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Abstract 

A superconducting cavity resonator has been developed for the systematic study of the 

microwave surface resistance of high purity (twinned and detwinned), zinc and nickel doped 

YBaiCuzO-i-t single crystals at 22.7 GHz. We have successfully tested the resonator on 

three pure and two 0.15% zinc doped samples; one of the measurement was on a pure 

crystal grown using the newly developed barium zirconate crucibles. Measurements in 

the geometry Hrf//c show a crossover in the low temperature behavior of samples as 

the purity is varied; in one of the doped samples we see a crossover to a gapless regime 

with a residual conductivity that is close to o00, the predicted zero temperature limit for 

a d-wave superconductor in 2-D. Measurements with Hrf parallel to the ab-plane have 

allowed us to measure the ab-anisotropy of a 0.15% zinc doped crystal, which we find to be 

qualitatively similar to the ab-anisotropy of the pure system [33]. Finally, the measurements 

are compared in the two geometries. 
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Chapter 1 

Introduction 

The solid state physics and materials science community were entirely unprepared for the 

Sept. 1986 publication by J. G. Bednorz and K. A. Muller [1] of the discovery of supercon

ductivity near 30 K in a pollycrystalline sample in the LaBaCuO system. Their discovery 

opened a new chapter and renewed interest in the study of superconductivity, which goes 

back to 1911, when H. Kamerlingh Onnes discovered that mercury became superconducting 

below 4.2 K. This phenomenon had been extensively studied and was thought to be well 

understood until the discovery of Bednorz and Muller. The theory of superconductivity 

presented by Bardeen, Cooper and Schrieffer in 1957 [2] had been a remarkable success. 

This theory, based on electron-phonon interactions as the mechanism by which electrons 

pair, provided explanations for most of the properties of the superconductors known at the 

time. 

The discovery of superconductivity in the LaBaCuO system was soon followed by the 

discovery of other cuprate compounds with even higher superconducting transition temper

atures. For example, the most studied of the family of high temperature superconductors, 

YBa2Cu307, has a T c of 93 K. Even higher Tc's have been achieved in mercury compounds, 

up to 160 K under pressure. With these transition temperatures higher than the boiling 

point of liquid nitrogen (77 K), the cooling required to achieve superconductivity has be

come relatively inexpensive, compared to the cost of the liquid helium that is needed to 

cool conventional superconductors below their transition temperatures. This has opened 

1 



Chapter 1. Introduction 2 

many potential applications which, up until now, have been far too expensive to pursue. 

However, wires made of the cuprate superconductors are quite difficult to fabricate. 

They are polycrystalline ceramics that are brittle and simply cannot be shaped into wires 

with the same ease that metals are. As a result of such materials difficulties, the most 

quickly developing practical applications make use of thin films. These are made by deposit

ing layers of the superconducting material (by methods such as laser ablation, sputtering, 

etc..) on an insulating substrate with lattice parameters close to those of the supercon

ducting material. As is done in the semiconductor industry, these films can be patterned 

to make a variety of devices. 

One family of thin film applications involves microwave devices, [3] where patterned thin 

films are used as passive components for devices such as filters, resonators and antennas. An 

important property of the cuprate superconductors which makes them attractive, is their 

low-loss performance at these frequencies. The surface resistance, Rs, characterizes this 

loss; for example, at 10GHz the surface resistance of high quality thin films of YBCO grown 

on a low-loss substrate is some hundred times lower than that of copper at 77 K. This low 

loss allows resonant structures with a sharp frequency response to be constructed, making 

them ideal for ultra-narrow-band filters used to separate signals with close frequencies. 

In order to optimize the performance of such devices, a good understanding of the mech

anisms involved in the microwave loss must be developed. This calls for materials whose 

extrinsic properties do not mask the intrinsic behaviour of the superconductor being stud

ied. Toward this end considerable effort has been comitted to the growth of single crystals 

that are of very high quality [4]. Measurements of the microwave surface resistance and 

magnetic penetration depth on these crystals have helped in answering some fundamental 

questions. For example, Bonn et al [5] have shown that the microwave loss of high purity 

YBa2Cu30^s samples shows a broad peak at temperatures around 40K, something that 
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was not seen in thin film measurements. Furthermore, the surface resistance of some films 

was i n fact lower than that of crystals at low temperatures. B y purposely doping crystals 

wi th zinc and nickel impurities, and observing a subsequent decrease of their microwave 

loss, it was demonstrated that the higher loss in the pure crystals was an intrinsic property. 

Crystals studies has also allowed measurements to be made that have been of importance 

to an understanding of these materials at a more fundamental level. For example, mea

surements on these crystals by Hardy et al [6] have shown a linear T dependence of the 

penetration depth at low temperatures, strongly indicating that the gap function of these 

superconductors has nodes on the fermi surface. 

In this project, a probe has been developed to make high precision measurements of the 

surface resistance of high purity YBa^CuzO-j-^ it utilizes a superconducting cylindrical 

cavity, resonant in the TEQU mode at 22.7 G H z . The motivation has been to understand 

the low temperature behaviour of the microwave conductivity. For a superconductor with 

an order parameter which has nodes on the fermi surface, it is well known that impurity 

scattering can lead to a finite density of quasiparticle states at zero energy[24]. The re

sulting residual normal fluid should then dominate heat and charge transport properties at 

low temperatures. A n interesting feature of quasiparticle transport for a d-wave gap in two 

dimensions (2-D), first predicted by P. Lee [7], is that while the impuri ty scattering rate 

T can be very different for different levels of impuri ty concentrations and different scat

tering phase shifts, the microwave conductivity saturates at low temperatures to a value, 

ooo = ne2/7TmA0, ( A 0 being the maximum gap) which is independent of T, the impuri ty 

concentration. Experimental verification of this universal behaviour would give further 

evidence that the order parameter in HiTc materials exhibits nodes on the fermi surface. 

Our new resonator and newly developed measurement techniques allows very precise mea

surements of the surface resistance to be made at low temperatures which can in principle 
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resolve such low values of the conductivity. 

Before we go further into the apparatus design and measurement techniques, we will 

review the basic electrodynamics relevant to the HiTc cuprates. 

1.1 Microwave Surface Impedance 

The surface impedance is an important measurable quantity that describes the response of 

metals and superconductors to microwave radiation. It is defined as 

Z = (Ex/Hy)z=0 (1.1) 

where Ex and Hy are components of the electric and magnetic fields in the plane parallel 

to the surface, with z=0 at the surface of the material that is being considered. 

Figure 1.1: View of a metal sheet in the presence of an incident microwave field. 

The high temperature superconductors are commonly considered to be well into the 

local limit. That is, the fields vary slowly in space on the scale of the mean free path 

(/) for a normal metal, or the coherence length (£) for a superconductor. The local limit 

holds in most situations when the coherence length £ is much smaller than the penetration 

depth (£ << A) [8]. The small values of £ and / in most HiTc materials ensures that the 
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electrodynamics is local [10]. We will see later that this is certainly true above 50K, but 

at lower temperatures / ~ A and the surface resistance becomes a non-local quantity [9]. 

The coherence length however is much smaller than A and the magnetic penetration depth 

generally remains local, a situation not seen in most superconductors. 

If we assume local electrodynamics, then the current density at any point is determined 

by the local electric field at that point: 

J = oE (1.2) 

where o is the conductivity. We can use Maxwell's equations, 

V x £ = - - (1.3) 

VxH = J + iuD (1.4) 

V - £ = 0 (1.5) 

V-D = p (1.6) 

with equation(1.2) to obtain 

V x H = (a + icue)E. (1.7) 

It is easy to see from (1.6) and (1.7) that Ohm's law (eqn (1.2)) implies the absence of charge 

density. For metals and other good conductors, it is found that the displacement current 

is negligible in comparison with the conduction current for microwave and millimeter-wave 

frequencies, and is actually not measurable until the frequencies are well into the infrared. 

Hence, (^ << 1), and one obtains, 

V2E = p a ^ . (1.8) 

Equation (1.8) can be solved quite simply by assuming harmonic time variation of the fields, 

and a simple choice of boundary condition (a semi-infinite slab of conductor of infinite 
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depth). This turns out to be a good approximation at the high frequencies considered, 

where the body of the conductor is often much larger than the penetration depth of the 

electromagnetic fields. For a uniform field along the plane (say in the x-direction) and z 

the depth into the material , equation(1.8) becomes, 

d2E 

—j-^- = ico/j,oEx = k2Ex (1.9) 

which has general solutions of the form 

Ex = Ae~kz + Be+kz. (1.10) 

The condition that E remain finite as z —> co implies B = 0, and we can write 

Ex = E x 0 e k M (1.11) 

where, k = (—ifiujo)1/2 

It is customary to write the propagation constant k in the form 

k=l-±^ (1.12) 

where 

and (1.11) may be written as 

Ex = Ex0e~zlse-lzl5 • (1.14) 

with a similar form for the magnetic field and current density. It is clear from the form 

of (1.14) that the magnitude of the fields and currents decay wi th penetration into the 

conductor. The quantity S, known as the skin depth, has the significance of being the 

depth at which the fields decay to 1/e of their surface values. 
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Using eqn (1.14) in (1.4) to get HVQ, we see that the surface impedance in definition 

(1.1) is then, 

EXQ Exo 1 + i . . 
S = HJo = (Ex0o/k) = ~oT ( ' 1 5 ) 

and is usually separated out into its real and imaginary parts. The real part of the surface 

impedance Rs, is called the surface resistance and is the sheet resistance of the surface layer 

into which the fields penetrate. The imaginary part Xs, is called the surface reactance. 

