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Abstract 

When analyzing short term heart rate variability (HRV) signals using the FFT technique, 

the linear trend appears to be perfect 1/f signals. The non-linear trend in short term HRV 

signals produces the regression 1/f components. De-trending the data using a moving 

average is an effective technique for removing the 1/f components. However, though 

removing the trend may sometimes produce clearer spectral pictures of respiratory sinus 

arrhythmia or the breathing frequency, it has little impact otherwise. The linear trend is 

fractal, but not chaotic. The 1/f components in the signal does not imply the signal fractal; 

nor does a fractal signal implies it chaotic. No evidence in the present research suggests 

that the non-linear trend is fractal, nor is there evidence to suggest that the HRV signal is 

fractal, or chaotic. 
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INTRODUCTION 

Using spectral analysis to investigate the frequency characteristics of heart rate variability 

(HRV) signals dates back to 1973, when Sayers published his paper 'Analysis of Heart 

Rate Variability'(l)- In this paper spectral analysis was used to determine blood pressure 

fluctuations as well as those of respiration. In the early 1980s, spectral analysis coupled 

with pharmacological blockade (2,3,4) and direct nervous stimulation (5) revealed that 

peaks of short-term HRV spectra >0.15 Hz were mediated almost entirely by the vagus, 

whereas those <0.15 Hz could be mediated by both vagal and cardiac sympathetic nervous 

inputs to the sinoatrial node (4). These results give a rationale for investigating short-term 

HRV spectra in cardiovascular research as well as in clinical situations (6). 

Many investigators using spectral analysis of HRV signals came across a phenomenon 

which they named the 1/f components of the HRV signals. In 1982, Kobayashi and Musha 

reported that the HRV signal had a 1/f power spectrum in the frequency range slower than 

0.02 Hz, when the heartbeat period was analyzed over time scales longer than 50s (7). 

Earlier, Mandelbrot and Ness (1968) had proposed the concept of fractional noise to 

describe the origin of the 1/f components(14). Later Saul et. al. (1988) used 5-minute 

data segments and calculated that at frequencies between 0.00003 and 0.1 Hz, the power 

spectrum of the HRV signal was fundamentally 1/f (8). Finally, Yamamoto and Hughson 

(1991) proposed a Coarse-Graining Spectral Analysis (CGSA) to selectively remove the 

1/f or fractal components(6) to improve the quality of the power spectral diagrams. 
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The 1/f spectrum was first reported in 1925 for an electric current passing through a 

vacuum tube(9). Later, the 1/f spectrum was reported in the cellular membrane 

potential(lO), frequency fluctuation of the alpha brain wave(ll), concentration modulation 

of action potential impulses propagating in the giant axon of a squid(12), as well as 

highway traffic current fluctuations(13). 

There are a lot of terms to describe this phenomenon, such as 1/f fluctuation, 1/f noise, 1/f 

spectrum, 1/f-like power spectrum, ... etc. They describe a spectrum in which the power is 

cc 
inversely proportional to its frequency. In mathematical form: P(f) = -yj , where P is 

power, f is frequency, a and B are positive real constants. Two cases illustrating the 1/f 

spectrum follow: 

cc cc 
Case 1: Fig. 1-1 shows P(f) when a=\ and/?=2. Fig.1-2 showsP(/) 

when it is plotted in double log form log(P) = log(a) - /?log(/). It is a straight line with 

a negative slope. 

Fig. 1-1 Fig. 1-2 

Frequency (Hz) log(Frequency) 
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Case 2: Usually, a perfect 1/f spectrum like those of Case 1 will not be seen. Instead, the 

more usual cases are those illustrated in Fig. 1-3 and Fig. 1-4. 

Fig. 1-3 Fig. 1-4 

Frequency (Hz) log(Frequency) 

The spectrum is said to have 1/f components because there is a 1/f-like spectrum in the 

lower frequency range (0+ to 0.1+ Hz) of Fig. 1-3 and the regression line of the double log 

spectrum (Fig. 1-4 ) has a negative slope. 

