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ABSTRACT

A mathematical model (the Porous Medium Model, PMM) was developed to predict the
fluid flow and solute transport in hollow-fibre devices, with a particular emphasis on hollow-
fibre bioreactors (HFBRs). In the PMM, both the extracapillary space (ECS) and the lumen
side are treated as interpenetrating porous regions with a continuous source or sink of fluid.
The hydrodynamic equations of the PMM are based on Darcy’s law and continuity
considerations while the transport of the ECS protein is described by the time-dependent
convective-diffusion equation. Compared to the earlier Krogh Cylinder Model (KCM), in
which the fluid flow and protein transport are assumed to be the same for each fibre, the
PMM represents an improved approach in which the spatial domain corresponds to the real
dimensions of the hollow-fibre module. Thus, it can be applied to operating conditions where
macroscopic radial pressure and concentration gradients exist, such as in open-shell
operations. It was demonstrated that, in the absence of radial gradients, the PMM becomes
mathematically equivalent to the one-dimensional KCM. The PMM also takes into account
the osmotic pressure dependence on the ECS protein concentration, which causes a coupling
of the hydrodynamic and protein transport equations.

The Porous Medium Model was tested by applying it to one- and two-dimensional
closed-shell operations. Both confirmed that a significant polarization of the ECS protein
occurs in the direction of the existing pressure gradients under dominant convective transport
conditions. The downstream polarization of protein affects HFBR hydrodynamics by virtually
shutting down the flow in a significant portion of the ECS due to locally high osmotic
pressures. It can also facilitate harvesting of the product protein by increasing its

concentration near the downstream ECS port.
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Modelling studies of the hydrodynamics of hollow-fibre devices in the partial and full
filtration modes of operation were carried out for a wide range of membrane permeabilities
(10"<L,<107 m). It was demonstrated using the PMM that, for membranes with
permeabilities below about 10> m, practically all of the pressure drop between the inlet lamen
and outlet ECS ports is due to the hydraulic resistance of the membrane. If the L, value is
increased above approximately 102 m, this assumption, commonly made in order to
experimentally determine membrane permeabilities, begins to break down. Also, for
membrane permeabilities exceeding this value, the ECS and lumen flow rates predicted by the
PMM and KCM for the partial filtration mode become significantly different. ‘

Modelling of the inoculation phase of HFBR operation is used as another example
application of the Porous Medium Model. PMM simulations of the inoculation phase showed
that, in the case of a Gambro HFBR with a membrane permeability of the order of 10™"° m, the
protein concentration distribution at the end of the inoculation period is very non-uniform and
most of the shell side remains free of protein. Using a lower-concentration inoculum solution
partially alleviates this problem. Alternatively, a relaxation phase with all ports closed can be
applied after inoculation to help homogenize the contents of the ECS by diffusion and
osmotically-driven convection. However, this process may be fairly time-consuming and may
pose the risk of cell starvation due to oxygen limitations. It is suggested that introduction of
the inoculum through both ECS ports simultaneously or periodic changes of the flow direction
may be more efficient ways of carrying out the inoculation process.

The cell-packed conditions, which exist in the ECS during the production and harvesting
phases of HFBR operation, can significantly decrease the ECS hydraulic conductivity and, to a
lesser extent, the effective protein diffusivity due to a decrease in the ECS porosity. The ECS
permeability value affects the magnitude of convective transport in the shell side and hence the
rate of protein removal from the ECS and the product concentration in the harvested solution,

thereby influencing the overall efficiency of the process. High-cell-density conditions in the
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ECS might not allow achievement of high product removal rates and product harvest
concentrations. Two modes of harvesting, the closed-lumen mode (with only the two ECS
ports open) and the standard mode (with only the downstream ECS port and both lumen ports
open), were compared and showed no significant differences in their efficiencies. It was found
that the downstream polarization of the ECS protein prior to harvesting can considerably

improve the efficiency of this process.
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Chapter 1: INTRODUCTION

A typical hollow-fibre module consists of a bundle of semi-permeable polymeric
capillaries sealed inside a tubular cartridge. The device has found numerous applications in
various fields, some of which are presented in Table 1.1. Besides those listed, other
possibilities exist for its use in the food and fermentation industries, tanning and textile
industries, in waste-water treatment, and other traditional fields where filtration or reverse
osmosis is applied (Drioli, 1980; Michaels, 1980). Using the hollow-fibre module as an
immobilized enzyme bioreactor was first proposed by Rony (1971), while Knazek et al.

(1972) first reported using a hollow-fibre bioreactor for mammalian cell culture. Whole-cell

Table 1.1: Some applications of hollow-fibre devices.

Application Reference

artificial kidney (hemodialysis) Mahon (1960)

artificial pancreas Colton et al. (1980)
hemofilters and hemodiafilters Gohl & Konstantin (1986)
liver assist device Wolf (1980)

hormone production Knazek et al. (1972)
monoclonal antibody production Piret & Cooney (1990a)
purification of biological macromolecules Michaels (1980)

ultrapure water production Michaels (1980)

water desalination Breslau et al. (1980), Hermans (1978)




Chapter 1: Introduction 2

immobilization has important advantages over enzyme immobilization including elimination of
the enzyme purification step and the ability of whole cells to catalyze multi-step reactions
(Webster & Shuler, 1978). Protection of cells from shear stresses, high cell densities, and
increased product concentrations are some advantages of immobilized cell cultures compared
with suspension cultures (Piret & Cooney, 1990b). Hollow-fibre systems offer a particularly
high surface-to-volume ratio, and thus high throughput capacity and high productivity. In the
case of artificial organs, foreign cells can be immunoisolated (Kelsey et al., 1990). On the
other hand, difficult sampling, nutrient and metabolite gradients, and scale-up limitations are
some of the potential problems associated with hollow-fibre devices (Piret & Cooney, 1991,

Piret et al., 1991).

ECS UPSTREAM ECS DOWNSTREAM
LUMEN l
MANIFOLD PORT 1 PORT
LUMEN \ LUMEN
INFLOW ; QUTFLOW
—_— S _— >
- \ 7
/ "_5 ’i ‘
j' 3
HOLLOW FIBRE HOLLOW FIBRES ECS PORT MANIFOLD

SUPPORT (FIBRE-FREE)

Figure 1.1: Schematic of a hollow fibre device (not to scale).

Figure 1.1 shows a schematic diagram of a hollow-fibre bioreactor (HFBR). In a typical

configuration, it contains cells packed to high densities in the extracapillary space (ECS) and

thus physically separated from the major flow that enters and exits the reactor and passes
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through the fibre lumina. Low-molecular-weight nutrients (e.g., dissolved oxygen, glucose,
etc.) permeate through the membrane into the ECS, while cell metabolic wastes are
continuously removed from the ECS to the lumen flow. Macromolecular product proteins
usually remain in the ECS but, depending on the size and shape of the molecule and on the
membrane properties, might also migrate to the lumen. This flow configuration is known as
the closed-shell mode (since both ECS ports are closed) and is commonly used in the
production phase. Other variations of the closed-shell configuration include periodic
alternation of the flow direction (Piret & Cooney, 1990a) or applying pulsatile flow at the inlet
(Kim & Chang, 1983). Open-shell operation occurs during the inoculation phase, in which the
cells are introduced into the shell side through the upstream ECS port, or the harvesting
phase, in which the product is collected from the downstream ECS port.

In the prediction of cell and product distributions in HFBRs, one must account for at
least some and possibly all of the following phenomena: (i) diffusion, (ii) convection, (iii)
osmosis, (iv) gravity, (v) adsorption, and (vi) metabolic reactions. Adsorption of cells or
protein molecules can lead to membrane fouling, while osmotically active species, if present at
sufficiently high concentrations, will influence transmembrane flows. Distributions of low-
molecular species, for which the membrane is permeable, are usually affected by diffusion and
metabolic reactions only (Piret & Cooney, 1991; Piret et al., 1991). However, for proteins,
the influence of gravity and convection often cannot be neglected, a conclusion made by Piret
and Cooney based on their evaluation of the Grashof number (ratio of buoyant forces to
viscous resistance) and Peclet number (ratio of convective to diffusive transport) for typical
process conditions. This has been confirmed by experimental observation of downstream
polarization and sedimentation of cells and proteins (Piret & Cooney, 1990a). Convectively
induced downstream polarization of protein may cause problems associated with ineffective
use of the reactor space during the start-up phase of HFBR operation since the cell

distribution has been shown to follow the growth factor distribution (Piret & Cooney, 1990a).
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On the other hand, it can be advantageous to polarize the protein in the downstream part of
the reactor prior to harvesting in order to obtain a more concentrated product solution. Some
authors (e.g., Pillarella & Zydney, 1990; Salmon et al., 1988) have claimed that increased ECS
convective flow should improve the productivity of HFBRs. Thus, the analysis of HFBR
convective fluid flow is an important step in the modelling, design and scale-up of these
bioreactors.

The mathematical models describing hydrodynamics as well as convective and diffusive
protein transport in HFBRs have so far been based on the analysis of a single fibre unit
assumed to be representative of the whole reactor (Apelblat et al., 1974; Kelsey et al., 1990;
Pillarella & Zydney, 1990; Taylor et al., 1994). In the closed-shell mode, the pressure
gradients between fibres are often small, and this assumption is fairly reasonable. However, it
cannot lead to a realistic description of HFBRs in cases of (1) significant radial pressure
variations in the lumen manifolds, (2) significant concentration gradients between fibres,
caused by gravity or by protein entrapment in the ECS manifolds, or (3) for open-shell
operations such as inoculation or harvesting (since the ECS manifolds are located at the
reactor circumference). This work presents the development and gives example applications
of a new model, in which the bundle of densely packed hollow fibres is treated as a porous
medium and the spatial domain is determined by the real cartridge dimensions. This not only
makes it possible to handle the open-shell as well as the closed-shell flow configurations but
also allows for relatively straightforward extensions of the model to include, for instance, the
presence of ECS or lumen manifolds or the influence of gravity on the hydrodynamics and
protein distribution.

Chapter 2 of this thesis presents a review of previous models of fluid flow and protein
transport in HFBRs. The assumptions and mathematical development of the proposed Porous
Medium Model (PMM) are given in Chapter 3, while Chapter 4 briefly describes the

numerical techniques used. Section 1 of Chapter 5 presents examples of model verification
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through the comparison of some one-dimensional solutions with those obtained from single-
fibre models. Section 5.2 presents solutions obtained using the PMM with imposed radial
lumen pressure gradients at the HFBR inlet and outlet. Finally, predictions of the PMM with
respect to the determination of membrane permeability, hydrodynamics in the filtration mode,
as well as inoculation and harvesting operations are presented in subsequent sections of

Chapter 5. The last chapter concludes the thesis and outlines possible future extensions to this

model.
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Chapter 2: PREVIOUS MODELLING WORK

2.1. Introduction

Most mathematical models describing HFBRs start with a hydrodynamic analysis and
then superimpose solute transport on the flow field to determine the distribution of nutrients
and products (e.g., Kleinstreuel & Agarwal, 1986; Salmon et al., 1988, Pillarella & Zydney,
1990). It has been shown that, under typical HFBR operating conditions, diffusion is the
primary transport mechanism for low-molecular-weight nutrients and metabolites (Webster &
Shuler, 1978; Piret & Cooney, 1991) while convection is the dominant mechanism for
transport of macromolecular species such as growth-factor and product proteins (Taylor et
al.,, 1994). Only recently has the effect of the osmotic pressure on the ECS hydrodynamics
and protein distribution in ultrafiltration HFBRs been modelled (Patkar et al,, in press; Taylor
et al., 1994). A summary of all the factors which affect the convective flow in HFBRs is
presented in Table 2.1.

The following sections present the general assumptions used by the existing models and
then more detailed descriptions with an emphasis on models based on the Krogh cylinder

approximation.

2.2. General assumptions

The fluid in HFBRs is assumed to be incompressible and Newtonian; body forces are

neglected. Then, the fundamental equations governing the hydrodynamics become:
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Table 2.1: Parameters affecting the flow in hollow-fibre bioreactors.

GENERAL SPECIFIC EXAMPLES AND REMARKS
Design Flow configuration | closed-shell (open lumen inlet and outlet)
and (Bruining, 1989; cross-flow filtration (open ECS inlet, lumen outlet)
operating Tharakan & Chau, | permeate suction (open both inlets and lumen outlet)
parameters | 1986, 1987) dead-end filtration (open lumen inlet and ECS outlet)
Flow direction unidirectional flow (most cases)
periodically alternated (Piret & Cooney, 1990a)
Reactor orientation | horizontal (Piret & Cooney, 1990a)
vertical (Patkar et al., in press)
Geometrical design | shape of lumen manifolds (Park & Chang, 1986)
shape of ECS manifolds and location of ECS ports
ECS and lumen inlet-outlet pressure differences (and hence the flow rates)
Fibre Packing density more resistance to flow if higher (Kelsey et al., 1990)
arrangement | Parallel alignment | deviations from increase resistance to transverse flow
and (less) to parallel flow (Kirsch & Fuchs, 1967)
Uniformity in more resistance to flow if higher (Jackson et al., 1986)
distribution non-uniformity causes channelling (Heath et al., 1990)
Membrane | Isotropicity isotropic or anisotropic (Waterland et al., 1974)
properties | Permeability, L, expressed as flux X viscosity/(pressure difference)
Nominal molecular | roughly, molecules with lower molecular weight
weight cut-off will pass through the membrane (Cima, 1988)
Others Osmotic effects flow influenced by osmotically active species
Cell growth ECS porosity, hydraulic conductivity, diffusivity,
conditions viscosity, density affected by cells and proteins
Membrane fouling | pore-blocking, adsorption, protein denaturation and
gel-layer formation (Mulder, 1991)
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continuity
V:V*'=0 o V:V=0 2.1)
momentum (Navier-Stokes)
i N [T
+V*(VV") = = =VP+=V?¥V (22)
at P P
Darcy's law
V = - ﬁvp (2.3)
I

where V *and V are the actual and superficial velocity vectors, respectively, P is pressure, k
is the Darcy permeability, p is the fluid density, u is the fluid viscosity and t is time.
Essentially, three regions are distinguished in the analysis: lumen, membrane and shell (ECS).
Mass continuity applies to each of them. The Navier-Stokes equation is used for regions not
treated as porous media (lumen and cell-free ECS), otherwise Darcy's law is employed
(membrane and cell-packed ECS). In most models, fully developed laminar flow in the lumen
is assumed and the inertial terms in Equation 2.2 are neglected because of a very small aspect
ratio (fibre radius/length) and hence small radial Reynolds number (Kelsey et al., 1990; Taylor

et al., 1994). This leads to the creeping-flow equation:

VP = pVV* (2.4)

For the case where proteins are present in the shell side, the solute balance equation can be

written as follows:

a—%—=V"VC+DV2C+‘If (2.5)
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where D is the protein diffusivity which is treated as a scalar independent of concentration.
The sink/source term ¥ can include protein leakage through the hollow-fibre membrane,
protein consumption or production, etc. (it is usually assumed to be zero).

Owing to the reactor shape, cylindrical coordinates are used in the analysis, with the
angular variation being neglected. Fibres are treated as parallel hollow cylinders distributed
uniformly throughout the circular cross-section of the reactor. Only radial flow is assumed to

occur in the membrane.

2.3. Major approaches to modelling

In the cell models developed by Happel (1959) and Kuwabara (1959) fluid motion
through an assemblage of solid cylinders was modelled by considering an equivalent system of
one cylinder and a concentric fluid envelope associated with it, the ratio of solid to fluid
volumes being the same as for the assemblage of cylinders. Using slightly different boundary
conditions at the cell boundary (zero vorticity by Kuwabara, zero shear stress by Happel),
they solved the two-dimensional creeping-motion equations for flow parallel or perpendicular
to the cylinders and derived expressions for the stream function, drag and Darcy constant for
the bulk flow behaviour. This simple model provides no information about the local velocity
or pressure profiles in different regions of a multi-fibre reactor where the shell and lumen
spaces communicate across a semipermeable membrane.

Most HFBR models have been based on the assumption that the flow associated with
each fibre is identical, so that a single fibre along with the fluid cylinder surrounding it is
representative of the whole reactor (e.g., Kelsey et al., 1990; Pillarella & Zydney, 1990,
Taylor et al., 1994). This single fibre unit is called the Krogh cylinder, in honour of Krogh

(1919), who carried out early modelling work on capillaries in tissue assuming the same multi-
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fibre geometry. The fibres are assumed to be arranged in a regular array with no fluid
exchange between adjacent Krogh cylinders (Figure 2.1). Partial overlapping of neighbouring
fibre units accounts for the void volume between them (Figure 2.1.a). Most analyses assume
the closed-shell configuration, i.e. fluid enters the fibre through its lumen, then partially
penetrates into the ECS in the upstream half of the fibre length and returns to the lumen in the
downstream half (Figure 2.1.b). The flow induced in the ECS by an axial pressure gradient in
the lumen, in the presence of a permeable membrane, is referred to as Starling flow (Starling,
1896).

Early theoretical studies on solute transport in HFBRs usually neglected the convective
effects (except in the lumen) and assumed only radial diffusive transport of substrate and
product in the membrane and ECS, with chemical reaction taking place in the latter (Rony,
1971; Waterland et al., 1974; Kim & Cooney, 1976; Webster & Shuler, 1978). An order-of-
magnitude analysis indicates that, under typical process conditions, salts, non-electrolytes, and
gases in the ECS of HFBRs are primarily transported by radial diffusion (Piret & Cooney,
1991). Kleinstreuel and Agarwal (1986) have simultaneously solved the transient convective-
diffusion, Navier-Stokes, and continuity equations assuming no axial velocity in the membrane
or in the "spongy matrix" region (ECS packed with biocatalyst). However, their model
ignored both the dependence of hydrodynamics on mass transfer and the convective transport
in the ECS.

Apelblat et al. (1974) performed a theoretical analysis of a thin-walled capillary
surrounded by a porous bed of tissue, with the flow in the latter described by Darcy's law.
This situation is analogous to a hollow-fibre bioreactor with a densely packed cell bed in the
ECS. The coupled steady-state continuity and momentum equations were solved for the
lumen and surrounding tissue, with the results presented in terms of Bessel functions.

Salmon et al. (1988) extended Apelblat's analysis to describe fluid flow as well as solute
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a.

~MEMBRANE

ECS
MEMBRANE

Figure 2.1: Krogh cylinder approximation: a) fibre arrangement throughout the reactor
cross-section, b) longitudinal section of a single unit with major flow paths.

transport in a specially designed hollow-fibre reactor that consisted of the following four
regions: lumen, inner membrane (permeable to fluid flow), cell- or enzyme-packed annulus,
and outer membrane (impermeable to fluid flow) (Libicki et al., 1988). Their model included
both convective and diffusive transport of either a non-reactive tracer or a solute consumed
with first-order or Michaelis-Menten kinetics. The convective transport was found to have a

marked effect on the reactor performance under extreme flow conditions. In some cases, the
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transport of non-reacting solute could be adequately described using axially-averaged
velocities, producing a simpler model whose solution required much less computational effort.

Bruining (1989) presented a general description of the hydrodynamics in hollow-fibre
devices. The scope of his analysis included different modes of operation (e.g., closed-shell,
continuous open-shell, suction of permeate, dead-end filtration) corresponding to various
applications of hollow-fibre modules. Starting from the mass and momentum balance
equations, Bruining obtained expressions for the hydrostatic pressure and bypass (fraction of
fluid passing through the ECS) as functions of the axial position and the dimensionless
transport modulus T, (the ratio of the viscous resistance inside the fibre lumen and the
permeation resistance of the membrane). Bruining's simple analysis provided no information
on local velocity profiles.

Another hydrodynamic model was developed by Kelsey et al. (1990) whose analysis was
similar to that of Apelblat et al. (1974) except that the Navier-Stokes equation rather than
Darcy's law was employed for the cell-free ECS. Lumen and shell pressures were assumed to
be radially constant. Steady-state analytical solutions were obtained in terms of three
dimensionless parameters: <y, which describes the geometry of the hollow-fibre module, « , the
membrane permeability and f, the filtration fraction (fraction of fluid leaving the device
through the ECS downstream port).

Pillarella and Zydney (1990) extended Kelsey’s analysis to include glucose and insulin
transport in a hollow-fibre bioartificial pancreas where both solutes were present at low
concentrations. Because osmotic effects were unimportant in this case, the flow equations
were decoupled from the substrate and product transport equations. Axial diffusive transport
throughout the reactor was neglected and only radial flow in the membrane was permitted.
The steady-state fluid flow profiles were evaluated analytically (Kelsey et al., 1990) while the

transient convective-diffusion equations for glucose and insulin were solved numerically. The
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model predictions were in good agreement with experimental data obtained by Colton et al.
(1980).

Taylor et al. (1994) incorporated osmotic effects and solved the two-dimensional protein
transport equation coupled with a second-order ordinary differential equation for the radially-
averaged lumen (or ECS) velocity. A transient solution was obtained by iterating the
interdependent velocity and concentration fields at each new time step. Taylor's analysis was
carried out for both single- and multi-fibre isotropic membrane HFBRs with an ECS
essentially unobstructed by cells (i.e. during the start-up phase). The results confirmed the
occurrence of a significant downstream polarization of ECS proteins. It was found that, at
higher protein concentrations and lower recycle flow rates, the osmotic influence of the
proteins could reduce the Starling flow by several orders of magnitude, thus eliminating the
protein polarization problem. It was suggested that introducing a concentrated solution of
inert, osmotically active, macromolecules with the inoculum would allow more rapid and
uniform cell growth in HFBRs, leading to reduced start-up time and increased reactor
productivity.

Patkar et al. (in press) followed up Taylor's work and compared predictions of one- and
two-dimensional models with experimental results, concluding that the radial variations could
be neglected. Good agreement was found for experimental and theoretical transient and
steady-state axial concentration profiles of bovine serum albumin (BSA) and human
transferrin. At the upstream and downstream ends of the ECS some discrepancies were
observed, which were believed to be due to the presence of the ECS manifolds. The
influence of the flow direction switching time in the bidirectional lumen flow mode and the
effect of membrane permeability on the protein distribution were also investigated. A formula
for the critical protein loading necessary to ensure that the steady-state growth factor

distribution would extend over the full length of the ECS was developed.
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Koska (1993a) recently investigated protein redistribution in HFBRs with a gel-packed
ECS. Experimentally obtained protein concentration profiles were compared with those
predicted by one- and two-dimensional models based on the Krogh cylinder approximation.
The results indicated that the one-dimensional model, which required about two orders of
magnitude less computational time, was sufficient to adequately duplicate the ECS protein
distributions predicted by the two-dimensional model. Koska’s model simulations also
showed that protein polarization, a dominant feature of cell-free ECS protein transport, was
reduced under cell-packed conditions, when the ECS hydraulic conductivity was lower.

The governing equations of the Krogh-cylinder-based models of Kelsey et al. (1990),
Taylor et al. (1994), Patkar et al. (in press), and Koska (1993a), are included in Appendix A.
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Chapter 3: DEVELOPMENT OF THE POROUS MEDIUM MODEL

3.1. Introduction

Since a hollow-fibre reactor contains thousands of densely packed fibres, an attempt to
describe it as a porous bed seems well justified. In the Porous Medium Model (PMM), the
shell (ECS) and lumen sides are treated as interpenetrating porous regions with a continuous,
spatially dependent, source/sink of fluid. This approach is analogous to the model of flow in
tissue proposed by Baxter and Jain (1989). Since fluid incompressibility and Darcy’s law are
used to describe the hydrodynamics in both the ECS and the lumen side, the hollow-fibre
membranes do not have to be distinguished as a separate region. Axial flow in the membrane
is neglected, which, together with the incompressibility requirement, implies that what fluid
disappears from (or appears in) the lumen must instantly appear in (or disappear from) the
ECS (at the same position). The protein is assumed to be present in the ECS only, with no
leakage into the fibre lumina and no build-up in the membranes. Osmotic effects are included
and cause the coupling of the fluid flow and protein transport equations. Body forces
(gravity) are neglected and axial symmetry of the system is assumed.

In the derivation of the model equations, it is useful to introduce the concept of the
representative elementary volume (REV) (Bear, 1972). The REV must be small enough to
ensure continuous and smooth variations of concentration and flow properties over the length
and cross-section of the HFBR. On the other hand, it must contain a sufficiently large number
of fibres, so that its actual heterogeneity is not pronounced. Uniformity in fibre distribution is

not essential, although it is convenient to assume that each REV contains the same number of



Chapter 3: Development of the Porous Medium Model 16

DC
A B

Y

Ax

Figure 3.1: Ring-shaped representative elementary volume (REV) with thickness Ar and
length Ax.

fibres per unit volume. A diagram of a two-dimensional REV in cylindrical co-ordinates is
shown in Figure 3.1.

The PMM is the first attempt to develop a more general HFBR model, able to deal with
a variety of flow configurations, with possible significant radial pressure and concentration
gradients and, eventually, with non-ideal reactor design details (e.g., ECS manifolds) or the
effect of gravity. In contrast to the Krogh cylinder approach, in which a multi-fibre reactor is
modelled by considering a fictitious single fibre unit, the spatial domain in the PMM

corresponds to the real dimensions of the HFBR cartridge.



Chapter 3: Development of the Porous Medium Model 17

3.2. Hydrodynamics

It is assumed here that, because all of the components of the system are incompressible,
the reactor hydrodynamics are always quasi-steady. Any transient changes in the flow field
are due to the time-dependent changes in protein concentrations (via osmotic pressure).
Thus, at each time level, the hydrodynamics adjust instantaneously to the new concentration
field. As well as being incompressible, the fluid is also assumed to be Newtonian.

The steady-state continuity law applied to the ECS yields
V-V, =¢ 3.1

and to the lumen,

V-V, = -¢ (3.2)

where V; and V, are the shell and lumen superficial velocity vectors, respectively. The fluid

source/sink term, ¢, is due to fluid leakage across the membrane and can be expressed as
LP
¢ = _#_ 4, (PL_PS+HS) (33)

where L, is the membrane hydraulic permeability, x is the fluid viscosity, 4, is the membrane
surface area per unit volume available for fluid transport, P, (x,r) and Py(x,r) are the lumen and
ECS hydrostatic pressures, respectively, and Il (x,r) is the ECS osmotic pressure. As
mentioned before, it is convenient to assume that 4, is a constant independent of position and
time. In the absence of any membrane fouling phenomena (Mulder, 1991), the same

assumption can be made for L,. The fluid viscosity is assumed to be independent of protein
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concentration, which, as shown by Koska (1993a), is a reasonable approximation for the
concentration range of interest here.

Since the Reynolds numbers in HFBRs are usually very small (e.g., for a lumen flow of
600 cm’/min, the lumen Re=o(1); ECS Reynolds numbers can be orders of magnitude
smaller), Darcy's law can be employed, thus giving a simple relationship between the local
velocity components and corresponding pressure gradients. In cylindrical co-ordinates, with

angular terms neglected, Darcy’s law becomes

v, = -1 (1x Ay k,s—aPS) (3.4)
7 "X “ar
for the ECS, and
1 aP JdP
V, ==-=|1k,6 —L4+1 L, —L 3.5
L u(x x,L ax r L ar) ( )

for the lumen (1, and 1, are unit vectors in the axial and radial directions, respectively). The
principal components of the hydraulic conductivity tensor, k. and k,, are assumed to be
constant throughout each medium, although, in general, different in either direction.

Moreover, since the fibres are not directly connected with one another, the lumen flow is

essentially one-dimensional and k, ; can be set to zero, yielding

Vo= Lk Sk (3.6)

Section 3.4 discusses in more detail how the hydraulic conductivities are modelled.