In general the conductivity is complex, o = o\ —ia2, and the surface resistance in terms 

of the real and imaginary parts of the conductivity becomes: 

(1.16) 
2{a\ + ol) 

For a normal metal, if the frequency is not too high, then the conductivity is real, and 

the surface resistance and reactance are equal, i.e. 

Z = R. + iXa = M + iM. (1.17) 
V Z(7 V ZcT 

However, for a superconductor, when in the superconducting state and temperatures 

up to a fraction of a degree below T c , we generally have 02 » o\ and the propagation 

constant becomes k — i(fi0coo2)1^2. We find that fields decay as e~zlx, wi th A, the magnetic 

penetration depth, given by 

A = l / ( / x o w a 2 ) 1 / 2 . (1.18) 

Similarly, in this same regime when cr2 >> (1-16) simplifies to 

R. = &u2\W (1.19) 

Equation (1.19) shows that the surface resistance is proportional to the real part of the 

conductivity for a superconductor, and that measurements of the surface resistance and 

magnetic penetration depth allow one to extract o\. 



Chapter 1. Introduction 8 

1.2 Microwave Electrodynamics and the Two Fluid Model 

The model described here is a " generalized two fluid model" [22] that follows the basic ideas 

that were proposed by London [11] and Gorter and Casimir [12]. According to this model, 

a superconductor behaves as though it contains electrons of two different types, the normal 

electrons which behave at least approximately like electrons in normal metals, and the 

super electrons, which have unusual properties. Both types of electrons can carry current; 

the normal fluid has resistance whereas the superfluid flows without resistance. The normal 

electrons are also responsible for heat transport. As the temperature is lowered below the 

transition temperature Tc, the superfluid density rises from zero, while the normal fluid 

density falls. 

The motion of the normal fluid is described by the transport equation: 

mlt + m J " / r = Nn£2E- (1-20) 

where Nn is the normal fluid density, r is the normal fluid relaxation time, and Jn = NneVn 

is the normal current density for normal electron drift velocity Vn. 

The superfluid motion is described by the London equation [11], 

m ^ = Nse2E (1.21) 

with Ns being the superfluid density and Js the superfluid current density. It is clear from 

(1.21) that after a short pulse of electric field the system will be left with a supercurrent 

which will not decay, and this is of course the property of superconductivity. 

The total current density is Js + Jn. In a d.c. field, all the current is carried by 

the superfluid whereas in alternating fields the inductive response of the superfluid allows 

the normal fluid to have a share of the current, and energy dissipation takes place. We 

may draw an equivalent circuit of the two fluid model where the current density can be 

represented schematically by the currents In and Is of Fig. 1.2. 
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In 

Rn Ln 
A A A A 

Figure 1.2: Circui t diagram representing the two fluid model . 

The conductivity cr = o~\ — io2 can be derived from (1.20) and (1.21) as 

0 i 

0"2 

A U 2 r 

m ( l + o ; 2 r 2 ) 

/ i V „ e 2 o ; r 2 

(1.22) 

+ \ m ( l + w 2 r 2 ) m w J 

The normal fluid is responsible for the real part of the conductivity o\ for temperatures 

away from T — 0. A t T = 0, for a system in the clean l imi t , where the energy scale of 

the gap is much greater than h/r, the area under Oi(co) is a delta function at co = 0 of 

weight ne2/m. This is the response of the superfluid. A t finite temperatures, oi(co,T) 

increases over the T — 0 value as more and more quasiparticles are thermally excited. 

Correspondingly, the strength of the c5-function in o\ at co = 0 decreases. For low frequencies 

of several G H z or lower where cor « 1, o2 in the cuprates is completely dominated by the 

superfluid condensate and the normal fluid contributes very l i tt le except when its density 

rises rapidly close to Tc. Away from T c , er2 >> c i and the magnetic penetration depth 

A = Xs/JJLQCO = (m/^o-^se 2) 1/ 2. The last form is just the London penetration depth XL that 

is obtained from the London equations. A t zero temperature the normal fluid density is 
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essentially zero, and the superfluid density would be equal to the total carrier density. The 

superfluid fraction of total carriers is then related to the penetration depth by the relation 

N1_m 
X s ~ N0~ A2(T)' [ ' 

A measurement of the penetration depth is then a direct measure of the superfluid density. 

In principle the penetration depth and surface resistance can be measured simultaneously. 

What is usually done in this lab is to make each measurement separately using an apparatus 

optimized for the particular quantity of interest. In the following work, only the surface 

resistance measurement methods are discussed. 
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1.3 Methods 

Measurements of the surface resistance are important for both high frequency applications 

of high temperature superconducting (HTS) materials, and also at a more fundamental 

level, they can provide information about the nature of the superconducting state of these 

materials. 

In most laboratories the technique used for Rs measurements are resonant methods, 

where Rs is calculated from the measured quality factor or Q of a resonating structure. For 

the purpose of measuring the Rs of a superconductor, several structures can be used: 

• A dielectric resonator consisting of a parallel plate or a rod of dielectric sandwiched 

between two HTS plates; 

• A scanning confocal resonator; 

• A HTS transmission line resonator; 

• A split ring resonator made of two rings seperated by a dielectric, and placed near 

the sample of interest; 

• A cylindrical resonator made of copper or of a low temperature superconductor, with 

a HTS sample forming one face, or being inserted into the structure. 

The first three methods are solely used for measuring the surface resistance of thin films 

with the third method being of more immediate use since the transmission line closely 

resembles the final microwave element. The method, however, is destructive in that the 

film has to be patterned, thus it is not as good a diagnostic tool for thin films as are the first 

two methods. The last two methods mentioned are the ones mainly used in this laboratory, 

for both thin film and high purity crystal measurements. The surface resistance can be 
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determined from changes in the resonator's Q-factor before and after a sample is inserted 

into the structure. A compromise has to be made as which method to use, depending on 

the frequency at which measurements are to be taken. 

For this work at 22 GHz, a simple cylindrical resonant cavity was used. The split ring 

resonator [13] is appropriate at frequencies below 10 GHz, where cylindrical cavities become 

too large for most purposes. 



Chapter 2 

The Cavity Resonator 

Microwave cavity resonators are enclosed structures that support a resonant electromag

netic mode at microwave frequencies. The simplest cavities are resonant sections of trans

mission lines, such as a rectangular or circular waveguide. The earliest application of 

microwave cavities to the study of the electrodynamics of superconductors was the work of 

Pippard [16]. More recently, microwave cavities have been used successfully by Bonn et al. 

[14] and others [15] to study the oxide superconductors. 

2.1 Introduction 

The cavity resonator built as part of this project is a cylindrical cavity made of copper 

as shown in Fig. 2.1 The inside dimensions are .74" by .51" for the diameter and height 

respectively. For a cavity with these dimensions, the TEQH mode is at a frequency of 22.7 

GHz. For a cylindrical cavity this mode is degenerate with the TMm mode, and the cutoff 

hole at the bottom of the cavity is an added perturbation to remove this degeneracy: its 

placement at an antinode of the H-field of the T M m mode tends to lower the frequency 

of it below the TE0n mode, since the effective volume of the cavity seen by the TM mode 

is increased. Experimentally we do not observe the T M m mode, since the transmission 

lines do not couple well to this mode in their present arrangement. Coupling to the coaxial 

transmission lines are by means of two loops on opposite sides of the cavity, inside two 0.2" 

holes that are drilled close to the inside wall of the cavity. Halfway up the cavity on each 

13 
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side, 0.02" diameter holes have been cut through the wall to connect the cavity with the 

area where the coupling loops lie. This allows microwave power to reach the cavity from the 

input loop, and from the cavity to the output loop which monitors the transmitted power 

and the transient decay. Both input and output couplings to the cavity can be adjusted by 

moving the loops vertically away or towards the side transmission holes. 

In principle we may run the resonator as is, with the inside walls being copper, the 

material from which the body of the resonator is made. Copper however is not a supercon

ductor at any temperature and a resonator made out of copper would have Q values in the 

hundreds of thousands at helium temperatures. For measurements on small superconduct

ing crystals this would limit our resolution, since we cannot measure the Q to arbitrary 

accuracy. To improve the resolution a much higher Q is desirable and we coat the inner 

walls of the resonator by electroplating with an alloy of lead that is superconducting at 

helium temperature. The alloy typically contains 5 percent tin and 95 percent lead. It is 

used as an anode in a lead-tin fluoroborate solution with the copper resonator being the 

cathode. Currents of about 40-50m 4̂ per square centimeter are used for plating the walls 

of the cavity, with half this amount for the side holes. The alloy is superconducting at 

about 7K and we obtain quality factors in excess of 4 x 106 at 4.2 K. 

