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Abstract 

The local linear forecasting estimator is proposed in this thesis as an alternative 

technique to either parametric regression or the backcalculation approach in the context 

of forecasting for independent data. 

The asymptotic bias and variance of the local linear forecasting estimator are de

rived and used to develop procedures for the estimation of the optimal bandwidth for 

forecasting. Both the theoretical and the computational aspects of these procedures 

are explored. Simulation study shows that a cross-validation procedure has the best 

performance in forecasting among four bandwidth estimation procedures under study. 

Simulations and statistical analyses show that the backcalculation approach is very 

vulnerable to violations of the assumptions underlying this approach and that its appli

cation to AIDS data fails to achieve its two primary goals, to forecast the numbers of 

new AIDS cases and to estimate the historical H I V infection curve. 

To test the proposed forecasting estimator over parametric regression, both tech

niques are applied to the Canadian AIDS data and the U K AIDS data. The results 

of the two examples expose the weakness of parametric regression and show that the 

proposed technique does better than parametric regression in forecasting. 
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Chapter 1 

Introduction 

Suppose bivariate data {(t;, Yi), i = 1 , . . . , n] are observed at times 0 < ti < t2 < ... < 

'tn < 1. Here the f;s are i n [0,1], which may be normalized physical times. Thus any 

t ime beyond 1 is the "future" . W h a t can be said about the future path of this stream 

of data by studying the information available up to the present? Specifically, what is 

the "expected" value of Y at some t > 1? 

Consider the A I D S example. A new disease, acquired immunodeficiency syndrome 

( A I D S ) , was defined by the Center for Disease Control i n the Uni ted States i n 1982. 

A I D S is believed to be caused by the human immunodeficiency virus, or H I V . This 

disease spread rapidly i n the Uni ted States: reported cases of A I D S increased from 295 

i n 1981 to nearly 42,000 i n 1991 wi th reported deaths increasing from 126 to more than 

30,000 i n the same period. A I D S is now one of the major causes of death i n the Uni ted 

States [6]. A I D S has spread and caused serious concern around the world. Even though 

the current data suggest a slowing down i n the growth of the A I D S epidemic i n the 

Uni ted States, Northern Europe, Canada and Austra l ia , the spread of H I V infection 

is rampant i n Afr i ca . A I D S i n South A m e r i c a and A s i a seems to be at the onset of 

explosive spread [6]. 
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Uncertainty about A I D S has generated research involving epidemiologists and statis

ticians about the relationship between H I V and A I D S , the transmission of the disease 

and the future course of A I D S incidence. Mechanisms for monitoring the epidemic have 

been set up around the world. In the Uni ted States, the number of new A I D S cases 

each month has been available from the C D C (Centers for Disease Control) since 1982 

(earlier data from 1975 and prior to 1982 being combined to assure confidentiality [1]) 

while i n Canada quarterly numbers have been recorded by the F C A (the Federal Centre 

for A I D S ) since 1979 [23] and the L C D C (the Laboratory Centre for Disease Control) . 

Figure 1.1 depicts the quarterly numbers of A I D S cases reported wi th in six years 

of diagnosis i n Canada. Those data are considered to be complete i n reporting [23]. 

This thesis w i l l focus on the problem of forecasting w i t h complete or adjusted A I D S 

data, since adjusting A I D S data for under-reporting and reporting-delays would pose 

a separate research problem on its own. Note that the data shown here are not the 

cumulated numbers of A I D S cases. Each data point represents the number of new 

A I D S cases i n the corresponding quarter. In this case, i ; corresponds to the end of the 

i t h quarter and Y{ observed at t,-, the number of new A I D S cases i n the zth quarter 

(£,•_!,£,•]. One goal i n A I D S research is forecasting the number of A I D S cases that 

w i l l occur i n future t ime periods. This number is important to health organizations 

and governments for estimating the future demand i n health care and allocating funds 

accordingly. 

To summarize data and make forecasts based on observed data of the form {(ti,Yi),i = 

1 , . . . ,n } , various approaches exist i n different theoretical frameworks: 

1. the linear operator approach; 

2. the regression approach; 

3. the t ime series approach. 
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Figure 1.1: The quarterly number of A I D S cases reported wi th in six years of diagnosis 

from the fourth quarter of 1979 (79Q4) to the first quarter of 1990 (90Q1). One unit i n 

T i m e is 1/42 w i t h 42 being the total number of quarters from 79Q4 to 90Q1 inclusive. 
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This thesis focuses on the first two approaches, its main goal being the development of 

methodology for regression. Its application to A I D S data w i l l be used as an example. 

1.1 The linear operator approach 

Assume the i,s are i n [0,1]. In the special case of equally spaced data, U = i/n, tn = 1 

being the "present" t ime at which the last observation was made. Suppose (t, Y) has 

a certain probabilistic structure and E{g(Yi)\ti} = m(t , ) , g being a transformation 

function and m some smooth function. For a fixed design where the t,s are not random, 

E{g{Yi)\ti] means E{g(Yi)} w i t h Yi observed at t = t{. 

The linear operator approach assumes that data can be expressed i n a functional 

form, E{g(Yi)\ti} = Li(I) = where m is a smooth function and Li is a known 

linear operator on a certain function space where the unknown I resides. In this thesis, 

the case where X,- is the evaluation operator, i.e., L{I = I(ti), is considered as a problem 

i n regression (approach 2) i n which no additional information other than that i n the 

data is available. The function I w i l l have a specific meaning i n applications. In the 

A I D S example, I is the rate of H I V infection and the YiS are the numbers of A I D S cases. 

The linear operator L,- for the A I D S data w i l l be described later. The linear operator 

approach summarizes the data and enables forecasting by estimating I first. Then the 

operator Lj is applied to this estimated I to give an estimate of m (£,•). This approach 

has the potential benefit of embedding prior knowledge of the structure of the data into 

the linear operator Li. The technique called backcalculation [3] which exemplifies this 

approach is i l lustrated below through its application to the A I D S data. 

The prevalent theory i n A I D S research postulates that an A I D S patient was infected 

w i t h H I V at a certain t ime s i n the past which took some t ime to develop to the 

advanced stage of H I V infection and then to the t ime point of A I D S diagnosis, t. The 
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length of t ime between the point of H I V infection at s and the point of A I D S diagnosis 

at t is called the incubation t ime, whose distribution can be modeled by a t ime 

dependent distribution function. Estimates of F have been found from cohort studies. 

So F is usually assumed known. 

Based on the assumed relationship between H I V infection and A I D S diagnosis, the 

expected number of A I D S cases before t can be calculated by the formula, 

a(t) = i£(number of A I D S cases diagnosed before t ime t) 

= f* I(s)F(t-s\s)ds, (1.1) 
Jo 

where I(s) is the expected number of new H I V infections at t ime instant s, s > 0. /(•) is 

unknown and to be estimated. The convolution formula (1.1) uses an integral operator 

to l ink the H I V infections and the A I D S diagnoses. 

F r o m (1.1), for equally spaced i,s 

m(ti) = E{Yi) 

= ^ ( n u m b e r of A I D S cases i n (t,_i,t ,]) = a(tt) — a(2,_i) 

= I*' I(s)F(U - s\s)ds - f*"11(s)F(ti_1 - s\s)ds 
Jo Jo 

= £ I(s) (F(U - s\s) - F(ti - ^ - s\s)) ds (1.2) 

EE Li{T), (1.3) 

where F{u\s) = 0, if u < s. The linear operators, i.e., the L t s so defined, model the 

dynamics of the two processes: H I V infection and the A I D S diagnosis [3]. 

In general, define 

m(t) = j* I(s) (F(t - s\s) - F(t - i - s\s)^j ds. (1.4) 

Thus to forecast the number of A I D S cases i n a future quarter, say (1 + A „ —1/n, 1 + A„] , 

one must estimate m(t) at t = 1 + A n . 
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The first step to forecasting is to estimate the H I V infection curve I f rom the Y;s, 

the numbers of A I D S cases. This is done by confining /(•) to an appropriate function 

space Ti and minimiz ing a fitt ing criterion, e.g., 

/(•) = argminl€>l J2(Yi - m(ti))2 + A /* I"\t)dt (1.5) 

The parameter A i n (1.5) is the smoothing parameter which can be chosen by cross-

validation. M or e detailed discussion of cross-validation is provided i n Chapter 2 and 

Chapter 4. The above procedure for estimating I f rom the Y{S is the so-called backcal

culation [3]. In an appropriately chosen 7i, the minimizer I can be writ ten as a linear 

combination of l,t and the Riesz representors of L{S [31]. For details, see Chapter 2. 

After I is obtained, m ( l + A n ) can be predicted by using I i n formula (1.4). However, 

for s close to 1, I(s) is usually not reliable. The information about I(s) is contained i n 

the Ys observed after t ime s. Thus the data contain no information about I(s) for 5 > 1. 

Further, for s < 1, the closer a time point 5 is to 1 the less reliable the backcalculated 

I(s) is because there are fewer available data. A conservative approach is to be less 

ambitious and get a lower bound for m ( l + A n ) instead. A useful lower bound can be 

found if the disease has a long incubation. For a short term forecast, a great proportion 

of new H I V infections arising i n t ime period (1,1 + A n ] are st i l l latent and thus w i l l 

not contribute to the number of new A I D S cases occurring i n (1 + A n — 1/n , 1 + A n ] , 

Therefore, the percentage of new A I D S cases contributed by the H I V infections that 

occur i n (1,1 + A„] may be negligible. 

From (1.4), we have 

m ( l + A n ) > £ I(s) (F(l + An - s\s) - F(l + A n - i - s|s)) ds = LBn, (1.6) 

which i n effect takes I to be zero over ( 1 , 1 + A„]. A n estimate of LBn can be obtained 

by plugging I into the above formula for LBn, 

LBn = £ i(s) (^(1 + A„ - s\s) - F(l + An - ^ - s\sf) ds. (1.7) 
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More examples of the linear operator approach i n science and engineering can be found 

i n [29] and [30]. 

1.2 The regression approach 

The regression approach assumes an unknown underlying regression function m for the 

data or the transformed data, i.e., E{g(Y)\U} — m{tt). It w i l l be assumed hereafter that 

the data are properly transformed and E(Yi\t{) = m(t,) i n the regression approach. The 

regression approach uses the data {Yi}™ to estimate ra directly. This general approach 

includes parametric regression i n which m depends on a global parametric form and local 

regression i n which m is only assumed to be smooth. The next two sections contain 

details of both types of regression i n the context of forecasting. 

1.2.1 Parametric extrapolation 

This approach assumes that the trend of the data continues over a period of t ime 

i n a postulated parametric form, for example, log(E(Yi)) = /So + / M i - O n e fits this 

parametric model to the entire data set and then uses this fit to extrapolate to obtain 

the forecast. In 1986 the P u b l i c Health Service i n the Un i ted States gave a forecast of 

270,000 for the cumulative number of A I D S cases i n the Un i ted States by the end of 

1991 by extrapolating a polynomial model . The actual number of reported A I D S cases 

turned out to be 206,000 [6]. 

A s noted by a few authors ([9],[20]), parametric extrapolation can provide useful 

short-term forecasts. However, there are a few criticisms of this approach: 

1. Parametric extrapolation does not make use of any available information on the 

progression of the H I V infections to A I D S disease and thus may be less efficient 
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than backcalculation. 

2. The parametric assumption is not verifiable and therefore is a considerable source 

of uncertainty. Thus parametric extrapolation is unable to give a long-term fore

cast. 

A s for the first cr i t ic ism, it is not necessarily the case that a method that uses less 

data is less efficient than a method that uses more data. The discussion i n Chapter 6 

w i l l show that the local linear forecasting estimator that uses only K)}™, suggests 

better forecasts than backcalculation that uses {(i,-,!^)}" and additional data. 

A s for the second cri t ic ism, so far as forecasting is concerned, future predictions 

of medium to long term pose a challenge for statisticians. If a parametric model is 

"correct" it w i l l be able to give a long-term forecast. However, no models are "correct" 

since they are simplified representations of the real world. W h e n a set of data is fitted to 

a specific parametric form, the fitted curve may be compromised to fit a l l the data well 

at the expense of local structure i n the data. Especially of interest is the local structure 

near the present, t = 1. Forecasts based on the extrapolation from such a fitted curve 

are unlikely to be as good as forecasts based an extrapolation from a fitted curve of 

more recent data. 

A s Healy and Ti l le t [20] write, "It doesn't seem entirely reasonable to give the early 

data . . . a high degree of influence i n forecasting the future." W h e n fitting the data to 

a log-linear model , they superimposed subjectively-chosen weights decreasing into the 

past. This method should be expected to be an improvement over simple parametric 

fitting when "appropriate" weights are chosen. It might be desirable to do away w i t h 

the parametric assumption and also to couple the fitting wi th a data-driven method for 

the choice of weights. The local regression method proposed i n the next section does 

exactly this. 
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1.2.2 A local linear forecasting estimator 

In general, to estimate a function m at a certain point t, the approach of local linear 

regression assumes that m has a linear structure i n a neighbourhood of t: m(x) = 

Po + Pi(x — t), and estimates flo, /?i by weighted regression. The weights assigned to 

the observations close to t are much bigger than the weights assigned to the rest of 

observations. 

That is, let the estimator of m(t) be defined as follows: 

m^t) = fa+ fo(t-t) = 0Oit, (1.8) 

where 

A M 
= argminJ2(Yi - A> ~ p\{U ~ t))2K(\-^-), (1.9) 

\ J 

w i t h K(-) a kernel function that gives more weight to the observations close to t (defined 

by hn) than the rest of the observations, and hn the so-called bandwidth that determines 

the size of the neighbourhood of t. For example, if the kernel function is the indicator 

function over [—1,1], then K((U — t)/hn) = 1 for those t,s w i t h \tj — t\ < hn and 0 

otherwise. 

Since rhhn(t) is calculated from the Y{S, it is a random variable w i t h statistical 

properties which are affected by the bandwidth hn and the kernel K. In practice the 

choice of K has l i t t le effect on rhhn{t) while the choice of hn has a large effect. Therefore 

we assume K is specified i n Chapter 4 and describe data driven choice of hn. 

For now assume hn is given. Unless m is a straight line, rhhn(t) is i n general a biased 

estimator of m(t), that is, Bias{rhhn(t)} = E{mhn(t)\ti,... ,tn} — m(t) ^ 0. Note that 

if the kernel function is the indicator function over [—1,1], the bandwidth hn reflects 

the number of Y{S used i n the regression. A large hn means that a large number of T̂ -s 

is used i n the regression and a small hn means otherwise. Therefore a large bandwidth 
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causes rhhn(t) to have a small variance and a small bandwidth causes rhhn(t) to have a 

large variance. For commonly used kernels, when hn is small , rhhn(t) w i l l have a small 

bias but a large variance; when hn is large, rhhn(t) w i l l have a large bias but a small 

variance. If hn is small enough, rhhn{t) w i l l behave like an interpolant while if hn is 

large enough, m/ l n ( t) w i l l become the familiar least squares fit . A balance between the 

bias and the variance is desirable and this balance is usually achieved by min imiz ing the 

mean squared error of rhhn{i), i.e., E{(rhhn(t) — m(t))2 \t\,... ,tn}. 

To predict m a t 1 + A n , let t = 1 + A n i n (1.9). Therefore, rh,hn{l + A n ) = /30,I+A„-

To avoid cumbersome calculations of the asymptotics later i n Chapter 3, an algebraic 

substitution is employed to re-center the data at 1 instead of 1 + A „ . Note that 

P o , l + A „ 

1+A„ / 
n 

V 

argminj^iY. - ft - ft ft - 1 - An))2K(U ~ ][~ A") 
2 

Let 

argminf2(Yi - ( f t - ftAn) - p\{U - l))2K(U \ A"). 
fir, 

ft* = ft-ftAn, ft* = ft, K-fir±) = K{ti \ An). 
hr 

(1.10) 

(1.11) 

Then 

argminitiYi - ft* - ft(tt- - l ) ) 2 T C , (1.12) 

\ «, / 
and m^„(l + A n ) = ftx + ftflAn. 

Formulat ion (1.12) w i l l be used hereafter wi th the superscript * dropped. The no

tation m ^ n > i ( l + A n ) instead of rhhn(l + A n ) w i l l be used to denote the forecasting 

estimator that forecasts A n ahead with data centered at t = 1 and wi th bandwidth hn. 

To summarize: 
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Definition 1.1 The estimator ra/i„,i(l + An) of m(l + An) is defined as 

m w ( l + A„) 

where 

argminf^iYi - A, - &(*,- - l ) ) 2 t f (^-—^). (1.13) 
•n 

The bandwidth / i n can be chosen by plug-in or cross-validation approaches. The devel

opment of those approaches for forecasting i n Chapter 4 is the m a i n contribution of this 

thesis. Results of the statistical properties derived i n Chapter 3 serve as the cornerstone 

for al l bandwidth estimation procedures. 

In the next chapter, theoretical results for the linear operator approach w i l l be 

presented and applied to the A I D S data. 
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Chapter 2 

The linear operator approach 

The linear operator approach w i l l be discussed under the theoretical framework of a 

HUbert space. Standard results w i l l be presented without proof. Proofs and other details 

can be found i n [31]. Examples of the linear operator approach, details of computation 

and some asymptotic results can be found i n [28]-[31]. 

The following theorem is central to the linear operator approach. 

Theorem 2.1 Assume the following conditions: 

1. 7i is a HUbert space over the reals, 1Z, with inner product <, > and norm || • ||; 

2. For each i G { 1 , . . . ,n}, Li : ri —* TZ, is a bounded linear functional; 

3. P : Ti —> Til, is a projection operator with ri\ a subspace ofri; 

4- The null space of P is TCo = span{<f>i,<f)no}, where the <j)jS are linearly inde

pendent and n0 < 00 ; 

5. !F(Y, L\(I),..., Ln(I)) : lZn xTZn —> 71 is a real function, where Y = (3 /1 , . . . , y „ ) ' . 
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For given X > 0, if the minimizer I of 

F{Y,Lx{I),...,Ln{I)) + X\\P{I)\\2 ( 2 - 1 ) 

exists in Ti, it is of the form: 

no 
i = \Edsh + Hc&> (2-2) 

i=i i=i 

where the djS and CjS are real numbers, = P{r)j) and r]j is the Riesz representor of 

Lj, that is, Lj(I) =< rjj, I > for all I G Ti. 

C o r o l l a r y 2.1 Assume the conditions in Theorem 2.1. In addition, assume the matri

ces T — (Tij)nXno, Tij = Li((f)j) and E = ( E , j ) n X n , E,-j =< > are of full column 

rank, and that the WjS are positive. 

Then 

^ E « - ^ ) ) X + A | | P ( / ) | | 2 (2.3) 

has a unique minimizer I in Ti and is as in (2.2) with 

d = { d u . . . , d n o ) t = {TtA-xT)-xTtA-1Y, (2.4) 

c = ( c i , . . . , c n ) * = i 4 - 1 [ / - r ( r 'A- 1 r ) - 1 r*A - 1 ]y , (2.5) 

where A = E + n\I. 

R e m a r k s : 

1. Theorem 2.1 greatly reduces the complexity of the task of finding the minimizer 7 

i n Ti (often of infinite dimension) to finding / i n the finite dimensional subspace 

spanned by <j>x,..., <j>no-,i\-, • • •, £«• Roughly speaking, a parametric model of span 

<f>i,..., (f>no determined by P, and the additional functions, £ 1 , . . . , £ n j allow us a 

more flexible fit to our n data points. 