Combination of Eqs. 3.1 with 3.4 and 3.2 with 3.6, with regard to Eq. 3.3, yields the

following set of coupled partial differential equations for P, (x,r) and Py(x,r):
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14 dP 9°P

- kr,S ;;(r 6:) - kx,S axf = LpAV(PL-PS+HS) (3-7)
9*P

K. ax; = LpAV(PL-PS+HS) (3-8)

For identical, straight fibres, the surface area per unit volume, 4, can be expressed as

2xR Ln 2R n
- A (.9)

4,

where 7 is the total number of fibres in the HFBR, R is the cartridge inner radius, L is the
reactor length (i.e. the ECS length) and R, is the fibre inner radius. The actual value of 4,
may be larger than that calculated from Eq. 3.9 because of fibre swelling in the liquid-filled
cartridge (Patkar et al., in press). The hollow fibres are reported to assume a wavy
appearance and have both their radial and axial dimensions increased by about 10%. Note
that the determination of L, should be based on the surface area Ay calculated from Eq. 3.9.
Tables 5.1 and 5.3 of Chapter 5 list the numerical values of all the parameters used in the

model.

3.3. Protein transport

Since the ECS is assumed to be the only region that contains protein, there is just one
differential equation describing the protein transport. It has the general form of Eq. 2.5, with
the sink/source term ¥ set to zero, as protein leakage, adsorption, denaturation, production,
and consumption are neglected. The equation can be derived from a protein mass balance

over the representative elementary volume. Figure 3.2 shows the enlarged REV cross-section
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Figure 3.2: The REV cross-section diagram for the convective-diffusion equation.

marked ABCD in Figure 3.1. The rate of protein accumulation in the REV must be balanced
by the net convective and diffusive fluxes through all the boundaries, according to the
following equation:
dc
g, w(r; -12)A X357 = (3.10)

[ J

~-
accumulation

a(uc) ac dc
w(rz-rl)[uc D, — . -7r(r22-r12) uc+Ax—W—Dx e Ax6x2
W Jace T & Yce ’
dc d(ve d a9’
+ 27 Ax|vce- D:')_ - 27, Ax vc+Ar—Lavr—)-Dr a—(:+Ara—rE
Sface b N7xe ?

Here, c is the average actual concentration in the REV (the mass of protein in the part of the
representative elementary volume available to the fluid), u is the superficial velocity at face W

and v is the superficial velocity at face S. D, and D, are the effective diffusivities of protein in
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the axial and radial directions, respectively. &; is the overall porosity of the HFBR, expressed

as follows:
s = Epes s;cs (3.11)

where 1= g, is the fraction of the reactor volume occupied by fibres (including their porous
membranes and lumina) and 1- g, is the fraction of the ECS occupied by cells. Thus, &
represents the fraction of the reactor volume available for the ECS fluid. In the absence of
cells, &5 = &,.;. In the present analysis, it is assumed that &, and &, (and hence also &)
are constants independent of time and position. A similar assumption has been made with
respect to D, and D,. Moreover, variation of the diffusivities with protein concentration has
been shown by Koska (1993a) to be insignificant for protein loadings below 100 kg/m® and,
therefore, has been neglected here. Section 3.4 will explain in more detail how the axial and
radial diffusivities are modelled. It should be noted that, in writing Eq. 3.10, &; has been
incorporated in the expressions for D, and D,.

Cancelling identical terms with opposite signs and dividing both sides of Eq. 3.10 by
x (2 - 1) Ax yields

2 2
83@=Dxac2_a(uc)+ 2 D,?—c-vc + 21, Draczz_a(vc) ‘
at ax dx L+, L+1, ar ar

Since Ar is assumed to be small, 1, =r, =r, which eventually leads to

‘t—:sE -8 Dx—a—c-uc +li rD,gg-rvc : (3.12)
at dx dx ror ar

The above second-order, time-dependent, convective-diffusion partial differential equation is

coupled with the pressure equations (3.7 and 3.8) through a relationship II (c) between
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osmotic pressure and concentration. In this work, bovine serum albumin (BSA) has been
chosen as a model protein. Its physical and chemical properties are well described in the
literature and the protein is relatively inexpensive for experimental study. The osmotic
pressure of BSA can be expressed using, for instance, the following formula obtained by

Vilker et al. (1981):

R, T

() = - (‘/(ch)2+(2m‘Mp)2 —2m, M, +c+4,¢ + 4, c3) (3.13)

14

where R, is the gas law constant, T is the absolute temperature, M, = 69 kg/mol is the
molecular weight of BSA, Z, is the protein charge number and m, is the molar salt

concentration. The virial coefficients 4, and 4, are functions of Z,. Refer to Table 5.1 for

the numerical values of the parameters used in this relationship.
The superficial velocities u and v in Eq. 3.12 are calculated from the ECS hydrostatic

pressure field obtained as a solution of Eqs. 3.7 and 3.8 at each time step, i.e.,

u=-Lg 9B (3.14)
poax
v = -lk,s Ik (3.15)
p T oor
The actual velocities, u” and v°, are related to u and v through &,:
. 1
u =—u (3.16)
8S
. 1
vV = —V. 3.17)
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3.4. Modelling of the ECS and lumen hydraulic conductivities and protein

effective diffusivities

Hydraulic conductivities in the lumen and cell-free ECS

A simple one-dimensional analysis of the laminar Krogh cylinder flow (Kelsey et al.,
1990; Taylor et al., 1994) provides the following expressions for the radially-averaged actual

axial velocities in the lumen and cell-free ECS:

— 1 ,dP
= -— R L 3.18
Uy SMRL dx (3.18)
or = o L (AR IE/R) g, pa ) 4B (3.19)
8u R;-R,, dx

where R, is the inner fibre radius, R,, is the outer fibre radius, R; is the Krogh cylinder radius
and P, and P, are the lumen and ECS pressures (assumed radially constant). It should be
pointed out that R is calculated based on the assumption that the sum of all Krogh cylinder

where n is the number of fibres and R is the cartridge radius. If the actual velocities EZ and
u_s‘ are converted into superficial velocities, u; and ug, Eqs. 3.18 and 3.19 will essentially be
expressions of Darcy's law and will yield the Darcy permeabilities for the lumen and for the
ECS. The conversion is performed in an analogous way as in Eq. 3.16 and requires

knowledge of the lumen and ECS porosities:
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g, = R/R: (3.21)
&g = €gs = 1-R%/RE. (3.22)
This leads to
— 1 R} dP,
u, = 3. R dx (3.23)
_ 2
oy = - f1-fu 4Rs 1?(RSZRM)-3R§ i | 9B (3.24)
8u R; R; -R,, dx

which eventually yields the following expressions for the Darcy permeabilities in the axial

direction:

k., = lg’; (3.25)
> 8 RS
2
k.o = Ej‘i(—lntp-3+2¢-l¢2) (3.26)
i 7 2 2

where ¢ =1-&.; = R2,/R? is the fraction of the reactor volume occupied by the fibres. It is
worth noting that Eq. 3.26 is identical with the prediction of Happel (1959), who used a
cylindrical cell model to investigate laminar flow parallel to an array of cylinders.

In the absence of cells, the flow in the extracapillary space is analogous to parallel or
transverse flow through a bank of cylinders. Examples of systems having a similar geometry,
which have been investigated using both experimental and theoretical methods, include tubular
heat exchangers (Sangani & Acrivos, 1982a; Hwang & Yao, 1986) and fibrous porous filters
(Spielman & Goren, 1968; Harrop & Stenhouse, 1969; Ethier, 1991). The dimensionless

Darcy permeabilities (or hydraulic conductivities), k/ R, , which can be found in the literature
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for flow parallel or perpendicular to an assemblage of parallel cylinders, are summarized in
Table 3.1. To allow comparison between different authors' predictions, some values of k_
and k, ; have been calculated for R,, =10"*m and ¢ = 0.5 and are included in the Table.

It should be stressed that an analysis based on the Krogh cylinder approximation cannot
provide an estimate of the ECS permeability in the radial direction. In this case, one of the
expressions from Table 3.1 can be employed in the model (although, sorﬁe of the values listed
differ significantly and the choice of %, ; is rather arbitrary). Here, the simple cell-model
equations due to Happel (1959) were used to calculate the ECS hydraulic conductivities in

both directions.

Protein diffusivities

A similar difficulty arises when specifying the ECS effective protein diffusivities, D, and
D,, which are different from the diffusivity D in a fluid unobstructed by the presence of fibres
or cells. Using again the analogy to an array of parallel cylinders, Neale (1977) obtained the

following relationships for these effective diffusivities:

D, = Dég = D(1-¢) (3.27)
g 1-¢

D, =D—"— =D—. 3.28

" 2-&ps I+¢ (3.28)

Cell-packed ECS

In this case, the hydraulic conductivities cannot be obtained from the equations listed in

Table 3.1 by simply including the &, factor. The reason is that the flow in the cell-packed

ECS is no longer analogous to that through an assemblage of cylinders (fibres) and should
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Table 3.1: Theoretical expressions for the dimensionless Darcy constant k/RZ, as a function
of the solid fraction ¢ for a flow through an array of parallel cylinders (R,, is the
cylinder radius); & values are calculated for ¢=0.5and R, =10"*m.

a. Flow parallel to the cylinders

-0.051¢*/(1+1.5198¢*))

(square array)

Authors Expression for k, 5 /R}, Value of %, g
H 1 (1959
.appe ( ) kx,S __L —1 -3+2 __1_ 2 3.4-10—‘10m2
Eisenberg & R 4 o=y rep=, @
Grodzinsky (1988)
Kelsey et al. (1990)
Taylor et al. (1994)
_{‘i_i v ks Jo(RM/\/kx,s )
Spielman & Goren, | R2 ™2, R, TR, / /kx,s )
(1968) J (x) is Bessel function of order p and
P P
argument x
kx,S 1 1 35:10 —10 2
Drummond & o -In¢ -14975 +2¢-5¢2 +... - m
Tahir (1984) | *» ¢
(equilateral triangular array)
bis 1 [ 1np-14763+20-1 7 45:107° m’
R, 4o L ¥ 2 ¢
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Table 3.1 - cont.

b. Flow perpendicular to the cylinders

R 8¢

+4.076 o> +...)
(square array)

Authors Expression for , ; /Ry, Value of £, ¢
ks 1 -1 23-10™"m?
Happel (1959 S | elno+¥ :
ppel (1959) 3 8<p[ net
Kuwabara (1959) ks _ 1 In 342 48-107" m”
R 8| ¥
ks tr 1 VEes JO(RM/'\/kr,S)
Spielman & Goren, | R}, |4¢ 2]| R, J,(R, / Jk.s)
1968
( ) J,(x) is Bessel function of order p and
argument X
. . k,,s 1 1 2 20'10—10 m2
Sangani & Acrivos, I —1ng0—1.49+2§0—5¢ +. .
(1982a) | *# °¥
(equilateral triangular array)
v 1 10=10 .2
S o (~Ing-1476 +2¢ - 17740> 71-107"'m
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Table 3.1b - cont.

G is a function of porosity, viscosity, dielectric
permittivity, surface charge, bulk fluid
conductivity, double layer thickness, counter
ion mobility, potential difference across double
layer

Authors Expression for , ; /R, Value of %,
kr 1 210710 (a2
Drummond & R-zs =8L - 1n¢ ~14975 + 2¢ - E¢2 0.6-10 m
Tahir (1984) | " °¢ .
-0.7391¢* +..)
(equilateral triangular array)
s =L (cinp-14763 42107 m*
R, 8¢ ’
+(2¢ - 0.7959¢) /(1+0.4892 - 1.6049¢%))
(square array)
Eisenberg & k'_s 1 [ - ot -1
Grodzinsky (1988) | RZ, ~ 8¢ G ¢ ot +1
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rather be modelled as a flow through a bed of densely packed spheres (cells). This implies
that the conductivities and diffusivities in both directions become essentially equal, as in an
isotropic medium. Although the maximum packing density of rigid spheres is 74% (i.e., 26%
porosity, Bear, 1972), cells are deformable and hence can be packed to higher densities. Here,
it will be assumed that effective diffusivities and Darcy permeabilities of packed beds of
compressible cells can be described, by extrapolation, using relationships for a bed of spheres
having the same diameter as the cells.

Since neither the effective diffusivity, D°, nor the hydraulic conductivity, £°*, nor the
cell-packed ECS porosity, €., have been determined experimentally for an HFBR packed
with mammalian cells, it would be convenient if both D°* and %° could be expressed as
functions of &;.; (or &). Then, only the latter parameter (rather than all three of them)
would require estimation.

Accordingly, the Carman-Kozeny equation (Carman, 1937; Kozeny, 1953) can be used

to express k° in terms of the cell-packed ECS porosity, i.e.,

. (85cs)’

) 5 [Ax: (1 - 8;acs)]2

(3.29)

where 4, is the porous medium surface-area-to-volume ratio. Assuming that the cells are
spheres with a 12 um radius, we obtain from Eq. 3.29 the values of £°=103-10"" m? and
k*=4.43-107"° m? for £,=26% and 5%, respectively.

An estimate for £° has been provided by Koska (1993a) who measured the hydraulic
conductivity of an agarose gel that simulated the cell-packed environment. A range of
09-107"° —20-10 7' m* was obtained, depending on the gel concentration and on the
presence of additives (BSA). The hydraulic conductivities of natural cell aggregates of
Escherichia coli packed in the ECS of hollow-fibre bioreactors were measured by Libicki et

al. (1988) who obtained an approximate range of 4:107"> — 3:10™"' m? (depending on the
P g
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cell volume fraction). These estimates are several orders of magnitude higher than the values
calculated using either the theory developed by Sangani and Acrivos (1982b) or Eq. 3.29.
The former theory yields a range of 2:10™° — 410> m?, corresponding to e}, = 0.70 —
0;08; whereas Eq. 3.29 yields a range of 2.7-107"® — 2.6:107" m?, corresponding to the
same &,.; range as in Libicki et al. (1988), i.e., 0.88 — 0.075. Other relevant estimates of
Darcy permeabilities are available for bacteria in filter cakes (10 ™ — 10 ™' m?, Humphrey et
al., 1985), packed beds of red cells (7-107"° — 3-107"* m?, Zydney et al., 1986) as well as
subcutaneous and hepatocarcinoma rat tissues (Swabb et al., 1974) or rabbit omentum tissue
(Apelblat et al., 1974), both of which generally fall below 10 ™** m?.

The effective diffusivity, D°, can be calculated from the formula derived for a bed of
spheres by Neale and Nader (1973) modified by the &, factor accounting for the presence of
fibres:

O
2 SECS

D* = Deégy (3.30)

3-E5cs
Both Eqgs. 3.29 and 3.30 were assumed to be valid for deformable spheres, i.e., for packing

densities larger than the maximum for rigid spheres.

3.5. Boundary conditions

In general, in order to find a solution of a given differential equation, it is necessary to
specify one boundary condition per independent variable per equation order with respect to
that variable. Thus, for the ECS pressure equation (Eq. 3.7), which is of second order with
respect to x and of second order with respect to r, four boundary conditions will be needed.

Similarly, for the lumen pressure equation (Eq. 3.8), two boundary conditions at two x-
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positions are necessary. The parabolic protein transport equation (Eq. 3.12) requires five
boundary conditions: four in the spatial domain plus one initial condition in the time domain.
Altogether, we shall need 11 boundary conditions for our system of equations. It should be
pointed out that, in the open-shell cases, at r=R, we will have at least one extra region with
different boundary conditions for x<x,, and/or x> L -x, (corresponding to the upstream and
downstream ECS manifolds, respectively) than for x, <x<L-x_ (see Figure 3.3). For

example, instead of the no-radial-flux condition at r=R, as exists for closed-shell operation,

we may have a specified inlet flux or a known pressure at the ECS upstream port, i.e. for

x<Xx,,.
ECS UPSTREAM PORT ECS DOWNSTREAM PORT
o r=R
LUMEN SPATIAL DOMAIN LUMEN
INLET - o OUTLET
I R 150 ] R a1
x=0 X=Xm X=L"xn X=L

Figure 3.3: Diagram of the spatial domain boundaries in the Porous Medium Model.

Table 3.2 summarizes the boundary conditions common to all flow configurations. The
initial concentration field c,(x,r) can be assumed constant (e.g. after inoculation) or taken as
an intermediate solution of another problem. Zero-flux conditions occur in the ECS at x=0
and at x=L (i.e, dP;/dx=0 and dc/dx=0), as well as at r=R for x,<x<L-x, (ie,
dP,/0r=0 and dc/dr=0). In addition, there is symmetry of ECS pressure and

concentration about the centre-line (i.e., 3P;/dr=0 and dc/dr =0 at r=0).
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Table 3.2: Boundary conditions common to all flow configurations.

# X r Condition Meaning
1 any any at t=0: initial condition
c=cy(x,1)
2 0 any | 9P;/9x=0 no axial fluid flux
3 0 any | dc/dx=0 no axial protein flux
4 L any | 9PF/o0x=0 no axial fluid flux
5 L any | 9c/dx=0 no axial protein flux
6 any 0 dP/dr=0 symmetry about the centre line
7 any 0 dc/dr=0 symmetry about the centre line
8| x,<x<L-x,| R 0P /dr=0 no radial fluid flux
9| x,<x<L-x,| R dc/or=0 no radial protein flux

The remaining boundary conditions depend on the combination of open or closed lumen
and ECS inlets and outlets. Also, in the case of the pressure equations, it is possible to
specify either a known pressure or a known flow rate (and hence velocity) at the inlet or
outlet. These two options correspond to the Dirichlet (specified value) or Neumann (specified
derivative) type of boundary conditions. At least one Dirichlet-type condition is needed to set

the reference pressure level. In this work, the known-pressure rather than known-flow-rate
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(or pressure derivative) boundary conditions were applied whenever possible, in order to
improve the convergence rate of the pressure solutions.

In the case of the transport equation, a known concentration can be specified at the ECS
upstream port, if open, such as during inoculation. However, the outlet concentration must be
calculated from the ECS concentration field, as it cannot be specified a priori. This means a
zero-derivative boundary condition must be specified at the ECS downstream port, if open,
such as during harvesting.

Since the ECS manifolds are fibre-free regions with virtually no resistance to the flow, it
has been assumed here that, in an open-shell case, the relevant pressure or pressure derivative
boundary condition at r=R is constant over the manifold length, i.e. for 0<x<x, or
L-x,<x<L. The same assumption has been made with respect to concentration. For
similar reasons, pressure and concentration are assumed to be constant in the ECS manifold at
all tangential positions measured from the ECS port. Thus, even for open-shell operation, the
axial symmetry of the reactor is preserved.

Table 3.3 gives the remaining boundary conditions not listed in Table 3.2. The
combination corresponding to a specific mode of operation can be found without much
difficulty. For instance, the closed-shell mode corresponds to the open lumen inlet and outlet
with both ECS ports closed; the inoculation phase requires that the ECS upstream port be
open and the downstream one closed, while both lumen inlet and outlet are open; etc. The
known inlet and outlet lumen pressures or velocities can, in general, be functions of radial
position. It should be pointed out that, since the first-order Darcy's law has been employed in
the Porous Medium Model, the no-slip condition at the reactor walls is not specified. The
extra boundary condition(s) could be incorporated if a higher-order equation (e.g., Brinkman

equation) had been used for the ECS.
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Table 3.3: Boundary conditions specific for different flow configurations.

port closed

# | Configuration X r | Condition Comment

la ﬁl;:zn inlet 0 any P =h, known pressure

1b l:;::n inlet 0 any % = - ]::—,L u;, | known inlet velocity
lc 2;21:; inlet 0 any % =0 no axial fluid flux

2a ?;::n outlet L any B =Py known pressure

2b 1:;2:“ outlet L any %I;—L =- %L .~ | known outlet velocity
2¢ L‘;:"e’; outlet L any 11:; =0 no axial fluid flux

3a i:: :If:;ream 0<x<x, | R |B=Fu, known pressure

3b if: :;’::eam 0<x<x, | R % =- kLs Vew | known inlet velocity
3c ECS upstream 0<x<x, | R %i: =0 no radial fluid flux

34



Chapter 3: Development of the Porous Medium Model

Table 3.3 - cont.

35

# | Configuration X Condition Comment
ECS upst
4a upstream 0<x<x, c=c, known inlet concentration
port open
EC t dc
4b $ upstream 0<x<x, —=0 no radial protein flux
port closed or
Sa ECS downstream L-x, <x<L b =F. known pressure
port open *
aP,
sp |ECS downstream |7 <1 s oo By . | known outlet velocity
port open ar k.s
aP,
5¢ ECS downstream L-x, <x<L —2=0 no radial fluid flux
port closed ar
6a ECS downstream L-x,<x<L dc _ radially-constant outlet
port open ar concentration
dc
6b ECS downstream L-x,<x<L = no radial protein flux
port closed ar
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Chapter 4: NUMERICAL TECHNIQUES

4.1. Solution of the pressure equations

The two simultaneous second-order elliptic partial differential equations for pressures

were introduced in Chapter 3. They have the following forms:

10| dP a*P.
—kr,S;_a—;[rars]_ kx,S ax2s = LpAV(PL—PS+HS) (37)
9P,
kx.L 3 x2 = Lp 4, (P, - Py + IL) (3.8)

where II (c) is a known function of protein concentration (e.g., Eq. 3.13). In this study, the
concentration field needed for the evaluation of II (c) is taken from the previous time step,
although an iterative scheme simultaneously updating P;, P,, and c (and hence II(c)) at the
same time level is also possible (see Section 4.3).

The finite difference approach was employed to solve the above equations. To ensure
fluid mass conservation, the equations were discretized by integration over a control volume,
according to the scheme recommended by Patankar (1980). The control volume here is
equivalent to the representative elementary volume (REV), the concept introduced in Section
3.1 of the previous chapter. A uniform grid (i.e., constant Ax and Ar) was used throughout
the computations. Figure 4.1 displays the cluster of 5 adjacent cells (control volumes) that
contribute to the finite difference formulation for the central cell (i,j). If the centre cell is

adjacent to a boundary, the cluster consists of 4 cells, and in the case of a corner control
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Figure 4.1: Cluster of control volumes contributing to the finite difference equations for
a point (i,j) in the interior of the domain. Note: the lumen pressure equation
has contributions from three cells only (constant j).

volume, of only 3 cells. No fictitious points were explicitly used in the computations. The
boundary pressure values, unless given through boundary conditions, were calculated by
extrapolation from the interior of the domain assuming constant curvature of pressure profiles
near the boundaries. If a zero-derivative condition occurred, a constant curvature of pressure
or concentration profile near the boundary was assumed and the values of P or c at the point
closest to the boundary and at its fictitious equivalent located symmetrically on the other side
of the boundary were assumed equal.

To avoid certain numerical difficulties (described, for instance, by Patankar, 1980), a
staggered grid was used, with the velocity grid points located half-way between the pressure

grid points. Thus, the radial velocity grid points were on the S and N faces, while the axial
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velocity points were on the W and E faces. The program can output the velocity values either
located on the faces or interpolated to the cell centres.
In the derivation of the discretization equations, it was assumed that:
(a) rdP,/dr is constant over Ax (which implies a locally logarithmic radial profile of P);
(b) aP,/dx and 9P, /dx are constant over Ar;
(c) (P, —P5 +II,) is constant over Ar;
(d) (P, —P,) changes linearly over Ax;
(e) II; is constant over Ax.

With the above assumptions, it was possible to obtain a coefficient matrix in the
tridiagonal form for each spatial dimension (x and r). For example, the equation for the (i,j)
point included the neighbouring unknown pressure values in the axial direction,
(i-1,j) and (i+1,j), and in the radial direction, (i,j-1) and (i,j+1) (see Figure 4.1). Consequently,
five diagonals were filled in the coefficient matrix. The equations for P, could maintain their
tridiagonal form because of the lack of a radial derivative term. However, it should be kept in
mind that the lumen pressure would not, in general, be radially constant; rather, P, would vary
with radial position through the source term on the right-hand side of Eq. 3.8 and possibly
also because of the lumen boundary conditions.

The solution of the resulting sparse system of linear equations is theoretically feasible
using the standard elimination or decomposition methods. However, these direct approaches
would be extremely inefficient with large numbers of grid points as well as being prone to
substantial round-off accumulations. In the one-dimensional Krogh Cylinder Model (KCM)
used in this (see Chapter 5) and a previous study (Taylor et al., 1994), several hundreds of
grid points were often necessary to achieve the desired level of accuracy. To avoid handling
enormous matrices in an attempt to obtain the solution directly, the iterative line-by-line over-
relaxation method was used in this work (Anderson et al., 1984). In this technique, two of the

neighbouring unknown values, either (i,j-1) and (1,j+1) or (i-1,j) and (i+1,j), are taken from the
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previous iteration, thus making it possible to obtain a simple tridiagonal system of equations.
Such a system is solved as many times as there are rows, i.e., K (j = 1,..,K), or columns, i.e,
N (i = 1,.,N), which then completes one iteration cycle. The procedure is repeated until the
solution no longer changes. In the case of P;, either K equations were solved N times
(sweeping over columns) or N equations were solved K times (sweeping over rows), while
with P, only the latter possibility existed.

A variety of options are available in the program to perform the line-by-line over-

relaxation in an optimum way. Over-relaxation parameters, o and o, were used to

accelerate the convergence, according to the following formulae:

P = o B+ (1-ag)P" 4.1
Pl = o P+ (1- aL)PL‘-Ti;‘ 4.2)

where IT is the iteration counter and 1<ag,o; <2. Furthermore, it was possible to choose
the direction of sweep (over ascending or descending row/column index), the mode of
sweeping (over rows, or columns, or alternately in both directions) and to either stop iterating
the pressure that has converged first or carry on the iteration loop until both Py and P, have

converged.

Convergence was assumed to be attained when the following condition was satisfied:

max |Pf" - P'~'| <EPS (4.3)
ij

where EPS, the convergence criterion, was set to a level that ensured a satisfactory mass
balance of the fluid (typically, 10°® Pa for Py and 10° Pa for P,). The function max()

represents the maximum value of all i- and j-indexed arguments, i.e., in this case, the
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maximum absolute value of the difference between the local pressures in the previous and

current iterations.

4.2, Solution of the convective-diffusion equation

The parabolic second-order partial differential equation for concentration,

8s% = %(ng—)%-uc)+%§—r—(r&g—:-rvc) (3.12)
was solved using the well known Alternate Direction Implicit (ADI) method (e.g., Lapidus &
Pinder, 1982; Anderson et al.,, 1984). As in the case of the pressure equations, integration
over a representative control volume was performed to ensure protein mass conservation.
The concentration grid points were located in the cell centres (Figure 4.1). The boundary
values were either given explicitly through boundary conditions or extrapolated from the
interior points by assuming constant curvature of the concentration profiles near the boundary
(for a given row/column) with derivative boundary conditions taken into account, if necessary.
In both axial and radial directions, Patankar’s power-law scheme (Patankar, 1980) was
employed to express the concentration at each face common to two adjacent cells in terms of
the concentrations in the centres of these cells. By including the effect of the Peclet number,
the scheme offers an efficient way of dealing with a wide spectrum of protein transport
conditions, ranging from purely diffusive to purely convective transport. The basic formulae
of this technique are presented in Appendix C.

One difficulty inherent in the ADI method is that it is not conservative. The reason for
this is that some of the unknowns in the discretization equations are represented by values

taken from the previous time instant. According to the standard ADI procedure, the two-
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dimensional parabolic equation is solved just twice at each time level (one sweep over rows
and one over columns) rather than iterated as in the line-by-line over-relaxation method. The
result is a numerically-originated mass imbalance that is dependent on how much the local
concentration values have changed over the last time increment (At).

There are two remedies for this adverse condition. First, At could be kept small enough
to ensure that the local concentration changes would never exceed a desired level. Secondly,
the standard ADI scheme might be extended by subsequently neglecting of the transient term
(dc/at) and solving the resulting elliptic equation using iterative line-by-line over-relaxation,
which would finally yield a converged concentration solution at the given time instant.
Alternatively, the line-by-line over-relaxation might be applied simultaneously to the pressure
and concentration equations (see also the following section). In this work, the problem of the
ADI method being non-conservative was handled by monitoring the protein mass balance and
choosing a sufficiently small time step, At.

