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Abstract 

Rather than construction of a multivariate distribution from given univariate or bivari-

ate margins, recently several papers seek to promote the development and usage of a 

simple but relatively unknown approach to the specification of models for dependent 

binary outcomes through conditional probabilities, each of which is assumed to be lo­

gistic. These recent proposals were all offered as heuristic approaches to specifying a 

multivariate distribution capable of representing the dependence of binary outcomes. 

However, they are limited in scope, for they all describe some special patterns of depen­

dence. This thesis is concerned with a model for a multivariate binary response with 

covariates based on compatible conditionally specified logistic regressions. With this 

model, we allow for a general dependence structure for the binary outcomes. 

Three likelihood-based computing methods are introduced to estimate the parameters 

in our model. An example on the coronary bypass surgery is presented for illustration. 
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Chapter 1 

Introduction 

This thesis is concerned with a model for a multivariate binary response with covariates. 

The model is based on compatible logistic regressions. Association of outcomes may be 

a factor of primary or secondary interest in models for binary data. When measures of 

association are of interest, models for the marginal expectation may not be appropriate. 

Rather than construction of a multivariate distribution from given univariate or bivariate 

margins, recently several papers seek to promote the development and usage of a simple 

but relatively unknown approach to the specification of models for dependent binary 

outcomes through conditional probabilities. For binary response data, logistic regression 

models are useful for modelling the conditional probabilities. 

Practically speaking, we frequently encounter the variety of circumstances in which sev­

eral binary response variables are measured on associated explanatory variables. In 

such situations, interest may centre on modelling the multivariate response for analy­

sis. Take two examples for illustration. The first example on coronary bypass surgery 

will be used in the thesis later. This example provides the pre-operation information 

such as patient 's age, gender, etc. and the post-operation information such as patient 's 

complications and survival status which are all given in the form of binary data. Since 
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we are interested in those outcome variables indicating the patient's complications and 

survival status after the surgery, we have a situation in which the analysis of a multivari­

ate binary response with covariates is needed. A second example concerns the analysis 

of responses, college plans (Yi) and parental encouragement (Y2) and the covariates, 

IQ (Xi), sex (X2), and socioeconomic status (X3), where Yi is 1 for yes, and 0 for no, 

i = 1,2 (see Bonney, 1987). For this example, building a model for a multivariate binary 

response with covariates might be of interest. 

Recently, regressive logistic models have been proposed when the data comprise se­

quences of binary outcomes possibly with measures on associated explanatory variables 

(Bonney, 1987). Regressive logistic models are based on the elementary decomposition 

of the joint probability so that the likelihood of a set of binary dependent outcomes, 

with or without explanatory variables, is expressed as a product of successive conditional 

probabilities each of which is assumed to be univariate logistic. In Bonney's models, 

each binary response variable is an explanatory variable for later response variables in 

the sequence. Another proposal (Rosner, 1984) is the polychotomous logistic regression 

model. In this model, Rosner converts the problem into a 2n polychotomous logistic 

distribution for the number of successes when explanatory variables are zero. As a mo­

tivation for Rosner's model, Connolly and Liang (1988) describe a class of conditional 

logistic regression models for correlated binary data. This includes the polychotomous 

logistic model of Rosner as a special case. 

These recent proposals were all offered as heuristic approaches for specifying a multivari­

ate distribution capable of representing the dependence of binary outcomes. However, 

they are limited in scope, for they all describe some special patterns of dependence. 

Regressive logistic models proposed by Bonney deal with sequential binary outcomes, 

whereas Connolly and Liang's models might be useful when the dependent binary data 
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are almost exchangeable such as in the familial data situation. 

In order to allow for a general dependence structure for the binary outcomes, we intro­

duce a model for multivariate binary data with covariates based on compatible condi­

tionally specified logistic regressions. Conditionally, each binary response variable is a 

covariate for the logistic regressions for the other binary response variables. Moreover, 

there are conditions on the regression parameters in order that these conditional dis­

tributions are compatible. Furthermore, we can initially use logistic regressions to fit 

the conditional probabilities for each binary outcome, given the remaining binary out­

comes in addition to covariates, and use this to assess whether the multivariate model 

is reasonable. 

Two different types of compatibility conditions are introduced in Chapter 2. One nec­

essary and sufficient compatibility condition is proposed by Arnold and Strauss (1988); 

another compatibility condition comes from extending a result from Gelman and Speed 

(1993). 

The focus of Chapter 3 is to discuss general conditions under which there exists a joint 

probability distribution with the given specified conditional probability distributions and 

to develop a model for multivariate binary data with covariates based on compatible 

conditionally specified logistic regression. Starting with 2 and 3 dimensions enlightens us 

on the conclusion of the general case (from Section 3.1 to Section 3.2). In Section 3.3, we 

briefly discuss what are conditions for compatibility when the conditional distributions 

are based on a distribution that is not logistic. 

In Chapter 4, we compare our model with regressive logistic models proposed by Bon-

ney and conditional logistic regression models for correlated binary data proposed by 

Connolly and Liang. 

3 



In Chapter 5, an example with the coronary bypass surgery data is used for illustration 

of our model. In Section 5.1, we describe the data source in the example. In Section 

5.2, we introduce three computing methods which are all likelihood-based and are all 

used for estimating the parameters in our model. For our example, comparison of three 

methods is done in Section 5.3. While doing data analysis and computing among other 

things, answers to the following questions are sought (Section 5.4 and Section 5.5): 

1. For our example, how do we choose the covariates to use in our model? 

2. How much does the association of the response variables depend on the covariates? 

4 



Chapter 2 

Compatibility Conditions for 

Conditionally Specified 

Multivariate Distributions 

The goal of this chapter is to study conditions for compatibility of conditional prob­

abilities; that is, conditions for which a given set of conditional probability functions 

leads to a proper joint multivariate distribution. This will be made clear through some 

examples, starting with the two dimensional case. 

Let (X, Y) be a two dimensional random vector. Clearly, its probabilistic behavior for 

most purposes is adequately specified by knowledge of its joint cumulative distribution 

function 

FX,Y(X, y) = P r ( X < x, Y < y); x, y e R 

or joint density function fx,y{x,y). 

A variety of transforms can be used to characterize -Fy.y- It is clear that one marginal 

distribution and the family of corresponding conditional distributions, i.e., knowledge 

of Fy(y) and FX\Y{X\V) — Pr(-ST < x\Y = y), for every y, will completely determine the 
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joint distribution of (X, Y). On the other hand, knowledge of the marginal distributions 

Fx(x) and Fy(y) has long been known to be inadequate to determine FX,Y(X, y). What if 

we are given both families of conditional distributions, FX\Y(x\y) f ° r every possible value 

y of Y and Fy\x{y \x) f ° r every possible value x of XI Provided the families of conditional 

distributions are compatible, in a sense that there exists a valid joint distribution with 

the given conditional distributions, then indeed these families of conditional distributions 

will determine the joint distribution of (X, Y). 

2.1 Compatibility in 2 Dimensions 

The joint, marginal and conditional densities of X and Y will be denoted by fx,y(x, y), 

fx(x), /r(y)> fx\y(x\y) and fy\x(y\x). One compatibility condition proposed by Arnold 

and Strauss (1988) is that conditional densities fx\y{x\y) a n d fY\x{y\x) a r e compatible 

if and only if there exist nonnegative functions a(x) and b(y) such that 

a{x)h\x{y\x) = b(y)fX\Y(x\y) 

for all (x,y). 

Another compatibility condition is given in Gelman and Speed (1993). Suppose the 

conditional densities fx\y('\y) a r e given for all y and fY\x('\xo) is given for a particular 

value xo- Assume that fx\y(xo\y) > 0 f ° r au< J/- Then for the joint density fx,y{xTy)i 

jx\Y{xo\y) 

with the proportionality constant equal to 

J J fx\Y{xo\y) 

That is, for two random variables, the set of conditional densities given one variable 

plus one conditional density given the other variable determine the joint bivariate dis­

tribution. 



If the conditional densities fx\Y('\y) a r e given for all y and /Y\X('\X)
 a r e given for all a:, 

then, Gelman and Speed stated that a condition for compatibility, derived from (2.1) is 

that: 

fx[y{x\y)fY\x(y\xi),fx\Y(x\y)fY\x(y\x2) = fx\Y(x2\y)fY\X(y\xi) .^ g . 

fx\Y(xi\y) fx\Y(x2\y) fx\Y(xi\y)fY\x(y\x2) 

does not depend on x, y for all choices of x\ ^ x2. 

2.2 Compatibility in 3 Dimensions 

Similarly, a three dimensional random vector (X, Y, Z) might be specified by giving the 

distributions of X given (Y,Z), Y given (X,Z) and Z given (X, Y). Such conditional 

specifications must be checked for compatibility in a manner analogous to that described 

in section 2.1. 

On the basis of the idea provided by Arnold and Strauss, the compatibility condition for 

a three dimensional random vector {X, Y, Z) is that conditional densities fx\Y,z(x\y, z), 

fY\x,z(y\x,z) and /Z\X,Y(Z\X, y) a r e compatible if and only if there exist nonnegative 

functions a(y,z), b(x,z) and c(x,y) such that 

<*(v,z)fx\r,z(x\y>z) = Kx,z)fY\x,z(y\x>z) = c(x,y)fz\xAz\x,y) 

for all (x,y,z) (see Arnold, Castillo and Sarabia (1992), Chapter 8). 

The trivariate extension of Gelman and Speed's compatibility condition is as follows. 

Suppose the conditional densities fx\Y,z{'\y,z) are given for all y, z, fY\x,z('\xo,z) 

are given for all z and a fixed x0, and fz\x,Y('\xo^yo) 1S given for some fixed yQ and 

the same xQ as for fY\x,z('\xo,z). Assume that fx\Y,z(xo\y,z) > 0 for all y, z and 

fY\x,z(yo\xo,z) > 0 for all z, then for the joint density fxy,z{x,y,z), 

f u „ x „ fx\Y,z(x\v, z)fY\x,z(y\x<>, z)fz\x,Y(z\xo, y0) . v 
JX,Y,Z{X> y, z) a T 7 j w 7 — j x V"*) 

JX\Y,zKxO\y, z)jY\X,Z\yo\XQ, Z) 
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with the proportionality constant equal to fx,Y{xo,yo)- ft the conditional densities 

fx\Y,z(-\y>z) a r e S i v e n for a 1 12/ ' ZJ fy\x,z(-\xiz) a r e 8 i v e n f o r a11 £> zi a n d fz\xy(-\x,y) 

are given for all x, y, then a condition for compatibility is that 

fx\Y,z(X2\yi Z)fY\X,z(yi\x2, z)fY\X,z(y\xli Z)fz\X,Y(z\xi,yi) , g ^ 

fx\Y,z(Xi |y» •2)/y|A-,z(yikl, «)/K|X,z(y|*2, z)fz\xAz\x2, J/2) 

does not depend on x, y, z for all choices of {x\,y\) ^ (a^Ste)-

Cases involving random variables of dimension greater than three can, of course, be 

considered. The general ideas, however, are clearly visible in the 2 and 3 dimensional 

settings and both concepts for the compatibility condition can be extended to higher 

dimensions. 
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Chapter 3 

Models for Multivariate Binary 

Responses with Covariates 

The ideas in the previous chapter will be applied to get a model of compatible logistic 

regressions for a multivariate binary response. Consider a set of n correlated binary 

variables Y = (Yi, Y2,..., Yn), where Yi is coded 1 and 0, and m covariate variables X = 

( X i , X 2 , . . . ,Xm). Suppose that we are given the conditional probability distributions 

Pr(Yi\Yj,j ^ «,X) for i = 1 ,2, . . . ,n . From previous discussions, the joint probability 

distribution 

pr(Y|x) = Pr(y1,r2,...,yn|x) 

will be determined if these conditional probability distributions are compatible. 

With binary responses, the logit link function is a natural choice although, in principle, 

any link function could be chosen. In our study, we assume that all conditional distri­

bution of Yi given Yj, j ^ i, and X are logistic. That is, for a given binary response 

variable, the remaining binary response variables are used as covariates in addition to 

X . Now our goal is to discuss general conditions under which there exists a joint proba­

bility distribution P r ( Y | X ) with the given conditional probability distributions. At the 
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same time, a model for multivariate binary data with covariates based on compatible 

conditionally specified logistic regressions can be constructed. 