The resonator shown in Fig. 2.1 fits onto the bottom of a probe as shown in Fig. 2.2 

The probe is about a meter long with three stainless steel shafts, the outer two housing 

the coaxial lines that feed microwave power into and out of the resonator, and the middle 

shaft housing the sliding sample probe. The probe and resonator are pumped out before 

precooling to liquid nitrogen temperature. The outer resonator wall is in contact with the 

helium liquid ensuring that the resonator stays close to the liquid temperature. During an 

experiment, one wants a Q0 that is higher than the value at 4.2K so we normally pump on 

the helium liquid to cool it further to about 1.2K. The intrinsic cavity wall losses initially 
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Figure 2.1: View of the resonator. 
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Figure 2.2: View of the main probe. 
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fall off exponentially below 4.2K, with a residual Q0 value in the range 50 — 200 x 106 at 

1.2 K. 

With the bath being constantly pumped, the resonator temperature stays stable at 1.2K 

and measurements can be taken. On the top of cavity there is a through hole for sample 

loading. During the measurement the sample can be inserted into, and removed from, the 

cavity by moving the sample probe vertically. The sample probe shown in Fig. 2.3 consists 

of a long piece of one-eighth inch stainless steel tubing that is secured and centered by a 

set of brass fingers inside the middle shaft of the main probe. These fingers also act as 

a thermal link between the sample probe and the bath. The end of the sample probe is 

made of copper and has a chamber that houses the thermometer and heater. The electrical 

leads to the thermometer and heater run up the one-eighth inch stainless steel tube and 

connect to a male 9-pin connector at the top of the probe. The sample is placed on a tip 

that consists of a copper piece which can be screwed into the end of the sample probe, and 

a piece of sapphire rod or strip (depending on the measurement geometry) that the sample 

is stuck to. Sapphire is chosen, since it has a very low loss tangent and it has very good 

thermal conductivity at low temperatures, comparable to copper(~ 10W/cmK at 10 K). 

The sapphire tip is cleaned by being placed in an ultrasonic bath of sulphuric acid, and 

then boiled in the acid for a few minutes. The acid is replaced with acetone, ethanol, and 

isopropyl alcohol, with the same routine in each of the subsequent solutions. The tip is 

assembled by epoxying one end of the sapphire to the copper piece. With the cleaned tip 

ready, the sample is placed onto the tip by using a small quantity of silicone grease. It is 

obviously important to check the effects of the sapphire and grease on the measurements, 

so before an experiment the contribution to the loss coming from the combined sample 

plus tip is measured. As we will see later, the contributions are very small, but do become 

comparable to the sample losses at temperatures below 5 K. We usually have to allow some 
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Figure 2.3: View of the sample probe and tip. 
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helium exchange gas into the probe, because under high vacuum conditions the sample 

temperature does not fall below about 10K. By carefully controlling the helium gas density 

we can get to any desired temperature, down to that of the bath. 

2.2 Measurement Principles 

2.2.1 The Resonant Circuit 

For the purpose of measurements on single crystals of YBCO, our cavity is excited in the 

TEQH mode by an external microwave source. Near any particular mode of the resonator, 

we can describe the situation by an equivalent low frequency LCR resonant circuit. The 

properties of the circuit are then completely described by the three circuit elements. 

The Quality Factor is defined as, 

W 
Q = 2 T T — (2.1) 

where W is the energy stored in the circuit, and PL is the energy loss per cycle. It is easy 

to show that this resonant circuit's Q equals UJQL/R, which is the ratio of the reactance of 

the inductor to the resistance . 

For our cylindrical cavity, the Q factor in terms of the appropriate parameters, i.e the 

fields, is written; 
JvH\r)dV 

Q-^SsRsH2{r)dS (2"2) 

where LU0 is the resonant frequency, H the magnetic field, and RS is the surface resistance 

of the cavity walls. One can obtain the Q explicitly if the field distribution is known for 

any mode. For the TE0n mode these are, in cylindrical coordinates, 

ER .= 0 (2.3) 

EE = —j^AJQ(kr)sin-- (2.4) 
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with, 

EZ = 0 (2.5) 

Hr = ^-Aj'0(kr)cos^- (2.6) 
kh h 

HB = 0 (2.7) 
TTZ 

Hz = AJ0(kr)sin— (2.8) 

k2 = to2e0p0 - T o = - o (2-9) 

where A is a normalizing factor, a is the cavity radius, h is the cavity height, Jm is the mth 

Bessel function, and x 1S the first zero of J0{ka) and equals 3.832 for the TEQU mode. We 

can see that the fields are independent of 9, Hr reaches its first zero when r — a, and that 

Hz has only one maximum, when z = h/2. 

Performing the appropriate integrations [17], the energy stored in the cavity is 

w = A2aj260p2J2(ka)Vo 
4 £ 2 ^ - 1 U J 

and the Q is found to be, 

where VQ is the cavity volume. For example, an RS of 10 pQ would yield a Q of ~ 108 for 

the resonator described in the previous section. 

For us to be able to measure the quality factor of the resonator, we have to couple the 

internal resonant circuit to an external circuit. When joined to the external system through 

the couplings, the equivalent circuit can be represented as shown in Fig. 2.4. 

It is found that for high Q the way the coupling of the external circuit is represented 

has no effect on the final results, as shown here by two ideal transformers. By examining 

the circuit of Fig. 2.4, the loaded Q of the system QT , can be found to be, 

i t + mfZi + 777,2^2 
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Figure 2.4: Equivalent circuit of resonator connected to external circuit of generator and 
detector. 

where Z\ and Z2 are the characteristic impedances of the input and output lines. By 

defining the coupling constants, 

1,2 m 1,2 (2.13) 

we can write down the relation between the unloaded Q0 (without coupling to external 

circuit) and loaded QT as, 

QT Qo 
1 + A 

Qo Qo~ Qo 
+ A 

Qo 
1 
Q~0 

l 
+ Q~i 

l 

where we have characterized the loads by the external quality factors, Q i ; 2 - It is clear that 

the measured QT of the resonator will be lower than the Qo of the isolated circuit, and that 

the external quality factors are independent of the resistance of the internal circuit, R. 

If we now introduce a small sample into the cavity, then the perturbation to the fields 
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inside the cavity are small enough to keep the total energy stored in the cavity almost the 

same. The sample however would change the reactance and resistance of the internal circuit, 

so as to alter its resonant frequency and quality factor. The change in the quality factor is 

directly related to the extra loss that the sample contributes to the internal circuit's loss. 

Since the external quality factors are independent of the resistance of the internal circuit, 

the overall change in the loss of the whole circuit would be the same as that of the internal 

circuit. This makes it possible to measure the extra loss presented by a small sample by 

measuring the quality factor of the external circuit before and after a sample is placed in 

the resonator. It remains to be able to make an accurate determination of QT-

2.2.2 Measurements of Q 

The power tranmission coefficient, which is the ratio of the power delivered through the 

resonator to the incident power takes the form [17], 

where T 0 = 4/3I(32QT/QO (from here on we will write for QT just Q). 

The bandwidth of T, 5u is the frequency interval between half power points. From 

eqn(2.15), the half power condition is u>/u0 — UJQ/UJ = ±1/Q. With u> — u 0 ± Su/2, we get 

for the full width at half power, 

Experimentally we can measure the frequency dependence of power transmission through 

the resonator for a fixed input power. This is done by means of a microwave synthesizer 

that steps through the resonance at discrete frequencies and constant input power. The 

resulting lorentzian curve can be fitted and the Q and resonant frequency, co0 determined. 

An alternative method to determine the quality factor of the resonator is to measure the 

T = 
l + QU 

(2.15) 

5u = CJQ/Q (2.16) 
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power relaxation time. In its simplest form, this is done by applying power to the resonator 

for a long enough time that the response is steady, and then terminating the drive power. 

The power relaxation time is related to the Q through, 

r = Q/co0 (2.17) 

2.2.3 Determination of the Surface Resistance 

When a sample is introduced into the resonant cavity, its resonant frequency and Q are 

altered. The Q of the cavity without sample, Q0, is 2TVW/PL- With a small sample present 

we assume that the perturbation is small enough that the energy stored in the fields would 

stay almost the same. The frequecy shift would also be very small, i.e several MHz out 

of a resonant frequency of several GHz. We can then write for the quality factor with 

the sample, QL, 2irW/(PL + PSL), where PSL is the loss per cycle due to the sample. By 

comparing to the the Q-factor without a sample, we can write: 

s l ^ - c s r ^ (2-18) 

In order to find the loss per cycle due to the sample, the magnetic field at the sample 

surface has to be known. If a perfectly diamagnetic sample is placed in a uniform field H0, 

the field at the sample surface, H, is 

H = J% <2-19) 

where N is a demagnetizing factor that depends on the shape of the sample, and is not 

dependent on the material. Values of iV can be found in the literature for samples of various 

shapes [18]. 

