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ABSTRACT 

A mathematical model (the Porous Medium Model, PMM) was developed to predict the 

fluid flow and solute transport in hollow-fibre devices, with a particular emphasis on hollow-

fibre bioreactors (HFBRs). In the PMM, both the extracapillary space (ECS) and the lumen 

side are treated as interpenetrating porous regions with a continuous source or sink of fluid. 

The hydrodynamic equations of the PMM are based on Darcy's law and continuity 

considerations while the transport of the ECS protein is described by the time-dependent 

convective-diffusion equation. Compared to the earlier Krogh Cylinder Model (KCM), in 

which the fluid flow and protein transport are assumed to be the same for each fibre, the 

PMM represents an improved approach in which the spatial domain corresponds to the real 

dimensions of the hollow-fibre module. Thus, it can be applied to operating conditions where 

macroscopic radial pressure and concentration gradients exist, such as in open-shell 

operations. It was demonstrated that, in the absence of radial gradients, the PMM becomes 

mathematically equivalent to the one-dimensional KCM. The PMM also takes into account 

the osmotic pressure dependence on the ECS protein concentration, which causes a coupling 

of the hydrodynamic and protein transport equations. 

The Porous Medium Model was tested by applying it to one- and two-dimensional 

closed-shell operations. Both confirmed that a significant polarization of the ECS protein 

occurs in the direction of the existing pressure gradients under dominant convective transport 

conditions. The downstream polarization of protein affects HFBR hydrodynamics by virtually 

shutting down the flow in a significant portion of the ECS due to locally high osmotic 

pressures. It can also facilitate harvesting of the product protein by increasing its 

concentration near the downstream ECS port. 
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Modelling studies of the hydrodynamics of hollow-fibre devices in the partial and full 

filtration modes of operation were carried out for a wide range of membrane permeabilities 

(10"1 4<LP< 10-7 m). It was demonstrated using the PMM that, for membranes with 

permeabilities below about 10"13 m, practically all of the pressure drop between the inlet lumen 

and outlet ECS ports is due to the hydraulic resistance of the membrane. If the Lp value is 

increased above approximately 10'12 m, this assumption, commonly made in order to 

experimentally determine membrane permeabilities, begins to break down. Also, for 

membrane permeabilities exceeding this value, the ECS and lumen flow rates predicted by the 

PMM and KCM for the partial filtration mode become significantly different. 

Modelling of the inoculation phase of HFBR operation is used as another example 

application of the Porous Medium Model. PMM simulations of the inoculation phase showed 

that, in the case of a Gambro HFBR with a membrane permeability of the order of 10"15 m, the 

protein concentration distribution at the end of the inoculation period is very non-uniform and 

most of the shell side remains free of protein. Using a lower-concentration inoculum solution 

partially alleviates this problem. Alternatively, a relaxation phase with all ports closed can be 

applied after inoculation to help homogenize the contents of the ECS by diffusion and 

osmotically-driven convection. However, this process may be fairly time-consuming and may 

pose the risk of cell starvation due to oxygen limitations. It is suggested that introduction of 

the inoculum through both ECS ports simultaneously or periodic changes of the flow direction 

may be more efficient ways of carrying out the inoculation process. 

The cell-packed conditions, which exist in the ECS during the production and harvesting 

phases of HFBR operation, can significantly decrease the ECS hydraulic conductivity and, to a 

lesser extent, the effective protein diffusivity due to a decrease in the ECS porosity. The ECS 

permeability value affects the magnitude of convective transport in the shell side and hence the 

rate of protein removal from the ECS and the product concentration in the harvested solution, 

thereby influencing the overall efficiency of the process. High-cell-density conditions in the 
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ECS might not allow achievement of high product removal rates and product harvest 

concentrations. Two modes of harvesting, the closed-lumen mode (with only the two ECS 

ports open) and the standard mode (with only the downstream ECS port and both lumen ports 

open), were compared and showed no significant differences in their efficiencies. It was found 

that the downstream polarization of the ECS protein prior to harvesting can considerably 

improve the efficiency of this process. 
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Chapter 1: INTRODUCTION 

A typical hollow-fibre module consists of a bundle of semi-permeable polymeric 

capillaries sealed inside a tubular cartridge. The device has found numerous applications in 

various fields, some of which are presented in Table 1.1. Besides those listed, other 

possibilities exist for its use in the food and fermentation industries, tanning and textile 

industries, in waste-water treatment, and other traditional fields where filtration or reverse 

osmosis is applied (Drioli, 1980; Michaels, 1980). Using the hollow-fibre module as an 

immobilized enzyme bioreactor was first proposed by Rony (1971), while Knazek et al. 

(1972) first reported using a hollow-fibre bioreactor for mammalian cell culture. Whole-cell 

Table 1.1: Some applications of hollow-fibre devices. 

Application Reference 

artificial kidney (hemodialysis) 

artificial pancreas 

hemofilters and hemodiafilters 

liver assist device 

hormone production 

monoclonal antibody production 

purification of biological macromolecules 

ultrapure water production 

water desalination 

Mahon (1960) 

Colton et al. (1980) 

Gohl & Konstantin (1986) 

Wolf (1980) 

Knazek et al. (1972) 

Piret&Cooney (1990a) 

Michaels (1980) 

Michaels (1980) 

Breslau et al. (1980), Hermans (1978) 
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immobilization has important advantages over enzyme immobilization including elimination of 

the enzyme purification step and the ability of whole cells to catalyze multi-step reactions 

(Webster & Shuler, 1978). Protection of cells from shear stresses, high cell densities, and 

increased product concentrations are some advantages of immobilized cell cultures compared 

with suspension cultures (Piret & Cooney, 1990b). Hollow-fibre systems offer a particularly 

high surface-to-volume ratio, and thus high throughput capacity and high productivity. In the 

case of artificial organs, foreign cells can be immunoisolated (Kelsey et al., 1990). On the 

other hand, difficult sampling, nutrient and metabolite gradients, and scale-up limitations are 

some of the potential problems associated with hollow-fibre devices (Piret & Cooney, 1991; 

Piret et al., 1991). 

Figure 1.1: Schematic of a hollow fibre device (not to scale). 

Figure 1.1 shows a schematic diagram of a hollow-fibre bioreactor (HFBR). In a typical 

configuration, it contains cells packed to high densities in the extracapillary space (ECS) and 

thus physically separated from the major flow that enters and exits the reactor and passes 
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through the fibre lumina. Low-molecular-weight nutrients (e.g., dissolved oxygen, glucose, 

etc.) permeate through the membrane into the ECS, while cell metabolic wastes are 

continuously removed from the ECS to the lumen flow. Macromolecular product proteins 

usually remain in the ECS but, depending on the size and shape of the molecule and on the 

membrane properties, might also migrate to the lumen. This flow configuration is known as 

the closed-shell mode (since both ECS ports are closed) and is commonly used in the 

production phase. Other variations of the closed-shell configuration include periodic 

alternation of the flow direction (Piret & Cooney, 1990a) or applying pulsatile flow at the inlet 

(Kim & Chang, 1983). Open-shell operation occurs during the inoculation phase, in which the 

cells are introduced into the shell side through the upstream ECS port, or the harvesting 

phase, in which the product is collected from the downstream ECS port. 

In the prediction of cell and product distributions in HFBRs, one must account for at 

least some and possibly all of the following phenomena: (i) diffusion, (ii) convection, (iii) 

osmosis, (iv) gravity, (v) adsorption, and (vi) metabolic reactions. Adsorption of cells or 

protein molecules can lead to membrane fouling, while osmotically active species, if present at 

sufficiently high concentrations, will influence transmembrane flows. Distributions of low-

molecular species, for which the membrane is permeable, are usually affected by diffusion and 

metabolic reactions only (Piret & Cooney, 1991; Piret et al., 1991). However, for proteins, 

the influence of gravity and convection often cannot be neglected, a conclusion made by Piret 

and Cooney based on their evaluation of the Grashof number (ratio of buoyant forces to 

viscous resistance) and Peclet number (ratio of convective to diffusive transport) for typical 

process conditions. This has been confirmed by experimental observation of downstream 

polarization and sedimentation of cells and proteins (Piret & Cooney, 1990a). Convectively 

induced downstream polarization of protein may cause problems associated with ineffective 

use of the reactor space during the start-up phase of HFBR operation since the cell 

distribution has been shown to follow the growth factor distribution (Piret & Cooney, 1990a). 
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On the other hand, it can be advantageous to polarize the protein in the downstream part of 

the reactor prior to harvesting in order to obtain a more concentrated product solution. Some 

authors (e.g., Pillarella & Zydney, 1990; Salmon et al., 1988) have claimed that increased ECS 

convective flow should improve the productivity of HFBRs. Thus, the analysis of HFBR 

convective fluid flow is an important step in the modelling, design and scale-up of these 

bioreactors. 

The mathematical models describing hydrodynamics as well as convective and diffusive 

protein transport in HFBRs have so far been based on the analysis of a single fibre unit 

assumed to be representative of the whole reactor (Apelblat et al., 1974; Kelsey et al., 1990; 

Pillarella & Zydney, 1990; Taylor et al., 1994). In the closed-shell mode, the pressure 

gradients between fibres are often small, and this assumption is fairly reasonable. However, it 

cannot lead to a realistic description of HFBRs in cases of (1) significant radial pressure 

variations in the lumen manifolds, (2) significant concentration gradients between fibres, 

caused by gravity or by protein entrapment in the ECS manifolds, or (3) for open-shell 

operations such as inoculation or harvesting (since the ECS manifolds are located at the 

reactor circumference). This work presents the development and gives example applications 

of a new model, in which the bundle of densely packed hollow fibres is treated as a porous 

medium and the spatial domain is determined by the real cartridge dimensions. This not only 

makes it possible to handle the open-shell as well as the closed-shell flow configurations but 

also allows for relatively straightforward extensions of the model to include, for instance, the 

presence of ECS or lumen manifolds or the influence of gravity on the hydrodynamics and 

protein distribution. 

Chapter 2 of this thesis presents a review of previous models of fluid flow and protein 

transport in HFBRs. The assumptions and mathematical development of the proposed Porous 

Medium Model (PMM) are given in Chapter 3, while Chapter 4 briefly describes the 

numerical techniques used. Section 1 of Chapter 5 presents examples of model verification 
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through the comparison of some one-dimensional solutions with those obtained from single-

fibre models. Section 5.2 presents solutions obtained using the PMM with imposed radial 

lumen pressure gradients at the HFBR inlet and outlet. Finally, predictions of the PMM with 

respect to the determination of membrane permeability, hydrodynamics in the filtration mode, 

as well as inoculation and harvesting operations are presented in subsequent sections of 

Chapter 5. The last chapter concludes the thesis and outlines possible future extensions to this 

model. 
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Chapter 2: PREVIOUS MODELLING WORK 

2.1. Introduction 

Most mathematical models describing HFBRs start with a hydrodynamic analysis and 

then superimpose solute transport on the flow field to determine the distribution of nutrients 

and products (e.g., Kleinstreuel & Agarwal, 1986; Salmon et al., 1988; Pillarella & Zydney, 

1990). It has been shown that, under typical HFBR operating conditions, diffusion is the 

primary transport mechanism for low-molecular-weight nutrients and metabolites (Webster & 

Shuler, 1978; Piret & Cooney, 1991) while convection is the dominant mechanism for 

transport of macromolecular species such as growth-factor and product proteins (Taylor et 

al., 1994). Only recently has the effect of the osmotic pressure on the ECS hydrodynamics 

and protein distribution in ultrafiltration HFBRs been modelled (Patkar et al., in press; Taylor 

et al., 1994). A summary of all the factors which affect the convective flow in HFBRs is 

presented in Table 2.1. 

The following sections present the general assumptions used by the existing models and 

then more detailed descriptions with an emphasis on models based on the Krogh cylinder 

approximation. 

2.2. General assumptions 

The fluid in HFBRs is assumed to be incompressible and Newtonian; body forces are 

neglected. Then, the fundamental equations governing the hydrodynamics become: 
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Table 2.1: Parameters affecting the flow in hollow-fibre bioreactors. 

GENERAL 

Design 
and 

operating 

parameters 

Fibre 

arrangement 

Membrane 

properties 

Others 

SPECIFIC 

Flow configuration 

(Braining, 1989; 

Tharakan & Chau, 

1986, 1987) 

Flow direction 

Reactor orientation 

Geometrical design 

EXAMPLES AND REMARKS 

closed-shell (open lumen inlet and outlet) 

cross-flow filtration (open ECS inlet, lumen outlet) 

permeate suction (open both inlets and lumen outlet) 

dead-end filtration (open lumen inlet and ECS outlet) 

unidirectional flow (most cases) 
periodically alternated (Piret & Cooney, 1990a) 

horizontal (Piret & Cooney, 1990a) 
vertical (Patkar et al., in press) 

shape of lumen manifolds (Park & Chang, 1986) 

shape of ECS manifolds and location of ECS ports 

ECS and lumen inlet-outlet pressure differences (and hence the flow rates) 

Packing density 

Parallel alignment 

Uniformity in 
distribution 

Isotropicity 

Permeability, L p 

Nominal molecular 

weight cut-off 

Osmotic effects 

Cell growth 

conditions 

Membrane fouling 

more resistance to flow if higher (Kelsey et al., 1990) 

deviations from increase resistance to transverse flow 

and (less) to parallel flow (Kirsch & Fuchs, 1967) 

more resistance to flow if higher (Jackson et al., 1986) 

non-uniformity causes channelling (Heath et al., 1990) 

isotropic or anisotropic (Waterland et al., 1974) 

expressed as fluxXviscosity/(pressure difference) 

roughly, molecules with lower molecular weight 

will pass through the membrane (Cima, 1988) 

flow influenced by osmotically active species 

ECS porosity, hydraulic conductivity, diffusivity, 

viscosity, density affected by cells and proteins 

pore-blocking, adsorption, protein denaturation and 

gel-layer formation (Mulder, 1991) 
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continuity 

V - V * = 0 or V-V = 0 (2.1) 

momentum (Navier-Stokes) 

+ V*-(VV*) = - - V P + ^ - V 2 V * (2.2) 
at P P 

Darcy's law 

V = - - V P (2.3) 

where V * and V are the actual and superficial velocity vectors, respectively, P is pressure, k 

is the Darcy permeability, p is the fluid density, /i is the fluid viscosity and t is time. 

Essentially, three regions are distinguished in the analysis: lumen, membrane and shell (ECS). 

Mass continuity applies to each of them. The Navier-Stokes equation is used for regions not 

treated as porous media (lumen and cell-free ECS), otherwise Darcy's law is employed 

(membrane and cell-packed ECS). In most models, fully developed laminar flow in the lumen 

is assumed and the inertial terms in Equation 2.2 are neglected because of a very small aspect 

ratio (fibre radius/length) and hence small radial Reynolds number (Kelsey et al., 1990; Taylor 

et al., 1994). This leads to the creeping-flow equation: 

VP = /xV2V* (2.4) 

For the case where proteins are present in the shell side, the solute balance equation can be 

written as follows: 

a f1 

— - = V*-VC + Z)V2C + * (2.5) 
a t 
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where D is the protein difrusivity which is treated as a scalar independent of concentration. 

The sink/source term ¥ can include protein leakage through the hollow-fibre membrane, 

protein consumption or production, etc. (it is usually assumed to be zero). 

Owing to the reactor shape, cylindrical coordinates are used in the analysis, with the 

angular variation being neglected. Fibres are treated as parallel hollow cylinders distributed 

uniformly throughout the circular cross-section of the reactor. Only radial flow is assumed to 

occur in the membrane. 

2.3. Major approaches to modelling 

In the cell models developed by Happel (1959) and Kuwabara (1959) fluid motion 

through an assemblage of solid cylinders was modelled by considering an equivalent system of 

one cylinder and a concentric fluid envelope associated with it, the ratio of solid to fluid 

volumes being the same as for the assemblage of cylinders. Using slightly different boundary 

conditions at the cell boundary (zero vorticity by Kuwabara, zero shear stress by Happel), 

they solved the two-dimensional creeping-motion equations for flow parallel or perpendicular 

to the cylinders and derived expressions for the stream function, drag and Darcy constant for 

the bulk flow behaviour. This simple model provides no information about the local velocity 

or pressure profiles in different regions of a multi-fibre reactor where the shell and lumen 

spaces communicate across a semipermeable membrane. 

Most HFBR models have been based on the assumption that the flow associated with 

each fibre is identical, so that a single fibre along with the fluid cylinder surrounding it is 

representative of the whole reactor (e.g., Kelsey et al., 1990; Pillarella & Zydney, 1990; 

Taylor et al., 1994). This single fibre unit is called the Krogh cylinder, in honour of Krogh 

(1919), who carried out early modelling work on capillaries in tissue assuming the same multi-
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fibre geometry. The fibres are assumed to be arranged in a regular array with no fluid 

exchange between adjacent Krogh cylinders (Figure 2.1). Partial overlapping of neighbouring 

fibre units accounts for the void volume between them (Figure 2.1.a). Most analyses assume 

the closed-shell configuration, i.e. fluid enters the fibre through its lumen, then partially 

penetrates into the ECS in the upstream half of the fibre length and returns to the lumen in the 

downstream half (Figure 2.1 .b). The flow induced in the ECS by an axial pressure gradient in 

the lumen, in the presence of a permeable membrane, is referred to as Starling flow (Starling, 

1896). 

Early theoretical studies on solute transport in HFBRs usually neglected the convective 

effects (except in the lumen) and assumed only radial diffusive transport of substrate and 

product in the membrane and ECS, with chemical reaction taking place in the latter (Rony, 

1971; Waterland et al., 1974; Kim & Cooney, 1976; Webster & Shuler, 1978). An order-of-

magnitude analysis indicates that, under typical process conditions, salts, non-electrolytes, and 

gases in the ECS of HFBRs are primarily transported by radial diffusion (Piret & Cooney, 

1991). Kleinstreuel and Agarwal (1986) have simultaneously solved the transient convective-

diffusion, Navier-Stokes, and continuity equations assuming no axial velocity in the membrane 

or in the "spongy matrix" region (ECS packed with biocatalyst). However, their model 

ignored both the dependence of hydrodynamics on mass transfer and the convective transport 

in the ECS. 

Apelblat et al. (1974) performed a theoretical analysis of a thin-walled capillary 

surrounded by a porous bed of tissue, with the flow in the latter described by Darcy's law. 

This situation is analogous to a hollow-fibre bioreactor with a densely packed cell bed in the 

ECS. The coupled steady-state continuity and momentum equations were solved for the 

lumen and surrounding tissue, with the results presented in terms of Bessel functions. 

Salmon et al. (1988) extended Apelblat's analysis to describe fluid flow as well as solute 
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a. 

Figure 2.1: Krogh cylinder approximation: a) fibre arrangement throughout the reactor 

cross-section, b) longitudinal section of a single unit with major flow paths. 

transport in a specially designed hollow-fibre reactor that consisted of the following four 

regions: lumen, inner membrane (permeable to fluid flow), cell- or enzyme-packed annulus, 

and outer membrane (impermeable to fluid flow) (Libicki et al, 1988). Their model included 

both convective and diffusive transport of either a non-reactive tracer or a solute consumed 

with first-order or Michaelis-Menten kinetics. The convective transport was found to have a 

marked effect on the reactor performance under extreme flow conditions. In some cases, the 
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transport of non-reacting solute could be adequately described using axially-averaged 

velocities, producing a simpler model whose solution required much less computational effort. 

Bruining (1989) presented a general description of the hydrodynamics in hollow-fibre 

devices. The scope of his analysis included different modes of operation (e.g., closed-shell, 

continuous open-shell, suction of permeate, dead-end filtration) corresponding to various 

applications of hollow-fibre modules. Starting from the mass and momentum balance 

equations, Bruining obtained expressions for the hydrostatic pressure and bypass (fraction of 

fluid passing through the ECS) as functions of the axial position and the dimensionless 

transport modulus TL (the ratio of the viscous resistance inside the fibre lumen and the 

permeation resistance of the membrane). Bruining's simple analysis provided no information 

on local velocity profiles. 

Another hydrodynamic model was developed by Kelsey et al. (1990) whose analysis was 

similar to that of Apelblat et al. (1974) except that the Navier-Stokes equation rather than 

Darcy's law was employed for the cell-free ECS. Lumen and shell pressures were assumed to 

be radially constant. Steady-state analytical solutions were obtained in terms of three 

dimensionless parameters: y, which describes the geometry of the hollow-fibre module, K , the 

membrane permeability and / , the filtration fraction (fraction of fluid leaving the device 

through the ECS downstream port). 

Pillarella and Zydney (1990) extended Kelsey's analysis to include glucose and insulin 

transport in a hollow-fibre bioartificial pancreas where both solutes were present at low 

concentrations. Because osmotic effects were unimportant in this case, the flow equations 

were decoupled from the substrate and product transport equations. Axial diffusive transport 

throughout the reactor was neglected and only radial flow in the membrane was permitted. 

The steady-state fluid flow profiles were evaluated analytically (Kelsey et al., 1990) while the 

transient convective-diffusion equations for glucose and insulin were solved numerically. The 
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model predictions were in good agreement with experimental data obtained by Colton et al. 

(1980). 

Taylor et al. (1994) incorporated osmotic effects and solved the two-dimensional protein 

transport equation coupled with a second-order ordinary differential equation for the radially-

averaged lumen (or ECS) velocity. A transient solution was obtained by iterating the 

interdependent velocity and concentration fields at each new time step. Taylor's analysis was 

carried out for both single- and multi-fibre isotropic membrane HFBRs with an ECS 

essentially unobstructed by cells (i.e. during the start-up phase). The results confirmed the 

occurrence of a significant downstream polarization of ECS proteins. It was found that, at 

higher protein concentrations and lower recycle flow rates, the osmotic influence of the 

proteins could reduce the Starling flow by several orders of magnitude, thus eliminating the 

protein polarization problem. It was suggested that introducing a concentrated solution of 

inert, osmotically active, macromolecules with the inoculum would allow more rapid and 

uniform cell growth in HFBRs, leading to reduced start-up time and increased reactor 

productivity. 

Patkar et al. (in press) followed up Taylor's work and compared predictions of one- and 

two-dimensional models with experimental results, concluding that the radial variations could 

be neglected. Good agreement was found for experimental and theoretical transient and 

steady-state axial concentration profiles of bovine serum albumin (BSA) and human 

transferrin. At the upstream and downstream ends of the ECS some discrepancies were 

observed, which were believed to be due to the presence of the ECS manifolds. The 

influence of the flow direction switching time in the bidirectional lumen flow mode and the 

effect of membrane permeability on the protein distribution were also investigated. A formula 

for the critical protein loading necessary to ensure that the steady-state growth factor 

distribution would extend over the full length of the ECS was developed. 
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Koska (1993 a) recently investigated protein redistribution in HFBRs with a gel-packed 

ECS. Experimentally obtained protein concentration profiles were compared with those 

predicted by one- and two-dimensional models based on the Krogh cylinder approximation. 

