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A b s t r a c t 

The p i t l i m i t problem i s c r u c i a l to mine plan n i n g . The us 
of computer models to design u l t i m a t e open p i t l i m i t s i s 
becoming i n c r e a s i n g l y popular. One s o l u t i o n method adopted i s 
to transform the p i t l i m i t problem to a maximum flow network. 
A popular maximum flow technique i s push r e l a b e l . The purpose 
of t h i s t h e s i s i s twofold. The f i r s t i s to check i f push 
r e l a b e l a l g o r i t h m performs b e t t e r than other MF algorithms on 
r e a l , r a t h e r than randomly generated data (as i n the p a s t ) . 
The second i s to develop and t e s t h e u r i s t i c s that can take 
advantage of the c h a r a c t e r i s t i c s of the open p i t mine network 
s t r u c t u r e to f u r t h e r enhance the push r e l a b e l r o u t i n e . 
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C H A P T E R 1 

I n t r o d u c t i o n 

Mine planning c o n s i s t s of determining a sequence of 

e x t r a c t i o n over a given time horizon. The optimum open-pit 

l i m i t of a mine i s defined by Caccetta and Giannini (1990) to 

be a f e a s i b l e contour whose e x t r a c t i o n r e s u l t s i n maximum 

t o t a l p r o f i t . F e a s i b i l i t y necessitates the p i t to have safe 

and workable w a l l slopes which depend on the g e o l o g i c a l 

structure and the mining equipment. The ultimate p i t l i m i t s 

a f f e c t the e n t i r e mine layout and provide e s s e n t i a l 

information f o r the evaluation of the economic p o t e n t i a l of 

the mineral deposit and i n formulating long, intermediate, 

and short range mine plans. Consequently, knowledge of the 

optimum p r o f i t a b l e ultimate p i t l i m i t s during the i n i t i a l 

stages can avoid c e r t a i n problems such as mining u n p r o f i t a b l e 

expansions, abandoning p r o f i t a b l e ore, and r e l o c a t i n g surface 

f a c i l i t i e s . 

A mine planning s i t u a t i o n requires d i f f e r e n t l e v e l s of 

p r e c i s i o n at each stage. Johnson (1973) argues that a good 

estimation of the p i t l i m i t provides a s a t i s f a c t o r y b a s i s f o r 

the i n i t i a l f e a s i b i l i t y evaluation of a mining p r o j e c t . But 

knowledge of the true optimum becomes more valuable as mine 

l i f e progresses and the knowledge of each aspect of the 

operation increases. The a v a i l a b i l i t y of accurate economic 
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p i t l i m i t s f o r intermediate range planning leads to b e t t e r 

scheduling r e s u l t i n g i n increased p r o f i t a b i l i t y f o r the 

project. The ultimate decision to abandon an open-pit mining 

venture requires that the p i t l i m i t c a l c u l a t i o n be nothing 

short of optimum. Unfortunately, i n the past the techniques 

that guarantee optimum so l u t i o n s have been too complex to be 

understood by the mining community or too c o s t l y to implement 

i n terms of computer processing times. This r e s u l t s i n the 

use of simple and f a s t h e u r i s t i c s . A l l stages of mine 

planning may therefore b e n e f i t from a technique which 

provides an optimal s o l u t i o n at a low cost and i n an e a s i l y 

understood manner. 

One technique used to provide the optimal p i t l i m i t i s 

to transform the network i n t o a maximum flow problem. The 

maximum flow problem can then be solved with many standard 

r o u t i n e s of which the one with the best reputation f o r 

p r a c t i c a l performance i s push-relabel. This t h e s i s shows 

that network implementations which i n the past have been 

regarded to be too slow, are indeed very f a s t now. I t 

assesses the push r e l a b e l algorithm's performance as compared 

to other maximum-flow algorithms on ac t u a l c l a s s of graphs 

(open p i t mining) rather than randomly generated data as has 

been done i n the past at the DIMACS Challenge (Cherkassky and 

Goldberg 1994). Also, we attempt to take advantage of the 
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s p e c i a l s t r u c t u r e of an open p i t mine by developing 

h e u r i s t i c s i n order to enhance the performance of the push-

r e l a b e l routine on t h i s c l a s s of problems. 
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C H A P T E R 2 

M o d e l l i n g 

Caccetta and Giannini (1990) define the optimum 

u l t i m a t e p i t l i m i t of a mine as that contour which i s the 

r e s u l t of e x t r a c t i n g the volume of m a t e r i a l which provides 

the t o t a l maximum p r o f i t while s a t i s f y i n g c e r t a i n p r a c t i c a l 

o p e r a t i o n a l requirements such as safe w a l l slopes. As 

i n d i c a t e d by Lerchs and Grossmann(1965), the problem can be 

expressed a n a l y t i c a l l y as f o l l o w s . Let v, c, and m be the 

three density functions defined at each point (x,y,z) of a 

three dimensional region containing the ore-body with 

v ( x , y , z ) : mine value of ore per u n i t volume 

c ( x , y , z ) : e x t r a c t i o n cost per u n i t volume 

m(x,y,z): p r o f i t per u n i t volume = v(x,y,z) - c(x,y,z) 

Let a(x,y, z) be the set of angles s p e c i f y i n g the w a l l slope 

r e s t r i c t i o n s at the point (x,y, z) with respect to the 

h o r i z o n t a l plane, f o r a given set of azimuths. This set i s 

known as the v a r i a b i l i t y of w a l l slope requirement. Define 

S as the family of surfaces such that at no point does the 

slope with respect to the h o r i z o n t a l plane exceed the 

corresponding angle i n a. Denote the family of volumes 

corresponding to the family S of surfaces by V. The problem 

then i s to f i n d a volume VQ which maximises the i n t e g r a l of 

the p r o f i t function m(x,y, z ) . Since, i n p r a c t i c a l 
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situations, there i s no simple analytical representation for 

the functions v and c, numerical techniques must be used to 

solve the problem. Generally, the ore body i s divided into 

blocks. The mineral deposit must somehow be represented as 

a model to f a c i l i t a t e mine planning. The representation must 

incorporate both the three dimensional mine structure and the 

economic value of the deposit. 

The most popular method i s the regular 3-D fixed block 

model. This model was f i r s t published i n the early 1960's. 

In this model the t o t a l volume i s transformed into a three 

dimensional grid whose each block i s an independent unit with 

i t s own economic content. Since there are such a large 

number of blocks i n a typical block model i t i s essential 

that the optimisation algorithm delivers the solution i n 

minimum computer time. A fast algorithm could also be run on 

a personal computer. Because of the costly'ramifications 

associated with the mine contours generated, i t i s imperative 

that the accuracy of these contours be high. Further 

compounding this problem i s the desire for s e n s i t i v i t y 

information which means that the model must be run many 

times. 
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C H A P T E R 3 

O p t i m i s a t i o n T e c h n i q u e s 

Optimisation refers to optimisation with respect to 

certain constraints. Some of these constraints are i m p l i c i t 

i n the assumptions being used, and nearly a l l techniques make 

some key assumptions. Kim (1977) states some of these as: 

(1) The grade and cost of mining each block i s known and 

accurate. 

(2) The cost of mining each block does not depend on the 

sequence of mining. 

(3) The desired slopes and p i t outlines can be approximated 

by removed blocks. 

(4) The objective i s to maximise t o t a l undiscounted p r o f i t , 

which i s questionable due to the difference i n present values 

of cash flows. 

In a l l optimisation techniques, the predominant type of 

model used i s the regular 3-D fixed block model. The block 

model i s represented as a weighted digraph with the vertices 

representing blocks and the arcs representing mining 

restrictions. A digraph G consists of a set of vertices V(G) 

and a set of arcs E (G) . There i s an incidence r e l a t i o n which 

associates with each arc of G an ordered pair of vertices. 

A (node) weighted digraph i s one i n which each vertex has an 

assigned weight. Here, the graph contains the arc (x,y) i f 
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the mining of block x requires the removal of block y. The 

p r o f i t from mining a block i s represented by an appropriate 

vertex weight. A closure of a weighted digraph i s a set of 

vertices C such that i f x i s a member of C and (x,y) i s an 

arc then y must be a member of C. The weight w(C) of the 

closure C i s the sum of the weights of the vertices of C. 

Here, a closure represents a feasible p i t contour, with the 

weight representing the prof i t realised from that p i t contour 

and conversely the graph theory problem of determining a 

maximum weight i n a weighted digraph i s equivalent to 

determining the optimum p i t contour. There have been at least 

four rigorous optimising techniques presented since 1965: 

(1) Lerchs Grossmann 

(2) Dynamic programming 

(3) Linear programming 

(4) Network Flow, including 

(a) FKS 

(b) Johnson 

(c) Push-Relabel 

(d) Dinitz, Ford-Fulkerson, etc. 