The surface current density is equal to the tangential component of H. Recall that 
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(a ) (b) 

Figure 2.5: View of sample in two geometries 

js = n x H i.e js = H T , and the loss per cycle due to a sample with surface resistance Rs is 

PSL = ̂ T I fsRsdS = / H2
tRsdS. (2.20) 

2/o Js 2/o Js 

In the experiment we place a thin sample into the field in two ways. In the first case, the 

sample, which is in the shape of a thin plate, is put at the center of the cavity such that 

the principal axis of the cavity is parallel to the major surface of the sample as shown in 

Fig. 2.5(a). In the second case the sample is place with the cavity axis perpendicular to 

the major face of the sample. 

a) Sample is a thin plate; H parallel to large face. 

In this case the demagnetizing factor is zero and the surface field is just the external 

field at the center of the cavity which is just A. The loss per cycle is then 

_ SA. JF^B . . 
. PSL = —7-1 (2-21) 

Jo 

where S is the area of one major face of the sample. From equations (2.10) and (2.18) we 
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can write 

Rs = TA(i) (2.22) 

where T = ujQeoplJoikajVo/ASk2 If we know T, it is straightforward to determine the 

surface resistance of the plate. 

b) Sample is an ellipsoid; H perpendicular to large face. 

Here, our rectangular thin samples are placed as shown in Fig. 2.5(b). There is currently 

no known solution of the problem to determine the demagnetizing factor for such a shape. 

A crude solution can be obtained by approximating the sample with an ellipsoid. We 

choose to leave out the solution [17], but note that a similar relation between the measured 

quantity A(l/Q) and the surface resistance is found, namely Rs = rA(l/Q). 

In practice, due to the sample shape irregularities and the lack of a proper solution for 

the geometry of Fig. 2.5(b), the geometrical factor T is found using a calibration method 

that is discussed in the next chapter. This factor is dependent on the the shape, size and 

the location of the sample in the cavity, since the field stength varies with sample position. 
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The Experiment 

This chapter deals with the experimental details of the measurements. First we describe the 

properties of the samples that were used in the measurements, then review the experimental 

methods and instrumentation used to measure their surface resistance by the two methods 

that were outlined at the end of the preceding chapter. 

3.1 The Samples 

The samples that have been studied so far are all high quality YBa2Cu^OTs single crystals, 

with and without zinc doping. All the crystals that were measured had 5 = .05, so that they 

were approximately optimally doped. The crystals have been grown by a CuO — BaO flux 

method using two different types of crucibles [4]. The first set of crystals, which includes the 

Zn-doped crystals, were grown in yttria stabilized zirconia (YSZ). From chemical analysis, 

the YSZ crucibles are among the best crucibles for YBCO crystal growth. Pure crystals 

grown in these crucibles reach the 99.9% purity level. The second set of crystals have been 

grown in barium zirconate (BZO) crucibles [19]. These crucibles have an advantage over 

the YSZ crucibles in that they are inert to the melt. In YSZ crucibles on the other hand, 

during the crystal growth, the inside layer of the crucible reacts with the melt forming the 

corrosion product barium zirconate which interferes with the crystals being grown. During 

this process, crucible impurities are released into the melt that end up in the crystals thereby 

limiting the purity that can be attained in these crystals to about 99.95%. Crystals grown 

26 
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in the new BZO crucibles are believed to be better than 99.995% pure and to the eye have 

very clean, mirror-like surfaces. It should be noted that these crystals have been grown 

very recently and the optimization of their preparation is an ongoing effort at the time of 

writing. 

The (YSZ) grown crystals have been studied extensively in the last few years and have 

been characterized by magnetization, dc resistivity, surface impedance and specific heat 

measurements. They have Tc's of around 93.3K, with a transition width of less than 0.3K. 

Their dc resistivity above the transition is about 55 pQ, — cm in the ab plane and about 

sixty times greater in the c-direction. For the zinc doped samples with a 0.15% doping, the 

transition temperatures were about 91.7K. The typical size of the crystals is about l x l 

mm2 in the ab directions, and between 30-60 microns in the c direction. The crystals are 

black with smooth surfaces. 
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3.2 The Experimental Procedure 

Since the start of this project many new improvements have been made in the measure

ment techniques that allow for fast accurate determination of the surface resistance of small 

crystals. It is safe to say that earlier results obtained [17] still hold true, but the improve

ments have mainly served to lower the noise in the data and to ease the data taking. The 

most significant change that has taken place has been the development of time domain 

measurements to measure the quality factor of the resonator, as described below. Other 

improvements have been in the measurement of the so called non-perturbative correction 

that has to be applied to the data. This correction is important since it is of the same 

order of magnitude as the measured quantities at temperatures below a few Kelvin. 

3.2.1 Measurements in the Frequency Domain 

The experiment starts with the probe being cooled to about 85 Kelvin by placing the res

onator inside a dewar whose outer jacket is filled with liquid nitrogen. Once the resonator 

cools to about 90K, liquid helium is transferred into the inner dewar cooling the resonator 

to 4.2 Kelvin. Following the transfer, the helium is pumped on thereby reducing its temper

ature to about 1.2 Kelvin. It takes about 20-30 minutes before the resonators Q levels off 

to some constant value, typically around 107. During this period the sample temperature 

is monitored and is found to fall to about 7-10 Kelvin, slightly higher than the resonator 

which at this time would be at 1.2 K. 

With the resonator cool, the input and output lines are connected to the external 

microwave circuit. The arrangement is as shown in Fig. 3.1 The microwave source is an 

HP 83630B 0.01-26.5 GHz synthesized sweeper, which steps through a series of discrete 

frequencies under its sweep mode or provides a constant or pulsed frequency in its CW 
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Figure 3.1: Frequency domain setup. 
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mode. The transmitted power through the resonator is amplified by means of a 30dB 

microwave amplifier, before being detected by a diode detector that has been incorporated 

into a detector/low frequency amplifier box with further gains of between 103 to 104. The 

output of the detector box may be viewed on an oscilloscope. 

In frequency domain, the swept frequency response of the transmitted power is mea

sured, and stored by the computer. The typical profile of the resonator response is a 

lorentzian which is fitted by using a non-linear Lavenberg-Marquardt alogrithm, from which 

the resonant frequency and Q-factor are obtained. This method is appropriate when mea

suring the Q of the unloaded resonator or when the resonator is loaded with a high loss 

sample. However, in most cases, our samples have very small losses which means that the 

lorentzian is not broadened much over the unloaded response. This, together with the fact 

that the unloaded Q of the resonator is extremely high, means that small vibrations in the 

system tend to move the sample enough that the resonance frequency oscillates over more 

than the half width of the resonance. Such problems however are not encountered when 

the unloaded Q is not so high or when the resonance is sufficiently broadened, by a HiTc 

sample close to T c , say. In the latter cases the resonator response is sufficiently stable to 

allow for the microwave synthesizer to sweep through the resonance (a process which takes 

typically 10 seconds), and obtain a true image of the resonance. 

Most of our measurements on YBa2Cus06.g5 are done over a wide temperature range, 

from about 1.2K to 100K. The temperature regulation is by means of a Conductus LTC-

20 temperature controller that is connected to the thermometer and heater which were 

located at the end of the sample probe. At the lower temperatures the losses are three 

to four orders of magnitude lower than the normal state loss , so we are faced with the 

measurement difficulties mentioned earlier, namely during the measurement sweep, sample 

vibrations are continiously changing the resonance frequency. These oscillations are very 
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small, of the order of a few kHz, much smaller than the frequency shift from the unloaded 

frequency which was a few MHz. This means that the cavity Q is quite stable even though 

the frequency is not, which sets the stage for Time Domain measurements. 

3.2.2 Measurements in the Time Domain. 

In the time domain the microwave circuitry is modified slightly as shown in Fig. 3.2 The 

resonator is irradiated with a short pulse of RF power, and subsequently the amplitude of 

the transmitted power is measured as a function of time by a Tektronics TDS520B digital 

oscilloscope. The profile of the transmitted power is a decaying exponential with relaxation 

time r = Q/UJQ. The curve as shown in Fig. 3.3 is fitted to an exponential using a nonlinear 

Lavenberg-Marquart algorithm. 

The approximate resonant frequency is found by looking at the resonance in frequency 

domain; then by adjusting the frequency of the pulse in the time domain to obtain the 

largest power output at the start of the decay we refine the value for the center frequency. 

Although this is done by eye, this gives the resonant frequency to 1 part in 106. 