13 



2. Theorem 2.1 is a very general result i n that T can be a general function. However, 

we are only interested i n J7 being —n^logijikelihood), i n which case (2.1) is called 

a penalized l ikelihood. W h e n the YJS are independent and normally distributed 

wi th mean Lj(I) and variance (2WJ)~1, J- is — re_1/o<jr(normal likelihood) and is 

the first term as i n (2.3). We w i l l assume (2.1) to be a penalized l ikelihood 

hereafter. The number A, known as the smoothing parameter, governs the relative 

importance of the goodness of fit of the data to that of the penalty P. If A is zero, 

the fit of the data is of the utmost importance and the penalty is ignored, w i t h 

the result that I is the m a x i m u m likelihood estimator. O n the other hand, a large 

value of A forces I close to the nul l space of P and results i n an estimate close to a 

parametric fit. A n y A between these two extremes reflects a compromise between 

the goodness of fit to the data and the form of I emphasized by the penalty. 

3. A n automatic, i.e., data-driven choice of the smoothing parameter A might be 

desired. Cross-validation is a technique commonly used for the estimation of an 

opt imal A. Details of this method w i l l be presented i n Chapter 4. 

Though the Riesz representation theorem assures the existence of the rjjS, the represen

tors of the LjS, it does not give the analytical forms of the r}jS. The theory of reproducing 

kernel Hilbert spaces (r.k.h.s.) makes it possible to calculate those £,-s analytically. This 

is important i n applications. 

This chapter w i l l present the relevant results of r.k.h.s. and then apply them to the 

case of backcalculation. 

2.1 Some results on reproducing kernel Hilbert spaces 

The theory of r.k.h.s. is very powerful and very useful i n the linear operator approach 

i n general. 
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D e f i n i t i o n 2.1 Let H be a Hilbert space of real-valued functions over [0,1], 

H={I: [0,1] -> f t } . 

Then 7i is a r.k.h.s. if and only if for all t G [0,1], 

Lt: H^Tl with Lt(I) = lit) 

is a bounded linear functional. 

D e f i n i t i o n 2.2 IfTi is a r.k.h.s., then by the Riesz representation theorem, for any t, 

there exists a function Kt € rt such that 

< J , Kt >= I(t), for all I eTi. 

Let K(s, t) = Kt(s) :. [0,1] x [0,1] -> K. (2.6) 

Then K is called the reproducing kernel ofri. 

A s shown i n the following lemma, i n a r.k.h.s. it is very easy to use the reproducing 

kernel to calculate the Riesz representor of a bounded linear operator. 

L e m m a 2.1 Assume that L is a bounded linear operator on a r.k.h.s., Ti. Its Riesz 

representor is n where n(t) = L(Kt). 

Proof : Let n be the Riesz representor of L i n 7i. So for al l I G rl, L(I) =< / / , / > . In 

particular, for I = Kt, L(Kt) =< r),Kt >• B y Definit ion 2.2, < rj,Kt > is also equal to 

n(t). So n{t) = L(Kt). • 

A commonly chosen r.k.h.s. is the class of smooth functions w i t h square-integrable 

r t h derivatives. 

D e f i n i t i o n 2.3 W ^ l 0 * 1 ] = {/ : [0,1] -> ft : / , 7 ( r - 1 ) are absolutely continuous 

in [0,1] with JQ I^{u)2du < oo}. The inner product is defined as: 

< f,9 >= E/ ( i )(0)<7 ( i )(0) + t / w ( u ) 5 W ( « ) d u . 
i=o J o 
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Standard results say that this space is a r.k.h.s. and has a kernel of a known form. 

Lemma 2.2 W£[0,1] is a r.k.h.s. with the reproducing kernel, 

* ( M ) = £ ^ + / o
X ( j ^ ^ \ s - u y - \ t - u y - i d u , (2.7) 

where (s — u)+ = s — u, if s > u and 0 otherwise. 

2.2 Application to the AIDS data: backcalculation 

Recal l that i n the linear operator approach i n the A I D S example i n Section 1.1, E(Yj), 

the expected number of new A I D S cases i n the jth quarter, is assumed to be l inked to 

an unknown function 7 by a linear operator Lj, 

Lj{I) = f' I(s)(F(tj - s\s) - F(tj - - - s\s))ds, (2.8) 
Jo n 

where I is the H I V infection function and F(-\s) is the distr ibution function of the 

incubation t ime from H I V infection to A I D S diagnosis at the instant s. F is assumed 

known so the operator Lj is known. Obviously Lj is a linear operator. 

In this application, the H I V infection function I w i l l be assumed to be i n H = 

W£[0>1] w i t h r = 2. This is a very m i n i m a l assumption on I because M^tO?!] 1 S 

a very general class of functions. No specific assumptions are made on those func

tions other than smoothness and integrability: 7 and V are absolutely continuous w i t h 

Jo1 J"(u)2du < co. 

Recovering the historical H I V infection pattern I is an important goal i n A I D S 

research. It is believed that I is a smooth curve. Therefore rough Is should be penalized. 

The quantity / Q 1 I"(u)2du is a measure of the roughness of I so it can be used as the 

penalty term. 
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To put it statistically, finding a reasonably smooth I i n W ^ O , 1] that fits the observed 

A I D S incidence data well is achieved by finding the I that minimizes 

F{Y,L1(I),...,Ln(I)) + \ I11'XuYdu, (2.9) 
JO 

where T is the negative of a loglikelihood function divided by n , I € VF^O, 1] and A > 0. 

The smoothing parameter A places a control on the roughness of I relative to the 

goodness of fit of the Lj(I)s to the YjS. M i n i m i z i n g the penalized l ikel ihood means 

choosing an I i n W%[0,1] wi th a tradeoff between the goodness of fit to the data and the 

roughness of I. This tradeoff is determined by the value of the smoothing parameter A. 

A n opt imal A for this tradeoff minimizes the prediction error, 

PE(\) = n-1Y,{Y;-mx(ti)}2 

i = l 

where the 5^*s are hypothetical new observations at t,s, rh\(ti) = Li(I\) and 7A minimizes 

(2.9). This opt imal A can be estimated by a standard technique called cross-validation. 

Further details on cross-validation w i l l follow i n Chapter 4. 

The minimizer I of (2.9) can be determined by using Theorem 2.1 and the theory of 

r.k.h.s. i n Section 2.1. 

Theorem 2.2 If the minimizer I of (2.9) exists in W|[0,1], it takes the form: 

i(t) = Bo +iht+ (2-10) 
3=1 

where 

m = I 
Jo 

x / , M t ) 2 (sAt)3 

st{s A t) - (a + i ) ^ 1 - + 

( F i t j - s ^ - F i t j - ^ - s ^ d s , (2.11) 

and s At = s if s <t and t otherwise. 
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Theorem 2.2 enables one to find the minimizer i n a finite dimensional subspace 

instead of i n W|[0 ,1], a space of infinite dimension. 

The succeeding lemmas verify the conditions of Theorem 2.1 for its application to 

the A I D S data. So the ensemble of the following lemmas serves as the proof of Theorem 

2.2. 

L e m m a 2.2 i n the previous section assures that Condit ion 1 of Theorem 2.1 is satis

fied. [G\ 1] i s a Hi lbert space wi th the inner product 

<f,g>= /(0M0) + / W ( 0 ) + fX f"(u)9"(u)du, f , g e w2[o, 1], 
Jo 

and the norm induced by the above inner product, 

11/2 
7(0) 2 + I ' (0) 2 + f1I"(u)2du 

Jo 

The lemma below checks Condit ion 2 of Theorem 2.1. 

Lemma 2.3 Suppose that for any s > 0, ^(-l-s) is a distribution function with F(u\s) = 

0 if u < 0 and that F(u\s) is continuous in both u and s. 

For each j G { 1 , . . . , n}, the operator 

Lj : Lj(I) = j h I(s)(F(tj - s\s) - F{tj - - - s\s))ds, I G W2 [0,1] 
Jo n 

is a bounded linear operator on W|[0,1]. 

Proof: Lj is well-defined since I(s)(F(tj — s\s) — F(tj — ̂  — s\s)) is continuous i n s and 

thus is integrable. The linearity of Lj is obvious. 

B y the definition of the boundedness of a linear operator, Lj is bounded if there 

exists C, 0 < C < co, such that 

\Lj(I)\ < C\\I\\, (2.12) 

for a l l Ie W2[0,1]. 
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Since 0 < F(tj - s\s) - F(tj - J - s\s) < 1, it follows that 

|^(/)| = | I(s)(F(tj - s\s) - F(tj - - s\s))da\ 
Jo n 

< £ j \I(s)\ds < £ \I(s)\ds < I(s)2ds^ 2 . (2.13) 

To bound /g |/(s)|<£s, first consider 

I(s) = 1(0) + s/'(0) + f" (U I"{v)dvdu. (2.14) 
Jo Jo 

A p p l y i n g the inequality 

(a + b + c)2 < 3(a 2 + b2 + c 2 ) , 

to (2.14) gives 

I(s)2 < 3(/(0) 2 + s2I'{0)2 + ( / ' / " I"{v)dvdu)2). (2.15) 
Jo Jo 

B y Schwarz's inequality, 

( [' fU I"(v)dvdu)2 < ( [' [U I"(v)2dvdu)( [' fUl2dvdu), 
Jo Jo Jo Jo Jo Jo 

which is bounded by I"(v)2dv for 0 < s < 1. 

For 0 < s < 1, applying the relationship i n (2.15) yields: 

I(s)2 < 3(/(0) 2 + s 2 / ' (0 ) 2 + lX I"{v)2dv) 
Jo 

< 3(/(0) 2 + 7'(0)2 + C I"{v)2dv) 
Jo 

= 3||/||2. (2.16) 

Using (2.16) i n (2.13) gives \Lj(I)\ < ^1/2\\I\\- Therefore Lj is a bounded linear 

operator on W2[0,1]. • 

For Condit ion 3 of Theorem 2.1, the following lemma gives the projection operator 

P corresponding to the penalty term / 0
X I"(u)2du and the basis functions (f>jS that span 

the nul l space of P . , 
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L e m m a 2.4 Let 

P : W 2 [0 ,1] - W 2
2[0,1] : P(I)(t) = I(t) - 7(0) - l'(0)t. (2.17) 

T/iera P is a projection operator onto H\ with Tii®rio = W|[0,1], where rio — span{l, t} 

is the null space of P and ||P(i")||2 = /o I"{ufdu. 

The next l emma uses the results of the r.k.h.s. to calculate the Riesz representor 

rjj of Lj i n W^fO, ! ] and its projected image £j = P(r)j) for Lj as i n (2.8) and P as i n 

(2.17). 

L e m m a 2.5 In W 2
2 [0,1], the projection of the Riesz representor of Lj is: 

w> - r x , x ( s A * ) 2 (sAt)3 

st(s At) — (s + t)^—±- + ^—t-

(F(tj - s\s) - F(tj - ^ - s\s))ds. (2.18) 

R e m a r k : The £jS are not splines (cubic polynomials) as i n the t r iv ia l case when Lj(I) = 

I(tj). One can show that defined by (2.18) is an increasing function w i t h £ j (0) = 0, 

concave i n [0, tj] and a straight line beyond tj. 

P r o o f : For r = 2, (2.7) gives the reproducing kernel as 

~ / x / x / x(sAt) 2 (s At)3 

K(s,t) = l + st + st(s At)-(s + t)K
 n ' + v ' (2.19) 

2 3 

Recal l that Kt(-) = K(-,t). B y L e m m a 2.1, the Riesz representor t]j of Lj evaluated at 

t is: 

- rjj(t) =< r,j,Kt >= Lj(Kt) = [*' Kt(s)(F(t}- - s\s) - F(tj - - - s\s))ds. 
Jo n 

So 

&(*) = P(rn)(t) = rjj(t) - nj(0) - r]'j(0)t 

= Lj(Kt)-Lj(K0)-jt(Lj(Kt))\t=0t (2.20) 
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One can show that 

at Jo n 

Therefore 

= f\Kt{s) - 1 - st)(F(tj - s\s) - F(tj - - - s\s))ds. • 

The results i n this chapter w i l l be used i n Chapter 6. 

The next chapter w i l l contain the derivation of the statistical properties of the local 

linear forecasting estimator rhhn,i(l + A„) for the regression approach. 
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Chapter 3 

Asymptotics for the local linear 

regression estimator 

This chapter w i l l cover the asymptotic properties of m ^ n i < ( i + A n ) , as defined below based 

on data i^)}™, for i,s random and t,s nonrandom respectively. These asymptotic 

results w i l l help us understand the local linear forecasting estimator and choose an 

opt imal bandwidth for the estimator. The results and conditions are different from 

those i n non-forecasting regression problems (see, e.g. [8]). However, the proofs are 

similar . 

In non-forecasting regression problems, e.g., estimating m(t) by local regression for t 

i n the domain of design points t,s, data on both sides of t are used i n regression. There

fore usually a kernel function K symmetric about 0 is used. Often i n non-forecasting 

regression problems, K is assumed to be a density function. However, i n forecasting 

data are centered at the boundary t = 1, so only the left part of the kernel function K is 

actually used because there are no data beyond t — 1. For this reason, the local linear 

forecasting estimator is defined by a kernel function K w i t h a negative support. More-
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over, the local linear forecasting estimator does not require K to be a density function 

but a general function that satisfies Condit ion 3.1 below. 

D e f i n i t i o n 3.1 Let rhhn,t{t') — / 3 0 i + P\,t{t' — t), where / 3 0 t and J3lt minimize 

X3i (Y]~ A)-P\{ti—t))2K((ti—t)/hn) with K a kernel function having a negative support. 

Note that the data are centered at t i n Definit ion 3.1. The estimator rhhnj(t') forecasts 

t' — t ahead of t using data prior to t since the kernel function K has a negative support. 

The main application of the asymptotic results for rhhntt(t') w i l l be to the case t = 1 

and t' — t = A n (see (1.13)). However, the more general asymptotic results for t and t' 

i n a neighbourhood of 1 w i l l be used i n Chapter 4. 

From Definit ion 3.1, the asymptotic properties of rhhn,t[t + A n ) are completely de

termined by those of 0t = ($ot, fiijY- Note that the superscript of a vector or a 

matr ix indicates the action of taking the transpose of a vector or a matr ix and should 

not be confused wi th the scalar t as either an argument of a function or a subscript of 

a variable. The asymptotic bias and variance of /3t w i l l be presented first. 

For the case of random i ,s , assume the following conditions: 

1. Yi = m(ti) + e,-, where the e,s are independent w i t h mean 0 and variance cr2; 

2. t{S are i i d w i t h density /(•) and are independent of the e,s; 

3. the density function / is known and satisfies: / is bounded away from 0 and / is 

continuous on [0,1]; 

4. K is square integrable on its compact support [—1,0] w i t h 

u0 > 0, uQu2 — u\ > 0, (3.1) 

where u,- — ff j uxK(u)du\ 

let < = f\ tfK^Ydu-
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5. m" is continuous over [0,1 + A n ] ; 

6. hn —* 0 and nhn —> oo. 

T h e o r e m 3.1 Let e = (1,1) ' . Under the above assumptions, as n 

- m"(t) 

oo, 

_2_ 
~hl 

E(B0tt\t) - m(t) 

[ hn (E0ht\t) - m'(tj) ) 

UQ U I 

Ui U2 

= o p ( l ) e , (3.2) 

and 

/ / t 0 w . \ \ 

nhnVar 

0 /u 
I* 

/(*) 

uo ̂ 1 

V J 

Pot 

« 0 Ui 

Ui U2 

- oP(l)e, (3.3) 

Ui u 2 

uniformly in t G [an, 1] l i m i n f an/hn > 1. 

R e m a r k s : 

1. Note that here "0 n ( i ) = 0 p ((n/i)~ 1 / 2 ) uniformly for * <E [an, 1]" means that 

l i m l i m sup P ( ( n / O 1 / 2 | 0 n ( i ) | > C) = 0, 
C _ + o o n ^ o o t g [ o n i l ] 

which is weaker than 

l i m l i m P( sup {nhfl2\en{t)\ > C) = 0. 

Thus, for a fixed sample size, some values of 6n(t) could be far from 0. 

2. It is not necessary to require that K have an one-sided support if a bandwidth is 

given because there are no data for t > 1 and thus any kernel w i l l have an one

sided support automatically. However, some bandwidth selection procedures (e.g. 

FCV i n Chapter 4) need this requirement to have certain asymptotic properties 

(see Chapter 4). 
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The proof of Theorem 3.1 w i l l be postponed unt i l its corollaries are presented and 

proven. The results i n Theorem 3.1 make calculations of the asymptotic bias and vari

ance of rhhn,t(t + An) very easy. The corollary below follows easily f rom Theorem 3.1. 

Corollary 3.1 Assume Conditions 1, 2, 3, 4 and 5. In addition assume 

6'. A n = Dn-1^ and hn = Hn-1'5 for some D, H > 0. Let 8 = D/H. 

Let 

Bias(mhn,t(t + An)\t) = E(mhn<t(t + An)\t) - m(t + A n ) . (3.4) 

As n —• oo, 

and 

2 
-£jBias(mhntt(t + An)\t) -

m"(t) ( 
— U1U3 U0U3 — U1U2 

82 + )/(u0u2 - ul) - 1 = o p ( l ) 

nf{t)AnVar{mhntt(t + An)\t) 
-1 

a28(l,8) 
U0 Ui 

Ui u 2 \ "1 "2 / 

UQ UI 

Ui u2 

o„(l) 

uniformly in t G [an, 1] with l i m i n f an/hn > 1. 

Proof of Corollary 3.1: 

Taylor expansion of m{t + A„) at t yields: 

(3.5) 

(3.6) 

m{t + An) = m(t) + Anm'(t) + ̂ m"(t) + o(A2

n), 

uniformly for t G [0,1]. 

2 
A2 

r, 

_2_ 
Al 

So —•jBias(m k n t t(t + An)\t) 

= -j [E(mhn]t(t + An)\t) - m(t + A n ) ] 

(3.7) 
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A 2 , 
n L 

82hl 

E(mhntt(t + An)\t) - m(t) - Anm'(t) - ^m"(t) + o (A 2 ) 

1 E0o,\t) - m(t) N 

( 1 I)A 
y82' 8'hi 

{ hn (E0ht\t)-m'(t)) 

1 E0o>t\t) - m(t) ^ 

- m"(t) + o(l) 

/ J 

-m"(t) + o(l). (3.8) 

^ K (E0u\t)-m'(t)) ) 

B y result (3.2) of Theorem 3.1, as n —> oo this expression converges i n probabil i ty 

uniformly to 

un ui 1 I « 9 I 
m"(t) (ii)-"W U0 U i 

Ui u 2 

= m"(t) ( 
u\ - U!U3 UQU3- UXU2 2> + 6* 8 

So (3.5) is proved. Now consider the variance 

nf(t)AnVar(mhntt(t + An)\t) 

= nf(t)AnVar0Oit + PuAn\t) 

)/(u0u2 - ul) - 1 

nf(t)AnVar { 
/ i o X 

0 fcK 

r / i o N 

= n / ( t ) A „ ( M ) V a r { 
0 hr 

( \ 
*> 

/ \ 
1 0 1 

nhnVar < » 

\ ^ 0 hn t 
4 

(3.9) 

(3.10) 

B y result (3.3) of Theorem 3.1, as n —• oo the last expression converges i n probabil i ty 
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to: 

8{l,S)f{t) 
/(*) 

I 

UQ UI 

Ui u 2 

= *28(1,6) 

) \U*1 U2 ) 

U0 UI 

Ui U2 

U0 Ui 

Ui u 2 

\ 
*0 "1 

\U*1 U2 ) 

( 

V \ 8 ) 

U0 Ui 

Ui u 2 

uniformly i n t. • 

Since / and m" are uniformly continuous on [0,1], Corollary 3.2 follows immediately 

from Corol lary 3.1. 