3.1 Conditions for Compatibility in 2 or 3 Dimen­

sions 

The two approaches of Arnold &; Strauss and Gelman &; Speed are illustrated in this 

section. 

3.1.1 2 Dimensional Case 

For ease of exposition, consider first the case of two binary response variables Yi and Y2, 

and a covariate vector x. Suppose that Yi conditional on x and Y2 = t/2 is logit and 

that Yi conditional on x and Y\ = y\ is logit, that is, 

«^PMK=II«..X)] = ^ f f ; : f c g 
= C*i + ftx + 7122/2, 

= a 2 + &X + 721J/1, 

with parameters <*i, /?i, or2? #2? 712, and 721. 

After some rearrangement, 

Pr(5-, = *|»,x) = f ^ V + V T ^ ' i 
1 + exp(o:i + /?ix -I- 712J/2) 

and 

Pr(K2 = ^b1,x) = * ± ^ ^ * M . (3.!) 
1 + exp(o:2 + P2X + 721 J/i) 

(Note that for convenience, the following shorthand notation Pr(r/i|j/2,x) is used for 

Pr(yi = yi\Y2 = t/2)X = x) , etc; when the context is clear.) 
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To ensure compatibility for the conditional probability distributions Pr(t/i|?/2,x) and 

Pr(y 2 | j / i ,x) , we have the following theorem. 

T h e o r e m 3.1 The conditional probability distributions Pr(i / i |y2 ,x) and Pr(i/2 |2/i,x) in 

(3.1) are compatible if and only i/712 = 721, in which case, the joint probability distri­

bution is: 

Pr(yx , y2 |x) = - exp[(o;i + ftx)^ + (a2 + ftxjjfo + 7122/12/2], (3.2) 

where c = 1 + exp(c*i + ftx) + exp(a2 + &X) + exp[(o;i + ct2) + {Pi + /?2)x + lu]-

Proof 1: (using Arnold and Strauss's compatibility condition) 

Pr(j/i |y2 ,x) and Pr(j/2|2/i,x) are compatible if and only if there exist probabilities Pr(j/i, 

r/2 |x), Pr(y2 |x) and Pr(yi |x) such that: 

Pr(2/i,2/2|x) = Pr(y1 | j /2 ,x)Pr(2/2 |x) 

= Pr(ya |y i ,x)Pr(y i |x) . 

(see Arnold, Castillo and Sarabia (1992)). 

Equivalently: 

P r ( r i = 1|F2 = l , x ) _ Pr (y t = l |x) 

pr(y2 = i|y1 = i,x) Pr(y2 = i |x) ' 
pr(y1 = i|y2 = o,x)_Pr(y1 = i|x) 
pr(y2 = o|yx = 1, x) Pr(y2 = o|x)' 
pr(yi = o|y2 = i,x) pr(yi = o|x) 
Pr(y2 = i|y1 = o,x)~Pr(y2 = i|x)' 
Pr(yi = o|y2 = 0, x) Pr(yi = 0|x) 
Pr(y 2 = 0|ya = 0,x) ~ Pr(y 2 = 0 |x ) ' 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

For example, dividing (3.3) by (3.4), and dividing (3.5) by (3.6), we have following 

equations respectively: 

pr(y2 = o|x) = Pr(y1 = i|y2 = i,x) pr(y2 = o|y1 = i,x) 
pr(y2 = i|x) pr(y2 = i|yx = i ,x) ' pr(ya = i|y2 = o,x) 
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exp(a! + ftx + 712) 1 + exp(a2 + /?2x + 721) 
1 + exp(«i + fax. + 712) exp(a2 + ftx + 721) 

1 1 + exp(c*i + ffix) 

1 + exp(a2 + /?2X + 721) exp(Qa + ftx) 
exp(7i2) • [1 + exp(a! + ftx)] 

exp(72i) • exp(a2 + /fcx) • [1 + exp(a1 + ftx + 712)]' 

pr(r2 = o|x) _ Pr(yri = o|y2 = i,x) Pr(y2 = o|rx = o,x) 
Pr(r2 = l|x) ~ Pr(r2 = l | n = 0 , x ) ' P r ( F 1 = 0 | y 2 = 0,x) 

_ 1 1 + exp(a2 + /32x) 
1 + exp(c*i + ftx + 712) exp(a2 + #2x) 
1 + exp(ai + ftgx) 
1 + exp(a2 + /?2x) 

1 + exp(ai + /?ix) 

(3.7) 

exp(a2 + /?2x) • [1 + exp(<*i + ftx + 712)]' 
(3.8) 

Comparing (3.7) with (3.8), only the condition 712=721 makes them consistent. Other 

cases yield the same result. Therefore, we conclude that a necessary and sufficient 

condition for Pr(j/i|j/2)x) and Pr(y2|2/i,x) to be compatible conditional distributions is 

712=721-

Since Pr(F2 = 0|x) = 1 - Pr(F2 = l |x), solving (3.8) we have 

Pr(F = llx) = exp(a2 + ftx) • [1 + exp(o;1 + ftx)] 
2 1 + exp(ai + Ax) + exp(a2 + /?2x) + exp[(ai + a2) + (ft + ft)x + 7 l 2 ] ' 

Similarly, we also can get 

exp(oi + &X) • [1 + exp(a2 + /?2x)] 
Pr(y! = l |x) 

1 + exp(c*i + Pix) + exp(a2 + /?2x) + exp[(ai + a2) + (ft + ftjx + 712]' 

Summarily, 

Pr( i i =y i | x ) = -exp[(ai + /3ix)j/i][l + exp(a3 + i82X + 7i2y1)], c 

Pr(F2 = 2/2 |x) = -exp[(a2 + fax)y2][l + exp(an + ftx + Twife)]. (3.9) 
c 
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where c = 1 + exp(ai + ftx) + exp(a2 + fax) + exp[(<*i + a2) + (/?i + fa)x + 712]. 

Using (3.1) and (3.9), it is easy to prove that the joint probability distribution is (3.2). 

Proof 2: (using Gelman and Speed's compatibility condition) 

Assume that Pr(y1 |y2)X), Pr(y a |y2,x) > 0 for all y2, x and two fixed values y1? yi. 

Implied by (2.2), a compatibility condition for Pr(yi |y 2 ,x) and Pr(3/2|3/i>x) is that 

P r (y i |y 2 , x )Pr (y 2 | y l ,x ) Pr (y i |y 2 ,x )Pr (y 2 | y" ,x ) P r ( ^ ' | y 2 , x ) P r ( t / 2 l ^ , x ) 

Pr(yi |y 2 ,x) I Pr(yi ' |y2 ,x) P r ( y ; | y 2 , x ) Pr(y2 | t/i ' ,x) ^ UJ 

does not depend on y\, y2 for all choices of yx ^ yx. 

Using (3.1), (3.10) can be rewritten as follows: 

Pr(yil2/2,x)Pr(t/2lyl,x) _ exp[(o?i + fax + 7123/2)3/1] exp[(a2 + fax + 7213/̂ )3/2] w 

Pr(yi |y2,x)Pr( j / 2 |y i ,x) 1 + exp(«i + ftx + 7i2y2) 1 + exp(a2 + fax + 721ft) 

exp[(a1 + ftx + 7123/2)3/1] exp[(q2 + /?2x + 7213/1 )y2] x 

1 + exp(ai + /9ix + 7123/2) 1 + exp(a2 + fax. + 721J/1) 

1 + exp(a2 + fax + 72iy") r , v » /., 
= T T 7 — T f l — 7 7T • exp (a i + PixKVx - 3/1) 

1 + exp(c*2 + fax + 7213/1) 
• exp[y2(yi' - yi)(7i2 - 721)] (3.11) 

With y1 = 1, yl — 0, (3.11) does not depend on yi and y2 if and only if 712 = 721- That 

is, a necessary condition for Pr(yi |y 2 ,x) and Pr(y 2 |y i ,x) to be compatible is 712 = 721. 

Letting yx = 0, from (2.1), (2.2) and (3.1), we get that the joint probability distribution 

Pr(3/i>3/2|x) has the following property: 

Pr(2/i|2/2,x)Pr(y2|yi = 0,x) 
Pr(j/i,2/2 |x) oc 

Pr(yi = 0|y2 ,x) 

exp[(a1 + fkx)V\ + (<*2 + ^ x ) y 2 + 7123/13/2] 

1 + exp(a2 + /?2x) 
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with the proportionality constant equal to 

1 + exp(a2 + /?2x) 

1 + exp(ax + /?ix) + exp(a2 + ftx) + exp[(ai + a2) + (ft + /?2)x + j12]' 

In other words, the joint probability distribution is proved as (3.2). It is easy to prove 

that the condition 7i2 = 72i is sufficient. 

3.1.2 3 Dimensional Case 

Next, in order to get clearer ideas about the general multivariate case, it is necessary to 

further discuss the 3 dimensional case with three binary response variables Y\, Y2 and I3 , 

and a covariate vector x. By assuming the linear logistic models for the conditional prob­

ability distributions Pr(Fx = y i |y 2 ,y 3 ,x ) , Pr(F2 = t /2 |yi ,y3 ,x) and Pr(F 3 = 2/3|2/i,2/2,x), 

we have 

r, / 1 x exp[(ai + ftx + 712y2 + 713^3)2/1] 
Pr(yi y2 ,y3,x) = — -.—— • r, 

1 + exp(ai + ftx + 7122/2 + 713J/3) 
exp[(a2 + ftx + j2iyi + 7232/3)2/2] Pr(y2 |yi ,y3,x) = 
1 + exp(a2 + ftx + 72ij/a + 723?/3)' 

and 

T W 1 ^ exp (0:3 + ftx + 731yi + 732^2)2/3 ,„ 10x 
P % 3 2/1,2/2, x) = — -.—— • r, (3.12) 

1 + exp(a 3 + ftx + 731yx + 732y2) 

where a 's , fts and 7's are parameters. (Note again that we are using shorthand notation, 

that is clear from its context.) 

For a 3 dimensional case, an analog of Theorem 3.1 to guarantee compatibility for (3.12) 

is given in Theorem 3.2. 

T h e o r e m 3.2 The conditional probability distributions Pr(yi | j /2 , t /3 ,x) , Pr(y2 | t / i ,y3 ,x) 

and Pr(j/3 | j / i ,y2 ,x) in (3.12) are compatible if and only 1/71:2=721,713=731, and 7 2 3 = 
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732 • Furthermore, the joint probability distribution is of the form 

Pr(2/i, 2/2,2/3 |x) = - exp[(aa + /?ix)yi + (a2 + My2 + (<*3 + /?3x)y3 

+7122/12/2 + 7132/12/3 + 7232/22/3] 

1 3 

= - e x p [ £ ( a , - + #x)y , -+ £ 7.i2/.2/j] 
C »'=1 l<«'<j<3 

(3.13) 

where c = 1 + £ ? = 1 exp(a,- + # x ) + Ei<,<i<3 exp[(a;,- + a,-) + (A + ^ ) x + 7,^] + exp[(a1 + 

a2 + a3) + (ft + ft + ft)x + (7l2 + 7l3 + 723)]. 

Proof 1: (using the extension of Arnold and Strauss's compatibility condition) 

Pr(2/i|2/2,2/3,x), Pr(j/2|2/i,2/3,x) and Pr(2/3|2/i,2/2,x) are compatible if and only if there 

are probabilities Pr(j/i,t/2,2/3|x), Pr(2/2,2/3|x),Pr(t/1, y3 |x) and Pr(j/!,2/2|x) such that 

pr(2/i>2/2,2/3|x) = Pr(2/i|2/2,2/3,x)-Pr(T/2,2/3|x) 

= Pr(y2 |y i ,y3 ,x) -Pr(y i ,y 3 | x ) 

= P r (y 3 | y i , y 2 , x ) -P r (y i , y 2 | x ) 

for all 2/1,2/2, 2/3, x. 