The power delivered to the resonator can be varied by changing the amplitude of the 

pulse or by changing the width of the pulses. A compromise is made with the choice of the 

pulse width, since a very narrow pulse would not be sufficient to excite the fields in the 

cavity. On the other hand too broad a pulse would have too narrow a frequency spectrum 

to hit the resonance when the cavity's frequency is subject to slight oscillations of a few 

kHz. For our resonator, values of 50 to 100 ps were used for the pulse width, with a pulse 

rate about 15Hz. 
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Figure 3.2: Schematic view of microwave set up for time domain measurements 
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Figure 3.3: Decay profile of transmitted power with time. Solid line is the 3 parameter fit 
to a decaying exponential. 
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3.3 The calibration procedure 

So far we have described how to measure the quantity A(^) by the two measurement 

methods of the last section. In order to calibrate the losses we have to determine the 

geometrical constant T in equation (2.23). This is done by a repeated measurement on a 

lead-tin plate that has been cut to the same shape and size. 

The Pb:Sn sample serves two purposes. It scales the values of A(^) into absolute losses, 

and secondly it gives a measure of the so called non-perturbative correction that is applied 

to the data to take care of the perturbation to the unloaded Q-factor of the resonator due 

to the rearrangement of the field distribution by a zero loss sample. 

3.3.1 Absolute Losses 

For a metal in the normal state where o~\ » o~2, the surface resistance and reactance are 

equal, and we have the classical skin effect relation (equation (1.17)) 

Provided that the dc resistivity values are known accurately, the surface resistance in the 

normal state is determined by the dc resistivity for frequencies well beyond 100 GHz. It is 

then clear that a normal state measurement on a piece of Pb:Sn sample cut to the same 

shape and size will enable one to extract the calibration constant. Given that the sample 

has about 5% tin impurity added to the lead, we assume that the resistivity of the alloy 

takes the form, 

(3-1) 

PPb:Sn(T) — pPb{T) + pimpurity (3.2) 
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where the resistivity due to the added impurity is taken to be temperature independent. 

The surface resistance can be written in terms of the resistivity as 

and three measurements of A(^) are done with the sample placed at the center of the 

resonator at temperatures of 20, 50 and 75 K. Using the ratio of the A(^) 's at 20 and 75 

K, a value for the impurity resistivity is obtained and added to the lead resistivity values to 

correct for the tin's presence. The value of A(^) at 50 K is used to check the assumption 

that Pimpurity is indeed temperature independent. Typical values of the impurity resistivity 

are around 0.3±0.1 pQ — cm. The calibration constant is then found from the expression 

where we usually use the values at 75K, although T is found to be the same up to about 

1% when evaluated at the other temperatures. 

3.3.2 Non-Perturbative Corrections 

When we insert a sample inside the resonator it is commonly assumed that the perturbation 

has no effect on the magnitude and shape of the current distribution in the resonators walls. 

In other words, if the sample had infinite conductivity then we would expect the loaded 

and unloaded Q's to be identical. This is however not the case, and the usual observation 

in this resonator is that the sample tends to alter the field distribution in such a manner 

so as to reduce the effective Q from its truly unloaded value. This is in contrast to what 

is usually seen in the split-ring resonator geometry, where the Q increases when a very low 

loss sample is inserted [13]. The Q change is always very small, seldom a cause for concern 

at temperatures above 15-20K, but below about 5K the corrections do make a considerable 

(3.3) 

Qo 

(3.4) 
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contribution to the A(^) value when a sample is loaded in the geometry where Hrf//c 

and the demagnetizing factor is large. 

To get a feel for the size of the correction that has to be applied, the Pb:Sn sample 

that is used for the calibration is cooled to 1.2K. This is accomplished by allowing a small 

quantity of helium exchange gas into the main probe and allowing the temperature to 

reach an equilibrium value of about 1.2K, the bath temperature. The Pb:Sn sample being 

a classical BCS type superconductor, has losses that are exponentially activated and when 

prepared carefully has losses at 1.2K that are several times lower than YBa2Cu3OQ,Q5 at 

1.2K. This in effect would be the closest that we can get to a sample of infinite conductivity 

and zero loss. By inserting the sample to the center of the cavity where the YBa2Cuj,0^,^ 

crystal would otherwise be, the Q is measured and always seen to be lowered beyond the 

reduction that one expects from the loss due to the Pb:Sn sample at this temperature. An 

estimate of this loss is made by the following argument. Given that the sample is plated 

with the same Pb:Sn alloy that the resonator is plated with, we assume that the loss at 

1.2K is that of a freshly plated resonator at 1.2K. Furthermore the loss at 1.2K is taken to 

be a temperature independent residual loss term since the BCS value is negligible at this 

temperature. At 4.2K the BCS value is taken to be that for lead at 22 GHz, about 160 p£l, 

plus the residual loss. By measuring the Q for such a resonator at 4.2K and 1.2K, we can 

deduce values of between 8 and 15 pfl's for the residual losses of our electroplated Pb:Sn 

at 1.2K. The reduction in A(^) for our Pb:Sn sample is usually a few times this loss, 

suggesting that the difference is partly due to the non-perturbative influence of the sample 

on the resonator rather than just being the loss of the sample. Some of the reduction in 

A(^) is due to the sapphire rod or plate as well as the silicone grease that is used to hold 

the sample to the sapphire. All of these additional contributions to the cavity loss must be 

subtracted in order to obtain the sample's loss. As will be shown in the next chapter, it is 
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important to do background runs to determine the magnitude of these effects. 



Chapter 4 

Data Analysis and Discussion 

In this section the surface resistance data obtained using the 22.7 GHz resonator is pre

sented. First some background runs on the sapphire rod and plate, the silicone grease, and 

the Pb:Sn sample are given. We will see the influence of these items on the resonant fre

quency and Q-factor of the cavity and how they compare with typical values from a YBCO 

sample. The surface resistance and the derived real part of the conductivity are then shown 

for pure and zinc doped crystals. A comparison is made with newly grown crystals from 

the barium zirconate crucibles and the older batches grown in yttria stabilized zirconia 

crucibles. Also presented is the ab-plane anisotropy data on a single untwinned zinc doped 

crystal. 

38 
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4.1 Background Runs 

When measuring the surface resistance of YBCO samples or any other superconducting 

sample for that matter, the tip of our sample holder along with the sample are introduced 

into the cavity. It is therefore important to know the loss and frequency shift due to the tip 

of the sample holder alone before a meaningful measurement can be made. As mentioned 

before, sapphire was chosen for the tip for its excellent thermal properties as well as its very 

low dielectric loss. The silicone grease that is used to attach the sample to the sapphire 

has adequate thermal properties and its dielectric loss also acceptable when used in small 

amounts just to keep the sample attached to the plate. 

The perturbation of the cavity by our sapphire rod is shown in Fig. 4.1 as it is pushed 

along the central axis of the cavity where the strength of the electric fields are weakest 

and the magnetic field strength peaks at the center of the cavity. The position as shown 

is measured in inches, and is a distance that is measured from a fixed point at the top of 

the probe to a point on the sliding sample probe. This measured quantity decreases as the 

sapphire is pushed into the cavity. At a value of about 1.75in the sapphire is completely out 

of the resonator. Due to the different thermal expansions of the sample probe and the 0.5in 

diameter stainless steel shaft, it is difficult to determine when the sapphire actually enters 

the cavity but we estimate it to be at about 1.65in. The resonant frequency however starts 

to decrease at a position of about 1.7in indicating that the fields creep up the insertion 

hole. The drop in resonance frequency is because the sapphire, being a dielectric, increases 

the effective volume of the cavity as seen by the electric fields. Knowing the depth of the 

cavity at room temperature and ignoring the thermal contraction of the cavity, we estimate 

the center to be at a position of 1.42in. 

Fig. 4.2 shows the loss due to the sapphire plate as a function of temperature as well as 
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Figure 4.1: Frequency shift due to perturbation by the sapphire rod. 
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Figure 4.2: A(4) due to bare sapphire (open squares), and grease (filled squares) 
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for the plate with a small quantity of silicone grease. In both cases the the plate is loaded to 

the center of the resonator. The loss is presented in terms of A(l/Q) = A(1/QL) — A( l /Q 0 ) 

since they are proportional to each other and it is this quantity that adds to the systematic 

error in A(^) when measuring a YBCO sample. The loss at low temperatures is found to 

be about 3 x 10 - 1 0 for the sapphire plate right after being cleaned. After adding a small 

quantity of grease the loss at low temperature is found to rise slightly to about 4x 10~10. The 

losses rise approximately linearly from their low temperature values for both the sapphire 

and grease but the grease loss rises more quickly with temperature. Both losses however 

are quite low compared to YBa2Cu^O^^ losses at temperatures above 5K but turn out to 

be only a factor of three or four lower at 1.2K when the sample is placed with its a-c or b-c 

face perpendicular to the field. This means that we have to be careful with measurements 

in this geometry. For the case where the a-b plane is perpendicular to the field, the A(^) 

values are of the order of 10~8 for the sample, so the grease and sapphire contribution are 

relatively very small. 
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4.2 Microwave Surface Resistance and Conductivity of Pure Y B C O Crystals 

In Fig. 4.3 the surface resistance of a pure twinned sample (called YLO) of YBo,2Cu306.95 is 

shown as a function of temperature. The surface resistance was measured with the applied 

field perpendicular to the ab plane. The sample has a Tc of about 93.2K and the surface 

resistance is seen to drop rapidly below this temperature by a few orders of magnitude. The 

surface resistance below the transition temperature has a minimum at about 70K and then 

is seen to peak at about 42K before decreasing as the temperature is lowered. The broad 

peak observed here was first reported by Bonn et al. [14] in low frequency measurements at 

about 2GHz. This peak is seen in almost all pure crystals studied and has been attributed 

to a rapid drop in the quasiparticle scattering rate. 

