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Abstract 

This thesis studies four important problems faced in the theory of inventory control. 

The first chapter addresses the issue of calculating optimal inventory policies in 

stochastic inventory problems, when unknown demand parameters are estimated from 

a sample of demand observations. A general framework for combining estimation and 

optimization problems is developed for a class of inventory problems when the demand 

distribution belongs to the scale-location family. The results show that biasing the scale 

parameter estimates gives better inventory policies for both cost minimization and service 

achievement objectives. 

The second chapter studies a periodic review, single-product, single facility inventory 

problem with multiple customer classes, each requiring a different service level. Customer 

demands are random and independent with a stationary probability distribution. The 

objective is to find a stock allocation policy among the customers and an inventory re

plenishment policy so as to achieve target customer service levels with minimum possible 

inventory holding cost. An easy-to-calculate myopic heuristic allocation-order policy is 

developed and its performance is tested through simulation. 

The third chapter finds an optimal inventory policy for a classical single-stage, single-

product, unit demand, continuous review inventory problem where the interdemand times 

are independent identically distributed random variables with increasing failure rate. 

Unmet demand is fully backlogged and orders arrive after a lead time. The costs of 

backlogging and inventory carrying are linear. The objective is to minimize the long run 

average cost. If there is no fixed cost for placing an order, it is proven that a Delay ed-

(s-l,s) policy is optimal. In case of a fixed order cost, a Delayed-(s,S) policy is proven to 
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be optimal. 

In chapter four, the same problem as in chapter three is studied for a Poisson demand 

in the case of lost sales. No fixed cost for placing an order is assumed. For this problem, an 

optimal policy is unknown and it is commonly believed that an (s-l,s) policy is sufficiently 

good. A new heuristic policy is suggested as an alternative, which uses more information, 

but is myopic in nature and its performance is compared with that of (s-l,s). 
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Introduction 

Mathematical intractability in attempting to solve many practical inventory problems 

has been a serious barrier for advancement in inventory control. This difficulty has left 

many important problems still unsolved today. This thesis studies and attempts to bring 

solutions for the following four important issues faced in the the theory of stochastic 

inventory models, which are not addressed in the literature satisfactorily, mainly because 

of their mathematical complexity: 

• Optimization of stochastic inventory models by taking estimation errors into ac

count when demand parameters are estimated. 

• Development of inventory policies when the objective is to deliver different service 

levels to different class of customers with minimum possible cost. 

• Calculation of optimal policies for low demand inventory problems with backlog-

ging. 

• Alternative policies for a Poisson-demand inventory problem with lost sales. 

These topics are studied for some specific inventory models in four chapters. 

Chapter 1 addresses the combined estimation and optimization problem. In stochas

tic inventory problems, when the form of the demand distribution is known, a common 

traditional approach in practice has been to estimate the unknown parameters of demand 

first, and then by using these estimates to carry out an optimization separately in order 

to determine an optimal inventory policy. This practical method treats the estimation 

and optimization problems separately. The problem with this method is that a purely 
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statistical criterion used to do the estimation (such as unbiasedness of the estimates) may 

not give good policies when fed into the optimization. Here, the key issue is how the cost 

function behaves with respect to the errors in estimation. Typically, since shortage costs 

are much higher than holding inventory, underestimation of demand results in a much 

higher penalty cost than overestimation. Because of this, the cost function is not sym

metric with respect to the errors in estimation. This property puts the performance of 

unbiased estimators in question. This chapter attempts to develop a general framework 

for the use of unbiased estimators. First, three inventory models (a newsboy problem, 

a base-stock model and a (Q,r) model with fixed Q) are presented and it is shown that 

they have similar forms. Then, a general theory of introducing a bias to the commonly 

used estimators is developed in order to take estimation errors into account during opti

mization in these models. To be implementable, a biasing factor needs to be independent 

of any unknown parameters. This is proven to be true for the optimal bias when the 

demand is in the scale-location family, in both problems with cost minimization and 

service achievement objectives. While biasing can give lower costs in cost minimization 

problems, it is guaranteed to deliver service levels exactly at targets for service achieve

ment problems. The effects of biasing for different values of cost and demand parameters 

are examined for Normal and Gamma demands in detail. For the (Q,r) model which is 

studied at the end, it is shown through some numerical examples that biasing can give 

significant improvement in costs. 

Chapter 2 studies an inventory problem with multiple service level requirements. 

Introducing service constraints instead of. shortage costs in inventory models has been 

popular mainly because of their practical use and the difficulty involved in measuring 

shortage costs. However, exact analysis of inventory models with service constraints is 

much more difficult compared to those with no constraints. Thus, although there are 
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extensive studies in the literature with single service constraints, even for simple inven

tory problems it is hard to find any which addresses multiple-customer classes requiring 

different levels of service. In this chapter, a periodic review single-product, single facility 

inventory problem with multiple customer classes, each requiring a different service level 

is studied. The service is defined as the backorder rate and the objective is to find a combi

nation of an allocation policy (which will allocate available inventory on hand among the 

customer classes) and an order policy for inventory replenishment so as to achieve target 

customer service levels with minimum possible inventory costs. Demands from customer 

classes are assumed to be independent continuous random variables and replenishment 

orders arrive after a fixed lead time. A correspondence is observed between the cost min

imization objective with quadratic backlogging costs and service achievement objective 

with no backlogging costs, when a relaxation is introduced to both models. Then by 

using this correspondence, an easy-to-calculate myopic heuristic allocation-order policy 

is developed for both finite and infinite horizon cases. The performance of this heuristic 

is tested over a range of problem parameters with normally distributed demand, using 

simulation in the infinite horizon case. The results show that the service levels delivered 

by the heuristic are very close to the targets. It is also proven that the cost of this 

heuristic is a lower bound for any feasible' policy. 

In Chapter 3, a classical single-echelon, single-product problem is studied. Demands 

arrive in single units and times between successive demands (interdemand times) are 

assumed to be independent identically distributed random variables. The inventory is 

reviewed continuously and unfilled demand is fully backlogged. Orders placed arrive 

after some fixed lead time. The backlogging and inventory holding costs are linear in 

time. The objective is to find an optimal inventory policy so as to minimize the long run 

average cost. 
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For this problem, it is well known that an (s-l,s) policy (i.e. a "sell-one-buy-one" 

or a "one-for-one" policy) is optimal when demands are Poisson; or in other words, the 

interdemand times are exponential. However, there is no proof of its optimality for other 

demand processes. Since it is believed that (s-l,s) policies would have satisfactory perfor

mance in other cases, rather than seeking an optimal policy, almost all the research in the 

literature focused on studying various characteristics of these policies in problems with 

more general set of assumptions. In this chapter, an optimal policy is determined for this 

problem when the demand distribution has increasing failure rate. First, it is observed 

from the literature that an optimal inventory depletion policy will be a first-in-flrst-out 

type policy. This optimality property results in a one-to-one correspondence between 

demands and units ordered, which makes it possible to find an optimal replenishment 

policy. A Delayed-(s-l,s) is proven to be optimal under the assumption that the interde

mand times have any general distribution with increasing failure rate. This policy is an 

(s-l,s) policy in which when a demand arrives, an order is not placed immediately but 

delayed for some time. A numerical study is presented for normally distributed interde

mand times, which shows that an (s-l,s) policy may have significantly poor performance 

compared to the optimal policy. Finally, the results are extended to a case in which 

there is a fixed order cost and it is proven that a Delayed-(s,S) policy is optimal under 

the increasing failure rate assumption. An algorithm to calculate optimal values for the 

reorder point s, the lot size Q = S — s and the delay is provided. 

In chapter 4 , a similar unit-demand problem as in Chapter 3 is addressed with the 

assumptions that the demand is Poisson and unfilled demand is completely lost. There 

is no cost for ordering and the objective is to minimize long run average holding and lost 

sales costs. For Poisson demand, although the optimality of one-for-one policies is known 

when unmet demand is fully backlogged, in case of lost sales, an optimal inventory policy 

is unknown and believed to be complicated. Therefore, one-for-one policies have been the 
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main focus of research for lost sales just as for backlogging, because of their simplicity 

and the their optimality for the latter case. 

Although simplicity of policies may still be an appealing factor, the application of 

more sophisticated policies is feasible and easier with today's computer technology. For 

this particular problem, it is possible to use more information than a simple one-for-

one policy does in order to find a policy which can give lower costs, but with more 

computational work. 

The difficulty with the lost sales case is due to the fact that the state space has 

to include inventory both on hand and in the pipeline. For continuous review models, 

the problem becomes even more difficult as the state is a vector of continuous variables 

and has to include the remaining lead times. An (s-l,s) policy does not make use of 

this information. In this chapter, the effect of the arrival schedule of the orders in the 

pipeline is explained by an example. Then, a myopic heuristic which takes the vector 

of remaining lead times as a state variable and utilizes all the information is developed. 

Finally, a test set of problems is generated and a simulation study is conducted in order 

to examine the performance of the heuristic as compared to an (s-l,s) policy. The results 

show that the heuristic can give up-to 15% cost reduction over an optimal one-for-one 

policy for long lead times and low lost sale costs although the one-for-one policy performs 

better in problems with short lead times and higher lost sale costs. 
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Chapter 1 

Improving Traditional Inventory Policies Through Biased Estimation 

Abstract 

When implementing optimal policies for stochastic inventory problems with unknown 

demand parameters, the traditional method is to replace the unknown parameters with 

their estimates and then carry out optimization. It is hoped that the policy determined 

this way is satisfactory. This work presents some analytical results which take account 

of estimation errors, and can be used to improve this procedure. The method is devel

oped generally for a class of inventory problems with and without service constraints, 

which have a random demand whose probability distribution belongs to the scale-location 

family. Applications to Normal and Gamma demand cases are presented. 
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Chapter 1. Improving Traditional Inventory Policies Through Biased Estimation 7 

1.1 Introduction 

Statistical estimation of unknown problem parameters in inventory control models has 

been studied since early times in the literature. Some of the early work includes [3, 12, 

25, 47, 48, 84, 113]. 

Although the estimation of cost parameters has received some interest (see [19, 24, 

64]), the major focus has been on demand forecast. For sporadic demand, an exten

sive study was conducted at Yale University during 1970's by a number of researchers. 

MacCormick [65] investigated the behavior of multi-item inventory systems with highly 

variable demand whose distribution is estimated from a sample of limited size. He had 

substantial computations to examine the performance of simple replenishment policies 

in practical use. Later, Estey and Kaufman [30], Kaufman and Klincewicz [55], and 

Klincewicz [57] carried on this research for different problems. 

Updating the demand distribution using Bayesian theory is one of the popular meth

ods used [5, 6, 17, 25, 51, 54, 84, 114]. However, exact solutions are difficult to calculate 

in Bayesian approach especially for problems which have fixed order costs (see [51, 52]). 

The lead time demand is an important variable of interest in most inventory problems. 

Hence, some reaserchers studied techniques to estimate the lead time demand [8, 11, 29, 

58, 59, 61, 63, 72, 73, 108, 109]. Eppen and Martin [29] developed a procedure using 

exponential smoothing in order to estimate the reorder point of a (Q,r) model when both 

demand and lead time are random and their distributions are unknown. Bookbinder 

and Lordahl [11] note that the reorder levels are generally sensitive to the upper tail of 

underlying lead time demand distribution. They present a distribution free bootstrapping 

technique for fractile estimation, in order to identify re-order levels. They, then, compare 

bootstraping approach to the use of normal distribution. Their numerical tests show 

that their approach is less sensitive to the shape of the lead time demand distribution 
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than the normal approach. Lordahl and Bookbinder [63] also study order-statistics as a 

means of estimating fractiles with a similar objective. Their numerical results indicate 

that for symmetric and positively skewed distributions, using order-statistics gives more 

robust estimates of fractiles than assuming normal distribution. 

In cases where the form of the demand distribution is known, a more practical ap

proach is to estimate the unknown demand parameters first, and then determine the 

optimal policy by using the estimates of those unknown parameters. This approach 

splits the problem into two parts; finding the best estimators (in statistical sense) and 

then determining the optimal policy under the assumption that these estimators are very 

close to the true values of the parameters. The concern about such an approach has been 

that a statistically good job of estimation does not necessarily result in a good optimal 

policy so as to deliver minimum expected cost. 

There have been some results in the literature which show that using biased estimators 

may lead to a smaller expected cost. The key issue is how the objective function would 

behave with respect to the errors in estimation or in the assumptions about the demand 

distribution. There has been little work that addresses and clarifies this matter. The most 

relevant papers in the literature are Hayes [47], Weerahandi [115], Silver and Rahmana 

[101, 102], and Ritchken and Sankar [80]. 

Hayes [47] essentially studies a newsboy problem. He derives the expected total op

erating cost (ETOC) for exponential demand and then calculates an optimal bias (a 

multiplier) for the sample mean of demand observations and uses this as a biased esti

mator for the mean demand so as to minimize the E T O C . He also works with Normal 

demand with unknown mean, known variance and, both unknown mean and variance. In 

both cases, he approximates the E T O C by Taylor's expansion. Then, using this approx

imate cost, he calculates an optimal bias. Unlike the traditional method, this approach 

combines both estimation and optimization. He explores the impact of a non-stationary 
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demand distribution, and calculates the optimal bias when the mean demand is esti

mated by using a moving average technique. He finally notes that although his approach 

seems not to assume any prior distribution for the unknown parameters, an implicit as

sumption for a prior is unavoidably made [47]. This paper is particularly thorough, but 

unhappily seems to have been ignored or overlooked by the papers that followed, which 

studied many of the same topics but added little. His thesis has applications to other 

distributions and more details [48]. 

Weerahandi [115] also considers the newsboy problem. He, too (but without any 

approximation), determines an optimal biasing factor for the standard deviation of de

mand, when demand is normally distributed. Although Hayes uses an approximate cost, 

his bias is the same. Weerahandi also provides an optimal bias for the sample mean if 

demand is gamma. 

Silver and Rahmana [101] examined the cost penalties caused by estimating the de

mand distribution parameters in the case of a normal distribution. They use a variant 

of a (Q,r) model with Q being a predetermined constant. Later, they presented a nu

merical algorithm to calculate the optimal bias that should be used to overestimate the 

reorder point so as to minimize the cost penalty. Since the cost function is nonsymmetric, 

underestimating the reorder point r has a higher cost penalty than its overestimation. 

Thus, the optimal bias turns out to be positive [102]. 

Ritchken and Sankar [80] consider a newsboy problem with two types of constraints. 

In case of a probability of stock-out constraint, they give a correction factor for the 

sample standard deviation to achieve the targeted service level for a normally distributed 

demand. They develop a regression approach for the second type of constraint which 

ensures that a desired percentage of demand (fill rate) is satisfied with a certain level of 

significance. 

There are other papers somewhat relevant to the context of this work. Among those 
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are [28, 52, 53, 10]. In order to handle uncertainties in the demand distribution, Ehrhardt 

[28] suggested a power approximation to forecast the demand in the (S,s) model. The 

approximation yields near optimal policies for a variety of demand distributions and a 

wide range of demand and cost parameter values. 

When using time series estimation methods, Jacobs and Wagner [52] showed that 

using exponentionally smoothed estimators of the mean and variance gives a smaller 

total system cost for the (S,s) model as compared to using classical unbiased estimators, 

sample mean and variance, when the demand variability is large. In another paper 

[53], they presented some simulation results which show that if there is a significant 

functional relationship between the mean and variance of the demand, a regression-based 

estimator of the variance may perform even better than the sample variance in the power 

approximation suggested by Ehrhardt. 

Biggs and Campion [10] showed by simulating an MRP-based production system with 

capacity constraints that utilizing a biased (a positive forecast error) demand forecast 

yields better performance measures (these are the quantities that constitute the system 

cost) than using an unbiased forecast.. 

In this work, we attempt to place all of the work in as general a framework as possible, 

where necessary reproving existing results and then generalizing and extending them. We 

consider both the constrained and unconstrained cases with a demand that has a scale-

location family type of distribution. By constrained, we mean a service level constraint 

such as the probability of a stockout during the lead time being less than a certain critical 

level. 

First, a summary of three inventory problems is presented and it is shown that these 

three problems have similar forms for our purpose. Then, Hayes' alternative approach to 

the traditional method of determining the optimal policy is developed in a more general 

context. Finally, the general theory is applied to a demand whose distribution is in the 
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scale-location family and some analytical results are derived for Normal and Gamma 

demand. 

For the unconstrained case, the optimal bias given by Hayes and Weerahandi is appli

cable. In addition, we give an expression for the percent cost improvement due to using 

the optimal bias and explain some properties of it. To be useful, a biasing factor needs 

to be independent of any unknown parameters. We prove this to be true for the optimal 

bias when using the scale-location family. This independence had already been obtained 

for the Normal and Gamma cases. 

When we consider the objective of minimizing the cost subject to a probability of 

stockout constraint, we add to the results of Ritchken and Sankar, by showing that for 

a demand in the scale-location family one can calculate a biased estimate with which a 

targeted service level can be achieved without having to know the true demand param

eters. We, then, examine the effect of biasing for different values of cost and demand 

parameters for a Normal and Gamma demand. 

Finally, in section 1.5, we give exact expressions for the optimal bias and cost in 

a (Q,r) model with normal demand eliminating the need for Silver and Rahmana's 

numerical algorithm. 

1.2 Inventory Models 

We now provide a framework for investigating the effect of biasing in estimation. We 

describe three inventory models below and show that they are equivalent in terms of our 

biasing approach we develop later in Section 1.3. 
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1.2.1 Newsboy Problem 

In this well known single-period inventory problem, one has to decide how much initial 

inventory, y, to have so as to maximize the expected profit. The demand, X, during the 

period is random with a known distribution function with mean fi. An item is purchased 

at a price c, and sold at a price p. Unsold units are salvaged at a value s per unit 

(p > c > s). The expected profit at the end of the period is given by 

P{y) = VEX[X - (X - y)+] - cy + sEx[y - X]+ 

where Ex[-] denotes the expectation with respect to X, and [y — X]+ = max{0, y — X}. 

The objective is to maximize P(y) over y, which is equivalent to minimizing 

F(y) = (p- s)Ex[y - X}+ + (c - p)y. 

1.2.2 A Base-Stock Mode l 

Consider a continuous review inventory model in which demands arrive in a continuous 

stream and unmet demands are fully backlogged. The replenishment orders are placed 

continuously to bring the inventory position (stock on hand + on order - backorders) up-to 

a critical level (base-stock). Note that this policy always maintains the inventory position 

at this base-stock level. There is a positive replenishment lead time. Inventory holding 

and backlogging costs are linear and no cost is incurred for ordering. The objective is 

to determine an optimal base-stock level so as to minimize the long run average holding 

and backlogging costs. 

Let us denote the critical base-stock level by y and let X be a continuous ran

dom demand during the lead time, with mean fi. Let the inventory holding cost be 
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h ($/unit/time), and the backlogging cost be p ($/unit/time). Note that at any ran

dom point in time, all outstanding orders a lead time ago will have arrived. There

fore, the inventory on hand at a random point in time will have the same distribu

tion as (y — X)+, and the backorders will have the same distribution as (X — y)+. 

Then, the long run average cost per time for a base-stock level of y can be written as 

F(y) = hEx[y ~ X}+ + pEx[X - y} + . Equivalent^, 

F(y) = (h+ p)Ex[y - X]+ + p(u - y). 

1.2.3 (Q,r) Mode l W i t h Fixed Q 

We consider a two critical number, (Q, r), policy in a continuous review inventory prob

lem. When the inventory position is at or below r (reorder level) we make an order of 

size Q which is a fixed quantity. The demand during lead time is random with mean u-. 

However, the annual demand A is assumed to be fixed and known. Each order costs K 

dollars. Unfilled demand is backlogged and each unit backordered costs TT ($/unit). The 

annual inventory holding cost is h ($/unit). 

We use Hadley and Whitin's [45] approximation (which is also used by Silver and 

Rahmana [101, 102]) for the average cost function. 

F(y) = I-^ + h(® + y-») + 7 ^ E x i x - y } + 

7rA „ r .7rA , . , . A'A hQ 

where the reorder level is denoted by y. 

Note that the cost functions in all three models are of the form 

F(y; 6) = AEx[y - X]+ + B(u - y) + Cy + D . (1.1) 

Although discrete demand distributions can also be handled in a similar way, we assume 

continuous demand distributions throughout this work as presentation becomes easier. 
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Thus, we have 

F{y-0) = A ( V $ ( X | 0 ) dx + B{u - y) + Cy + D 
Jo 

where <f>{.) and $(.) are pdf and cdf of X, and constants A , B, C, D satisfy A > B — C > 0. 

1.3 An Alternative to the Traditional Approach 

The objective for the control of inventory is to minimize the cost function F(y; 9), given 

the demand parameter 9. 

min F(y;9), (1.2) 

y 

The first and second derivatives of F(y; 0) are 

dF(y;6) dy 
d 2 F ( y , e ) 

= A$(y\6) - B + C , (1.3) 

dy2 

As F(y; 9) is convex in y for all 6, letting M = (B — C)/A, the solution to (1.2) is 

y*(6) =$-\M\6). (1.5) 

1.3.1 Unconstrained Case 

If 6 is unknown, the standard practical approach is to replace 9 by an estimator 9. Let 

y*{6) solve (1.2) with 9 replaced by 9. Now, we want to know what the actual cost F(y; 9) 

would be at y = y*(9). Clearly, F(y\9) need not attain its minimum at y = y*(9), because 

y*(9) can be different from y*(6) at which it is minimized. 

The question is whether it is possible to improve this solution by trying different 

estimators for 0. Since F(y*(0); 9) is a random variable, the expected value of F(y*(9); 9) 

can be taken as a good measure of performance for y*{9). The closer to F(y*(9); 9), the 
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better. Namely, we want to solve 

m i n { ^ F{y*{9)-0) - F(y*(9);9)} , 
$e@ L J 

where 0 is a class of estimators in which we are interested. Since F(y*(9); 9) is a constant 

with respect to the above problem reduces to 

mm Eg F{y*{9)-9) 

Note here that using y*(.) in F(.) imposes a restriction which was not necessary. A more 

general problem would be to solve 

min Eg F(y(9);9) 

where y is some class of functions Since we do not want 0 and y to be too general 

to work with, we restrict them as follows 

0 = {0 : 9 = u§,u 6 R] , 

y = {y*(-)}, 

where 9 is a given estimator of 9 and y*(.) is of the form given by (1.5). The reason 

for our choice of these particular sets is that when we try to find the best value for u>, 

the mathematics is tractable. Moreover, for demand distributions in the scale-location 

family, we can prove that the optimal value of w is independent of the unknown demand 

parameter 9, and thus becomes implementable. Therefore, we choose to focus on the 

following problem. 

min £ 2 (1.6) [F(y*(u9);9)\. 

