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A b s t r a c t 

A new method for multivariate regression analysis of longitudinal data of mixed types 

is applied to the data from a sub-study of the Betaseron multicenter clinical trial in 

relapsing-remitting multiple sclerosis (MS) (The IFNB Multiple Sclerosis Study Group, 

1993). The sub-study is based on a cohort of 52 patients at one center (University of 

British Columbia) for frequent magnetic resonance imagings (MRIs) for analysis of dis­

ease activity over the first two years of the trial (Paty, L i , the U B C M S / M R I Study 

Group and the IFNB Multiple Sclerosis Study Group, 1993). We consider a bivariate 

response vector with two different data types as components. The first component is a 

positive continuous variable and the second one is a count variable. We use a state space 

model approach based on the Tweedie class of exponential dispersion models assuming 

conditional independence of the two components given a latent gamma Markov process. 

The latent process is interpreted as the underlying severity of the disease whereas the ob­

servations reflect the symptoms. One advantage the new method offers is that it enables 

the examination of patterns over time. Not only can it identify the presence of treatment 

effect, but also the nature of the effect. It has well been established that Betaseron has 

substantially altered the natural history of MS in a properly controlled clinical trial (The 

IFNB Multiple Sclerosis Study Group, 1993). The main objective of this thesis is to 

illustrate the utilization of the new method using this data set and to extract additional 

valuable information from the data. 
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C h a p t e r 1 

I n t r o d u c t i o n 

This thesis focuses on the Tweedie state space models proposed by J0rgensen, Lundbye-

Christensen, Song and Sun (1995c) and the application of these models to a multivariate 

longitudinal data set from the U B C 6-weekly frequent Magnetic Resonance Imaging 

(MRI) sub-study of the Betaseron clinical trial in relapsing-remitting multiple sclerosis 

(MS) (Paty, L i , the U B C M S / M R I Study Group and the IFNB Multiple Sclerosis Study 

Group, 1993). The data will be referred to simply as the Betaseron Data. 

Models for analyzing longitudinal data have been developed extensively recently. 

These models can be classified as marginal, random effects, transition and state space 

models. The marginal models focus on inferences about the population average. A key 

feature of these models is the estimation of regression parameters by the generalized es­

timation equation method. Among these are the models proposed by Liang and Zeger 

(1986) and Liang, Zeger, and Qaqish (1992). The random effects models consider situ­

ations in which the regression coefficients vary among individuals. Some examples are 

Laird and Ware (1982) and Zeger and Karim (1991). Transition models are particularly 

useful when the correlation structure is investigated. The models developed by Korn and 

Whittemore (1979) and Zeger, Liang and Self (1985) are specific examples of transition 

models for binary data. 

The state space models have their origin in aerospace engineering and have been 

1 



Chapter 1. Introduction 2 

widely applied in modern systems theory. These kind of models are well developed 

within the context of the Gaussian distribution. The concept has been extended by 

several authors to include non-Gaussian.distributions. In particular, Zeger (1988) and 

Harvey and Fernandes (1989) have proposed state space models for Poisson counts. The 

use of the Kalman smoother in predicting the latent process is a key feature of these 

models. Details of the models for longitudinal data, as mentioned above, will be dis­

cussed in Chapter 2. 

The new method proposed by J0rgensen et al. (1995c) is based on distributions in 

the class of Tweedie exponential dispersion models (J0rgensen, 1987). The distributions 

included in the Tweedie class are the Gaussian, Poisson, compound Poisson and gamma, 

among others. Therefore, the method can handle a wide variety of data types, including 

continuous, count, mixed and positive continuous data. The method has been developed 

for regression analysis of multivariate longitudinal data of mixed types. That is, the re­

sponse vector can have components (called categories) with distributions in the Tweedie 

class; these distributions may not all be the same. The categories are assumed to all 

reflect the same underlying latent process; in particular, an order 1 Markov process is 

used in the analysis in Chapter 4. The observations are assumed conditionally indepen­

dent given the latent process, both across categories and over time. This results in serial 

correlation for each category as well as correlation between the categories because of the 

shared latent process. A realistic correlation structure of the general sort found in many 

types of data is hence achieved. 

The state space model approach provides an intuitively appealing conceptual frame­

work for longitudinal data analysis and a more practical interpretation of the data-

generating mechanism. A new feature offered by the new method is that the time-varying 
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covariates can enter the model either via the latent process or via the observation model. 

The covariates that enter via the observation model are termed short-term covariates. 

They have immediate effects on the categories but such effects are short-lived. The co­

variates that enter via the latent process are termed long-term covariates. They affect 

the underlying trend of the observations and have a carry-over effect to the next few 

data points. Residual analysis may help to determine whether a covariate is long-term or 

short-term. Detailed discussion of this issue is presented in Chapter 3. Also, the latent 

process may be interpreted as a measure of the severity of the disease. The response 

variables, in turn, reflect the symptoms caused by the given severity. This provides a 

convenient framework for interpretation of the model and the statistical analysis. 

This thesis has five chapters. A literature review is presented in Chapter 2. The 

new model is introduced in Chapter 3. In Chapter 4, we will discuss the analysis of 

the Betaseron data. The conclusions of the data analysis and the comparisons with the 

previous analyses of the data are presented in Chapter 5. 



Chapter 2 

Review of literature 

This chapter surveys the current literature on approaches used in analyzing discrete and 

continuous longitudinal data. We will present the marginal, random effects, transition 

and state space models. Following Diggle, Liang and Zeger (1994), the marginal, random 

effects and transition models are extensions of generalized linear models (GLM). Tra­

ditional maximum likelihood or maximum conditional likelihood methods are normally 

employed in estimating the parameters in both the random effects and transition models. 

In marginal models, the marginal means and covariance structure of the observations are 

modelled separately. These models do not require specification of the joint likelihood 

of the data. Liang and Zeger (1986) and Zeger and Liang (1986) proposed the general­

ized estimating equations (GEE) approach for estimating regression parameters in these 

models. In the G E E approach, the "working likelihood" is used, instead of the actual 

likelihood, for generating estimating equations for the regression parameters. The ap­

plications of these extensions to G L M are confined to univariate response variables and 

depend on the objective of the scientific research. To be specific, the marginal models are 

suitable when the population average is the primary focus, whereas the random effects 

models are appropriate in situations where subject-specific effects are to be studied. The 

transition models are particularly useful in investigating the dependence of the response 

on both the explanatory variables and previous responses. 

The key idea underlying state space models is that the longitudinal data (observed) 

4 



Chapter 2. Review of literature 5 

is related to a latent process (unobserved) by means of assumptions on the conditional 

distribution of the former given the value of the latter. Moreover, a transition model is 

assumed for the latent process. One advantage of this approach over the three G L M ex­

tensions is its ability to handle a multivariate response. In addition, it gives an appealing 

intuition regarding the data-generating mechanism. 

We will present some key features and ideas of these models in the following sections. 

For more detailed descriptions, we refer to the original papers. We denote the longitu­

dinal data by Yjt, j = 1,..., h, t = 1,..., n,-; the subject is indexed by j and rij is the 

number of observations from subject j. This notation will be used throughout the rest of 

this chapter. 

2.1 Marginal models 

In a marginal model, the regression of the response on explanatory variables is modelled 

separately from within-subject correlation. In the regression, the average response over 

a sub-population (such as patients from a treatment group) is modelled as a function 

of explanatory variables. Liang and Zeger (1986) and Zeger and Liang (1986) proposed 

one such approach based upon generalized linear models (GLM). These marginal models 

for GLMs aim at addressing scientific interest concerning the population average. In 

such a marginal model for longitudinal data Yjt, the marginal expectation E( i j 4 ) = pjt is 

assumed to be a function (link) h of the explanatory variables Xjt. The marginal variance 

Var(Yji) is related to the marginal mean through a known variance function V and an 

unknown dispersion parameter cr2. Furthermore, the correlation between Yjt and Yjk is 

a known function p of the marginal means and, perhaps, an additional parameter, a. 
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That is, 

• HHt) = xjtP ; 

• Vav(Yjt) = <r2V(nJt); 

• CoTT(Yjt,Yjk) = p(fj,jt,fijk;cx). 

The regression parameter (3 is assumed to be the same across subjects and it repre­

sents the overall effects of the explanatory variables on the response. One advantage of 

the marginal models is their simplicity of interpretation. They serve as natural analogues 

for correlated data of generalized linear models for independent data. Note that assump­

tions are made only on the first two moments and the likelihood function is not specified. 

On the one hand, these make them suitable for a wide range of discrete and continuous 

data. On the other hand, traditional maximum likelihood methods cannot be used in 

parameter estimation. The G E E approach was proposed to estimate the regression pa­

rameters and it was found to be robust to misspecifications of the correlation structure. 

For details of the G E E approach, see Liang and Zeger (1986) and Zeger and Liang (1986). 

2.2 Random effects models 

When the scientific objective concerns the individual subjects and not only the population 

average, the random effects models are extremely useful. In a random effects model, the 

regression coefficients can vary across subjects and this variability takes the natural 

heterogeneity among subjects into account. One way of specifying random effects model 

is as follows: 
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• the responses Yji,..., Yjnj are conditionally independent given the random effects, 

Uj, j = 1,..., h; and the conditional densities are of the form 

f(yjt\Uj) = exp{ — + c(yjt,o )}, 

where b and c are known real functions and 9jt and o2 are unknown natural and 

dispersion parameters respectively; 

• the conditional mean and variance satisfy 

h(E(Yjt\Uj)) = x]t(3 + d]tUj 

and 

Vav(Yjt\Uj) = o'V(E(Yjt\U3)) 

where h and Fare known link and variance functions respectively, Xj 4 is the tth row 

of the design matrix for the fixed population effects, /3 is the vector of unknown 

regression parameters, djt is the tth. row of the design matrix for the random 

individual effects and Uj is the vector of unknown individual effects. 

• the t/j's are mutually independent. 

Note that the heterogeneity among subjects is represented by a probability distribu­

tion and the serial correlations between observations from the same subjects are assumed 

to have been caused by their having the same Uj. Moreover, the inclusion of djt in the 

model permits some explanatory variables to have random coefficients while the remain­

ing ones do not. This allows greater flexibility in the applications of these models. Since 

the likelihood in these models is explicitly stated, regression parameters are usually esti­

mated by maximum likelihood or restricted maximum likelihood. For more details, see 

Laird and Ware (1982) and Zeger and Karim (1991). 
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2.3 Transition models 

The transition models are very useful when the dependence of the response on both the 

explanatory variables and the past are investigated. In a transition model, the conditional 

distribution of Yjt is assumed to depend on both the explanatory variables and the past 

responses, Hjt = {yjk, k = 1,..., t — 1}. A transition model is specified by: 

• the conditional distribution of Yjt is assumed to be of the form 

f(ylt\Hjt) = exP{yjt6jt + c(yjt,o2)}, 
o~ 

where b and c are known real functions and 9jt and a 2 are unknown natural and 

dispersion parameters respectively; 

• the conditional mean and variance satisfy 

h(V(YJt\HJt)) = xjt(3 + MH,f,f3,a) 

and 

Yar(Yjt\Hjt) = <r2V(E(Yjt\Hjt)) 

where ip^ is a known function, f3 is the regression parameter, ct is the additional 

parameter relating Yjt to Hjt, and h and V are known link and variance functions 

respectively. 

A Markov chain assumption for the series of responses is commonly used. For ex­

ample, in a order 1 Markov chain, the response Yjt is assumed to depend only on the 

immediate previous response, Yj^-\- Transition models with a Markov assumption are 

routinely used to analyze binary, categorical and count data. Note that the regression 

parameter /3 is assumed to be the same across subjects. It leaves the natural hetero­

geneity of subjects to be explained by the past responses, Hjt. A shortcoming of the 
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transition models is the possible confounding of the effects of the explanatory variables 

with those of the past responses. For specific examples, see Zeger and Qaqish (1988) and 

Kaufmann (1987). 

2.4 State space models 

The state space models for longitudinal data proposed in the literature are diverse both 

in approach and in method of estimation. In these models, the response is related to the 

latent process (unobserved) and assumptions are made on the conditional distribution 

of the response given the latent process. The Kalman filter and smoother are com­

monly used to predict the latent process, see Durbin (1990), Fahrmeir and Kaufmann 

(1991), Jones (1993) and Fahrmeir and Tutz (1994). Models for Gaussian data are well 

developed and the idea has recently been extended to include non-Gaussian data. For 

example, models for univariate Poisson counts have been proposed by Azzalini (1982), 

Zeger (1988), Harvey and Fernandes (1989) and Chan and Ledolter (1995). J0rgensen, 

Lundbye-Christensen, Song and Sun (1995a) developed models for multivariate count 

data. 

Most state space models do not explicitly specify the distribution for the latent process 

but rather its first and second moments only. The model proposed by West, Harrison 

and Migon (1985) is one such model. In the model developed by Zeger (1988) for Poisson 

counts, only second moment assumptions were made for the latent process. In these 

cases where the probability model is not fully specified, the quasi-likelihood method is 

used in estimating the regression parameters. One shortcoming of the quasi-likelihood 

approach is that it is difficult to interpret the results in the absence of full distributional 
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assumptions. J0rgensen et al. (1995a) overcame this by explicitly modelling both the 

latent process and the data; these models are further developed into our current approach 

to handle various types of multivariate longitudinal data. 