The criterion for reaching the steady-state concentration distribution is analogous to Eq.
43 ie,

IT_ Tl
i | <EPSC (4.4)

ij

where EPSC was usually set equal to 10 kg/(m>s).

4.3. General computational algorithm

The block diagram of the general computational algorithm employed in this study is
depicted in Figure 4.2, with the pressure iteration block having the form shown in Figure 4.3.

ACCEF, or acceleration factor, is a factor by which the current time step size is multiplied in
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l
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Figure 4.2: Block diagram of the general computational algorithm used in this study.
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/ START /
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Solve for R
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Converged
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Figure 4.3: The form of the pressure iteration block used in this study.
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/ START /

Solve for R

/ START /

Converged

R ?
Solve for P
1
YES Solve for R
Solve for R

Converged
R and R ?

Converged
R ?

Figure 4.4: Examples of the pressure iteration block algorithm (not used in this study):
a) with the lumen pressure lagged behind the ECS pressure, b) with the
lumen and ECS pressures iterated until both converge.

order to reduce computational times, particularly when seeking new steady-state solutions
where the changes in concentration with time must obviously become very slow. Examples of
other forms of the pressure iteration block are shown in Figure 4.4.

The algorithm displayed in Figure 4.2 assumes that the flow change over the time scale At
is so small that the pressure solutions can be lagged behind the concentration solution.
Alternatively, the convective-diffusion equation could be iteratively solved together with the

pressure equations (Figure 4.5). However, that results in considerably longer program

execution times.
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Figure 4.5: General algorithm with fully coupled concentration and pressure equations.
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In most cases tested, the convergence was extremely slow. This was probably
attributable to the fact that the ECS velocities were usually very small because of the low
permeability of ultrafiltration membranes and, in the case of the cell-packed system, the low
hydraulic conductivity of the ECS. This was particularly problematic in the case of closed-
shell operations where the ECS hydrodynamic pressure was almost constant everywhere and
only weakly linked to the known pressure on the lumen side. Thus, the optimization of certain
numerical parameters in the program became essential. Prior to each run, optimum values of
the over-relaxation parameters, a5 and o, were found. Any change in the program (e.g., in
the number of grid points, membrane permeability, boundary conditions, etc.) unfortunately
results in a change in the optimum values of o5 and ¢,. Also, the EPS values (convergence
criteria) for pressures were specified cautiously to avoid excessively strict accuracy

requirements that would slow down program execution.
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Chapter 5: TESTING AND APPLICATION OF THE POROUS MEDIUM MODEL

5.1. Closed-shell operation: one-dimensional case

In the case of a closed-shell operation, flows enter and leave the reactor only on the
lumen side. If the upstream and downstream lumen manifold pressures are radially invariant,
then it is expected that, over the multi-fibre averaging volume (REV) upon which the Porous
Medium Model is based, flows in both the lumen and extracapillary spaces will be one-
dimensional in the x-direction. Thus, if the radial derivative terms are neglected and 4, is

calculated from Eq. 3.9, the PMM equations (Egs. 3.7, 3.8 and 3.12) for a cell-free HFBR

reduce to
B LT g ) .1
b, S0 S 2 @ b ey (52)
and
e % =D, g;—f - aguxc), (5.3)

respectively. It is proven below that, under these circumstances and with £, ; and %, ; given
by the same expressions as were used in the Krogh Cylinder Model, the governing equations
for the one-dimensional PMM become essentially identical with those derived for the one-

dimensional KCM (see also Appendix A).
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Substituting for &, , (Eq. 3.25), &, s (Eq. 3.26) and R* =n R} (Eq. 3.20) in Eqgs. 5.1 and
5.2 leads to

d* P, 16R L, -
d x? -4R§10(RS/RM)+4R§R§4 —3R! -R, @, - P +11;)

d*Pp 8R:2 2R L
dsz - R4s 1;2 £ (PL 'Ps +Hs)
L S

and eventually yields

d’ P 161, 1

d x? == Rzp ;(PL . +11) (5.4)
d’p 16 L
d x; = Rzp (PL -P +Hs) (5-5)

where v is defined by Eq. A.7. Equations 5.4 and 5.5 are identical with Eqs. A.2 and A1,
respectively, derived by Kelsey et al. (1990) using the Krogh cylinder approximation and a
cell-free ECS (&,.s = 1), except for the osmotic pressure term included here because of the
coupling of the hydrodynamics with the ECS protein concentration. One-dimensional
equations for the ECS and lumen pressures having the same form as Eqgs. 5.4 and 5.5 were

also obtained by Koska (1993a) (Eqs. A.44 and A .34, respectively), who applied the Krogh
cylinder assumption to a cell-packed ECS (i.e., £505 < 1).
Dividing both sides of Eq. 5.3 by &; yields

*c  d(@u’c)
ax>  dx (5.6)

dc
at_D

where D =D, /e, and u’ is the local actual ECS velocity in the axial direction. Equation 5.6

is identical to Eq. A.32, derived by Patkar et al. (in press), or Eq. A.45, obtained by Koska
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(1993a) (with K, = K;= 1 and D independent of axial position), by radially averaging the two-
dimensional Krogh cylinder models for the cell-free and cell-packed cases, respectively. It
should be noted that, under cell-packed conditions, the values of some of the constants in Egs.
5.4, 5.5 and 5.6 (e.g., the ECS hydraulic conductivity and protein diffusivity) are different
than in the cell-free case.

To help verify the correctness of the numerical code developed for the Porous Medium
Model, one-dimensional solutions generated by the PMM with 3 radial increments were
compared with those obtained from the equations derived above for the closed-shell case. To
that end, the ordinary differential equations (5.4 and 5.5) as well as the parabolic partial
differential equation (5.6) were solved using Keller’s box method (e.g., Anderson et al., 1984)
with some modifications to improve the rate of convergence. The important parameters used
in the two test cases described below are listed in Table 5.1.

The transient changes in ECS protein concentration as a function of axial position in an
Amicon HFBR were monitored until a steady-state polarization was achieved. At each time
instant, the local concentration values obtained by both one-dimensional models were identical
within the desired accuracy (102 kg/m®). The time at which steady state is attained depends
on the convergence criterion which was less stringent in the PMM case (because of longer
program execution times). The initial concentration, ¢y, was assumed uniform over the length
of the reactor. After approximately two hours of real time operation, the axial concentration
profile remained unchanged and was indistinguishable from that representing steady state.
The family of curves shown in Figure 5.1 illustrates the progression of downstream
polarization of protein under predominantly convective transport conditions (Piret & Cooney,
1990a). At steady state, the osmotic pressure exerted by the bulk of the protein accumulated
downstream is so high that the total ECS pressure (Ps — Ils) counteracts the pressure on the
lumen side. Consequently, no fluid is exchanged between the ECS and fibre lumina and, as a

result, the flow is completely shut down in this part of the ECS.
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Table 5.1: Parameters used in the comparative study of the PMM and KCM (Amicon HFBR).

R =11-10"m lumen radius
| R,=19:10""m outer fibre radius
R,=27-10"m Krogh cylinder radius
L=02m HFBR length
L,=125-10""m membrane permeability
n = 5000 number of fibres
p=695-10""*kg/m/s viscosity of water at 37°C (310 K)
co= 10 kg/m’ initial concentration
AP, =4572.2Pa lumen pressure drop over the length L

(corresponding to the radially-averaged lumen inlet velocity u_Lf;= 0.05 m/s)

T'=310K absolute temperature

m, =150 mol/m* parameters in the relationship between
,=-204 osmotic pressure and concentration

M, =69 kg/mol (Eq. 3.13)

4,=-562510"*~241-107* Z, -3.664-10 —° Z} = - 0.0108942
A;=295-10"° -1.051-10° Z, +1.762-10 " Z} = 0.0001243

D=10"" m%s diffusivity, case 1
D=10"*-10""m%s diffusivity, case 2
k.r=2.510-10"" m? axial permeabilities in the lumen

ks =1.286-10° m® and ECS (from Egs. 3.25 and 3.26)
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Figure 5.1: Radially-averaged protein concentration in the ECS as a function of axial
position and time.

Another comparative study between the one-dimensional PMM and KCM was carried
out for different hypothetical diffusivities (D) of the ECS protein. D was varied from 10™
m?/s to 10™"° m?/s (although protein diffusivities greater than 5-10™ m?s are not realistic),
corresponding to a transition from a diffusion-dominated regime to a convection-dominated
regime. Both models produced exactly the same steady-state concentration curves, shown in
Figure 5.2. The observed differences in the maximum slope of these profiles are due to the
different relative strengths of convection and diffusion in each case. For instance, at D = 10"

m?/s, a very steep concentration gradient (at x ~ 16 cm) must develop at steady state in order
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that the diffusive transfer can locally balance the convective transport of the ECS protein.
Table 5.2 summarizes the convergence properties of the two models for this test case. As can
be seen from the table, the time needed to reach steady state increased dramatically when the
protein diffusivity was decreased and convective transport became dominant.
decreases in D (below 10°® m%s) produced no significant changes in the time needed to
achieve steady state. It should be noted that, in the case of very low diffusivities, it was

necessary to use more axial grid points than usually because of the steep concentration

gradients obtained under convection-dominant transport of protein.
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Figure 5.2: Steady-state protein concentration profiles for different hypothetical

diffusivities.

Further
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Table 5.2: Summary of the steady-state runs with different hypothetical diffusivities
for the PMM and KCM (Amicon HFBR).
Number of grid Initial time | Time acceleration Time to steady
D (m?%s) points step (s) factor, ACCF state
PMM | KCM |PMM & KCM | PMM & KCM PMM KCM
10* 9x500| 500 1.0 1.001672 T7min17s | Smin36s
107 9x500} 500 1.0 1 1h37min | 1 h07 min
10 9x500] 500 1.0 1.001672 5h 07 min | 3 h 08 min
107 9x500| 500 1.0 1.001672 4h02min | 2h 13 min
108 3x900| 900 1.0 1.001672 3h39min | 2h29 min
107 3x900] 900 1.0 1.001672 3123 min | 2h 57 min

The aim of the study outlined in this section has been to demonstrate that the Porous

Medium Model will give correct predictions for one-dimensional closed-shell operations, both

in the convective and diffusive regimes. Perhaps of greater significance is the fact that, in the

absence of the macroscopic radial gradients, the PMM actually reduces to the one-dimensional

Krogh Cylinder Model, which has already been shown (Patkar et al., in press) to yield

excellent agreement with experimental results for both transient and steady-state closed-shell

HFBR operations. The following sections of Chapter 5 describe further studies aimed at

testing the model in two-dimensional situations imposed either by allowing a radial pressure

variation in the lumen manifolds (Section 5.2) or by opening one or both of the ECS ports

(Sections 5.3 — 5.6).
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5.2. Closed-shell operation: two-dimensional case with inlet and outlet radial

lumen pressure gradients

In their hydrodynamic study of hollow-fibre devices operated in the closed-shell mode,
Park and Chang (1986) found that, under some circumstances, significant negative and
positive radial gradients of hydrostatic pressure could develop in the upstream and
downstream lumen manifolds, respectively. These lumen manifold pressure variations led to
non-uniformities in flow through the fibre lumina. Although laboratory measurements by
Koska (1993a) and Patkar et al. (in press) demonstrated that these effects were negligible for
the Amicon and Gambro modules they investigated, artificially imposed radial lumen pressure
gradients at the inlet and outlet of an HFBR can produce two-dimensional variations of the
fluid flow and protein concentration fields in the ECS and thus provide an interesting case
study to further test the Porous Medium Model.

Accordingly, Dirichlet-type boundary conditions for the lumen pressure at x = 0 and

x = L were specified as follows:

Pro(t)y=4P, (1 -0.51/R) (5.72)
PL,N (I') = APL - 0.5 I'/R (57b)

where AP, = 4572.2 Pa is the axial lumen pressure drop along the centre-line of the HFBR
cartridge (and is the same value as was used in the one-dimensional case discussed in Section
5.1). Equations 5.7 imply that there is no axial lumen pressure drop at the cartridge wall
(r = R) and that the lumen pressure drop over the cartridge radius at either manifold equals
half of that along the centre-line over the length L, i.e., 2286.1 Pa. This strong radial variation
of both P, and Py y is not likely to occur in any real operation involving hollow-fibre devices,
but it was purposefully imposed in order to magnify the resulting two-dimensional effects.

The parameters used in this study are once again those listed in Table 5.1 (Amicon HFBR),
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except for the L, value which was increased from 1.25-10™ m to 5-10"" m in order to enhance
the ECS flow and thus improve the rate of numerical convergence. The cartridge radius, R,
corresponding to the Krogh cylinder radius given in Table 5.1 equals 0.0191 m (see Eq. 3.20).
The ECS hydraulic conductivity in the radial direction, ks, was calculated from Happel’s
formula (see Table 3.1b) and had the value of 0.8808-10° m?, which is of the same order as
the ks value in Table 5.1. A protein diffusivity of 10" m%/s was used and the initially uniform
ECS protein concentrations, co, of 10 and 20 kg/m® were chosen. The main purpose of the
study was to investigate the steady-state ECS and lumen hydrodynamics and the ECS protein
concentration field in the presence of strong radial gradients.

In the absence of protein, as expected, the lumen and ECS flow fields display a fore-and-
aft symmetry (the two-dimensional distributions of the lumen and ECS velocity components
are symmetric about the half-length of the reactor). The radial velocities in the ECS are
positive in the upstream half and negative in the downstream half of the HFBR, i.e., the ECS
fluid travels radially outward in the former region and towards the centre-line in the latter.
The ratio of magnitudes of the local axial-to-radial ECS velocity components is close to 10,
which, approximately, equals the reciprocal aspect ratio of the HFBR, L/R. An important
consequence of the imposition of radial pressure gradients is a decrease in the average
magnitude of the ECS axial velocity (by a factor of 3, compared to the situation where no
radial gradients are present) and, hence, in the magnitude of the ECS convective flow.

Figure 5.3 shows how the steady-state distribution of the ECS protein is affected by
radial pressure gradients in the lumen manifolds (all the concentration distributions shown
here were obtained using the same two-dimensional code; Figures 5.3a and 5.3c were
produced with AP, = 4572.2 Pa, but with no lumen manifold radial pressure gradients). In the
transient phase, protein accumulation generally follows the direction of the ECS flow until, at

steady state, the total ECS pressures (Ps — Ils) locally balance the lumen pressures and the
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protein distribution becomes a consequence of the distribution of pressure on the lumen side.
If radial pressure gradients are imposed, the protein is distributed over a larger portion of the
ECS volume than when only axial éradients exist, reflecting the much smaller range of lumen
pressures that must be countered in the peripheral region of the reactor. Thus, in this case,
the flow is practically shut down over a larger portion of the extracapillary space.

In each of the four cases displayed in Figure 5.3, once steady state is reached, the ECS
fluid flow is essentially restricted to the protein-free upstream region. The maxima of the axial
and radial velocity components are located, approximately, at half of the maximum axial and
radial positions of this region’s boundaries, respectively. The smaller the region, the less fluid
passes through the ECS.

The time needed to reach steady state varied from about 5 h (Figure 5.3c) to about 7 h
(Figure 5.3b). In general, the transient phase was somewhat longer if radial gradients were
present or if the total amount of ECS protein was lower. Increasing the protein loading from

10 to 20 kg/m’ also increased the rate of numerical convergence to steady state.

5.3. Membrane permeability determination

The permeability L, of hollow-fibre membranes is determined by measuring the
transmembrane fluid flux at a known pressure drop across the membrane. Typically, the fluid
of known viscosity u enters the HFBR through the upstream lumen manifold and exits
through the downstream ECS port (Figure 5.4). The lumen outlet and the upstream ECS port
are closed. The pressure drop recorded is actually the difference between the pressures at the

lumen inlet and the ECS outlet, i.e.,

AP=F,,- P, ,. (5.8)
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To determine L, it is usually assumed that AP is the pressure drop across the membrane only.
This assumption is reasonable for sufficiently low membrane permeabilities, as the membrane
imposes the dominant resistance to the flow. With higher L, values, the contribution of the
membrane resistance to the total pressure drop (Eq. 5.8) is lower, so that the assumption will

begin to break down.

* jQ, R

2% HFBR |

Figure 5.4: Flow configuration for L, determination.

By definition,

L= A"A% (5.9)

m

where Q is the volumetric flow throﬁgh the hollow-fibre device, AP, is the pressure drop
across the membrane and A4 is the total surface area of the membrane. If one assumes
AF, = AP, then the apparent permeability, L., = u /(4 AP) =~ L,, can be found from the
slope of the linear relationship between Q and AP using Eq. 5.9. Table 5.3 includes the
important parameters used in this study, while Table 5.4 lists the O and AP values determined
in the laboratory for a Gambro HFBR (Koska, 1993b) (the Gambro HFBR was henceforth
used in all the studies described in this thesis). The flow rates were found by measuring the

volume of water passing through the device over a known time, while AP was determined as
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the difference between the lumen inlet pressure head and the ECS outlet pressure measured
using a water manometer. The membrane surface area, A, has been estimated as equal to 1.5
m’, corresponding to an approximately 10% increase in fibre dimensions due to their swelling.
If it is assumed p = 0.001139 Pa-s, a linear fit of Eq. 5.9 to the data in Table 5.4 yields L,
= 6.18-10"° m. (The permeability value of 6.40-10" m, as originally determined by Koska
(1993b) using the same data, had been calculated incorrectly.)

The flow rates also can be calculated using the Porous Medium Model once the input
parameters, L,, AP, p and A, have been specified. The Q = f{AP) relationship obtained
numerically with L, = 6.18-10™"° m, u = 0.001139 Pa-s, 4 = 1.5 m’, and AP ranging from 0 to
12555 Pa, is plotted as the solid line in Figure 5.5. The observed good agreement of model
predictions with experimental data is attributable to the fact that the membrane permeability

here is sufficiently low and, consequently, the assumption AP,, ~ AP is reasonable.

Table 5.3: Important parameters used in the membrane permeability determination study.

HFBR length, L 0.215m

Lumen radius, R, 1.1510*m

Outer fibre radius, Ry 1.2510*m

Krogh cylinder radius, Rs 1.75-10*m

ECS manifold axial length, x,, 0.024m

Number of fibres, n 8123

Viscosity, u 0.001139 Pa-s (water, 15°C)

ECS axial permeability, % s 4773-10 m® (Eq. 3.26)

ECS radial permeability, %, s 3.247.10" m*> (Happel, see Table 3.1)

Lumen axial permeability, &, 7.159-10™ m* (Eq. 3.25)
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For higher membrane permeabilities, a larger fraction of the total pressure drop between the
reactor inlet and outlet occurs within the fibre lumina and ECS and, hence, local values of AP,,
will fall below AP. Thus, the assumption of AP, ~ AP in Eq. 5.9 yields a value of the

apparent membrane permeability, L, 4., Which is less than the true value, L,. This effect is
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Figure 5.5: Volumetric flow as a function of AP: comparison of the Porous Medium

Model with experiment.
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Table 5.4: Experimentally determined volumetric flows, Q, and pressure drops, AP,

for a Gambro HFBR (Koska, 1993b).

AP, Pa Q- 10%, m/s
12555 10.33
9470 7.75
9000 7.25
8226 6.58
5445 4.36

observed in Figure 5.6, where L, ,,, is plotted versus L,, and in Figure 5.7, where the ratio
Ly.app/L, s plotted as a function of L,. The two figures were created by first using the PMM
to determine the flow rate for a given L, and AP and then substituting this value of O, along
with AP, into Eq. 5.9 to obtain L, g,

For L, less than about 10" m, the membrane imposes most of the resistance to the flow
and L, ., ~ L,. For L, greater than about 10"° m, the contribution of the membrane to the
total resistance to the flow is negligible and L,,,, no longer depends on L,. The results
presented in Figures 5.6 and 5.7 were obtained for AP = 10000 Pa but, because velocities and
pressure gradients are linearly related in Darcy’s law, they are independent of the pressure
drop.

Graphs such as that shown in Figure 5.7 can be used as correction plots to obtain a
better estimate of the membrane permeability determined by measuring the fluid fluxes and the
corresponding pressure drops. For instance, if the L, value of the Gambro hollow-fibre
membrane were 1.25-10™ m (i.e., the value measured for the Amicon HFBR, Table 5.1), Eq.
5.9 used with the assumption AP, =AP would yield a permeability value that is

approximately 5% too low. This 5% difference would probably be observable as a
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discrepancy between the experimental and theoretical predictions of the flow rate as a function
of AP (Figure 5.5). It should be noted that the relationship between L, ,,, and L,, predicted
by the PMM, depends on the geometry of the hollow-fibre module. Therefore, the plots
displayed in Figures 5.6 and 5.7 are essentially valid only for the Gambro HFBR investigated

here, although analogous graphs could easily be obtained for any other hollow-fibre systems.

The present version of the PMM does not account for pressure losses in the lumen and

ECS manifolds and in the associated tubing connections. Thus, unless the pressure taps are
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Figure 5.6: The apparent (calculated) membrane permeability, L, .,,, versus the actual (input)

membrane permeability, L,: prediction of the Porous Medium Model.
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connected directly to the inlet lumen and outlet ECS manifolds, even the L, value predicted by

the PMM may not be quite correct, although it should be more reliable than that calculated
from Eq. 5.9.
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Figure 5.7: The ratio of L,,q,,/L, versus the actual membrane permeability, L,: prediction

of the Porous Medium Model.
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5.4. Filtration hydrodynamics: comparison of the Porous Medium Model with

the Krogh Cylinder Model

A flow diagram for hollow-fibre filtration is shown in Figure 5.8.

X oy L

Q in Q out
— HFBR -
PL,o PL.N

Figure 5.8: Flow diagram for the partial filtration mode (Q, ,,,>0) and full filtration
mode ((, ,..=0).

The Krogh Cylinder Model formulation presented by Kelsey et al. (1990) (see Appendix
A) accounts not only for closed-shell operation but also for the filtration mode (where the
downstream ECS port is open), by introducing the filtration fraction, f, defined by Eq. A.8
(Kelsey et al. referred to f as the ultrafiltration fraction). In the full filtration mode, = 1; in
partial filtration, 0 < £ < 1; and in the closed-shell case, f = 0. One potentially significant
feature of the Kelsey filtration model is that it admits an ECS outflow only parallel to the fibre
through the concentric annulus of the Krogh cylinder. In reality, the ECS outflow leaves
radially through a circumferential manifold at the periphery of the fibre bundle. For the sake
of comparison, Kelsey's equations for the lumen and ECS pressures as functions of the axial
position, P, (x) and Py(x), as well as the equations for Q, ., 0O, ., and Qs ,,,, have been re-
written in terms of P, ,, P,  and F; ,, rather than f. The modified equations are presented in

Appendix B.



Chapter 5: Testing and Application of the Porous Medium Model 65

The study of the L, ,,, dependence on L,, as defined and described in Section 5.3, has
been repeated here with the aim of comparing the predictions of the Krogh Cylinder Model
with those of the Porous Medium Model. The latter describes more realistically the
macroscopic radial flows created by the circumferential ECS manifold. The resulting two
curves (not plotted here) show qualitative and quantitative similarity to each other and are
virtually indistinguishable for L, < 10" m. The accurate asymptotic value of L, ,atL,—>
is difficult to predict in the PMM, but can readily be evaluated for the KCM curve if the
modified Kelsey equations presented in Appendix B are used. For f= 1, we find

ntR}
01+ Fs.0 —P.) (5.10)
8ul

lim =
L’-’ °\’QL,m

which, for £ ,, — P, , =10000 Pa and with L, R;, n and v values corresponding to the Gambro
HFBR (see Table 5.3 and Appendix B), yields the critical (and maximum) flow rate of
3.82247-10° m’/s. Inserting this value into Eq. 5.9 along with 4 = 1.2619 m?, corresponding
to the dry dimensions of the hollow fibres, yields the asymptotic value of L, ,,,= 3.45-10" m.
Figure 5.9 compares the inlet volumetric flow rates predicted by both models for a wide
range of L, values in the partial and full filtration modes. The curves were obtained with the
pressure drops Ps 4, — Pr,o = 10000 Pa for f= 1 and Ps4, — Pro = Py — Pro = AP = 10000 Pa
for 0 < f< 1 (it should be noted that, in the latter case, with the pressure drops fixed in this
way, fincreases as L, is increased). The ECS and lumen hydraulic conductivity values used in
the PMM are listed in Table 5.3. The Krogh Cylinder Model predicts that, at high membrane
permeabilities, the inlet flow rates in both filtration modes should approach the same
asymptotic value of 3.82247-10° m’/s, which can easily be obtained for £ = 1 (as calculated
above using Eq. 5.10) as well as for 0 << 1. In the latter case,
ntR

4
L(14+v)AP 5.11
SuL( Y)AP, (5.11)

. ntR}
L}’l_{nm QL,in =- 8/,LLL ['Y(Ps,dn —PL,O)+ (PLN _PL,O)] =
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which is identical to Eq. 5.10.

The convergence of the two KCM curves in Figure 5.9 can also be intuitively deduced by
considering the fact that the transmembrane pressure drop is close to zero at high L, values
and that, since no radial flow in the shell and lumen sides is allowed, the fluid has to travel
over the same distance L, independent of whether it flows in the ECS or in the fibre lumina.
Since the inlet-outlet pressure differences are the same for both f=1 and 0 < f < 1 and since
Psan = Pry in the latter case, then the limit of the inlet flow rate at high membrane

permeabilities must be identical in both filtration modes.

45 45
& 35 ,/4 SN o 35
‘L 30 AL S L 3.0
* i yd
.E_ <f< / //
g 254 0<f<t / A 25
2
e 20 ”: 20
g 15 [/ 15
= )
=) 4
> S | - KROGH CYLINDER MODEL
1.0 4 1.0
// —— POROUS MEDIUM MODEL
054 f=1 0.5
0-0 v T Illll|| L] LA IR AL RLL] L T T TTTT L] T T TUINS ¥ LA AELL] L] T rrrrn T LIRS EAARLI O-o
1E-14 1E-13 1E-12 1E-11 1E-10 1E-9 1E-8 1E-7
Membrane pemmeability (m)

Figure 5.9: The lumen inlet volumetric flow as a function of membrane permeability
in the partial and full filtration modes: comparison of the two models.
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Although it may seem that the two PMM curves in Figure 5.9 overlap at high membrane
permeabilities, they do not, in fact, approach exactly the same limiting flow rate because %5,
k.s and k., have different values and also because the distances the fluid must travel before
exiting the HFBR are different in the two cases. If f < 1, then some of the fluid leaves axially
through the fibre lumina at x = L, while if £ = 1, then all of the fluid leaves radially over the
length of the ECS manifold. Numerical simulations have shown that the value selected for %, s
has only a weak effect on Oy, s, particularly in the partial filtration mode. Since the values of
k.s, k.s and k., used here are of the same order of magnitude, no significant difference is
noticeable between the two PMM inlet flow rate curves at high membrane permeabilities.

The limit of the inlet flow rate at low membrane permeabilities for 0 < f< 1 in the Krogh

Cylinder Model can be calculated as

n sz
8ulL

Jim 0, = = (B —B0) (5.12)
yielding the value of 2.27827-10° m’®/s. This residual flow rate is identical to that in the
closed-shell mode and corresponds to no fluid passing from the lumen side to the ECS of the
HFBR. The same result can be obtained from the standard Hagen-Poiseuille equation for n
parallel cylinders of radius R, (White, 1991).

The outlet ECS and lumen flow rates as functions of the membrane permeability in the
partial filtration mode are plotted in Figure 5.10. The Oy, .. curve in the KCM approaches the
same asymptotic value of 2.27827-10° m*/s at both low and high L, values and displays a
remarkable minimum at L, ~ 10" m. If the membrane permeability is very low, practically all
the fluid travels downstream inside the hollow fibres and ;.. equals the Hagen-Poiseuille
value. If L, is very high, the presence of the membrane does not affect the flow and Oy . can

again be obtained from the Hagen-Poseuille equation. In the intermediate region, as the L,
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Figure 5.10: The ECS and lumen outlet flow rates, Os o and Oz, ou, as functions of membrane

permeability in the partial filtration mode: comparison of the two models.

value increases, an increasing amount of fluid passes across the membrane to the ECS, which
causes a temporary decrease in the lumen flow until, eventually (at L, > 10 m), the hydraulic
throughput capacities of both the lumen and the shell sides reach their saturation points.