Equivalently, 

Pr(2/i|2/2,y3,x 

Pr(2/2|2/i,y3,x 

Pr(2/i|2/2,2/3,x 
Pr(y3|2/i,y2,x 

Pr(2/2|2/i,2/3,x 

Pr(2/3|2/i,y2,x 

Pr(2/i,2/3|x) 

Pr(2/2,2/3|x)' 

Pr(2/i,2/2[x) 

Pr (^ ,2 /3 |x) ' 

Pr(2/i,y2|x) 

P r (y i ,y 3 | x ) ' 

Special cases of (3.14) are 

Pr(r1^o,r3 = oix) 
Pr(y2 = o,r3 = o|x) 

P r ( F 1 = 0 | y 2 = 0 , r 3 = 0,x) 

Pr(F2 = 0111=0 , F3 = 0,x) 

1 + exp(Q2 + ftx) 

1 + exp(ai + ftx)' 

(3.14) 

(3.15) 
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Pr(y1 = i,y3 = o|x) = Pr(r1 = i|r2 = o,y3 = o,x) 
Pr(F 2 = 0, Y3 = 0|x) Pr(F 2 = 0 | y = 1, Y3 = 0, x) 

1 + exp(c*2 + fox + 721) 
1 + exp(a1 + fox.) 

exp(c*i + fox), (3.16) 

Pr(y1 = o,y3 = Q|x) = Pr(y1 = o|ra = i,y3 = o,x) 
pr(y2 = i,r3 = o|x) Pr(y2 = i|Ki = o,y3 = o,x) 

1 + exp(a2 + fox) 

1 + exp(ai + fox + 712) exp(e*2 + fox)' 
(3.17) 

Pr(y1 = i,y3 = o|x) = Pr(y1 = i|y2 = i,y3 = o,x) 
Pr(y2 = i,y3 = o|x) Pr(y2 = i|ya = i,y3 = o,x) 

_ l + e x p ( a 2 + /?2x + 72i) 

1 + exp(ai + fox + 712) 

• exp[(a! - a2) + (fo - fo)x + ( 7 l 2 - 7 2 1 ) ] . (3.18) 

Dividing (3.15) by (3.16) and dividing (3.17) by (3.18), we have 

Pr(y 1 = 0,y3 = 0lx) 1 + exp(a2 + fox) 1 

Pr(yx = 1, y 3 = 0|x) 1 + exp(a2 + fox + 721) exp(ai + fox)' 

Pr(yx = 0, y 3 = 0|x) 1 + exp(a2 + fox) 1 

Pr(y a = l , y 3 = 0 | x ) l + exp(c*2 + /?2X + 721) exp(ai + fox + 7 l 2 - 7 2 i ) ' 

(3.19) 

(3.20) 

Comparing (3.19) with (3.20), we conclude that one of the necessary and sufficient condi­

tions for Pr(yi \y2, J/3, x ) , Pr(j/2|j/i, t/3, x) and Pr(t/3|?/i, y2, x) to be compatible conditional 

distributions is that 712 = 721. 

By symmetry, we conclude that other necessary and sufficient conditions for compati­

bility are 71 3 = 731 and 72 3 = 732 . 

Using the same procedure which has resulted in (3.19) and (3.20), we have 

Pr(yx = o,y3 = i|x) = Pr((yx = o,y3 = iix) pr(y2 = o,y3 = i|x) 
pr(ya = i,y3 = i|x) pr(y2 = o,y3 = i|x) ' pr(yx = i,y3 = i|x) 

Pr(y1 = o|y2 = o,y3 = i,x) Pr(y2 = o|y1 = i,y3 = i,x) 
pr(y2 = oiyj = o,y3 = i , x ) ' pr(ya = i|y2 = o,y3 = i,x) 

1 + exp(a2 + fox + 723) 1 

1 + exp(a2 + fox -(- 712 + 723) exp(ai + fox + 713) 
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and 

Pr(y1 = i>y3 = o|x) = Pr(y1 = i,y3 = o|x) pr(y1 = i,y2 = o|x) 
Pr(yx = i,y3 = i|x) pr(yx = i,r2 = o|x)" Pr(n = i,y3 = i|x) 

pr(y3 = o|y1 = i,y2 = o,x) Pr(ya = o|yi = i,y3 = i,x) 
pr(y2 = o|Fx = i,y3 = o,x) * pr(y3 = m = i,y2 = o,x) 

1 + exp(a2 + fax. + 7 l 2 ) 1 
1 + exp(a2 + fax + 712 + 723) exp(a3 + fax + 713)' 

From (3.21) and (3.22), Pr(yx = 0,y3 = l|x) and P r ^ = l ,y 3 = 0|x) can be expressed 

in terms of Pr(yx = 1, y3 = l |x), respectively: 

Pry, - 0, li - 1 W - , ' + TP(0%+ A X + ™] , • VT(Y; = \Ys = 1|X ' (3.23) 
1 + exp(a2 + fax + 712 + 723) exp(a1 + fax + 713) 

and 

Pr(K, = 1. y3 = 0W = l + e x p ( a i + / ? 2 x + 7 , 2) Pr(r , = 1 ,Y, = l|x) 
1 + exp(a2 + fax + 712 + 723) exp(«3 + fax + 713) 

Substituting (3.24) for (3.20), Pr(yx = 0, Y\ = 0|x) also can be expressed in terms of 

Pr(y1 = l ,y 3 = l |x): 

P r ( y = i y = 1 ] x ) = 1 + exp(Q2 + fax) Pr(y1 = l ,y 3 = l |x) 
' 3 1 + exp(a2 + fax + 712 + 723) exp[(tt! + a3) + (fa + fa)x + 7 l3] 

(3.25) 

Under the constraints of Pr(Yi = 0, Y3 = 0|x) + Pr(yi = 0, Y3 = l |x) + Pr(yx = 1, Y3 = 

0|x) + Pr(ya = l ,y 3 = l|x) = 1, a bit of calculation by substituting (3.23), (3.24) and 

(3.25) will result in following equation: 

c-Pr(y1 = i ,y 3 = i |x) = 1 

[1 + exp(a2 + fax + 712 + 723)] exp[(ai + a3) + (fa + fa)x + 713] 

where c = 1 + £? = 1 exp(a,- + fax) + £i<«j<3 exp[(a,- + a,) + (fa + fa)x + 7̂ -] + exp[(ai + 

a2 + a3) + (fa + fa + fa)x + (712 + 713 + 723)] • 
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Thus, 

Pr(rx = l , y 3 = l |x) = - • e x p [ ( a 1 + a3) + (A + & ) x + 713] 
c 
•[1 + exp(a2 + /?2x + 712 + 723)] 

Similarly, we can obtain other probabilities Pr(y,-,y_,|x). In brief, we can write Pr(y,-,yy 

|x) as: 

Pr(y,-, yj |x) = - • exp[(a,- + #x)y,- + (a,- + fijx)yj + myiVj] 
c 

•[1 + exp(afc + /?*x + 7,fcj/i + 7*iW)] (3-26) 

where i < j , k ^ i, k ^ j and i, j , k = 1,2,3. 

Finally, using (3.12) and (3.26), we can obtain the joint probability distribution as 

(3.13). 

P r o o f 2: (using the extension of Gelman and Speed's compatibility condition) 

From (2.4), a condition for Pr (y i |y 2 ,y 3 ,x ) , Pr (y 2 | y i ,y 3 ,x ) and Pr(y 3 | y i ,y 2 ,x ) to be 

compatible is that 

Pr(Vi lya, 3/3,x) Pr(y2 |y|', y3, x) Pr(y2 |yj , 2/3, x) Pr(y3 |yj , y2 >x) , ^ 

Pr(yi|y2, ya, x) Pr(y2 |yi , ys, x) Pr(y2|yi'» y3, x) Pr(y3 |yi', y2 , x) 

does not depend on j/i , y2 and y3 for all choices of (y1,y2) 7̂  ( y i ^ ) -

Applying (3.12), in this case we rewrite (3.27) as: 

Pr(yr iy2,y3,x)Pr(y 2
, | y i ,y 3 ,x)Pr(y 2 | y l ,y3 ,x)Pr(y 3 | t / i ,y 2 ,x) ^ 

Pr(yi|y2, V3, x) Pr(y2 |yi , y3, x) Pr(y2 |yi', y3, x) Pr(y3 |yi', y2 , x) 

1 + exp(a 3 +/5 3x + 73^1 + 732y2') r, fl w » /. , fl w » #v, 
— ) — — r— rf • exp (a i + ftx)^ - yx) + (a 2 + /?2x)(y2 - y2) 
1 + exp(a 3 + /?3x + 7 3 ^ ! + 732y2) 
• exp[72i(yiy2 - y'iy'2) • exp[y2(y" - yj)(7i2 ~ 721)] • exp[y3(yi' - yj)(7i3 - 731)] 

• exp[y3(y2' - y2)(72 3 - 732)] (3.28) 
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Let yx = 1, ya = 0, y2 = 1 and y2 = 0, then (3.28) does not depend on yi, y2 and y3 if 

and only if 712 = 721, 713 = 731 and 723 = 732. This indicates that necessary conditions 

for the trivariate case are 712 = 721, 713 = 731 and 723 = 732-

Applying (2.3), let both fixed values of y\ and t/2 be zeros, then we know for the joint 

probability distribution Pr(yi , t/25£/3> |x) , 

D / 1 x Pr(yily2,y3,x)Pr(y2|yi = 0,y3,x)Pr(y3|yi = 0,3/2 = 0,x) 
Pr(yi , 2/2, 2/3, X) OC — -: —— r 

Pr(yi = 0|y2 ,J/3,x)Pr(y2 = 0|yx = 0 ,y 3 ,x) 

_ exp[(Qi + /?ix)yi + (0:2 + /?2x)y2 + (Q3 + ^3x)y3 + 7122/13/2 + 7i32/i2/3 + 723̂ /23/3] 

1 + exp(a 3 + /33x) 

with the proportionality constant equal to [1 + exp(ai3 + /?3x)]/c, where c is given in 

(3.13). Now we have proved that the joint probability distribution is the form of (3.13), 

and sufficiency of the conditions is easily proved. 

In both Theorem 3.1 and Theorem 3.2, we use two kinds of techniques for the proof. 

The first technique uses Arnold and Strauss's compatibility conditions; the second uses 

Gelman and Speed's idea for compatibility conditions. It is obvious, from the lengths 

of the proofs in the 3 dimensional case, that the extension of Gelman and Speed's 

compatibility conditions is easier to use than the extension of Arnold and Strauss's. In 

fact, using the extension of Gelman and Speed's compatibility conditions, it is possible to 

prove an analogous theorem to Theorem 3.1 and Theorem 3.2 for the general multivariate 

case, but using the extension of Arnold and Strauss's compatibility conditions, the 

necessity of the condition might be too tedious to prove. 
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3.2 General Case 

Our ultimate aim is to develop a conditionally specified logistic regression model for 

multivariate binary responses with covariates and to discuss necessary and sufficient 

conditions for compatibility under general dimensions. For notation, we change /?jX 

above to j3j\Xi + • • • + f3jmxm. Assume 

Pr(yn | y i , . . . , y ^ , x) - 1 + ^ ^ + ^ ^ + ^ ^ } . (3.29) 

The above discussions in both 2 and 3 dimensional cases provide immediate generaliza­

tion of the results for the n dimensional case. For the reason that we have mentioned 

at the end of last section, however, we prove the necessary conditions for conditional 

distributions (3.29) to be compatible only using the extension of Gelman and Speed's 

compatibility condition. 

T h e o r e m 3.3 The conditional probability distributions Pr(y, |yj, j ^ i ,x ) for i = 1 , . . . , 

n, in (3.29) are compatible if "fij=fji for all i ^ j . Under conditions for compatibility, 

a joint probability distribution is as follows: 

i n tn 

P r ( y i , . . . , y n |x) = -exp{]T[(a,- + £ PijXj)yi] + J2 7 v W > (3-3 0) 
C ,=1 j = l l< .< i<n 

where c is the normalizing constant which involves a sum of2n exponential terms and 

is the form of 

1 1 n m 
c = Yl • • • J2 exp{J2(ai + J2 Pnxj)yi + Yl lavivi) (3-31) 

J/l=0 j / n =0 t'=l j=l i<j 

Proof: By extending (2.4) and (3.27) to the n dimensional case, we conclude that a 

condition for Pi(yi\yj,j ^ i,x) to be compatible is that 

FEUPr(y,-|y|,• • •,y'j-i,yi+i,•. •, yW) x) • n?=i^(y"\y'u••••>y"-nVt+u• • •»Vn,x) ,g ^ 
n?=i Pr(y,-|yi', • • •,y"_i, y i+i , . . . , y», x) • n?=i Pr(y,:|2/i, • • •,y,'_i,y.-+i,...,y„,x) 
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does not depend on y,- ( i — 1 , . . . , n) for all choices of (y1,..., yn) ^ (y1,..., yn). 