Chapter 3 

Tweedie state space models 

These models are generalizations of the Poisson-gamma models considered by J0rgensen 

et al. (1995a) in which the observations are multivariate Poisson counts and the latent 

process is assumed to follow the gamma distribution. The new method is based on the 

class of Tweedie exponential dispersion models and can be used for regression analysis of 

multivariate longitudinal data where the components (called categories) of the response 

vector can be of different data types: discrete, continuous and mixed. For more details, 

see J0rgensen et al. (1995c). 

3.1 The model 

For the case where a d- dimensional vector of observations is recorded at equally spaced 

times t for each of the h subjects,.we have h independent series of observations indexed 

by j = 1,... ,h; the j th series has length rij. We let Y{jt denote the observation for 

category i, series j and time t ; i = 1,..., d, j = 1,..., h and t — 1,... , rij. The vector 

of observations and the value of the latent process at time t for series j are denoted by 

Yjt and 9jt respectively. Let 8jo denote the initial value of the latent process for series j. 

The variation of these initial values, 8j0s, is assumed to explain the natural heterogeneity 

across subjects. To summarize, the model consists of three parts: the observation model, 

the latent process and the initial values. 

11 
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• The observation model: 

The categories of Yjt are assumed to be conditionally independent given 0jt, and the 

conditional distribution for the ith. category of Yjt is assumed to follow a Tweedie 

exponential dispersion model, 

where Xjt 6 R* are the time-varying short-term covariates modifying the condi­

tional mean of the observations given the latent process 9jt, CX;J 6 Rk are the 

regression parameters which can vary across categories, pi is the known shape pa­

rameter which determines the distributional form of the category and uf is the 

dispersion parameter which can be different even if all the p,s are the same. We 

consider the case where the dispersion parameter depends on the category i only 

but not on patient j. However, the model allows the dispersion parameter to be 

different across categories and across patients. The notation TwPi(a,62) denotes 

the Tweedie model with known shape parameter pi, pi > 1 or pi < 0. The case 

Pi = 1 and uf = 1 gives the Poisson distribution and the case pi = 2 corresponds 

to the gamma distribution. Note that the dispersion parameter for the Poisson 

distribution is equal to 1. A summary of these exponential dispersion models is 

given in Appendix A . 

The conditional expectation and variance are given 

(3.1) 

with 

aijt = exp(xJ

T

ial-j), (3.2) 

aijtOjt and Var(Yijt\6jt) = J/, 

respectively. 
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For example, in the Betaseron data which we will analyze in Chapter 4, the latent 

process 9jt may be interpreted as the underlying severity of multiple sclerosis and 

the observations Y{jt may be interpreted as the symptoms reflecting this underlying 

severity. We assume that the conditional distribution for the first and second cate­

gories are Poisson and gamma distributions, respectively. Moreover, the dispersion 

parameter for category i is assumed to be the same across patients. 

• The latent process: 

The latent process for each series is assumed to be an order 1 Markov chain with 

transition distribution of the form 

where Zjt G R are the time-varying long-term covariates with increments A z f = 

zt — 7>i-\, (3j G R ' are the regression parameters and o2 is the dispersion parameter. 

Moreover, we assume z 0 = 0. 

The conditional expectation and variance are, respectively, 

(3.3) 

with 

bjt = exp(AzJ/3 j ) , (3.4) 

E(0jt\9jt-i) = bjtOjt-i and Var(^ i |6 l

i t _ 1 ) = o 

• The initial values: 

The marginal distribution of the initial values is assumed to be 

9j0 ~ Twr(gj,u2) (3.5) 

with 

9i = exp(w_,- 7) = E(0jO), (3.6) 
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where Wj £ Rm are the constant baseline covariates which reflect systematic varia­

tion between series, 7 £ Rm are the regression parameters and u2 is the dispersion 

parameter reflecting the random variation between series. 

For example, the treatment groups and the baseline covariates present in the Be­

taseron study are treated as constant baseline covariates. 

The correlations between the categories Yijt, i = 1,... ,d, are assumed to be caused 

by their shared 9jt. Short-term covariates have a short-lived effects on the observations 

whereas the effects of the long-term covariates can be carried over to the next few data 

points. The marginal expectations and variances in model (3.1) —(3.6) are now presented. 

For the initial values, the variance of 9jo is 

Var(^o) - u2g] 

For the latent process, the marginal expectation of 0jt is 

E(0jt) = Tjt = gjbj! • • • bjt = e x p ( z j ^ + w / 7 ) . (3.7) 

and the marginal variance of 6jt is 

Var(0 i 4) = o2(j)jtTjt+uj2T2
t, 

where 

fat = b'jt1 + bjttft-i + ••• + bjtbjt-i... tfT1 

For example, in the Betaseron study, time is the only long-term covariate we will consider. 

Since the latent process is log-linear in the covariates as seen in (3.7), the time effect may 

be interpreted as the rate of change of the log of the underlying severity of the disease. 

A positive estimate for the time effect suggests that the disease is increasing in severity. 
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For the observation model, the marginal expectations of the observations are 

E(^ i t ) = exp(xja t i + zJtPj + 
Note that the observation and latent process means are log-linear in the covariates and 

so are the initial values. Furthermore, the marginal variance of Yjt has the form 

Var(Yji) = AjtTjt + ajiaJtVar(9jt) 

where Ajt = di ag (v\ a^ ( , i ^d a dj t ) a n Q l ai< = (aijti • • • > adjt)T • The above expression 

shows that, at time t, the categories are positively correlated since the second term 

is always positive. Finally, for observation vectors separated by a lag of s > 0, the 

covariance of Yjt and Yjt+S is given by 

Cov(Yj<, Yjt+s) = a>iaJ + J 6 j t + 1 • • • bjt+sVav(9jt). 

3.2 T h e K a l m a n fil ter a n d s m o o t h e r 

For each series j, the Kalman filter predicts a future observation Yjt+i and the cur­

rent value of the latent process 0jt based on past and current observations Yj\,... ,Yjt 

whereas the smoother predicts the latent process using all the observations in the series, 

Y j i , . . . , Yjn.. These filtered and smoothed values are used to estimate, or more precisely, 

predict the values of 9jt in model (3.1)—(3.6). From now on, we consider filtering and 

smoothing for one series at a time. The index j is suppressed for notational convenience. 

We define the innovations for the latent process by 

& = 0 « - E ( 0 « | 0 ' - l ) = 0 , - M t - i 

and for the observation model by 

e< = Y t - E ( Y t | 0 « ) = Y , - a , 0 t , 
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where dl — (#o,..., 9t)T, t = 1,..., n. The model can be expressed in the additive form 

as follows, 

Yt = atet + et, 0, = Mt-i + 6, 

where et and 0t are uncorrelated, and so are £ t and These 2n_, innovations are 

uncorrelated. The model has the same correlation structure as that of an ordinary 

Gaussian state space model. The variances of the innovations are given by 

Var(6) = E(^ 2 ) = o \ \ - \ t 

and 

Var(e«) = E(eteJ) = Atrt. 

The forward recursive formula for the filtered values, mt, and their corresponding 

mean square errors, Ct, for the latent process are given by, for t = 1,..., n, 

mt = btimt-! + A a T Q 7 X ( Y i - f()} (3.8) 

and 

where 

Ct = btDt{l - btDtajQT1*). (3.9) 

Dt = btCt-1+o2br1rt-i, 

ft = SLtbtmt-i and Qt = btDta.ta.J + A<T4. 

The recursion starts with mo = g and Co = u2gr. 

When all the n observations are known, the smoother values, m*, and their corre­

sponding mean square errors, C*, for the latent process can be obtained by the following 

backward recursion for t = n — 1,..., 1,0; starting with m* = mn and C* = Cn: 

C 
m* = mt + jr-(rn*+1 - bt+imt) (3.10) 
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and 

c; = *2-£-b# + -§-c;+1. (3. i i ) 

For detailed arguments, see Harvey (1981, Chapter 4), or J0rgensen et al. (1995a). 

3.3 P a r a m e t e r e s t i m a t i o n 

Let the full data vector of the N = n\ + • • • - ( - rih observations Yjt be 

Y = ( Y n , . . . , Y l n i , . . . , Y A 1 , . . . , Yknh) • 

and the vector of the smoother values be 

m * = (m*10,...,m*lni,...,m*hQ,...,m*hnJT. 

The two regression parameter vectors are defined by 

a = ( a T
1 , . . . , a J 1 , . . . , a T

f c , . . . , a J A ) T , (3 = ((3j,..., / 3 j ) T . 

The Kalman estimating equation method is used to estimate the regression parameters 

77 = ( a T , / 3 T , 7 T ) T . The dispersion parameters vf, a2 and u2 are estimated by the 

adjusted Pearson estimates. 

3.3.1 T h e K a l m a n e s t i m a t i n g e q u a t i o n 

The Kalman estimating equation method corresponds to replacing the E-step of the 

E M algorithm by the Kalman smoother; but instead of the E M algorithm, the Newton 

scoring algorithm is used which will be defined later. When the values of the dispersion 

parameters vf, o2 and u2 are known, the regression parameter rj is estimated by ij, the 

solution to the Kalman estimating equation tp(r}) = 0 where the vector has components 

V'1(i|) = X T K ; 1 ( Y - A m - ) , (3.12) 
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V>2(?7) = A Z T K 7 1 B m * , (3.13) 

and 

^ ) = W T K ; 1 ( ^ o - g ) , (3-14) 

where A and B are suitably defined matrices such that the elements of Y — A m * are 

Y t — a 4m* and those of B m * are m* — fc^m*^; the matrices X , A Z and W are the design 

matrices of the generalized linear models (3.1-2), (3.3-4) and (3.5-6), respectively; 

K a = diag(i/ 1

2a?l^ 1 , . . . , uja^'l), 

K 4 = diag(6|i \ . . . , b\~],..., ..., 

K f =d iag ( f l f r 1 , - . -^r 1 )» 

g = (9iT--,9h)T, and m* = ( m j 0 , . . . , m*h0)T. 

The estimating equation ip(rf) = 0 is unbiased. The estimator fj is asymptotically 

normal and its standard errors can be obtained from the inverse of the Godambe infor­

mation matrix, 

J(rj) = ST(V)V-1(r1)S(r1), 

where S(rj) is the sensitivity matrix, 

and 

is the variability matrix. The matrices S(TJ) and V(77) are calculated in Appendix B . 

The joint significance of a subset of regression parameters is tested using the statistic 

W defined by 

l y ^ i J 1 1 ^ ) ] - 1 ^ , 



Chapter 3. Tweedie state space models 19 

where T7X is the subvector whose significance we want to test and J 1 X ( ^ ) is the corre­

sponding block of the asymptotic covariance matrix of fj. The test statistic W is an 

analogue of Wald's statistic and follows a x2(w)-distribution asymptotically, where u is 

the dimensionality of the subvector rj1. 

The Newton scoring algorithm, a parallel to Fisher's scoring method, is defined as 

the Newton algorithm applied to the equation tp(rj) = 0, but with the derivative of ip 

replaced by its expectation 8(77). This new algorithm gives the updated value TJ* for TJ 

according to 

TJ* = Tj-S-1(r,)rb(Tj). (3.15) 

An advantage of this algorithm is that the calculation of S(rj) is done recursively in 

parallel with the calculation of the Kalman smoother, cf. Appendix B . 

The initial parameter estimates are obtained from the data by fitting the generalized 

linear models (3.1) —(3.6) with the 6jts replaced by their initial estimates which can be 

found by averaging the d components of Yjt. If d = 1, some smoothing is required, for 

example, using a moving average of the series. The algorithm is then started by calcu­

lating the smoothers and so on. 

When the dispersion parameters are unknown, they are estimated by the unbiased 

estimating equations (3.16), (3.17) and (3.18) in Section 3.3.2. These three equations to­

gether with the equation ip(rj) = 0 form a set of unbiased estimating equations. Hence, 

the estimator obtained by solving this set of equations is asymptotically unbiased. The 

Newton scoring algorithm obtains updated values for the regression parameters TJ and 

the dispersion parameters cr2, v2 and u2 in two stages. First, it updates TJ via (3.15). 
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Second, it updates cr2, v2 and u2 via (3.16), (3.17) and (3.18). This extended algorithm 

is also referred as Newton scoring algorithm. The correct asymptotic standard errors for 

the estimator fj could be calculated from the Godambe information matrix for the full 

set of estimating equations, but this involves third and fourth moments of the Kalman 

smoother, which we have not calculated. Instead, we calculate the asymptotic standard 

errors from the Godambe information matrix for the estimating equation tpirj) = 0; this 

method is outlined earlier in this section. If the vector ib depends little on v2, o2 and u; 2, 

this method will give approximately correct asymptotic standard errors. Further inves­

tigation on how the dependence of the vector ib on uf, o2 and u2 affects the asymptotic 

standard errors for the estimator is still pending. 

3.3.2 Estimation of dispersion parameters 

Due to the substitution of the smoother value m*-t for the 6jt, the simple Pearson estimates 

for the dispersion parameters are biased downward. Following j0rgensen et al. (1995a), 

the adjusted Pearson estimates for the dispersion parameters a2, v2 and UJ2 are used 

instead: 

N ^ bq~^r-4 N tf-V ' { ' 

i h nj £*2 i h nj 2 fi* 

and 

^ = i £ ( 2 a z * ) l + i £ 2 , (3,8) 

The equations for CT2, V2 and <2>2 are unbiased. The second term in (3.16) corrects the 

bias of the simple Pearson estimate and so do those in (3.17) and (3.18). In most cases, 

the dispersion parameters are unknown. Hence, the Newton scoring algorithm updates 
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TJ via (3.15) and then <r2, vf and u>2 via (3.16), (3.17) and (3.18), respectively. 