Problem 1.6 can be interpreted as follows: Find the optimal biasing factor for 9 (that 

is u) so as to obtain a better solution y*(uj9) at which the expectation of F(y*(iu9); 9) is 

as close as possible to the unknown minimum F(y*(9); 9). 
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Let G(9) be the distribution function of 9. That is, G(9) gives the sampling distribu

tion of 9. Then, the expectation is 

F(y*(io9);9)\ = I F(y*(u9);9) dG{9). 
J Je 

L e m m a 1.1 Let y*(u9) be linear in ui. Then, if the expectation Eg F(y*(u>0)\Q) 

it is convex in ui for all 8. 

exists, 

Proof: Now, from (1.4), we know that F(y; 6) is convex in y for all 6. Since y*(u9) is 

linear in u>, F(y*(u>9); 9) is convex in u for all 9 as convexity of a function is preserved by 

a linear transformation of its argument. Then, the expectation over 9 is an integral which 

is just a weighted sum (or a linear combination) of convex functions, which is convex. • 

Using Lemma 1.1, the proposition we give below characterizes the optimal bias co*. 

Proposition 1.1 Let F(y;9) be given by (1.1) with A > B - C > 0, and let y*(u9) 

be linear in u. If Ez 

satisfies 

F(y*(u9);9) exists, then, the optimal solution to (1.6), say u*, 

j^{y*(u9)\9)9 dG{9) - M E^[8] = 0, 

where M = (B-C)/A. 

A A A 

Proof: Since y*(u9) is linear in UJ, let -^y*(uo9) = a9, where a is a real number. From 

Lemma 1.1, the optimal solution satisfies 

F(y*(u9);9)} = £ [F(y*(u9);9)dG(9) 
J Je 

= j (A$(y*(u9)\9)a9 + (C - B)a9) dG{9) 

= aA j(${y*{wb)\9)9 - M9}dG{9). 
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Since F(y*(u9); 9) exists and is differentiable for all co, interchanging the integral and the 

differentiation above is allowed. Setting it equal to zero, we have 

f §(y*{u9)\9)0dG{9) - M f 9dG(9) = 0. 
Je Je 

The second derivative of the expected cost is we have 

= / £ (A$(y'(u>0)\e)a0 + (C- B)a§) dG(9) 

= A fj)(y*(uj§)\0)a2e2dG(e) 
Je 

> 0 for all 9 and to. 

Thus, the solution is a minimum. • 

1.3.2 Constrained Case 

The constrained case refers to the situation where stockouts are controlled by a service 

level constraint rather than a stockout cost. There are a number of different service level 

definitions— here we use the probability that the demand is satisfied in a certain period 

of time (usually lead time) is at least a. We assume that the cdf of demand, 

is both continuous and strictly increasing in y. Then, the minimum inventory, y, that 

achieves a service level a will be unique and given by 

= a. 

The solution is y*(6) = ^~1(a\6). Now, if 8 is known, $(y*(6)\6) = a is the actual service 

level that would be realized when y*(9) is the inventory policy. However, if 9 is unknown, 

the traditional approach has been to replace 9 by 9 and use y*(9) = <&-1(a|(9). Thus, the 

actual but unknown service level in this case would be 

a 

a, 
:E, F(y*(u6);e) 
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which does not necessarily equal a. As before, we can modify this traditional method by 

introducing a bias UJ to 9 so as to achieve the targeted service level a. That is, 

E§[*(y:(u,e)\6)] = a, (1.7) 

Thus, denoting the solution of (1.7) by u>*, if it exists, using LO*9 instead of just 6 would 

result in a long run average service level of a, as required. 

1.4 Scale-Location Family 

Now, we make some assumptions for the demand distribution to get more specific results. 

Definition 1.1 Let $(x|/?,0) be the cdf of a random demand X with parameters ft and 

9. Then, we say that X belongs to the scale-location family with scale parameter 9 and 

location parameter ft if its cdf can be written as 

<D(x|/?,0) = <D(^ |O, l ) , (1.8) 

where <&(.|0,1) is called the standardized cdf, which does not depend on (8,9). 

It is easy to see from Definition 1.1 that. 

<f>(x\B,6) = ±<f>'z*\0,l). (1.9) 

The scale-location family includes the Normal, Gamma and Weibull with fixed shape 

parameters, Cauchy, Uniform, Logistic, Student's t and Laplace distributions. 

Now, Problem (1.2) becomes 

min F(y;ft,9). (1.10) 
y ' . . 

Noting in (1.8) that §(M\B,6) = $ ( ^ | 0 , 1 ) , the solution in (1.5) becomes y*(ft,9) = 

k9 + ft, where k = $ _ 1 ( M | 0 , 1 ) is a known constant. 
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If 9 and 0 are replaced by their estimates 9 and 0, then the solution will be 

y*(0,9) = k9 + 0. ( L U ) 

We restrict our class of estimators to 

0 = {(0,co9) :u> G R, 0,9 are given}, 

although other choices are possible. This choice satisfies the linearity assumption of y*(.) 

in u>. Therefore, Lemma 1.1 holds provided that the expectation given there exists. 

From Proposition 1.1, the optimality condition for u will be 

JJ§
§ (V^ + / ~ V 1) - M) dG§J(9,0) = 0, (1.12) 

where G§ p(9, 0) is the joint distribution function of 9 and j3, and thus implementable. 

The following proposition shows that the optimal bias is independent of 9 and 0. 

Proposition 1.2 Let the cdf of X, <&(x\0,9), belong to the scale-location family with 

location parameter 0 and scale parameter 9 > 0. Note that 

E(X) = a9 + 0, and Var(X) = b92, 

where a and b > 0 are constants. Suppose we estimate E(X) by the sample mean x and 

Var(X) by the sample variance s2 (if one of 9 and /3 is known, we estimate only E(X)). 

Then, ifu satisfies (1.12), it is independent of (9,0). 

Proof: We have 9 = s/y/b and 0 = x — a§. Let Z{ = (xi — 0)19 and z = ^ 2^"=i z%-

Note that both Zj and z are independent of (9,0). Now, 

Prob{^- < t} = Prob{^- (^-f^) ^ = Prob{z < t}. 
i=i ^ ' 
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8 1 
Prob{-<t} = Prob{-, 

8 9 

= Prob{, 

= Prob{ Y, & ~ ~zf ^ WK* ~ !)}• 

\ 1 = 1 

Thus, (a; — and 5/0 are independent of (0,8). The optimality condition in (1.12) is 

jj_9 ($((kco - a)9- + 0,1) - JUJ dG9^(8,$) = 0. 

Let u = 8/8, v = (x — 8)/9 and let HUiV(u,v) be the joint distribution of (u,v). Then, 

dividing both sides by 9, the optimality condition becomes 

i j u ($((ku> - a)u + v\0,1) - M) dHUiV(u, v) = 0 
J V J u 

which is independent of (9,8). • 

An important implication of Proposition 1.2 is stated in the following corollary. 

Corollary 1.1 Let S be the set of all possible values of (9,8) for which F(. ;9,8) is 

defined. Then, if to* satisfies (1.12), it solves 

Proof: From (1.11), £y*(u>9) = k9. Then, from Proposition 1.1, we have 

d_ r? 
3w 0,4 F(y*(8,u§); 8, 8)] = kA J p (<D(y*(/?, cod); 9, 8) - M) dG§J(9, $). 

Note that the integral is equivalent to the one in (1.12). Then, using the last equation 

in the proof of Proposition 1.2, we can write 

J L Tp F(y*(8,u9);9,8)\ = kA9 f f u ($((Jfew - a)u + u| 0,1) - M) dHUiV(u, v). 

J v J u 
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Let the term in brackets be g(uj). Proposition 1.2 implies that g(uj) is independent of 

(0,0). Let G(UJ) be such that dG(uo) = g(uj)duj. Then, we can write the expected cost as 

E U [F(y*(uO);0)] = kA0G(uj) + 1(0,0), 

where 1(0,0) is a function independent of UJ. Let (0* (UJ) , 0* (UJ)) maximize this expecta

tion. Substituting 0*(UJ) and 0*(UJ), and differentiating with respect to UJ, we have 

^ I M X ^ ^ M ) ; ^ ) ] = kAfj*(u)G(uj)-^kA0*(uj)g(uj) 

Now, if 0*(UJ) is an interior solution, then J^I(0*(UJ),0*(UJ)) = 0. If it is a boundary 

solution, this will imply -J^0*(UJ) = 0. In both cases, the last term vanishes in the 

equation. Similarly, if 0*(UJ) is an interior solution, then kAG(uo) + ^1(0*(UJ),Q*(UJ)) = 0. 

If it is a boundary solution, this implies -£0*(UJ) = 0. In both cases, the equation will be 

£m^sE§^[F(y*(0,uOy,O,0)] = kA0*(uj)g(uj). 

The second derivative is 

^ v ^ E ^ F i y ^ u e y ^ B ) ] = kA8*(uj)£g(uj) 

— kA0*(uj) I I uk(j)((ku - o)u + v\0, l)dHUiV(u,v). 
JV Ju 

Note that for UJ satisfying the first order condition, g(uj) = 0, the second derivative is 

positive. Hence the optimality occurs when g(uj) = 0, which is equivalent to (1.12). • 

Corollary 1.1 implies that UJ* is also a minimax policy among the policies of the form 

y*(0,uj0) = kuoO + 0. Thus, UJ* not only minimizes the average cost but also the worst 

possible average cost. This could be useful for problems with budget limitations. 

Turning now to the constrained ease, if we let I = $ - 1 ( O J | 0 , 1), UJ* will satisfy 

j ^*'™±JLzlL\ 0,1) dG^(0,0) = a, (1.13) 

It follows from the proof of Proposition 1.2 that UJ* is also independent of (0, 0). 
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1.4.1 Normal Demand Case 

Let (f>(.\p,cr) and be the pdf and cdf of the Normal distribution with mean fi 

and standard deviation <r. We denote their standard versions by <j>(.) and $(.). Suppose 

p and cr are unknown and we have a sample of demand observations for n periods. We 

use sample mean x and variance s2 to estimate fi and a2, respectively. Namely, 

i=i 

From (1.11), the inventory policy is 

y*(X,s) = ks + X. (1.14) 

Before we start applying the idea we state two lemmas which will be useful. 

L e m m a 1.2 (Grundy et al. [43]) Let Z have a standard Normal distribution. Then, for 

any real numbers a and b, 

Ez{^aZ + b)] = ^-=L=). 

V I + a2 

L e m m a 1.3 Let Y have a Chi square distribution with v degrees of freedom and m be 

a real number such that r = 2m + v > 0 is an integer. Then, for any real number b we 

have 
Ey Ym<S>(bVY)] = 2 m ^ ^ T r ( b ^ ) 

where TT is the cdf of Student's t distribution with r degrees of freedom. 

Proof: See Appendix A . l . • 

Now, we want to bias s by to and use uis as an estimator of cr, whereas x estimates 

p. From (1.12), the optimal ui satisfies 

j r^kus + x - ^ s ) = M j j d Q _ ^ a ) i ( L 1 5 ) 

Js Jx ® JS JX 
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where Gx,a(x, s) is the joint cdf of x and s. Make the following change of variables: 

{n-l)s2 

z 
ji 

We know that z has a standard Normal distribution and that u has a Chi square distri

bution with n — 1 degrees of freedom, and they are independent. Then, substituting z 

and u in (1.15), the optimality condition for to becomes 

/ / r^—-r$(4=+ Vu <t>{z) x(u) dz du = 
Ju Jz Vn-l V n V n - 1 

M °" y/u <j>{z) x(u) dz du 
Ju Jz Vn - I 

or equivalently 

y/ux{u)du = M / \ A * x ( ' u ) ^ u -
J u y/n ' y^n - 1 

where x(-)  1 S the pc?/ of Chi-square with n — 1 degrees of freedom. 

From Lemma 1.2 the expectation on the left is 

v / l+1/™ V ^ 2 - 1 

The integral on the right is simply the expectation of the square root of a Chi square 

random variable with ra — 1 degrees of freedom, which is 

V2T(n/2) 
r ( ( r a - l ) / 2 ) ' 

Then, the optimality condition is simplified to 

From Lemma 1.3 the integral on the left is 

' " 1 / 2 $ ( A / ^ T ^ 1 / 2 ) 
y nz — 1 

T(n/2) m j n 

r((ra-i)/2)r"(V̂ T ^ 
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where Tn(.) is the cdf of Student's t distribution with n degrees of freedom. Thus, the 

optimality condition reduces to 

UJ* = T ~ \ M ) ^ ^ . 
n { ' nk 

Note that replacing k by we can also write UJ* as 

, T-\M) I 1 
u = i ^ ( M ) V 1 " ^ ( 1 J 6 ) 

It is easy to see that as n becomes large, UJ* tends to 1, as one would expect. This 

expression was obtained by Weerahandi [115] for the newsboy problem and is identical 

to that found by Hayes [47], although there, an approximation to the expectation of 

F{y*{X,UJS); p,o~) was made with a Taylor's expansion about y*(u-,o~). It is also impor

tant to note that UJ* is independent of a and p and hence implementable as predicted in 

Theorem 1.2 above. The sensitivity of UJ* to values of M and n is shown in Table 1.1. 

Note that for small sample sizes, a significant amount of bias is required to minimize 

the expected costs especially when M is high. In all models we consider, high value of 

M corresponds to a high value of unit shortage cost compared to unit inventory holding 

cost (for instance, in the base-stock model, M = p/(p + h) is high when backlogging cost 

p is high). Therefore, when sample sizes are small and shortages cost significanly more 

than holding inventory, the amount of bias is high. For example, over 40% increase in 

the sample standard deviation is required for M = 0.99 when the sample size is 5. 

From (1.14), the optimal inventory policy adjusted for estimation errors is thus 

y*{X,uj*s)=X-rsT-1{M)^l-^2. 

Now, we state the following lemma for the expectation of the cost function. 

L e m m a 1.4 For any bias UJ, 

Ex<s[F(y*(X,ujs)-u-,o-)} = an{uj)Aa + Cu. + D, 
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Optimal Bias UJ* for Normal 
M n=5 n=10 n=15 n=20 

0.10 1.128 1.065 1.044 1.033 
0.30 1.045 1.027 1.019 1.015 
0.50 0.980 0.995 0.998 0.999 
0.90 1.128 1.065 1.044 1.033 
0.95 1.200 1.096 1.063 1.047 
0.99 1.417 1.182 1.116 1.085 

Table 1.1: The value of optimal bias for normal distribution. 

where 

n + 1 
1 + 

nk2uj2^ ~2 

+ «-iiW) 
^ . nkuj . 
T „ ( - = = ) - M 

v n — 1 2irn V n 2 — 1 

Proof: See Appendix A . l . • 

Note that an(uj) depends only on M and n and that the expectation of the cost 

function is linear in a and u. 

When UJ — UJ*, an(uj) reduces to 

a - ( u ; ) = V ^ r l 1 + — n — 
n-1 

2 \ - — 

The percent reduction in cost is given by 

[a n(l) - an(uj*)]Aa 
(100). 

a n ( l ) A a + C7/i + D 

Note that for the base-stock model, since C = D — 0, the percent reduction in the 

total cost is independent of ft and a. 

Since D is a constant, the percent reduction in the controllable portion of the cost 

(i.e. F(y;9) — D in (1.1)) can be calculated by letting D = 0, which depends only on 

the ratio cr/fi. That is 
an(l)- an(w*)\A6 

an(l)AS + C 
(100). 
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where 6 = a/p is the coefficient of variation. In the (Q,r) model we have C = 0. 

Thus, the percent reduction in the controllable cost does not depend on the unknown 

parameters. 

For the constrained case, the following lemma gives the optimal bias UJ*. 

L e m m a 1.5 If the demand is normally distributed with mean \i and variance a2, then 

Equation 1.13 is satisfied by 

c V n 

Proof: See Appendix A . l . • 

This is previously obtained by Ritchken and Sankar [80]. The expected cost of y*(u*s) 

can be calculated by using Lemma 1.4 with UJ = UJ*. 

As can be seen in the proof of Lemma 1.5, letting / = $ _ 1 ( a ) , the expected service 

level is 

EsAS(x,uJs)}=Tn-l(^), (1.17) 

which equals a for UJ = UJ*. The usefulness of Lemma 1.5 is that the bias UJ* can be 

applied without any knowledge of the parameters [i and <r, and the long run average 

service level is guaranteed to be a. 

1.4.2 G a m m a Demand Case 

Let <t>r{-\l) and $ r ( - | 7 ) denote the pdf and cdf, respectively, for the Gamma distribution 

with shape parameter r, scale parameter 7 and location parameter 0. We use the notation 

X ~ Gamma(r,^) to mean that 

r(r) 

Now, we state a lemma that will be useful in our further calculations. 
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L e m m a 1.6 If X ~ C7amma(r 1,71) and Y ~ Gamma(r2,72) then for b > 0 

Ex[<$>r2{bX\l2)\=Br2,Tl{ hi 
) Wi + 72 

where BT2,Tl is the cdf of a Beta distribution with parameters r^ and r\. 

Proof: See Appendix A . L • 

Note that E(X) = n, and that 7 = £ V™=i 

is an unbiased estimator for 7. 

Further, X^=i ^ ~ Gamma{nr^). Thus, 7 ~ Gamma{nr^/nr). 
If we use a biased estimator of the form coj for 7, from (1.12), the optimal value of ui 

will satisfy 

where k — $r ( M | l ) . Using the relationship 

7 ^ n r ( 7 l 7 / ^ ^ ) = lKr+i{l\llnr), 

the optimality condition will be 

7 

Note that the integral above is 

Ex M 
kuX 

1) 
7 

where X ~ Gamma(nr + 1, ^ ) . Then, from Lemma 1.6 we have 

Therefore, u is optimal if 
ku 

) = M. r,nr+l kco + nr 
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Optimal Bias OJ* for Gamma 
r-=1 r-=3 r-=8 

M n=5 n=20 n=5 n=20 n=5 n=20 
0.10 0.841 0.955 0.913 0.977 0.950 0.987 
0.50 0.883 0.968 0.958 0.989 0.984 0.996 
0.90 1.016 1.007 1.039 1.012 1.033 1.009 
0.95 1.081 1.024 1.072 1.019 1.048 1.013 
0.99 1.254 1.065 1.147 1.037 1.086 1.022 

Table 1.2: The value of optimal bias for gamma distribution. 

That is, 

Weerahandi [115] has the same bias except that in his, nr + 1 appears to be incorrectly 

stated as nr. 

Again note that OJ* is independent of 7 and is thus implementable. From (1.11), the 

optimal inventory policy adjusted for estimation errors would be 

y*(oj*j) = ku*j 

-nx. (1.19) 
1 - B r ^ r + 1 ( M ) 

The optimal bias is shown in Table 1.2 for various values of n, r and M. We see 

similar results as in the case of normal distribution. For small sample sizes and high 

M values (indicating high shortage costs relative to inventory holding costs), the bias 

is significantly bigger that 1, which means that an increased value of the sample mean 

should be used. However, for problems with relatively high inventory costs (i.e. small 

M value), the bias is smaller than 1, in which case a decreased sample mean should be 

used. 

Now, the following lemma states the expected cost. 
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Lemma 1.7 For any bias LO, 

E*/[F(y*iul)i 7)] = an{u)jr + D, 

where 

, . Akto / ( kto \ , \ A„ ( kto , 
a n (c j ) = Br,nr+i i ; J - M - A B r + i , n r - • 1 + £ . 

r \ \kio + nr J J \ku> + nr • 

Proof: See Appendix A . L • 

For LO = LO*, an(co) simplifies to 

kto* 
an(tO*) = B - ABr+it„ kto* + nr 

The percent reduction is, then, given by 

[an(u*) -  an(l)]ir 
a n ( l ) 7 r + Z> U U U J -

Note that when D = 0 (as in newsboy and base-stock models) this is independent of 

7, which means the reduction in the controllable cost is not affected by the unknown 

parameter 7, as in the case of Normal distribution. 

For the constrained case, using Equation 1.13 we have 

1 M — \l)dG^) = a. 
7 

Using Lemma 1.6 the integral is simply 

7 
r'nr{lLo + nr}-

Then, the bias that will yield an average service level of a will be 

= / ( 1 - 6 - W ) " ( 1 ' 2 0 ) 

where / = ^ ( a l l ) . 

Note that the long run average service level for any bias LO is 

ILO 

Br,nr(~, j )• 
ILO + nr 
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1.5 (Q,r) Mode l with Normal Daily Demand 

In this section we will give exact closed form expressions for the optimal bias and the 

expected cost if one has a (Q,r) model with a given fixed Q. We assume daily demand 

data are used for estimation as in Silver and Rahmana [101]. The derivations of these 

expressions follow from Lemmas (1.2), (1.3), and are done very similarly to the previous 

calculations. 

The optimal reorder level, from (1.11), will be 

y*d(d,ujsd) = Ld+ ku\fLsd , 

where d, Sd are the sample mean and standard deviation of daily demand data, and L is a 

fixed lead time in days. Assuming that the demand during a day has normal distribution 

with mean p and variance <r2, the optimal bias and the expected cost can be shown to 

be 
. _ T~\M) . / ( n - l ) ( n + £ ) 

UJi — 

where 

k V n 2 

Ed,Sd[F(y*(d,usdy,U;a)} = ad,n(uj)Aay/L + C pL + D 

n + L ( nk2u 
n - l 

2, ,2 \ " — 

2irn V (n-l)(n + L), 
( nku 

n y/(n-l)(n + L) 
- M 

These closed form expressions eliminate the need for Silver and Rahmana's algorithm. 

A n Example 

We conclude with an example in which we will examine a (Q, r) model with fixed Q, 

no order cost (K = 0) and Normal demand as in Silver and Rahmana [102]. 

a) Unconstrained case: We let the annual demand A = 1000, and the annual 

holding cost h = $1 per unit. It is assumed that the estimation of lead time demand 



Chapter 1. Improving Traditional Inventory Policies Through Biased Estimation 31 

n L 7T 

Optimal Bias and % Reduction 

n L 7T 

Q=15 Q=30 
io*d R\ R2 

n=5 
L = l 

7T = 1 
7T = 5 

7T = 15 

1.36 11.4 3.4 
1.63 34.7 15.7 
1.87 54.2 32.6 

1.26 5.6 0.8 
1.50 23.2 5.4 
1.71 41.9 14.2 n=5 

L=5 
7T = 1 
TT = 5 

7T = 15 

1.75 31.2 19.0 
2.10 59.0 46.7 
2.41 74.7 66.3 

1.63 20.3 7.3 
1.94 47.2 26.4 
2.21 65.3 46.5 

n=10 
L = l 

7T = 1 
TT = 5 

TT = 15 

1.16 3.9 0.9 
1.26 14.2 4.5 
1.33 26.4 10.2 

1.12 1.8 0.2 
1.21 8.7 1.4 
1.28 18.2 3.7 n=10 

L=5 
7T = 1 
7T = 5 

TT = 15 

1.35 15.1 7.3 
1.47 34.8 21.4 
1.56 51.2 36.5 

1.31 9.3 2.6 
1.42 25.4 9.7 
1.50 40.8 19.6 

n=20 
L = l 

7T = 1 
TT = 5 

7T = 15 

1.08 1.1 0.2 
1.12 4.1 1.1 
1.15 8.2 2.4 

1.06 0.5 0.1 
1.10 2.5 0.3 
1.13 5.4 0.9 n=20 

L=5 
7T = 1 
7T = 5 

TT = 15 

1.17 5.3 2.2 
1.22 13.2 6.5 
1.25 21.6 11.9 

1.16 3.2 0.8 
1.20 9.2 2.7 
1.23 16.0 5.5 

Table 1.3: The effect of biasing on the cost for (Q,r) model. Rip)'- % reduction in 
controllable (total) cost. 

parameters is done using a daily demand data for a fixed lead time L, and that the actual 

daily demand parameters are p = 3, o = 3/4, when calculating the percent reduction in 

total cost. 