A perfect 1/f signal which produces the power spectra illustrated by Case-1 has 

never been observed before. This study identified its source as the linear trend of HRV. 

The origin of the regression 1/f spectra has been proposed (16), yet has not been identified 

before. This study shows it to be the non-linear trend of HRV. The CGSA technique (6) 

of removing the 1/f components is ineffective and mathematically incorrect. This study 

shows that de-trending by the method of moving average is quite effective for removing 

the lower frequency range 1/f components. An effective method for removing all 1/f 

components is also proposed. 
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What is the significance of knowing that the origin of the 1/f components is the trend? It 

was thought that the 1/f phenomenon had major implications with respect to the nature of 

HRV signals, in that the 1/f spectra indicated fractal noise. Further, these fractal 

components have been assumed to indicate chaos. This study clarifies that it is not the 

case: the 1/f component is nothing but the trend. This study also indicates that although 

the linear trend is fractal, it is by no means chaotic; clear evidence that being fractal does 

not imply chaos. No evidence in our research suggests that the non-linear trend is fractal, 

or the FfRV signal is fractal, or the FfRV signal is chaotic. 

What is the significance of removing the 1/f components? The work of this thesis suggests 

that it is of little or no significance. Removal of the 1/f components may sometimes 

produce a clearer spectral picture of the breathing frequency, otherwise it is not necessary 

to remove the 1/f components as some used to believe (6). 
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METHODS 

Data collecting: Electrocardiograph (EKG) signals were recorded from 3 subjects (DRJ, 

age 55; RA, age 32; YY, age 34) resting in an armchair using three electrical leads 

attached to the subjects' lower chest, upper chest and wrist. The leads were connected to 

an isolation unit which was connected to a Gould universal amplifier and filter. The EKG 

signals were sampled at 200 Hz on a computer (Lab Tech Notebook) and were stored as 

beat-to-beat or RR-intervals, also called heart rate variability (HRV) signals. 

Data pre-processing: RR-intervals were linearly interpolated at 4 Hz to ensure equidistant 

sampling. This procedure inevitably introduced some higher frequency components into 

the signal. Therefore, these signals were filtered by a low pass filtering procedure at a cut­

off frequency of 0.5 Hz. Then the signals were re-sampled at 1 Hz. This procedure 

reduces the data set size for calculation economy, yet keeps the information of interest 

intact. Since the highest frequency in the signals is 0.5 Hz, and the sampling frequency is 

1 Hz, which is twice as much as the signal's highest frequency, and according the Nyquist 

sampling theorem (21), no aliasing should occur. The linear interpolations were done 

using the AWK program of the MKS TOOLKIT (Mortice Kern Systems Inc.). The 

filtering and re-sampling were done using MATLAB (Math Works, Inc. Cochituate Place, 

24 Prime Park Way, Natick, Mass. 01760, USA). 
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Linear trends were calculated by the method of least squares. Non-linear trends were 

calculated by moving averages of 24 second periods in the case of 2 minute HRV signals, 

and 38 second periods in the case of 4 minute HRV signals. 

All spectral analyses were done using MATLAB on PC. 

Analytical Fourier Transform of the linear trend was done using MATHEMATIC A. 

Courtesy of UBC TeleCom. 
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RESULTS 

1) The 1/f Components due to the Linear Trend: Fig.3-1 is a one minute HRV 

signal segment. Its power spectrum (Fig.3-2) and its double-log plot (Fig.3-3) show 

that it has 1/f components. It has a linear trend (Fig. 3-4). The power spectrum of the 

linear trend is a perfect 1/f spectrum (Fig.3-5). This is also shown in its double-log plot 

(Fig.3-6). When the trend is removed from the signal (Fig.3-7), the power spectrum and 

its double-log plot show that no 1/f components remain (Fig.3-8 and Fig. 3-9). 