In order to see the features better at lower temperatures, the data is shown on a linear 

scale in Fig. 4.4. The minimum at about 70K and the peak at 42K are clearly seen and 

the surface resistance is seen to drop linearly below about 30K all the way to 1.2K with 

a slope of about . The residual loss is about 85u.fl and is several times larger 

than the predicted zero temperature limit for a d-wave superconductor (more about this 

limit shortly). Also shown is an earlier measurement by K. Zhang [17] on a crystal from a 

different batch at a higher frequency of 34.8GHz. The data has been scaled by the square 

of the ratio of the frequencies to the lower frequency of 22.7GHz. With the crystals being 

from different batches, we have to be careful with the comparisons. For measurements at 

one frequency the features seen to vary most among samples are the depth of the minimum 

around 70K, the details of the temperature dependence and residual loss below 30K, and 

the transition widths. So comparing the two frequencies we see deviations in the surface 

resistance below 50K, where a higher loss is observed at 22.7GHz and the broad peak is 

about 6K lower in temperature. Also seen to vary above 50K in Rs is that the scaled down 

http://85u.fl


Chapter 4. Data Analysis and Discussion 44 

Figure 4.3: The surface resistance of a nominally pure YBCO sample (YLO) at 22.7GHz. 



Chapter 4. Data Analysis and Discussion 45 

Figure 4.4: The surface resistance of sample YLO at 22.7GHz and a second sample measured 
at a frequency of 34.8GHz. The frequencies are scaled to 22.7GHz. 
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loss from 34.8GHz is lower than the loss seen in the newer crystal at 22.7GHz. It is difficult 

to read much into this difference , since as mentioned, the depth of the minimum at 70K 

is somewhat sample dependent. Going back to chapter 1, we had the relation between the 

surface resistance and the real part of the conductivity, 

R. = ^ u f a (4.1) 

which is accurate for <72 > > o~\, and at these frequencies is true once in the superconduct

ing state and up to a fraction of a degree below Tc. Assuming the penetration depth is 

the same at the two frequencies, then the comparisons are mainly between the real part 

of the conductivity o\ at the two frequencies. The real part of the conductivity has been 

calculated using penetration depth data on the YLO crystal and is displayed in Fig. 4.5. 

The penetration depth has been obtained by measuring its temperature dependence at 

1GHz [6], and then finding the absolute penetration at 1.2K (1300A) by measuring the in

frared reflectance [20]. Kramers-Kronig analysis of the reflectance allows one to extract the 

imaginary (and real) part of the conductivity which is related to the magnetic penetration 

depth. We have assumed that this penetration is frequency independent, or in other words 

only the superfluid is responsible for the screening of the microwave fields. In the two fluid 

model this is true so long as LOT is much less than one. At 22.7GHz this is true except in 

the region 10 to 30K, where a slight distortion in o\ could result by using low frequency 

A(T) data. The error is less than 10% [21]. 

The broad peaks seen in the surface resistance (Fig. 4.4) can be traced back to the 

peaks seen in the real part of the conductivity (Fig. 4.5). These peaks cannot be associated 

with the usual coherence peak that is seen for a BCS superconductor immediately below 

T c . They are lower in temperature and much larger than a BCS coherence peak. Bonn et 

al. [22] attributed this feature to a competition between a slowly decreasing normal fluid 

density below T c and a rapidly rising scattering time. Using data at 2 GHz they estimated 
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the quasiparticle scattering time by assuming a drude like frequency spectrum for o~i(cu). 

Although far infrared measurements show that o\ in the normal state has a l / u tail, rather 

than 1/LO2 [23], they nevertheless estimated how much r increased below Tc using a drude 

form as in equation (1.22). By assuming a temperature dependent scattering time they 

deduced that r increases over its value at Tc by a factor of about a hundred when the peak 

in o\ is reached at 30K, while the normal fluid density falls to 20% of its value below Tc as 

seen from penetration depth data [6]. 

Far infrared mesurements also indicate that LOT ~ 1 at about 2400 GHz in the normal 

state just above Tc, so a hundredfold increase means that LOT ~ 1 at 24 GHz and 30K. 

When LOT ~ 1, a rapidly increasing r no longer competes with a decreasing normal fluid 

density, so at higher frequency o~i(T) gets dominated by Nn(T) at a higher temperature. 

In other words we should see the peak in o~i(T) diminish and move higher in temperature 

with increasing frequency. This is as seen in Fig. 4.5. 

Returning to the low temperature behavior of the surface resistance and conductivity, 

we discuss the findings of Hirschfeld et al. [24] as found appropriate. He supposes that 

transport at low temperatures (T/T c < 0.3) is dominated by impurity scattering. Further

more the temperature dependence of transport coefficients could be quite different in two 

different low temperature regimes that are separated by some crossover temperature T*. 

For T < T* « Tc , a gapless regime exists where the superconducting properties reflect 

those of their normal state analogues. At somewhat higher temperatures than T* there 

is a crossover to a pure regime, where the transport coefficients follow power laws that 

reflect on the detailed structure of the order parameter. The crossover temperature is very 

much dependent on the scattering limits and the impurity concentration. In the unitary 

limit this temperature goes as, T* ~ (rA 0 ) 1 / / 2 , where T is the impurity scattering rate, 

and A 0 is the maximum gap over the fermi surface. In the Born limit (weak scattering) 
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the crossover temperature varies as T* ~ A0exp(—A0/T). In the Born limit, unless the 

impurity concentration is high enough that Tc's are substantially reduced, the physics of 

the gapless state is unobservable. 

In the gapless regime it is expected that the conductivity varies as T2 with temperature 

reaching a zero temperature value a"oo = ne 2/(m7rAo) that is independent of scattering 

rate for a d-wave gap in 2-D [7]. In order to test these claims we would like to probe this 

regime in the temperatures that are easily accessible experimentally, i.e down to about 

IK. In the resonant scattering limit this regime is accessible for relatively small impurity 

concentrations. 

Results by Taillefer et al. [25] on the electronic thermal conductivity in YBa2CusOe.95 

show strong evidence of universal behavior that is consistent with the theory of quasiparti-

cle transport in a d-wave superconductor. Measurements on four crystals doped with zinc 

(0 to 3%) to give very different impurity scattering rates that were estimated from resid

ual dc-resistivities, all showed remarkably close residual thermal conductivities of about 

0.19mWK~2cm~l along both the chain and plane directions. Using the Wiedemann-

Franz law we estimate a corresponding zero temperature limit of 0.77 x 10 6 Q - 1 m _ 1 for the 

charge conductivity which translates to values of about 55 and 15pQ in Rsa(T —>• 0) and 

Rsb(T —>• 0) respectively at 22.7 GHz where we have used A 0 a = 1600A and A0(, = 1030A. 

Of note is that the value Rsa(T —>• 0) is at least a factor of five times greater than the 

uncertain corrections that we apply to the data, so the resonator is capable of resolving 

this loss. 

Comparing our results for the pure crystals conductivity, we see no indication of a 

T2 dependence in the conductivity at any temperature down to 1.2K. Furthermore, the 

residual values are several times larger than what are calculated above for the "Lee-limit". 

This has implications for the nature of the residual impurity scattering in our nominally 
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pure samples. The residual impurity scattering rate is very small (T < .01TC) but in the 

resonant scattering limit this would still give a crossover temperature of about 14K (taking 

A 0 ~ 2TC). Crossover behavior is however not seen, indicating that the scattering is mainly 

non-unitary and probably we have to probe quite a bit lower in temperature to see a 

crossover in pure samples. 

Work by Zhang et al. [17] has shown that doping with zinc alters the low temperature 

dependence of the conductivity and penetration depth from linear towards a quadratic 

behavior with increased impurity concentrations suggesting a shift towards a gapless regime 

that we could probe at temperatures above IK. 
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4.3 Surface Resistance and Conductivity of Zinc Doped Crystals 

As mentioned in chapter 1, the surface resistance is an important probe of the fundamental 

properties of high temperature superconductors. It is also one of the key parameters to be 

well understood when it comes to the applications of HiTc superconductors. When studying 

these materials it is then important to know what constitutes the intrinsic microwave loss. 