Table 1.3 shows the effect of biasing the standard deviation. We have previously 

seen that the percent reduction in controllable cost does not depend on the unknown 

demand parameters (if the demand is normal). Note that as the cost of a backorder, IT, 

increases the effect of using a bias factor is more significant. The percentage gain in cost 

is more significant for larger lead times, and intuitively enough, this gain decreases with 
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(Q,r) model with M=0.80, p=4,o=2 
Traditional Method Biasing Alternative 

n OL Service Cost * Cost 
5 0.80 0.757 1.601 1.225 1.608 

0.90 0.847 1.671 1.311 1.865 
0.95 0.896 1.844 1.420 2.329 
0.99 0.950 2.322 1.764 3.883 

20 0.80 0.789 1.448 1.048 1.448 
0.90 0.887 1.552 1.062 1.591 
0.95 0.938 1.766 1.077 1.860 
0.99 0.982 2.330 1.119 2.587 

Table 1.4: The effect of biasing on the service for (Q,r) model. 

sample size. In short, biasing is the most effective when we have small sample size, high 

backorder cost and long lead time. In such cases, the amount of biasing one must use is 

the greatest. Our further calculations revealed that there is no clear effect of Q, although 

larger Q may seem to decrease the effect of biasing from the table. 

b) Constrained case: We let Q = 20, ir = 1, p, = 4, a = 2, and the other 

parameters remain as in part (a). The objective is to achieve a long run average service 

level a during the lead time. Table 1.4 shows the expected total costs and service levels 

for both the traditional method and the biasing approach. 

The costs for the traditional method and the biasing approach were calculated by 

the formula given in Lemma 1.4 by letting LO equal 1 and LO*, respectively. The long run 

average service level of the traditional method was calculated using (1.17) for LO = 1. 

Note that in the traditional method, the actual average service levels in the long run are 

consistently lower than expected. In other words, an inventory manager using the tradi

tional method will deliver a service level below, and for small sample size, significantly 

below the level being targeted. For example, with a sample size of n = 5, a manager 
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planning a service level of 90% will find that the long run service actually achieved is 

more than 5% lower than this. 

1.6 Conclusions and Remarks 

When the demand parameters are estimated in inventory control problems, there is an 

increase in the expected operating cost or a degradation in expected service level of 

the system due to estimation errors. It is possible, however, to adjust the traditional 

estimators of sample mean and standard deviation by introducing biases which result in 

a lower operating cost. 

This work has generalized the idea of biasing for the scale-location family of distribu

tions and has shown that the newsboy problem, base-stock model and (Q, r) model with 

fixed Q are identical in terms of applying the biasing approach. We have attempted to 

bring together and extend a variety of papers dealing with the introduction of bias to 

compensate for estimation errors in inventory control. There seems to have been some 

'reinventing the wheel' happening on this topic, with the early paper of Hayes being 

missed by later authors who have ended up in some cases delivering less than he had 

already done. Because of the common practice of setting customer service levels for in

ventory, the paper of Ritchken and Sankar [80] with the extension given here is practically 

noteworthy, because for small samples major errors in the actual service levels delivered 

from those targeted can occur. 

Some other interesting observations we made are: In all three models with either 

normal or gamma demand, the amount of savings due to biasing is a multiple of the 

standard deviation of demand and thus increases as the standard deviation increases. 

That is, biasing gives more savings for problems with large variations in demand. In par

ticular, for base-stock model if the effectiveness of biasing is based on percent reduction 
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in cost rather than the amount of savings, one can calculate the exact effect of biasing. 

This implies that if biasing is effective for a problem of certain cost parameters, it will 

remain equally effective regardless of how demand parameters change. 

Since our analysis assumes stationary demand, the results here should be used with 

caution in problems where the demand shows seasonal patterns or a steady change. 

However, such problems are generally difficult to handle by other methods, too. A 

practical approach can be to apply the results developed here myopically, especially when 

simple estimates such as sample mean and variance from a sample of the most recent 

observations are used to forecast demand and the past observations are not effective 

forecasters. That is, biases can be calculated based on a recent sample and inventory 

policies can be modified accordingly by assuming stationary demand. Since sudden 

dramatic changes in demand parameters is not very typical even in problems with non-

stationary demand, if the bias calculation is updated frequently, this method can provide 

a good approximate solution to such problems, as an alternative. 

The extention of this study to other inventory models is possible provided that the 

quantities involved in calculating the measures of performance (such as expected cost 

and expected service level) allow mathematical tractability for this kind of analysis. 

Since many inventory models have similar quantities as building blocks (such as ex

pected amount of inventory, expected amount of backorders, probability of stockout, 

etc.), this method may have considerable chance to be applied to a wider class of prob

lems. However, the results are not guaranteed to be implementable. The fact that the 

optimal bias was independent of the unknown parameters is what makes the results here 

implementable for the scale-location family. This might not be the case in general. An 

alternative method could be to apply a Bayesian approach, assuming a prior distribution 

for the unknown parameters. 

As for discrete-demand models, the analysis here should be extendible. This will 
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need the replacement of some integrals by sums. However, in calculating an optimal 

bias, differentiation should not be a problem. There may be some technical difficulties 

with the discrete nature of the problem in places where we needed continuity assumptions. 



Chapter 2 

Managing Inventory for Mult iple Customers 

Abstract 

In this research, we study a periodic review single-product, single facility inventory prob

lem with multiple customer classes. The customer classes differ in that each class requires 

a different service level, which is defined as the backorder rate. The objective is to find 

an allocation policy which will allocate available inventory on hand among the customers 

and an order policy for inventory replenishment so as to achieve prespecified customer 

service levels with minimum possible inventory holding cost. Customer demands are 

random and independent with a stationary probability distribution. We develop an easy-

to-calculate myopic heuristic allocation-order policy for both finite and infinite horizon 

cases. For the latter case, we test the performance of the heuristic, using simulation over 

a range of problem parameters. The results show that this heuristic delivers service levels 

very close to the targets and its cost is always at the lower bound. 

36 
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2.1 Introduction 

The study of inventory systems with service requirements has been popular because of 

its practicality and the difficulty in quantifying or measuring shortage costs. Although 

exact analysis becomes more difficult with the introduction of service level constraints, 

the practical use of service levels in industry has been stimulating researchers for quite 

a long time to study especially multi-echelon models with the objective of achieving 

desired customer service levels. This generated a substantial amount of work in the 

literature. Among some early papers are [3, 40, 69, 90, 96, 98, 100, 104]. Two of the most 

popular in the literature are Sherbrooke [98], and Muckstadt [69] ( M E T R I C and M O D -

M E T R I C ) which study multi-item, multi-echelon, inventory systems for recoverable items 

(i.e. stocks, typically spare parts, which can be repaired and reused) with the objective 

of minimizing backorder levels at the lowest echelon subject to a budget constraint. A 

survey of early work can also be found in Clark [14]. Relatively more recently, Schwartz 

[94] compiled a diverse set of problems for multi-echelon systems with the contribution 

of a number of researchers. Later research includes [4, 7, 13, 26, 33, 70, 71, 82, 94, 95]. 

An up-to-date book by Graves, Kan and Zipkin [41] has some recent advancements in 

the area. 

In a more relevant paper to this study, Cohen et al [16] study a single-product, single-

facility problem with periodic review. They have two types of (stochastic) demand that 

are classified as regular and eniergency. Their objective is to calculate an inventory 

policy so as to minimize long run average cost subject to a fill rate constraint. They 

approximate the cost and the fill rate to develop a greedy algorithm which gives a near-

optimal inventory policy whose performance is reasonably good for short lead times. 

Srinivasan and Swaminathan [107] study a newsboy type of problem where there is a 

single period with random demands from different customers. They introduce different 



Chapter 2. Managing Inventory for Multiple Customers 38 

service levels for different customers and analyze the structure of the optimal allocation 

and provide an algorithm to calculate the optimal order quantity. 

Most of the above papers are all motivated by practical problems that come from 

industry. Even for single-product, single-facility problems, however, there are not many 

studies in the literature that address multiple-customer classes requiring different levels of 

service. Topkis [111] studies a periodic review inventory problem with multiple customers 

having stochastic demands. The objective is to find an optimal ordering and allocation 

policy so as to minimize the total cost in a finite number of periods. He proves that 

a rationing policy is optimal, which means a customer's demand is satisfied if all other 

customers with higher backlogging costs are fully satisfied and as long as stock on hand 

is above some level. However, his model is basically a newsboy type of problem in 

which there is only one opportunity for order placement and that is at the beginning. 

He also studies a repeated newsboy problem in which there is a chance of ordering at 

the beginning of each period, assuming that backlogs are cleared by an immediate order 

arrival at the end of each period. In his problem, a myopic allocation policy in the form of 

the rationing policy described above is optimal when unmet demand is fully backlogged. 

In the lost sales case, the optimal policy is of this rationing form, but it is not myopic. 

Recently, Ha [44] studied an infinite horizon, discounted cost single-facility inventory 

problem with multiple-customer classes having Poisson demands with lost sales. The 

facility manufactures a single product and has limited capacity. He shows that a rationing 

policy is optimal in which a customer's demand is rejected if stock on hand is lower than 

some level. Then, he compares the performance of an optimal rationing policy with 

an optimal policy on a first-come-first-served basis and finds that the rationing policy 

is significantly better when the capacity of the facility is moderate, the demands are 

heterogeneous, and the difference .between the lost sales costs are large. 

Our problem is different from Topkis' and Ha's in that we make the usual assumptions 
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that unmet demand is backlogged and these backlogs are carried to a next period. We also 

impose service constraints and are interested in a good allocation policy in combination 

with an order replenishment policy. 

Another related work is Federgruen and Zipkin [33]. They study an allocation policy 

of the stock on hand in a depot to N retailers in a 2-echelon system. No stock is held at 

the depot and arriving orders are immediately allocated and delivered to the retailers. 

This delivery cost is linear and the order cost at the depot consists of a fixed cost and 

a linear variable cost. At the retailers, both unit holding and backlogging costs are 

linear with a constant ratio for all retailers. The demands at the retailers are stationary 

normal with different parameters. The objective is to minimize long run average cost. 

They calculate a lower bound on cost and develop a near-optimal allocation policy which 

performs well. 

In a similar study, Federgruen [32] suggests three different myopic allocation policies 

combined with an (s,S) order policy all of which result in costs that are within a few 

percentage points of the optimal cost. When the coefficients of variation of demand 

are equal for all retailers, all three of these allocation policies are equivalent. We use a 

method similar to his and that of Federgruen and Zipkin to calculate a lower bound for 

the cost of our model. 

A typical work in the literature which studies service constrained problems treats 

customers as identical and aims to deliver a uniform service for all of them unless the 

customers are a part of a multi-echelon system. Some examples of these multi-echelon 

papers are studies of one-warehouse N-retailer systems with service contraints. Among 

them are Muckstadt and Thomas [70], Schwartz et al [95], Badinelli and Schwartz [7], 

Deuermeyer and Schwartz [23]. Studies of single echelon systems include [16, 87, 88, 89, 

97, 110, 120]. 

Here we study both penalty (or backorder) cost and service constrained models for 
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multiple customer classes. We start with a motivating example in the next section. In 

Section 2.3, we introduce a periodic review multi-customer inventory problem. Then, in 

Section 2.3.1, we address a cost oriented approach where we assume a nontraditional cost 

structure with quadratic backorder costs and no service constraints. In Section 2.3.2, we 

present a service oriented approach to the control of inventory where we have different 

service targets for different customer classes and no backlogging costs. Finally, in Section 

2.4.1, we contrast these two problems and observe a correspondence between their relaxed 

versions. By using this correspondence we develop a heuristic allocation policy for the 

service problem and we present some computational results to test the performance of 

this heuristic. We give some conclusions and remarks in the last section. 

2.2 A Newsboy Example 

The study of inventory systems with customer service requirements can be modeled in two 

apparently distinct ways. The most popular approach in the literature has been to levy 

a cost, typically called a penalty cost, against unfilled demand. Although this method 

leads to more tractible models, the difficulty of specifying penalty costs has led practical 

applications to turn more often to constraints on service levels. Little concern has been 

generated by this dichotomy of approaches between theory and practice because it has 

always been assumed that moving between these two models is fairly straightforward. A 

penalty cost will actually give some service level, however defined (we will explain our 

choice of the service definition later in Section 2.3.2). The reverse is also true, and hence 

given a one-to-one correspondence, the choice of model seems more one of convenience 

rather than correct modeling. 

The most common assumption used is to make backlog costs proportional to the 
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amount backlogged, i.e. linear costs. When we consider multiple-customer classes re

quiring different levels of service, however, linear costs have a serious drawback in that 

the above correspondence between the service levels and backlog costs breaks down. 

To illustrate this, let us consider a single period (newsboy) problem with two customer 

classes with random demands X\ and X2 whose means are pi and p2. Linear shortage 

costs are V\ > p2. A holding cost rate h applies to the inventory left unused. Let y be 

the choice of opening inventory. Since class 1 has higher backlogging cost the problem 

can be abbreviated to 

min p^ElX, - y]+ + p2E[X2 - [y - X,}+}+ +.hE[y - Xx - X2}+. 
y>0 

This is because class 1 would be satisfied before any product is used to satisfy class 2 

customers. The first and second expectations are expected backorders for classes 1 and 2, 

respectively, which would typically be used to define service levels for the classes. That 

is, let us assume h = 1 without loss of generality, as it is just a scale difference to use 

other values for h and let y*(pi,Pi) be the optimal starting inventory (i.e. solution to 

the above problem) for a given pair of (pi,p2). Then, the services (defined as the ratio 

of expected backorders to the mean demand) delivered to classes 1 and 2 are 

E[Xi - 2/*( Pi,p 2)] +/Vi and E[X2 - {y*(Pl,p2) - X,]+] + /p2, 

respectively. Figure 2.1 illustrates the attainable service levels for all possible values of 

pr > p2. Note that as y* varies only a trajectory of service levels is attained. If the second 

class is considered to have more priority (i.e. p\ < p2), then the attainable service levels 

will be given by a symmetric curve to the one in Figure 2.1. Thus, given any pair of 

service levels, there is no reason that a value of y* exists that gives them (except when 

px = p2j in which case we no longer have two classes). 

We see from Figure 2.1, for instance, that 0.30 and 0.90 are achievable service levels 

(expected backorders) for classes 1 and 2, respectively. However, 0.10 and 0.90 can never 
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Figure 2.1: Attainable service levels by linear costs in a 2-customer newsboy problem. 
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be achieved. In the case of a single class of customers it is easy to show that there is a one-

to-one mapping between a linear holding cost and a service level. For this two-customer 

case, however, we see that this one-to-one mapping is lost. In fact, the mapping left is 

really unsatisfactory in that if the backlogging cost of one class is only infinitesimally 

higher than the other, this class will receive all the inventory it needs before the other 

can get anything. 

In other words, linear costs imply that we would always want to satisfy a higher class 

at the expense of a lower, and hence only a subset of service levels would be attainable. 

However, if there is some level of backorders for the higher class that is less important 

to reduce when substantial backorders exist for the lower class, then management will 

want alternative service levels. This indicates that to model this more general situation 

as a cost minimization problem we require nonlinear shortage costs. If they were not 

linear we must ask ourselves what is the appropriate model of shortage costs to capture 

these contingent marginal costs. It turns out that quadratic costs, which are about the 

simplest non-linearity to consider, achieve most of what we need in order to model the 

situation in which management has the freedom to dictate service levels instead of having 

to accept those limited to a small subset. Besides, they provided easy tractability and 

some useful properties in calculations. 

We introduce the inventory model we would like to study in the next section. 

2.3 A Finite Horizon Periodic Review Problem 

A facility carries a single product and serves N distinct customer classes. Here, a cus

tomer class means a group of customers with identical service requirements and identical 

backlogging cost rates. We do not model individual customers but treat the entire such 

class as a single entity. Inventory is reviewed periodically. In each period, each customer 
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class demands product from the facility. These random demands are independent from 

each other and drawn from a stationary distribution (this assumption can be relaxed for 

the finite horizon case). The facility allocates available product to classes and after the 

allocation, unmet demand is backlogged. Observe that it is possible for product to re

main unallocated in inventory despite there being backlogs. This can happen when there 

is a shortage expected in the near future. The management may keep some inventory for 

higher priority customers and not fill all demands of lower priority classes. The facility 

then places an order from the supplier incurring only proportional, not fixed, costs. A n 

order arrives at the facility after a lead time of L periods, from the supplier whom we 

assume has an unlimited supply. 

The sequence of events in each period is assumed to be the following. 

• Orders placed L periods earlier is received. 

• Customers place their demand. 

• The facility allocates some or all of the existing on hand inventory among classes 

to fill demands. 

• The facility places a new order. 

• Accounting for penalty costs (backlogging and holding) and order cost (purchasing) 

takes place. 

We formulate the problem as a Markov decision process using the following notation: 

• N: the number of customer classes. 

• L: lead time for an order to arrive at the facility. 

• ct: purchasing cost of a unit in period t. 
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• ht: holding cost rate in period t. 

o yt: size of order placed at the end of period t. 

o y t = (yt-L, Vt-L+i, Ut-i)'- vector of outstanding orders in period t, just before 

customer demands are observed. 

• Ujt: demand by customer class j in period t. 

• Xjt: new demand plus the backorders for customer class j in period t. 

• Zjt: amount allocated to customer class j in period t. 

• vt: stock on hand available for allocation after order arrival in period t. 

• Xt, lit, Zt: summations of Xjt, U j j , Zjt over j = 1,2, . . . , iV , respectively. 

• X t , u t , z t : vectors of Xjt, Ujt, Zjt for j = 1,2, . . . , /V , respectively. 

Here, the decision epochs are just after observing customer demands in each period. 

The state of the process at decision epoch t is (u t, x t , y t ) - The action in period t is ( z t , yt)-

The transition from period t to period t + 1 is described by the following relationships: 

vt+1 = vt - Zt + yt_L, y t + i = (yt-L+i,yt-L+2, —,yt), x t + i = x t - z t + u t + i . 

In the last expression, and henceforth, the vector arithmetic simply means Xjt+i = Xjt — 

zjt + Ujt+i for all j = 1 , 2 , N . 

The constraints on the process, in period t, are: 

Cl. Zjt > 0, Vj 

C2. Zjt <Xjt, V j 

C3. = zt 
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C4. 0 < Zt < min{vt,Xt] 

C5. yt > 0 

We will consider two different objectives. The first one aims to minimize the ex

pected cost in a finite number of periods with no service constraints, but with some 

penalty charges for backlogging. We call this a cost problem and present it in the next 

section. The second one is what we call a service problem in which the objective is to 

achieve prespecified customer service levels with minimum possible inventory holding and 

ordering costs. We will formulate this problem in Section 2.3.2. 

2.3.1 Cost Minimization with Quadratic Backlog Costs 

Our objective is to find an allocation and an order policy so as to minimize the expected 

total cost (backlogging + holding + order) in T periods. We call this the cost problem. 

Our choice is to use quadratic backorder costs for which we have provided our moti

vation in Section 2.2. The penalty cost incurred at the end of period t is given by 

A f N 

? t ( u t , x t , z t ) = ^Pjtixjt - z3tf + ht(vt - ^Zjt). 

j=i i=i 

where pjt is the backlogging cost constant specific to customer class j in period t. 

Define / t ( u t , x t , y t ) to be the minimum total expected cost of periods t through T, 

given that the state is ( u t , x t , y t ) at the beginning of period t. 
Then, for t = 1 , 2 , T , we have 

ft(vt, x t , y t ) = min { ctyt + qt(vt, x t , z t) 

+Eft+1(vt -Zt + y * - L , x t - z t + u t + i , (yt-L+i,yt-L+2, —,yt)) 

: s.t. C I , C2, C3, C4, C5} (2.1) 

with / T + l ( u T + l , X T + l , y T + l )
 = 0 f ° r a ^ ( u T + l , X T + l , y T + l ) -
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To be practical for computational purposes, we would like to avoid an optimal solution 

to this problem that depended on the full rank of the state vector. Hence, we will seek 

an easy-to-calculate near optimal policy by relaxation. 

The Relaxed Cost Problem: We use the methodology in ([32],pp.148) and relax 

C I (i.e. we allow negative allocations). We want to prove the following proposition for 

this relaxed problem. 

Proposition 2.1 

A . The value functions / t ( u 4 , x t , y t ) in Problem (2.1) depend on the vectors X t only 

via their sums Xt. 

B . In each period it is optimal to choose Zt = Xt — (Xt — vt)+ (i.e. satisfy the total 

demand and backorder as much as the stock on hand allows) and an allocation Z t which 

achieves 

m i n g t ( u t , x t , z t ) : s.t. C2, C3. 

C . A critical number policy is optimal for order replenishment. 

Before proving it, the interpretation of Proposition 2.1 is that when we are allowed to 

use negative allocations, a myopic allocation policy which minimizes the total cost for the 

current period and ignores the future periods is an optimal allocation policy. Moreover, 

our multi-customer problem given in (2.1) reduces to a single-customer problem for which 

a single critical number order policy is known to be optimal. Now, we will give a proof 

for the proposition. 

Proof (A): We use induction. 

Clearly A is satisfied for t — T + 1 since / T + I ( ^ T + 1 J X T + I , Y T + I ) = 0 by definition. 

Assume for £ + l ,2- | -2, . . . ,T that 

/ t + i ( u t + i , x t + i , y t + i ) = / s + i ( u t + i , X t + i , y t + i ) . 
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That is, 

Xt+\ = Xt — Zt + Ut+i , 

where Ut+i = 2~ ĵ=i (total demand in period 2 + 1). Then, 

/ t ( w t , x t , y t ) = min{ ctyt + gt(i>t, x t , z t ) 

+Eft+i(vt - Zt+ yt-L,Xt - Zt + t/i+i, (yt-L+i,yt-L+2, •••,yt)) 

: s.2. C2, C3, C4, C5}. 

Note that the allocation vector zt appears in / t + i only through its sum Zt. Thus, for any 

given value of the sum Zt we can compute the minimum value of ft by minimizing only 

qt(vt: xt, zt). Then, we can rewrite the recursion as 

/i(u<,xt,yt) = min{ ctyt + min Z t {^( t ; t ,x t ,z t ) : 5.2. C2, C3} 

+ - Zt + yt-L,Xt - Zt + Ut+i, (yt-L+i,yt-L+2, •••,yt)) 

: s.2. C4, C5}. 

Consider the inner minimization problem 

N 

min^(ui ,x t ,z t ) = y^Pj i (z j i - zjt)2 + /*t(ut - Zt) : 5.2. C2, C3. (2.2) 
zt +-f 

After some algebra (see appendix B.l), the solution will be 

zjt* = xjt - _ j V ^ i , (-^"t - ^ t ) - (2.3) 
2Zk=lllPkt 

Note that Z j t * may be negative and thus infeasible for the original cost problem. 