3.4 Residual analysis 

The main model assumptions for both the observed and unobserved parts of the model 

are checked by plots of the standardized residuals (that is, residuals divided by their 

standard deviations). Techniques commonly used in the generalized linear models are 

utilized to check the assumptions on the distribution as well as the regression of the 

model. The assumptions on the correlation structure of the data are examined by meth­

ods available from time series analysis; in particular, the autocorrelation function (ACF) 

and the partial autocorrelation function (PACF). When we check the assumptions (such 

as about the correlation structure) on the observations from a patient, we consider only 

the residuals from a given series. However, for the distributional assumptions of the 

observation model and the latent process, they are checked by plots of the residuals from 

all the h series. 

The two main types of residuals considered are the filter and smoother residuals. 

First, the filter residuals are defined as the predictor errors based on the Kalman filter 

and are given by 

kjt — Yjt - fjt and £jt = mjt — bjtmjt-\. 

Their variances are given by 

Vav(£jt) = Qjt and Var(& t) - bitDjt - Cjt. 

The tjtS are mutually uncorrelated over time and so are the ^ s . Moreover, £jt is uncor­

rected with fijt and tfj* is uncorrelated with bjtmjt-i. These properties make the kjts 
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and £jts very useful in the residual analysis. In particular, they are useful in checking 

the correlation structure of the model. For example, the A C F plot of the filter residu­

als (from a given series) showing significant serial correlation may suggest a violation of 

the assumption that the observations are conditional independent across time. However, 

these residuals may have relatively large variances for the first few observations of each 

series. 

Second, the smoother residuals are given by 

e*jt = Yjt - &jtm*jt and £*jt = m*jt - bjtm*^. 

Their corresponding variances are 

V a r ( £ j i ) = AHTJt ~ ZjtaJtCjt 

and 

var(§t) = o%%\lt -c;t- b)tqt_x + 2&*%^c; t. 
Ujt 

Contrary to the filter residuals, the smoother residuals are correlated over time. In gen­

eral, they have smaller variances than the corresponding filter residuals do. 

A l l these residuals have mean 0 but different variances. Note that the properties 

mentioned in this section do not take into account the effects of substituting estimates 

for the regression parameters. 

Standardized filter and smoother residuals (having unit variance) from the latent 

process are denoted by rjt and r*-t respectively. The residuals £jt are standardized com­

ponentwise. For each category, we use Rijt and R*jt to denote the standardized filter and 
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smoother residuals, respectively. 

For the assumptions on the observation model, we may plot Rijt against Rij,t-i to 

check the conditional independence of the observations over time. For each category i of 

the jth series, the plots of the A C F and P A C F of Rijt are useful to see whether the as­

sumed correlation structure is appropriate. We can check the distributional assumptions 

(to be specific, the form of the variance functions) by plotting the standardized filter 

residuals against the log fitted values, log(ay<m* i). Any pattern in this plot would indi­

cate that the variance function chosen is incorrect; for example, a "megaphone" shape 

would indicate that the variance of the residuals increases with the log fitted values. Due 

to the fact that the observation means are log-linear in the covariates in the model, the 

log link assumption can be checked by plotting log Y{jt against log(a,<m*t). If the log 

link assumption is incorrect, this plot should show a curvature or an unusual shape. The 

linearity of the regression model can be checked by plotting the smoother residuals R*-t 

against each covariate. The empirical variance-covariance matrix, H, of the vector of the 

standardized filter residuals given by 

3 t=l 

is used to check the assumption that the categories are conditionally independent given 

the latent process. Since the expectation of His the d x d identity matrix, the observed 

H should not be very different from the identity matrix. One criterion can be used is 

that the off-diagonal elements should not exceed their respective asymptotic standard 

errors. Note that the off-diagonal elements have asymptotic standard errors nj1^2 and 
1/2 

the standardization depends on the version of the square-root matrix Q •/ chosen. 

Regarding the latent process, we can check the Markov assumption by plotting rjt 
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against rJt-\- The A C F and P A C F plots of r3t are also useful for checking the assump­

tions on the correlation structure of the latent process. The distributional assumptions 

can be checked by plotting rjt against the log fitted values, log^^m!^). This plot can 

indicate whether the variance of the residuals depends on the log fitted values. No partic­

ular pattern in the plot should be observed; this suggests no evidence against the chosen 

variance function. Non-linearity of the model can be detected by plotting r*-t against 

each covariate. Moreover, we can check the log link assumption by plotting log(m*t) 

against l o g ^ ^ m * ^ ) . A pattern in this plot may suggest that the log link assumption is 

inappropriate. 

We now consider the assumptions on the initial values. Similarly, we can plot the 

standardized smoother residuals m* 0 — g3 against the log fitted values log(^j) to check 

the form of the random effects distribution. Plots of the standardized smoother residuals 

against each covariate are useful for detecting nonlinearity of the model. Furthermore, 

the log link assumption can be checked by plotting log(m*0) against log(^j). 

A n additional feature this model offers is that residual plots can help to determine 

whether a covariate is long-term or short-term. The basic idea is that a short-term co­

variate would show an association with the observation residuals (Rijt or R*jt) if it had 

been incorrectly fitted as a long-term covariate. Similarly, a long-term covariate would 

show association with the latent process residuals {r3t or r*-t) if it had been incorrectly 

fitted as a short-term covariate. 
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Analysis of Betaseron data 

4.1 Background 

4.1.1 Description of the experiment 

A multicenter, randomized, double-blind, placebo-controlled trial of interferon beta-lb 

in 372 ambulatory patients with relapsing-remitting multiple sclerosis (MS) established 

that interferon beta-lb has substantially altered the natural history of MS (The IFNB 

Multiple Sclerosis Study Group, 1993). The interferon beta-lb was manufactured by 

Chiron Corporation, Emeryville, C A , and supplied to doctors as Betaseron by Berlex 

Laboratories, Richmond, C A . As a sub-study of this trial, a cohort of 52 patients at the 

University of British Columbia also had magnetic resonance imagings (MRIs) every 6 

weeks during the initial two years of the trial (Paty, L i , the U B C M S / M R I Study Group 

and the IFNB Multiple Sclerosis Study Group, 1993). The main purpose of this frequent 

M R I sub-study was to learn more about the nature of MS lesions. 

We consider data from this U B C 6-weekly frequent M R I sub-study of the Betaseron 

clinical trial in relapsing-remitting multiple sclerosis (MS). The data is hereafter referred 

to as the Betaseron data. In this sub-study, the values of the response variables as well 

as the time-varying covariates for each patient were scheduled to be observed.at baseline 

(the first day of treatment) and every 6 weeks subsequently in the initial two years of the 

trial. Although patients were scheduled to have the MRIs (responses were observed based 

25 
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on these MRIs) every 6 weeks, the actual times when these MRIs were taken were some­

what different from this schedule. Due to a variety of reasons, several patients missed 

one or more of their scheduled M R I scans. Two of the total of 52 patients dropped out 

very early and they contributed a very small amount of data to this M R I sub-study. 

These patients were withheld from the analysis in this thesis. A l l analyses we report here 

are based on a total of only 50 patients. Moreover, several patients missed one or two 

isolated M R I scans. These missed scans are denoted by NA's . The only time-varying 

covariate we investigate in this thesis is time itself. Each patient was scheduled to take 17 

M R I scans in addition to the baseline scan. These scans were critically interpreted and 

the observed values of the responses were based on these interpretations. The time was 

arbitrarily set to 0 at baseline and increased by 1 for each subsequent scan. That is, the 

time was equal to 1 for the first subsequent scan, 2 for the second subsequent scan and 

so on. Several baseline covariates were also present. For more detailed descriptions of 

this study, we refer to Paty, L i , the U B C M S / M R I Study Group and the IFNB Multiple 

Sclerosis Study Group (1993); see also Petkau and White (1995). 

The main objective of this thesis is to extensively illustrate the utilization of the 

Tweedie state space models described in Chapter 3 to analyze multivariate longitudinal 

data. We also aim at extracting additional information from the data using these new 

models. In this thesis, the relationship between Betaseron and two of the response vari­

ables is considered simultaneously and the patterns of these response variables over time 

will be investigated utilizing the Tweedie state space models. 
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4.1.2 D e s c r i p t i o n of the d a t a 

The two response variables that we considered were active lesions (lesions) and burden of 

disease (burden). For each patient, each subsequent scan was compared to the immediate 

previous one to determine the number of lesions that were found to be new, recurrent 

or enlarging. The value of active lesions is the sum of the number of new, recurrent and 

enlarging lesions at each scan. For each subsequent scan, the areas of MS lesions on all 

slices of the M R I scans were summed up. The total area (in units of mm2) is defined as 

the burden of disease. Therefore, the response which we studied is a bivariate vector with 

2 components (called categories). The first category is active lesions which is a count 

variable whereas the second category is burden of disease which is a continuous variable. 

The data consist of 50 time series, one for each patient, for each response vector. As 

mentioned in section 4.1.1, there were deviations from the target dates of this 6-weekly 

schedule. The practical difficulties in maintaining this schedule is understandable. The 

most notable of these deviations was for the final scan which was delayed by a period 

of up to about two weeks for most patients. Three patients had even longer delays to 

their final scans (approximately 3, 4 and 5 weeks respectively) and two patients had final 

scans approximately 2 weeks before the target data according to the 6-weekly schedule. 

Most other deviations from the 6-weekly schedule were minor. Due to methodological 

constraints, in the analyses presented here, we consider each scan to be taken at the 

target date for which it was intended, irrespective of the deviation of the actual date of 

the scan from that target date. 

Due to early drop-outs, the length of these time series varies across patients. For 

example, one patient in the placebo group dropped out after time 14; the length of this 
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time series is 14 versus the targeted length of 17. These patients with early drop-outs do 

not complicate the analysis since the new method allows different lengths across patients. 

However, the isolated missing scans give rise to some difficulties. There are two possible 

approaches to handle them. Either we can withhold these NA's from the analyses or 

we can replace them with some imputed data (for example, the smoothed values of the 

latent process). For convenience, the former approach is used in the analyses to follow. 

There are all together 5 of these isolated missing scans. This number is relatively small 

as compared to the total number of scans taken in the sub-study. It is worth noting 

that when an isolated missing scan is withheld, the two scans originally adjacent to this 

missing scan will be treated as consecutive scans. For example, one patient in the placebo 

group missed the scan at time 7. When the N A at time 7 is withheld, the scans at time 

6 and 8 will be treated as consecutive scans and the length of the time series becomes 

16. 

The treatment has three levels: placebo, low dose and high dose. Patients were 

randomized to either the placebo, the low dose or the high dose group. The baseline 

covariates present are: 

• age (in years), 

• duration of disease (in years), 

• initial EDSS score, 

• origin (B.C. or Washington State), 

• gender (Male or Female), 

• initial burden of disease (in mm 2 ) . 
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Since the values of the initial burden of disease vary from 14 to 12300 and because 

of the log-linear nature of the baseline covariates effects for our model, the log of the 

initial burden of disease will be used as a covariate in the analysis to follow. For conve­

nience, duration of disease, initial EDSS score and the log of the initial burden of disease 

hereafter will be referred to simply as duration, EDSS and log area respectively. Time, 

the only time-varying covariate present, will be included in the model as long-term effect. 

The Betaseron data were previously analysed by Petkau and White (1995) who used 

the generalized estimating equation (GEE) approach developed by Liang and Zeger 

(1986) and investigated one variable at a time. Among the variables that they anal­

ysed was the burden of disease. D'yachkova (1997) analysed the whole data set from the 

Betaseron clinical trial. Among the responses, she investigated active lesions using the 

G E E approach. Later, the results from Petkau and White (1995) and D'yachkova (1997) 

will be compared to those obtained from our approach. 

4.2 Initial data analysis 

4.2.1 Burden of disease 

Following the ideas of Petkau and White (1995), the response was transformed into the 

variable relative burden (the ratio of the values of subsequent scans to that at baseline). 

Moreover, patient #505 was removed from the data set for further analysis as the trans­

formation was not defined for this patient, who had zero values at baseline and for all 

subsequent scans except at times 3 and 4. Further analysis will be based on the trans­

formed variable: relative burden. 
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Table 4.1: Descriptive statistics for average relative burden values 
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Statistic Placebo Low Dose High Dose 
Number of patients 17 16 16 

Minimum 0.793 0.629 0.814 
Maximum 3.625 1.569 1.246 

Median 1.153 1.108 1.028 
Mean 1.474 1.167 1.023 

Standard deviation 0.760 0.255 0.138 

The descriptive statistics for the average of the relative burden values for each patient 

are summarized in Table 4.1. Boxplots of the average relative burden values by treatment 

groups presented in Figure 4.1 do not suggest a strong relationship with treatment groups. 

However, it appears that the average relative burden values tend to decrease with an 

increase in dosage of Betaseron. Three isolated extreme values (relative to the values of 

the same treatment group) are seen and they are: 

• patient #446 in the placebo group: average relative burden value is 3.625, 

• patient #449 in the placebo group: average relative burden value is 2.627, 

• patient #545 in the placebo group: average relative burden value is 2.623. 