The results indicated that the one-dimensional model, which required about two orders of 

magnitude less computational time, was sufficient to adequately duplicate the ECS protein 

distributions predicted by the two-dimensional model. Koska's model simulations also 

showed that protein polarization, a dominant feature of cell-free ECS protein transport, was 

reduced under cell-packed conditions, when the ECS hydraulic conductivity was lower. 

The governing equations of the Krogh-cylinder-based models of Kelsey et al. (1990), 

Taylor et al. (1994), Patkar et al. (in press), and Koska (1993a), are included in Appendix A. 
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Chapter 3: DEVELOPMENT OF THE POROUS MEDIUM MODEL 

3.1. Introduction 

Since a hollow-fibre reactor contains thousands of densely packed fibres, an attempt to 

describe it as a porous bed seems well justified. In the Porous Medium Model (PMM), the 

shell (ECS) and lumen sides are treated as interpenetrating porous regions with a continuous, 

spatially dependent, source/sink of fluid. This approach is analogous to the model of flow in 

tissue proposed by Baxter and Jain (1989). Since fluid incompressibility and Darcy's law are 

used to describe the hydrodynamics in both the ECS and the lumen side, the hollow-fibre 

membranes do not have to be distinguished as a separate region. Axial flow in the membrane 

is neglected, which, together with the incompressibility requirement, implies that what fluid 

disappears from (or appears in) the lumen must instantly appear in (or disappear from) the 

ECS (at the same position). The protein is assumed to be present in the ECS only, with no 

leakage into the fibre lumina and no build-up in the membranes. Osmotic effects are included 

and cause the coupling of the fluid flow and protein transport equations. Body forces 

(gravity) are neglected and axial symmetry of the system is assumed. 

In the derivation of the model equations, it is useful to introduce the concept of the 

representative elementary volume (REV) (Bear, 1972). The REV must be small enough to 

ensure continuous and smooth variations of concentration and flow properties over the length 

and cross-section of the HFBR. On the other hand, it must contain a sufficiently large number 

of fibres, so that its actual heterogeneity is not pronounced. Uniformity in fibre distribution is 

not essential, although it is convenient to assume that each REV contains the same number of 
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Figure 3.1: Ring-shaped representative elementary volume (REV) with thickness Ar and 

length Ax. 

fibres per unit volume. A diagram of a two-dimensional REV in cylindrical co-ordinates is 

shown in Figure 3.1. 

The PMM is the first attempt to develop a more general HFBR model, able to deal with 

a variety of flow configurations, with possible significant radial pressure and concentration 

gradients and, eventually, with non-ideal reactor design details (e.g., ECS manifolds) or the 

effect of gravity. In contrast to the Krogh cylinder approach, in which a multi-fibre reactor is 

modelled by considering a fictitious single fibre unit, the spatial domain in the PMM 

corresponds to the real dimensions of the HFBR cartridge. 
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3.2. Hydrodynamics 

It is assumed here that, because all of the components of the system are incompressible, 

the reactor hydrodynamics are always quasi-steady. Any transient changes in the flow field 

are due to the time-dependent changes in protein concentrations (via osmotic pressure). 

Thus, at each time level, the hydrodynamics adjust instantaneously to the new concentration 

field. As well as being incompressible, the fluid is also assumed to be Newtonian. 

The steady-state continuity law applied to the ECS yields 

V-Vs=</> (3.1) 

and to the lumen, 

V - V L - - * (3.2) 

where Vs and VL are the shell and lumen superficial velocity vectors, respectively. The fluid 

source/sink term, <t>, is due to fluid leakage across the membrane and can be expressed as 

0 = - ^ ^ ( P L - P s + n s ) (3.3) 
/* 

where Lp is the membrane hydraulic permeability, /x is the fluid viscosity, Ay is the membrane 

surface area per unit volume available for fluid transport, PL(x,r) and Ps(x,r) are the lumen and 

ECS hydrostatic pressures, respectively, and ns(x,r) is the ECS osmotic pressure. As 

mentioned before, it is convenient to assume that Ay is a constant independent of position and 

time. In the absence of any membrane fouling phenomena (Mulder, 1991), the same 

assumption can be made for Lp. The fluid viscosity is assumed to be independent of protein 
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concentration, which, as shown by Koska (1993 a), is a reasonable approximation for the 

concentration range of interest here. 

Since the Reynolds numbers in HFBRs are usually very small (e.g., for a lumen flow of 

600 cmVmin, the lumen Re=o(l); ECS Reynolds numbers can be orders of magnitude 

smaller), Darcy's law can be employed, thus giving a simple relationship between the local 

velocity components and corresponding pressure gradients. In cylindrical co-ordinates, with 

angular terms neglected, Darcy's law becomes 

V - - I 
f a n a rt \ d P« . , dR 
K K,s ~~2 + l r K.s ""a" 

^ ox or 
(3.4) 

for the ECS, and 

ox dr 
(3.5) 

for the lumen (lx and lr are unit vectors in the axial and radial directions, respectively). The 

principal components of the hydraulic conductivity tensor, kx and kr, are assumed to be 

constant throughout each medium, although, in general, different in either direction. 

Moreover, since the fibres are not directly connected with one another, the lumen flow is 

essentially one-dimensional and krL can be set to zero, yielding 

1 dP 
VL = - L K K , L ^ - (3-6) 

fl o x 

Section 3.4 discusses in more detail how the hydraulic conductivities are modelled. 

Combination of Eqs. 3.1 with 3.4 and 3.2 with 3.6, with regard to Eq. 3.3, yields the 

following set of coupled partial differential equations for PL(x,r) and Ps(x,r): 
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- ^ ^ - = ^ ^ ( P L - P s + n s ) (3.7) 
ox 

* J t f ^ t - ^ 4 r ( p L - p . + n8) (3.8) 
dx 

For identical, straight fibres, the surface area per unit volume, Ay, can be expressed as 

_ 2rRLLn _ 2RLn 
A ~ *R*L " ~ # ~ ( 3 9 ) 

where n is the total number of fibres in the HFBR, R is the cartridge inner radius, L is the 

reactor length (i.e. the ECS length) and RL is the fibre inner radius. The actual value of Ay 

may be larger than that calculated from Eq. 3.9 because of fibre swelling in the liquid-filled 

cartridge (Patkar et al., in press). The hollow fibres are reported to assume a wavy 

appearance and have both their radial and axial dimensions increased by about 10%. Note 

that the determination of Lp should be based on the surface area Ay calculated from Eq. 3.9. 

Tables 5.1 and 5.3 of Chapter 5 list the numerical values of all the parameters used in the 

model. 

3.3. Protein transport 

Since the ECS is assumed to be the only region that contains protein, there is just one 

differential equation describing the protein transport. It has the general form of Eq. 2.5, with 

the sink/source term SF set to zero, as protein leakage, adsorption, denaturation, production, 

and consumption are neglected. The equation can be derived from a protein mass balance 

over the representative elementary volume. Figure 3.2 shows the enlarged REV cross-section 

r d r 
3jk 
3r 
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Figure 3.2: The REV cross-section diagram for the convective-diffusion equation. 

marked ABCD in Figure 3.1. The rate of protein accumulation in the REV must be balanced 

by the net convective and diffusive fluxes through all the boundaries, according to the 

following equation: 

3 c 
e^x(r 2

2 - r i
2 )Ax— = 

accumulation 

T ^ - l f ) u c - A a x 
- *"(r2

2-ii2) 
, 9 (u c) „ 

u c + A x —^—- - Dx ox 

(3.10) 

3 c 82c 
-— + A X -—r-
ax dx2 

W face E face 

+ 2 x r, A x 
~ 9c 

v c - Z ) r - 2 xr2 Ax 
* 3 v c ^ 

vc + Ar , -Dr 3r 
3 c d2c 
a r a r 

S face N face 

Here, c is the average actual concentration in the REV (the mass of protein in the part of the 

representative elementary volume available to the fluid), u is the superficial velocity at face W 

and v is the superficial velocity at face 5. Dx and Dr are the effective diffusivities of protein in 
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the axial and radial directions, respectively. es is the overall porosity of the HFBR, expressed 

as follows: 

&S = ^ ECS ^ ECS (•*•*•*•) 

where 1 - e ^ is the fraction of the reactor volume occupied by fibres (including their porous 

membranes and lumina) and 1 - e ^ 5 is the fraction of the ECS occupied by cells. Thus, es 

represents the fraction of the reactor volume available for the ECS fluid. In the absence of 

cells, ss = eECS. In the present analysis, it is assumed that eECS and s'^g (and hence also es) 

are constants independent of time and position. A similar assumption has been made with 

respect to Dx and Dr. Moreover, variation of the difrusivities with protein concentration has 

been shown by Koska (1993a) to be insignificant for protein loadings below 100 kg/m3 and, 

therefore, has been neglected here. Section 3.4 will explain in more detail how the axial and 

radial difrusivities are modelled. It should be noted that, in writing Eq. 3.10, es has been 

incorporated in the expressions for Dx and Dr. 

Cancelling identical terms with opposite signs and dividing both sides of Eq. 3.10 by 

7r(r2
2 - r,2) Ax yields 

dc _ d2c a (uc) 2 f n 3 c "l 2r2 (n d2c 9 (vc)^ 
es — = Dx — -—- + Dr v c + — Dr — —L \ 

at ox dx fi + r2 v ^ r J r i+ r2V ^ r ^ r J 

Since Ar is assumed to be small, r, «r2 « r , which eventually leads to 

e ^ 7 7 = ^~\D'1~"UC\ + -T- r A T ~ - r v c . (3.12) 
dt axy ox J r d r ^ dr J 

The above second-order, time-dependent, convective-difrusion partial differential equation is 

coupled with the pressure equations (3.7 and 3.8) through a relationship n s (c ) between 
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osmotic pressure and concentration. In this work, bovine serum albumin (BSA) has been 

chosen as a model protein. Its physical and chemical properties are well described in the 

literature and the protein is relatively inexpensive for experimental study. The osmotic 

pressure of BSA can be expressed using, for instance, the following formula obtained by 

Vilkeretal. (1981): 

H,(c) = ^(j(zpcf+(2msMp)
2 -2msMp + c + A2c

2
+A,c^ (3.13) 

where Rg is the gas law constant, T is the absolute temperature, Mp = 69 kg/mol is the 

molecular weight of BSA, Zp is the protein charge number and ms is the molar salt 

concentration. The virial coefficients ^ and 4? a r e functions of Zp. Refer to Table 5.1 for 

the numerical values of the parameters used in this relationship. 

The superficial velocities u and v in Eq. 3.12 are calculated from the ECS hydrostatic 

pressure field obtained as a solution of Eqs. 3.7 and 3.8 at each time step, i.e., 

1 , 5 Ps 

u = Ks-r^ (3.14) 
H ox 

v = - 1 ^ ^ . (3.15) 
fi or 

The actual velocities, u* and v*, are related to u and v through es: 

u* = — u (3.16) 

v* = — v . (3.17) 
£* 
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3.4. Modelling of the ECS and lumen hydraulic conductivities and protein 

effective diffusivities 

Hydraulic conductivities in the lumen and cell-free ECS 

A simple one-dimensional analysis of the laminar Krogh cylinder flow (Kelsey et al., 

1990; Taylor et al., 1994) provides the following expressions for the radially-averaged actual 

axial velocities in the lumen and cell-free ECS: 

uT = - $fi dx 
(3.18) 

u, = -
_1_ 
8/x 

4% IniRs/Rj 

Rl-R2 
-3i£+i?j M 

M 

d^L 
dx 

(3.19) 

where RL is the inner fibre radius, RM is the outer fibre radius, Rg is the Krogh cylinder radius 

and PL and Ps are the lumen and ECS pressures (assumed radially constant). It should be 

pointed out that Rg is calculated based on the assumption that the sum of all Krogh cylinder 

volumes equals the total reactor volume, i.e., 

R. = -T=R 
\n 

(3.20) 

where n is the number of fibres and R is the cartridge radius. If the actual velocities u,* and 

us* are converted into superficial velocities, uL and us, Eqs. 3.18 and 3.19 will essentially be 

expressions of Darcy's law and will yield the Darcy permeabilities for the lumen and for the 

ECS. The conversion is performed in an analogous way as in Eq. 3.16 and requires 

knowledge of the lumen and ECS porosities: 
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eL = Rl/% (3.21) 

e* = CECS = 1-Rl/Rl (3-22) 

This leads to 

L 8/i ^ dx v ' 

— _1_ 

8/x 
us = -

^ . &\ (4Rt ln(^/^) _ , D2 ^ D 2 1 dP5 
i2 

I ^S 
- 3 i ^ + i ^ ^ a . (3.24) 

V P4-K * " J dx 

which eventually yields the following expressions for the Darcy permeabilities in the axial 

direction: 

K, - i f (3-25) 

Rlf . 3 _ 1 
*,* = ^{-^v-^2*-^*21 (326) 

where ^ = 1-£ECS
 =

 RM/R-S
 1S t n e fraction of the reactor volume occupied by the fibres. It is 

worth noting that Eq. 3.26 is identical with the prediction of Happel (1959), who used a 

cylindrical cell model to investigate laminar flow parallel to an array of cylinders. 

In the absence of cells, the flow in the extracapillary space is analogous to parallel or 

transverse flow through a bank of cylinders. Examples of systems having a similar geometry, 

which have been investigated using both experimental and theoretical methods, include tubular 

heat exchangers (Sangani & Acrivos, 1982a; Hwang & Yao, 1986) and fibrous porous filters 

(Spielman & Goren, 1968; Harrop & Stenhouse, 1969; Ethier, 1991). The dimensionless 

Darcy permeabilities (or hydraulic conductivities), kJR2
M, which can be found in the literature 
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for flow parallel or perpendicular to an assemblage of parallel cylinders, are summarized in 

Table 3.1. To allow comparison between different authors' predictions, some values of kxS 

and krS have been calculated for RM = 10_4m and <p = 0.5 and are included in the Table. 

It should be stressed that an analysis based on the Krogh cylinder approximation cannot 

provide an estimate of the ECS permeability in the radial direction. In this case, one of the 

expressions from Table 3.1 can be employed in the model (although, some of the values listed 

differ significantly and the choice of krS is rather arbitrary). Here, the simple cell-model 

equations due to Happel (1959) were used to calculate the ECS hydraulic conductivities in 

both directions. 

Protein diffusivities 

A similar difficulty arises when specifying the ECS effective protein diffusivities, Dx and 

Dr, which are different from the diffusivity D in a fluid unobstructed by the presence of fibres 

or cells. Using again the analogy to an array of parallel cylinders, Neale (1977) obtained the 

following relationships for these effective diffusivities: 

A = DEECS = D{l-<p) 

D = D SECS = D ^ -
2-SECS 1 + P 

Cell-packed ECS 

In this case, the hydraulic conductivities cannot be obtained from the equations listed in 

Table 3.1 by simply including the e'ECS factor. The reason is that the flow in the cell-packed 

ECS is no longer analogous to that through an assemblage of cylinders (fibres) and should 

(3.27) 

(3.28) 
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Table 3.1: Theoretical expressions for the dimensionless Darcy constant k/R2
M as a function 

of the solid fraction <p for a flow through an array of parallel cylinders (RM is the 

cylinder radius); k values are calculated for <p=0.5 and i ? M = 1 0 - 4 m. 

a. Flow parallel to the cylinders 

Authors Expression for kxSJR^ 2 
M Value of k x.S 

Happel (1959) 

Eisenberg & 

Grodzinsky (1988) 

Kelsey et al. (1990) 

Taylor et al. (1994) 

*x,S 

R M 

J_ 
4<p 

3 1 , 
- I n a ? — + 2<p- — u> 

2 2 
3.4-10" l um - 1 0 ^ , 2 

Spielman & Goren, 

(1968) 

vx,S 

R 
J_ 
2<p 

V^7 Jo(VV^">" 
•M -r L RM J , ( V V ^ ) . 

J p (x) is Bessel function of order p and 

argument x 

Drummond & 

Tahir (1984) 

-^- = -^\-ln<p-\A975+2<p-^<p2 

RM *<P [ 2 

(equilateral triangular array) 

+ . 

nxS J _ 1 7 
- In<p -1.4763 +2<p--<p2 

3.5-10" iUm -10 ~ , 2 

4.5-10" l um -10 „ 2 

-0 .051^ 4 / ( l +1.5198v?4)) 

(square array) 
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Table 3.1 - cont. 

b. Flow perpendicular to the cylinders 

Authors 

Happel (1959) 

Kuwabara (1959) 

Spielman & Goren, 

(1968) 

Sangani & Acrivos, 

(1982a) 

Expression for krSJR2
M 

Ks I 

Rl *<P 

Ks I 

R2
M 8* 

Ks 
Rl 

r «2 i I 

" l n ^ + „»4.1 

3 
- I n ? — + 2co 

2 

[— M 
4<p 2 

. 

y/Ks' h(RMljKs) 
_RM J , ( W ^ 7 ) _ 

Jp(x) is Bessel function of order p and 

argument x 

Ks 1 
Rl 8* 

(equilatera 

1 i -\n<p-\A9 + 2<p — ? +... 

il triangular array) 

-£f = T " (" In? " 1-476 + 2<p-1.774?2 

RM &(p 
+ 4.076 <p3 +...) 

(square array) 

Value of £,. s 

2.3-10~10m2 

4.8-10"10m2 

• 

2.0-10~10m2 

7.M0 - I 0 m 2 
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Table 3.1b-cont. 

Authors 

Drummond & 

Tahir (1984) 

Eisenberg & 

Grodzinsky (1988) 

Expression for krSJR2
M 

*r,S 1 

Rl,~*<p 
- \n<p-1.4975 +2<p--<p2 

- 0 . 7 3 9 1 / + ...) 

(equilateral triangular array) 

K « 1 

+ (l<p - 0J959<p2)/(l + 0.4892<p -1.6049 ?2)) 

(square array) 

Ks i 
R2

M 8*>G [-ln*V+ij 
G is a function of porosity, viscosity, dielectric 

permittivity, surface charge, bulk fluid 

conductivity, double layer thickness, counter 

ion mobility, potential difference across double 

layer 

Value of kr s 

0.6-10-10m2 

4.2-10~10m2 
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rather be modelled as a flow through a bed of densely packed spheres (cells). This implies 

that the conductivities and diffusivities in both directions become essentially equal, as in an 

isotropic medium. Although the maximum packing density of rigid spheres is 74% (i.e., 26% 

porosity, Bear, 1972), cells are deformable and hence can be packed to higher densities. Here, 

it will be assumed that effective difiUsivities and Darcy permeabilities of packed beds of 

compressible cells can be described, by extrapolation, using relationships for a bed of spheres 

having the same diameter as the cells. 

Since neither the effective diffusivity, £)*, nor the hydraulic conductivity, k', nor the 

cell-packed ECS porosity, e ^ , have been determined experimentally for an HFBR packed 

with mammalian cells, it would be convenient if both D° and k' could be expressed as 

functions of s'ECS (or ss). Then, only the latter parameter (rather than all three of them) 

would require estimation. 

Accordingly, the Carman-Kozeny equation (Carman, 1937; Kozeny, 1953) can be used 

to express k* in terms of the cell-packed ECS porosity, i.e., 

*• = ( £ ^ ) 3 (3.29) 

where 4 / 1S the porous medium surface-area-to-volume ratio. Assuming that the cells are 

spheres with a 12 /xm radius, we obtain from Eq. 3.29 the values of k' =1.03-10~13 m2 and 

k' =4.43-10"16 m2 for ss=26% and 5%, respectively. 

An estimate for k' has been provided by Koska (1993a) who measured the hydraulic 

conductivity of an agarose gel that simulated the cell-packed environment. A range of 

0.9-10-16 — 20-10~16 m2 was obtained, depending on the gel concentration and on the 

presence of additives (BSA). The hydraulic conductivities of natural cell aggregates of 

Escherichia coli packed in the ECS of hollow-fibre bioreactors were measured by Libicki et 

al. (1988) who obtained an approximate range of 4-10-12 — 3-10-11 m2 (depending on the 
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cell volume fraction). These estimates are several orders of magnitude higher than the values 

calculated using either the theory developed by Sangani and Acrivos (1982b) or Eq. 3.29. 

The former theory yields a range of 2-10"15 — 4-10-12 m2, corresponding to e^, « 0.70 -

0.08; whereas Eq. 3.29 yields a range of 2.7-10"18 -2.6-10"13 m2, corresponding to the 

same s'ECS range as in Libicki et al. (1988), i.e., 0.88 - 0.075. Other relevant estimates of 

Darcy permeabilities are available for bacteria in filter cakes (10 ~14 - 10 ~16 m2, Humphrey et 

al., 1985), packed beds of red cells (7-10-15 - 3-10"18 m2, Zydney et al., 1986) as well as 

subcutaneous and hepatocarcinoma rat tissues (Swabb et al., 1974) or rabbit omentum tissue 

(Apelblat et al., 1974), both of which generally fall below 10 ~18 m2. 

The effective diffusivity, £>*, can be calculated from the formula derived for a bed of 

spheres by Neale and Nader (1973) modified by the eECS factor accounting for the presence of 

fibres: 

D' = DeECS^^. (3.30) 

Both Eqs. 3.29 and 3.30 were assumed to be valid for deformable spheres, i.e., for packing 

densities larger than the maximum for rigid spheres. 

3.5. Boundary conditions 

In general, in order to find a solution of a given differential equation, it is necessary to 

specify one boundary condition per independent variable per equation order with respect to 

that variable. Thus, for the ECS pressure equation (Eq. 3.7), which is of second order with 

respect to x and of second order with respect to r, four boundary conditions will be needed. 

Similarly, for the lumen pressure equation (Eq. 3.8), two boundary conditions at two x-
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positions are necessary. The parabolic protein transport equation (Eq. 3.12) requires five 

boundary conditions: four in the spatial domain plus one initial condition in the time domain. 

Altogether, we shall need 11 boundary conditions for our system of equations. It should be 

pointed out that, in the open-shell cases, at T=R, we will have at least one extra region with 

different boundary conditions for x<xm and/or x>L-xm (corresponding to the upstream and 

downstream ECS manifolds, respectively) than for x m <x<Z-x m (see Figure 3.3). For 

example, instead of the no-radial-flux condition at v=R, as exists for closed-shell operation, 

we may have a specified inlet flux or a known pressure at the ECS upstream port, i.e. for 

x<x„. 

LUMEN 
INLET 

ECS UPSTREAM PORT 

n 
T=R 

ECS DOWNSTREAM PORT 

J l 

SPATIAL DOMAIN 
r=0 

LUMEN 
OUTLET 

x=0 x=x. x-L~Xm x=L 

Figure 3.3: Diagram of the spatial domain boundaries in the Porous Medium Model. 

