivariate negative-binomial
mizture model. If the inverse of 1/X; has a distribution with mean y; and variance UJ?, then simple
calculations lead to E(Yj) = 7;u; and Var(Yj) = r;u;(mu; — 1) + rj(r; + 1)o?. This multivariate
negative-binomial mixture model for count data is similar to the multivariate Bernoulli-Beta model
for binary data in section 3.5. Thus the comments on the extensibns to include covariates apply
here as well.

A more general form of negative binomial distribution is (3.16), such that

oo — LB +yi) s, N, . -
Pi(yjlp;) = F(ﬂj)r(yj+1)pj (I—p;)¥, B;>0,9=012,....

Using the recursive relation I'(2) = (¢ — 1)['(¢ — 1), P;(y;|p;) can be written as

O (B +k—1)(1-p))
Pi(yilp) = 7 { k21 k

=12,...,

The multivariate negative-binomial mixture model can be defined with this general negative binomial
distribution as the discrete mixing part. §;, j = 1,...,d, can be considered as parameters in the

model.

3.6.4 Multivariate Poisson-inverse Gaussian model

The multivariate Poisson-inverse Gaussian model is obtained by letting G;(n;) in (2.24) be the cdf

of a three-parameter univariate inverse Gaussian distribution with density function

&7 e
i () = 2P " exp(wi /2)(& /5 + X /&), Aj >0, (3.36)
Ky (wj)
where w; = EJZ +a]2~ —&,0; >0,& >0and —0o < v < co. In the density expression, K,(z)

denotes the modified Bessel function of the second kind of order v and argument z. It satisfies the
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relationship

2v
K,,H(z) = 71{,,(2') + K,,_l(z),

with K_;/2(2) = Ki1/2(2) = \/7/2zexp(—2z). The copula C in (2.24) is arbitrary; interesting choices
are copulas (3.1)—(3.8). With the multinormal copula, the multivariate Poisson-inverse Gaussian
model is MUBE; thus the IFM approach can be applied to fit the model.

A special case of the multivariate Poisson-inverse Gaussian model results when f(y;;z2;) =

e_zfz]yj/yj!, where z; = /\.tj, with ¢; > 0 considered as a scale factor (j = 1,...,d). Then the

pmf for Y is
K (VO TTL) 1y \EEEE (e,
P(y1---ya) = K, (W) (w+2£th) JI;II yit

where k = Z;-i:l ;- An extensive study of this special model can be found in Stein et al. (1987).

3.7 Application to longitudinal and repeated measures data

Multivariate copula discrete (MCD) and multivariate mixture discrete (MMD) models can be used
for longitudinal and repeated measures (ovef time) data when the response variables are discrete
(binary, ordinal and count), and the number of measures is small and constant over subjects. The
multivariate dependence structure has the form of time series dependence or of dependence decreas-
ing with lag. Examples include MCD and MMD models with special copula dependence structure
and special patterns of marginal parameters. These models include stationary time series models
that allow arbitrary univariate margins and non-stationary cases, in which there are time-dependent
or time—independenﬁ covariates or time trends.

In classical time series analysis, the standard models are autoregressive (AR) and moving average
(MA) models. The generalization of these concepts to MCD and MMD models for discrete time series
is that “autoregressive” is replaced by Markov and “moving average” is replaced by k-dependent
(only rv’s that are separated by a lag of k or less are dependent). A particularly interesting model
is the Markov model of order one, which can be considered as a replacement for AR(1) model in
classical time series analysis; and these types of Markov models can be constructed from families of

bivariate copulas. For a more detailed discussion of related topics, such as the extension of models

to include covariates and models for different individuals observed at different times, see Joe (1996,

Chapter 8).
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If the copula is the multinormal copula (3.1), the correlation matrix in the multinormal copula
may have patterns of correlations depending on lags, such as exchangeable or AR type. For example,
for exchangeable pattern, ;5 = 6 for all 1 < j < k < d. For AR(1), 6;; = 617 —*! for some 6] < 1.
Fo‘r AR(2), 8;x = p,, with s = |j — k|. p, is.the autocorrelations of lag s; the autocorrelation satisfy
Ps = $1ps—1+ P2ps—2, 8 >3, ¢1 = p1(1— p2)/(1 — p?), 2 = (p2 — p1)/(1 — p?), and are determined
from p; and p,.

Some examples of models suitable for modelling longitudinal data and repeated measures (over
time) are the multivariate Poisson-lognormal model, multivariate logit-normal model, multivariate
logit model with multinormal copula or with M-L construction, multivariate probit model with
multinormal copula, and so on. In fact, the multivariate probit model with multinormal copula is
equivalent to the discretization of ARMA normal time series for binary and ordinal response. For
the discrete time series and d > 4, approximations can be used for the probabilities Pr(Y; = y;,j =

1,...,d) which in general are multidimensional integrals.

3.8 Summary

In this chapter, we studied specific MCD models for binary, ordinal and count data, and MMD
models for binary and count data. (MMD models for ordinal data are not presented, since there
i1s no natural simple way to represent such models, however MMD models for binary data can be
extended to MMD models for nominal categorical data.) Extension to let the marginal parameters
as well as the dependence parameter be functions of covariates are discussed. We also outlined the
potential application of MCD and MMD models for longitudinal data, repeated measures and time
series data. However, this chapter does not contain an exhaustive list of models in the family of
MCD and MMD classes. Many additional interesting models in MCD and MMD classes could be
introduced and studied. Our purpose in this chapter is to demonstrate the richness of the classes

of MCD and MMD models, and to make several speciﬁ>c models available for applications. Some

examples of the application of models introduced in this chapter can be found in Chapter 5.




Chapter 4

The efficiency of IFM approach
and the efficiency of jackknife

variance estimate

It is well known that under regularity conditions, the (full-dimensional) maximum likelihood esti-
mator (MLE) is asymptotically efficient and optimal. But in multivariate situations, except the
multinormal model, the computation of the MLE is often complicated or impossible. The IFM
approach is proposed in Chapter 2 as an alternative estimation approach. We have shown that
the IFM approach provides consistent estimators with some good asymptotic properties (such as
asymptotic normality of the estimators). This approach has many advantages; computational fea-
sibility is main one. It can be applied to many MCD and MMD models (models with MUBE,
PUBE properties) with appropriate choices of the copulas; examples of such copulas are multinor-
mal copula, M-L construction, copulas from mixture of max-id distributions, copulas from mixture
of conditional distributions, and so on. The IFM theory is a new statistical inference theory for
the analysis of multivariate non-normal models. However, the efficiency of estimators obtained from
IFM in comparison with ML estimators is not clear.

In this chapter, we investigate the efficiency of the IFM approach relative to maximum likelihood.
Our studies suggest that the IFM approach is a viable alternative to ML for models with MUBE,
PUBE or MPME properties. This chapter is organized as follows. In section 4.1, we discuss how to

assess the efficiency of the IFM Iapproach. In section 4.2, we carry out some analytical comparisons
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of the IFM approach to ML for some models. These studies show that the IFM approach is quite
efficient. A general analytical investigation is not possible, as closed form expressions for estimators
and the corresponding asymptotic variance-covariance matrices from ML and IFM are not possible
for the majority of multivariate non-normal models. Most often numerical assessment of their
performance must be used. In section 4.3, we carry out extensive numerical studies of the efficiency
of IFM approach relative to ML approach. These studies are done mainly for MCD and MMD models
with MUBE or PUBE properties. "The situations include models without and with covariates. In
section 4.4, we numerically study the efficiency of IFM approach relative to ML approach for models
with special dependence structure. The IFM approach extends easily to the models with parameters
common to more than one margin. Section 4.5 is devoted to the numerical assessment of the
efficiency of the jackknife approach for variance estimation of IFME. The numerical results show

that the jackknife variance estimates are quite satisfactory.

4.1 The assessment of the efficiency of IFM approach

In section 2.3, we have given some optimality criteria for inference functions. We concluded that in -
the class of all regular unbiased estimating functions, the inference functions of scores (IFS) is M-
optimal (so T-optimal or D-optimal as well). For the regular model (2.12), the inference function in
the IFM approach are in the class of regular unbiased inference functions; thus all the (asymptotic)
properties of regular inference functions apply to IFM.

To assess the efficiency of IFM relative to IFS, at least three approaches are possible:
Al. Examine the M-optimality (or T-optimality or D-optimality) of IFM relative to IFS.
A2. Compare the MSE of the estimates from IFM and IFS based on simulation.

A3. Examine the asymptotic behaviour of 2£(8) — 2£(8) based on the knowledge that 2£(f) — 24(0)

has an asymptotic x? distribution when @ is the true parameter vector (of length ¢).

Al is along the lines of inference function theory. As an estimator may be regarded as a solution to
an equation of the form ¥(y;#) = 0, we study the inference functions instead of the estimators. This
approach can be carried out analytically in a few cases when both the Godambe information matrix of
IFM and the Fisher information matrix for IFS are available in closed form, or otherwise numerically |

by computing (or estimating) the Godambe information matrix and the Fisher information matrix

(based on simulation). With this approach, we do not need to actually find the parameter estimates
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for the purposes of comparison. The disadvantage is that the Godambe information matrix or
Fisher information matrix may be difficult to calculate, because partial derivatives are needed for
the computation and they are difficult to calculate for most multivariate non-normal models. Also
this is an asymptotic comparison. A2 is a conventional approach, it provides a way to investigate the
small sample properties of the estimates. This possibility is especially interesting in comparison with
Al, since although MLEs are asymptotically optimal, this may not generally be the case for finite
samples. The disadvantage with A2 is that it may computationally demanding with multivariate
non-normal models, because for each simulation, parameters estimation based on IFM and IFS are
carried out. A3 is based on the understanding that if the estimates from IFM are efficient, we would
envisage that the full-dimensional likelihood function evaluated at these estimates should have the
similar asymptotic behaviour as when the full-dimensional likelihood function is evaluated at the
MLE. More specifically, suppose the loglikelihood function is £(8) = "I, log f(y;|6), where 8 is a
vector of length ¢. Under regularity conditions, 2(¢(8) — £(8)) has an asymptotic x? distribution (see
for example, Sen and Singer 1993, p236). Thus a rough method of assessing the efficiency of 6 is to
see if 2(£(8)—£(0)) is in the likelihood-based confidence interval for 2(£(8)—£(6)); this interval of 1 —a
confidence is (Xg;a/z’ X§;1_a/z): where Xg,p is the lower £ quantile of a chi-square distribution with
q degrees of freedom. The assessment can be carried out by comparing the frequency of (empirical
confidence level of) 2(£(8) — £(8)) in the (x;a/z,xil_a/z) with 1 — a. In other words, we check the

frequency of
BE{8: X as2 < 2040) — £0)) < Xga—ay2}s

and 8 is considered to be efficient if the empirical frequency is close to 1 — «. The advantage of this
approach is that only 8, Z(a) and £(#) need to be calculated; this leads to much less computation
compare with finding 8. The disadvantage is that this approach may not be very informative about
efficiency of 6 in comparison with 0 in relatively small sample situations. In our studies, A3 will not
be used. We mention this approach merely for further potential investigations.

To compare IFM with IFS by A1, we need to calculate the Fisher information (matrix) and the
Godambe information (matrix). Suppose P(y; ---yq4;8), 8 € R, is a regular MCD or MMD model
in (2.12), where 8 = (6,,...,0,) is g-component vector, and R is the parameter space. The Fisher

information matrix from one observation for the parameter vector 0, I, has the following expression

I - Ilq
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where
1 6P1 (yl . 'yd) 2 .
Li= ), < ! , J=1,4,
Py 0;
AL IC ) 9;
1 Py <o yg) OP;... .
Ly = - )6 | qglél' ya) 6P qgél ya), l<j<k<q
{yrya} 11 Y1 Yd f] k
Assume the IFM for one observation is ¥ = (43,...,%,). The Godambe information matrix Jg
based on IFM for one observation is Jg = D\I,M‘ITIDE, where
My - My, Dy -+ Dy
My=1| : . Dg=]| : :
My, - My, Dy -+ Dy

with M; = E(¥?) (7 =1,...,q), Mjr = E(j¥e) G,k =1,...,4,5 # k), D;; = E(8v;/86;) (j =
1,...,9), and Djp = E(0v%;/06:) (4,k =1,...,q9,5 # k). The detailed calculation of the elements
of Mg and Dg can be found in section 2.4 for the models without covariates. The M-optimality
assessment examines the positive-definiteness of Jg 1 _ =1, It is equivalent to T-optimality which
examines the ratio of the trace of the two information matrices, Tr(Jg')/Tr(I™!), and D-optimality
which examines the ratio of the determinant of the two information matrices, det(Jg')/det(I~1). T-

optimality is a suitable index for the efficiency investigation as it is easier to compute. An equivalent

index to D-optimality is \‘/ det(Jg')/det(I-1). In our efficiency assessment studies, we will use M-
optimality, T-optimality or D-optimality interchangeably depending on which is most convenient.
In most multivariate settings, Al is not feasible analytically and extremely difficult computa-
tionally (involving tedious programming of partial derivatives). A2 is an approach which eliminates
the above problems as long as MLEs are available. As MLEs and IFMEs are both unbiased only
asymptotically, the actual bias related to thevsample size is an important issue. For an investigation
related to sample size, it is more sensible to examine the measures of closeness of an estimator to
its true value. Such a measure is the mean squared error (MSE) of an estimator. For an estimator
6= é(Xl, ..., Xn), where X;,..., X, is a random sample of size n from a distribution indexed by

6, the MSE of § about the true value 6 is
MSE(§) = E(§ - 6)? = Var(6) + [E(§) — 6]°.

Suppose that 0 has a sampling distribution F', and suppose 9~1, cer, O are iid of F', then an obvious

estimator of MSE(6) is

VSE() = Zim =07 (4.1)

m
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If 6 is from the IFM approach and g from the IFS approach, A2 suggests that we compare I\TS\E(é)
and MS\E(é) For a fixed sample size, f need not be the optimal estimate of 6 in terms of MSE,
since now thé bias of the estimate is also taken into consideration. The measure I\TS\E(é) / ﬁS\E(é)
thus gives us an idea how IFME performs relative to MLE. The approach is mainly computational,
based on the computer implementation of specific models and subsequent intensive simulation and
parameter estimation. A2 can be easily used to study models with no covariates as well as with

covariates.

4.2 Analytical assessment of the efficiency

In this section, we study the efficiency of the IFM approach analytically for some special models
where the Godambe information matrix and the Fisher information matrix are available in closed

form, or computable.

Example 4.1 (Multinormal, general) Let X ~ Ny(#,X). Given n independent observations
X1,...,X, from X, the MLEs are

p=n"tY xi, =01 (wi— (e - BT
i=1 i=1

It can be easily shown that the IFME g and ¥ are equal td B and ¥ respectively, so MLE and IFME

are equivalent for the general multinormal distribution. ]

Example 4.2 (Multinormal, common marginal mean) Let X ~ Ny(p, X), where pp = (p4, . . .,
pa)’ = pl for a scalar parameter g and ¥ is known. Given n independent observations xi,...,X,

with same distributions as X, the MLE of p is

112_1 Z?=1 X4

b="T1s-11

The IFM of g = (p1, ..., na)" are equivalent to

n

Tir — L .
‘I’nj:ZLz'ﬂ) ]:1)~"ad)

o4
i=1 J

which leads to fi; = n~* 3 ¢ zij, or B = n~!3 " x;. A simple calculation leads to Jg'(p) =

n~!L. Thus if we incorporate the knowledge that p;,...,uq are the same value, with WA and

PMLA, we have
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i. WA: the final IFME of p is
. 1UE '@
| o = i1
which is exactly the same as i since p = n~13 1 | x;. So in this situation, the IFME is

equivalent to the MLE.

ii. PMLA: the final IFME of y is
o Vding®) 0 _ ot
P 1'{diag(X)}-11 3 o-j‘jl
With this approach, IFME is not equivalent to MLE. The ratio of Var(fi,) to Var() is

1'{diag(X)}~'={diag(T)}-111'S-11
(1'{diag(E)}-11)? '

There is some loss of efficiency with simple PMLA.

O

Example 4.3 (Trivariate probit, general) Suppose we have a trivariate probit model with known
cut-off points, such that P(111) = ®3(0,0,0, p12, p13, p23). We have the following (Tong 1990):
1
Pi(1) = (1) = Py(1) = 2(0) = 5,

1 . .
Pii(11) = ®2(0,0,p8) = 7+ 5—sin " pjx, 1< <k <3, (4.2)

2T
P(111) = @5(0,0,0, p12, p13, p23) = % + %(Sin—1 p12 +sin™! p1z +sin7! po3).
The full loglikelihood function is
£, =n(111)log P(111) + n(110) log P(110) + n(101) log P(101) + »(100) log P(100)
n(011) log P(011) + n(010) log P(010) + n(001) log P(001) + n(000) log P(000).
Even in this simple situation, the MLE of p;; is not available in closed form. The information matrix

for p12, p13 and p23 from one observation is

where, for example,

L= L (aP(111))2+ 1 <6P(110))2+ 1 (5P(101))2+ . (8],(100))2

B P(111) 9p12 'P(HO) Op12 P(101) Op12 P(100) Op12
1 [8P(011)\? 1 [8P(010)\? 1 [8P(001)\? 1 [8P(000))?
P(on)( Bp1z ) +P(010>( 9p1z ) P(001)< Ip1z > +P(000>< Fp1z ) '
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Simple calculation gives us P(111)/8p12 = 1/(4m\/1 — p?,); and other terms also have similar

expressions. After simplification, we get

73 + 64a — 167b

Iy = ———————,
U7 a1 = phy)edef

where
R | so=1 =1
a = s1n P12 81N P13 sin P23,

b= (sin'1 p12)? + (sin“1 p13)2 + (sin_1 p23)2,
c=m+2sin"!piy + 2sin7 py3 + 2sin! pys,
d=7+ 2sin'i p12 — 2sin™! py3 — 2sin™! pog,
e=m— 2sin"! prg + 2sin”! pya3 — 2sin”?! pas,

f=n— 2sin”! P12 — 2sin”?! P13+ 2sin~! pa3.
Other components in the matrix I can be computed similarly. The inverse of I, after simplification,

is found to be

_1__
I™" =] a1p azxp ass]|,

@13 0423 assg

where , - )
_ (2~ 4(sin™ p1o))(1 = )
an = 1 ,
(72 — 4(sin™! p13)?)(1 — pla)
G22 = A ,
I (72 — 4(sin™! pg3)?)(1 = ps)
33 = 2 ’

a1y = (2sin~! pyasinT! p13 — wsinT! paz)(1 — p3,)V/2(1 — pis)/?

2 E—

a3 = (2sin™! pyasin~! po3 — wsinT! py3)(1 — p3,)/2(1 — p23)'/?

2 )

s = (2sin? p13sinT! pog — wsinT! p12)(1 — pds)/3(1 — p3g)t/?

2 .

For the IFM approach, we have

... = <njk(11)+njk(00) _ njk(10)+n,-k(01)> 0P;(11)
k= Pir(11) 1/2 = Pie(11) op

Wik = 0 leads to

,5'k —sin (z njk(ll) + Tij(OO) - njk(lo) - njk(Ol)
I 2 n

), 1<j<k<3.

If the IFM for one observation is ¥ = (12, 13, ¥23), then from section 2.4, we have

Pikim (Y5 yeyiym)  OPjk (Y5 yx) OPim (Yiym)
E(Wixthm) = i i ik (Y
(V51 %1m) Z Pix(yiyx ) Pim(viym)  Opjk O0pim

{viyxy1ym}




Chapter 4. The efficiency of IFM approach and the efficiency of jackknife variance estimate 132

where 1 <j<k<3,1<l<m<3, and

2
Opjk o P;x(yjur) Opjk

We thus find that

bir b1z bis : —byy 0 0
Mg = | bia baa bos and Dy = 0 =byp O ,
bis baz bas 0 0 —bss
where
b1y = - _14 )
(72 — 4(sin™" p12)?)(1 — pi,)
boz = - !
(72 — 4(sin™" p13)?)(1 - p¥5)’
bas = - 4
(72 — 4(sin™" p3)?)(1 - p35)’
by = __ 16sin~! P12 s1n. 1_p113 — 8msin~! P23 ’
(72 — A(sin™" p12)?)(7% — 4(sin™" p13)?)(1 — p3,) 1/ 2(1 — p35)*/2
bis = . 16sin~! p1g sin._1 paz — 8mwsin~ ! py3
(72 — 4(sin™" p12)?)(w2 — 4(sin ™" paa)?)(1 — pl)V/2(1 — p3a)t/?’
by — 16sin~! p13sin™! pa3 — 87sin~! pyp

(2 — 4(sin ™" p13)?)(n% — 4(sin ™" p23)?)(1 — pfs)'/2(1 — p33)1/2
After simplification, J\I_,1 = D;M\I, (Dal)T turns out to be equal to I=1. Therefore by M-optimality,
the IFM approach is as efficient as the IFS approach.

The algebraic computation in this éxample was carried out with the help of the symbolic manip-
ulation software Maple (Char et al. 1992). Maple is also used for other analytical examples in this
section. For completeness, the Maple program for this example is listed in Appendix A. The Maple

programs for other examples in this section are similar. D

Example 4.4 (Trivariate probit, exchangeable) Suppose now we have a trivariate probit model
with known cut-off points, such that P(111) = ®5(0,0,0, p, p, p). That is, the latent variables are
permutation-symmetric or exchangeable. With (4.2), we obtain
_1

2
Pia(11) = Py3(11) = Pa3(11) = (0,0, p) = i + % sin™! p,

Pi(1) = P»(1) = P3(1) = ®(0)

_ _ 1 3 . _1
P(111) = ©3(0,0,0,p,p,p) = 5 + —sin™ " p.
The MLE of p is

6n

p = sin (71’(471111 + 4ngoo — n))
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- Based on the full loglikelihood function (4.3), we calculate the Fisher information for p (using Maple).
The asymptotic variance of j is found to be

(1 — p?) (7 + 6sin~? p)(7 — 2sin~? p)

Var(p) =
ar(p) 1om

Let the IFM for one observation be ¥ = (112, ¥13, t23). We use WA and PMLA to estimate the

common parameter p:

i. WA: We have
a b b —a 0 O
Mg=|b a b and Dg = 0 —-a 0 |,
b b a 0 0 -—a
where
_ 4
(% —4(sin™ p)2)(1 - p2)’
_ 8sin~!p
"~ (m—2sin! p)(w + 2sin”! p)2(1 — p2)’
Thus

a”l a7% a7 %
Jgl=Dg'Mg(Dg)T = | a=2% o' a2
a”?b a"% a7
Assume the IFME of p12, p13, p23 are p12, P13, P2s respectively. With WA we find the weighting
vector u = (1/3,1/3,1/3). So the IFME of p, gy, is

- 1 ~ ~
Pw = §(P12 + p13 + pa3),
and the asymptotic variance of p,, is

1
Var(p) = ;u’J\I',lu

11 =p) (7% = A(sin™' p)?)  2(1 - p?)(m — 2sin"? p)sin!p
9 4n t3 2n

(1= pH)(x +6sin~! p)(m — 2sin~! p)

- 12n ’

1. PMLA: The IFM is ¥ = 15 + Y13 + ¥23. Thus

My = E(¢12 + 13 + 1a3)

3 — 2 (4.4)
= E P(y1y2y3)( Z P(yjyr) (;jpyk)) |

{y1y2y3} 5 k=1<k
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and

Dy = E(0(¥12 + Y13 + 923)/0p)

3 , 2
1 OP;(y; 1 02 P:r (u;
= >, Pluwys) l ( Jka(ijyk)) + ,’I(;/Eznyk) '

T P2 (us (.
{y1y2ys} © hk=Liy<k ij(y]yk) Pir(yiye)

(4.5)
We find (using Maple)
12(7 + 65sin~ ! p)
(1 — p2)(7 — 2sin™! p)(7 4 2sin~! p)2’

12
Dy = G e R - )

The evaluation of Jg! = Dy Mg (Dg')T leads to the asymptotic variance of

Mg =

(1= p*)(w+ 6sin~! p)(m — 2sin~? p)
12n '

- Var(fp) =

We have so far shown that Var(p) = Var(p,) = Var(p,), which means that the IFM with WA
and PMLA lead to an estimate as efficient as that from IFS approach.

Any single estimating equation from IFM also gives an asymptotically unbiased estimate of p,
and the p from each of these estimating equations has the same asymptotic properties because of
the exchangeability of the latent variables. The ratio of the asymptotic variance of the IFME of
p from one estimating equation to the asymptotic variance of the MLE p.is found to be [3(m +
2sin~! p)]/[7 + 6sin™" p]. Figure 4.1 is a plot of the ratio versus p € [—0.5,1]. The ratio decreases
from oo to 1.5 as p increases from —0.5 to 1 When p = 0, the ratio value is 3. These imply that the
estimate from a single estimating equation has relatively high efficiency relative to the MLE when
there is high positive correlation, but performs poorly when there is high negative correlation.

]

Example 4.5 (Trivariaté probit, AR(1)) Suppose we have a trivariate probit model with known
cut-off points, such that P(111) = ®3(0,0,0, p, p?, p). That is, the latent variables have AR(1) cor-

relation structure. With (4.2), we obtain

( . 1

P = Po1) = Po(1) = 8(0) = &,

1 1 .

Plz(ll) = P23(11) = QQ(O, 0,[)) = Z + ﬁsm_l P

{
1 1
p _ n_ 2, L -1 9
13(11) QZ(O’O;p ) 4 + I s - po,

i1 2ol 2
sin p+47rs1n pe.

1,1
_ 2 )= -4 —
| P(111) = 23(0,0,0,p, 0% p) = ¢ + 5~
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Figure 4.1: Trivariate iarobit, exchangeable: The efficiency of g from the margin (1,2) (or (1,3),
(2,3))

Based on the full loglikelihood function (4.3), the asymptotic variance of 5 is found (using Maple)

to be
7(1 — p*)ajazas
8 [p2aq + (1 + p?)as + p(1 + p*)'/%a]’

Var(p) = (4.6)

where
a; =m —2sin~! p?,

ag =7 —4sin"! p+ 2sin7! p?,
az =7+ 4sin"! p+ 2sin~! p?,
ag = 27% — 16(sin™! p)? + 47 sin~? p?,
as = m2 — 4(sin~! p?)?,
as = 16sin™! psin~! p% — 8rsin~! p.
Let the IFM for one observation be ¥ = (312, %13, ¥23). We use WA and PMLA to estimate the

common parameter p:

1. WA: We have
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where
_ 4
T @ 4G o)1 - )
_ 16p°
= @ = den 2= )
16psin~1p
©= A T D) + 2sin T )1 = YA+ PN
_ 8wsin™! p? — 16(sin™"' p)?
, = = A TR )
Thus

a~!  c(ab)™!  da?
Jgt =D Mg (Dg)T = | c(ab)~t b7t c(ab)?
da=?  c(ab)”! a7!
Assume the IFME of p1, p13, p23 are p12, 13, P23 respectively, and let p = (p12, p13, p23)’. With
WA, the IFME of p, py, is

Pw = ulﬁ;

where the weighting vector u = (u1, ug, u3z)’ = Jg1/(1'Jgl). We find that

ajasagary
Uy = Uz = ,
P 2 [p?as + (1 + p?)as + p(1 + p2)1/2as]
" (20%as + p(1 4 p*)'/*ag)asas
2

* 2as [p?aq + (1 + p?)as + p(1 + p?)/2as)’
where a1, as, as, a4, as, and ag as above, and

ar =7+ 7p? + 2sin~ p? + 2p%sin~ ! p? — 4p(p® + 1)}/ %sin"1 p,

ag = 7 4+ 4msin~! p? + 4(sin~! p?)? — 16(sin~! p)2.
Figure 4.2 is a plot of the weights versus p € [—1, 1]. The asymptotic variance of g is

~ 1 I 7r-1
Var(p) = ou Jg u,

which turns out to be the same as (4.6).

ii. PMLA: The IFM is ¥ = %15 + %13 + v23. Following (4.4) and (4.5), we calculatev(using
Maple) the corresponding My and Dy, and then Var(5,) = Jg3'. The algebraic expression
for Var(p,) is complicated, so we do not display it. Instead, we plot the ratio Var(p,)/Var(p)

versus p € [—1, 1] in the Figure 4.3. The maximum of the ratio is 1.0391, which is attained at
p =0.3842 and p = —0.3842.
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Figure 4.2: Trivariate probit, AR(1): The weight u; (or ug) versus p (solid line) and the weight uy
versus p (dash line).
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Figure 4.3: Trivariate probit, AR(1): The efficiency of p,
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Figure 4.4: Trivariate probit, AR(1): (a) The efficiency of g from the margins (1,2) or (2,3). (b)
The efficiency of g from the margin (1, 3).

The above results show that IFM with WA leads to an estimate as efficient as the IFS approach
in the AR(1) situation, and IFM with simple PMLA leads to a slightly less efficient estimator
(ratio< 1.04).

The g from the estimating equations based on margin (1,2) (or (2, 3)) is different from the p
based on margin (1, 3). For g from IFM with the (1, 2) (or (2, 3)) margin, the ratio of the asymptotic

variance of the IFME of p to the asymptotic variance p is

_ 2(n* —4(sin~" p)°) [Pas + (1 + p*)as + p(1 + p*)"/%ag]

,
. 7(1 + p?)aiaqzas
For g from IFM with (1,3) margin, the corresponding ratio is

_ (7% = 4(sin™" p)?) [pPas + (1 + pP)as + p(1 + p?)*2as]
2mpajazas '

T2

We plot 71 and ry versus p € [—1,1] in Figure 4.4. We see that when p goes from —1 to 0, r;
increases from 1.707 to values around 2. When p goes from 0 to 1, r; decreases from values around
2 to 1.707. Similarly, ry increases from 1.207 to co as p goes from —1 to 0, and decreases from oo

to 1.207 as p goes from 0 to 1. We conclude that the (1,3) margin by itself leads to an inefficient

estimator in a wide range of the values of p. We notice that 5 > r; when p < 0.6357, 72 < r; when

p > 0.6357, and ry = ro = 1.97 when p = 0.6357.
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Example 4.6 (Trivariate MCD model for binary data with Morgenstern copula) Suppose

we have a trivariate MCD model for binary data with Morgenstern copula, such that
P(lll) = ulu;;ug[l + 912(1 — ul)(l —_ UQ) + 913(1 — ul)(l — U3) + 623(1 — UQ)(l — U3)], |6i]'l <1,

where the dependence parameters 6,2, 613 and 623 obey several constraints:

14612+ 013+ 623> 0, 1+ 013> 023+ 023, 4

1+ 612 > 613 + 023, 1+ 023 > 012 + b13.
We have Pj(1) = uj, 7 = 1,2,3, and Pjr(11) = [14 66 (1 — u;)(1 —ug)] ujuz, 1 < j < k < 3.
Assume u; are given, and the parameters of interest are 13, 613 and #23. The full loglikelihood
function is (4.3). The Fisher information matrix for the parameters 13, #13 and 23 is I. Assume
we have IFM for one observation ¥ = (¢12,¢13,¢23). The Godambe information for ¥ is Jg =
Dy My 1(D\I,)T . We proceed to calculate My and Dg. The algebraic expression of I and Jy are
extremely complicated. We used Maple to output algebraic results in the form of C code and then

numerically evaluated the ratio
)
T Te(I-1)°

where r;, means the general efficiency ratio. For this purpose, we first generate n; uniform points

Ty

(612, 013, 023) from the cube [—1,1]3 in three dimensional space under the constraints (4.7), and then
order these n; points based on the value of |#12] + |013]| + |f23| from the smallest to the largest. For
each one of the n; points (12, 613,023), we generate ny points of (u1, us, uz) with (612,613, 623) as
given dependence parameters in a trivariate Morgenstern copula in (2.5) (see section 4.3 for how to
generate multivariate Morgenstern variate), and then order these n, points based on the value of
u1+u2+us from the smallest to the largest. Each generated set of (u1, ug, us, 612, 013, 23) determines
a trivariate MCD model with Morgenstern copula for binary data. We calculate 7, corresponding
to each particular model. Figure 4.5 presents the values of r, at n; ><» ny = 300 x 300 “grid” points.