In addition, there are other nearly optimising heuristics 

such as Floating Cone. 
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G r a p h T h e o r y 

The Lerchs-Grossmann graphical technique was developed 

by Helmut Lerchs and Ingo Grossmann (Lerchs and Grossman 

1965). The Lerchs-Grossmann algorithm augments the digraph 

representing the ore body into a rooted tree by adding a root 

vertex and arcs to a l l other v e r t i c e s . Each set of v e r t i c e s 

and arcs i s c l a s s i f i e d as e i t h e r strong or weak. A rooted 

tree whose root i s common to a l l strong arcs i s a normalised 

tree. The Lerchs-Grossmann algorithm proceeds by c o n s t r u c t i n g 

a sequence of normalised trees, terminating when the set of 

strong v e r t i c e s of the normalised tree form a closure of the 

graph representing the ore body because of the f o l l o w i n g 

theorem: I f , i n a weighted digraph G, a normalised spanning 

t r e e T can be constructed such that Y the set of strong 

v e r t i c e s of T, i s a closure of G, then Y i s a maximum 

closure. 

There has been a considerable amount of work done on 

Lerchs Grossmann to date such as the W h i t t l e 4D commercial 

software p r o j e c t which costs $15,000 and i s the standard i n 

the i n d u s t r y now. This i s due to the f a c t that i t provides 

a true 3-D optimal. 
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Two D i m e n s i o n a l D y n a m i c P r o g r a m m i n g 

Lerchs and Grossmann f i r s t presented the b a s i c two-
dimensional optimal cross section method (Lerchs and Grossman 
1965) . The method determines the optimum ultimate p i t l i m i t s 
i n each v e r t i c a l c r o s s - s e c t i o n of the economic block model. 
The union of these optimal cross s e c t i o n p i t o u t l i n e s y i e l d s 
a 3-D p i t contour which u s u a l l y v i o l a t e s the w a l l slope 
r e s t r i c t i o n s and i s thus i n f e a s i b l e . 

The advantages of t h i s technique are ease of 
implementation and use, i t s f l e x i b i l i t y and speed of 
sol u t i o n . There are two disadvantages of t h i s method. F i r s t , 
i t optimises only with regard to cr o s s - s e c t i o n and thus 
r e q u i r e s extensive e f f o r t to smooth out the p i t bottom and 
end sections. Secondly, the two-dimensional contours do not 
n e c e s s a r i l y l i n e up from cross s e c t i o n to cross s e c t i o n 
r e s u l t i n g i n an i n f e a s i b l e s o l u t i o n . 
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T h r e e D i m e n s i o n a l D y n a m i c P r o g r a m m i n g 

A number of dynamic programming algorithms attempt to 

extend the bas i c two-dimensional cross s e c t i o n routine 

presented by Lerchs and Grossmann to handle the three-

dimensional problem. One such technique was developed by 

Johnson and Sharp (1971). This technique eliminates the 

bottom end smoothing which i s the primary disadvantage of the 

two- dimensional technique. 

The algorithm employs r e p e t i t i v e a p p l i c a t i o n of the 

two-dimensional algorithm to obtain the optimum block 

configuration on each cr o s s - s e c t i o n , f o r each l e v e l . Then a 

f i n a l a p p l i c a t i o n of the two-dimensional algorithm on a 

l o n g i t u d i n a l s e c t i o n where the blocks represent the optimal 

s e c t i o n contours down to each l e v e l . There are two 

advantages of the three-dimensional dynamic programming 

technique. F i r s t l y , ease of understanding and implementation. 

Secondly, f l e x i b i l i t y . The major disadvantage of t h i s method 

i s that the s o l u t i o n may not be f e a s i b l e because the method 

does not require adjacent c r o s s - s e c t i o n a l p i t configurations 

to l i n e up. Other dynamic programming methods such as those 

of Koenigsberg (1982) and B r a t i c e v i c (1984) seek to extend 

the Johnson-Sharp method i n overcoming t h i s d i f f i c u l t y but 

unfortunately r e s u l t i n s i g n i f i c a n t increases i n 

computational complexity; s t i l l neither achieves a proper 3-D 
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optimum s o l u t i o n . A f u r t h e r disadvantage i s t h a t the 3-D 

t e c h n i q u e w i l l not c o n s i d e r waste b l o c k s except those a l o n g 

the two p r i n c i p a l axes o f the d e p o s i t ( c r o s s - s e c t i o n a l and 

l o n g i t u d i n a l d i r e c t i o n s ) . The waste b l o c k s i n the c o r n e r 

a rea o f the p i t are n e g l e c t e d i n d e v e l o p i n g the p i t l i m i t 

optimum r e s u l t i n g i n s teeper p i t s l o p e s i n these a r e a s . T h i s 

i s known as the corner e f f e c t . 
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L i n e a r P r o g r a m m i n g 

I t i s natural, to formulate the open p i t problem as a 

l i n e a r program since l i n e a r programming i s one of the most 

popular operations research modelling techniques. The 

formulation as a l i n e a r program i s very simple but the 

so l u t i o n of such a model i s not computationally f e a s i b l e f o r 

lar g e ore bodies. In order to apply l i n e a r programming 

techniques the problem s i z e must be reduced. 
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N e t w o r k F l o w 

Picard (1976) proposed a network flow model to solve 

the maximum closure problem. The network N i s obtained from 

the digraph D of the orebody by adding two vertices s 

(source) and t (sink). The source i s joined to a l l vertices 

having a positive weight by an arc of capacity equal to the 

weight of the vertex. A l l vertices of negative weight are 

joined to the sink by an arc having capacity equal to the 

absolute value of the weight of the vertex. A l l the internal 

arcs of D are given i n f i n i t e capacity. Picard formulated the 

problem as a 0-1 program and showed that the maximal closure 

of D corresponds to a minimal cut of N which can be found by 

any of the standard maximum flow routines. There are a 

number of algorithms to solve the maximum flow problem 

(Ahuja, Magnanti, and Orlin) such as the network simplex 

method of Dantzig, the augmenting path method of Ford-

Fulkerson, the blocking flow method of Dinic, and the push-

relabel method of Goldberg and Tarjan. 

Network flow methods have been regarded by the mining 

community as too slow and requiring too much memory, but this 

was before good modern implementations. It i s not 

theoretical bounds but run time that matters i n practice. 

The empirical performance of push-relabel and Dinit's 

algorithm are established i n a paper by Cherkassky and 
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Goldberg (1994). They implemented two versions of push-
r e l a b e l (highest l a b e l and FIFO) each combined with g l o b a l 
and gap r e l a b e l i n g h e u r i s t i c s , and one implementation of 
D i n i c ' s algorithm. They ran these routines on randomly 
generated set of problems which were used at the F i r s t DIMACS 
Challenge (Cherkassky and Goldberg 1994). Their experiments 
show that both versions of push-relabel are e m p i r i c a l l y 
f a s t e r than D i n i t z f o r a l l set of problems and that the 
highest l a b e l version of push-relabel i s e m p i r i c a l l y f a s t e r 
than the FIFO versio n f o r a l l sets of problems. The 
performance of these routines on a c t u a l mining data i s 
i n v e s t i g a t e d i n t h i s t h e s i s . Some network flow techniques 
presented to date are discussed i n the f o l l o w i n g s e c t i o n s . 
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F K S C l o s u r e A l g o r i t h m 

This technique was developed by Faaland, Kim, and 

Schmitt (1990) to solve maximum closure problems. It works 

en t i r e l y within a compact representation of the weighted 

digraph. Each vertex i s given a certain weight c a l l e d supply 

sup(j) and every arc has a pair of capacities which i n i t i a l l y 

are set to cap(i,j) = i n f i n i t y and cap(j,i) = 0. The unique 

feature of this algorithm i s a s t a y l i s t which i s the set of 

nodes which need not be considered i n subsequent iterations 

of the algorithm. The s t a y l i s t i s i n i t i a l l y empty. The 

algorithm proceeds as follows: 

Step 1: 

I n i t i a l i s e : sup(j) = weight of j . S t a y l i s t = empty. 

cap(i,j) = i n f i n i t y . cap(j,i) = 0. 

Step 2: 

Find a positive supply node i not on the s t a y l i s t and 

set i t s predecessor label P(i) = 0. 

Step 3: 

Find a node j unlabelled i n this i t e r a t i o n that i s not 

on the s t a y l i s t and with cap(i,j) > 0. If none jump to step 

7. 

Step 4: 

Send flow from i to j . Label P(j) = i . sup (i) -=flow. 

cap(i,j)-=flow. sup(j)+=flow. cap(j)+=flow. 
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Step 5: 

If sup(j) > 0 then i = j go to step 2. Otherwise 

sup(j) = 0 so backtrack to k=P(j). 

Step 6: 

If sup(k) > 0 then erase labels of j and nodes labelled 

a f t e r j i n this i t e r a t i o n and set i=k and go to step 3. 

Otherwise sup(k) = 0 so set j=k and go to step 5. 

Step 7: 

Backtrack from i to k=P(i). 