Table 3.2 summarizes the boundary conditions common to all flow configurations. The 

initial concentration field c0(x,r) can be assumed constant (e.g. after inoculation) or taken as 

an intermediate solution of another problem. Zero-flux conditions occur in the ECS at x=0 

and at x=Z (i.e., dPs/3x = 0 and dc/dx = 0), as well as at r=R for xm<x<L-xm (i.e., 

3Ps/dr = 0 and dc/dr = 0). In addition, there is symmetry of ECS pressure and 

concentration about the centre-line (i.e., 3Ps/3r = 0 and dc/3r = 0 at r=0). 
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Table 3.2: Boundary conditions common to all flow configurations. 

# 

1 

2 

3 

4 

5 

6 

7 

8 

9 

X 

any 

0 

0 

L 

L 

any 

any 

x„<x<L-x„ 
m m 

x„<x<L-xm 
I In m 

r 

any 

any 

any 

any 

any 

0 

0 

R 

R 

Condition 

at t=0: 

c = c0(x,r) 

dPs/dx = 0 

dc/dx = 0 

3Ps/dx = 0 

dc/dx = 0 

3Ps/3r = 0 

3c/ar = 0 

dPs/3r = 0 

3c/3r = 0 

Meaning 

initial condition 

no axial fluid flux 

no axial protein flux 

no axial fluid flux 

no axial protein flux 

symmetry about the centre line 

symmetry about the centre line 

no radial fluid flux 

no radial protein flux 

The remaining boundary conditions depend on the combination of open or closed lumen 

and ECS inlets and outlets. Also, in the case of the pressure equations, it is possible to 

specify either a known pressure or a known flow rate (and hence velocity) at the inlet or 

outlet. These two options correspond to the Dirichlet (specified value) or Neumann (specified 

derivative) type of boundary conditions. At least one Dirichlet-type condition is needed to set 

the reference pressure level. In this work, the known-pressure rather than known-flow-rate 
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(or pressure derivative) boundary conditions were applied whenever possible, in order to 

improve the convergence rate of the pressure solutions. 

In the case of the transport equation, a known concentration can be specified at the ECS 

upstream port, if open, such as during inoculation. However, the outlet concentration must be 

calculated from the ECS concentration field, as it cannot be specified a priori. This means a 

zero-derivative boundary condition must be specified at the ECS downstream port, if open, 

such as during harvesting. 

Since the ECS manifolds are fibre-free regions with virtually no resistance to the flow, it 

has been assumed here that, in an open-shell case, the relevant pressure or pressure derivative 

boundary condition at x=R is constant over the manifold length, i.e. for 0<x<x m or 

L-xm<x<L. The same assumption has been made with respect to concentration. For 

similar reasons, pressure and concentration are assumed to be constant in the ECS manifold at 

all tangential positions measured from the ECS port. Thus, even for open-shell operation, the 

axial symmetry of the reactor is preserved. 

Table 3.3 gives the remaining boundary conditions not listed in Table 3.2. The 

combination corresponding to a specific mode of operation can be found without much 

difficulty. For instance, the closed-shell mode corresponds to the open lumen inlet and outlet 

with both ECS ports closed; the inoculation phase requires that the ECS upstream port be 

open and the downstream one closed, while both lumen inlet and outlet are open; etc. The 

known inlet and outlet lumen pressures or velocities can, in general, be functions of radial 

position. It should be pointed out that, since the first-order Darcy's law has been employed in 

the Porous Medium Model, the no-slip condition at the reactor walls is not specified. The 

extra boundary condition(s) could be incorporated if a higher-order equation (e.g., Brinkman 

equation) had been used for the ECS. 
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Table 3.3: Boundary conditions specific for different flow configurations. 

# 

la 

lb 

lc 

2a 

2b 

2c 

3a 

3b 

3c 

Configuration 

lumen inlet 

open 

lumen inlet 

open 

lumen inlet 

closed 

lumen outlet 

open 

lumen outlet 

open 

lumen outlet 

closed 

ECS upstream 

port open 

ECS upstream 

port open 

ECS upstream 

port closed 

X 

0 

0 

0 

L 

L 

L 

0<x<xm 
m 

0<x<xm 
fff 

0 < x < x 
Iff 

r 

any 

any 

any 

any 

any 

any 

R 

R 

R 

Condition 

IL-Pi* 

apL n 
— k = - - c - uL0 
3x kxX • 

ax 

p =p 

apL (i 
= — ii 

ax 

p =p 
rS L S,up 

ar Ks
 v^ 

a p°=o 
3r 

Comment 

known pressure 

known inlet velocity 

no axial fluid flux 

known pressure 

known outlet velocity 

no axial fluid flux 

known pressure 

known inlet velocity 

no radial fluid flux 
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Table 3.3 - cont. 

# 

4a 

4b 

5a 

5b 

5c 

6a 

6b 

Configuration 

ECS upstream 

port open 

ECS upstream 

port closed 

ECS downstream 

port open 

ECS downstream 

port open 

ECS downstream 

port closed 

ECS downstream 

port open 

ECS downstream 

port closed 

X 

0 < x < * 
iff 

0<x<xm 

L-x<x<L 
m 

L-x<x<L 
m 

L-x<x<L 
m 

L-x<x<L 
m 

L-xm<x<L 
m 

r 

R 

R 

R 

R 

R 

R 

R 

Condition 

c = c 

^ = 0 
dv 

p =p 

aps n 

a p - o 
dr 

dr 

^ - 0 
dr 

Comment 

known inlet concentration 

no radial protein flux 

known pressure 

known outlet velocity 

no radial fluid flux 

radially-constant outlet 

concentration 

no radial protein flux 



Chapter 4: Numerical techniques 36 

Chapter 4: NUMERICAL TECHNIQUES 

4.1. Solution of the pressure equations 

The two simultaneous second-order elliptic partial differential equations for pressures 

were introduced in Chapter 3. They have the following forms: 

r d r 

3PS 

dr 
- K,s ! ^ f = LP Ar (PL - Ps + n s ) (3.7) 

k*.L^t= LpAv(PL-Vs+Us) (3.8) 

where n s (c ) is a known function of protein concentration (e.g., Eq. 3.13). In this study, the 

concentration field needed for the evaluation of n s (c ) is taken from the previous time step, 

although an iterative scheme simultaneously updating Ps, PL, and c (and hence n s (c)) at the 

same time level is also possible (see Section 4.3). 

The finite difference approach was employed to solve the above equations. To ensure 

fluid mass conservation, the equations were discretized by integration over a control volume, 

according to the scheme recommended by Patankar (1980). The control volume here is 

equivalent to the representative elementary volume (REV), the concept introduced in Section 

3.1 of the previous chapter. A uniform grid (i.e., constant Ax and Ar) was used throughout 

the computations. Figure 4.1 displays the cluster of 5 adjacent cells (control volumes) that 

contribute to the finite difference formulation for the central cell (i,j). If the centre cell is 

adjacent to a boundary, the cluster consists of 4 cells, and in the case of a corner control 
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I 
r 

M-ij 

* J 

Ci-lj 

Vi-lj-l 

w 

_ 

'Ui-ij+i 

Ui-lj 

'Ui-ij-i 

• 
Vy+i 

Py+i. 
Cy+1 

N 
Vij 

Cij 

Vy-i 

s 
Ej-i 

Cij-i 

Uij+ i" 

U« E 

Uy-l' 

A * 

Vi+lj 

Ci+lj 

Vi+lj-l 

U i + l j ' 

X 

Figure 4.1: Cluster of control volumes contributing to the finite difference equations for 

a point (ij) in the interior of the domain. Note: the lumen pressure equation 

has contributions from three cells only (constant j). 

volume, of only 3 cells. No fictitious points were explicitly used in the computations. The 

boundary pressure values, unless given through boundary conditions, were calculated by 

extrapolation from the interior of the domain assuming constant curvature of pressure profiles 

near the boundaries. If a zero-derivative condition occurred, a constant curvature of pressure 

or concentration profile near the boundary was assumed and the values of P or c at the point 

closest to the boundary and at its fictitious equivalent located symmetrically on the other side 

of the boundary were assumed equal. 

To avoid certain numerical difficulties (described, for instance, by Patankar, 1980), a 

staggered grid was used, with the velocity grid points located half-way between the pressure 

grid points. Thus, the radial velocity grid points were on the S and N faces, while the axial 
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velocity points were on the W and E faces. The program can output the velocity values either 

located on the faces or interpolated to the cell centres. 

In the derivation of the discretization equations, it was assumed that: 

(a) r d¥s/dr is constant over Ax (which implies a locally logarithmic radial profile of Ps); 

(b) dPs/dx and 3PL/dx are constant over Ar; 

(c) (PL — Ps +I I S ) is constant over Ar; 

(d) (PL — Ps) changes linearly over Ax; 

(e) IIS is constant over Ax. 

With the above assumptions, it was possible to obtain a coefficient matrix in the 

tridiagonal form for each spatial dimension (x and r). For example, the equation for the (i j ) 

point included the neighbouring unknown pressure values in the axial direction, 

(i-lj) and (i+1 j) , and in the radial direction, (ij-1) and (i,j+l) (see Figure 4.1). Consequently, 

five diagonals were filled in the coefficient matrix. The equations for PL could maintain their 

tridiagonal form because of the lack of a radial derivative term. However, it should be kept in 

mind that the lumen pressure would not, in general, be radially constant; rather, PL would vary 

with radial position through the source term on the right-hand side of Eq. 3.8 and possibly 

also because of the lumen boundary conditions. 

The solution of the resulting sparse system of linear equations is theoretically feasible 

using the standard elimination or decomposition methods. However, these direct approaches 

would be extremely inefficient with large numbers of grid points as well as being prone to 

substantial round-off accumulations. In the one-dimensional Krogh Cylinder Model (KCM) 

used in this (see Chapter 5) and a previous study (Taylor et al., 1994), several hundreds of 

grid points were often necessary to achieve the desired level of accuracy. To avoid handling 

enormous matrices in an attempt to obtain the solution directly, the iterative line-by-line over-

relaxation method was used in this work (Anderson et al., 1984). In this technique, two of the 

neighbouring unknown values, either (ij-1) and (ij+1) or (i-lj) and (i+1 j) , are taken from the 
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previous iteration, thus making it possible to obtain a simple tridiagonal system of equations. 

Such a system is solved as many times as there are rows, i.e., K (j = 1,..,K), or columns, i.e., 

N (i = 1,..,N), which then completes one iteration cycle. The procedure is repeated until the 

solution no longer changes. In the case of Ps, either K equations were solved N times 

(sweeping over columns) or N equations were solved K times (sweeping over rows), while 

with PL, only the latter possibility existed. 

A variety of options are available in the program to perform the line-by-line over-

relaxation in an optimum way. Over-relaxation parameters, a s and aL, were used to 

accelerate the convergence, according to the following formulae: 

Ps"=«sPs"+( l -«s)Ps n
i r

1 (4-1) 

PM J=«LPM+(i-«L)pL
n ;~ l (4.2) 

where IT is the iteration counter and l < a s , a L < 2 . Furthermore, it was possible to choose 

the direction of sweep (over ascending or descending row/column index), the mode of 

sweeping (over rows, or columns, or alternately in both directions) and to either stop iterating 

the pressure that has converged first or carry on the iteration loop until both Ps and PL have 

converged. 

Convergence was assumed to be attained when the following condition was satisfied: 

max prr _ prr-i 
ij rij 

<EPS (4.3) 

where EPS, the convergence criterion, was set to a level that ensured a satisfactory mass 

balance of the fluid (typically, 10'8 Pa for Ps and 10"6 Pa for PL). The function max() 

represents the maximum value of all i- and j-indexed arguments, i.e., in this case, the 



Chapter 4: Numerical techniques 40 

maximum absolute value of the difference between the local pressures in the previous and 

current iterations. 

4.2. Solution of the convective-diffusion equation 

The parabolic second-order partial differential equation for concentration, 

es — = — D u c + xDr r v c (3.12) 
dt dxy dx J r d r ^ dr J 

was solved using the well known Alternate Direction Implicit (ADI) method (e.g., Lapidus & 

Pinder, 1982; Anderson et al., 1984). As in the case of the pressure equations, integration 

over a representative control volume was performed to ensure protein mass conservation. 

The concentration grid points were located in the cell centres (Figure 4.1). The boundary 

values were either given explicitly through boundary conditions or extrapolated from the 

interior points by assuming constant curvature of the concentration profiles near the boundary 

(for a given row/column) with derivative boundary conditions taken into account, if necessary. 

In both axial and radial directions, Patankar's power-law scheme (Patankar, 1980) was 

employed to express the concentration at each face common to two adjacent cells in terms of 

the concentrations in the centres of these cells. By including the effect of the Peclet number, 

the scheme offers an efficient way of dealing with a wide spectrum of protein transport 

conditions, ranging from purely diffusive to purely convective transport. The basic formulae 

of this technique are presented in Appendix C. 

One difficulty inherent in the ADI method is that it is not conservative. The reason for 

this is that some of the unknowns in the discretization equations are represented by values 

taken from the previous time instant. According to the standard ADI procedure, the two-
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dimensional parabolic equation is solved just twice at each time level (one sweep over rows 

and one over columns) rather than iterated as in the line-by-line over-relaxation method. The 

result is a numerically-originated mass imbalance that is dependent on how much the local 

concentration values have changed over the last time increment (At). 

There are two remedies for this adverse condition. First, At could be kept small enough 

to ensure that the local concentration changes would never exceed a desired level. Secondly, 

the standard ADI scheme might be extended by subsequently neglecting of the transient term 

(dc/dt) and solving the resulting elliptic equation using iterative line-by-line over-relaxation, 

which would finally yield a converged concentration solution at the given time instant. 

Alternatively, the line-by-line over-relaxation might be applied simultaneously to the pressure 

and concentration equations (see also the following section). In this work, the problem of the 

ADI method being non-conservative was handled by monitoring the protein mass balance and 

choosing a sufficiently small time step, At. 

The criterion for reaching the steady-state concentration distribution is analogous to Eq. 

4.3, i.e., 

max 
c^ -c 1 1 - 1 

•J 1J 

At 
<EPSC (4.4) 

where EPSC was usually set equal to 10"4 kg/(m3-s). 

4.3. General computational algorithm 

The block diagram of the general computational algorithm employed in this study is 

depicted in Figure 4.2, with the pressure iteration block having the form shown in Figure 4.3. 

ACCF, or acceleration factor, is a factor by which the current time step size is multiplied in 
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/ START / 
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y / s t e a d y state 7 \ . 
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'Maximum time reached 
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K N O 

NyMaximum number • 
\ o f iterations l / 

TYES 

Output 

~ 

Calculate osmotic pressure 
ns(c) 

At:=At-ACCF 

m 

/ STOP/ 

Figure 4.2: Block diagram of the general computational algorithm used in this study. 
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/ START / 

/ EXIT / 

Figure 4.3: The form of the pressure iteration block used in this study. 
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/ START / 

NOy 

Solve for ff 

Converged^ 

b. 

/ START / 

N O y / 

Solve for 1? 
• 

Solve for f| 

Converged 
P and R ? 

Figure 4.4: Examples of the pressure iteration block algorithm (not used in this study): 

a) with the lumen pressure lagged behind the ECS pressure, b) with the 

lumen and ECS pressures iterated until both converge. 

order to reduce computational times, particularly when seeking new steady-state solutions 

where the changes in concentration with time must obviously become very slow. Examples of 

other forms of the pressure iteration block are shown in Figure 4.4. 

The algorithm displayed in Figure 4.2 assumes that the flow change over the time scale At 

is so small that the pressure solutions can be lagged behind the concentration solution. 

Alternatively, the convective-diffiision equation could be iteratively solved together with the 

pressure equations (Figure 4.5). However, that results in considerably longer program 

execution times. 
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Output 

/ STOP / 

At:=At-ACCF 

Figure 4.5: General algorithm with mlly coupled concentration and pressure equations. 
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In most cases tested, the convergence was extremely slow. This was probably 

attributable to the fact that the ECS velocities were usually very small because of the low 

permeability of ultrafiltration membranes and, in the case of the cell-packed system, the low 

hydraulic conductivity of the ECS. This was particularly problematic in the case of closed-

shell operations where the ECS hydrodynamic pressure was almost constant everywhere and 

only weakly linked to the known pressure on the lumen side. Thus, the optimization of certain 

numerical parameters in the program became essential. Prior to each run, optimum values of 

the over-relaxation parameters, a s and aL, were found. Any change in the program (e.g., in 

the number of grid points, membrane permeability, boundary conditions, etc.) unfortunately 

results in a change in the optimum values of a s and aL. Also, the EPS values (convergence 

criteria) for pressures were specified cautiously to avoid excessively strict accuracy 

requirements that would slow down program execution. 
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Chapter 5: TESTING AND APPLICATION OF THE POROUS MEDIUM MODEL 

5.1. Closed-shell operation: one-dimensional case 

In the case of a closed-shell operation, flows enter and leave the reactor only on the 

lumen side. If the upstream and downstream lumen manifold pressures are radially invariant, 

then it is expected that, over the multi-fibre averaging volume (REV) upon which the Porous 

Medium Model is based, flows in both the lumen and extracapillary spaces will be one-

dimensional in the x-direction. Thus, if the radial derivative terms are neglected and Ay is 

calculated from Eq. 3.9, the PMM equations (Eqs. 3.7, 3.8 and 3.12) for a cell-free HFBR 

reduce to 

d2 P, 2Rr nL 
-Ks-^t = - ^ ( P L - P s + n s ) (5.1) 

d2PT 2RLnL 
^ ~ d V = ~ i H L ( P L - P s + n s ) (5.2) 

and 

9c _ d2c d(uc) , „ 
s dt x dx2 dx K J 

respectively. It is proven below that, under these circumstances and with kx L and kx s given 

by the same expressions as were used in the Krogh Cylinder Model, the governing equations 

for the one-dimensional PMM become essentially identical with those derived for the one-

dimensional KCM (see also Appendix A). 
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Substituting for kxL (Eq. 3.25), kxS (Eq. 3.26) and R2 = nR% (Eq. 3.20) in Eqs. 5.1 and 

5.2 leads to 

d2Ps 

dx2 

d2PL 

dx2 

= 

= 

AR 

%R] 

l6RLLp 

SlniRjR^+ARlRl 

' 2 ' ( P L - P s + n s ) 

-3R4
S -K (V -p s +n s , ) 

and eventually yields 

d 'P , 16L l 

d2PL l6Lt 2 f
L = ^±P 

dx2 Rl 
( P L - P s + n s ) (5.5) 

where y is defined by Eq. A.7. Equations 5.4 and 5.5 are identical with Eqs. A.2 and A.1, 

respectively, derived by Kelsey et al. (1990) using the Krogh cylinder approximation and a 

cell-free ECS (s'ECS = 1), except for the osmotic pressure term included here because of the 

coupling of the hydrodynamics with the ECS protein concentration. One-dimensional 

equations for the ECS and lumen pressures having the same form as Eqs. 5.4 and 5.5 were 

also obtained by Koska (1993a) (Eqs. A.44 and A.34, respectively), who applied the Krogh 

cylinder assumption to a cell-packed ECS (i.e., £*ECS < 1). 

Dividing both sides of Eq. 5.3 by ss yields 

dc d2 c 9 (u *c) 
at ~ ax2 ~ ax TI = D ^ - ^ ^ (5.6) 

where D = Dx/es and u* is the local actual ECS velocity in the axial direction. Equation 5.6 

is identical to Eq. A.32, derived by Patkar et al. (in press), or Eq. A.45, obtained by Koska 
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(1993 a) (with Kc = Kd = 1 and D independent of axial position), by radially averaging the two-

dimensional Krogh cylinder models for the cell-free and cell-packed cases, respectively. It 

should be noted that, under cell-packed conditions, the values of some of the constants in Eqs. 

5.4, 5.5 and 5.6 (e.g., the ECS hydraulic conductivity and protein diffusivity) are different 

than in the cell-free case. 

To help verify the correctness of the numerical code developed for the Porous Medium 

Model, one-dimensional solutions generated by the PMM with 3 radial increments were 

compared with those obtained from the equations derived above for the closed-shell case. To 

that end, the ordinary differential equations (5.4 and 5.5) as well as the parabolic partial 

differential equation (5.6) were solved using Keller's box method (e.g., Anderson et al., 1984) 

with some modifications to improve the rate of convergence. The important parameters used 

in the two test cases described below are listed in Table 5.1. 

The transient changes in ECS protein concentration as a function of axial position in an 

Amicon HFBR were monitored until a steady-state polarization was achieved. At each time 

instant, the local concentration values obtained by both one-dimensional models were identical 

within the desired accuracy (10"2 kg/m3). The time at which steady state is attained depends 

on the convergence criterion which was less stringent in the PMM case (because of longer 

program execution times). The initial concentration, Co, was assumed uniform over the length 

of the reactor. After approximately two hours of real time operation, the axial concentration 

profile remained unchanged and was indistinguishable from that representing steady state. 

The family of curves shown in Figure 5.1 illustrates the progression of downstream 

polarization of protein under predominantly convective transport conditions (Piret & Cooney, 

1990a). At steady state, the osmotic pressure exerted by the bulk of the protein accumulated 

downstream is so high that the total ECS pressure (Ps - n s ) counteracts the pressure on the 

lumen side. Consequently, no fluid is exchanged between the ECS and fibre lumina and, as a 

result, the flow is completely shut down in this part of the ECS. 
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Table 5.1: Parameters used in the comparative study of the PMM and KCM (Amicon HFBR). 

i?L = l . l -10" 4 m 

RM = 1.9 • 10 ~4 m 

i?s = 2.7-10" 4m 

Z = 0.2m 

£,=1.25-10 "13m 

n = 5000 

jt = 6.95-10"4kg/m/s 

Co = 10 kg/m3 

APL = 4572.2 Pa 

(corresponding to the radially-

T=310K 

ms = 150mol/m3 

Z, = -20.4 

Mp = 69 kg/mol 

^ = -5.625-10~ 4-2.4M0~ 4 

4 = 2.95-10"s-1.051-10~6Z;1 

D = 10"10 m2/s 

JD=10-4-10-10m2/s 

^ i = 2.510-10"10m2 

Ai,s=1.28610-9m2 

lumen radius 

outer fibre radius 

Krogh cylinder radius 

HFBR length 

membrane permeability 

number of fibres 

viscosity of water at 37°C (310 K) 

initial concentration 

lumen pressure drop over the length L 

averaged lumen inlet velocity ML*0 = 0.05 m/s) 

Zp -3.664-10 

+1.762-10 "7 

absolute temperature 

parameters in the relationship between 

osmotic pressure and concentration 

(Eq.3.13) 

"5 Z] = - 0.0108942 

Zj = 0.0001243 

difrusivity, case 1 

diffusivity, case 2 

axial permeabilities in the lumen 

and ECS (from Eqs. 3.25 and 3.26) 
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Figure 5.1: Radially-averaged protein concentration in the ECS as a function of axial 

position and time. 