We‘can see from Figure 4.5 that the IFM approach is reasonably efficient in most situations. It
is also clear that the magnitude of |612| + |f13| + |f23| has an effect on the efficiency of the IFM
approach, with generally speaking higher efficiency (ry’s value close to 1) when [012] + [013] + |023]
is relatively smaller. The magnitude of u; + us + u3 has some effect such that the efficiency of
the IFM approach is lower at the area close to the boundary of u1 + uz + u3 (that is close to 0 or
3). The following facts show ‘that the general efficiency Qf IFM approach is quite good: in these
90, 000 efficiency (r,y) evaluations, 50% of the 7"g values are less than 1.0196, 90% of the r; values

are less than 1.0722, 99% of the r; values are less than 1.1803 and 99.99% of the ry values are less
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Figure 4.5: Trivariate Morgenstern-binary model: Relative efficiency of IFM approach versus IFS
approach.

than 1.4654. The maximum is 1.7084. The minimum is 1. The two plots in Figure 4.6 are used to
clarify the above observations. Plot (a) consists of the 90, 000 ordered ry values versus their ordered
positions (from 1 to 90,000) in the data set. Plot (b) is a histogram of the r; values. Overall, we
consider the IFM approach to be efficient.

It is also possible to examine the efficiency ratio in some special situations. We study two of them
here. The first one is the situation where u; = u3 =uz =uand §12 =13 =623 =0 (—-1/3 <6 < 1).
The ratio of the asymptotic variance of g (based on WA) versus the asymptotic variance of g is found

to be
aiaqas
biby ’

ri(u,0) =
where
ay = 276%u* — 540%u3 + 3360%u? — 100u? — 66%u + 106u — 30 — 1,
az = 363u® — 963u® + 963wt — 110%u* — 3633 + 220%u3 — 120%u? + 0u? + Q%u — Gu — 0 — 1,
as = 6u? — fu + 1,
by = (30u® — 66u + 360 + 1)(30u® — 46u + 0 + 1),
by = (30u® — 20u 4 1)(30u® + 1)(fu® — fu — 1)2.

Figure 4.7 is a plot of r;(u,f) versus u (0 <« < 1) and 6 (—1/3 < 8 < 1). We observe that at the

boundaries, when 6 = 1, 7;(u, 6) is in the interval (1,1.232), and the maximum 1.232 is attained at
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Figure 4.6: Trivariate Morgenstern-binary model: (a). Ordered relative efficiency values of IFM
approach versus IFS approach; (b) A histogram of the efficiency value r,.

u = 0.2175 or u = 0.7825. When 6 = —1/3, ry(u, 6) is in the interval (1,2), and the maximum 2 is
aftained at u=0or u=1. Since the maximum ratio is 2 at some extreme points in the parameter
space and for the most part the ratio is less than 1.1, we consider the IFM approach to be efficient.
The second special situation is where u; = ug = uz = u, 613 = 633 = 6 and 13 = §%. The
algebraic expression of the ratio re(u,#) of the asymptotic variance of 7] (based on WA) versus the
asymptotic variance of 6 extends to several pages. We thus only present a plot of ro(u, ) versus u
(0 <u<1)and 6 (-1 <8 < 1)in Figure 4.8. We observe tha;; at the boundaries when 8 = 1,
the ratio r2(u, ) is in the interval (1,1.200097), and the maximum is attained at u = 0.2139 or
u = 0.7861. When 6 = —1, the ratio r5(u, ) is in the interval (1,1.148333), and the maximum is
. attained at u = 0.154 or 0.846. Overall, the IFM -approach is demonstrated again to be efficient. O

Example 4.7 (Trivariate normal-copula model for binary data) In Examples 4.3, 4.4 and
4.5, we studied the efficiency of the IFM approach versus the IFS approach in the special situations
of P(111) = ®3(0,0,0, p12, p13, p23), P(111) = ®5(0,0,0, p, p, p) and P(111) = ®5(0,0,0, p, p%, p).
We found that the IFM approach was fully efficient in these situations. For a general trivariate

normal-binary model

P(111) = &3(®~(uy), é'l(uz), &~ (us), p12, P13, p23), (4.8)
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Figure 4.7: Trivariate Morgenstern-binary model: Relative efficiency of IFM approach versus IFS
approach when u; = uy = uz and 613 = 013 = 623.
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the closed form efficiency evaluation, as provided for the trivariate Morgenstern-binary model in Ex-
ample 4.6, is not possible because ®3(®~1(u1), @~ (uz2), ®~1(us), p12, P13, p23) does not have closed
form. Nevertheless, since a high precision multinormal probability calculation subroutine (Schervish
1984) is available, we can evaluate the efficiency numerically.

With the model (4.8), we have P;(1) = uj, j = 1,2,3 and Pjx(11) = ®2(®~(u;), D~ (uk); pjr),
1< j < k<3 Assume u; are given, and the parameters of interest are p;2, p1a and pa3. Let
61 = p12, 02 = p13 and O3 = pa3. The Fisher information matrix from one observation for the

parameters 61, 2 and 63, I, has the following expression

Ly Lo I
I=1 5Ly I Ipx|,
La Iz Is3
where )
1 0P123(v1y2y3) > )
Lij= > ( i=1,23,
P 9;
i) 123(Y1Y293) 06;
1 OP123(y1y2y3) OP123(y1y2y3) .
Ly = 1<ji<k<3.
ik Pi23(y19293) 09; 00 =J -
{y1y29s}

We can similarly calculate the Godambe information matrix Jg based on the IFM approach for one
observation. We then numerically evaluate the ratio (T-optimality)
. _TrUg7)
T Te(I-1)
in the joint trinormal copula sample space and its parameter space. Similar to Example 4.6 for the
trivariate Morgenstern-binary model, we first generate n; uniform points of (p12, p13, p23) from the
cube [—1,1]3 in three dimensional space under the constraints 1 + 2p12p13pa3 — p2y — p25 — p25 > 0
(which guarantees that the determinant of a trinormal correlation matrix is positive) and order
these n; points based on the value of |p12| + |p13[ + |p23| from the smallest to the largest. Then
for each one of the n; points (pi12, p13, p23), we generate ng points (ui, ug, uz) with (p12, p13, p23)
as given dependence parameters in a trinormal copula, and order these ny points based on the
value of u; + ug + u3 from the smallest to the largest. Each generated set of (u1, uz, us, p12, P13, p23)
determines a trivariate normal-binary model. We evaluate r, corresponding to each particular model.
The plot in Figure 4.9 presents the values of rg at ny x ny = 300 x 300 “grid” f)oints for the trivariate
normal-copula model for binary data. We observe from the plot that the IFM approach is reasonably

efficient in most situations. It is also clear that the magnitude of |p12| + |p13] + |p23| has an effect

on the efficiency of the IFM approach, with generally higher efficiency (r,’s value close to 1) when
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Figure 4.9: Trivariate normal-binary model: Relative efficiency of IFM approach versus IFS ap-
proach. ' ‘ '

Ip12| + |p13]| + |p23| is smaller. The magnitude of u; + us + us has some effect such that the efficiency
of IFM approach is lower at the area close to the boundaries of u; + uz + uz (that is close to 0 or
3). In general the IFM approach is quite efficient: in these 90, 000 efficiency (r,) evaluation, 50% of
the r, values are less than 1.0128, 90% of the r, values are less than 1.0589, 99% of the r, values
are less than 1.1479 and 99.99% of the r, values are less than 1.3672. The maximum is 1.8097. The
minimum is 1. The two plots in Figure 4.10 are used to clarify the above observatioﬂs. Plot (a)
consists of the 90,000 ordered r, values versus ordered positions (from 1 to 90,000) in the data set.
Plot (b) is a histogram of the r; values. Overall, we draw the conclusion that the IFM approach is
efficient.

In the situation where u; = uz = uz = u and p12 = p13 = pas = p (—1/2 < 8 < 1), let us denote
r1(u, p) the ratio of the asymptotic variance of § (based on WA) versus the asymptotic variance of
§. r1(u, p) has to be evaluated numerically. Figure 4.11 shows a plot of r,(u, p) versus u (0 < u < 1)
and p (—-1/2 < p < 1). It is difficult to evaluate r1(u, p) numerically when the values of u and p
are near the boundaries of the sample space and the parameter space, but generally speaking, the
efficiency is lower when the values of u and p are close to the boundaries.

In the situation where u; = s = uz = u, p12 = pas = p and p13 = p? (p € [—1,1]), we observed

similar efficiency behaviour. These results are not presented here. o
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Figure 4.10: Trivariate normal-binary model: (a). Ordered relative efficiency of IFM approach
versus IFS approach; (b) A histogram of the efficiency r,.
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Figure 4.11: Trivariate normal-binary model: Relative efficiency of IFM approach versus IFS ap-
proach when u; = uy = uz and p12 = p13 = pa3-
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We have seen from the trivariate normal-copula model for binary dat@ and the trivariate Morgenstern-
copula model for binary data that, in some situations, IFM is as efficient as IFS (e.g. when u = 0.5
for normal-binary médel and u = 0, 0.5 or 1 for Morgenstern-binary model). In other situations,
the efficiency of IFM relative to IFS varies from 1 to a value very close to 1. It is hoped the above
results may help to develop intuition for the efficiency of IFM. We would guess that the relative
efficiency of IFM to IFS for a model with the MUBE property should be good, as we have seen with
the trivariate normal-copula model for binary data and the trivariate Morgenstern-copula model for
binary data. However, a general exhaustive analytical investigation such as above is not possible;
we have to rely on numerical investigation based on simulation for most of the complicated (higher

dimensions or models with covariates) situations.

4.3 Efficiency assessment through simulation

In this section, we give efficiency assessment results through simulation studies with various models.
The following are the steps in the simulation and computation: (1) a MCD or MMD model (with
MUBE property) is chosen; (2) different sets of model parameters are specified; (3) with a given set
of parameters, a sample of size n is generated from the model, and IFM and IFS approaches are
used on the same generated data set to estimate thel model parameters; (4) with the same set of
parameters, step (3) is repeated m times; (5) for any singlel parameter in the model, say 6, if the
estimates of 6 with the IFM approach from step (3) and (4) are 6,...,6,, and the estimates of §
with IFS approach from step (3) and (4) are 6i,...,6,,, then we compute

b

f= _ZZ";; O NiSE() = __Zill(f: 0 (4.9)

and

m g P m q. _ 0)\2
Zi:nl 0" MSE(G) — Zz:l(ai 0) .

m

1

(4.10)

The relative efficiency of IFME to MLE is defined as the ratio r where r? = I\TS\E(é) / Mﬁ:(é) The
values of 4, \/I\IS\E(é), g, \/I\TS\E(BA) and r are tabulated, with \/I\IS\E(é) and \/I\TS\E(é) presented

in parentheses.

For a fixed sample size, a parameter estimation approach is said to be good if g (or 5) is close to 6,

and if \/ MSE(8) (or \/ MSE(6)) is small. There is no “good” in the strict sense, it should be under-

stood in terms of inference, interpretation (i.e. no misleading interpretation or false inference would

be derived, assuming the model is correct) and in comparison ‘with conventional, well-established
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approach. The main objective of this section is to show that with fairly complex models, the IFM

approach still has high efficiency.

Multivariate copula discrete models for binary data

In this subsection, we study the MCD models for binary data. The parameters are assumed to be
margin-dependent. In our simulation, we use the MVN copula, and simulate d-dimensional binary

observations y; (i = 1,...,n) from a multivariate probit model
Y,'j:I(Z,'j<Z,'j), j=1,...,d,i=1,...,n,

where Z,’ = (Zil, . .,Z,'d)l ~ MVNd(O,G),) with Zij = ﬂ}x;j, and @,‘ = (Gi,jk) assumed to be free
of covariates, that is ©; = © or 8; ;i = 0, V i. We transform the dependence parameter 8;; with
6;x = (exp(ajr)—1)/(exp(e; i) +1), and estimate ¢ instead of 6;5. We use the following simulation

scheme:
1. The sample size is n, the number of simulations is N; both are reported in the tables.

2. For d = 3, we study the two situations: Yj; = I(Z;; < z;) and Yi; = I(Zi; < Bjo + Bjirzij)-
For each situation, two general dependence structures are chosen: 612 = 613 = 23 = 0.6 (or
19 = (X13 = X3 = 13863) and 012 = 023 = 0.8 (OI‘ d12 = (o3 = 21972), 613 = 0.64 (OI‘

a13 = 1.5163). Other parameters are:

(a) With no covariates, with z = (0,0,0)’.

(b) With covariates, with By = (B10, B20, B30) = (0.7,0.5,0.3) and B, = (P11, P21,031) =

(0.5,0.5,0.5)". Situations where z;; is discrete and continuous are considered. For the
discrete situation, z;; = I(U < 0) where U ~ U(—1, 1); for the continuous situation, z;;s

are margin-independent, that is z;; = z;, with z; ~ N(0,1/4).

3. For d = 4, we only study Y;; = I(Z;; < z;). Two dependence structures in the study are
12 = 013 = 014 = a3 = 24 = 034 = 0.6 (or 012 = 13 = @14 = @23 = g4 = a34 = 1.3863)
and 012 = 023 = 634 = 0.8 (or @12 = a3 = azq = 2.1972), 613 = 024 = 0.64 (or 13 = a4 =
1.5163) and 614 = 0.512 (or a4 = 1.1309). The cut-off points are (a) z = (0,0,0,0)’, (b)
2 = (0.7,0.7,0.7,0.7Y, (¢) z = (0.7,0,0.7, 0.

The numerical results from MCD models for binary data are presented in Table 4.1 to Table

4.5. These tables lead to two clear conclusions: i) The IFM approach is efficient relative to the
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Table 4.1: Efficiency assessment with MCD model for binary data:

148

d=3,z=(0,0,0), N =1000

margin 1 2 3 (1,2 L,3) (23
n | parameters 21 Z9 23 19 13 o3
12 = (X13 = (k23 = 1.3863

100 IFM 0.003 -0.002 0.005 1.442 1.426 1.420
(0.131) (0.121) (0.128) (0.376) (0.380) (0.378)

MLE 0.002° -0.00 0.004 1.441 1.426 1.420
(0.131) (0.121) (0.128) (0.376) (0.380) (0.378)

T 0.998 0.999 0.999° 0.999° 0.999° 0.999
1000 IFM -0.0006 -0.0016 -0.0008 1.3924 1.3897 1.3906
(0.040) (0.038 (0.039& (0.114) (0.114) (0.113

MLE -0.0018 -0.0028 -0.0019 1.391 1.389 1.390
(0.040) (0.038) (0.039) (0.114) (0.114) (0.113)

T -1 0.997 0.997 0.997 1.000 1.001 1.000

9 = (o3 = 2.1972, o33 = 1.5163

100 IFM 0.0027 -0.0006 0.0003 2.2664 1.5571 2.2586
%0.131 (0.123& (0.130% 50.454 0.377 80.453

MLE .0015 -0.0020 -0.001 .264 .555 257
(0.131) (0.123) (0.131) (0.453) (0.377) (0.452)

T 0.999 '1.000 0999 1001 1.001 1.002
1000 IFM -0.0006 -0.0001 -0.0005 2.2009 1.5174 2.2043
(0.040% (0.038()) (0.039% (20.135 0.118 80.136

MLE -0.0023 -0.0020 -0.002 .200 516 203
(0.040) (0.038) (0.039) (0.135) (0.118) (0.137)

T 0.996 1.000 0.996" 0.999 1.000 1.000

ML approach, for small to large samplé sizes. The ratio values r are very close to 1 in almost

all the situations studied. These results are consistent with the results from the analytical studies

reported in the previous section. ii) The MLE may be slightly more efficient than the IFME, but

this observation is not conclusive. We would say that IFME and MLE are comparable.

Multivariate copula discrete models for ordinal data

In this subsection, we study the MCD models for ordinal data. The parameters are assumed to be

margin-dependent. In our simulation, we use the MVN copula. We simulate d-dimensional ordinal

observations y; (i = 1,...,n) from a multivariate probit model for ordinal data, such that

cey

'Y}- =1 iffz,-(O) <z; < zj(l)’

Y; =2iff z(1) < Z; < 2(2),

| Y; =m; iff z;(m; — 1) < Z; < zj(m;),

where —oo = 2;(0) < 2j(1) < -+ < zj(m; — 1) < 2z;(m;) = oo are constants, j = 1,2,...,d, and
Z; = (Z,-l,...,Z,'d)/ ~ MVNd(O,@,') with z,-j(y,-]-) = 'yj(yij) +ﬁ_',-x,-j. Q; = (0,',]'13) is assumed to

be free of covariates, that is, @; = © or 8; jx = 6;&, V ¢. We transform the dependence parameters
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Table 4.2: Efficiency assessment with MCD model for binary data: d = 3, By = (0.7,0.5,0.3),
B = (0.5,0.5,0.5)', z;; discrete, N = 1000

margin 1 2 3 (1,2)  (1,3) (2,9
n_|parameters| Bi0 Oy Bao By Bag  Ba )2 a3 Q93
Q2 = Qi3 =ao3 = 1. 3 A
100 IFM 0.694 0.559 0.496 0.547 0.294 0.526 1.446 1.447 1.435

GBI G2 0 G 02 G5 G ¢
e altih oo cl c ¢l
1000 IFM 0.700 0.501 0.498 0.509 0.298 0. 503 1.395  1.386 . 1.385
(0.063 60 .100) (0.058 60 .089) (0. 058§8 .085) (0.145) (0.136) (0.131)

MLE

MLE 0.699 0.500 0.497 0.508 503  1.395 1.387 1.387
(0. 0633 50 .099) (0. 0583 go .089) (0.058 So .085) (0.145) (0.136) (0.131)
r 1.00 013 1.000 1.006 0.9981.001 ° '1.001 '1.001" 1.001
= Q3 = 2. 1972 13 = 1.5163
100 IFM 0.694 0. 559 0.496 0.540 02930534 2392 1.599 2314

0 199) (0.385) (0.198) (0.312) (0.186) (0.289) (0.790) (0.592) (0.669
( % E) : (0 198) 80 309) (0 2 3 8 : (2 352) (1 591) (2 314;
0 199 0.344 187) (0.290) (0.675) (0.548) (0.597
T ( 25117) (09935007) (099 8996) (1 171) (1081) (1 119
1000 IFM 005 90.503 0.299°0.502 — 2.205 T.521  2.201

MLE

0.06 0.100) (0. 058 0.092) (0.057) (0.086) (0.167) (0.141) (0.155
Eo 063 00983 EO a0k bk H00 L 8ol
r g S 019 1. 008 g 008 0. 99g S 001 0.999 1.001 0.999

Table 4.3: Efficiency assessment with MCD model for binary data: d = 3, 8, = (0.7,0.5,0.3),
B, =(0.5,0.5,0.5), z;; = «; continuous, N = 100

margin I 3 T2 43 23
n_|parameters| fi9_ 11 Bog  B21 ﬁao 631 a2 @13 Qo3
(s3]
. 100 IFM 0.722 0. 529 0 48830 5203 0. 312 0.024 1.453 1403 1.473
e | O 0 GUQIAY Gz G €29 020 @)
(0. 1373) SO .320) (0.144 SO 278) (0. 138; SO .308) (0.402) (0.412) (0.406)
r 999 1.019 0.999 1.002 0.99 0.990° 0.976" 0.989
1000 IFM 0.704 0.495 0.501 0.504 0.306 0. 504 1.413 1380 1.391
(0. 042g 80 .089) (0. 0463 80 .084) (0. 041g 80 .093) (0.140) (0.109) (0.124)

MLE (0.042) (0.090) (0.045) 0084) (0.040 05833) Siaey oos 55
139) (0.109) (0.124
r 10046988 %004 bro0s “i%oed oot Ga%0 G008 G459

=ap =2 1972 ays = 15163 .
00.543  0.300 0.544  2.303 1556 2.303

8 272) (. 131g 30 309) (0.494) (0.362) (0.525)
0.

100 M (0012%2 005??36) (0 133
o (G R WL 4 42 G
371) (0.

g s Uit e Ol Lot G380 Gty G
R 2.213
(0.042§ 80 .089) (0.045) (0. 076) (0.041) 80 .091) (0.155) (0.123) (0.142)

, MLE 0.70 494 0.49 0.30 505 2.222 1541 2.215
(0 042{ gO 089) (0 04 g SO 075 0 0413 SO 091) (0 156) (0 124) (0 142)
002 1.00 015 1.01 010 0.991° 0.997 0.997
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Table 4.4: Efficiency assessment with MCD model for binary data: d = 4, @12 = a13 = @14 = a3 =
(o4 = (X34 = 13863, N = 1000

margm 1 2 3 T (1,2) (1L,3) (L,A) (23 24 (A
n parameters z1 292 23 24 x12 Q13 Q14 23 24 34
z = (0,0,0,0)

100 IFM 0.002 -0.008 0.002 -0.002 1417 1.421 1.419 1420 1406 1.397
(0.121) (0.122) (0.128) (0.125) (0.369) (0.374) (0.374) (0.370) (0.374) (0.3 66)
MLE 0.001 -0.009 0.000 -0.003 1.417 1.419 1.418 1.419 1.405 1.395
(0.121) (0.123) (0.128) (0.125) (0.369) (0.374) (0.374) (0.370) (0.373) (0.3 65)
r 0.997 0.996 0.999° 0.999° '1.001 0.999° '1.000° 1.000" 1.002" 1.003
1000 IF'M -0.001 -0.001 -0.001 -0.003 1.388 1.386 1.392 1.38 1.391 1.387
(0.0402 (0.03? (0.03? (0.03%2 (0.108) (0.112) (0.112) (0.115) (0.114) (0.1 18)
MLE -0.002 -0.003 -0.002 -0.004 1.388 1.386 1.392 1.385 1.390 1.387
(0.040) (0.037) (0.039) (0.039) (0.108) (0.112) (0.112) (0.115) (0.114) (0.1 17)
r 1.000° 1.000° 1.000° 1.000° 1.000° 1.000° 1.000° 1.000" '1.000 1.000
2 =(0.7,07,0.7,07)
100 IFM 0709 0703 0710 0.708 1.447 1403 1.444 1405 1401 1.404
(0.139) (0:139) (0.140) (0.139) (0.444) (0.443) (0.466) (0.430) (0.431) (0.4 44)
MLE 0.707 0.702 0.709 0.706 1.447 1.402 1442 1.403 1.401 1.403
(0.138) (0.139) (0.140) (0.139) (0.442) (0.441) (0.465) (0.430) (0.429) (0.4 45)
r 1.002° 1.000° 0.998 '1.000° '1.005  1.004 '1.001 '1.000 '1.005 0.997
1000 TFM 0.700 0703 0.699 0.700 1.388 1.384 1.390 1.380 1.383 T1.389
(0.043) (0.044) (0.043) (0.045) (0.134) (0.130) (0.131) (0.131) (0.136) (0.1 32)
MLE 0.699 0.701 0.698 0.699 1.389° 1.385 1.390 1.382 1.384 1.390
(0.043) (0.044) (0.043) (0.044) (0.133) (0.130) (0.131) (0.130) (0.136) (0.1 32)
r 1.0000 1.001" 1.000 1.004" '1.001" '0.999 '1.001" '1.004" '1.000" 1.000
z = (0.7,0,0.7,0)
100 IFM 0.709 -0.007 0.710 -0.002 71464 T1.403 T1.480 1.463 1.406 1.454
(0139) (0.122) (0.140) (0124) (0.56T) (0-443) (0.596) (0.535) (0.374) (0574)
MLE 0.708 -0.009 0.709 -0.003 1.458 1.400° 1.472 1.459 1.405 1.447
(0.138) (0.122) (0.140) (0.124) (0.512) (0.445) (0.541) (0.493) (0.373) (0.5 18)
r 1.002°0.999° 0.998 1.000° 1.107 0.996 '1.102° 1.081 '1.003 "1.108
1000 IFM 0.700 -0.001 0.699 -0.002 1.392 1.384 T.398 T1.386 1.391 1.392
(0.043) (0.039 (0.043) (0.039) (0.128) (0.130) (0.132) (0.133) (0.114) (0.1 31)
MLE 0.699 -0.002 0.698 -0.004 1.394 1.385 1.399 1.387 1.390° 1.393
(0.043) (0.038) (0.043) (0.039) (0.128) (0.129) (0.132) (0.133) (0.114) (0.1 31)
r 1.002° 0.999° '1.001 0.996° '1.000° 1.008 '1.001" 0.999° '0.999° "1.001
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Table 4.5: Efficiency assessment with MCD model for binary data: d 4, o190 = g3 = agq = 2.1972,
@13 = agq = 1.5163, a14 = 1.1309, N = 1000

margm |1 2 3 7 (1,2) (13 T4 (3 (24 349
n parameters 21 29 Z3 Z4 x12 13 14 23 (69 7] Q34
z = (0,0,0,0)

T000] IFM [ 0.002 0.001 0.001 0001 2.210 13I8 I.I37 2198 1516 2204
(0.039) (0.038) (0.039) (0.041) (0.135) (0.116) (0.106) (0.131) (0.115) (0.128)
MLE |-0.000 -0.002 -0.001 -0.001 2.209° 1.517° 1.136 2.197 1.515 2.204
(0.039) (0.039) (0.039) (0.041) (0.135) (0.115) (0.106) (0.131) (0.115) (0.127)
r 1.000" 0.996" '1.004" 0.997° "1.000" '1.002" "1.001" '1.000" "1.000" 1.000
2 =(0.7.07,0.7,07)
T000]  IFM [ 0700 0.701 0700 0.701 2.206 1514 T.136 2.205 1521 2.208
‘ (0 042) (0 043) (0 043) (0.044) (0.154) (0.132) (0.125) (0.153) (0.134) (0.159)

MLE 699" 0.699° 0.699 0.700° 2.207 '1.514 1.135 2.206 1.521 2.208
(o 1042) (0.044) (0.043) (0 044) (0.154) (0. 130) (0.124) (0.153) (0.132) (0.159)
r 1.000" 0.999" '1.003" 0.999" 1.000" 1.010" 1.008" '1.000" 1.011" 1.001

z = (0.7,0,0.7,0

10007 IFM [ 0-7000:001 0.700 0.001 221 1514 T.139 2200 1516 2.014
(0.042) (0.038) (0.043) (0.041) (0.159) (0.132) (0.122) (0.162) (0.115) (0.162)
MLE | 0.699 -0.001 0.699 -0.001 2.215 1.513 1.140 2.214° 1.515 2.218
(0.042) (0.039) (0.043) (0.041) (0.159) (0.130) (0.121) (0.163) (0.115) (0.162)
r 0.996" '0.994" 0.998" '0.997" 0.999" 1.014" 1.009" 0.996" 1.008" '1.001

6;r with ;5 = (exp(ojx) — 1)/(exp(ejk) + 1), and estimate «jj instead of 6. In our simulation
study, we only examine the situation where no covariates are involved in the marginal parameters,
and further assume that m; = 3. In these situations, for each margin, we need to estimate two

parameters: z;(1) and z;(2). We use the following simulation scheme:
1. The sample size is n, the number of simulations is N; both are reported in the tables.
2. For d = 3, we study two situations of. marginal parameters:
(a) 2z(1) = (—~0.5,-0.5,-0.5)", z(2) = (0.5,0.5,0.5)’
(b) z(1) = (-0.5,0,-0.5), z(2) = (0.5,1,0.5)’

and for each situation, two dependence structures are used in the simulation study: 65 =
613 = 023 =0.6 (OI‘ 12 = (¥13 = (¥33 = 13863) and 912 = 923 =0.8 (01’ Q12 = (g3 = 21972),
613 =0.64 (Ol‘ 13 = 15163)

3. For d = 4, we similarly study two situations of marginal parameters:

(a) (1) = (=0.5,~0.5, —0.5,—0.5), z(2) = (0.5,0.5,0.5,0.5)’

» (b) z(1) = (=0.5,0,—0.5,0), z(2) = (0.5,1,0.5,1)’
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Table 4.6: Efficiency assessment with MCD model for ordinal data: d = 3, z(1) = (-0.5,—0.5, —0.5)’,
z(2) = (0.5,0.5,0.5)', N = 1000

margin 1 2 3 (L,2) (1,3) (2,3)
n_|parameters| z(1) 21(2)  2z(1) 29(2) 23(1) 23(2) oo a3 Qa3
(¥17 — (V13 — (¥o3 — 1.9809
100 IFM -0.500 0.508 -0.508 0.600 -0.607 0.508 1.413 1.407 1.414

(0.135) %).135) (0.130) ((?'133) (0.134) %).137) (0.275) (0.284) (0.287)
MLE | -0.503 0.507  -0.5110.498 -0.510 0.507  1.413° '1.408° 1.415
(0.134) 50.135) (0.1303 50.133) (0.134 50.136) (0.275) (0.284) (0.287)
r 1.004 1,003 ~ " 1.0001.003 ~ " 1.006 1.003 ~ "1.000" "0.999" 0.998
1000 IFM ~0.501 0.498 -0.501 0.499  -0.502 0.500 1.390 1.386  L.387

~1(0.043) ((?.041) (0.041) (00.041) (0.042) %).042) (0.086) (0.089) (0.088)

MLE -0.504 0.497 -0.504 0.498° -0.504 0.498 1.390° 1.386 1.387
(0.043& g0.041) (0.041g 30‘041) (0.042 30.042) (0.085) (0.089) (0.088)

r 0.998 1.002 ~ " 0.998 1.002 ~ * 0.997 1.006 ~ 1.005 '1.004" '1.005

19 = (23 = 2.1972, 13 = 1.5163

00| IFM 05000508 -0.506 0502 -0.500 0.508  2.951 1.542  2.947
wr GBI GG GIMOR Gy o3 aa
(0.i368 80.136) (0.1'32; 50'.136) (0.1'38} 60'.135) (0.321) (0.285) (0.322)

r 0.990 0.999 ~ " 0.997 1.005 = 0.991 0.999 ~ '1.005 0.992" 1.005

1000]  IFM -0.501 0.498  -0.5000.498  -0.502 0.500  2.202 _1.516  2.199

(0.043) %).041) (0.041) ((?.040) (0.042) %).041) (0.093) (0.088) (0.097)
MLE | -0.5050.496  -0.5040.496  -0.506 0.498  2.203° 1516 2.200
(0.043 50'041) (0,041) (0.040) (0.042) (0.041) (0.093) (0.088) (0.097)
r 0.997 0.999 ~  1.0051.008~ " 0.9981.001 ~ "0.999" '1.004 1.000

and for each situation, two dependence structures are used in the simulation study: 6;, =
613 = 014 = ba3 = O34 = 34 = 0.6 (or @12 = 13 = @14 = @23 = @24 = 34 = 1.3863) and
B13 = O3 = B34 = 0.8 (Or ap = (ra3 = gq = 2.1972), B13 = 24 = 0.64 (or 13 = cva4 = 1.5163)
and 614 = 0.512 (or a4 = 1.1309).

The numerical results from MCD models for ordinal data are presented in Table 4.6 to Table
4.11. Again, from these tables, we have the following two clear conclusions: i) The IFM approach
is efficient relative to the ML approach, for small to large sample sizes. The ratio values r are very
close to 1 in almost all the studied situations. ii) MLE may be slightly more efficient than IFME,

but this observation is not conclusive. We would say that IFME and MLE are comparable.