Given (3.29), we can write (3.32) in detail, that is: 

nr= i Pr(y,[yi,. • •, y,-_i, yi+i, • • •, yn, x) • nr=i Pr(y,"|yi'> • • •»y"-n yi+i. • • •. yn, x) 
nr=i Pr(y.|yi, • • •, y,"_i, y.+i, . . . , y», x) • n,"=i Pr(y-|yi, •. •, y,'_i, y,+i , . . . , y„, x) 
_ n"=i exp[(a,- + J2T=i Paxi + £ j< i 7«i2/j + Ej>.- 1fijVj)yi] 

ll"=i exp[(a,- + E7=i Paxi + Ei<i 7.j'yi + £;>.- lavM 

n"=i exP[(o!,- + Y%LI PiM + Ej<,- 7«jyj + Zj>i mjyjWi] 
n?=i exp[(a,- + ££=i AjXj + Ej<,- luv'j + Ej>.- 7yw)yi'l 
n m 

= I I exp[(««- + £ Pijxi)(y" - y'd + £ 7« (yj y" - yj-y,')] 
i=l j= l :>j 

n 

I I e x p E 7j.-yj(y,' - y'i)] • I I e x p E 7o-yj(y" - y.')] (3-33) 
«=i «<j t = i i'<j 

If (y[,..., yn) = 1 and ( y " , . . . , y„) = 0, (3.33) becomes 

n,"=i Pr(yi\y'i, •••, y,--i, y.-+i, • • -, y», x) • n L i Pr(y"lyi, • • •» y"-n y«+i, • • •, yw, x) 
nr=i Pr(y,-|yi', • • •,y-'-i,y.+i,...,yn ,x) • n?=i Pr(y,'|yi,...,y,'_i,y,-+i,...,y„, x) 

n m n 

= H exp[-(a t- + Y, PaxJ + S Ty)] • I I e x P E ( 7 ; . ' - 7«i)yj]- (3-34) 
t=l j = l «>i i=l i<j 

Therefore, (3.32) does not depend on yt- ( i — 1 , . . . , n) if and only if 7,j = 7,-,- for all i ^ j 

in (3.34). Now we get the conclusion that the necessary conditions for Pr(y, |yj , j 7̂  z,x) 

to be compatible conditional distributions are 7,j = 7,-,- for all i ̂  j . 

Again extending (2.1) to the n dimensional case, for the joint probability distribution 

P r ( y i , . . . , y B | x ) , 

Pr^,...^*^*?^---'^1 V-X\ (3.35) 
n"=i Pr(y,-|yi, • • •, y,-_i, y.+i, • • •, y», x) 

In this case, if yt = 0 for all i, we can write (3.35) as follows: 

n m 

P r ( y i , . . . , y„|X) oc I I exp[(a,- + ^ A ^ i + X}7ijy;)y.] 
1=1 i = i i< i 
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with the proportionality constant equal to 1/c, where c is defined as (3.31). That is, the 

model for multivariate binary data with covariates based on compatible conditionally 

specified logistic regressions is: 

i n TO 

Pr(yi, • • •, y„|x) = - exp{£[(a , - + ] T flyx,-)^ + Y, -yijViVj} 
C , = 1 j = l l < t ' < i < n 

where c = £ * i = 0 • • • Ej„=o exP{E,"=i(«.- + EjLi PijXj)yi + E ,< ; lijViVj}-

Finally, we prove the sufficient conditions for conditional distributions (3.29) to be 

compatible. 

T h e o r e m 3.4 The conditional probability distributions of (3.30) are linear logistic dis­

tributions. 

Proof: Given the model (3.30) with 7^ = 7,,-, i ^ j , we have 

Pr(y,-,i ± k\X) = Vv(yu...,i/*-i,y* = l ,y*+i,-• -,Vn\X) 

+ Pr(?/i,.. . ,t/ f c_i,y f c = 0,yk+1,...,yn\X) 
•j m m 

= -{exp[(a* + ^ flya:,-) + X ( a » ' + H Pnxi)Vi 
c 3=1 i^k 3=1 

+ D 7*;yj + E To-yt-yj] 
Jj4A l < i < i < n , ' i i # 

m 

+ expE(a,- + ]T #,•&,•)# + 2 HjViyj]} 

1 m 

= - e x P E ( a ' ' + E ^ I i ) j ' ' + X) HiViVj] 
C i^k i=l l<i<j<n,i,j^k 

m 

•{1 + expK + ] £ fly*,- + XI 7fcj2/j]}-
3=1 jjtk 

Further, we obtain 

Pr(yi>S/2,--.,yn|A') 
Pr(y* |y; , j ? * * , * ) = 

Prfo.j^*!*) 
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exp{E"=i [(<*«• + E?Li PijXj)vi] + Ei<i<j<n amy5} 
exp[E,^fc(a.- + E^zi fcjxfivi + J2i<i<j<n,i,j*k amy]] 

1 

{1 + exp[a* + E?Li PkjXj + Ej*k 7kjVj]} 

exP[(o!fc + E ^ i PkjXj)yk + (Ej^fe 7kjyj)yk] 

1 + exp[«* + E^=i PkjXj + Ej^jt 1kjVj\ 

This equation indicates that conditional probability distributions Pv(yk\yj,j ^ k,X) for 

k = 1 , . . . , n are linear logistic distributions. 

• 

3.3 Further Extension 

The discussion so far assumes implicitly that the conditional distributions Pr(i/j|?/,-, i ^ 

j,x) for j = l , . . . , n , are logistic, so we say that the model (3.30) for multivariate 

binary data with covariates we have constructed is based on compatible conditionally 

specified logistic regressions. In fact, as mentioned before, with binary responses, any 

other link function could be chosen instead of the logit link function. From this point 

of view, a question to be addressed here is what are conditions for compatibility when 

the conditional distributions are based on a distribution F that is not logistic, i.e., 

Pr(5"j = 1 lift, i ± j , x) = F{ai + pjX + J2 ljiyi),3 = 1, • • •, n. 

In this section, we intend to motivate the development of conditions for compatibility 

when F is not logistic. For this reason, let us simply consider the case of two binary 

response variables Y\ and Y2, and a covariate vector x . Assume that the conditional 

distribution of Yj is 

Pi(Yj = l|y,-,x) = F{ctj + 0jX + rijiyi) 

f o r ; = 1,2,» = 3 - j . 
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Here we use Arnold and Strauss's compatibility condition instead of Gelman and Speed's. 

Consequently, the conditional distributions Pr(yi\y2,x.) and Pr(y2|j/i,x) are compatible 

if and only if there exist probabilities Pr(yi,y2 |x), Pr(j/i|x) and Pr(i/2|x) such that: 

Pr(2/i,3/2|x) = Pr(yi|y2,x)Pr(y2 |x) 

= Pr(j/2|yi,x)Pr(y!|x). 

In detail, we write the above form as: 

Pr(y1 = i|r2 = i,x) Pr(y! = i|x) 
Pr(y2 = l|yx = l ,x) Pr(y2 = l | x ) ' 

Pr(yx = i|y2 = o,x) _ Pr(yx = i|x) 
Pr(y2 = o|ya = i,x) " pr(y2 = o|x)' 
Pr(yx = o|y2 = l ,x) Pr(y t = 0|x) 

Pr(y2 = \\YX = 0,x) ~ Pr(y2 = l | x ) ' 

Pr(y t = o|y2 = 0,x) Pr(yi = 0|x) 

p r(y2 = o|yx = 0,x) ~ Pr(y2 = 0|x)" 

In particular, if we divide (3.36) by (3.37) and divide (3.38) by (3.39), we have 

pr(y2 = o|x) = pr(y1 = i|y2 = i,x) pr(y2 = o|y1 = i,x) 
pr(y2 = i|x) pr(y2 = i|ya = i , x ) ' Pr(yx = i|y2 = o,x) 

F{ax + A x + 712) 1 - F(a2 + A x + 7 a i ) 
F(ai + ^x) * F(a2 + Ax + 721) 

pr(y2 = o|x) = Pr(y1 = o|y2 = i,x) Pr(y2 = o[y1 = o,x) 
pr(y2 = i|x) ~ Pr(y2 = i|y1 = o,x)'Pr(y1 = o|y2 = o,x) 

1 - F(ai + fax. + 712) 1 - F(a2 + ^ x ) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 
1 - F(ai + Ax) F{a2 + Ax) 

Obviously, (3.40) and (3.41) must be equal. In other words, a necessary and sufficient 

condition for Pr(j/i|t/2,x) and Pr(y2 |yx,x) to be compatible conditional distributions is 

F (a i + A x + 712) F(a2 + Ax) _ F(a2 + A x + 721) Fj^ + Ax) 

1 - F(ai + Ax + 712) ' 1 - ^(02 + Ax) 1 - F(a2 + Ax + 721) ' 1 - F(ai + Ax) 
(3.42) 

After analysing (3.42), we find that both of the following conditions make (3.42) hold: 
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1. ai = a2, fix = #2, and 712 = 721. 

2. 712 = 721 = 0, i.e., the two binary response variables Y\ and Y2 are independent. 

It is not obvious that general conditions can be obtained. There may be conditions that 

depend on F. As for higher dimensional cases, the general analysis is quite difficult. 
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Chapter 4 

Comparisons with Other Models 

Logistic regression is widely used to study the effects of explanatory variables on binary 

response variables. Several different specifications have been considered for dependent 

binary response variables. By means of logistic regression, several useful approaches to 

specifying a multivariate distribution capable of representing the dependence of binary 

response variables have recently been proposed. However, in contrast to model (3.30) 

which allows for a general dependence structure for binary response variables, these 

other models are limited in scope. Here we discuss two kinds of these models and 

compare them with model (3.30). 

4.1 Regressive Logistic Models 

To describe sequentially dependent binary response variables, Bonney (1987) proposed 

regressive logistic models in which the probability of an observation is conditioned on all 

preceding observations. The basic theory of Bonney's models is the follow. Since there 

exists a natural ordering to the indexing of all dependent binary response variables, it is 

reasonable to decompose the probability of Y given X into a product of n probabilities 
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such as: 

Pr(Y|x) = pr(y1,y2,...,y„|x) 

= Pr(r1|x)Pr(y2|r1,x)--.Pr(rn|r1,r2,...,n_1,x). (4.i) 

Correspondingly, he defines the ith logit as 

Pr(Yi = l\Y1,...,Yi.1,X) 
6i = ^ [ P r ( ^ = 0 | y 1 , . . . , « . 1 > X ) 1 ' 

and assumes that 0,- is a linear function of Yi,..., Yi-i,X. and can be expressed by 

0i = a + 7a Zx H h 7n_iZn_1 + /?X, 

where 

£; = < 
2 1 ^ - 1 , i f j < i 

0, if j>i. 

Therefore, the joint probability is decomposed into a product of successive conditional 

probabilities each of which is assumed to be univariate logistic: 

P '(Y|X) = ft ~ ^ - (4-2) 

Model (4.2) provided by Bonney has the theoretical and practical advantage that it can 

be analyzed and fitted in the same way as the logistic regression model for independent 

binary response variables, and with the same computer programs. However, there exist 

differences between model (3.30) and model (4.2). Model (3.30) is based on compatible 

conditionally specified logistic regressions and deals with a general dependence structure 

for the Yi's, but model(4.2) is based on a product of a sequence of logistic regressions 

and only should be used if the binary variables are observed sequentially in time. The 

decomposition (4.1) is applicable only when a natural ordering of the dependent obser­

vations exists. Note that a different order generally implies a different model, and the 

joint probabilities (4.2) are not necessarily the same for different orders. 
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4.2 Conditional Logistic Regression Models for Ex­

changeable Binary Data 

Rosner (1984) proposed a polychotomous logistic regression model which reduces to the 

beta-binomial distribution for the number of successes when explanatory variables are 

zero. Based on Rosner's idea, Connolly and Liang (1988) suggested a general model in 

which Rosner's model is considered as a special case: 

P r ( Y | X a , . . . , Xn) = c(0,0) exp{ £ ) Fn(k, 0) + £ Xj/3Yj} (4.3) 

where c is a normalizing constant chosen to make the probabilities, P r ( Y | X ) , sum to 

unity and Y. is the sum of the Yj's. It follows from (4.3) that the logit conditional 

probability of Yj; = 1 given Y__,- = {Y\, • • •, Yj-_i, Y j + i , . . . , Yn) and Xj is 

logitVxiXj = l\Y-i,Xi) = Fn(wj;0) + / ?%• , (4.4) 

where Wj = Y—Yj is the sum of the Y's excluding Yj. Clearly, the conditional probability 

for Yj = 1 in (4.4) depends on YLj only through the sum. In other words, this indicates 

a very important feature of the logistic representation in (4.4): when there are no 

covariate effects or when X\ = • • • = Xn, then the models are such that the n Yj's are 

exchangeable. 