Another comparative study between the one-dimensional PMM and KCM was carried 

out for different hypothetical diffusivities (D) of the ECS protein. D was varied from 10"4 

m2/s to 10'10 m2/s (although protein diffusivities greater than 5-10"10 m2/s are not realistic), 

corresponding to a transition from a diffusion-dominated regime to a convection-dominated 

regime. Both models produced exactly the same steady-state concentration curves, shown in 

Figure 5.2. The observed differences in the maximum slope of these profiles are due to the 

different relative strengths of convection and diffusion in each case. For instance, at D = 10"10 

m2/s, a very steep concentration gradient (at x « 16 cm) must develop at steady state in order 
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that the diffusive transfer can locally balance the convective transport of the ECS protein. 

Table 5.2 summarizes the convergence properties of the two models for this test case. As can 

be seen from the table, the time needed to reach steady state increased dramatically when the 

protein diffusivity was decreased and convective transport became dominant. Further 

decreases in D (below 10"6 m2/s) produced no significant changes in the time needed to 

achieve steady state. It should be noted that, in the case of very low diffiisivities, it was 

necessary to use more axial grid points than usually because of the steep concentration 

gradients obtained under convection-dominant transport of protein. 

0 2 4 6 8 10 12 14 16 18 20 

Axial position (err) 

Figure 5.2: Steady-state protein concentration profiles for different hypothetical 

diffusivities. 
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Table 5.2: Summary of the steady-state runs with different hypothetical diffusivities 

for the PMM and KCM (Amicon HFBR). 

D (m2/s) 

IO-4 

io-5 

10^ 

IO"7 

IO-8 

IO"10 

Number of grid 

points 

PMM 

9x500 

9x500 

9x500 

9x500 

3x900 

3x900 

KCM 

500 

500 

500 

500 

900 

900 

Initial time 

step (s) 

PMM & KCM 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

Time acceleration 

factor, ACCF 

PMM & KCM 

1.001672 

1 

1.001672 

1.001672 

1.001672 

1.001672 

Time to steady 

state 

PMM 

7 min 17 s 

1 h 37 min 

5 h 07 min 

4 h 02 min 

3 h 39 min 

3 h 23 min 

KCM 

5 min 36 s 

1 h 07 min 

3 h 08 min 

2 h 13 min 

2 h 29 min 

2 h 57 min 

The aim of the study outlined in this section has been to demonstrate that the Porous 

Medium Model will give correct predictions for one-dimensional closed-shell operations, both 

in the convective and diffusive regimes. Perhaps of greater significance is the fact that, in the 

absence of the macroscopic radial gradients, the PMM actually reduces to the one-dimensional 

Krogh Cylinder Model, which has already been shown (Patkar et al., in press) to yield 

excellent agreement with experimental results for both transient and steady-state closed-shell 

HFBR operations. The following sections of Chapter 5 describe further studies aimed at 

testing the model in two-dimensional situations imposed either by allowing a radial pressure 

variation in the lumen manifolds (Section 5.2) or by opening one or both of the ECS ports 

(Sections 5.3 - 5.6). 
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5.2. Closed-shell operation: two-dimensional case with inlet and outlet radial 

lumen pressure gradients 

In their hydrodynamic study of hollow-fibre devices operated in the closed-shell mode, 

Park and Chang (1986) found that, under some circumstances, significant negative and 

positive radial gradients of hydrostatic pressure could develop in the upstream and 

downstream lumen manifolds, respectively. These lumen manifold pressure variations led to 

non-uniformities in flow through the fibre lumina. Although laboratory measurements by 

Koska (1993 a) and Patkar et al. (in press) demonstrated that these effects were negligible for 

the Amicon and Gambro modules they investigated, artificially imposed radial lumen pressure 

gradients at the inlet and outlet of an HFBR can produce two-dimensional variations of the 

fluid flow and protein concentration fields in the ECS and thus provide an interesting case 

study to further test the Porous Medium Model. 

Accordingly, Dirichlet-type boundary conditions for the lumen pressure at x = 0 and 

x = L were specified as follows: 

PL.O (r) = APL(1- 0.5 r/R) (5.7a) 

PL,N(r) = APL-0.5vlR (5.7b) 

where APL = 4572.2 Pa is the axial lumen pressure drop along the centre-line of the HFBR 

cartridge (and is the same value as was used in the one-dimensional case discussed in Section 

5.1). Equations 5.7 imply that there is no axial lumen pressure drop at the cartridge wall 

(r = R) and that the lumen pressure drop over the cartridge radius at either manifold equals 

half of that along the centre-line over the length/,, i.e., 2286.1 Pa. This strong radial variation 

of both PL,O and PL,N is not likely to occur in any real operation involving hollow-fibre devices, 

but it was purposefully imposed in order to magnify the resulting two-dimensional effects. 

The parameters used in this study are once again those listed in Table 5.1 (Amicon HFBR), 
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except for th&Lp value which was increased from 1.2510"13 m to 510"13 m in order to enhance 

the ECS flow and thus improve the rate of numerical convergence. The cartridge radius, R, 

corresponding to the Krogh cylinder radius given in Table 5.1 equals 0.0191 m (see Eq. 3.20). 

The ECS hydraulic conductivity in the radial direction, kr,s, was calculated from Happel's 

formula (see Table 3.1b) and had the value of 0.8808-10"9 m2, which is of the same order as 

the kAs value in Table 5.1. A protein difiusivity of 10"10 m2/s was used and the initially uniform 

ECS protein concentrations, c0, of 10 and 20 kg/m3 were chosen. The main purpose of the 

study was to investigate the steady-state ECS and lumen hydrodynamics and the ECS protein 

concentration field in the presence of strong radial gradients. 

In the absence of protein, as expected, the lumen and ECS flow fields display a fore-and-

aft symmetry (the two-dimensional distributions of the lumen and ECS velocity components 

are symmetric about the half-length of the reactor). The radial velocities in the ECS are 

positive in the upstream half and negative in the downstream half of the HFBR, i.e., the ECS 

fluid travels radially outward in the former region and towards the centre-line in the latter. 

The ratio of magnitudes of the local axial-to-radial ECS velocity components is close to 10, 

which, approximately, equals the reciprocal aspect ratio of the HFBR, LIR. An important 

consequence of the imposition of radial pressure gradients is a decrease in the average 

magnitude of the ECS axial velocity (by a factor of 3, compared to the situation where no 

radial gradients are present) and, hence, in the magnitude of the ECS convective flow. 

Figure 5.3 shows how the steady-state distribution of the ECS protein is affected by 

radial pressure gradients in the lumen manifolds (all the concentration distributions shown 

here were obtained using the same two-dimensional code; Figures 5.3a and 5.3c were 

produced with APL = 4572.2 Pa, but with no lumen manifold radial pressure gradients). In the 

transient phase, protein accumulation generally follows the direction of the ECS flow until, at 

steady state, the total ECS pressures (Ps - n s ) locally balance the lumen pressures and the 
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a. 
S'T'0N 0 R ^ S 

C. 

0 S / ^ V ^ 7 F ^ 5 

Figure 5.3: Steady-state ECS protein concentration in the absence (a,c) and presence (b,d) 

of radial pressure gradients; (a,b) c0 = 10 kg/m3, (c,d) c0 = 20 kg/m3. 
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protein distribution becomes a consequence of the distribution of pressure on the lumen side. 

If radial pressure gradients are imposed, the protein is distributed over a larger portion of the 

ECS volume than when only axial gradients exist, reflecting the much smaller range of lumen 

pressures that must be countered in the peripheral region of the reactor. Thus, in this case, 

the flow is practically shut down over a larger portion of the extracapillary space. 

In each of the four cases displayed in Figure 5.3, once steady state is reached, the ECS 

fluid flow is essentially restricted to the protein-free upstream region. The maxima of the axial 

and radial velocity components are located, approximately, at half of the maximum axial and 

radial positions of this region's boundaries, respectively. The smaller the region, the less fluid 

passes through the ECS. 

The time needed to reach steady state varied from about 5 h (Figure 5.3c) to about 7 h 

(Figure 5.3b). In general, the transient phase was somewhat longer if radial gradients were 

present or if the total amount of ECS protein was lower. Increasing the protein loading from 

10 to 20 kg/m3 also increased the rate of numerical convergence to steady state. 

5.3. Membrane permeability determination 

The permeability Lp of hollow-fibre membranes is determined by measuring the 

transmembrane fluid flux at a known pressure drop across the membrane. Typically, the fluid 

of known viscosity /x enters the HFBR through the upstream lumen manifold and exits 

through the downstream ECS port (Figure 5.4). The lumen outlet and the upstream ECS port 

are closed. The pressure drop recorded is actually the difference between the pressures at the 

lumen inlet and the ECS outlet, i.e., 

AP = P -P 
LXr rL,0 rS, 

(5.8) 
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To determine Lp, it is usually assumed that AP is the pressure drop across the membrane only. 

This assumption is reasonable for sufficiently low membrane permeabilities, as the membrane 

imposes the dominant resistance to the flow. With higher Lp values, the contribution of the 

membrane resistance to the total pressure drop (Eq. 5.8) is lower, so that the assumption will 

begin to break down. 

Figure 5.4: Flow configuration for Lp determination. 

By definition, 

L - liQ 
P AAP„ 

(5.9) 

where Q is the volumetric flow through the hollow-fibre device, APm is the pressure drop 

across the membrane and A is the total surface area of the membrane. If one assumes 

APm = AP, then the apparent permeability, Lp,app = ft Q/(A AP) « Lp, can be found from the 

slope of the linear relationship between Q and AP using Eq. 5.9. Table 5.3 includes the 

important parameters used in this study, while Table 5.4 lists the Q and AP values determined 

in the laboratory for a Gambro HFBR (Koska, 1993b) (the Gambro HFBR was henceforth 

used in all the studies described in this thesis). The flow rates were found by measuring the 

volume of water passing through the device over a known time, while AP was determined as 
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the difference between the lumen inlet pressure head and the ECS outlet pressure measured 

using a water manometer. The membrane surface area, A, has been estimated as equal to 1.5 

m2, corresponding to an approximately 10% increase in fibre dimensions due to their swelling. 

If it is assumed n = 0.001139 Pas, a linear fit of Eq. 5.9 to the data in Table 5.4 yields Lp>app 

= 6.1810'15 m. (The permeability value of 6.40-10"15 m, as originally determined by Koska 

(1993b) using the same data, had been calculated incorrectly.) 

The flow rates also can be calculated using the Porous Medium Model once the input 

parameters, Lp, AP, p and A, have been specified. The Q = j{AP) relationship obtained 

numerically withZp = 6.18-10"15 m, fi = 0.001139 Pas, A = 1.5 m2, and AP ranging from 0 to 

12555 Pa, is plotted as the solid line in Figure 5.5. The observed good agreement of model 

predictions with experimental data is attributable to the fact that the membrane permeability 

here is sufficiently low and, consequently, the assumption APm « AP is reasonable. 

Table 5.3: Important parameters used in the membrane permeability determination study. 

HFBR length, L 0.215 m 

Lumen radius, RL 1.15 • 10"4 m 

Outer fibre radius, RM 1.25-10"4 m 

Krogh cylinder radius, Rs 1.75 • 10"4 m 

ECS manifold axial length, xm 0.024 m 

Number of fibres, n 8123 

Viscosity, fi 0.001139Pas (water, 15°C) 

ECS axial permeability, k^s 4.773-10'10 m2 (Eq. 3.26) 

ECS radial permeability, KiS 3.247-10"10 m2 (Happel, see Table 3.1) 

Lumen axial permeability, kXiL 7.15910"10 m2 (Eq. 3.25) 
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For higher membrane permeabilities, a larger fraction of the total pressure drop between the 

reactor inlet and outlet occurs within the fibre lumina and ECS and, hence, local values of APm 

will fall below AP. Thus, the assumption of APm » AP in Eq. 5.9 yields a value of the 

apparent membrane permeability, Lp,app, which is less than the true value, Lp. This effect is 
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Figure 5.5: Volumetric flow as a function of AP: comparison of the Porous Medium 

Model with experiment. 
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Table 5.4: Experimentally determined volumetric flows, Q, and pressure drops, AP, 

for a Gambro HFBR (Koska, 1993b). 

AP, Pa 

12555 

9470 

9000 

8226 

5445 

Q • 108, m3/s 

10.33 

7.75 

7.25 

6.58 

4.36 

observed in Figure 5.6, where Lp>app is plotted versus Lp, and in Figure 5.7, where the ratio 

LpiapplLp is plotted as a function of Lp. The two figures were created by first using the PMM 

to determine the flow rate for a given Lp and AP and then substituting this value of Q, along 

with AP, into Eq. 5.9 to obtain Lp_app. 

For Lp less than about 10"13 m, the membrane imposes most of the resistance to the flow 

and LPtaPp « Lp. For Lp greater than about 10"10 m, the contribution of the membrane to the 

total resistance to the flow is negligible and Lp>app no longer depends on Lp. The results 

presented in Figures 5.6 and 5.7 were obtained for AP = 10000 Pa but, because velocities and 

pressure gradients are linearly related in Darcy's law, they are independent of the pressure 

drop. 

Graphs such as that shown in Figure 5.7 can be used as correction plots to obtain a 

better estimate of the membrane permeability determined by measuring the fluid fluxes and the 

corresponding pressure drops. For instance, if the Lp value of the Gambro hollow-fibre 

membrane were 1.25-10"13 m (i.e., the value measured for the Amicon HFBR, Table 5.1), Eq. 

5.9 used with the assumption APm =AP would yield a permeability value that is 

approximately 5% too low. This 5% difference would probably be observable as a 
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discrepancy between the experimental and theoretical predictions of the flow rate as a function 

of AP (Figure 5.5). It should be noted that the relationship between Lp%app and Lp, predicted 

by the PMM, depends on the geometry of the hollow-fibre module. Therefore, the plots 

displayed in Figures 5.6 and 5.7 are essentially valid only for the Gambro FJFBR investigated 

here, although analogous graphs could easily be obtained for any other hollow-fibre systems. 

The present version of the PMM does not account for pressure losses in the lumen and 

ECS manifolds and in the associated tubing connections. Thus, unless the pressure taps are 
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Figure 5.6: The apparent (calculated) membrane permeability, Lp,app, versus the actual (input) 

membrane permeability, Lp: prediction of the Porous Medium Model. 
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connected directly to the inlet lumen and outlet ECS manifolds, even the Lp value predicted by 

the PMM may not be quite correct, although it should be more reliable than that calculated 

fromEq. 5.9. 
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Figure 5.7: The ratio of LPiapplLp versus the actual membrane permeability, Lp: prediction 

of the Porous Medium Model. 
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5.4. Filtration hydrodynamics: comparison of the Porous Medium Model with 

the Krogh Cylinder Model 

A flow diagram for hollow-fibre filtration is shown in Figure 5.8. 

Figure 5.8: Flow diagram for the partial filtration mode {QUout >0) and full filtration 
mode (&.„,=<>). 

The Krogh Cylinder Model formulation presented by Kelsey et al. (1990) (see Appendix 

A) accounts not only for closed-shell operation but also for the filtration mode (where the 

downstream ECS port is open), by introducing the filtration fraction,/ defined by Eq. A.8 

(Kelsey et al. referred to /as the ultrafiltration fraction). In the full filtration mode,/= 1; in 

partial filtration, 0 < / < 1; and in the closed-shell case,/ = 0. One potentially significant 

feature of the Kelsey filtration model is that it admits an ECS outflow only parallel to the fibre 

through the concentric annulus of the Krogh cylinder. In reality, the ECS outflow leaves 

radially through a circumferential manifold at the periphery of the fibre bundle. For the sake 

of comparison, Kelsey's equations for the lumen and ECS pressures as functions of the axial 

position, PL(x)andPs(x), as well as the equations for QUin,QUout andQSw0Ut, have been re

written in terms ofPL0,PLN andPs>1, rather than/ The modified equations are presented in 

Appendix B. 
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The study of the Lpapp dependence on Lp, as defined and described in Section 5.3, has 

been repeated here with the aim of comparing the predictions of the Krogh Cylinder Model 

with those of the Porous Medium Model. The latter describes more realistically the 

macroscopic radial flows created by the circumferential ECS manifold. The resulting two 

curves (not plotted here) show qualitative and quantitative similarity to each other and are 

virtually indistinguishable forLp < 10"11 m. The accurate asymptotic value oiLpapp atLp-* oo 

is difficult to predict in the PMM, but can readily be evaluated for the KCM curve if the 

modified Kelsey equations presented in Appendix B are used. For/= 1, we find 

nirR4 

lim a ,, = —r-fil + yWs,* -PL.0) (5.10) 

which, for Ps dn —PL0 =10000 Pa and withZ, RL, n and y values corresponding to the Gambro 

HFBR (see Table 5.3 and Appendix B), yields the critical (and maximum) flow rate of 

3.82247-10"5 m3/s. Inserting this value into Eq. 5.9 along withal = 1.2619 m2, corresponding 

to the dry dimensions of the hollow fibres, yields the asymptotic value of Lp = 3.45-10'12 m. 

Figure 5.9 compares the inlet volumetric flow rates predicted by both models for a wide 

range of Lp values in the partial and full filtration modes. The curves were obtained with the 

pressure drops PSjn - PL,o = 10000 Pa for/= 1 and Ps,d„ - PL,o = PL,N - PL,O = AP= 10000 Pa 

for 0 < / < 1 (it should be noted that, in the latter case, with the pressure drops fixed in this 

way,/increases as Lp is increased). The ECS and lumen hydraulic conductivity values used in 

the PMM are listed in Table 5.3. The Krogh Cylinder Model predicts that, at high membrane 

permeabilities, the inlet flow rates in both filtration modes should approach the same 

asymptotic value of 3.82247-10"5 m3/s, which can easily be obtained for/= 1 (as calculated 

above using Eq. 5.10) as well as for 0 < /< 1. In the latter case, 

Hm QL,in - - ^ [ K / U -PL,O)+(PL.» -pL,0)h-irf-a+T)^, (511) 
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which is identical to Eq. 5.10. 

The convergence of the two KCM curves in Figure 5.9 can also be intuitively deduced by 

considering the fact that the transmembrane pressure drop is close to zero at high Lp values 

and that, since no radial flow in the shell and lumen sides is allowed, the fluid has to travel 

over the same distance L, independent of whether it flows in the ECS or in the fibre lumina. 

Since the inlet-outlet pressure differences are the same for both/= 1 and 0 < / < 1 and since 

Ps,dn = PL,N in the latter case, then the limit of the inlet flow rate at high membrane 

permeabilities must be identical in both filtration modes. 
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Figure 5.9: The lumen inlet volumetric flow as a function of membrane permeability 
in the partial and full filtration modes: comparison of the two models. 
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Although it may seem that the two PMM curves in Figure 5.9 overlap at high membrane 

permeabilities, they do not, in fact, approach exactly the same limiting flow rate because k^s, 

krS and k^i have different values and also because the distances the fluid must travel before 

exiting the HFBR are different in the two cases. If/< 1, then some of the fluid leaves axially 

through the fibre lumina at x = L, while if /= 1, then all of the fluid leaves radially over the 

length of the ECS manifold. Numerical simulations have shown that the value selected for kr,s 

has only a weak effect on Qi,irh particularly in the partial filtration mode. Since the values of 

kx,s, Ks and kKL used here are of the same order of magnitude, no significant difference is 

noticeable between the two PMM inlet flow rate curves at high membrane permeabilities. 

The limit of the inlet flow rate at low membrane permeabilities for 0 < / < 1 in the Krogh 

Cylinder Model can be calculated as 

Km GU = " T 7 ( ^ -^.o) (5-12) 

yielding the value of 2.27827-10"5 m3/s. This residual flow rate is identical to that in the 

closed-shell mode and corresponds to no fluid passing from the lumen side to the ECS of the 

HFBR. The same result can be obtained from the standard Hagen-Poiseuille equation for n 

parallel cylinders of radius RL (White, 1991). 

The outlet ECS and lumen flow rates as functions of the membrane permeability in the 

partial filtration mode are plotted in Figure 5.10. The QL,out curve in the KCM approaches the 

same asymptotic value of 2.27827-10"5 m3/s at both low and high Lp values and displays a 

remarkable minimum at Lp « 10"11 m. If the membrane permeability is very low, practically all 

the fluid travels downstream inside the hollow fibres and QL,OUI equals the Hagen-Poiseuille 

value. If Lp is very high, the presence of the membrane does not affect the flow and Quout can 

again be obtained from the Hagen-Poseuille equation. In the intermediate region, as the Lp 
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Figure 5.10: The ECS and lumen outlet flow rates, Qs,out and Quout, as functions of membrane 

permeability in the partial filtration mode: comparison of the two models. 

value increases, an increasing amount of fluid passes across the membrane to the ECS, which 

causes a temporary decrease in the lumen flow until, eventually (at Lp > 10"8 m), the hydraulic 

throughput capacities of both the lumen and the shell sides reach their saturation points. 

The shapes of the PMM curves as well as the limiting values of QUin,QUaut and Qs OTf as 

Lp -» oo in this case cannot be found analytically, as the flow rates here are unknown functions 

of not only Lp but also the ECS permeabilities and the surface areas of the outlet regions. 

According to Darcy's law, the rate of flow through a porous medium depends on the 

hydraulic conductivity of the medium, on the pressure drop per unit length and on fluid 
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viscosity. Because of the finite axial dimension of the ECS manifolds in the Porous Medium 

Model, a portion of the fluid travels in the hollow-fibre device over a distance shorter than L. 

Since the outlet ECS pressure, Ps,dn, is assumed constant over the axial length of the manifold, 

this translates into higher inlet flow rates obtained with the PMM than those predicted by the 

Krogh Cylinder Model (Figure 5.9). The considerable differences, at high Lp values, in the 

lumen and ECS outlet flow curves pertaining to the two different models (Figure 5.10) result 

mostly from the fact that no radial ECS flow is allowed in the KCM and that the outflow 

surface area in the PMM is about 6.2 times as large as that in the other model. Therefore, the 

rate of fluid discharge from the ECS becomes so high that only 17% of the inlet flow exits 

from the fibre lumina and Qi,in never reaches the Hagen-Poiseuille value at high membrane 

permeabilities, as was the case in the Krogh Cylinder Model. The PMM profiles in Figure 

5.10 are slightly distorted in the range 10"12 m < Lp < 10"10 m, which can probably be ascribed 

to the same effect that is responsible for the minimum in the KCM outlet lumen flow curve 

(discussed above). 