Multivariate copula discrete models for count data

In this subsection, we study the MCD models for count data. The parameters are assumed to be
margin-dependent. In our simulation, we use the MVN copula. We simulate d-dimensional Poisson

observations y; (¢ = 1,...,n) from a multivariate normal-copula Poisson model

2 2
P(yl o yd) = Z e Z(—l)i1+...+‘dc(alip [RRS) adid;e):

f1=1 ta=1
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Table 4.7: Efficiency assessment with MCD model for ordinal data: d = 3, z(1) = (-0.5,0, -0.5),
2(2) = (0.5,1,0.5), N = 1000

margin 1 2 3 1,2y (1,3 (2,3)

n |parameters| z1(1) 21(2)  22(1) 23(2)  z3(1) 23(2) o1 013 093
12 = 13 = a3 = 1.3803
100 IFM -0.500 0.508 -0.002 1.01 -0.507 0.508 1.429 1.407 1.416

e |CEIED GG GG G Cay e
(6.1'343 30‘.135) (0.120) (0.16) (0.1'343 30.136) (0.293) (0.284) (0.297)
00T TFYT =050 G.495 0007 .095 0507 G:500 3931386 1-980
(0.043) ((?.041) (0.038) %)'.049) (0.042) %)'.042) (0.089) (0.089) (0.090)

MLE -0.503 0.497  -0.003 0.996  -0.504 0.498 1.393 1.385 1.389
(0.043g 30.041) (0.0388 50.049) (0.042 50.042) (0.089) (0.089) (0.090)
r 0.998 1.000 0.996 1.000 0.9971.005 " 1.006 1.004 1.004
Q12 = (X3 = 2.1972, x13 = 1.5163
100 IFM -0.500 0.508 -0.001 1.012  -0.509 0.508  2.261 1.542 2.247

e |CBLOED GO CI0L 03 OB Gy
(0.136) 60.136) (0.1'213 80.166) (0.139) 86'135) (0.345) (0.290) (0-347)
00T TFST— 0501 0.495 0000 00990503 0-500 2204 —L516—2:158

e |CERLCHD CEI0G GHLGND 0 G 410
(0.0’43& 60'.041) (0.0'38g go'.049) (0.0'42§ 30'.041) (0.099) (0.087) (0.100)
r 0.998 0.999 ~ 1.0181.002 ~  0.9981.002 ~ "1.002" '1.006  1.011

Table 4.8: Efficiency assessment with MCD model for ordinal data: d = 4, z(1) = (-0.5,-0.5,
—0.5,-0.5)", 2(2) = (0.5,0.5,0.5,0.5)', 12 = @13 = @14 = @23 = a4 = a3 = 1.3863, N = 100

margin I 2 3 4

n |parameters| z1(1) 21(2) z9(1) 22(2) z3(1)  23(2) 24(1)  24(2)
100 IFM -0.4928 0.5025 -0.5037 0.4820 -0.4997 0.4986 -0.5088 0.4890
(0.1238) %).1345) (0.1139) %).1377) (0.1145) %.1293) (0.1365) ((?.1349)

MLE -0.4930 0.5023 °  -0.5043 0.4819  -0.5007 0.4983 " -0.5101 0.4877
(0.12252 50.1325) (0.1145g 30.1368) (0.1149g 30.1292) (0.1373) 80. 361)

r 1.011 1.015 0.995 1.006 0.996 1.001 0.994 0.991

1000 IFM -0.4954 0.5044 -0.5068 0.4981 -0.4987 0.5015 -0.4966 0.5016
(0.0433) %).0415) (0.0457) %).0436) (0.0413) %).0413) (0.0459) %).0414)

MLE -0.4973 0.5026  -0.5094 0.4963  -0.5008 0.4998 °  -0.4988 0.4998
(00431 (0.0416) (0.0463) (0.0439) (0.0413) (0.0413) (0.0460) (0,0419)

r 1.003 0.999 0.987 0.993 1.000 1.001 0.997 0.988

margin (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)
parameters 12 &13 14 (23 Q94 X34
1.4480 1.4332 1.4174 14539 1.4050 T1.4149
(0.2741) (0.2858) (0.2906) (0.2903) (0.3005) (0.3088)
MLE 1.4498 1.4351 1.4203 1.4562 . 1.4070 1.4175
(0.2732) (0.2842) (0.2903) (0.2928) (0.3019) (0.3042)
r 1.003 1.006 1.001 0.991 0.995 1.015
1000 IF¥M 1.3939 1.3937 1.3942 - 1.3828 13739 T1.3785
(0.0786) (0.0815) (0.0869) (0.0833) (0.0775) (0.0822)
MLE 1.3949 1.3950 1.3958 1.3827 1.3745 1.3800
(0.0795) (0.0817) (0.0886) (0.0834) (0.0790) (0.0823)
r 0.988 0.997 0.980 0.999 0.981 0.998

n
100
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Table 4.9: Efficiency assessment with MCD model for ordinal data: d = 4, z(1) = (-0.5,—0.5,
—0.5,—0.5)’, 2(2) = (05,05,05,05)/, Q192 = (93 = (34 = 2.1972, 13 = (g4 = 1.5163, Q14 =

1.1309, N = 100
margin 1 2 3 4
n |parameters| z1{1) 2z1(2) 22(1)  29(2) z3(1)  23(2) 24(1)  24(2)
100 TFM -0.49280.5025  -0.50320.4924  -0.5038 0.4917  -0.514270.4909
(0.1238) (0.1345) (0.1156) (0.1357) (0.1155) (0.1342) (0.1349) %).1424)
MLE -0.4965 0.5050 ° -0.5049 0.4945 -0.5122 0.4936 -0.5203 0.4936
(0.12653 30.1339) (0.1162) 30.1322) (0.1238% 30.1328) (0.1388% 80.1457)
T 0.979 1.005 0.994 1.026 0.933 1.011 0.972 0.978
1000 TFM -0.4954 0.5044  -0.5047 0.5018  -0.50I1 0.5019  -0.50350.5012
(0.0433) %).0415) (0.0454) %).0435) (0.0417) %0.0401) (0.0433) ((5).0391)
MLE -0.4986 0.5017  -0.5079 0.4988  -0.5047 0.4989  -0.5069 0.4984
(0.04333 60.0416) (0.0460% 50.0434) (0.0412) '80.0408) (0.0436 80.0394)
r 0.999 0.999 0.988 1.004 1.014 0.984 0.992 0.992
margin | (1,2)  (1,3) (L4) (23) (24) (34
parameters «

n ajo 13 14 Q23 Qg O34

100 [ IFM | 2.9807 15610 T.I182 2.2764 1.5603 2.0516
(0.3091) (0.2732) (0.2897) (0.3453) (0.3270) (0.3331)
MLE | 22754 '1.5503 1.1795 2.2750 15491 2.2477
(0.2933) (0.2621) (0.2802) (0.3354) (0.3263) (0.3291)
r 1.050 ° " 1.040° 1.030 " " 1.030  1.000 " 1.010

T000[ IFM | 2.2100 1.5263 1.1396  2.1868 15055  2.1851
(0.0915) (0.0803) (0.0790) (0.0884) (0.0874) (0.0957)
MLE | 2.2217° '1.5267 1.1304° '2.1887 1.5055 2.1865
(0.0916) (0.0791) (0.0789) (0.0871) (0.0865) (0.0951)
r 0.999° "1.015° 1.002° "1.014° 1.011 1.007

Table 4.10: Efficiency assessment with MCD model for ordinal data: d = 4, z(1) = (-0.5,0,-0.5,0)’,
Z(2) = (05, ]., 0.5, 1)', (112 froand d13 paeg (114 = (xp3 = 024 = (Y34 = 13863, N = 100

margin I 2 3 4
n |parameters| z1(1) 2(2) 22(1)  25(2) z3(1)  z3(2) 24(1)  24(2)
100 IFM -0.4928°0.5025  -0.01817 0.9924  -0.4997 0.4986  -0.01080.9994

(0.1238) ((?.1345) (0.12289) ((;).1507) (0.1145)(0.1293) (0.1159) (0.1528)
MLE | -0.49390.5020 -0.017330.9886  -0.5013 0.4979  -0.0115 0.9964

(0.12173 (0,1318) (0.12165) (0.1505) (0.11413 60.1296) (0.1146) 5995%32)

T 1.018 1.020 1.010 1.002 1.003 0.998 1.01
1000 IFM -0.4954 (.5044 -0.0076 1.0021 -0.4987 0.5015 -0.0017 1.0044
(0.0433 %).04135) (0.0437) ((?.0450) (0.0413) ((?.0413) (0.0405)7(1 .0474)
MLE -0.4975 0.5026 -0.0095 0.9996 -0.5009 0.5000 -0.0037 1.0018
(0.0431&'50.0413) (0.0436} 30.0448) (0.0414§ 30.0413) (0.04043 30.0473)
r 1.003 1.005 1.001 1.005 0.998 1.000 1.003 1.002
margin_| (12)  (13) (LA (23 (24) (34)
n parameters Q12 13 X114 23 24 34
100 IFM 1.4398 1.4332 1.4428° 1.4452 1.4228 1.4345

(0.2874) (0.2858) (0.2801) (0.2866) (0.2966) (0.3429)
) MLE | 1.4468° '1.4363 14467 1.4509 1.4313° 1.4341
(0.2888) (0.2838) (0.2781) (0.2882) (0.2971) (0.3409)
r 0.995° " 1.007° 1.007  0.995 0.998 " 1.006
TO00| TFM | 1.4060  1.3937 1.3007 1.3866 1.3798 1.3756
(0.0822) (0.0815) (0.0891) (0.0806) (0.0940) (0.0919)
MLE | 1.4067 1.3947 '1.3924 1.3877 1.3813 1.3769
(0.0820) (0.0811) (0.0911) (0.0808) (0.0941) (0.0908)
r “1.003° "1.005° " 0.978° " 0.997 " 0.999° " 1.012
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Table 4.11: Efficiency assessment with MCD model for ordinal data: d = 4, z(1) = (—0.5,0, —0.5,0)’,
Z(2) = (05, 1, 05, l)l, (12 = (3 = (g4 = 21972, 13 = Q4 = 15163, Q14 = 11309, N =100

margin I 2 3 4

n |parameters| 21(1) 2 (2) 23(1)  29(2) z3(1)  z3(2) z4(1)  24(2)
100 TFM -0.4928 0.5025 — -0.0217 0.9877 — -0.50380.4917  -0.01462 0.9791
(0.1238) (0.1345) (0.1241) (0.1516) (0.1155) (0.1342) (0.10744) (0.1439)

MLE -0.4944 0.5010 -0.0189 0.9796 -0.5090 0.4892 -0.01577 0.9780
(0.1274) (0.1342) (0.1244) (1548) (0.1176) (0.1319) (0.11106) (0.1449)

r 0.972 1.002 0.998 0.979 0.9811.018 0.967 0.994

1000 TFM -0.49540.5044  -0.0006 0.9995  -0.5011 0.5019 -0.0013 1.0018
(0.0433) ((?.0415) (0.0406) %0.0476) (0.0417) (6).0401) (0.0382) %).0489)

MLE -0.4985 0.5010 -0.0034 0.9956 ~  -0.5046 0.4988 -0.0044 0.9988
(0.04333 30.0410) (0.0396g 80.0476) (0.0416 80.0405) (0.0392) 30.0482)

r 0.999 1.013 1.025 0.999 1.003 0.991 0.974 1.014

g [ (02 (13 0D 23 @D GA)

n | parameters 12 13 Q14 Q93 Q94 Q34

100 IFM 2.2370 1.5610 I.1717 2.2043 1.5524 2.2616
(0.2871) (0.2732) (0.2737) (0.3444) (0.3290) (0.3438)
MLE 2.2484° '1.5582 1.1819° 2.2640° 1.5540° 2.2616
(0.2867) (0.2743) (0.2832) (0.3330) (0.3279) (0.3406)
T 1.001 0.996 0.966 1.034 1.003 ° " 1.010

1000 IFM 22143 15263 1.1386b 2.1965 1.5095 2.1807
(0.0957) (0.0803) (0.0811) (0.0980) (0.0842) (0.0951)
MLE 2.2180 1.5268 1.1377 2.1988 1.56102 2.1812
(0.0941) (0.0799) (0.0814) (0.0953) (0.0841) (0.0975)
r 1.018 1.005 0.996 1.028 1.001 0.975

where aj; = Gj(y; — 1), aj2 = G;(y;). C is d-dimensional normal copula. G;(-) is defined as

0, ify; <0,
Gj(yj) = [v5}
S, i<y,
s=0

where pg-s) = [Ajexp(=A;)]/s!, s = 0,1,2,...,00. In general, we assume X;; = exp(ﬁ;x,-]-), and

©; = (bi k) to be free of covariates. We further transform the dependence parameters f;x with
Oir = (exp(ajr)—1)/(exp(ajr)+1), and estimate a; instead of ;5. We use the following simulation

scheme:
1. The sample size is n, the number of simulations is N; both are reported in the tables.

2. For d = 3, we study the two situations: log(A;;) = 8; and log(Ai;) = Bjo + Bj1ij. For each
situation, we chose two dependence structures: 613 = 813 = f23 = 0.6 (or a12 = @13 = a3 =
1.3863) and 6,3 = 3 = 0.8 (or a12 = azz = 2.1972), 913 = 0.64 (or @13 = 1.5163). Other

parameters are

(a‘) ﬁO = (ﬂ1051820a:330)l = (1;1)1)I a‘nd ﬂl = (ﬁll;ﬂ?bﬁSl)/ = (05705705)1 Situations

where z;; is discrete is considered. For the discrete situation, z;; = I(U < 0) where
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Table 4.12: Efficiency assessment with MCD model for count data: d = 3, By = (1,1,1) and
By = (0.5,0.5,0.5Y, z;; discrete, N = 1000 |

margin 1 2 (1,2) (1,3) (2,3)
n__|parameters Bio B Bao B ﬂao .331 ajo 13 a3
az—ala—a23-—- .3863 .
100 IFM 1.0054 0.490 1.0017 0.493 1.0029 0.493 1.423 1.412 1.420

MLE | L0018 0488 00988 00l 00908 0dsn. 1 1 o iy 9417
L |OpGD oy ofDGID C80 QB9 Qi
T000]  TFM L0007 0499710013 0:4975 T 0014 0498713055 1380113806
e | o00rt 0400 Covaesd oaor Coagss baosr) 1aote 19ad0) Laere
(0:0292) (0.0362) (0.0274) (0.0343) (0.0283) (0.0354) (0.0578) (0.0563) (0,0574)

r 0.98 988 0.989 0.998 995 1.081 1.003 1.035
= Q3 = 2. 1972 13 = 1.5163

00 IFM TO054 U A0 10044 0.490 T0046 0.491  2.942 1551  2.236
2 (0. 0867& 80 109) (o oss4§ 60 110) (0. 0870& 60 107)  (0.190) (0.196) (0.186)
ME | G, Gushin, Susies ) g o
r 0. 987> 0.98 ? 1.015"  "1.087" 1.007
T000[  IFM 15007 0:499T 10015 0:4979 1001404987 22055 L5185 21075
(. 0287% 80 0358) (0. 0272& 60 .0350) (0. 02772 80 .0351) (0.0555) (0.0620) (0.0572)

MLE 0.9962 0.4992 0.9963 0.4981 0.9971 0.4984 = 2.2037 1.5156 2.1952
- [(0. 0291g 80 .0364) (0.0279 60 .0355) (0. 02792K 80 .0354) (0.0553) (0.0553) (0.0569)
r 0.985 0.983 0.977 0.986 0.993 0.990 1.003 1.121 1.006

U ~ uniform(-1, 1).

(b) (A1, Mz, Ais) = (5,3,5) (or (81, B2, Bs) = (1.6094, 1.0986, 1.6094)).

3. For d = 4, we only study log():;;) = B;. Two dependence structures are considered: 65 =
f13 = 014 = 033 = O34 = 034 = 0.6 (or @12 = 13 = @14 = @93 = a4 = @34 = 1.3863) and
f12 = 023 = 634 = 0.8 (or a12 = g3 = az4 = 2.1972), 013 = 024 = 0.64 (or @13 = @ag = 1.5163)
and 614 = 0.512 (or a14 = 1.1309). Other parameters are ‘

(a) (i1, Aiz, Ai3, Aia) = (5,5,5,5) (or equivalently (81,02, F3,84) = (1.6094,1.6094,1.6094,
1.6094)).

(b) (Ai1, Aiz, Ais, Aia) = (4,2,5,8) (or equ1valently (ﬁl,ﬂg,ﬂs,ﬂ4) = (1.3863,0.6931,1.6094,
2.0794)).

The numerical results from MCD models for count data are presented in Table 4.12 to Table

4.15. We obtain the similar conclusions to those for the MCD models for binary data and ordinal

data.
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Table 4.13: Efficiency assessment with MCD model for count data: d = 3, (81, 2, 0s) = (1.6094,

1.0986,1.6094), N = 1000

margin 1 2 3 (1,2) (1,3) (2,3)

n | parameters 51 Bo 2 o192 a13 Q93

Y12 = (13 = (o3 = 1.9863

100 IFM 1.6075 1.1000 1.6076  1.415 1.403 1.408
(0.0465) (0.0593) (0.0456) (0.194) (0.190) (0.195)

MLE 1.6024 1.0943 1.6032 1.413 1.398 1.403
(0.0519) (0.0648) (0.0490) (0.191) (0.189) (0.192)

T 0.896 0.915 0.929 1.018".  '1.003 1.018

1000 IFM 1.6098 1.0988 1.6095 1.3885 1.3885 1.3880
(0.0141) (0.0185) (0.0140) (0.0597) (0.0575) (0.0586)

MLE 1.6077 1.0963 1.6076 1.3877 1.3855 1.3869
(0.0146) (0.0191) (0.0143) (0.0588) (0.0577) (0.0574)

r 0.966 0.967 0.975 1.015 0.996 1.021

&1 = (23 — 21972, o13 = 1.5163

100 IFM 1.6075  1.0991 1.6089 2.234 1.539 2.219
(0.0465) (0.0599) (0.0455) (0.187) (0.187) (0.188)

MLE 1.6017 1.0912 1.6032 2.231 1.533 2.217
(0.0509) (0.0667) (0.0490) (0.187) (0.181) (0.188)

r 0.913 0.897 0.929 0.999 1.033 0.995

1000 IFM 1.6098 1.0992 1.6097 2.2027 1.5176 2.2002

(0.0141) (0.0182) (0.0140) (0.0565) (0.0579) (0.0547)
MLE | 1.6063 1.0944 1.6063 2.1992 1.5149° 2.1968
(0.0155) (0.0197) (0.0152) (0.0563) (0.0567) (0.0551)
r 0.915° "0.924° "0.923° "1.003° 1.021° " 0.993

Table 4.14: Efficiency assessment with MCD model for count data: d = 4, (01, 82,0s,84) =
(1.6094,1.0986, 1.6094,1.6094), N = 1000

margm |1 ) 3 T (12 (03 (04 (23 28 0G4
n_|parameters| £, I5)) Bs By o1p o3  og4  0p3  apq o34
(12 = (Y13 = (¥14 = (¥93 = (94 = (¥34 = 1.3863
100 IFM 1.6072 1.6099 1.6076 1.6085 1.417 1.410 1.413 1.402 T1.407 1.308

MLE

r

(0.0434) (0.0443) (0.0459) (0.0451) (0.179) (0.188) (0.190) (0.185) (0.183) (0.186)
1.6016° 1.6044 1.6023 1.6031" 1.415 1.410° 1.413° 1.401 1.404° 1.401
(0.0477) (0.0494) (0.0495) (0.0490) (0.179) (0.189) (0.193) (0.184) (0.183) (0.184)
0.910 " 0.895  0.927 ' 0.920 1.001" 0.991" 0.986 1.009" 1.003 '1.008

= a3 = 34 = 2.1972, a33 = agq = 1.5163, ay4 = 1.1309

100 IFM
MLE

o1 2

1.6072 1.6000 1.6084 1.6084 2.998 1.546 1.I50 2.218 1.536 2.215
(0.0434) (0.0445) (0.0454) (0.0456) (0.176) (0.184) (0.195) (0.183) (0.179) (0.177)
1.5996" 1.6003 1.5993 1.5999 2.228" 1538 1.153° 2.215 1.527 2.217
(0.0499) (0.0513) (0.0544) (0.0525) (0.176) (0.187) (0.193) (0.184) (0.177) (0.177)
0.871 " 0.867  0.835  0.867  0.997° 0.982" 1.015" 0.995" '1.009" 1.001

157
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Table 4.15: Efficiency assessment with MCD model for count data: d = 4, (61,82,0s,8s) =
(1.3863,0.6931,1.6094,2.0794), N = 1000

margm | 1 ) 3 I 12 035 04 @3 G (64
n_|parameters| §) ﬂz ﬁs Ba Q2 @13 Q4 o3 Q4 Q34
2 = (¥13 = (¥14 = (x93 = (¥924 = Q34 = 1.386:.

100] IFM 1.3835 0 6918 1.6076 2.0787 1.418 1. 411 1.414 1.405 1.406 1.398
(0.0489) (0.0705) (0.0459) (0.0356) (0.185) (0.189) (0.185) (0.194) (0.189) (0.186)
MLE 1.3772° 0.6840 1.6024 2.0744 1415 1.411 '1.411 1405 1.407 1.402
(0.0549) (0.0756) (0.0496) (0.0384) (0.185) (0.188) (0.185) (0.193) (0.187) (0.183)
T 0 891 0.932° 0.927 0.927 1.003 1.005" 0.998 1.002" 1.011 1.017
2 = Qo3 = 3—-21972 a3_a24_151()d a4 = 1.1309

100] IFM 1 3835 0.6906 1.6084 2.0790 2.239 1.546 1.155 2.219 1.535 2.216
(0.0489) (0.0693) (0.0454) (0.0361) (0. 191) (0 184) (0.194) (0.198) (0.191) (0.173)

MLE |1.3758° 0.6792° 1.6006 2.0735 2.236 1.537 1.152 2.221 1.529 2.216
(0.0550) (0.0764) (0.0524) (0.0412) (0.191) (0 184) (0.188) (0.202) (0.186) (0.174)
r 0.890~ " 0.907 " 0.866  0.876 '1.001° 0.997" '1.032 0.981° '1.023 0.991

Multivariate mixture discrete models for count data

We now consider a MMD model for count data with the Morgenstern copula

i<k

P(y: ---ya) :/ /Hf(yj,,\ )Hg(,\ ) [1+Ee]k(1 — 2G() ))(1—2G(,\k))] dAi - -d)g,

(4.11)
where f(y;; A;) = e~ N /\;’j /y;! is the Poisson frequency function with parameter A; (A; > 0), g(A)
a Gamma density function, having the form g(A;) = {1/[,8;”'I‘(aj)]},\;’j_le—'\i/ﬁj, Aj > 0, with §;
being a scale parameter, and G(};) is a Gamma cdf. We have E();) = o;8; and Var(};) = ;67
(4.11) is a multivariate Poisson-Morgenstern-gammae model. The multiple intégral in (4.11) over the
joint space of A1,...,Aq can be decomposed into a product of integrals of a single variable. The
calculation of P(y; ---y4) can thus be accomplished by calculating 2d univariate integrals. In fact,

we have

d
P(yr---ya) = HP(y])+Z9:k II Pm)P(y) — 2Pu()IIP(ye) — 2Pu(ws)] ¢

i<k m=1
m#j,k

and

Pik(yiye) = P(y;) P(ye) + 0k[P(yj) — 2Pu(y;)][P(yx) — 2Pu (yx)],

where P(y;) = [ f(yj;A1)9(A;) dA; and Pu(y;) = [ f(y;54)9(X;)G(};) d};. Now

e" MY a YiD(a; +
P(yj):/ L R WL A G- ') (4.12)

yi! B T(ey)"? (B; + 1)¥i+eiT(a)y;!
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Further, as f(y;;A;)g9(};) is proportional to the density of a Gamma(y + «,5/(8+ 1)) random
variable, if we let p; = B;(y; + ;)/(B; + 1), 6 = (y; + ;)87 /(B; + 1)?, then the upper and lower
integration ranges of P, (y;) can be set up as L; = p; — 50; and U; = p; + 50; for numerical
evaluation of the integrals.

To carry out the efficiency assessment through simulation, we need to simulate the multivariate
Poisson-Morgenstern-gamma distribution. Let C' be the Morgenstern copula, and G(z) be the cdf

of a univariate Gamma distribution. The following simulation algorithm is used:
1. Generate Uy,...,Uq from C(Uy,...,Us).
2. Let \j = G7}(U;), j=1,...,d.
3. Generate Y; from Poisson(};), j = 1,...,d.

In the above algorithm, the difficult part is the generation of Uy, ..., U4 from C(Uy,...,Uy). The
conditional distribution approach to generate multivariate random variates can be used here. The
conditional distribution approach is to obtain x = (z1,...,24) with F(z1) = Vi, F(zz|z1) = Vs,
.., F(z4l|z1,...,24-1) = Vg, where V1, ..., V; are independent uniform(0, 1). With the Morgenstern

copula, for m < d,

tm f(uli"‘)um—l)u)d
0 f(ula""um—l) '

where f(ui,...,um) = 1+ Y7 k(1 — 2u;)(1 — 2ug). Since f(u1,...,um) = f(ur,...,um-1) +
ST Bim (1 — 2u)(1 — 2up), it follows that |

Clum|Uy = uy,...,Uncy = tme1) =

fug,ooum) g Y Oim(1 — 2u;) AT 8im(1 - 2uj))
flug, . ume1) Flui, ..., tme1) flur, ..., um—1) me

Hence

m—1 m-—1
1 Oim(1 — 2u; "0 (1 — 2u;
C(umlUI:uly'--;Um—l:um—l): (1+ z]-l J ( UJ)) Um_z]—l Jj ( UJ) 2

flur, ..., um-1) flur, .. Uum—1) Um-

Let A= f(u,...,um-1), B= 1o jm(1—2u;), and D = B/A. From DuZ, —(D+1)tum + Vs = 0,

we get

u D+ V(D +1)2—4DV,
™ 2D '
Thus the algorithm for generating Uy, ...,Uq from C(uq,...,uq) is as the following:

1. Generate Vi,..., Vg from Uniform(0, 1).
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2. Let U; = V4.

3. Let A=1ifm=2and A=1+370" 6;5(1—2u;)(1—2ug) if m > 2. Let B= 37" 0jm(1—
2u;), and D = B/A.

4. Form > 2,if D = 0, Up, = V. If D # 0, Uy, takes one of the values of [(D + 1) £
V(D + 1)2 — 4DV,,}/[2D] for which it is positive and less than 1.

The efficiency studies with the multivariate Poisson-Morgenstern-gamma model are carried out
only for the dependence parameters 6;, in that univariate parameters are fixed. We use the following

simulation scheme:
1. The sample size is n = 3000, the number of simulations is N = 200.
2. The dimension d is chosen to be 3, 4 and 5.
3. The marginal parameters «; and ; are fixed. They are aj = §; = 1for j=1,...,d.
4. For each dimension, two dependence structures are considered:

(a) For d = 3, we have (612,013, 023) = (0.5,0.5,0.5) and (6y2, 613, 623) = (0.6,0.7,0.8).

(b) For d = 4, we have (012, 913, 014, 023, 024, 934) = (05, 05, 05, 05, 05, 05) and
(612,013,014, 023, 024, 034) = (0.6,0.7,0.8,0.6,0.7, 0.6).

(c) For d =5, we have
(612,013,014, 015,023, 024, 025, 034, 035, 645) = (0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5) and
(612, 013, 014, 015, 023, 024, 025, O34, 035, 645) = (0.6,0.7,0.8,0.8,0.6,0.7,0.8,0.6,0.7,0.8).

The numerical results from the MMD models for count data with the Morgenstern copula are
presented in Table 4.16 to Table 4.18. We obtain similar conclusions to those for the MCD models
for binary, ordinal and count data. Basically, they are: i) The IFM approach is efficient relative to
the ML approach; the ratio values r are very close to 1 in almost all the situations studied. ii) MLE

may be slightly more efficient than IFME, but this observation is not conclusive. IFME and MLE

are comparable.
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Table 4.16: Efficiency assessment with multivariate Poisson-Morgenstern-gamma model, d = 3

parameters [ ba3
612,613,023) = 05 05 0.5

(0.125) (0.125) (0.124)

MLE 0.494  0.499  0.500

(0.122) (0.124) (0.123)

1.022”  "1.008" 1.003
013,013,023) = (0.6,0.7,0.8

(0.127) (0.118) (0 119)

MLE 0.600" 0697 0.790
(0.127) (0.120) (0.119)

1.000° _"0.985  '0.995

Table 4.17: Efficiency assessment with multivariate Poisson-Morgenstern-gamma model, d = 4

parameters [P [T 014 Go3 O34
(012,013, 014,023,024, 034) = (0.5,0.5, 0 5 0.5,0. 5 0 5)
IFM 0.500 0.495 0.513 0 498 0. 494 0.488

(0.131) (0.128) (0.124) (0.133) (0.134) (0.138)
MLE 0501 0.493° 0512° 0497 0495  0.485
(0.130) (0.124) (0.122) (0.131) (0.132) (0.135)

r 1.008° "1.026° 1.014 1.021° '1.018 '1.019
(612,013, 014,023, 024, 032) = (0.6,0.7,0.8,0.6,0.7,0.6)

TFM 0503 0.680 0794 0589 0.692 0599

(0.130) (0.127) (0.120) (0.121) (0.133) (0.124)

MLE 0.589° 0.678" 0.792° 0.585  0.689  0.598

0.127 0.124 0.117 0.118 0.129 0.124
(1 017) (1 026) (1 024) (1 025) (1.037) (1 006)

Table 4.18: Efficiency assessment with multivariate Poisson-Morgenstern-gamma model, d = 5

parameters  fo f13 014 G5 - Oo3 024 Oog G4 O35
(012,013,914,915,923,924,925,934,935,045) = (0.5,0.5,0.5,0.5,0.5,0.5,0.5,0. 5 0 5,0. 5)
IFM 0.501 0.496 0477 0.486 0511 0. 467 0. 478 0. 504 0. 493 0.495

(0:122) (0.131) (0137) (0132) (012 (0.130) (0:128) (0.128) (0131 (0116)

MLE 0.495 0.493 0.482 0.508 0.466 0.475 0.503 0.489 0.494
(0.121) (0. 125) (0 134) (0 128) (0.122) (0. 125) (0 119) (0.127) (0. 128) (0 113)

1.012° '1.046  1.023 1.026° '1.002° 1.043" '1.037" '1.011 '1.026 '1.018
012,013,014, 015,023,024, 025, 034, 035, 045 0.6,0.7,0.8,0.8,0.6,0.7,0.8,0.6,0.7,0.8

(0.140) (0.137) (0.132) (0.130) (0.127) (0.139) (0.118) (0.136) (0.126) (0. 125)

MLE 0590 0.666 0.772 0.766 0.593 0.690  0.778 0.588  0.687 0.604
(0-137) (0.132) (0.128) (0.126) (0.119) (0.135) (0.115) (0.132) (0.124) (0.113)

r 1.023° "1.036" 1.029° '1.032" '1.067" '1.029° '1.028  '1.028" '1.018’ 1.103
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4.4 IFM efficiency for models with special dependence struc-

ture

The IFM approach may have irﬁportant applications for models with special dependence struc-
ture. Data with special dependence structure arise often in practice: longitudinal studies, repeated
measures, Markov type dependence data, k-dependent data, and so on.

The analytical assessment of the efficiency of the IFM approach for several models with special
dependence structure were studied in section 4.2. In the following, we give some numerical results
for IFM efficiency for some more complex models with special dependence structure. The estimation
approach that we used here is PMLA. We only present representative results from the MCD model
for binary data, with the MVN copula of exchangeable and AR(1) dependence structures. Results
with other models are quite similar, as we also observed in section 4.3 for various situations with a

general model. We use the following simulation scheme:
1. The sample size is n = 1000, the number of simulations is N = 200.
2. The dimension d are chosen to be 3 and 4.

3. For d = 3, we considered two marginal models Yj; = I(Z;; < z;) and Y;; = I(Z;; < ajo +

aji12i;), with 2;; = I(U < 0) where U ~ uniform(—1, 1), and with the regression parameters

(a) with no covariates: z = (0.5,0.5,0.5)" and z = (0.5, 1.0, 1.5)';

(b) with covariates: Qp = (alo,azo,a;«}o)l = (05,05,05)’, o = ((111,021,031)’ = (1, 1,1)’

and Qo = (alo, a2, Ola())l = (05, 05, 0.5)/, ] = (a“, @21, a31)' = (1, 0.5, 1.5)’.

For each marginal model, exchangeable and AR(1) dependence structures in the MVN copula
are considered, with the single dependence parameter in both cases being 6; = [exp(8o+S1w;)—
1]/[exp(Bo + frw;i) + 1], with w; = I(U < 0) where U ~ uniform(—1, 1), and parameters fy = 1
and f; = 1.5.

4. Ford = 4, we only study Y;; = I(Z;; < z;), with the marginal parameters z = (0.5, 0.5,0.5,0.5)’,
and z = (0.5,0.8,1.2,1.5)". For each marginal model, exchangeable and AR(1) dependence

structures in MVN copula are considered. The single dependence parameter in both cases is

6; = [exp(Bo) — 1]/[exp(Bo) + 1], with By = 1.386 and Sy = 2.197 for both situations.