Note: 1. The tangent of the regression line of Fig.3-3 is -1.4242; whereas that of Fig.3-9 is 0.0471; 

2. Changing the frequency range of interest will change the tangent of the regression line; 

3. The peak at 0.1667 Hz in Fig.3-2 and Fig.3-8 correspond to the breathing frequency of the 

subject. 

Fig.3-10 is another one minute HRV signal segment. Its power spectrum (Fig.3-11) and 

its double-log plot (Fig.3-12) show that it has 1/f components. It has a linear trend (Fig.3-

13). The power spectrum of the linear trend is a perfect 1/f spectrum (Fig.3-14). This is 

also shown in its double-log plot (Fig.3-15). When the trend is removed from the signal 

(Fig.3-16), the power spectrum and its double-log plot show no 1/f components remain 

(Fig.3-17and Fig. 3-18). 

Note: 1. The tangent of the regression line of Fig.3-12 is -1.4115; whereas that of Fig.3-18 is 0.0579; 

2. Changing the frequency range of interest will change the tangent of the regression line; 

3. The peak at 0.1667 Hz in Fig.3-11 and Fig.3-17 correspond to the breathing frequency of the 

subject. 
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Signal Power Double-log 

Original signal 

Fig. 3-1 Fig. 3-2 Fig. 3-3 

Time (min) Frequency (Hz) log(Frequency) 

Trend 

Fig. 3-4 Fig. 3-5 Fig. 3-6 

Time (min) Frequency (Hz) log(Frequency) 

Trend-free signal 

Fig. 3-7 Fig. 3-8 Fig. 3-9 

Time (min) Frequency (Hz) log(Frequency) 
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Signal Power Double-log 

Original signal 

Fig. 3-10 Fig. 3-11 Fig. 3-12 

Time (min) Frequency (Hz) log(Frequency) 

Trend 

Fig. 3-13 Fig. 3-14 Fig. 3-15 

Time (min) Frequency (Hz) log(Frequency) 

Trend-free signal 

Fig. 3-16 Fig. 3-17 Fig. 3-18 

Time (min) Frequency (Hz) log(Frequency) 
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2) The 1/f Components due to the Non-linear Trend: Fig.3-19 is a two minute 

HRV signal segment. Its power spectrum (Fig.3-20) and its double-log plot (Fig.3-21) 

show that it has 1/f like components. It has a non-linear trend (Fig.3-22). The power 

spectrum of the non-linear trend is not a perfect 1/f spectrum (Fig.3-23). This is also 

shown in its double-log plot (Fig. 3-24). However, the regression line of the double-log 

plot is 1/f (Fig.3-24). When the trend is removed from the signal (Fig.3-25), power 

spectrum and its double-log plot show little remaining 1/f component (Fig.3-26 and Fig. 3-

27). 

Note: 1. The tangent of the regression line of Fig.3-12 is -1.2651; whereas that of Fig.3-18 is -0.0032; 

2. Changing the frequency range of interest or the length of the moving average period will change 

the tangent of the regression line; 

3. The peak at 0.1667 Hz in Fig.3-20 and Fig.3-26 corresponds to the breathing frequency of the 

subject. 

Fig.3-28 is a four minute HRV signal segment. Its power spectrum (Fig.3-29) and its 

double-log plot (Fig. 3-30) show that it has 1/f like components. It has a non-linear trend 

(Fig.3-31). The power spectrum of the non-linear trend is not a perfect 1/f spectrum 

(Fig.3-32). This is also shown in its double-log plot (Fig.3-33). However, the regression 

line of the double-log plot is 1/f (Fig.3-33). When the trend is removed from the signal 

(Fig.3-34), the power spectrum and its double-log plot show no 1/f components remain 

(Fig.3-35 and Fig. 3-36). 
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Note: 1. The tangent of the regression line of Fig.3-30 is -0.8936; whereas that of Fig.3-36 is 0.0295; 

2. Changing the frequency range of interest or the length of the moving average period will change 

the tangent of the regression line; 

3. The peak at 0.1667 Hz in Fig.3-29 and Fig.3-35 corresponds to the breathing frequency of the 

subject. 
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DISCUSSION 

1) The Linear Trend Why does the linear trend appear to be a perfect 1/f signal? 