Although an axial outflow from the ECS in the filtration mode is a fictitious concept, it 

has been enforced by the one-dimensional restriction of the Krogh Cylinder Model. All of the 

investigations described above and presented in Figures 5.9 and 5.10 were repeated using the 

PMM equations with boundary conditions changed so as to allow for axial rather than radial 

outflow from the ECS. The results were then identical for both models, since, in this case, 

there existed no macroscopic radial gradients and the PMM reduced to the KCM. 

As can be seen from the plots presented here, the differences between the PMM and the 

KCM become noticeable only when Lp exceeds, approximately, 10'12 m. Thus, the Krogh 

Cylinder Model will yield acceptable hydrodynamic predictions for most open-shell situations 

of practical interest, primarily because the ECS outlet flow is controlled entirely by the 

membrane resistance. 
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5.5. Inoculation and relaxation 

In the inoculation phase of HFBR operation, the cell inoculum in a solution containing 

high-molecular-weight growth factors, is introduced to the ECS through its upstream port 

with the displaced fluid leaving by the outlet lumen port. The flow configuration for this case 

is shown in Figure 5.11. 

fi» 

-K-

i W*S.up 
# 

HFBR *^L,out 

Pu* 

Figure 5.11: Flow diagram for inoculation phase of HFBR operation. 

The inoculum was assumed to be in a solution of bovine serum albumin (BSA) and the 

mammalian cell concentrations sufficiently low that their influence on the fluid flow and 

protein transport could be neglected. Thus, the ECS was assumed to be cell-free. The aim of 

this study was to trace the ECS protein redistribution with time for the following two cases: 

(1) cin = 5 kg/m3 , 60 min total inoculation time, PSup -PUN = 3000 Pa; 

(2) cin = 50 kg/m3 , 6 min total inoculation time, PSup -PUN = 3000 Pa, 

where cin is the protein concentration in the inoculum solution. Table 5.5 summarizes the 

parameters used in the inoculation study. The total inoculation time in the second case was 

ten-fold lower in order that the final protein content of the ECS be approximately the same as 

in the first case. These amounts were not exactly the same in both cases because the inlet and 

outlet boundary conditions were imposed through the fixed pressures, PSup andPAW, rather 
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than through fixed flow rates, Q^in = QUout. Because of the presence of osmotically-active 

proteins, these flow rates, although always equal, decreased slightly with time. With the 

membrane permeability of 6.4-10'15 m, the above pressure differences result in a flow rate of 

approximately 1.5 cm3/min. Table 5.6 compares the two inoculation tests emphasizing the 

effect of the osmotic pressure. Variation of the flow rate with time in cases #1 and #3 is 

almost exactly linear. 

Protein concentration in the inoculum, cin 

Pressure head difference, P&up -PUN 

Membrane permeability, Lp 

HFBR length, L 

HFBR radius, R 

Lumen radius, RL 

Outer fibre radius, RM 

ECS manifold axial length, xm 

Number of fibres, n 

Diffusivity, D 

Temperature, T 

Viscosity, fi 

ECS axial permeability, k^s 

ECS radial permeability, kriS 

Lumen axial permeability, k^i 

( l ) 5 k g / m \ (2)50kg/m3 

3000 Pa 

6.4-10-15m 

0.215 m 

0.01575 m 

1.15-10"*m 

l ^ - l O ^ m 

0.024 m 

8123 

10'10m2/s 

288K(15°C) 

0.001139 Pa-s 

4.773- 10-10m2 

3.247-10"10m2 

7.159-10-10m2 

(water, 15°C) 

(Eq. 3.26) 

(Happel, see Table 3.1) 

(Eq. 3.25) 

Table 5.5: Summary of parameters used in the inoculation study (Gambro HFBR). 
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Table 5.6: The effect of osmotic pressure in the inoculation tests. 

# 

1 

2 

3 

4 

Cin 

(kg/m3) 

5 

5 

50 

50 

Duration 

60min 

60min 

6min 

6 min 

Osmotic 
effects 
included 

yes 

no 

yes 

no 

Total fluid 
passed through 
HFBR (cm3) 

88.04 

90.79 

8.76 

9.08 

Average final 
concentration, 
CAVG (kg/m3) 

5.38 

5.55 

5.35 

5.55 

Initial flow 
rate, £M08 

(m3/s) 

2.52 

2.52 

2.52 

2.52 

Final flow 
rate, £M08 

(m3/s) 

2.37 

2.52 

2.34 

2.52 

In both cases the inoculation phase was followed by a 20-hour-long relaxation in which 

all the inlet and outlet ports were closed. In the relaxation phase, the ECS protein continues 

to redistribute owing to local concentration and osmotic pressure gradients. The start-up of 

an HFBR would normally not include a relaxation phase of more than 1 h. The 20 h period 

was used here to explore the time scales of the inoculum protein redistribution in the absence 

of lumen recycle flow. Since uniform distribution of the growth-factor proteins over the 

volume of extracapillary space is important to the subsequent cell growth phase of reactor 

operation, the main focus of the study presented in this section was to look at the degree of 

spatial uniformity of the ECS protein concentration at the end of the inoculation and 

relaxation phases. 

Figure 5.12 shows how the ECS concentration contours vary with time over 1 h of 

inoculation in the case of the low inlet concentration, cin = 5 kg/m3. The local radial Peclet 
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number at the inlet is of the order of 50 - 80 (with the average inlet radial velocity of the 

order of 10'5 m/s and 18 uniformly spaced radial grid points), which indicates dominance of 

the convective transport of protein. The observed dispersion of the concentration front is 

believed to be of numerical origin and it has been found that the extent of this "wash-out" 

zone decreases when more grid points are used. Because some of the fluid passes into the 

lumina leaving the protein behind, the front moves downstream with axially and radially 

decreasing speed, while more and more protein is being carried towards the front from the 

inlet zone. This results in two visible regions of maximal and increasing concentration; for 

example, after 60 min of inoculation, one region is near the upstream end at r « R/3 while the 

other extends from r » RI2 up to the cartridge wall (r = R) at x « 2/3 L. The trends 

observed in Figure 5.12 become even more extreme when the inoculation is continued for a 

few additional hours (not shown here). The maximum local concentrations monotonically 

increase while the protein front velocity decreases and approaches zero at the downstream 

boundary. This results in a highly non-uniform concentration distribution; even though the 

average ECS protein concentration is 5 kg/m3, the local concentrations can reach 50 kg/m3 

and more, while a significant fraction of the ECS volume remains free of protein. 

Figure 5.13 displays the development of the concentration contours during inoculation 

with a 50 kg/m3 protein solution. After 6 min, the ECS contains approximately the same 

amount of protein as after 60 min of inoculation with a 5 kg/m3 solution. In this case, the 

extent of ECS penetration by the inoculum is much smaller while the local concentrations and 

osmotic pressures are much higher. The temporally increasing local osmotic pressures in the 

ECS cause a decrease in the transmembrane pressure difference and hence a decrease in the 

flow rate. Consequently, after 6 min of inoculation with c,„ = 50 kg/m3, the average ECS 

protein concentration is slightly less than after 1 h of inoculation with cin = 5 kg/m3 (Table 

5.6). 
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Figure 5.12: ECS concentration field after a) 20 min, b) 40 min, c) 60 min inoculation, cin - 5 kg/m3 
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Figure 5.13: ECS concentration field after a) 2 min, b) 4 min, c) 6 min inoculation, cin = 50 kg/m3 
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The ECS protein distribution at the end of the inoculation phase with each inlet 

concentration (i.e., c,„ = 5 or 50 kg/m3) served as a starting point for relaxation tests in which 

all inlet and outlet ports of the HFBR were closed. The relaxation phase can result in, after 

sufficient time, a reasonably uniform spatial distribution of cells and growth factors in the 

ECS, even if the distribution of inoculum at the end of the inoculation phase was very non

uniform. In the cases tested here, slow redistribution of protein was observed with the local 

concentrations reaching a relatively high degree of spatial uniformity after about 20 h or more. 

The process is driven by difiusion and by a weak convective flow due to the presence of 

osmotic pressure gradients in the ECS. The concentration field and hydrodynamics in the 

HFBR after 1 h and after 20 h of relaxation are displayed in Figures 5.14-5.17. 

The velocity vector plots, particularly those corresponding to the early stage of 

relaxation (Figures 5.14 and 5.16) show that the magnitude and direction of the ECS 

convective flow are closely associated with the magnitude and direction of the local 

concentration gradients. The ECS fluid travels from left to right, or towards the downstream 

end of the reactor, while the direction of the lumen flow remains primarily from right to left 

(note that the lumen velocity has no radial component and thus its distribution can be 

represented by a contour plot). Small areas of positive lumen velocities are located near 

regions of locally positive axial concentration gradients (Figures 5.14, 5.16 and 5.17). The 

maximum magnitude of lumen velocity correlates roughly with the concentration maximum 

and correspondingly decreases when the latter decreases with time. 

A qualitative comparison of Figures 5.15 and 5.17 indicates that inoculation with the 

low-concentration solution resulted in a more uniform spatial distribution of protein after 20 h 

of relaxation. This is also reflected by the smaller magnitude of the ECS and lumen flows in 

this case (Figure 5.15). It should be pointed out that, because of the no-flux condition 

through the boundaries, the protein transport near x = L is primarily by diffusion rather than 
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Figure 5.14: a) ECS concentration field (kg/m3), b) ECS velocity field, c) lumen velocity field 

(MZ,-108 m/s) after 1 h relaxation following 60 min of inoculation with c,„ = 5 kg/m3. 
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Figure 5.15: a) ECS concentration field (kg/m3), b) ECS velocity field, c) lumen velocity field 

(uL-108 m/s) after 20 h relaxation following 60 min of inoculation with c,„ = 5 kg/m3. 
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Figure 5.16: a) ECS concentration field (kg/m3), b) ECS velocity field, c) lumen velocity field 

(i/i-108 m/s) after 1 h relaxation following 6 min of inoculation with c,„ = 50 kg/m3. 
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(wi-108 m/s) after 20 h relaxation following 6 min of inoculation with c,„ = 50 kg/m3 
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by osmotically-driven convection. Since the former transport mechanism is in this case much 

slower than the latter, the time for the protein distribution, for example in Figure 5.15, to 

reach a visually uniform state might be considerably longer than the 20 h relaxation period 

tested. 

In conclusion, inoculation with a low-concentration solution seems to be better for 

practical use since it can facilitate more uniform distribution of cells and growth factors over 

the volume of ECS. If by the time the desired average inoculum concentration is reached its 

distribution is not sufficiently uniform, relaxation with all ports closed will help homogenize 

the contents of the ECS, although this process may be fairly time-consuming and thus increase 

the risk of cell death due to oxygen limitations and decreases in pH. Alternatively, one might 

introduce the inoculum through both ECS ports or initiate the lumen flow soon after 

inoculation. Investigation of these options goes beyond the scope of this work but it poses no 

special modelling difficulty as the Porous Medium Model and the existing finite difference 

code are capable of handling this and even more complex cases. 

5.6. Harvesting 

Typically, the hollow-fibre membranes in use for mammalian cell culture have low 

enough molecular weight cut-off values to retain the product (protein) in the extracapillary 

space. During harvesting, solution containing the product is collected from the ECS through 

its downstream port. Several different modes of harvesting are possible (Figure 5.18). In this 

work, two of them have been compared: the standard mode (Figure 5.18a) and the closed-

lumen mode (Figure 5.18b). 

As mentioned before (Section 3.4), it is convenient to estimate the hydraulic 

conductivity, k', and protein diffusivity, D°, in the cell-packed ECS as functions of its porosity, 
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Figure 5.18: Some of the possible modes of harvesting: a) standard, b) closed-lumen, 

c) with all ports open and equal pressures at the ECS and lumen inlets, 

d) with closed lumen inlet. 

e'ECS. Two values of e'ECS were chosen here: (i) 26%, corresponding to densely packed 

spheres arranged in a rhombohedral array (Bear, 1972), and (ii) 5%, an arbitrary, but more 

realistic, value. In each case, k* and D' were calculated from the Carman-Kozeny equation 

(Eq. 3.29) and from the Neale-Nader relationship (Eq. 3.30), respectively. Parameters used in 

the harvesting simulation study are summarized in Table 5.7. 

A specified concentration distribution in the ECS must be assumed as a starting point for 

the harvesting phase. Here, two extreme cases were considered: 

(i) uniform initial concentration field, c0 = 5 kg/m3, and 

(ii) downstream-polarized concentration field with average concentration 5 kg/m3, obtained as 

the steady-state solution of the one-dimensional closed-shell problem (Figure 5.19). 

Steady state was reached after about 19.5 h for s'ECS = 26% and 142 h for e'ECS = 5%, with 

the convergence criterion EPSC, defined as the maximum local concentration change with 
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time (Eq. 4.4), set to 2-10"5 kg/(m3-s). One would expect similar steady-state profiles in 

both cases, although, at higher porosity, the concentration gradient should be steeper 

(since an increase in s*ECS produces larger increase in the ECS hydraulic conductivity than 

in the protein diffusion coefficient, see Table 5.7) and the maximum local concentration 

higher (because the axial ECS pressure gradients are smaller and, hence, higher osmotic 

pressures are required to counteract the resulting larger hydrostatic pressure differences, 

PL - Ps, at the downstream end). It should be pointed out that, in the 5% porosity case, 

the time scale for protein polarization was so large and the numerical convergence so slow 

that the profile shown in Figure 5.19 may not exactly correspond to steady state. 

However, this approximate concentration distribution is still a reasonable starting point for 

the harvesting simulation. 

Table 5.7: Summary of parameters used in the harvesting study (Gambro HFBR). 

Initial average protein concentration, Co 

Initial ECS outlet flow rate, Qs, out 

Initial lumen flow rate (standard mode), QL, » 

Membrane permeability, Lp 

Cell-packed ECS porosity, e'ECS 

ECS hydraulic conductivity, k' 

Protein diffusivity, D' 

Lumen axial permeability, &*, i 

Viscosity, /x 

5 kg/m , (1) uniform 

(2) downstream-polarized 

1.0000 cmVmin 

600.00 cm3/min 

6.4-10"15 m 

(1)26%, (2)5% 

(l)1.03-10-13m2 ( e ^ = 2 6 % ) 

(2)4.43-10-16m2 ( e ^ = 5%) 

(1) 1.9-10"11 m2/s (sECS = 26%) 

(2) 3.4-10-12 m2/s (e^C5 = 5%) 

7.159-10"10m2 (Eq. 3.25) 

0.001139Pas (water, 15°C) 
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Often, in the standard ultrafiltration mode (Figure 5.18a), the ECS and lumen outlet 

pressures are equal (and atmospheric). However, model simulations have shown (Figure 

5.20) that, because of the small hydraulic conductivity of the cell-packed ECS, this results in 

such low ECS flow rates that harvesting would be extremely time-consuming. Thus, it was 

concluded that, in order to improve the efficiency of the process, either the lumen inlet and 

outlet pressures should both be raised (to the same extent to maintain a constant lumen flow 

rate) with the ECS outlet pressure kept at one atmosphere or Ps,dn should be lowered below 

PL,N (e.g., by pumping the fluid out of the ECS). Similar large decreases in ECS outflow were 

found for the closed-lumen mode (Figure 5.18b) when changing from the higher to lower 
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Figure 5.19: Steady-state ECS protein concentration as a function of axial position for 

different ECS porosities. 
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porosity at a constant ECS inlet pressure. Henceforth, to allow better comparison between 

the different cases, all inlet and outlet pressures were set to values that would ensure the initial 

flow rates of 1.0000 cm3/min through the ECS and, in the standard case, 600.00 cmVmin 

through the lumen (Table 5.8). The ECS flow rate was usually found to decrease with time, 

in the most extreme case by 9% over the time period tested. This can be ascribed to the 

declining osmotic effects of the protein being continuously removed from the ECS. The 

osmotic effects are also responsible for the non-zero ECS outlet flows at zero lumen flow 

(Figure 5.20). 

0.25 0.25 
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- 0.15 

— 0.10 

0.05 

0.00 
0 100 200 300 400 500 600 700 800 900 1000 

Lumen inlet flow (cm/min) 

Figure 5.20: The ECS outlet flow as a function of the lumen flow for different ECS porosities 

in the standard ultrafiltration mode with Ps,dn = PL,N =1.0 atm. 
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In all the harvesting simulation cases, the cumulative protein removal, the ECS outlet 

concentration, the concentration in the harvesting reservoir, as well as the ECS concentration 

field were determined as functions of the total fluid volume collected from the ECS (Figures 

5.21 - 5.28). With a uniform initial concentration field (Figures 5.21 - 5.25), the ECS flow 

rate was found to change only negligibly (< 2.5%, in the most extreme case) during the 

harvesting period, so the relevant variables were plotted as functions of time. 

As can be seen in Figure 5.21, at 26% porosity almost complete protein removal is 

achieved after 2 h of harvesting, whereas in the 5% case, although about 10% of the protein is 

removed within 2 min, the maximum removal is still less than 20% after 2 h. At s'^g = 26%, 

there is a significant increase in the fraction of protein removed from the ECS after about 1 h 

in the closed-lumen case and the differences in efficiencies of both harvesting modes become 

more visible. Similar increases at t « 50 min in the ECS outlet and harvesting reservoir 

concentrations are also observed (Figure 5.22). In contrast, the standard mode curves show 

Table 5.8: Pressure drops corresponding to the initial ECS flow rate of 1.0000 cmVmin and 

(standard mode only) the initial lumen flow rate of 600.00 cm3/min. 

• 
£ECS 

26% 

26% 

5% 

5% 

Initial 

concentration 
field 

uniform 

polarized 

uniform 

polarized 

Closed-lumen 

Ps.in-Ps,dn (Pa) 

13,779 

13,168 

109,697 

108,767 

Standard 

PL,O~PL.N (Pa) 

4,387 

4,387 

4,389 

4,389 

PL,o-Ps,dn (Pa) 

10,333 

9,881 

58,804 

58,051 
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2. STANDARD HARVESTING 

f£ c s =5% 

100 

-90 

-80 

-70 

-60 

-50 

40 

H30 

20 

h 10 

10 20 30 40 50 60 
~\—'—r-

70 80 100 110 120 

Time (rrin) 

Figure 5.21: Fraction of protein removed from the HFBR as a function of harvesting time at 

different ECS porosities (uniform initial concentration field). 

no inflection points. To better understand the origin of the result in the closed-lumen case, it 

is useful to look at the transient changes in the ECS concentration field (Figures 5.23, 5.24a). 

As opposed to the standard mode, in which the initially uniform concentration decreases 

uniformly with time, a high degree of non-uniformity in protein distribution is visible here. A 

significant fraction (83%) of the flow entering the ECS passes into the lumina at the upstream 

end of the reactor and returns to the ECS downstream. Owing to protein filtering at the 

membrane surface, a region of maximum concentration develops upstream, shifts downstream, 

and eventually reaches the outlet ECS port after about 1 h of operation. This is reflected by 
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the increased protein concentration at the outlet and the enhanced protein removal. After a 

subsequent 15-20 min, the outlet concentration drops to a value lower than in the 

corresponding standard harvesting case (Figure 5.22). However, the concentration in the 

outlet reservoir still remains higher than in the standard mode. 

In the closed-lumen case, with e'ECS = 26%, only about 17% of the fluid crosses the half-

length cross-section of the reactor inside its extracapillary space. With e ^ = 5%, in both 

harvesting modes, the flow in the ECS is hindered to such an extent that almost all the fluid 

Figure 5.22: The ECS outlet concentration and the concentration in the harvesting reservoir 

as functions of time (uniform initial concentration field, e'ECS = 26%). 
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Figure 5.23: ECS protein concentration field (kg/m3) in the closed-lumen harvesting with 

'ECS 5%: a) after 5 min, b) after 30 min, c) after 60 min. 
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Figure 5.24: ECS concentration field (kg/m3) after 2 h of harvesting (uniform initial field), 

a) e'ECS = 26%, closed-lumen, b) e'ECS = 5%, closed-lumen, c) e'ECS = 5%, standard. 
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(99.99%) travels downstream inside the fibres, except for the regions near the open ECS 

ports. Protein is effectively removed only from the downstream region proximal to the outlet 

ECS manifold, where the fluid passes back from the lumen side into the ECS. It takes just a 

few minutes to remove most of the protein from that region (Figure 5.25). After that time, 

the removal curve levels off (Figure 5.21) and the outlet concentration quickly approaches 

zero (Figure 5.25). In the closed-lumen case, with e'ECS = 5%, the protein in the upstream 

region is swept by the convective flow towards the centre of the reactor, where the 

concentration consequently increases. The ECS concentration contours after 2 h of 

harvesting are shown in Figures 5.24b and 5.24c for the closed-lumen and standard mode 

cases, respectively, with s'ECS = 5%. 

If started from a downstream-polarized concentration field, a faster and more complete 

protein removal can be achieved (Figures 5.26 and 5.27). After only 20 min, almost 100% 

and about 70% of the protein is removed at e^ = 26% and e'ECS = 5%, respectively (Figure 

5.26). Plots like those shown in Figure 5.27 can be useful in estimating the time after which 

the protein concentration in the harvesting reservoir is above a desired level. For example, in 

order to obtain a 15 kg/m3 product solution, one should carry on harvesting for about 5-6 min 

if e^,5 = 26%, or about 20-30 s if e'ECS = 5%. The corresponding fractions of protein 

removed can be read from Figure 5.26 as approximately 80% and 25%, respectively. 

Figure 5.28 shows the ECS concentration contours as well as the ECS velocity field and 

the lumen velocity contours after 10 min of harvesting in the closed-lumen mode at e'ECS = 5% 

(polarized initial concentration field). The corresponding concentration contours after 10 min 

of standard harvesting look the same as in Figure 5.28a. Between 10 and 20 min, hardly any 

further changes in the concentration field occur. The visible high concentration ridge with a 

maximum above 12 kg/m3 constitutes an interesting flow division region in the closed-lumen 

case. Locally high osmotic pressures drive the fluid from the lumen side into this region; then, 

part of the fluid backflows in the ECS until it is carried by radial gradients towards the centre 
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of the reactor to finally pass back into the lumina. Streamlines rather than velocity vectors are 

drawn in the ECS inlet and outlet regions (Figure 5.28b), where the strength of the primary 

hydrostatic-pressure-driven flow is two to three orders of magnitude smaller than that of the 

osmotically-driven flow in the central part of the ECS. The lumen velocity contours plotted in 

Figure 5.28c indicate that most of the fluid travels downstream near the outer wall of the 

cartridge (r = R). The magnitude of the maximum lumen velocity is, as expected, similar to 

the magnitude of the ECS inlet or outlet velocity. 
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Figure 5.25: The ECS outlet concentration and the concentration in the harvesting reservoir 

as functions of time (both harvesting modes, uniform initial concentration field, 
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Figure 5.26: Fraction of protein removed from the HFBR as a function of the total outflow 

from the ECS at different ECS porosities (both harvesting modes, polarized 

initial concentration field). 