To complete the proof, define pt = l/2~̂ jfcLi a n < ^ substitute (2.3) in (2.2). The 

minimum one-period cost becomes 

qt*{vt,Xt,Zt) = pt{Xt - Zt)2 + ht(vt - Zt) 
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which depends on x]t and zJt only through their sums Xt and Zt. Thus, our recursive 

equations become 

Hence ft depends on xJt and zjt only through their sums Xt and Zt and the induction 

(B): From the recursive equations in (2.4) we see that this is a dynamic program

ming formulation of a single-customer, single-facility, T-period inventory control problem 

with order lead time L, order cost per unit ct, linear holding cost rate ht, and (convex) 

quadratic backlogging cost with parameter pt. What is different here from the classical 

formulation of the problem is that this formulation allows for satisfying a portion of the 

demand of our single customer in any period even though we may have enough stock on 

hand to satisfy it fully. That is, we have the option of carrying backlog and inventory 

simultaneously. However, in a single-customer problem, it is well known that it is never 

optimal to carry both, in case of full backlogging (see Scarf [85]). This is simply because 

any inventory carried forward simultaneously with some backlog will have to clear this 

backlog in the future and thus will bring no cost advantage but only an extra carrying 

cost. Therefore, an optimal policy would satisfy the demand as much as possible. Thus, 

the optimal total allocation after having observed the demand will be 

Zt,yt 

+E ft+i(vt - Zt + yt-uXt - Zt + Ut+1,(yt-L+i,yt-L+2, •••,2/t)) 

: s.t. C4, C5}. 

holds. Therefore the result follows for all t. 

Zt* = min{Xi •t,vt} = Xt-(Xt^vt) 

Substituting Z* for Zt in (2.3), we get the optimal allocation: 

(Xt-vt)+. (2.5) 
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(C): Using the results in the proofs of A and B , we have 

vt+1 = vt-Xt + (Xt - vt)+ + yt-L = (vt - Xt)+ + yt-L, 

Xt+1 = (Xt - vt)++ ut+1: 

zjt = xjt - N ^,—[xt - vty, 
Y.k=illvkt 

anc 

qt*(vt, xu zt*) = Pt((xt - Vtyy + ht(Vt - xt)+. 

Note that q* and the recursion depends on Xt, and vt through their differences. 

Define It as the inventory position (inventory on hand + on order - backorders) just 

before order placement in period t. That is, It = vt + F< — Xt, where Yt = Y^f=o Vt-L+i-

The practice is to charge the expected cost of period t + L + 1 in period t (see [32]). 

Noting that all of Yt and yt arrive at t + L + 1, our one-step cost according to this 

accounting scheme can be written as 

q;(It + yt) = Pt+L+iE[(Ut -It- yt)+}2 + ht+L+1E[(It + yt - Ut)+}. 

where Ut = Y^=\ ^t+i? ^ n a ^ ^s ̂ n e total demand during periods t + 1 through t + L + 1. 

Then, the value functions in terms of It are given by 

/,(/,) = mm{ctyt + q*(It + yt) + E fw(It + yt - Ut+1)} (2.6) 
Ut>° 

This is the well known formulation of a single customer problem with convex backlog 

costs. Consequently, we know that a critical number policy is optimal (see [85]). • 

Although Proposition 2.1 reduces the relaxed multi-customer problem to a single-

customer problem, its results are not implement able since negative allocations are not 
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realistic. We are yet to deal with the actual cost problem with the assumption of nonneg-

ative allocations. We give a myopic allocation below, which respects the nonnegativity 

constraint. 

A Feasible Myopic Allocation for The Cost Problem: Let us impose the 

nonnegativity of allocations (CI), and use the optimal total allocation, Zt, in Proposition 

2.1(B). Then, the proof in Appendix B . l can be used with C l imposed to show that the 

allocation which solves Problem (2.2) will be 

Z j t = (xjt - —)+ (2.7) 
Pjt 

N 
^ = min{Xt, vt} (2.8) 
i = i 

where 9 > 0. It is easy to calculate Zjts from these equations. Note that at 9 = 0 we 

have Zjt = Xjt, and the cost is at minimum. However, this may violate C3. Since the cost 

increases in 9, we can increase 9 until C3 is satisfied at which we will have optimal values 

for ZjtS. Since this allocation depends on the Xj^s in a complicated way (no closed form 

expression is available) so does the minimum value of q(.). This invalidates the proof of 

Proposition 2.1. Thus, although feasible, we have no proof for the overall optimality of 

this myopic allocation. However, we will utilize this allocation in developing a heuristic 

for the infinite horizon problem with service constraints in Section 2.4.1. 

Now, our focus will be on a service oriented problem for which we will follow a similar 

approach. 

2.3.2 Holding Cost Minimization with Service Constraints 

It is well known that the shortage costs are very difficult to estimate. Hence, using 

backlogging costs has limited application in practice. A widely used alternative approach 

to overcome this problem is to minimize inventory holding and order costs subject to 
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service constraints. Now we will study a problem of this kind and call it a service 

problem. 

The objective is to minimize the expected total inventory holding plus order costs 

subject to a prespecified service level for each customer. Backlogging is allowed with 

no charge (pjt = 0, V(j, t)), but there is a service constraint which is different for each 

customer class. 

Since the backorders depend on random demands which can be extremely large, it 

is not sensible to impose a tight restriction on the backorders. Thus, we will try to 

control expected backorders for some future period. In order to keep the notation simple 

we assume a stationary demand distribution and a stationary service target for each 

customer in all periods, which can easily be,generalized to a nonstationary case. 

We impose service constraints 

C6. E(xjt+L+1 - Zjt+L+i) < am,, 

j = l,2,...,N, t = l , 2 , . . , T - J L - l . 

for periods X + 2, L + 3 , T . Since we have no control over the quantity of stock available 

for allocation in periods 1 , 2 , L + 1, we impose no service constraints for those periods. 

C6 means we must follow an allocation and an order policy from period t on, so that 

when viewed from period t, the expected backorders for period t + L + 1 is at most ctjU-j 

for customer j. This form we have chosen for the service constraint will allow us to 

interpret it as a backorder rate constraint in the infinite horizon problem in Section 2.4. 

Since there is no cost for backlogging, the penalty cost incurred at the end of period 

t is 
N 

qtjvt, x t , z t ) = ht(vt - ^ zjt) 
i=i 

Define ft(vt, xt, yt) to be the minimum total expected cost for periods t through T, given 

that the state is (u t ,xt ,yt) at the beginning of period t. 
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Then, for t = 1,2, . . . ,T we have 

ft{vt, x t , y t ) = min { ctyt + qt(vt,xt, z t ) 
z t ) i/ t 

+Eft+1(vt - Zt + y t_L,x t - zt + ut+i , ( j / t_L+i ,J /*-L+2,— 

: s.*. C1-C6} (2.9) 

with / T + i ( u r + i , X T + i , y T + i ) = 0 for all (vT+i,XT+I,yT+i)-

This problem is difficult to solve due to the complexity of C6. The optimal solution 

would probably have a very complicated form. This is because an optimal allocation 

policy would have to anticipate how much stock would be available for allocation in 

future periods and thus would probably want to retain some stock to the next period 

even at the cost of backlogging the demands of some low priority customers (those who 

want a relatively lower service level). 

We will consider an easier problem below. Then, using the results we obtain, we will 

develop a heuristic allocation policy for the service problem. 

The Relaxed Service Problem: We now relax the nonnegativity of allocations 

(CI) and state the following result for this relaxed service problem. 

Proposition 2.2 For Problem (2.9) with Cl relaxed, 

*ft = ~ -P" (*« - vt)+ (2.10) 

is an optimal allocation policy in period t. 

Proof: Let us replace C6 by 

C 6 ' . E(Xt+L+1 - Zt+L+1) <Zk=ia^k t = l , 2 , . . . , T - Z - l . 

This constraint simply requires satisfying an aggregate backorder level for all customer 

classes, rather than a seperate one for each class which is required by C6. Note that 

Mi 
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this is a further relaxation because C6 implies C&. Since C& and qt(.) depend on Zj^s 

and Xjt's only through their sums, Proposition 2.1 holds for the relaxed service problem. 

Thus, the optimal total allocation in period t is 

Zt* = min{Xt,vt} = Xt- (Xt - vt)+. 

Given the above Zt*, by Proposition 2.1(B), an allocation which solves 

minc/t(ut,xt,zt) = ht(vt - Zt) : s.t. (72, C3. 
z t 

is optimal for the relaxed service problem. Since qt(.) depends only on the sum, Zt, but 

not the individual allocations, any feasible allocation (which satisfies C2 — C5 and C6') 

will be optimal. Consider the allocation in (2.10). The expected backorders it delivers 

for customer class j will be 

E(xjt+L+1 - Zjt+L+l) = ^N1^ E(Xt+L+l - Vt+L+l) + 

= ^NJ^J—~E(Xt+L+i — Z*+L+1) 
2^k=iakPk 

- v ^ i v 2^k=iaktlk 

l^k=\ak^k 

Thus, the allocation in (2.10) satisfies the service constraint C6 and the other constraints 

(except C l which is relaxed). Therefore, it is optimal. • 

Now, let us calculate an optimal order policy for the relaxed problem. Define It as 

the inventory position (inventory on hand + on order - backorders) just before order 

placement in period t. That is, It = vt-\-Yt — Xt, where Yt = Vt-L+i-

Noting that all of Yt and yt arrive at t + L + 1, we have 

Xt+L+1 - Z;+L+1 = (Xt+L+1 - vt+L+i)+ = (Ut - I t - yt)+ (2.11) 
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where Ut = Y^if=i Ut+i, that is the total demand during periods t + 1 through t + L + 1. 

Then, C6' can be rewritten as 

C6'. £ ( / 7 T - J, - yt)+ < ELiW* t = l,2,...,T-L-l. 

Note that since the left hand side in CQ' is decreasing in It•+ yt, C6' is equivalent to 

+ < = i , 2 , . . . , r - z - i . 

where St satisfies (assuming continuous demand) 

E(Ut - St)+ = TZ=i<*kl*k. (2.12) 

We will charge the expected cost of period t + L + l in period t. Using this accounting 

scheme, our one-step cost is q*(It + yt) = ht+L+iE[(It + yt - Ut)+). 

Then, the recursion will be 

ft{It)= min {ctyt + ht+L+1E(It + yt - Ut)+ + Eft+1(It + yt - Ut+1)} (2.13) 
yt>max{0,St — It) 

for t = 1, 2 , T — L — 1. It is easy to see that the quantity in brackets to be minimized 

increases in yt. This is because in the last period n = T — L — 1, for 

fn{In) = min {cnyn + hTE(In + yn - Un)+ + 0} 

the quantity in brackets increases in yn and thus (by induction) assuming the correspond

ing quantity in brackets for ft+\ increases in yt+i, so does the quantity in brackets for ft 

in yt. Therefore, the optimal policy in period t is y* = max{0, St — It}. 

Therefore, the critical number policy, St, defined through (2.12) is an optimal order 

policy for the relaxed service problem. Note that this order policy gives a lower bound for 

the cost of any feasible policy for the service problem since it is optimal for the relaxed 

service problem. We will use this policy in our heuristic in Section 2.4.1, which will insure 

that the heuristic gives a cost at the lower bound. 

Next, we study the infinite horizon case with service constraints. 
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2.4 Infinite Horizon Problem with Service Constraints 

In this section we will study the infinite horizon problem. Our main interest is the problem 

with service constraints and no backlogging costs (the service problem). First, we will 

clarify the definition of customer service for the infinite horizon. The most common 

definitions used in the literature are the probability of stock-out and the fill rate (the 

expected demand met divided by mean demand in a period). 

We define the backorder rate in a period as 

E(Demand + Backorder - Allocation) 
E(Demand) 

This is in contrast to the definitions in the literature where both numerator and denom

inator have consistently been either only demand or demand + backorder. Ours has a 

clear interpretation especially when backorders are higher than the mean demand. For 

instance, suppose that the mean demand of a customer class is 100 units per period and 

that the facility has poor response to demand so that an average of 200 units are back-

logged for this customer every period. Thus, the average total demand of this customer 

class waiting to be satisfied is 300 units of which only an average of 100 units are satisfied. 

The backorder rate according to our definition will be 200/100 = 2 and this will mean 

an average of twice as many backorders as the mean demand are maintained. In other 

words, the customers will wait an average of 2 periods to be completely satisfied. Thus, 

the backorder rate can theoretically be any nonnegative real number. 

Rewriting C6, we have 

C76. - *JF+L+i) J = h2,...,N. 
to 

for t = 1,2,... The ratio on the left is identical to the backorder rate explained above. 

Thus, C6 means a long run average backorder rate of no more than QJJ is required for 

customer class j. 
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Our objective is to minimize the long run average holding and order costs subject to 

the constraints C1-C5 defined previously, and the service constraints C6, above. Igle-

hart [50]) shows that with the long run average cost criterion, an (s, S) policy is optimal 

in a similar problem with an additional fixed cost for placing an order and without any 

constraints. The proof involves extensive technical issues such as the boundedness of the 

objective function and the existence of an optimal policy. A detailed analysis of this issue 

in a general context for Markov decision processes can be found in Puterman [78]. The 

fixed order cost makes the analysis more complicated. Since, we do not have any fixed 

costs, our model is a relatively easier special case of his model with the exception that 

we have a constraint. Thus, at this point we conjecture that a critical number policy is 

optimal for our problem and avoid the technicality of a proof. Then, the optimal value 

for this critical number can be calculated using (2.12) and dropping the subscript t. That 

is, the optimal critical number S satisfies 

E(UL+1 - S)+ = Ek=^kuk, (2.14) 

with UL+I being the total demand in L + 1 periods. The optimal order quantity is 

y* = max{0, S — I}. 

Hence, for the infinite horizon relaxed service problem an optimal inventory policy is 

a critical number order policy, S, given by (2.14) and an optimal allocation policy is the 

one given by (2.10). 

The following corollary will be useful in Section 2.4.1. 

Corollary 2.1 For t sufficiently large, the optimal order quantity in the finite horizon 

relaxed service problem in period t is y* = S — It, where S satisfies (2.14)-

Proof: The inventory position in (2.13) is It+i = It + yt — Ut+\. This means if the 

optimal order is y*t = 0 for some t, then It+i = It — Ut+X- Thus, the inventory position 
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decreases as long as we do not order. Therefore, there exists a period t + n for which 

It+n = It — 2^fc=i Ut+k < S with probability one. Then, in such a period, the optimal 

order quantity is y*+n = S — h+n- But, this means 

Then, it follows that y*+n+k — S — It+n+k for all k = 1,2, . . . with probability one. • 

Corollary 2.1 means after a sufficiently long time, the inventory position will always 

be at or below a critical number S1, and the optimal order policy will be an order up-to-S" 

policy. 

Now, we state a corollary which will be useful in measuring the performance of the 

heuristic to be developed in Section 2.4.1. We assume that the single critical number 

policy in Corollary 2.1 is used in the infinite horizon case. Then, at steady state, the 

inventory position will always be at or below S. 

Corollary 2.2 In the infinite horizon relaxed service problem, the backorder rate deliv

ered by the allocation in (2.10) and the order policy in (2.14) for customer class j is 

exactly aj. 

Proof: From Corollary 2.1, y* — S — It, for t sufficiently large. From (2.11), we have 

It t+n+l It+n + Vt+n — Ut+n+l 

= S-Ui t+n+l _i < s. 

E(Xt+L+l — Vt+L+l) + (Ut - It 

(Ut - S)+ 

2^k=ia^k-

Then, from (2.10) 

E(xjt+L+1 - Zjt+L+l) 
ajlJ-j E{Xt+L+1 - v t + L + 1 ) + = aju-j.n E 1M 

k=iakH 
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This corollary will provide a useful benchmark in calculating simulation errors in 

Section 2.4.2, and help measure the performance of the heuristic we develop in the next 

section. 

For a reader interested in the cost problem with quadratic backlogging costs and no 

service constraints, Appendix B.2 shows how to calculate the optimal critical number 

S for the infinite horizon case with stationary demand and stationary cost parameters 

when negative allocations are allowed. Then, this S combined with the allocation policy 

in (2.5) will be the optimal inventory policy for the relaxed cost problem. Since this 

allocation is infesible for the cost problem, an alternative is to use the allocation in (2.7) 

combined with the order policy in Appendix B.2. Our numerical tests showed that this 

combined order-allocation policy gives a long run average cost per period very close to 

the lower bound obtained by solving the relaxed cost problem. 

We now propose a heuristic for the service problem, below. 

2.4.1 A Heuristic for the Infinite Horizon Service Problem 

Consider relaxed versions of the cost and service problems with stationary parameters. 

From (2.5) and (2.10) we observe that they both have the same form of optimal allocation. 

That is, if Xjt is the demand plus accumulated backorders for customer j and vt is the 

available stock for allocation in any period i , we have 

where Wj = {1/Pj)/J2k=i^ f ° r the relaxed cost problem and Wj = ctj^j/Ylk=iaklJ'k for 

the relaxed service problem. 

Thus, if we let 

zjt* = Xjt - Wj(Xt - vt)+ 

1 
, j = 1 , 2 , N PJ = 
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both problems will have the same allocation policy. In other words, for any given order 

policy S, these two problems correspond through (2.15). Using this correspondence, we 

suggest a heuristic for the service problem as follows: 

Use the order policy S given by (2.14) which is optimal for the relaxed service problem. 

As for the allocation, convert the service problem with parameters ctj to a cost problem 

with parameters p3 using (2.15). Then, use the myopically optimal allocation of the cost 

problem as an allocation policy for the service problem. That is, our heuristic order-

allocation policy for any period t, (S,Zjt,j — 1, 2 , N ) , is given by 

E{UL+1 - S)+ = Y!k=iakPk 

zjt = (xjt- 0 a ^ j ) + 

where 0 satisfies ^ j = i ( x . 7 * ~ = imin{Xt,vt}. Note that this heuristic may not 

give feasible service levels, but we know form Corollary 2.2 that its cost is a lower bound 

for the cost of all feasible policies. This is because S is optimal for the relaxed service 

problem. Thus, we will measure its performance by how close the service levels it delivers 

are to the targets. 

2.4.2 A Simulation Study 

Now, we examine the performance of the heuristic described above for the infinite horizon 

service problem. In the infinite horizon case, the expected backorders can be interpreted 

as the long run average backorders per period. Thus, ctj is the long run average backorder 

rate per period for customer j. 

It is hard to calculate analytically the service levels our heuristic delivers. Thus, we 

will use simulation over a test bed of problems and compare the services delivered with 

the targets. 

In the simulation, we considered three ranges for the service level which may be typical 
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of different industry groups. Group 1 operates with the highest customer service standard 

and aims to deliver a backorder rate between 0.01 and 0.20. Group 2 is a moderate group 

with a backorder rate between 0.20 and 1. Group 3 is the slowest response group and it 

operates to deliver a backorder rate between 1 and 2. In each of these groups we varied 

the number of customer classes (N = 2,5,10). As for setting the service targets, we 

consistently covered the service ranges specified above for each group. 

• Group 1 (High Service Industry) 

- N = 2 : ( a i , a 2 ) = (0.01,0.20) 

- N = 5: ( a i , a 2 , a 3 , a 4 , a 5 ) = (0.01,0.05,0.10,0.15,0.20) 

- N = 10 : (ai , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , aw) 

= (0.01,0.02,0.04,0.06,0.08,0.10,0.12,0.14,0.16,0.18) 

• Group 2 (Moderate Service Industry) 

- N = 2 : ( a i , a 2 ) = (0.20,1.00) 

- N = 5 : (a i , a 2 , « 3 , « 4 , as) = (0-20,0.40,0.60,0.80,1.00) 

- N = 10 : (ai , a 2 ,0 :3 , « 4 , o>5, a6, a7, a 8 , a 9 , a 1 0 ) 

= (0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90,0.95,1.00) 

• Group 3 (Low Service Industry) 

- N = 2 : ( a i , a 2 ) = (1.00,2.00) 

- N = 5 : (a i , a 2 , a 3 , a 4 , a s ) = (1-00,1.25,1.50,1.75, 2.00) 

- N = 10 : (tti, a 2 , a 3 , a 4 , a 5 , a 6 , « 7 , as, « 9 , «io) 

= (1.10,1.20,1.30,1.40,1.50,1.60,1.70,1.80,1.90,2.00) 
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We assume the demand of customer j is normal with mean Uj and standard deviation 

Oj = fij/3. We used the following values for the demand means: 

o A. N = 2 

- {puu2) = (5000,1000) 

a B . N = 5 

- ( / * ! ,^2 ,^3 ,^4 , ^5 ) = (5000,2000,1000,500,100) 

• C. N = 10 

~ (pl, f-2, H3,p4, /^5, fJ-6, fJ-7, P8, p9, ^ l f j ) 

= (5000,4000,3000,2000,1000,800,600,400,200,100) 

As for the cost parameters, we used a holding cost rate of $1 per unit per period. However, 

we will not report cost results since we know that the heuristic has a cost always at the 

lower bound as explained earlier. 

For each of the above 3 groups we have 3 cases (N = 2,5,10), and for each of these 

cases we have 6 different values for the lead time (L = 0,2,4,6,8,10). Thus, we have 

3x3x6=54 simulations in total. Each simulation was done for 10,000 periods, which was 

satisfactory enough to reach steady state. 

We define the following measures of performance. 

• cti: Target backorder rate for customer class i. 

• OL\: Backorder rate for customer class i delivered by the heuristic in the simulation. 

• a\: Backorder rate for customer i delivered by the optimal inventory policy of the 

relaxed problem in the simulation. This would equal ai, if error due to simulation 

were zero. 
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To define the error in services, we take only those classes of customers for which the 

service delivered is below the target. Let / be the set of such customer classes. We define 

an average percent error es as a weighted average, weights being the ratio of individual 

demand means to the total mean demand. That is, 

Note that the weights do not add up to 1, in general, since / may not include all classes. 

This error is the average rate of demand which is not satisfied on time although promised 

by the target service level (all customers combined). 

We also define a maximum percent error as 

em = max{(ojf — a;)}xl00. 

Since there is an error in service levels due to simulation, in calculating es and em, 

instead of .a^s we used aj's, in order to isolate the error for the heuristic. If there were 

no simulation error, we would have ai = a\ for all i, since the relaxed service problem 

gives service levels exactly at targets. ' 

As an example, we give some detailed results for the moderate service industry at a 

lead time of 6 in Table 2.1. The table shows the order policy, S, and the service levels 

achieved by the heuristic allocation for three different problems (2, 5 and 10 customers). 