The numerical results from these models with special dependence structure are presented in

Table 4.19 to Table 4.26. We basically have the same conclusions as with all other general cases
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Table 4.19: Efficiency assessment with special dependence structure: d =3, z = (0.5,0.5,0.5)’

parameters 21 29 23 Bo By

exchangeable, fo =1, 5;, =156

IFM 0.496 0.497 0.497 0.996 THIT

(0.043) (0.041) (0.042) (0.118) (0.194)

MLE 0.494 0.496 0.496 0.996 1.520

(0.041) (0.040) (0.041) (0.118) (0.195)

T 1.047 1.021 1.015 1.003 0.998

AR(1), B =1,/ =15

IFM 0.496 0.497 0.496 0.992 1506

(0.043) (0.041) (0.041) (0.123) (0.185)

MLE 0.494 0.497 0.495 0.994 1.512

(0.042) (0.040) (0.041) (0.119) (0.183)

r 1.034 1.027 1.012 1.031 1.015

Table 4.20: Efficiency assessment with special dependence structure: d =3, z = (0.5,1.0,1.5)’

parameters 21 Z9 Z3 Bo i)

exchangeable, By =1, 1 =1.5

IFM 0.496 0.997 1.499 0.998 1.531

(0.043) (0.047) (0.064) (0.154) (0.249)

MLE 0.496 0.996 1.499 0.997 1.534

(0.043) (0.047) (0.063) (0.156) (0.247)

r 1.009 0.999 1.010 0.986 1.008

AR(l): ﬂO = 1) ﬂl =1.5

TFM 0.496 0.997 1.500 0.994 1.509

(0.043) (0.047) (0.083) (0.158) (0.250)

MLE 0.496 0.996 1.500 0.993 1.518

(0.043) (0.046) (0.062) (0.156) (0.249)

r 1.017 1.013 1.018 1.011 1.003

studied previously. These conclusions are: i) The IFM approach (PMLA) is efficient relative to the
ML approach; the ratio values r are very close to 1 in almost all the studied situations. ii) MLE
may be slightly more efficient than IFME, but this observation is not conclusive. IFME and MLE

are comparable.

4.5 Jackknife variance estimate compared with Godambe

information matrix

Now we turn to numerical evaluation of the performance of jackknife variance estimates of IFME.
We have shown, in Chapter 2, that the jackknife estimate of variance is asymptotically equivalent

to the estimate of variance from the corresponding Godambe information matrix. The jackknife

approach may be preferred when the appropriate computer packages are not available to compute
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Table 4.21: Efficiency assessment with special dependence structure: d = 3, ap = (0.5,0.5,0.5),
a; =(1,1,1)

parameters a1 a1 Qag a9y , a:iosa:n Ba <

(0.0553 (0.109) (0.060) (0.108) (0.059) 50'104) (0.153)  (0.242)
MLE 0.500 1.018 0.498 1.010 0.500 0999~ 0.978  1.556
(0.052) (0.104) - (0,09) (0.107)  (0.058) (0.102)  (0.162) (0.250)
1.052 1.048 1.011 1.007 1.0181.028 © "1.002"'0.968

(0.055{ 50.109) (0.0603 50.108) (0.058 80.101) (0.158) (0.233)
MLE 0.501 1.017 0.499 1.009 0.497 0.999 0.985 1.545
(0.052:2 50.104) (0.059:2 30.105) (0.058) 50.100) (0.157)  (0.235)

r 1.043 1.047 1.023 1.022 1.004 1.004 1.008 0.991

Table 4.22: Efficiency assessment with special dependence structure: d = 3, ap = (0.5,0.5,0.5),
a; = (1,0.5,1.5)

parameters o9 03] argq 0rg) 30 03] Ba B
T T T 0T et 500 5 T U985 1575
wee 2] (0100 (0060) (0.085) (0050 (0.141) (0.160) (0.238)

0.052) (0.103)  (0.059) (0.089) (0.058) (0.132) (0.159) (0.239

. (0,052) (0193)  ( (1g)1f (0089 (0,088) (0.182)  (0.159)  (0-289)

AR(1),Bo=1,6.=1.5 : .

M 0B00T020 0499 0510 0497 T84 0996 1518
(0,055) (0.109)  (0.060) (0.089) (0.058) (0.140)  (0.159) ~(0229)

MLE 0.500 1.017 ~  0.496 0510~ - 0.497 1.510 ~  '0.094° '1.530
(0,058) (0.104)  (0.059) (0.089) (0.057) (0.138) (0.158)  (0.225)

r i.0411.045  1.091 1003~ 1.0061.049° 1.007 1.010

Table 4.23: Efficiency assessment with special dependence structure: d = 4,z = (0.5,0.5,0.5,0.5)’

parameters 21 2 . 23 24 Bo
exchangeable, fy = 1.386

IFM 0.502 0.499 0.501 0.501 1.387
(0.041) (0.043) (0.042) (0.042) (0.071)

MLE 0.501 0.499 0.500 0.500 1.389
(0.041) (0.043) (0.042) (0.042) (0.070)

r 1.000 1.002 1.005 1.003 1.013

AR(1), By =1.386

IFM 0.502 0.499 0.501 0.497 1.385
(0.041) (0.043) (0.041) (0.042) (0.072).

MLE 0.502 0.499 0.500 0.496 1.387

0.041 0.043 0.041 0.042 0.069
r (0.996) (1.000) (0.998) (0.998) (1.047)
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Table 4.24: Efficiency assessment with special dependence structure: d = 4, z = (0.5,0.8,1.2,1.5)’

parameters z1 Z9 23 Bo
exchangeable, fy = 1.386

IFM 0.502 0.803 1.199 1.494 1.389
(0.041) (0.045) (0.052) (0.061) (0.087)

MLE 0.502 0.802 1.198 1.492 1.391
(0.041) (0.045) (0.052) (0.061) (0.087)

r 0.998 1.004 1.002 1.007 1.004

AR(D), B = 1.386

IFM 0.502 0.803 1.20 1.495 1.388
(0.041) (0.045) (0.05) (0.067) (0.085)

MLE 0.502 0.802 1.20 1.494 1.389
(0.041) (0.045) (0.05) (0.065) (0.083)

r 0.999 1.006 1.00 1.017 1.025

Table 4.25: Efficiency assessment with special dependence structure: d = 4, z = (0.5,0.5,0.5,0.5)'

parameters 2] 22 23 24 Bo
exchangeable, £y = 2.107
TFM 0.502 — 0501 0501 0.501 2.200
(0.041) (0.042) (0.042) (0.042) (0.093)
MLE 0.500 0.499 0.499 0.499 2.202
(0.041) (0.042) (0.042) (0.042) (0.092)
r 0.999 1.000 0.999 1.000 1.015
AR{1), By = 2.197 '
IFM 0.502 0.501 0.501 0.499 2.194
(0.041) (0.042) (0.042) (0.042) (0.086)
MLE 0.501 0.499 0.499 0.498 2.199
(0.041) (0.043) (0.042) (0.042) (0.084)
r 0.995 0.993 1.000 0.999 1.025

Table 4.26: Efficiency assessment with special dependence structure: d = 4, z = (0.5,0.8,1.2,1.5)'

parameters z1 29 Z3 . 24 Bo
exchangeable, fq = 2.197
IFM 0.502 0.802 1.201 1.499 2.203
(0.041) (0.046) (0.056) (0.060) (0.114)
MLE 0.501 0.801 1.199 1.496 2.204
(0.041) (0.046) (0.055) (0.059) (0.111)
r 0.996 1.002 1.005 1.003 1.031
AR(1), By = 2.197
IFM 0.502 0.802 1.198 1.500 2.200
(0.041) (0.046) (0.052) (0.060) (0.110)
MLE 0.501 0.801 1.196 1.500 2.200

0.041 0.046 0.052 0.060 0.100
r (0.997) (1.005) (0.993) (1.000) (1.040)
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the Godambe information matrix or when the asymptotic variance in terms of Godambe informa-
tion matrix is difficult to compute analytically or computationally. For example, to compute the
asymptotic variance of P(y; - - -yd;é) by means of Godambe information is not an easy task. To
complement the theoretical results in Chapter 2, in this subsection, we give some analytical and nu-
merical comparisons of the variance estimates from Godambe information and the jackknife method.

The application of jackknife methods to modelling and inference of real data sets is demonstrated

in Chapter 5.

Analytical comparison of the two approaches

Example 4.8 (Multinormal, general) Let X ~ N(u,X), and suppose we are interested in esti-
mating p. Given n independent observations xi, ..., %, from X, the IFIME of pis g =n=1 30", x;,
and the corresponding inverse of the Godambe information matrix is Jg 1 = %. A consistent estimate
of Jg s

Tgt = n Y (e - )~
i=1
The jackknife estimate of the Godambe information matrix is
nVy=n Z(ﬂ(i) - i‘)(ﬂ(‘i) - i‘)T,
i=1
where fi;y = (n—1)"'(nji — X;). Some algebraic manipulation leads to

2
1
vy = 1

n
~ ~NT
(n — 1)2 n E(:L‘,' - l‘)(zi - P) )
i=1
which is a consistent estimate of . Furthermore, we see that

n? =~

_ -1
nVy = —(n —1)e Jg

which shows that the jackknife estimate of the Godambe information matrix is also good when the

sample size is moderate to small. ]

Example 4.9 (Multinormal, common marginal mean) Let X ~ Ny(g,X), where g = (p1, . . .,
#4)" = pl and ¥ is known. We are interested in estimating the common parameter . Given n

independent observations x1,...,x, with same distributions as X, the IFME of u by the weighting

approach is (see Example 4.2)
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The inverse of Godambe information of f,, 1s

1

-1 _
fe' =y

The jackknife estimate of the Godambe information is
)T

nVy = nZ(ﬂw(z) - ﬂw)(ﬂw(z) - i‘w

i=1

b

where fi,;y = 1S fi(;)/1'E711. Some algebraic manipulation leads to

1'z-! no ] =
nVy = =11 |® Z(I‘(f) — B) (B — g Ty-i1
‘ i=1
We replace n 30, () — B)(Bgy — )T with n?/(n — 1)2Z. Thus
' 2

n 1

N R TR

and
2

-1

L
(n—1)
which shows that the jackknife estimate of the Godambe information is also good when the sample

size is moderate to small. a

Numerical comparison of the two approaches

In this subsection, we numerically compare the variance estimates of IFME from the jackknife
method and from the Godambe information. For this purpose, we use a 3-dimensional probit model
with normal copula. The comparison studies are carried out only for the dependence parameters
6;%. For the chosen model parameters, we carry out N simulations for each sample size n. For each
simulation s (s = 1,..., N) of sample size n, we estimate model parameters 012,603,023 with the
IFM approach. Let us denote these estimates 675’2), 5&3), ég? We then compute the jackknife estimate

of variance (with g groups of size m such that ¢ x m = n) for 5&?,5&?,5&?. We denote these

variance estimates by vgsz), vgg), vgg). Let the asymptotic variance estimate of 8,3, 63,623 based on
the Godambe information matrix from a sample of size n be v;9, v13, v23. We compare the following

three variance estimates:

(i). MSE: £ S0 (655 — 012)%, 20 (0% —015)2, &N (059 — 023)%;

(ii). Godambe: vi3, wvi3, vas;




Chapter 4. The efficiency of IFM approach and the efficiency of jackknife variance estimate 168

(iii). Jackknife: & Zf;l vgsz), % Zflzl v%), * 2?:1 vgg).

The MSE in (i) should be considered as the true variance of the parameter estimate assuming
unbiasedness. (ii) and (iii) should be compared with each other and also with (i). Table 4.27 and
Table 4.28 summarize the numerical computation of the variance estimates of 512,513,523 based
on approaches (i), (i) and (iii). For the jackknife method, the results for different combinations
of (g, m) are reported in the two tables. In total four models with different marginal parameters
z = (21, 22,23) and different dependence parameters 6 = (012,913;023) are studied. The details
about the parameter values are reported in the tables. We have studied two sample sizes: n = 500
and n = 1000. For both sample sizes, the number of simulations is N = 500. From examining
the two tables, we see that the three measures are very close to each other. We conclude that the
jackknife method is indeed consistent with the Godambe information computation approach. Both
approaches yields variance estimates which are comparable to MSE.

In conclusion, we have shown theoretically and demonstrated numerically in several cases that
the jackknife method for variance estimation compares very favorably with the Godambe information
computation. We are willing to extrapolate to general situations. The jackknife approach is simple
and computationally straightforward (computationally, it only requires the code for obtaining the
parameter estimates); it also has the advantage of easily handling more complex situations where the
Godambe information computation is not possible. One major concern with the jackknife approach
is the computational time needed to carry out the whole process. If the computing time problem is
due to an extremely large sample size, appropriate grouping of the sample for the sake of applying
the jackknife approach may improve the situation. A discussion is given in Section 2.5. Overall, we

recommend the general use of the jackknife approach in applications.

4.6 Summary

In this chapter, we demonstrated analytically and numerically that the IFM approach is an efficient
parameter estimation procedure for MCD and MMD models with MUBE or PUBE properties.
We have chosen a wide variety of cases so that we can extrapolate this conclusion to the general
situation. Theoretically, we expect IFM to be quite efficient because it is closely tied to MLE in
that each inference function is a likelihood score function of a margin. For comparison purposes,

we carried out ML estimates for several multivariate models. Our experience was that finding

the MLE is a difficult and very time consuming task for multivariate models, while the IFME is
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Table 4.27: Comparison of estimates of standard error, (i) true, (ii) Godambe, (iii) jackknife with ¢
groups; N = 500, n = 1000

[ approach [ & 013 a3 |
z = (0.0,0.7,0.0Y, 0 = (=0.5,0.5,—0.5) |
(i 0.002079 0.001704 0.002085
(i1) 0.002012 0.001645 0.002012
,m) (iit)
1000, 1) 0.002030 0.001646 0.002038

500, 2 0.002028 0.001653 0.002043
250, 4 0.002025 0.001658 0.002047
125,8 0.002058 0.001653 0.002046
100, 10) 0.002046 0.001663 0.002046
50, 20) 0.002089  0.001685 _ 0.002089
z = (0.7,0.0,0.7), § = (0.5,0.9,0.5)

0] 0.002000 0.000281 0.002200
(ii) 0.002012 0.000295 0.002012

)

1000, 1) 0.002026 0.000299 0.002023
500, 2 0.002027 0.000300 0.002021
250, 4 0.002036 0.000300 0.002035
125,8 0.002056 0.000302 0.002049
100, 10) 0.002063 0.000301 0.002054
50, 20) 0.002088 0.000301 0.002067
z = (0.7,0.7,0.7), 8 = (0.9, 0.7, 0.5)

) 0.000333 0.001218 0.002319
(if) 0.000295 0.001239 0.002187

,m)
1000, 1) 0.000302 0.001254 0.002208
500, 2§ 0.000303 0.001257 0.002210

0.000302 0.001260 0.002212
0.000303 0.001267 0.002216
100, 10) 0.000305 0.001261 0.002214
50,20) 0.000310 0.001252 0.002220
z = (1.0,0.5,0.07, § = (0.8,0.6,0.8)

) 0.000821 0.002147 0.000766
(i) 0.000869 0.002089 0.000666

)
1000,1) 0.000873 0.002129 0.000683
500, 2 0.000874 0.002118 0.000683
250,4 : 0.000877 0.002108 0.000681
125,8 0.000884 0.002119 0.000688
100, 10) 0.000887 0.002138 0.000687
50, 20) 0.000899 0.002151 0.000690
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Table 4.28: Comparison of estimates of standard error, (i) true, (ii) Godambe, (iii) jackknife with g

groups; N = 500, n = 500

| approach | #;, 013 a3
z = (0.0,0.7,0.0Y, 8 = (—=0.5,0.5,—0.5)
(i) 0.004158 0.003135 0.004262
(11) 0.004024 0.003290 0.004024
gm) | (i)
500,1 0.004085 0.003315 0.004104
250, 2 0.004071 0.003333 0.004122
125,4 0.004053 0.003331 0.004119
50,10 0.004115 0.003396 0.004176
z = (0.7,0.0,0.7), 8 = (0.5,0.9,0.5)
(1) 0.003998 0.000602 0.003768
(ii) 0.004024 0.000591 0.004024
g,m) (i)
500,1 0.004062 0.000604 0.004049
250,2 0.004062 0.000601 0.004054
125,4 0.004091 0.000607 0.004103
50,10 0.004123 0.000617 0.004171
z = (0.7,0.7,0.7Y, 0 = (0.9,0.7,0.5)
(1) 0.000632 0.002688 0.004521
(ii) 0.000591 0.002479 0.004374
gm) | (i)
500,1 (0.000607 0.002501 0.004410
250,2 0.000611 0.002510 0.004425
125,4 0.000616 0.002533 0.004467
50,10 0.000622 0.002539 0.004501
z = (1.0,0.5,0.0), § = (0.8,0.6,0.8)
(1) 0.001634 0.003846 0.001413
(1) 0.001738 0.004179 0.001332
gm) | (i)
500,1 0.001821 0.004397 0.001365
250, 2 0.001837 0.004407 0.001368
125,4 0.001846 0.004433 0.001360
50,10 0.001876 0.004476 0.001388
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computationally simple and results in significant saving of computing time. We further demonstrated
numerically that the jackknife method yields SEs for the IFME, which are comparable to the SEs
obtained from the Godambe information matrix. The jackknife method for variance estimates has
significant practical importance as it eliminates the need to calculate the partial derivatives which
are required for calculating the Godambe information matrix. The jackknife method can also be
used for estimates of functions of parameters (such as probabilities of being in some category or
probabilities of exceedances).

The IFM approach together with the jackknife estimation of SE’s make many more multivariate
models computationally feasible for working with real data. The IFM theory as part of statistical
inference theory for multivariate non-normal models is highly recommended because of its good

asymptotic properties and its computational feasibility. This approach should have significant prac-

tical usefulness. We will demonstrate its application in Chapter 5.




Chapter 5

Modelling, data analysis and

examples

Possessing a tool is one thing, but using it effectively is quite another. In this chapter, we explore the
possibility of effectively using the tools developed in this thesis for multivariate statistical modelling
(including IFM theory, jackknife variance estimation, etc.) and provide data analysis examples.
In section 5.1, we first discuss out view of the proper data analysis cycle. This is an important
issue since the interpretation of the results and maybe the possible indication of further studies
are directly related to the way that the data analysis was carried out. We next discuss several
other important issues in multivariate discrete modelling, such as how to make the the choice of
models and how to deal with checking the adequacy of models. We also provide some discussion
on the testing of dependence structure hypotheses, which is useful for identifying some specific
multivariate models. In section 5.2, we carry out several data analysis examples with the models and
inference procedure developed in the previous chapters. We show some applications of the models
and inference procedures developed in this thesis and point out difficulties related to multivariate

nonnormal analysis.

172
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5.1 Some issues on modelling

5.1.1 Data analysis cycle

\

A proper data analysis cycle usually consists of initial data analysis, statistical modelling, diagnostic
model assessment and inferences. '

The initial data analysis may consist of computing various data summaries and examining various
graphical representation of data. The type of summary statistics and graphical representations
depend on the basic features of the data set. For example, for binary, ordinal and count data, we
can compute the empirical frequencies (and percentages) of response variables as well as covariates,
separately and jointly. If some covariates are continuous, then standard summaries such as the mean,
median, standard deviation, quartiles, maximum, minimum, as well as graphical displays such as
boxplots and histograms could be examined. To have a rough idea of the dependence among the
response variables, for binary data, a check of the pairwise log odds ratios of the responses could be
helpful. Another convenient empirical pairwise dependence measure for multivariate discrete data,

which is particularly useful for ordinal and count data, is a measure called gamma. This measure,

for ordinal and count data y; = (y;1,¥%:i2), £ = 1,...,n, is defined as
C-D
= ) 5.1
"= 57D (5.1)

where C'= 37 >0 I(yin > yin)) * I(yiz > yire) and D =3 0 S0 I(win < yirn) * I(yiz > yira),
and I is the indicator function. In (5.1), C can be interpreted as the number of concordant pairs
and D the number of discordant pairs. The gamme measure is studied in Goodman and Kruskal
(1954), and is considered as a discrete generalization of Kendall’s tau for continuous variables. The
properties of the gammea measure follow directly from its definition. Like the correlation coefficient,
its range is —1 <y < 1: ¥ = 1 when the number of discordant pairs D = 0, ¥ = —1 when the number
of concordant pairs C' = 0, and ¥ = 0 when the number of concordant pairs equals the number of
discordant pairs. Other dependence measures as the discrete generalizations of Kendall’s tau or
Spearman’s p can also be used for ordinal response and count response as well as binary response.
Furthermore, summaries such as means, variances and correlations could also be meaningful and
useful for count data. Initial data analysis is particularly important in multivariate analysis, since
the structure of multivariate data is much more complicated than that of univariate data, and the
initial data analysis results will shed light on identifying the suitable statistical models.

Statistical modelling usually consists of specification, estimation, and evaluation steps. The

specification formulates a probabilistic model which is assumed to have generated the observed
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data. At this stage, to choose appropriate models, relevant questions are: “What is the nature of
the data?” and “ How have the data been generated?” The chosen models should make sense for the
data. The decision concerning which model to fit to a set of data should, if possible, be the result of
a prior consideration of what might be a suitable model for the process under investigation, as well
as the result of computation. In some situations, a data set may have several suitable alternative
models. After obtaining estimation and computation results, model selections could be made based
on certain criteria.

Diagnostics consist of assessments of the reliability of the estimates, the fit of the model and the
overall performance of the model. Both the fitting error of the model and possibly prediction error
should be studied. We should also bear in mind that often a small fitting error does not lead to a
small prediction error. Sometimes, it is necessary to seek a balance between the two. Appropriate
diagnostic checking is an important but not easy step in the whole modelling process.

At the inference stage, relevant statements about the population from which the sample was
taken can be made based on the statistical modelling (mainly probabilistic models) results from
the previous stages. These inferences may be the explanation of changes in responses over margin
or time, the effects of covariates on the probabilities of occurrence, the marginal and conditional
behaviour of response variables, the probability of exceedance, as well as of hypothesis testing as
suggested by the theory in the application domain, and so on. Some relevant questions are: “How
can valid inference be drawn?”, »What interpretation can be given to the estimates?”, “Is there a
structural interpretation, relating to the underlying theory in the application?”, and “Are the results

pointing to further studies?”

5.1.2 Model selection

When modelling a data set, usually it is required only that the model provide accurate predictions
or other aspects of data, without necessarily duplicating every detail of the real system. A valid
model is any model that gives an adequate representation of the system that is of interest to the
model user.

Often a large number of equally good models exist for a particular data set in terms of the specific
inference aspect of interest to the practitioner. Model selection is carried out by comparing alterna-
tive models. If a model fits the data approximately as well as the other more complex models, we

usually prefer the simple one. There are many criteria to distinguish between models. One suitable

criterion for choosing a model is the associated maximum loglikelihood value. However, within the
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same family, the maximum loglikelihood value usually depends on the number of parameters esti-
mated in the model, with more parameters yielding a bigger value. Thus maximizing this statistic
cannot be the sole criterion since we would inevitably choose models with more parameters and
more complex structure. In application, parsimonious models which identify the essential relations
between the variables and capture the major characteristic features of the problem under study are
more useful. Such models often lead to clear and simple interpretation. The ideal situation is that
we arrive at a simple model which is consistent with the observed data. In this vein, a balance
between the size of the maximum loglikelihood value and the number of parameters is important.
But it is often difficult to judge the appropriateness of the balance. One widely used criterion is the

Akaike Information Criterion (AIC), which is defined as
AIC = —2£(B;y) + 2s,

where £(9; y) is the maximum loglikelihood of the model, and s is the number of estimated param-
eters of the model. (With IFM estimation, the AIC is modified to AIC = —2[(5;y) + 2s.) By
definition, a model with a smaller AIC is preferable. The AIC considers the principles of maximurﬁ
likelihood and the model dimensions (or' number of pardmeters) simultaneously, and thus aims for
a balance of maximum likelihood value and model complexity. The negative of AIC/2 is asymp-
totically an unbiased estimator of the mean expected loglikelihood (see Sakamoto et al. 1986); thus
AIC can be interpreted as an unbiased estimator of the -2 times the expected loglikelihood of the
maximum likelihood. The model having minimum AIC should have minimum prediction error, at
least asymptotically. In the use of AIC, it is the difference of AIC values that matters and not the
actual values themselves. This is because of the fact that AIC is an estimate of the mean expected
loglikelihood of a model. If the difference is less than 1, the goodness-of-fit of these models are almost
the same. For a detailed account of AIC, see Sakamoto et al. (1986). The AIC was introduced by
Akaike (1973) for the purpose of selecting an optimal model from within a set of proposed modelé
(hypotheses). The AIC procedure has been used successfully to identify models; see, for example,
Akaike (1977).

The selection of models should also be based on the understanding that it is an essential part
of modelling to direct the analysis to aspects which are relevant to the context and to omit other
aspects of the real world situation which often lead to spurious results. This is also the reason that
we have to be careful not to overparameterize the model, since, although this might improve the
goodness-of-fit, it is likely to result in the model portraying spurious features of the sampled data,

which may detract from the usefulness of the achieved fit and may lead to poor prediction. The
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selection of models should also be based on the consideration of the practical importance of the
models, which in turn is based on the nature and extent of the models and their contribution to our
understanding to the problem.

Statistical modelling is often an iterative process. The general process is such that after. a
promising member from a family of models is tentatively chosen, parameters in the model are next
efficiently esti}nated; and finally, the success of the resulting fit is assessed. The now precisely
defined model is either accepted by this verification stage or the diagnostic checks carried out will
find it lacking in certain respects and should then suggest a sensible modified identification. Further
estimation and checking may take place, and the cycle of identification, estimation, and verification

is repeated until some satisfactory fits obtain.

5.1.3 Diagnostic checking

A model should be judged by its predictive power as well as its goodness-of-fit. Diagnostic checking
is a procedure for evaluating to what extent the data support the model. The AIC only compares
models through their relative predictive power; it doesn’t assess the goodness-of-fit of the model
to the data. In multivariate nonnormal analysis, it is not obvious how the goodness-of-fit checking
could be carried out. We discuss this issue in the following.

There are many conventional ways to check the goodness-of-fit of a model. One direct way to
check the model is by means of residuals (mainly for continuous data). A diagnostic check based
on residuals consists of making a residual plot of the (standardized) residuals. Another frequently
applied approach is to calculate some goodness-of-fit statistics. When the checking of residuals is
feasible, the goodness-of-fit statistics are often used as a supplement. In multivariate analysis, direct
comparison of estimated probabilities with the corresponding empirical probabilities may also be
considered as a good and efficient diagnostic checking method.

For multivariate binary or ordinal categorical data, a diagnostic check based on residuals of
observed data is not meaningful. However statistics of goodness-of-fit are availablein these situations.
We illustrate the situation here by means of multivariate binary data. For a d-dimensional random
binary vector Y with a model P, its sample space contains 2¢ elements. We denote these by
k = 1,...,2% with k representing the kth particular outcome pattern and P; the corresponding
probability, with szﬂ Py = 1. Assume n is the number of observations and ni,...,nq are the

empirical frequencies corresponding to k- ='1,...,2% Let P, be the estimate of Py, for a specified

model. Under the hypothesis that the specified model is the true model and with the assumption of
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some regularity conditions (e.g. efficient estimates, see Read and Cressie 1988, §4.1), Fisher (1924)

shows, in the case if P; depends on one estimated parameter, that the Pearson x? type statistic

2
z—: (nk ;;Pk) (5.2)
is asymptotically chi-squared with 2¢ — 2 degrees of freedom. If Py depends on s (s > 1) estimated
parameters, then the generalization is that (5.2) is asymptotically chi-squared with 24 —s—1 degrees
of freedom. A more general situation is that Y depends on a covariate of g categories. For each
category of the covariate, it has the situation of (5.2). If we assume independence between the
categories of the covariate, we can form an overall Pearson x? type test statistic for the goodness-

of-fit of the model as
(») n(u)p(v))z

g 2°
(ny — k
= ) 5.3
Z Z n(,,)ji’gt/) ( )

v=1lk=1

where v is the index of the categories in the covariate. Suppose we estimated s parameters in the
model; thus 1315") depends on s parameters. Under the hypothesis that the specified model is the
true model, the test statistic X2 in (5.3), with some regularity conditions (e.g. efficient estimates),
1s asymptotically X:(T‘—l)—s’ where g is the number of categories of the covariate, and s is the total

number of parameters estimated in the model. Similarly, an overall loglikelihood ratio type statistic

g 2¢
G2 =235 n{logn{)/(n™ B (5.4)

v=1k=1

is also asymptotically X§(24—1)—s‘ X? and G? are asymptotically equivalent, but there are not the
same in finite sample case, so sometimes there is a question of which statistic to choose. Read and
Cressie (1988) may shed some light on this matter. The computation of the test statistic X2 or
G? requires the calculation of 13,5”), which may not be easily obtained, depending on the copula
associated with the model (for example, it is generally feasible with mixture of max-id copula but
only feasible with relatively low dimension for multinormal copula, unless approximations are used).

One frequently encountered problem in applications with multivariate binary or ordinal cate-
gorical data (also count data) is that when the dimension of the response is relatively high, the
empirical frequency for some particular outcomes of the response vector is relatively small or even
zero. Thus Py or 15,511) would usually be very small for any particular model, and (5.2) or (5.3) with

its related statistical inferences are not suitable in these situations. What we may still do in terms

of goodness-of-fit checking in these situations is to limit the comparison of P (x;) with ng(x;)/n(x;)

by tables and graphics to outcomes of non-zero frequency (where x; is the covariate vector), or to
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calculate

_ 5.2
Xty= Y (e —f)” Gly=2 D nilog(ni/iix), (5.5)
{nx2a}

where 7y = E?zl P (xi), where k represent the kth patterns of the response variables, and plot X (20)
(or G?a)) versus a = {1,2,3,4,5} to get a rough idea of how the model fits the non-zero frequency
observations. The data obviously support the model if the observed values of X (Za) (or G%a)) go down
quickly to zero, while large values indicate potential model departures.

Obviously, in any case, some partial assessments using (5.2) or (5.3) may be done for some lower-
dimensional margins where frequencies are sufficiently large. Sometimes, these kinds of goodness-
of-fit checking may be used to retain a model while (5.5) is not helpful.

The statistics in (5.5) and related analysis can be applied to multivariate count data as well.
Furthermore, a diagnostic check based on the residuals of the observed counts is also meaningful. If

there are no covariates, quick and overall residual checking cab be based on examining
&;j = %ij — E[Yij|Yi,-;, 0] (5.6)

for a particular fixed j, where Y; _; means the response vector Y; with the jth margin omitted. The
model is considered as adequate based on residual plot in terms of goodness-of-fit if the residuals
are small and do not exhibit systematic patterns. Note that the computation of E[Yij}Y,-,_j,é]
may not be a simple task when the dimension d is large (e.g d > 3). Another rough check of the
goodness-of-fit of a model for multivariate count data is to compare the empirical marginal means,
variances and pairwise correlation coefficients with the corresponding means, variances and pairwise
correlation coefficients calculated from the fitted model.

In principle, a model can be forced to fit the data increasingly well by increasing its number of
parameters. However, the fact that the fitting errors are small is no guarantee that the prediction
errors will be. Many of the terms in a complex model may simply be accounting for noise in the
data. The overfitted models may predict future values quite poorly. Thus to arrive at a model which
represents only the main features of the data, selection and diagnostic criteria which balance model
complexity and goodness-of-fit must be used simultaneously. As we have discussed, often there are
many relevant models that provide an acceptable approximation to reality or data. The purpose

of statistical modelling is not to get the “true” model, but rather to obtain one or several models

which extract the most information and better serve the inference purposes.
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5.1.4 Testing the dependence structure

We next discuss a topic related to model identification. Short series of longitﬁdinal data or repeated
measures with many subjects often exhibit highly structured pattern of dependence structure, with
the dependence usually becoming weaker as the time separation (if the observation point is time)
increases. Valid inferences can be made by borrowing strength across subjects. That is, the consis-
tency of a pattern across subjects is the basis for substantive conclusions. For this reason, inferences
from longitudinal or repeated measures studies can be made more robust to model assumptions than
those from time series data, particularly to assumptions about the nature of the dependence.
There are many possible structures for longitudinal or repeated measures type dependence. The
exchangeable or AR(1)-like dependence structures are the simplest. But in a particular situation,
how to test to see if a particular dependence structure is more plausible? The AIC for model
comparison may be a useful index. In the following, we provide an alternative approach for testing
special dependence structures. For this purpose, we first give a definition and state two results that

we are going to use in the later development. A reference for these materials is Rao (1973).

Definition 5.1 (Generalized inverse of a matrix) A generalized inverse of an n x m matriz A

of any rank is an m x n matriz denoted by A~ which satisfies the following equality:
AATA=A.
a

Result 5.1 (Spectral decomposition theorem) Let A be a real n x n symmetric matriz. Then
there exists an orthogonal matriz Q@ such that Q' AQ is a diagonal matriz whose diagonal elements

A1 2 A2 > -+ 2> A, are the characteristic roots of A, that is

MO0 .0
0 Xy --- O
QAQ=| )
0 0 - A,

a

Result 5.2 IfX ~ N,(p,Ex), and Ex is positive semidefinite, then a set of necessary and sufficient
conditions for X' AX ~ x2(8?) is (i) tr(AXx) = r and p' Ap = 62, (ii) Ex ALx ADx = Ex A%k, (i)
WAZxAp = WAp, (iv) W(AZx)? = W AX. x2(6?) denotes the non-central chi-square distribution

with noncentality parameter §°. )
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In the following, we are going to build up a general statistical test, which in turn can be used to
test exchangeable or AR(1)-type dependence assumptions.