Compared with model (3.30), model (4.3) introduced by Connolly and Liang has some 

limitations due to the restricted dependence structure. That is, model (4.3) might only 

be reasonable when the dependence among observations is approximately exchangeable 

such as in familial data. 

On the other hand, in model (3.30), the logit conditional probability of Yj = 1 given ?/_, 

and X is 
m 

logitVx(Yi = l|y_,-,X) = a,- + ^ Nxi + X}7«j2/j-
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This logistic representation means that the dependence of each single y on the rest is 

only through the sum when all 7,-j's are equal. Thus, we conclude that model (3.30) is a 

special case of Connolly and Liang's model (4.3) when jij = 7 for all i ^ j and /?,_,- = flj 

for all i,j, since then £ i ? y 7 ^ = q/(y. - y{). 
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Chapter 5 

Data Analysis and Computing 

An example with some coronary bypass surgery data will now be presented to illustrate 

the application of the model for multivariate binary responses with covariates that we 

have discussed in Chapter 3. From a clinical point of view, it is important to determine 

risk factors for different complications. Using multivariate binary model (3.30), we 

can determine risk factors for several response variables simultaneously and account for 

dependence between the binary response variables. Zhang (1993) did the risk factor 

analysis separately for each binary response variable (or complication variable). 

In order to fit model (3.30), three likelihood-based computing methods will be intro­

duced. After that , several topics will be discussed, including choice of covariates and 

inferences from the model. 

5.1 The Data Source and Description 

MCR (Merged, Multi-Center, Multi-Specialty Clinical Registries) is an international 

data-base developed by Health Data Research Institute in which information about pa­

tients who had heart-related surgery was recorded. When doing statistical analysis, 

instead of using the entire data set, we choose a random sample subset which contains 
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880 patients information (this is done partly in order to reduce computational time). 

The information available both pre and post operation is provided in Table 5.1 and Ta­

ble 5.2. The pre-operation information includes patient's age, gender, prior myocardial 

infarction, existence or non-existence of other diseases, body surface area, etc. (the first 

19 variables: VI to V19). The post-operation information includes the patient 's status 

during and after the bypass surgery; for example, complications, such as renal or neuro­

logical problems, and survival status to 30 days following surgery (the last 7 variables: 

V20 to V26). The variables of primary interest are those outcome variables indicating 

the patient 's complications and survival status after the surgery. Here, the complication 

variables are related to the quality of life after surgery. For more documentation of the 

data set, see Zhang (1993). 

5.2 Estimation Procedure 

Our aim in this section is to discuss from a practical viewpoint, how to apply model 

(3.30) and how to estimate the parameters in model (3.37). 

Firstly, a simple, indirect, yet important way is to use the existing computer programs 

such as the glm() function in Splus which fits the coefficients of the linear logistic model 

using maximum likelihood in the binomial family. Using the glm() function in Splus to 

fit the conditional probabilities Pr(y,|yj, j ^ i,x) separately, not only can we estimate 

the parameters, but also we can assess the compatibility conditions for the conditionally 

specified distributions. 

For example, after using the glm() function twice to fit model (3.30) for two binary 

response variables REM (V21), NEM (V22) and one covariate AGE (VI) in the MCR 

data set, we have the results in Table 5.3. From Table 5.3, in addition to obtaining the 
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Table 5.1: Description for the Subset of MCR Data 

Variable 

VI 

V2 

V3 

V4 

V5 

V6 

V7 

V8 

V9 

V10 

Vl l 

V12 

V13 

V14 

Name 

Age 

Sex 

Prior Myocardial Infarction 

Obesity 

Chronic Obstructive Pulmonary Disease 

Diabetes 

Renal Disease 

Hypertension 

Alcohol Abuse 

Cancer 

Liver Disease 

Central Nervous System Disease 

Prior Cerebrovascular Accident 

Rheumatic Heart Disease 

Codes/Values 

Years 

0=Male 

1=Female 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

Abbreviation 

AGE 

SEX 

PMI 

OBE 

COP 

DIA 

REN 

HTN 

ETO 

CA 

LIV 

CNS 

PCA 

RHE 
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Table 5.2: Description for the Subset of MCR Data (continued) 

Variable 

V15 

V16 

V17 

V18 

V19 

V20 

V21 

V22 

V23 

V24 

V25 

V26 

Name 

Other Surgery 

No Surgery 

Valve Replacement 

Left Ventricular Dysfunction 

Body Surface Area 

Discharge/30 Day Status 

Renal Complication (Mild or Severe) 

Neurological Complication 

(Mild or Severe) 

Pulmonary (Mild or Severe) 

Myocardial Infarction 

Low Out Syndrome (Mild or Severe) 

Sepsis 

Codes/Values 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

0=Normal 

1= 40-49% 

2= 30-39% 

3= 20-29% 

4= < 20% 

Square meters 

0=Dead 

1=Alive 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

0=No l=Yes 

Abbreviation 

OTH 

NON 

VAL 

LVD 

BSA 

STA 

REM 

NEM 

PUM 

MI 

LOM 

SEP 

33 



Table 5.3: Results from Separate Logistic Regressions with Response Variables REM, 

NEM 

Parameter 

712 

a2 

721 

Value Std. Error t value 

-8.9190 1.5952 -5.5912 

0.0818 0.0229 3.5700 

1.4760 0.3914 3.7712 

-7.1316 1.0204 -6.9900 

0.0705 0.0149 4.7296 

1.4521 0.3959 3.6676 

estimate of the parameters, more important, we find that 71 2 is quite close to 721 and 

this gives an indication of the adequacy of fit of model (3.30) for these data. 

Secondly, model (3.30) can be viewed as an exponential family model c _ 1 exp{A - 1 s} 

with "sufficient" statistic vector 

s = (su...,sM) = (yi, • • • ,yn,yiy2,ym, • • • ,yn-iyn,xiyj,i = l,...,m,j = l, . . . ,n). 

Given data of the form (yn,..., i/,n, xa,..., £4 m) , i = 1,...,N, the sufficient statistic 

vector is X2,=i s«- Using the Newton-Raphson procedure for an exponential family log-

likelihood, we can obtain the maximum likelihood estimate of the parameters in model 

(3.30) by an iterative process as: 

A r+1 = A r - H " 1 ( A r ) u ( A r ) 

for r = 0 , 1 , 2 , . . . , where u(A) is a vector whose j t h component is the first derivative of 

the log-likelihood with respect to the jth parameter and the matrix H(A) (sometimes 

called the Hessian matrix) is the matrix of second partial derivatives of log-likelihood 

function. A0, a vector of initial estimates of A, can come from the results of using the 

glm() function, separately for each response variable. 
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In order to use the Newton-Raphson method to estimate parameters in model (3.30), A 

C program (see Appendix) was written for analyzing the MCR data set. 

The Newton-Raphson procedure means that M(M + 1 ) / 2 second derivative evaluations, 

M first derivative evaluations and a matrix inverse are needed even before the linear 

search is attempted. In order to simplify these problems, the quasi-Newton method is 

suggested as the third choice in obtaining the estimate of the parameters in model (3.30) 

since in the quasi-Newton method, a method is used to approximate H _ 1 directly from 

the first derivative information available at each step of the iteration (sometimes this 

approximation can be inaccurate) (see Nash 1990). To use the quasi-Newton method 

for analyzing our data, another C program was written. As in the first C program, we 

get initial values from the separate logistic regressions. 

5.3 Comparison of Three Methods 

All three methods (the glm() function, the Newton-Raphson method and the quasi-

Newton method) we have introduced can be used to fit model (3.30), but what are 

computational differences among them? By means of the MCR data set, we use the 

three methods to estimate the parameters in model (3.30) under different cases, for 

example: 

• Case 1: one binary variable - REM (V21), one covariate - LIV (VI1). (See Table 

5.4). 

• Case 2: one binary variable - REM (V21), two covariates - AGE (VI) and LIV 

( V l l ) . (See Table 5.5). 

• Case 3: two binary variables - REM (V21) and NEM (V22), one covariate - SEX 

(V2). (See Table 5.6). 
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• Case 4: two binary variables - REM (V21) and NEM (V22), two covariates - SEX 

(V2) and COP (V5). (See Table 5.7). 

• Case 5: three binary variables - REM (V21), NEM (V22) and PUM (V23), two 

covariates - SEX (V2) and COP (V5). (See Table 5.8 and Table 5.9). 

• Case 6: four binary variables - REM (V21), NEM (V22),PUM (V23) and MI 

(V24), three covariates - AGE (VI), SEX (V2) and PMI (V3). (see Table 5.10, 

Table 5.11 and Table 5.12). 

From the computations for the MCR data set with three methods, we find that: 

1. The glm() function in Splus is an approximate method, though from the standard 

errors in Table 5.4 to Table 5.12, it appears that both the glm() function and the 

Newton-Raphson method generate rather similar estimates of the parameters. It 

is less convenient than other two methods since the number of many times we need 

to run the glm() function depends on the number of binary response variables. An 

advantage of the glm() function is that one can assess the goodness of fit by a 

rough comparison of 7^ and 7,-,- relative to their standard errors from the glm() 

function before correctly applying model (3.30) to a data set. 

2. Sometimes the quasi-Newton method generates inaccurate estimated standard er­

rors. For example, in Table 5.10, the standard error of ax is 1.09 when using the 

quasi-Newton method, but when using the glm() function or the Newton-Raphson 

method, the standard errors of ct\ are 1.71 and 1.64, respectively. Also in Table 

5.10, using the quasi-Newton method, the standard error of 0:3 is 0.94, but using 

the glm() function or the Newton-Raphson method, the standard errors of 03 are 

0.52 and 0.52, respectively. 
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Table 5.4: Method Comparison under Case 1 

oil value 

Std. Error 

/?ii value 

Std. Error 

loglikelihood 

glm() function 

-3.2058 

0.1745 

1.4141 

1.0941 

Newton-Raphson 

-3.2059 

0.1749 

1.4141 

1.0942 

-146.5499 

quasi-Newton 

-3.2059 

0.1748 

1.4140 

1.0108 

-146.5495 

3. The computational time for using the Newton-Raphson method to fit model (3.30) 

is much less than that for using the quasi-Newton method, but it requires more 

programming effort to compute second derivatives, first derivatives and a matrix 

inverse, etc. 

4. The model (3.30) appears to fit adequately in all cases considered here, based on 

a check of the requirement 7,-j = 7,-,- using glm() function. One could do other 

standard checks for the adequacy of the logistic regressions (eg. Hosmer and 

Lemeshow, 1989). 