The shapes of the PMM curves as well as the limiting values of O, .., O, ... and Qg _,, as
L, - ooin this case cannot be found analytically, as the flow rates here are unknown functions
of not only L, but also the ECS permeabilities and the surface areas of the outlet regions.
According to Darcy’s law, the rate of flow through a porous medium depends on the

hydraulic conductivity of the medium, on the pressure drop per unit length and on fluid
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viscosity. Because of the finite axial dimension of the ECS manifolds in the Porous Medium
Model, a portion of the fluid travels in the hollow-fibre device over a distance shorter than L.
Since the outlet ECS pressure, Ps 4, is assumed constant over the axial length of the manifold,
this translates into higher inlet flow rates obtained with the PMM than those predicted by the
Krogh Cylinder Model (Figure 5.9). The considerable differences, at high L, values, in the
lumen and ECS outlet flow curves pertaining to the two different models (Figure 5.10) result
mostly from the fact that no radial ECS flow is allowed in the KCM and that the outflow
surface area in the PMM is about 6.2 times as large as that in the other model. Therefore, the
rate of fluid discharge from the ECS becomes so high that only 17% of the inlet flow exits
from the fibre lumina and Oy, never reaches the Hagen-Poiseuille value at high membrane
permeabilities, as was the case in the Krogh Cylinder Model. The PMM profiles in Figure
5.10 are slightly distorted in the range 10> m < L, < 10"® m, which can probably be ascribed
to the same effect that is responsible for the minimum in the KCM outlet lumen flow curve
(discussed above).

Although an axial outflow from the ECS in the filtration mode is a fictitious concept, it
has been enforced by the one-dimensional restriction of the Krogh Cylinder Model. All of the
investigations described above and presented in Figures 5.9 and 5.10 were repeated using the
PMM equations with boundary conditions changed so as to allow for axial rather than radial
outflow from the ECS. The results were then identical for both models, since, in this case,
there existed no macroscopic radial gradients and the PMM reduced to the KCM.

As can be seen from the plots presented here, the differences between the PMM and the
KCM become noticeable only when L, exceeds, approximately, 10" m. Thus, the Krogh
Cylinder Model will yield acceptable hydrodynamic predictions for most open-shell situations
of practical interest, primarily because the ECS outlet flow is controlled entirely by the

membrane resistance.
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5.5. Inoculation and relaxation

In the inoculation phase of HFBR operation, the cell inoculum in a solution containing
high-molecular-weight growth factors, is introduced to the ECS through its upstream port
with the displaced fluid leaving by the outlet lumen port. The flow configuration for this case

is shown in Figure 5.11.
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Figure 5.11: Flow diagram for inoculation phase of HFBR operation.

The inoculum was assumed to be in a solution of bovine serum albumin (BSA) and the
mammalian cell concentrations sufficiently low that their influence on the fluid flow and
protein transport could be neglected. Thus, the ECS was assumed to be cell-free. The aim of
this study was to trace the ECS protein redistribution with time for the following two cases:
(1) c,, = Skg/m*, 60 min total inoculation time, P;,, — P, =3000 Pa;

(2) ¢,, =50kg/m*, 6 min total inoculation time, P;,, — P, =3000Pa,

where c,, is the protein concentration in the inoculum solution. Table 5.5 summarizes the
parameters used in the inoculation study. The total inoculation time in the second case was
ten-fold lower in order that the final protein content of the ECS be approximately the same as
in the first case. These amounts were not exactly the same in both cases because the inlet and

outlet boundary conditions were imposed through the fixed pressures, Pg,, and P, y, rather
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than through fixed flow rates, Os,, =0, ... Because of the presence of osmotically-active
proteins, these flow rates, although always equal, decreased slightly with time. With the
membrane permeability of 6.4-10"° m, the above pressure differences result in a flow rate of
approximately 1.5 cm’/min. Table 5.6 compares the two inoculation tests emphasizing the
effect of the osmotic pressure. Variation of the flow rate with time in cases #1 and #3 is

almost exactly linear.

Protein concentration in the inoculum, c,, (1) 5kg/m*®, (2) 50 kg/m?
Pressure head difference, Pg,, — P, y 3000 Pa

Membrane permeability, L, 6.410" m

HFBR length, L 0.215m

HFBR radius, R 0.01575m

Lumen radius, R, 1.1510%m

Outer fibre radius, Ry 1.25:10* m

ECS manifold axial length, x,, 0.024 m

Number of fibres, n 8123

Diffusivity, D 10" m%s

Temperature, T 288 K (15°C)

Viscosity, p 0.001139 Pa-s (water, 15°C)
ECS axial permeability, k. s 477310 m* (Eq. 3.26)
ECS radial permeability, &, s 3.247-10" m* (Happel, see Table 3.1)
Lumen axial permeability, k,; 7.159-10" m* (Eq. 3.25)

Table 5.5: Summary of parameters used in the inoculation study (Gambro HFBR).
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Table 5.6: The effect of osmotic pressure in the inoculation tests.
Osmotic | Total fluid Average final | Initial flow | Final flow
# (kgc;:n3) Duration 'eﬁ‘ects passed thr<)3ugh concentratison, rat;a, 010 ratg:, 0-10°
included | HFBR (cm’) car (kg/m’) | (m’/s) (m’/s)
1 5 60 min yes 88.04 5.38 2.52 237
2 5 60 min no 90.79 5.55 2.52 2.52
3 50 6 min yes 8.76 5.35 2.52 2.34
4 50 6 min no 9.08 5.55 2.52 2.52

In both cases the inoculation phase was followed by a 20-hour-long relaxation in which
all the inlet and outlet ports were closed. In the relaxation phase, the ECS protein continues
to redistribute owing to local concentration and osmotic pressure gradients. The start-up of
an HFBR would normally not include a relaxation phase of more than 1 h. The 20 h period
was used here to explore the time scales of the inoculum protein redistribution in the absence
of lumen recycle flow. Since uniform distribution of the growth-factor proteins over the
volume of extracapillary space is important to the subsequent cell growth phase of reactor
operation, the main focus of the study presented in this section was to look at the degree of
spatial uniformity of the ECS protein concentration at the end of the inoculation and
relaxation phases.

Figure 5.12 shows how the ECS concentration contours vary with time over 1 h of

inoculation in the case of the low inlet concentration, ¢, = 5kg/m*. The local radial Peclet
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number at the inlet is of the order of 50 — 80 (with the average inlet radial velocity of the
order of 10° m/s and 18 uniformly spaced radial grid points), which indicates dominance of
the convective transport of protein. The observed dispersion of the concentration front is
believed to be of numerical origin and it has been found that the extent of this “wash-out”
zone decreases when more grid points are used. Because some of the fluid passes into the
lumina leaving the protein behind, the front moves downstream with axially and radially
decreasing speed, while more and more protein is being carried towards the front from the
inlet zone. This results in two visible regions of maximal and increasing concentration; for
example, after 60 min of inoculation, one region is near the upstream end at r ~ R/3 while the
other extends from r =~ R/2 up to the cartridge wall (r = R) at x =~ 2/3 L. The trends
observed in Figure 5.12 become even more extreme when the inoculation is continued for a
few additional hours (not shown here). The maximum local concentrations monotonically
increase while the protein front velocity decreases and approaches zero at the downstream
boundary. This results in a highly non-uniform concentration distribution; even though the
average ECS protein concentration is 5 kg/m’, the local concentrations can reach 50 kg/m’
and more, while a significant fraction of the ECS volume remains free of protein.

Figure 5.13 displays the development of the concentration contours during inoculation
with a 50 kg/m’ protein solution. After 6 min, the ECS contains approximately the same
amount of protein as after 60 min of inoculation with a 5 kg/m’ solution. In this case, the
extent of ECS penetration by the inoculum is much smaller while the local concentrations and
osmotic pressures are much higher. The temporally increasing local osmotic pressures in the
ECS cause a decrease in the transmembrane pressure difference and hence a decrease in the
flow rate. Consequently, after 6 min of inoculation with ¢,, = 50 kg/m®, the average ECS
protein concentration is slightly less than after 1 h of inoculation with c;,, = 5 kg/m® (Table

5.6).
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Figure 5.12: ECS concentration field after a) 20 min, b) 40 min, ¢) 60 min inoculation, ¢ =5 kg/m’.
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Figure 5.13: ECS concentration field after a) 2 min, b) 4 min, c) 6 min inoculation, ¢;, = 50 kg/m’.
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The ECS protein distribution at the end of the inoculation phase with each inlet
concentration (i.e., c;, = 5 or 50 kg/m®) served as a starting point for relaxation tests in which
all inlet and outlet ports of the HFBR were closed. The relaxation phase can result in, after
sufficient time, a reasonably uniform spatial distribution of cells and growth factors in the
ECS, even if the distribution of inoculum at the end of the inoculation phase was very non-
uniform. In the cases tested here, slow redistribution of protein was observed with the local
concentrations reaching a relatively high degree of spatial uniformity after about 20 h or more.
The process is driven by diffusion and by a weak convective flow due to the presence of
osmotic pressure gradients in the ECS. The concentration field and hydrodynamics in the
HFBR after 1 h and after 20 h of relaxation are displayed in Figures 5.14 — 5.17.

The velocity vector plots, particularly those corresponding to the early stage of
relaxation (Figures 5.14 and 5.16) show that the magnitude and direction of the ECS
convective flow are closely associated with the magnitude and direction of the local
concentration gradients. The ECS fluid travels from left to right, or towards the downstream
end of the reactor, while the direction of the lumen flow remains primarily from right to left
(note that the lumen velocity has no radial component and thus its distribution can be
represented by a contour plot). Small areas of positive lumen velocities are located near
regions of locally positive axial concentration gradients (Figures 5.14, 5.16 and 5.17). The
maximum magnitude of lumen velocity correlates roughly with the concentration maximum
and correspondingly decreases when the latter decreases with time.

A qualitative comparison of Figures 5.15 and 5.17 indicates that inoculation with the
low-concentration solution resulted in a more uniform spatial distribution of protein after 20 h
of relaxation. This is also reflected by the smaller magnitude of the ECS and lumen flows in
this case (Figure 5.15). It should be pointed out that, because of the no-flux condition

through the boundaries, the protein transport near x = L is primarily by diffusion rather than
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Figure 5.14: a) ECS concentration field (kg/m®), b) ECS velocity field, ¢) lumen velocity field

(u;-10° m/s) after 1 h relaxation following 60 min of inoculation with ¢;, = 5 kg/m’.
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(u-10° m/s) after 20 h relaxation following 60 min of inoculation with c;, = 5 kg/m’.
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Figure 5.16: a) ECS concentration field (kg/m®), b) ECS velocity field, c) lumen velocity field

(u:-10° m/s) after 1 h relaxation following 6 min of inoculation with ¢;, = 50 kg/m’.
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by osmotically-driven convection. Since the former transport mechanism is in this case much
slower than the latter, the time for the protein distribution, for example in Figure 5.15, to
reach a visually uniform state might be considerably longer than the 20 h relaxation period
tested.

In conclusion, inoculation with a low-concentration solution seems to be better for
practical use since it can facilitate more uniform distribution of cells and growth factors over
the volume of ECS. If by the time the desired average inoculum concentration is reached its
distribution is not sufficiently uniform, relaxation with all ports closed will help homogenize
the contents of the ECS, although this process may be fairly time-consuming and thus increase
the risk of cell death due to oxygen limitations and decreases in pH. Alternatively, one might
introduce the inoculum through both ECS ports or initiate the lumen flow soon after
inoculation. Investigation of these options goes beyond the scope of this work but it poses no
special modelling difficulty as the Porous Medium Model and the existing finite difference

code are capable of handling this and even more complex cases.

5.6. Harvesting

Typically, the hollow-fibre membranes in use for mammalian cell culture have low
enough molecular weight cut-off values to retain the product (protein) in the extracapillary
space. During harvesting, solution containing the product is collected from the ECS through
its downstream port. Several different modes of harvesting are possible (Figure 5.18). In this
work, two of them have been compared: the standard mode (Figure 5.18a) and the closed-
lumen mode (Figure 5.18b).

As mentioned before (Section 3.4), it is convenient to estimate the hydraulic

conductivity, &°, and protein diffusivity, D°, in the cell-packed ECS as functions of its porosity,
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Figure 5.18: Some of the possible modes of harvesting: a) standard, b) closed-lumen,

c) with all ports open and equal pressures at the ECS and lumen inlets,

d) with closed lumen inlet.

&ycs- Two values of &,,, were chosen here: (i) 26%, corresponding to densely packed
spheres arranged in a rhombohedral array (Bear, 1972), and (i) 5%, an arbitrary, but more
realistic, value. In each case, k" and D* were calculated from the Carman-Kozeny equation
(Eq. 3.29) and from the Neale-Nader relationship (Eq. 3.30), respectively. Parameters used in
the harvesting simulation stﬁdy are summarized in Table 5.7.
A specified concentration distribution in the ECS must be assumed as a starting point for
the harvesting phase. Here, two extreme cases were considered:
(i) uniform initial concentration field, co = 5 kg/m’, and
(ii) downstream-polarized concentration field with average concentration 5 kg/m’, obtained as
the steady-state solution of the one-dimensional closed-shell problem (Figure 5.19).
Steady state was reached after about 19.5 h for €., = 26% and 142 h for £, = 5%, with

the convergence criterion EPSC, defined as the maximum local concentration change with
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time (Eq. 4.4), set to 2:10”° kg/(m*s). One would expect similar steady-state profiles in
both cases, although, at higher porosity, the concentration gradient should be steeper
(since an increase in €., produces larger increase in the ECS hydraulic conductivity than
in the protein diffusion coefficient, see Table 5.7) and the maximum local concentration
higher (because the axial ECS pressure gradients are smaller and, hence, higher osmotic
pressures are required to counteract the resulting larger hydrostatic pressure differences,
P. — Ps, at the downstream end). It should be pointed out that, in the 5% porosity case,
the time scale for protein polarization was so large and the numerical convergence so slow
that the profile shown in Figure 5.19 may not exactly correspond to steady state.
However, this approximate concentration distribution is still a reasonable starting point for

the harvesting simulation.

Table 5.7: Summary of parameters used in the harvesting study (Gambro HFBR).

Initial average protein concentration, ¢, 5 kg/m’, (1) uniform

(2) downstream-polarized

Initial ECS outlet flow rate, Os, our 1.0000 cm®/min

Initial lumen flow rate (standard mode), Or, i 600.00 cm®/min

Membrane permeability, L, 6.410" m

Cell-packed ECS porosity, & (1) 26%, (2) 5%

ECS hydraulic conductivity, &° (1) 1.03-10° m® (g}, = 26%)

(2) 4.43-10 m® (g}, = 5%)
Protein diffusivity, D° (1) 1.9-10" m¥/s (g},05 = 26%)

(2)3.4102 m¥s (805 = 5%)
Lumen axial permeability, &, ; 7.159-10"° m* (Eq. 3.25)
Viscosity, u 0.001139 Pa-s (water, 15°C)




Chapter 5: Testing and Application of the Porous Medium Model 84

Often, in the standard ultrafiltration mode (Figure 5.18a), the ECS and lumen outlet
pressures are equal (and atmospheric). However, model simulations have shown (Figure
5.20) that, because of the small hydraulic conductivity of the cell-packed ECS, this results in
such low ECS flow rates that harvesting would be extremely time-consuming. Thus, it was
concluded that, in order to improve the efficiency of the process, either the lumen inlet and
outlet pressures should both be raised (to the same extent to maintain a constant lumen flow
rate) with the ECS outlet pressure kept at one atmosphere or Psg, should be lowered below
Py (e.g., by pumping the fluid out of the ECS). Similar large decreases in ECS outflow were

found for the closed-lumen mode (Figure 5.18b) when changing from the higher to lower
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Figure 5.19: Steady-state ECS protein concentration as a function of axial position for

different ECS porosities.
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porosity at a constant ECS inlet pressure. Henceforth, to allow better comparison between
the different cases, all inlet and outlet pressures were set to values that would ensure the initial
flow rates of 1.0000 cm®/min through the ECS and, in the standard case, 600.00 cm’/min
through the lumen (Table 5.8). The ECS flow rate was usually found to decrease with time,
in the most extreme case by 9% over the time period tested. This can be ascribed to the
declining osmotic effects of the protein being continuously removed from the ECS. The

osmotic effects are also responsible for the non-zero ECS outlet flows at zero lumen flow

(Figure 5.20).
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0.20 0.20
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/ ° =5%
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0.00 0.00
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ECS outlet flow (cn/min)

Lumen inlet flow (cm*/min)

Figure 5.20: The ECS outlet flow as a function of the lumen flow for different ECS porosities

in the standard ultrafiltration mode with Ps4, = Pry = 1.0 atm.



Chapter 5: Testing and Application of the Porous Medium Model 86

In all the harvesting simulation cases, the cumulative protein removal, the ECS outlet
concentration, the concentration in the harvesting reservoir, as well as the ECS concentration
field were determined as functions of the total fluid volume collected from the ECS (Figures
5.21 — 5.28). With a uniform initial concentration field (Figures 5.21 — 5.25), the ECS flow
rate was found to change only negligibly (< 2.5%, in the most extreme case) during the
harvesting period, so the relevant variables were plotted as functions of time.

As can be seen in Figure 5.21, at 26% porosity almost complete protein removal is
achieved after 2 h of harvesting, whereas in the 5% case, although about 10% of the protein is
removed within 2 min, the maximum removal is still less than 20% after 2 h. At ¢, = 26%,
there is a significant increase in the fraction of protein removed from the ECS after about 1 h
in the closed-lumen case and the differences in efficiencies of both harvesting modes become
more visible. Similar increases at t * 50 min in the ECS outlet and harvesting reservoir

concentrations are also observed (Figure 5.22). In contrast, the standard mode curves show

Table 5.8: Pressure drops corresponding to the initial ECS flow rate of 1.0000 cm®/min and

(standard mode only) the initial lumen flow rate of 600.00 cm®/min.

Initial Closed-lumen Standard
&y | concentration
field Psin—Psin (Pa) | Pro—Pry (Pa) Pry—Psy, (Pa)
26% uniform 13,779 4,387 10,333
26% polarized 13,168 4,387 9,881
5% uniform 109,697 4,389 58,804
5% polarized 108,767 4,389 58,051
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Figure 5.21: Fraction of protein removed from the HFBR as a function of harvesting time at

different ECS porosities (uniform initial concentration field).

no inflection points. To better understand the origin of the result in the closed-lumen case, it
is useful to look at the transient changes in the ECS concentration field (Figures 5.23, 5.24a).
As opposed to the standard mode, in which the initially uniform concentration decreases
uniformly with time, a high degree of non-uniformity in protein distribution is visible here. A
significant fraction (83%) of the flow entering the ECS passes into the lumina at the upstream
end of the reactor and returns to the ECS downstream. Owing to protein filtering at the
membrane surface, a region of maximum concentration develops upstream, shifts downstream,

and eventually reaches the outlet ECS port after about 1 h of operation. This is reflected by



Chapter 5: Testing and Application of the Porous Medium Model 88

the increased protein concentration at the outlet and the enhanced protein removal. After a
subsequent 15-20 min, the outlet concentration drops to a value lower than in the
corresponding standard harvesting case (Figure 5.22). However, the concentration in the
outlet reservoir still remains higher than in the standard mode.

In the closed-lumen case, with &, = 26%, only about 17% of the fluid crosses the half-
length cross-section of the reactor inside its extracapillary space. With &;.; = 5%, in both

harvesting modes, the flow in the ECS is hindered to such an extent that almost all the fluid

1. CLOSED-LUMEN HARVESTING
4- 2. STANDARD HARVESTING

1 1.
| . \}_1

2.

Outlet protein concentration (kg/n?)
Concentration in the harvesting reservoir (kg/n?)

2.

0

0 10 20 30 40 50 60 70 80 90 100 110 120
Time (min)

Figure 5.22: The ECS outlet concentration and the concentration in the harvesting reservoir

as functions of time (uniform initial concentration field, &,.; = 26%).
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(99.99%) travels downstream inside the fibres, except for the regions near the open ECS
ports. Protein is effectively removed only from the downstream region proximal to the outlet
ECS manifold, where the fluid passes back from the lumen side into the ECS. It takes just a
few minutes to remove most of the protein from that region (Figure 5.25). After that time,
the removal curve levels off (Figure 5.21) and the outlet concentration quickly approaches
zero (Figure 5.25). In the closed-lumen case, with &, = 5%, the protein in the upstream
region is swept by the convective flow towards the centre of the reactor, where the
concentration consequently increases. The ECS concentration contours after 2 h of
harvesting are shown in Figures 5.24b and 5.24c for the closed-lumen and standard mode
cases, respectively, with &,,.; = 5%.

If started from a downstream-polarized concentration field, a faster and more complete
protein removal can be achieved (Figures 5.26 and 5.27). After only 20 min, almost 100%
and about 70% of the protein is removed at &,.; = 26% and &,,.; = 5%, respectively (Figure
5.26). Plots like those shown in Figure 5.27 can be useful in estimating the time after which
the protein concentration in the harvesting reservoir is above a desired level. For example, in
order to obtain a 15 kg/m* product solution, one should carry on harvesting for about 5-6 min
if &, = 26%, or about 20-30 s if &, = 5%. The corresponding fractions of protein
removed can be read from Figure 5.26 as approximately 80% and 25%, respectively.

Figure 5.28 shows the ECS concentration contours as well as the ECS velocity field and
the lumen velocity contours after 10 min of harvesting in the closed-lumen mode at &, = 5%
(polarized initial concentration field). The corresponding concentration contours after 10 min
of standard harvesting look the same as in Figure 5.28a. Between 10 and 20 min, hardly any
further changes in the concentration field occur. The visible high concentration ridge with a
maximum above 12 kg/m® constitutes an interesting flow division region in the closed-lumen
case. Locally high osmotic pressures drive the fluid from the lumen side into this region; then,

part of the fluid backflows in the ECS until it is carried by radial gradients towards the centre
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of the reactor to finally pass back into the lumina. Streamlines rather than velocity vectors are
drawn in the ECS inlet and outlet regions (Figure 5.28b), where the strength of the primary
hydrostatic-pressure-driven flow is two to three orders of magnitude smaller than that of the
osmotically-driven flow in the central part of the ECS. The lumen velocity contours plotted in
Figure 5.28c indicate that most of the fluid travels downstream near the outer wall of the
cartridge (r = R). The magnitude of the maximum lumen velocity is, as expected, similar to

the magnitude of the ECS inlet or outlet velocity.
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Figure 5.25: The ECS outlet concentration and the concentration in the harvesting reservoir
as functions of time (both harvesting modes, uniform initial concentration field,

Epes = S%%).
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Figure 5.26: Fraction of protein removed from the HFBR as a function of the total outflow

from the ECS at different ECS porosities (both harvesting modes, polarized

initial concentration field).

At &;.; = 26%, in both harvesting modes (polarized initial concentration field), the

protein removal from the extracapillary space is approximately uniform (data not shown).

After 2 min, the highest local concentration falls to 28 kg/m®, and after 10 min to about 9

kg/m’® (38 kg/m’ being the initially highest local value).

In conclusion, the two tested harvesting modes show no significant differences in their

harvesting efficiencies. Although the extent of ECS penetration by the fluid is greater in the
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closed-lumen than in the standard mode, the lumen recycle flow in the latter provides an
uninterrupted diffusional supply of nutrients to and removal of metabolites from the cells.
Thus, the closed-lumen mode may not be practical. At high packed cell densities, the
concentration of the harvested product protein may be unacceptably low unless a sufficient
degree of protein polarization in the downstream part of the ECS can be achieved between

consecutive harvests.
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Figure 5.27: The ECS outlet concentration and the concentration in the harvesting reservoir

as functions of the total outflow from the ECS at different ECS porosities (both

harvesting modes, polarized initial concentration field).
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Figure 5.28: a) ECS concentrations (kg/m’), b) ECS velocity vectors (in the central part of the
ECS) and streamlines (near the port manifolds, where the magnitude of the flow is
much larger than in the central part of the ECS), c) lumen velocities (u-10° m/s)

after 10 min of closed-lumen harvesting (e .; = 5%, polarized initial concn. field).
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Chapter 6: CONCLUSIONS AND FUTURE WORK

The two-dimensional Porous Medium Model (PMM), developed here to describe the
hydrodynamics and protein transport in hollow-fibre bioreactors, has been tested and applied
to several situations with fundamental as well as practical implications for HFBR operation.
The PMM is able to handle a variety of flow configurations, including open-shell operations,
and can be relatively easily extended to include another spatial dimension or geometric design
details of the HFBR. In the absence of radial terms, the Porous Medium Model reduces to the
one-dimensional Krogh Cylinder Model (KCM) which was previously validated by an
experimental study of protein redistribution in the closed-shell case (Taylor et al., 1994
Patkar et al., submitted; Koska, 1993a).

It was found that the efficiency of the line over-relaxation procedure, employed to solve
the coupled elliptic lumen and ECS pressure equations, could be significantly improved by
optimizing the values of the over-relaxation parameters as well as the direction of sweep over
the rows and columns of the two pressure matrices. Convergence was particularly slow for
the closed-shell case and for low membrane permeabilities. In most cases, since the lumen
flow was orders of magnitude greater than the ECS flow, the convergence criterion for the
lumen pressure could be much less stringent than that for the ECS pressure, which reduced
the computational times needed to solve the pressure equations. Since the ADI method, used
to solve the time-dependent parabolic protein transport equation (coupled with the
hydrodynamic equations through the osmotic pressure term), is not conservative in its
standard formulation, a small time step size was required in order to minimize the resulting
protein mass imbalance. Simultaneous iteration of all three equations at each time level was
not necessary because the hydrodynamics did not change significantly over one time

increment. Thus, the pressure solutions could be lagged behind the concentration solutions
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without any noticeable loss in accuracy. This was confirmed by a comparative numerical
study and resulted in a several-fold reduction of computational times.

Model simulations of closed-shell operations confirmed the downstream polarization of
the ECS protein that occurs under dominant convective transport conditions. A two-
dimensional study of this case demonstrated that, in the presence of significant radial pressure
gradients in the lumen manifolds, the protein was polarized in both axial and radial directions
and was distributed over a larger portion of the ECS volume than in the corresponding case
where no radial gradients were imposed.

When the PMM was used to study the hydrodynamics of hollow-fibre devices in the
partial and full filtration modes of operation, it was found that, for membranes with
permeabilities lower than approximately 10" m (which covers the range of most commercial
ultrafiltration hollow-fibre membranes), practically all of the pressure drop between the inlet
lumen and outlet ECS ports was due to the hydraulic resistance of the membrane. Although
this assumption is commonly made when membrane permeabilities are determined
experimentally, it breaks down at greater values of L,. A correction plot for the Gambro
hollow-fibre module geometry was developed which allows better estimates of L, values from
measured flow-rate-versus-pressure-drop data. The lumen and ECS volumetric flow rates in
both filtration modes were calculated using both the PMM and the KCM (Kelsey et al., 1990).
The differences in the predictions of the two models became noticeable only for L, values
above about 102 m and were mostly due to the fact that radial ECS flows were not included
in the one-dimensional Krogh Cylinder Model. In addition, the position and area of the
outflow surfaces in the KCM and PMM were different. Since the permeabilities of
membranes in use for most open-shell situations of practical interest are lower than 10”2 m,
the hydrodynamic predictions of the Krogh Cylinder Model should be acceptable in most

cases.
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Simulations of the inoculation process using a Gambro HFBR with a membrane
permeability of the order of 10" m showed that, at the end of the inoculation phase, the
protein concentration distribution could be very non-uniform with most of the shell side free
of protein. Using a lower-concentration inoculum solution might partially alleviate this
problem. Alternatively, a relaxation phase with all ports closed could be applied following the
inoculation to help homogenize the contents of the ECS by diffusion and osmotically-driven
convection. However, this process might be time-consuming and a long period without lumen
flow might result in oxygen starvation of the cells. It is suggested that introduction of the
inoculum through both ECS ports or periodic changes of the flow direction may be more
efficient ways of distributing the ECS proteins. The PMM could provide useful assistance in
determining the optimum inoculation procedure.