Step 8: 

If P(i) > 0 then send flow from i to k and reset sup 

and cap and i=k and go to step 4. Otherwise P(i) =0 so add 

i and nodes labelled after i to s t a y l i s t . 

The maximum closure i n the digraph at the end of the 

algorithm i s i d e n t i f i e d by the nodes i n the s t a y l i s t . 

Faaland, Kim, and Schmitt's paper tests on small randomly 

generated two-dimensional version of the open p i t problem 

with this technique and so there i s no standard to compare 

the empirical complexity of this algorithm with the others 

stated above. We implemented this algorithm i n C to provide 

a basis for the performance of push relabel and our 

heu r i s t i c . 
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J o h n s o n ' s N e t w o r k F l o w 

This technique was f i r s t proposed by Johnson i n 1968. 

It uses the same block pattern representation of allowable 

mining slopes as the Lerchs-Grossmann method and starts with 

the same network representation of required allowable mining 

sequence and converts i t into a b i p a r t i t e network. The 

algorithm as i l l u s t r a t e d by Johnson (1973) proceeds as 

follows: 

Step 1: 

We divide the blocks into two sets, (a) positive blocks 

and (b) negative or zero blocks. 

Step 2: 

Connect each positive block to a l l negative blocks 

which are required to be mined to remove the positive block 

by adding arcs from the positive block to the negative block. 

Step 3: 

For each positive block allocate flow from the positive 

block to i t s restricting negative blocks, mine this block and 

i t s r e s t r i c t i n g blocks i f the sum i s positive. This process 

usually requires reallocating flow for shared blocks i n the 

network. 

This technique leads to an optimal ultimate p i t l i m i t 

but i t s disadvantage i s i t s in e f f i c i e n c y caused due to 

reall o c a t i n g flow. The need to reallocate flow occurs when 
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r e s t r i c t i n g negative blocks are shared by positive blocks. 

The reason i s that a uneconomic positive block should not be 

used to support the stripping of an economic block which can 

support i t s own stripping. This reallocation process has 

been compared to the normalisation step i n the Lerchs-

Grossmann technique though Johnson's i s computationally less 

expensive. 
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P u s h - R e l a b e l 

Push-Relabel i s an algorithm for finding a maximum flow 

through a network. A flow network i s a directed graph G = 

(V,E ,S/t,u) where V and E are the node and arc set. Nodes s 

and t are the source and the sink and u i s the nonnegative 

capacity on the arcs. A flow i s a function that s a t i s f i e s 

capacity constraints on a l l arcs and conservation constraints 

on a l l nodes except the source and the sink. The 

conservation constraint at a node v states that the excess 

e(v), defined as the difference between the incoming and the 

outgoing flows, i s equal to zero. A preflow s a t i s f i e s the 

capacity constraints and the relaxed conservation constraints 

that only require the excesses to be nonnegative. 

An arc i s residual i f the flow on i t can be increased 

without v i o l a t i n g the capacity constraints, and saturated 

otherwise. The residual capacity of an arc i s the amount by 

which the arc flow can be increased. A distance l a b e l l i n g 

d:V-> N s a t i s f i e s the following conditions: d(t) =0 and for 

every residual arc (v,w), d(v) <= d(w) + 1. A residual arc 

(v,w) i s admissible i f d(v) = d(w) + 1. A node v i s active 

i f d(v) < n and e(v) > 0. 

The push-relabel algorithm maintains a preflow and a 

distance labelling t i l l there are no active nodes. Then the 

preflow i s converted to a flow. The push relabel routines of 
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Cherkassky and Goldberg (1994) proceed as follows: 

Step 1: 

Find an active node v. An active node i s one with 

positive excess and distance label less than n. If there are 

no active nodes then stop. 

Step 2: 

Find the next edge (v,w) of v. If none go to step 4. 

Step 3: 

If(v,w) i s admissible then send d = (0,min(excess(v) , 

residual capacity(v, w)) units of flow from v to w and repeat 

step 3 u n t i l excess(v) equal zero. If (v,w) not admissible go 

to step 2. 

Step 4: 

Replace v's distance label d(v) by min(ViW)d(w) + 1. Go 

to step 1. 

The main discharge operation i s applied i t e r a t i v e l y to 

active nodes as above. A l l that i s l e f t i s to decide the 

order i n which these active nodes must be processed. There 

are two alternatives presented by Goldberg and Cherkassky. 

The f i r s t one i s known as the FIFO algorithm and maintains 

a l l active nodes i n a queue adding active nodes to the rear 

of the queue and discharging positive nodes from the front of 

the queue i n a F i r s t - I n First-Out order. The second one i s 

the HL algorithm and always selects the node with the highest 
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label to discharge f i r s t . Cherkassky and Goldberg improve the 

p r a c t i c a l performance of the push relabel algorithms by 

adding global and gap r e l a b e l l i n g heuristics to the maximal 

flow code. In their paper (1994) Cherkassky and Goldberg 

show that both the push relabel routines perform better than 

Dinitz on randomly generated sets of data from the DIMACS 

generators. 
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H e u r i s t i c M e t h o d s 

Although a number of heuristic methods have been 

proposed, only one of them has been widely accepted, the 

f l o a t i n g cone. The method's wide acceptance stems from the 

fact that i t very easily understood and easy to program. 

Also, there i s no re s t r i c t i o n on wall slope v a r i a b i l i t y . The 

method as i l l u s t r a t e d by Johnson (1973) proceeds as follows: 

Step 1: 

Define a certain potential mining volume by stating a 

bottom block and the allowable wall slopes. 

Step 2: 

Sum the value of a l l the blocks whose centres l i e 

inside the defined cone. 

Step 3: 

Select the cone for mining i f the t o t a l value i s 

greater than zero. 

The above process i s continued u n t i l i t i s not possible 

to find any cones of positive value. The advantages of this 

technique are that i t i s e a s i l y to understand, allows 

variable p i t slopes, i s easy to implement, and that variable 

size blocks present no d i f f i c u l t y . The basic shortcoming of 

the method i s i t s i n a b i l i t y to consider j o i n t contributions 

of multiple ore blocks located l a t e r a l l y a distance apart 

thereby missing the optimal solution. 
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C H A P T E R 4 

O u r I m p l e m e n t a t i o n 

As described earlier, the open p i t l i m i t problem can be 

converted to a maximum flow problem. The maximum flow 

problem i s very easy to state: In a capacitated network, we 

want to send as much flow as possible between two nodes 

c a l l e d the source s and the sink t, without v i o l a t i n g the 

capacity r e s t r i c t i o n on any arc. There are a number of 

algorithms for solving the maximal flow problem. As 

mentioned i n Chapter 3, the basic methods are: 

(1) Network simplex method of Dantzig 

(2) The Augmenting Path method of Ford and Fulkerson 

(3) The Blocking Flow method of Dinic 

(4) Push Relabel method of Goldberg and Tarjan 

Studies by Goldfarb and Grigoriadis (1988) showed that 

Dinitz algorithm i s i n practice superior to the network 

simplex and the Ford-Fulkerson methods. Several recent 

studies such as those by Anderson and Setubal (1993) and 

Nguyen and Venkateswaran (1993) show that the push relabel 

method i s superior to Dinic's method i n practice. In 

particular the paper by Goldberg and Cherkassky (1994) showed 

that two versions of push relabel perform better than Dinitz 

for a l l problem sets generated by the First DIMACS challenge; 

The data used to come to this conclusion are randomly 
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generated by the DIMACS network generators. This thesis 

attempts to confirm these conclusions on real sets of data 

for open-pit mining problems. 

Tom McCormick and Todd Stewart's code generates a 

bounded network with a minimum possible number of blocks and 

arcs. I imbed several implementations of heuristics as the 

network i s generated to check i f we can improve the 

performance of push relabel by giving i t a "warm sta r t " . 

Since the push-relabel deals with preflows one can, greedily 

or by taking advantage of a open p i t mine structure, push as 

much flow as we want and input these excesses as a preflow 

into the push-relabel routine thereby giving i t a warm star t . 

F i r s t l y , the network generation routine establishes the 

lowest positive value block i n each row column pair of the 

ore body because there i s no need to consider any blocks 

beneath these. Next we have to add on those blocks that are 

outside the ore body that would need to be removed i n order 

to remove blocks within the ore body. This i s given by the 

.spp f i l e which i s the cone of slopes of azimuths above any 

block. The .spp f i l e gives us a l l the blocks that need to be 

removed i n order to remove a specific block. F i n a l l y , we also 

have to add on blocks that are necessary to s a t i s f y wall 

slope r e s t r i c t i o n . This i s given by the .spv f i l e which 

gives the minimum set of arcs whose tra n s i t i v e closure gives 
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the same cone given by the .spp f i l e . The .spv f i l e gives us 

the outer boundary blocks of the .spp f i l e . The .spp and 

.spv f i l e s are generated v i a Lynx's code and examples of 

these f i l e s are given on pages 47 and 52. 