Among the three service columns, the ones in the middle are the services delivered by 

the optimal allocation-order policy when negative allocations are allowed (a\). Since 

we know that theoretically they must be equal to the targets, the apparent differences 

between them and the target levels are due to simulation error. If we compare, then, the 

first two columns, we see that the service levels achieved by the heuristic are very close 

to the targets. The fact that these services are delivered by a policy whose inventory 

cost is known to be at the lower bound is quite pleasing. 
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Number of Demand Demand Order SERVICE L E V E L S 
Customers Mean St.dev. Policy S Heuristic ( a,-) Relaxed (a\) Target (a) 

2 5000 1500 41,282 0.2180 0.2046 0.2000 
1000 300 0.9563 1.0230 1.0000 

5 5000 1500 58,232 0.2121 0.2101 0.2000 
2000 600 0.4231 0.4202 0.4000 
1000 300 0.6285 0.6304 0.6000 
500 150 0.8238 0.8405 0.8000 
100 30 1.0102 1.0506 1.0000 

10 5000 1500 113,463 0.2133 0.2133 0.2000 
4000 1200 0.3199 0.3199 0.3000 
3000 900 0.4266 0.4266 0.4000 
2000 600 0.5329 0.5332 0.5000 
1000 300 0.6391 0.6399 0.6000 
800 240 0.7451 0.7465 0.7000 
600 180 0:8511 0.8531 0.8000 
400 120 0.9551 0.9598 0.9000 
200 60 1.0067 1.0131 0.9500 
100 30 1.0581 1.0664 1.0000 

Table 2.1: Heuristic performance for moderate service industry (L = 6). 
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We give a summary of the performance of our heuristic for all the test problems in 

Figures 2.2, 2.3, 2.4. From Figures 2.2(a), 2.3(a), 2.4(a), the average error is no more 

than 3% in all cases. With 5 or 10 customer classes these errors are within 0.5%. Figures 

2.2(b), 2.3(b), 2.4(b) show that even the maximum errors are within 4%, except for group 

2 with 2 customers and short lead time in which case it gets close to 9%. 

In general, as the number of customer classes increases, we tend to have better per

formance. The reason for this is simple portfolio effect or a kind of risk pooling that 

occurs among the customer classes. The more customer classes, the more likely to ob

serve a balancing effect among the demands of classes so that a dramatic deviation of 

the total demand received from the expected amount is less likely to occur. Due to the 

same reason, a longer lead time results in an increase in the performance. 

We did not report the costs because we know that theoretically the average cost of 

the heuristic is always at the lower bound as we mentioned earlier. 
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2.5 Conclusions and Remarks 

In this research, we developed a heuristic allocation-order policy for a periodic review 

inventory problem with multiple customer classes each of which demands a different ser

vice level. Our heuristic has a myopic nature and does not require extensive calculations 

and thus is easy to apply in practice. It links the cost and service problems by utilizing a 

correspondence that exists between their relaxed versions. First, it converts the service 

problem which is difficult to solve to a an easier cost problem. Then, it solves this cost 

problem myopically. It uses this myopically optimal allocation policy of the cost problem 

for the service problem. As for the inventory replenishment policy, it uses the optimal 

order policy of the relaxed service problem. Therefore, it delivers an inventory cost at 

the lower bound. Although, it may fail to satisfy the service constraints, our numerical 

tests showed good performance. 

We tested the heuristic in a fairly wide range of problems using simulation. The 

results showed that the heuristic delivers services which are satisfactorily close to the 

target levels for practical purposes. 

Our results are valid for both finite and infinite horizon problems and can easily 

be extended to nonstationary demand and service targets in the case of finite horizon. 

Extensions to problems with stochastic lead times, multi-echelon problems (especially 

one-warehouse, multi-retailer systems) and continuous review inventory problems would 

be exciting research topics. 

We also illustrated the inconsistency between the holding plus backorder cost min

imization with linear backorder costs and holding cost minimization with service con

straints in case of multiple customer classes. We showed that quadratic backlogging costs 

have enough flexibility to establish a one-to-one mapping between these two problems. 
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Figure 2.2: The performance of the heuristic (2-customer problem). 
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Figure 2.3: The performance of the heuristic (5-customer problem). 
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Figure 2.4: The performance of the heuristic (10-customer problem). 



Chapter 3 

New Optimal Policies for A Unit Demand Inventory Problem 

Abstract 

In this research we analyze the classical single-echelon, single-product, unit demand, 

continuous review inventory problem with full backlogging where the interdemand times 

have a general stationary distribution with increasing failure rate, and are independent. 

Orders arrive after a fixed and known lead time. The costs of backlogging and inventory 

carrying are both linear in time. The objective is to minimize long run average cost. 

If there is no fixed cost for placing an order, we prove that a Delay ed-(s-l,s) policy is 

optimal in general. We observe, through some numerical examples, that the classical 

(s-l,s) may perform significantly poorer than the optimal policy for demand processes 

other than Poisson. In case of a fixed order cost, we show that a Delayed-(s,S) policy is 

optimal and we give an algorithm to calculate optimal values for the reorder level s, the 

lot size Q=S-s, and the delay. 

70 
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3.1 Introduction 

We study a classical inventory problem where we have a single-echelon and a single-

product for which the demand arrives in single units. Interdemand times are assumed to 

have a general stationary distribution with increasing failure rate and are independent. 

The review is continuous and unmet demand is fully backlogged. There is no cost for 

placing an order which arrives after some fixed lead time. The backlogging and inventory 

holding costs are linear in time. Our objective is to find an optimal inventory policy so 

as to minimize the long run average cost. 

For this and more complicated problems it has been common to assume that the 

demand is generated by a Poisson process, perhaps due to the optimality of (s-l,s) policy. 

This is a simple "sell one buy one" policy which is also called one-for-one order policy 

in the inventory control literature. It may also be because the Poisson distribution fits 

demand data well in some practical cases. As mentioned, it is well known that an (s-l,s) 

policy is optimal for this problem when demands are generated by a Poisson process (i.e. 

interdemand times are exponential). Although there is no proof of its optimality for other 

demand processes, this policy has been analyzed in general settings by several authors 

with the belief that its performance would be satisfactory. Another factor has been 

that (s-l,s) policies are easy to apply in practice. The common opinion that the actual 

optimal policies may take a very complicated form and would probably not provide much 

improvement over (s-l,s) policies has discouraged researchers to look for one, further. 

Thus, two approaches are typically taken: Either a Poisson demand is assumed or order 

decisions were restricted to occur only at demand arrival times. Both assumptions lead 

to the optimality of (s-l,s) policies. Most of the research prefered focusing on how to 

calculate the optimal value for s and various quantities, efficiently. Especially when there 

is fixed order cost, in which case an (s,S) policy is used, efficient calculation of optimal 
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values for s and S has received significant attention (see [27, 28, 34, 35, 38, 112, 121, 122]). 

Croston [18] gives conditions under which a slow moving item should not be stocked 

due to unprofitibility or an order-to-demand policy should be adopted when the arrival 

times of customers, and their demands are random. He also provides optimal replenish

ment levels when the item has enough demand so that holding some amount of inventory 

is more profitable than order-to-demand. Gross and Harris [42] study an (s-l,s) policy 

where the lead times depend on the amount of outstanding orders, and the demand is 

Poisson. 

Sivazlian [105] studies an (s,S) inventory policy under the assumptions that the de

mands arrive in single units and the interdemand times are random with a general dis

tribution, when full backlogging of unsatisfied demand is allowed. He shows that the 

limiting distribution of the inventory position (on hand + on order - backlog) is discrete 

uniform over {5 + 1,5 + 2 , S } , regardless of interdemand time distribution. This result 

allows one to calculate some common steady state measures such as the average cost, and 

the probability of stockout, etc. Then, he calculates the optimal reorder level and the 

optimal lot size Q — S — s, when the delivery of orders is instantaneous. For the same 

problem with positive delivery lag, Sahin [83] provides necessary and sufficient conditions 

for s and S to be optimal. He gives an approximation for the optimal policy which is 

easy to compute. More recently, Zheng and Federgruen [122] provided an easy way to 

calculate the optimal s and S values using the uniformity of the inventory position at 

steady state. 

Feeney and Sherbrooke [36, 37] studied an (s-l,s) inventory policy under compound 

Poisson demand and random lead times with an arbitrary distribution. They showed 

how to calculate the steady state probabilities for the number of units on order in both 

full backlogging and lost sales cases. For the same problem with full backlogging, and 

exponential lead times, Higa et al [49] calculated the steady state distributions of waiting 
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times of backorders. Later, Sherbrooke [100] derived these distributions under the as

sumption of constant lead times and compared the average stocks held and probabilities 

of stock-out for both cases of constant and exponential lead times. As shown in earlier 

works by Feeney and Sherbrooke [37] and Hadley and Whitin [45], the steady state dis

tribution of stock on hand at a random time depends only on the mean lead time but not 

its distribution, in the case of an ordinary Poisson process. Kruse [60] provides a more 

accurate way of calculating these distributions for Poisson demands and random lead 

times with a general distribution using results known from the infinite-server queuing 

problem. Having these distributions enables one to calculate an optimal value for s, long 

run average cost and various service measures such as the probability of stock-out, or the 

probability that a randomly arriving customer waits no longer than a given time, etc. 

Schultz [91] considers a continuous review, constant lead time problem with general 

interdemand distributions and full backlogging. He finds the conditions under which no 

batching of orders (i.e. an (s-l,s) policy) is optimal as opposed to a batch order policy. 

He gives examples with the compound Poisson demand. 

There is also some work in the literature which combines inventory control of slow 

moving spare parts with optimal maintenance. Among these are [1, 31, 56, 77, 79]. 

In the case of a general demand process for slow moving items, the first work which 

proposed an alternative inventory policy to an (s-l,s) policy, to our knowledge, was pub

lished fairly recently by Schultz [92]. He assumed a general interdemand time distribution 

with increasing failure rate, and introduced the concept of delaying the placement of an 

order. He considered a problem in which demands arrive in single units, and in case of 

shortages, emergency shipments can be made at a premium cost, or the closest unit in 

the pipeline can be expedited at a cost either fixed or proportional to the remaining lead 

time of the unit. Both ways make it possible for the unit to arrive instantly so that there 

are no lost sales incurred. He studies a (0,1) policy with a delay in order shipment. That 
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is, a single unit is held in the inventory and whenever this unit is sold, a shipment of a 

replenishment order is scheduled at a future time. If there is a demand before the arrival 

of the unit in the pipeline, an instant delivery at a premium charge is made to satisfy 

demand. The question is to calculate an optimal delay for scheduling the shipment so 

as to minimize long run average cost which consists of a linear holding cost of a unit 

in stock and a penalty cost due to emergency shipment or expediting of a unit. This 

model is applicable when instant delivery or expediting is feasible. Furthermore, it would 

give a superior policy when the holding cost rate is relatively close to the shortage cost 

rate, which makes holding no more than one unit in stock reasonable. However, more 

often than not, holding more than a single unit in stock may be needed for slow mov

ing items especially when lead times are long relative to average time between demands 

and/or when shortage costs are significantly higher than holding costs. Moreover, there 

are cases in which instant delivery may not be feasible and backlogging may be the only 

feasible alternative. Thus, Schultz's model does not address a large set of problems which 

are common in practice. 

Our model differs from Schultz's in the following ways: 

1. We assume full backlogging of unsatisfied demands. 

2. We allow any amount to be held in stock. 

3. We calculate shipment delays dynamically by continuously updating the distribu

tion of time until next demand. 

4. We prove that a Delayed-(s-l,s) policy is optimal. 

5. We extend our results to the problem with fixed order costs and prove that a 

Delayed-(s,S) policy is optimal. 

In order to take a different view, one would have to have a good reason to give 

attention to a wider class of policies. After observing a characteristic of the class of 

(s-l,s) policies mentioned by Axsater [4], we came to understand that perhaps there is 
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an optimal policy that is not so difficult to calculate and applicable under a more general 

set of assumptions. Axsater observes that if the holding and backlogging cost rates are 

linear then there is a one-to-one correspondence between orders and demands under an 

(s-l,s) policy. This is an observation that was also made by some earlier researchers. 

Derman and Klein [21, 22] mention that if the expected utility function of a unit of 

inventory drawn out of a stockpile of inventories is a nonnegative concave decreasing 

function of age of the unit, then a first-in-first-out order of inventory depletion is optimal. 

Hanssmann [46] shows that for any concave expected utility function a FIFO inventory 

depletion is optimal. In other words, if the expected cost of a unit in stock is a convex 

increasing function of age of the unit, then a FIFO depletion policy is optimal. This 

observation results in an important optimality property of one-to-one correspondence 

between demands and units ordered in a problem where we have full backlogging. That 

is, anytime we place an order, we know that this unit will be consumed after all older 

units have been consumed. This means we know, at the time we place an order for an 

item, which demand in the future will take it. It is this optimality property that allows 

us to find an optimal replenishment policy for a more general set of interdemand time 

distributions than just the Poisson process. 

In the next section we will present our approach in three stages and prove that what 

we call a Delayed-(s-l,s) is an optimal policy under the assumption that the interdemand 

times have any general distribution with increasing failure rate. We first calculate an 

optimal policy for the first demand to come and ignore others. Then, we extend the 

result to the case of N demands. Finally we generalize this result to the infinite horizon 

case. In Section 3.3, we give numerical examples for normal interdemand times in order 

to show that this new optimal policy can outperform the usual (s-l,s) significantly in a 

wide range of problem parameters. Finally, in Section 3.4, we extend our results to a 

problem with fixed order cost and prove that a Delayed-(s,S) policy is optimal under the 
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IFR assumption. We also show how to calculate the optimal delay and give an algorithm 

to calculate the optimal lot size Q = S — s. 

3.2 A New Optimal Policy 

Suppose demands come in single units and the times between successive demands are 

independent and identically distributed random variables with a continuous probability 

distribution. Unmet demand is fully backlogged and replenishment orders arrive after a 

fixed time L. Each demand unit backlogged costs p ($/time) and each unit held in stock 

costs h ($/time). The objective is to minimize long run average cost per time. 

First, let us explain why one-for-one policies can not be optimal for this problem in 

general. Consider a product which is demanded fairly infrequently by a single customer. 

Suppose a product arrives in stock after a short lead time when a replenishment order is 

placed. Then, having just sold one such product, the chance of receiving another demand 

within a replenishment lead time may be very small. In this case, if we follow a one-

for-one policy and place an order immediately after a sale, this order may have to wait 

long until a demand arrives, incurring a significant holding cost. A better alternative 

may be to wait for some time and place an order when a demand looks relatively more 

likely to arrive. This could be a good alternative especially when waiting gives us more 

information about the arrival time of a demand. This may typically be the case in many 

practical problems. Clearly, however, when demand is Poisson, the interdemand times 

(i.e. time between two successive demands) are exponential and no information is gained 

by waiting as the distribution of the remaining time until arrival will not change by 

waiting. This is basically the reason that a one-for-one policy is optimal for Poisson 

demand. For more general interarrival distributions this need not be the case and thus 

waiting until some critical time when demand becomes more likely to arrive may be wiser. 
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Therefore, in order to find a better policy one has to allow order placement at any point 

in time rather than at epochs of demand arrival only. As we will show, it turns out that 

a one-for-one policy with some delay in placing a replenishment order is optimal for a 

more general class of interdemand time distributions. 

Now, we develop a new technique to search for an optimal order policy in continuous 

time. In our approach we break down the problem into stages in each of which we focus 

on individual demands. In the first stage, we examine a very simple problem where there 

is only a single demand to arrive at a random time in the future, identify the optimal 

policy and show how to calculate it. In the second stage, we assume only demands are 

to arrive in the future in single units and solve the problem. In the final stage, having 

observed a pattern in the previous stages, we extend our approach to the infinite horizon 

problem. 

3.2.1 Single Demand Case 

Suppose we start at time zero with no stock on hand and on order and there will be 

a single demand for one unit in the future. Let X be the arrival time of this demand, 

which is a positive random variable with cdf pdf <f>(x) and mean pi. Since there 

is only one demand there will be only.one order. Our objective is to minimize the total 

expected cost for this demand. Clearly, the universal set of all policies is characterized 

by a single number t, the time that single order is placed. If we can determine the best 

time to place the order, we have an optimal inventory policy. 

Now, we start at time zero. Suppose we choose to order immediately. That is, our 

policy is t = 0. The expected cost of this policy as a function of lead time L is given by 

g{L) = hE(X - L)+ + PE(L - X)+ 

= (h + p)E(L - X)+ + h(p - L) 



Chapter 3. New Optimal Policies for A Unit Demand Inventory Problem 78 

= (h + p) f dx + h(p - L) (3.1) 
Jo 

where h and p are the holding and backlogging cost rates, respectively. 

Note that ordering at time zero can not be optimal if delaying the order until some 

time t > 0 gives a lower expected cost (i.e. g(L + t) < g(L) for some t > 0). 

If we decide to wait until some time t, two events may happen: The demand may 

arrive before time t in which case it will obviously be optimal to immediately order. 

Alternatively, the demand may not arrive until after time t in which case the distribution 

of time until a demand arrives will have to be revised. Given that there is no arrival by 

time t, we denote the remaining time until demand arrival by Yt, its distribution function 

by $ i ( y ) , and its mean by pt- That is, we have $ t(y) = P{X — t < y \ X > i} , or 

»(y+_.) - *( t ) 

where $(.) = 1 — <&(•)• This is called the failure rate in reliability theory and 

r Mv) 
y 

gives the hazard rate or instantaneous failure rate (see Barlow and Proschan [9], pp.23). 

Note that since $(.) is assumed to be continuous, so is $*(•)• 

The expected cost, C(t), of waiting to place an order until time t or the demand 

arrival X whichever is earlier, can be written by conditioning on the two possible events 

{X < t} and {X > t} as follows: 

C(t) = <S>(t)Lp + $(t)[hE(Yt-L)++PE(L-Yt)+] 

= <S>(t)LP+$(t)l(h + p) f My)dy + h(ut-L)} 
Jo 

Noting that 

^ = + * ) + ] 
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and 

/ $t(y)dy = f 
Jo Jo 

$ ( y + £ ) - $ ( * ) 
dy 

1 [E(L + t-X)+ -E{t-X)+ -$(*)£] 
, . • m 

the expected cost can be written as 

C(t) = hE(X-L-t)++PE{L + t-X)+-PE(t-X)+ 

= (h + p) dx + h(p - L - t) - pj §(x)dx. (3.2) 
Jo Jo 

Differentiating with respect to t, we have 

C\t) = (h + pML + t)-h-p$(t) 

= p$(t) - (h + p)$(L + t) 

= -h$(t) + {h + p)$(t) - (h + p)$(L + t) 

= » w M + ( * + r t * w - t y + t ) i 

= $ ( t ) P + p)$«(I)-fc]. 

Setting C(£) equal to zero and solving for t, the solution satisfies 

<*«(/,) = -r^- (3.3) 
n + p 

Note that (3.3) may not have a solution or may have multiple solutions, in which case 

the expected cost will have multiple minima or maxima. Thus, we will focus on the 

interdemand time distributions with increasing failure rate below. 

Increasing failure rate: Now, suppose the interdemand time has increasing failure 

rate (IFR), that is $t(y) increases in t for all y > 0. The following establishes the optimal 

time to order. 
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Proposition 3.1 If the time until demand arrival has a continuous cdf which is IFR, 

then the optimal time to order is 

0 if 1fc<*(L) 

fopt _ ) 

where t* solves (3.3). 

mm in{t*,X} if $(/,) < ^ < l i m ^ 0 0 $ i ( X ) 

X if l i n w $t(L) < h 
h+p 

Proof: 

If $„(£) = $(L) > then due to IFR assumption $ f (L) > ^ for all t > 0. 

Thus, the expected cost increases in t for all t > 0. That is, the optimal policy is to order 

immediately at time zero. 

Similarly, if < < l i m * - ^ <&t(L) then, due to the continuity of in t and 

IFR assumption, (3.3) has a unique solution, t*. Note that the expected cost decreases 

for all t < t* and increases otherwise. Then, t* must be a global minimum. Therefore, it 

is optimal to defer placing an order until t* or X, whichever is earlier. 

Finally, if r\mt->oo$t(L) < then due to IFR assumption, we have <&t(L) < 

for all t > 0. Thus, the expected cost decreases for all t > 0. That is, delaying the order 

until the demand arrival is optimal. • 

It can easily be seen that if the interdemand times are exponential, the left hand 

side of (3.3) becomes $(L). Thus, for all t the expected cost is either decreasing (if 

< o r increasing or constant for all t. Then, the optimal time to order for 

Poisson demand is 

topt = < ^ ^ ^ ( ^ ) ^ h+p 

\o if 

In case $(L) = any time between zero and X is an optimal order time. 
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3.2.2 Case of N Demands 

Now, we generalize our approach to solve the problem for N demands with total cost 

criterion. We will see that for every demand there is an optimal time to place an order 

for its unit, and this optimal time will have the same form which will repeat itself for 

subsequent demands. This will help us solve the infinite horizon problem. 

We assume iV-demands are to arrive and our objective is to minimize the total ex

pected cost for them. Before we try to write down the expected cost, note that a first-

come-first-served policy is optimal simply because h and p do not depend on time or 

demand. Thus, there is no incentive to backlog a demand in order to satisfy the next one 

to come as both are identical in terms of unit costs (see [21, 22]). Since we know that 

the first order placed will be given to the first demand to arrive and the second to the 

second demand, and so forth, the expected total cost can be written as the sum of the 

costs incurred for each demand. Furthermore, choosing the best time to order for each 

demand separately will minimize the total expected cost. 

We will use the following notation: 

• Xj\ jth interdemand time. 

• Tn = Y^j=i Xj '• time of nth demand. 

• = Y^j=k+i Xj '• time between kih. and nth demands. 

• Yt: remaining time until first demand arrival given it has not arrived by time t. 

Prob{X - t + Tl < y | X > t}: cdf of Yt. 

P r o b { r n < y } : cdf of Tn. 

t°p : optimal time to place the jt 'th order. 
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Note that T% is equivalent to Tn-k in distribution and independent of X\, ...,Xk and Yt. 

Now, let s be such that 

exist a finite integer s which satisfies (3.4). 

Now, we will find an optimal policy through the following propositions. We assume 

N is large enough so that s < TV. Otherwise Proposition 3.2 below will suffice to prove 

that it is optimal to order TV units at time zero. 

The propositions below assume that interdemand times, Xj,j = 1,2, ...,7V are IFR, 

with continuous cdf. It is well known that sum of IFR random variables is also IFR 

Proposition 3.2 For demands 1,2, ...,s — 2,5 — 1, it is optimal to order at time zero 

(i.e. t°n

pt = 0forn<s). 

Proof: We use induction. For the first demand (n = 1), we have shown in single 

demand case that if $l(L) > j ^ , then €£l = 0. Now, assume t°*li = 0 for some 

n — 1 < 5 — 1. Then, for the nth demand unit, let us find the optimal policy. Note that 

if we wait until X\, we will have to order immediately at X\. This is because at time 

X\, the problem for the nth demand is equivalent to that of the n — l'st demand at time 

zero and 2 ° ^ = 0 by the assumption of induction. Thus, we know that 0 < topt < Xi. 

More specifically, the optimal time to order is of the form min{t,Xi}. Conditioning on 

the two events {Xi < t} and {Xi > t}, the expected cost of this policy as a function of 

t can be written as 

(see [9], pp.36). 