Every linear trend can be expressed by the equation: 

y(t) = a-t + b (0<t<T) (1) 

Where y is the dependent variable, t is time the independent variable, T is the signal length, 

a and b are real constants. 

Its Fourier transform is 

And its result is 

Y{co) 

a — + b 
2 

1 a + ibco e (a + ibco + iaTco)., —r 1 - -1 
CO 

,co = 0 

0 < co < + Q O 

-oo < co < 0 

( 2 ) 

where co = 2nf . 

Digital Fourier Transform (DFT) calculates only part of the results in ( 2 ) : 

Y(a>n) = \ 

a — + b 
2 

1 a + iba>n e~iTa" {a + iboo n + iaTco n) 
1 co „ oo „ 

, w = 2 , 3 , 4 . . . J V / 2 

conj[Y(o)N_n+l)] ,n = {N 12 + \)XN 12 + 2),...,N 

This is because in the analytical form, the period F = lim 
1 

0 dt 
00 
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whereas in digital form F 
At 

When in the FFT format where Af = y 

F T 
N =— = —. 

Af At 

= 2n-(n-\)Af 

= 2*-(n-l) .y 

Tco„ = T-2n-{n-\)-

= 2n(n - 1 ) 
T 

e " = cos(Tco „) - i • sin (To „) 
= cos[2^-(« - 1)] - /' • sin[2;r(« - 1 ) ] 

= 1 

Y(a) ) = 1 [ a + i b ( D " i e~iTm (a + i b o }
 n + i a T ® J j 

T co „2 co „2 

1 a + ibco„ 1 • (a + ibco „ + iaTco „) 
~ 2 ' 2 J T co „ co „ 

= / 
ft? 

^ K ) = |y(ftO| 
a 

Substituting 2 n f n for <2> M , we obtain: 

15 



P(fn) 
< a ^ 

(a I2n)2 

f 2 

J n 

Let a = (a I 2 k ) 2 , and 6 = 2, 
a 

P(fn) = 
fn P n = 2,3,4... Nl 2 

Therefore the linear trend is a perfect 1/f signal when expressed in the FFT format. 

The graphs shown below are of the trend equation y(t) = -y t + 800 (0 < t < 120s) 

expressed in the FFT format: 

Signal Power 

Fig.4-1 Fig.4-2 

en 
s 

o 
CL, 

o 
OH 

O 

1.5 -1 -0.5 

Time (min) Frequency (Hz) log(Frequency) 
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When in the DFTformat of Af = * 

Then N = 

10*T 

F 10*T 
4/ At 

, v l r a+ibcon e~lTa" (a +ibco „ +iaTco „)n . . . . . 
and Y(a> „)•=—[ ^ + * f "—] ,n = 2,3,4... N 12 

1 CO „ CO „ 

Signal Power Double-log 

Fig.4-4 Fig.4-5 Fig.4-6 

Time (min) Frequency (Hz) log(Frequency) 

Here, it does not appear to be a perfect 1/f signal anymore. However, the base line of the 

power and the double-log form is what we have seen earlier in the FFT format (Fig.4-2 

and Fig.4-3). So strictly speaking, the linear trend is not a perfect 1/f signal; it only 

appears to be one when its power spectrum is expressed in the FFT format where 

Af =-^. This is usually the case in spectral analysis. 
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Aliasing in the FFT of the linear trend. When using FFT at the sampling rate of 1 FIz to 

calculate the power and then the double-log of the power spectrum, we obtain Fig. 4-8 and 

Fig.4-9 which are very similar to those of Fig.4-2 and Fig.4-3. However, there are some 

differences. The major differences being that the end of the line is tipped upward (Fig.4-9). 