We attempt to enhance the speed of the network flow 

routine by giving i t a warm start. Several heuristics are 

studied i n order to take advantage of the three dimensional 

structure of the open p i t mine network that i s solved by a 

generic maximum flow problem. The network generator proceeds 

as follows: 

Step 1: 

Read i n the 3-D block array with block values. 

Step 2: 

Establish a bottom layer for each row-column pair as 

the lowest positive block layer. 

Step 3: 

Extend the bottom array to a new bottom whose size i s 

expanded as indicated by the .spp f i l e to allow blocks 

outside the o r i g i n a l orebody to be mined. 

Step 4: 

Establish a linked l i s t of a l l positive value bottom 

layers. 

Step 5: 
Run through this linked l i s t and add any new bottom 
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layers that are needed as indicated by the .spp f i l e to 

s a t i s f y wall slope requirements. 

Step 6: 

Number a l l the blocks that are i n the network. 

Step 7: 

Run through each block from bottom up generating the 

minimum possible number of arcs needed to remove that block 

as given by the .spv f i l e . Attempt to push flow as dictated 

by the heu r i s t i c . 

26 



V A R I O U S H E U R I S T I C S 

We are using a generalised maximum flow routine (push 

relabel) to solve a sp e c i f i c application which i s the open 

p i t mine problem. The open p i t mine problem has a three 

dimensional structure and f i n i t e capacities on source and 

sink arcs only. The idea then i s to use this special 

structure to enhance the performance of the push relabel 

routine. Various heuristics are implemented and incorporated 

into the network generation routine, and give the push 

re l a b e l routine a warm start. The performance of each 

h e u r i s t i c i s judged by the percentage reduction i n solution 

time of the push relabel routine over three instances of 

networks chosen to show a range of performance of the 

he u r i s t i c s . The three networks are generated from the 

blockmod data which i s a r t i f i c i a l l y generated to represent 

a real mine. There are two classes of heuri s t i c s . F i r s t l y , 

those that push flow using arc information only. Secondly 

those that push flow using node information also. 

C l a s s 1 

M I N I M U M l x 

We know that i n order to remove blocks on one layer we 

need to remove blocks from the layers above this layer. The 

way the network i s generated the ore body generally l i e s i n 

the central (row,column) area. Therefore we expect the 
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central blocks i n the upper layer to be i n the optimal 

solution. The f i r s t and most obvious heur i s t i c we consider 

i s based on the minimum lx distance. Each arc has a t a i l , 

head pair. The difference between the t a i l ' s row number and 

the head's row number i s the row offset of t h i s arc. 

S i m i l a r l y we have a column and a layer o f f s e t . The lx 

distance i s then defined as the row offset plus the column 

of f s e t . The l x norm i s the sum of the absolute values of 

offsets. So a smaller lx distance means an arc that goes up 

straight for and a smaller l a t e r a l deviation. Therefore we 

want to push flow on minimum l x distance arcs since they push 

flow straight up straying the least from the central blocks. 

This i s accomplished through creating an array of 

linked l i s t s where the array index equals the l x distance of 

the arc. Then a l l arcs with the same lx distance are part of 

one linked l i s t so each time an arc i s generated we push flow 

f i r s t to the sink i f possible, and then to arcs beginning 

from minimum l a distance linked l i s t to increasing 1 

distance linked l i s t s a l tering the excess on the respective 

nodes and the flow on the arcs. 

The mean solution times with and without the h e u r i s t i c 

are shown below for the representative set of networks. 
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Network 

a60 

b45 

c50 

Nodes 

2813 

4277 

4097 

Heuristic 

.55 

1.12 

1.78 

Push-Rel 

. 63 

1.23 

1.8 

Reduction 

13 % 

9 % 

1 % 

M A X I M U M Z 

We define the z distance of any arc as z =layer of f s e t . 

We push flows on arcs i n order of decreasing layer o f f s e t . 

Arcs connected to higher layers get flow f i r s t with the 

exception of arcs to the sink getting flow f i r s t . Here we do 

not care i f flow i s moving away from the central (row, column) 

blocks as long as i t s going up as fast as possible. The 

performance of this heuristic was tested on blockmod and a 

sample follows: 

Network Nodes Heuristic Push-Rel Reduction 

a60 2813 .57 .63 10 % 

b45 4277 1.20 1.23 2 % 

c50 4097 1.8 1.8 0 % 

M A X I M U M l x 

We know that before any block i s i n the optimal 

solution i t s value must be greater than the value of the head 

of any of i t s arcs not considering the combined flow effect 

from other nodes. The central nodes are more l i k e l y to get 
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flow from other nodes than the outer nodes. Therefore an 

argument can be made for pushing flows to the outer blocks 

f i r s t so as to reduce reallocation of flows at a l a t t e r 

stage. In the maximum lx flow i s pushed on arcs i n 

decreasing order of l x distance with the exception of arcs to 

sink getting flow f i r s t . The performance was tested on 

blockmod and the results follow: 

Network Nodes Heuristic Push-Rel Reduction 

a60 2813 .62 .63 2 % 

b45 4277 1.23 1.23 0 % 

c50 4097 1.8 1.8 0 % 

M A X I M U M Z - M I N I M U M l x 

From the preceding results, i t appears that pushing 

flow on arcs i n the upward direction i s better than pushing 

flow on arcs away from the centre i n the l a t e r a l direction. 

From this we infer that we should push flows on arcs with the 

highest slope. The slope of an arc i s given by z/l1. We 

would l i k e to push flow on arcs with higher slopes f i r s t , 

with preference given to flow to sink. The d i f f i c u l t y with 

t h i s i s that there are arcs with l x distance of zero and 

therefore i n f i n i t e slope and the above mentioned procedure 

amounts to the same as the minimum l x h e u r i s t i c . Therefore 

we pushed flows on various combinations of Max f=(az-bll) 
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where the coefficients a and b give different weights to 

upward and l a t e r a l movement of flow. The results are as 

follows for a = 2 and b = 1: 

Network Nodes Heuristic Push-Rel Reduction 

a60 2813 .57 .63 10 % 

b45 4277 1.18 1.23 4 % 

c50 4097 1.79 1.8 1 % 

B O U N D E D M I N I M U M l x 

We know that i t i s preferable to send flow to the top 

layers. The question then i s that i s there a l i m i t on the 

flow beyond which i t i s no longer advantageous to push flows 

to the top layers. The next question i s how do we choose 

this l i m i t or bound on the amount of flow to send on an arc. 

As a l l the arcs have i n f i n i t e capacity except those flowing 

to the sink. The bound chosen depends on the layer number of 

the head of the arc. For example with a 45 degree dip on 

each azimuth and waste block values of -W we do not need to 

push more than 5W to a l a s t layer node. So a flow of 

max(excess t a i l , 5W) i s pushed i n increasing 11 distance on 

arcs with head (layer upper bound-1) and so on. The results 

of this heuristic were promising except i t requires knowledge 

of waste block values and number of arcs which we do not have 

u n t i l we see the problem. The results are as follows: 
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Network Nodes Heuristic Push-Rel Reduction 

a60 2813 .55 .63 13 % 

b45 4277 1.10 1.23 11 % 

c50 4097 1.78 1.8 1 % 

N O FLOWS I N K 

For each of the heuristic above, we prefer to send flow 

to the sink f i r s t and then to the arcs indicated by the 

h e u r i s t i c . It i s only natural to try what happens i f we 

avoid any arcs flowing to the sink rather than prefer them. 

The performance with minimum l x h e u r i s t i c was tested on 

blockmod and the results were as follows: 

Network Nodes Heuristic Push-Rel Reduction 

a60 2813 .65 .63 -3 % 

b45 4277 1.26 1.23 -2 % 

c50 4097 1.83 1.8 -2 % 

C L A S S 2 

We have been considering just the characteristics of 

the arc without considering any information on the nodes. 