Corollary 3.2 Assume the same conditions as in Corollary 3.1. As n —* oo, 

2 
2-Bias(mhntt(t + An)\t) -

m O V P 6 ) / ( u ° W 2 - u i ) _ 1 J = (3.11) 

nf(l)AnVar(mhn,t(t + An)\t) 

( 

a2S(l,8) 

\ X ( 
UQ Ui 

Ui U2 

" 5 «1 

\Ul U2 ) 

\X( \ 
UQ Ui 

\Ui U2 J \ 6 I 

= o,(l) (3.12) 

uniformly in t G [1 — pn, 1] with any sequence pn > 0, pn —• 0. 

Remarks: 

1. A s is usually done i n regression problems, we consider the conditional bias and 

variance of our estimates. 

2. Corollary 3.2 says that the dominant terms i n both the asymptotic conditional 

bias and the variance of rhnntt(t + A n ) are equal to those of m / l n i i ( l + A n ) for 

t G [1 - / ? „ , ! ] . 

27 



3. For a finite sample, A n is given and hn will be chosen to minimize the asymptotic 

conditional mean squared error (AMSE) of m^ n > 1 ( l + A n ) . Because of Condition 

6', choosing hn is equivalent to choosing 6 = An/hn. Although minimizing the ac

tual finite sample conditional MSE would be best, its form is far too complicated. 

4. Based on the results in Corollary 3.1 one can write out the AMSE of m^ n i i ( l - | -A n ) 

as the square of the asymptotic bias plus the asymptotic variance. Condition 6' 

sets a guideline on the magnitude of A n , that is, on how far ahead one can forecast 

if the rate n - 4 / 5 is to be achieved for the AMSE of m/ l r J ii(l + An). Stone [27] has 

shown that under appropriate regularity conditions, the optimal rate of AMSE 

for a nonparametric estimator of a twice differentiable function is n - 4 / 5 . If A n 

grows faster (but still slowly enough so that A n —> 0), for example, An/hn —> oo, 

a rate slower than n - 4 / 5 can be achieved under appropriate conditions. This can 

be seen by the reasoning below. 

For A n —> 0, the bias and variance of m^.nii(l + A n ) are 

Bias(rhhn<1(l + An)\t) 

Var(mhntl(l + An)\t) 

= E(m f c B l l (l + A n ) - m ( l + An)|*) 

= E (fa - m(l) + - m'(l)]|t) + O(Al), 

= Var(A,1i + & l l A B |t) 

= Var0Otl\t) + 2AnCov0OAJ1A\t) + A2
nVar0ltl\t). 

By the results in Theorem 3.1 for t = 1 and any A n > 0 with A. n 
0 

Bias(mhntl(l + An)\t) 

Var(mhntl{l-[- An)\t) 

Op(h2
n) + Op(hnAn) + 0(Al), 

Op(l/(nhn)) + Op(An/(nh2
n)) + Op(A2J(nh3

n) 

Op{l/(nhn)) (l + Op(An/hn) + Op(A2Jh2
n)) . 

)) 

If AJh, •n 
co, we have 

Bias{mhntl(l + An)\t) 0P(A2
n), 
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Var(mhnA(l + An)\t) ~ Op(A2J(nh3

n)). 

To minimize the AMSE, we need to make Bias2 and Var of the same magnitude, 

i.e., A* oc A2J{nh3

n), or A 2 / * 3 oc 1/n. If A n / A n -> oo, A2

nh3

n oc 1/n implies 

n / i£ —• 0 and n A n
5 —• oo. A s a result, if An/hn —• oo under the conditions 

nh3 —> oo and A 2 / i 3 oc 1/n, the AMSE of rhfc„,i(l + A n ) achieves the rate 

Op(An) (equivalently Op(An/(nh3)), which is slower than n - 4 / 5 since nAh

n —* oo. 

Recal l that i n Chapter 1.2.2, the algebraic substitution (1.11) is used to re-center 

the data. This recentering yields a simple dependence of AMSE on 8, thus making 

it easier to find the optimal bandwidth by finding the opt imal 8. If the original 

formulation (1.9) is used wi th the data centered at 1 + A n , then the estimate 

of m ( l + A n ) is /3O,I+A„- The formulae of the asymptotic bias and variance of 

A ) , i + A N
 w i i i show clearly the advantage of centering data at 1 over centering at 

1 + A „ . Under the same assumptions as i n Corollary 3.1 but w i t h the additional 

assumption that D < H, one can show that the asymptotic bias and variance 

satisfy 

_2_ 
h2 

Bias(mhntl(l + An)\t) - m " ( l + A n ) v2 - vxvz 

V0V2 - V{ 

2 
h2 

O p ( l ) , 

£ ( / W » - m(l + An)\t) - m " ( l + An)V* VlV* 
VQV2 — Vi 

(3.13) 

nhnf(l + An)Var(mhntl(l + An)\t) -

I \ X ( 
V0 Vi 

V\ v2 

\ 
Vn V-> 

( 

\V1 V2 J 

\ 
V0 V-L 

Vi V2 

(3.14) 

where i>,- = / " f v{K(v)dv, v* = / ~ f v'K(v)2dv. M i n i m i z a t i o n of the resulting 

AMSE of fi01+An is computationally intensive since 8 i n the upper l imi t of the 

integrals depends on hn. Therefore if AMSE(hn) is to be minimized over a grid 
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of values of hn, a l l the integrals have to be computed for each hn. If K is, say, 

the indicator function on [—1,0], these integrals can be found i n closed form. If, 

however, K is a truncated normal density, then the intregrals must be evaluated 

numerically. 

There is another advantage of re-centering the data: after re-centering the data 

at 1, hn is the "real" bandwidth used i n forecasting. If the data were instead 

centered at 1 + A „ , the effective bandwidth would be hn — A n since there are no 

data beyond 1. 

L e m m a 3.1 below is used i n the proof of Theorem 3.1. 

Lemma 3.1 Suppose that g(-) and /(•) are bounded over [0,1] and W(-) is square in

tegrate over 1Z and that the i , s are iid with density /(•). If nhn = nh —• oo, then as 

n —» oo, 

^ £ W&j^MU) - I £ W(^)g(u)f(u)du = O p ( ( n f c ) - 1 / a ) (3.15) 

uniformly for t 6 [0,1]. 

Proof: Let Z = (nh)-1 £?=1 W((t{ - t)/h)g(U). 

B y Chebyshev's inequality, Z = E ( Z ) + Op((Var(Z)fl2). 

E(Z) = \E (Vc^Mto) 
= I £ W(^)g(u)f(u)du, 

Var(Z) = ^y« r ( V ( * I^ ( t l ) ) 

* n h < W 2 ^ ^ ) 
= \ C W\^-±)g\u)f(u)dulh. (3.16) 

nh Jo n 

Since g and / are bounded, and / 0
X W2((u — t)/h)du/h = f^^h\V2(s)ds < co, 

Var(Z) = 0 ( \ ) , (3.17) 
nh 
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which does not depend on t. 

P r o o f o f T h e o r e m 3 . 1 : Wri te 

• 

-f%- fiiiU - t))2K(^r-) = (Y- Aj3)'W(Y - A/3), (3.18) 

where 

Y = A 

1 tx-t 

1 tn-t 

P 
V f t / 

and 

W = diag{K(p-±)). 
• V T L 

The minimizer of (3.18) is: 

pt = ( A ' W A J ^ A ' ^ y , (3.19) 

provided that A ' W A is invertible and positive-definite. So for t w i t h A'WA invertible, 

E{Pt\t) = (A'WA^A'Wro 

where m = (m(ti),..., m(t n ) ) * , and 

(3.20) 

Var(J3t\t) = <72(A'WA) - 1A'W2A(A'WA) - l (3.21) 

Result (3.28) below shows that, when suitably normalized, A'WA converges i n proba

bi l i ty to a positive definite matr ix . Since we are interested i n convergence i n probabil i ty 

of E{pt\t) and Var(Pt\t), it suffices to analyze (3.20) and (3.21). 

The asymptotic bias w i l l be derived first. 

The Taylor expansion of m at t yields: 

m"(t) 
m(ti) = m(t) + m\t){U -t) + —^(U - *)2 + - *)2) 
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uniformly i n ti w i t h \U — t\ < hn. Only these t,s are considered because the support of 

K is [-1,0] . 

Therefore, for \U — t\ < hn 

m (U) = (l,U-t) 
( m(t) ^ 

+ ^Y^-qiK2 + h 2
no(qi) 

A,-
/ m(t)  N 

m'(t) 

+ qihl(m"(t)/2 + o(l)) 

where A,- is the ith row of A and 

=(9i'92'---'^^((V) '•••'(V)) 
Since Wi = i f ( ( * i — t)/hn) = 0 for — t\ > hn, so 

' l 0 W m(i) 

y 0 hn j 

' i o N 

V 

(K tWK)- xK tWqhn
2(m"(t)l2 + o(l)) 

\ 

( A lW A] 

0 Zi n 

y 0 hn j 

( 

= hn
2 

1 0 

o hn 

I - l 

F o r t , i = l,2 

1 0 

y 0 h N J 

-1 

1 
A tWq)(m"(t)/2 + o(l)). 

1 0 

0 /*„ 
nh. 

-A*WA 

y 0 h N J 
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(3.23) 



1 1 
hJ+t-2 nhn 

1 1 

( A ' W A ) , , -

•+j-2 

(3.25) 

nk. — • • • • • ' ( 3 - 2 4 ) 

which by L e m m a 3.1, is equal to 

nn Jo \ nn J \ nn J 

Substituting s = (u — t)/hn yields 

(l-t)/hn 

t/h„ 

For t e [a„ , l ] wi th l i m i n f a n / f c n > 1, [-t/hn, (1 - t)/hn] D [-1,0] = [-1,0] for n 

sufficiently large. So for n —> oo and t £ [a„, 1], expression (3.25) is equal to 

f si+i-2K(s)f(t + shn)ds + Op((nhn)-^2), (3.26) 

where Op{(nhn)~xl2) holds uniformly i n t G [a„, 1]. The last expression converges (not 

only i n probability) to 

r(l-t)/h„ . . 
/ K(s)st+>-2f(t + shn)ds + Op{{nhnyxl2). 

J-t/hn 

i: ,»"+J-2 K(s)f(t)ds = f ( t ) l l i + j - 2 

uniformly i n t £ [an, 1] because 

| /_° si+j-2K(s){f(t + shn) - f(t)}ds\ 

< sup \f(t + shn)-f(t)\ [° \si+i-2K(s)\ds 
t e [ o „ , i ] 

sup |/(r + s/iB) - f(t)\( f \s2^-2Usf'2{ f° K(s)2ds) 
<=rn„.ii J - i J - i 

1/2 

<G[a„,l] 

> 0. (3.27) 

So 

1 0 

0 hn 

nh 
1 A ' W A 

0 fcn 

- l 

/(*) 
Ui u2 

(3.28) 
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uniformly i n t G [an, 1], as n —+ oo. 

Similarly, for i = 1,2, 

1 0 

o hn 

\ 
- i 

nh. 
-A'Wq 

Ii 

= .l-±K(ijLzl) (h^l)'+1 

nhn fr{ \ hn J \ hn J 

uniformly i n i G [ a n , l ] - This expression converges to / ( i ) u , + i uniformly i n £ G [ a n , l ] , 
as n —> oo. 

Thus 

/ 
- l 

1 0 

o K 
nhn 

A'Wq A /(*) 

/ \ 

(3.29) 

B y (3.23), (3.28) and (3.29), it follows that 

_2_ 
hi 

E(BQtt\t) - m{t) 

v hn (E01<t\t)-m'(tj) 

( 

= m"(t) 
UQ UI 

J 

u 2 

\ U 3 / 

m"(t) 
I I \\ 

UQ UI 

- 1 

/(*) 

U i u 2 

/(*) 

V « 3 J 

J 

(3.30) 

U i u 2 

uniformly i n t G [a n , 1]. 

To calculate the asymptotic variance, first consider, 

nhnVar 

11 

u 

= nhno~2 

1 0 

0 hn 

1 0 

0 hn 

J ) 

(AlW AYX A'W2 A{A'W A) - l 

0 h. 
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= (7 
1 0 

o K 

1 0 

0 K 

1 o 

0 hn 

\ 
nh, 

nhn 

- A * W 2 A 

- l 1 0 

0 K 

-1 

0 hn 

X 

1 0 

0 K 

(3.31) 

B y calculations similar to those i n the proof of (3.28) 
- l „ - i 

0 K 
nh. 

- A ' W 2 A 
/

1 0 N 

0 hn 

( 

ux u2 j 

(3.32) 

Using results (3.28) and (3.32) i n (3.31) gives 

/ / 1 O i l B0jt I , 
(nhn)Var 

( 

/(*) 

1 0 

0 A B / 

V Ui Ui 

/(*) 
« 0 W l 

/(*) 

U 0 U i 

V J 

\ "1 / 
/(*) 

U0 Ui 

Ui u2 

-1 

+ op(l) 

V «1 U2 J 

\ 
U0 Ui 

Ui U-i 

+ oP(l), (3.33) 

Ui u2 

uniformly for t € [an, 1]. 

Under appropriate conditions, Theorem 3.1 and its corollaries hold for the fixed 

design where i,-s are pre-specified design points rather than random variables. The 

analogous theorem and corollaries for the fixed design are presented below. 

Theorem 3.2 For the fixed design case, assume the same conditions on m , K, hn: 1, 4, 

5 and 6 as in the random design. In addition assume that K' is continuous, that t{ = 
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with 0 < ti < ... < tn = 1 and 
rU 

f: f ' f(t)dt = i/n, inf / ( t ) > 0 
Jo <e[o,i] 

(3.34) 

loii/i / continuous. Then as n —•> oo, 

/ EfA/j - rof i ) ^ 
- m"(t) 

_2_ 
AH 

E ( f t , t ) - m(t) 

{ hn (E01<t) - m'(t)) ) 

( \ 

UQ U I 

U i U 2 

o(l)e, (3.35) 

/ 

1 0 

o K 

fit) 

\ 

UQ U I 

U i U 2 

A M 

\ _ 1 / 
U 0 U i 

U i u 2 

= o ( l ) e , (3.36) 

uniformly in t £ wifJi l i m i n f an/hn > 1. 

The condition on the design points £,s i n the theorem above is analogous to Condit ion 3 

for the random design case. This condition serves as a guideline to the selection of the 

design points i n an experiment. 

Corollary 3.3 Assume the same conditions as those in Theorem 3.2 except with Con

dition 6 replaced by Condition 6' of Corollary 3.1. Then as n —• oo, 

sup jBias(rhhn,t(t + A „ ) ) -

nu\ / lU2 ~ "1^3 . U 0 U 3 - U i U 2 

ro(*H( 8* + 6 ) / ( u 0 u 2 - u\) - 1^ = o(l), (3.37) 

and 

sup 
<6[a„ , l ] 

nf(t)AnVar(mhntt(t + An)) - a26(l, 6) 
I \ 

UQ U I 

-1 

U l U 2 

Un U, UQ U I 

U i U 2 

o(l). (3.38) 
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C o r o l l a r y 3.4 Assume the same conditions as in Corollary 3.3. As n —*• oo, 

sup 
t e [ w „ , i ] 

-^Bias(rhhntt(t + A„))-

(tu\ ~ " i " 3 , u ^ - u i u 2 2\ A (3.39) 

sup 
tG[l-Pn,l] 

nf(l)AnVar(mhnit(t + An)) - a2S(l, 6) 

( \ 
UQ Ui 

V / 

Ui U2 

\ _ 1 / ' \ 
UQ UI 

Ui U2 

= o ( l ) . (3.40) 

The proof of Theorem 3.2 for the fixed design case is along the same lines as for the 

random design case except that the following lemma is used instead of L e m m a 3.1 when 

replacing a sum by an integral. The proofs of the corollaries of Theorem 3.2 are the 

same as those of the corollaries of Theorem 3.1. 

L e m m a 3.2 Assume f,W and g' continuous on [0,1] and f satisfies (3.34)- Then 

3 C > 0, such that 

C 
sup 

t€[0,l] 
< 

n h
2' 

(3.41) 

R e m a r k : Note that the error term 0((nh2)~l) i n L e m m a 3.2 is smaller than the error 

term 0({nh)~ll2) i n L e m m a 3.1 for h of order n - 1 / 5 . 

The proof of L e m m a 3.2 requires the result of L e m m a 3.3. 

L e m m a 3.3 If inf t e [ 0 , i ] f(t) > 0, and if 0 = i 0 < h < ... < tn = 1, then 3 C2 > 0 

such that s u p i n \U — \ < C2/n. 

P r o o f : Let C2 = 1 / inf < e [ 0 ) i ] f(t). B y the assumption on / , 

- = [*' f(u)du> .[*' inf f(u)du = C2-l{ti-ti-i). 
n Jti-i Jti-i <e[o , i] 
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Thus U — < C 2 / n , V i , n . 

P r o o f o f L e m m a 3.2: 

l rK„,u-t 

f(u)du 
, _ 1 L " J 

EE A + B. 

Consider the first term i n (3.42). 

by assumption (3.34). 

The lemma w i l l be proved if \B\ < C/(nh2) for some C > 0. 
Since / , W and g' are continuous over [0,1], there exists C\ > 0, such that 

(3.42) 

(3.43) 

wC^)g{u) - W^-j-l)g(ti) f(u) < d 
u — ti (3.44) 

Thus 

1 A /•*•• 
1*1 < T E / C 

u — ti 

< 1 

CxC2
2 c • (3.45) 

nh2 nh2 

The results i n this chapter w i l l be used i n the next chapter for the estimation of an 

opt imal bandwidth for forecasting. 
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Chapter 4 

The choice of a smoothing 

parameter 

The plug-in approach and the cross-validation approach are commonly used i n choosing a 

bandwidth for a local regression estimator i n the non-forecasting setting. Each approach 

seeks to min imize some measure of the discrepancy between the estimated and the true 

function and tries to estimate the bandwidth at which the m i n i m u m of such a measure 

occurs. There is abundant literature on the merits and l imitations of both methods. For 

a comprehensive review, see [7], [12], [13] and [19]. The ideas of choosing a bandwidth 

for forecasting by both approaches w i l l be developed in this chapter. The applicabil i ty 

of these approaches relies upon the fact that the data are independent. A n y correlation 

structure in the data w i l l affect any automatic selection of bandwidth (see, e.g. [16]). 
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4.1 The plug-in approach 

A plug-in bandwidth is an estimate of an "opt imal bandwidth" i n a certain sense. To 

estimate the function m at t by rhhn(t) (defined i n 1.8), an opt imal bandwidth hopt(t) 

may be defined to be the one that minimizes the mean squared error (MSE) of m/ l n ( t ) : 

hopt(t) = argminhnMSE(t, hn), 

where MSE(t,hn) = E(rhhn(t) - m(t)\t)2 i n the random design and MSE(t,hn) = 

E(rhhn(t) — m(t))2 i n the fixed design. Since the idea is the same for both designs, 

the selection of an opt imal bandwidth w i l l be described for the random design. The 

bandwidth hopt(t) is called a local bandwidth since MSE(t, hn) is a criterion of goodness 

of fit at a single point t. However, if m is believed to be reasonably smooth, a constant 

bandwidth for a l l t w i l l suffice ([7]). In such a case, an opt imal bandwidth hfpt may be 

defined to be the one that minimizes the sum of the mean squared errors: 

h^pt = argrninhnMSEG(hn) 

where MSEG{hn) = n'1 £?=1 E ((rhhn(ti) - m(ti))2\t). Since h°pt w i l l be used to esti

mate m(t) for a l l t, it is called a global bandwidth. Another commonly used criterion 

for a global bandwidth is the integrated mean squared error, 

MISE{hn) = f1 MSE(t,hn)dt 
Jo 

= jT E ((rhhn(t) - m(t))2\t) dt; (4.1) 

a global bandwidth can be obtained by minimizing MISE(hn). MSEa(hn) may be 

viewed as a discretized version of MISE(hn) when the £,s are equally spaced over [0,1]. 