Cn(t) *{t)[hE(Yt + TI - L)+ + PE(L -Yt- Ti)+] 

+m[hE(n-L)++PE(L-T^}. 
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Note that the expression in brackets in the second term is equal to C„_i(0). Define 

g»(L) = hE(Yt + TI - L)+ + PE(L -Yt- Tn

1)+. (3.5) 

This is the expected cost of ordering at time t, given that no demand has arrived until 

t. Then, we have 

Cn(t) = $(t)g?{L) + $(i)Cn_x(0). (3.6) 

Equivalently, 

Cn(t) = hE[{Xi-t)+ + T]i-L]++pE[L-(X1-t)+-T*]+ 

= (h + p)E[L - (X, - t)+ - T*]+ + h{E{X1 - t)+ + fi(n - 1) - L) 
rL rL+t pL—x+t 

= (h + p)[$(t) / $n-1{y)dy+ / / ^n-\y)(j)(x)dydx] 
Jo Jt Jo 

+h[np-t-L+ / $(x)dx] 
Jo 

Now, differentiating with respect to t, we have 

Cn'(t) = (h + P)(^(t)Jo $n-l(y)dy 

+ / ^n-1(y)dy(j)(L + t)- J $n-l{y)dy<f>(t) 

rL+t \ 

+ J ^ ( L - x + WWdxj 

rL+t 

/

L+t 

-x + t)<f>{x) dx - h$(t) 

rL+t ' 6(x) 

= (h + p)*{t)J *»-\L-x + t)^+dx-h*{t) 

Note that the integral in the last expression is $"(X). Then, we have 
Cn'(t) = ^(t)[(h + p)^{L)-h]. (3.7) 
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But, we know from the assumption of IFR that $"(£)• > $n(L) > ^ for all n < s 

and all t > 0. Then, Cn(t) is increasing in t > 0. Thus, topt = 0. This completes the 

induction and the proof. • 

Proposition 3.3 For demand s, the optimal time to order is 

toPt = I ™n{nM if ifc<lim^- *'t(L) 

I Xi otherwise 

where t = t* solves ̂ s

t(L) = 

Proof: From Proposition 3.2 we know that for the s — 1st demand it is optimal to 

order at time zero. Thus, the optimal time to order for sth demand must be at or before 

X\. This is because, if we wait until X\ to order for the sth demand, we will have to 

order at Xi to be optimal as the problem of sth demand at time Xi becomes identical 

to the problem of s — 1st demand at time zero. Thus, the form of the optimal policy is 

min{t,Xi}. Then, the expected cost of this policy Cs(t) will be given by (3.6) for n = s. 

Thus, from (3.7) we have 

C;(t) = Q{t)[{h + p)*'t(L)-h]. 

But, l i m ^ 0 $ ? ( £ ) = ®S(L) < j ^ . If we have 

h lim $s

t(L) > 
t—+oo h+p 

then, since $*(L) in continuous in t, there exists a finite time t* which satisfies 

W) = iH-p ( 3- 8) 

Note that for all t < t*, we have Cs\t) < 0 and thus Cs(t) is decreasing. Similarly, for 

all t > t*, Cs(t) is increasing. Therefore, t = t* is a global minima for Cs(t). Hence, the 

optimal time to order for demand s is 

t°f = min{t*s,Xi}. (3.9) 
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K xfe > l i n w , there is no solution to (3.8) and Cj(i) > 0 for all t > 0, which 

means it is optimal to wait until the arrival of the first demand. Thus, we have t°pt = Xx. 

• 

P ropos i t ion 3.4 For demands s + j, j = 1,2,3,..., it is optimal not to order until Tj. 

Proof: Define 

Note that gn~1(y) is the cost of ordering for demand n — 1 at time t = 0 (or for demand 

n at time t = Xi) with a lead time of y. The derivative with respect to the lead time is 

dan~l(v) 
y d =(h + p)^n~1{y) -h<0 for all y < L, when n > s. 

Hence, g^iy) > g71'1^) for all y < L. 

Now, suppose we have waited until some time t, and no demand has arrived (t < X\). 

Then, from (3.5), the cost of ordering now (at time t) for the nth demand (n > s) is 

g?{L) = hE[(T' + Yt-L}++pE[L-n-Yt] + 

= hE[Tl - (L - Yt)}+ + pE[{L - Yt) - T'n] 

= E[gn-\L-Yt)] 

> 9n-\L) 

= C7n_!(0). 

The inequality follows because gn~l(L — Yt) > g71*1^) for all realizations of nonnegative 

random variable Yt. 

The above implies that having waited until any time t < X\, the cost of ordering at 

time t is always higher than the cost of waiting until X\. Therefore, topt > Xi for all 

hE[Tl - y}++ pE[y - Tl\ 
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n > s. Furthermore, let us use a simple induction. That is, for j = 1 we have just shown 

that £°^j > T i . Assume t°^- > Tj for some j > 1. Now, for j + I, we know t°^-+1 > T\. 

But, at t = T i , the problem of demand s + j + 1 is equivalent to the problem of demand 

5 + j at t = 0. Thus, £°^- + 1 > T j + i . • 

Proposition 3.4 implies that for demands s + l , s + 2 , t h e optimal policy is not to 

order until s demand units remain to its arrival, at which time it is optimal to wait as 

long as t* or the next demand arrival, whichever is earlier. 

Therefore, propositions 3.2, 3.3, 3.4 establish that in general the optimal order policy 

will be given by 

toPt ( TJ+mm{t*s,XJ+l} if j = 0,l,...,N-a ^ ^ 

\ 0 if j = - s + l , - s + 2 , . . . , - l . 

3.2.3 Infinite Horizon Case 

Now, we see that t* does not depend on n. Therefore, the optimal order policy takes the 

same form for sth demand and all others to come later. Therefore, the optimal expected 

cost for each demand to come after the s — 1st will be the same. Since, we can ignore the 

effect of the initial 5 — 1 demand units for the -infinite horizon, the long run average cost 

will be equal to the expected cost of a single such demand. Thus, the long run average 

cost per time can be calculated by taking the time between the two successive demands 

as a cycle and cost per item as cost per cycle. Then, using the basic Renewal Reward 

Theorem (see Wolff [119], pp.60), the long run average cost per time can be calculated 

by dividing the expected cost per cycle by the cycle length. Thus, the average cost per 

time as a function of s and t is 

AC(s,t) = C.(t)/p. 

Note that the cycle time is not .affected by the the order policy (this is mainly due to 
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the full backlogging assumption). Therefore, minimizing total expected cost is equivalent 

to minimizing the expected cost per cycle. The policy we have here is like an (s-l,s) or 

one-for-one order policy except with some delay of at most t for placing an order. We will 

call this a Delayed-(s-l,s) policy, and denote it by (s, t) for a delay of t. Since every (s-l,s) 

policy can be viewed as a delayed policy with a zero delay, (s-l,s) policies constitute a 

subset of Delayed-(s-l,s) policies. 

The optimal values of s and t can be calculated from (3.4) and (3.8). Also note that 

if s satisfies (3.4), either (s-l,s) or (s-2,s-l) is an optimal one-for-one order policy and the 

cost of either is no smaller than the cost of the optimal delayed policy (s,t*). 

3.3 A n Example with Normal Interdemand Times 

The theory in the previous section gives an optimal inventory policy for a wider class 

of problems with unit demand than just Poisson demand. We know that this policy 

would do better than regular one-for-one policy unless interdemand times are exponential. 

However, an important question is whether the added complexity of introducing a delay 

and not restricting ordering at demand epochs is worth all the trouble in the case of 

general (non-exponential) interdemand times. In other words, can widely used (s-l,s) 

perform as well as the Delayed-(s-l,s) for more general interdemand times? 

In order to answer this question, we will present an example. We assume interdemand 

times are normally distributed with an appropriate standard deviation to mean ratio so 

that the chance of negative interdemand times is negligible. We varied this ratio as well 

as other critical parameters such as the lead time L, holding cost rate h and backlogging 

cost rate p. Since the rate of cost reduction will not be affected by nominal values of h 

and p, we will take the ratio p/(p + h) as a variable parameter. Since the same applies 

for the relative values of L and p, we let p = 10, and vary L and standard deviation a. 
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Let 8 = oIp denote the coefficient of variation. Here are the values used: 

• 6 = (0.1, 0.2, 0.3) 

• L = (5, 25, 75) 

For each combination, we calculated the optimal Delay ed-(s-l,s) and (s-l,s) policies and 

their costs for a grid of values of the ratio p / ( p + h) in the interval (0,1). The results are 

summarized in Figure 3.1. The savings are defined as 

Cost( Del ayed-(s-l,s)) - Cost(s-l,s) 
%Savmg = . 

Cost(s-l,s) 
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Figure 3.1: A comparison of Delayed-(s-l,s) and (s-l,s) for normal interdemand times. 
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It is surprising to see how poorly (s-l,s) performs in the majority of cases. Interest

ingly, for relatively smaller values of the standard deviation, the performance is poorer. 

This may sound counterintuitive, but it is a good illustration of the non-optimality of (s-

l,s). Suppose the standard deviation is near zero. That is, we know fairly well when the 

demand will arrive. In this case, it is trivial to know when it is optimal to place an order. 

Let us take a lead time of L = 5. If the last demand has just arrived and we know that 

the next demand will arrive more or less 10 units of time later, we will order after a delay 

of 5 so that both stock ordered and the demand will come at the same time enabling us to 

avoid incurring any holding or backlogging cost. However, an (s-l,s) policy would make 

us order immediately after observing a demand in which case we would incur a holding 

cost of 5h, or when the next demand arrives in which case we would incur a backlogging 

cost of 5p. When the variance is eliminated, (s-l,s) becomes completely unacceptable. 

But, one would think that when the uncertainty is reduced, a stochastic model should 

converge or link to its deterministic version. An optimal (s-l,s) policy for a stochastic 

model will not converge to an optimal inventory policy of its deterministic version when 

we eliminate the variance. It is easy to see, however, that a Delayed-(s-l,s) policy has 

this link and thus remains optimal when we reduce the variance of interdemand times 

to zero. Thus, Delay ed-(s-l,s) policy also closes the conceptual gap that exists between 

stochastic and deterministic problems for the classical one-for-one policy. 

One may think, from the above discussion, that when lead time is an integer multiple 

of mean interdemand time, the performance of (s-l,s) may improve, as it converges to 

an optimal deterministic policy when uncertainty is eliminated. However, this does not 

seem true, as our further numerical studies with L = 10,30,80 showed similar savings. 

Figure 1 also indicates that as lead time increases, cost reduction decreases. This is 

because as the optimal stock level increases, the problem becomes one with a relatively 

high demand item (i.e. more demand during lead time) in which case the interdemand 
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times are no more significantly long compared to the lead time. This reduces the impact 

of delaying the placement of orders. . 

As for the effect of cost parameters, although the greatest reduction seems to occur 

consistently when holding and backlogging cost rates are comparable, we think this was 

due to the consistent phase difference between the mean interdemand time of 10 and 

L — 5, 25, 75. When we did the same calculations for L = 10, 30,80, the biggest reduction 

occured consistently for the extreme values of p/(p + h). 

3.4 The Inventory Problem With Fixed Order Cost 

We will use the same method as we did in the case of no fixed order cost. Our objective is 

to minimize the long run average cost, and thus we can choose to start with the demand 

unit s, first (here s is defined by (3.4)). We assume the demand units l,2,...,s-l are 

satisfied with some order policy which can be ignored as their cost will be insignificant 

in the long run. 

Since there is a cost of K everytime we order regardless of the amount we order, there 

will be a saving on this fixed cost if we choose to place the orders jointly. However, this 

will increase the expected cost of backordering and stock holding since we will not be 

able to order at the best time for each individual demand so as to minimize its individual 

expected cost as we did in the previous problem. We will rather have to choose a single 

order time for all of these Q demands. Due to this trade-off between the costs, we face 

two decisions: What size should the order be? When should the order be placed? 

Now, let us consider a joint replenishment for demand units s, s + 1 , s + Q — 1. If 

we chose to order for them separately at their optimal times given by (3.10), their total 

expected cost would be QK + QCs(t*). 

Suppose we have chosen to place an order for a lot of size C}, to be consumed by 
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demands s,s + 1, ...,s + Q — 1. We will seek to minimize the total expected cost of this 

lot. Later, we will look for an optimal lot size. 

Given that the order size is Q, the only problem which remains to be solved is when 

to place this order. If this time is t < Ti for instance, the total expected cost of the lot 

will be 
s+Q-l 

Note that the optimal order time cannot be earlier than t°pt or later than r^+g^. 

This is because all individual costs, Ci(t), will be decreasing if we wait until t°pt and 

increasing after t^Q_v Now, from the individual optimal order times in (3.10), we have 

0 = To < < Tx < * £ \ < T 2 < . . . < T Q _ ! < i f Q _ i ^ TQ-

where Tj is the time of j th demand as defined previously, with T 0 = 0. 

Let us consider ordering no earlier than TQ_I. Clearly, if we wait for some time r 

after Tg_i , two things may happen: We may receive the next demand before TQ_I + T, or 

we may reach TQ_I + r before the next demand. Now, if the next demand arrives early, 

the optimal action is to order immediately as the individual costs will all be increasing 

after time TQ. If we have waited for a duration of r and the next demand is yet to arrive, 

we place the order. Note that under this order policy, the individual expected costs of 

demands s, s + 1 , s + Q - 1 will be CS-Q+I(T), C S _Q + 2 (T), CS'(T), respectively. Then, 

denoting the expected total cost of this lot of size Q by TCo(Q, r) (the reason for using 

the subscript 0 will be clear later), we have 

s 

TC0{Q',T)= Y, C i ^ - t 3 - 1 1 ) 

i=s-Q+l 

Here unlike the case of no order cost, it is possible for i to be negative. This means we 

order a lot of size Q no earlier than the arrival time of stli demand, in which case we 



Chapter 3. New Optimal Policies for A Unit Demand Inventory Problem 93 

start backlogging some demands even before we order for their units. For instance, if 

s — Q + 1 = —2, this means the lot is ordered sometime between TS +2 and T S +3, and 

thus demands s, s + 1 and 5 + 2 are already backlogged when the order is placed. For 

negative i, C;(r) will have the same interpretation, however, the expected cost of policy 

(i — with delay r . That is, we wait until we have \i — 1| backorders and then place 

an order after a delay r , or when the next demand arrives, whichever is earlier. Notice 

that this order will always find a backlog when it arrives and thus no holding cost will 

be incurred. Thus, the expected cost for i < 0 will be 

Ci{T) = p(L — ip) + pE[min{r, X}] 

= p{L - ip) + pE[r - (r - X)+] 

= p[L + T-iu.-E(T-X)+] 

= p[L + r - i p - I $(x)dx]. 
Jo 

where X is an interdemand time with cdf and mean p,. The derivative of the 

expected cost is 

C\{T) = p-p^r) 

• = P$(T). (3.12) 

As for i > 0, the expected cost is given by (3.6). That is, we define the individual costs 

in (3.11) as 

N ( , \ $(TU(L) + $(T)C^(0) if » = 1,2,... 
M T ) = \ 

( p[L + r - i p - E(T - X)+] if z = . . . , - 2 , - 1 , 0 . 

In order to find the latest time until which we should keep waiting in case of not 

receiving the next demand, we simply minimize TCQ(Q,T) over r . Differentiating with 
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respect to r, from (3.7) and (3.12) we have 

s 

TC'0(Q,T) = *{T) Y [(h + PWT(L) - h]. 
i = s - Q + l 

where = 1 for i = ... - 2, -1 ,0 . 

Note that the sum is increasing in r due to IFR assumption. Thus, the optimal value 

of T for a lot size of Q is 

s 

T^KTQ^ if T Q Q , 0 ) = £ [{h + p)&(L)-h]>0 
i=s-Q+l 

TQ-I < TQ1 < TQ otherwise . 

We will show this to be true in general by induction. That is, suppose for some integer 

m > 1, we have 
s+m —1 

£ [(h + P)^(L)-h}>0. 
i—s — Q+m 

That is, the optimal time to order is TQ1 < TQ-M. Then, for m + 1, let us consider 

ordering in the interval [Tg_m_i, T<g_m]. If we choose to wait for some time r, in case of 

early demand arrival we know it is optimal to order immediately. Otherwise, we order 

when we reach r<g_m_i + r. Then, the expected total cost can be written as 

s + m 

TCM(Q,r)= £ C,-(r). 
i—s—Q+m+l 

Differentiating with respect to T , we have 

s+m 

TCm(Q,T) = <f>(T) £ [(/i + p)$;(L) - h]. 

i=s—Q+m+l 

Then, the optimal time to order will be 

s+m 

T°^<TQ_M_X if Y [(h + p)&(L)-h]>0 
i=s—Q+m+l 

T Q _ m _ ! < Tg p t < T g _ m otherwise. 
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This completes the induction. 

Thus, given a lot of size Q, let m(Q) be such that 

s+m(Q) s+m(Q)-l 

a(Q)= £ [(h+p)&(L)-h]<0< £ [(h+p)&(L)-h] = b(Q). (3.13) 
i-s-Q+m(Q)+l i=s-Q+m(Q) 

Then, the optimal time to order will be 

TQ-m(Q)-\ < Tg p t < r Q _ T O ( Q ) . 

More specifically, given (3.13), the optimal time to order a lot of size Q is 

T ° p t = m m { r g _ m ( Q ) _ 1 + TQ, TQ_m{Q)} (3.14) 

where at r = TQ we have 

s+m(Q) 

£ [ ( ^ + p ) ^ ( i ) - ^ ] = o. 
i=s-Q+m(Q)+l 

Now that we have calculated the optimal time to order given that for demands s, s + 

1, ...,s + Q — 1, a joint order of size Q is to be placed, we can turn to calculating an 

optimal lot size. The average cost per unit, when a lot of size Q is ordered at an optimal 

time, is given by 

AC(Q) = ^ - - W Q H i + ( 3 1 5 ) 

The next step is to calculate an optimal lot size Q. Once we find an optimal lot size, 

it is easy to see that it will be optimal to place an order of the same size for subsequent 

demands. This will give us an optimal lot size in the infinite horizon. Then, similar to 

the case of (s-l,s) in Section 3.2.3 let us define an interdemand time as a cycle, and the 

expected cost per unit demand as cost per cycle. Then, we can use the Renewal Reward 

Theorem in order to calculate the long run average cost per time by 

AC(Q)/u.. 
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H o w to Calculate an O p t i m a l Lot Size: When we increase the lot size to Q + 1, 

fortunately, we do not have to search for the optimal delay too long due to the following 

proposition. 

P ropos i t ion 3.5 If m(Q) is given by (3.13) for a lot of size Q, then for a lot of size 

Q + 1, m(Q + 1) is either m(Q) or m(Q) + 1. 

Proof: By definition m(Q + 1) satisfies 

s+m(Q+l) s+m(<3+l)- l 

a(Q+l)= [(h+p)&(L)-h]<Q< [(h+p)*i(L)-h] = b(Q+l) 
i=s-Q-l+m{Q+l)+l i=s-Q-l+m(Q+l) 

We know is nonincreasing in i. Then, the sums are also nonincreasing in m(Q). 

Now, let m(Q + 1) = m(Q) + 1. We have 

s + m ( Q ) + l 

a(Q + l)= J2 [(h + p)&(L)-h]<a(Q)<0. 
i=s-Q+m(Q)+l 

Then, if 

6(0 + 1)= Yl [(h + p)&(L)-h}>0, 
i=s-Q+m{Q) 

(3.13) is satisfied for Q + l, and thus proposition holds. Otherwise, let m(Q + l) = m(Q). 

We have 
s+m(Q) 

a(Q + l)= Y [(h + p)&{L)-h}<0. 
i=s-Q+m{Q) 

Also, 
s + r o ( Q ) - l 

0<b(Q)< Y [{h+p)&{L)-h] = b(Q + l). 
i=s-Q+m(Q)-l 

Then, the (3.13) is satisfied again, and thus the proposition holds. • 

From Proposition 3.5, the average cost for a lot size of Q + 1 is 
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Unfortunately, we have no proof for the unimodularity of AC(Q) in Q. This is 

because, for each lot size Q , we have a different T Q , and thus, values of C , ( T Q ) ' S will 

change by Q. Therefore, simple search methods for calculating an optimal lot size will 

not work. However, we will provide some upper and lower bounds for the optimal lot size, 

below. Although, we are not able to give any theoretical assessment of the performance 

of these bounds, they appeared to be quite tight in our numerical calculations. Now, we 

will present these bounds and an algorithm which utilizes them in order to calculate an 

optimal lot size. 

Clearly, the propositions 3.2, 3.3, and 3.4 imply the following order for all r > 0, 

T I > t*s and r 2 < t*: 

- > C s _ 2 ( r ) > C s_ 2(0) > GVxtr) > C s_i (0) > CS{TX) > CB{t% 

... > C s + 2 ( r ) > C s + 1 ( 0 ) > C , + 1 ( r ) > C.(0) > C s ( r 2 ) > C,(t;). (3.17). 

Also, from (3.17), we have the following lower bounds on individual costs for all r > 0: 

Ci(r) > C,(0) for i = ...,s - 2,s - 1. 

Cs(r)> CM) 

C,-(r)> C,-_!(0) for i = s + l,5 + 2,... 

Now, let us find a lower bound for the optimal lot size. Replacing all C^TQ) by their 

lower bounds in (3.15), we define a lower bound for average cost AC(Q) by 

E £ - q + m ( q ) + i cm + + E f f f f * c,-(o) + K 

; Q • (3-18) 

Note that ACLBi(Q) always has the Q — 1 smallest C;(0)'s and Cs(t*). Since C;(0)'s are 

fixed quantities, with respect to Q, it is easy to see that ACLB\(Q) is unimodal in Q. 

Let Q* be the optimal lot size which minimizes ACLB\(Q). 

ACLBAQ) 
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Propos i t ion 3.6 Let QLB be the biggest integer less than Q* + I, such that 

ACLBI(QIB - 1) > AC(QLB). 

Then, QLB is a lower bound for the optimal lot size. 

Proof: Since AC LB\{Q) is unimodal, we must have 

ACLB1{\) > ACLBi(2) > ... > ACLB^QLB - 1). 

Then, it is easy to see that 

AC(Q) > ACLBtiQ) > ACLBX{QLB - 1) > AC{QLB) for all Q — 1,2,..., QLB 1. 

This completes the proof. • 

Now, we will find an upper bound for the optimal lot size. Define 

x QAC(Q) + C*0 ACLB2(Q + 1) = - ^ 5. (3.19) 

where 

C*Q = mm{C7 s_ g + m(Q)_i(0),C7 s + m(Q) +i(0)}. 

Note from (3.17) that CQ is always nondecreasing in Q, since rn(Q) is nondecreasing 

from Proposition 3.5. From (3.16) and Proposition 3.5, rewriting the expected total cost 

for a lot size of Q + 1, we have 

A n / n l n E'=r(q|m(q)+i Ci(TQ+i) + min{Cs-Q+m(Q){rQ+1),Cs+m{Q)+1(T^+1)} + K 
AC(Q + l) - — 

Ej=^.(q|m(0)+1 C i ( T Q ) + mm{Cs-Q+m(Q)(r^+1),Cs+m{Q)+1(T^+1)} + K 

Q + l 
> Q AC(Q) + m m { C , ^ + m ( g ) - i ( Q ) , C s + m ( Q ) + 1 (0 )} 

Q + l 
Q AC(Q) + C*Q 

Q + l 
. = ACLB2(Q + 1) 

Then, ACLB2(Q + 1) is a lower bound for AC{Q + 1). 
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Propos i t ion 3.7 Let QUB be the smallest integer Q which satisfies 

AC{Q) < ACLB2(Q + 1). 