Boxplots of the relative burden values for each patient shown in Figure 4.2 indicate that 

three patients (#446, #449 and #545) have higher values than those for others in the 

placebo group. Two very extreme values (relative to the values of the same patient) are 

seen in Figure 4.2 and they are: 

• patient #446 at time 17: relative burden value is 18.214, 

• patient #545 at time 6: relative burden value is 8.179. 
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Figure 4.1: Boxplots of average relative burden values by treatment group 
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Placebo Low Dose High Dose 

These two extreme values will be referred to as 446* and 545* respectively. The extreme 

average relative burden values found in three patients (#446, #449 and #545) are not 

solely due to one or two isolated values. Instead, Figure 4.2 seems to indicate that the 

collections of values are larger for these three patients with extreme average relative bur­

den values. In addition, the two extreme relative burden values 446* and 545* are found 

in patients #446 and #545, respectively. The collections of values for these two patients 

are already larger than those of other patients in the placebo group. Special attention 

will be paid to investigating the influence of these two extreme values, 446* and 545*, on 
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Figure 4.2: Boxplots of relative burden values for each patient 
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the analysis. 

Plots of the relative burden values versus time for each patient presented in Figure 4.3 

show that three patients (#446, #449 and #545) have larger values relative to those of 

patients in the placebo group. It also appears that the values and their variations with 

time tend to decrease with an increase in dosage of Betaseron. 
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Figure 4.3: Plots of relative burden values versus time for each patient 
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Figure 4.4: Boxplots of average active lesions values across treatment group 
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Table 4.2: Descriptive statistics for average active lesions values 
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Statistic Placebo Low dose High dose 
Number of patients 17 16 16 
Minimum 0 0 0 
Maximum 2.471 0.765 1.294 
Median 0.375 0.147 0.059 
Mean 0.579 0.225 0.225 
Standard deviation 0.618 0.217 0.342 

4.2.2 A c t i v e lesions 

As an initial step, the average of the active lesions values for each patient was calculated 

and the descriptive statistics for these averages are presented in Table 4.2. 

Table 4.2 suggests that there is a relationship with treatment groups. The average 

value in the placebo group is higher than the averages in the low and high dose groups. 

Boxplots of the average active lesion values by treatment groups shown in Figure 4.4 also 

indicate that there is a relationship with treatment groups. Two patients are seen to 

have extreme average active lesions values (relative to the values of the treatment group 

they are in) and they are listed below: 

• patient #545 in the placebo group: average active lesion value is 2All, 

• patient #497 in the high dose group: average active lesion value is 1.294. 

These two extreme values can be explained by the low successive counts (mostly 0 or 1) 

of the majority of the patients. As most patients have average active lesions values close 

to 0, this makes patients with a few high counts stand out readily. 
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Figure 4.5: Plots of active lesions values versus time 
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Table 4.3: Descriptive statistics for age, duration, EDSS and log area 
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Variable Statistic Placebo Low dose High dose 
age Median 35.0 36.0 36.0 

Mean 34.6 37.5 37.2 
Standard deviation 4.5 8.8 8.5 

duration Median 6.9 6.1 10.1 
Mean 7.4 9.5 11.0 

Standard deviation 5.0 7.2 6.4 
EDSS Median 1.5 2.0 2.5 

Mean 1.9 2.1 2.5 
Standard deviation 0.9 1.2 1.1 

log area Median 7.5 7.0 7.5 
Mean 6.9 6.9 7.5 

Standard deviation 1.6 1.6 0.8 

Plots of active lesions values versus time for each patient are presented in Figure 4.5. 

Patient #545 in the placebo group appears to have a collection of larger values of ac­

tive lesions than those of other patients in the placebo group. Figure 4.5 also seems to 

indicate that patient #497 only has larger number of active lesions in the first 6 M R I 

scans; the number of active lesions becomes smaller from time 7 onwards. In general, it 

seems that the number of active lesions decreases with an increase in dosage of the drug 

Betaseron. 

4.2.3 Covariates 

The descriptive statistics for age, duration, EDSS and log area are shown in Table 4.3. 

These covariates are also summarized in the boxplots in Figure 4.6. The average age 

seems to be roughly the same across the treatment groups. However, the variability of 

age in the placebo group appears to be less than those in the low and high dose groups. 
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Figure 4.6: Boxplots of covariates values across treatment group 
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Table 4.4: Counts for origin and gender 

39 

Variable Category Placebo Low Dose High Dose 
origin B.C . 15 10 14 

Washington 2 6 2 
gender Male 7 2 3 

Female 10 14 13 

The patients in the high dose group appear to have longer duration of disease than those 

for patients in the other groups and roughly the same variability as those in the placebo 

group. The patients in the low dose group seem to have the highest variability in the 

duration of disease. It is worth noting that EDSS is an ordinal variable. For convenience, 

we treat it as a continuous variable in the analyses which we report here. However, we 

should keep this in mind and explore the possibility in future to include EDSS as an or­

dinal variable in the analysis. The initial EDSS scores appear to be roughly comparable 

in mean and in variability across the treatment groups. The averages of log area values 

seem to be roughly equal across the treatment groups but the high dose patients appear 

to have the least spread of log area values among patients in other treatment groups. 

The counts for origin and gender in each treatment group is presented in Table 4.4. 

As seen in Table 4.4, it appears that the origin of patients in the placebo and high dose 

group is highly unbalanced. Only 2 out of the 17 patients from the placebo group and 

only 2 out of the 16 patients in the high dose group were from Washington. Imbalances 

in the gender distribution of the patients were also observed in the low and high dose 

groups. The patients in the low dose and high dose group were mostly male (2 out of 16 

in the low dose group and 3 out of 16 in the high dose group). 
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This descriptive information about the covariates indicate that there are imbalances 

in covariates across treatment groups which have to be taken into account in the analysis 

to follow. 

4.3 M o d e l i d e n t i f i c a t i o n 

The only time-varying covariate that we consider in this thesis is time itself, which is used 

as a long-term covariate. A l l the baseline covariates together with the three treatment 

groups are included as constant baseline covariates in the initial values part of the model 

in Section 3.1. Hence, our preliminary model for the Betaseron data is as follows. 

Long-term covariate: 

time. 

Baseline covariates: 

intercept; 

low dose; 

high dose; 

age; 

EDSS; 

duration; 

origin; 

gender; 

log area. 

Let Yjt be the bivariate response vector of observations at time t for patient j with 
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Yijt, i = 1 (relative burden), 2 (active lesions) as its components (called categories). 

Note that the notation in Section 3.1 is used here. We assume relative burden to follow 

a gamma distribution, which corresponds to p\ = 2. We assume active lesions to be 

Poisson counts, which corresponds to p? = 1 and v\ = 1. The latent processes for all 

the patients are assumed to follow a gamma distribution; that is, we choose q = 2. For 

the initial values, the random effects are assumed to follow a gamma distribution, which 

corresponds to r = 2. The dispersion parameter, uf, is assumed to be the same across 

patients. In addition, all the latent processes are assumed to have the same dispersion 

parameter, cr2. Note that the dispersion parameter for a Poisson distribution is known 

and is equal to 1. The remaining unknown dispersion parameters are v\, o2 and u2 and 

they are estimated from the data. 

In the initial values part of the model, for identifiability, the effect for the placebo 

group is set to zero. In this way, the intercept represents the placebo level, and the effects 

for low dose and high dose represent the effects relative to placebo. The fitted model for 

the initial values becomes: 

l°g 9kj = ct + Tk + ii age + j2 EDSS + 73 duration + 

74 origin + 75 gender + 76 log area 

where guj is the expected initial value of the latent process for the j t h patient in the 

kth. treatment group; fk are the treatment effects for the kth treatment group; k = 0 

(placebo), 1 (low dose), 2 (high dose). Note that the effect for the placebo group is 

T 0 = 0. 

As mentioned in section 4.2.1, there are two extreme values, 446* and 545*, found 

in the variable relative burden. To investigate their effects on the analysis, we fit the 
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model separately to the full data set, the data set with 446* removed and the data set 

with both 446* and 545* removed. The estimates and their asymptotic standard errors, 

shown in brackets, for the baseline covariates are reported in Table 4.5 and those for 

the long-term covariate are presented in Table 4.6, 4.7 and 4.8. Our model allows the 

long-term effect for each patient to be different. There are all together 49 effects for time, 

one for each patient. The regression parameter for time can be interpreted as the rate 

of change of the log of the underlying severity per 6-week period. That is, each patient 

is assumed to have a different development of the disease. This is reasonable as there is 

natural heterogeneity among patients. Moreover, patients may react differently to the 

drug applied. A positive estimate for the time effect suggests an increasing trend over 

time of the severity. As the observations reflect the underlying severity, their patterns 

over time can well be addressed by investigating the trends of the latent processes. 

The baseline covariates influence the initial values of the latent process with time 

taken into account. The main focus is on the effects for the treatment groups. As ex­

plained in the beginning of this section, the estimate for low dose represents the effect of 

the low dose group relative to that of the placebo group. A negative estimate suggests a 

possible lowering of the initial values, thus hinting a possible improvement in the disease. 

The estimate for high dose has a similar interpretation. 

The two extreme values exerted great influences on the estimates for the effects for 

intercept, low dose, high dose and log area. For example, the estimates for the effects of 

the low dose group varies from 0.081 (full data set) to —0.118 (with 446* removed) and 

then to —0.067 (with 446* and 545* removed). Similarly, the estimates for the effects of 

the high dose group changes from —0.078 (full data set), —0.173 (with 446* removed) and 

then to —0.131 (with 446* and 545* removed). The dominant effects of these extreme 
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Table 4.5: Estimates and standard errors for baseline covariate effects 

43 

Parameter 

full data set with 446* 
removed 

with 446* and 
545* removed 

Parameter estimate (s.e.) estimate (s.e.) estimate (s.e.) 
intercept 
low dose 
high dose 
age 
EDSS 
duration 
origin 
gender 
log area 

-0.131 (0.280) 
0.081 (0.075) 

-0.078 (0.081) 
-0.006 (0.004) 

0.066 (0.032) 
-0.009 (0.005) 
-0.057 (0.080) 

0.051 (0.078) 
0.033 (0.021) 

1.048 (0.253) 
-0.118 (0.066) 
-0.173 (0.072) 
-0.009 (0.004) 

0.048 (0.029) 
-0.007 (0.005) 
-0.082 (0.071) 

0.053 (0.071) 
-0.095 (0.019) 

0.924 (0.276) 
-0.067 (0.073) 
-0.131 (0.078) 
-0.006 (0.004) 

0.055 (0.031) 
-0.009 (0.005) 
-0.087 (0.078) 

0.043 (0.076) 
-0.091 (0.021) 

values on the estimates are not unexpected. Although it is not desirable to have the 

results of the analysis strongly influenced by a few extreme values, it requires further 

investigations before removing them from the data set. Provided that the model gives 

a reasonable fit to the data, we will retain as many data points as possible to preserve 

valuable information. In the following section, we will see that the extreme value 446* 

causes some violations of model assumptions. As it is the last data point of the time 

series for patient #446, it causes a strong upward trend of the latent process from time 

7 onwards. When 446* is removed from the data set, the model fits reasonably well. The 

second extreme value 545* does not have much effect on the adequacy of the model. It 

may be due to the fact that it is in the middle of the time series. However, it stands out as 

an outlier in the plots of residuals. On the one hand, we need to keep in mind the effects 

of these extreme values on model fitting. On the other hand, as these two large extreme 

values are found in the placebo patients, they may suggest evidence of a treatment effect. 
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Table 4.6: Estimates and standard errors for the long-term covariate (time) effects for 
patients in the placebo group 

full data set with 446* 
removed 

with 446* and 
545* removed 

Patient # estimate (s.e.) estimate (s.e.) estimate (s.e.) 
420 
421 
443 
446 
449 
451 
498 
501 
504 
507 
522 
523 
539 
540 
545 
550 
565 

0.011 
0.031 
0.017 
0.935 
0.053 
0.007 
0.016 
0.020 
0.010 
0.046 
0.020 
0.005 
0.030 
0.030 
0.056 
0.000 
0.025 

(0.032) 
(0.029) 
(0.030) 
(0.000) 
(0.026) 
(0.033) 
(0.029) 
(0.031) 
(0.034) 
(0.028) 
(0.029) 
(0.031) 
(0.033) 
(0.029) 
(0.027) 
(0.032) 
(0.031) 

0.010 
0.017 
0.013 
0.007 
0.051 
0.006 
0.017 
0.001 

-0.020 
0.038 
0.018 
0.005 
0.025 

-0.012 
0.057 
0.002 
0.028 

(0.011) 
(0.010) 
(0.010) 
(0.010) 
(0.009) 
(0.012) 
(0.011) 
(0.011) 
(0.012) 
(0.010) 
(0.011) 
(0.011) 
(0.013) 
(0.010) 
(0.008) 
(0.012) 
(0.011) 

0.011 
0.022 
0.020 

-0.005 
0.047 
0.010 
0.022 
0.012 

-0.001 
0.041 
0.014 
0.008 
0.025 
0.005 
0.068 
0.006 
0.026 

(0.012) 
(0.010) 
(0.011) 
(0.011) 
(0.009) 
(0.012) 
(0.011) 
(0.011) 
(0.012) 
(0.010) 
(0.011) 
(0.011) 
(0.013) 
(0.010) 
(0.008) 
(0.012) 
(0.012) 
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Table 4.7: Estimates and standard errors for the long-term covariate effects (time) for 
patients in the low dose group 

full data set with 446* 
removed 

with 446* and 
545* removed 

Patient # estimate (s.e.) estimate (s.e.) estimate (s.e.) 
419 
424 
448 
450 
452 
499 
502 
508 
521 
525 
542 
544 
547 
548 
564 
568 