The harvesting phase of cell-packed Gambro HFBRs was also modelled. A comparison
of predicted harvesting results obtained using the closed-lumen mode (both ECS ports open)
and the standard mode (downstream ECS port and both lumen ports open), showed no
significant differences. The rate of protein removal from the ECS and the product
concentration in the harvested solution were greatly dependent on the cell-packed ECS
porosity which determines the hydraulic permeability and thus the magnitude of convective
transport in the shell side. Greatly increased product harvest concentrations were obtained in
cases where the protein had been downstream-polarized prior to harvesting. However,
recovery of high concentration harvests or complete removal of the product from the ECS of
high-cell-density HFBRs might not be possible.

The present version of the Porous Medium Model as well as the existing numerical code
can be applied to a variety of other operating conditions and flow configurations, beside those
investigated in this work. In addition, the PMM can be extended to include another dimension
and concentration-induced density variations, which would allow gravitational effects to be

taken into account. It can also be revise to account for the influence of the ECS manifolds on
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ECS protein redistribution during both normal closed-shell and harvesting open-shell
operations. The ECS manifolds are essentially fibre-free and, as such, may not be treated as a
porous medium described by Darcy’s law. Utilization of the Navier-Stokes equations for the
manifold and the Brinkman equation for the porous regions may be necessary in this case.
Prediction of fluid flow and pressure distribution in the inlet and outlet lumen manifolds may
also be worth pursuing, particularly if significant radial pressure gradients are created during
normal closed-shell operation, or if significant fluid bypassing occurs through the lumen
manifolds when one or both lumen ports are closed. Furthermore, the production phase of
HFBR operation can be modelled by including a reaction rate term in the protein balance
equation, where the reaction rate would depend upon the cell density. Protein leakage from
the ECS into the lumina as well as transport of low-molecular-weight nutrients across the
membrane may be included in respective solute mass balance equations. Variation of ECS
fluid viscosity and protein diffusivity with protein concentration may also be considered.
Redistribution and growth of cells is another potential study area in this field. This would
require keeping track of the distributions of essential nutrients and possibly some metabolites.
Also, the effect of cell density on the ECS porosity and, hence, hydraulic conductivity and
protein diffusivity may be taken into account. Finally, the Porous Medium Model might be
used to simulate the complete HFBR operating cycle, including inoculation, growth, steady-
state production and harvesting. This could allow the optimization of operating conditions

and the enhancement of reactor productivity.
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NOMENCLATURE

total surface area of the hollow-fibre membranes (m?);
dimensionless coefficient in Patankar’s power-law scheme (Appendix C)

membrane surface area per unit volume available for fluid transport (m™)
virial coefficients in Eqs. 3.13 and A.33 (kg” m®, kg m°®, respectively)
acceleration factor in the time-marching algorithm (dimensionless)
dimensionless coefficient in Patankar’s power-law scheme (Appendix C)
constants in Eqs. A.9, A.10, B.1 and B.2 (Pa)

actual concentration (kg m>)

initial concentration (kg m™)

diffusivity (m®s™)

convergence criterion for pressures (Pa)

convergence criterion for concentration (kg m™ s™)

filtration fraction (Eq. A.8) (dimensionless)

relationship between the osmotic pressure and concentration
(Appendix A)

dimensionless parameter in the expression for &5 in Table 3.1b
(Eisenberg & Grodzinsky, 1988)

protein flux (kg m?s™)

Bessel functions of order 0 and 1, respectively
hydraulic conductivity, Darcy permeability (m?)
number of grid points in the radial direction

dimensionless hindrance factors for the convective and diffusive
transport, respectively, in Eq. A.36 (Koska, 1993a)

length of the ECS, permeable length of the dry fibre (m)
membrane permeability (m)

apparent membrane permeability (m)

molecular weight of protein (kg mol™)

salt concentration in Eq. 3.13 (mol m”)



S
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n
I

R’ RHFBR

R
Ry
Rs
Re

function returning the maximum of the arguments in parentheses
number of fibres in the HFBR cartridge

number of grid points in the axial direction

order of magnitude

hydrostatic pressure (Pa)

Peclet number (dimensionless)

radial position (m)

radial position of the south face of the control volume (m)
radial position of the north face of the control volume (m)
the HFBR cartridge radius (m)

the gas law constant (J mol™ K)

fibre inner radius (m)

fibre outer radius (m)

Krogh cylinder radius (m)

Reynolds number (dimensionless)

volumetric flow rate (m®s™)

time (s)

absolute temperafure XK)

dimensionless transport modulus (Bruining, 1989)

axial superficial velocity component (m/s)

axial actual velocity component (m/s)

radial superficial velocity component (m/s)

radial actual velocity component (m/s)

superficial velocity vector

actual velocity vector

axial position (m)

axial length of the ECS manifold (m)

protein charge number (dimensionless)
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Greek letters

w®

w © o A
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over-relaxation parameter (dimensionless)

parameter in Eq. A.17 (Taylor et al., 1994) (m?)

pressure drop (Pa)

pressure drop across the membrane (Pa)

increment in the radial position (m)

time increment (s)

increment in the axial position (m)

porosity (dimensionless)

fraction of the HFBR volume not occupied by the fibres (dimensionless)
cell-packed ECS porosity (dimensionless)

overall porosity of the HFBR (dimensionless)

fluid source or sink (s™)

fraction of the HFBR volume occupied by the fibres (dimensionless)
dimensionless geometric parameter (Egs. A.7 and B.9)
dimensionless membrane permeability (Eqs. A.16 and B.11)
dimensionless parameter defined by Eqs. A.15, A.25 and B.10
function in Patankar’s power-law scheme (Appendix C) (dimensionless)
fluid viscosity (Pa s)

3.1415926535897...

osmotic pressure (Pa)

fluid density (kg m™)

sink or source of solute (kg m™s?)



Subscripts

0
AVG
dn

E

i, ]

in

Superscripts

IT

Other symbols

" (overbar)
v
1

initial (at t = 0); lumen inlet (x = 0)

average

downstream

east face of the control volume

indices of the axial and radial positions, respectively
inlet

lumen

lumen outlet; north face of the control volume
outlet

radial

atr=R

shell side; south face of the control volume
upstream

west face of the control volume

axial

iteration counter
cell-packed
actual (as opposed to superficial)

radially-averaged

Nabla operator

unit vector
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Abbreviations

ADI
BSA
ECS
HFBR
KCM
PMM

Alternate Direction Implicit
bovine serum albumin
extracapillary space
hollow-fibre bioreactor
Krogh Cylinder Model
Porous Medium Model

representative elementary volume
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Appendix A: FORMULATIONS OF HFBR MODELLING EQUATIONS
BASED ON THE KROGH CYLINDER APPROXIMATION

Kelsey et al. (1990): Hydrodynamics of open- and closed-shell, cell-free HFBRs

The governing equations are:

d’p, L,
dx? 16"1}—3_ ®. -P;) ‘ (A1)
L
d?P, L1
a2 - -16F;@L -By), (A.2)
L

subject to the boundary conditions

P =Py at x=0, (A3)
98 _o at x=0, (A4)
dx
ur=u;, (1-r*/R*)  at x=0, (A.5)
uy =QA-fHu,, (A6)
where
v =[4R$ In(R; /R, ) +4R2RZ - 3R} -R% | [R! (A7)

Pp, is the inlet lumen pressure, u;, is the inlet centre-line actual lumen velocity, #,, and

u,, are the radially-averaged inlet and outlet actual lumen velocities, respectively, and f is

referred to as the ultrafiltration fraction (fraction of the inlet flow that exits the HFBR through
the ECS), i.e.,

J = Osou / QLjn . (A-8)
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The solutions of Eqs. A.1 and A.2 are

P, (x) =B, sinh(Ax/L)+ B, cosh(Ax/L)+ B,x/L+ B, (A.9)
P,(x) =—B, /ysinh(\x/L) —B, /ycosh(Ax/L)+ B, x/L+ B, (A.10)
with
v x(:Z- 1) MI;L:L'O @1
B, = B, [sinh(A)[1-cosh(A) - f (1+1/y)] (A.12)
B,=B,/y (A.13)
B,=P,,-B, (A.14)

A= 4 Jx(1+1y), (A.15)

where « is the dimensionless membrane permeability,

x=L,L*|R] . (A.16)

Taylor et al. (1994): Radially-averaged velocities and two-dimensional ECS protein
transport in a multi-fibre, closed-shell, cell-free HFBR

The equations governing the quasi-steady lumen and ECS hydrodynamics are

dz u;‘ 2 ny - 2Lp dfo:m[C(RM’x)] dC(RM:X)
dx® Nup =—Pu, - R, iC dx (A.17)
- R el
= - 18
Us R*_R% (uLD uL) (A.18)
with
u_L'=uL“’o at x=0 and x=1L, (A.19)

while the ECS protein transport equation is
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with the initial and boundary conditions

C=0Co at t=0,
6_C=0 at x=0 and x=1L,
Jx
v, C —Dic—: =0 at r=Ry,
ar
€ _p at r=Rs.
or
InEq. A.17,

A=J16L, /R} (1+1/y)

B= 16LP/R2 ) 1/7
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(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

where v is defined by Eq. A.7, C(Ru,x) is the ECS protein concentration at the outer surface

of the fibre; f,m(1,x) is the relationship between osmotic pressure and the local protein

concentration (Taylor et al. used Eq. 3.13, valid for BSA); D is the protein diffusivity. The

local actual velocities are calculated as follows:

ut o Rs I— —

3 (630 = 2| 2 In0/Rug)  1°/ Rl +1 [, ~0i ) @

Vs (A28)
& 4R, Tdur

'2722{75“‘”%(33 =R Ry =) == ReIn(®s [Ryr) ~r*nGe/Ryy) | l;x(x)-

In the absence of osmotic effects, Eq. A.17 has the following solution:
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— ul, [ cosh(M(Z/2-x)) N v} . (A29)

7Ty cosh(M/2)

Patkar et al. (in press): Radially-averaged axial velocity and protein concentration

in the ECS of a closed-shell, cell-free HFBR

The governing equations are

dug o 16L,up 2RI, ¢, [C]dCr) (4.30)

dx? ST R@®-R) w®-R,) dC  dx ’ '
with the boundary conditions

{1:‘=0 at x=0 and x=1, (A31)
and

oC _&C o(uC)

ot _D6x2 ~ ox (A32)

subject to initial and boundary conditions identical to Eqs. A.21 and A.22 (with C replaced by
C). Ain Eq. A.30 is defined by Eq. A.25. In this case, Patkar et al. related the osmotic

pressure of protein (BSA) to its concentration through the following virial equation:
Sum©) =R, TIM, (C+A4,C*+A,C%) (A.33)

where M, is the protein molecular weight and A, and 4; are the virial coefficients obtained by

fitting Eq. A.33 to experimental data.

Koska (1993a).: Coupled hydrodynamics and protein transport in a closed-shell,
cell-packed HFBR

In a two-dimensional formulation, the governing equations are
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d*P, L
T = 1625 [P - Py Ry) +TLs (5 Ry, ) (A34)
L

o oPy) O°P

ra(r » ) = —2-0 (A.35)

and

9C 1 9 ac| o aC u; 4C vs 8C

9Cc_10 LASH L Clog =222 g 82> A36
t rar[KdDrar]+ax[K"D ax] Ko ox K% ar (4.36)

where K, and K. are the protein hindrance factors for diffusive and convective transport,
respectively (usually assumed equal to 1); us and vs are the ECS superficial velocities in the
axial and radial directions, respectively, calculated half-way between the pressure nodal points
using a central difference approximation of Darcy’s law; &; is the packed ECS porosity; Ils
has the same form as £, in Eq. A.33.

Equations A.34 and A.35 are subject to the boundary conditions

PL=PL,0 at x=0 , (A37)

PL= PL,N at X=L, (A38)
dp, =0 at x=0 and x=1L, (A39)
dx

dP =0 at r=Rgs (A.40)
dr

as well as the stipulation that the incoming and outgoing fluxes at the ECS/membrane
interface be equal, i.e.,

o, _

o IR, 22 (b, () - By Ry ) + Ty (5 Ry ) (A41)

at r = Ry, where

| 4R

2 2 —l
kg =—LR—?ln(R /R,,)-3R2 + R, | (A.42)



Appendix A: Modelling Equations Based on the Krogh Cylinder Approximation 115

The initial and boundary conditions for the ECS protein transport equation (A.36) are the
same as those specified by Taylor et al. (1994) (Eqs. A.21 — A.24), except that Eq. A.23 is

here replaced with

k. Ysc-x,0%C =0
or

at r=Ry,. (A.43)
Es

In a simplified one-dimensional (radially-averaged) version, Eqs. A.35 and A.36 become,

respectively,
s 2—R’2——Li[1> Ps (5 Ry ) + I (%, R, )] A44
dx?  “(RE-RL)k, L (%) - Ps (X, Ry ) + Il (x, Ry )] (A.44)

with boundary conditions identical to Eq. A.39, and

aC 3 ac| o ug —
— =—\K = et )
at  adx [ «D ax] ax [K‘ & C] ’ (A45)

subject to the same initial and boundary conditions as Eq. A.32 (Patkar et al., in press).
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Appendix B: KROGH CYLINDER EQUATIONS WITH PRESSURE
BOUNDARY CONDITIONS IN THE CLOSED-SHELL,
PARTIAL, AND FULL FILTRATION MODES

The expressions for the lumen and ECS pressures in the formulation by Kelsey et al.
(1990) have been re-derived here in terms of known inlet and outlet pressures, Py o, Py and

Pg 4n, rather than the filtration fraction f, to yield the following equations:

P, (x) =B, Lsinh()\L) + %—E] + B, [cosh()\%) - I:I +F, B.1)
P,(x) =B———snh()\ ) l— + B —lcosh(ki)—l + P, (B.2)
s T 7 v 2 Y I7 Lo .
where

(i) for f=1 (full filtration mode):

By in —PL,o
B = [N —sinh (A)]/y + [1/ + cosh(V)][1 + cosh(\)/y]/sinh (M) ®3)
_ 5 Yy+cosh(®)
B =-5 sinh(M) ®4)
(ii) for 0 < £ < 1 (partial filtration mode):
__ (Bn=Bo)lcosh) =1] + (£ — 7, )1 +cosh(A)/] .
e [A —sinh(\)][cosh(X) —1]/y + [A/y +sinh(A)][1 + cosh(N)/7] ®-5)
B, = fw ~Fo =B[Ny +sinh ) B.6)
cosh(A) —1
(iii) for f= 0 (closed-shell mode):
= PL,N —B,,o B.7)

My +sinh(X) —[1 = cosh(\)] /sinh (\)
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_ 5 1—cosh(A)
B, = B— NI (B.8)

Pry, Pry and Pggy, are the inlet lumen, outlet lumen and outlet ECS dimensional pressures,

respectively. + is a geometrical factor, defined as follows:

4 2 4
7=&4_4& ln_Ri+4& _3£S_ -1 (B.9)
where R;, Ry and Ry are the inner fibre radius, the outer fibre radius and the Krogh cylinder

radius, respectively. A is defined as

A =4.Jk(1+1/) (B.10)

where
Lp V& ®.11)
R '

K =

is the dimensionless membrane permeability.

The volumetric flow rates into and out of the hollow-fibre device are as follows:

nTR'\
QL,in == Sul Bl (I'H/'Y) (B.12)
ntRN )
Qo = — 8“2 [B, (1/y+ cosh(\)) + B, sinh(\)] (B.13)
Ot o = _nTR [B,(1 - cosh(\)) — B, sinh(\)] (B.14)
8ulL

where n is the number of fibres, u is the fluid viscosity and L is the reactor length.

For L=0215m, R =115-10""m, R,=12510"*m, R, =175-10""m and
L,=735-10 Sm, we obtain: y=0.677794, k =2.2339-10 ~*, A =0.094062. The above
parameter values correspond to the Gambro HFBR used in the body of the thesis (see Chapter

5), except that the value of L, =7.35-10 7> m was obtained from the following calculation:
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1.5 m%/1.26 m* - 6.18-10" m = 7.35-10"° m, where 1.26 m? is the total surface area of the
hollow-fibre membranes for the above-specified fibre dimensions, while 1.5 m” is the surface
area used in the determination of membrane permeability (see Section 5.3), which yielded

L,=618-10""m?
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Appendix C: PATANKAR'S POWER-LAW SCHEME

In situations where either diffusive or convective transport strongly predominates, i.e. for
either very small or very large absolute values of the Peclet number (Pe), the governing
differential equation is usually discretized using either central differences or the upwind
scheme, respectively. A more general approach proposed by Patankar (1980), which is valid
for any value of Pe, is outlined below.

The protein flux through each interface between two adjacent control volumes can be

expressed in terms of the local concentrations in these volumes (see Figure 4.1), i.e.,

Je=1u,;6: = D, (0¢c/0x); = (Byc,; - Az c;4;) D, /AX (C.1)
Jw=uyy;Cy = D,(0c/0x)y = (Byc, ;- 4yc,;)D,[Ax (C.2)
Ty = tyVijCx = iy D,(dc/dr)y = (By 65~ Ay €;41) D, 3(4 + 1)) /AT (C.3)
Jo= 15V, 65~ 6D,(d¢c/dr)s = (Bsc,;, - 45¢,) D, 3( + 1)) /At (C.4)

where D, and D, are the axial and radial protein diffusivities, respectively, and the subscripts

E, W, N, S denote the respective faces of the (i,j) cell. Each of the coefficients 4 and B is

defined as follows:

A= A(|Péd]) + max(-Pe,0) (C.5)
B= A(|Pe) + max(Pe,0) (C.6)

where the function max() returns the largest of the arguments in the parentheses. The form of

A(lPeI) depends on the discretization scheme employed. For example, A([Pe|)= 1 in the fully
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upwind scheme, while A(|Pe|) = 1~%|P¢l in the central-difference scheme. Patankar has

proposed the following expression, which is essential to his power-law scheme:

A(|Pd) = max(o, [1- o.1|Pe|]’). (C.7)

Equation C.7 yields values that are very close to those obtained from the exponential formula
A(|pd) = |Pe|/ [exp (|Pe]) - 1], which is exact in the one-dimensional case. However, the
evaluation of A(]Pe|) from the power-law scheme is numerically more efficient since it does

not include the exponential term.

The Peclet numbers on the faces of the control volume are evaluated as follows:

u.. Ax

Pe, = —— C.8

er D, (C.8)
u._. . Ax

Pe, = =4 C9

€y D, (C.9)
V.. Ar

Pe, = —1 — C.10

& =—5 (C.10)
o A

Pe, = Yeint 2F (C.11)
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Appendix D: SOURCE CODE IN FORTRAN

This program cslculates the coupled pressurs and

concentration fisids in the hollow-fibre bioreactor

eated as a porous bed. Unnonn grid, cﬁh&ioﬂ eoorﬂndu
Al yis thus

a z-dmamlond caee in which gravity foross are neglected,

Ateach ime level, the Alt: Direction ethod is used
to find concentration fieid, and the line-by-line method is used
iteratively to find the lumen and shell pressure fisids.

Thisis a general version that allows for no-flux condiion
atthe lumen inlet/outiet as well ae for open-shell operations.

WPLICIT REAL"S (A-H,L,0-Z)

INTEGER HR1,HR2,MIN1,MIN2,8EC1,8EC2,HSEC1,HSEC2
INTEGER MONTH1,MONTH2,DAY1,DAY2,YEAR,YEAR, DofW,APP,ERR
INTEGER EXF,ERF, ELF,PACKED,HARV, TIMAX
CHARACTER*20 STRin, STRout, 5TRR00,STRAPP

PARAMETER (K=18,N=100)

PARAMETER (PACKED=0,HARV=0)

PARAMETER (KDSP=1,KDISPC=1,NDISP=1,NDISPC=1)
PARAMETER (MAXI , MAXIS=6, TIMAX=1,MAXT=10000)
PARAMETER (INDTR=1,INDC=1,INDP8=0,INDPOs=0,INDV=0)
PARAMETER (IDATF=0,ITDAT=10,APP=0)

HARV=1 ifharvesting

PACKED=1 If the ECS is packed with cells

ITDAT=10: output into the Z3AG.D?7? file every 10iteralions

INDTR=t if ransientresults to be printed

INDC=1 if calculated conosntration values to be printad
{those at cell centres)

INDPS=1 i pressure values to be printed
(excapt for the camolic pressurs)

INDPOe=1 If ECS osmotic re values to be printed

IDATF=1 i rud C,P8,PL.T,DT,ACCF,I18,CTOTAL,CTOTO,TOTFLW
rom afi

DIMENSION PLO(O:K+1),PLN1(0:K+1)

DIMENSION X(0:N+1),R(0:K+1) XDISP(0:N),RDISP(0:K)

DIMENSION CH(0:N+1,0:K+1),C(0:N+1,0:K+1),CPOsm(1:N,1:K)
DIMENSION PS(0:N+1,0:K+1), PL(0:N+1,0:K+1)

DIMENSION PS1(0:N+1,0:K+1),PL1(0:N+1,0:K+1)

DIMENSION u(mu.o:xm.wo:nn.o:x).uumu.tr.xm

DIMENSION POsm(0:N, 1:K),CNSTRE(1:K|

DIMENSION CNSTR1(1:K),CNSTR3(1: K).cumazx),cusrmn K)
DIMENSION ACSR(1:2,1:3),B3R(1:8,1:K),ABCLR(1:3,1:3)
DIMENSION ABCSC(1:3,1:K,1:3), TB(0:MAXIS)

GCOMMON /ALFASLI ALFAS, ALFAS1,ALFAL ALFAL1,EPSPS,EPSPL
COMMON /XPL/ CXPL,CNSTPL

COMMON /XP8/ CXPS,CXP81,CXPSS

COMMON /CSTRY/ CNSTR1,CNSTR2

COMMON /CSTRY CNSTRS,CNSTR4,CXCN

COMMON /VEL/ CNSTU,CNSTUL,CNSTV,CNSTVR
COMMON /PLudl PLup0,PLUpK,PLANO,PLdNK

COMMON /GRIDC/ CRCN,CR12,L,RHFBR

COMMON /LOG/ LOGIND

COMMON ICNSTRE CNSTRE

COMMON /OSM OSM1,0SM2,08M22,2p2,A2,A3
COMMON /PECU CPew,CPns

COMMON /PIBL Pt

COMMON ISWR/ SWR,SWR1 swn,swu

COMMON ISWC/ SWD,SWD1,8WU,SWU

COMMON (ALY ALTERR,ALTERC| IRR.IRG ISWOFF,INITR
COMMON /FU F1,E,EL

COMMON /N12/ N1,N2

COMMON /BC! BCPLO,BCPLN,BCPSup,BCPSdn
COMMON /BCONC! COup

COMMON /PSupdn/ PSup, PSdn

COMMON ICNSTCNI CNSTCN

COMMON ICFLUX/ QCln,QCout, CTOTAL,CTOTO,CTOT1,VECS,TOTFLW
COMMON /RDSP/ RDISP,R

GOMMON /INDR2/ INDR2

COMMON /ERROR! ERR

COMMON /EXFRLS EXF,ERF,ELF

COMMON JOUTFLW/ Qoutl,Qout8

STRIn=Z3AG.DO0

STRout="Z3AG.DO0

STRROO="Z3AG.R00"

IF (APP.EQ.1) STRAPP="APPEND"

1F (APP.NE.1) STRAPP="SEQUENTIAL"
OPEN(UNIT=5,ACCESS=STRAPP,FILE=STRR00)
CALL DOSTIM (HR1,MIN1,8EC1,HSEC1)

CALL DOSDAT (MONTH1,DAY1,YEAR,DofW)

DATA (T8(1),1=1,MAXIS)
> 160.00,920.D0,180.D0,240.00,300.00,350.00/

EXF,ERF,ELF: ECS and lumen velocity multiplication factors for
output

EXF=1000000

ERF=1000000

ELF=1000

LOGIND=1.D0

EPSP8=1.0-8 { accuracy of P8
EPSPL~1.D-8 { acouracy of PL.