5.4 Selection of Covariates 

Another point worth mentioning is that , as stated before, the clinical researchers or 

surgeons are only interested in those polychotomous responses indicating the patient's 

survival status and some complication variables which are related to the quality of life 

after surgery, and there is the question of how to choose the covariates to use. Generally 

speaking, only those covariates which show potential relation with the response variable 

are selected. In this section, two methods for selection of covariates are suggested. 
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Table 5.5: Method Comparison under Case 2 

ai value 

Std. Error 

flu value 

Std. Error 

/?12 value 

Std. Error 

loglikelihood 

glm() function 

-9.6722 

1.5862 

0.0966 

0.0224 

1.8047 

1.1188 

Newton- Raphson 

-9.6723 

1.5900 

0.0966 

0.0225 

1.8048 

1.1192 

-135.1319 

quasi-Newton 

-9.3933 

1.5782 

0.0926 

0.0223 

1.7787 

1.0257 

-135.1475 

Table 5.6: Method Comparison under Case 3 

«i value 

Std. Error 

a2 value 

Std. Error 

/?n value 

Std. Error 

#21 value 

Std. Error 

712 value 

Std. Error 

721 value 

Std. Error 

loglikelihood 

glm() function 

-3.7141 

0.2509 

-2.5473 

0.1504 

0.5764 

0.3586 

0.1043 

0.2669 

1.8547 

0.3797 

1.8546 

0.3806 

Newton- Raphson 

-3.7140 

0.2536 

-2.5474 

0.1515 

0.5756 

0.3603 

0.1043 

0.2683 

1.8547 

0.3810 

-392.3369 

quasi-Newton 

-3.7140 

0.2431 

-2.5475 

0.1409 

0.5756 

0.3335 

0.1043 

0.2587 

1.8548 

0.3542 

-392.3369 
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Table 5.7: Method Comparison under Case 4 

c*i value 

Std. Error 

a.?, value 

Std. Error 

/?n value 

Std. Error 

fi\2 value 

Std. Error 

#21 value 

Std. Error 

#22 value 

Std. Error 

7i2 value 

Std. Error 

721 value 

Std. Error 

loglikelihood 

glm() function 

-3.9967 

0.2835 

-2.5258 

0.1530 

0.5212 

0.3667 

1.5225 

0.3997 

0.1155 

0.2672 

-0.2900 

0.4156 

1.9178 

0.3922 

1.9173 

0.3914 

Newton- Raphson 

-3.9947 

0.2825 

-2.5251 

0.1543 

0.5175 

0.3651 

1.5214 

0.3997 

0.1116 

0.2686 

-0.2863 

0.4186 

1.9166 

0.3921 

-386.2089 

quasi-Newton 

-3.9947 

0.2721 

-2.5252 

0.1273 

0.5175 

0.3402 

1.5214 

0.3580 

0.1116 

0.1796 

-0.2863 

0.3217 

1.9167 

0.3641 

-386.2089 
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Table 5.8: Method Comparison under Case 5 

«i value 

Std. Error 

«2 value 

Std. Error 

«3 value 

Std. Error 

/?u value 

Std. Error 

/?i2 value 

Std. Error 

/?2i value 

Std. Error 

/?22 value 

Std. Error 

fci value 

Std. Error 

/332 value 

Std. Error 

glm() function 

-4.9749 

0.4487 

-3.0887 

0.2194 

-0.8458 

0.0921 

0.5686 

0.3718 

1.1336 

0.4100 

0.1149 

0.2729 

-0.5904 

0.4215 

-0.0081 

0.1646 

1.2974 

0.2408 

Newton- Raphson 

-4.9244 

0.4439 

-3.0889 

0.2198 

-0.8435 

0.0920 

0.5204 

0.3693 

1.0935 

0.4104 

0.1141 

0.2723 

-0.5917 

0.4208 

-0.0086 

0.1646 

1.2883 

0.2409 

quasi-Newton 

-4.9245 

0.4485 

-3.0890 

0.2222 

-0.8436 

0.0924 

0.5204 

0.3714 

1.0934 

0.4129 

0.1141 

0.2731 

-0.5917 

0.4223 

-0.0086 

0.1669 

1.2883 

0.2420 
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Table 5.9: Method Comparison under Case 5 (continued) 

712 value 

Std. Error 

713 value 

Std. Error 

723 value 

Std. Error 

721 value 

Std. Error 

73i value 

Std. Error 

732 value 

Std. Error 

loglikelihood 

glm() function 

1.5391 

0.4038 

1.8039 

0.4652 

1.2493 

0.2660 

1.4963 

0.4039 

1.8062 

0.4655 

1.2615 

0.2661 

Newton- Raphson 

1.4974 

0.4040 

1.7854 

0.4712 

1.2503 

0.2662 

-924.4926 

quasi-Newton 

1.4974 

0.4079 

1.7855 

0.4767 

1.2503 

0.2692 

-924.4912 
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Table 5.10: Method Comparison under Case 6 

ai value 

Std. Error 

a.1 value 

Std. Error 

0:3 value 

Std. Error 

c*4 value 

Std. Error 

/?n value 

Std. Error 

/?i2 value 

Std. Error 

/?i3 value 

Std. Error 

/?2i value 

Std. Error 

/?22 value 

Std. Error 

/?23 value 

Std. Error 

glm() function 

-10.3369 

1.7149 

-8.0159 

1.0736 

-1.0627 

0.5241 

-3.2307 

0.8946 

0.0800 

0.0242 

0.2847 

0.3843 

0.6403 

0.2373 

0.0770 

0.01554 

-0.1451 

0.2807 

-0.3320 

0.1887 

Newton- Raphson 

-10.1998 

1.6367 

-7.9365 

1.0620 

-1.0352 

0.5186 

-3.1701 

0.8842 

0.0752 

0.0230 

0.2913 

0.3753 

0.9493 

0.2790 

0.0758 

0.0154 

-0.1271 

0.2793 

-0.3429 

0.2012 

quasi-Newton 

-10.1091 

1.0864 

-7.7579 

1.0129 

-0.9465 

0.9363 

-3.0885 

0.9967 

0.0739 

0.0181 

0.3136 

0.7905 

0.9395 

0.3493 

0.0732 

0.0157 

-0.1166 

0.3682 

-0.3420 

0.3460 
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Table 5.11: Method Comparison under Case 6 (continued) 

#31 value 

Std. Error 

#32 value 

Std. Error 

/333 value 

Std. Error 

#41 value 

Std. Error 

#42 value 

Std. Error 

#43 value 

Std. Error 

712 value 

Std. Error 

713 value 

Std. Error 

714 value 

Std. Error 

glm() function 

0.0021 

0.0084 

0.1598 

0.1890 

-1.6840 

0.1331 

-0.0008 

0.0141 

-0.2366 

0.3350 

-0.4165 

0.2195 

1.2000 

0.4157 

2.3946 

0.4760 

0.1531 

0.6662 

Newton-Raphson 

0.0014 

0.0083 

0.1603 

0.1888 

-1.6642 

0.1313 

-0.0018 

0.0139 

-0.2292 

0.3342 

-0.4903 

0.2291 

1.1181 

0.4216 

2.7162 

0.5087 

0.0198 

0.6542 

quasi-Newton 

0.0001 

0.0148 

0.1629 

0.2271 

-1.6608 

0.1411 

-0.0027 

0.0165 

-0.2357 

0.9272 

-0.5051 

0.3361 

1.1284 

0.9704 

2.7072 

0.5792 

0.0403 

0.9719 
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Table 5.12: Method Comparison under Case 6 (continued) 

723 value 

Std. Error 

724 value 

Std. Error 

734 value 

Std. Error 

721 value 

Std. Error 

73i value 

Std. Error 

732 value 

Std. Error 

741 value 

Std. Error 

742 value 

Std. Error 

743 value 

Std. Error 

loglikelihood 

glm() function 

1.0296 

0.3040 

-0.2330 

0.4875 

1.1814 

0.3862 

1.0650 

0.4304 

2.8826 

0.5216 

1.0161 

0.3135 

-0.0134 

0.6564 

-0.170 

0.4762 

1.1795 

0.3533 

Newton-Raphson 

0.9935 

0.3076 

-0.1803 

0.4765 

1.1522 

0.3446 

-994.3497 

quasi-Newton 

0.9925 

0.6812 

-0.1831 

0.9951 

1.114 

0.6171 

-994.4018 
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5.4.1 Odds Ratio Analysis 

When the variables are binary, a natural way to measure the association is the odds 

ratio (as well as its logarithm). Consider two binary variables Y\ and Y2, where Y{ is 

coded 1 and 0. Let pij = Pr(Yi = i,Y2 — j), i,j = 0 ,1 , so that the odds ratio, ip, is 

defined as: 

, PooPn 

v = 
PoiPw 

From a random sample of size N, we generate the following 2 x 2 contingency table with 

r2 = o 
r2 = i 

Y1 = O r1 = i 

a b 

c d 

The estimated success probabilities in the two data sets are poo = a/N, plo = b/N, 

Poi — c/N, and p\\ = d/N, and so the estimated odds ratio, /̂>, is given by 

1 _ PooP\\ _ ad 

PwPoi be 

An interval estimate or confidence interval (CI) of the odds ratio is more useful than a 

point estimate for measuring the association. Also we note that the logarithm of the 

estimated odds ratio is better approximated by a normal distribution. The approximate 

standard error of the estimated log odds ratio, log 0 , can be shown to be given by 

s.e.(logip) » i / ( - + - + - + - ) 
V a b c a 

An outline proof of this result is given in Schlesselman (1982). An approximate 100(1 — 

a)% confidence interval for xjj is 

exp[log tj> ± za/2s.e.(log 0)] 

where Zp is the upper /3 quantile of the standard normal distribution (see Hosmer and 

Lemeshow 1989). 
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Table 5.13, Table 5.14 and Table 5.15 provide the odds ratios for response variable REM 

(V21), NEM (V22) and PUM (V23) respectively. For more detailed information, see 

Zhang (1993). 

Statistically, only those 95% CI not containing 1 are more strongly related with the 

variable. Using odds ratio analysis, we conclude that covariates REN (V7), LIV (VI1), 

CNS (V12), COP (V5), DIA (V6), and HTN (V8) are strongly related with the variable 

REM (V21); covariates CNS (V12), CA (V10), OBE (V4), REN (V7), and HTN (V8) 

are strongly related with the variable NEM (V22); covariates COP (V5), OBE (V4), 

REN (V7), ETO (V9), CNS (V12), DIA (V6), and HTN (V8) are strongly related with 

the variable PUM (V23). 

5.4.2 Univariate Analysis and Comparison of Models 

An alternative for deciding the covariates to use is based on the differences of log-

likelihoods. The difference in the log-likelihoods of two nested models measures the 

extent to which the additional terms improve the fit of the model to the observed re­

sponse variables. Take model (3.30) which has n binary response variables, for example. 

Suppose that two linear logistic models, model (1) and model (2), say, are to be com­

pared, where the two models are as follows: 

• Model (1): / o ^ P r ( y ; = % - , j ^ »,*,-*, 1 < k < m - 1) = a, + E?J? PijXik + 

• Model (2): logit?i{Yi = l\yjtj ^ i,xik,l < k < m) = a,- + E 7 = i ^ a + 
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Table 5.13: Odds Ratio for REM 

Variable 

V2 

V4 

V5 

V6 

V7 

V8 

V9 

Vl l 

V12 

V13 

V14 

V15 

V17 

Heading 

SEX 

OBE 

COP 

DIA 

REN 

HTN 

ETO 

LIV 

CNS 

PCA 

RHE 

OTH 

VAL 

$ 

1.48 

1.13 

1.86 

1.80 

9.78 

1.75 

1.34 

3.58 

3.40 

1.33 

0.88 

0.90 

0.64 

s.e.(log^) 

0.21 

0.37 

0.26 

0.24 

0.22 

0.20 

0.47 

0.62 

0.33 

0.60 

0.59 

0.52 

1.01 

95 % CI of ^ 

(0.97, 2.26) 

(0.54, 2.37) 

(1.11,3.11) 

(1.11, 2.91) 

(6.30, 15.2) 

(1.18, 2.62) 

(0.53, 3.95) 

(1.04, 12.3) 

(1.75, 6.61) 

(0.40, 4.34) 

(0.27, 2.85) 

(0.32, 2.50) 

(0.08, 4.76) 

Remark 

positively related 

positively related 

positively related 

positively related 

positively related 

positively related 
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Table 5.14: Odds Ratio for NEM 

Variable 

V2 

V4 

V5 

V6 

V7 

V8 

V9 

V10 

Vl l 

V12 

V13 

V14 

V15 

V17 

Heading 

SEX 

OBE 

COP 

DIA 

REN 

HTN 

ETO 

CA 

LIV 

CNS 

PCA 

RHE 

OTH 

VAL 

rP 

1.34 

2.11 

1.22 

1.38 

1.62 

1.49 

1.40 

2.96 

2.20 

3.92 

2.02 

0.81 

0.94 

0.58 

s.e.(log^) 

0.15 

0.21 

0.21 

0.18 

0.23 

0.14 

0.32 

0.43 

0.55 

0.24 

0.37 

0.43 

0.35 

0.73 

95 % CI of $ 

(0.99, 1.81) 

(1.37, 3.25) 

(0.80, 1.84) 