It is due to aliasing. From formula (2) we know that the linear trend has infinite frequency 

components. The FFT's sampling rate here is set at 1 Hz. According to the Nyquist 

sampling theorem (21), the sampling rate should be at least twice that of the signal's 

highest frequency, otherwise, aliasing occurs. In the case of the linear trend, however, 

there is no way that one can have a sampling frequency twice that of its highest frequency, 

since that highest frequency is infinite. Therefore, aliasing is bound to occur. Fortunately, 

the power of the higher frequencies is usually very small compared with those of the lower 

frequency ones, so aliasing is negligible. 

Signal Power Double-log 

Fig.4-7 Fig.4-8 Fig.4-9 

Time (min) Frequency (Hz) log(Frequency) 
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2) The Non-linear Trend The frequency response of the de-trending procedure by 

moving average. Fig.4-10 and Fig.4-11 show the frequency response of the transfer 

function which converts the signal of Fig.3-19 to the signal of Fig.3-25. Fig.4-12 and 

Fig. 4-13 show the frequency response of the transfer function which converts the signal of 

Fig.3-28 to the signal of Fig.3-34. From Fig.4-10 and Fig.4-12 it can be seen that the de-

trending procedure attenuates the amplitude of the lower frequency range of the signal, 

having little effect on the higher frequency range. From Fig.4-11 and Fig.4-13 it is can be 

seen that it also has little effect on the phase of the signals over all of the frequency range. 

De-trending by moving average only removes the lower frequency range of the 1/f 

components. Removal of the 1/f components over the entire frequency range needs a 

special technique which is discussed in the following section. 
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The procedure for removing 1/f components over the entire frequency range. A brief 

explanation of how this is accomplished is given here. Fig.4-14 is the same 4 minute signal 

as Fig. 3-28. Fig.4-15 is its power spectrum. Fig.4-16 is the power spectrum plotted in the 

double log form with its regression line (tangent =-1.7732), the 1/f component. The 1/f 

component free power, in the double log form with its regression line (tangent = 0) (Fig. 4-

19), is obtained by subtracting the components of the regression line from the components 

of the double log power spectrum then adding the results to the mean value of the 

components of the double log power spectrum. The anti-log is taken to obtain the 1/f 

component free power spectrum (Fig.4-18). The phases are not changed in the procedure. 

The 1/f component free signal (Fig.4-17) is obtained by inverse Fourier transform. 
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Fig.4-14 Fig.4-15 Fig.4-16 

Time (min) Frequency (Hz) log(Frequency) 

Fig.4-17 Fig.4-18 Fig.4-19 

Time (min) Frequency (Hz) log(Frequency) 
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The frequency response of the transfer function. Figs.4-20 and 4-21 describe the 

frequency response of the transfer function which converts the signal of Fig.4-14 to that of 

Fig.4-17. From Fig.4-20 we can see that the procedure attenuates the amplitude of the 

lower frequency range of the signal, and amplifies that of the higher frequency range. 

From Fig.4-21 we can see that the procedure does not affect the phase of the signals. This 

procedure removes all the 1/f components over the entire frequency range. 

Amplitude Response Phase Response 

Fig.4-20 Fig.4-21 

Frequency (Hz) Frequency (Hz) 
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3) 1/f Components in HRV Signals, Fractals and Chaos 

Fractal is a word coined by Mandelbrot in 1975 from the Latin fractus, which 

describes a broken stone. A fractal object looks the same when examined from far away or 

nearby - it is self-similar (20). Mandelbrot himself gave two examples of the fractal: the 

cauliflower (Fig.4-22) (20)and the Sierpinski gasket (Fig.4-23) (20). The fractal of the 

cauliflower is self-similar and irregular, whereas that of the Sierpinski gasket is self-

similar and regular. So whether it is irregular or not, if the object is self-similar, then it is 

fractal. 

A chaotic system, as its name implies, is inherently unstable. It has two important 

properties: 1) it is sensitive to its initial point, i.e. small changes in input cause big changes 

in the output; 2) its behavior is unpredictable. A well-known example is a swinging 

pendulum with a iron bob that is attracted equally to two magnets positioned below it. 