Suppose X ~ Np(#; Xx) where Tx is known. We want to test if gy = p1, where u is a constant.
Let @ = £3'1/1'23'1, then

X-aX1l=(X; -aX,...,X, —a'X) = BX,

where B = I — 11'53'/1’£3'1, and I is the identity matrix. Thus BX ~ N,(Bp, BExB'). It is
easy to see that Rank(B) = p— 1, it implies that Rank(BXxB’') =p— 1.
By Result 5.1, there is an orthogonal matrix @, such that

Moo 0 0
BexB'=Q| @,
0 -+ A1 O
0 0 0
where Ay > Xg > -+ > Ap_1 > 0. Let
x 0 0
A=Q ) Q'
0 o 0
0 0 1

then A is a full rank matrix. It is also easy to show that A is a generalized inverse of BEx B’, and

all the conditions in Result 5.2 are satisfied, we thus have
X'B'ABX ~ x%_,(8%),

where 62 = w'B’ABp, 62 > 0. §%2 = 0 is true if and only if By = 0, and this in turn is true if
and only if g = pl, that is g should be an equal constant vector. Thus under the null hypothesis
p = pl, we should have

X'B'ABX ~ Xz-l?

where X§—1 means central chi-square distribution with p — 1 degrees of freedom.

Now we use an example to illustrate the use of above results.

Example 5.1 Suppose we choose the multivariate logit model with multinormal copula (3.1) with

correlation matrix © = (6;x) to model the d-dimensional binary observations y,,...,y,. We want

to know if an exchangeable (that is §;5 = 6 for all 1 < j < k < d and for some |§] < 1) or an AR(1)
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(that is 0;; = 6%l for all 1 < j < k < d and for some |f] < 1) correlation matrix in the multinormal
copula is the suitable assumptions. The above results can be used to test these assumptions. Let
§U%) be the IFME of 6 from the (7, k) bivariate margin, and 6 = (6‘~(12),6~(13),...,é(d‘l’d)). By

Theorem 2.4, we have asymptotically
6 ~ Naa—1y/2(61, T5),

where X ) is the inverse of Godambe information matrix of 8. Thus under the exchangeable or AR(1)

assumptions of ©, we have asymptotically

~/ -~
0 B'ABO ~ X(zi(d—l)/z—l’

where )
o 0 0
1'%:?! N : :
0 . . . . ’
B=I-1—"F"-, A= ,
1)y | @ 0 oo —L1 “
[/} Ad(d=-1)/2-1
0o --- 0 1

and @ is an orthogonal matrix from the spectral decomposition

Ao 0 0
BS.B = 0 S : : o
0 0 Ad(a-1)/2-1 0
0 ... 0 0
where A3 > Aa >+ > Ageg—1y/2-1 > 0. o

The above results are valid for large samples, and can be used in the applications for a rough
Judgement about the special dependence structure assumptions, though Eé would typically have to

be estimated from the data.

5.2 Data analysis examples

In this section, we apply and compare some models developed in Chapter 3 on some real data sets,
and illustrate the estimation procedures of Chapter 2. Following the discussion in section 5.1, the

examples show the stages of the data analysis cycle and the special features related to the specific

type of data.
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5.2.1 Example with multivariate/longitudinal binary response data

| In this subsection, several models for multivariate binary response data with covariates are applied
to a subset of a data set from the “Six Cities Study” discussed and analyzed by Ware et al. (1984)
and Stram et al. (1988).

The Six Cities Study is a longitudinal investigation of the effects of indoor and outdoor air
pollution on respiratory health. As in"most longitudinal studies, there were missing data for some
subjects. In this analysis we consider a subset of data with no missing values, gathered in the study
on the occurrence of persistent wheeze (graded as wheeze 1 and none 0) of children (total number
of 1020) followed from ages 9 to 12 yearly in two different cities: Kingston-Harriman, Tenessee
(KHT), and Portage, Wisconsin (PW) in the US. The outdoor air pollution is measured by the
children’s residence location, that is, the two cities. These two cities have very different ambient air
quality. KHT (coded as 1 in the data set) is influenced by air pollution from several metropolitan
and industrial areas, and thus has relatively high average concentrations of fine particulate matter
and acid aerosols. PW (coded as 0 in the data set) is located in a region that has relatively low
concentrations of these polluants. Indoor pollution is measured by level of maternal smoking graded
as 1 (> 10 cigarettes) or 0 (< 10 cigéré'ttés).: Let us call the outdoor air pollution variable “City”,
and the indoor pollution variable “Smoking”. Smoking is a time-dependent covariate since level of
maternal smoking may vary from year to year, and City is considered as time-independent covariate
(for the four-year period) since no one in the study moved over the four years. More documentation
of the study can be found in Ware et al. (1984) and Stram et al. (1988). Some of the potential
scientific questions are: (1) Does the prevalence of wheeze differ between cities or smoking groups?
If so, does the difference change over time. If the effects are constant over time, how should they
be estimated? (2) How should the rate of respiratory disease for children whose mothers smoke be
compared to the rate for children whose mothers do not smoke?

Tables 5.1 ~ 5.3 summarize the initial data analysis. Table 5.1 provides the univariate summaries
of the data, with the percentages of 1’s for the binary response and predictor variables (City and
Smoking at 4 time points which we denote by Smoking9, Smokingl0, Smokingl1 and Smokingl2).
We see, from response variables Age 9 to Age 12, that the incidence of persistent wheeze for ages
9 to 12 decreases slightly across the ages. The same is true for the maternal smoking levels. Table
5.2 contains the frequencies of the response vector of the 4 time points when ignoring the effects
of the covariates. Table 5.3 has the pairwise log odds ratio for the response variables, ignoring the

covariates; it gives some indication of the amount of dependence in the response variables in addition
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to Table 5.2. Table 5.3 indicates that the dependence for consecutive years is larger..

Multivariate binary response models that were used to model the data include
1. The multivariate logit model from section 3.1, with

a. multinormal copula (3.1),
b. multivariate Molenberghs-Lesaffre construction

1. with bivariate normal copula,
ii. with Plackett copula (2.8),
iii. with Frank copula (2.9).
c. mixture of max-id copula (3.3),

d. the permutation symmetric copula (3.8).
2. The multivariate probit model with multinormal copula.

The Multivariate logit-normal model (a MMD model) is also used to model this data set, but since
in this model fitting, the variance parameters estimates (&;, j = 1,2,3,4) all go to 0, it reduces this
model in fact to a MCD model, Fhus we will not pursue the MMD models fitting with this data set
further. Only the results with MCD model fitting are reported here. V

Since we have the covariates City and Smoking, there is a question of how to include these
variables into the models. For subject 7 (i = 1,...,1020), the cut-off points are z; (j = 1,2,3,4)
for an univariate probit or logit model. A suitable approach for the cut-off points to be functions
of covariates is to let z;; = ajo + a;1 * City; + aj2 * Smokingij. To let the dependence parameters
be functions of covariates is more complicated. Many possibilities are open. A simple approach
is to let the dependence parameters be independent of covariates. This may serve the general
modelling purpose in many situation while keeping the model simple. Besides this simple approach,
partly for illustrative purposes, we also examine the situation where the dependence parameters
depend on the covariate City. For model (1a), the dependence parameters are 6; j; for the subject i,
1 < j <k < 4. There are many ways to include covariates to the dependence parameters 6; ;i, as we
have discussed in section 3.1 for model (1a). For a general dependence structure, we may simply let
0: 51 = [exp(Bjk,0+Bjk,1%City;)—1]/[exp(Bjr,0+B;k,1*City;)+1]. Another two dependence structures
appropriate (suggested by the nature of the study and the initial data analysis) for this data set
are exchangeable and AR(1) type structure with ©; = (6; ;i) for the ith subject. The exchangeable

situation is that 6; ;x = 6; for some |0;| < 1. The AR(1) situation is 6; jx = ng_kl for some |6;] < 1. In
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both situations, we let 8; = [exp(8o + 1 *City;) = 1]/ [exp(By + B1 *City,)+1]. For models (1bi), (1bii),
(1biii), we first let higher order (> 3) parameters 7; jr; and 1; 1234 be constant, say 1. (This is usually
good enough for practical purposes, refer to section 3.1.) We next let the parameters appearing in the
bivariate copulas be functions of covariates. Assume that for model (1bi), the dependence parameters
in the bivariate copulas are ; ;. Since 8; j; are correlation coefficients in bivariate normal copulas,
we let 0; jx = [exp(Bjk,0 + Bjr,1 * City;) — 1])/[exp(Bjr,0 + Bjk,1 * City;) + 1]. For model (1bii),
assume 6; ;s are the parameters in the Plackett copulas; we let 6; jz = exp(Bjx,0 + Bjr,1 * City;).
For model (1biii), assume &; ;is are dependencev parameters in the bivariate Frank copulas; we
let 6; ;5 = exp(Bjr,0 + Bjr,1 * City;). For model (1c), the dependence parameters are 6; and &; ;x
(1 £j <k <4). (Welet the parameter of asymmetry v;; = 0 for all ¢ and j.) 6; represent
a general minimum level of dependence, and §; ;. represent bivariate dependence exceeding the
minimum dependence. For the dependence parameters, we let &; ;x = exp(B;k,0 + Bjx,1 * City;) and
6; = exp(fo) be independent of covariates. For model (1d), the dependence parameters are 6;. We
let 8; = exp(By + f1 * City;). For model (2), the dependence structure is the same as model (1a).

We use “1”

to denote the logit model and “p” to denote the probit model. For the univariate
marginal regressions, at least two situations could be considered: regression coefficients differ across
margins (or times), denoted by “md”; and regression coefficients common across margins (or times),
denoted by “mc”. For the regression of the dependence parameters, for models (1a) and (2), we
consider the general (denoted by “g”), exchangeable (denoted by “¢”) and AR(1) (denoted by “a”)
dependence structures. We also consider the situations with covariate (denoted by “wc”) and with
no covariate (denoted by “wn”) for the dependence parameters. Thus a total of 12 submodels of
model (1a) are considered; they are l.md.g.we,l.md.g.wn,l.md.e.wc,l.md.e.wn,l.md.a.wc, l.md.a.wn,
l.mc.g.we, L me.g.wn, L mc.e.we, L me.e.wn, l.mc.a.we and L.me.a.wn, where for example “l.md.g.wc”
stands for the multivariate logit model with marginal regression coefficients differ across margins and
general dependence structure with covariates. There are also 12 submodels for the model (2): these
are p.md.g.wc, p.md.g.wn, p.md.e.we¢, p.md.e.wn, p.md.a.we, p.md.a.wn, p.mc.g.wc, p.mc.g.wn,
p.mc.e.wc, p.mc.e.wn, p.mc.a.wc and p.mc.a.wn. For models (1bi), (1bii), (1biii), (1c) and (1d), the
AR(1) type latent dependence structure may not be well-defined. In any case, for not repeating
similar analysis, we will only consider possible models within the models (1bi), (1bii), (1vbiii), (1e)
and (1d) with similar structure of models retained by the analysis with models (1a) and (2).

For all the models except (1d), the IFM estimation theory is applied. That is, the univariate (re-

gression) parameters are estimated from separate univariate likelihoods (using the Newton-Raphson
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method), and bivariate and multivariate (regression) parameters are estimated from bivariate like-
lihoods, using a quasi-Newton optimization routine, with univariate parameters fixed as estimated
from the separate univariate likelihoods. Furthermore, for the situation of “mc” for common marginal
regression coefficients and exchangeable (or AR(1) if applicable) dependence structure, WA of (2.93)
in section 2.6 for parameter estimation based on IFM is used. It is also used for estimating the pa-
rameter fp in @ = exp(fy) in the model (1c) since 6 is an overall parameter and common across
all margins. Notice that only one choice of parametric families for ¢ and Kj;’s were used, but it
is expected that other choices could lead to a better fit according to AIC. The model (1d) has a
copula with closed form cdf and there is only one dependence (or regression parameters related to
it) parameter in the model, thus MLE(s) are computed in this situation. Model (1d) here is used
to compare a simple permutation symmetric MCD model with the other models which all allow a
general dependence structure. Model (1c) and (1d) have the advantage of having a copula with
closed form cdf; this is particularly convenient for dealing with multivariate discrete data of high
dimension, as it leads to faster computation in computing probabilities of the form Pr(Y = y) or
Pr(Y = y|x).

For standard errors (SEs) of parameter estimates and prediction probabilities, the jackknife
method from Chapter 2 is used with 255 random groups of 4. Furthermore, the weights used for
WA for common parameter estimation are based on the jackknife SEs, and these weights in turn are
used, based on (2.93), to each step of jackknife parameter estimation.

Summaries of the fits of the models are given in several tables. Table 5.4 contains the esti-
mates and SEs of the regression parameters for the marginal parameters with the logit model when
the regression parameters are considered to be differ and common across the margins. Table 5.5
contains the estimates and SEs of the regression parameters for the dependence parameters under
various settings for the multivariate logit model with multinormal copula (model (1a)). Table 5.6
contains AIC values and X? (calculated based on (5.5) with a = 0) values for all the submodels of
multivariate logit and probit models with multinormal copula (that is models (1a) and (2)). Care
must be taken in the comparison since the AICs here are not calculated from the ML of all pa-
rameters simultaneously, the parameters estimates are IFME. The AIC values and X2 values for
the corresponding submodel of models (1a), (2) are comparable; this echoeé the well-known fact
that the univariate probit and logit models are ‘comparable. We thus only compare the submodels

within the multivariate logit model. From examining the AIC and X? values for the 12 models,

the models l.md.g.wn, L. md.e.wc, l.md.e.wn and l.mc.g.wn seem to stand out as interesting choices.
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Since l.md.e.wc and l.md.e.wn are about the same in terms of AIC and X? values, and l.md.e.wn
is simpler than l.md.e.wc, we only consider l. md.e.wn. At this stage, three models are retained for
further inspection: l.md.g.wn,l.md.e.wn and l.mc.g.wn. Table 5.7 contains AIC values and Table 5.8
contains X? values of submodels l.md.g.wn, l.md.e.wn and l.mc.g.wn of models (1a), (1bi), (1bii),
(1biii), (1c) and (1d). These two tables suggest that the models are comparable in general, with
models (1¢) and (1d) performing relatively poorly; possibly other parametric families of mixture of
max-id copulas would do better. The model (1bi) seems to be the best for this data set. Note that
since there is only one dependence structure with model (1d), the submodel 1.md.g.wn and l.md.e.wn
are equivalent in this case. Table 5.9 contains estimates and SEs of the bivariate dependence pa-
rameters of the submodel l.md.g.wn of models (1bi), (1bii), (1biii) and (1c). This and Table 5.5 also
suggest that the models are comparable; the conclusion about which bivariate margins are more or
less dependent are the same from the models. They show that the dependence for consecutive years
is slightly stronger; this is also observed in Table 5.3 for the initial data analysis. (Note also the
closeness of the dependence parameter estimates with the model (1bii) to the empirical pairwise log
odds ratio in Table 5.3.) For comparison, the estimate of the dependence parameter for model (1d),
with an permutation symmetric copula, is 1.719 with SE equal 0.067. As we have pointed out, the
model (1d) does not perform as well as other models with this data set. This may indicate that,
even though a model with exchangeable dependence structure may be acceptable, a better model is
to have a general dependence structure. All these models are quite similar in term of computer time
for the parameter estimation (because of the IFM approach), but models (1a) and (2) used much
more computer time than the other models to compute AIC, X? and the prediction probabilities
since 4-dimensional integrations were involved. _

For the predicted probabilities and inference, and also as a supplement of X2 values for an
assessment of goodness-of fit, Table 5.10 contains estimates of probabilities of the form Pr(Y = y)
for all possible y from submodels 1. md.g.wn, L. md.e.wn and l.mc.g.wn of the model (1a), Table
5.11 contains estimates of probabilities of the form Pr(Y = y) for all possible y from submodels
l.md.g.wn of models (1a), (1bi), (1bit), (1biii), (1c) and (1d), and these Pr(Y = y) are estimated with
S22 Pr(Y = y|x:)/1020. Table 5.12 contains estimates of probabilities of the form Pr(Y = y|x)
for various y and x from submodels l.md.g.wn,l.md.e.wn and l.mec.g.wn of the model (1a), and Table
5.13 contains estimates of probabilities of the form Pr(Y = y|x) for various y and x from submodels

l.md.g.wn of models (1a), (1bi), (1bii), (1biii), (1c) and (1d). In Table 5.12, the n* is the subset sizes

for the specific value of x and “rel. freq” is the observed relative frequency for the given y under
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that value of x. In Table 5.13, to save space, for each line, only the maximum estimated SE over the
different models is given; actually the SEs are quite close to each other. The selected x and y values
in the Table 5.12 and Table 5.13 are common values in the data set. Tables 5.10 — 5.13 suggest
that the submodels 1.md.g.wn, l.md.e.wn and l.mc.g.wn are all adequate for predictive purposes,
since the prediction probabilities are comparabie when the SEs are taken into account. These three
submodels can be used to complement each other for a slightly different inference purposes. The
large divergences in estimated probabilities occur with the model (1d) and only in the case where the
vector x is at the extreme of the covariate space, for example z = (1,0,0,0,0) and z = (0,0,0,0,0)
for y = (1,1,1,1). There is a simple exchangeable dependence model 1.md.e.wn among the three
submodels 1.md.g.wn,l.md.e.wn and l.mc.g.wn. An explanation for this may be that the dependence
in the bivariate margins are different but not different enough to make a difference in prediction
probabilities. Another possibility may be due to the dominance of the response vector (0,0, 0, 0).
The analysis (e.g. from submodel 1.md.g.wn) indicates a slight decline in the rate of wheeze
over time (the intercepts in Table 5.4 for regression parameters differing across margins decrease
gradually over time from —1.090 to —1.564) and a moderate increase in wheeze for children of
mothers who smoke (the corresponding regression parameters increases over time from 0.144 to
0.444) and for the city with pollution (the corresponding regression parameters increase in time
from 0.003 to 0.209). There is an indication that the excess of maternal smoking and the city with
pollution both increase significantly the probability of the occurrence of wheeze (e.g. from submodel
l.mc.g.wn). This is also consistent with the observation in Ware et al. (1984), where it is believed
that maternal smoking is pfedictive of respiratory illness. If we study the model with covariate
(city) for the dependence (e.g. the submodel l.md.e.wc), we see that high city pollution level has
a negative effect on the correlation; it possibly means that the low level city pollution leads to a
slightly higher correlation on the occurrence of persistent wheeze. We can interpret this as the wheeze
occurrence situation not caused by pollution is more stable over time. The analysis indicates that
the dependence for consecutive years is stronger and the dependence (pairv;/ise) are all signiﬁcanf.
The rate of respiratory disease for children whose mothers smoke heavily is higher than the rate for
children whose mothers do not smoke or only smoke slightly, these can be seen from Table 5.12 (with
1. md.g.wn submodel), where for example for y = (1,1, 1,1), P(y|x(®) = 0.099 > 0.071 = P(y|x®)
where x(®) = (0,1,1,1,1) and x®) = (0,0,0,0,0), and P(y|x() = 0.118 > 0.085 = P(y[x(®)
where x(®) = (1,1,1,1,1) and x(9 = (1,0,0,0,0). Similarly, we also observe that rate of persistent

wheeze for children whose mothers smoke is lower than the rate for children whose mothers do not
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Table 5.1: Six Cities Study: Percentages for binary variables

Variables # 1’s  Percentage

Age 0 266 26.07%
Age 10 256 25.09%
Age 11 241  23.62%
Age 12 217 21.21%
City 512 50.19%

Smoking9 325 31.86%
Smokingl0 313 30.68%
Smokingll 311 30.49%
Smokingl2 309 30.29%

Table 5.2: Six Cities Study: Frequencies of the response vector (Age 9, 10, 11, 12)

Response Observed  Relative

pattern numbers frequency
TTTT 95 0.093
1110 30 0.029
1101 15 0.015
11090 28 0.027
1011 14 0.014
1010 9 0.009
1001 12 0.012
1000 63 0.062
0111 19 0.019
0110 15 0.015
0101 10 0.010
0100 44 0.043
0011 17 0.017
0010 42 0.041
0001 35 0.034
0000 572 0.561

smoke (e.g. for y = (0,0,0,0), P(y|x(¥)) = 0.606 > 0.541 = P(y|x)) where x(*) = (0,0,0,0,0)
and x() = (0,1,1,1,1)). Also similarly, the rate of persistent wheeze for children who reside in
the city with more pollution is higher than the rate for children who reside in the city with less
pollution, e.g., for y = (1,1,1,1), P(y|x®) = 0.118 > 0.099 = P(y]x®) where x(9) = (1,1,1,1,1)
and x®) = (0,1,1,1,1), or P(y|x®) = 0.085 > 0.071 = P(y|x{)) where x® = (1,0,0,0,0) and
x() = (0,0,0,0,0). More detailed comparisons for different situations can be made.

Similar results to the partial interpretations given above are also obtained in the literature on the

analysis of a similar data set from the same study; see for example Fitzmaurice and Laird (1993),

Zeger et al. (1988) and Stram et al. (1988).
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Table 5.3: Six Cities Study: Pairwise log odds ratios for Age 9, 10, 11, 12

Pair odds log odds

Age 9,10 1297 2.6
Age 911 891 219
Age 912 869 216
Age 10,11 13.63 2.6

Age 10,12 1045 235
Age 1112 1483 269

Table 5.4: Six Cities Study: Estimates of marginal regression parameters for multivariate logit model

margin intercept (SE) city (SE) smoking (SE) |

differ across the margins
1 -1.090 (0.113) 0.003 (0.150) 0.144 (0.144
2 -1.229 (0.120)  0.080 (0.148) 0.293 (0.155
3 -1.412 (0.136) 0.311 (0.161) 0.237 (0.166
4 -1.564 (0.123) 0.209 (0.155) 0.444 (0.166
common across the margins
-1.308 (0.061) 0.144 (0.07% 0.270 (0.078)

Table 5.5: Six Cities Study: Estimates of dependence regression parameters for multivariate logit
model with multinormal copula

margin intercept (SE) city (SE) |

general dependence, with covariate
12 2.156 (0.217 -0.373 (0.288
13 1.740 (0.183 -0.178 (0.249
14 1.583 (0.209 0.041 (0.288)
23 2.334 (0.210 -0.628 (0.287
24 1.891 (0.214 -0.294 (0.281
34 2.079 (0.224 -0.109 (0.287
general dependence, without covariate
12 960 (0.143

13 1.645 (0.124

14 1.604 (0.143

23 1.987 (0.143

24 1.733 (0.139

34 2.020 (0.142

exchangeable dependence, with covariate
1.948 (0.085) -0.254 (0.114)

exchangeable dependence, without covariate
1.815 (0.057)
AR(1) dependence, with covariate

2.380 (0.086) -0.258 (0.115)

AR(1) dependence, without covariate
2.236 (0.057)
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Table 5.6: Six Cities Study: Comparisons of AIC values and X? values from various submodels of
models (1a) and (2)

Logit Probit
Models AIC X? | Models AIC b &

[md.gwc 3642.882  7.862 [ p.md.g.wc 3642.810  7.863
lmd.gwn 3637.415 7.992 | p.md.g.wn 3637.347 7.993
l.md.a.we 3659.683 42472 | p.md.a.wc 3659.615 42.480
l.md.a.wn 3660.126 42.329 | p.md.a.wn 3660.063 42.331
lL.md.ewc 3641.662 19.941 | p.md.e.wc 3641.585 19.950
l. md.ewn 3641.637 19.926 | p.md.ewn 3641.561 19.939
lmc.g.we 3646.339 21.031 | p.mc.g.we 3646.396 21.086
l.mc.g.wn 3640.444 21.119 | p.mc.g.wn 3640.499 21.175
lmc.a.we 3661.238 52.281 | p.mc.a.wc 3661.308 52.386
lmc.a.wn 3660.876 51.942 | p.mc.a.wn 3660.938 52.044
lmcewc 3647.731 37.758 | p.mc.e.wc 3647.784 37.839
lmcewn 3646.785 37.687 | p.mc.e.wn 3646.833 37.771

Table 5.7: Six Cities Study: Comparisons of AIC values from various models

Models - (la)  (Ibi) (b))  (ibii)  (lc) (1d)

Imd.g.wn 3637415 3631.991 3634.040 3636.773 3668.0509 3703.763
lLmd.ewn 3641.637 3637.184 3638.884 3642.080 3663.932
lmc.g.wn 3640.444 3633.903 3635.855 3638.423 3674.095 3708.404

Table 5.8: Six Cities Study: Comparisons of X? values from various models

Models (la)  (1bi)  (1bi) (Ibiii) (lc)  (1d)

Imdgwn 7.992 1765  1.795 1.866 31.747 77.157
lLmd.ewn 19926 15.832 15485 16.131 36.315 -
lmecgwn 21.119 13.959 14.249 14.436 50.613 96.223

Table 5.9: Six Cities Study: Estimates (SE) of dependence regression parameters from the submodel
l.md.g.wn of various models

margin (1bi) (1bii) (1biii) (1c)

12 1.960 (0.143) 2.556 (0.173) 1.861 (0.094) 2.715 (0.202
13 1.645 (0.124) 2.183 (0.153) 1.654 (0.090) 2.181 (0.183
14 1.604 (0.143) 2.150 (0.178) 1.638 (0.107) 2.066 (0.179
23 1.987 (0.143) 2.605 (0.173) 1.893 (0.095) 2.621 (0.188
24 1.733 (0.139) 2.316 (0.173) 1.737 (0.101) 2.362 (0.215
34 2.020 (0.142) 2.681 (0.173) 1.953 (0.095) 2.833 (2.996

“log(6) 1.513 (0.051
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Table 5.12: Six Cities Study: Observed frequencies in comparison with estimates of Pr(Y = y|x)
from various models, x =(City, Smoking9, Smoking10, Smokingl1, Smoking12).

: . Lmd.g.wn l.md.e.wn l.me.g.wn
x n* y rel. freq. pred. prob (SE) pred. prob. (SE) pred. prob. (SE)

0,1,1,1,1) 118 (1,1,1,1 0.076 0.099 (0.015 0.099 (0.015 0.101 (0.015
0,1,1,1,1) 118 (1,1,1,0 0.025 0.027 (0.007 0.025 (0.006 0.024 (0.004
0,1,1,1,1) 118 (1,1,0,0 0.025 0.035 (0.008 0.026 (0.006 0.025 (0.003
0,1,1,1,1) 118 (1,0,0,0 0.059 0.054 (0.011 0.049 (0.009) 0.046 (0.005
0,1,1,1,1) 118 (0,0,0,0 0.534 0.541 (0.030 0.541 (0.030 0.542 (0.030
0.0.000) 344 (L11.1)| 0087  0.071(0.010 0.070 (0.010 0.074 (0.011
0,0,0,0,0) 344 (1,1,1,0 0.035 0.028 (0.005 0.027 (0.004 0.020 (0.003
0,0,0,0,0) 344 (1,1,0,0 0.026 0.035 (0.006 0.027 (0.004 0.022 (0.003
0,0,0,0,0) 344 (1,0,0,0 0.076 0.063 (0.009 0.058 (0.008 0.043 (0.004
0,0,0,0,0) 344 (0,0,0,0 0.608 - 0.606 (0.023 0.606 (0.023 0.609 (0.023
1,1,1,1,1y 131 (1,1,1,1 0.145 0.118 (0.015 0.118 (0.015 0.118 (0.015
1,1,1,1,1) 131 (1,1,1,0 0.015 0.028 (0.007 0.026 (0.006 0.027 (0.004
1,1,1,1,1) 131 (1,1,0,0 0.046 0.026 (0.006 0.019 (0.005 0.027 (0.003
1,1,1,1,1) 131 (1,0,0,0 0.076 0.043 (0.009 0.037 (0.008 0.047 (0.005
1,1,1,1,1) 131 (0,0,0,0 0.397 0.505 (0.028 0.504 (0.028 0.505 (0.028
1,0,0,0,0) 306 (1,1,1,1 0.085 0.085 (0.011 0.085 (0.011 0.087 (0.012
1,0,0,0,0) 306 (1,1,1,0 0.023 0.031 (0.006 0.028 (0.004 0.022 (0.003
1,0,0,0,0) 306 (1,1,0,0 0.016 0.027 (0.005 0.020 (0.004 0.024 (0.003
1,0,0,0,0) 306 (1,0,0,0 0.049 0.052 (0.009 0.046 (0.007 0.045 (0.004
1,0,0,0,0) 306 (0,0,0,0 0.592 0.574 (0.023 0.573 (0.023 0.574 (0.023
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Table 5.13: Six Cities Study: Estimates of Pr(Y = y|x) from the submodel 1.md.g.wn of various
models, x =(City, Smoking9, Smoking10, Smoking11, Smoking12).

rob. maxSE
x rel. freq. y (1a) (1bi) (1bii) (1bii) (lc) (1d)
0,1,1,1,1 0.076 1,1,1,1) [ 0.099 0.104 0.105 0.106 0.099 0.076 0.017
0,1,1,1,1 0.025 1,1,1,0) | 0.027 0.025 0.025 0.024 0.024 0.035 0.010
0,1,1,1,1 0.025 1,1,0,0) { 0.035 0.033 0.033 0.033 0.033 0.028 0.011
0,1,1,1,1 0.059 1,0,0,0) | 0.054 0.059 0.058 0.058 0.043 0.037 0.011
0,1,1,1,1 0.534 0,0,0,0) | 0.541 0.533 0.535 0.537 0.549 0.557 0.030
0,0,0,0,0 0.087 1,1,1,1) 1 0.071 0.076 0.074 0.071 0.070 0.046 0.012
0,0,0,0,0 0.035 1,1,1,0) | 0.028 0.027 0.027 0.028 0.025 0.035 0.008
0,0,0,0,0 0.026 1,1,0,0) | 0.035 0.033 0.034 0.034 0.034 0.032 0.007
0,0,0,0,0 0.076 1,0,0,0) | 0.063 0.068 0.069 0.068 0.054 0.048 0.009
0,0,0,0,0 0.608 0,0,0,0) | 0.606 0.598 0.595 0.591 0.608 0.611 0.023
1,1,11,1 0.145 1,1,1,1) | 0.118 0.121 0.125 0.128 0.118 0.097 0.017
L,1,1111 0.015 1,1,1,0) | 0.028 0.027 0.026 0.025 0.025 0.035 0.009
1,1,1,11 0.046 1,1,0,0) | 0.026 0.024 0.024 0.024 0.024 0.020 0.011
1,1,1,1,1 0.076 1,0,0,0) | 0.043 0.048 0.047 0.047 0.032 0.026 0.009
1,1,11,1 0.397 0,0,0,0) | 0.505 0.498 0.503 0.507 0.515 0.525 0.028
1,0,0,0,0 0.085 1,1,1,1) | 0.085 0.090 0.090 0.089 0.085 0.061 0.012
1,0,0,0,0 0.023 1,1,1,0) | 0.031 0.029 0.030 0.030 0.027 0.037 0.007
1,0,0,0,0 0.016 1,1,0,0) | 0.027 0.025 0.025 0.025 0.027 0.023 0.007
1,0,0,0,0 0.049 1,0,0,0) | 0.052 0.057 0.057 0.058 0.042 0.036 0.009
1,0,0,0,0 0.592 0,0,0,0) | 0.574 0.566 0.566 0.564 0.578 0.584 0.024
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5.2.2 Example with multivariate/longitudinal ordinal response data

In this subsection, several models for multivariate ordinal response data are applied to a longitudinal
data set from Fienberg et al. (1985) and Conaway (1989) from a study on the psychological effects
of the accident at the Three Mile Island (TMI) nuclear power plant in 1979.

The study focuses on the changes in levels of stress of mothers of young children living within
10 miles of the plant. Four waves of interviews were conducted in 1979, 1980, 1981, 1982, and the
levels of stress (categorized as low, medium, or high from a composite score of 90-item checklist)
of 268 mothers at each time point are measured. Hence stress is treated as an ordinal response
variables with three categories, now labelled as 1 for low, 2 for medium, and 3 for high (levels of
stress). Respondents were stratified into two groups, those living within 5 miles (labelled as 0) of
the plant and those living between 5 and 10 miles (labelled as 1) froﬁl the plant. Let we call this
variable “Distance”. Some of the potential issues of interest are: (1) to compare the groups with
respect to the changes in stress levels over time; (2) to assess the degree of stress associated with
the accident.