(0.96, 1.98) 

(1.02, 2.57) 

(1.12, 1.97) 

(0.73, 2.68) 

(1.26, 6.93) 

(0.74, 6.53) 

(2.41, 6.39) 

(0.97, 4.19) 

(0.34, 1.88) 

(0.47, 1.90) 

(0.14, 2.46) 

Remark 

positively related 

positively related 

positively related 

positively related 

positively related 

48 



Table 5.15: Odds Ratio for PUM 

Variable 

V2 

V4 

V5 

V6 

V7 

V8 

V9 

V10 

V12 

V13 

V14 

V15 

V17 

Heading 

SEX 

OBE 

COP 

DIA 

REN 

HTN 

ETO 

CA 

CNS 

PCA 

RHE 

OTH 

VAL 

I 
1.08 

3.38 

3.45 

1.91 

3.32 

1.86 

2.21 

0.56 

2.12 

0.67 

0.97 

0.58 

1.03 

s.e.(log^) 

0.09 

0.16 

0.13 

0.11 

0.16 

0.08 

0.21 

0.41 

0.21 

0.29 

0.23 

0.22 

0.34 

95 % CI of $ 

(0.90, 1.30) 

(2.45, 4.66) 

(2.66, 4.48) 

(1.52, 2.40) 

(2.41, 4.58) 

(1.57, 2.20) 

(1.46, 3.36) 

(0.25, 1.25) 

(1.39, 3.21) 

(0.37, 0.91) 

(0.61, 1.54) 

(0.37, 0.91) 

(0.52, 2.01) 

Remark 

positively related 

positively related 

positively related 

positively related 

positively related 

positively related 

positively related 

49 



Denote the maximized log-likelihoods under model (1) and model (2) by L\ and Li, 

respectively, so that twice the difference in the log-likelihoods of two models is 

2[L2 - Lx] 

Asymptotically (large sample size N), the distribution of this statistic has a x2 distri­

bution with degrees of freedom v\ — v-i equal to the difference in the number of the 

parameters between two models (see Cox and Hinkley (1974)). In our example, since we 

have n binary response variables, that is, v-± — v-j, = n when adding an extra covariate xm 

to model (1) which already has covariates x\, x2,..., arm-i- Using the difference between 

the log-likehood functions of two models, we can find out how much the covariate xm 

improves the fit of the model to the observed response variables. 

Other methods for selection of covariates will be introduced in the next section. 

5.5 Other Issues 

Before concluding this chapter, another question to discuss is how much the association 

of the response variables depends on the covariates. This is one inference of interest. 

Another reason that this issue arises is that some methods, for example, Generalized 

Estimating Equations, seem to assume the correlation of two response variables does 

not depend on covariates. What is the case for our data? 

5.5.1 General 

As we know, with binary variables, the odds ratio (as well as its logarithm) is a natural 

measure of association. Considering the 2 dimensional case for model (3.30) where there 

exists only two binary response variables, the odds ratio is 

P r ( l , l [x) Pr(0, Q|x) _ exp[(Q l + ftx) + (a 2 + ftx) + 712] _ ( . 

P r ( l , 0|x) Pr(0, l | x ) e x p ( a i + frx) exp(a2 + ftx) e x P ^ 1 2 ^ 

50 



Hence, the logarithm of the odds ratio is 712 and it does not depend on the covariates. 

However, it is not true that the odds ratio does not depend on the covariates when the 

number of binary response variables is greater than 2. Take the 3 dimensional case in 

model (3.30), for a particular instance. Based on model (3.30), the joint distribution of 

Yi and Yj is 

Pr(y«>yj>y*lx) Pr(y,-,yj|x) = 
Pr(yk\yi,yj,x) 

c'1 exp{Ef = i (a , + E t e i Pitxt)yj + Ei<i<j<3 ajViVj} 

exp{(afc + Efc i PktXt + HkVi + 1jkyj)yk}/l + exp(afc + E£Li PktXt + 7,-*y,- + Jjkyj) 
m 

= c _ 1 [1 + exp(afc + J2 PktXt + HkVi + IjkVj)] 
t=\ 

m m 

• exp{(o!,- + ^2PitXt)yi + ( a , + J2Pjtxt)Vj + 7.j2/»2/j} 
t=i t=i 

for (t, j , k), where c = 1 + E L i exp(a,- + E £ i #***) + E i < , ^ < 3 exp[(at- + a,-) + ET=i{Pit + 

Pit)xt + tij] + exp[E-= 1 « . + ES=i Ef=i Pitxt + Ef=i 7tf]-

As a result, the odds ratio for Yi and 1} is 

Pr(Yj = 0,Yj= 0|x) Pr(y;- = 1, Y3•, = l |x ) 

Fv(Yi = 0,Yj = l | x ) P r ( X = 1,^- = 0|x) 

[1 + exp(ak + E*=i &<**)] [1 + exp(afc + E £ i #w*t + 7*i + 7*i)] 
exp(7.i)(5.1) 

[1 + exp(a* + E £ i PktXt + 7 H ) ] [ 1 + e x P ( « * + E £ i PktXt + Jkj)] 

This form implies that when there exist three binary response variables in model (3.30), 

the odds ratio for arbitrary two binary response variables indeed depends on the covari­

ates x. Using similar steps as above, we can get the same conclusions for the case of 

more than three binary response variables in model (3.30). 

Next, we take two examples to illustrate how the association of binary response variables 

varies with covariates for our data. In each example, we will separately consider model 

(3.30) with 
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• one covariate: COP (V5); 

• two covariates: COP (V5), and CNS (V12); 

• three covariates: COP (V5), CNS (V12), and REN (V7); 

• four covariates: COP (V5), CNS (V12), REN (V7), and HTN (V8); 

• five covariates: COP (V5), CNS (V12), REN (V7), HTN (V8), and OBE (V4). 

5.6 Examples 

5.6.1 Example 1 

In our first example, only two complication variables, REM (V21) and NEM (V22) are 

considered as the response variables in model (3.30). After using the Newton-Raphson 

method to fit model (3.30), the log-odds ratio for REM and NEM is simply equal to 

the estimate value of the parameter 712. Table 5.16 presents the log-odds ratio for 

REM, NEM and its standard error (showed in parenthesis) under different number of 

covariates. From Table 5.16, we find that the log-odds ratio for REM and NEM decreases 

when we add an extra covariate. As a matter of fact, we say the association of two binary 

response variables varies with covariates, but it is not significantly so when considering 

the standard errors. 

Considering the confidence interval of the odds ratio for REM and NEM, we find that 

all 95% confidence intervals under the above five cases do not contain 1 (see Table 

5.17). This implies that variable REM and variable NEM are strongly related each 

other whatever covariates we choose. 

Now let us return to the topic of Section 5.4. We mentioned that the odds ratio analysis 

and another approach based on the differences of log-likehhoods, can suggest which 
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Table 5.16: The Association of REM (V21) and NEM (V22) 

Covariates 

C0P(V5) 

COP CNS(V12) 

COP CNS REN(V7) 

COP CNS REN HTN(V8) 

COP CNS REN HTN OBE(V4) 

Log-Odds Ratio 

1.9296 

1.7422 

1.7005 

1.6938 

1.6842 

Std. Error 

0.3909 

0.4070 

0.4180 

0.4184 

0.4219 

Table 5.17: CI of Odds Ratio for REM (V21) and NEM (V22) 

Covariates 

COP(V5) 

COP CNS(V12) 

COP CNS REN(V7) 

COP CNS REN HTN(V8) 

COP CNS REN HTN OBE(V4) 

95% CI of odds ratio 

(3.2010, 14.8166) 

(2.5715, 12.6785) 

(2.4139, 12.4257) 

(2.3959, 12.3524) 

(2.3568, 12.3186) 
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covariates to use. Here introduce two related methods: the first method is to use the 

ratios of the estimates of the coefficients for the covariates to their standard errors: 

(3/s.e.(p); the second uses differences in the values of log-likelihood function to assess 

covariates. 

For different number of covariates, Table 5.18 and Table 5.19 list the estimates of the 

coefficients for the covariates (/?'s), corresponding standard errors and their ratios when 

applying the Newton-Raphson method to fit model (3.30). Statistically, if the absolute 

value of a ratio is large than 1.96, this might suggest that we need to consider the 

variable of this coefficient as our covariate in model (3.30). 

After checking the ratios in Table 5.18 and Table 5.19, we conclude 

1. Among the five covariates: COP (V5), CNS (V12), REN (V7), HTN (V8) and 

OBE (V4), covariate COP and covariate REN are most important for response 

variable REM. 

2. For response variable NEM, covariate CNS and covariate OBE are more important 

than other three covariates: COP, REN and HTN. 

3. Covariate HTN seems to be less important than other covariates for both response 

variable REM and response variable NEM. HTN appears not be significant when 

several covariates are included, possibly because it is strongly associated with the 

other covariates. 

In last section, we know, from Table 5.13 and Table 5.14, that of the five covariates, four 

of them: COP, CNS, REN and HTN are individually strongly related with the response 

variable REN; four of them: CNS, REN, HTN and OBE are individually strongly related 

with the response variable NEM. Comparing with the conclusion from checking the ratios 
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Table 5.18: The Estimates of the Coefficients under All Five Cases 

Fi=REM 

COP (V5) /?u 

Std. Error 

Ratio 

CNS (V12) fa 

Std. Error 

Ratio 

REN (V7) 0i3 

Std. Error 

Ratio 

HTN (V8) 0i4 

Std. Error 

Ratio 

OBE (V4) 0i5 

Std. Error 

Ratio 

Number of Covariates 

1 2 3 4 5 

1.5516 1.5344 1.4579 1.4532 1.4644 

0.3982 0.4021 0.4128 0.4119 0.4110 

3.8965 3.8160 3.5317 3.5280 3.5630 

1.2536 0.9634 0.9432 0.9569 

0.5372 0.5666 0.5668 0.5637 

2.3336 1.7003 1.6641 1.6975 

1.5753 1.5471 1.5515 

0.4242 0.4286 0.4272 

3.7136 3.6097 3.6318 

0.1658 0.1567 

0.3705 0.3722 

0.4475 0.4210 

0.1593 

0.5358 

0.2973 
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Table 5.19: The Estimates of the Coefficients under All Five Cases (continued) 

F2=NEM 

COP (V5) 02 i 

Std. Error 

Ratio 

CNS (V12) 022 

Std. Error 

Ratio 

REN (V7) 023 

Std. Error 

Ratio 

HTN (V8) 024 

Std. Error 

Ratio 

OBE (V4) 025 

Std. Error 

Ratio 

Number of Covariates 

1 2 3 4 5 

-0.2800 -0.3023 -0.3144 -0.3228 -0.3278 

0.4183 0.4251 0.4270 0.4258 0.4240 

0.6694 -0.7111 -0.7363 -0.7581 -0.7731 

1.5045 1.4802 1.4662 1.4477 

0.4082 0.4121 0.4130 0.4161 

3.6857 3.5918 3.5501 3.4792 

0.1909 0.1489 0.1158 

0.4117 0.4154 0.4155 

0.4637 0.3584 0.2787 

0.2050 0.1244 

0.2545 0.2582 

0.8055 0.4818 

0.9050 

0.3432 

2.6369 
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Table 5.20: The Log-likelihood Functions with Different Number of Covariates 

Covariates 

COP(V5) 

COP CNS(V12) 

COP CNS REN(V7) 

COP CNS REN HTN(V8) 

COP CNS REN HTN OBE(V4) 

Log-likelihood 

-387.4225 

-377.1679 

-370.5885 

-370.0956 

-366.7212 

in Table 5.18 and Table 5.19, partly we can say that to choose covariates, checking the 

ratios of the estimates of the coefficients for the covariates to their standard errors is an 

additional method to the odds ratio analysis. 

In the meanwhile, we also calculate the log-likelihood function when response variables 

are two complication variables, REM (V21) and NEM (V22), and covariates are one of 

the above five cases (see Table 5.20). Table 5.20 shows that the log-likelihood function 

increases when we add an extra covariate. Especially, we find that when we add covariate 

HTN to covariates COP, CNS and REN, the log-likelihood function only increases by 

0.4929, less than other increase. Again, this may suggest that covariate HTN is less 

important than other covariates for both response variables. 