Then QUB is an upper bound for the optimal lot size. 

Proof: First, we can see from the definition of ACLB2(Q + 1) and the condition of 

the proposition that 

AC{Q) < ACLB2(Q + 1) < C*Q. 

Also note that CQ < CQ+1. Now, we will use induction. For Q + 2 we have 

(Q + 1)AC(Q + 1) + CQ+1 

AC(Q + 2) > ACLB2(Q + 2) 

> 

Q + 2 
{Q + l)ACLB2{Q + 1) + CQ+X 

Q + 2 
> ACLB2(Q + 1) 

> AC(Q). 

Assume ACLB2(Q + n)> ACLB2(Q + 1), for any n > 2. Then, for n + 1, 

(Q + n)AC(Q + n) + C*Q+n 

AC(Q + n + 1) > ACLB2(Q + n + 1) 

> 

> 

> 

Q + n + 1 
(Q + n)ACLB2(Q + n) + C*Q+n 

Q + n + l 
(Q + n)ACLB2(Q + 1) + C*Q+n 

Q + n + 1 
{Q + n)ACLB2(Q + l) + C*Q+1 

Q + n + l 
> ACLB2(Q + 1) 

> AC(Q). 

This completes the proof. • 

Now, based on these two propositions, we have the following algorithm for calculating 

an optimal lot size Q. 
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Algorithm: 

1. Calculate Q*. Q <— Ql, AC* <— AC{Q). 

2. Q <— Q-l. If (Q = 0 or ACLBi(Q - 1) > AC*) then go to 4 

3. If AC{Q) < AC* then (Q* ̂ — Q, AC* <— AC(Q)). Go to 2. 

I Q <— Ql-

5. Q < — Q + l. 

6. If ACLB2{Q) > AC* then go to 8. 

7. IfAC{Q) < AC* then (Q* <— Q, AC* <— AC(Q)). Go to 5. 

8. Stop. Q* is the optimal lot size and AC* is the minimum cost. 

We could have used ACLBi(Q) to calculate an upper bound as well as a lower 

bound for the lot size. However, our calculations showed that the upper bound given 

by ACLB2(Q) is much tighter. Table 3.1 shows the performance of the algorithm in 

terms of the bounds for an example problem with normal interdemand times. When we 

changed various problem parameters, the performance of bounds were similar. 

3.5 A n Example with Normal Interdemand Times 

In order to see how significant of a cost reduction Delayed-(s,S) policies would result 

in as compared to (s,S) policies, we have generated a set of test problems with normal 

interdemand times. We varied the coefficient of variation 8, the lead time L, and the 

order cost K. The values we used are: 

o 8 = ( 0.1, 0.2, 0.3 ), L = ( 5, 25, 75 ), K = ( 3, 10 ) 
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No-delay 
Optimal 

Delayed 
Optimal 

Optimal 
Delay Savings 

Lead Time p/(p+h) ..( s,Q) (s,Q) TQ QLB , QUB (%) 

5 0.10 (-3, 4). (-3, 5) 5.01 3 , 6 9.34 
0.30 (-1, 3) (-1 3) 3.72 2 , 3 1.66 
0.50 .(-1,4) (0, 3) 5.01 2 , 3 9.34 
0.70 ( °, 3 ) (1 ,3) 6.28 2 , 3 1.67 
0.90 ( 0, 6) (1 ,5) 5.01 3 , 6 9.34 
0.95 (1 ,6) (1 ,6) 4.48 5 , 6 6.06 
0.99 ( 1,14) ( 1,14) 3.92 11 ,14 2.41 

25 0.10 (-2, 5) (-1, 5) 5.00 3 , 6 8.04 
0.30 (1 ,3) (1 ,3) 2.76 2 , 3 1.02 
0.50 ( 1,4) (2 , 3) 5.00 •2 , 3 8.05 
0.70 ( 2 , 3) (3 , 3) 7.20 2 , 3 1.02 
0.90 ( 2, 6) (3 , 5) 5.00 3 , 6 8.05 
0.95 ( 3, 6) (3 , 6) 4.08 5 , 6 4.73 
0.99 ( 3,14) ( 3,14) 3.15 11 ,14 1.60 

75 0.10 ( 3, 5) (4, 5) 5.05 3 , 6 6.22 
0.30 ( 6, 3) (6, 3) 1.54 2 , 3 0.36 
0.50 (6 , 4) (7, 3) 5.05 2 , 3 6.32 
0.70 (7, 3) (8, 3) 8.42 2 , 3 0.27 
0.90 ( 8, 5 ) (8 , 5) 5.05 3 , 6 6.27 
0.95 ( 8 , 6 ) (8 , 7) 3.88 5 , 7 3.01 
0.99 ( 8,14) ( 8,14) 1.98 11 ,14 0.57 

Table 3.1: An example: Interdemand times are Normal(l0,1), and K = 10. 
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In total we have 18 combinations in each of which we calculated savings for different 

values of p/(p + h) ratio. The results are in figures 3.2 and 3.3. 

Generally, as one would expect, savings drop by increasing lead time and increasing 

order cost. Increasing these parameters cause reorder inventory level and batch size to 

go up, respectively. This, in turn, reduces the effect of delaying due to the same reason 

as in the case of one-for-one order policies. Again, savings are higher for lower standard 

deviation to mean ratios, consistently as in the previous case. Although p/(p + h) seems 

to have an impact on the amount of savings, it looks case dependent and no trend 

is observable. This is probably due to the discrete nature of the problem (i.e. unit 

demands, discrete reorder levels and batch sizes). 

3.6 Conclusions and Remarks 

For single-echelon, single-item, unit-demand inventory problems, a one-for-one order pol

icy in case of no fixed order cost, and a batch ordering policy in case of positive order cost 

are known to be optimal when demands are generated by a Poisson process. However, for 

demand processes other than Poisson, optimal policies have been unknown. This study 

shows that their delayed versions are optimal when demand has a general distribution 

with IFR interdemand times. Our numerical examples reveal that at least for normally 

distributed interdemand times, by using the delayed versions, it is possible to obtain 

significant savings especially when the degree of uncertainty about the demand arrivals 

is relatively low. 

Significant cost savings are possible not only for expensive items with high holding 

costs, but also for inexpensive items with long lead time relative to the mean interdemand 

time. The most relevant factors for inventory cost reduction seem to be the coefficient 

of variation and the lead time to mean interdemand time ratio. Although the price of 
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the item and the backlogging cost rate do not seem to be relevant factors, they may turn 

out to be so when the actual amount of savings is considered rather than the relative 

savings. 

We have not extended our numerical work to other distributions. However, we are 

convinced that savings will remain significant especially for distributions with low coef

ficient of variation. There may be some difficulty involved in calculating optimal delay 

when convolutions of interdemand time distribution is not easy to take, as the optimality 

equation needs convolutions. For the normal distribution, we did not have this difficulty 

as its convolution remains to be normal. Convolutions of gamma are also easy as they 

will remain gamma. A gamma distribution with high shape parameter could give signifi

cant savings. This is because, a high shape parameter means low coefficient of variation. 

Obviously, for a shape parameter of 1 (exponential interdemand times), there are no 

savings. An application of gamma distribution would be for a supplier facing a major 

customer which orders in fixed batch sizes. If the customer receives Poisson demands, 

then interdemand times for the supplier will be gamma distributed. For instance, if the 

customer orders in lots of size 100, then the interdemand time for the supplier will have 

a coefficient of variation of 0.1, which is fairly low. As this is comparable to our example 

with Normal distribution, delaying should have a significant cost reduction. 

Delayed order policies may have a potential to yield considerable cost reductions in 2 

or more echelon models when substituted for their no delay versions. In problems where 

the delivery lead times between the echelons are long and the demand frequency is low 

with relatively low uncertainty, the reductions should be higher. 



Chapter 4 

A Heuristic for a Poisson-Demand Inventory Problem with Lost Sales 

Abstract 

We develop a heuristic for a single-echelon, single-product, Poisson demand, continuous 

review inventory problem with lost sales. Orders arrive after a fixed and known lead 

time. The costs of backlogging and inventory carrying are both linear in time, and there 

is no fixed cost for placing an order. It is well known that if full backlogging of unsatisfied 

demand is allowed, a one-for-one order policy is optimal for this problem. Although the 

optimality of this policy is not known for the lost sales case, it has been used with the 

belief that its performance is satisfactory. We suggest a new policy as an alternative 

which, although myopic in nature, uses more information. We calculate its cost through 

simulation over a test set of problems and show that although one-for-one policy performs 

well in problems with short lead times and high lost sales costs, the heuristic performs 

better for problems with long lead times and low lost sales costs. 

106 
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4.1 Introduction 

We study a classical inventory problem where we have a single-echelon and a single-

product for which the demands arrive according to a Poisson process in single units. The 

review is continuous and unmet demand is lost. There is no cost for placing an order 

which arrives after some fixed lead time L. The cost of a lost sale is TT per unit and the 

cost of carrying inventory is h per unit per time. 

For this problem, it has been established for some time that an (s-l,s) policy or a 

one-for-one order policy is optimal under the Poisson assumption if unsatisfied demand 

is fully backlogged [3, 45]. This is also called a "sell one buy one" policy under which, as 

its name indicates, a base amount of inventory, s, is maintained in stock and whenever 

there is a sale of an item, a replenishment order is placed immediately. However, it is also 

well known that when unsatisfied demand can not be backlogged and thus will have to be 

lost, an optimal inventory policy is unknown and believed to be complicated. Therefore, 

one-for-one policies have been the main focus of research for the lost sales case just as 

for the backlogging case. The popularity of the (s-l,s) policies can be explained by the 

fact that it is known to be optimal for the backlogging case and that it is simple and 

practical. 

Today's competitive business environment with its significant focus on customer ser

vice has generated a need for more efficient inventory policies. Although simplicity of 

policies may still be an appealing factor, today's advanced computer technology makes 

the application of more sophisticated policies more feasible and easier than ever. 

In the context of this particular problem, it is possible to use more information than 

a simple one-for-one policy in order to come up with a more efficient but also more 

complicated policy. 

Most of the work in the literature deals with the case of backlogging. A summary 
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of the literature can be found in the introduction part of Chapter 3, and will not be 

repeated here. 

Although the case of unsatisfied demand being lost is typically more common in 

practice, there has been considerably less research on both periodic and continuous review 

problems with lost sales, most likely because the theory becomes much more difficult. 

Since the form of an optimal policy is conjectured to be very complicated, most 

researchers focused on calculating an optimal policy of an (s,S) type. Feeney and Sher

brooke [36] studied (s-l,s) policies when there is no fixed order cost for both backlogging 

and lost sales cases. They assumed a compound Poisson demand and stochastic lead time 

and derived exact expressions for the steady state probability distributions of the num

ber of units in the pipeline. This allows one to calculate several performance measures 

including the long run average cost. 

Archibald [2] developed a method to calculate optimal values of s, and 5, so as to 

minimize long run average cost, assuming compound Poisson demand for a continuous 

review problem with a fixed cost for ordering. His method works only when the fixed 

order cost is large enough so that no more than a single order can be outstanding, (i.e. 

S-s>s). 

In two subsequent papers, Morton [67, 68] obtains bounds for the optimal policy and 

expected discounted cost for an infinite horizon periodic review problem. He shows for 

normal, exponential and a long-tailed demand distribution that a myopic policy (which 

aims to minimize the expected cost affected by the last order) delivers a cost within 2.5% 

of that of the optimal. The performance decreases with increasing lead time. Since, he 

does not extend his numerical study to problems with lead time longer than 2 periods, 

it is not known how weak his myopic policy will become for longer lead times. 

Smith [106] studies an (s-l,s) policy with Poisson demand under the assumptions that 

the lead times are random with a general distribution, and shortages are handled with 
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an emergency shipment at a premium charge. He derives an approximate formula for the 

optimal stock level s, and shows through some numerical tests that the approximation 

gives near optimal policies. He also gives approximate formulas for two service measures, 

the expected number of shortage per time unit and the probability of shortage on any 

given demand. 

As mentioned in the previous chapter, a work which seeks an alternative inventory 

policy to an (s-l,s) policy was published very recently by Schultz [92]. However, his 

model is very similar to Smith's with the exception of a constant lead time instead of 

random. Thus, it is not a typical lost sales problem due to the assumption that instant 

delivery of the items in the pipeline is possible with a premium charge in case the facility 

faces a shortage. Thus, in his model like Smith's, lost sales are not allowed and they 

never occur. This assumption is not made in an ordinary lost sales problem and therefore 

lost sales will have to be incurred. This is exactly what makes it difficult to solve, since 

the use of inventory position (stock on hand plus on order) as the state variable is no 

longer a valid approach that leads to an easy steady state analysis, as in the case of full 

backlogging. 

As explained much earlier in Hadley and Whitin [45] and in Arrow et al [3], the 

difficulty is due to the state space having to include inventory both on hand and in the 

pipeline, whereas in case of full backlogging, modelling is possible by taking the inventory 

position as the state variable. For continuous review models, it becomes even more 

difficult as the state has to include the remaining lead times of all pipeline inventory. This 

makes the state a vector of continuous variables. When using an (s-l,s) this information 

is not made use of The idea of using the information given by the arrival schedule of the 

pipeline inventory has been considered by Schmidt and Nahmias [86] in the context of 

perishable inventory problems. When the type of product under consideration has short 

shelf life, the information as to when the pipeline inventories will arrive and how long 
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they will have to wait in stock becomes more crucial. Schmidt and Nahmias studied an 

(s-l,s) policy for a perishable inventory with Poisson demand and derived joint steady 

state probability distribution of the ages of the pipeline inventories. Then, based on this, 

they provide an expression for the long run average cost of an (s-l,s) policy. Other work 

on perishables include [39, 74, 116], and a review can be found in Nahmias [75]. 

The effect of the arrival schedule of the orders in the pipeline will be explained further 

by an example for our lost sales problem in the next section. Then, a myopic heuristic 

which takes the vector of remaining lead times as a state variable and utilizes all the 

information will be developed. Finally, some numerical results will be reported in order 

to examine the performance of the heuristic as compared to an (s-l,s) policy. 

4.2 A Heuristic 

We need to take a close look at the nature of the unit-demand inventory problem with 

lost sales. Our focus will be especially on its behaviour under a one-for-one order policy 

in order to identify what information this policy misses and understand its significance. 

The best way is to look at a particular example depicted in Figure 4.1. 

Suppose we operate under an (s-l,s) policy. Let the amount of stock on hand be n and 

that in the pipeline be ra, just after satisfying a demand. Thus, we have n + m = s — 1, 

so that placement of an order is now due. Notice that all we consider as information is 

the total amount of stock on hand plus on order. If this amount is below s, we place an 

order regardless of the possibility that we may have all of s — 1 on hand or all on order. 

Clearly, however, these two cases are very different. Ignoring this information is quite 

alright in the case of backlogging, because the order we place now will be consumed by 

the sth demand to come from now no matter what portion of s — 1 is on hand and what 

portion is on order. Therefore, the actual cost trade-off between the backlogging cost of 
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Figure 4.1: An illustration of the effect of pipeline inventory arrival schedule. 



Chapter 4. A Heuristic for a Poisson-Demand Inventory Problem with Lost Sales 112 

the sth demand and the unit to be ordered will not be affected by how much of s — 1 is 

on hand. 

In the case of lost sales, however, we have quite a different situation. For instance, 

let us consider two extreme cases as shown in Figure 4.1. The first one is a case in which 

all of s — 1 is on hand as seen in Figure 4.1(a). Then, we know for certain that first 5 — 1 

demands will be satisfied and the unit we are about to order will be consumed by the 

5 t h demand to arrive. The second case, in Figure 4.1(b), is one in which all of s — 1 is 

in the pipeline and we have no stock left on hand. In this case, the unit we are about 

to order will be consumed by 5 t h demand to come only if there are no lost sales until 

this unit arrives in stock. However, there is a good chance of lost sales in this situation, 

especially when all the pipeline stock are scheduled to arrive quite late. This could have 

been triggered by a large number of demands arriving shortly before the present time. 

Notice that we will most probably have a number of items on hand L later, when the unit 

we order now arrives. In this case, the expected time this unit will have to wait in stock 

will be much higher than in the first case. It is clear that delaying the placement of the 

order may save some inventory costs without much risk of lost sales. Therefore, the use 

of the additional information as to when the pipeline inventories are scheduled to arrive 

could improve our decision. Since an (s-l,s) policy makes no use of this information, one 

may be losing some potential savings in inventory costs by employing (s-l,s) policies. 

Now, we will develop a formal approach to the above problem and come up with a 

policy which utilizes this additional information. A crucial step is to redefine the state 

of the system so as to include the arrival times (remaining lead times) of all units in the 

pipeline. Furthermore, we will have to calculate the probability distribution of stock on 

hand at some future point in time. Then, we will be able to propose and calculate a 

myopic cost trade-off. This will be the basic idea of our heuristic. At any point in time, 
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we define our state vector by 

where n is the number of units on hand, m is the number of units in the pipeline, and Lj 

is the arrival time of j th order in the pipeline. Note that Lj < L for all j = 1, 2 , m . 

We do not use any time subscript, as our heuristic will not depend on it. We will use 

the following additional notation. 

• ALj = Lj — Lj-\\ time between the arrivals of j th and j — 1st units in the pipeline 

(j = 1, 2 , m ) , with L0 — 0. 

• Ij\ number of units on hand just after the arrival of j t h unit in the pipeline (j = 

1 , 2 , m ) , with I0 = n. 

• Im+i- number of units on hand at time L. 

• pk = P{Ij = k}: probability distribution of lj. 

• pk(i) = P{Ij — k | = i}: conditional probability distribution of lj. 

• A: demand rate. 

• N(t): number of demands that arrive during a time interval of length t. 

We have already mentioned the idea of not placing an order immediately after satis

fying a demand without considering the arrival schedule of pipeline inventory. We need 

to decide exactly when an order has to be placed. We know that this decision will be 

significantly influenced by how much stock we expect to have L units of time later. If 

it is too low, then we will want to order immediately. Otherwise, we may want to de

lay ordering. In order to make this decision with more precision, one has to know the 

(4.1) 
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probability distribution of stock on hand L later. Unfortunately, there is no easy way of 

calculating this distribution. The following recursion can be used. 

Note that if IQ = n now, and the oldest order arrives L\ later, the probability distri

bution of I\ will be 

P{N{ALx)>n\ if/c = l , 

p\ = I P{N(AL1) = n-k + l} if k = 2,3,...,n + 1, 

0 otherwise. 

Then, the probability distribution of I2 can be calculated by conditioning on I\. Given 

that {Ii — z}, we have 

rf(0 = < 

P{N{AL2) > i} iffc = l , 

P{N(AL2) = i - k + l} if k = 2,3, + 1, 

0 otherwise. 

Further, the unconditional distribution of I2 will be 

Y.tlv}P{N(AL2)>i) if k = 1, 

P l = < E3f-i p}P{N(*L2) = i - k + 1} if k = 2, 3, n 

0 otherwise. 

In general for any / j , j = 2,3, . . . ,m, the probability distribution can be found to be 

n = S Z££:lpi-1P{N{ALj) = i - k + l} if A = 2 ,3 , . . , n + j , (4.2) 

0 otherwise. 

We will also need the probability distribution of i m + i , stock on hand L later. This is 

slightly different from p3

k in 4.2, because we do not expect to receive any stock at time 

L as no order has been placed yet. Thus, we have 
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YZ+?p?P{N{L--Ln)>i} if k = 0 

Pk 
m+1 _ k} if k = 1, 2 , n + m 

0 otherwise 

Next, we will propose a myopic cost trade-off for a heuristic. We would like to assign 

or attribute inventory and lost sales costs to individual inventory units that enter and 

leave the facility. The inventory cost attributable to a stock can naturally be its own 

inventory cost. That is, since we assume a linear inventory cost rate, each stock will have 

its waiting time on the shelf multiplied by h as its inventory cost. As for the lost sales 

cost, for each unit in inventory, we will assign the lost sales costs incurred between the 

time it arrives and the time the next order arrives. 

Based on the above assignment of costs and the state vector given in 4.1, one may 

want to formulate the problem as a continuous time Markov decision process. However, 

attempting to solve it does not seem to have much chance to be fruitful. This is due 

to the complexity of its state space and its transition. A possible approach is to reduce 

the state space and try to solve the resulting problem. Using the (s-l,s) policy as a 

heuristic aggregates the state vector to a scalar n + m. Clearly, information is lost by 

this reduction. The unknown issue here is the extent that this aggregation reduces the 

quality of the solution. This will become part of the analysis below. An alternative 

heuristic is to use some myopic optimization. Rather than minimizing the total costs 

until the end of the planning horizon, one may want to minimize the total costs for the 

next few units, only. Our myopic heuristic minimizes the total cost associated with the 

most recent order in the pipeline. Note that when the state is (ra, L\, L 2 l L m ) now, the 

ordering decision for the next unit will not affect the costs assigned to n units on hand 

and units 1, 2 , m — 1 in the pipeline. Only the cost of the youngest unit in the pipeline 

(mth unit) will be affected by the ordering decision. 
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Figure 4.2: An illustration of the myopic heuristic. 

Now, suppose we decided to place the next order t units of time later. We will calculate 

the expected costs associated with the youngest order in the pipeline for ordering t later. 

As shown in Figure 4.2, these are HC (the expected holding cost of this unit), L C (the 

expected lost sales cost during the time interval (Lm,L)) and Ci(t) (the expected lost 

sales cost during the time interval (L,L + t)). The reason we calculate the expected lost 

sales costs in two intervals is that in the first interval it is a constant with respect to 

t, and in the second it is a function of t. This will be more useful when we calculate a 

myopically optimal value for t. 
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The expected holding cost of the youngest unit can be calculated based on the 

probability distribution of inventory on hand just after its arrival, 7m , by condition

ing as follows: Given that the youngest order becomes the kth on hand when it arrives 

(i.e. Im = k), the expected time it will wait until it is sold will be equal to k interdemand 

times, k/X. Then, the unconditional expected time it will spend on the shelf is 

n+m , 

k=l 

Therefore, its expected holding cost will be 

n+m . 

k=l 
= \E(Im). (4.3) 

Similarly, the expected lost sales in ( L m , L) will be 

n-\-m oo 
LC = 7rYPk £ P{N(L - Lm) = i}(i - k). 

k=l i=k+l 

Using the equality 

oo 

£ P{N(L - Lm) = i}i = \(L - Lm)P{N(L - Lm) > k}, 
i=k+l 

we can rewrite L C in a form easier to calculate as follows: 

n+m 
LC = Tr^p^[X(L-Lm)P{N(L-Lm)>k}-kP{N(L-Lm)>k + l}].{AA) 

k=i 

Similar to 4.4, the expected lost sales in (L, L + t) will be given by 

n+m oo 

cm = ^ £ p ™ + 1 E p{N(t) = i}(i-k) 
k=0 i=k+l 
n+m 

= T r Y P k + 1 [ X t P { N ( t ) > k } - k P { N ( t ) ^ k + 1}}- (4-5) 
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Note that in calculating the above probability distributions and expectations we used 

the memoryless property of exponential interdemand times and the independence of 

Poisson demand arrivals in disjoint time intervals. Had the demand process been other 

than Poisson, these calculations would have been very difficult. 