The response vectors are 4-dimensional ordinal categorical measures with three levels. There are
81 possible four-tuples of the form (1,1,1,1) to (3,3,3,3). Table 5.14 lists the frequencies of the four-
tuples by group (based on distance); only the 35 four-tuples with non-zero frequency in at least one
the groups are listed. The variable ID is used to identify the non-zero frequency response patterns
in the table. There are 115 mothers in the group within 5 miles of the plant and 153 in the group
exceeding 5 miles. The table shows that there is only one subject (ID= 11) with a big change in
the stress level (3 to 1 and 1 to 3) from one year to another. 42% of the subjects are categorized
into the same stress level (ID= 1,19, 35) in all four years; 80.5% of these subjects are in the medium
stress category (ID= 19). The frequencies by univariate margin (year) are given in Table 5.15. The
medium stress category predominates and there is a higher relative frequency of subjects in the high
stress category for the group within 5 miles of the plant. From Table 5.15, there are not big changes
over time, but there is slight trend towards lower stress level for the group exceeding 5 miles. Table
5.16 has the pairwise gamma measures (5.1) for the response variables, for the group within 5 miles,
the group exceeding 5 miles and also ignoring the covariate “Distance”; this gives a more detailed
indication of the dependence in the response variables than Table 5.14. Table 5.16 indicates the
dependence for consecutive years are larger, and all the gamma measures are larger for the group

within 5 miles of the plant.

Multivariate ordinal response models that were used to model the data are:




Chapter 5. Modelling, data analysis and examples 195

1. The multivariate logit model from section 3.5, with

a. multinormal copula (3.1},
b. multivariate Molenberghs-Lesaffre construction
1. with bivariate normal copula,
ii. with Plackett copula (2.8),
ill. with Frank copula (2.9),
¢. mixture of max-id copula (3.3),

d. the permutation symmetric copula (3.8).
2. The multivariate probit model with multinormal copula.

In this data set, the single dichotomous covariate “Distance” can be considered as margin-
independent (or time-independent). For subject ¢ (i = 1,...,268), the cut-off points are —oco =
z5(0) < z;5(1) < 25(2) € z5(3) = 00 (j = 1,2, 3,4), where 2;;(1) and 2;;(2) need to be modelled and
estimated. A suitable approach to let the cut-off points 2;;(1) and 2;;(2) be functions of covariates
(see section 3.5) is to let z;;(1) = v;(1) + a;* Distance and z;;(2) = 7;(2) + «; * Distance. The ways
for the dependence parameters be functions of covariates are similar to that of multivariate binary
response ex‘a.mples in subsection 5.2.1. The simplest approach is to let the dependence parameters be
independent of covariates. The various situations for the dependence parameters depending on the
covariate are the following. We here only list the models, for details please refer to subsection 5.2.1.
For model (1a), let 8; ;5 = {exp(Bjk,0+ Bjr,1 * Distance;) — 1}/[exp(ﬂjk;0 + Bjk,1 * Distance;) + 1] for a
general dependence structure and 6; = [exp(fo + B * Distance;) — 1] /[exp(Bo + B1 * Distance; ) + 1] for
exchangeable and AR(1) dependence structure. For models (1bi), (1bii), (1biii), we first let higher
order (> 3) parameters é; ;x; and 8; 1234 be 1 (see explanation in the example in subsection 5.2.1). We
then let 6; ;1 = [exp(Bjk,0 + Bjr,1 * Distance;) — 1]/[exp(B;r,0+ Bjk,1 * Distance;) + 1] for model (1bi),
8; jx = exp(Bjr,0 + Bjr,1 * Distance;) for model (1bii), and for model (1biii). For model (1c), we let
b1 = exp(Bjk,0 + Bjk,1 * Distance;) and 6; = exp(fy) be independent of covariate. (The parameter
of asymmetry v; ; is set to 0 for all ¢ and j.) Again, notice that only one choice of parametric families
for ¢ and Kj;’s were used, but it is expected that other choices could lead to a better fit according
to AIC. For model (1d), the dependence parameters are 6; and let 6; = exp(8y + (1 * Distance;). For
model (2), the dependence structure is the same as model (1a).

As for the example in subsection 5.2.1, we study 12 submodels for the model (1a). They are:

L.md.g.we, L. md.g.wn, l.md.e.we, L. md.e.wn, l.md.a.we, l.md.a.wn, L.mc.g.w¢, L.me.g.wn, l.mc.e.we,
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l.mc.e.wn, l.mc.a.wec and l.mc.a.wn. The 12 submodels for the model (2) are: p.md.g.wc, p.md.g.wn,

p-md.e.wc, p.md.e.wn, p.md.a.wc, p.md.a.wn, p.mc.g.wc, p.mc.g.wn, p.mc.e.wc, p.Imc.e.win, p.mc.a.wc
and p.mc.a.wn. For models (1bi), (1bii), (1biii), (1c) and (1d), the AR(1) type latent dependence

structure may not be well-defined. In any case, to avoid repeating similar analysis, we will only

consider possible models within the models (1bi), (1bii), (1biii), (1c) and (1d) with similar structure

of models retained by the analysis with models (1a) and (2).

For all the models except (1d), the IFM estimation theory is applied. That is, the univariate
(regression) parameters are estimated from separate univariate likelihoods, and bivariate and multi-
variate (regression) parameters are estimated from biyariate likelihoods, with univariate parameters
fixed as estimated from the separate univariate likelihoods. For “mc” models involving common
marginal regression coefficients and exchangeable (or AR(1) if applicable) dependence structure,
WA of (2.93) in section 2.6 for parameter estimation based on IFM is used, and it is also used for
estimating the parameter By in # = exp(fy) in the model (1¢). MLEs are computed in the model
(1d). For standard errors (SEs) of parameter estimates and prediction probabilities, the (delete-
one) jackknife method from Chapter 2 is used. These are all similar to the use of these models in
subsection 5.2.1.

Summaries of the model fits are given in several tables. Table 5.17 contains the estimates and SEs
of the regression parameters for the univariate parameters with the logit model when the regression
parameters are considered to be different and common across the univariate margins. Table 5.18
contains the estimates and SEs of the regression parameters for the dependence parameters under
various settings for the multivariate logit model with multinormal copula (the model (1a)). Table
5.19 contains AIC values and X(ZZ) (calculated based on (5.5) with @ = 2) values for all the submodels
of multivariate logit and probit models with multinormal copula (that is, models (1a) and (2)). The
AIC values and X (20) (not only a = 2, but for all a) values for the corresponding submodel of models
(1a), (2) are comparable, similar to what we have observed for the models examples in subsection
5.2.1. We thus only compare the submodels within the multivariate logit model. From examining
the AIC values and X(22) values for the 12 models, the models 1.md.g.wn, l.md.a.wc seem to stand
out as interesting choices, with l.md.a.wc appearing to be the better one. Since there is no equivalent
way to express the AR(1) structure with the models (1bii), (1biii), (1¢) and (1d), for the comparison
study, we focus on the submodel l. md.g.wn. Table 5.20 contains AIC values and X(zz) values of

submodel I.md.g.wn of models (1a), (1bii), (1biii), (1c) and (1d). The AIC value and X(zz) value are

not available for (1bi) model, since the dependence parameter estimates obtained from IFM deviate
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slightly from forming a compatible set of dependence parameters for a prober Molenberghs-Lesaffre
construction multivariate object evaluation. Based on the available AIC values and X(zz) values,
Table 5.20 suggests that the models (1a), (1bii), (1biii) are comparable in general, with models (1c)
and (1d) fitting relatively poorly. Table 5.21 cor-ltains estimates and SEs of the bivariate dependence
parameters of the submodel 1. md.g.wn of models (1bi), (1bii), (1biii) and (1¢). This and Table
5.20 also suggest that the models (1a), (1bi), (1bii), (1biii) are comparable.. The conclusion about
which bivariate margins are more dependent or less dependent are the same from models (1a), (1bi),
(1bii), (1biii). They show that the dependence for consecutive years are slightly stronger; this is
consistent with the gammae rneaéures in Table 5.16 for the initial data analysis. The dependence
parameter estimates for model (1c) reveal that this model leads to a domination of dependence
by the overall dependence (logé = 1.808 with SE=0.073), which is close to assume a permutation
symmetric copula. For comparison, for the model (1d) with a permutation symmetric copula, the
dependence parameter estimate is logé = 1.700 with SE= 0.111. From the above comparisons, it
seems that the model (1a) is an adequate and better model for this data set. Thus in the following,
we will concentrate on comparing the two submodels l.md.g.wn, 1. md.a.wc of model (1a).

Table 5.19 suggests that the submodel l.md.a.wc. is a better model than the submodel l.md.g.wn;
it also indicates that there is a justifiable AR(1) latent dependence structure, which describes the
data set better than a general or exchangeable dependence structure. The exchangeable dependence
structure assumption would be the least acceptable hypothesis. To compare the submodel 1.md.a.wc
and l.md.g.wn, Table 5.22 lists the values of X(za) for different values of a (a = 1,2,...,10). This
table reveals that the submodel l.md.a.wc fits the response vectors with higher frequency (> 5)
better, while the submodel 1.md.g.wn fits the response vectors with lower frequency (< 4) better. In
other words, neither submodel is clearly better. Different models capture the data set equally well
in certain way; and they may be together useful to reveal the features of the data set and lead to
some useful interpretations.

As a complement to the X? values for assessment of goodness-of fit, Table 5.23 contains estimates
of probabilities of the form Pr(Y = y) for all possible y and the corresponding frequencies from
the submodels 1. md.g.wn and 1.md.a.wc of model (1a), and these Pr(Y = y) are estimated with
Z?ﬁj Pr(Y = yle;)/268. Table 5.24 con‘tains estimates of frequencies and probabilities of the form
Pr(Y = y|z) for various y at « = 1 (distance bigger than 5 miles) and at z = 0 (distance less

than 5 miles) from submodels 1.md.g.wn and l.md.a.wc of the model (1a). In Table 5.24, to save

space, for each line, only the maximum estimated SE over models is given; actually the SEs are
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quite close to each other. Table 5.23 and Table 5.24 suggest that the submodels l.md.g.wn and
l.md.a.wc are both adequate for predictive purposes, since the prediction probabilities are comparable
when the SEs are considered. These two submodels can be used to complement each other for
slightly different inference purposes. The largest divergence in estimated probabilities with observed
frequency occurs when ¢ = 1 for y = (1,1,1,1). The submodel . md.a.wc, with a AR(1) latent
dependence structure with dependence parameters depend significantly on the covariate, indicates
that not only the dependence for consecutive years are larger significantly, but the strength of
dependences also differ for those who live within 5 miles from those who live between 5 and 10 .rniles
of the plant.

The analysis (e.g. from submodels l.md.g.wn as well as l.md.a.wc) indicates that, comparing
the stress levels of the mothers living less 5 miles from the plant, there is a slight trend over time
towards lower stress level for mothers living between 5 and 10 miles from the plant. There are no
large changes of stress levels over time, but the stress levels of mothers living between 5 and 10
miles from the plant are a bit higher in the first year following the accident; they decrease in the
second year and remain stable over the subsequent years. If we study the model with covariate
(distance) for the dependence (e.g. the submodel l.md.a.wc), we see that living far from the plant
has a negative effect on the dependence; it indicates that the dependence parameters are larger for
.those who live within 5 miles from the plant. This means that the mothers living within 5 miles
from the plant are in probability more consistent over time in the original 90-item checklist; there
could be a number of reasons for this. We can interpret this as the stress symptoms caused by
the accident being more persistent over time for the group living closer to the plant. The analysis
indicates that the dependence for consecutive years are larger and the dependence (pairwise) are
all significant. The rate of a persistent high stress level is higher for mothers living closer to the
plant. This can be seen from Table 5.24 (e.g. with l.md.a.wc submodel), where for example for
y = (3,3,3,3), P(y|Je = 0) = 0.076 > 0.037 = P(ylz = 1). The rate for a persistent medium stress
level (y = (2,2,2,2)) is slightly higher for the group living closer to the plant, while the rates of
persistent low stress level (y = (1,1, 1, 1)) is comparable for the two groups.

Similar results to the partial interpretations given above are also obtained in Fienberg et al.
(1985) and Conaway (1989). They conclude that mothers within the five mile radius were in fact ex-

periencing greater stress symptom than mothers living between 5 to 10 miles away; this is consistent

with our observations.
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Table 5.14: TMI Accident Study: Stress levels for 4 years following accident at TMI. Responses

with non zero frequencies.

Distance )
<5mi. >5mi
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ID
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Table 5.15: TMI Accident Study: Univariate marginal (and relative) frequencies.

margin
Outcomes 1979 1980 1981 1982
< b ml.
3 32 (0.278 24 (0.209 29 (0.252 27 (0.235
2 69 (0.600 73 (0.635 72 (0.626 70 (0.609
1 14 (0.122 18 (0.157 14 (0.122 18 (0.157
> b mi.
3 34 (0.222 25 (0.163 19 (0.124 20 (0.131
2 110 (0.719 93 (0.608 117 (0.765 110 (0.719
1 9 (0.059 35 (0.229 17 (0.111 23 (0.150
all
3 66 (0.246 49 (0.183 48 (0.179 47 (0.175
2 179 (0.668) 166 (0.619 189 (0.705 180 (0.672
1 23 (0.086 53 (0.198 31 (0.116 41 (0.153

Table 5.16: TMI Accident Study: Pairwise gamma measures for Year 1979, 1980, 1981, 1982

Pair < 5 mi. > 5 mi. all
1979, 1980 0.894 0.829 0.852
1979, 1981 0.831 0.635 0.758
1979, 1982 0.782 0.595 0.702
1980, 1981 0.907 0.882 0.887
1980, 1982 0.756 0.638 0.700
1981, 1982 0.924 0.738 0.851

Table 5.17: TMI Accident Study: Estimates of univariate marginal regression parameters for mul-

tivariate logit models

margin  7;(1) (SE) 7j(2) (SE)  distance (SE) |

differ across the margins

1 -2.376 (0.304) 1.109 (0.227) 0.017 (0.272

2 -1.629 (0.215) 1.291 (0.203) 0.384 (0.250

3 -2.349 (0.299) 1.250 (0.234) 0.497 (0.287

4 -1.938 (0.263) 1.343 (0.232) 0.368 (0.273
common across the margins

|1.984 (0.131) 1950 (0119} 0.315 (0.135)
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Table 5.18: TMI Accident Study: Estimates of dependence regression parameters for multivariate
logit model with multinormal copula

margin intercept (SE) distance (SE) |

general dependence, with covariate

1.960 (0.289 -0.240 (0.422
13 1.594 (0.250 -0.470 (0.391
14 1.430 (0.304 -0.386 (0.414
23 2.079 (0.310 -0.092 (0.424
24 1.428 (0.321 -0.271 (0.425
34 2.358 (0.363 -0.960 (0.505
general dependence, without covariate
12 1.824 (0.212

13 1.356 (0.192
14 1.243 (0.195
23 2.032 (0.219
24 1.277 (0.205
34 1.779 (0.273
exchangeable dependence, with covariate
1.772 (0.123) -0.377 (0.174) , |
exchangeable dependence, without covariate
1.546 (0.086)
AR(1) dependence, with covariate
2.208 (0.124) -0.385 (0.178)
AR(1) dependence, without covariate
2.008 (0.088)

Table 5.19: TMI Accident Study: Comparisons of AIC values and X (22) values from various submodels
of models (1a) and (2)

Logit Probit

Models AIC X (22) Models AIC X (22)
I md.gwe 1542.443  28.0I8 [ p.md.g.we 1542.788  27.975
lmd.gwn 1537.235 29.786 | p.md.g.wn 1537.499  29.600
lmd.eewe 1549.740 98.795 | p.md.e.wc 1549.977 97.138
lLmd.ewn 1550.219 117.144 | p.md.e.wn 1550.403 115.501
lmd.a.we 1534.116  26.547 | p.md.a.wc 1534.388  26.594
l.md.a.wn 1535942  28.551 | p.md.a.wn 1536.168  28.479
lmc.g.we 1568.305 83.795 | p.mc.gwe 1568.351  85.011
lme.gwn 1563.332 86.916 | p.mc.g.wn 1563.416  88.284
lmc.ewe 1568.103 197.711 | p.mc.e.wc  1568.324 204.103
lmcewn 1570.950 217.573 | p.mc.e.wn 1571.111 226.992
lmc.a.we 1557.114  77.743 | p.mc.a.wc 1557.288  78.831
l.mc.awn 1562.229 80.869 | p.mc.a.wn 1562.378  81.990
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Table 5.20: TMI Accident Study: Comparisons of AIC values and X(zz) values from the submodel
l.md.g.wn of various models

Models AIC X(22)
1a) 1537.235 29.786
1b9) . -
lbii) 1540.846  23.485
lbiil) 1542.312 33.303
1c) 1566.475 970.756
1d) 1553.640 422.000

Table 5.21: TMI Accident Study: Estimates (SE) of dependence regression parameters from the
submodel 1. md.g.wn of various models

margin (1bi) (1bii) (1biii) (Lc)

12 1.824 (0.212) 2.697 (0.289) 1.960 (0.158) -8.250 (0.172
13 1.356 (0.192) 2.035 (0.262) 1.628 (0.171) -8.996 (0.010
14 1.243 (0.195) 1.928 (0.273) 1.485 (0.184) -8.397 (0.001
23 2.032 (0.219) 2.857 (0.289) 2.122 (0.150) -7.495 (0.202
24 1.277 (0.205) 2.014 (0.271) 1.495 (0.185) 0.927 (1.910
34 1.779 (0.273) 2.710 (0.290) 1.978 (0.190 1.084 (1.827
log(8) 1.808 (0.073

Table 5.22: TMI Accident Study: Comparisons of X(Za) values from the submodels 1. md.g.wn and
l.md.a.wc of model (1a)

l.md.g.wn l.rnd.za.wc
a X Xia
T 623.507 4390.084
2 29.786 26.547
3 15.809 16.243
4 10.339 11.766
5 9.086 7.453
6 8.217 7.240
7 7.583 6.798
8 4.625 3.575
9 2.983 2.481
10 2.467 2.310
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Table 5.23: TMI Accident Study: Estimates of Pr(Y = y) and frequencies from the submodels

l.md.g.wn and 1.md.a.wc of model (1a)
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Table 5.24: TMI Accident Study: Estimates of Pr(Y = y|z) and frequencies from the submodels
Response
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5.2.3 Example with multivariate count response data

In this subsection, several modelg are applied to a data set of trivariate counts of pathogenic bacteria
at 50 different sterile locations measured by three different air samplers. Aitchison and Ho (1989)
studied this data set. One of the objectives of the study is to investigate the relative effectiveness
of three different air samplers to detect pathogenic bacteria.

The response vectors are 3-dimensional count measures. Table 5.25 lists the count measures of
the three samplers from the 50 locations. The table shows that there are no duplicate trivariate
response observations. The frequencies by univariate margin (or by sampler) given in Table 5.26
indicate that sampler 3 is more variable than sampler 1 and 2. The pairwise gamma measures in
Table 5.27 indicate that the samplers 1 and 3 and the samplers 2 and 3 are negatively associated.
Summary statistics (means, variance, quartiles, maximum, minimum and pairwise correlations) are
given in Table 5.28. This initial data analysis indicates that there is some extra-Poisson variation
as the variance to mean ratio for the margins (or sampler) range from 2 to 5, with the sampler 3
more variable than the other two samplers.

This initial data analysis suggests that the MCD models with Poisson variation may not be
suitable, but for illustrative purposes, we applied the multivariate count model with Poisson variation
as well as multivariate count model with extra Poisson variation. The multivariate count response

models that were used to model this trivariate count data are:
1. The multivariate Poisson model with multinormal copula (3.1).
2. The multivariate Poisson-lognormal model in section 3.6.

This data set has no covariates, we thus directly estimate the parameters in the multivariate
Poisson model with multinormal copula (see section 3.3) and the multivariate Poisson-lognormal
model (see section 3.6). The multivariate Poisson model has Poisson marginals. The univariate
parameter A; (j = 1,2,3) in the multivariate Poisson model is reparameterized by taking log-
transformation, 7; = log(};), such that the new parameter 7; has the range (—oo, o). For the
dependence parameters 0;; in the multinormal copula, we let 6;; = [exp(Bjx) — 1]/[exp(B;x) + 1]
such that B;; has the range (—00,00). We proceed to estimate n; and Bj5. For the multivariate
Poisson-lognormal model, the marginal parameters are g = (py, pi2, p3) and & = (o1, 09,03). The
dependence parameters are 6;; which are similar to those of the multivariate Poisson model with

multinormal copula.

For the univariate marginal parameters, at least two situations could be considered: parameters
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differ across margins, denoted by “md”, and parameters common across margins, denoted by “mc”.
For the dependence parameters, for both models (1) and (2), we consider the general (denoted by

73R
€

“g”) and exchangeable (denoted by “e”) dependence structures. Thus 4 submodels for both model
(1) and (2) are considered: md.g, md.e, mec.g, mc.e.

For all the models, the IFM estimation theory is applied. That is, the univariate (regression)
parameters are estimated from separate univariate likelihoods, and bivariate and multivariate (re-
gression) parameters are estimated from bivariate likelihoods, with univariate parameters fixed as
estimated from the separate univariate likelihoods. For the situation of “mc” for common marginal
parameters and exchangeable dependence structure, WA of (2.93) in section 2.6 for parameter es-
timation based on IFM is used. For standard errors (SEs) of parameter estimates and prediction
probabilities, the (delete-one) jackknife method from Chapter 2 is used. These are all similar to the
use of these models in subsection 5.2.1 and 5.2.2.

Summaries of the modelling are given in several tables. Table 5.29 contains the estimates and
SEs of the regression parameters for the margi‘nal parameters with the multivariate Poisson model.
Table 5.30 contains the estimates and SEs of the dependence parameters for multivariate Poisson
model with multinormal copula. Table 5.31 contains AIC values for all the submodels of multivariate
Poisson models multinormal copula. The X(za) for a > 2 are not available since all the 3-tuples in
the data set have frequency 1. X (21) is very large since many estimated probabilities for the 3-tuples
of frequency 1 are very close to zero. In this situation, because of the frequency 1 occurrence for all
3-tuples, the X2 measure as well as the estimated probabilities of the form Pr(Y = y) may not be
suitable measures for a rough assessment of the goodness-of-fit. Instead, residual measures such as
(5.6) should be considered if feasible. Other rough goodness-of-fit checks may consist of comparing
some empirical statistics (means, variances, correlations, etc.) with the counterparts estimated from
the fitted model. The latter approach would rule out all submodels of model (1) for the goodness-
of-fit of this data set, since the extra-Poisson variation demonstrated by the empirical statistics are
not matched by the model (1). For the residual checking based on (5.6), we give an illustration
here with the submodel md.g. We first compute &3 = yi3 — E[Yis|Yi1 = vi1,Yiz = yiz,:\], where
E[Yis|Yi1 = wi1, Yiz = vi2, Al = oy ¥ * P(yin%i29)/ P(yiri2). We then plot &3 versus y;; and &3
versus y; for all i = 1,...,50. The model would be considered as adequate based on residual plots
if the residuals are small and do not exhibit systematic patterns. The two plots in Figure 5.1 do not

show evident systematic patterns (except for a few outliers), but almost all the residuals are quite

large judging from the observed values of y;3; it indicates that the models do not fit the data well
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Figure 5.1: Bacteria Counts: Residuals from the submodel md.g of model (1).

enough. This is expected since the multivariate Poisson models only fit data with Poisson variation.

Next we consider fitting the multivariate Poisson—lognorrilal model to the data. From IFM estima-
tion theory, we first estimate the univariate marginal parameters p = (u1, p2, p3) and 6 = (o1, 02, 03)
from separate univariate likelihoods, and then the dependence parameters from bivariate likelihoods,
with univariate parameters fixed as estimated from the separate univariafe likelihoods. For the mul-
tivariate Poisson-lognormal model, several hypotheses are possible: u; = u, o; = o, 01 = 0; p;
margin-dependent; or plus o; margin-dependent; or plus 6, margin-dependent, etc.. Similarly to the
model (1), we consider the four submodels, md.g, md.e, mec.g and mc.e of the multivariate Poisson-
lognormal model. For standard errors (SEs) of parameter estimates and prediction probabilities, the
(delete-one) jackknife method from Chapter 2 is used.

Summaries of the model fits with the multivariate Poisson-lognormal model are given in several
tables. Table 5.32 contains the estimates and SEs of the marginal parameters g = (p1, p2, #3) and
o = (01,02,03). Table 5.33 contains the estimates and SEs of the dependence parameters 61, 813 and
0,3. Table 5.34 contains AIC values for all the submodels of multivariate Poisson-lognormal model.
From examining the AIC values for the 4 submodels, the models md.g and md.e seem to be better
choices. For a rough assessment of the goodness-of-fit, Table 5.35 contains the estimated means,
variances and correlations based on the fitted model md.g; they are quite close to the empirical means,

variances, correlations in Table 5.28. This implies that the multivariate Poisson-lognormal model

may be considered as a more appropriate model for this data set. To further check the goodness-of-fit
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Figure 5.2: Bacteria Counts: Residuals from the submodel md.g of trivariate Poisson lognormal
model.

of the fitted model, we compute residual measures of the form €;3 = y;3—E[Yi3|Yi1 = vi1, Yiz = vio, :\],
where E[V3|Yi1 = yi1, Yiz = yin, A] = Y1 ¥* P(Yi1i2y)/ P(yi1yiz). We then plot &3 versus y;; and
€i3 versus y;p for all ¢ = 1,...,50. The two plots in Figure 5.2 are residual plots from the submodel
md.g; they do not show evident systematic patterns except for a few outliers. The magnitude
of the residuals are smaller than those obtained with the multivariate Poisson models. In these
circumstances, we would further study the fitted trivariate Poisson-lognormal submodels md.g and
md.e.

The analysis (e.g. from submodels md.g as well as md.e) indicates that sampler 3 tend to
be negatively correlated with sampler 2 and sampler 1 (based on the submodel md.g), and with
significantly negative correlation if we based our interpretation on the submodel md.e. The samplers
appear to have been competing in some way for the capture of bacteria; this competing behaviour is
particular evident when we compare sampler 3 with sampler 2 or sampler 1. It would be interesting
to see if there is any practical reason explaining this observation. From the estimates, sampler 2
seems to be the most effective sampler, and sampler 1 the least. Similar results are also obtained in

Aitchison and Ho (1989). For a particular model with the assumption of equal ¢ (that is 01 = 03 =

03 = o) and exchangeable correlation, the estimates in Aitchison and Ho (1989) are i; = 1.39 (0.11),
frz = 1.75 (0.10), 2z = 1.70 (0.10), & = 0.56 (0.05), and §=-0.28 (0.10) which are quite close to our
estimates (based on the IFM approach) fi; = 1.388 (0.098), fio = 1.784 (0.098), fiz = 1.660 (0.120),
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Table 5.25: Bacteria Counts: Bacterial counts by 3 samplers in 50 sterile locations
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Table 5.26: Bacteria Counts: Univariate marginal frequencies

margin

I count T 23 456 7 89 14 22
freq. 6 99833441 2 1

2 count 0 1 2345678 9 1013 14 15
freg. 135351845 7 3 2 2 1

3 count 01 23456 7 8 10 11 12 14 15 25 30
freq. 3256358433 1 2 2 1 1 1

& = 0.523 (0.062), and 6 = —0.347 (0.133).
The IFM approach should be considered as a l‘;ettér' épproach than ML approach with this data
~set since the sample size is small and all 3-tuple responses have a frequency of 1. It is better not only
in the sense of efficiency, but in the sense that the IFM approach may lead to more reliable estimates.
The ML approach may be severely affected by the small sample size and thus lower frequencies of
response outcome. In contrast, the inference from IFM approach should be more reliable, since IFM
estimation method is robust marginally, thus the estimated parameters are still able to capture the

general feature of the data even the full response frequencies are low.

Table 5.27: Bacteria Counts: Pairwise gemma measures for samplers 1, 2, 3

“Pair  gamma

1,7) 0038
1,3) -0.125
2,3)  -0.261
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Table 5.28: Bacteria Counts: Moment estimate of means, variances, correlations and other summary
statistics of responses

margin [ mean varlance min QI med Q3 max [ margin | correlation
T 4.7 15.07 1 2 4 [} 22 1,2 0.0192
2 6.5 13.64 0 4 6 9 15 1,3 -0.1666
3 6.6 32.61 0 3 6 8 30 2,3 -0.3667

Table 5.29: Bacteria Counts: Estimates of marginal parameters for multivariate Poisson model

margin n; (SE)
differ across the margins
1 1.469 (0.101
2 1.872 (0.081
3 1.746 (0.097
common across the margins
1.723 (0.053

Table 5.30: Bacteria Counts: Estimates of dependence regression parameters for multivariate Poisson
model with multinormal copula

margin . Bik (SE)

general dependence
12 0.009 (1.114)
13 -0.153 51.336%
23 -0.334 (0.207
exchangeable dependence

-0.319 (0.201)

Table 5.31: Bacteria Counts: Comparisons of AIC values from various submodels of multivariate
Poisson model with multinormal copula

Models AIC

md.g 787.924
md.e 785.600
mc.g 806.351
mc.e 801.657
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Table 5.32: Bacteria Counts: Estimates of marginal parameters from multivariate Poisson-lognormal
model

margin it (SE) a (SE)
differ across the margins

1 1.388 (0.098) 0.551 (0.122
2 1.784 (0.098) 0.425 (0.090
3 1.660 (0.120) 0.672 (0.121

common across the margins

1.604 (0.060) 0.523 (0.062)

Table 5.33: Bacteria Counts: Estimates of dependence parameters from multivariate Poisson-
lognormal model

margin f;r (SE)

general dependence
12 0.059 (0.315)
13 -0.260 §0.208§
23 -0.605 (0.206
exchangeable dependence
-0.347 (0.133)

Table 5.34: Bacteria Counts: Comparisons of AIC values from various submodels of multivariate
Poisson-lognormal model

Models AIC

md.g 813.898
md.e 813.546
me.g 818.575
mc.e 815.568

Table 5.35: Bacteria Counts: Estimates of means, variances and correlations of responses from the
submodel md.g of multivariate Poisson-lognormal model

margin | mean _variance | margin | correlation
1 4.66 12.38 12 0.031
2 6.52 14.92 13 -0.143
3 6.59 31.39 23 -0.315
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5.3 Summary

In this chapter, we studied some issues on modelling, illustrating the data analysis cycle, model
selection and diagnostic checking. We also provided three detailed data analysis examples vilith the
models developed in Chapter 3. The fact that there are many possibilities with the multivariate
modelling is highlighted by the examples. AIC is one way to choose any model. In addtion, models
are compared by their predictibility. The sensitivity analysis from comparison of models is important.
If inference and prediction are similar, then one does not have to worry so much about the validity
of SEs, etc., after choosing a model from AIC or another criterion. One finding from our data
analysis is that there is insensitivity to multivariate models that have similar qualitative dependence
structure and similar form of univariate margins.

The models that we used to model the data are just some of the available models. Other examples
of models include MMD binary models for Six Cities Study and MCD model with univariate Poisson-
lognormal margins for the bacteria counts data. There is still a lot to be investigated in terms of

the applications of different type of models to the real data. Some of them will be studied in the

further research.




Chapter 6

GEE methodology and its
comparison with ML and IFM

approaches

Partly because of a lack of suitable multivariate non-normal distributions, and the problems of
mathematical tractibility and computational difficulties in statistical inference with the multivariate
models, Liang and Zeger (1986), Zeger and Liang (1986) and others have developed the general—
ized estimating equations (GEE) approach with a partly specified probability model (some moment
characteristics of the distribution are specified but not the joint distribution), for the estimation
of regression parameters. It is claimed, as one of the advantages of GEE, that the GEE approach
requires no further distributional assumptions other than that the observations across primary units
(subjects) are independent. Under the correct specification of the marginal expectation for the out-
come, consistent and asymptotically normal estimators of regression coefficients can be obtained,
with or without the correct specification of the dependence among the response variables. However
the GEE approach has several disadvantages, including (i) limited types of iﬁferences that can be
made, (ii) incompleteness of the data analysis cycle of initial data analysis, statistical modelling,
diagnostics and inference, (iii) lack of clear accompanying means of assessing the implicit assump-
tions, and (iv) possible interpretability problems. In fact, the main inferences provided by the GEE
method are for the regression coeflicients. Furthermore, GEE only deals with the case of univariate

margins in the generalized linear model class, and extensions to quasi-likelihood models (and this

213
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does not include ordinal response data). The extension of GEE by Zhao and Prentice (1990) allows
for estimating equations for correlations. This then has some analogy to the IFM approach when
the model is MUBE.