The next set of heuristics use information about both arcs 

and nodes. From now on, we push on arcs with minimum lt 

distance giving preference to flow to sink since this was the 

best heuristic but we also apply information from the nodes. 
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TOWARDS P O S I T I V E B L O C K S 

We prefer positive blocks over negative blocks so we push on 

arcs whose head i s positive valued. F i r s t preference i s 

given to arcs connected to the sink. Secondly we push on the 

arc with minimum lx distance only i f the value [head] i s 

po s i t i v e otherwise we push on the arc with second lowest lr 

distance i f i t s head i s positive and so on. Unfortunately 

the performance of this heuristic was not good when tested on 

blockmod as shown below: 

Network Nodes Heuristic Push-Rel Reduction 

a60 2813 .63 .63 0 % 

b45 4277 1.22 1.23 1 % 

c50 4097 1.80 1.8 0 % 

TOWARDS N E G A T I V E B L O C K S 

The only logic behind using this h e u r i s t i c i s that since i t s 

opposite had such a bad performance this should perform very 

well. But once again i t s performance was very bad as shown 

below: 

Network Nodes Heuristic Push-Rel Reduction 

a60 2813 .65 .63 -3 % 

b45 4277 1.25 1.23 -2 % 

c50 4097 1.83 1.8 -2 % 
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TOWARDS V E R Y P O S I T I V E B L O C K S 

The reasoning behind this was that i t i s possible that the 

two heuristics above (push to positive, push to negative) 

don't affect performance because they r e a l l y do not consider 

how positive or negative the blocks are i.e. a block of -1 i s 

very different from a block of -12500 yet are treated i n the 

same manner. Therefore, we push on arcs with increasing 11 

distance giving preference to flow to sink but pushing only 

on arcs whose head have a greater value than the excess 

carried on the t a i l i . e . very positive blocks. The results 

from testing on blockmod are as follows: 

Network Nodes Heuristic Push-Rel Reduction 

a60 2813 .58 .63 8 % 

b45 4277 1.15 1.23 7 % 

c50 4097 1.78 1.8 1 % 

TOWARDS V E R Y N E G A T I V E B L O C K S 

For the purpose of completeness we push on arcs with 

increasing 11 distance giving preference to flow to sink but 

pushing on arcs whose head have a negative value greater than 

the excess on t a i l . The results are as follows: 

Network Nodes Heuristic Push-Rel Reduction 

a60 2813 .65 .63 -3 % 

b45 4277 1.26 1.23 -2 % 

c50 4097 1.80 1.8 -2 % 

34 



A N A L Y S I S & C O N C L U S I O N 

The average (over the sample size of three) reduction 

in solution time for a l l the heuristics i s as follows. Other 

tests similar to these were done on sab02 confirming these 

results but s t i l l the sample size i s small and the number of 

base instances (2) i s also small. 

(1) Bounded minimum 11 8% 

(2) Minimum l x 8% 

(3) Maximum z - minimum l a 5% 

(4) Very positive 5% 

(5) Maximum z 4% 

(6) Maximum lt 1% 

(7) Positive 0% 

(8) Negative -2% 

(9) Very negative -2% 

(10) No flowsink -2% 

The heuristics with the greatest percentage reduction 

in mean solution time are bounded minimum l x and minimum 1}. 

The extra information required to run bounded minimum lx does 

not lead to a significant reduction i n solution time. Also, 

the bounded value for flow i s problem s p e c i f i c and requires 

knowledge of the waste block values and .spv f i l e s 

beforehand. 

The inherent v a r i a b i l i t y i n solution times i s very 
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l i t t l e (i.e. .02 seconds at the most for a l l heuristics) . The 

difference in solution times of these two heuristics and push 

relabel are strongly s t a t i s t i c a l l y s i g n i f i c a n t . As mentioned 

before we do suffer from a lack of more base instances (sab02 

and blockmod) but an attempt was made to generate networks 

that are as different as possible. This i s further discussed 

in Chapter 5. 

On the basis of these runs the minimum lx h e u r i s t i c was 

adopted. The output from the network flow generator 

(incorporated with the minimum l x heuristic) i s now read into 

a parser and maximal flow routines. The parser routine must 

be altered to read an extended format which i s required for 

reading i n the output of the heuristic i n order to give the 

maximal flow routine a warm start. 

The output from the parser i s read into Cherkassky and 

Goldberg's (1994) push relabel routines with changes made to 

incorporate the warm start. The networks are run on two 

maximum flow routines with and without the he u r i s t i c . The 

same networks are run on Dinic's algorithm without the warm 

start and our implementation of FKS (chapter 2) to provide a 

basis for comparison with push relabel. 
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I l l u s t r a t i v e e x a m p l e 

We consider a small problem to i l l u s t r a t e the steps 

that the minimum l x heuristic incorporated network generation 

routine runs through. The problem we consider has three 

rows, three columns, and three layers. So the o r i g i n a l ore 

body three dimensional block structure has twenty seven 

blocks. Let's consider the ore body f i r s t : 

Layer 1 (Bottom layer) 

-1 -1 -1 
-1 -1 -1 
10 -1 10 

Layer 2 

-1 -1 8 
-1 -1 -1 
-1 -1 8 

Layer 3 

-1 -1 -1 
-1 -1 -1 
-1 -1 -1 

The 3*3*3 ore body model i s read into the routine. For 

example, the value of block row 1, column 3, and layer 2 i s 

8. The next step i s to find the lowest positive layer i n 

each row-column pair and put i t i n a two dimensional array 

bottom[i] [j] = value. If there i s no positive layer then i t s 

value i s set to M. 
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bottom[i] [j] 

M M 2 
M M M 
1 M 1 

The following counters for upper bounds on rows, columns, and 

layers are set as rub = cub =lub =3. Next we read i n the 

information from the .spp f i l e which looks l i k e t h i s . 

NX: maximum number of columns i n spp/spv f i l e 

NY: maximum number of rows i n spp/spv f i l e 

NB: number of deepest layer 

XC: midpoint column number i n spp/spv f i l e 

YC: midpoint row number i n spp/spv f i l e 

The azimuth i s a l i s t of angles ( a t o t a l of 360°) at which 

different wall slopes are permitted. In this example at each 

of the angles of 0, 90, 180, 270 we must have a minimum wall 

slope of 45 degrees. By varying these parameters we can vary 

the spp/spv f i l e s which varies the constraints on the wall 

slopes at different angles. 
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NX, NY, NB, XC, YC, NP, BX, BY, BH= 7 7 3 4 4 4 10 10 
10 
AZIMUTH = .0 90.0 180.0 270.0 
DIP = 45.0 45.0 45.0 45.0 
001:00000003000000 
002:00030302030300 
003:00030201020300 
004:03020101010203 
005:00030201020300 
006:00030302030300 
007:00000003000000 

After reading the spp f i l e we create an expanded bottom 

array bottom[i] [j] to allow for mining of blocks outside the 

ore body i n order to remove blocks at the edges of the ore 

body three dimensional blocks. It i s the size of this block 

structure which represents the number of blocks we would have 

i n our model i f we did not have a bounding routine which i n 

this case would be 7*7*3=142. The new bottom array w i l l have 

dimensions equal to old dimensions + (NX,NY) which means 

(7,7). The information from the old bottom i s transferred to 

the new bottom array as (row=row + NY/2) and (column=column 

+ NX/2). 

new bottom[i] [j] 

M M M M M M M 
M M M M M M M 
M M M M 2 M M 
M M M M M M M 
M M 1 M 1 M M 
M M M M M M M 
M M M M M M M 
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Next we construct a linked l i s t of each non-M bottom 

row-column pair for each l e v e l . For example our linked l i s t 

for layer 1 would contain two elements and their respective 

row-column pairs and for layer 2 we have one element and i t s 

row-column pair. We then run through our linked l i s t and 

apply the information available i n the spp f i l e by putting 

i t s centre (4,4) over each block i n the linked l i s t to find 

out what blocks need to be added to s a t i s f y the wall slope 

r e s t r i c t i o n s . If any blocks are needed then we have to 

create new bottom blocks for that row-column pair. So we get 

an updated new_bottom[i][j]. 
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new bottom[i][j] 

M M M M M M M 

M M M M 3 M M 

M M 3 3 2 3 M 

M 3 2 3 2 3 M 

3 2 1 2 1 3 3 

M 3 2 3 2 3 M 

M M 3 M 3 M M 

The next step i s to number the blocks i s some format. 

We adopt a simple sequential numbering system where we go 

along each row numbering each column from i t s bottom layer 

upward. The block numbers then become as follows: 
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36 
31 32 34, 

33 

35 

24 26, 

25 

27 29, 

28 

30 

10 12, 15, 17, 20, 22, 23 

11 14, 

13 

16 19, 

18 

21 

3 5 

4 

6 8 

7 

9 

1 2 

So our bounding structure uses a t o t a l of 36 blocks as 

opposed to an o r i g i n a l number of 142 blocks. We can now 

pri n t out each block and i t s value to the output f i l e . A l l 

blocks outside the o r i g i n a l ore body can be given any value. 

In this example they are given a value of -1. 
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We now input information form the .spv f i l e which looks 

l i k e this 

NX, NY, NB, XC, YC, NP, BX, BY, BH= 7 7 3 4 4 4 10 10 
10 
AZIMUTH = .0 90.0 180.0 270.0 
DIP = 45.0 45.0 45.0 45.0 
001:00000000000000 
002:00030000000300 
003:00000001000000 
004:00000101010000 
005:00000001000000 
006:00030000000300 
007:00000000000000 

We use this f i l e to set up the arcs. By placing the centre 

(4,4) over each block we can set up the arcs that lead out 

from each block. In general, the order i n which you generate 

these arcs doesn't matter. In our case we want to set up a 

heuristic which pushes flow as i t generates the arcs on arcs 

of increasing l x distance so that we can . Consequently, we 

must generate these arcs according to ascending 11 distance. 