At e'ECS = 26%, in both harvesting modes (polarized initial concentration field), the 

protein removal from the extracapillary space is approximately uniform (data not shown). 

After 2 min, the highest local concentration falls to 28 kg/m3, and after 10 min to about 9 

kg/m3 (38 kg/m3 being the initially highest local value). 

In conclusion, the two tested harvesting modes show no significant differences in their 

harvesting efficiencies. Although the extent of ECS penetration by the fluid is greater in the 
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closed-lumen than in the standard mode, the lumen recycle flow in the latter provides an 

uninterrupted diffusional supply of nutrients to and removal of metabolites from the cells. 

Thus, the closed-lumen mode may not be practical. At high packed cell densities, the 

concentration of the harvested product protein may be unacceptably low unless a sufficient 

degree of protein polarization in the downstream part of the ECS can be achieved between 

consecutive harvests. 

0 2 4 6 8 10 12 14 16 18 20 

Fluid volume collected from the ECS (err?) 

Figure 5.27: The ECS outlet concentration and the concentration in the harvesting reservoir 

as functions of the total outflow from the ECS at different ECS porosities (both 

harvesting modes, polarized initial concentration field). 
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Figure 5.28: a) ECS concentrations (kg/m3), b) ECS velocity vectors (in the central part of the 

ECS) and streamlines (near the port manifolds, where the magnitude of the flow is 

much larger than in the central part of the ECS), c) lumen velocities (uL-l05 m/s) 

after 10 min of closed-lumen harvesting (s'ECS
 = 5%, polarized initial concn. field). 
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Chapter 6: CONCLUSIONS AND FUTURE WORK 

The two-dimensional Porous Medium Model (PMM), developed here to describe the 

hydrodynamics and protein transport in hollow-fibre bioreactors, has been tested and applied 

to several situations with fundamental as well as practical implications for HFBR operation. 

The PMM is able to handle a variety of flow configurations, including open-shell operations, 

and can be relatively easily extended to include another spatial dimension or geometric design 

details of the HFBR. In the absence of radial terms, the Porous Medium Model reduces to the 

one-dimensional Krogh Cylinder Model (KCM) which was previously validated by an 

experimental study of protein redistribution in the closed-shell case (Taylor et al., 1994; 

Patkar et al., submitted; Koska, 1993a). 

It was found that the efficiency of the line over-relaxation procedure, employed to solve 

the coupled elliptic lumen and ECS pressure equations, could be significantly improved by 

optimizing the values of the over-relaxation parameters as well as the direction of sweep over 

the rows and columns of the two pressure matrices. Convergence was particularly slow for 

the closed-shell case and for low membrane permeabilities. In most cases, since the lumen 

flow was orders of magnitude greater than the ECS flow, the convergence criterion for the 

lumen pressure could be much less stringent than that for the ECS pressure, which reduced 

the computational times needed to solve the pressure equations. Since the ADI method, used 

to solve the time-dependent parabolic protein transport equation (coupled with the 

hydrodynamic equations through the osmotic pressure term), is not conservative in its 

standard formulation, a small time step size was required in order to minimize the resulting 

protein mass imbalance. Simultaneous iteration of all three equations at each time level was 

not necessary because the hydrodynamics did not change significantly over one time 

increment. Thus, the pressure solutions could be lagged behind the concentration solutions 
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without any noticeable loss in accuracy. This was confirmed by a comparative numerical 

study and resulted in a several-fold reduction of computational times. 

Model simulations of closed-shell operations confirmed the downstream polarization of 

the ECS protein that occurs under dominant convective transport conditions. A two-

dimensional study of this case demonstrated that, in the presence of significant radial pressure 

gradients in the lumen manifolds, the protein was polarized in both axial and radial directions 

and was distributed over a larger portion of the ECS volume than in the corresponding case 

where no radial gradients were imposed. 

When the PMM was used to study the hydrodynamics of hollow-fibre devices in the 

partial and full filtration modes of operation, it was found that, for membranes with 

permeabilities lower than approximately 10"13 m (which covers the range of most commercial 

ultrafiltration hollow-fibre membranes), practically all of the pressure drop between the inlet 

lumen and outlet ECS ports was due to the hydraulic resistance of the membrane. Although 

this assumption is commonly made when membrane permeabilities are determined 

experimentally, it breaks down at greater values of Lp. A correction plot for the Gambro 

hollow-fibre module geometry was developed which allows better estimates of Lp values from 

measured flow-rate-versus-pressure-drop data. The lumen and ECS volumetric flow rates in 

both filtration modes were calculated using both the PMM and the KCM (Kelsey et al., 1990). 

The differences in the predictions of the two models became noticeable only for Lp values 

above about 10'12 m and were mostly due to the fact that radial ECS flows were not included 

in the one-dimensional Krogh Cylinder Model. In addition, the position and area of the 

outflow surfaces in the KCM and PMM were different. Since the permeabilities of 

membranes in use for most open-shell situations of practical interest are lower than 10'12 m, 

the hydrodynamic predictions of the Krogh Cylinder Model should be acceptable in most 

cases. 



Chapter 6: Conclusions and Future Work 98 

Simulations of the inoculation process using a Gambro HFBR with a membrane 

permeability of the order of 10"15 m showed that, at the end of the inoculation phase, the 

protein concentration distribution could be very non-uniform with most of the shell side free 

of protein. Using a lower-concentration inoculum solution might partially alleviate this 

problem. Alternatively, a relaxation phase with all ports closed could be applied following the 

inoculation to help homogenize the contents of the ECS by diffusion and osmotically-driven 

convection. However, this process might be time-consuming and a long period without lumen 

flow might result in oxygen starvation of the cells. It is suggested that introduction of the 

inoculum through both ECS ports or periodic changes of the flow direction may be more 

efficient ways of distributing the ECS proteins. The PMM could provide useful assistance in 

determining the optimum inoculation procedure. 

The harvesting phase of cell-packed Gambro HFBRs was also modelled. A comparison 

of predicted harvesting results obtained using the closed-lumen mode (both ECS ports open) 

and the standard mode (downstream ECS port and both lumen ports open), showed no 

significant differences. The rate of protein removal from the ECS and the product 

concentration in the harvested solution were greatly dependent on the cell-packed ECS 

porosity which determines the hydraulic permeability and thus the magnitude of convective 

transport in the shell side. Greatly increased product harvest concentrations were obtained in 

cases where the protein had been downstream-polarized prior to harvesting. However, 

recovery of high concentration harvests or complete removal of the product from the ECS of 

high-cell-density HFBRs might not be possible. 

The present version of the Porous Medium Model as well as the existing numerical code 

can be applied to a variety of other operating conditions and flow configurations, beside those 

investigated in this work. In addition, the PMM can be extended to include another dimension 

and concentration-induced density variations, which would allow gravitational effects to be 

taken into account. It can also be revise to account for the influence of the ECS manifolds on 
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ECS protein redistribution during both normal closed-shell and harvesting open-shell 

operations. The ECS manifolds are essentially fibre-free and, as such, may not be treated as a 

porous medium described by Darcy's law. Utilization of the Navier-Stokes equations for the 

manifold and the Brinkman equation for the porous regions may be necessary in this case. 

Prediction of fluid flow and pressure distribution in the inlet and outlet lumen manifolds may 

also be worth pursuing, particularly if significant radial pressure gradients are created during 

normal closed-shell operation, or if significant fluid bypassing occurs through the lumen 

manifolds when one or both lumen ports are closed. Furthermore, the production phase of 

HFBR operation can be modelled by including a reaction rate term in the protein balance 

equation, where the reaction rate would depend upon the cell density. Protein leakage from 

the ECS into the lumina as well as transport of low-molecular-weight nutrients across the 

membrane may be included in respective solute mass balance equations. Variation of ECS 

fluid viscosity and protein difrusivity with protein concentration may also be considered. 

Redistribution and growth of cells is another potential study area in this field. This would 

require keeping track of the distributions of essential nutrients and possibly some metabolites. 

Also, the effect of cell density on the ECS porosity and, hence, hydraulic conductivity and 

protein diffusivity may be taken into account. Finally, the Porous Medium Model might be 

used to simulate the complete HFBR operating cycle, including inoculation, growth, steady-

state production and harvesting. This could allow the optimization of operating conditions 

and the enhancement of reactor productivity. 
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NOMENCLATURE 

A total surface area of the hollow-fibre membranes (m2); 

dimensionless coefficient in Patankar's power-law scheme (Appendix C) 

Av membrane surface area per unit volume available for fluid transport (m"1) 

A2, A3 virial coefficients in Eqs. 3.13 and A.33 (kg'1 m3, kg"2 m6, respectively) 

ACCF acceleration factor in the time-marching algorithm (dimensionless) 

B dimensionless coefficient in Patankar's power-law scheme (Appendix C) 

Bj, B2, B3, B4 constants in Eqs. A.9, A. 10, B. 1 and B.2 (Pa) 

C, c actual concentration (kg m"3) 

Co, Co initial concentration (kg m"3) 

D diffusivity (m2 s'1) 

EPS convergence criterion for pressures (Pa) 

EPSC convergence criterion for concentration (kg m"3 s"1) 

/ filtration fraction (Eq. A. 8) (dimensionless) 

fosm relationship between the osmotic pressure and concentration 
(Appendix A) 

G dimensionless parameter in the expression for krts in Table 3. lb 

(Eisenberg & Grodzinsky, 1988) 

J protein flux (kg m'2 s'1) 

Jo, Ji Bessel Sanctions of order 0 and 1, respectively 

k hydraulic conductivity, Darcy permeability (m2) 

K number of grid points in the radial direction 

Kc, Kj dimensionless hindrance factors for the convective and diffusive 

transport, respectively, inEq. A.36 (Koska, 1993a) 

L length of the ECS, permeable length of the dry fibre (m) 

Lp membrane permeability (m) 

LPiapp apparent membrane permeability (m) 

Mp molecular weight of protein (kgmol'1) 

ms salt concentration in Eq. 3.13 (mol m"3) 
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maxO 

n 

N 

o 

P 

Pe 

r 

ri 

r2 

R, RHFBR 

R8 

RL 

RM 

Rs 

Re 

Q 

t 

T 

TL 

u 

* 
u 
V 

* 
V 

V 

V* 

X 

*m 

zP 

function returning the maximum of the arguments in parentheses 

number of fibres in the HFBR cartridge 

number of grid points in the axial direction 

order of magnitude 

hydrostatic pressure (Pa) 

Peclet number (dimensionless) 

radial position (m) 

radial position of the south face of the control volume (m) 

radial position of the north face of the control volume (m) 

the HFBR cartridge radius (m) 

the gas law constant (J mol"1 K"1) 

fibre inner radius (m) 

fibre outer radius (m) 

Krogh cylinder radius (m) 

Reynolds number (dimensionless) 

volumetric flow rate (m3 s*1) 

time (s) 

absolute temperature (K) 

dimensionless transport modulus (Bruining, 1989) 

axial superficial velocity component (m/s) 

axial actual velocity component (m/s) 

radial superficial velocity component (m/s) 

radial actual velocity component (m/s) 

superficial velocity vector 

actual velocity vector 

axial position (m) 

axial length of the ECS manifold (m) 

protein charge number (dimensionless) 
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Greek letters 

a 

P 
AP 

APm 

Ar 

At 

Ax 

8 

SECS 

• 
SECS 

£s 

<i> 

<p 

Y 

K 

X 

A(\Pe\) 

V-

K 

n 
p 

¥ 

over-relaxation parameter (dimensionless) 

parameter in Eq. A. 17 (Taylor et al., 1994) (m"2) 

pressure drop (Pa) 

pressure drop across the membrane (Pa) 

increment in the radial position (m) 

time increment (s) 

increment in the axial position (m) 

porosity (dimensionless) 

fraction of the HFBR volume not occupied by the fibres (dimensionless) 

cell-packed ECS porosity (dimensionless) 

overall porosity of the HFBR (dimensionless) 

fluid source or sink (s'1) 

fraction of the HFBR volume occupied by the fibres (dimensionless) 

dimensionless geometric parameter (Eqs. A.7 and B.9) 

dimensionless membrane permeability (Eqs. A. 16 and B. 11) 

dimensionless parameter defined by Eqs. A. 15, A.25 and B.10 

function in Patankar's power-law scheme (Appendix C) (dimensionless) 

fluid viscosity (Pas) 

3.1415926535897... 

osmotic pressure (Pa) 

fluid density (kgm"3) 

sink or source of solute (kg m"3 s'1) 



Subscripts 

0 

AVG 

dn 

E 

U 
in 

L 

N 

out 

r 

R 

S 

up 

W 

x 

initial (at t = 0); lumen inlet (x = 0) 

average 

downstream 

east face of the control volume 

indices of the axial and radial positions, respectively 

inlet 

lumen 

lumen outlet; north face of the control volume 

outlet 

radial 

atr = R 

shell side; south face of the control volume 

upstream 

west face of the control volume 

axial 

Superscripts 

IT iteration counter 

cell-packed 

actual (as opposed to superficial) 

Other symbols 

(overbar) 

V 

1 

radially-averaged 

Nabla operator 

unit vector 



Abbreviations 

ADI Alternate Direction Implicit 

BSA bovine serum albumin 

ECS extracapillary space 

HFBR hollow-fibre bioreactor 

KCM Krogh Cylinder Model 

PMM Porous Medium Model 

REV representative elementary volume 
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Appendix A: FORMULATIONS OF HFBR MODELLING EQUATIONS 

BASED ON THE KROGH CYLINDER APPROXIMATION 

Kelsey et at (1990): Hydrodynamics of open- and closed-shell, cell-free HFBRs 

The governing equations are: 

d2PL L, 
^ = 1 6 ^ ( P L - P S ) (A.1) 

d2Ps L. 1 

!*=-16*[y*>--V- (A2) 

subject to the boundary conditions 

PL=Pi.o a t x = 0 , (A.3) 

dP 
- T i = 0 a t x = 0 , (A.4) 
dx 

uL*= uLf> (1 - r2/Rl) a t x = 0 , (A.5) 

<N = ( l - / ) < o > (A.6) 

where 

Y = [ARA
S ln(Rs/RM)+4R2

sR
2
M-3R$ -R*M]/R*L , (A.7) 

PL,O is the inlet lumen pressure, u[p is the inlet centre-line actual lumen velocity, «£*0 and 

u*N are the radially-averaged inlet and outlet actual lumen velocities, respectively, a n d / i s 

referred to as the ultrafiltration fraction (fraction of the inlet flow that exits the HFBR through 

the ECS), i.e., 

f = Qs*ut/Qun- (A.8) 
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The solutions of Eqs. A.1 and A.2 are 

PL(x) =£, sinh(Xx/Z) + B2 cosh(Xx/X) + B3 x/L + B4 (A.9) 

Ps(x) =-5,/7sinh(Xx/Z) -Bj ycosh(kx/L) + B3 x/L + B4 (A. 10) 

with 

4-y v>Lu?0 

B2 =JB1/sinh(X)[l-cosh(X)-/(l+l/y)] (A.12) 

B3=Bjy (A. 13) 

B,=PLf)-B3 (A. 14) 

X = 4 V K ( 1 + V Y ) , (A.15) 

where K is the dimensionless membrane permeability, 

K = LpL
2/R3

L. (A. 16) 

Taylor et al. (1994): Radially-averaged velocities and two-dimensional ECS protein 

transport in a multi-fibre, closed-shell, cell-free HFBR 

The equations governing the quasi-steady lumen and ECS hydrodynamics are 

?< , »— „ — 2Lr <y_[C(*„,x)] dC(J?M,x) 
— - x U l = - „ „ „ - — jig — 2 - x uL = - P « L J B - T S ^ z:— (A17) 

U*s=i?2-V (w^~u^) ( A 1 8 ) 

with 

UL
 = u*,o at x = 0 and x = L, (A. 19) 

while the ECS protein transport equation is 
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dC 

dt 
= D 

d2C \d_( dC 

dx2 r d r l dr, 

.dC dC 
sdx sdr 

(A.20) 

with the initial and boundary conditions 

c = c0 

^ = 0 
dx 

V ; C - Z > ^ = 0 
dr 

a c = o 
dr 

Eq. A. 17, 

X = A/l6Z,/flL
3(l+ 

V = l6Lp/Rl-l/y 

1/Y) 

at t = 0, 

at x = 0 and x = L, 

at T = RM, 

at r = i?5. 

(A.21) 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

where y is defined by Eq. A. 7; C(RM,X) is the ECS protein concentration at the outer surface 

of the fibre; /»ffl(r,x) is the relationship between osmotic pressure and the local protein 

concentration (Taylor et al. used Eq. 3.13, valid for BSA); D is the protein diffiisivity. The 

local actual velocities are calculated as follows: 

2i& 
u,,(r,x) = - . 

R 
2-t\n(r/RM)-r2/Rl + l 

R M 
(«L>- U L(X) ) (A.27) 

Vs(r,x) = (A.28) 

Wl 
^ - r 3

+ | ( i ? s
2 - ^ ) ( ^ - r 2 ) - ^ ( ^ l n ( i ? 5 / ^ ) - r 2 l n ( r / i ? M ) ) 

du*(x) 

dx 

In the absence of osmotic effects, Eq. A. 17 has the following solution: 
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u 
uL = 

LP 

1+y 

cosh(X(X/2-x)) 

cosh(XL/2) + Y (A.29) 

Patkar et al. (in press): Radially-averaged axial velocity and protein concentration 

in the ECS of a closed-shell, cell-free HFBR 

The governing equations are 

2 „ * d 2u — 16Z. u, 'P "LP UkLp d/^pOjdCCx) 
AJ X2US* RL(Rl-Rl)' n(Rl-Rl) dC dx 

(A.30) 

with the boundary conditions 

and 

u; = o 

d£_ d2C _ a(u's C) 
dt ~ dx2 ~ dx 

at x = 0 and x = L, (A.31) 

(A.32) 

subject to initial and boundary conditions identical to Eqs. A.21 and A.22 (with C replaced by 

C). A, in Eq. A.30 is defined by Eq. A.25. In this case, Patkar et al. related the osmotic 

pressure of protein (BSA) to its concentration through the following virial equation: 

f-<C) = RJlM, (C+^2C
2 +^c3) (A.33) 

where Mp is the protein molecular weight and A2 and A3 are the virial coefficients obtained by 

fitting Eq. A.33 to experimental data. 

Koska (1993a): Coupled hydrodynamics and protein transport in a closed-shell, 

cell-packed HFBR 

In a two-dimensional formulation, the governing equations are 
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j 2 p jr 
L = 1 6 ^ [ p L( x ) - p sOUU + ns(xA,)] dx2 

r 5 r 

R 

r 

dr 
d2Vs 

dx2 = 0 

and 

3t r dr |_ dr j dx [_ dxj es dx c ss dr 

(A.34) 

(A.35) 

(A.36) 

where Kj and Kc are the protein hindrance factors for diffusive and convective transport, 

respectively (usually assumed equal to 1); us and vs are the ECS superficial velocities in the 

axial and radial directions, respectively, calculated half-way between the pressure nodal points 

using a central difference approximation of Darcy's law; es is the packed ECS porosity; n s 

has the same form as/™*, in Eq. A.33. 

Equations A.34 and A.35 are subject to the boundary conditions 

PL — PL,O 

¥L = PL,N 

dPs. 
dx 

dr 

0 

0 

at x = 0 , 

at x = L, 

at x = 0 and x = L , 

at r = Rs 

(A.37) 

(A3 8) 

(A.39) 

(A.40) 

as well as the stipulation that the incoming and outgoing fluxes at the ECS/membrane 

interface be equal, i.e., 

5PS LRL 

dr * A 
[pL(x)-ps(x,i?M)+ns(x,*M)] (A.41) 

at r = RM, where 

s 8 
~^rHRs/RM)-2R2

s+R2 
M 

(A.42) 
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The initial and boundary conditions for the ECS protein transport equation (A.36) are the 

same as those specified by Taylor et al. (1994) (Eqs. A.21 - A.24), except that Eq. A.23 is 

here replaced with 

,3C 
^ , ^ - C -K,D-

dr 
= 0 at r = R M • (A.43) 

In a simplified one-dimensional (radially-averaged) version, Eqs. A.35 and A.36 become, 

respectively, 

d2P« RL Lr 
7 ^ = -27^-Vrir[pL(x)-Ps(x,^) + ns(x,i?M)], 
a x [ii.s nM) KS 

with boundary conditions identical to Eq. A. 3 9, and 

(A.44) 

ac 
at 

d 

" dx 
r, ~ dC 
KdD—-d dx 

d 

dx 
T , U o — 
Kc — C 

s 
(A.45) 

subject to the same initial and boundary conditions as Eq. A.32 (Patkar et al., in press). 
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Appendix B: KROGH CYLINDER EQUATIONS WITH PRESSURE 

BOUNDARY CONDITIONS IN THE CLOSED-SHELL, 

PARTIAL, AND FULL FDLTRATTON MODES 

The expressions for the lumen and ECS pressures in the formulation by Kelsey et al. 

(1990) have been re-derived here in terms of known inlet and outlet pressures, PL,O, PL,N and 

Psjn, rather than the filtration fraction/, to yield the following equations: 

P L O O =B> 

Ps(x) =Bt 

Bnh|Xjl+-4 
yL 

+ B2 cosh i)-'] + Pr L.0 

sinhl X 
L) yL_ + B, cosh X— | — 1 

7 I L 
+ PL.O 

where 

(i) for /= 1 (full filtration mode): 

B, = 
P —P 
1S,dn 1L,0 1 [X - sinh(X)]/7 + [I/7 + cosh(X)][l + cosh(X)/7]/sinh(X) 

l/7 + cosh(X) 
B2 = -B, 

sinh(X) 

(ii) for 0 < / < 1 (partial filtration mode): 

te.*-S..)[«>8h(X)-l] +(PL.N - i i , 0 ) [ l + cosh(X)/7] 
* i -

B2 = 

[X -sinh(X)][cosh(X) - l ] / 7 + [X/7 + sinh(X)][l + cosh(X)/7] 

^ - ^ 0 - 3 [ V 7 + sinh(X)] 
cosh(X)—1 

(iii) for /= 0 (closed-shell mode): 

P —P 
rL,N rL,0 B, = 

X/7 + sinh(X) - [ 1 -cosh(X)]2/sinh(X) 

(B.l) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

(B.7) 
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_ 1 — cosh(X) 
B2 = B, 

sinh(X) 
(B.8) 

PL.O, PL,N and Ps,dn are the inlet lumen, outlet lumen and outlet ECS dimensional pressures, 

respectively. 7 is a geometrical factor, defined as follows: 

7 K 
(A^jA^ 
VRM, \RMJ 

+ 4 
RM) \RM) 

(B.9) 

where RL, RU and Rs are the inner fibre radius, the outer fibre radius and the Krogh cylinder 

radius, respectively. X is defined as 

X = 4 ^ ( 1 + 1 / 7 ) 

where 
L.L2 

K = -*• Rl 

(B.10) 

(B.H) 

is the dimensionless membrane permeability. 