The models of the earlier chapters provide a framework for evaluation of the GEE and IFM
approaches. Both methods can be sensitive to incorrect marginal model specifications but the IFM
approach has much greater flexibility for a sensitivity analysis.

In this chapter, we discuss the drawbacks of GEE in the multivariate analysis framework and
examine the efficiency of the GEE approach. In section 6.1, we briefly introduce the GEE approach.
In section 6.2, we discuss problems with the GEE approach when it is considered within a multivariate
analysis framework. In section 6.3, we carry out some comparison studies of GEE with the ML
approach and the IFM approach to better understand how efficient, or inefficient, the GEE estimates
can be. These are done analytically and computationally. Finally, in section 6.4, we propose a new
likelihood-based computational strategy which combines the GEE and IFM approaches to achieve
greater efficiency for marginal regression parameter estimation, when this is the only inference of

interest.

6.1 Generalized estimating equations

In likelihood analysis, we must specify the actual form of the distribution. In quasi-likelihood
analysis, one specifies only the relationships between the means of the outcomes and the covariates
and the relationships between the mean and variance. A univariate quasi-likelihood function can be

written as
u
Qpy) = / (y —t)/Var(Y)dt. (6.1)
]
The estimating equations for some regression parameters 8 = (51, ..., 3,;) (these appear only in p;)
based on the quasi-likelihood function (6.1) are

Opi (ys — pi) _
Z 0B Var(Y;) =0,

where p; = E(Y;). The quasi-likelihood (6.1) can be identified with a loglikelihood corresponding
to an exponential family distribution in the univariate situation. By adop‘ting a quasi-likelihood
approach and specifying only the mean-variance structure, such as p = E(Y') and Var(Y') = ¢V (u),
where V() is a specified function of p (see McCullagh and Nelder 1989), the estimating equations

are applicable to different types of variables (continuous and discrete), with no assumptions about
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the distribution of the response. (Actually the form Var(Y) = ¢V (p) is quite restrictive. We will
discuss this in section 6.2.) For the d-dimensional multivariate response, if the responses are naively
assumed to be independent and B is assumed to be common for different Yj; or pi;, 7 = 1,...,d,

then the quasi-likelihood estimation equations become

> (28 vt - m =0,

/
i=1 aﬂ
where p; = (pi1, . . ., pia)' = E(Y;), V(Y;) = diag[Var(Y;1), . . ., Var(Yiq)], and
o, o
: 8B 9684
oni _ :
op
Opa ... Spa
LR 9B,

To gain more efficiency in estimating these regression parameters of the univariate margins, Liang

and Zeger (1986) and Zeger and Liang (1986) propose to estimate 8 from
UB) =Y DIVl (y;—m) =0, (6.2)
i=1

where D; = Op;/0B'. Here V; is a “working” or approximate covariance matrix for Y;, chosen by

the investigator. The “working” covariance can be expressed in the form:
1/2 1/2
Vi = A" Ri(a) 4},

where A; = diag[Var(Yj1),..., Var(Y;q)] and Ri(a) = Corr(Y;). Ri(a) is termed a “working”
correlation matrix, with & representing a vector of parameters associated with a specified model for
Corr(Y;). Note that the correlation matrix can differ from subject to subject, but R;(a) is fully
specified by the vector of unknown parameters, &, which is usually the same for all subjects. R;(a)
is referred to as a “working” correlation matrix, as Liang and Zeger argued, because it need not to
be correctly specified. The equations (6.2) are thus called generalized estimating equations, or GEE.

The extension in (6.2) made by Liang and Zeger is basically about the specification of the
“working” correlation matrix. Liang and Zeger (1986) showed that as the sample size tends to
infinity, the estimates of the regression coefficients obtained from the GEE approach are consistent
and asymptotically normal, with an asymptotic variance-covariance matrix which can be consistently
estimated even under misspecification of the dependence structure.

If Vi = Cov(Y;) is correctly specified, then a consistent estimate of the asymptotic variance of ,fi
is given by

21_1(9) = ZD?V‘_ID;,
i=1
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where V; is V; evaluated at (,Z?, &), and D; is D; evaluated at B, respectively. However, if the
“working” correlation R;(a) is misspecified, El_l(ﬁ) can give inconsistent estimates. Liang and

Zeger (1986) suggest using the following “robust” estimate:

=7 (B)S2(B)ZT (),
where "
T2(B) = Z DYV (y; = )y — i)' Vi D

This estimate is “robust” since it is consistent even if the “working” covariance V; is not equal to
Cov(Y;). An alternative approach, which we recommend, is to apply the jackknife method to (6.2)
to obtain an .estimate of X(B). \

There are several choices for the “working” correlation matrix R;. The simplest choice is to use
R; = I, where I is a identity matrix. This is equivalent to assume that the response variables are not
linearly correlated. One can also assume R;(a@) = R(a) for all 7, and let R(a) be fully unspecified.
Two simple special cases of R(a) are an exchangeable correlation matrix where Corr(Y;;,Yix) = «
and an autoregressive correlation matrix where Corr(Y;,Y:) = ali=Fl If & is known, (6.2) is
sufficient alone for the estimation of 8. Otherwise, & must be estimated. Wé discuss this next.

The “working” correlation matrix may be obtained through additional modelling. Prentice (1988)
has considered extensions of the GEE in Zeger and Liang (1986) to explicitly estimate the covariances

of the responses. He proposed to work with

Zn: (%)T Cov™ ! (Yi)(y; —mi) =0

i=1 6ﬂ
" arT (6.3)
; (5317) COV_l(W,:)l(W,' -n;)=0

for finding # and &, where W; = (YarYiz,YiYas, ..., Yiu-1)Yia), s = E(Y:), n; = E(W;). B
characterizes the marginal means p; = (g1, piz, . . ., piq)' and @ = (@i, @, ..., q,) characterizes
the marginal pairwise association 1);. Cov_l(Y.-) and Cov™!(W;) could be replaced by some special
chosen matrices. Let § = (8, a')’. Zhao and Prentice(1990) proposed to work with

> <¥)T oov™ () <vyv__',',) =0 (6.4)

i=1

for finding B and a. Cov (‘}(V') could be replaced by a “working” covariance matrix for (Y}, W)’
The main idea here was to add extra estimation equations for the dependence parameters, to improve

the parameter estimation from (6.2).
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6.2 GEE in multivariate analysis

In this section, the GEE method is illustrated with some examples. Drawbacks of the method are

discussed.

Example 6.1 Suppose Y; ~ Ng(X;8,%;),i =1,...,n, where X; is a known d x ¢ matrix and %;
is a d x d covariance matrix, and 8 is a ¢ x 1 parameter vector. The maximum likelihood method
is to minimize Y5, (y; — i)' 27 (y; — i) with p; = (i1, paa, - - -, pia)' = XiB. It leads to
n T
op; _
Z (6ﬁ1’> Ei l(yi _pi) = 0>

i=1

where Op;/0f' = X;. In this particular situation, the ML estimating equations are exactly the same

as GEE. |

Example 6.2 Suppose Y; has the multivariate probit model with multinormal copula. The mean
vector is p; = (i1, ..., Hia)', where pjj; = ®(Bx;;),i=1,...,n,j=1,...,d. The GEE for B, with
the correct specification of the response variance matrix are
n
U(B) =Y. DFVi(Y) ™ (y: — ) = O,
i=1
where D; = 0p;/08', and
o'?l o @iag
vivy=1| : . ], (6.5)
wing o oY
with a?j = &(Bx;;)(1 — ®(Bxi;)), and i jr = B2(Bxij, Bxik; pjk) — P(Bxi;)P(Bxix), 1 < j< k< d.
The GEE for B is different from MLE for B in this case. We also notice that in this example, the
actual correlation among the responses depend on the mean values, and hence Bx;;, j = 1,...,d.
This is not considered in the GEE assumptions for the “working” correlation matrix. In GEE for
multivariate binary data, the “working” correlation is usually assumed to be independent of the mean
parameters. In the next section, more studies to compare GEE with MLE under the multivariate

probit model assumption will be given. D

Example 6.3 We examine the multivariate Poisson-lognormal model of Example 2.12. Suppose in

(2.28) - (2.30), pj =vand o;j =17, j =1,...,d. Let B = (v,n)’. We can obtain the estimates
of v and n by ML or IFM. Now we apply the GEE approach. Since for i = 1,...,n, E(Y;;) =
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exp{v + 12/2} =a, Var(Yi;) = a + a[exp(n?) — 1]€'b and Cov(Y;;, Yix) = a2[exp(6;xn?) — 1], j # k.

Thus aE(Y) r 0 o a
( 6ﬂ’> :(an an)m'

With the correct specification of the response mean function and the variance-covariance matrix,

the GEE for the parameters v and 7 are

n NWT
S (E52) vivo o - ey =0, 5:5)

i=1
where V(Y;) has the diagonal component a + a*[exp(n?) — 1], and off-diagonal (j, k) component
a2[exp(6;xm2) — 1]. Since the two rows in (8E(Y;)/88)T are proportional, (6.6) reduces to a single
equation, thus estimates for v and 7 cannot be obtained with the quasi-likelihood approach. We can

see this more clearly by examining a special situation where 6;; = 0. In this case (6.6) becomes

n d
ZZ(%’;’ —a) =0,

i=1 j=1
which leads only to an estimate of a = exp{v + n?/2}. In this situation, we obtain a consistent
estimator for a, but not for v and 7 separately. This is a situation where consistent estimators of
the parameters of interest are not obtainable with GEE approach even with the correct specification
of the mean functions, the variance functions and the correlation structure. Following GEE, if
the interpretation of the model or parameters are carried out based on a, we will have the same
interpretation for v + n?/2 being constant irrespective of whether v is in fact a relatively big value
or small value. For if v = h(Bx) where B is a parameter vector and x is a covariate vector, then the .
correct interpretation of the effect of covariates is not possible from the GEE approach. The problem
with this example is that v and 7 are confounded in E(Y;), and GEE fails to use the information on

v and 7 in the second moment of Y;. This is an example showing that the form Var(Y) = ¢V (u) is

restrictive. , O

The above examples provide some flavor of the GEE approach. It is clear that to use GEE for a
meaningful purpose, the method requires the correct specification of marginal mean (and possibly
correct specification of variance). It expects to get useful marginal regression parameter estimates
with the dependence structure of multivariate data treated as a nuisance. An attractive feature of
GEE is the partial requirement on the model through the specification only of lower order moments.

But the GEE approach has a number of drawbacks if it is considered under the multivariate data

analysis framework; some of the drawbacks are direct results of its attractiveness:
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i. The GEE approach is incomplete for the data analysis cycle of initial data analysis, statistical
modelling, estimation, diagnostics and inference. In published work, GEE focuses mainly
on the estimation stage with emphasis on some marginal regression parameters estimation,
which can only be considered as a small part of the whole multivariate analysis process. In
multivariate aata analysis, the proper analysis cycle is important for the interpretation of the

findings to be statistically meaningful.

1. With the GEE approach, the type of inferences can be made from the estimation results are
limited. GEE is mainly useful for marginal regression parameter estimation, regardless of the
possible multivariate models for the data. If the objective of scientific investigation is to find
the probability occurrences of some phenomena, such as in multivariate discriminant analysis,
GEE is not heipful. GEE also treats the dependence as a nuisance, and then use a “working”
correlation matrix in estimation. This may deviate from the purpose of multivariate analysis
which is often motivated by the need to analyze complex dependence among variables and
objects. GEE does not deal with this question seriously. Furthermore, the correlation often is

not the “best” notion of dependence for some multivariate non-normal variables.

iii. With the GEE approach, there is no clear way to assess the assumptions, such as common f for
different univariate margins. The effective use of the GEE resides on the correct specification
of marginal mean function. If the specifications are not correct, it would not be adequate to
use the estimation results for the inference purposes. With GEE, when the inference is wrong,
it is not easy to tell where is wrong, and to what extent the results are useful. The GEE has
a direct representation within the exponential family, but may not be true for models not in
the exponential family. Notice that many “interpretable” multivariate models are not in the

exponential family.

iv. With the GEE approach, it may be difficult to have sound interpretations in some situations.
A situation is the Example 6.3, where it is not possible to get an estimate of the parameter (or
consistent estimate of the parameter) of interest through simple GEE, even under all favorable
conditions for GEE, such as the correct specification of the mean functions, variance functions

and the correlation function.

Then why GEE? GEE is a simple estimating approach in multivariate situations where only some

knowledge of lower order moment characteristics are used. It may be considered as an appropriate

approach when the relationships between covariates and marginal probabilities are of prime interest,
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and when a proper multivariate model is not available or mathematically difficult to deal with.
GEE may lead to some gain in estimation efficiency for the marginal regression parameters from a
sound specification of the dependence among the response variables. In some practical situations,
we may have some rough knowledge about the dependence structure among response variables; this
knowledge can be appropriately incorporated into GEE. The GEE approach provides a way to avoid
the difficulty of dealing with the complex relationship between some model parameters of interests
and the joint probabilities that define the likelihood in multivariate (longitudinal) situation, while
still estimating some parameters of interests.

However, in multivariate analysis, the marginal behaviour is only one of the possible features of
interest. Others include the dependence structure among the response variables, the prediction of the
probability for an outcome, the changes within subjects, etc. Within the general multivariate analysis
framework, GEE should be considered only as a set of estimating equations for some parameters
in a multivariate situation. Its usefulness is limited without incorpérating it properly into the data
analysis cycle, which mainly consist of initial data analysis, statistical modelling, disgnostics and
inference.

Some technical problems related to-the GEE-approach are:

1. How efficient is the GEE approach? How it compares with the ML approach? (when a full

model can be specified.)

2. How important is the correct specification of the response correlation matrix? If the correla-

tions of the response variables do depend on the marginal regression parameters (see Example

6.2), how does GEE work?
3. What is the effect of the (correct) specification of variance function?

4. What is the practical meaning of “large sample size” with GEE to achieve the estimation

consistency?

Item 1 is a natural question, since GEE is an approach which uses only the partial information
of a likelihood model. Item 2 is related to the fact that the true correlation structure for the
response variables is rarely known in practice. If different specifications of the correlation matrix
make a difference on the marginal regression parameter estimate, what could we really say about the
regression parameters? If different specifications of the correlation matrix do not make a difference,
what else can we say (about the regression parameter estimates and correlations)? Item 4 is also a

natural question for many statistical methodologies where their good properties are only established
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in an asymptotic sense. For item 3, the point at issue is best introduced via a simple example.
Suppose we have a Poisson-lognormal model. In Example 6.3, we have demonstrated that the
GEE in (6.6) can not lead to an estimate of v and 1. We now simply limit our discussion to the
univariate Poisson-lognormal model to illustrate our points. The GEE for the univariate case (with

no covariates) is
n

fay;—a
Z%yb =0, (6.7)

i=1
where 8 = (v,1)’, a = E(Y;) = exp{v + n%/2} and b = Var(¥;) = a + a%[exp(n?) — 1] = a + 7a?,

T = exp(n?) — 1. (6.7) is equivalent to

n

Y w-a)=0. (6.8)

i=1
To estimate v as well as 7, an additional equation to (6.8) is needed. One of a such equation (see

McCullagh and Nelder 1989) is
n . 2
ZM—(n—l):O. (6.9)
i=1

We see that in this simple univariate situation, (6.8) and (6.9) lead to the use of sample response mean
and sample response variance to estimate the response mean and response variance. In the quasi-
likelihood literature, it is usually assumed that the variance of Y; has the form Var(Y;) = ¢V (u;),
where ¢ is an unknown dispersion parameter and V(u;) is a function of y; = E(Y;). This is certainly
not the case for the Poisson-lognormal model. In the Poisson-lognormal model, if we let u; = E(Y;),
then Var(y;) = pi + p2ri, which cannot be identified with Var(y;) = ¢V (i;). If we always assume
Var(y;) = ¢V (ui), in some situations, it is not possible to have a correct specification of the variance
function. These arises a question of the effect of the variance function specification on the consistency
of the marginal parameter estimates. It would be interesting to see how (6.8) and (6.9) estimate v
and 7 under different specifications of the variance functions.

In the next section, we will address these issues. For points 1, 2 and 4, we will use multivariate
probit model for the investigation. For point 3, we will study the univariate Poisson-lognormal

model.

6.3 GEE compared with the ML and IFM approaches

In this section, we will study some of the questions concerning GEE arisen at the end of section 6.2.

We compare the GEE approach with the ML approach and the IFM approach by simulation with

the knowledge of true models.
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Comparison and simulation schemes

We study the cases where the regression parameters are common across all margins. We compare
the GEE estimates with MLEs and IFMEs (from the pool-marginal-likelihood approach). Except for
the Poisson-lognormal model where we investigate the effect of the specification of variance function,
in the GEE estimation, we always assume we have the éorrect specification of the marginal variance
functions. With the Poisson-lognormal model, we specify different variance functions to investigate
the importance of correctly specifying the variance functions.

We use the mean-square error (MSE) of the estimate for a parameter from different approaches
as the basis of the comparison. For an estimator § = 0~(X1, ..., Xpn), where X3,..., X, is a random

sample of size n from a distribution indexed by 6, the MSE of § about the true value 8 is
MSE(f) = E(6 — 6)* = Var(f) + [E(0) — 6]2.

Suppose that 0 has a sampling distribution F', and suppose 51, ceny 0, are iid of F , then one obvious

estimator of MSE(d) is
— ™ (6; —6)?
MSE(S) = E=1(+6) (6.10)

The average of the parameter estimate is mean(d) = S 0;/m. Assume ;.. is from the GEE
approach, épmxa is from the IFM approach (with the pool-marginal-likelihood approach) and Ormie
is the MLE. We examine r? = I\IS\E(émle)/l\TS\E(égee) and rZ = I\TS\E(épmza)/l\IS\E(ggee) (in all
tables, 71 and 7, are reported). For a fixed sample size, 6 need not be the optimal estimate of 8 in
term of MSE, since now the bias of the estimate is also taken into consideration. The above two
ratios may indicate how GEE performs in comparison with the other approaches, and particularly
how it compares with the MLE. The approach is mainly computational, based on the computer
implementation of specific models and then the subsequent intensive simulation and parameter
estimation.

We will first use the multivariate probit model for investigating the relative efficiency of GEE
estimates versus MLEs and IFMEs. We describe our simulation scheme and comparison scheme
here in general terms. We simulate d-dimensional binary observations y; (i = 1,...,n) from a

multivariate probit model

Yij=1(Zij < %), j=1,...,d, i=1,...n,

where Z; = (Zi1,. .;,Zid)' ~ MV Ng(0,0;) with z;; = ﬂ;xij. The response correlation matrix for
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the ith subject is R; = (r; jx) where r; j; = 1 and

Fijr(11) — By (1) P (1)
VP (1)(1 = Py (1) P (1)(1 = Pi(1))
where P; j;(11) = ®2(z, 2;6;1), Pij(1) = P;x(1) = ®(2) when there is no covariates, and P; j(11) =
®2(B;xij, Bexir; i), Pij(1) = ®(Bjxi;) and Pig(1) = ®(B)xir) when there is a covariate vector.

for j#k. (6.11)

Tijk =

In the expression of P; ;;(11), we may have 6;; = p or 8 = pli =kl depending on the dependence
structure of the latent variables.

The following simulation scheme is used:
1. The sample size is n, the number of simulations is N. Both are reported in the tables.

2. Situations with covariates for d = 2 and d = 3 and with no covariates for d = 3 and d = 4 are

considered:

(a) With no covariates: z;; = zfori=1,...,n,j =1,...,d. Two chosen values of z are: 0.5
and 1.5.
(b) With covariates:

i. There are two situations for d = 2: z;; = fo + fr&s; with §y = 0.5, /1 = 1 and
zij = Bo + Prw; + Paxi; with fy = —0.5, 1 = 0.5, f2 = 1, where z;; is margin-
dependent and wj; is margin-independent covariate

ii. Ford =3, only z;; = By + Przi; with fo = 0.5, §1 = 1 is considered.

Situations with z;; discrete and continuous and w; discrete are studied. For w; discrete, we
choose w; = I(U < 0) where U ~ uniform(—1, 1). For z;; discrete, we choose z;; = I(U <
j/(2d)) where U ~ uniform(—1, 1); for z;; continuous, we choose z;; ~ N(j/(2d),1/4).

The continuous covariate case is only studied for d = 2.

3. We assume the latent correlation matrix ©; free of covariates. For d = 2, p is chosen to be
0.9 and 0.5. For d > 3, © is chosen to be exchangeable with all correlation equal to p, and
an AR(1) with (j, k) component equal to p/~*|. In both exchangeable and AR(1) cases, p is
chosen to be 0.9.

In GEE, the “working” correlation matrix is chosen by the investigator. There is arbitrariness
in the choice of the “working” correlation matrix. We want to see how the choice of the “working”
correlation matrix affects the estimation of the regression parameters in situations where the mean

functions (also variance functions) are correctly specified. For GEE estimation, we study two type

of “working” correlation matrix specification:
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1. The correct specification of correlation matrix of the response variables, that is, r; ;i is calcu-
lated from (6.11) with the true parameter values. In the tables, we use 1), for GEE specification

of r; j&, and 1y, = ¢ for correct specification of correlation matrix.

2. The wrong specification of correlation matrix of the response variables:

(a) For d =2, let r; 15 = 1. We select 5y = 0.9, 0.5, 0, —0.5, —0.9.

(b) When the latent correlation matrix is exchangeable: (i) the “working” correlation matrix
has exchangeable structure with r; ;z = 714, where when d = 3, 5, = 0 and 5, = —0.4,
and when d = 4, n; = 0 and n, = —0.3; and (ii) the “working” correlation matrix has

AR(1) structure when d = 3, with r; j = nlgj_kl where 5y, = 0.9 and 5, = —0.9.

(c) When the latent correlation matrix is AR(1): (i) the “working” correlation matrix has
AR(1) structure with r; ;5 = ny_kl where 1, = 0 and 7, = —0.9 for both d = 3 and
d = 4; and (ii) the “working” correlation matrix has exchangeable structure when d = 3,

with 7; j = 7y where 5, = 0.0 and 5, = —0.4.

In the computer implementation, we first simulate d-dimensional binary data from a given d-
dimensional probit model with or without covariates. We then use the GEE, ML and IFM approaches
to estimate the parameters from each simulation, and then compute the MSE in (6.10) of the
estimates from each parameter estimation approach. We also compute the mean of the parameter
estimates.

Next we discuss the simulation and computation scheme with the univariate Poisson-lognormal
model to investigate the effects of the specification of variance functions on the estimation consistency
of the marginal regression parameters. The GEE that we use are (6.8) and (6.9). The true variance
for ¥; is Var(Y;) = a + a7, where a = E(Y;) = exp(v + n?/2) and 7 = exp(n?) — 1 for the situation
with no covariate, and Var(Y;) = a; + a?7, where a; = E(Y;) = exp(v; + n?/2) and 7; = exp(n?) — 1
for the situation with covariates. In the comparison study, we compare MLE to GEE with 1) correct
specification of Var(Y;), 2) Var(Y;) = ra, 3) Var(¥;) = ra?, 4) Var(¥;) = 7a3. Let a be the mean

and b be the variance from GEE specifications. The simulation scheme is as follows:
1. The sample size is n; the number of simulation is N. Both numbers are given within the tables.

2. We considered the situations of the parameter v independent of covariates and depending on

a covariate £. The parameters are:
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i. With no covariates: (v,n) = (0.99995,0.01). In this case, a = 2.718282, and for the 4
different variance function specifications above, we have b = 2.719, 0.00027, 0.0007, 0.002
respectively, where b = 2.719 corresponds to the correct specification of the variance

function.

ii. With no covariates: (v,m) = (—0.1,1.48324). In this case, a = 2.718282, and for the 4
different variance function specification above, we have b = 62.02, 21.81, 59.30, 161.19
respectively, b = 62.02 corresponds to the correct specification of the variance function.

ili. With covariate: v = a + Bz, where &« = 0.5, 8 = 0.5 and ¢ = I(U < 0) with U ~
uniform(—1,1). The parameter = 0.01.

Next we provide the numerical results for the situations outlined above.

Bivariate probit model

For the bivariate probit model with one covariate, the marginal linear regressions are z; = fo +
B1z;;, where By, B are the common marginal regreséion parameters. In GEE, we have y; =
(Pin(1), Pn(1)) = (®(Bo + Przi1), ®(Bo + Pizi2))’. The numerical results for the bivariate probit
model with the covariate z;; continuous and discrete are presented in Table 6.1 and Table 6.2.
The numerical results for the bivariate probit model with the marginal linear regressions z;; =
Bo + Prw;i + Bazij for w; and z;; discrete are presented in Table 6.3. The results for w; and z;;
being continuous are quite similar, so they are not presented. ‘In Table 6.4, we also present a case
with the marginal linear regressions are z;; = fo + f12;; for the situation where the true parameter
p = 0.5. From these tables, two clear conclusions emerge: i) the specification of the “working”
correlation has an effect on the estimation efficiency of GEE, with a major loss of efficiency when
the specified “working” correlation is far from the true correlation. In fact, when the working
correlation parameter is far away (particular with the wrong sign of the correlation) from the true
correlation parameter, the GEE estimator performs poorly, and in some cases, the efficiency can be
as low as 50%; ii) MLEs are alwéys more efficient than GEE, but GEE is slightly more efficient than
estimate from IFM when the the “working” correlation is correctly specified; iii) the observations in

i) and ii) are consistent for the sample size from large to moderate.

Trivariate probit model

We first study the trivariate probit model with no covariate. We have P(111) = ®3(z, 2, 2; p12, p13, p23),

where z is the common cut-off points for all three margins. In GEE, we have g; = (Py(1), P»(1), P3(1)) =
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Table 6.1: GEE assessment: d = 2, §y = 0.5, f; = 1, z;; discrete, p = 0.9, N = 1000

n = 1000 n = 200
mean (VMSE) nr; ro |mean (VMSE) r ro
MLE Go | 0.501 (0.0525 0.504 (0.1191
51| 1.003 (0.0699 1.011 (0.1553
IFME Bo | 0.502 (0.0570 0.507 (0.1293
B | 1.001 (0.0788 1.007 (0.1792

Ny =¢ Bo | 0.501 (0.0631) 0.989 1.074| 0.505 (0.1198) 0.994 1.079
f1 1 1.003 (0.0707) 0.989 1.116| 1.010 (0.1563) 0.993 1.146
ng =0.9 fo| 0.500 (0.0566) 0.929 1.009| 0.501 (0.1280) 0.930 1.011
f1 | 1.005 (0.0776) 0.901 1.016 | 1.014 (0.1713) 0.907 1.046
7y =0.5 o 0.501 (0.05632) 0.987 1.072| 0.504 (0.1199) 0.993 1.079
B ] 1.003 (0.0707) 0.988 1.115( 1.010 (0.1561) 0.995 1.148
7y =10 Bo | 0.502 (0.05670) 0.921 1.0 | 0.507 (0.1293) 0921 1.0
A1 | 1.001 (0.0788) 0.887 1.0 | 1.007 (0.1791) 0.867 1.0
ng = —0.5 Gy | 0.503 (0.0687) 0.765 0.831] 0.508 (0.1575) 0.756 0.821
B | 1.001 (0.1017) 0.687 0.775 | 1.008 (0.2381) 0.652 0.752
ng = —0.9 G| 0.503 (0.0818) 0.642 0.698 | 0.506 (0.1906) 0.625 0.678
B 11.000 (0.1262) 0.554 0.625 | 1.011 (0.3029) 0.513 0.591

Table 6.2: GEE assessment: d = 2, fp = 0.5, /1 = 1, z;; continuous, p = 0.9, N = 1000

n = 1000 )
mean (VMSE) ry 79
MLE Bo | 0.501 (0.0416

B1 | 1.000 (0.0651
IFME Bo | 0.501 (0.0427
B1 | 1.001 (0.0730
g =¢ Bo | 0.501 (0.0416) 1.0 1.027
B1| 1.000 (0.0653) 0.997 1.117
7y =09 fo| 0.502(0.0496) 0.839 0.861
B1]0.998 (0.0766) 0.854 0.957
ng =05 f|0.501(0.0421) 0.990 1.016
B1] 0.999 (0.0675) 0.964 1.081
1y =0 Bo | 0.501 (0.0427) 0.974 1.0
B | 1.001 (0.0730) 0.892 1.0
7y =—0.5 B | 0.500 (0.0463) 0.899 0.923
B1]1.004 (0.0952) 0.685 0.767
ng =—0.9 Sy | 0.499 (0.0512) 0.813 0.835
$111.007 (0.1209) 0.539 0.604
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Table 6.3: GEE assessment: d = 2, 8

n = 1000
mean (VMSE) n

r2

n = 200

mean (v MSE)

1 T2

MLE

IFME

Ng =¢

-0.496 (0.0647)
0.497 (0.0782
0.996 (0.0601
-0.496 (0.0676)
0.497 (0.0788
0.997 (0.0664
-0.495 (0.0652)
0.498 50.0783
0.995 (0.0605
-0.493 (0.0693)
0.498 (0.0827
0.992 (0.0676
-0.495 (0.0655)
0.497 (0.0786
0.994 50.0605;
-0.497 (0.0677)
0.497 50.0788
0.997 (0.0664
-0.499 (0.0768)
0.498 EO 0789;

0.993
0.998
0.994
0.934

0.889
0.988
0.994
0.994
0.957
0.993
0.905
0.843
0.991
0.701
0.736
0.989
0.563

1.000 (0.0857
-0.500 (0.0880)
0.498 (0. 0790;
1.003 (0.1067

0.946

~0.498 (0.1445
0.4986 (0.1793
1.005 (0.1289)
-0.497 (0.1527)
0.498 (0.1806
1.004 (0.1488
-0.495 (0.1447)
0.498 (0.1786
1.001 (0.1294
-0.493 (0.1522)
0.503 (0.1905
0.999 (0.1429
-0.495 (0.1451)
0.497 (0.1797
1.001 50.1294
-0.496 (0.1527)
0.498 (0.1806
1.004 (0.1488
-0.499 (0.1762)
0.498 (0.1816
1.008 (0.1977
-0.502 (0.2039)
0.498 §0.18233
1.012 (0.2486

0.999 1.056
1.003 1.012
0.996 1.150
0.950 1.003
0.941 0.949
0.903 1.042
0.996 1.052
0.998 1.005
0.996 1.150
0.946 1.0

0.992 1.0

0.866 1.0

0.820 0.867
0.987 0.995
0.652 0.753
0.709 0.749
0.983 0.991
0.519 0.599

Table 6.4: GEE assessment: d = 2, fy = 0.5, 8, = 1, z;; discrete, p = 0.5, N = 1000

n = 1000 n = 200
mean (VMSE) ro |mean (VMSE)} ry 9
MLE Bo | 0.502 (0.053 0.504 (0.119
/1| 1.002 (0.075 1.011 (0.155
IFME Bo | 0.502 (0.055 0.507 (0.129
/1| 1.001 (0.077 1.007 (0.179
Ny =¢ Bo | 0.502 (0.053) 0.999 1.022| 0.505 (0.120) 0.994 1.079
B1| 1.002 (0.075) 0.994 1.028| 1.010 (0.156) 0.993 1.146
7y =09 o | 0.500 (0.060) 0.893 0.914] 0.500 (0.135) 0.885 0.845
B1| 1.005 (0.088) 0.849 0.878 | 1.017 (0.194) 0.898 0.875
7y =05 o | 0.501 (0.054) 0.983 1.005| 0.503 (0.122) 0.982 0.973
B1| 1.003 (0.077) 0.967 1.001| 1.011 (0.168) 0.997 1.008
ng=20 Bo | 0.502 (0.055) 0.977 1.0 | 0.506 (0.121) 0.986 1.0
B/1| 1.001(0.077) 0.966 1.0 | 1.007(0.169) 0.965 1.0
ng =—0.5 fFo| 0.504 (0.063) 0.850 0.870 | 0.508 (0.139) 0.860 0.872
B1| 0.999 (0.092) 0.807 0.835| 1.005(0.207) 0.788 0.817
ng =-09 fo| 0.504 (0.074) 0.725 0.742| 0.508 (0.164) 0.728 0.738
B1] 0.998 (0.112) 0.664 0.688| 1.006 (0.257) 0.635 0.658

227

=—0.5,8, = 05,82 = 1, w;, z;; discrete, p= 0.9, N = 1000
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Table 6.5: GEE assessment: d = 3, z = 0.5, latent exchangeable, p = 0.9, “working” exchangeable,

N = 1000
n = 1000 n = 200 n = 100

mean (VMSE) 7, ro |mean (VMSE) 7 7o jmean (VMSE) r r
MLE 0.499 (0.0363 0.503 (0.0839 0.506 (0.1228
IFME 0.498 (0.0366 0.503 (0.0841 0.506 (0.1233
ng =¢ 0.498 (0.0366) 0.992 1.0| 0.503 (0.0841) 0.997 1.0} 0.506 (0.1233) 0.996 1.0
g =0 0.498 (0.0366) 0.992 1.0| 0.503 (0.0841) 0.997 1.0|0.506 (0.1233) 0.996 1.0
1, = —0.4] 0.498 (0.0366) 0.992 1.0] 0.503 (0.0841) 0.997 1.0|0.506 (0.1233) 0.996 1.0

Table 6.6: GEE assessment: d = 3, z = 1.5, latent exchangeable, p = 0.9, “working” exchangeable,

N =1000
n = 1000 n = 200

mean (v MSE) r ry | mean (vVMSE) T )
MLE 1.500 (0.0525 1.510 (0.1254
IFME 1.500 (0.0525 1.510 {0.1256
Ny =¢ 1.500 (0.0525) 0.999 1.0 | 1.510 (0.1256) 0.998 1.0
Ng = 1.500 (0.0525) 0.999 1.0 | 1.510(0.1256) 0.998 1.0
n, = —0.4 | 1.500 (0.0525) 0.999 1.0 | 1.510(0.1256) 0.998 1.0

(®(2), ®(z), ®(z))'. The numerical results are presented in Table 6.5 to Table 6.8. The numerical re-

sults show that the specification of the correlation of the response variables in these simple situations

have little effect on the parameter estimates from GEE. GEE is efficient in all cases.