We read each nonzero value from the spp f i l e and assign 

i t a row offset and a column offset number. Then we create 

an array of linked l i s t s where the array index equals the 12 

distance of each nonnegative value i n the spp f i l e . Now we 

can generate arcs by running through the linked l i s t of each 

the array i n ascending order of the array index. 

For example, from the spp f i l e above the entry i n (4,4) has 

l x distance 0 and so i s the f i r s t member of the linked l i s t 

of the array element b[0] . Similarly we have four members i n 
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the linked l i s t of array element b[l] with lx distance 1 i . e . 

(5,4), (4,5), (4,3), (3,4). 

In order to run the heuristic we need to assign excess 

on blocks and flows on arcs as we generate the arcs. A l l 

pos i t i v e value blocks are assigned an excess equal to th e i r 

value and the rest of the blocks have zero excess to start 

with. 

Once the heuristic i s done we output each arc and i t s 

flow and each block and i t s excess and i t s flow to the sink. 

The heuristic has pushed excess to the top layers i n order to 

give the maximal flow routine a warm star t . This output i s 

now read into the parser and the modified maximal flow 

routines. 

We see that our bounding procedure resulted i n 

decreasing the number of blocks from 142 to 36 and the 

he u r i s t i c has pushed excess to the upper levels i n order to 

give the maximal flow routine a warm start. 
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C H A P T E R 5 

R e s u l t s 

The usefulness of any technique cannot be measured 

u n t i l i t i s applied to an actual problem. We use the data 

from a Brazilian copper mine (sab02) and data constructed to 

resemble a real mine (blockmod) to address the following 

issues: 

1) Whether the push relabel routine works well i n practice on 

this class of graphs. 

2) Whether we can take advantage of the structure of an open 

p i t problem being solved with a generic maximum flow code. 

3) To what extent does the network generation procedure 

reduce the number of blocks. 

These questions are answered using both a small example 

and real mine deposit data. The Brazilian copper mine(sab02) 

has 23 layers, 52 rows, and 80 columns for a t o t a l of 95680 

blocks. The small example (blockmod) has 12 layers, 11 rows, 

and 23 columns for a t o t a l of 3036 blocks. We use these two 

data sets to generate a number of different networks to do 

our testing. We were limited to only these two base 

instances of which r e a l l y only one i s actual data, and the 

other i s small and a r t i f i c i a l . Ideally i t would be better to 

have more base instances. Consequently we generated the 

networks to be as different as possible from each other. The 
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networks generated through different .spp and .spv f i l e s 

range from 2813 to 27926 nodes. We run our routines on a 

HP/Apollo 9000, model 730 with 64 MB RAM with a GNU C 

compiler and the implementations are written i n C. 

We have tested on 4 different routines which are 

(1) The FKS closure algorithm which we implemented i n C. 

(2) Dinic's algorithm as implemented by Goldberg and 

Cherkassky (1990). 

(3) The queue push relabel implementation of Goldberg and 

Cherkassky. 

(4) The highest label push relabel implementation of Goldberg 

and Cherkassky. 

We implemented the minimum 11 h e u r i s t i c which we 

incorporated into Tom McCormick and Todd Stewart's network 

generator and implemented a parser routine i n order to 

incorporate the warm start into both push relabel routines. 

S o l u t i o n T i m e ( P u s h R e l a b e l ) 

Goldberg and Cherkassky (1994) show that the empirical 

performance for both push relabel routines ( highest label 

and FIFO ) i s better than Dinic's. Their paper also 

establishes that the highest label push relabel 

implementation performs better than the FIFO push relabel 

routine for a l l random problem sets. Goldberg and Cherkassky 
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perform their tests on randomly generated data from the f i r s t 

DIMACS challenge. The empirical performance of the push 

relabel on actual data has not been tested as far as we know. 

Therefore we run a l l five routines on real data (sab02) and 

generated data (blockmod) to v e r i f y the empirical properties 

established by Goldberg and Cherkassky. Table One gives the 

solution times over a l l tested networks respectively for FKS, 

Dinics, Push Relabel (FIFO), Push Relabel (FIFO) plus minimum 

l x heuristic, Push Relabel (Highest Label), and Push Relabel 

(Highest Label) plus minimum 12 h e u r i s t i c . Figure One plots 

the solution times for FKS, Dinic's, and Push Relabel (FIFO), 

Push Relabel (FIFO) plus heuristic for both sets of data 

(sab02 and blockmod) together and separately. Figure Two 

plots the same solution times from Figure One except for FKS 

i n order to better scale the graph since FKS times are much 

larger than the other routines. Figure Three plots the 

solution times for FKS, Dinic's, Push Relabel (Highest Label) 

and Push Relabel (Highest Label) plus heuristic for both sets 

of data (sab02 and blockmod) together and separately. Figure 

Four plots these solution times i n Figure Three except for 

FKS i n order to scale the graph. 

The results from testing on actual data confirm those 

of Cherkassky and Goldberg (1994) on randomly generated data. 

The highest label push relabel implementation i s the fastest 
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followed by FIFO push relabel and then Dinic's. Our 

implementation of FKS was the slowest. 

S o l u t i o n T i m e ( H e u r i s t i c ) 

The push relabel incorporated with minimum l x h e u r i s t i c 

performs better than just the push relabel for both routines. 

Each routine i s run on the same network many times to check 

i f the difference i n solution times i s s t a t i s t i c a l l y 

significant. The solution and to t a l times i n CPU seconds for 

three networks (A45, B45, and C60) are shown with the t-

s t a t i s t i c for difference i n mean solution time. 

Heuristic Push Relabel 
A45 FIFO 

Total Solution Total Solution 
1 62.98 19.17 63.65 20.88 
2 64.62 19.82 63.48 20.90 
3 63.02 19.17 63.42 20.88 
4 63.00 19.07 63.18 20.80 
5 63.23 19.15 63.67 20.88 
6 63.62 19.17 64.03 20.95 
t = -14.10 P = .0000 
B45 FIFO 

Total Solution Total Solution 
1 89.17 26.43 91.17 28.40 
2 88.72 26.43 89.70 28.35 
3 89.33 26.40 89.07 28.28 
4 88.87 26.45 89.05 28.40 
5 89.45 26.43 89.93 28.40 
6 89.17 26.43 89.82 28.35 
t = -94.36 P = .0000 
A45 Highest Label 

Total Solution Total Solution 
1 58.48 14.47 58.50 15.78 
2 58.55 14.45 58.68 .15.77 
3 58. 67 14.40 58.58 15.73 
4 61.10 14.42 65.15 15.88 
5 58.55 14.50 58.70 15.82 
6 58. 67 14.50 58.73 15.80 
t = -50.09 P - .0000 
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C60 FIFO 

Total Solution Total 
92.42 
92.95 
92.22 
94.42 
92.75 
93.68 

Solution 
1 88.97 
2 90.57 
3 92.72 
4 88.80 
5 91.13 
6 89.17 
t = -23.18 

23.70 
23.80 
24.90 
23.70 
23.70 
23.78 

28.52 
28.43 
28.47 
28.40 
28.50 
28.48 

p = .0000 

Tables One and Two show the solution and t o t a l times 

for a l l networks with and without the he u r i s t i c . These are 

also plotted in Figures One to Four. These results show that 

the minimum l x heuristic s t a t i s t i c a l l y s i g n i f i c a n t l y improves 

the solution time performance of both push relabel routines. 

E s t i m a t e o f t h e A s y m p t o t i c G r o w t h R a t e f o r S o l u t i o n T i m e 

We are also interested i n the asymptotic growth rate of 

an algorithm because in practice the problem size can be very 

large for certain applications. We assess whether push-

re l a b e l does indeed have the best asymptotic growth i n 

practice. 

We run the regression of log(solution time) on 

log(nodes) on the combined sab02 and blockmod data for a l l 

the routines. Plots of these graphs for Dinitz, FKS, and 

Push-Relabel are shown on page 79. The asymptotic growth 

rates are as follows: 
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FKS 1.58 

Dinic 1.82 

PR(Q) 1.54 

PR(Q)+H 1.53 

PR(H) 1.51 

PR(H)+H 1.50 , 

The push relabel algorithm has a better asymptotic 

growth rate for this class of real problems implying that as 

the problem size increases the performance of push relabel 

improves even further. This i l l u s t r a t e s how well the push 

relabel routine performs i n practice on actual data. 

T o t a l t i m e 

It i s plausible that we might be concerned about the 

total time taken to read the network, solve the maximum flow 

problem and output the maximum closure. We see the t o t a l and 

solution times for each of the routines in Tables 3, 4, 5, 6, 

7, 8 respectively. Also Figure 5 plots the to t a l time for a l l 

routines. 