Note that al l three criteria mentioned above involve the unknown function m and 

the data {(^i ,^)}" . So the opt imal bandwidth depends on m and a2 and thus has to 

be estimated. The plug-in approach estimates the opt imal bandwidth by minimiz ing an 

estimate of the asymptotic expression for MSE or MISE. 
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The criterion MSE(t, hn) w i l l be used hereafter. The context of the plug-in approach 

that of non-forecasting and some relevant results w i l l be presented first and then the 

generalization of the plug-in approach to the forecasting setting w i l l be discussed. 

4.1.1 Introduction 

In this section suppose Y{ = m(t,) + e,-, where the e,s are independent w i t h mean 0 

and variance cr 2(£,). W h e n the errors are homoscedastic, o"2(i,) = a1. Results for 

heteroscedastic errors i n the non-forecasting problem w i l l be presented because they 

encompass the special case of homoscedastic errors. In particular, a technique by Fan 

and Gijbels [7] of estimating m " ( l ) i n the case of heteroscedastic errors w i l l be described 

and used i n forecasting. 

In general, to estimate wSv\t)/v\ = ft, v — 0 , 1 , . . . , a polynomial of degree p (p > v) 

is fitted to the data wi th the following fitting criterion: 

A = argmin j j Y { - £ &•(*,• - tyfKip^), (4.2) 

and m/, n ' " ' (t) is set to v\$vt. In curve estimation, the kernel K i n (4.2) is usually taken 

to be symmetric around 0 over either the reals or [—1,1]. The performance of rhhn^\t) 

is assessed by its MSE: E j (rhhj^(t) — m M ( t ) J 2 | t - j . According to the general results 

i n [7], when p - v is odd, the asymptotic MSE (AMSE) of rhhn^\t) is 

Qi i2.2(p+i-</) , g2(*) / 4 3 \ 
ft+iM„ + a" f(t)nhn+^ V-6* 

Here 

a EE (a0,ai,...,apy = diag(S~1S*S~1), (4.4) 

6 EE (6o, 6P)* = S-1(sp+i,...,s2p+2)\ (4.5) 

S = (5 , - j ) wi th sij EE si+j-2 = J ui+j-2K(u)du, (4.6) 

S* EE (,?.) wi th EE , ? + . _ A = Jui+i-2K2(u)du. (4.7) 
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The first term i n (4.3) is the square of the asymptotic bias which depends on 

m ( p + i ) ( 2 ) = ( p + l ) ! ( 5 P + 1 ) while the second term is the asymptotic variance which depends 

on cr2(t). For example, when m(t) is estimated by a local linear estimator, i.e., v = 0 

and v = 1, the square of the asymptotic bias of rhhn(t) is P\b\hn (or m"(t)2blhn/4) and 

its asymptotic variance is a0a2(t)/(f(t)nhn). 

Formula (4.3) shows that if m ( p + 1 ) ( i ) ^ 0, a large bandwidth hn w i l l create a large 

bias but a small variance, and a small bandwidth w i l l y ie ld a small bias but a large 

variance. Requiring both the bias and the variance to be small at the same t ime is 

setting conflicting goals for hn. Therefore a tradeoff between the bias and the variance 

is needed and this is achieved by choosing hn to minimize the asymptotic MSE of the 

estimator. 

From (4.3), the bandwidth that minimizes the AMSE of rhh„^\t) is: 

_ / (21/ + l)a„a2{t) \ 5fe 

^ ( t ) - U ( p + i - ^ ) W i « / ( o J ' ( ] 

For example, when m is to be estimated by a local l ine, i.e., v = 0 and p = 1, this 

locally opt imal bandwidth is 

*-*>- ( ^ ) * - G s ^ ) * " ^ 
Plugging this opt imal bandwidth into the formula for the AMSE of rhhn(t), o n e c a n 

see that the rate of n - 4 / 5 is achieved for its AMSE. 

Note that formula (4.8) depends on two unknowns, 

a 2 ( * ) a n d m(r+1\t) = /3p+1(p-rl)\. 

These unknowns need to be estimated and these estimates are then plugged into formula 

(4.8) to yield an estimate, hu,opt(t), of the opt imal bandwidth hv<opt(t). For example, if 

the curve m (v = 0) is being estimated at t, to get an opt imal bandwidth one has to 

estimate m"(t) and <r2(i) first. 
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4.1.2 Plug-in approach using complete asymptotics for fore

casting (CAMSE) 

We only consider the case of homoscedastic errors, i.e., o~2(i) = a2. In forecasting, the 

criterion that the plug-in approach considers is also the mean squared error: 

MSE(hn) = MSE(l + An,hn) = E([mhntl(l + An)-m(l+ (4.10) 

A g a i n , only the random design case w i l l be presented since the ideas and the results are 

the same (under proper conditions) for both designs. 

Under Condit ion 6' of Corollary 3.3, for A„ given, the asymptotic MSE(hn) can be 

writ ten i n terms of 8 = An/hn, so the notation AMSE(8) is used instead. 

B y Corollary 3.1 or 3.3, the AMSE of mhnA(l + An) is 

AASOVf^ m " ( l ) 2 ( u\ - UXU3 U 0 U 3 - U i U 2 2 V 

AMSE(8) = — I H - j 5 + s )/(UoUi ~ ui) - 1 1 

+ 

4 

a28 
n / ( l ) A , •(1.*) 

UQ U\ 

UI U2 

Un « i UQ UI 

Ui U2 

(4.11) 

If the first term of AMSE(8) is a monotone and non-increasing function of 8, the 

above expression shows, i n an asymptotic sense, that for a given A n , a very large 8 

(corresponding to a very small hn) w i l l y ie ld estimates w i t h a smal l bias but a large 

variance and that a small 8 (corresponding to a large hn) w i l l y ie ld estimates w i t h a 

small variance but a large bias. For a general kernel function K, the relationship between 

hn and the asymptotic bias is not as obvious as it is i n the non-forecasting setting. In the 

forecasting setting, a trade-off between the asymptotic bias and the asymptotic variance 

can be achieved by choosing the hn = An/8 wi th 8 min imiz ing AMSE(8). 

Observe that as 8 —* 0 and +oo, AMSE(8) —* +oo. So a m i n i m u m of AMSE(8) 

i n (0, +oo) is guaranteed. The m i n i m u m can be found by setting the first derivative of 
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AMSE to zero and choosing the positive root which gives the smallest AMSE. 

Whereas i n curve estimation for the non-forecasting setting an explicit formula (4.8) 

for the opt imal hn exists, no such formula exists i n forecasting. F i n d i n g the opt imal hn 

or equivalently 8 for forecasting, calls for solving a seventh degree polynomial equation 

(the one resulting from setting the first derivative of AMSE(8) to zero) for 6. A n 

alternative method for minimiz ing AMSE is by a grid search. 

Note that like i n curve estimation, estimating the opt imal hn i n forecasting requires 

the estimation of m" and a2. This issue w i l l be discussed i n Section 4.1.4. 

4.1.3 The plug-in approach using the finite sample variance 

for forecasting (HAMSE) 

Recal l that the discrepancy measure (4.10), the MSE of the forecasting estimator, is 

comprised of two parts: a bias component and a variance component. The bias com

ponent involves the unknown function m but by (3.21) the variance component equals 

<72(1,A„)(A*WA)*A*W2A(A*WA)(1, A„)*, which does not involve m. The estimation 

of the variance parameter a2 is relatively easier than the estimation of m". Therefore we 

can directly use the exact variance expression rather than using its asymptotic expres

sion [7]. The asymptotic variance describes the variabil i ty when n —> oo. Specifically, 

the following can be used i n l ieu of AMSE. 

Definition 4.1 The asymptotic MSE using the finite sample variance for the forecast

ing estimator rhhn,\(l + A n ) is defined as: 

HAMSE(S) = ^ A n ( < ± ^ + ™ 

+<T2(1, A n ) (A i VTA) t A t W 2 A(A t WA)(1, A n)*. (4.12) 
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Expression (4.12) uses only "half" of the asymptotic results of the bias and the variance 

of m / l t l ) 1 ( l + A„) i n that HAMSE is defined as the sum of the asymptotic bias and 

the finite sample variance of the forecasting estimator, hence the acronym "HAMSE". 

Recal l that W = diag(K((U - l)/hn)) = diag(K(8(U - 1 ) / A „ ) ) . The opt imal 8, 8opt, 

that minimizes HAMSE(-) can be found by a grid search and the opt imal bandwidth 

is set to be: hnAMSE,oPt = An/8opt. 

Note that both the plug-in approach using AMSE and the plug- in approach us

ing HAMSE are based on the same discrepancy measure, the mean squared error of 

rhh„,i(l + A n ) . The difference is that the latter approach uses the exact variance of 

^ / i „ , i ( l + A n ) i n the variance component instead of its asymptotic expression. 

4.1.4 E s t i m a t i o n o f m" a n d a2 — a n i n t r o d u c t i o n 

The plug-in approach i n the non-forecasting setting calls for the estimation of the second 

derivative ra" of the unknown function and the variance function a2. 

W h e n homoscedastic errors are assumed, a2 can be estimated by the Rice estimator 

[25]. 

D e f i n i t i o n 4.2 The Rice estimator of the variance a2 is defined as: 

^ = E % ^ f . (4.13) 

Under certain conditions, the Rice estimator is n 1 / , 2 -consistent, which means ^^(a^^ — 

a2) —+ 0 i n probability. Other estimators of a2 can be found i n [11]. 

W h e n heteroscedastic errors are assumed, Fan and Gijbels propose that o~2(t) can 

be estimated from residuals of the local polynomial regression [7]: 

45 



where 

^ 1 ti-t ... (u-ty^ 
, W = diag(K((tj-t)/hn)), (4.15) 

yi t n - t ... {tn-ty j 

p is the degree of the polynomial and Y = (Yi,..., YnY = A p / 3 t , (3t being the usual non-

forecasting estimate as defined i n (4.2). Clearly cr2{t) can be used i n the cases of either 

homoscedastic or heteroscedastic errors. Note that the estimation of cr2(t) requires again 

a choice of a bandwidth which may differ from the bandwidth for curve estimation. 

The estimation of m" requires a higher order method. Recal l that is estimated 

by locally f i t t ing a pth degree polynomial wi th p > v. Ruppert and W a n d [26] recom

mend that p — v should be taken to be odd to obtain an accurate estimate of m^(t). 

So m"(t) should be estimated by locally fitting at least a cubic polynomial . A g a i n the 

estimation of m" requires the choice of an opt imal bandwidth, which is different from 

(usually bigger than) the bandwidth that is used for estimating the function m itself. 

To summarize the idea of the plug-in approach, to get an opt imal hn for curve 

estimation one needs to estimate a2 and m". The estimation of a2 and m" requires two 

additional bandwidths whose opt imal values depend on higher derivatives of m . To avoid 

this spirall ing argument, one has to come up wi th an in i t ia l bandwidth for estimating 

derivatives and a2. Therefore i n the plug-in approach, the problem of choosing a good 

in i t ia l bandwidth has attracted special attention ([26],[12],[7]). 

4.1.5 Estimation of m" and a2 for forecasting 

The discussion w i l l be restricted to the homoscedastic errors case. Recal l that the 

forecasting estimator is defined as m / l n i i ( l + A n ) = y901 + ^ j A n where 

fcx = argminj^iY - 80 - frfr - l))2K({ti - l)/hn). 
l 
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The objective is to choose an hn = An/8 such that AMSE(8) or HAMSE(8) achieves 

a m i n i m u m . 

Since both objective functions involve the unknowns a2 and m " ( l ) , these need to be 

estimated first. Exis t ing techniques for estimating both i n curve f i t t ing can be applied 

directly to forecasting. 

For estimating a2, aRice suffices because of the assumption of homoscedastic errors. 

Es t imat ion of m " ( l ) is a much more complicated matter. A s discussed earlier, m " ( l ) 

can be estimated by f i t t ing a local cubic polynomial around t = 1. Let v = 2, p = 3 and 

t = 1 i n (4.2), that is, 

let & = argmin J2(Yi - 1 ) ' ' ) 2 # ( ^ ) , (4.16) 
i=l j=0 

and let m „ n i i " ( l ) = 2 f t , i . Note that the kernel function K and the bandwidth hn used 

to estimate m"(l) can be different from those used for forecasting. 

Formula (4.8) gives the opt imal bandwidth for estimating m " ( l ) as follows: 

= ( 4 ' 1 7 ) 

which depends on a2 and one higher unknown derivative m^(l) ( = 4!/?4). 

Ordinar i ly the fourth derivative of a function m is difficult to estimate, part ly because 

the opt imal bandwidth depends on higher order derivatives of m. However, an idea due 

to Fan and Gijbels [7] eliminates the need to estimate m^4\l). To avoid estimating higher 

order derivatives when estimating m^ by a pth degree polynomial , these authors have 

introduced a statistic RSC, 

RSC(t, hn) = a2(t){l + (p + 1 )V} , (4.18) 

where o2(i) is as defined i n (4.14) and V is the first diagonal element of the matr ix 

(A* W A p ) ~ 1 A p W 2 A p ( A p W A p ) " 1 . The motivation for using RSC is that its m i n i m u m 

reflects to some extent a trade-off between the bias and variance of the fit . 
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Fan and Gijbels [7] have shown that the opt imal bandwidth hQ(t) that minimizes 

the asymptotic value of E(RSC(t, hn)\t) is: 

where 

£, _ S 2 p + 2 — (Sp+l, • • . ,S2p+l)S~1(Sp+1, . . . ,S2p+lY ^ 2Q^ 

and Sj is as defined i n (4.6). Comparing (4.8) and (4.19) yields: 

» M ( (2J/ + 1) a u C p \ ^ 

A p p l y i n g this relationship to the estimation of m " ( l ) , i.e., t = 1, v = 2, p — 3, leads to 

/*2, 0 P< = />2,oPt(l) = (f̂ |)9 W (4-22) 

The point is that h0(l) can be estimated from the sample by minimiz ing RSC, 

yielding an estimate of h2,0pt since the scaling factor i n (4.22) depends on the kernel 

function only. Thus the opt imal bandwidth for estimating m " ( l ) can be estimated from 

(4.22) using the information i n the finite sample at hand. 

The following algorithm summarizes the steps to get the opt imal bandwidth for 

estimating m"(l). 

Algorithm 1 : 

1. Fit a local cubic polynomial centered at t — 1 as in (4-16) 1° tne data for each 

value of hn on a grid; 

2. find h0(l) that minimizes RSC(l,hn) on that grid of hn; 

3. get h2t0pt via (4-22); 

4- estimate m"(l) by fitting a local cubic polynomial to the data using (4-16) with 

bandwidth h2,opt-

48 



4.2 Cross-validation 

4.2.1 Background to the non-forecasting setting 

Cross-validation is a technique commonly used to choose a smoothing parameter. Most 

references i n literature applies cross-validation i n the context of curve f i t t ing by splines 

or kernel estimators. However the idea of cross-validation is the same for both techniques 

and can be applied i n other contexts, e.g., bandwidth selection i n local linear regression. 

For a brief historical note on cross-validation, see [15] (pages 152-153). 

This section w i l l present the motivation and results on cross-validation i n the setting 

of curve f i t t ing. A generic symbol A is used for the smoothing parameter. In the linear 

operator approach, A w i l l be the parameter used i n the penalty term. In the local 

regression approach, A w i l l be hn, the bandwidth of the kernel. 

Let m\(-) denote the fit to the data Y{S w i t h smoothing parameter A. Ideally, one 

would want to choose a A such that the prediction error is minimized . A criterion 

reflecting this objective is 

independent of the Y{S but have the same distribution as the i^s. 

To see the relationship to the criterion MSEG(X) used i n the plug-in approach, note 

that 

(4.23) 

where the Y*s are new observations made at the design points Thus the l^*s are 

E(PE(\)\t) m(ti))(m(ti) - mA(*,•)) 

i=i 
= a2 + MSEG(X). (4.24) 

49 



So minimiz ing the expected prediction error E(PE(X)\t) is equivalent to minimizing 

MSEG(\). 

Of course the 3^*s are unknown and so to implement this idea the Y*s have to be 

replaced by observables. S imply minimizing (4.23) w i t h the Y*s replaced by the Y{S 

would usually result i n choosing A = 0, the A that minimizes 2~Zi(^' — ™ A ( ^ , ) ) 2 and 

yields an estimate of m that interpolates the data. Thus the fitted curve would be very 

bumpy. This is a direct consequence of underestimating the prediction error PE(X) 

because rh\(-) is "closer" to the Y{S than to the Y*s since rk\(-) is fitted to the former. 

The idea of cross-validation is to correct this downward bias i n the estimation of 

PE{\). Note that Y* is independent of rh\(ti) but Y{ is not. Cross-validation gets 

around this dependence by substituting m£~^(2,-) for rh\(ti), where m ^ ( - ) is the curve 

fitted to the same data but wi th the zth data point (i,-, Yi) removed. A s a result Yi and 

m^~x\ti) are independent. 

Definition 4.3 The cross-validation function is defined as 

CV(X) = -f2(Yi-m{-i\ti))\ (4.25) 

where for each i £ { 1 , . . . , n} , m\~%\-) is estimated by the same procedure as rh\(-) but 

with (ti,Yi) removed from the data set. The cross-validation choice of the smoothing 

parameter, \cv, minimizes CV. 

B y taking the expectation, we see that CV(X) is approximately unbiased for PE{\). 

E{CV{\)\t) = -E(f^(Yi-m(ti))2 + 2it(Yi-MU))(™(ti)-
n \i=i i-i 

+ ±(m(U) - mi-^ti))^) 
t=i / 

= ^ + ^ (EM*0-4" o ( * . 0 ) 2 l * ) 
w <72 + MSEQ(\). (4.26) 
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Under suitable conditions, Xcv, the smoothing parameter chosen by cross-validation, 

can be shown to converge almost surely to the optimal smoothing parameter XPE, the 

minimizer of the prediction error. Hardle and M a r r o n [14] have shown such a result for 

the Nadaraya-Watson estimator. 

O n a practical level, cross-validation is a computationally intensive method. Since 

CV can rarely be minimized analytically, usually CV is minimized on a grid of A i n a 

specified interval [A, A] . Therefore for each combination of grid point Xj and omitted 

design point t,, the entire curve f i t t ing procedure has to be repeated. This amounts to 

n\ • n curve fits w i t h n\ being the number of grid points for A. 