0.022 
0.030 
0.008 

-0.001 
0.009 
0.006 

-0.022 
0.009 

-0.005 
0.021 
0.043 

-0.002 
-0.009 

0.017 
0.013 

-0.005 

(0.030) 
(0.028) 
(0.031) 
(0.033) 
(0.033) 
(0.029) 
(0.039) 
(0.029) 
(0.030) 
(0.029) 
(0.028) 
(0.037) 
(0.033) 
(0.032) 
(0.028) 
(0.036) 

0.029 
-0.002 
0.015 
0.010 
0.003 
0.025 

-0.037 
0.011 
0.008 
0.002 
0.030 
0.022 

-0.018 
0.008 
0.014 
0.019 

(0.011) 
(0.010) 
(0.013) 
(0.013) 
(0.012) 
(0.011) 
(0.014) 
(0.012) 
(0.011) 
(0.010) 
(0.010) 
(0.016) 
(0.012) 
(0.011) 
(0.010) 
(0.016) 

0.026 
0.007 
0.010 
0.010 
0.001 
0.026 

-0.027 
0.007 
0.008 

-0.002 
0.030 
0.023 

-0.009 
0.013 
0.014 
0.011 

(0.012) 
(0.010) 
(0.013) 
(0.013) 
(0.012) 
(0.012) 
(0.014) 
(0.011) 
(0.011) 
(0.011) 
(0.010) 
(0.016) 
(0.011) 
(0.011) 
(0.010) 
(0.016) 
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Table 4.8: Estimates and standard errors for the long-term covariate effects (time) for 
patients in the high dose group 

full data set with 446* with 446* and 
removed 545* removed 

Patient # estimate (s.e.) estimate (s.e.) estimate (s.e.) 
422 0.020 (0.032) 0.015 (0.011) 0.018 (0.012) 
444 0.006 (0.036) -0.004 (0.013) 0.002 (0.013) 
445 0.026 (0.032) 0.030 (0.011) 0.026 (0.012) 
453 0.011 (0.034) 0.008 (0.012) 0.012 (0.012) 
454 0.035 (0.030) 0.042 (0.011) 0.040 (0.011) 
497 -0.031 (0.033) -0.026 (0.013) -0.025 (0.013) 
500 0.015 (0.033) 0.015 (0.011) 0.012 (0.012) 
503 0.009 (0.031) 0.009 (0.011) 0.013 (0.011) 
506 -0.038 (0.042) -0.029 (0.019) -0.021 (0.018) 
524 0.010 (0.031) 0.020 (0.012) 0.018 (0.012) 
526 0.014 (0.034) 0.014 (0.012) 0.011 (0.012) 
541 -0.003 (0.034) -0.011 (0.012) -0.011 (0.012) 
543 0.025 (0.035) 0.008 (0.013) 0.012 (0.013) 
546 0.005 (0.041) 0.020 (0.018) 0.021 (0.018) 
549 0.023 (0.031) 0.024 (0.011) 0.020 (0.012) 
566 0.017 (0.032) 0.008 (0.011) 0.012 (0.011) 
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4.4 Model checking 

Following the notation used in Section 3.4, we refer the standardized filter residuals as 

Rit (from the active lesion process), i?2i (from the relative burden process) and rt (from 

the latent process). The corresponding standardized smoother residuals are denoted by 

R*,t

 a n d rt- F ° r notational convenience, the index j for a given series is suppressed. 

We now analyse the residuals from the fitted models on the full data set, on the data set 

with 446* removed and on the data set with both 446* and 545* removed. 

4.4.1 Full data set 

For the fitted model using the full data set, we will first analyze the residuals from each 

patient one at a time and then consider the residuals from the whole data set to inves­

tigate their overall pattern. Among the 49 patients in this study, we will only discuss 

our findings on four (2 from the placebo group, one from the low dose group and one 

from the high dose group) of the patients. Patients with extreme values are of particular 

importance. Therefore, we will present our findings on the residuals analysis for patient 

#446 and #545 in the placebo group. Patient #502 and #500 in the low dose and high 

dose group respectively are also selected. The residual plots for patient #497, who has 

extreme average active lesions, are available in Appendix C for reference. 

Plots for the residuals from patient #446 are shown in Figure 4.7. The autocorrela­

tions function (ACF) plot for Ru in Figure 4.7(a) clearly indicates that Rlt are correlated 

as the autocorrelations for lag 1 and 2 fall significantly outside the asymptotic 95% con­

fidence bands; thus violating the conditional independence assumption of active lesions 



Chapter 4. Analysis of Betaseron data 48 

Figure 4.7: Residuals plots for patient #446 in the placebo group 
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Figure 4.8: Residuals plots for patient #545 in the placebo group 
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values over time. Moreover, both the A C F plot for R2t (Figure 4.7(b)) and for rt (Fig­

ure 4.7(c)) have lag 1 correlations found outside the asymptotic 95% confidence bands. 

The plots of Ru against Ru-i (Figure 4.7(d)) and R2t against -R24-1 (Figure 4.7(e)) show 

a linear pattern in the right most part of each plot. This gives further evidence against 

the assumptions that values from the two observation processes are conditionally inde­

pendent over time, given the latent process. Evidence against the Markov assumption of 

the latent process is seen in the plot of rt against rt-\ (Figure 4.7(f)) which shows a linear 

relationship in the right part of the plot. Curved patterns are observed in the plots of 

Rit against time (Figure 4.7(g)) and R2t against time (Figure 4.7(h)). This means that 

the values of the observation process are not conditionally independent over time, given 

the latent process. The same pattern is also visible in the plots of rt against time (Fig­

ure 4.7(i)). It confirms the inadequacy of the Markov assumption for the latent process. 

The plots for the residuals against the log-linear predictor presented in Figure 4.7(j), (k) 

and (1) all have a peculiar structure which should not be expected. The distributional 

assumptions for the observation and the latent processes can be considered inappropri­

ate. Note that an outlier corresponding to the observation at time 17 (the extreme value 

446* mentioned in section 4.2.1) is visible in plots Figure 4.7(e), (f), (h), (i), (k) and (1). 

When there is something wrong with the model assumptions, it manifests itself in various 

ways which are seen in the residual plots. A l l the residuals plots suggest inadequacy of 

the model. The residuals analysis for patient #446 gives convincing evidence that the 

model assumptions are inappropriate. We suspect that the extreme value 446* causes 

some serious violations of main model assumptions. Although this is not entirely obvious 

from the plots in Figure 4.7, 446* at the last M R I scan (time 17) for that patient may pull 

the estimated latent process upwards to give rise to some patterns observed in those plots. 
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Figure 4.9: Residuals plots for patient #502 in the low dose group 
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Figure 4.10: Residuals plots for patient #500 in the high dose group 

<a> Series: Active Lesions 

I , i I 
~ n r 

Lag 

(d) Active Lesions 

-0.5 0.0 0.5 
lag 1 reskfuals 

(g) Active Lesions 

5 10 15 
lime 

(j) Active Lesions 

<b> Series: Relative Burden 

_I_L i , I 
"I TT 

Lag 

(e) Relative Burden 

0.0 0.5 1.0 
lag 1 reskluals 

(h) Relative Burden 

5 10 
time 

(k) Relative Burden 

-0.10 -0.05 0.0 0.05 0.10 0.15 
log fitted values 

0.0 0.05 0.10 0.15 
log fitted values 

<c) Series: Latent Process 

T T 

Lag 

(f) Latent Process 

-0.5 0.0 0.5 
lag 1 residuals 

(i) Latent Process 

time 

Latent Process 

-0.1 0.0 0.1 
log fitted values 



Chapter 4. Analysis of Betaseron data 53 

Figure 4.8 consists of residuals plots for patient #545. The A C F plot for Rlt (Fig­

ure 4.8(a)) does not show significant autocorrelation and neither does the A C F plot for 

i?2i (Figure 4.8(b)). These give no evidence against the conditional independence as­

sumption of the observation processes. No significant autocorrelation is seen in the A C F 

plot for rt (Figure 4.8(c)) giving no evidence against the Markov assumption of the latent 

process. No specific structure is observed in the plot of Ru against Ru-i as shown in 

Figure 4.8(d). However, the plot for i?2t against i ? 2 t - i presented in Figure 4.8(e) shows a 

weak linear pattern with 2 outliers. It is worth noting that these outliers are due to the 

extreme value at time 6, that is, 545* (mentioned in section 4.2.1). Hence, Figure 4.8(e) 

suggests a mild violation of the conditional independence assumption of the observation 

process. A similar weak linear pattern is also apparent in the plot for rt against rt-i as 

shown in Figure 4.8(f); it gives evidence against the Markov assumption of the latent 

process. Two outliers are also seen and they are due to the extreme value 545*. An 

outlier is observed in both Figure 4.8(h) and 4.8(i) which correspond to 545*. Besides 

that, nothing unusual is seen. No particular pattern is observed in the plot of R\t against 

the log-linear predictor (Figure 4.8(j)) and neither for i?2t against the log-linear predictor 

(Figure 4.8(k)) and rt against the log fitted values (Figure 4.8(1)) except that an outlier 

is present. The outliers that are found in Figure 4.8(k) and in Figure 4.8(1) are caused 

by the extreme value 545*. From these plots, the extreme value 545* is confirmed to be 

an outlier and mild violations of the conditional independence assumptions are evident. 

Plots for the residuals from patient #502 in the low dose group are presented in Fig­

ure 4.9. None of the A C F plots for Rn, R2t and rt have autocorrelations falling outside 

the 95% confidence bands. There are two possible outliers in the plots of Ru against 

R\t-\ shown in Figure 4.9(d). A closer look reveals that this feature is due to the dis­

creteness of the data. The values of active lesions are all 0 except at time 11 when the 
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number of active lesions is 1. The point in the far right corresponds to the case where 

the data value of 0 is immediately preceded by a value of 1. The reverse order gives the 

point in the upper left corner. The cluster of residuals in the lower left corner correspond 

to successive data values of 0. Although the residual at time 11 stands out from the 

rest, its value is 0.41 which is not large by any means. The residual from time 11 is 

perceived as an outlier in both Figure 4.9(g) and (j). Note that this feature caused by 

the discreteness of the data will also be observed in other plots. No particular pattern is 

observed in the plot for R2t against R2t-i presented in Figure 4.9(e) and rt against rt-i 

in Figure 4.9(f). The Markov assumption of the latent process appears to be acceptable 

as the plot of rt against rt-i in Figure 4.9(f) reveals no pattern. Again, nothing specific 

is observed for plots in Figure 4.9(g), (h), (i), (j), (k) and (1). In Figure 4.10(g), it is 

worth pointing out that the residuals in the lower band corresponding to data values of 0 

and the isolated residual appears in the top corresponding to data value of 1. The same 

explanation applies to Figure 4.9(j). 

Plots for the residuals from patient #500 in the high dose group are presented in 

Figure 4.10. None of these plots give evidence against the main model assumptions. We 

now comment on some features found in these plots which are caused by the discrete 

nature of active lesions counts. In Figure 4.10(g) where R\t is plotted against time, all 

the residuals appear to align themselves in three bands. The residuals in the lowest band 

correspond to the counts of 0. Residuals from the counts of 1 are in the second lowest 

band whereas the residual in the upper left hand corner comes from the observation with 

2 active lesions. This feature is also observed in Figure 4.10(j). The plot of Ru against 

Ru-i presented in Figure 4.10(d) also reveals an interesting feature due to the discrete­

ness of the data. The residuals appear in clusters. The cluster in the lower left corner 

corresponds to two consecutive 0 observations. The cluster in the center-left portion are 
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Figure 4.11: Residuals against log-linear predictors for the two categories 
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due to a data value of 1 immediately preceded by a data value of 0 whereas a count of 

2 immediately preceded by a count of 0 gives the isolated point in the upper-left corner. 

The features caused by the discrete nature of the observation are highly visible in plots 

where residuals from the entire data set are considered together. 

We now consider residual plots using the entire data set. Plots for Rn against log 

predicted values of the observed processes based on the Kalman filter are shown in Fig­

ure 4.11. The discreteness of the active lesions values, coupled with the low expected 

counts, accounts for the curved set of bands with negative slope found in Figure 4.11(a). 

The lowest band are the filter residuals for data values of 0, the next lowest band for 

data values of 1 and so on. In particular, it is impossible to have large negative residu­

als for small fitted values. This feature, together with the negative slope of the curves 

on which the residuals lie, makes the residual plots show an apparent downward trend. 

These bands dominate the plot for log expected counts less than 1 but seem to disappear 
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Figure 4.12: Residuals against log-linear predictors for the latent process 
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above this value. The Poisson residuals become approximately normal for log expected 

counts greater than 1. Taking this into account, Figure 4.11(a) is compatible with the 

Poisson assumption. In particular, it gives no evidence against the use of the Poisson 

variance function. The downward trend in Figure 4.11(a) would be apparent in any plot 

for Poisson residuals against fitted values, making it difficult to interpret some plots. 

In Figure 4.11(b), one outlier (near the top) corresponding to the extreme value 545* 

stands out. Nearly all the residuals are clustered in the lower left corner with a few of 

them scattered around. The residuals with a peculiar pattern in the lower right corner 

are from patient #446. This plot does not give clear evidence of serious violation of the 

gamma assumption for the relative burden process. However, it is important to note the 

peculiar pattern of the residuals from patient #446. The plot of rt against log fitted 

values (log(6 tmt_i)) presented in Figure 4.12 also has an outlier corresponding to 545*. 