The most s t r i k i n g thing we notice i s that the t o t a l 

time i s much greater than the solution time for a l l the 

algorithms except the FKS closure algorithm. This observation 

raises two points. F i r s t l y , the push relabel algorithm i s so 

good i n practice that most of the time (see Table 9) i s spent 
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just reading the network and a very l i t t l e time i s spent 

solving i t . Secondly, most of the reading time of FKS 

disappears because the parse routine doesn't have to create 

the overhead of source and sink arcs. That i s the FKS closure 

algorithm works with the o r i g i n a l digraph and does not need 

extra arcs. 

One point to notice i s that while the parser read time 

i s linear, the solution time i s not so therefore the r e l a t i v e 

advantage that FKS enjoys due to a shorter parser time 

decreases as the number of nodes increase. For example with 

2813 nodes the t o t a l time for FKS i s 19.86 and for push 

re l a b e l h e u r i s t i c i s 2.82. For 27926 nodes t o t a l time i s 

441.97 for FKS and 95.96 for push relabel h e u r i s t i c . As the 

problem size has increased the difference i n t o t a l times has 

increased s i g n i f i c a n t l y from 17.04 to 345.01 i l l u s t r a t i n g 

that the disadvantage of a large superlinear solution time 

overrides the advantage of a linear read time for the FKS 

routine. 

B o u n d i n g 

It i s seen that the network generator created by Todd 

Stewart and Tom McCormick i s very effective at bounding the 

problem size. The o r i g i n a l number of blocks i n the copper 

mine are 95,680 while the reduced number of blocks range from 

27,926 to 18385 blocks. Caccetta and Giannini(1991) also 
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reduce the problem size by bounding the problem using a three 

dimensional dynamic programming technique of Johnson and 

Sharpe. 

The network generator i s altered and the bounding 

routine i s disabled to check what happens i f we solve the 

expanded (not bounded) model. The results for blockmod are 

shown i n Table Nine. We notice that the expanded model 

i n f l a t e s the reading time more than the solution time. The 

solution time increases between 5 to 8 fold while the t o t a l 

time increases between 8 to 12 fold. This i l l u s t r a t e s how 

well the push relabel works i n practice on this set of 

graphs. We t r i e d to run the expanded model on sab02 but ran 

out of memory space. In fact, the bounded networks generated 

from sab02 are about the largest models that can run on our 

machine. Larger instances w i l l run out of memory space. 

Consequently memory space can be a bigger problem than 

solution time. The Lerchs-Grossman technique overcomes this 

problem by running without an ex p l i c i t network, i . e . arcs are 

generated each time that they are required, trading memory 

for time. It i s possible that the push-relabel routine 

could be implemented i n a similar manner trading solution 

time for memory space. 

C o n c l u s i o n 

The results show that the empirical performance of push 
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relabel i s better than Dinic's and FKS both i n terms of 

solution times and asymptotic solution times. Also, 

incorporating the minimum 11 heuristic further improves the 

performance of both push relabel routines. There i s the need 

to test against Lerchs Grossmann and Floating Cone but a lack 

of money and time. 

The results also i l l u s t r a t e that a s i g n i f i c a n t portion 

of the t o t a l time of the push relabel i s read time and not 

solution time. This implies that the solution time of push 

rela b e l routine i s not the constraining factor for using i t 

on p r a c t i c a l problems but rather the read time. Further 

research should aim on reducing the read time and not the 

solution time. A hint can be taken from the FKS routine 

which has such low read time since i t deals with just the 

internal network and does not need source and sink arcs. It 

i s probable that one can implement a push relabel routine 

which does not need to create source and sink arcs which 

would significantly reduce the total time of push relabel and 

thus make i t more suitable for p r a c t i c a l problems. This 

thesis did not proceed further i n this direction due to lack 

of time but strongly suggests this research path. 

In conclusion, the mining community has regarded the 

network flow technique as being too slow and using too much 

memory, but now with modern implementations such as push 
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relabel and also push relabel plus heu r i s t i c this b e l i e f 

should be outdated. The computational complexity of the push 

relabel which i s improved by the heuristic i s so good that we 

w i l l run into problems of reading i n the network and memory 

space much before the network flow solution time becomes 

excessive. 
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Table 1 (Solution time in sees) 

Networks Nodes FKS Dinics 

a60 2813 19.78 0.68 
a55 3065 20.33 1.67 
b60 3200 20.73 0.87 
b55 3430 21 0.98 
a50 3509 20.62 1.85 
c60 3663 19.35 1.05 
b50 3781 21.38 1.97 
c55 3838 21.37 1.67 
c50 4097 21.4 1.96 
a45 4120 18.2 1.19 
b45 4277 18.63 1.28 
c45 4455 18.97 1.6 
a60 18385 379.05 16.28 
b60 20281 401.03 28.4 
a55 20346 391.12 19.1 
b55 21834 409.13 31.53 
a50 22644 405.98 31.85 
b50 23841 416.18 37.27 
c60 25560 417.22 52.5 
a45 25668 406.3 43.58 
c55 26108 433.63 63.87 
b45 26299 428.5 64.82 
c50 26935 431.83 74.98 
c45 27926 441.87 62.13 

Push-Rel Push-Rel Push-Rel Push-Rel 
FIFO Heuristic H L Heuristic 
0.63 0.55 0.47 0.42 
1.17 1.03 0.88 0.72 
0.97 0.77 0.77 0.65 
1.87 1.32 0.85 0.65 
1.65 1.52 1.23 1.22 
1.33 1.23 1.12 0.93 
1.9 1.97 1.45 1.33 
1.32 1.33 1.18 1.15 
1.8 1.78 1.41 1.38 
1.13 0.98 1.03 0.98 
1.23 1.12 1.37 1.27 
1.47 1.43 1.2 1.11 
10.65 9.4 8.27 8.13 
16.62 15.12 13.21 12.21 
20.73 14.08 13.43 10.47 
25.9 22.22 16.07 15.43 
20.73 19.55 15.75 13.32 
27.5 25.63 19.32 17.82 
28.47 23.78 19.9 18 
20.88 19.27 15.95 14.15 
31.18 28.55 21.93 18.13 
28.32 26.38 20.97 19.17 
30.43 30.08 26.89 20.98 
33.06 27.18 22.95 21.18 

55 



Table 2 (Total time in sees) 

Networks Nodes 

a60 2813 
a55 3065 
b60 3200 
b55 3430 
a50 3509 
c60 3663 
b50 3781 
c55 3838 
c50 4097 
a45 4120 
b45 4277 
c45 4455 
a60 18385 
b60 20281 
a55 20346 
b55 21834 
a50 22644 
b50 23841 
c60 25560 
a45 25668 
c55 26108 
b45 26299 
c50 26935 
c45 27926 

FKS Dinics 

19.86 2.97 
20.41 5.87 
20.85 3.82 
21.35 6.43 
20.68 9.13 
19.51 4.87 
21.48 8.92 
21.42 6.93 
21.61 8.97 
18.24 3.94 
18.85 4.57 
19.62 5.67 

379.12 42.62 
401.08 73.1 
391.17 57.55 
409.2 91.8 
406.3 87.78 

416.25 109.88 
417.87 116.67 
406.37 86.72 
433.7 140.87 

428.55 127.05 
431.92 153 
441.97 136.8 

Push-Rel Push-Rel 
FIFO Heuristic 
2.97 2.93 
6.17 5.43 
3.97 3.88 
6.88 6 
9.77 7.45 
5.55 5.12 
8.55 8.62 
6.3 6.35 
8.6 8.5 
3.97 3.85 
4.63 4.43 
5.6 5.55 

36.73 36.68 
58.98 58.57 
73.72 51.1 
85.85 83.17 
75.43 74.63 
99.43 98.37 
92.6 89.08 

63.67 63.32 
107.72 106.37 
89.38 89.2 
110.77 108.73 
102.95 107.35 

Push-Rel Push-Rel 
H L Heuristic 
2.85 2.82 
5.53 5.32 
3.77 3.67 
5.97 5.67 
7.27 7.2 
5.05 5.05 
8.15 8.07 
6.32 6.22 
9.02 9 
3.97 3.73 
4.6 4.48 
5.57 5.51 
33.92 33.35 
54.45 54.87 
66.5 46.17 
75.63 75.78 
66.57 65.33 
91.08 89.43 
82.73 84.52 
58.4 57.5 
98.1 97.88 
81.43 80.67 
105.12 100.35 
96.95 95.96 
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Table 3 (FKS) 

Network Nodes Solution Total Difference 
a60 2813 19.78 19.86 0.08 
a55 3065 20.33 20.41 0.08 
b60 3200 20.73 20.85 0.12 
b55 3430 21 21.35 0.35 
a50 3509 20.62 20.68 0.06 
c60 3663 19.35 19.51 0.16 
b50 3781 21.38 21.48 0.1 
c55 3838 21.37 21.42 0.05 
c50 4097 21.4 21.61 0.21 
a45 4120 18.2 18.24 0.04 
b45 4277 18.63 18.85 0.22 
c45 4455 18.97 19.62 0.65 
a60 18385 379.05 379.12 0.07 
b60 20281 401.03 401.08 0.05 
a55 20346 391.12 391.17 0.05 
b55 21834 409.13 409.2 0.07 
a50 22644 405.98 406.3 0.32 
b50 23841 416.18 416.25 0.07 
c60 25560 417.22 417.87 0.65 
a45 25668 406.3 406.37 0.07 
c55 26108 433.63 433.7 0.07 
b45 26299 428.5 428.55 0.05 
c50 26935 431.83 431.92 0.09 
c45 27926 441.87 441.97 0.1 