When the bob moves near to a point midway between the magnets, it is affected almost 

equally by the force from each magnet. Its future motion becomes extremely sensitive to 

small changes in its present position and velocity, and therefore its motion is chaotic. If we 

assume the sensitivity is so great that the error in measuring the position of the bob 

increases by 10 times in one swing between the magnets, which is not at all exceptional, 

prediction of its position to within a centimeter after one swing entails measuring its 

position at any point in the swing to within a millimeter. For a prediction with the same 

degree of precision after four swings, its position would have to be 
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Fig.4-22 

This cauliflower, a variety called c. Romanesco, is an example of 
a natural fractal. 

Fig.4-23 

The Sierpinski gasket - a simple fractal produced by breaking up 
a triangle into successively smaller ones. 
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measured to within the size of a bacterium, and after nine swings, to within less than the 

size of an atom. The pendulum obeys Newton's deterministic laws, but any attempt to 

predict its future behavior over long times is impossible (20). 

Chaos and fractals are fascinating new ideas, which have impinged on many fields 

across the scientific spectrum. Of special interest to physiologists is the role played by 

fractals in the spectrum of heart rate variability (HRV) signals: a 1/f spectrum suggests a 

fractal signal, and hence, a chaotic process (Goldberger, 1991) (17). One of the objectives 

of this thesis is to show that this hypothesis is not true: 

1) Fractal does not imply chaos: According to the rule set by Mandelbrot (Fig.4-

23), the linear trend (Fig.4-24) is fractal, because any part of the signal is similar to each 

other and to the whole signal, yet it is obviously not chaotic because it is totally 

predictable and its power spectrum is not sensitive to the signal's initial point. Therefore, 

this is evidence that being fractal does not imply being chaotic; 

2) 1/f does not imply fractal: Fig.4-24 shows a linear trend; Fig.4-25 shows its 1/f 

power spectrum; Fig.4-26 shows the phase spectrum (Note: It was calculated by FFT. The 

phases shift from 0.5 n to 1 n from 0 to 0.5 Hz is due to aliasing). However, the same 1/f power 

spectrum (Fig.4-28 ) with random phases (Fig.4-29) has a completely different time 

domain signal (Fig.4-27 ); Fig.4-28 is a signal which has the same 1/f power spectrum 

yet the phases of the 2-min HRV signal of Fig.3-19. The same 1/f power spectrum does 

not have a linear trend. The signals of Fig.4-27 , Fig.4-30 and any other signal with the 

26 



same 1/f power spectrum yet different phases are not necessarily all fractal. A 1/f spectrum 

does not implies fractal components in the original signal. 

Therefore, the Hypothesis that a 1/f power spectrum suggests a fractal signal, and 

hence, a chaotic process, is not valid. 

In the case of the non-linear trends, its double-log regression power spectrum is 1/f. 

Is it chaotic? Is it fractal? As a special case, the double-log frequency domain regression 

power spectrum of the linear trend is certainly 1/f as well, but it is not chaotic. Therefore, 

the 1/f double-log regression power spectrum does not imply a chaotic signal. Is it fractal? 

The work of this thesis suggests that not every non-linear trend is self-similar, therefore, 

the 1/f double-log regression power spectrum does not imply a fractal signal. 

As for the HRV signals, my experiments show that not every HRV signal is self-

similar, therefore, not every HRV signal is fractal; not every HRV signal's power 

spectrum is sensitive to small changes of the initial point of the signal, therefore, not every 

HRV signal is chaotic. 
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3) The Mistakes of the CGSA Let's see how CGSA works. In their paper 

'Coarse-graining spectral analysis: new method for studying heart rate variability', 