Moreover, there are a set of residuals in the far right having a peculiar pattern. These 
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Figure 4.13: Residuals against lag 1 residuals for the two categories 

(a) Active Lesions (b) Relative Burden 
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residuals are from patient #446. When these residuals are not taken in consideration, 

the gamma assumption for the latent process seems to be appropriate. Up to now, the 

residuals plots all suggest that patient #446 gives somewhat peculiar residuals. The 

strange pattern of these residuals are observed in various plots and is believed to have 

caused by the extreme value 446*. 

Figure 4.13 shows the plots for Ru against Ru-i and i?2i against R^t-i. A band-like 

structure is detected in Figure 4.13(a). A l l the bands run from the lower left corner to the 

upper right corner and are less obvious when away from the center-portion of the plot. 

These bands are caused by the discreteness of the data. The residuals in the center-most 

band correspond to two consecutive zero observations. The two bands adjacent to the 

center-most correspond to either data values of 0 immediately preceded by 1 or data 

values of 1 immediately preceded by 0. Figure 4.13(a) gives no evidence against the 

conditional independence assumption of the active lesions values over time, given the 
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Figure 4.14: Residuals against lag 1 residuals for the latent process 
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latent process. There are two outliers in Figure 4.13(b) which are due to the extreme 

value at time 6 of patient #545, 545*. It appears that there is a very weak relationship 

between R2t and R2t-i which can be treated as negligible. As a significant portion of the 

residuals form a cloud, the perceived weak relationship is caused by a few residuals in 

the lower left corner of the plot. It is not surprising to see that these residuals are from 

patient #446 and #545. A similar very weak linear relationship between rt and rt-\ is 

also found in Figure 4.14. This weak linear relationship is considered negligible using the 

same arguments discussed above. Moreover, two outliers corresponding to 545* are seen 

in Figure 4.13. 

In conclusion, the fitted model on the full data set is inadequate. There are serious 

violations of some of the main model assumptions. For example, the conditional inde­

pendence assumption of the relative burden values over time and the Markov assumption 
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of the latent process are clearly inappropriate. These violations are mainly caused by the 

extreme observation of relative burden at time 17 for patient number 446. 

4.4.2 Data set with 446* removed 

We now consider the residual analysis for the fitted model on the data set with the ex­

treme value 446* removed. As in the previous sub-section, we will discuss the residual 

plots from the same four patients as well as the residual plots from the entire data set. 

We will later confirm that the fitted model is reasonable. We provide the residual plots 

for the remaining patients in appendix C for reference. 

Plots for residuals from patient #446 are presented in Figure 4.15. None of the A C F 

plots in Figure 4.15(a), (b) and (c) have autocorrelations falling outside the asymptotic 

95% confidence bands. No pattern is observed in Figure 4.15(d), (e) and (f). In Fig­

ure 4.15(g), the slight downward trend may be of concern. It suggests that the active 

lesions values may not be dependent via the latent process only. However, the band 

structure of Rlt (as discussed in the previous sub-section) may help explain part of this 

feature. As all the residuals corresponding to data values of 0 lie in the lower band, any 

slight relationship between Ru and time will be magnified. We will address this issue 

later by plotting residuals from all patients against time to see if such pattern persists. 

Figure 4.15(h) and (i) has no particular pattern, confirming the conditional independence 

assumption of the relative burden and the Markov assumption of the latent process. None 

of Figure 4.15(j), (k) and (1) reveal any unexpected patterns. Hence, they give no ev­

idence against the distributional assumptions for the observation and latent processes. 

It comes as no surprise that there are great improvements of the fit for patient #446. 

When the extreme value 446* is removed, the estimated latent process for patient #446 
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Figure 4.15: Residuals plots for patient #446 in the placebo group 
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Figure 4.16: Residuals plots for patient #545 in the placebo group 
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Figure 4.17: Residuals plots for patient #502 in the low dose group 
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Figure 4.18: Residuals plots for patient #500 in the high dose group 
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is no longer forced to go up from time 7 onwards as in the fitted model on the full data set. 

Plots for residuals from patient #545 are shown in Figure 4.16. Two outliers are seen 

in Figure 4.16(e) and (f). These two outliers are due to the extreme value 545*. The 

outliers found in Figure 4.17(h), (i), (k) and (1) are also due to this extreme value. It 

is not surprising to see the frequent appearance of outliers due to 545* in various plots. 

Following the procedures on plots in Figure 4.8, there is no evidence against the model 

assumptions. 

Figure 4.17 and Figure 4.18 show the plots for residuals from patient #502 and #500 

respectively. Note that the features observed in Figure 4.17(d), (g) and (j) have been 

discussed when we analyse Figure 4.9. Regarding the features seen in Figure 4.18(d), (g) 

and (j), we follow similar arguments when we discuss Figure 4.10. Again, no evidence 

against the main model assumptions are found. 

We now analyse residuals from all the patients. Plots for Rn against log fitted values 

are shown in Figure 4.19. The downward banded structure found in Figure 4.19(a) 

has been explained previously. The Poisson assumption for the active lesions values 

appears to be acceptable. In Figure 4.19(b), there is an outlier corresponding to the 

extreme value 545* in the top right corner. A slight "megaphone" shape is also observed 

in Figure 4.19(b); the shape is caused by a very few points to the far right. As most of 

the residuals form a cloud in the center of the plot, it seems that the gamma variance 

function assumption is justified. When the outlier is withheld from the plot, the new 

plot (not shown here) has a similar shape as Figure 4.19(b). In the new plot, only a very 

few points to the right cause a slight "megaphone" shape. There is no clear evidence 

against the gamma assumption. Figure 4.20 shows the plot for rt against log fitted 
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Figure 4.19: Residuals against log-linear predictors for the two categories 
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Figure 4.20: Residuals against log-linear predictors for the latent process 
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Figure 4.21: Residuals against lag 1 residuals for the two categories 
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values (log(6<mt_i)). There is an outlier in the upper part; corresponds to'545*. A slight 

"megaphone" shape caused by a small percentage of residual is also observed. The new 

plot (not shown here) with the outlier removed also gives a similar shape. Only a very 

small portion of points cause the perceived shape. Note that there are 804 observation 

vectors in the data. Following the argument used for Figure 4.19(b), we consider the 

gamma variance function assumption for the latent process acceptable. Note that the 

extreme value 545* consistently causes an outlier in some of the plots mentioned in this 

sub-section and is expected to cause outliers in some of the following plots, too. 

The band-like structure for Ru against R\t-\ in Figure 4.21(a) has been previously 

explained. It is due to the discreteness of the data. The plot for R2t against R2t-i in 

Figure 4.21(b) does not show any particular structure except the presence of two outliers. 

The plot for rt against rt-i shown in Figure 4.22 reveals no specific structure; the two 

outliers are as expected. Plots for Rn against time are presented in Figure 4.23. Both 
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Figure 4.22: Residuals against lag 1 residuals for the latent process 
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Figure 4.24: Residuals against time for the latent process 
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plots demonstrate a cloud structure as expected. If time is incorrectly classified as a 

long-term covariate, the residuals Rn should show some relationship with time. Since 

these two plots have no particular pattern, there is no evidence against time being a 

long-term covariate. Nothing unexpected is observed in the plot of rt against time shown 

in Figure 4.24. Note that the outlier found in both Figure 4.23(b) and Figure 4.24 cor­

responds to 545*. 

We now check the model assumptions for the initial state values. The plot for the 

smoother residuals (mj0—gj) against the log fitted values (log#j) presented in Figure 4.25 

does not reveal any particular pattern. Therefore, the gamma variance function assump­

tion for the random effects distribution is acceptable. The linearity assumption is checked 

by plotting the smoother residuals (mj 0 — g3) against the covariates; as presented in Fig­

ure 4.26. Nothing unexpected is seen in Figure 4.26(a), (b), (c) and (f). Note that as 

! I ! I I I I I I i ' I i | | I 
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Figure 4.25: Smoother residuals against log-linear predictors for the random effects 
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mentioned in Section 4.2.3, EDSS is an ordinal variable but is treated as a continuous 

variable in the analysis here for computational convenience. Due to the considerable 

larger number of patients from B C , it is not entirely clear that the greater range of 

the residuals for the B C patients seen in Figure 4.26(d) indicates larger variability than 

residuals for the Washington patients. Moreover, the greater range of the residuals for 

the female patients observed in Figure 4.26(e) does not clearly indicate greater variabil­

ity than residuals for male patients because of the substantial larger number of female 

patients in the study. The plots in Figure 4.26 do not suggest violations of the model 

assumptions. 

Finally, we check the correlations between the two categories by calculating the em­

pirical variance-covariance matrix. This matrix is obtained by first standardizing the 

vector consisting of i ? t i , i = 1 and 2, by the square-root of its variance-covariance matrix; 
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Figure 4.26: Smoother residuals against baseline covariates 
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Table 4.9: Empirical variance-covariance matrix for standardized residuals 

Category 1 2 
1 
2 

0.993 -0.152 
-0.152 0.685 

and then calculating the corresponding empirical variance-covariance matrix. The results 

are given in Table 4.9. Ideally, an identity matrix is expected if the two categories are 

uncorrelated. The interpretation of Table 4.9 is complicated by the fact that it depends 

on the choice of the square-root matrix used for the standardization. The matrix in Table 

4.9 is much different from the identity matrix. However, such deviation may not suggest 

serious violation of the conditional independence assumption of the two categories. If 

we take the asymptotic standard error of the off-diagonal elements of the matrix to be 

l/ \ /804 = 0.035, the off-diagonal elements are much larger than predicted by the model. 

The empirical variance of 0.685 in the second category is much lower than it should 

be. Although there is evidence that the two categories are slightly conditionally corre­

lated, this does not seem to indicate any serious shortcoming of our model. However, we 

should keep in mind the effect of this possible correlation between the two categories on 

the asymptotic standard errors of the regression parameter estimates. These standard 

errors will be under-estimated if the categories are correlated instead of independent as 

assumed in our model. None of the A C F and P A C F plots for the average filter residuals 

presented in Figure 4.28 indicate significant correlations. 

As a conclusion, the main model assumptions for the fitted model on the data set 

with 446* removed seems to be appropriate; no serious violations are evident from the 

data. The model gives a very reasonable fit to this data set. 
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Figure 4.27: Autocorrelation functions for average filter residuals: (a) to (c) are the 
autocorrelations functions; (d) to (e) are the partial autocorrelations functions 
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4.4.3 Data set with 446* and 545* removed 

The residual analyses for the fitted model on the data set with 446* and 545* removed 

have also been carried out. As expected, all the main assumptions for the fitted are 

confirmed to be appropriate. Due to space limitation, these plots are not included in this 

thesis. 

4.5 The final model 

We have now confirmed that the fitted model on the data set with extreme value 446* 

removed is reasonable. As mentioned previously in Section 4.3, we will retain as many 

data points as possible in the data for analysis provided that the fit is acceptable. There­

fore, we will start our search for the final model with the fitted model on the data set 

with 446* removed. 

Since the latent process may be interpreted as the underlying severity of the disease, 

the effects for time, the long-term covariate, is discussed first. The regression parameter 

for time may be interpreted as the rate of increase of the log of the underlying severity 

(log Qt) per 6-week period. A positive estimate means that the underlying severity of MS 

is getting worse over the period of this study. Our model allows each patient to have 

a different regression parameter. There are all together 49 estimates for the long-term 

covariate effects, one for each patient. These estimates are summarized in Table 4.6 on 

P.44, Table 4.7 on P.45 and Table 4.8 on P.46, with asymptotic standard errors of the 

estimates shown in brackets. 
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In our model, the latent process is estimated by the Kalman smoother. The estimated 

latent processes for each patient presented in Figure 4.28 can be used to guide our discus­

sion on the pattern of the response over time. It appears that these estimated processes 

are not so variable. The estimate for the dispersion parameter (a2 — 0.00038) shows 

that the stochastic variation of the latent morbidity process 9t itself is small. Among 

the three treatment groups, patients in the placebo group seems to have the greatest 

upward trend. The estimated latent processes of three patients (#449, #507 and #545) 

are very different from those for other patients in the placebo group. For the low dose 

group, nearly all the estimated processes are mostly horizontal except that for patient 

#502. This patient has an estimated latent process with a relatively large negative slope. 

Since one of the objectives of this study is the pattern of the response over time, it is 

desirable to see whether patients in a given treatment group share the same regression 

parameters and then compare these common effects across treatment groups. The test 

for patients in the placebo group having the same regression parameter has the Wald's 

statistic (as mentioned in section 3.3.1.) W = 27.31, which gives the p-value of 0.038 

compared with a x2(16)-distribution. That is, there is weak evidence that the long-term 

covariate effects are not the same. The same test for the low dose group gives W = 12.64 

with 15 degrees of freedom; the p-value is 0.630. Therefore, there is no evidence against 

the assumption that patients in the low dose group share the same regression parameter. 

The test applied to the patients in the high dose group has W=13.68 with 15 degrees of 

freedom and the p-value is 0.550. The test suggests that there are no significant differ­

ences of the long-term covariate effects among patients in the high dose group. 

We now discuss the effects for the baseline covariates. The estimates for the regression 



Chapter 4. Analysis of Betaseron data 75 

Figure 4.28: Estimated latent processes for each patient 
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parameters are summarized in Table 4.5 on P.43. The Wald's test for the joint signifi­

cance of low dose and high dose has W = 6.27 with 2 degrees of freedom, which gives the 

p-value of 0.043. Hence, the data give weak evidence that the effects for the treatment 

groups are significant. Since there are significant treatment effects, it is appropriate to 

compare the treatment groups. The effect for the low dose group is mildly significant 

(p-value of 0.073) and that for the high dose group is highly significant (p-value of 0.016). 