In some cases, a short-cut formula is available which expresses CV(X) i n terms of 

quantities which can be evaluated directly from applying the curve fitting procedure 

once to the entire data set. W i t h this formula, only one regression curve is fitted for 

each value of A. The following lemma gives the short-cut formula and conditions for its 

validity. 

L e m m a 4.1 For each i £ { l , . . . , n } , let m^ - ^(-) be the fit with (ti,Yi) removed from 

the data set {(tj,Yj)}"; and let ̂ ~^*(-) be the fit with (ti,Yi) replaced by (£,-, ra^-^(£,•)) 

in the data set {(tjjYj)}™. 

Suppose that rh\ = (rh\(ti),... ,rh\(tn)y = H\Y, with H\ not dependent on Y and 

with its ith diagonal element [H\]a ̂  1. If for each i, m^~^*(t,) = rn^Cl\ti) for any set 

ofYis, then 

Yi-m\ '(ti) = i _ [ H ] » and so (4.27) 

R e m a r k : The short-cut version of the CV function (4.28) casts insight on the idea 

of cross-validation. A s discussed earlier, n _ 1 Y%{Yi — rh\(ti))2 tends to underestimate 
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the prediction error. B y scaling the iih term by 1/(1 — [H\]u)2, CV function tries to 

eliminate this bias. 

Proof: Since rh\ = H\Y and H\ does not depend on Y, the following holds: 

^ i _ , > ( * . - ) = E W i + [ ^ A ] « m i " ° ( * 0 - (4-2 9) 

Using the assumption m^ - ^* ( i ; ) = m^~^(t,) yields: 

Y i - = Yi-m^m(ti) 

= Yi- YlWijYj - [ f r A ] « m ^ ( t , - ) 

1 

= Yi-mM + iHxMYi-m^iti)). (4.30) 

Therefore, ^ - m^iU) = (Yi - m A ( * , ) ) / ( l - [Hx]n). A p p l y i n g this relationship to the 

definition of CV(X) (4.25) gives the short-cut formula (4.28). • 

The above applies to the scenario of curve f i tt ing i n the domain of the design variable 

when a global smoothing parameter A is desired. If one wants to choose a local value of 

A depending on t, localization of the CV function is straightforward by incorporating a 

weight function into CV. For example, a CV function for a local smoothing parameter 

can be defined as 

CV(X, t) = n-1 J2(Yi - m^iUtfwiit), (4.31) 
l 

where iw,-(i) is a weight function that gives more weight to points near t than the rest. 

This weight function Wi(t) can depend on another smoothing parameter A* . The A = X(t) 

that minimizes CV(-,t) w i l l determine the amount of smoothing around t. 
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4.2.2 C V for the linear operator approach 

The minimizer of the penalized l ikel ihood, 

F(Y,Lu...,Ln) = n - 1 fjXi - L^I))2 + \f I"{ufdu, 
1 J 

for I € W ^ O , 1 ] , gives an estimator satisfying the conditions of L e m m a 4.1. So the 

short-cut formula holds for this case. For proof and details, see [31]. 

4.2.3 C V for the local regression approach in curve estima

tion 

The local polynomial regression estimator, rhhn(t) = /3 0 t , of m(t) w i t h /3t defined i n 

(4.2), satisfies the conditions for the short-cut formula. The i t h row of the H\ matr ix i n 

this case is [Ap] , - [ (A£WA P ) - 1 A£W], where [Ap],- is the i t h row of A p , A p and W are as 

defined i n (4.15) wi th t — ti, i = 1 , . . . , n . Obviously, this H\ matr ix does not depend 

on Y. The lemma below verifies the other condition i n L e m m a 4.1 for the short-cut 

formula to hold. 

Lemma 4.2 For each i € {1 , . . . , n), let {wjtti}\ be a set of non-negative numbers with 

u)i,n > 0. Suppose that f3t. minimizes 

s f c - E #(*;-*.•/) (4.32) 

\ 1=0 / 

and that fi\. ^ minimizes 

E ( Y > - E m - *o')2 «>j,u + - E m - ti)1) 
j^i \ 1=0 J \ 1=0 ' 
= E fYi ~ E - ti)1) ™i,u + fc - ft)2 witti. (4.33) 

&i \ i=o ) v J 

Then /3 0 <^ = /30t'^* for i G {1, . . . ,n}. Here J30^ and (3Qt^ are the first component of 

^ and p[. ^ respectively. 
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R e m a r k : The above lemma is the essence of the short-cut formula for regression w i t h 

the f i t t ing criterion 

E fa-!>(*;-')') 

i V ;=o / 

w i t h rhhn(t) = {30. In particular the short-cut formula holds for local linear regression 

estimator (p = 1) and local constant regression estimator (p = 0, Nadaraya-Waston 

estimator), that is, when Wjyt = K((tj — t ) / h n ) wi th K being a kernel function. 

P r o o f : B y the definition of /3t. , 

E fa - E ttf'to - **)')2 + (4? - 2 ^ 

< E fa - E - *0 ' ) 2 + te? - / C V 

< E fa - E A ( A f > ( * i - *••)')2 (4-3 4) 

\ /=o / 

since f}\ ^ minimizes (4.32). Therefore J3Qt^ — /?o,v • 1=1 

4.2.4 C V for forecasting: FCV 

The following two sections contain discussion of ideas of cross-validation for forecasting 

based on different assumptions. 

Unl ike the case of curve f i t t ing i n the data range where the Y{S can be used to "cross-

validate" the estimates ihhn(ti) computed wi th bandwidth h n , the forecasting case has 

no "future" data beyond 1 to cross-validate m / l n i i ( l + A n ) for hn. 

One natural idea would be to leave out a portion of the most recent data, use 

the forecasting estimator and the rest of the data to estimate the left-out data and 

minimize some measure of the discrepancy between the left-out YiS and their estimated 

values to choose an optimal bandwidth hn for forecasting. This idea has the flavour of 
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> 

conventional cross-validation i n that a statistical model is buil t on part of the data and 

then "validated" by the rest of the data. 

A formal definition of such a CV function for forecasting can be formed as below. 

Definition 4.4 The cross-validation function for forecasting is defined as: 

FCV(hn) = J2(™^,U-A„(U) - Y ) 2 , (4.35) 

where S = {U : ti £ [1 — pAn, 1]} with p > 1 and \S\ = # 2 t S £ <S*. 

Remarks: 

1. Note that rhhn,ti-A„(ti) as defined i n Definition 3.1 centers the data at i ,- — A n and 

predicts A„ ahead. For each left-out 2,-, the forecasting estimator m^ n i i i_A„(i,) 

uses the rest of the data prior to the t ime point 2,- — A n to estimate m(2j) . Then 

rhhn<ti-An(ti), the "forecast" at t = 2,-, is compared to Yi. 

2. From Corollary 3.2 or 3.4, FCV(hn) could use more i ,s , w i t h £ [1 — pn, 1] for 

pn —> 0. B u t for computational convenience, FCV(hn) leaves out the part of the 

recent data w i t h 2; € [1 — pAn, 1]. 

3. Independent work by Hart [17] uses a cross-validation idea, TSCV (time series 

cross-validation), similar to FCV i n the context of forecasting. He assumes an 

AR(1) model for the e,s and forecasts one step, 1/n ahead, using a locally constant 

regression estimator. In contrast, we assume independent e,s and forecast A„ oc 

n - 1 / 5 ahead. Hart and Y i [18] recently modified TSCV to OSCV (one-sided 

cross-validation) for the bandwidth selection for curve estimation by local linear 

regression. They showed that the opt imal bandwidth estimated by OSCV is less 

variable than that estimated by the tradit ional CV as defined i n (4.25). In both 

these papers ([17], [18]), the asymptotic mean squared error of the forecast has a 

simple form, B2hn + V/(nhn) where B and V are constants depending on K, m", 

55 



a2 and / , since the estimate is forecasting 1/n ahead. B u t AMSE(6) has a more 

complicated form than B2hn + V/(nhn) since we are forecasting further ahead. 

Recal l that AMSE(6), the asymptotic mean squared error of m^„ i i ( l + A n ) is used i n 

the plug-in approaches to estimate the opt imal bandwidth for forecasting. The following 

corollary of Theorem 3.2 stated for non-random i,s sheds some light on the relationship 

between FCV(hn) and AMSE{8). 

C o r o l l a r y 4.1 Assume the same conditions as in Corollary 3.4- Then 

n4/5{E(FCV(hn)) -a2- AMSE{8)} = o ( l ) . (4.36) 

P r o o f : Since rh-hn,ti-&n(ti) is independent of Yi, 

E(FCV(hn)) 

= | 4 | £ {E(™»n,L-*M ~ m{ti)f + E(m(ti) - Y)2} 

= •£[ | £ E(mhntt,_An(ti) - m(ti))2 + a 2 j . (4.37) 

B y Corollary 3.4, 

sup n 4 ' 5 [E [mhntU.An(ti) - m(ti)}2 - AMSE(6)) = o ( l ) . 

A s a result, 

nAl5{E{FCV{hn)) -a2- AMSE(8)} = o ( l ) . • . 

The lemma below w i l l ensure that the stronger uniform results i n Theorem 3.2 and 

Corollaries 3.3 and 3.4 hold for 2,-s random. Then by the same proof, the above corollary 

is true for 2,-s random. 

L e m m a 4 .3 Suppose that 0 = t0 < tx < ... < tn < tn+1 = 1 and that tx,...,tn are 

order statistics of a distribution with density function f. Suppose that W and W are 
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bounded in the support ofW, g' and f are continuous over [0,1] and inf i e[o,i] f(t) = a > 

0. Then ifnhn —• oo, 

sup 
<e[o,i] 

0 (4.38) 

in probability as n —> oo. 

The proof of the above lemma w i l l use standard results on order statistics f rom the 

uniform distribution over [0,1] (see, e.g. [21]). Those results are stated i n the lemma 

below without proof. 

L e m m a 4.4 Let £/(,), i = 1 , . . . , n be order statistics from the uniform distribution over 

[0,1]. Let C/(0) = 0, and U(n+i) = 1. 

Then 

*• E{U(i)) = ^ , Var{l%) = for i = 1 , . . 

3. E(U{i) - */(,_!)) = E(U(1)) and E(U(i) - U^f = E ^ ) , for i = 1 , . . . , n + 1. 

P r o o f of L e m m a 4.3: Since 

1 "+1 t—t 

(n + l)hn hn 

n + l nhn Y «n [n + l)hn hn 

(4.39) 

we have 

sup 
te[o,i] 

sup 
te[o,i] n + l + 

tn+l — t 

(n + l)hn hn 

The assumptions on W', # and hn ensure that the last expression w i l l go to 0 as n —• oo. 

Therefore this lemma is true if 

r^uT E W(^)g(U) ~Y [ W(^)(gf)(u)du 
(n + l)hn j hn hn Jo hn 

sup 
te[o,i] 

(4.40) 
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i n probabil i ty as n —> oo. 

Consider the integral i n (4.40): 

_L f1
 w{u-zl)(gf){u)du 

tin JO tln 

= r E / wC—-){gf){u)du 
Hn j — \ Jti—1 *in 

= rSr W{t\1)giti)mdu + 
fln ) = 1 - ' t . - i 

T - E 1 r H V ^ M - w&^Wi)] 

• In , = i Jti-i L / l n / t n 

Plugging (4.41) i n the left hand side of (4.40) gives: 

1 n+1 t - — t 1 71+1 rU t—t 
E w(\^)g(u) - f E / ^(^-M*0/(«)«* 

(re + l ) / i n j • ftn / i n i = 1 Jf i_i An 

(4.41) 

sup 
te[o,i] 

= sup \A(t)-B(t)\. 
te[o,i] 

B y Chebyshev's inequality, for any e > 0, 

(4.42) 

P sup \A(t)-B(t)\ > e < 
\te[o,i] / 

£ ( s u P < 6 [ 0 ) 1 ] | A ( t ) - 5 ( i ) | ) 

< 
£ ( s u p « € [ 0 f l ] | A ( t ) l ) + ^ ( s u p t e [ 0 | 1 ] | ^ ( t ) | ) 

(4.43) 

Therefore the lemma is proved if the right hand side of (4.43) —> 0 as re —> oo. 

Consider E ( sup t e [ 0 1 ] |A(2)|) first. 

Ait) = ^ E ^ ^ - f s f w ( ^ ) ^ ( t o / ( « ) d « 
(n + l ) h n i h n h n iZ[ Jti-i h n 

= ^ £ V ( ^ M t o ^ - f E V ( ^ M * o / f i (4-44) 
h n i « n n + 1 ftn ftn 

which can be writ ten i n terms of the order statistics of a uniform distr ibution. 

Let 

U(i) = J fiu)du, i = 0, . . . , n + l . 

58 



Then . . . , ?/(„) are order statistics of the uniform distribution over [0,1] and 

U(o) = 0, <7 („ + i ) = 1. 

Using the facts 

1 

n + Y = EiUv-Uw), 

/ f(u)du = U(i) - «7(,_i), t = l , . . . , n + l 
Jti-l 

i n A(t) and then re-arranging the terms yie ld: 

-i n+l 4 f 

Mi) = r E ^ V ^ K r ^ } 
t'=l 

•j n+l J ^ 

n j=l n 

(4.45) 

Recal l that U(0) = 0 a r i ( 1 ^ (n+ i ) = 1, so 

- f E w(̂ )̂ (to - .̂--i)} 
, = 2 

= i E HHr^*-0 ~ w( r̂M*0} {EU«-x) ~U(i-^ -(4-46) 

Using the condition |(W#)'| < C in (4.46) yields: 

sup |A(t) | < ̂ E 
<G[0,1] " n , = 2 

Because of the fact that 

EU(i-\) — U(i-i) (4.47) 

rU 

U(i) - r/(,-_i) = / /(«)<Zu 

> mif{t)(ti-ti-l) = a ( t i - t i - 1 ) , 
t£[0,l] 

(4.48) 

suPte[o,i] \ c a n ^ e bounded by 

c n+l 

ah2 

" " n ,=2 
E ^ ( 0 _ ^(«'-l) - ^ ( i - l ) 
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Schwarz' inequality can be used to bound the expected value of the above by 

C n~^~^ / 2\ 1/2 

E {E fa) " tf(.--i>) ) {VarWw)) 

Using fact 3 of L e m m a 4.4 then yields 

sup \A(t)\) < - T J {U(i)) E ( ^ K ^ - i ) ) ) 
<6[0,1] / a f l n x 7 t=2 

A g a i n , by facts 1 and 2 of L e m m a 4.4, the last expression equals 

C ( 2 V / 2 A / i(n + l-i) \1/2 

/2 

a h l V(» + + 2),/ £ V(" + 1 ) 2 ( " + 2 ) 

c 
ahl \(n + l){ 

Since 

n + 

as n —> oo, we have 

E sup = O 
\*€[0,1] / 

0 

under the condition that nhn —• oo. 

Now consider £ ( sup 1 £ [ 0 1 ] |i?(t)|), where 

1 

i l n , _ i •'ti-i L (in ftn 

(4.49) 

^1 / 2 "+1 I _ l _ ± (J- (i _ 
n + 2)J (n + 2 ) V 2 + l ^ V n + 1 V n + 1 / ; 

1/2' 

(4.50) 

(4.51) 

B y the assumptions of the lemma, W and W are bounded i n the support of W, and / 

and g' are continuous on [0,1]. So there exists C\ > 0, such that 

I u — ti 
/(«) < Cx 

hr 
(4.52) 
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Therefore, 

1 ^ r*i 
sup \B(t)\ < T - E / C-i — au 

i i _ i — U du du 

n+l 

" n i=l 

< § i E ( ^ ) - ^ - i ) ) 2 , (4-53) 
" n " «=1 

by (4.48). 

F ina l ly , 

<?i" v 2 
c?hn

Kn^ J ( n + l)(n + 2) 

= ( 4 ' 5 4 ) 

under the condition that nhn —> oo. 

So by (4.50) and (4.54), the right hand side of (4.43) -> 0. • 

Unfortunately, no short-cut formula for FCV has been identified, making the imple

mentation of this criterion computationally intensive. The cross-validation criterion i n 

the next section has a short-cut formula. 

4.2.5 C V for forecasting, BCV 

FCV uses the data up to — A n to forecast ra(£,). In contrast the "backcast" cross-

validation BCV i n this section w i l l use data to "forecast" the past. To understand the 

definition of BCV, recall that rhhn,i(l + s) = / ? 0 1 + J3ltls estimates m ( l + s) w i t h data 

centered ait — 1. Suppose that m is really a line. Then if m ^ n i i ( l + s) is a good estimate 
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of m(l+s) for s G [—A n , 0], rh-hn,i(l+s) is an equally good estimate of m(l+s) as it is for 

s G [0, A n ] . If m is not a line, we know by a Taylor expansion that m is approximately 

linear i n a neighbourhood of 2 = 1. So we can fit a line locally w i t h the data centered 

at 1 and estimate m ( l + s) using / 3 0 1 and to calculate m „ n ) i ( l + s). The accuracy 

of the fit is then assessed by the data i n [1 — A „ , 1]. Since for s £ [—A„, 0], m / , n i i ( l + 5 ) 

gives a "backcast" instead of a forecast, we call the following cross-validation criterion 

BCV. 

D e f i n i t i o n 4.5 Let S\ = {ti : 2,- > 1 — A n } and \S\\ = the number oftiS G S\. 

BCV{K) = - i - £ c ( l _ 2.) ( m , „ , 1 ( - ) ( 2 , ) - Y)2 , (4.55) 

w/*ere m / l n ) 1
( " ' ) ( 2 , ) = + ^ ^ ( t , - - 1), @[ *J minimizes 52&i(Yj - Po - Pi(tj -

l))2K((tj — l)/hn) and c(-) is a function that may depend on A n but not on hn. 

In (4.55), we recommend c(-) to be chosen so that 

E(BCV(hn)) « AM5,E(<5) + constant, (4.56) 

where AMSE(6) is the asymptotic M S £ of m f c B > 1 ( l + A n ) and 8 = An/hn. BCV 

always centers the data at 2 = 1 when estimating m(2,), thus using data i n [1 — hn, 1] 

but FCV i n the last section centers the data at 2,- — A„ when estimating m(2,), using 

data i n [2,- — A n — hn,ti — A„] . 

Suppose that a c(-) exists such that (4.56) holds. Then BCV behaves approximately 

like AMSE(8). The hope is that the bandwidth that minimizes BCV also approxi

mately minimizes AMSE{8). The opt imal bandwidth chosen by the BCV criterion is 

defined to be the one that minimizes BCV and w i l l be sought by a grid search. Working 

wi th (4.55) directly is computationally intensive because for each hn on the search grid 

and for each data point (U,Yi) wi th 2,- > 1 — A n , a regression needs to be computed. 

Fortunately, a short-cut formula holds for (4.55). This is shown i n L e m m a 4.6. 
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To choose a c(-) to satisfy (4.56), note that 

E{BCV{hn)) = ~ £ ^ - ^ { ( A w ^ ^ ^ ) - ^ - ^ ) ] ) ' } 

= E c(l-t,-)^{(mw (-°(*0-m(*0) a} + 

^ 2 T^ E c(! " *0 
l ^ l t.-eSi 

~ I F , E c(! - {(mw(*0 - m(r,))2} + 

°- 2 |F7 E c ( ! -^ ) , (4-57) 

if \S\ | _ 1 ]Ct,-e5i c ( l — ^ ' ) E | ( m / i„, i^~^( '« ) — m (^«')) | c a n be replaced w i t h negligible error 

by ISil" 1 Eues, c(l - *,)£ {(mw(t.-) - m(t , ) ) 2 } . 