Yamamoto and Hughson wrote, 'Let us now consider a discrete stationary stochastic 

process [X(t) | t=l,2,...,hT], which consists of some harmonic components and ABH (i.e., 

the 1/f noise). For simplicity, we set h = 2", where n is a positive integer. We can obtain 

the two subsets of X(t): [x(t)\t = 1,2,...,7] and [x'(t)\t = h,2h,...,hT]. To make x(t) 

and x' (t) from one ensemble, one can take the first T samples from X(t) for x(t) and 

take T samples every h samples for x' (t). Therefore it can be said that x' (t) is a coarse­

grained process of X(t). ... Now we consider the autopower spectrum Sxx of x(t) and 

the cross-power spectrum S& between x(t) and x' (t), which are the Fourier transform 

of CXX(T) (auto-correlation function of x(t)) and CXX(T) (cross-correlation function 

between x(t) and x' (t)), respectively. As the phase relationship between x(t) and x' (t) 

is apparently random, it is expected that (im Sxx-) —» 0 (where Im is the imaginary part of 

the complex variable). Consequently, |&*| is thought to express only the power of ABH 

components, and the quantities 1S,xc-|S«,| can be used to evaluate ABH -free spectrum of 

X(t)....,these procedures are called the coarse-graining spectral analysis (CGSA).' 

These statements can be examined by an example: 
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Fig.4-33 
20 0 

Time (min) 

Fig.4-34 

Number of data points 

Fig.4-35 

Number of data points 

Fig.4-33. the signal of X(t); 
Fig.4-34. the signal of x(t) ; 
Fig.4-35. the signal of x'(t) . 
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Fig.4-38 

0 0.1 0 .2 0 .3 0 .4 0 . 5 

Frequency (Hz) 

Fig.4-36. Sxx , the autopower spectrum of . 

Fig. 4-37. IS**'| , the cross-power spectrum between x(t) and • 

Fig.4-38. Sxx—|Sxx' | , the supposedly ABh -free spectrum of X(t). 
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From Fig.4-38 it is seen that 1) not all the 1/f-like components in the lower frequency 

range are removed by this procedure; 2) the &x-|5«'| gave negative results, which is not 

possible, since the power is the amplitude squared and can never be negative. The reason 

for this may be that CGSA assumes that the harmonic power components, PH , plus the 

1/f components, PF , equals the total power component, P, of the signal. Such a linear 

relationship does not exist for the power spectrum. We know that if the signal 

x = xH + xF , ( where X is the original signal, xH is the harmonic part of the signal, and 

xF is the fractal part of the signal), and if Y = FFT(x), YH = FFT(xH) and 

YF = FFT(xF), then Y = YH + YF, thus P = \Y\2 , PH = \YH\2 and PF = \YF f . Since 

\Y\2 = \YH + YF\2 * \YH\2 +\YF\2, thenP * PH + PF . Therefore, the assumption of CGSA 

that the harmonic power components, PH , plus the 1/f components, PF , equals the total 

power component, P, of the signal, is wrong. 3) CGSA was wrong when it written 'As 

the phase relationship between x(t) and x'(t) is apparently random, it is expected that 

(im&t) —» 0 (where Im is the imaginary part of the complex variable).' The data shown 

below are the second to eleventh data points of &*• and it is clear that (im&*) s do not 

approach 0. 

1.0e+006 * 

-3.3873 + 0.780H 
-0.7412-1.9016i 
0.8255-0.5007i 
0.0472 - 0.2763i 
-0.1443-0.0921i 
-0.2184-0.3836i 
0.1650 - 0.0789i 
-0.0516 +0.171 li 
0.0141 - 0.0627i 
-0.3026+ 0.1126i 
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On the other hand, if (im —» 0, then the phase spectrum of Sxx' should be zero all 

across the frequency range. The phase spectrum ( Fig.4-39 ) shows clearly that it is not 

case. 

Phase Spectrum 
Fig.4-39 

1 i 1 1 1 r 

Frequency (Hz) 

The reason for that is because 'as the phase relationship between x(t) and x'(t) is 

apparently random', it is NOT to be expected that ( i m & x ) — » 0. 