Now, we are able to identify a trade-off associated with the youngest order in the 

pipeline. We define the expected cost per time associated with it by 

A C ( t ) = HC + IC + C,H) ( 4 6 ) 

L — Lm + t 

Note that when we delay an order longer {i.e. as t increases), the expected lost sales 

Ci(t) will increase (see its derivative in 4.9). Therefore the total cost increases. However, 

the time interval in which this total cost is incurred expands by t at a rate of 1. Thus, 

the average cost per time may be decreasing for small values of 2, especially when Im is 

high in which case the risk of incurring any lost sales will be small. 

Let us denote the first and second derivatives of Ci(t) by C[{i) and C"(t), respectively. 

Now, differentiating the average cost, AC(t), we have 

C',(t)(L -Lm+t)- (LC + HC + Ci{t)) 
AC\t) = 

{L-Lm + tf 
C[(t) - AC{t) 

L — Lm + t 

The second derivative is given by 

[C['(t) - AC'(t)](L - L m + t)- \C\{t) - AC(t)} 
AC"(t) 

(L-Lm + ty 
[C'/jt) - AC'jt)} - [C[{t) - AC(t)]/(L -Lm+t) 

L Lm -\-1 
C'l'(t)-2AC'(t) 

L — Lm "f" t 

Then, the first order condition is 

(4.7) 

C[{t) = AC(t). (4.8) 
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Note that 

- " A ^ ^ + (i-iy. x 

= \[P{N(t) = i-l}-P{N(t) = i}], 

and 

2=0 

k 

1=0 

= -XP{N(t) = k}. 

Then, from (4.5), the marginal cost of lost sales will be 
/ CO 

C/(0= *TE?P? + 1 E KP{N(t)=i-l}-P{N(t) = z})(z-k) 
\i=k+l 
/ oo > 

= ^EtoPk+1 (Yl(P{N(t) = i-l}-P{N(t) = i})(i-k) 
\i=k+l 

oo 

'^TZOPT 1 E =1 - ^ - E pw*) = ^ 
\! = fc + l J = fc + 1 

oo 

-k E ^ W ) = * - 1 } + * E P w * ) = ^ 
t=it+i. t=fe+i 

oo oo 

= *A zto PT+1 E P W) = ̂  + E P w ) = Z> - E P w ) 
\ i=k i=k i= 

oo oo ^ 

-kYp{N(t) = i} + k E mco = o 
oo 

= ^T,toPk+1 ^P{N(t) = i} 
i=k 

= ^EtoPT+1 P{N(t)>k}. 
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The second derivative is 

n+m 

dt 
i=k 

n+m 

0 0 

cm = 7 r A £ ^ + 1 E ^ ( p w ) = *}) 
k-0 i=k 

= ^X2YpT+1P{N(t) = k-l} (4.10) 

> 0 for all t > 0. 

Below, we state a proposition which characterizes the optimal time to order. 

Proposition 4.1 The optimal order time which minimizes (4-6) is given by 

I 0 otherwise 

where t* solves (4-8), provided that a solution exists. Otherwise, t* = 0 0 . 

Proof: For any t which satisfies (4.8), from (4.7) we have 

(4.11) 

because C"(t) > 0 for all i > 0 from (4.10) and L > Lm. Therefore, t* must be a 

local minima if it exists and AC(t) has no local maxima. Furthermore, since AC(t) is 

continuous in t, if there exists more than one minima there must exist a local maxima, 

which is a contradiction. Therefore, if t* exists, it is a unique minimum for AC(t). 

Note that we have 

HC + LC 
C,(0) = 0, Cl(0) = ic\pZ+\ AC(0) L — Lr, 

Now, suppose C/(0) > AC(0). Then AC(t) is increasing at t = 0. Furthermore, since 

we know that AC it) does not have a local maxima, it must be always increasing in t. 
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Therefore, topt = 0. Similarly, if C/(0) < AC(0), then AC(t) is decreasing at t = 0. 

Then, if the first order condition in (4.8) does not have a solution, AC{t) must be always 

decreasing in t. Therefore, topt = oo. Finally, if C/(0) = AC(0) then t* = 0 must be a 

unique solution to (4.8) and thus topt = t*. • 

Proposition 4.1 indicates that we try to order when the marginal cost of lost sales 

equals the average cost. If they are never equal, then we either order immediately, or 

never order until the next event. 

We use the term "optimal" above with caution in a restricted sense. That is, if we 

minimize the myopic average cost defined in 4.6, then 4.11 gives the "optimal" time we 

should place the order. Two things are clearly ignored here. These are the accounting 

of future costs and the fact that the state vector will change when we start delaying the 

order. Note that even if we are satisfied with the myopic nature of the cost minimization, 

changing state vector by time calls for continuous updating of the optimal time to order. 

The optimal time we calculate here is static and is not updated. In order to improve this 

we decided to update the calculations at the following discrete points in time: 

1. Demand arrival. 

2. Order arrival. 

3. t* amount of time has passed since the last update. 

In each of these events, the heuristic updates the state vector and recalculates the 

myopic optimal time to order according to the new state. Although this is not exactly 

continuous updating, it should capture a significant portion of the effect of any change 

in the state vector. 
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4.3 Simulation Results 

We are interested in the performance of the heuristic we described in the previous section, 

and we will measure it by comparing its cost to the cost of an optimal (s-l,s) policy. 

Unfortunately, theoretical calculation of the long run average cost of the heuristic proved 

to be a very difficult task. This is due to the complexity of the state vector and the fact 

that the decision of when to order is frequently updated. The steady state calculation of 

the probability distribution of the state vector looks very difficult to calculate. 

As the only available alternative, we coded a simulation program in C++ in order 

to calculate long run average cost of the heuristic. Since, the order decision is updated 

very frequently, and each update needs to solve the first order conditions in (4.8), the 

simulation had to be run in a fast computer, in order to achieve a small simulation error 

within a reasonable amount of computer time. Our experience was that in order to obtain 

reasonable accuracy in our test problems, we had to have at least 25,000 iterations in 

each run. Each iteration corresponds to a demand arrival. 

In our test problems, we assumed that the interdemand time mean is 1 week (A = 1/7 

units per day) and the daily holding cost rate is $1. We generated 40 different problems 

by varying the lead time, L, and the lost sales cost per unit, ir. The values we used are 

• L = (14, 30, 60,90,120) in days. 

• 7r = (25, 50, 75,100,125,150,175,200) (in $/unit). 

For these problems if one uses an (s-l,s) policy, the optimal inventory level s will be 

between 3 and 5 for L — 14 and between 10 and 20 for L = 120. These values were 

thought to be reasonable for low demand items. 

For each problem, we had 3 simulation runs, each with 40,000 iterations. The simula

tion error for the average cost was less than 1% for all of the problems except those with 
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longest lead time (L=120) which had error within 2%. The time it takes to complete 

a large problem (ones with long lead time and high lost sales cost per unit) was quite 

long for a 486-66MHz. C P U . We used a SUN-SPARC 20 which needed about a day to 

complete all 40 problems. 

Table 4.1 shows the long run average costs for both the heuristic and the (s-l,s) 

policies for half of the problems for which lost sales costs per unit are lower (IT — 25, 50, 

75, 100). Table 4.2 shows the same results for higher lost sales costs per unit (ir = 125, 

150, 175, 200). The costs for the (s-l,s) policies are calculated by using the results of 

Feeney and Sherbrooke [36] and they are exact. The costs for the heuristic are calculated 

through simulation as described above. The last column has the simulation errors which 

are basically the standard deviations of costs in a sample of size 3 (sample size = number 

of simulation runs). The errors tend to increase by lead time i , and lost sales costs per 

unit p. However, in most of the cases, these errors are small enough to draw conclusions. 

Our experience showed us that a higher number of iterations has a much more significant 

effect in reducing the simulation error compared to a bigger sample size. Therefore, 

in order to save computation time, we kept the sample size small and the number of 

iterations large. 
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Comparison of Costs 
Optimal Cost(s-l,s) Cost (heuristic) Cost Ratio Simulation 

L 7T s (A) (B) (A /B) Error 
14 25 3 2.173 2.141 1.015 0.008 

50 4 2.871 2.919 0.984 0.022 
75 4 3.211 3.422 0.938 0.020 
100 4 3.551 3.750 0.947 0.055 

30 25 4 2.366 2.253 1.051 0.008 
50 5 3.279 3.156 1.039 0.009 
75 6 3.786 3.764 1.006 0.032 
100 7 4.162 4.206 0.990 0.035 

60 25 6 2.524 2.297 1.099 0.010 
50 9 3.611 3.318 1.088 0.037 
75 10 4.281 4.050 1.057 0.039 
100 11 4.791 4.594 1.043 0.006 

90 25 8 2.594 2.294 1.131 0.017 
50 11 3.780 3.381 1.118 0.017 
75 13 4.541 4.096 1.109 0.044 
100 14 5.114 4.736 1.080 0.029 

120 25 10 2.633 2.298 1.146 0.015 
' 50 14 3.878 3.402 1.140 0.040 
75 16 4.712 4.229 1.114 0.041 
100 18 5.344 4.838 1.105 0.067 

Table 4.1: Results of simulation (LOW lost sales cost per unit). 
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Comparison of Cost s 
Optimal Cost(s-l s) Cost(heuristic) Cost Ratio Simulation 

L 7T s (A) (B) ( A / B ) Error 
14 125 5 3.729 4.062 0.918 0.042 

150 5 3.860 4.240 0.910 0.026 
175 5 3.991 4.464 0.894 0.056 
200 5 4.122 4.609 ' . 0.894 0.029 

30 125 7 4.441 4.571 0.972 0.006 
150 7 4.719 4.895 0.964 0.027 
175 8 : 4.889 5.113 0.956 0.022 
200 8 5.032 5.413 0.930 0.027 

60 125 11 5.160 5.061 1.020 0.037 
150 12 ' 5.491 - 5.467 1.004 0.026 
175 12 5.737 5.730 1.001 0.069 
200 12 5.982 6.026 0.993 0.054 

90 125 15 5.565 5.233 1.063 0.018 
150 16 5.960 5.755 1.036 0.105 
175 16 6.254 6.072 1.030 0.060 
200 16 6.547 6.345 1.032 0.047 

120 125 19 5.851 5.357 1.092 0.092 
150 19 6.259 5.837 1.072 0.116 
175 20 6.612 6.218 1.063 0.100 
200 20 6.930 6.555 1.057 0.039 

Table 4.2: Results of simulation (HIGH lost sales cost per unit). 

A graphical comparison of the heuristic and the one-for-one order policy is shown in 

Figure 4.3. A clearly visible pattern indicates that the heuristic is superior to one-for-one 

policy for long lead times and low lost sales costs per unit. This is most probably because 

in systems with long lead times, the probability distribution of the stock on hand ( / m + i ) 

a lead time later tends to be less variable (since m, the number of orders in the pipeline, 

is likely to be larger). Therefore, delaying order placement will have a smaller risk of 

causing lost sales. Another reason is perhaps the variation between the amount in the 

pipeline and the actual on hand inventory. For long lead times, since an (s-l,s) policy 
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will tend to hold more inventory, when the inventory position comes down to s — 1, the 

benefit of knowing how much of it is in the pipeline can be potentially more. For instance, 

a system with a lead time of 120 days may be maintaining an inventory position of 20 

units. When the inventory position is 19 just after a sale, the pipeline inventory can be 

any value between 0 and 19. There seems to be more information hidden in this case than 

in the case of a system which maintains only 2 units. In the latter, when the inventory 

position is 1, we know it is either on hand or on order. This indicates that knowing the 

arrival schedule of the pipeline inventory is of less value. 

The lost sales cost per unit seems to have the opposite effect compared to the lead 

time effect. The heuristic performs poorer for high it values. The reason for this can 

be explained: A close examination of the cost trade-off we used in the heuristic will 

show that the heuristic attempts to save some inventory costs by risking some lost sales. 

Thus, when the lost sales cost per unit is higher, the risk becomes higher. This makes 

the heuristic incur more lost sales costs, since it will have to take a considerable risk 

of lost sales, in order to save from inventory costs. The detailed results of simulations 

showed that the average holding cost given by the heuristic in problems with high 7r 

values constituted a smaller portion of the total cost compared to the problems with low 

7T values. Thus, we see that the heuristic becomes more agressive in its attempt to save 

holding costs. As a result of this, it has a poor performance for high lost sales costs per 

unit. 

4.4 Conclusions and Remarks 

This research has focused on the continuous review, Poisson-demand inventory model 

with lost sales. One-for-one policies appear to make no use of the information given 

by the arrival schedule of the orders in the pipeline. Therefore, an alternative policy 
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Figure 4.3: A comparison of the heuristic and the one-for-one policy. 
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which utilizes this information could do better. Here we developed a heuristic policy 

as an alternative. Although it is myopic in nature, it uses more information than a 

one-for-one policy. We tested the performance of this heuristic policy against the best 

one-for-one policy in a range of problems, by comparing their long run average costs 

through simulation. Our results showed that the heuristic is superior to one-for-one 

policies when the order lead times are long and/or the lost sales costs per unit are low. 

Otherwise, one-for-one policies are better. 

A n important application of this heuristic as an alternative to the popular one-for-

one policies would be in a competitive industry where profit margins are low (therefore 

lost sale cost rate is low) and the suppliers work with high backlogs causing long lead 

times. Long lead times may be common also for some expensive special products which 

are manufactured on make-to-order basis by the manufacturers. 

Another application area can be in retail industries which sell expensive items with 

low demand, whose main supplier is not local and delivers with a long lead time. In 

this case, when stockouts occur, in order to avoid causing customer dissatisfaction, many 

retailers may want to use an alternative local supplier which can deliver almost instantly 

at a higher price. Retailers facing this kind of a supply market may want to make their 

regular replenishments from the price-competitive supplier with a long lead time and use 

the local supplier in case of shortages only. Then, shortages will effectively cost only as 

much as the price difference between the two suppliers and this would be typically low. 

A caution must be stated clearly that the heuristic developed here is not appropriate 

for problems where there is subtantial cost for lost sales. If the loss of good will is a major 

concern, for example, lost sales costs will have to reflect this and will typically be very 

high. Although we have not extended the scope of our simulation to such problems, from 

the trend our simulation results show it can be predicted that the heuristic will perform 

poorly for higher values of lost sale costs per unit. The scope we have chosen addresses 
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more the problems where a lost sales cost means a lost profit or a small premium paid to 

use an alternative supplier in order to avoid customer dissatisfaction as explained above. 

The situations above are possible to find in the industry and the heuristic developed 

here may be a better alternative than a one-for-one policy in such cases. Of course, we 

must emphasize again that the complexity involved in calculating the order times in the 

heuristic is a drawback as compared to the simplicity of one-for-one policies. However, 

wide spread use of computerized inventory control even in medium firms makes the 

application feasible today. 

Finally note that there is a similarity between the concept we have developed here and 

the concept of delay mentioned in Chapter 3. In both problems, the order placement is 

delayed to a better time in the future, although both problems have significantly different 

dynamics. This suggests that the concept of delay has a potential to be applied to a more 

general set of problems with continuous review. 
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Appendix for Chapter 1 

A.l Proofs for Chapter 1 

Here, we present the proofs for the lemmas. 

Proof 1.3: (This lemma is given without any proof in Weerahandi [115] and m is 

unnecessarily restricted to be an integer) 

foo rb^/y 

ymct>{z)x{y)dz 
•oo 

dy 

where x{v)  1 S the pdf of Y. Note that t = zxjvjy is a Student's t random variable with 

v degrees of freedom. Then, 

/•oo rb-^fv 

EY[Y
m$(bVY)] = / / ym^{t^/yJ^)yM^x{y)dtdy. 

Interchanging the integrals, and rearranging we have 

/

i fb^/U poo 

- J Jq ym+1/2cj>(ty/y~^)x(y)dydt. 

N ow, 

<f>{ty/y~JZ)X(y)dtdy = ^ e " ^ r T ^ 2 ) ( 1 / 2 r / 2 2 / f " l e " / 2 

= 1 ( 21/ V / 2 /*'+ i / V / a ( 1 / 2 ) ^ feQ, 
yfa \t2 + uj \ 2v ) T(p/2) V 

1 / „ \ "/2 

2^\t2 + v & 7 2 ( y ) , 
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where <f>l//2(y) is the pdf of a Gamma random variable with shape parameter u/2 and 

scale parameter 2vj{t2 + v). Then, 
u/2 

^ r~r / \ m + 1 / 2 r(^f±i) / 1/ y / 2 

V ^ V ^ T ^ J i>/2) \¥+~v) d L 

Letting u = tyju+2m and noting that v + 2m = r, we get 

1 { n I>/2) T(r/2)Vr^W + rJ 
r ( r/2), 
r(i//2) 

Proof 1.4: We first find 

2mTT{byft). 

ExtS[Ex[y*(X,us)-X}+}. . 

The inner expectation is actually conditional on (X, s), with X being independent of 

both X and s. Replacing y*(X,us) by X + kuis, we have 

+ E^a[Ex[X. + kus -X]+ \X,s] = E x , s A x + k " s - X ) 

Let u — (n — l)s2/a2 and v — x — x. Note that u and v are independent, u having a 

Chi-square distribution with n — 1 degrees of freedom and v having a Normal distribution 

with mean 0 and variance (1 + l/n)a2. Then, the expectation is 

Eu[Ev[v + -==^/u\+ | u . 
V n — 1 

The partial expectation inside is messy but straight forward to calculate and equals the 

following. 

^ r kuja /—,, \Jn + la »2*2'" uka r-^ ( I n , r-, \ 
V n — 1 V27rn \Jn — 1 \ y n^ — 1 / 



Appendix A. Appendix for Chapter 1 132 

Now, the outer expectation with respect to u can be calculated by noting that 

Eu[eau] = (1 - 2 a ) - ^ , a < 1/2, 

Using the above equations and Lemma 4 for m = 1/2, the outer expectation is 

nk2u2 n + 1 
2irn 

n - 1 

,2, ,2 \ - — 
1 + 

ra2 - 1 ra 
(T. 

Given the above, the expectation of F(y*(X,us); p, o) can easily be found. 

Proof 1.5: (This proof is taken from Ritchken and Sankar [80]) Equation 1.13 is 

simply 

, lus + X — fi, 
-) \X,8] 

P r o h [ Z < lus + X-fy 
o 

= Prob{aZ + » - X <lu} 

where Z is a standard Normal variable. It can easily be verified that t 

Student's t random variable with ra — 1 degrees of freedom. Thus, 

lu , _ / 

t r Z + ^ x — X 

sy/l+l/n is a 

a = Prob{t < --} = r n _ ! 
ra V 1 + i A 

Noting that / is <&-1(a) the result follows. 

Proof 1.6: Here we generalize the proof in [115] for any two scale parameters 71 and 

72-

Ex[$r2(bX\l2)} = EX[$r2( — \l)} 
72 

= Ex[Prob{Z < —} \X] 
72 
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where Z ~ Gamma(r2, 1). Let M = X/j±. Then, M ~ Gamma(ri, 1). Thus, 

Ex[$r2{bX\72)} = EM[Prob{Z<b-^M}\M] 
72 

= P r o b { z < 
lM 72 J 

The last equality follows from the relationship between the Gamma and the Beta distri

butions, which is a known result from distribution theory. 

Proof 1.7: Note the following expectation: 

EA,[Ex[kui - X]+] = {kui - x) 4>r{x\~j) (t>nr(i\— )dxd^ 

= kid 1 <l>r(x\l) 0nr(l\—) dx d*f 

~ j j X (j>r{x\l) <t>nr{l\ —) dx dj. 

Using the fact u<j>i{u\j) = ij(f>i+i(u\j) in both terms (for 7 in the first term and for x in 

the second) and simplifying, this expectation is equal to 

= k u j -A Ix<k^ 7 Mxh) <t>nr+i{l\%) dx d 7 - / . r 7 cVufcb) M 7 l ; £ ) d x d ^ 

kuriE^ [$r(A;w7i|7)] - n E4$r+1(kujj\-{)} 

where 71 ~ Gamma{nr + 1, ^ ) and 7 ~ Gamma(nr, ^ ) . Then, from Lemma 1.6 we 

have 

, / kto \ ( kto 
E^Exiku-y - Xy\ = kLu<yBTtnr+i • - rjBr+ltnr kto + nr J ' \kto + nr 

Given the above, the expectation of F(y*(uj); 7) can easily be found. 
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Appendix for Chapter 2 

B . l Solution of the Relaxed Problem 

Here is the solution of Problem (2.2): Let us drop the subscript t in all variables for ease 

of reading. Define a Langrangian function 

L{y, x, z, A) = q(v, x, z) + X(Z - Y!k=izk) 

which we want to minimize subject to C2 and C3. The first order conditions are 

—2pj(xj — Zj) + h — A = 0, 

Z ~ Y!k=lzk = o-

At optimality, we have 

9 = Pj(Xj"- z*) = Pi(Xi - z*) V(t, j ) (B. l ) 
Q 

Zj* — Xi (B.2) 
Pj 

YlLi** = z (B-3) 

where 6 is a common factor. Then, from (B.2) and (B.3) we have 

Thus, 

o = & - zvxLii; 
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and 

Note that Zj* may be negative. Thus, this allocation policy is not feasible and is used to 

calculate a lower bound in cost. 

B.2 Calculation of the Optimal Order Policy for the Relaxed Cost Problem 

We use Zheng and Federgruen's approach [122] to calculate the average cost (although 

they formulate the problem for discrete demand, it can also be used for continuous de

mand for a critical number policy). Let h and p be the stationary holding and backlogging 

costs per unit per period, respectively and let c be the order cost per unit. Then, the 

long run average cost of a critical number, 5", policy is given by 

G(S) = pE[(U - S)+}2 + hE(S - U)+ + cp/{L + 1), 

where U is the total demand in L + 1 periods with mean \i and variance er2. 

Let </>(.) and $(.) be the pdf and the cdf of [/, respectively. The first term in the 

above equation is 

E[(U- S)+}2 = E[(S - U)+ - (S - U))2 

= E(U - S)2 + 2E[(U - S)(S - U)+] + E[{S - U)+}2 

= E(U - S)2 - E[{S - U)+f 

= a2 + u2-2pS + S2 - ( (S - x)2<f>{x)dx 

Jo 

The previous to the last equality follows from E[(U - S)(S - U)+] = -E[(S - U)+]2. 

Then, the cost is 

G(S) = p[a2 + u2 - 2pS + S2 - / (S - x)2cf>(x)dx} + h f (S- x)<f>{x)dx + cp/(L + 1). 
Jo Jo 
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The first and the second derivatives are: 

G'(S) = 2p[S - u - I <$>{x)dx) + h$(S), 
Jo 

G"{S) = 2p[l - $ ( 5 ) ] + h<f>{S). 

since the second derivative is nonnegative for all S, G(S) is convex, and thus the opti

mality occurs at G'(S) = 0. Noting that 

E{U-S) +=I <$>{x)dx - S + p, 
Jo 

the optimality condition is 

E(U - S)+= ±*(S). 
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