To conclude, using multivariate binary model (3.30), we can do the risk factor analysis 

for several response variables (or complication variables) simultaneously. 

5.6.2 Example 2 

Now, we briefly discuss another example for checking the 3 dimensional case where 

there exist three binary response variables, REM (V21), NEM (V22), and PUM (V23) 

in model (3.30). 
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Table 5.21: The Log-likelihood Functions of Three Response Variables with Different 

Number of Covariates 

Covariates 

C0P(V5) 

C0P(V5) CNS(V12) 

C0P(V5) CNS(V12) REN(V7) 

C0P(V5) CNS(V12) REN(V7) HTN(V8) 

C0P(V5) CNS(V12) REN(V7) HTN(V8) 0BE(V4) 

Log-likelihood 

-925.7063 

-910.6644 

-889.7837 

-882.5742 

-873.7382 

Difference 

15.0419 

20.8807 

7.2095 

8.8360 

In Table 5.21, we present the values of log-likelihoods under different number of co­

variates when using the Newton-Raphson method and the differences of log-likelihoods 

when adding another covariate to previous case. Clearly, as previous example the log-

likelihood function increases when we add an extra covariate. Considering differences, 

it seems that the last two covariates HTN and OBE are not more important than other 

covariates, but comparing with x\i they are still statistically significant. 

We choose the third case: three covariates COP, CNS and REN for our final analysis. 

Similar to Table 5.18 and Table 5.19, Table 5.22 deals with three binary response variable 

REM, NEM, PUM and three covariates COP, CNS, REN in model (3.30). Checking the 

ratios in Table 5.22, we say that among these three covariates, CNS is not significant 

for binary response variable REM; COP and REN is not significant for binary response 

variable NEM. 

After using the Newton-Raphson method to fit model (3.30) for the third case, in ad­

dition to the estimates of the coefficients listed in Table 5.22, we also obtained other 

estimates of the parameters in model (3.30). Therefore, through equation (5.1) the 
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Table 5.22: The Estimates of the Coefficients under the Third Case 

COP (V5) 

CNS (V12) 

REN (V7) 

Coefficient 

Std. Error 

Ratio 

Coefficient 

Std. Error 

Ratio 

Coefficient 

Std. Error 

Ratio 

REM (V21) 

1.1318 

0.4189 

2.7018 

0.7580 

0.5554 

1.3648 

1.2210 

0.4280 

2.8528 

NEM (V22) 

-0.5786 

0.4254 

-1.3601 

1.2370 

0.4180 

2.9593 

-0.1104 

0.4110 

0.2686 

PUM (V23) 

1.3013 

0.2447 

5.3179 

1.1185 

0.4131 

2.7076 

1.5234 

0.2988 

5.0984 

marginal odds ratio for REM and NEM is the form of 

[1 + exp(c*3 + E L i fcxj)][l + exp(a 3 + £ L i fax, + 7w + 723)] 
exp(7i2) 

[1 + exp(a 3 + Ef=i fax; + 713)] [1 + exp(a 3 + £?=i fax, + 723)] 

1 + exp(-0.9899 + 1.3013si + 1.1185s2 + l-5234x3) 
6 X P^ * ' ' 1 + exp(-0.9899 + 1.3013*1 + 1.1185x2 + 1.5234x3 + 1.5186) 

1 + exp(-0.9899 + 1.3013si + 1.1185x2 + 1.5234x3 + 1.5186 + 1.1775) 

1 + exp(-0.9899 + 1.3013a?! + 1.1185x2 + 1.5234x3 + 1.1775) 

1 + exp(-0.9899 + 1.3013ai + 1.1185x2 + 1.5234x3) 

1 + exp(1.7062 + 1.3013X! + 1.1185x2 + 1.5234x3) 

1 + exp(0.1687 -f 1.3013X! + 1.1185x2 + 1.5234x3) 

" 1 + exp(0.1876 + 1.3013X! + 1.1185x2 + 1.5234ar3) ' ' 
(5.2) 

As a function of the covariates COP, CNS and REN, the marginal odds ratio for REM 

and NEM varies with the covariates for model (3.30). In fact, the association of the 

response variables depends strongly on the covariates in this 3 dimensional case. 

From Table 5.1 and Table 5.2, we know all covariates COP, CNS and REN are binary 

variables. Substituting different values of the covariates for equation (5.2), we give 

Table 5.23 to show the changes of the marginal odds ratio for REM and NEM. From 
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Table 5.23: The Marginal Odds Ratio for REM and NEM 

COP (V5) CNS (V12) REN (V7) 

Xx = 0 X2 = 0 x 3 = 0 

Xx = 1 X2 = 0 x 3 = 0 

Xx = 0 X2 = 1 x 3 = 0 

xx = 0 x2 = 0 x3 = 1 

xx = 1 x2 = 1 x3 = 0 

Xx = 1 X2 = 0 x 3 = 1 

xx = 0 x2 = 1 x3 = 1 

Xx = 1 X2 = 1 X3 = 1 

Marginal Odds Ratio 

0.8490 

0.4464 

0.4800 

0.4124 

0.3291 

0.3094 

0.3173 

0.2826 

these marginal odds ratios in Table 5.23, we conclude that of three covariates, the most 

important covariate for the changes of the marginal odds ratio for REM and NEM is 

REN, next is COP. 
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Appendix 

C Program for Applying the Newton-Raphson Method 

# i n c l u d e < s t d i o . h > 

# i n c l u d e <math.h> 

#de f ine N 900 

# d e f i n e NP 150 

# d e f i n e NC 20 

ma inO 

{ 

double t [NP] [NP] ,h[NP] [NP] , s [N] [NP] ,x[N] [NC] ,y[N] [NC] ; 

double c [N] , lm[NP] , suf [NP] ; 

double dif,mx,prod,sum,lik,logc; 

int iter,i,j,k,d,n,m,nn,kf,ii,M,Ml,jj[6]; 

double **a,**b,**dmatrix(); 

FILE *fp; 

void d2b(),gaussj(); 

if ((fp = fopen("name,,,"r")) »- NULL) 

{ printf("file not found\n"); exit(); 

} 

scanf("y.d */.d '/.d", &n, &m, &nn) ; 

/* 

n is dimension of binary response variables 

m is dimension of covariates 

nn is the number of observation 

M=n+n*m+n*(n-l)/2; M1=M+1; 

/* 

M is the number of parameters 

Next step is to get initial values of the parameters 
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and read values for binary response variables 

and covariates from a file "name" 

f or(i=l; i<=M; i++) f scanf (fp, '7.F" ,&lm[i] ) ; 

for(i=l;i<=M;i++) printf ('7.6.3f", lm[i]); printf ("\n") ; 

for(k=l;k<=nn;k++) 

{ for(i=l;i<=m;i++) f scanf (fp,ny.F",&x[k] [i]) ; 

for(j=l;j<=n;j++) fscanf (fp,"'/.F",&y[k] [j]); 

} 
printf("\n"); 

for(i=l,kf=l;i<=n;i++) kf*=2; 

printf ("n=y.d, m=y.d, nn=y.d, M=*/,d, kf=y.d\n", n,m,nn,M,kf) ; 

for(i=l;i<=M;i++) suf[i]=0.; 

/* 

Next, calculate sufficient statistics — suf 

*/ 

for(k=l;k<=nn;k++) 

{ for(i=l;i<=n;i++) 

{ s[k][(i-l)*m+i]=y[k][i]; 

for(j=l;j<=m;j++) s[k] [(i-l)*m+i+j]=y[k] [i]*x[k] [j] ; 

} 

fo r ( i= l ; i<=n- l ; i++) 

{ for( j=i+l ; j<=n;j++) s [k] [n+n*m+n*( i - l ) - i* ( i - l ) /2+j - i ] 

- y [ k ] [ i ] * y [ k ] [ j ] ; 

} 

} 

for(i=l;i<=M;i++) 

{ for(k=l;k<=nn;k++) su f [ i ]+=s[k] [ i ] ; 

pr in t f ( '7 .8 .4f" , s u f [ i ] ) ; 

if(i*/.10==0) p r in t f ( " \n" ) ; 
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} 

p r i n t f ( " \ n " ) ; 

* / 

d i f = l . ; i t e r=0 ; 

a = dmatrix(l ,M,l ,M); b = d m a t r i x ( l , M , l , l ) ; 

while( i ter<30 && d i f> l . e -4 ) 

{ for(i=l;i<=M;i++) 
{ for(j=l;j<=Ml;j++) h [ i ] [ j ] = 0 . 0 ; 

} 

for(k=l;k<=nn;k++) 

{ c[k]=0. ; 

for(i=l;i<=M;i++) 

{ for(j=l;j<=Ml;j++) t [ i ] [ j ]=0.0; 

} 

/* 

c a l l s rou t ine , d 2 b ( n , i i , j j ) : r e tu rns poss ib le binary vector 

j j of dimension n 

fo r ( i i= l ; i i<=kf ; i i++ ) 

{ d 2 b ( n , i i , j j ) ; 

for( i=l ; i<=n; i++) 

•C s [k] [ i+( i - l )*m] = ( d o u b l e ) j j [ i ] ; 

for(j=l;j<=m;j++) s [k][ ( i - l )*m+i+j] 

= ( d o u b l e ) ( j j [ i ] ) * x [ k ] [ j ] ; 

} 

fo r ( i= l ; i<=n- l ; i++) 

{ for( j=i+l ; j<=n;j++) s [k] [n+n*m+n*( i - l ) - i* ( i - l ) /2+j - i ] 

= ( d o u b l e ) j j [ i ] * j j [ j ] ; 

} 

for(i=l,sum=0.;i<=M;i++) sum+=lm[i]*s[k][i]; 

prod=exp(sum); c[k]+=prod; 

for(i=l;i<=M;i++) t [ i ] [Ml]+=s[k] [i]*prod; 

for(i=l;i<=M;i++) 

{ for(j=l;j<=M;j++) t [ i ] [j]+=prod*s[k] [ i ]*s[k] [ j ] ; 

} 
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} 
for(i=l;i<=M;i++) t [ i ] [Ml]/=c[k] ; 

for(i=l;i<=M;i++) 

{ for(j=l;j<=M;j++) t [ i ] [ j ] - t [ i ] [Ml]*t [ j] [Ml]-t [ i ] [ j ] / c [k ] ; 

} 

for(i=l;i<=M;i++) 

{ for( j - i ; j<-M+l; j++) h [ i ] [ j ] + - t [ i ] [j] ; 

} 

} 

for(i=l;i<=M;i++) 

{ for( j«l ; j<-M;j++) a [ i ] [ j ] - h [ i ] [ j] ; 

b [ i ] [ l ] = s u f [ i ] - h [ i ] [ M l ] ; 

} 

/* 

c a l l s rou t ine , gaussj (a ,M,b, l ) 

for solving a l i n e a r system 

*/ 

gauss j ( a ,M,b , l ) ; 

for(i=l ,dif=0.; i<=M;i++) 

{ mx=fabs(b[ i ] [ l ] ) ; if(mx>dif) dif=mx; 

} 

for(i=l;i<=M;i++) l m [ i ] - = b [ i ] [ 1 ] ; 

i te r++; 

if (iter'/.l==0) 

{ for(i=l;i<=M;i++) 

{ printf("lm= ,/.8.4f", l m [ i ] ) ; 

if(i*/.10==0) p r in t f ( " \n" ) ; 

} 

p r i n t f ("iter=*/.4d\n", i t e r ) ; 

} 

} 

i f ( i te r>=30) p r i n t f ( " d i d not converge\n"); 

for(i=l;i<=M;i++) 

{ p r in t f ('7.8.4f */.8.4f 7.8.4f \n" , lm[ i ] , s q r t ( - a [ i ] [ i ] ) , 

l m [ i ] / s q r t ( - a [ i ] [ i ] ) ) ; 

66 



} 
printf ("iter='/.4d\n",iter); 

for(lik=0.,i=l;i<=M;i++) lik+=suf[i]*lm[i]; 
for(i=l,logc=0.;i<=nn;i++) logc+=log(c[i]); 
lik-=logc; 

printf("loglikelihood= y.9.4f\n", lik); 

} 

void d2b(n,ii,jj) 

int n,ii,jj[] ; 

{ 

int i,d; 

d=ii-l; 

for(i=n;i>=l;i—) 

{ jj[i]=d'/.2; 

d=d/2; 

} 
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