No significant difference between the low dose and the high dose group (p-value of 0.430) 

is found. That is, the log of the expected initial value for patients in the placebo group is 

0.118 higher than those for patients in the low dose group and 0.173 higher than those for 

patients in the high dose group. Although the estimated effect for the high dose group 

is 0.055 less than that for the low dose group, such a difference should be not taken 

seriously as it is not statistically significant. 

The other baseline covariates found to have significant effects are age (p-value of 

0.012) and log area (p-value of 0.000). For every unit increase in age and log area, the 

log of the expected initial value would be reduced by 0.009 and 0.095 respectively. That 

is, the analysis suggests that older patients with larger values of initial burden of disease 

seem to have smaller initial values for the latent process. 

We now consider the case where patients in a given treatment group share the same 

regression parameter for the long-term covariate. Although the data give some evidence 

that patients in the placebo group do not share a common time effect, it will be interesting 

to discuss the results under this assumption as one of the objective of this M R I sub-study 

is to know more about the "average" effects of Betaseron on patients. These common 

time effects may be interpreted as the "average" time effects in a treatment group, thus 

lending themselves to address the objective of the sub-study. The estimates for the 
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Table 4.10: Estimates for the long-term covariates effects 

Parameter estimate standard error z 
0.021 0.0055 3.76 

Pid 0.011 0.0063 1.67 

fihd 0.011 0.0068 1.65 

Table 4.11: Estimates for the baseline covariates effects 

Parameter estimate standard error z 
intercept 0.861 0.299 2.88 
low dose -0.075 0.085 -0.88 
high dose -0.163 0.091 -1.79 
age -0.008 0.005 1.60 
EDSS 0.049 0.033 1.48 
duration -0.005 0.006 0.83 
origin -0.049 0.084 0.58 
gender 0.041 0.083 0.49 
log area -0.080 0.022 3.64 

effects are summarized in Table 4.10 and Table 4.11. We denote the common regression 

parameters by Bpl (in the placebo group), Bld (in the low dose group) and Bhd (in the 

high dose group). 

The test for equality of the Bpl, Bld and Bhd gives the Wald's statistic W = 1.79 with 

2 degrees of freedom (p-value of 0.410). Note that neither Bld nor Bhd are significantly 

different from zero. It suggests that the time effects across the treatment groups are the 

same. Moreover, only two baseline covariates are found to have significant effects. The 

effect for high dose is marginally significant (p-value of 0.073) and for log area is highly 

significant (p-value of 0.000). The effects for low dose and age are no longer significant. 

Note that, in general, the magnitude of the estimates are smaller and the standard errors 
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are larger than those for the full model. For example, the estimate for the effect for the 

high dose group is —0.163 versus —0.173 in the full model. 

The Tweedie models possess an advantage that subject-specific effects can be inves­

tigated. This advantage is fully utilized to extract more valuable information from the 

data set. First, the time effects for patients are allowed to be different. By investigating 

these time effects, information on how individual patients respond to the treatment can 

be extracted. There is some evidence that the time effects for patients in the placebo 

group are somewhat different. If the objective is on studying the "average" time effects 

across the treatment groups, the analysis can be carried out with the assumption that 

patients in a treatment group share a common time effect. The common time effect may 

be interpreted as the "average" effect for patients in a treatment group. 

To conclude, we start with the full model and then reduce it to a more parsimonious 

one. The final model identified is: 

Long-term covariate: 

time. 

Baseline covariates: 

low dose; 

high dose; 

age; 

log area. 

The estimates for this final model is presented in Table 4.12 and Table 4.13. The 

Wald's test for common time effects for patients in a treatment group is carried out. For 
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Table 4.12: Estimates and standard errors for the time effects for each patient; placebo 
(PL), low dose (LD) and high dose (HD). 

P L estimate (s.e.) LD estimate (s.e.) HD estimate (s.e.) 
#420 0.010 (0.011) #419 0.021 (0.011) #422 0.011 (0.011) 
#421 0.014 (0.010) #424 0.001 (0.010) #444 -0.007 (0.012) 
#443 0.013 (0.010) #448 0.015 (0.012) #445 0.029 (0.011) 
#446 0.003 (0.010) #450 0.010 (0.012) #453 0.005 (0.011) 
#449 0.054 (0.008) #452 -0.003 (0.011) #454 0.040 (0.011) 
#451 0.002 (0.011) #499 0.021 (0.011) #497 -0.021 (0.013) 
#498 0.021 (0.010) #502 -0.041 (0.013) #500 0.012 (0.011) 
#501 0.001 (0.010) #508 0.012 (0.011) #503 0.013 (0.011) 
#504 -0.021 (0.011) #521 0.013 (0.011) #506 -0.026 (0.019) 
#507 0.039 (0.010) #525 0.005 (0.010) #524 0.023 (0.012) 
#522 0.022 (0.010) #542 0.027 (0.010) #526 0.012 (0.012) 
#523 0.007 (0.011) #544 0.016 (0.015) #541 -0.011 (0.012) 
#539 0.025 (0.013) #547 -0.011 (0.011) #543 0.002 (0.012) 
#540 -0.009 (0.010) #548 0.010 (0.011) #546 0.030 (0.017) 
#545 0.053 (0.008) #546 0.017 (0.010) #549 0.024 (0.011) 
#550 0.005 (0.011) #568 0.023 (0.016) #566 0.013 (0.011) 
#565 0.024 (0.011) 

Table 4.13: Estimates and standard errors for baseline covariate effects 

Parameter estimate (s.e.) 
intercept 
low dose 
high dose 
age 
log area 

1.123 (0.190) 
-0.074 (0.063) 
-0.146 (0.068) 
-0.010 (0.004) 
-0.097 (0.019) 
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the placebo group, the test statistic is W = 74.71, which gives a p-value of 0.000 when 

compared with a x2(16)-distribution. For patients in the low dose group, the p-value is 

0.036 (W = 26.20 with 15 degrees of freedom). As for the high dose group, the test gives 

a p-value of 0.011 (W = 30.14 with 15 degrees of freedom). Hence, there is clear evidence 

that the time effects are different for patients in a treatment group. These tests all have 

smaller p-values as compared to the same tests in the full model. This may be due to 

the smaller standard errors for the time effects in the final model. Note that in the full 

model, the same test for common time effects leads to test statistics of W = 27.31 (for 

the placebo group), W = 12.64 (for the low dose group) and W = 13.68 (for the high 

dose group). 

Finally, since there is marginal significant treatment effects (p-value of 0.089), it is 

quite reasonable to compare the treatment groups. As seen in Table 4.13, only the high 

dose group significantly (p-value of 0.032) influences the initial values of the underlying 

severity; the effect of the low dose group is not significant (p-value of 0.240). 



Chapter 5 

Discussion 

It is helpful to use the results from the previous analyses of the data by Petkau and 

White (1995) and D'yachkava (1997) for reference. Comparing their results with those 

obtained in this thesis may not be so appropriate as the details in the previous analyses 

are quite different. Petkau and White (1995) used an univariate approach and consid­

ered a similar form of transformation of the response variable burden of disease. The 

transformation they considered was the log of relative burden. They found significant 

treatment effects and differences among the linear time effects for the different treatment 

group. D'yachkava (1997) used an univariate approach and looked at active lesions. She 

found significant treatment effects and no differences among the linear time effects for 

the different treatment group. Both Petkau and White (1995) and D'yachkava (1997) 

used the G E E approach in their analyses and focused on the sub-population (such as 

patients in a treatment group) average time effects but not subject-specific effects. 

We use a multivariate approach in our analysis and considered a bivariate response 

vector with relative burden and active lesions as its components. The possible effects of 

the treatment are addressed by investigating the time effects for patients across treat­

ment group. Since the latent process reflects the underlying severity of the disease, a 

large positive time effect for a patient suggests that the disease is getting worse over time. 

A time effect close to zero suggests that the disease does not change much during the 

sub-study. This may indicate a benefit of the treatment. The constant covariate effects 
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influence the initial value of the time series for a given patient, thus accounting for the 

natural heterogeneity of the patients. These constant covariate effects do not have the 

same interpretations as in the previous analyses. 

Regarding the pattern of the response over time, our model allows the time effects to 

be different across patients. The equality of these effects in a given treatment group can 

then be tested. There is clear evidence that patients in a treatment group do not share a 

common time effect. The estimated latent processes shown in Figure 4.28 indicate that 

patients in the placebo group have increasing severity of disease while those in the treat­

ment group do not have so much change in disease severity. When the sub-population 

"average" time effects are of focus, as seen in Table 4.10, the time effects for the treat­

ment group are smaller than that for the placebo group, perhaps even zero, suggesting a 

clear benefit of the treatment. 

In the analysis presented in this thesis, we avoid a potential computational complica­

tion by treating an ordinal variable (EDSS) simply as a continuous variable. Moreover, 

only one long-term covariate (time) is considered here. It may be interesting to include 

other time-varying covariates present in the M R I sub-study, for example, the EDSS scores 

at the time of subsequent scans, in future analysis. Our models currently can only handle 

longitudinal data collected at equally spaced time intervals. Due to this methodological 

constraint, we consider each scan to be taken at the target date for which it was intended, 

irrespective of the deviation of the actual date of the scan from that target date. Further 

development of the new method remains to be conducted in order to handle categorical 

(binary or ordinal) response data and to accommodate longitudinal data collected at 

unequally spaced intervals. 
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Despite having some methodological constraints, the new method possesses various 

attractive features in analyzing multivariate longitudinal data. The Tweedie state space 

models provide a unified approach to analysis of multivariate longitudinal data of mixed 

types. Since the Tweedie class exponential dispersion models cover a wide range of dis­

crete and continuous distributions, the new method can handle a variety of response 

vectors with components of different data types. It offers an intuitively appealing con­

ceptual framework for the data-generating mechanism of longitudinal data. A realistic 

correlation structure is achieved under the model assumptions. In contrast to the quasi-

likelihood approach, the method is based on the specification of the joint likelihood of 

the longitudinal data, thereby facilitating a wide variety of inferences and diagnostic 

procedures. The new method is flexible and easy to use. It has an extra feature that 

the covariates can enter the model via the short-term observation process or via the 

long-term latent process. At present, the new methodology cannot handle binary or cat­

egorical data. The method needs further development in order to accommodate these 

types of data. One limitation is that it is a new methodology. The justification of its use 

is based on asymptotics. Its properties are not yet fully understood. It would be desirable 

to provide a better understanding of the new methodology through further theoretical 

investigations and simulation studies. 
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Appendix A 

Exponential dispersion models 

The following is a review of the basic properties of exponential dispersion models from 

j0rgensen (1986, 1987). An exponential dispersion model for a random variable Y is 

given by the probability density function 

for y G R, with respect to a suitable measure, and for appropriate functions c* and 

K. The distribution (A.19) is denoted by Y ~ ED*(0,A), and 9 is called the canonical 

parameter and A the index parameter. The maximum possible domain for 9, denoted by 

0 C R, is called the canonical parameter domain. The domain for A, called the index 

set, is denoted by A, and is a subset of R+. We have A = R + if and only if (A.19) is 

infinitely divisible (J0rgensen 1986). The function K is called the cumulant generator of 

the model. The mean and variance of Fare 

p(y;0,X) = c*(y;X)exp{9y - XK(9)} (A.19) 

E(Y) = n = XT(9) and Var(F) = XV(9/X), (A.20) 

where 

r(9) 

is the mean-value mapping and 

is the unit variance function on ft = r(intO). 
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Table A.14: Summary of the Tweedie exponential dispersion models 

Distribution p S Q 0 
Extreme stable p < 0 R R + Ro 
Normal p = 0 R R R 
{Do not exist} 0 < p < 1 — — — 
Poisson p = 1 N 0 R+ R 
Compound Poisson 1 < p < 2 R 0 R + R_ 
Gamma p = 2 R + R + R_ 
Positive stable 2 < p < 3 R+ R+ — Ro 
Inverse Gaussian p = 3 R+ R+ —Ro 
Positive stable p > 3 R+ R+ —Ro 
Notation: S = support, —Ro = (—oo,0]. 

An exponential dispersion model satisfies the convolution formula 

ED*((9,AX)*ED*((9,A 2) = ED*(<9, A x + A 2 ) . (A.21) 

The Tweedie class is an important class of univariate exponential dispersion models, 

defined as the special case of the distribution (A. 19) with unit-variance functions of the 

form 

V(ii) = yP 

for some p £ (—oo] U [l,oo), denoted by Twp(fx,a2), where o2 = A 1 _ p is called the 

dispersion parameter, the variance is O2/J,P. The Tweedie models may be characterized 

as the only exponential dispersion models that satisfy the following scale transformation 

property: 

cTwp(n, a 2 ) ~ Tw p ( C / u, c 2 - V ) Vc > 0. (A.22) 

Table A . 14 shows a summary of the Tweedie class. The case p — 1, a2 = 1 gives 

the Poisson distribution, and 1 < p < 2 gives the compound Poisson distributions [in 

the terminology of, for example, Feller (1971)], which have a positive probability mass 

at zero and are continuous for y > 0. The cases p = 0,2,3 correspond to the normal, 
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gamma and inverse Gaussian distributions, respectively. 