EPSCDT=1.08 !accuracy of dC/dt
9800

25 FORMAT( ALFAS: " F6.4)
26 FORMAT( ALFAL: F6.4)
c

Pi=4. DO'DATM(1 D0y
NFIBR=81
RL=1. 1--4

RM=1.
RHFBR=0.031500/2.00
RS=RHFBRIDSQRT(DBLE(NFIBR))
FI=RM*RWRS/RS

EPOR=1.D0-FI

L=0.215D0

LEC8=0.024D0 !length of the ECS port manifold
VECS=PI"LYRHFBR*RHFBR-DBLE(NFIBR)"RM*RM)
N1=LECS/L*N

N2=N-N1+1

WRITE(S,")'RADIAL GRID POINTS K
WRITE(5,")'AXIAL GRID POINTS: *,N
WRITE(5,")'N1=,N1,” N2=",N2

WRITE(S, "YMAXIS= MAXIS

SwrfAr=1.500
viso=1.1300-3 { viscosity of water st 15 deg C

IF (PACKED.EQ.0) THEN
DiftX=Diff"EPOR
DiffR=Di{f*EPOR/(2.D0-EPOR)
ECSPOR=1.D0

ELSE
ECSPOR=0,28D0
DifX=EPOR*2.D0*ECSPOR/(3.D0-ECSPOR)*Diff
DitfR=DiftX

VECS=VECS"ECSPOR

WRITE(5,")'ECS as a fraction of the total volume:",EPOR
WRITE(5,")'CELL-PACKED ECS POROSITY:",ECSPOR
WRITE(S5,"'EFFECTIVE EC8 POROSITY:E
WRITE(5,*Y DIFFUSIVITY: *, DY
WRITE{5,")'EFFECTIVE AXIAL DIFFUSIVITY: *,DiftX
WRITE(S, ") EFFECTIVE RADIAL DIFFUSIVITY: ,DiffR

BCPLO=1.D0 1 1=FLUX, 0=NO FLUX at the lumen iniet
BCPLN=1.D0 !1=FLUX, 0=NO FLUX at the lumen outiet
BCPSup=0.D0 ! 1=FLUX, 0=NO FLUX at the ECS upstream port
BCP8dn=0.D0 11=FLUX, 0=NO FLUX al the ECS downsiream port

IF (BCPLO.EQ.1.D0) THEN
PLup0=4572.200

PLupK=PLup0
WRITE(S,2) PLupO,PLupK

2 FORMAT( PLup0=",F.2,) PlupK=Fe.2)
END IF

IF (BCPLN.EQ.1.D0) THEN
PLdn0=0.00
PLdnK=PLdn0
WRITE(6,3) PLdn0,PLdnK
3 FORMAT( PLdn0="F9.2, PLAnK="F9.2)
END IF
PSup=106767.200
COup=10.00
IF (BCPSup.EQ.1.D0) THEN
WRITE(5,4)

6 FORMAT( COup=',F5.1)

END IF

PSdn=0.D0

IF (BCPSdn.EQ.1.D00) THEN
WRITE(S,8) PSdn

6 FORMAT( PSdn="F9.2)

END W

[

IF (IDATF.EQ.1) THEN
OPEN(UNIT=3,FILE=8TRin) ! READ DATA FROM
CALL INPF (18,T,DT,ACCF,CTOTAL,CTOTO,TOTFLW,PL1,PS1,C1)
CLOSE{UNIT=3)
07=0.1D0
WRITE(S,")ITERATION :*,ITER
WRITE{5,")'DT, s *,DT
WRITE(5,*)'ACCF ", ACCF
WRITE(5,")'Cavg *,CTOTAL/VECS
WRITE(5,)'CTOTAL ',CTOTAL
WRITE(5,")'CTOTY0:",CTOTO
WRITE(5,") TOTFLW, m3 " TOTFLW

ELS

€
P80=0.5D0%PLupO+PLAN0)
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c .00 ! of protein in the HFBR at t=0
WRITE(S,1) Cinit

FORMAT( Cinit=",F5.1)
CTOTAL=GINH*VECS ! total amount of protein in HFBR
CTOTO=CTOTAL 1 total amountof protsin In HFBR att=0

-

DT10M=2.00°DT1
ACCF=(T10M-DT1)/(T10M-DT10M)
WRITE(5,"'DT0,8 ', DT1
WRITE(S,*Y0T10m,s ", DT10M
&RI}E(S.‘)'ABOF"MGF

MPX8=1 |
MPR3=1 ¢
CALL PRMBS(RL,.RM,RS,F1,MPXS,MPRS, PRMXS, PRMXL,PRMRS)

DX=L/DBLE(N)

DR=RHFBR/DBLE(K)

CPew=DX/DIftX

CPne=DR/DIIR

CNSTCN=2.D0*PI"RHFBR*DX/CPns

CXCN=DIfB/DX/DX

CRCN=DIffR/DR/DR

CP=8urfAr*Lp/PVL/RHFBR/RHFBR

CR12=4.D0*PRMRS/CPIOR

CXPS=d, DOPRMXS/CPIOX/DX

CXP81=(CXP8-1.D0)

CXP83={CXP8-0.75D0)

CXPL=4.D0*PRMXLICPIDX/DX

CNSTPL=-2.D0*CXPL+2.D0

CNSTU=-PRMXS/visc/DX | ECS superficial velocity coefficient
CNSTV=PRMRS/visc 1 ECS superficial velocity coeficient
CNSTVR=PRMRS/Msc/DR ! ECS superficial velocity coefficient
CNSTUL=-PRMXLMsa/DX 1 LUMEN superficial velocity coeficient

BWRSWR1={, SWL=BWL 120: sweep io the right, row-bysow update
SWL=SWL1=1,SWR=SWR130: sweep to the left, row-byrow update
SWR1=SWL1=1,SWR=SWL=0: iterstion-by-iteration updats

SWD 1=8WU 1=, ther

by

1SWOFF=1 if a converged pressure (PL or P8) is to be switched
offin further Rerations;
1SWOFF=0 if both pressures are iteraled uniil both converge;

INITR=0 if column nmplnnMplhrbroann
INITR=1 if row sweeping starts first

INDR2=1 if second sweep over rows instead of sweep over
0 in

Ao00NnNONNNONANOCOO000

INDR2=1

AI.TERR-O { ALTERR=1 {f row sweap in alternats directions
SWD1=1.D0

SWD=SWD1=1,8WU=8WU1=0: sweep downwards, column-by-column update
SWUEWU1=1,8WD=8WD 1=0: sweep upward-. column-by-column update
update

122

ITERSITER+1
(TERD={TERD+1

ERR=0
WRITE(S,) ITERATION:",ITER
WRITE(6,") TIME:",T
CALL OSMOT(N,K,G1,POam,CPOsm)
CALL PRESRS(PL1,P81,PL,PS,CPOsm,ACSR,BSR,ABCLR,ABCSC,MAXITP)
iF (ERR.EQ.1) THEN
OPEN(UNIT=5,ACCESS=APPEND",FILE=STRR00)
WRITE(5,") MAXIMUM NUMBER OF ITERATIONS (PRESSURES)'
CLOSE(UNIT=6)
END IF
CALL VELs(Ps.PL.u.v.UL.Rmsr DX)
TOTFLW=TOTFLW+DT*QoutS
CALL CONCN(U,V,DT,C1,C)
1F (ITERD.EQ.ITDAT) TH
OPEN(UNIT=4,FILE=STRout) ! WRITE THE LAST OUTPUT TO A FILE
1 TO LATER READ DATA FROM
CALL OUTF (I8,7,DT,ACCF,CTOTAL,CTOTO, TOTFLW,PL.P8,C)
CLOSE(UNIT=4)
ITERD=0
END IF
CALL CLCMAX(0,N+1,0,K+1,C1,C,CMAX)
WRITE(S,%)’ CMAXDT:",CMAX/DT
OPEN(UNIT=5,ACCESS="APPEND",FILESSTRR00)
WRITE(S,16)ITER,T,DT,CMAX,CMAX/OT

16 FORMAT(1X,14,": T=",F14.2,’ DT= F14.4,

> * CMAX®,F12.6, CMAX/DT~,F12.8)

CLOSE(S)

IF (CMAX/DT.LE.EPSCDT) THEN
OPEN(UNIT=5,ACCESS=APPEND",FILESSTRR00)
WRITE(5,"Y'STEADY STATE'

GO TO 200

ELSE

IF (ITER.EQ.MAXIT) THEN
OPEN(UNIT=5,ACCESS='APPEND" FILESSTRR00)
WRITE(S,20)

20 FORMAT(" MAXIMUM NUMBER OF ITERATIONS REACHED")

IF (T.GE.T8(1S).AND.1S.LE.MAXIS.AND.I1S.NE.0) THEN
IF (18.LT.MAXIS) THEN
19=841
ELSE IF (IS.EQ.MAXIS) THEN
18=0

END IF
END IF
GO TO 200
ELSE iF (TIMAX.EQ.1.AND.T.GE.TS(MAXIS)) THEN
OPEN(UNIT=5,ACCESS="APPEND",FILESSTRR00)

WRITE(5,30)
30 FORMAT(" MAXIMUM TIME REACHED")

G0 TO 200

E
DT=DT*ACCF
CALL SUBST(N,K,PS1,P8,C1,C)
IF (NDTR.EQ.1) THEN
IF (T.GE.TS{IS).AND.IS.LE.MAXIS.AND.IS.NE.0) THEN
OPEN(UNIT=S.ACCE38— -APPEND",FILE=STRRO0)
ALL OUTPUT (PS,PL,U,V,UL,C.X,R XDISP,RDISP,CMAX,ITER,
> |s T,DT,NDISP,NDISPC,KDSP,KDISPC,INDC,INDPS,INDPOs,INDV)
CALL FLUX (UL, V,RDISP,DX,DT,HARV)
CLOSE(UNIT=5)
OPEN(UNIT=4,FILE=STRout) ! WRITE THE LAST OUTPUT TO A
{ FILE TO LATER READ DATA FROM
CALL OUTF (18,T,0T,ACCF,CTOTAL, CTOTO, TOTFLW,PL,PS,C)
CLOSE(UNIT=4)

SWD=1.00 IF (18.LT.MAXIS) THEN
8WU1=0.D0 18=1;
SWU=0.D00 ELSE IF (1S.EQ.MAXIS) THEN
ALTERC=0 ! ALTERC=1 i ool sweep in alt: be o 18=0
IRR=1 ! {RC column sweeps svery IRR row sweeps END IF
IRC=20 ! IRR row sweeps every IRC column sweeps END IF
c { no row sweeping if IRR=0, no column sweaping if IRC=0) END tF
IF (IRR.EQ.0) INITR=0 G0 TO10
IF (IRC.EQ.0) INITR=1 END IF
c END iF
Rgas=8.314D0 c
TEMP=289.00 200 CALL OUTPUT (PS,PL,U,V,UL,C.X,R.XDISP,RDISP,CMAX,ITER,I8,T,DT,
XNMp=89.00 > NOISP,NDISPC,KDSP,KDISPC,INDC,INDPS,INDPOs,INDV)
Xms=150.00 CALL FLUX (UL,U,V,RDISP,DX,DT,HARV)
OSM1=Rgas " TEMP/XMp IF (ITERD.GY.0) THEN
0O8M2=2.00"Xms"XMp OPEN(UNIT=4,FILE=STRout) { WRITE THE LAST OUTPUT TO AFILE
OSM22-0SM2°0SM2 1 TO LATER READ DATA FROM
Zp=-20.400 CALL OUTF (IS,T,DT,ACCF,CTOTAL,CTOTO,TOTFLW,PL,P8,C)
Zp2=Zp*Zp CLOSE(UNIT=4)
A2=5.825D0-4-2.4104"2p-3.664D-5"Zp2 END IF
A8=2.950-5-1.061D-5'Zp+1.7260-T"2p2 CALL DOSTIM (HR2,MIN2,SEC2,HSEC2)
4 CALL DOSDAT (MONTH2,DAY2,YEAR,DofW)
IF (IDATF.NE.1) THEN CALL EXECTIME (HR1,HR2,MIN1,MIN2,8EC1,8EC2,HS8EC1,HSEC2,
T=0.00 > MONTH1,MONTH2,DAY1,DAY2)
0T=0T1 CLOSE(UNIT=S)
18=1 sTOP
TOTFLW=0.D0 [+
END IF END
ITER=0 c
ITERD=0 C
c [+
CALLGRID SUBROUTINE PRMBS(RL,RM,RS,F1,MPXS, MPRS,PRMXS3,PRMXL,PRMRS)
> (N,K,DX,DRX,R.XDISP,RDISP,CNSTR1,CNSTR2,CNSTR3,CNSTR4,CNSTR6) IMPLICIT REAL*8(A-H,L,0-7)
CALL PLBNDR(N,K X,R,PLO,PLN1,PSO,PL1) (]
IF (IDATF.NE.1) CALL INIT(N,K X,R,Cinit,C1,PS0,P81) CONST=RM*RW4.DO/FI
CALL COEFP(ACSR,BSR,ABCLR,ABCSC) FIZ=FI'FI
IF (T8(1).EQ.0.D0) THEN GO TO (10,20,30,40), MPXS

CALL VELS(P81,PL1,U,V,UL,RDISP,DX)
CALL OUTPUT (P$1,PL1,U,V,UL,C1,X,R XDISP,RDISP,0.D0,ITER,IS,
>  ¥,DT,NDISP,NDISPC,KDSP,KDISPC,INDC,INDPS,INDPOs,INDV)
18=2

C Happel; Taylor,Piret,Bowen
10 PRMXS=CONST*(-DLOG(F1)-1.500+2.D0*FI-0.5D0*FI2)
WRITE(5,")'AXIAL PERMEABILITY: Happel; Taylor,Piret, Bowen"
GO TO 100

END IF C Dr d-Tahir, al tri lar array
CLOSE (UNIT=5) 20 PRMXS=CONST*(-DLOG(FI)-1.4975D0+2.D0*FI-0.6D0*FI12)
c

WRITE(5,*)’ AXIAL PERMEABILITY: Drummond, Tahir, triangular array’
10 T=T+DT GO TO 100
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€ Drummond-Tshir,square aray
30 PRMXS=CONST*{-DLOG(F1)-1.476300+2.00°F1-0.5D0°F12-

>  0.06100°FIZ*FI2/(1.00+1. 519800'FI2‘F|2))
WRITE(S, ") AXIAL PERMEABILITY: Drurmimond, Tahir, squares mtay’
Q0 TO 100

C arbitrary value

40 PRMS24.84D-10

© 40 PRMXS=1.03D-18
WRITE(S, ") AXIAL PERMEABILITY: an arbitrary value’

c
100 PRMXL=0.125D0*RL*RL*RL*'RURS/RS
[

CONST=CONST*0.5D0
G0 TO (110,120,130,140,150,160,170), MPRS
H;

[+] appel

110 PRMRSaCONSTY-DLOG(FI)4(FI2-1.D0)(FI2+1.00))
WRITE(5,")'RADIAL PERMEABILITY: Happel'
GO TO %00

C Kuwsbara

120 PRMRSaCONST*-DLOG(FI)-1.500+2.00°FI)
WRITE{5,")' RADIAL PERMEABILITY: Kuwabara'
GO TO 300

C Sangani-Acrivos,equilateral riangular

130 PRMRS=CONST*(-DLOG(FI)-1.49D00+2.D0*FI-0.500*F12)
WRITE(S,")’'RADIAL PERMEABILITY: Sangani-Acrivos,
>irianguiar mray’
GO TO 300

C Sangani-Acrivos,square airay

140 PRMRS=CONST*(-DLOG(FI)-1.476D0+2.D0"F1-1.774D0"FI2+
» 4.07600°FI2*FI)
WRITE(S, ") RADIAL PERMEABILITY: Sangani-Acrivos, square array’
G0 TO %00

C Drummond-Tahir,equilatersl triangular avay

150 PRMRS=CONSTX-DLOG(FI)-1.487500+2.D0°FI-0.5D0*F12-
»  0.799100*FIZ*FI2)
WRITE(5,")'RADIAL PERMEABILITY: Drummond, Tahir,trisnguiar srray’
GO TO 300

€ Drummond-Tahir,square aray

160 PRHRS-CONS‘I"‘(-DLOG(HHA'I&DOO(?.DM 7950D0°FI2y
»  (1.D040.4892D0°FI-1.6049D0"F'
WRITE(S,*)'RADIAL PENAEABIU‘!V Drummond, Tahir, square array’
QO TO 300

WRITE(5,"YRADIAL PERMEABILITY: an arbitrary value’
c

300 WRITE(5,400) PRMXS,PRMXL,PRMRS
400 FORMAT( PRMXS=",E18.8&/,' PRMXL=",E18.8/,' PRMRS=",E18.8)
c

RETURN
END

[+X+X-]

SUSROUTINE PLBNDR(N,K X,R,PLO,PLN1,P80,PL)
IMPLICIT REAL*8(A-H,L,0-2)

DIMENSION PLO(0:K+1),PLN1(0:K+1),R(0:K+1),X(0:N+1)
DIMENSION PL{0:N+1,0:K+1)

GCOMMON /PLud/ PLup0,PLupK,PLdN0,PLdnK
COMMON /BC! BCPLO,BCPLN,BCPSup,BCPSdn

c
L=X(N+1)
[+

IF (BCPLO.EQ.1.D0) THEN
PLOO)=PLUPO
PLO(K+H)=PLupK
[] K-PLUPO
oo 104=1,K

LOW)=PLupO+RWVR(K+1)*DPLup
10 covmuu
ELSE
DO 12J20,K+1
PLOW)=0.00
12 CONTINUE
END IF
IF (BCPLN.EQ.1.00) THEN
PLN1(0)=PLdn0
PLNA(K$1)=PLdNK
DPLdn=PLdnK-PLANO
DO 20J=1,K
PLN1WJ)}=PLdnO+RIVR(K+1)*DPLdn
20 CONTINUE
ELSE
DO 22J20,K+1

c
IF (BCPLO.EQ.1.D0.AND.BCPLN.EQ.1.D0) THEN
DO 80 J=0,K+1
A=PLOW)

PLOJ)=A
consr-(rmwwL
DO 60 1=1
mm)#w«n'cous'r
50 CONTI
PL(N+1 J)=PLN1(J)
60 CONTINUE
END IF
IF (BCPLO.EQ.1.D0.AND.BCPLN.EQ.0.D0) THEN
DO 80 J=0,K+1
A=PLO()
DO 70 1=0,N+1

END IF
IF (BCPLO.EQ.0.D0.AND.BCPLN.EQ.1.00) THEN
DO 100J=0,K+1
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100 CONTINUE
END IF
IF (BCPLO.EQ.0.D0.AND.BCPLN.EQ.0.D0) THEN
DO 120 =0,K+1
DO 110{=0,N+1
PU(1LJ)=P8O
110 CONTINUE
120 CONTINUE
END IF
4]
RETURN
END

c
C
c
SUBROUTINE GRID
» (N,K,DX,DR.X,R XDISP,RDISP,CNSTR1,CNSTR2,CNSTR3,CNSTR4,CNSTRE)
IMPLICIT REAL*8(A-H,L,0-Z)
DIMENSION X(0:N+1),R(0:K+1) XDISP(0:N),RDISP(0:K),CNSTRE(1:K)
DIMENSION CNSTR1(1:K),CNSTR2(2K),CNSTR3(1:K),CNSTR4(1:K)
COMMON /GRIDC/ CRCN,CR12,L,RHFBR
COMMON /LOG/ LOGIND
COMMON /VEL/ CNSTU,CNSTUL,CNSTV,CNSTVR

X(0=0.D0
XDISP(0)=0.D0
X(1)=0.6D0*DX
XDISP(1)=DX
DO 101=2,N
1)=X(1)+DX*DBLE(}-1)
XDISP(1)=XDISP(1+DX*DBLE(I-1)
10 CONTINUE
X(N+1)=L
c

R(0)=0.D0

RDISP(0)=0.D0

R(1)=0.500°DR

ROISP(1}=0R

DO 20J=2,K
RE)=R(1+DR*DBLEW-1)
RDISP(J)=RDISP(1}+DR*DBLEW-1)

20 CONTINUE
R(K+1)=RHFBR
c

IF (LOGIND.EQ.1.D0) THEN
CNSTR1(1)=CR12R(1¥DLOG(R(2VR(1))
CNSTRS(1)=CNSTVIRDISP(1VDLOG(R(ZVR(1))
DO 30J=2,K-1

CNSTRWJ)=CR1ZR(JVDLOG(RWHINRW))
CNSTRS(J)=CNSTV/IRDISPWNDLOG(RW+IVRW))
CNSTR2AJF=CRIZRWUYDLOG(RWNR(J-1))

30 CONTINUE
CNSTR1(K)=CR1ZIR(KVDLOG(R{K+1VR(K))
CNSTRS(K)=CNSTVIRDISP(KYDLOG(R(K+1¥R(K))
CNSTRAK)=CR12R(KVOLOG(R(KVR(K-1))

ELSE
CNSTR1(1)2CR1ZDR/R(1)"0.5D0%R(1}+R(2))
CNSTR2(K)=CR12DR/R(K)"0.500*(R(K-1)+R(K))
DO 40J=2,K-1

CNSTR1(J)=CR12DR/RWJ)*0.5D0*RWH)+RW))
CNSTR2()=CR1ZDR/RWJ)*0.5D0%R(WJ-1)+RiW))

40 CONTINUE
CNSTR1(K)=CRIZDR/R(K)*2.DO'R(K+1)

END IF

DO 50J=1,K
CNSTR3(J)=CRCN*(1.D0+0.500*DR/R(J))
CNSTR4(J)=CRCN*(1.D0-0.5D0*DR/R(J))

50 CONTINUE

c
RETURN
END

c
[
[
SUBROUTINE INIT(N,K X,R,Cinit,C,P80,P8)
IAPLICIT REAL*8{(A-H,L,0-2)
DIMENSION X(0:Na1),R(G:K 1), CLO:N 41, 0:K+1)
DIMENSION PS(0:N+1,0:K+1)
COMMON /N1 N1,N2

COMMON /BC/ BCPLO,BCPLN,BCPSup,BCPSdn
COMMON /BCONC! COup

DO 20 1=0,N+1
DO 10J=0,K+1
C(1,J)=Cinit
IF {1.LE.80) THEN
€(1,J)=0.D0

ELSE
C{1,J)=6.D00*Cinit
END IF

10 CONTINUE
20 CONTINUE
IF (BCPSup.EQ.1.D0) THEN
DO 221=0,N1
C(1,K+1)=Coup
22 CONTINUE
END IF

0no0ao

DO 40J=0,K+1

40 CONTINUE
Cc
RETURN
END
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Qoo

SUBROUTINE COEFP(ACSR, BSR,ABCLR,ABCSC)
IMPLICIT REAL*8(A-H,L,0-Z)
PARAMETER (K=18,N=100)
DIMENSION ACSR(1:2,1: s).ssm 9,1:K),ABCLR(1:3,1:8)
DIMENSION ABCSC(1:8,1:K,1:3)
DIMENSION CNSTR1(1: x),cnsmz(zx)
COMMON /CSTR1/ CNSTR1,CNSTR2
COMMON XPLI CXPL
COMMON /XP8/ CXP8,CXPS1,CXP83
COMMON /BC/ BCPLO,BCPLN, BCPSup,BCPSdn

ACSR(1,1)=0.D0
ACSR({2,1)=CXP8-0.75D0
ACSR(1,2)=CXP8-1.00
ACSR(2,2)=CXP8-1.00
ACSR(1,3)=CXP8-0.76D0
ACSR(2,3-0.00

BBR(1,1)={CNSTR1(1)4CXPS+8.2500)
BSR(2,1)={CNSTR1(1)+2.D0°CXPS+2.00)
BSR(3,1)=B3R(1,1)

DO 10J4=2,K-1
BSR(1,J)=(CNSTR1(JHCNSTRAJ)CXPS+3.2500)
BSR(2,J)={(CNSTR1(J)}+CNSTR2(J)+2.D0*CXPS+2.D0)
BSR(3,J-BSR(1,J)

10 CONTINUE
BIR(1,K)(CNSTRAK)}+CXPS+3.2500)
BSR(2,K)={(CNSTR2(K)+2.D0*CXP8+2.D0)
BSR(3,K)=BSR(1,K)

c

IF (BCPLO.EQ.1.00) THEN
ABCLR(1,1)=0.00
ABCLR(2,1)={3.D0°CXPL+1.D0)
ABCLR(S,1)=CXPL-1.D0

ELSE IF (BCPL0.EQ.0.D0) THEN
ABCLR(1,1)0.D0
ABCLR(2,1)={CXPL#+3.25D0)
ABCLR(3,1)=CXPL-0.75D0

ENDIF

ABCLR(1,2=CXPL-1.00

mcl.n(z.z-(z.oo-cxpuzoo)

ABCLR(8,2)=CXPL-

IF (BCPLN.EQ.1. no) 'rueu
ABCLR(1,8)=CXPL-1.D0
ABCLR(2,3)={(3.D0*CXPL+1.D0)
ABCLR(3,3)=0.00

ELSE IF (BCPLN.EQ.0.D0) THEN
ABCLR(1,8)=CXPL-0,7600
ABCLR(2,3)=(CXPL+3.2500)
ABCLR(3,8)=0.D0

END IF

ABCSC(1,1,1)=0.D0
ABCSC(1,1,2-(CNSTR1(11+CXP8+3.2500)
ABCSC(1,1,3)=CNSTR1(4)

ABCSC(2,1,1720.D0
ABCSC(2,1,2/={CNSTR1(1}+2.D0°CXPS+2.D0)
ABCSC(2,1,8=CNSTR1(4)
ABCSC(S,1,1}=0.00
ABCSC(3.1,2)={CNSTR1(1}+CXP8+3.2500)
ABCSC(3,1,3)=CNSTR1{1)
DO 20J=2,K-1
ABCSC(1,d,1)=CNSTR2{J)
ABCSC{1,4,2)=(CNSTR1(J}+CNSTR2AJHCXPS+3.25D0)
ABCSC(1,4,8)=CNSTR1(J)
ABCSGC(2,J,1)=CNSTR2(J)
ABCSC(2,4,2=(CNSTR1(JIHCNSTRAJ)}+2.D0°CXPS+2.D0)
ABCSC(2,J, 3}=CNSTR1()
ABCSC(8,J,1)=CNSTR2(J)
ABCSC(8,J,2={(CNSTR1(JHCNSTR2AJHCXPS+3.2500)
ABCSC(8,J,8)=CNSTR1()

20 CONTINUE
ABCSC(1,K, 1)=CNSTR2(K)
ABCSC(1,K,2)=(CNSTRAKHCXPS+3.2500)-BCPSup*CNSTR1(K)

1.K,8)=0.00
ABCSC(2,K, 1)=CNSTR2(K)
ABCSC(2.K,2)={CNSTRAKH2.D0*CXPS+2.00)
ABCSC(2,K,3)=0.D0
ABCSC(3.K,1)=CNSTR(K)
ABCBC(S,K,2)=-{CNSTRAK)CXPS+3.2500)-BCPSAn* CNSTR{K)
ABCSC(3,K,8)=0.00

RETURN
END

ago

SUBROUTINE OSMOT(N, K,C,POsm,CPOsm)

IMPLICIT REAL*8(A-H,L.0-Z)

DIMENSION C(0:N+1,0:K41),POsm(0:N, 1:K),CPOsm(1:N, 1:K)
EXTERNAL FUNCTION FP

Setup POsm

ono

D0 50J=1,K
PO8m(0,J)=FP(C(0,J))
POWN(N,J)=FP(C(N+1,J))
DO 201=1,N-1

PM(IJPFHO(IJ»
20 CO!

o]
C Setup CPOsm
[+

DO 401=1,N
CPOsm(l,J)=4.DO*POm(1,J)
40 CONTINUE
50 CONTINUE
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RETURN
END

0oan

DOUBLE PRECISION FUNCTION FPOQ)

IMPLICIT REAL*8(A-H,L,0-Z)

COMMON /OSW OSM1,03M2,08M22,Zp2,A2,A8
c

FP=OSMI{DSARTZP2A X+OSM22)- OSMBX+ATK X +ATKX*X)
c

RETURN
END

c
o
c
SUBROUTINE
> PRESRS(PL1,PS1,PL,PS,CPOm,ACSR,BSR,ABCLR,ABCSC,MAXITP)
IMPLICIT REAL*8(A-H,1,0-Z)
INTEGER ERR
PARAMETER (K=18,N=100)
DIMENSION PLO(0:K+1),PLN1(0:K+1), CPOsm(1:N,1:K)
DIMENSION PL(O:N+1,0:K+1),PL1(0:N+1,0:K+1)
DIMENSION PS(0:N+1,0:K+1),PS1(0:N+1,0:K+1)
DIMENSION ACSR(1:2,1:8),BSR(1:8,1:K), ABCLR(1:3,1:3)
DIMENSION ABCSC(1:3,1:K,1:3),D(1:N,1:K)
COMMON /ALFASLI ALFAS,ALFAS1,ALFAL ALFAL1,EPSPS,EPSPL
COMMON ISWR/ SWR,SWR1,SWL,aWL1
COMMON /SWC! SWD,SWD1,8WU,8WU1
COMMON /ALT/ ALTERR,ALTERC, IRR, IRC,ISWOFF,INITR
COMMON IN12f N1,N2
COMMON /BC/ BCPLO,BCPLN,BCPSup,BCPSdn
COMMON /PSupdn/ PSup,PSdn
COMMON /PRESITI IT
COMMON /ERROR! ERR

SWR=SWR1=1,8WL=SWL1=0: sweep to the right, row-by-row update
SWL=SWL1=1,SWR=SWR1=0: sweep o the left, row-by-row update
SWRI=SWL1=1,SWR=SWL=0: Reration-by<teration update

SWD=8WD1=1,8WU=8WU1=0: sweep d . J by-col update
SWU=8SWU1=1,8WD=SWD1=0: sweep upwards, oolumn-by-odumn update
SWD 1=8WU1=1,SWD=SWU=0: iteration-by-iteration update

ISWOFF=1 if a converged preseure (PL or P8) is {0 be switched
off in further iterations;
ISWOFF=0f both pressures are iterated until both converge:

INITR=0 If column sweeping starts prior to row sweeping
INITR=1 {f row sweeping starts first

0000000000

INDS=0

INOL=0

IF (INITR.EQ.1) THEN
INDSR=0

INDSC=IRC
ELSE

INDSR=RR

INDSC=0
END IF
PLMAX=1.D10
PSMAX=1.D010
m=0

c
30 IT=T#+1
WRITE(6,")’ PRESSURE ITERATION: *,IT
[+]