For the trivariate probit model with one covariate, we have P(111) = ®3(80+ 121, fo+ P12, Bo+

B123; p12, p13, p23), where By, (1 are the common marginal regression parameters. In GEE, we have
B = (Pin(1), Pir(1), Pia(1)) = (®(Bo + Przi1), B(Bo + P1ziz), D(Bo + f1zi3))’. The numerical results
for the trivariate probit model with covariate are presented in Table 6.9 and Table 6.10. We studied

models with discrete covariate. Now the specification of the “working” correlation matrix has some

effect on the estimation efficiency of GEE, with a major loss of efficiency when the specified “working”

correlation matrix is far from the true correlation matrix. We also notice that GEE is slightly more

Table 6.7: GEE assessment: d = 3, z = 0.5, latent AR(1), p = 0.9, “working” AR(1), N = 1000

n = 1000

n = 200 n = 100
mean (VMSE) nry re |mean (VMSE) r; re |mean (VMSE) ry Ty
MLE 0.499 (0.0355 0.503 (0.0822 0.506 (0.1192
IFME 0.498 (0.0357 0.503 (0.0822 0.505 (0.1198
Ny =C 0.498 (0.0357) 0.996 1.0 [0.503 (0.0821) 1.0 1.0 [0.506(0.1192) 1.0 1.0
ng =20 0.498 (0.0357) 0.994 1.0 |0.503 (0.0822) 1.0 1.0 |0.505(0.1198) 0.995 1.0
ne = —0.91 0.498 (0.0362) 0.982 0.988] 0.503 (0.0832) 0.989 0.988|0.505 (0.1219) 0.978 0.983
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Table 6.8: GEE assessment: d = 3, z = 1.5, latent AR(1), p = 0.9, “working” AR(1), N = 1000

n = 1000 n = 200
mean (vVMSE) 1 r9 mean (VMSE) T re
MLE 1.499 (0.0515 1.508 (0.1213
IFME 1.500 (0.0516 1.509 {0.1220
ng =C 1.500 (0.0515 1.0 1.0 | 1.509 {0.1213 1.0 1.0
ng =0 1.500 (0.0517) 0.997 1.0 1.509 (0.1220) 0.994 1.0
nge = —0.9 | 1.500 (0.0627) 0.978 0.981 | 1.510(0.1247) 0.973 0.979

Table 6.9: GEE assessment: d = 3, (o
“working” exchangeable, N = 1000

= 0.5, 81 = 1, z;; discrete, latent exchangeable, p = 0.9,

n = 1000
mean (v MSE)
0.501 (0.0462
0.998 (0.0582
0.502 (0.0502
0.996 (0.0677
0.501 (0.0463
0.998 (0.0588
0.502 (0.0502
0.996 (0.0677
0.504 (0.0765
0.994 (0.1219

n = 200
mean (vVMSE)
0.499 (0.1057) -
1.005 (0.1338
0.502 (0.1148
1.001 (0.1588
0.500 (0.1066
1.004 (0.1369
0.502 (0.1148
1.001 (0.1588
0.503 (0.1764
1.001 (0.2886

n = 100
mean (v MSE)
0.504 (0.1515
1.015 (0.1915
0.509 (0.1680
1.008 (0.2260
0.505 (0.1528
1.012 (0.1939
0.509 (0.1680
1.008 (0.2261
0.503 (0.2673
1.022 (0.4419

Ty T2 T1 T2 T1 T2

MLE
IFME

0.997 1.084
0.991 1.153
0.920 1.0
0.860 1.0
0.604 0.657
0.478 0.556

0.991 1.077
0.977 1.160
0.920 1.0
0.843 1.0
0.599 0.651
0.464 0.551

0.992 1.100
0.987 1.165
0.902 1.0
0.847 1.0
0.567 0.628
0.433 0.512

efficient than the estimate from IFM when the “working” correlation matrix is correctly specified.
From the tables, we also notice that GEE and IFME have the same parameter estimate when 7y =0
and in exchangeable situations. In the following subsection, we will prove this is always true. We
particularly notice that the GEE behaved very similarly to MLE and IFM, both in terms of marginal
regression parameter estimates and their MSEs, when the working correlation matrix is chosen to

be I.

4-variate probit model

The 4-variate probit model is considered for the situation with no covariate. We ha\;e P(1111) =
B4(z, 2, 2, 2; p12, P13, P14, P33, P24, P34), Where 2z is the common cut-off points for all four margins. In
GEE, we have p; = (Pi(1), P2(1), P5(1), P4(1)) = (®(2), ®(2), ®(2), ®(2))'. The numerical results
are presented in Table 6.11 and Table 6.12. The numerical results show that the specification of the
correlation of the response variables in these simple situations have little effect on the parameter

estimates from GEE. The GEE approach is efficient in all cases.

Our simulation results also indicate that for estimation purposes, the estimating equations based
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Table 6.10: GEE assessment: d = 3, fo = 0.5, 1 = 1, z;; discrete, latent AR(1), p = 0.9, “working”

AR(1), N = 1000

n = 1000 n = 200 n = 100
mean (VMSE) r, ry |mean (VMSE) r; ro |mean (vVMSE) r; Py
MLE 5o 0.501 (0.0455 0.500 (0.1042 0.505 (0.1517
£110.999 (0.0575 1.004 (0.1330 1.011 (0.1879
IFME B0]0.502 (0.0494 0.502 (0.1123 0.509 (0.1665
B110.997 (0.0666 1.001 (0.1560 1.006 (0.2195
7 =¢C Bo|0.501 (0.0455) 1.0 1.087|0.500 (0.1048) 0.994 1.071|0.507 (0.1530) 0.992 1.088
£110.999 (0.0580) 0.992 1.149|1.003 (0.1355) 0.981 1.151]1.007 (0.1899) 0.990 1.156
7y =0 Bo|0.502 (0.0494) 0.921 1.0 |0.502 (0.1123) 0.928 1.0 |0.509 (0.1665) 0.911 1.0
$110.997 (0.0666) 0.864 1.0 |1.001 (0.1560) 0.852 1.0 |1.006 (0.2195) 0.856 1.0
ng = —0.4 F|0.504 (0.0688) 0.661 0.718(0.502 (0.1584) 0.658 0.709|0.505 (0.2367) 0.641 0.703
£110.995 (0.1076) 0.535 0.619]1.004 (0.2573) 0.517 0.606] 1.020 (0.3789) 0.496 0.580

Table 6.11: GEE assessment: d = 4, z = 0.5, latent exchangeable, p = 0.9, “Working” exchangeable,

N = 1000
n = 1000 n = 200

mean (VMSE) r;  ry [mean (VMSE) r; 1
MLE 0.500 (0.0365 0.503 (0.0820
IFME 0.500 (0.0366 0.503 (0.0829
ng =¢ 0.500 (0.0366) 0.997 1.0 0.503 (0.0829) 0.989 1.0
ng =20 0.500 (0.0366) 0.997 1.0 0.503 (0.0829) 0.989 1.0
n, = —0.3]0.500 (0.0366) 0.997 1.0] 0.503 (0.0829) 0.989 1.0

on an independence working correlation structure behave quite well.

IFME or GEE

We have seen in the preceding subsection that GEE has better performance than IFME when the

response correlation matrix is correctly specified, but IFME has better performance than GEE in

general. Now we will see some situations where GEE and IFME are equivalent.

Table 6.12: GEE assessment: d = 4, z = 0.5, latent AR(1), p = 0.9, “working” AR(1), N = 1000

n = 1000 n = 200
mean (VMSE) r; ro |mean (VMSE) n ry
MLE 0.500 (0.0349 0.503 (0.0781
IFME 0.500 (0.0350 0.503 (0.0791
ng =¢ 0.500 (0.0350) 0.997 1.00110.503 (0.0787) 0.992 1.005
ng =0 0.500 (0.0350) 0.997 1.0 |0.502(0.0791) 0.987 1.0
1y = —0.9] 0.500 (0.0354) 0.985 0.989|0.502 (0.0803) 0.972 0.985
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Result 6.1 For a multivariate probit model with common cut-off points across margins, GEE with

R;(a) = R, where R has ezchangeable structure, is equivalent to IFM.

Proof: For a multivariate probit model with common cut-off points across margins, the IFM leads
to an estimating equation ) ., Z}Ll(yﬁ — ;) = 0. This is equivalent to the GEE with R;(a) = R

where R has an exchangeable structure. ]

Result 6.2 For a multivariate probit model with covariates, GEE with R;(a) = I, where I is the
tdentity matriz, is equivalent to IFM.

Proof: Assume g = (u1,...,p4q) and p; = ®(Bz;). For a multivariate probit model with common
cut-off points across margins, IFM leads to the estimating equations

DI LTS

i=1 j=1 pi(1— I‘J)
This is equivalent to the GEE with R;(a) = I, I is the identity matrix. ]

In this Chapter, we limit study to the GEE for common regression parameters across all margins.

But GEE can also extended to the situations where parameters differ from margin to margin. We
here introduce a result about the equivalency of GEE and IFM in some special situations with

parameters differing from margin to margin.

Result 6.3 For the multivariate probit model with parameters differing from margin to margin and
with one margin-independent binary covariate, the GEE with R;y(a) = R is equivalent to IFM for

the marginal regression parameters.

Proof: Assume z is the margin-independent binary covariate taking two values ¢ and b. The marginal

mean vector g; = {p1(a1 + f1z), ..., pa(aqd + Baz)}, i = 1,...,n, takes two distinct vector values:

B = {p1(a1 + fra), ..., pa(aa + faa)}’

By = {pa(on + B1b), ..., pa(ea + Bab)}.
Assume there are n, observations for £ = a and np for ¢ = b, and let Z, = {i|z; = a} and
Iy = {i|z;i = b}. Let @ = (o,...,aq), B = (B1,...,B4). For i € I, D;a = Op,/8e’ does
not depend on ¢, thus DT V.'& is a d x d invertible matrix which does not depend on i. Let us

denote this matrix by A. For ¢ € Z,, we also have DTﬁ _ﬂl = aD V'& = aA. Similarly, for

1 €1y, D V ! does not depend on i. If we denote D V by B for i € I,, we also have
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Table 6.13: Estimates of v and  under different variance specification

Spec. of Var(Y;) 7 - v
a+a’r i ={log[(s* — y )7 + )}1/2 log g — 0.5(71)*
ar 2= {log[s?/3 + 1]}1/* log § — 0.5(72)?
ar ng {log[s%/3% + 1]}1/? log § — 0.5(73)?
a*r 7a={log[s*/g® + 1}/ | logy — 0.5(7a)”

ﬂ ﬂ = bDT Vfa = bB. The GEE for @ and B are

g ny
A (vi.—#a)+ B (yi,— ) =0

ta=1 ip=1
Na ny !
aA Z(yia — Ba) + B Z(Yi,, — M) =0
ie=1 1p=1

which simplify to

Z(yia — M) =0
i.=1

- (6.12)
E-(}'.’b — ) =0.

=1
It is straightforward to see that (6.12) is also the estimating equations for @ and B8 from IFM
approach. . ]

Poisson-lognormal model

Let § = > yi/n be the sample mean, and s? = Y (y; — )?/(n — 1) be the sample variance. Using
the estimating equations (6.8) and (6.9), the estimates of » and 7 based on different specification of
the variance functions are listed in Table 6.13 (a = exp(v +n%/2) and 7 = exp(n?) — 1). Tables 6.14
- 6.16 contain numerical results based on the simulation scheme outlined for the Poisson-lognormal
model previously. From tile results in Tables 6.14 - 6.16, we see that quasi-likelihood estimates may
be fine when the variance function is correctly specified, but may be asymptotically inconsistent if -
the variance function specification is not correct. A similar problem occurs in the multivariate case.

It is thus critical to assess the form of Var(Y') as a function of E(Y) before choosing GEE as the

estimation method.
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Table 6.14: GEE assessment: (v,7) =

N =500
7 (VMSE) ry v (VMSE) 7y
MLE | 0.038 (0.0595) 0.997 (0.0190
a+a?r | 0.047 50.0705 0.844 | 0.996 (0.0190) 1.0
ar 0.831 (0.8214) 0.072 | 0.653 (0.3472) 0.055
a®r | 0.559 (0.5491) 0.108 | 0.843 50.1587 0.120
ar | 0.356 (0.3461) 0.172 | 0.935 (0.0675) 0.282

Table 6.15: GEE assessment: (v,7) = (—0.1,1.48324), E(Y) = 2.718282, Var(Y) = 62.02, n = 1000,

(0.99995,0.01), E(Y) = 2.718282, Var(Y) = 2.719, n = 1000,

N =100
7 (VMSE) ry 7 (VMSE) r
MLE [ 1.481 (0.0591 -0.094 (0.0559)
a+a’r | 1.418 %0.1488 0.397 | -0.016 (0.1790) 0.313
ar 1.724 (0.2743) 0.215 | -0.497 (0.4361) 0.128
a’r 1.436 (0.1347% 0.439 | -0.042 (0.1621) 0.345
adt 1.126 (0.3767) 0.157 | 0.357 (0.4741) 0.118
Table 6.16: GEE assessment: a = 0.5, 8 = 0.5, = 0.01, n = 1000, N = 500
& (VMSE) ry B (VMSE) 1 7 (VM 8!
MLE | 0.492(0.037) 0.502 (0.045 0.063 (0. 078)
a+a%r | 0.492 (0.038) 0.985 | 0.502 (0.045) 0.994 | 0.071 EO .084) 0.921
ar 0.153 (0.349) 0.107 | 0.499 (0.049) 0.916 | 0.832 (0.822) 0.095
a’r 0.262 (0.242) 0.154 | 0.580 (0.096) 0.469 | 0.624 (0.614) 0.127
adr 0.342 (0.164) 0.227 | 0.593 (0.107) 0.419 | 0.458 (0.448) 0.173
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Appendix: Newton-Raphson method for GEE

We perform the model simulations and all MLE, IFM and GEE computations using programs in
C written by the author. The code for the probit model incorporates the cases with covariates
and with no covariates. For completeness, we provide here some mathematical details about the
Newton-Raphson method that we used in the GEE estimation. To apply Newton-Raphson method,
we need to evaluate both the estimating functions and the derivative of the estimating functions at
arbitrary points of parameter vector.

When the same regression parameter vector is common to all margins, the marginal mean function
vector is p; = (pi1(B), ..., tia(B)) where B = (Bo,1,...,Bp)’. Assume the correlation matrix in
GEE for the ith subject is

1 a;12 -+ @i
1 - a4
R; =
1

Then the estimating functions in GEE are
N DD D (%%ﬁ ke "L,;,fﬂai,jk)
> (%) AR AT 2y - ) = 3
= Yin Z?=1 (%%i;a:‘ Z:=1 yik_;,fi‘_kai,jk) :
The estimating function corresponding to the mth regression parameter for the ith subject (i =

1,...,nm,m=0,1,...,p) is

[ 1 O < i — i
Yim =) l Ly ai,jk] -

0ij OBm £=4 Ok

After a few lines of calculations, we then have

d d
Oim E 2p55 — 1 Opij Opij Yik — Mik
Jj=1

a; ;
9B, 205 0Bm 0By = o "
1 0%py di—' 16i'd ik — pie)(2pix — 1) — 207, O
L L 0wy 3 Yir — pik oy L Oy ((yk Hik)( Hik ) =207, Op kai,]_k> .
Oij aﬂmaﬂq k=1 Tik i 6'87“ k=1 2Uik 6’8q

6.4 A combination of GEE and IFM estimation approach

In section 6.3, we have observed that in some situations GEE provides a slightly more efficient

marginal regression parameter estimation than IFM when the correlations of the responses are cor-

rectly specified. With the assumption of models, a natural specification of R;(a) is possible. If R;(a)
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can also be reasonably estimated, then GEE can be applied to obtain the marginal regression param-
eter estimates. This leads to the new approach for estimating the marginal regression parameters
(for some models): i) use IFM approach to estimate model parameters, thus obtain R;(a), ii) use
GEE to re-estimate marginal regression parameters. In the following, we provide ‘a few numerical
results to illustrate this new approach.

To be more general, we study the situation where regression parameters differ from margin to
margin. GEE is extended to this situation. We basically compare GEE marginal estimates (when
Ri(a) from IFM estimation is used) to IFM estimates. The comparison is carried out by simulation.
We assume a multivariate probit model, Y;; = I(Z;; < Bjo + Bji%ij), as in section 6.3. The
simulation parameters are d = 3,4,5, fy = (0.7,0,—-0.7,0,0.5), 8, = (1,1.5,2,0.5,—-0.5) with the
first 3 components of By, B for d = 3, and the first 4 components of 8, 8, for d = 4, so on. The two
situations of covariate z;; are i) discrete where z;; = I(U < 0), U ~ uniform(—1, 1), ii) continuous
where z;; ~ N(0,1/4). The latent correlation matrix is an exchangeable correlation matrix with all
correlations equal to p = 0.5. The number of observations is 1000 and the number of simulations
for each scenario is 1000. Table 6.17 contains the ratio » (r? = I\ZS\E(éifm)/l\TS\E(égee_,:fm)) for a
parameter #, where égee_ifm means the estimate of § from combined GEE and IFM approaches.
The calculation of MSE is defined in section 6.2. The Table 6.17 shows that there is some gain of

efficiency with the new approach, since all > 1.

Table 6.17: A comparison of IFM to GEE with R;(a) given

margin I 2 3 4 )
Bio By Pao Bor  Pao Ba1  Bao By Bso Bsy

Tij discrete

d=3 [1.036 1.044 1.018 1.028 1.01I9 1.038

d=4 [1.046 1.047 1.057 1.060 1.042 1.064 1.040 1.082

d=5 [1.0631.061 1.0451.046 1.0321.063 1.058 1.094 1.062 1.111
Zij continuous

d=3 [1.000 1.055 1.006 1.053 1.003 1.027

d=4 10.9991.087 1.0051.078 1.0111.064 0.999 1.104

d=5 [1.0041.101 1.0091.063 1.0111.082 1.0021.101 1.0021.110

6.5 Summary

In this chapter, we discussed the drawbacks of the GEE in a multivariate analysis framework and

examined the efficiency of GEE approach relative to a model based likelihood approach. The purpose

of such a study is to partially fill in what is lacking in the statistical literature. Our conclusion is that
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GEE is sensitive to the specification of dependence (or correlation) structure; when the specification
of dependence is far from the correct one, there is a substantial loss of efficiency with GEE parameter
estimation.

The application of GEE to multivariate analysis (longitudinal studies and repeated measures)
seems to have grown in relative importance in recent years, but the GEE method does have draw-

backs, possible inefficiency, and some assumptions that may be too strong. One should be cautious

in the use of GEE, particularly for count data, unless one has a way to assess the assumptions.




Chapter 7

Some further research topics

Many new ideas associated with the construction of multivariate non-normal models, and for es-
timation and data analysis in multivariate models are advanced in this thesis. The IFM theory
for dealing with multivariate models makes the parameters estimation and inference in multivariate
non-normal models possible in many situations. More importantly, the research in this thesis may
lead to some more potentially fruitful avenues of research. There is much room for further extensions
of the ideas in this thesis to general multivariate analysis.

In this final chapter, we mention a variety of research topics of special interest directly related
to this thesis work. These topics may include:

1. Comparison of different models and inferences for short and long discrete time series. Long
discrete time series situations may include (a) n independent long time series Y; (i = 1,2,...,n),
where Y; = (Yi1,Yia, ..., Yis,) has length ¢;; (b) m correlated times series from a single subject; (c)
n independent subjects (i = 1,. .'.,n), and m; repeated measures are observed on each subject 7
over a long time period. General MCD and MMD models with IFM inference approach may not be
efficient in investigating either the marginal behaviour or dependence structure with these long time
series. Adaptation of MCD and MMD to general random effects models together with a relative of
the IFM approach can be used in these cases of long time series for each subject. Some applications
would be the modelling in environmental studies and health studies of longitudinal or time series
nature.

2. Models and inference for mixed multivariate responses (some continuous and some discrete
variables). To analyze jointly multivariate discrete and continuous response data, appropriate multi-

variate models with desirable properties (see Chapter 1) are required as the foundation for inferences.
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The analysis of dependence (or associations) between the discrete and continuous response variables
would be interesting and important part of the fnodelling and inference process. There are some ob-
vious extensions of MCD and MMD models for mixed multivariate response variables. Other classes
of models based on specified conditional distributions for mixed multivariate response variables may
also be promising. The extension of the inference procedures based on IFM for mixed multivariate
response variables is also possible. There is interesting potential to develop applications for real life
situation. Some recent references on this topic are Catalano and Ryan (1992) and Fitzmaurice and
Laird (1995). v

3. Models for multinominal categorical responses with covariates. When the polytomous response
variables do not have an ordered marginal structure, the existence of a MCD model becomes hard
to justify since we are not able to justify the existence of latent continuous variables associated
to the response variables. In the univariate situation, Cox (1970) proposed a model for unordered
polytomous response variable. When the response variable Y takes m distinct values y1,¥2,...,¥m

and p regressor variables x = (z1,...,%,)’, then a model for Y is

/
Pr(Y = yijx) = (% + Aix) i=1,...,m,

ity exp(ei + Bix)’

where o) 4 8] x is assigned the value 0 for all x to make the parameters identifiable. Now suppose we

“have d correlated polytomous response variables (assume the dependence is well defined). Is there
any suitable multivariate model for appropriately modelling the marginal behaviour as well as the
multivariate dependence structure? What about the extension of MCD models?

4. Extension to multivariate compositional data. Sometimes, the analytical problems of interest
to scientists produce data sets that consist essentially of relative proportions and thus are subject
to nonnegativity and constant sum constraints. These situations lead to the compositional data.
The Dirichlet distribution provides the parametric model of choice when analyzing such data. But
the covariance structure associated with Dirichlet random vectors is well-known to be limited to
nonpositive. Hence compositional data that exhibit positive correlations cannot be modeled with
the Dirichlet. Aitchison (1986) developed classes of logistic normal models partly in response to
this shortcoming. Unfortunately, Aitchison’s logistic normal classes do not contain the Dirichlet
distribution as a special case. As a result, they exhibit interesting dependence structures but are
unable to model extreme independence. It is possible to relate the compositional data modelling
to the big family of multivariate copula model. The questions are: Can we have models which can

model the complicated dependence or complicated independence structure (see Aitchison, 1986)7

And what about the appropriate estimation and inference procedures?
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Other research topics include: (i) modelling of unequally spaced longitudinal data; (ii) modelling
of multivariate data with spatial patterns; (iii) modelling of multivariate directional data; (iv) adap-
tation of MCD and MMD models and the IFM approach to missing data; and (v) further studies of
families of copulas with given bivariate margins (such as Molenberghs-Lesaffre construction).

The above topics may accept some obvious extensions of this thesis work. The research ap-
proaches for the above topics to be taken may make use of copula models, latent variables, mixtures,

stochastic processes, and point process modelling. Inference can be based on the expansion of IFM

approach.
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Appendix A

Maple programs

This appendix contains a program written in Maple for Example 4.3 in Chapter 4.

gi2p11l := 1/4+1/(2*pi)*arcsin(ri2);
g12p00 := gi2pill; gi2pi0 := 1/2 - gi2pil; gi12p01 := gi12pil0;

dgi2pil := diff(gi2pii, ri12);. dgi2p00 :
dgi2p10 := diff(gi2p10, ri2); dgi2p01 :

dgi2pii;
dgi12pi0;

gi3pll := 1/4+1/(2%pi)*arcsin(ri13);

g13p00 := gi3pil; gi3pi0 := 1/2 - gi3pili; gi3p01 := gi3pi0;
dg13p11 := diff(gi3p11, ri13); dg13p00 := dgi3pili;

dgi3p10 := diff(g13p10, ri13); dgi13p01 := dgi13pio;

g23p11 := 1/4+1/(2*pi)*arcsin(r23);

g23p00 := g23pi1; g23p10 :=1/2 - g23pi1; g23p01 := g23p10;
dg23p11 := diff(g23pil, r23); dg23p00 := dg23pii;

dg23p10 := diff(g23p10, r23); dg23p01 := dg23pi0;

gpill := 1/8+1/(4*pi)*(arcsin(r12)+arcsin(ri13)+arcsin(r23));
gp110 := gi2pli-gpiil; gp011l := g23pii-gpilil; gpl01 := gi3pili-gpiill;
gp001 := g23p01-gp101; gpi100 := gi12p10-gp101; gp010 := g12p01-gp0iil;

248



gp000

I11 :

I22 :

I33 :

I12 :

Ii3 :

I23 :

:= 1-gp111-gp110~-gp011-gp101-gp001-gp100-gp010;

1/gpi11*diff(gp111,r12)~2+1/gp110+diff(gp110,ri2)~2
+1/gp101%diff (gp101,r12)"2+1/gp011+diff(gp011,ri2)"2
+1/gp100*diff (gp100,ri12)"2+1/gp001*diff(gp001,r12)~2
+1/gp010*diff(gp010,ri12)~2+1/gp000*diff(gp000,r12)~2;
1/gp111*diff(gp111,r13)~2+1/gp110*diff(gp110,r13)~2
+1/gp101*diff(gp101,r13)~2+1/gp011*diff(gp0il,r13)~2
+1/gp100*diff (gp100,r13)~2+1/gp001*diff(gp001,r13) "2
+1/gp010*diff(gp010,r13) “2+1/gp000*diff(gp000,r13)~2;
1/gp111%diff(gp111,r23)~2+1/gp110*diff(gp110,r23)~2
+1/gp101*diff (gp101,r23)~2+1/gp0i1*diff(gp0il,r23)~2
+1/gp100*diff (gp100,r23)~2+1/gp001+diff (gp001,r23)~2
+1/gp010*diff (gp010,r23)~2+1/gp000*diff (gp000,r23)~2;
1/gp111*diff(gp111,r12)*diff(gpill,ri3)
+1/gp110%diff (gp110,r12)*diff(gp110,r13) .
+1/gp101*di¥f(gp101,r12)*diff(gp101,r13)
+1/gpO11%diff (gp011,r12)*diff(gp011,r13)
+1/gp100*diff (gp100,r12)*diff(gp100,r13)
+1/gp001+diff (gp001,r12)*ditf (gp001,r13)
+1/gp010*diff (gp010,r12)*diff (gp010,r13)
+1/gp000*diff (gp000,r12)*diff(gp000,ri3);
1/gp111*diff(gp111,r12)*diff(gpi11,r23)
+1/gp110*diff(gp110,r12)*diff(gpi110,r23)
+1/gp101*diff(gp101,r12)*diff(gp101,r23)
+1/gp011*diff(gp011,r12)*diff (gp011,r23)
+1/gp100*diff(gp100,r12)*diff (gp100,r23)
+1/gp001*diff (gp001,r12)*diff (gp001,r23)
+1/gp010*diff(gp010,r12)*diff (gp010,r23)
+1/gp000*diff(ngOO,r12)*diff(gp000,r23);
1/gp111*diff(gp111,r13)*diff (gpi111,r23)
+1/gp110*diff(gp110,r13)*diff(gp110,r23)
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I11 .
I12 :

E11 :

E22 :

E33 :

E12 :

E13 :

E23 :

Ei1l :
E12 :
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+1/gp101*diff (gp101,r13)*diff (gp101,r23)
+1/gp011*diff (gp011,r13)*diff(gp011,r23)
+1/gp100%diff (gp100,r13)*diff (gp100,r23)
+1/gp001*diff(gp001,r13)*diff(gp001,r23)
+1/gp010*diff(gp010,r13)*diff (gp010,r23)
+1/gp000+diff (gp000,r13)*diff (gp000,r23);

simplify(I22); I33 :

simplify(I11); I22 : simplify(I33);

simplify(I12); I13 := simplify(I13); I23 := simplify(I23);
1/g12p11%dgi2p11~2+1/g12p10*dg12p10-2
+1/g12p01%dg12p01~2+1/g12p00*dg12p00~2;
1/g13p11*dg13p11~2+1/g13p10*dgi3p10°-2
+1/g13p01*dg15p01“2+1/g13p00*dg13p00’2;
1/g23p11%dg23p11-2+1/g23p10*dg23p10~2
+1/g23p01*dg23p01~2+1/g23p00*dg23p00~2;
gp111/(g12p11*g13p11)*dgl2p1i*dgl13pil
+gp110/(g12p11*g13p10)*dg12p11*dg13p10+gp101/(g12p10*g13p11)*dg12p10+dg13pil
+gp100/(g12p10%g13p10)*dg12p10+dg13p10+gp011/(g12p01*g13p01)*dg12p01*dg13p01
+gp010/(g12p01*g13p00)*dg12p01*dg13p00+gp001/(g12p00*+g13p01) *dg12p00*dg13p01
+gp000/ (g12p00*g13p00)*dg12p00%dg13p00;
gp111/(g12p11%g23p11)*dg12p11*dg23p11
+gp110/(g12p11%g23p10)*dg12p11*dg23p10+gp101/ (g12p10+g23p01) *dg12p10%dg23p01
+gp100/(g12p10*g23p00)*dg12p10+dg23p00+gp011/(g12p01%g23p11)*dg12p01*dg23p11
+gp010/(g12p01*g23p10)*dg12p01+dg23p10+gp001/(g12p00*g23p01) *dg12p00*dg23p01
+gp000/ (g12p00*g23p00) *dg12p00*dg23p00;
gp111/(g13p114g23p11)+dg13p11*dg23pl1
+gp110/(g13p10*g23p10)*dg13p10*dg23p10+gp101/(g13p11*é23p01)*dg13p11*dg23p01
+gp100/(g13p10%g23p00)*dg13p10*dg23p00+gp011/(g13p01*g23p11) *dg13p01+dg23pil
+gp010/(g13p00%g23p10)*dg13p00*dg23p10+gp001/(g13p01*g23p01) *dg13p01+dg23p01
+gp000/ (g13p00*g23p00) *dg13p00+dg23p00;

simplify(E11); E22 :

simplify(E22); E33 := simplify(E33);
simplify(E12); E13 :

simplify(E13); E23 :

simplify(E23);



with(linalg);

I := matrix(3,3, [I111,I112,113,I112,122,123,113,123,I33]);
Iinv := evalm(I~(-1));

M:= matrix(3,3, [(E11,E12,E13,E12,E22,E23,E13,E23,E33]);
Minv := evalm(M~(-1));

D := matrix(3,3,[E11,0,0,0,E22,0,0,0,E33]);

Dinv := evalm(D~(-1));

Jinv := evalm(Dinv &* M &* Dinv);
map(simplify,evalm(Jinv-Iinv));

det(evalm(Jinv-Iinv));
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