For p > 2 or p < 0, the Tweedie models correspond to the exponential families 

generated by the positive stable distributions and the extreme stable distributions, re­

spectively. We refer to these models as the stable Tweedie models. These models are 

not stable as such, but all the Tweedie models appear as the limiting distributions for 

the exponential dispersion models according to the convergence theorem by J0rgensen, 

Martinez and Tsao (1994), which extends the stable generalization of the central limit 

theorem. Many exponential dispersion models have variance functions that are asymp­

totically of the Tweedie form, and may be approximated by a member of the Tweedie 

family by means of the result of j0rgensen, Martinez and Tsao (1994). For this reason, 

the Tweedie models occupy a central position among exponential dispersion models. 

The density function of the Tweedie class has the following form: 

f(r,t*,<r2,p) = cp(y;o2)exV[^{yT;\u) - KP{T;\U))}}, (A.23) 

where 

Kp(9) = a-1(a-l){9/(a-l)}a 

and 

rp{9) = {9/(a - with a = (p - 2)/(p - 1). 



A p p e n d i x B 

G o d a m b e i n f o r m a t i o n m a t r i x 

In this appendix, the calculation of the sensitivity matrix S and the variability matrix 

V mentioned in section 3.3.1 is briefly outlined. These matrices enter in the Godambe 

information matrix J = S T V _ 1 S and in the Newton scoring algorithm. The first two 

sections contain some intermediate results and the final results are given in the last two 

sections. 

B . l M o m e n t calculat ions 

The variance-covariance matrices of e*, £* and m*, needed for calculating the variability 

matrix V are obtained as follows. We consider one series indexed by j at a time. For 

convenience, we suppress the index j in the notation. Let the matrix C * be defined by 

C * =E{(0 - m * ) ( 0 - m * ) T } 

with diagonal elements C* and off-diagonal elements C t * t + S given by 

n.. . . 
Cu+s= c**+s n Ct+i-l 

Since e*t — et — a t(m* — 6t), where at6t is the conditional expectation of Y t given 9t, we 

have for all s, t > 0, 

Cov(et,es) = Cow(e*,e*) + ataJC*s. 
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According to the results in section 3.2, the e*s are mutually uncorrelated, and hence we 

obtain 

Atrt - ataJC* for t = s 

-a*aJC* for t ^ s. 
A special case of this result is 

Cov(e*,m*0) = atC*0. 

From section 3.2, we have Cov(et,0) = 0, and using Qt = m* — (m* — 9t), we obtain 

Cov(e;,C) = atCov(m*t-9t,m:-8s-bs(mU-9s.1)) 

To obtain the covariance matrix of £* = (£* , . . . , £*), note that the innovation £ t may be 

written as a sum of two uncorrelated terms 

6 = it + {(0t - m*t) - M î - mU)}-

The innovations are mutually uncorrelated with variance c r 2 & ? - 1 T f , and since Var(0 — 

m*) = C*, we have 

E (£*»&-*) = 

' <r2b\-XTt - Ct* + 2 6 t C * _ 1 - b\C*_x for s = 0 
< 

. -C*+a + btC;_lt+s + 6t+.C; ( + ,_ 1 - 6 t 6 t + s C ; _ l i + s _ 1 for s > 0 

A special case of this formula is 

E{(m*0-T0)in = -C*ot + btC*ot_1. 

Finally, the variance of mj is given by 

varK) = g y - C*0 
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B.2 Derivatives of Kalman filter and smoother 

The expected values of the partial derivatives of mt and m* with respect to a are, 

respectively, given by 

and 

The expected values of the partial derivatives of mt and m* with respect to f3 and 7 are 

defined similarly. 

As mentioned in section 3.2, for the Kalman filter, we have 

m0 = g = exp(wT7) and mt = & t { m t _ i + DtaJQ~1(Yt - it)}, 

where &t is a function of ct, bt is a function of (3 and Dt and Qt are functions of ct and 

(3. Since E(Y f — f<) = 0, we obtain the recursion, for t = 1,..., n, 

Ba(t) = kB^t-^-b^D^jQ^Et-^^mt^ 

bt{l - 6 <Aa i

TQ i- 1a i)DC K(t - 1) - ^ A ^ Q , " 1 — ^ a 4 

OCX 

^ D a ( i - 1) - M V ^ Q ^ — a , 

starting with DQ(0) = 0. Note that 

d 
dcxr 

Analogously, we obtain the recursions 

at = blockdiag (xT<Zit,..., x T a d i ) 
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starting with D ^ ( 0 ) = 0, and 

D 7 ( 0 = ^ D 7 ( t - l ) , 

starting with D 7 ( 0 ) = w T g . 

For the smoother, we immediately obtain the following backward recursions for, t = 

n,...,0, 

D * a ( i ) = D Q ( t ) + -£-{B*a(t + 1) - 6 T + 1 D a ( t ) } , 

D £ ( t ) = D ^ t ) + ^ { D ^ ( i + 1) - bt^-Dplt) - AzJ+1rt+1} 

and 

D 7 ( t ) = D 7 ( t ) + 7 ^ { D 7 ( t + 1) - 6t+iD7(t)}, 

starting with D*^(n) = D Q ( H ) , D ^ ( n ) = D^(ra) and D*y(n) = D 7 ( r a ) . 

B.3 V a r i a b i l i t y m a t r i x 

By definition, the variability matrix for the estimating function ip is 

/ v 1 2 v 1 3 

\ 

V = v 2 1 v 2 2 v 2 3 

v 3 1 v 3 2 v 3 3 / 

where V , j = E [ ^ j ^ J ] . From section B . l , we have the variance-covariance structure of 

Y — A m * , B m * and mj . Straightforward calculations give 

V n = X T K ~ 1 V a r ( Y - A m * ) K ^ X , 

V i 2 = X T K ; 1 C o v ( Y - A m * , B m * ) K 6 - 1 A Z , 



Appendix B. Godambe information matrix 94 

V 1 3 = X T K a - 1 C o v ( Y - A r r ^ m ^ K ^ W , 

V 2 2 = A Z T K ! ; 1 V a r ( B m * ) K 6 - 1 A Z , 

V 2 3 = A Z T K 6 - 1 C o v ( B m * , m * ) K ; 1 W 

and 

V 3 3 = W T K ; 1 V a r ( m S ) K ; 1 W . 

The variances and covariances involved in these expressions may be calculated from 

the results in section B . l by noting that Y — A m * is the vector of the predicted innova­

tions k*t and B m * is the vector of predicted innovations £*4. 

B .4 Sensi t iv i ty ma t r ix 

As in the previously section, we may write the sensitivity matrix for ip in the form 

Sn S12 S 1 3 
\ 

S = S 23 

where 

\ S 3 1 S 3 2 S 3 3 j 

= E[d^i/drjJ], with j = 1,2,3 referring to at, (3 and 7 respectively. Using the 

derivatives of the Kalman smoother from section B.2, we obtain 

where D*^ denotes the vectors D * ^ ) stacked in the appropriate order, and 

The remaining blocks of S are, using a similar notation 

S 1 2 - - X T K a - 1 A D * / : 73' 
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S 1 3 = - X T K A - X A D 7 , 

S 2 1 = - A Z T K ^ B D * A , 

S 2 2 = A Z T K ^ ( ^ r + BD^ 

S 2 3 = - A Z T K ^ B D 7 , 

S 3 i - W T K ; 1 D * C , , 

S 3 2 = W T K ; 1 D * / 3 

and 

S 3 3 = W T K - ( D * 7 - ) 

Here the subscript 0 refers to differentiation of mj. 



A p p e n d i x C 

Residuals plots for each patient in the placebo group 
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Figure C.29: Residuals plots for patient #420 in the placebo group 
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Figure C.30: Residuals plots for patient #421 in the placebo group 
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Figure C.31: Residuals plots for patient #443 in the placebo group 

<a' Series: Active Lesions 

Lag 

(d) Active Lesions 

o 1 
lag 1 residuals 

(q) Active Lesions 

time 

(j) Active Lesions 

<b) Series: Relative Burden 

Lag 

(e) Relative Burden 

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 
lag 1 residuals 

(h) Relative Burden 

(k) Relative Burden 

<°' Series: Latent Process 

Lag 

(f) Latent Process 

•0.5 0.0 0.5 1.0 

(i) Latent Process 

5 10 15 
time 

(I) Latent Process 

0.1 0.2 0.3 
log fitted values 



Appendix C. Residuals plots for each patient in the placebo group 100 

Figure C.32: Residuals plots for patient #449 in the placebo group 
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Figure C.33: Residuals plots for patient #451 in the placebo group 
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Figure C.34: Residuals plots for patient #498 in the placebo group 
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Figure C.35: Residuals plots for patient #501 in the placebo group 
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Figure C.36: Residuals plots for patient #504 in the placebo group 
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Figure C.37: Residuals plots for patient #507 in the placebo group 
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Figure C.38: Residuals plots for patient #522 in the placebo group 
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Figure C.39: Residuals plots for patient #523 in the placebo group 
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Figure C.40: Residuals plots for patient #539 in the placebo group 
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Figure C.41: Residuals plots for patient #540 in the placebo group 
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Figure C.42: Residuals plots for patient #550 in the placebo group 
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Figure C.43: Residuals plots for patient #565 in the placebo group 
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Figure D.44: Residuals plots for patient #419 in the low dose group 
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Figure D.45: Residuals plots for patient #424 in the low dose group 

<a' Series: Active Lesions I"' Series: Relative Burden <c> Series: Latent Process 

1 I 1 I I I 1 1 

_ L L 
T ~ T T | I 1 I 1 

Lag 

) Active Lesions (e) Relative Burden (f) Latent Process 

•1.1 -1.0 

rag 1 residuals 

(g) Active Lesions 

-1 o 1 

lag 1 residuals 

(h) Relative Burden (i) Latent Process 

) Active Lesions 

5 10 

time 

(k) Relative Burden Latent Process 

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.2 0.4 0.6 0.8 

log lilted values log lilted values log Bed values 



Appendix D. Residuals plots for each patient in the low dose group 115 

Figure D.46: Residuals plots for patient #448 in the low dose group 
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Figure D.47: Residuals plots for patient #450 in the low dose group 
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Figure D.48: Residuals plots for patient #452 in the low dose group 
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Figure D.49: Residuals plots for patient #499 in the low dose group 
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Figure D.50: Residuals plots for patient #508 in the low dose group 
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Figure D.51: Residuals plots for patient #521 in the low dose group 
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Figure D.52: Residuals plots for patient #525 in the low dose group 
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Figure D.53: Residuals plots for patient #542 in the low dose group 
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Figure D.54: Residuals plots for patient #544 in the low dose group 
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Figure D.55: Residuals plots for patient #547 in the low dose group 
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Figure D.56: Residuals plots for patient #548 in the low dose group 
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Figure D.57: Residuals plots for patient #564 in the low dose group 
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Figure D.58: Residuals plots for patient #568 in the low dose group 
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Figure E.59: Residuals plots for patient #422 in the high dose group 

<a> Series: Active Lesions 

_L_L 

0 in 
1 o 
3 O 

(d) Active Lesions 

Active Lesions 

10 

time 

0) Active Lesions 

•0.10 -0.05 0.0 

log fitted values 

0.05 0.10 

i"' Series: Relative Burden 

(e) Relative Burden 

(h) Relative Burden 

5 10 

time 

(k) Relative Burden 

<c> Series: Latent Process 

•0.05 0.0 

log fitted values 

I II I 

0 10 15 
Lag 

f) Latent Process 

5 0.0 0.5 

lag 1 residuals 

(i) Latent Process 

10 

time 

Latent Process 

•0.1 0.0 

log fitted values 



Appendix E. Residuals plots for each patient in the high dose group 130 

Figure E.60: Residuals plots for patient #444 in the high dose group 
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Figure E.61: Residuals plots for patient #445 in the high dose group 
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Figure E.62: Residuals plots for patient #453 in the high dose group 
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Figure E.63: Residuals plots for patient #454 in the high dose group 
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Figure E.64: Residuals plots for patient #497 in the high dose group 
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Figure E.65: Residuals plots for patient #503 in the high dose group 
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Figure E.66: Residuals plots for patient #506 in the high dose group 
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Figure E.67: Residuals plots for patient #524 in the high dose group 
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Figure E.68: Residuals plots for patient #526 in the high dose group 
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Figure E.69: Residuals plots for patient #541 in the high dose group 
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Figure E.70: Residuals plots for patient #543 in the high dose group 

<a> Series: Active Lesions 

Lag 

(d) Active Lesions 

5 "? 

•0.92 -0.90 -0.88 -0.81 

lag 1 residuals 

(g) Active Lesions 

10 
lime 

(j) Active Lesions 

<s o 
>- O) 
9 

-O20 -0.15 

log fitted values 

-0.10 

w Series: Relative Burden <°> Series: Latent Process 

A
C

F
 

.0
 0

.5
 

1.
0 

I I I I 1 1 

A
C

F
 

.0
 0

.5
 

1.
0 

I . i l l , 

111 111 II 

O 
I I I I 1 

0 5 10 15 
Lag 

(e) Relative Burden 

d t 
0 5 10 15 

Lag 

(f) Latent Process 

0.0 0.5 

lag 1 residuals 

(h) Relative Burden 

5 10 

time 

(k) Relative Burden 

-0.25 •OiO -0.15 

log lilted values 

0.0 

lag 1 residuals 

(i) Latent Process 

10 

time 

Latent Process 

•0.45 -0.40 -0.35 

log fitted values 

-0.30 



Appendix E. Residuals plots for each patient in the high dose group 141 

Figure E.71: Residuals plots for patient #546 in the high dose group 
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Figure E.72: Residuals plots for patient #549 in the high dose group 
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Figure E.73: Residuals plots for patient #566 in the high dose group 
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