The discussion above shows that CGSA is mathematically incorrect. 
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4) The Significance of the Current Study A perfect 1/f has never been observed 

before; this study it is identified as the linear trend. It is also a new observation that the 

origin of the regression 1/f spectra is due to the non-linear trend. The CGSA (6) 

technique of removing the 1/f components is ineffective and mathematically incorrect. This 

study showed that de-trending using a moving average is quite effective in removing the 

1/f components of the lower frequency range of the signal. A method of removing 1/f 

components over entire frequencies was also discussed in this thesis. What is the 

significance of removing the 1/f components? It is of little significance. Removal of the 1/f 

components may sometimes produce a clearer spectral picture of the breathing frequency, 

otherwise it is not necessary to remove as some used to believe. It was thought that the 

1/f phenomenon had major implications for the nature of the HRV signals, and that the 1/f 

spectra indicated fractal noise, and the fractal components indicated chaos. This study 

shows that this is not the case: the 1/f component is nothing but the trend, and the major 

implications are that it is no more than the trend. This study also indicated that although 

the linear trend is fractal, it is by no means chaotic. This is clear evidence that being fractal 

does not imply being chaotic. No evidence in the present research suggests that the non­

linear trend is fractal, nor is there evidence to suggest that the HRV signal is fractal or 

chaotic. 

Finally, although the results and discussions in this thesis are limited to short term 

HRV signals, it is conceivable that similar arguments may hold true in some other areas of 

1/f signals (9, 10, 11, 12, 13). 
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CONCLUSIONS 

1) Linear trend appears to be a perfect 1/f signal when FFT is used. 

2) Non-linear trends are responsible for the regression 1/f components. 

3) Removing the 1/f components by removing non-linear trend is more 

effective and accurate than CGSA. 

4) The linear trend is fractal, but not chaotic; 1/f components, fractal and chaos 

are not 'cause and effect' related. No evidence in my research suggests that the non-linear 

trend is fractal, nor is there evidence to suggest that the HRV signal fractal or chaotic. 

5) Although the results and discussion in this thesis are limited to the short term 

HRV signals, it is conceivable that similar arguments may hold true in some other areas of 

1/f signals (9, 10, 11, 12, 13). 
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Appendix 

The question has been raised that whether the data sets used in this thesis are too short to 

draw serious conclusions from their analysis. Since the title of this thesis is ' 1/F 

COMPONENTS IN SHORT T E R M H E A R T R A T E VARIABILITY SIGNALS' , then 

my choice of short data sets are obvious but to dispel further arguments I now show that 

longer data sets do not invalidate the results and conclusions made earlier. It is true that 

when the H R V data set becomes longer, the linear trend becomes less prominent. 

However, that does not invalidate my conclusion that the linear trend appears to be a 

perfect 1/f signal when FFT is used. The fact of the matter is that however long the data 

set of the linear trend is, it appears to be a perfect 1/f signal (pl4-16). On the other hand, 

no matter how long the data set gets, the non-linear trend never disappear. Fig.6-1 is a 

forty minute H R V signal segment. Its power spectrum (Fig.6-2) and its double-log plot 

(Fig.6-3) show that it has 1/f like components. It has a non-linear trend (Fig.6-4). The 

power spectrum of the non-linear trend is not a perfect 1/f spectrum (Fig. 6-5). This is also 

shown by double-log plot (Fig.6-6). However, the regression line of the double-log plot is 

1/f (Fig.6-6). When the trend is removed from the signal (Fig.6-7), the power spectrum 

and its double-log plot show that no 1/f components remain (Fig.6-8 and Fig.6-9). 

Note: 1. The tangent of the regression line of Fig.6-3 is -0.5661; whereas that of Fig.6-9 is 0.0013; 

2. Changing the frequency range of interest or the length of the moving average period will change 

the tangent of the regression line; 

3. The peak around 0.1667 Hz in Fig.3-29 and Fig.3-35 corresponds to the breathing frequency of 

the subject. 
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