C  Sweep over rows

c
IF (INDS.EQ.0.AND.IRR.NE.O.AND (INDSC.EQ.IRC.OR.INDSR.LT.IRR))
> THEN

INDSR=INDSR+1
CALL CLCDS(N,K,PL1,CPOsm,D)
IF (SWR.EQ.1.00.0R.SWR1.EQ.1.00) THEN
K1=1
K2=K
K=t
ELSE
K=K
K2=1
KS=1
ENDIF
00 35J=K1,K2,KS
CALL SWEPSR(ACSR,BSR,D,P81,P8,J,ALFAS,ALFAS1)
P8(0,J)=1.12500"P8(1,4)-0.126D0*P8(2,J)
PS(N+1,J)=1.126D0"PS(N.J)-0.125D0*PS(N-1.))
35 CONTINUE
DO 36 I=1,N1
P8(1,00=1.125D0*P8(l, 1)-0. 1260 0*PS(1,2)
P8(I,K+1)=(1.D00-BCPSup)*(1.125600*P8(},K)-0.125D0*P8(1,K-1))
> +BCPSup*PSup
38 CONTINUE
DO 37 I=N1+1,N2-1
PS(1,01=1.125D0*PS(1,1)-0.125D0°PS(1,2)
P8(1,K+1)=1.12600*PS(1,K)-0.126D0*PS(1,K-1)
37 CONTINUE
DO 381=N2,N
P8(1,01=1.125D0*PS(1,1)-0.125D0*PS(1,2)
P8{1,K+1)(1.00-BCP8dn)*(1.126D0*P8(1,K)-0.125D0*PS(l,K-1))
> +BCPSdn*PSdn

33 CONTINUE
PS8(0,0=1.265625D0°PS(1,1)-0. 140625D0*(PS(1,2+PS(2,1))
> 40.015625D0°PS(2,2)
P8(0,K+1)=(1.D0-BCPSup)*(1.286625D0°PS(1,K)-0.140626D0*
> (PB(1,K-1)$P8(2,K))+0.01562500°PS(2, K-1))
>  +BCPSup*PSup
ps«m =1, mzsoo-rs(u 1)-0.1408265D 0*(PS(N, 2}+PB(N-1,1))
> 016625D0*PS(N-1
PS(NM K1), wacpsdn)'u 266625D0*PS(N,K)-0.140626D0*
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>
IF (ALTERR.EQ.1) THEN
IF (SWR.EQ.1.00) THEN
SWR=0.00

> (P8({N,K-1)+P8(N-1,K))+0.015626D0*PS(N-1,K-1))
+BCPSdn*P8dn

1F (INDSR.EQ.IRR) INDSC=0
CALL CLCMAX(0,N+1,0,K+1,P8,P81,PSMAX)
POMAX=PSMAX/ALFAS
WRITE(S,")  PBMAX=',PSMAX
IF (PBMAX.LE.EPSPS) THEN
IF (ISWOFF.EQ.1) THEN
INDS =1
ELSE
IF (PLMAX.LE.EPSPL.OR.INDL.EQ.1) INDS=1
END IF

ELSE
IF (IT.EQ.MAXITP) THEN
ERR=1
INDS=1
END IF
DO 50 J=0,K+1
DO 40 120,N+1
PS1(1I1=PB(LY)
40 CONTINUE
50 CONTINUE
ENO IF
END IF

C
C  Sweep over columns
[+
IF (INDS.EQ.0.AND.IRC.NE.O.AND.{INDSR.EQ.IRR.OR.INDSC.LT.IRC))
» THEN

INDSC=INDSC+4

CALL CLCDS(N,K,PL1,CPOwm,D)

IF (SWD.EQ.1.D0.OR.8SWD1.EQ.1.00) THEN

NN1=1
NN2=N

DO 70 1=NN1,NN2,NNS
CALL BWEPSC(ABCSC,D,P81,P8,1,ALFAS,ALFAS1)
PB(1,0y=1.12500°PS(1,1)-0.1250:
PS(1,K+1)=1,125D0°PS(1,K)-0.425D0*P8(1,K-1)
70 CONTINUE
DO 71 1#1,N1
P8(1,K+1)=(1.D0-BCPSup)*(1.12500°PS(1,K)-0.125D 0*PS(1,K-1))
> +BCPSup*PSup

71 CONTINUE
DO 721=N141,N21
P8{t,K+1)=1.12500°P8((,K)-0.125D0*PS(1,K-1)
72 CONTINUE
DO 78 I=N2,N
P3(1,K+1)~(1.D0-BCPSdNn)*(1.12500*P8(1,K)-0.12500*PS{{, K-1))
> +8CPSdn*P8dn
78 CONTINUE
DO 76 J=0,K+1
P8(0,J)~1.126D0*PS(1,J)-0.126D0*PS(2,J)
P8(N+1,J)=1.12500*P8(N,J)-0.126D0*P8(N-1,J)
78 CONTINUE
P8(0,00=1.. 26662500'?8(1.1)-0 14062500%(PS(1,2+P8(2,1))
> +0.01562600*P3Y(;
P8(0,K+1)=(1, DO—BOPSup)'ﬂ 26582500*P8(1,K)-0.140625D0*
> (PS(1,K-1HPS(2,K))+0.015626D0*PS(2,K-1))
+BCPSup*PSup

>
PS(NH 0)=1.! 20662800‘?8(".1)4).1“2500‘(?8(" 2+PSIN-1,1))
> 015625D0*PS(N-
PS(N“ K+1)=(1.| DO-BOP&M)'« 265625D0*PS(N, K)-0.140625D0*
(PS(N, K-1)4-P9(N-1 K)H+0.01662500*PS(N-1,K-1))

IF (ALTERC. EQ.1) THEN
iF (8WD.EQ.1.D0) THEN
8WD=0.D0
8WD1=0.D0
SWU=1.D0
SWU1=1.D0

>

ELSE

SWD=1.D0

8WD1=1.00

8SWU=0.00

8WU120.D0

END IF

END IF
IF (INDSC.EQ.IRC) INDSR=0
CALL CLCMAX(0,N+1,0,K+1,P8,P81,PSMAX)
PSMAX=PSMAX,

IF (ISWOFF EQ.9) THEN
INDS=1

ELSE
IF (PLMAX.LE.EPSPL.OR.INDL.EQ.1) INDS=1
END IF
ELSE
{F (IT.EQ.MAXITP) THEN
ERR=1

INDS=1
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[
IF (INDL.EQ.0) THEN
CALL CLCDLR(N,K,P81,PL1,CPOsm,D)
PLI0,0)=PL1{0,0

PLIN#1KH)=PLI(N1,K+1)
DO 100Js1,K
PLIOJ)=PL1(0,))
PLINMJ=PLIN#Y)
CALL SWEPLR(ABCLR,D,PL1,PLJ,ALFALALFAL1,N,K)
100 CONTINUE
DO 101 I=t,N
PL{,00=0.125D0°(15.D0°PL{1, 1)-10.DOPL{1, 2+3.DOPL(L,3))
PL(1,K+1)=0,12500%(15.D0°PL(1,K)-10.D0*PL(1,K-1)
> +3.00°PL(,K-2)
101 CONTINUE
IF (BOPLD.EQ.O.DO) THEN
DO 102J=1,K
mo,.l)-1.1mowu1..|m1zsoo-mu)
102 CONTINU
PL(0,09=0. 1@0«1mwuon)-mno-puo,mnoﬂmo.s»
PL{O,K+1)=0.12500*(15.D0°PL(0,K)-10.D0*PL(0,K-1)
> +8.00*PL(0,K-2)
ENO IF
1F (BCPLN.EQ.0.D0) THEN
DO 108J=1,K
mn«m 125D0*PL(N,J)-0.125D0*PL(N-1,J)
103 CONTINU
PL(N#1, o)-o.wsoo'ﬁs.no-puun 1)-10.D0°PL{N+1,2)
48,

DOPLING,3)
PLIN#1,K#1)=0.125D0%(15.00°PL(N+1,K)-10.DO*PL(N+1,K-1)
> +3.D0°PL(N+1,K-2)

END IF
CALL CLCMAX(0,N41,0,K+1,PL,PL1,PLMAX)
PLMAX=PLMAX/ALFAL

WRITE{6,")  PLMAX=,PLMAX
IF (PLMAX.LE.EPSPL) THEN
IF (IBWOFF.EQ.1) THEN
INDL=1
ELSE
IF (PSBMAX.LE.EPSPS.OR.INDS.EQ.1) INDL=1
END IF
ELSE
IF (IT.EQ.MAXITP) INDL=1
DO 120J=0,K+1
DO 1101=0,N+1
PLULA=PLAY)
110 CONTINUE
120 CONTINUVE
END IF
END IF

>

c
C Check convergence of the pressures
[+]

1F (INDS*INDL.EQ.0) GO TO 30
WRITE(S,") IT,' PRESSURE ITERATIONS'

RETURN
END

[2X+X~]

SUBROUTINE CLCMAX(N1,N2,K1,K2,A,A1,AMAX)
IMPLICIT REAL*S(A-H,L,0-Z)
DIMENSION A(N1:N2,K1:K2),A1(N1:N2,K1:K2)

AMAX=0.00
DO 20 I=N1,N2
DO 10J=K1,K2
=DMAXH(AMAX,DABS(A(LN)-A{1,))
10 CONTINUE
20 CONTINUE
c

RETURN
END

(<]

C

c
SUBROUTINE CLCDS(N,K,PL,CPOsm,D)
IMPLICIT REAL*8(A-H,L,0-Z,

DIMENSION PL(O:NH:O:KH),GPO-nﬂ:N.1:K),D(1:N,1:K)
COMMON /BC! BCPLO,BCPLN,BCPSup,BCPSdn
c

DO 80J=1,K
D(1,J)=-BCPLO%2.D0*PL(0,J)PLI1J)+PL(2))
> 1.D0-BCPLO)*(3.2500*PL(1,J)4+0.76D0*PL(2,4))
> +CPOm{1,J)
DO 201=2,N1
D ={PLI-1JH2.D0*PL{LIHPL(H1,I)+CPOmM(,J)
20 CONTINUE
D(N,J)=-BCPLNY2.D0"PL(N+1,J4PL(N,J)+PLIN-1,J))
> «1.D0-BCPLN)*(3.25D0*PL(N ,J)+0.76D0*PL{N-1,J))
> +CPOsm(N,J)
30 CONTINUE

c
RETURN
END
c
Cc

[+
SUBROUTINE CLCDLR(N,K,PS,PL,CPOsm,D)
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IMPLICIT REAL*8(A-H,L,0-Z)

DIMENSION PS(0:N+1,0:K+1),PL(0:N+1,0:K+1)
DIMENSION CPOsm(1:N,1:K),D(1:N,1:K)
COMMON /XPLI CXPL,C NSTPL

COMMON /BC/ BCPLO,BCPLN,BCPSup,BCPSdn
c

C  PL,row sweep
c

DO 30 x1,K
D(1,Jy=BCPLOCNSTPL*PL(0,J){(3.2500°PS(1,J14+0. T6D0"PS(2,J))

> .CPOsm(14)

DO 20 I=2,N-1

2 %(I.JHPS(MJHZDWS(IJ)*PS(I-‘IJ))-OPO"I(M)
D{N,Jy=BCPLN'CNSTPL*PL(N#1,J)

> {8.26D0*PS(N,J)10.76D0*PS(N-1,J))-CPOsm(N,J)
c” CONTINUE

RETURN
END

c
[+
c
SUBROUTINE BWEPSR(ACSR,BSR,DO0,P81,P8,J,ALFAS,ALFAS1)
WPLICIT REAL*8(A-H,L,0-2)
PARAMETER (K=18,N=100)
DIMENSION ACSR(1:2,1:3),B9R(1:3,1:K)
DIMENSION PB1(0:N+1,0:K+1),PB(0:N+1,0:K+1)
DIMENSION DO(1:N,1:K),CNSTR2(2:K), CNSTR1(1:K)
DIMENSION A(1:N),B(1:N),C(1: m,nsm N),P(1:N)
COMMON /CSTR1/ CNSTR1,CNSTR
COMMON ISWR/ swn.mm.swgsvm
COMMON IN12 N1,N2
COMMON /BCI BCPLO,BCPLN,BCPSup,BCPSdn

c COMMON /PBupdn/ PSup, PSdn

C SWR=SWR{=1,SWLsEWL1=0: sweep to the right, row-by-row update
C  BWLEBWL1=1,SWR=SWR1=0: mb!\c row-by-Fow update
C SWR1=SWL1=Y, =0: iter &
c

update

IF (J.EQ.9) THEN
CNST{=CNSTRY(1)

C(1)=ACSR(2,1)

nam)-oonnwwvcnm'nu 2 SWR1*CNST1*P81(1,2)

CONSTA=ACSR(1,

coum-asn(z.n

CONSTC=ACSR(2,2)

DO 10 122,N-1

Al}=CONSTA

B{)=CONSTB

C(1)=CONSTC

DSR(I)=D 01, 1)-SWL*CNST1*P8(1,2)-SWR1°CNST1*PS1(1,2)
10 CONTINUE

A(N)}=ACSR(1,3)

B(N)=BSR(3,1)

C(N)=ACSR(2,%)

DSR(NDO(N, 1) SWL'CNST1*PS(N,2)-SWRT*CNST1*PS1(N,2)

ELSE IF (J.GT.1.AND.J.LT.K) THEN

CNSTI=CNSTR1()

CNST2=CNSTR24J)

A(1)=ACSR(1,1)

B(1)=88R(1.J)

C(1)=ACSR(2,1)
DSR(1)=D0(1,J)}-SWR*CNSTZ'PS(1,J-1)-SWR1*CNST1*PS1(1,J+1)
> SWL'CNST1*P8(1,J+1)-SWL1*CNSTZ'PS1(1,J-1)

CONAI=ACSR(1,2)

CONCI=ACSR(2,2)

CONB{=BSR(2,J)

DO 30 1=2,N-1

AGY=CONAL
B()}=CONBL
C(=CONC}
, DBRUN=DOJ) SWR-CNSTZPS(.-1} SWR1*CNSTI*PS1(14+1)
BWL'CNST1'PS(I,J+1} SWLI*CNSTZPS1(1,d-1)
30 CONTINUE

AN)=ACSR(1,8)

B(N)=BSR(3,J)

C(N)=ACSR(2,8)

nsmm-oom,.n-swmcusrmu—i)swm'cnsm-rsun,my

-BWL'CNST1*PS(N,J+1)-SWL1*CNSTZPS1(N,J-1)
ELse F (J.EQ.K) THEN

CNST1=CNSTR1(K)

cnnmnmmo

A()=ACSR(1,1,

w)-ssnu x)acm.p-cusn

C(1)=ACSR(2,1)

osmpom.x)swmus\'m1 K-4-SWLICNST2*PS1(1,K-1)

*CNST1*PSup

couucsman(z.a
DO 60 1=2,N1
AI)=CONSTA
B(1)=CONSTB-BCPSup*CNST1
C(l)=CONSTC
DSR(1)=D0{1,K)-SWR*CNST2*PS(1,K-1)- SWL1*CNST2*PS1(1,K-1)
>  -BCPSup*CNST1*PSup
60 CONTINUE
DO 82 (=N1+1,N2-1
All)=CONSTA
B()~CONSTB
C())=CONSTC
DSR(1)=D0(I,K)-SWR*CNST2*PS(1,K-1)-SWL1*CNST2*PS1(1,K-1)
62 CONTINUE
DO 64 12N2,N-1
All)=CONSTA
B(1)=CONSTB-BCPSdn*CNST1
C{)=CONSTC

126

DSR{N=DO(1,K)}-SWR*CNSTZ'P8(1,K-1)-SWLI*CNST2*PS1(1,K-1)
>  -BCPSdn*CNST1*PSdn
64 CONTINUE

C(N)=ACSR(2,
DSR(N)=DO(N, x)-swmns'rmu K-1)-8WL1*CNST2'PS1(N,K-1)
>  -BCPSdn"CNST1*PSdn
END IF
CALL TDMA(A,B,C,DSR,P,N)
00 701=1,N
PS(1,J)=P(I)*ALFAS+PS1(1,J)*ALFAS1
70 CONTINUE
c
RETURN
END

c
C
[+
SUBROUTINE SWEPLR(ABCLR,D0,PL1,PL,J,ALFAL ALFAL1,N K)
WMPLICIT REAL*8(A-H,L,0-Z)
PARAMETER (NN=1
DIMENSION ABCLR(1:3,1:3),D0{1:N,1:K)
DIMENSION PL1(0:N+1,0:K+1),PL(0:N41,0:K+1)
c DWENSION A{1:NN),B(1:NN),C(1:NN),DLR(1:NN),P(1:NN)

A(1)=ABCLR(1,1)
B(1)=ABCLR(2,1)
C(1}=ABCLR(S,1)
Dlal‘ﬁ p=D0(1,J)

CONSTB=ABCLR(2,2)
CONSTC=ABCLR(3,2
DO 101=2,N-1

All)=CONSTA
1))=CONSTB
C()=CONSTC
DLR(1)=00(1,4)
10 CONTINUE

LR(
LR(N)=DO(N.J)

CAI.LTDIA(A,B.G.DLR.P,N)
DO 701=1,N

PI.(IJ)-P(I)‘ALFALOPL“(I,J)'ALFAU
70 CONTINU
]

RETURN
END

[+]
[
c

SUBROUTINE SWEPSC(ABCSC,D,PS1,P8,1,ALFAS ALFAS1)
IMPLICIT REAL*S(A-H,1,0-Z)

PARAMETER (K=18,N=100)

DIMENSION ABCSC(1:8,1:K,1:8),D(1:N,1:K)
DIMENSION PS1(0:N+1,0:K+1),PS(0:N+1,0:K+1)
DIMENSION A{1:K), B(1:K),C(1:K),DSC(1:K), P(1:K)
DIMENSION CNSTR1(1:K),CNSTR2(22K)
COMMON /CSTRY/ CNSTR1,CNSTR2

COMMON /XPS/ CXPS,CXPS1,CXPS3

COMMON ISWC! SWD,SWD1,SWU,SWU1
COMMON /BCI BCPLO,BCPLN,BCPSup,BCPSdn
COMMON /PSupdn/ PSup,PSdn

COMMON /N12 N1,N2

IF (LEQ.1) THEN
DO 10J=1,K
AWJ)=ABCSC(1,4,1)
W)—msc(hl.ﬂ
C(J)=ABCSC(1.J.9)
nscu)=o(1..»wwu-cxpss-ps(z,a)o-swn1-cxm~ps1(u)
10 CONTINUE
DSC(K)=DSC(K)-BCPBUp*CNSTR1(K)*PSup
ELSE IF (L.GT.1.AND.LLE.N1) THEN

DO 30J=1,K
)=ABCSC(2,4,1)
BW)=ABCSC(2,4,2)
CW)=ABCSC(2..3
SCW)=D(,J) PS1*PS(I-1,J) 1*CXPS1*PS1(1+1,4)
> +BWUCKPS1°PS(1+1,dJSWU1*CXPE1-PS1(1-1,J)
30 CONTINUE

B{K)=B{K)}-BCPSup*CNSTRI(K)
DSC(Ky=DSC(K)-BCPSup*CNSTR1(K)*PSup
ELSE IF (L.GT.N1.AND.L.LT.N2) THEN
DO 404=1,K
A=ABCSC(2,,4
BU 8C(2.J,2)
l‘:l Al 8C(2.J

DSCW)=D(1,J+SWD*CXPS1*PS(I-1,JH#SWD1*CXPS1*PS1(141,J)
> +EWUCXPS1*PS(1+1,J}+SWUT*CXPS1*PS1(I-1,4)
40 CONTINUE
ELSE IF (.LBE.N2.AND.LLT.N) THEN
DO 604=1,K
AW)=ABCSC(2.4,1)
WFAECSG(ZJ.?)
C(J)=ABCSC(2,J
nscu)=o(u)¢swo'cxps1'?s(| 1,J4SWD1*CXPS1*PS1(1+1,4)
ABWU'CXPS1°PS(14+1,J48WU1*CXPS1*PS1(1-1,J)
so CONTINUE
K)=8(K)-BCPSdn*CNSTR1(K)
DSC(K)=DSC(K)-BCPSdn*CNSTR1(K)*PSdn
ELSE IF (1.EQ.N) THEN
DO 80J=1,K

C(JFAECSC(S.J 3
DSC=D(N JI+EWD*CXPSI'PE(N-1,JHSWU'CKPSI*PSUN-1,J)
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60 CONTINUE
EI;%C(K)-OSO(K)—BCM’CNSTR‘I(K)‘PS&\
IF
CALL TDMA(A,B,C,DSC,P,K)
DO 70J=1,K
PS(I..!)-IP(.I)'M_FASGPS1(I.-I)'ALFA81
70 CONTIN

RETURN
END

SUBROUTINE VELS(PS,PL,U,V,UL,RDISP,DX)

Calouisies ECS and lumen superficial velocities
(n the centers of the celis)

WAPLICIT REAL*8(A-H,L,0-2)

PARAMETER (K=18,N=100)

DIMENSION PB(0:N+1,0:K+1),U(0:N, 0:K+1), V(0:N+1,0:K)
DIMENSION PL{0:N+1,0:K+1),UL(0:N,0:K+1),CNSTRE(1:K)
DIMENSION RDISP(0:K)

COMMON /VELI CNSTU,CNSTUL,CNSTV,CNSTVR
COMMON /LOG/ LOGIND

COMMON /CNSTRE CNSTRS

COMMON /BC! BCPLO,BCPLN,BCPSup,BCPSdn
COMMON /PSupdn/ PSdn

COMMON IN12/ N1,N2

COMMON /PIBU PI

COMMON /OUTFLW/ Goutl,Qouts

0000 o0n

WOJHLOGIND"CNSTRB(J)‘« D0-LOGIND)*CNSTVR)*
> (P8{0)41)-P8(0,J))
W(N+1,J)x(LOGIND*CNSTRE(J)}{(1.D0-LOGIND)*CNSTVR)*
> (PB(N+1,J+1)-PS(N+1,0))
& CONTINUE
V(O.KHOP&IP‘(LOGIND’CNSTRS(K)OH DO-LOGIND)*2.D0*CNSTVR)"
K)

PSup-PS(0,K)
wom x)=acrsdn-a.oemo-cums(xm1 DO-LOGIND)*2.DO*CNSTVR)*
(PSdn-PB(N+1,K))

c
DO 201%1,N
V(1,01=0.00
DO 10Jx=1,K-1
(1, J)={(LOGIND*CNSTR5(J)#{1.D0-LOGIND)*CNSTVR)*
> PS(I.Jﬂ)-Pa(l,J))
10 CONTI
V{1, K)=0. no
20 CONTINUE
IF (BCPSup.EQ.1.D0) THEN
DO 211=1,N1
V(1,K)=(LOGIND*CNSTRE(K)H{1.00-LOGIND)*2.DO*CNSTVR)*
> (P8(1,K+1)-P8(,K))
21 CONTINUE
END IF
IF (BCPSdn.EQ.1.D0) THEN
DO 281=N2,N
V(1,K)x(LOGIND*CNSTRE(K)+{1.D0-LOGIND)*2.DO*CNSTVR)*
d (PS(1,K+1)-P8(1,K))
23 CONTINUE
END IF
c
c
DO 404=1,K
1(0,3)=0.D0
UL(0,J)=BCPLO*2.DO*CNSTULPL(1,J)}-PLO,J)
DO 80 I=1,N-1
U(L,J)=CNSTUXPS(1+1,J)-PS(1.J)
UL, J)=CNSTULAPLU#1.)-PL(.J))
30 CONTINUE
U(N,J}=0.D0
UL(N,J)=BCPLN*2.D0*CNSTUL*PL(N+1,J)-PL(N,J))
40 CONTINUE
c

14(0,01=0.00
U(0,K+1)=0.D0
UL(0,0)=BCPLO*2.DO*CNSTUL*(PL(1,01-PL(0,0))
UL(0,K+1)=BCPLO*2 DOCCNSTUL(PL(1,K+1)-PL(O,K+1))
00 25 1=1,N-1
U1, 00=CNSTUXPS(14+1,01-P8(1,0)
(1, K+)CNSTUHPS(H1,K+1)-PS(1, K+1))
UL(1,0=CNSTULXPL(1+1,00-PL(1,0))
UL(1, K+1)aCNSTUL(PL{I+1,K+1)-PLA,K+1))
26 CONTINUE
U(N,01=0.D0
U(N,K+1)=0.D0
IF (BCPSup.EQ.1.D0) THEN
IF (DABS(L(N1,K+1)).GT.1.D2°DABS(U(N1+1,K+1))) THEN
U(N1,K+1)=0.5D0U(N1-1,K+1)sU(N141,K+1))
END IF

END IF
{F (BCP8dn EQ.1.D0) THEN
IF (DABS(U(N2-1,K+1)).0T.1.D2*DABS(U(N2-2,K+1))) THEN
U(N2-1,K+1)=0.500%(U(N2-2,K+1)+(N2,K+1))
D IF

END IF
UL(N,0)/=BCPLN*2.D0*CNSTULPL{N+1,0)-PL(N,0))
ULIN,K+1)=BCPLN*2.DO*CNSTULHPLIN+1, K+1}-PLIN, K+1))

Qout8=0.00
IF (BCPSdn.EQ.1.D0) THEN
CONST2=RDISP(K)*2.D0*PI*DX
DO 80 {=N2-1,N
Qout8=Qout8+CONST2*V(l,K)
80 CONTINUE
END IF

127

RETURN
END

a0on

SUBROUTINE TDMA(A,B,C,D .X,N)
IMPLICIT REAL*8(A-H,L,0-Z)

PARAMETER (NN=10000)

DIMENSION A(1:N),8(1:N),C(1:N),D(1:N),X(1:N),P(1:NN),Q(1:NN)

P(1)=C(1¥B(1)
N“H’(‘Wlﬂ)
101=2,N

DENWI)‘P(I AHB()
PH=C(VDEN
quoamn'on 1)VDEN

X(NFWN)
DO 20 1=N-1,1,-1

X(=PO X+ 10+Ql0)
20 CONTINUE

c
RETURN

END

[+]
C
c

SUBROUTINE CONCN(U,V,DT,C1,C)

IMPLICIT REAL*8(A-H,L,0-2)

PARAMETER (K=18,N=100)

DIMENSION C1(0:N+1,0:K+1),C(0:N+1,0:K+1),CA0:N+1,0:K+1)
DIMENSION AAN(1:N),BBN(1:N),CCN(1:N),DDN(1:N), CN(1:N)
DIMENSION AAK(1:K),BBK(1:K), CCK(1:K),DDK(1:K),CK(1:K)
DIMENSION U(0:N,0:K+1), V(0:N+1,0:K), CNSTRS(1:K),CNSTRA(1:K)
DIMENSION Ae(1:N,1:K),Be(1:N, 1:K), AW(1:N, 1:K), Bw(1:N, 1:K)
DIMENSION An(1:N,1:K), Bn(1:N, 1:K), As(1:N,1:K), Ba(1:N,1:K)
DIMENSION RDISP(0:K),R(0:K+1),RDISP(0:K)

COMMON /CSTRY CNSTRS,CNSTRA,CXCN

COMMON IPECLI CPew,CPns

COMMON IFU F1,E,E1,

COMMON /N12/ N1,N2

COMMON /BC/ BCPLO,BCPLN,BCPSup,BCPSdn

COMMON /BCONC! COup

COMMON ICNSTCN/ CNSTCN

COMMON ICFLUX! QCin,QCout, CTOTAL,CTOT0,CTOTY,VECS, TOTFLW
COMMON /RDSPI RDISP,R

COMMON /INDR2 INDR2

C20T=E*2.000T
DO 20J=1,K
JM=J-1
DO 10¥=1,N
=it

IF (I.LNE.N) THEN
PecE=CPew*U(l,J)
ONST=1.D0-0.1D0DABS(PecE)
APo=DMAX1(0.D0,CNST*CNST*CNST*CNST*CNST)
A(l J=APe+DMAX1{-PocE,0.00)
Be(l,J}=APa+DOMAX1(PecE,0.D0)

AS(N.J)=0.D0
Be(N,J)=0.D0

ENDIF

IF (LNE.1) THEN
PocW=CPew*U(IM,J)
GNST=1.00-0.1D0*DABS(PocW)
APW=DMAX1(0.D0,CNST*CNST*CNST*CNST*CNST)
AW{LJY=APWHDMAX1(-PecW,0.D0)
BW(1,J)=APWHDMAX1(PecW,0.D0)