The volumetric flow rates into and out of the hollow-fibre device are as follows: 

Qlout = ~ ^ Z ~ ^ (VT+cosh(X)) + B2 sinh(X)] 

&.«, = - : ! ^ f e ( l - c o s h ( X ) ) - J B 2 s i n h ( X ) ] 

(B.12) 

(B.13) 

(B.14) 

where n is the number of fibres, fi is the fluid viscosity and L is the reactor length. 

For L =0.215m, RL =1.15-10~4m, i?M =1.25-10_4m, i^=1.75-10"4m and 

Z, = 7.35-10~15m, we obtain: 7 = 0.677794, K = 2.2339-10~4, X =0.094062. The above 

parameter values correspond to the Gambro HFBR used in the body of the thesis (see Chapter 

5), except that the value of Lp =7.35-10 ~15 m was obtained from the following calculation: 
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1.5 m2/1.26 m2 • 6.18-10"15 m = 7.3510"15 m, where 1.26 m2 is the total surface area of the 

hollow-fibre membranes for the above-specified fibre dimensions, while 1.5 m2 is the surface 

area used in the determination of membrane permeability (see Section 5.3), which yielded 

Z„=6.18-10-,5m2. 
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Appendix C: PATANKAR'S POWER-LAW SCHEME 

In situations where either diffusive or convective transport strongly predominates, i.e. for 

either very small or very large absolute values of the Peclet number (Pe), the governing 

differential equation is usually discretized using either central differences or the upwind 

scheme, respectively. A more general approach proposed by Patankar (1980), which is valid 

for any value ofPe, is outlined below. 

The protein flux through each interface between two adjacent control volumes can be 

expressed in terms of the local concentrations in these volumes (see Figure 4.1), i.e., 

JE = Ui<jcE - Dx(dc/dx)E = {BEc^ - AEci+i.)Dx/Ax (C.l) 

Jw = «i.i.j cw ~ Dx(dc/dx)w = (BwciAi - Aw c^)DjA x (C.2) 

JN = rN v y cN - rNZ)r(3c/ar)N = (BN CjJ - AN cUi+l)Dr \(t-]+x + r^/A r (C.3) 

Js= rsv^lCs- rsDr(dc/dr)s= (BscUA- Asc,i)DrKri + r^/Ar (C.4) 

where Dx and Dr are the axial and radial protein diffusivities, respectively, and the subscripts 

E, W, N, S denote the respective faces of the (ij) cell. Each of the coefficients A and B is 

defined as follows: 

A = A (|Pe|) + max(-Pe, 0) (C.5) 

B = A{\Pe\) + max(Pe, 0) (C.6) 

where the function max() returns the largest of the arguments in the parentheses. The form of 

A(|Pe|) depends on the discretization scheme employed. For example, A(|Pe|)= 1 in the fully 
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upwind scheme, while A(|Pe|) = 1 - £|Pe| in the central-difference scheme. Patankar has 

proposed the following expression, which is essential to his power-law scheme: 

A(\Pe\) = max(o, [l - 0.l|Pe|]5). (C.7) 

Equation C.7 yields values that are very close to those obtained from the exponential formula 

A(|Pe|)= |Pe|/[exp(|Pe|)-ll, which is exact in the one-dimensional case. However, the 

evaluation of A(|Pe|) from the power-law scheme is numerically more efficient since it does 

not include the exponential term. 

The Peclet numbers on the faces of the control volume are evaluated as follows: 

U:; AX 
PeE = - * L — (C.8) 

Uj_, : A x 

^ v = -L j d— (C.9) 

v Ar 
PeN = ^ ~ (CIO) 

(CM) 
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Appendix D: SOURCE CODE IN FORTRAN 

This program calculates the coupled pressure and 
conoaiiaalion fielde MI H I S hoMowmbre moroactor 
treated as a porous bed. Uniform grid, cylindrical ooordinatas 
are employed. Axial symmetry Is assumed, ihus Implying 
a 24tmenslonai oeee in which gravity forces are neglected. 

At each erne level, l i e Alternate Direction Implicit method ieuesd 
to find oonoonvatjon field, and the Hn*by4lne method is used 
Horaavely to find the lumen and shell pressure fields. 

This is s general version that allows for nofiux condition 
at file lumen bilevoutlet as well as for open-shell operations. 

IMPLICIT REAL'S (A4I.UO-Z) 
INTEGER HR1.HR2,MIN1.MIN2,SEC1,SEC2.HSEC1.HSEC2 
INTEGER MONTH1,MONTH2,DAY1,DAY2,YEAR,YEAR.DofirV,APP,ERR 
INTEGER EXF,ERF,ELF,PACKED,HARV,T1MAX 
CHARACTERS STRIn,8TRout,STRRuO,STRAPP 
PARAMETER (K'IS.NMvO) 
PARAMETER (PACKED»0,HARV=O) 
PARAMETER (K0SP-1,KDISPC1,NDISP^,N0ISPC1) 
PARAMETER <MAXrTP=6O0O0,MAXIS=«,TIMAX=1,MAXrT«10OO0) 
PARAMETER (INDTR*1.INDC=1,INDPS=O.INDPOs=0,INDV=0) 
PARAMETER (IDATF'O.nDAT-'IO.APP*)) 

HARV-1 H harvesting 
PACKEO-I Hlhe ECS ispackedwlth colls 
rTDAT-tO: output Into the Z3AO.D77 file every 10 Heraaons 
INDTR-t IfVansientreeults to be printed 
INDC-1 If calculated oonoanh-ation values to be printed 

(those at oell centres) 
INDPS*1 IT pressure values to be printed 

(except for the oamotf o pressure) 
INDPOs«1 if EC8osmotlG pressure values to be printed 
I D A T F I If reed C,PS,PL,T,DT,ACCF,IS,CTOTAL,CTOT0,TOTFLW 

from a file 

DIMENSION PLO(0:K*1),PLN1<0:K*1) 
DIMENSION X(0:N+1),R(0:KVI),XDISP(0:N),RD|SP(0:K) 
DIMENSION C1(0:Nt1,0:K+1),C(0:Nt1,0:Kt1),0POem(1:N,1:K) 
DIMENSION P3(0;N*1.0:Kt1),PL(0:N*1,0:K+1) 
DIMENSION PS1(0:N+1,0:K>1),PL1<0:N*1,0:K+1) 
DIMENSION U(0:N,0:K«1),V(0:N+1>0:K>,UL(0:N,0:K>1) 
DIMENSION POem(0:N.1:K),CNSTR6(1:K) 
DIMENSION CNSTR1(1:K),CNSTTO(1:K),CNSTR2(2:K),CNSTT<4(1:K) 
DIMENSION ACSR(1:2,1:S),BSR<1:S,1:K),ABCLR<1:3.1:3> 
DIMENSION ABC8C(1:S,1:K,1:S).TS(0:MAXIS| 

COMMON /ALFASL/ ALFAS,ALFAS1,ALFAL,ALFAL1,EPSPS,EPSPL 
COMMON « P U CXPL.CNSTPL 
COMMON IXPSf CXPS,CXPS1,CXPS3 
COMMON /CSTR1/ CNSTR1.CNSTR2 
COMMON /CSTR3/ CNSTR3,CNSTR4,CXCN 
COMMON /VELf CNSTU.CNSTUUCNSTV.CNSTVR 
COMMON /PLuoV PUpO,PLupK,PLdnO,PLdhK 
COMMON /ORIDC/ CRCN.CR12.L.RHFBR 
COMMON /LOG/ LOOIND 
COMMON /CN3TRB CNSTRS 
COMMON lOSm OSM1,OSM2,OSM22A>2,A2,A3 
COMMON /PECU CPew.CPne 
COMMON /PIBU PI 
COMMON /SWR/ SWR.SWR1 .SWL.SWL1 
COMMON fSWCf 8WD,SWD1,SWU,SWU1 
COMMON /ALT/ ALTERR,ALTERC.IRR.IRC,ISWOFF.INrn< 
COMMON/FI/FI.E.EL 
COMMON /N12/ N1.N2 
COMMON /BCf BCPLO,BCPLN,BCPSup,BCPSdn 
COMMON /BCONC/ COup 
COMMON /PSupdnl PSup.PSdn 
COMMON /CNSTCN/ CNSTCN 
COMMON /CFLUXf QCIn.QCout,CTOTAL,CTOT0,CTOT1,VECS,TOTFLW 
COMMON /RDSP/ RDISP.R 
COMMON /INDR2/ INDR2 
COMMON /ERROR/ ERR 
COMMON/EXFRU EXF.ERF.ELF 
COMMON /OUTFLW/ QoutUOoutS 

STPJn^ZaAG.DOO-
STTtout^ZSAQ.DOO' 
8TRR(XK23AG.R00-
IF (APP.EQ.1) STRAPP^APPEND1 

IF (APP.NE.1) STRAPP^-SEQUENTIAL' 
OPEN(UNrp-6,ACCESS=STRAPP,FILE=STRR00) 
CALL DOSTTM (HR1,MIN1,SEC1.HSEC1) 
CALL DOS0AT (MONTH1,DAY1,YEAR,DolW) 

DATA (TS( I ) . I I .MAXIS) 
> «3O.DO,12O.D0,18O.D0,2*O.D0,3O0.D0,3OO.D0r 

C 
C EXF,ERF,EIJ::ECSandlumanveloon>muHipHcalionfactorsfor 
C output 
C 

EXF*1000000 
ERF-1000000 
ELF1000 
LOGIND1 .00 
EPSPS*1.D-o 
EP8PL=1.D-6 

I soouracy of PS 
! aooureoy of PL 

EPSCDT1.D-8 taocuraoyofdC/dt 
ALFAS=1.asD0 
ALFAS1=1.DOALFAS 
ALFAL1.6D0 
ALFAL11.00ALFAL 
WRITE(B,,)'EPSP8: '.EPSPS 
WRITE(5,*),EPSPL: '.EPSPL 
WRITT^O'EPSCDT: ".EPSCDT 
WRITE(6,2S)ALFAS 
WR|TE(5,2S)ALFAL 

25 FORMATf ALFA&'.FS.e) 
26 FORMATf ALFAlj'.FS^) 

C 
Ph=4.D0*DATAN(1.D0) 
NFIBR=8123 
RL=1.15D-4 
RM=1.2SO-4 
RHFBR=0.031500(2.DO 
RS-8HFBRfDSQRT(DBLE(NFIBR)) 
FI=RM*RM/RSIRS 
EPOR=1.D0J=l 
EL=RL*RL/RS/R8 
L=0.216DO 
LECS°O.02400 I length of the ECS portmanifoid 
VECS=PI*L*(RHFBR^tHFBR4>BLE(NFIBR)*Rtir*RM) 
N1*LECS/L*N 
N2=N-N1*1 
W R R T E ( S , * ) ' R A D I A L O R I D P O I N T S : ' , K 

W R I T E ( 5 , 7 A X I A L O R I D P O I N T S : \ N 

W R I T E ( 5 , * ) ' N I * . N I . ' N 2 = - , N 2 
WRITE(S.*)<MAXtS=',MAXlS 

C 
8urfAr=1.6O0 
visoH.IStO-S IvisoosrtyofwateratlSdegC 
Lp°6.1SD-1S 
WRITEfVVLo^.Lp 
DHT-1.D-10 
IF (PACKED.EQ.O) THEN 
DittX=0lll*EPOR 
DifTR=0irTEPOR/(ZD0^POR) 
ECSPOR*1.D0 

ELSE 
ECSPOR=0.2600 
DiftX=EPOR*2.D0^CSPOR/(3.D0-ECSPOR)*DrrT 
DiffR=OifrX 

END IF 
E*EPOR*ECSPOR 
VECS-VECS'ECSPOR 
WRITE(6,*)'EC8 as a fraction of ths total volumei'.EPOR 
WRITE(5,*)-CELL-PACKED ECS POROSITY:',ECSPOR 
WRITHS.'VEFFECTIVE ECS POROSITY:",E 
WRITE(6,*>,DIFFUSIvTTY: •,DhT 
WRITE<6,*rEFFECTiVE AXIAL DIFFUSIVTTY: \DHrX 
WRtTE(6,TEFFECTlVE RADIAL DIFFUSIVTTY: '.Dlffit 

C 
BCPLCM.DO 11 = FLUX,0 = NOFLUX«t the lumen inlet 
BCPLN=1.D0 11 = FLUX, 0 = NO FLUX at the lumen outlet 
BCPSup=0.D0 11 = FLUX. 0 = NO FLUX at the ECS upstream port 
BCPSdn=0.00 I I =FLUX.0 = NO FLUX at ths ECS downstream port 

C 
IF (BCPL0.Eai.D0) THEN 
PLupO=4672.2D0 
PLupK=PLuf>0 
WRITE(6,2) PLupO,PLupK 

2 FORMATf PLupO^,F».2,- PLupK=\F».2) 
END IF 
IF (BCPLN.Eai.DO) THEN 
PLdn0=0.D0 
PLOnK=PLdnO 
WRITE(6,3) PLdnO.PLdnK 

3 FORMATf PLdnO=\F».2,- PLonK=-,F».2| 
END IF 
PSup=1087«7.2D0 
C0up=1O.D0 
IF(BCPSup.Eai.DO)THEN 
WRITEl6,4)PSup 

4 FORMATf PSup^.FS.2) 
WRITE<5,5)C0up 

6 FORMATf C0up=\F5.1) 
END IF 
PSdn=O.D0 
IF (BCPSdn.EQ.1.00) THEN 
WRrTE(S,S) PSdn 

« FORMATf PSdn=\F».2) 
END IF 

C 
IF(IDATF.Eai)THEN 
OPEN(UNIT=3,FILE=STRin) I READ DATA FROM 
CALLINPF(IS,T,DT,ACCF,CTOTAL,CTOT0,TOTFLW,PL1,PS1,C1) 
CLOSE(UNrT=3| 
DT=0.1D0 
WRITE<S,TlTERATION :\ITER 
WRlTE(S, ,) ,DT,s: ,,DT 
WRrfEIS.TACCF r'.ACCF 
WRtTE(S,TCavg .-.CTOTAUVECS 
WRITE<6.*),CTOTAL :\CTOTAL 
WRrTE(5,TCTOT0 :\CTOT0 
WRrTE(5,VTOTFLW, m3 :-,TOTFLW 

ELSE 
PSO=0.600*(PLupO+PLdnO) 

file:///DHrX
http://BCPL0.Eai.D0
http://BCPLN.Eai.DO
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CinrWO.DO toonoantration of protein In th« HFBR at t=0 
WRiTE<S,1>ClnH 

1 FORMAT(lClnlt=l.F6.1> 
CTOTAL>ClnK*VECS I total amount of protein In HFBR 
CTOTO-CTOTAL I total amount of protein In HFBR at t=0 

C 
DT11 .D0 
T10W-MW.D0 
DT10Ma2.D0*DT1 
ACCF-(T10aU>T1)hm0M4T10M) 
WRiTE(5,') lOT0,«:\OT1 
WRITE(S.')DT10m,. :'.DT10M 
WRITE(S,')-*CCF:,,ACCF 

END IF 
C 

MPXS-1 I 
MPRS-1 ! 
CALL PRMBS(RL.RM,RS,FI.MPXS,MPftS,PRMXS.PRMXL,PRMRS) 

C 
DX"UDBLE(N) 
DR*<HFBRfDBLE(K) 
CP«w=OX/DiffX 
CPna-DR/Dtfm 
CNSTCN«2.D0*PI*RHFBR*DX/CPn« 
CXCN-OrRX/DX/DX 
CRCN4HTR/0RIDR 
CPa8urfAr*LpfPI/L/RHFBRfRHFBR 
C R 1 2 M . D 0 - P R M R S / C P I D R 
CXPS>4 .DO*PRMXS7CPFOX/DX 
C X P 8 1 M C X P S - 1 . D 0 ) 
C X P S S ° - ( C X P S - 0 . 7 5 0 0 ) 
C X P L M . D O * P R M X L / C P I D X / D X 
C N 8 T P L « - 2 . D 0 * C X P L + 2 . 0 0 
CNSTU-4>RMXS/vraafOX I ECS auparRddvdodty ooaffldant 
CNSTV>-PRMRS/viaa ! ECS auporSoial valooity ooaffldant 
CNSTVR~4>RMRSfviaon)R IEC8 auparfldal valodtyooaffldant 
CNSTULa-PRMXLMadDX I LUMEN auparfldal valodty ooaffldant 

C 
C SWR=SWR1M,8WL-SWL1^«waaptotharigTitrow-by-rowupelato 
C 8WL-8WL11,8WR-8WRla j : awaap to lha ton, row-by-row update 
C 8WR1=8WL1=1,SWR=SVVL=0:ltara»on-by-ltaratlon update 
C 
C 8W0-8WD1«1,8WU"«WU1-O: awaap downward*, eoluran-by-oolumn update 
C SWU=«WU1*1,SWD=3WD1-tt awaap upward^ oorumn-by-oduran update 
C SW014WU1>1,SWDaSWUH>: IteraBon-by-ltarabon update 
C 
C ISVrOFF-HfaoonvanjadpraaauralPLorPSIIatobaawttohad 
C oftlnturKiarltoratlona; 
C ISWOFF-0 It both praaiurai ai a Iterated unW both oonvarga; 
C 
C INITTt^tfooluninawaiplngatortoprtortorowawaapIng 
C INITR-llfrowawaaplngatartefirat 
C 
C INDR2«1 h* aaoond awaap ovar rowe kiatoad of awaap ovar 
C oohimna in oonoantration aquation 
C 

INDR2-1 
INITR*0 
I 8WOFF1 
8WR1>O.D0 
SWR*O.D0 
SWL11.D0 
SWL1.D0 
ALTERR*) I ALTERR*1 If row awaap In alternate diraollona 
SWD11.D0 
SWD1.D0 
SWU1>O.D0 
SWU-O.DO 
ALTERC=C I ALTERC-rlrl oolumn awaap In alternate diractiona 
IRR=1 I IRC ooiumn iwaapa avary IRR row twaapa 
IRCaO I IRR row awaapa avary IRC oolumn awaapa 

C I no row awaaplng If IRRaO, no oolumn awaaplng tf IRC=u) 
IF (IRR.EQ.O) mrm=o 
IF (IRC.EQ.O) IN ITR- I 

C 
Roaa=3.314O0 
TEMP=28».D0 
XMp>«a.DO 
Xma-150.D0 
OSMIaRgaVTEMP/XMp 
OSM2*2.DCfXniaTOIp 
OSM22*OSM2*OSM2 
Zpa-20.400 
Zp2J€p°Zp 
A2a-&S2oTM-241D-4*Zn-3.sM0-S'Zp2 
A3*2.>5O-6-1.06iD-S*Zp*1.72S0-7*Zp2 

C 
IF(IDATF.NE.1)THEN 
T>O.DO 
DT"OT1 
IS-1 
TOTFLW=0.D0 

END IF 
ITER=<P 
ITERD=0 

C 
CALL GRID 
> (N,K,DX,0R,X,R,XDiSP.RDISP,CNSTR1,CNSTR2,CNSTR3,CNSTR4,CNSTRS) 
CALL PLBNDR(N,K,X,R,PL0,PLN1,PS0,PL1) 
IF (IDATF.NE.1) CALL INIT(N,K,X.R,CiniLC1,PS0,PS1) 
CALL COEFP(ACSR,BSR,ABCLR,ABCSC) 
IF (TS(1).EQ.0.D0) THEN 
CALLVELS<PS1,PL1,U,V,UL,RDISP,DX) 
CALL OUTPUT (PS1,PL1,U,V,UL,C1,X,R,XDISP,RDISP,0.D0,ITER,IS, 

> T,DT,NDISP,NDISPC,KDSP,KDISPC,INDC,INDPS,INDPOa,INDV) 
IS=2 

END IF 
CLOSE (UNITaS) 

C 
10 T*T«OT 

tTER=fTER+1 
lTERD=fTERD+1 
ERFM) 
WRITE(«,*),rrERATION:',fTER 
WRiTE(o,*)11l«E:",T 
CALLOSMOT(N,K,C1.POani,CPOani) 
CALLPRESRS(PL1>PS1.PL.PS,CPOani,ACSR,BSR,ABCLR,ABCSC.MAXITP) 
IF(ERR.EQ.1)THEN 
OPEN(UNlT=S,ACCESS*'APPEND1,FILE=STRR00) 
WRtTE(S,*)'MAXIMUM NUMBER OF ITERATIONS (PRESSURES)1 

CLOSE(UNiT*6) 
END IF 
CALL VELS(PS,PL,U.V,UL.RDISP,DX) 
T0TFLWiTOTFLW4OT*Q0UtS 
CALL CONCN(U,V,DT,C1,C) 
IF (rTERD.EQ.ITD AT) THEN 
OPEN(UNIT-«.FILE=STRout) IWRITETHELASTOUTPUTTOAFILE 

I TO LATER READ DATA FROM 
CALL OUTF (IS,T,DT.ACCF.CTOTAL,CTOT0,TOTFLW.PL,PS.C) 
CLOSEtUNITM) 
ITERD=0 

END IF 
CALL CLCMAX(0,N*1.0,K*1,C1,C,CMAX) 
WRITE*.*;*)1 CMAX/DT:-,CMAX/DT 
OPEN<UNrT=6,ACCESS=1APPEND,,FILE=STRR00) 
WR(TE(S,16HTER,T,DT,CMAX.CMAXfDT 

16 FORMAT(1X,l4,,:T^,F14.2,' DT*,F14.4, 
> ' C M A X ' . F ^ a , 1 CMAX<DT*'.F12.6) 
CLOSEXQ 
IF (CMAX/DT.LE.EPSCDT) THEN 
OPEN(UNrr=6,ACCESS=-APPEND-,FILE=STRR00) 
WRITE<6,*)1STEADY STATE1 

GOTO 200 
ELSE 
IF (ITER.EQ.MAX1T) THEN 
Of>EN(UNIT*5.ACCESS=1APPEND',FILE=STRRuO) 
WRrTE(S,20) 

20 FORMATIT MAXIMUM NUMBER OF ITERATIONS REACHED1) 
IF (T.GE.TS(IS).AND.IS.LE.MAXIS.AND.IS.NE.O) THEN 
IF(IS.LT.MAXIS)THEN 
IS=tS*1 

ELSE IF (IS.EaMAXIS) THEN 
18=4 

END IF 
END IF 
0 0 TO 200 

ELSE IF (nMAX.Eai.AND.T.0E.TS(MAXIS)) THEN 
OPEN(UNrr=5.ACCESS=-APPEND-,FILE=STRF<O0) 
WRITE<5,30) 

30 FORMAT^ MAXIMUM TIME REACHED1) 
OO TO 200 

ELSE 
DT=0TACCF 
CALL SUBST(N,K,PS1,PS,C1,C) 
IF(INDTTt.EQ.1)THEN 
IF (T.GE.TS(IS).AND.IS.LE.MAXIS.AND.iS.NE.O) THEN 
OPEN<UNIT=6,ACCESS=-APPEND\FILE=3TRR0CI) 
CALL OUTPUT (PS,PL,U,V,UL,CJ(>R>XDISP,RDISP.CMAX.rrER. 