Thus to have (4.56), it suffices to f ind c ( l — i,)s such that 

E c(l - * ; ) £ {(mfc„,i(*0 " MU))2} ~ A M S £ ( £ ) . (4.58) 

Since AMSE(6) = 0(n~4/5) by the asymptotic results i n Chapter 3, we require the 

difference between the left and right sides of (4.58) to be o ( n - 4 / 5 ) . 

The following Theorem is stated for fixed design w i t h equally spaced i ,s , U = i/n, 

for the choice of the c;s. 

Theorem 4.1 Assume the same conditions as in Corollary 3.3. Let k = [n — nAn], 

e = ( 1 , . . . , 1 ) ' (a k x 1 vector), z = (zk,...,znY = (1 — ifc,..., 1 — £„)* and 

c = (cjt , . . . ,c„,Y — (c(zk),... ,c(zn)Y- Note that Si — {tk,...,tn}. If c(-) satisfies: 

n / V A . . 

2 ^ 
c«( —) = \Si\ (4.59) 
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where ( z /A n ) * ' = ( ( z j t / A n ) \ ( z n / A n ) * y , then 

£ - ™(*0)2 } - AMSE(6) = o{n-A'5). (4.60) 

Proof: Since the t,-s are equally spaced, we can write 

l 0 l t ueSi i=fc 

= B + y, 

where 

1 " 

P i I t=fc 

1 n 

1*1 & 
Theorem 3.2 tells us that 

E0Otl)-m{l) = 

E0hl)-m'(l) = 

Var0Otl) = 

Var0ltl) = 

2 °iK + o(hn) 

02hn + 0(/inJ 
2 

1 a2 1 

1 <T2 I 

2 2 + ° W ' 
where 

E = 

Ui u2 

U0 Ui 

Ui u2 

u2 

\ U 3 J 

uT, u: 

- l 

\  Ul U2 J 

UQ UI 

Ui U2 

and Ui and u* are as defined i n Condit ion 4 i n Chapter 3. 
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So, for \t- 1| < A „ , 

Bias(mhn<1(t)) = E(mhnA(t) - m(t)) 

= E + Pltl(t - 1) - m(t)) 

= E{p0tl-m(l) + [Phl-m'(l)](t-l)} 

-[m(t) - m ( l ) - m ' ( l ) ( i - 1)] 

= j & i f + fe2^-l)}m"(l) + o ( ^ ) 

- { m ' W ^ + « ( ( * - i ) 2 ) } 

= ^ { M n - M „ ( l - 0 - ( l - 0 2 } + « (A„) , (4-61) 

I 

V a r ( m w ( * ) ) = V a r + ^ ( t - 1)) 

= Var ( / ? 0 ) 1 ) + 2(i - l)C<wfAi> /31)X) + (f - l)2Var0hl) 

_ ( 1 2 ( t - l ) ( t - 1 ) 2 \ a 2 1 
- feSll + ^ ^ S l 2 + ^ ^ S 2 2 J / ( i T + 0 W ' 

(4.62) 

where o ( A 2 ) and o(l/(nhn)) do not depend on t as long as \t — 1| < A n . B y (4.61) and 

(4.62) and the fact that hn — An/<5, 

1 " 

i=k 

ll E « - M n ( l " ti) " (1 - t,-)2 + 0 ( A 2 ) } 5 

1*11 .t 
A 4 " 

15: 

\Si\k \*4 

Zi_\ 2M2 / M 2 b\ ~ 26i 
A J ^ + U J 62 

\ 3 2&2 2; 
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m " ( l ) 
|<S\| \ V U J £3 + U J £2 

+<*(i)3 '̂(i)-4 (4.63) 

and 

V = 
1 " 

1*11 t=fc 

1 * f 1 2 ( 1 - * Q 
2 ^ c « ^ — r - ^ i i r 5 — L i 2 

1*1 fa* l » * n 
n/>2 

, (1 ~ * Q 2 

nh3. 
, 1 x l ^ 

S 2 2 + 0 W / 7 ( T ) 
1 " / 1 2 A f Z i 

\si\t nhn nhl An 

W J /(I) 

1*1 
« . t / z \ 2 A n 

VA„y nhl 
12 

+ c t ( i ) 2 i S 2 2 + o ( i ) (4.64) 

B y (4.61) and (4.62), for t — 1 + A n , the square of the bias and the variance of 

m„„,i(l + A„) are 

^ " ( l ) 1 2 

Bias2(mhntl(l + An)) = {b2X + 2hb2h3
nAn + (b\ - 2h)h2

nAl 

- 2 & 2 / > n A 3 + A n + o ( A n ) } 

m " ( l ) 
A b2 2 6 1 6 2 &2 - 2 & i 

» 1 64 + £ 3 + <52 

and 

+ 1+0(1) 

f 1 2 A A 2 1 1 a2 

V a r ( ^ , ( l + A . ) ) = | _ E „ + ̂ E 1 2 + + o ( — ) j w 

(4.65) 

(4.66) 

Conditions i n (4.59) ensure that 

B - Bias2(mhnA(l + A B ) ) = o ( A n ) 
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and 

V - Var(mhn<1(l + A„) ) = o(l/(nhn)). 

Since hni A n oc n - 1 / 5 , we have 

B - Bias2(mhntl(l + A n ) ) = o ( n - 4 / 5 ) , 

and 

V - Var{mhn<l(l + A„) ) = o ( n " 4 / 5 ) . 

Therefore the theorem is proven. • 

Remarks: 

1. Since for each value of [ n A n ] , c needs to be calculated i n the implementation of 

B C V , one might be interested i n the l i m i t i n g forms of conditions i n (4.59) when 

n —* oo and nAn, —* oo. Let c(t) = g(t/An). For equally spaced 2,-s, one can show 

that there exists a function g, e.g., a fourth degree polynomial , such that 

/ g{u)du = 1 
Jo 

I ug(u)du = —1 
Jo 

/ u2g(u)du = 1 
Jo 

/ u3g(u)du = —1 
Jo 

f u4g(u)du = 1. (4.67) 
Jo 

2. The conditions i n (4.59) are sufficient for (4.60) but may not be necessary. For 

example, if m " ( l ) = 0 the last two conditions i n (4.59) are not needed for (4.60) 

to hold . However, i f m " ( l ) ^ 0 and al l the coefficients of powers of 8 i n (4.65) and 

(4.66) are non-zero, then the conditions i n (4.59) are necessary for (4.60). 
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3. So far our discussion about B C V has been l imi ted to simply providing guidelines 

for choosing c(-). It has not been shown that the hn min imiz ing B C V is close to 

hopt, the bandwidth that equals An/5opt wi th 8opt min imiz ing AMSE{8). 

Note that when |<?i| > 5, there may not be a unique vector c that satisfies (4.59). 

In the implementation of BCV, we w i l l use the vector c that minimizes c'c subject to 

the conditions i n (4.59). 

Lemma 4.5 Suppose that \S\\ > 5 and that the are distinct. Let 

X1 = and 
' ( A J ' ( A J ' ( A J ' ( A J 

6' EE (1^1, -15x1,1*1,-ISxU^I). (4-68) 

Then the minimizer of ctc subject to (4-59) is c — Xt(XXt)~1b. 

Proof: Let 

L(c,\) = c t c - \ \ X c - b ) , (4.69) 

where A is a 5 by 1 vector. 

Setting the derivatives of L w i t h respect to c and A to zero yields: 

^ = 2 c - X t \ = Q=>c = ]-Xt\, (4.70) 
oc 2 

^ = Xc-b = 0=> Xc = b. (4.71) 

Plugging c of (4.70) i n to (4.71) gives 

Xc = \XX*\ = b. (4.72) 

Since tk,...,tn are distinct, X is of fu l l row rank of 5. Therefore XXt is invertible. 

Inverting XX* i n (4.72) results i n A = 2(XXt)~1b. Plugging this A into (4.70) yields 

c = Xt(XXt)~1b, which may be either a minimizer or a maximizer . Since L is un

bounded above, this c is a minimizer . • 
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Unl ike FCV, BCV has the short-cut formula we established to enable one to calcu

late only one regression for each hn on the search grid. Thus the process of estimating 

the opt imal bandwidth hn is fast. We turn to that problem now. 

Lemma 4.6 

B C V{hn) - — - 2̂  c(l - ti)—— , 

where 

[Hhn]u = {1,U - 1) x toe ito c o l m n o/ [(A*WA) A W ] , 

/ i . . . i N 

A l = and W = diag(K(^-r-^)) (4.73) 

\ * i — 1 • • • tn-l J 

with K a positive kernel over its support. 

Proof: Recal l that 

& = argmin £ (^ - ft - ft(t; - l))2 K^T^)-
j=i 71 

F i x i and let 

n £ • — 1 
<*U = argmin (Yj - a0 - ax{t3- - U)) K(J-^—). 

Then 

hn 

= (4-74) 

The usual estimate of m(*t) using /Sj is ft>x + ftii(i; — 1) which is equal to a0tU, the usual 

estimate of m(U) based on ati. Thus, both parameterizations yield the same estimate 

of (m(ti),..., m(tn)y, namely Hh„Y. For the same fixed i , also let 

fi™ = argminifciYj-h-lhitj-ltfKi^) 
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+ ( ^ ; i * ' ) - / 5 o - ^ - i ) ) 2 / v ( \ ^ ) , 

t i - i . 
a[. l) = argrain^ (Yj - ct0 — a^tj - t,))2 K("3 

hr, 

ct i"^* = ar grain ^ (5j - ao - a x ( i j - *i)) 2 ^ ( ^ 7 ) 

+ (afc? - ao - axfc - t ,)) ' ^ f ^ ' 

then 

From L e m m a 4.2, cto~u* = ^o~u- Thus from L e m m a 4.1, we have 

B y the relationship between the d s and /3s, the short-cut formula holds. • 

In the next chapter, simulations w i l l be carried out for the local linear forecasting 

estimator to compare the performance of the four methods of bandwidth estimation. 
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Chapter 5 

Simulation: local linear forecasting 

estimator 

5.1 Motivation and data 

In this chapter we w i l l study the local linear forecasting estimator of m ( l + A n ) for 

A„ = 0.1 and 0.2 on simulated data sets, Yi = m{ti) + e,- w i t h e,-, i = 1 , . . . , n i i d normal 

variables ~ N(0,<T = 0.1), and equally spaced 2,-s, t,- = i/n. D a t a sets w i t h sample sizes 

n = 50 and 100 w i l l be generated from each of three ms, mi(t) = t, m 2 ( t ) = t2 and 

m3(t) 
2-7l2(cosUvt) + 1), t < 1/2, 

(5.1) 
i 5 / 2 , t > 1/2. 

Methods of estimating an opt imal bandwidth by using the plug-in procedures CAMSE, 

HAMSE f rom Sections 4.1.2 and 4.1.3 and the cross-validation procedures FCV and 

BCV f rom Sections 4.2.4 and 4.2.5 are applied to each data set. The estimators of 

m " ( l ) and a2 needed for the plug-in procedures are those i n Section 4.1.5. The kernel 
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function K used i n al l four methods is the density function of the standard normal wi th 

support truncated to [—1,0]. For this kernel function, the asymptotic mean square error 

by formula (4.11) is 

m"(l)2 

AMSE{8) = — ^ - A n ( 0 . 1 5 3 2 6 6 8 / 6 2 + 0.9663585/6 + l ) 2 

2 c 
+-^—(4.034252 + 12.16996 + 12.21121662). (5.2) 

The opt imal bandwidth for forecasting is: hopt = An/6opt, where Sopt minimizes AMSE(S) 

The goal is to compare the estimates of m ( l + A„) and the estimates of opt imal band-

widths by a l l the bandwidth estimation procedures discussed i n Chapter 4. 

The functions tp, p = 1 and 2, are chosen to study the sensitivity or the robust

ness of plug-in procedures of bandwidth estimation to the violat ion of assumptions on 

the regression functions i n the asymptotic analysis i n Chapter 4. Recal l that plug-in 

procedures require the estimation of m " ( l ) i n order to estimate the opt imal bandwidth 

for forecasting. In the estimation of m " ( l ) , the fourth derivative of m at 1, m^4\l), is 

assumed to exist and be non-zero. Therefore, it is interesting to study the performance 

of the plug-in procedures when m^(l) is zero. 

In contrast, the function m 3 is chosen because it has a non-zero fourth derivative at 

t = 1 and non-constant second derivative over [0,1]. Al though m 3 ' has a discontinuity 

point at t = 1/2, Corollary 4.1 st i l l holds when the FCV procedure is applied to m 3 . 

Recal l that Theorem 3.1 assumes that i n Condit ion 5 m" is continuous over [0,1 + A n ] 

and that the results concerning the asymptotic bias and the variance of rhhn,t(t + A„) 

hold uniformly for t 6 [an, 1] w i t h l i m i n f an/hn > 1. It can be easily shown that under 

the conditions of Theorem 3.1 but w i t h Condit ion 5 replaced by the condition that m" 

is continuous over [ao, 1 + A n ] for some 0 < ao < 1, the conclusions i n Theorem 3.1 

hold uniformly for t (E [a 0,1]. Therefore Corollary 4.1 holds since FCV uses estimates 

of m(ti)s w i t h U > I — pAn and these t,s are i n [a0,1] for n sufficiently large. 

It is also interesting to see how the magnitude of m " ( l ) w i l l affect the estimated 
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opt imal bandwidth and the resulting forecasts. If m " ( l ) = 0, the square of the asymp

totic bias of rhkn(l + A n ) is of a higher order than A n and thus the hn that minimizes 

the AMSE of m „ n ( l + A n ) is of a different order from n - 1 / 5 . In particular, if ra is a 

line, the exact bias of m / i n ( l + A n ) is zero. Thus the AMSE i n this case has only the 

variance term which equals the second term i n (4.11), resulting i n the asymptotical ly 

opt imal bandwidth hn being co. It can be proved from (5.2) that a larger absolute 

value of ra"(l) w i l l result i n a smaller asymptotically opt imal bandwidth for the kernel 

function used i n this chapter. The three ras under study have m'((l) = 0, m 2 ' ( l ) = 2 

and ra3'(l) = 3.75. 

5.2 Results and comments 

Tables 5.1-5.3 display the summary statistics of the A n - a h e a d forecasts ( A n = 0.1,0.2) 

along wi th the values of hopt, and the estimates of opt imal bandwidth for the forecasts 

by the four procedures applied to 100 simulated data sets, each for sample sizes n = 50 

or 100 and the functions ra = m i , ra2 and m3. Since the estimates of the optimal 

bandwidth are quite variable, the median of the estimates of the opt imal bandwidth 

for 100 simulations is a better indicator of the center of these estimates than the mean. 

The median of the estimates of the opt imal bandwidth for 100 simulations is denoted as 

hf^}. In the tables, the standard deviation (s.d.) and the mean square error (m.s.e.) of 

m / i „ , i ( l + A„) and hopt are estimated respectively as follows. Let 6\> generically represent 

either ra„nii(l + A n ) or hopt for the bth s imulation, 6 = 1 , . . . , 100, and 0 the true value, 

i.e., 9 = m(l+ An) or hopt. Then (s.d.) 2 is £ £ ° ° (§b - fj2 /100 w i t h I = E ^ i 4/100 

and the m.s.e. is (0 — 0)2 +(s.d.)2. The last line of each table displays the true ra(l + A n ) 

and hopt. 

Results i n Tables 5.1-5.3 reveal that, among the four procedures examined, FCV 
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Table 5.1: Summary of 100 forecasts (ms) and estimates of opt imal bandwidths by 

local linear regression for m = m\ wi th sample size n = 50 and 100 respectively. The 

m i n i m u m of AMSE is displayed i n column (m.s.e) for t rue value. 

m = m i , n = 50 

method An = 0.1 An = 0.2 

m (s.d.) (m.s.e.) Ag? M O rk (s.d.) (m.s.e.) * £ ? ( B . d . ) 

CAMSE 1.08 (0.19) (0.04) 0.30 (0.27) 1.17 (0.34) (0.12) 0.27 (0.26) 

HAMSE 1.08 (0.19) (0.04) 0.27 (0.27) 1.18 (0.35) (0.12) 0.24 (0.26) 

FCV 1.11 (0.07) (0.01) 0.51 (0.21) 1.20 (0.08) (0.01) 0.51 (0.12) 

BCV 1.10 (0.10) (0.01) 0.31 (0.24) 1.23 (0.18) (0.03) 0.19 (0.15) 

t rue value 1.10 0.00 oo 1.20 0.00 oo 

m — m i , n = 100 

method An = 0.1 An = 0.2 

m (s.d.) (m.s.e.) *g? (s.d.) m (s.d.) (m.s.e.) Ag? (s.d.) 

CAMSE 1.10 (0.08) (0.01) 0.33 (0.28) 1.21 (0.14) (0.02) 0.30 (0.25) 

HAMSE 1.10 (0.08) (0.01) 0.33 (0.24) 1.20 (0.14) (0.02) 0.30 (0.24) 

FCV 1.10 (0.05) (0.00) 0.51 (0.21) 1.20 (0.06) (0.00) 0.51 (0.10) 

BCV 1.09 (0.10) (0.01) 0.19 (0.22) 1.20 (0.18) (0.03) 0.18 (0.14) 

t rue value 1.10 0.00 oo 1.20 0.00 oo 
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Table 5.2: Summary of 100 forecasts (ms) and estimates of opt imal bandwidths by 

local linear regression for m = m 2 wi th sample size n = 50 and 100 respectively. The 

m i n i m u m of AMSE is displayed i n column (m.s.e) for true value. 

ra = ra2, n = 50 

method An = 0.1 An = 0.2 

ra (s.d.) (m.s.e.) *S? (s.d.) ra (s.d.) (m.s.e.) hSg (s.d.) 

CAMSE 1.16 (0.24) (0.06) 0.24 (0.21) 1.33 (0.43) (0.20) 0.22 (0.20) 

HAMSE 1.16 (0.24) (0.06) 0.22 (0.20) 1.33 (0.43) (0.20) 0.21 (0.20) 

FCV 1.16 (0.09) (0.01) 0.29 (0.12) 1.33 (0.11) (0.02) 0.29 (0.09) 

BCV 1.13 (0.13) (0.02) 0.30 (0.27) 1.37 (0.25) (0.07) 0.20 (0.16) 

true value 1.21 0.01 0.34 1.44 0.02 0.32 

ra = m 2 , n = 100 

method An = 0.1 An = 0.2 

ra (s.d.) (m.s.e.) fcg? (s-d.) ra (s.d.) (m.s.e.) * £ ? (s.d.) 

CAMSE 1.16 (0.12) (0.02) 0.24 (0.26) 1.34 (0.20) (0.05) 0.23 (0.22) 

HAMSE 1.17 (0.12) (0.02) 0.24 (0.21) 1.34 (0.21) (0.05) 0.22 (0.20) 

FCV 1.18 (0.08) (0.01) 0.26 (0.09) 1.36 (0.11) (0.02) 0.24 (0.08) 

BCV 1.15 (0.14) (0.02) 0.20 (0.28) 1.37 (0.20) (0.04) 0.20 (0.18) 

true value 1.21 0.01 0.30 1.44 0.02 0.27 
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Table 5.3: Summary of 100 forecasts (ms) and estimates of opt imal bandwidths by 

local linear regression for m = m 3 wi th sample size n = 50 and 100 respectively. The 

m i n i m u m of AMSE is displayed i n column (m.s.e) for t r u e v a l u e . 

m = ra3, n = 50 

method An = 0.1 An = 0.2 

m (s.d.) (m.s.e.) f>SS (s.d.) m (s.d.) (m.s.e.) AgJ (s.d.) 