Microwave losses of samples (mostly films) by different groups [26] [27] [28] show sample 

dependencies. Their magnitudes vary significantly from sample to sample and most show a 

monotonically decreasing loss below Tc , while in some there is a small plateau around 50 

to 60 K before the loss falls further with temperature. This looks very different from what 

is seen in pure crystals. From the earlier discussion on the peak seen in the conductivity, 

one is led to hypothesize that defects present in these samples (impurities, weakly coupled 

grain boundaries, or other structural defects) affect the broad peak in 0i (T) by limiting the 

rapid increase in the quasiparticle lifetime r below Tc . This would mean that the normal 

fluid density dominates the temperature dependence, and a monotonically decreasing loss 

should be seen. 

If the earlier conclusions were correct, then we expect with a hundredfold increase in 

the scattering rate below Tc in pure samples, that the conductivity should be sensitive 

to low levels of point defects. With mean free paths of a few thousand Angstroms for 

very high purity crystals it takes very small impurity concentrations of the order of tenths 

of a percent to substantially affect these mean free paths. Bonn et al. [29] have shown 

successfully that by doping samples with either zinc or nickel that the conductivity peak is 

reduced considerably, providing further support that the peak seen around 40K is due to a 

rapid increase of r below Tc . 

We have measured two crystals with 0.15% zinc substituted for Cu mainly in the C11O2 
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planes. The surface resistances shown in Fig.4.6 are for a pure sample (YLO) and the 

others for the two zinc doped crystals. Both of these doped samples showed a reduced Tc 

of 91.7K with a transition width less than 0.4K. The measurements were all done with Hrj 

perpendicular to the ab-plane. 

The derived conductivities are shown in Fig. 4.7. In order to derive these, we have 

assumed the same zero temperature value of 1300A as in the pure crystal, although the 

temperature dependence found for a 0.15% zinc doped crystal has been used. Because the 

impurity concentration is low we don't expect much variation in A(0), although the change 

would be towards a larger A(0), so we are overestimating oi& bit. The general shape of 

(Jiwould stay unaffected though. 

The derived conductivities of Fig. 4.7 show what has been reported by Bonne/ al. . 

The samples with 0.15% zinc have a reduced conductivity, about half that seen in the 

pure crystal. The position of the peak in the conductivity has also moved to a higher 

temperature. The lower <7iis a clear indication that the impurity scattering is limiting the 

rapid drop of the quasiparticle scattering rate, and that it saturates at a higher temperature, 

i.e., when the impurities dominate the scattering process. 

At low temperatures we observe a marked difference in the temperature dependence 

of (Tifor the pure crystal and the 0.15% zinc doped ones. The quadratic behavior seen 

for temperatures below 15K in the SZD sample is indicative of gapless behavior with a 

crossover around that temperature. The sample SZB shows a low temperature dependence 

in CTithat is closer to T than T2 at temperatures below 5K and then shows a slight curva

ture. The deviation seen in the low temperature behavior of the SZB sample below about 

30K is consistent with a sample of lower doping perhaps indicating that within the first 

1500A the zinc concentration is less than 0.15% and we are not in the gapless regime, where 

a T2 dependence is expected away from T = 0. The low temperature behavior of SZB is 
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Figure 4.6: The surface resistance of pure and zinc doped (0.15%) crystals. The Tc's of 
both doped samples were 91.7K and that of the pure sample, 93.2K. 
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Figure 4.7: The conductivities of pure and 0.15% zinc doped crystals 
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characteristic of earlier measurements by K. Zhang [17] on 0.15% zinc doped samples. 

By noting that the loss in both 0.15% samples has been reduced by about a factor of 

two and assuming all the additional scattering is predominantly resonant, then an estimate 

of the crossover temperature in the unitary limit is ( T i m p ~ 0.2TC at 0.15% zinc doping ) 

about 0.2TC or 20K. This is consistent with the temperature range below which we observe 

gapless behavior in SZD. 

The residual conductivity of the sample SZD is found to be about 0.8 ±0 .2 x 10 6f2 - 1m - 1 

and that for the second doped sample SZB to be about twice that. SZD also shows a slight 

upturn below about 3K in the conductivity, being consistent with earlier observations by 

Bonnei al. [30] of an upturn in the microwave loss of zinc doped samples at 3.8 GHz. At 

the lower frequency however, this effect is quite drastic, and the loss is seen to increase by 

a factor of about 3 from 4K down to 1.2K. 
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4.4 Anisotropies in the ab Plane 

The presence of CuO chains in the structure of YBCO inevitably leads to anisotropic 

transport properties in the ab planes. Normal state transport in the chains (b- direction) 

has been found to be quite different from the a- direction [32]. Zhang et al. [33] have 

seen the manifestation of this in the electrodynamics below Tc by measuring the surface 

resistance in a high purity crystal in the a and b directions. 

In Fig. 4.8 we show a similar measurement on a 0.15% zinc doped sample (SZD) at 

22.7GHz. The first observation that looks very different from earlier anisotropy data of 

Zhang et al. [33] is that Rsa at T = 1.2K is considerably higher in value than Rsb, by a 

factor of 4 to 5 times. Both curves then move away from their lowest temperature values 

with a dependence that is not quite T 2 . The loss in the a-direction however rises with 

a steeper slope and at about 20K the loss is about twice as large in the a direction. At 

higher temperatures Rsa shows a plateau around 50K which is a remnant of the much more 

prominent peak seen in the a-direction loss of a pure crystal. The loss in the b-direction 

shows no such plateau, consistent with observation of a much smaller peak in Rsb in pure 

crystals [33]. The loss in the normal state is also seen to show a considerable anisotropy 

with Ra about 1.3-1.4 times larger than Rb at 100K, corresponding to a-b resistivity ratios 

of about 1.8. 

The real part of the conductivity has been derived and plotted in Fig. 4.9. Again we 

have used penetration depth values as for a pure sample, i.e Aa = 1600A and Xb = 1030A. 

It is interesting to see that this large anisotropy in X(T) has caused Rsa > Rsb despite 

the fact that aia(T) < oib(T). At temperatures just below Tc , <T16 is about 1.6 times 

larger than o~lQ, more or less consistent with normal state conductivities found from the 

surface resistance. Below 80K and all the way down to the peaks in the conductivities and 
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even lower to 30K, o~ib(T) is about a factor of 2 larger than crla(T) before they begin to 

converge. In this region both curves decrease approximately linearly with different slopes, 

before curving in below about 5K to residual values of about 2.8 x 106 and 2.5 x 1 0 6 £ } - 1 m - 1 

for the a and b direction residual conductivities respectively. These values are very close 

and an uncertainty of about 1 0 0 A in A(0), which is not unreasonable, is sufficient to render 

these conductivities equal within the errors of the analysis. This observation might suggest 

a close to zero chain conductivity at low temperatures, supporting similar observations in 

the thermal conductivity [34]. 

Before we move on to discussing the new crystal runs, we need to address the clear 

discrepancy that is seen in the loss of sample SZD (Fig.4.10) that was measured in the two 

geometries where the field is perpendicular to the ab plane or parallel to it. The averaged 

loss observed in the geometry where Hrf was put perpendicular to the ac face and be face 

of the crystal in successive runs, was found to be higher by a factor of 1.4 than the loss 

observed in the other geometry(Hrf //c). Some of this could be attributed to the c-axis 

contribution where according to data by Mao et al. [35], they find Rc values that are thirty 

to fourty times higher than what is seen in the other directions. With the area of our SZD 

sample being about .75mm2 and a thickness about 20 microns, we get a ratio of about 

40 to 1 for the width to thickness of the crystal measured. With such high values for Rsc 

the discrepancy could be partly explained. We must emphasize here that the way Mao 

et al. have obtained their values for Rsc has been by noticing this precise discrepancy in 

the two geometries and doing a subtraction . This procedure is not well founded since the 

current distribution in the geometry where demagnetizing factors are large ( Hrf//c) is 

something that is not well understood and is not necessarily going to give similar results. 

Comparing the residual losses, we see that the losses in the ac direction (after subtractions) 

are about 180/if2, and the be direction about 40/xfi, slightly more than that measured in 
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geometries . Also seen in the inset is their normal state values. 
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the other geometry where a residual loss of 27/iQ was obtained. This residual loss was 

obtained from a non subtracted value of 67/ifi. It is possible to do a subtraction from the 

data from each of the residual values Rsac and Rsbc and match the geometric mean with 

the unsubtracted value of Rsa(, in the second geometry but there will be no agreement at 

higher temperatures. We are left to reanalyze our position on measurements done in the 

geometry where the field is perpendicular to the ab plane and demagnetizing factors large. 

Certainly further experiments are needed to answer these questions. 

4.5 Barium Zirconate Grown Crystals 

In this section we will briefly show data on two other crystals that were measured. Both 

crystals were about 30 microns in thickness and had similar ab plane areas. The difference 

between them was in their preparation, one being from earlier YSZ crucibles and the other 

a recently grown BZO crucible crystal. They were both annealed in flowing oxygen for 

about 10 days to set the oxygen to 6.95 and subsequently quenched to room temperature. 