Time versus Nodes (Sab02) 

450 - p s r 5 = = , , , i - ^ — 

370 -| , , i i , 1 , , , !| 
18000 19000 20000 21000 22000 23000 24000 25000 26000 27000 28000 

N o d e s 
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Table 4 (Dinic) 

Network Nodes Solution Total Difference 
a60 2813 0.68 2.97 2.29 
a55 3065 1.67 5.87 4.2 
b60 3200 0.87 3.82 2.95 
b55 3430 0.98 6.43 5.45 
a50 3509 1.85 9.13 7.28 
c60 3663 1.05 4.87 3.82 
b50 3781 1.97 8.92 6.95 
c55 3838 1.67 6.93 5.26 
c50 4097 1.96 8.97 7.01 
a45 4120 1.19 3.94 2.75 
b45 4277 1.28 4.57 3.29 
c45 4455 1.6 5.67 4.07 
a60 18385 16.28 42.62 26.34 
b60 20281 28.4 73.1 44.7 
a55 20346 19.1 57.55 38.45 
b55 21834 31.53 91.8 60.27 
a50 22644 31.85 87.78 55.93 
b50 23841 37.27 109.88 72.61 
c60 25560 52.5 116.67 64.17 
a45 25668 43.58 86.72 43.14 
c55 26108 63.87 140.87 77 
b45 26299 64.82 127.05 62.23 
C50 26935 74.98 153 78.02 
c45 27926 62.13 136.8 74.67 

Time versus Nodes (Sab02) 
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Table 5 (Push relabel(FIFO)) 

Network Nodes Solution Total Difference 
a60 2813 0.63 2.97 2.34 
a55 3065 1.17 6.17 5 
b60 3200 0.97 3.97 3 
b55 3430 1.87 6.88 5.01 
a50 3509 1.65 9.77 8.12 
c60 3663 1.33 5.55 4.22 
b50 3781 1.9 8.55 6.65 
c55 3838 1.32 6.3 4.98 
c50 4097 1.8 8.6 6.8 
a45 4120 1.13 3.97 2.84 
b45 4277 1.23 4.63 3.4 
c45 4455 1.47 5.6 4.13 
a60 18385 10.65 36.73 26.08 
b60 20281 16.62 58.98 42.36 
a55 20346 20.73 73.72 52.99 
b55 21834 25.9 85.85 59.95 
a50 22644 20.73 75.43 54.7 
b50 23841 27.5 99.43 71.93 
c60 25560 28.47 92.6 64.13 
a45 25668 20.88 63.67 42.79 
c55 26108 31.18 107.72 76.54 
b45 26299 28.32 89.38 61.06 
c50 26935 30.43 110.77 80.34 
c45 27926 33.06 102.95 69.89 

Time versus Nodes (Sab02) 
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Table6(Heuristic(FIF0)) 

Network Nodes Solution Total Difference 
a60 2813 0.55 2.93 2.38 
a55 3065 1.03 5.43 4.4 
b60 3200 0.77 3.88 3.11 
b55 3430 1.32 6 4.68 
a50 3509 1.52 7.45 5.93 
c60 3663 1.23 5.12 3.89 
b50 3781 1.97 8.62 6.65 
c55 3838 1.33 6.35 5.02 
c50 4097 1.78 8.5 6.72 
a45 4120 0.98 3.85 2.87 
b45 4277 1.12 4.43 3.31 
c45 4455 1.43 5.55 4.12 
a60 18385 9.4 36.68 27.28 
b60 20281 15.12 58.57 43.45 
a55 20346 14.08 51.1 37.02 
b55 21834 22.22 83.17 60.95 
a50 22644 19.55 74.63 55.08 
b50 23841 25.63 98.37 72.74 
c60 25560 23.78 89.08 65.3 
a45 25668 19.27 63.32 44.05 
c55 26108 28.55 106.37 77.82 
b45 26299 26.38 89.2 62.82 
c50 26935 30.08 108.73 78.65 
c45 27926 27.18 107.35 80.17 

Time versus Nodes (Sab02) 
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Table 7 (Push relabel(HL)) 

Network Nodes Solution Total Difference 
a60 2813 0.47 2.85 2.38 
a55 3065 0.88 5.53 4.65 
b60 3200 0.77 3.77 3 
b55 3430 0.85 5.97 5.12 
a50 3509 1.23 7.27 6.04 
c60 3663 1.12 5.05 3.93 
b50 3781 1.45 8.15 6.7 
c55 3838 1.18 6.32 5.14 
c50 4097 1.41 9.02 7.61 
a45 4120 1.03 3.97 2.94 
b45 4277 1.37 4.6 3.23 
c45 4455 1.2 5.57 4.37 
a60 18385 8.27 33.92 25.65 
b60 20281 13.21 54.45 41.24 
a55 20346 13.43 66.5 53.07 
b55 21834 16.07 75.63 59.56 
a50 22644 15.75 66.57 50.82 
b50 23841 19.32 91.08 71.76 
c60 25560 19.9 82.73 62.83 
a45 25668 15.95 58.4 42.45 
c55 26108 21.93 98.1 76.17 
b45 26299 20.97 81.43 60.46 
c50 26935 26.89 105.12 78.23 
c45 27926 22.95 96.95 74 

Time versus Nodes (Sab02) 
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Table 8 (Heuristic(HL)) 

Network Nodes Solution Total Difference 
a60 2813 0.42 2.82 2.4 
a55 3065 0.72 5.32 4.6 
b60 3200 0.65 3.67 3.02 
b55 3430 0.65 5.67 5.02 
a50 3509 1.22 7.2 5.98 
c60 3663 0.93 5.05 4.12 
b50 3781 1.33 8.07 6.74 
c55 3838 1.15 6.22 5.07 
c50 4097 1.38 9 7.62 
a45 4120 0.98 3.73 2.75 
b45 4277 1.27 4.48 3.21 
c45 4455 1.11 5.51 4.4 
a60 18385 8.13 33.35 25.22 
b60 20281 12.21 54.87 42.66 
a55 20346 10.47 46.17 35.7 
b55 21834 15.43 75.78 60.35 
a50 22644 13.32 65.33 52.01 
b50 23841 17.82 89.43 71.61 
c60 25560 18 84.52 66.52 
a45 25668 14.15 57.5 43.35 
c55 26108 18.13 97.88 79.75 
b45 26299 19.17 80.67 61.5 
c50 26935 20.98 100.35 79.37 
c45 27926 21.18 95.96 74.78 

Time versus Nodes (Sab02) 
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Table 9 (Expanded) 

FIFO 
Network Nodes Push-Rel Push-Rel Expanded Expanded 

Solution Total Solution Total 
a60 2813 0.55 2.93 3.98 22.13 
a55 3065 1.03 5.43 11.93 73.87 
b60 3200 0.77 3.88 8.03 44.68 
b55 3430 1.32 6 14.65 84.2 
a50 3509 1.52 7.45 7.77 79.43 
c60 3663 1.23 5.12 11.92 66.38 
b50 3781 1.97 8.62 19.62 109.65 
c55 3838 1.33 6.35 17.08 115.17 
c50 4097 1.78 8.5 memory memory 
a45 4120 0.98 3.85 7.28 35.47 
b45 4277 1.12 4.43 9.47 48.02 
c45 4455 1.43 5.55 13.62 68 

Highest Label 
Network Nodes Push-Rel Push-Rel Expanded Expanded 

Solution Total Solution Total 
a60 2813 0.42 2.82 2.98 26.45 
a55 3065 0.72 5.32 8.27 70.02 
b60 3200 0.65 3.67 5.45 42.53 
b55 3430 0.65 5.67 9.53 78 
a50 3509 1.22 7.2 9.58 80.77 
c60 3663 0.93 5.05 7.68 61.8 
b50 3781 1.33 8.07 12.02 102.45 
c55 3838 1.15 6.22 11.07 88.13 
c50 4097 1.38 9 memory memory 
a45 4120 0.98 3.73 4.75 33.55 
b45 4277 1.27 4.48 6.25 44.35 
c45 4455 1.11 5.51 8.45 62.43 
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Figure 1 (Solution time) 
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Figure 2 (Solution time no FKS) 

Solution time versus Nodes (Blockmod) 
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Figure 3 (Solution time) 
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Figure 4 (Solution time no FKS) 
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Figure 5 (Total time) 
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Log(Sol. time) vs Log(No.Nodes) 
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