CAMSE 1.21 (0.28) (0.08) 0.24 (0.21) 1.45 (0.51) (0.28) 0.23 (0.19) 

HAMSE 1.21 (0.28) (0.08) 0.22 (0.21) 1.45 (0.51) (0.28) 0.21 (0.19) 

FCV 1.19 (0.10) (0.02) 0.26 (0.09) 1.37 (0.12) (0.06) 0.25 (0.10) 

BCV 1.13 (0.16) (0.05) 0.30 (0.28) 1.39 (0.25) (0.10) 0.19 (0.17) 

t r u e v a l u e 1 . 2 7 0 . 0 2 0 . 2 6 1 . 5 8 0 . 0 5 0 . 2 4 

m = m 3 , n = 100 

method An = 0.1 An = 0.2 

m (s.d.) (m.s.e.) h%] (s.d.) m (s.d.) (m.s.e.) Ag? (s-d-) 

CAMSE 1.20 (0.20) (0.04) 0.24 (0.26) 1.43 (0.33) (0.13) 0.22 (0.22) 

HAMSE 1.20 (0.20) (0.04) 0.22 (0.24) 1.44 (0.33) (0.13) 0.20 (0.22) 

FCV 1.19 (0.09) (0.01) 0.21 (0.08) 1.42 (0.15) (0.05) 0.21 (0.09) 

BCV 1.16 (0.16) (0.04) 0.21 (0.29) 1.44 (0.21) (0.06) 0.19 (0.17) 

t r u e v a l u e 1 . 2 7 0 . 0 1 0 . 2 2 1 . 5 8 0 . 0 4 0 . 2 1 
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produces the best forecasts i n terms of the mean square error (m.s.e.) and that the m.s.e. 

of FCV is closest to the m i n i m u m of AMSE. The m.s.e. of forecasts given by the other 

cross-validation procedure, BCV, is smaller than the m.s.e. of forecasts given by the 

two plug-in procedures i n most cases (eight cases out of twelve). However, BCV ties 

w i t h the two plug-in procedures (in terms of the m.s.e.) i n three cases and does worse 

i n one case (m = m i , A n = 0.2 and n = 100) where the m.s.e. of forecasts by BCV 

is 1% more than those of forecasts by plug-in procedures. Comparing the estimated 

mean and the estimated standard deviation of forecasts by al l four procedures shows 

that forecasts by plug-in procedures have a bias comparable to the bias of forecasts by 

cross-validation procedures but tend to have a much larger variance, and that the two 

plug-in procedures produce almost identical results. 

Tables 5.1-5.3 also show that the m.s.e.s of forecasts by al l procedures increase as 

|ra"(l)| increases, which is confirmed by examining plots i n Figure 5.1 where the min

i m u m of AMSE curve (solid line) increases as |m"(l)| increases from m ^ l ) = 0 to 

m 2 ' ( l ) = 2 and m 3 ' ( l ) = 3.75. Moreover, the m.s.e.s of forecasts by al l procedures are 

smaller for the larger sample size n = 100. This is expected since the convergence rate 

of AMSE of m / l n i i ( l + A n ) is n - 4 / 5 and gets smaller when n gets larger. 

From Tables 5.1-5.3, we see that among al l four procedures, the estimates of the 

opt imal bandwidths calculated by FCV are the least variable and have medians agreeing 

w i t h the true opt imal bandwidths reasonably well except for m — mi. Other procedures 

may do well for some cases but badly i n others. 

Recal l that a l l four procedures are devised to estimate the opt imal bandwidth by 

simulating the AMSE curve and that E(FCV) — a2 is approximately AMSE. To help 

us understand why FCV has the best performance, i n the following figures, AMSE(6) 

w i l l be plotted as a function of hn w i t h hn = An/S. Moreover, the shifted FCV, 

FCV - a2, w i l l be plotted instead of FCV. 
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The two plug-in procedures, CAMSE and HAMSE, produce almost identical sim

ulated AMSE curves. For example, Figure 5.2 shows that the CAMSE and HAMSE 

curves are i n good agreement for each of 9 simulated data sets for function mz w i t h 

n = 50 and A„ = 0.1. The similarity of those curves explains why the CAMSE and 

HAMSE procedures produce very similar forecasts and estimates of opt imal band-

widths. F rom now on only the CAMSE curves are plotted for plug-in procedures. 

Of the four procedures, only FCV on average simulates AMSE curves reasonably 

well i n a l l cases, which is not surprising i n the light of Corollary 4.1. In contrast, as 

Figure 5.1 shows, the median of the CAMSE curves (dashed) agrees w i t h the AMSE 

curve only for m = but the median of the FCV curves agrees w i t h the AMSE curve 

for a l l three functions. This observation suggests that the condition of m^(l) ^ 0 is 

necessary for plug-in procedures to work. 

Furthermore, i n al l cases the AMSE curve simulated by FCV is less variable than 

the AMSE curve simulated by plug-in procedures. For example, Figure 5.3 of quantiles 

of the FCV curves and CAMSE curves shows that the AMSE curve simulated by 

FCV is less variable than the AMSE curve simulated by CAMSE for m = ra3. This 

observation probably explains why forecasts obtained through FCV are less variable 

than forecasts by plug-in procedures. 

The medians of simulated AMSE curves by BCV are too rough to resemble anything 

like the AMSE curve i n al l cases; see Figure 5.4 for example. This is probably due to 

the greatly oscillating values of the c,s, the weights used i n BCV which minimize c*c 

subject to (4.59). For example, when n = 50 and A n = 0.1, we have 

c< = (220.75,-753.77,632.54,492.46,-996.23,409.25). 

A s Figure 5.1 shows, FCV approximates the asymptotic mean squared error very 

well for ra = rax and ra2 but not as well for ra = m3. 

It is easy to see why the shifted FCV(hn) under-estimates AMSE(6), that is, 

78 



0.1 0.2 0.3 0.4 0.5 0.6 0.7 

I 
I 

/ 
/ 

/ 
/ 

/ 
/ 

I 
I 
I 

m=m2 
/ 

/ 
/ 

\ 
\\ 
\ \ 
\ \ 

v., \ ^~ . — 

y 
s 

/ 
/ 

/ 
/ 

0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Figure 5.1: The median of 100 shifted FCV curves (dotted), the median of 100 CAMSE 

curves (dashed) and the true AMSE curve (solid) for m = m1,m2 and m3 w i t h n = 50 

and A n = 0.1. 
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Figure 5.2: Pairs of CAMSE (dotted) and HAMSE (solid) curves for 9 simulated data 

sets for m = ra3, n = 50 and An -= 0.1. 
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Figure 5.4: The median of 100 shifted BCV curves (dotted line) and AMSE curve 

(solid line) for m = m 3 , n = 50 and A„ — 0.1. 
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AMSE(An/hn), particularly for large values of hn for m = m 3 . Recal l that the FCV 

score is an average of the estimates of the prediction errors for m(£,)s w i t h U £ [1 — A n , 1] 

and that by Corollary 3.1 or 3.3, AMSE of rhhn,ti-An(ti) depends on m"(ti — A n ) , while 

AMSE(8) depends on m " ( l ) . The second order derivatives of m i and m 2 are constants, 

w i t h m" = 0 and m'2' = 2. So for U £ [1 - A n , 1], m"(U — A n ) is equal to m " ( l ) . Thus, 

for m i and m 2 , one sees an agreement i n shape between the shifted FCV scores and 

the AMSE curve. B u t for m 3 , m 3 ( i ) = 15£ 1 / 2 /4 for t > 1/2, which is an increasing 

function of t. Therefore for ti £ [1 — A n , 1], m3'(£t- - A n ) is less than m 3 ( l ) . Even though 

as n —+ oo, the m"(ti — A n ) s converge to m " ( l ) , for a finite sample, one would expect 

the shifted FCV scores to under-estimate the AMSE curve and that the discrepancy 

increases as hn increases. However, Figure 5.5 shows that for fixed A n the discrepancy 

is smaller for larger sample size n , as would be expected. 

Based on our analysis and the above observations from our modest simulation study, 

we conclude that FCV has the best performance and thus is recommended. 

The next chapter w i l l contain the comparison of the backcalculation method and the 

local linear method applied to a fictitious A I D S example. 
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Figure 5.5: The AMSE curve (solid) and the mean of 100 shifted FCV curves (dotted) 

for m — ra3 w i t h A n = 0.1,0.2 and n — 50,100 respectively. 
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Chapter 6 

The local method versus 

backcalculat ion 

This chapter offers the arguments that the proposed local method should serve as an 

alternative to the backcalculation approach i n forecasting. 

6 . 1 Comments on the methods 

Backcalculation is used to achieve two goals: to estimate the historical H I V infection 

curve up to the present and to forecast the number of new A I D S cases using the esti

mated H I V infection curve. 

Backcalculation assumes the following: 

1. the adjusted A I D S incidence data are accurate; 

2. the incubation distr ibution, F, is accurately modelled and does not vary across 

subpopulations represented i n the counts of new cases. 
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In reality, the raw A I D S incidence data are affected by under-reporting and report

ing delays. In some developing countries, A I D S data are highly incomplete. Though 

adjusting the raw A I D S data for under-reporting and reporting delays improves the 

quality of the data significantly, the adjusted A I D S data st i l l contain errors depending 

on the imputat ion methods, the quality of the raw data and the random nature of the 

data. In short, accurate A I D S counts are not available. This is more of a problem for 

backcalculation (Section 6.2) than for the local linear forecasting estimator. 

Furthermore, knowledge about the "true" F is suspect. K n o w i n g F is crucial to 

the backcalculation approach but F is very hard to estimate. Recal l that F is the 

distr ibution of the incubation time from H I V infection to A I D S diagnosis. Usual ly 

external data other than the A I D S incidence data at hand are used i n the procedure for 

estimating F. There are several problems w i t h that procedure. F i rs t , exact infection 

times are known only for a few highly selected groups of individuals . So usually F is 

estimated from specific cohort(s) [3] and then plugged into the backcalculation model 

for a certain (or general) H I V infected population as the "true" incubation distribution. 

The applicabil i ty of F obtained from a cohort (a particular subpopulation) to a more 

general population is doubtful . In fact, Bacchetti et al [2] conclude f rom their analysis 

that the incubation distributions across the cohorts under study are quite different, 

resulting i n very different estimates of H I V infection curves. Second, the changes of the 

definition of an A I D S case [1] (once i n 1985 and then again i n 1987 i n the Uni ted States) 

further complicate the estimation of the incubation distribution. T h i r d , under-reporting 

and reporting delays also affect the estimation of the incubation distr ibution. 

In contrast, the local linear forecasting estimator has only one goal: to forecast the 

number of new A I D S cases. It assumes that the expectation of the adjusted A I D S 

incidence data reflects the true level of the underlying A I D S epidemic, i.e., E(Yi\ti) — 

m(ti) (with m the true level of the underlying A I D S epidemic) and uses the A I D S counts 
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(adjusted when necessary) directly. The local linear forecasting estimator does not use 

any external data other than the A I D S data. 

One might think that backcalculation should provide good estimates since it employs 

both external data and the A I D S data. However, as shown i n the simulation study 

described i n the next section, it does not produce better forecasts than the local linear 

forecasting estimator that uses the A I D S data only. In addit ion, it w i l l be shown that 

backcalculation can not be used to produce a good estimate of the H I V infection curve 

up to present. The next two sections w i l l contain discussions of the performance of the 

two methods. 

6.2 A small simulation study 

This simulation study has two objectives: 

1. to compare the forecasts of the number of new A I D S cases by backcalculation and 

the local linear forecasting estimator, 

2. to investigate how the violation of either of the two assumptions about the A I D S 

incidence data and the incubation distribution function F w i l l affect the results of 

backcalculation. 

To achieve the two objectives, the performance of both approaches is investigated i n the 

simplest set-up: Y{ = m(ti) + e,- where the e;s are independent normal random variables 

w i t h standard deviation a: Al though the assumption of independent normal errors may 

not be realistic for the A I D S count data, it serves to show the statistical weakness of 

the backcalculation approach and simplifies the computation. This fictitious example 

w i l l use the simplest model for F: an incubation t ime distribution function which is 

independent of the infection t ime, i.e., F(t — s\s) = F(t — s). 
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The simulated data are Yi = m(ti) + e,-, i = 1 , . . . , 20, where the e,s are i . i . d . normal 

variables w i t h mean zero and variance 0.25, ti = i/20, m(£;) = JQ I(s)(F(ti — s) — 

F(U-i - s))ds, I(s) = - 2 0 0 ( 5 + l ) ( s - 2) and F(t) = 1 - e~*. One hundred simulated 

data sets are generated from the above model . Figure 6.1 shows the incubation function 

F and the H I V infection rate I. 

To attain the first objective, m ( l + A n ) , an estimate of m ( l + A „ ) , is calculated 

by both approaches for each of the simulation data sets for A n = 0.1 and A n = 0.2. 

A s explained i n the last section, the "true" F should be taken w i t h a grain of salt. 

It w i l l be interesting to see how the forecasts are affected by the assumed form of 

F. Therefore for the backcalculation approach, m ( l + A n ) is estimated under a few 

assumed forms of F, the true F: F(t) = 1 — e _ t and wrong J P S : F(t) = 1 — e~f^ 

w i t h ft = 4,1.1,0.9,0.5. Since the true ft is 1, ft = 4 or 0.5 is grossly wrong while 

ft = 1.1 or 0.9 is pretty close to the t ruth . The application of backcalculation w i t h 

each F to the 100 simulated data sets yields 100 m ( l + A„)s. In backcalculation, the 

smoothing parameter A is chosen by cross-validation (Section 4.2.2). The application of 

the local linear forecasting estimator to the same data also yields 100 m ( l + A n ) s , but 

not depending on the assumed form of F. Method FCV is used to choose the bandwidth 

for the local linear forecasting estimator because simulations i n the last chapter suggest 

that FCV has the best performance among the four competing bandwidth estimating 

procedures. For each set of 100 m ( l + A n ) s , the average, the standard deviation (s.d.) 

and the mean squared error (m.s.e.) are computed and displayed i n Table 6.1. For this 

fictitious example, the mean squared errors can be calculated since the true value of 

m ( l + A„) is known. 

Results i n Table 6.1 show that the local linear forecasting estimator always gives 

forecasts w i t h smaller mean squared errors than backcalculation. Comparison of the 

averaged forecasts and standard deviations suggests that forecasts by backcalculation 
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Figure 6.1: The H I V infection function I, I(s) = - 2 0 0 ( 5 + l ) ( s - 2) and the incubation 

function F, F(t) = 1 — e~* used i n the generation of the fictitious A I D S data. 
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Table 6.1: Summary of forecasts by backcalculation and local linear regression for 100 

realizations of the fictitious A I D S data. 

method assumed average of forecasts (s.d.) (m.s.e.) 

incubation F A n = 0.1 A n = 0.2 

backcalculation 1 - e-*/ 4 14.27 (1.58) (2.52) 14.85 (3.64) ( 13.37) 

1 - e-'l1-1 14.10 (2.55) (6.50) 14.23 (7.42) (55.13) 

1 — e ~ f , ( t r u e ) 14.45 (2.94) (8.75) 15.52 (7.60 ) (58.80) 

1 - e-</°- 9 14.31 (1.45) (2.14) 14.90 (3.24) ( 10.66) 

1 - e - ' / ° - 5 13.59 (8.10) (65.88) 12.49 (27.00) (733.04) 

local linear 

F C V N A 14.58 (0.62) (0.61) 15.51 (0.96) (1.95) 

t r u e v a l u e 1 - e " < 1 4 . 1 1 1 4 . 5 0 

are highly variable. For example, for A n = 0.1, even when the "true" F is used i n 

the backcalculation, the standard deviation (s.d.) of 100 forecasts by backcalculation is 

2.94, which is much higher than the corresponding standard deviation of 0.62 for the 

local linear forecasting estimator. Results of backcalculation when the "true" F is used 

suggest that forecasts should not be made based on the extrapolated I. 

Estimates of the conservative lower bounds for the numbers of new A I D S cases, LBn 

of (1.6), are also calculated according to formula (1.7) for the backcalculation approach 

from the same simulated data. The average and the standard deviation of the 100 LBns 
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Table 6.2: Summary of lower bounds of forecasts by backcalculation for 100 realizations 

of the fictitious A I D S data. 

method assumed average of LBn (s.d.) 

incubation F A n = 0.1 A n = 0.2 

backcalculation 1 - e - ' / 4 13.51 (0.89) 13.18 (0.87) 

1 - e"*/1-1 12.89 (1.26) 11.78 (1.15) 

1 — e _ t , ( t rue) 12.76 (1.21) 11.55 (1.09) 

1 - e"*/ 0- 9 12.71 (0.83) 11.38 (0.75) 

1 _ g-t/0-5 11.87 (0.54) 9.72 (0.44) 

t r u e l o w e r b o u n d 1 — e _ t , ( t rue) 12.69 11.48 

t r u e v a l u e 1 — e~ f , ( t rue) 14.11 14.50 

for each F are summarized i n Table 6.2. The true lower bounds given by formula (1.6) 

are calculated wi th F the "true" distr ibution used i n the generation of the simulation 

data. 

The s.d.'s of the lower bounds i n Table 6.2 are much smaller than the s.d.'s of 

forecasts based on extrapolated 7s in Table 6.1. This confirms that the problem shown 

i n Table 6.1 is due to the extrapolation of I. 

To attain the second objective of studying the sensitivity of backcalculation to the 

two parameters: the assumed form of the incubation function F and the presence of 

noise i n the YiS, each parameter is allowed to vary separately. F i rs t , estimates of I are 

backcalculated based on three similar Fs from the Y^s w i t h no error. The three Fs are 
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F(t) = 1 - e~t/p w i t h ft = 1.1,1 (true) and 0.9 (see Figure 6.2). A larger value of ft 

means a longer incubation period. The resulting I based on Fs wi th ft = 1.1 (long F), 

1 (true F) and 0.9 (short F) are plotted together w i t h the true I i n Figure 6.2. Note 

that the true I is ful ly recovered when the true F is used i n the backcalculation and 

when there are no errors i n the YiS. 

To study the sensitivity of backcalculation to the presence of errors i n the YiS, esti

mates of I are backcalculated using the true F (the one used to generate the simulation 

data, ft = 1) for different realizations of the errors i n the Y{S w i t h a always equal to 0.5. 

The first plot of / i n Figure 6.3 shows that I is ful ly recovered when there is no error i n 

the YiS. The other three 7s i n Figure 6.3 are backcalculated from three realizations of 

the YiS w i t h errors. These three plots of I show that when there are errors i n the l^s, 

the backcalculated Is are highly variable. 

To get a better idea of the variabil ity of the backcalculated 7s when the YiS contain 
A A 

error, Figure 6.4 summarizes the 100 Is by plott ing the averaged 7, the 25th quantile, 

the 75th quantile and the true I. 