ELSE

AW(1,)=0.00
BwW(1,J)=0.D0
END IF

IF (J.NE.K.OR.(J.EQ.K.AND.BCPSup.EQ.1.00.AND.L.LE.N1).
OR.(J.EQ.K.AND.BCPSdn.EQ.1.00.AND |.GE.N2)) THEN

PecN=CPns*V(l,J)
IF (J.EQ.K) PecN=0.5D0*PecN
CNST=1.00-0.100*DABS(PecN)
APR=DMAX1(0.D0,CNST*CNST*CNST*CNST*CNST)
An(1,J)=APR +DMAX1(-PecN,0.D0)
Ba(l,Jy=APn+DMAX1(PecN,0.D0)
AR(LK=2.D0*An(,K)
Bn(1,K)=2.00*Bn(1,K)

ELSE
An(1,K)=0.00
Bn(1,K)=0.00

ENDIF

IF (J.NE.1) THEN
PecS=CPns*V{l,JM)
CNST=1.00-0.1D0"DABS(PecS)
APS=DMAX1(0.D0,CNST*CNST*CNST*CNST*CNST)
A(1,J}=APs+DMAX1(-Pec8,0.00}
Ba(lJ)=APs+DMAX1(PecS,0.00)

ELSE

As(l,1)=0.00
Bs(1,1)=0.00
END IF
10 CONTINUE
20 CONTINUE

v

c

DO 11 1=0,N+1
DO 18J=0,K+1
CAlJ=C1(l)
13 CONTINUE

11 CONTINVE
c

C row sweep
c

DO 100 J=K,1,-1
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AAN(}=-CXCN*BW(l,J)
nnm-cmrocxcn'(m(uml.J))Gml..v)-cowu.arcoua
CCN({l}=CXCN*Ael,J
Doml)-ao(l,.l)'com'ca(u-mcmr'czu J)

> 4An(LJ)*CONS*C2AI,I+1)

50 CONTINUE
CALL TDMA(AAN,BBN,CCN,DON,CN,N)
DO 701=4,4

2 cﬂlnl)'cﬂ(l)

IMFOJNW DOCA1)-CA2.4)
C2(N+1,J)=0.125D0%(9.DOCAN J)-C2AN-1,0))
100 CONTINUE
DO 110 (aN144,N
C2(1,010.12500(9.D0°C (1, 1)-C2(1,2)
C21,K+1y=0.1250049.D0*C (1, K)-CA1,K-1))
110 CONTINUE
DO 111 1=1,N1
C2(1,000.12500°(8.D0°C 21, 1)-C1,2)
czu.nmc)-u.oo-ac_c PSup)0.12500%9.D0°C 20, K}-CALK-1))
>

111 CONTINUE
cz(o.o)-o.muzsoo-(u DO*C2(1,1)}-9.D0%C A, 2HC 22, N+

2,
czo Kaﬂ)-ﬁ DO-BCP8up)*0.016626D0%(81.00°C2(1,K)

9.D04CA1K-ANHCAZKHCA2K-1)}
> +BCP8up*COup
C2AN+1,K+1)=0.015825D0%(81.D0*C2(N,K)

> 0.DOYC2AN,K-1HC2AN-1,K)HC2(N-1,K-1))
C2(N+1,0)=0.015625D0%(81.D0*C 2N, 1)-9.D0*(CAN, +C2AN-1,1))+
»  C2N-1,2)

c
DO 132 1=0,N+1
DO 133 J=0,K+1
C{IJ)=C2.J)
138 CONTINUE
132 CONTINUE
(4]
(c: 2row sweep

IF (INDR2.EQ.1) THEN
c
DO 400 J=K,1,-1
CON4=CNSTRAW)
CONS=CNSTRMJ)
DO 4501=1,N
AAN(1=-CXCN*Bw{1,J)
BEN()SCZDT+CXCN* AW J)1+Ba(l J)}+As(l J)*CONA+BA(IJ)*CONS
CON(I=CXCN*Ae(1,J)
nnna)-an(l,arcom-c(l,.: AHC2DTC(1,J)
> +An(lJ)*CON3*C(lJ
450 CONTINUE
CALL TOMA(AAN,BBN,CCN,DDN,CN,N)
DO 4701=1,N
C(l.J)=CN()
70 CONTINUE
€(0,4)=0.125D0*(9.D0°C(1,J)}-C(2.J))
C(N+1,J)20.125D0%9.DOC(N,J)-C(N-1,2))
400 CONTINUE
DO 410 I=N1+4,N
C(1,00=0,12500°(9.D0°C(1,1)-C(1,2))
C(1,K+1)20.12500%9.D0°C(1,K)-C(1,K-1))
410 CONTINUE
DO 411 i=1,N1
C(1,010,12500*(9.DOC(1, 1)-C(1,2))
, CALK#1)(1.D0.BCPSup|0.12500°(9.D0°CA,KI-CILK-1)
+BCPSup*COup
411CONTINUE
c

ELSE
[
C ocolumn sweep
Cc

DO 200 ix1,N
DO 150J=1,K
CONASCNSTRAW)
CONS=CNSTRS()
AAK(Ip-Boll J)'CONS
BBK(JPRC2OTICXCN(Awi,J)+Bofl, )y +As(l,J)* CONA+BN(1,J)*CON3
CCKJpm-An(l,J)*CONS
nnnumcm(aw..n-ca 1,0 AL C(141,d)

CCK(K|
nox(x)-onx(m-vm| K)*CONS*C(l,K+1)
CALL TOMA(AAK, BBK,CCK,DDK,CK,K)
DO 170J=1,K

G =)

170 CONTINUE
C(1,0=0.125D0%(9.D0*C(1,1)-C(1,2))
C(1,K+1)=0.1250049.00C(1,K)-C(IK-1))
IF (I.LE.N1.AND.BCPSup.EQ.1.D0) C(1,K+1)=COup

200 CONTINUE

DO 2104=1,K
C(0,J)=0.12500%(9.D0*C(1,J)-C(2,9))
C(N+1,J)=0.125D0%9.D0°C(N J)-C(N-1,J))

210 CONTINUE

c
END IF
[+

c(o.rg-o.mmm(u.oo'cun)-n.no-(cu,zpc(z.u)o

> (2,.2)

c(o K+1)=(1.D0-BCPBup)*0.01562500%(81.00°C(1,K)
-8.D0%C(1,K-1+C(2, K)HC(2,K-1))

: +BCPSup*COup

C(N+, o)-omsezsoo-m DO*C(N,1)-8.D04C(N,2+C(N-1, 1)1+

> C(N-1,2)

c(m1,m1)=o 015625D0%81.DOC(N,K)
9.DONC(N,K-IHC(N-1, K)HC(N-1,K-1))
c

IF (BOPSup.EQ.1.DO) THEN
QCin=0.00
DO 300 I=1,
chnﬂ)cln-ﬂn(l K)*C(1, K}+AN(I, K)*C(1,K+1)
300 CONTINU
Qch=cN8TcN'chn
CTOTAL=CTOTAL+DT*QCin
END IF

c
IF (BCP8dn. EQ.1 D0) THEN
QCout=0.0

DO 810 |=Nz.
QCout=ACout+Bn(t, K)*C(1,K)-An(1,K)*C(1,K+1)
310 CONTINUE
QCout=CNSTCN*QCout
CTOTAL=CTOTAL-DT*QCout
END IF

CTOT1=0.00
DO 304 J=1,K
CONST=(RDISP(J)*"RDISPWJ)-RDISP(J-1)"RDISP(J-1))
»  IRDISP(KVRDISP(KYDBLE(N)
DO 306 1=1,N
CTOT1=CTOT1+C(I,J)*CONST
306 CONTINUE
304 CONTINUE
WRITE(6,") CTOT1=,CTOT1
[

IF (BCPSdn.EQ.1.D00.0R.BCPSup.EQ.1.00) THEN
WRITE(S,")’ AVERAGE GONCN =",CTOTAL/VECS
END IF

RETURN
END

o000

SUBROUTINE FLUX (UL,U,V,RDISP,DX,DT,HARV)
IMPLICIT REAL*&(A-H,1,0-2)

INTEGER HARV

PARAMETER (K=18,N=100)

DIMENSION U(0:N,0:K +4), V(0:N44,0:K), UL(O:N, 0:K o 1)
DIMENSION RDISP(0:K)

COMMON /N12 N1,N2

COMMON (PIBU Pl

CCOMMON /BC! BCPLO,BCPLN,BCPSup,BCPSdn
COMMON /CFLUX/ QCin,QCout,CTOTAL,CTOTO,CTOT4,VECS, TOTFLW
COMMON [OUTFLW/ Qoutl_,QoutS

WRITE(S,%)"*
WRITE(S,)'

Qint=0.00
Qin8=0.00

IF (BCPLO.EQ.1.D0) THEN
DO 104=1,K
QinL=QinL+PIUL(0,J)*
> (RDISP(J)*RDISP(J)-RDISP(J-1)*'RDISPWJ-1))
10 CONTINUE
WRITE(S5,101) QinL,QinL"8.D7
WRITE(6,101) QinL,QinL"6.D7
101 FORMAT(' INLET LUMEN FLOW, m3/s=",D24.18,
> * (,F10.5, mL/min))
END IF
c

iF (BCPSup.EQ.1.00) THEN
CONST2=RDISP(K)*2.DO*PI*DX
DO 204=1,N1
QIn8=Qin3-CONST2*V(|,K)
20 CONTINUE
WRITE(5,102) Qin8,Qin8*6.D7
WRITE(8,102) Qin8,Qin3"8.D7
102 FORMAT( INLET ECS FLOW, m¥s=",D24.18,
> * (.F10.5,' mUmin)")
ENDIF

IF (BCPSdn.EQ.1.D0) THEN
WRITE(5,103) QoutS,Qouts*8.D7
WRITE(6,103) QoutS,QoutS*6.07
103 FORMAT( OUTLET ECS FLOW, m¥s~',D24.18,
> ' (,F10.5,' mLmin))
END IF

IF (BCPLN.EQ.1.00) THEN
Qoutl=0.D0

DO 90J=1,K
QoutL~QoutL+PI"UL(N J)*
> (RDISPWJ)*RDISP(J)-RDISPW-1)*RDISPW-1))
80 CONTINUE
WRITE(S,104) Qoutl,QoutL*6.D7
WRITE(6,104) Qoutl.,Qoutl*6.D7
104 FORMAT( OUTLET LUMEN FLOW, my/s=",D24.18,
» * (.F10.5," mL/min)}
END IF
[+

WRITE(S,") TOTAL FLUID PASSED THROUGH ECS, mL:",TOTFLW*{.D6
WRITE(6,")TOTAL FLUID PASSED THROUGH ECS, mL:",TOTFLW*1.D8
Cc
Nhalf=N/2
QLhalf=0.00
DO 60J=1,K
QLhaif=QLhalf+PI*UL(Nhalf,J)*
» (RDISP())*RDISPW)-RDISPJ-1)*RDISPJ-1))
50 CONTINUE
IF (BCPSup.EQ.1.D0) THEN
WRITE(5,106) QLhalf6.07,QLhalfQin8*1.02

128
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Appendix D: Source code in Fortran

WRITE(S,105) QLhalf*8.D7,QLhal?¥Qin8*1.02

105 FORMAT(' HALF-LENGTH LUMEN FLOW, mUmin=F12.7," (,F6.2,' %))

WRITE(8,"" INLET PROTEIN FLUX, kg/s =*,QCin

E\::n'as.-r INLET PROTEIN FLUX, kgls =",QCin

IF

IF (BCP8dn.EQ.1.D0) THEN

WRITE(5,'OUTLET PROTEIN FLUX, kg/s =',QCout

WRITE(8, *YOUTLET PROTEIN FLUX, kg/s =,QCout

WRITE(S,")'OUTLET PROTEIN CONCENTRATION, kg/m$ =,QCout/Qouts

WRITE(S,*)'OUTLET PROTEIN CONCENTRATION, kg/m$ =, QCoutiQouts

IF (HARV.EQ.1) THEN

WRITE(S,*YPROTEIN CONCN IN THE HARVESTING RESERVOIR, kg/m3',
> (CTOVO-CTOT1*VECSNTOTFLW

WRITE(8,*'PROTEIN CONCN IN THE HARVESTING RESERVOIR, kg/m¥',
” eno '(:croro-c'lun'VEcsy'rowLw

CTOT1, kg/m3 =*,CTOT1
WRITE(S,) CTOTH, ko/m3 #,CTOT1
IF (BCP8dn.EQ.1.00.0R.BCPSup.EQ.1.00) THEN
WRITE(S,"y AVERAGE CONCENTRATION, kg/m$ =*,CTOTALIVECS
Ev':nrlms.-ymsme CONGENTRATION, kg/ms = CTOTALVECS
WRITE(S,”Y AmTOT1, kg »,CTOT1*VECS
WRITE(, " AmTOTA, kg =*,CTOT1*VECS
IF (BCPSdn.EQ.1.D0.0R.BCPSup.EQ.1.D0) THEN
WRITE(5,*) TOTAL AMOUNT OF PROTEIN IN HFBR, kg =", CTOTAL
WRITE(S,*) TOTAL AMOUNT OF PROTEIN IN HFBR, kg =*,CTOTAL
IF (HARV.EQ.1) THEN
WRITE(6,%% PROTEIN REMOVED:",1.02*(1.D0-CTOT1*VECS/CTOT0)
1.D2(1.D0-CTOT1*VECSICTOTO)

SUBROUTINE S8UBST(N,K,P81,P8,C1,C)
IMPLICIT REAL"8(A-H,L,0-Z,

DIMENSION PS!(OtNﬂ 0:K+1), PS{0:N+1,0:K+1)
DIMENSION C1(0:N+1,0:K+1),C(0:N+1,0:K+1)

c
DO 20 1=0,N+1

DO 10J=0,K41
CH{II=C(lJ)
PS1(1.J)p=P8{1.)

10 CONTINUE
20 CONTINUE

c

RETURN
END

2]
c

SUBROUTINE OUTPUT (PS,PL,U,V,UL,C X,RXDISP,RDISP,CMAX,ITER,IS,
» T,DT,NDISP,NDISPC,KDSP,KDISPC,INDC,INDPS,INDPos,INDV)

WMPLICIT REAL*8(A-,L,0-Z)
INTEGER EXF,ERF,ELF

PARAMETER (K=18,N=100)

DIMENSION PL{O:N+1,0:K+1),PS(0:N+1,0:K+1),POsDSP(0:N,0:K)
DIMENSION PLDSP(0:N,0:K),PSDSP(0:N, 0:K), PTOT(0:N, 0:K)
DIMENSION C(0:N+1,0:K+1),COSP(0:N,0:K), CNSTR5(1:K)
DIMENSION U(0:N,0:K+1),V(0:N+1,0:K), UL{0:N,0:K+1)
DIMENSION UDSP{0:N,0:K),VDSP{0:N,0:K), ULDSP(0:N,0:K)
DIMENSION XDISP(0:N), RDISP(0:K),X(0:N+1),R(0:K+1)
COMMON /FV FLE,EL

GOMMON /PRESIT/ (T

COMMON /EXFRLI EXF,ERF,ELF

EXTERNAL FUNCTION FP

EX=DBLE(EXFYE

WRITE(5,")"CMAX= ", CMAX
WRrI'E(S.'rcumor- CMAYDT

5 FORMAT()
c

WRITE(S,")
WRITE(S,408) (ROISP(J)*1.03,J=0,K,KDISPC)

408 FORMAT( R,mm:",F7.2,102F8.2)
400 FORMAT( R,mm:',F8.2,102F9.2)
410 FORMAT( R,mm:",F9.2,10210.2)

WRITE(S,")’ X,om CONCENTRATION FIELD {ackual, interpolated):'

DO 27 1=0,N+1
DO 26 J=0,K+1
IF (C(1,).LT.0.D0) C(1,4)20.00

26 CONTINUE
27 CONTINVE

CDSP{0,00=C(0,0)

CDSP(0,K)=C(0,K+1)

DO 10 I=1,N-1
CDSP(1,0020.5D0%C(1+1,01+C(1,0))
COSP(1,K)=0.500%C(1+1,K+11+C(1,K+1))

10 CONTINUE

CDSP(N,0)=C(N+1,0)
CDSP(N,K)=C(N+1,K+1)
DO 26J=1,K-1
ggsz:(OJFo .5D0%C(0,J+1)+C(0,J))
cnsp(u..l)-o 26D 04(C(LIHC(H1,JHC(LIHIRCH+1,041))

20 CONTI

CDSP(NJPO SOOYC(N+ T JHIHC(N+1)

25 CO

00 30 1=0,N,NDIS!|
WRlTE(ﬁ.GQ XDISP(I)‘1 D2,(CDSP{l,J),J=0,K,KDISPC)
30 CONTIN
35 FORHAY(‘IX.FS.Z.“&FM
c

IF (INDC.EQ.1) THEN
WRITE(S,'

WRITE{(5,406) R(0),(R{)™.D3,J=1,K+1,KDISPC)
WRITE(5,") X,om CONCENTRATION FIELD achsal,caloulated:"
DO 40 1=0,N+1,NDISPC
wmas,as) X(1)*1.D2,C(1,00,(C(,)J=1,K+1,KDISPC)
40 CONTL
END IF

c .
IF (INDPOs.EQ.1.0R.INDPS.EQ.1) THEN
00 90 IIO.
00 80J=0,
PO.DSP(I.J)IFP(ODSP(IJ))
80 CONTINU
] GON‘I'INUE
END IF

c
IF (INDPS.EQ.1) THEN

PSDSP(0,0=P5(0,0)

PSDSP(0,K)=P8(0,K+1)

DO 50 1=1,N-1
PSDIP{1,00=0.5D0(PB{(1+1,0)+P8{,00)
PSDSP{I,K)=0.5004PS(141,K+1)+P8(1,K+1))

50 CONTINUE

PBDSP(N,0p=PB(N+1,0)

PSDSP(N,K)y=PS(N+1,K+1)

DO 70J=1,K-1
PSDSP(0,J)=0.500*(PS(0,J+1+P8(0J))

DO 60 |=1,N-1
PSDSP(1,4)=0.25D0"
> (PS(LJIHPS(H1IHPSEJHIHPS(141,041)
60 CONTINUE
PSDSP(N,J)=0.500%(PS(N+1,J+1)+PS(N+1.J))
7o CONTINUE

DO %1 ho.u
DO 814
P'I'OT(I.,J)=PSDSP(I,J)-P0¢DSP(I,I)

WRITE(5,"
WRITE(5,410) (Rmsm)-i.nw K,KDSP)
WRITE{(5,yX,om ECS TOTAL PRESSURE FIELD:'
DO 100 =0, nmsr
WRITE(5,106) XDISP())*1.02,(PTOT(1.4),4=0,K,KDSP)
100 CONTINUE
106 FORMAT(F5.2,102F10.2)
c
WRITE(5,")
WRITE{5,410) (RDISP(J}*1.03,J=0 K KDSP)
WRITE(5,")X,om ECS HYDROSTATIC PRESSURE FIELD:*
DO 110 1=0,N,NDISP
WRITE(S,116) XDISP{1)*1.D2,(PSDSP(1,),J=0,K,KDSP)
110 CONTINUE
116 FORMAT(F5.2,102F10.2)
END IF

IF INDPOS.EQ.1) THEN
WRITE(5,")
WRITE(5,410) (RDISP()*1.D3,J=0,K KDSP)
WRITE(5,7X,om ECS OSMOTIC PRESSURE FIELD:"
DO 117 1=0,N,NDISP
WRITE(5, 11B)XDI8P(I)’1 D2,(POsDSP(1,J),J=0,K,KDSP)
117 CONTIN
18 Fommrauozno.m
END IF

c
IF (INDPS.EQ.1) THEN

PLDSP(0,0=PL(0,0)

PLDSP(0,K)=PL(0,K+1)

DO 120|=1,N-1
PLDSP(1,01=0.5D0%(PL(I+1,01+PL(1,0)
PLDSP(1,K)=0.500PL(I+1,K+1PL(LK+1))

120 CONTINUE

PLDSP(N,01=PL(N+1,0)

PLDSP(N,KJ=PL(N+1,K+1)

DO 140 J=1,K-1
PLDSP(OJFO-WO"(PL(OJ“)*PUOJ))

00 130 1=1,N-1
pmsp(ummo'(muwum,qul,.mwum,m»
130 CONTINU
MSHNJHWNWN*Y AHIHPLINGLD)
140 CONTINUE
[

WRITE(S,")
WR"E(S,‘iO) {RDISP(J)*1.D3,J=0,K,KDSP)
5,")X,om LUMEN PRESSURE FIELD:*
DO 150 1=0,N,NDISP
WRITE(S,155) XDISP(1)*1.D 2,(PLD8P(],J),J=0,K,KDSP)
450 CONTINUE
156 FORMAT(F5.2,102F10.2)
END IF
[
UDSP(0,0=U(0,0)

UDSP(0,K)=U(0,K+1)
ULDSP(0,K)=UL(0,K+1)
VDSP(0,K)=V(0,K)
UDSP(N,KI=U(N.K+1)
ULDSP(N,IG=UL(N,K+1)
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Appendix D: Source code in Fortran

VOSP(N,K)=V(N41,K)
DO 160 {=1,N-1

UDSP(,0)=(1,00
ULDSP(I,0=UL(1,0)

UDSP(I,K)=U(],K+1)

ULDSR(, n)-uul K1)

VDSP(1,0)%0.D

VDSP(, x)-msoo-(wt Ky+V(144,K))

DO 165 J=1,K-1
UDSP(1,4)20.5D04(U(1,J)U( J+1))
ULDSP(L,J)=0.5D0ULIJ)+ULL{LL S+ 1))
VDSP(MMSDO'(V(M)*W'“-J))

165 CONTINU
100 cormuue
DO 170 J=1,K-1

UDSP(OJ)"J-GUO'(U(OMMO.M“)

ULDSP{0,4)=0.5D0(UL(0,JHUL(0,J+41))

VDSP{0,J)=V(0,J)

UDSP(N,J)=0.50 0*((N JH+U(N,J+1))

ULDSP(N,J)=0.5D0(ULN,JHUL(N.J+1))

VDSP(N,J)=V(N+1,J)

170 CONTINUE
c

WRITE(S,")
:IIRITE(S.:’MKRDISPU)“I .03,J=0,K,KDSP)
»'X.om LUMEN AXIALVELOOITYI&II,MHWM UL",ELF
DO 220 1=0,N,ND
mVaRoITEiS.m) XDISP(I)H D2,(ULDSP,J)"EXL,J20,K,KDSP)
225 FORMAT(F5.2,102F9.8)
[+]

WRITE(5,%
WRITE(5,400{RDISP()*1.D3,J=0,K,KDSP)
WR"H‘.')

»‘X,om ECS AXIALVELOC“’Y actual interpolated: U™, EXF
DO 230 I=0,N.ND
WR(TE(S.ZSS)XDISP(I)"I D2,(UDSP(1,J)"EX,J=0,K,KD8P)
230 CONT)
26 FOMAT(FS.!JWO 3)
c

WRITE(S,%)
WRITE(5,400(RDISPW)*1.D3,J=0,K,KDSF)
WRITE(5,")
»'X,om ECS RADIAL VELOCITY achial,interpolated: V*,ERF
00 240 1=0,N
WRﬂ'E(S,mXDISP(I)‘i D2,(VDSP(1,J)*ER,J=0,K,KDSP)
240 CONTI
2‘6 FORHAT(FS.!JOQFOA)

¥ (l!ll_?EV( Egn)meu
wmrs(s :’oo) R(0),(R(J)™1.D8,J=1,K+1,KDSP)
ITE(S,

» 'x,a- LUMEN AXIAL VELOCITY aclual,calcuiated; UL*™,ELF
00 820 1=0,N,NDISP

WRITE(5,226)
> XDISP()™.D2,UL{,0"EXL,(UL{1J)*EXL.J=1,K+1,KDSP)
320 CONTINUE
[+

WRITE(5,")
WRITE(5,400) R(0),(R()*1.D3,J=1,K+1,KDSP)
WRITE(S,")

> *X,om ECS AXIAL VELOCITY actual,caloulated: U*,EXF

DO 330 1=0,N,NDISP

WRITE(S, mxmsﬂnﬁ 02,00, %X, (U0, J)'EX J=1,K+4,KDSP)
aao CONTI

WRITE(5,")
WRITE(5,409) (RDISP()*1.03,J=0,K,XDSP)
WRITE(

> 'X,om ECS RADIAL VELOCITY actual,calculsted: V™, ERF
DO 340 1=0,N+1,NDISP
wnrras 245))((!)‘1 D2,(V(1,J)*ER,J=0,K,KDSP)
340 CONT)
END If

RETURN
END

[ XX+

SUBROUTINE INPF (18,T,DT,ACCF,CTOTAL,CTOTO, TOTFLW,PL,P8,C)
IMPLICIT REAL*8(A-H,1,0-2)

PARAMETER (K=18,N=100)

DIMENSION PL{O:NA1,0:K+1), PB(0:N41,0:K+1),CLO:N41,0:K44)

REoAn(uums) 18,T,DT,ACCF,CTOTAL,CTOTO, TOTFLW
DO 10 1=0,N+1
READ(unrrn) (PL{LJ),J=0,K+1)
10 CONTH
DO 20 l=0 »M
READ(UNIT=3) (PS(1,J).J=0,K+1)
20 CONTINUE
DO 30 1=0,N+1
READ(UNIT=S) (C(1.4),0=0,K+1)
30 CONTINUE
c

RETURN
END

000

SUBROUTINE OUTF (18,T,DT,ACCF,CTOTAL,CTOTO0,TOTFLW,PL,PS,C)
MPLICIT REAL"8(A-H,L,0-Z)

PARAMETER (K=18,N=100)

DIMENSION PL(0:N+1,0:K+1),PS(0:N+1,0:K+1),C(0:N+1,0:K+1)

WRITE(UNIT=4) I8,T,DT,ACCF,CTOTAL,CTOTO,TOTFLW
DO 101=0,N+1

130

wmmuumu) (PL{,9),0=0,K+1)
10 CONTINUI

DO 201=0,N

wnma(uurru) (PS(1,0).J=0,K+1)
20 CONTI

00 %

wnrrs(uurrw (C(1,9),0=0,K+1)
ao CONTI

RETURN
END

000

SUBROUTINE EXECTIME(HRY,HR2,MIN1,MIN2,8EC1,8EC2,HSEC1,HSEC2,
MONTH{ MONTH2,0AY1,0AY2)
INTEGER HR1,HR2,MIN1,MIN2,8EC1,8EC2,HSEC1,HB8EC2
INTEGER MONTH1,MONTH2,DAY1,0AY2
INTEGER DHR,DMIN,DSEC,DHSEC,DMONTH,DDAY
[+]
DHSEC=HBEC2-HSECY
F (DHSEC.LT.0) THEN
DHSEC=DHSEC+100
SEC2=S8EC21
END IF
NSEC=8EC2-8EC1
IF (DSEC.LT.0) THEN
DSEC=DSEC+80
MIN2-MIN2-1
END IF
OMINSMINZMINT
IF (DMIN.LT.0) THEN
DMIN=DMIN+60
HR2=HR2-1
END IF
DHR=HRZ-HR1
DMONTH=MONTH2-MONTH1
DDAY=DAY2-DAY1
IF (DMONTH.EQ.1) THEN
IF (MONTH1.EQ.1,0R.MONTH1.EQ.3.OR.MONTH1.EQ.6.0R.MONTH1.EQ.7.
»  ORMONTH1.EQ.8.0R.MONTH1.EQ.10.0R.MONTH1.EQ.12) THEN
DDAY=DAY2¢31-DAY1
ELSE IF MONTH1.EQ.2) THEN
DDAY=DAY2+28-DAY1

ELSE
DDAY=DAY2+30-DAY1
DHR=DHR+DDAY*M4
WRITE(5,10) DHR,DMIN,DSEC,DHSEC
WRITE(S,10) DHR,DMIN,DSEC,DHSEC
10 FORMAT(1X,'EXECUTION TIME: °,i3," h',13," min’,13,’ ¢',14,’ hs")
[+

RETURN
END

c
C
CHESRES L
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