Fig. 4.11 shows the measured surface resistance versus temperature for both these crys

tals. The data looks very much like that of a typically pure crystal. There are however a 

few observable differences in the two. The most notable difference has been in the transi

tion width of the two samples. The barium zirconate crystal showed a transition width of 

about 2K in the surface resistance and subsequent measurements in the penetration depth 

revealed a double transition starting at about 91.5K, followed by one at 90.5K. This has not 

been seen in any crystals grown of late in YSZ crucibles. A look at the surface resistance 

below T c shows the typical peak, however it is a couple of degrees lower in temperature 

than seen at 22.7GHz for the YSZ grown pure crystals. This indicates that the BZO crys

tal is of higher purity, since the increase in quasiparticle lifetime dominates the drop of 

the normal fluid density down to a lower temperature. We should also note that at this 
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frequency where LOT ~ 1 at about 40K, even a small decrease of a couple of degrees in 

the temperature where Rs peaks would be consistent with a much improved sample purity. 

The depth of the minimum at 70K is also seen to be lower in the new crystal, though we 

must add that this feature varies even among crystals grown using YSZ crucibles. 

Both crystals show linear temperature dependence at low temperatures with the YSZ 

crystal flattening out over the last 5K down to 1.2K. The BZO crystal on the other hand 

is very linear down to 1.2K. Similar behavior was seen in A(T) by S. Kamal [36] for this 

particular sample. 

Returning to the width of the transition, the higher purity of the BZO crystal that is 

hinted at by the surface resistance measurement could be the cause of the apparent width. 

If the crystals are in fact purer, then it is argued [37] that the oxygen mobility in these 

samples is greater and the simple procedure of quenching the crystals in air after annealing 

is insufficient to ensure a random distribution of oxygens at the optimum doping that was 

intended. This would mean that in the period when the sample is being quenched to room 

temperature the mobile oxygens would tend to cluster leaving regions that are both under 

and overdoped with a Tc that is lower than the expected optimal doping value. Evidence 

of this non randomness has come when a measurement on the same crystal after another 

anneal showed a narrower double transition. It is clear that there remains much work to 

be done on optimizing the growth conditions, and the annealing procedures might have to 

be tailored for these higher purity samples. 
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Figure 4.11: Surface resistance of pure crystals grown in barium zirconate and yttria sta
bilized zirconia crucibles. 
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Conclusions 

Over the last 18 months we have developed and used a resonator at 22.7 GHz to study the 

surface resistance of YBCO superconductors. The resonator was built with a resonance 

frequency in mind that would enable us to use coaxial coupling lines, as this would greatly 

simplify the design and make it user friendly. The resonator as it stands is capable of 

measuring the surface resistance from 1.2K to 120K, and is capable of resolving losses to 

better than 7//0 when operating with an unloaded Q of about 40 million. This is about a 

quarter of the expected residual loss of a sample whose residual loss corresponds with that 

of the Lee limit, making it among the best resonators used so far to study these materials 

at these frequencies. 

Since the period where we have been able to put all the electronics together, a period 

of about six months at the time of writing, numerous measurements have been taken. The 

samples studied have been twinned pure crystals and a pair of .15% untwinned zinc doped 

crystals. We will summarize the basic results here and discuss other measurements that 

are planned and improvements to the resonator itself. 

1) The Pure Samples 

The pure samples were all twinned crystals, two from the YSZ crucibles and one that was 

prepared in a barium zirconate crucible. All three samples at 22.7GHz showed a minimum 

about 70K and a broad peak at lower temperatures. The broad peak for the YSZ crystals 

were at about 42K and that for the BZO crystal at about 39K. These peaks are indicative of 

64 
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a rapid drop in the quasiparticle scattering rate and a slowly falling number of quasiparticle 

excitations with decreasing temperature. This slow drop hints at the presence of nodes in 

the gap function. The temperature dependence of all these samples show a stongly linear 

behavior at temperatures below 30K, with one of the YSZ crystals showing some curvature 

below 5K. There are currently no satisfactory explanations of the linear behavior in the 

pure regime of temperatures. The high residual losses seen in these sample, between 3 to 4 

times the universal limit predicted by Lee [7] indicates that we are probably not probing low 

enough in temperature. From the data of Taillefer [25] the crossover temperature is expected 

not to be unobservably small but is probably accessible at dilution refregirator temperatures 

of hundreds of mK. From the experimental side, getting that low in temperature requires 

great effort and modifications to the setup of the present experiments. There are plans for 

such an endeavor, but for now we have chosen to study the physics of the gapless regime 

by moving up its crossover temperature by adding dilute but strong scatterers such as zinc 

to the system. 

2)Zinc Doped Crystals. 

The experiments on two 0.15% zinc doped crystals both showed that the dopants sup

pressed Tc by about 1.5K, and that the losses in these samples were reduced by about a 

factor of 2 in the superconducting state from those of pure YBCO. The peak seen in the 

Rs of pure YBCO has been reduced to a plateau, and the size of the conductivity peak 

also reduced. The low temperature conductivity of the SZD sample showed a quadratic 

increase from a residual value of 0 .8±0.2 x 1 0 6 n - 1 m _ 1 while the other had twice this resid

ual conductivity with a more slowly increasing temperature dependence. The sample with 

the lower residual conductivity, has its om value agree to within experimental uncertainties 

with that, that is derived from the thermal conductivity data of Taillefer et al. [25], but 

we note that there are concerns about the Hrj//c geometry used. 



Chapter 5. Conclusions 66 

A large anisotropy in the surface resistance within the ab plane of the zinc doped crystal, 

SZD, was shown to exist, an extension of the earlier data of Zhang et al. [33]. The surface 

resistance in the a direction was found to be larger than in the b direction, with the greatest 

difference at low temperatures close to 1.2K, where Rsa was about 4.5 times larger than 

Rsb. Using zero temperature penetration depth data for a pure crystal, we extracted <7i for 

both directions to find that at 1.2K these conductivities are remarkably close, though a few 

times (Too and not quite showing a T 2 dependence that is expected in the gapless regime. 

The close residual conductivities suggests that the chain conductivity is approacing zero 

with temperature. This observation is consistent with thermal conductivity measurements, 

where recent data show no apparent residual ab anisotropy in the thermal conductivity 

[34]. Derived residual thermal conductivities from this data would however be 4 times that 

seen by Taillefer et al. In the normal state surface resistance, we see that Rsa is larger than 

Rsb by a factor of 1.3-1.4 at 100K. This corresponds to a ratio of 1.8 for the resistivities in 

the a and b directions. 

3)BZO Grown Crystal Studies. 

A single crystal of YBa2Cu30e,g5 that was grown out in a barium zirconate crucible was 

shown to have no qualitative differences from crystals grown in YSZ crucibles in contrast 

to work by Srikanth et al. [38] on supposedly similar BZO grown crystals. The surface 

resistance was seen to peak at about 3 degrees lower in temperature in contrast to the two 

YSZ grown crystals that showed peaks about 42K. This is indicative of a crystal that is 

substantially purer. We believe that our crystals are showing the true intrinsic behavior 

of these materials, and believe the work of Srikanth et al. shows extrinsic effects from a 

contaminated surface. 



Chapter 5. Conclusions 67 

5.1 Further Studies 

As already noted in the discussions, there is a small yet significant disagreement between 

measurements obtained in the two geometries discussed. We should note that this is not a 

problem of the resonator, but most likely an effect due to very different current distributions 

in the two geometries. Furthermore if there are inhomogeneities of Rs on the ab faces then 

this could well result in different measured losses in the two geometries. In order to separate 

out the contributions, and get a feel for their magnitudes however, we need to know what 

sort of magnitude Rsc takes relative to those found routinely for Rsab- Although there is 

data in the literature, we feel that mixing the two geometries to extract Rsc is not well 

founded as seen with drastic results in the c-axis penetration depth of Mao et al. that is 

contradictory to results of Kamal et al. [31]. 

With the improved sensitivity of this resonator, one can in principle measure Rsc as was 

done for the penetration depth. This involves measurements where the ab plane is parallel 

to Hrf before and after cleaving the crystal into needles. Other planned measurements are 

the ab-anisotropy in crystals with oxygen contents that substantially reduce Tc in order 

to further understand the role of oxygen vacancies on the chains. 

Naturally there remains measurements to be done on crystals upon availability, with zinc 

contents that vary the scattering rate considerably. Observation of a more or less constant 

residual loss in samples with such different impurity scattering rates would provide very 

strong support for the theory of quasiparticle transport in 2D for a superconductor with a 

d-wave gap. 

Finally, we are in the process of designing a new probe that will enable us to exchange 

samples while the resonator is kept cool. This in principle would remove uncertainties 

in measurements where there might be a non constant correction that results from the 
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resonator Q varying from run to run. This was noted when studying the anisotropy of 

sample SZD where a Q drop by 50% resulted in the loss seen in the a-direction to be 10% 

higher at low temperatures. We are also planning new thermometry for the sample probe so 

that temperature regulation would be more efficient and we could reach temperatures in the 

range 1.2- 250K in order to to study the low temperatures without the need for exchange 

gas to be present and to study the normal state properties at microwave frequencies. 
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