The simulation results show that the results produced by the backcalculation ap

proach are sensitive to the assumed form of the incubation distr ibution F and to the 

presence of errors i n the YiS and that the forecast based on the extrapolated / is highly 

variable (even when the true F is used). In comparison, the local linear estimator gives 

better forecasts by the criterion of MSE. Furthermore, the local linear estimator is 

much faster to compute and therefore is less expensive. 
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Time 

Figure 6.2: The sensitivity of / to the assumption of F i n the fictitious A I D S data 

(a = 0). True F(t) = 1 - e~\ long Fit) = 1 - e"*/1-1 and short F(t) = 1 - e" ' / 0 ' 9 . 
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Time Time 

Figure 6.3: The sensitivity of I to the presence of the errors (a — 0.5) i n the fictitious 

A I D S data when the true F is used. The first plot shows that I is recovered from the 

error-free A I D S data while the rest show that / is highly distorted by the presence of 

errors i n the A I D S incidence data. The solid curve (-) i n each plot is the true I and the 

dotted line (...) the backcalculated / . 
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Figure 6.4: The variability of backcalculated I. 

95 



6.3 Discussion of the methods and the simulation 

results 

This section w i l l offer theoretical insights on how the violation of either of the two 

assumptions on the A I D S incidence data and the incubation function F w i l l make back-

calculation perform poorly. 

The reason that backcalculation is highly sensitive to inaccuracies i n both the A I D S 

incidence data and the incubation function F is that backcalculation is a mathematical ly 

ill-posed problem. Equat ion (1.4) 

m(t) = j T I{s) (F(t -s\s)-F(t-^- s|s)) ds. 

is a Volterra equation of the first k i n d [22]. For details on Volterra equations, see [22]. 

According to [22], a linear Volterra equation of the first k i n d is defined as 

/' K(t,s)I(s)ds = u(t), 0<t<T (6.1) 
Jo 

while a linear Volterra equation of the second k ind is defined as 

I(t) - I* K(t,s)I{s)ds = g{t), 0<t<T. (6.2) 
Jo 

The purpose is to solve these equations for I. 

A n equation is well-posed if a small change i n parameters, e.g. i n K or u i n (6.1), 

or i n K. or g i n (6.2), causes only a small change i n the solution I [22]. Equat ion (6.1) 

is not a well-posed problem. 

Volterra equations of the second k ind have been studied more extensively and are 

understood better than those of the first k i n d . Roughly speaking they are relatively 

well-posed i n contrast to those of the first k ind . A Volterra equation of the first k ind 

may be converted to one of the second k i n d by differentiating (6.1): 

K(t,t)I(t) + £ ™^ll(s)ds = u\t). (6.3) 
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If K(t,t) does not vanish i n 0 < t < T, then dividing (6.3) by K(t,t) yields a standard 

Volterra equation of the second k ind and can be solved by existing algorithms. The 

exact knowledge of u (consequently the exact knowledge of u') makes the equation (6.3) 

possibly well-posed. Under regularity conditions, a continuous solution of equation 

(6.1) exists uniquely and is the same as the continuous solution of equation (6.3). Even 

though Volterra equations of the second k i n d are relatively more tractable i n theory, 

solving them numerically is known to be hard. 

However, i n the backcalculation approach, 

K(s,t) = F(t - s\s) - F(t - l/n - s\s), (6.4) 

w i t h F being the incubation function, so K(t,t) = 0 for any t. Thus (6.3) is again 

an equation of the first k i n d . According to [22], a Volterra equation of the first k ind 

can be converted into one of the second k i n d if K and u are sufficiently differentiable. 

This result is not very useful i n practice because " u " (e.g. the functional form of m i n 

backcalculation) is the very unknown that is of interest to us. A s mentioned earlier only 

the exact knowledge of " u " may help convert equations of the first k i n d to those of the 

well-posed second k i n d . 

Suppose that (1.4) can be converted into an equation of the second k i n d by differ

entiating. Then one might propose to solve the original equation by instead solving the 

resulting equation. Since i n reality m is unknown, one needs to estimate derivatives of 

m f rom the raw data. It is well known that accurate estimation of derivatives of m from 

the raw data is hard, since errors inherited from the original data propagate (in terms of 

mean squared error). Those errors would be further amplified i n I due to the ill-posed 

nature of the problem. Penalizing 7, e.g., controlling the magnitude of $ I"(s)2ds when 

backcalculating 7, does not change the ill-posed nature of the problem. This is well 

manifested by the simulations i n the last section. A small amount of error added to m 

can distort the resulting estimate of I completely. See Figure 6.3. Of course, al l of above 

97 



discussions about Volterra equations assumes that u and K are known at a l l values of 

t, not just at the t,s. 

Smoothing the data {li}™ prior to applying the backcalculation procedure does not 

help either. This can be explained by the ill-posed nature of the problem. 

The ill-posed nature of backcalculation is also manifested i n the sensitivity of back-

calculation to the assumed form of the incubation function F. See Figure 6.2. 

Figure 6.2 also exhibits a phenomenon which Brookmeyer [1] calls "nonidentifiabil-

i t y " of I and F: for the same set of " A I D S incidence" data if a long incubation period is 

assumed (e.g., ft = 1.1), backcalculation produces an inflated estimate of the infection 

rate i n order to match the observed incidence. O n the other hand, if a short incubation 

period is assumed (e.g., ft = 0.9) backcalculation underestimates the infection rates. 

Bacchett i [2] makes the same observation. 

Recal l that one major goal of the backcalculation approach is to reconstruct (es

timate) the H I V infection curve /(•) from the A I D S incidence series. However, this 

nonidentifiability, accompanied by the unfortunate mathematical i l l-posed nature of 

backcalculation, makes backcalculation unfit for the task of reconstructing the past to 

present H I V infection curve I. 

It is also important to note that backcalculation is l imi ted to estimating only a 

proportion of H I V infections. Even though there is a strong correlation between H I V 

infection and A I D S disease, not every H I V infected person w i l l develop A I D S i n his 

lifetime. The proportion of people who are infected w i t h H I V virus and eventually 

develop A I D S is unknown. This is another reason that backcalculation can not recover 

the whole picture of the historical H I V infection pattern. 

In short, one can not expect to get a reliable H I V infection curve f rom backcalculation 

unless the true F and accurate A I D S incidence data (after correction for under-reporting 

and reporting delays) are available. Other methods must be devised to estimate the H I V 
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infections. 

Brookmeyer [1] believes that greater improvements i n reconstructing the H I V in

fection rates may come from empirical data on recent infection rates rather than from 

smoothing procedures or parametric models for I using backcalculation. A s the A I D S 

epidemic continues, more and more data on H I V seroprevalence are available from cross-

sectional surveys (since the mid-1980s) and longitudinal cohort studies. Thus obtaining 

infection rates directly has become possible. Brookmeyer [4] [5] has proposed new ap

proaches based on cross-sectional surveys and cohort studies i n his recent research. 

Though the proposed local linear estimator does not attempt to estimate the H I V 

infections, it does a better job at forecasting than backcalculation. The local linear 

estimator w i l l be applied to two real data sets from Canada and the Uni ted K i n g d o m 

i n the next chapter. 
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Chapter 7 

Data analysis 

In this chapter, forecasts using the local linear forecasting estimator and Healy and 

Ti l let t ' s method [20] w i l l be compared to the corresponding true or corrected numbers 

of new A I D S cases. The two data sets at hand are the Canadian A I D S data, and the U K 

A I D S data used by Healy and Ti l le t t [20]. For a given data set, a few recent observations 

w i l l be left out and treated as "future" , unknown observations. "Forecasts" by the two 

methods w i l l be made using the rest of the data and compared to the left out data, 

actual values of these "future" observations. 

7.1 Data, methods and results 

The Canadian A I D S data are provided by the Laboratory Centre for Disease Control . 

Al though the national quarterly numbers of new A I D S cases are available from the 

fourth quarter of 1979 to the first quarter of 1996, quarterly numbers prior to the second 

quarter of 1991 are assumed to be free of reporting delays. This agrees w i t h previous 

work [23] which considered reporting to have ceased wi th in six years. Since correcting 

for reporting delays and under-reporting is beyond the scope of this thesis, the subset 
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of the Canadian A I D S cases that were diagnosed between the beginning of the fourth 

quarter of 1979 and the end of the first quarter of 1990 and reported w i t h i n six years 

of diagnosis w i l l be used. These data w i l l be treated as being free of reporting delays 

and under-reporting, i.e, these data w i l l be assumed to represent the true numbers of 

new A I D S cases. The Canadian data are displayed i n Table 7.1 w i t h quarters of a year 

labelled Q1-Q4. 

Table 7.1: Quarterly numbers of A I D S cases reported wi th in six years of diagnosis i n 

Canada, 79Q4-90Q1. 

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 

Q l N A 0 2 6 17 34 65 125 190 267 351 372 

Q2 N A 4 2 4 16 36 82 147 223 254 317 N A 

Q3 N A 0 2 7 13 39 99 163 261 295 350 N A 

Q4 1 0 2 6 17 50 117 186 261 304 328 N A 

The U K data as shown i n Table 7.2 are taken from Table 6 i n [20] i n which the 

monthly numbers of reported new A I D S cases and Healy and Ti l le t t ' s estimates of 

number of unreported new A I D S cases are displayed. Healy and Ti l le t t [20] imputed 

the estimates of numbers of unreported new A I D S cases based on the delay distribution 

estimated from the data from 1984 to 1986. Thus the corrected data are the sum of the 

reported number and the estimate of the number of unreported new A I D S cases. 

The Canadian data and the corrected U K data are plotted i n Figure 7.1. To test 

our forecasting method, for the Canadian data, we consider 88Q1 as the present t ime 
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Table 7.2: M o n t h l y numbers of A I D S cases reported to the end of September 1987 i n 

U K . For t ime periods M a y 1986 to September 1987, the first number is the reported and 

the second number i n parenthesis is the estimate of number of unreported new A I D S 

cases. 

1982 1983 1984 1985 1986 1987 

Jan 1 1 6 16 25 33(7.5) 

Feb 0 0 5 15 30 44(9.7) 

M a r 2 2 8 18 26 35(12.2) 

A p r 1 0 4 16 35 35(15.8) 

M a y 0 1 5 14 38(0.1) 25(19.8) 

J u n 0 1 6 12 27(0.4) 48(25.9) 

J u l 1 5 10 17 24(0.9) 27(32.8) 

A u g 1 4 14 24 29(1.4) 27(44.2) 

Sep 1 3 7 " 23 39(2.3) 14(66.1) 

Oct 1 0 14 25 34(3.3) N A 

Nov 1 5 8 22 38(4.3) N A 

Dec 2 7 16 21 46(5.8) N A 
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and for the U K data we consider December 1986 as the present t ime. In each plot, t ime 

has been rescaled so that the data wi th t i n [0,1] are " k n o w n " and the data w i t h t > 1 

are "unknown" and w i l l be predicted. For the Canadian data, data w i t h t i n [0,1] are 

quarterly numbers of new A I D S cases from the fourth quarter of 1979 (79Q4) to the first 

quarter of 1988 (88Q1) and are used to "forecast" the quarterly numbers of new A I D S 

cases from 88Q2 to 90Q1. For the U K data, data wi th t i n [0,1] are monthly numbers 

of new A I D S cases from January 1982 to December 1986 and are used to "forecast" the 

monthly numbers of new A I D S cases from January 1987 to September 1987. 

Healy and Ti l le t t [20] fit a log-linear model i n t to the most recent two years data 

assuming the Yis to be Poisson counts, 

l o g ( £ ( y , ) ) = «o + a i * , (7.1) 

and then extrapolate the fit to get forecasts. 

The local linear forecasting estimator w i t h FCV, and Poisson regression using the 

most recent data w i l l be applied to each data set to produce forecasts for specified 

t ime periods. Healy and Ti l le t t [20] chose a t ime span of two years i n the Poisson 

regression for the U K A I D S data. The choice of a t ime span of data on which Poisson 

regression is computed is equivalent to the choice of a bandwidth i n local regression. 

To show that forecasts are highly dependent on the t ime span, that is, the bandwidth, 

Poisson regression w i l l be computed using data from the most recent half year, one year 

and two years and then the fit w i l l be extrapolated to yie ld forecasts. This choice of 

the spans of "most recent" data is arbitrary. The forecasts w i l l then be compared to 

the corresponding true numbers of new A I D S cases for the Canadian data or to the 

corresponding corrected numbers of new A I D S cases for the U K data. 

Tables 7.3-7.4 display the "forecasts" by the local linear method and by Poisson re

gression using the most recent data wi th the three t ime spans. The opt imal bandwidths 

estimated by FCV are rescaled i n years so that it is easy to see the " t ime span" that 
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the local linear forecasting estimator uses. The average of the squared forecasting errors 

(ASFE), displayed i n the last line of these tables, serves as a measure of the precision 

of forecasts by each method. For the local linear method, the FCV score and estimated 

bandwidth (in years) are also displayed. 

For the local linear forecast at t = 1 + A n for each A „ , AMSE(8) w i t h 8 = An/hopt 

can be used as a measure of accuracy of the forecast. However, AMSE is unknown. 

Recal l that FCV — a2 is approximately AMSE, provided that errors i n Ys are ho

moscedastic. Since Figure 7.1 shows that the assumption of homoscedastic errors is 

reasonable for the Canadian data w i t h t i n [0,1] and for the U K data w i t h t i n [0.5,1.0], 

the Rice estimator can be applied to estimate a2 i n each case. The Rice estimator as i n 

(4.13), when applied to the Canadian data i n [0,1] and the U K data i n [0.5,1.0] yields 

177 and 14, respectively. Al though the distribution of FCV is unknown, FCV scores 

are displayed as an indication of forecasting errors. 

Table 7.3 shows that the local linear forecasting estimator w i t h FCV gives the closest 

forecasts for the Canadian data, w i t h the smallest ASFE, 716. Poisson regression from 

data of different t ime spans clearly gives very different forecasts, showing that the choice 

of a t ime span of most recent data is a practical problem. This sensitivity to the choice of 

the bandwidth is usual for smoothing methods. Poor performance of Poisson regression 

to the Canadian data also suggests the possibility that Y{S may not be Poisson and thus 

a specific assumption on the distribution of YiS may not be justifiable for different A I D S 

data sets. 

Table 7.4 shows that Poisson regression using data of the most recent year gives the 

closest forecasts, w i t h the smallest ASFE, 62. However, Poisson regression using data 

of the most recent half year gives the worst result, w i t h the largest ASFE, 2389. In 

comparison, the local linear forecasting estimator w i t h FCV gives decent forecasts w i t h 

ASFE, 129. Figure 7.2 shows the forecasts by the local linear method and the forecasts 
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Table 7.3: Forecasts (ms) for 8 quarters, 88Q2 to 90Q1, on Canadian A I D S data (79Q4-

88Q1) by local linear forecasting estimator ( L L ) w i t h FCV, and by Poisson regression 

( P R ) using most recent data respectively. The opt imal bandwidth estimated by FCV 

is rescaled i n years and denoted by hy
opt. The FCV score and hy

0
r
pt are displayed together 

i n parenthesis. The <r2 estimated by the Rice estimator is 177. 

T i m e Method A c t u a l # 

m by L L rh by P R on data from most recent Y 

m (FCV,hy
0
r
pt) 0.5 year 1.0 year 2.0 years 

88Q2 293 (64, 3.2) 273 288 311 254 

88Q3 315 (483, 2.4) 279 303 341 295 

88Q4 309 (234, 0.9) 286 319 373 304 

89Q1 349 (312, 1.0) 292 337 408 351 

89Q2 370 (403, 1.2) 299 355 446 317 

89Q3 346 (685, 0.9) 306 374 488 350 

89Q4 359 (1816, 0.9) 313 394 534 328 

90Q1 371 (2474, 0.9) 320 415 584 372 

ASFE = 

£ ( m - y ) 2 / 8 716 1191 1222 17033 / 
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Table 7.4: Forecasts (ms) for 9 months, January 1987 to September 1987, on U K A I D S 

data (January 1982-December 1986) by local linear forecasting estimator ( L L ) wi th 

FCV, and by Poisson regression ( P R ) using most recent data respectively. The opt imal 

bandwidth estimated by FCV is rescaled i n years and denoted by hyJpt. The FCV score 

and hyJpt are displayed together i n parenthesis. The a2 estimated by the Rice estimator 

is 14. 

T i m e Method Delay-

rh by L L m by P R on data from most recent corrected # 

m (FCV,h%t) 0.5 year 1.0 year 2.0 years yc 

87Jan 53 (54, 0.6) 58 47 47 41 

87Feb 45 (60, 1.4) 66 49 49 54 

87Mar 48 (57, 1.3) 75 52 51 47 

87Apr 49 (53, 1.3) 85 55 54 51 

87May 52 (44, 1.2) 96 58 57 45 

87Jun 55 (27, 1.1) 109 61 60 74 

87Jul 57 (20, 1.0) 124 64 63 60 

87Aug 59 (46, 1.0) 141 67 66 71 

87Sep 61 (68, 0.9) 160 71 69 80 

ASFE — 

E ( m - y c ) 2 / 9 129 2389 62 65 / 
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by the Poisson regression w i t h the smallest ASFE. For the Canadian A I D S data, the 

Poisson regression wi th the smallest ASFE uses the data f rom the most recent half 

year; for the U K A I D S data the Poisson regression w i t h the smallest ASFE uses the 

data from the most recent year. The plots i n Figure 7.2 confirm our observation from 

Tables 7.3 :7.4 that the local linear method gives very decent forecasts for both data 

sets. 
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Figure 7.2: Forecasts by the local linear method and by Poisson regression using the 

most recent data. A m o n g three sets of forecasts by Poisson regression, the set w i t h the 

smallest ASFE is plotted. 
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Chapter 8 

Concluding remarks 

In this thesis, the local linear forecasting estimator is proposed as an alternative to 

either backcalculation or parametric regression i n the context of forecasting for A I D S 

data. The asymptotic theory of this estimator is developed and applied to the automatic 

implementation of this method, i.e., the data driven estimation of an opt imal bandwidth 

for forecasting. For the estimation of an opt imal bandwidth, two plug- in procedures and 

two cross-validation procedures are investigated theoretically and by simulations. S im

ulations clearly show the advantage of FCV over the two plug-in procedures, CAMSE 

and HAMSE, and the other cross-validation procedure, BCV. The simulation study 

of Chapter 6 shows that the local linear method provides better forecasts than the back-

calculation approach and that backcalculation can not accomplish the two tasks, that is, 

to provide a reasonable estimate of the H I V infection curve and to provide forecasts of 

A I D S incidence. Analyses of the Canadian A I D S data and the U K A I D S data show that 

the local linear method forecasts well . In addit ion, these analyses expose the practical 

problem of choosing an appropriate size of a t ime span of most recent data for use i n 

parametric regression. 

The theoretical results for the local linear forecasting estimator are derived based on 
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the assumption of independent data. This assumption is not entirely realistic and the 

statistical properties of the local linear forecasting estimator using correlated data and 

the estimation of an opt imal bandwidth w i l l be interesting topics for future research. 

In the literature of A I D S research, many authors (e.g., [1], [20] and [23]) assumed the 

numbers of A I D S cases to be Poisson. For example, Bacchetti [1] assumed that the 

numbers of people infected w i t h H I V follow a nonhomogeneous Poisson process. Under 

appropriate assumptions, the process of numbers of A I D S cases can be shown to be 

Poisson. It would be interesting to simulate the H I V infection process and the incu

bation distribution to get simulated A I D S counts and then to analyse the simulated 

A I D S counts by the backcalculation approach and the local linear forecasting estimator. 

Another interesting extension of the local linear forecasting estimator is to include co-

variates i n the regression, for example, sexual practices, age and gender, and to estimate 

the expected numbers of new A I D S cases among a group w i t h specific covariate values. 

Moreover, construction of point-wise confidence intervals of the forecasts by the local 

linear method is an interesting problem. 
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