> tS,T,DT.NDISP,NDISPC,K0SP,KDISPC,INDC,INDPS,INDPOa,INDV) 
CALL FLUX (UUU,V,RDISP,DX,DT,H ARV) 
CLOSE<UNrr=s) 
OPEN(UNfTa4,FILE=STRout) IWRITETHELASTOUTPUTTO A 

I FILE TO LATER READ DATA FROM 
CALL OUTF (IS,T,DT,ACCF,CTOTAL,CTOT0,TOTFLW,PL,PS,C) 
CLOSEWNITM) 
IF (IS.LT.MAXIS) THEN 
13=18+1 

ELSE IF (IS.EaMAXIS) THEN 
13=0 

END IF 
END IF 

END IF 
G O T 0 1 0 

END IF 
END IF 

C 
200 CALL OUTPUT (PS.PL,U,V.UL,C,X,R,XDISP,RDI8P,CMAX,|TER,IS,T.DT, 

> N0ISP,NDISPC,KDSP,K0ISPC,INDC,INDPS,INDPOa,IN0V) 
CALL FLUX (UL,U,V,RDISP,DX,DT,HARV) 
IF(fTERD.GT.0)THEN 
OPEN<UNIT=4,FILE=STRout) IWRITETHELASTOUTPUTTO AFILE 

I TO LATER READ DATA FROM 
CALL OUTF (IS,T.0T.ACCF,CTOTAUCTOT0,TOTFLW,PL.PS,C) 
CLOSEtUNfW) 

END IF 
CALL DOSTIM (HR2,MIN2,SEC2,HSEC2) 
CALL DOSOAT (MONTH2,DAY2,YEARtDotW) 
CALL EXECTIME (HR1,HR2.MIN1,MIN2,SEC1,SEC2,HSEC1,HSEC2, 
> MONTH1,MONTH2,DAY1,DAY2) 
CLOSE(UNiT=S) 
STOP 

C 
END 

C 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • . . . . . . • • • 

C 
SUBROUTINE PRMBS(RL,RM,RS,FI,MPXS.MPRS,PRMXS,PRMXL,PRMRS) 
IMPUCrr REAL*S(A4t,L,0-Z) 

C 
CONST=RM*RMM.D0/FI 
FI2=FI*FI 
GOTO(10,20,30,40),MPXS 

C Happat; Tayior.Pirat.Bowan 
10 PRMXS=CON3T(-DLOO(FI)-1-60(»2.D0-FI-0.600*FI2) 

WRITER,*)1 AXIAL PERMEABILITY: Happd; Taylor,Pl^aLBowan, 

GOT0100 
C Drummond-Tahir.oquilatorai triangular array 
20 PRMXS=CONST*(-DLOG(FI)-1^°75D0*2.D0*FI4.600*FI2) 

WRITE<6>*)
1AXIAL PERMEABILITY: Drummond.Tahir, triangular array1 

GO TO 100 
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C Druramond-Tahlr.aquara array 
SO PRMXS>CON8T*(-0LOa(FI)-1-'n30(HZD0*FI-0.6D<rri2-

> 0.06100*FIZ*TI2f<1.00*1.61»800*FI2*TI2)) 
WR[TE(6,*)'AXIAL PERMEABIUTY: Drunmiond.Tahlr, aquara a r ra / 
OOTO100 

C arbrtrary valua 
40 PRMXS>4.S40-10 

o 40 PRMXS-f.OSD-13 
WRITE(S.*)'AXI AL PERMEABIUTY: an arbitrary valua' 

C 
100 PRMXL'0.12SD0*RL*RL*RL*RURSfRS 
C 

CON8T-«ON8T*0.600 
GOTO(110,120,130,140.160,160,170),MPR8 

110 PRMR8>CONST ,(-0LOO(FIHFI2-1.D0y(FI2<1.D0)) 
WRITE<6,*)'RADI AL PERMEABIUTY: HappaT 
GOTOSOO 

C Kuwabara 
120 PRMRS=CON8T*(-0LOO(FI)-1-S00*2.D0*FI) 

WRITE(6,*)'RADIAL PERMEABIUTY: Kuwabara* 
OO TO 300 

C 8anoanl-Aorlvoa,aquUataral triangular array 
190 PrWRS=CONST>0LOG(FIM-4»D<H2.D0T=l-0.6O0*FI2) 

WRITE(S,*)'RADIAL PERMEABILITY: Sangari-Aorivoa, 
>Manoular array* 
ooToaoo 

C Sangani'Aorivoa.aquara array 
140 PRMRS>CONST>(-DLOO(Flr.1-47»0>2.D0*FI-1.774D0*FI2« 

» 4.078O0T12TI) 
WR*TO6,YRADIAL PERMEABIUTY: SangankAorivoa, aquara a r ra / 
GOTOSOO 

C Druimond^Tahir,aqui*ataral Hangular array 
160 PRMR8=CONSn-OLOO(FIH.-W?SOOt2.DCf*FI-0.5O0*F12-

> 0.7M1D0*FI2*FI2) 
WRiTE(6,*)'RADIAL PERMEABILITY: Orummond.Tahlr,tr1anoular ar ra / 
GO TO 300 

C Drumniond-Tahir.aquara array 
100 PRMRS^:ONST*(-0LOO(Fl r-1-4763D0«<Z004.re»D0TI2y 

> (1.D0«0.48«2D0*FI-1.«04»D0*FI2)) 
WRITE<5,a)'RADI AL PERMEABIUTY: Drummond.Tahlr. aquara ar ra / 
GOTOSOO 

C arbitrary valua 
170 PRMRS-3.200-10 
O170 PRMRS*1.08O-13 

WRtTE(5,*)-RADIAL PERMEABILITY: an arbitrary valua* 
C 
300 WRITE<6,400) PRMXS,PRMXL,PRMRS 
400 FORMATrPRMXS<',E1S.ai,'PRMXL^,E1I.W,'PRMRS^,E18.8| 
C 

RETURN 
END 

C 
c .................................................................... 
C 

SUBROUTINE PLBNDR(N,K,X,R.PL0IPLN1,PS0,PL) 
IMPUCrr REAL*8(A-H,L.O£) 
DIMENSION PL0(0:K>1),PLN1<0:K+1>,R<0:Kt1),X<0:N+1) 
DIMENSION PL(CKN*1,0:K*1) 
COMMON /PLucK PUipO,PLupK,PI_dnO,PLdnK 
COMMON IBC1 BCPLO,BCPLN,BCPSup.BCPSdn 

C 
L«X<N*1> 

C 
IF (BCPL0.EQ.1.D0) THEN 
PUXOWMjupO 
PUXK+ll-PLupK 
OPLup*PLupK-PLupO 
D O 1 0 J 1 . K 
PLO<J>=PLupO*fi<jyR<K*1)*DPLup 

10 CONTINUE 
ELSE 
DO12J»0,K+1 
PL0«Jr=O.D0 

12 CONTINUE 
END IF 
IF (BCPLN.Eai.DO) THEN 
PLNKOf-PLdnO 
PLN1(K*1)-PLdnK 
DPLdn=PLdnK-PLdnO 
D O 2 0 J - I . K 
PLN1(JH>LdnO«R(J),R(K»1)*DPLdn 

20 CONTINUE 
ELSE 
DO22J=-0,K*1 
PLN1UHI.D0 

22 CONTINUE 
END IF 

C 
IF(BCPL0.EQ.1.D0.AND.BCPLN.EQ.1.D0)THEN 
DOS0.M>,r">1 
AoPLOfJ) 
PUO.Jr-A 
CONST-^PLNKJtnAVL 
D O 6 0 M . N 
PUI,J)=AtX(l)*CON8T 

60 CONTINUE 
PL(N+1,JH»LN1(J) 

60 CONTINUE 
END IF 
IF (BCPL0.EQ.1.D0.AND.BCPLN.EQ.0.DO)THEN 
DO80J=0,K+1 
A*PL0<J) 
DO 70 M) ,N*1 
PUI,Jp=A 

70 CONTINUE 
SO CONTINUE 

END IF 
IF(BCPL0.EQ.0.DO.AND.BCPLN.EQ.1.DO)THEN 
D 0 1 0 0 J=«,K+1 

A=PLN1(J) 
DO tW NO.N+1 
PUW)=A 

• 0 CONTINUE 
100 CONTINUE 

END IF 
IF (BCPL0.EaO.DO.AND.BCPLN.Ea0.DO) THEN 
0O120J=0,K*1 
DO110l=O,N*1 
PL(l,J)-PS0 

110 CONTINUE 
120 CONTINUE 

END IF 
C 

RETURN 
END 

C 
C " M. . . . .M.M. . . . . . . . . . . . . . . . . . . . . . .1 . . . . . .1 

SUBROUTINE GRID 
> (N,K.DX.DRARPCDISP.RDISP,CNSTR1,CNSTR2,CNSTR3,CNSTR4,CNSTR6) 
IMPUCU REAL*8(A-H,L,OZ) 
DIMENSION X(0:N+1),R(0:K41)JCDISP<&N).R0ISP(0:K),CNSTR6<1:K) 
DIMENSION CNSTR1(1:K),CNSTR2(2:K),CNSTR3(1:K),CNSTR4(1:K) 
COMMON /GRIDC/ CRCN.CR12.L.RHFBR 
COMMON /LOG/ LOGIND 
COMMON /VEU CNSTU.CNSTUUCNSTV.CNSTVR 

C 
X(0)=O.D0 
XDISP(OH>.00 
X(1H>.6D0*DX 
XDISPOHJX 
DO10l=2,N 
X(l)=4C(1>«OX*DBLE(l-1) 
XDISP(IH(DISP(1r>OX*DBLE(l-1) 

10 CONTINUE 

X(N+1)*L 
C 

R(0H>.D0 
R0I8P<0>=0.D0 
R(1H>.5D0*DR 
RDISP(1H>R 
DO20J°2,K 
R<J>=R<1H>R*DBl_E<J-1) 
RDtSP(JH«>ISP(1rtOR*DBLE(J-1) 

20 CONTINUE 
R(K*1)-RHFBR 

C 
IF (LOQIND.Eai.D0) THEN 
CNSTR1(1)=CR12(R(iyDLOO(R(2VR(1)) 
CNSTR6(1)=CH8TV(RDISP(1VDLOG(R(2yR(1)) 
DO30J-2.K-1 
CNSTR1(J)=CR12(R(jyDLOG(R(JHyR(J» 
CNSTR5(J)=CNSTv7R0ISP<jyDLOG(R(J*1yR<J)) 
CNSTR2(J)=CR12/R<jyDLOG(R<JyR<J-1)) 

30 CONTINUE 
CNSTR1(K)=CR12/R(KyDLOG(R(K+1VR(K)) 
CN8TRS<K>=CNSTv7R01SP<KyDLOG<R<K+iyR<K)> 
CN8TR2<K>=CR12fR<KyOLOG<R<KyR<K-1)) 

ELSE 
CNSTR1(1)aCR12'DR/R(1)*0.6D0*(R(1r»R(2)) 
CNSTR2(K)4R12fDRrR(K)*0.5D0*(R<K-1)4fi(K)) 
DO40J=2,K-1 
CN3TR1(J(=CR12DR/R(J)*0.60CnR(J+1r*R(J» 
CNSTR2(Jp«R12IDR(R(J)'0.6D0*(R(J-1)4R(J)) 

40 CONTINUE 
CNSTR1(K)=CR12(DRIR(K)*2.D0*R<K+1) 

END IF 
DO 60 J=1,K 
CNSTR3(JH}RCNa(1.DO«O.5D0*DR/R(J)) 
CNSTR4(J)=CRCNa(1.DO4).6O0*DR/R(J)) 

60 CONTINUE 
C 

RETURN 
END 

C 
c .................................................................... 
C 

SUBROUTINE INIT(N,K,X,R,Cinrt,C,P80,PS) 
IMPUCIT REAL*8(A-H,L,0-Z) 
DIMENSION X(0:N+1),R<O:K*1),C(0:N+1,0:K+1) 
DIMENSION PS(0:N*1,0:K<f1) 
COMMON iN12>N1,N2 
COMMON IBCI BCPLO,BCPLN,BCPSup,BCPSdn 
COMMON fBCONC/ COup 

C 
DO20M),N>1 
DO10J=0,K*1 
C(l,J)=ClnK 

c IF(I.LE.SO)THEN 
o C(l,J)=O.D0 
o ELSE 
o C(l,J)=6.D0*Clnlt 
e END IF 
10 CONTINUE 
20 CONTINUE 

IF (BCPSup.Eai.DO)THEN 
D0 22M),N1 
C(l,K+1>=C0up 

22 CONTINUE 
END IF 

C 
DO40J=O,K*1 
DO 30 l=0,N*1 

P8(I.J)=PS0 
30 CONTINUE 
40 CONTINUE 

C 
RETURN 
END 

http://BCPLN.Eai.DO
http://BCPL0.EaO.DO.AND.BCPLN.Ea0.DO
http://LOQIND.Eai.D0


Appendix D: Source code in Fortran 124 

c 
c 
c 

SUBROUTINE COEFP(ACSR,BSR.ABCLR,ABCSC) 
IMPLICIT REAL'8(A-H,L,0-Z) 
PARAMETER (K-1S.N100) 
DIMENSION ACSR(1:2.1:S),BSR(1:S,1:K).ABCLR(1:3,1:3) 
DIMENSION ABCSC(1:S,1:K,1:3) 
DIMENSION CNSTR1(1:K),CNSTR2<2:K) 
COMMON /CSTR1/ CNSTR1.CNSTR2 
COMMON OCPUCXPL 
COMMON 0CP87 CXPS,CXPS1.CXPS3 
COMMON IOCI BCPLO,BCPLN,BCPSup,BCPSdn 

C 
ACSR(1,1)-0.D0 
AC8R<2.1)-CXPS-O.76O0 
ACSR(1.2)*CXPS-1.D0 
ACSR(2,2)*CXPS-1.D0 
ACSR(1,S)-CXPSM>.7SO0 
AC8R(2,S)=0.D0 

C 
B8R(1,1)MCNSTR1(1HCXPS*3.28D0) 
B8R<2,1>--<CNSTR1<1>+2.00*CXPS»2.DO) 
BSR(3,1)*BSR(1.1) 
DO10J«2,K-1 
BSR(1,J)-4CNSTR1<J)«CNSTR2tJ)4CXPS+S.26D0) 
BSR(2^)HCNSTR1(J)4CNSTR2(J,+2.D0*CXPS+2.D0) 
B8R<S,J)=88R<1,J) 

10 CONTINUE 
BSR(1,K)*-<CNSTR2(KHCXPS+3.26O0) 
BSR(2,KXCNSTR2(K>2.D0*CXPS*2.D0) 
B8R(S,K)=B8R<1.K) 

C 
IF (BCPL0.Eal.D0) THEN 
ABCLR(1,1H>.D0 
ABCLR(2,1)><9.D0*CXPL+1.D0) 
ABCLR(3,1)sCXPL-1.D0 

ELSE IF (BCPL0.EQ.0.DO) THEN 
ABCLR(1,1)=0.D0 
ABCLR(2,1)=-<CXPL+3.2SD0) 
ABCLR<3,1)=CXPL-0.76D0 

END IF 
ABCLR<1,2)-CXPL-1.D0 
ABCLR(2.2PM2.D0*CXPL+2.D0) 
ABCLR<3.2>>CXPL-1.D0 
IF (BCPLN.Eai.DO) THEN 
ABCLR(1,3|"CXPL-1.D0 
ABCLR(2,S)«4S.DO*CXPL»1.DO) 
ABCLR(3,3>=O.D0 

ELSE IF (BCPLN.EQ.O.DO) THEN 
ABCLR<1,3>=CXPL-0.76D0 
ABC LR(2,3)=HCXPLt3.2600) 
ABCLR(3,SH>.D0 

END IF 
C 

ABCSC(1,1,1)-0.D0 
ABCSC(1,1,2rMCNSTR1(1)*CXPS+3.2S0u) 
ABCSC(I,I,S)-CNSTRI(1) 
ABCSC(2,1,1)>0.D0 
ABCSC(2,1,2)>-(CNSTR1(1r»2.D0*CXPS+2.D0) 
ABCSC(2,1,3)*CNSTR1(1) 
ABCSC(S,1,1)=O.D0 
ABCSC(3,1,2r=-<CNSTR1<1HCXPS+3.2SD0) 
ABCSC(3,1,3r=CNSTR1(1) 
DO20J-2.K-1 
ABC8C(1,J,1)=CNSTR2(J) 
ABC8C(1,J,2)MCN3TR1(JHCN8TR2(J)4CXPS+3.2SD0) 
ABCSC(1,J,3)=CNSTR1(J) 
ABCSC(2*I,1)*CNSTR2(J) 
ABC8C(2,J,2)"HCNSTR1(J>«;NSTR2<J>+2.D0-CXPS+2.D0) 
ABC8C(2*I,S)-CNSTR1(J) 
ABC8C(3,J.1)=CN3TR2«J) 
ABCSC(S,J,2)MCNSTR1(J)4CNSTR2(J)4CXPS*3.2800) 
ABCSC(3,J,S>=CN8TR1<J) 

20 CONTINUE 
ABCSC(1,K,1)-CNSTR2(K) 
ABCSC(1,K,2)=-(CNSTR2<K>4CXP8+3.26D0>-BCP3up'CNSTR1(K) 
A8CSC(1,K,S)=0.D0 
ABCSC(2,K.1)aCNSTR2(K) 
ABCSC(2,K,2MCN8TR2(K>+2.Du*CXPS+2.D0) 
ABCSC(2,K,S)*O.D0 
ABCSC(S,K,1)-CNSTR2(K) 
ABCSC(3,K,2)=KCN8TR2<K>*CXPSt3.2S00)-BCPSdn'CNSTR1(K) 
ABCSC(3,K,SH>.D0 

C 
RETURN 
ENO 

RETURN 
END 

SUBROUTINE OSMOT(N,K,C,POam,CPOani) 
IMPUCIT REAL*8(A4I,L,0-Z) 
DIMENSION C(0:N+1,0:K*1).PO*ni(0:N>1:K),CPOm(1:N>1:K) 
EXTERNAL FUNCTION FP 

C 
C SatupPOam 
C 

D O S O J I . K 
POani(0,J)-FP(C(0,J)) 
PO*m<N,J)=FP<C<N+1 ,J)) 
D O 2 0 I 1 . N - 1 
PO*m<l,J)=FP(C<l,J)) 

20 CONTINUE 
C 
C SatupCPOam 
C 

DO 401=1 ,N 
CPO«ni(l,J)=-4.D0*POam<l,J) 

40 CONTINUE 
SO CONTINUE 

DOUBLE PRECISION FUNCTION FP(X) 
IMPLICIT REAL*8|A-H,L.O-Z) 
COMMON /OSMY OSM1,OSM2,OSM22A>2,A2,A3 

FP=08M11D8QRT(Zp2TfT(»OSM22)-OS*l2+X+ArX,XtA3*XT<*X) 

RETURN 
END 

SUBROUTINE 
> PRESRS(PL1,P81,PL,PS>CPO«m,ACSR,BSR,ABCLR,ABCSC,MAXITP) 
IMPUCIT REAL*8(A-H,L,0-Z) 
INTEGER ERR 
PARAMETER (K=1S,N=100) 
DIMENSION PLJK0:K*1),PLN1(0:K*1),CPO*ni(1:N.1:K) 
DIMENSION PL(0:N+1,0:rvf1).PL1<0:N*1,0:K+1| 
DIMENSION PS(0:N-H,0:K+1).PS1(0:NH,0:K>1) 
DIMENSION AC3R(1:2,1:3),BSR(1:3,1:K),ABCLR(1:3.1:3) 
DIMENSION ABCSC(1:3,1:K,1:3),D(1:N,1:K) 
COMMON /ALFASU ALFAS,ALFAS1,ALFAt,ALFAL1,EPSPS,EPSPL 
COMMON (SV/RI SWR,SWR1,SWL,SWL1 
COMMON/SWC/SWD,SWD1,SWU,SWU1 
COMMON (ALT/ ALTERR,ALTERC,IRR,IRC,ISWOFF,INITR 
COMMON /N12/N1.N2 
COMMON /BO BCPLO,BCPLN.BCPSup,BCPSdn 
COMMON /PSupdn/ PSup.PSdn 
COMMON/PRES IT/IT 
COMMON /ERROR/ ERR 

C 
C SWR=SWR1^,SWL=SWL1=tt«weep to the right, row-by-row update 
C 8WL=8WL1-1,SWR=SWR1=0:»wo«ptothol«ft.row-by-rowupdate 
C 8WR1=3WL1=1,SWR=SWL=0:rtarrton-by-ltorabon update 
C 
C 8WD=8W01=1,8WU=SWU1=O: awaap downward*, oolumn-by-oolumn update 
C 8WU=SWU1^,8WD=8WD1=0: »weep upward., oolumn-by-oolumri update 
C SWD1=SWU1=1,3WD=SWU=0: Itoration-byJtoration update 
C 
C ISWOFF=1iraoonvarg«lpr*Mura(PLorPS)iat>>b«awKohad 
C offmfurtharttarauona; 
C ia*rOFF=0rfbolhpr*eauraaaralteratadun<ilbo«ioonvarBe; 
C 
C INITR=0 If column tweaplng atari* prior to row aw—ping 
C INITR=1 If row aw* aping atari* llrat 
C 

INDS=0 
INDL=0 
IF(INITR.Eai)THEN 
INDSR=0 
INOSCMRC 

ELSE 
INDSR=tRR 
INDSC-O 

END IF 
PLMAX=1.D10 
PSMAX*1.D10 
IT=0 

C 
30 IT=IT*1 

WRITE(6,T PRESSURE ITERATION:',IT 
C 
C Swaap ovar rowa 
C 

IF(INDS.EaO.AND.IRR.NE.O.ANO.(INDSC.EaiRC.OR.INDSR.LT.IRR)) 
> THEN 

INDSR=INDSR*1 
CALLCLCDS(N,K,PL1,CPOam,D) 
IF (SWR.Eai.D0.OR.SWR1.Eai.D0) THEN 
K1=1 
K2=K 
KS=1 

ELSE 
K1=K 
K2=1 
K8=-1 

ENO IF 
D 0 35J=K1,K2,KS 
CALL8WEPSR(AC3R,BSR.D,P81,PS,J,ALFA8,ALFA91) 
PS(0,J)=1.12SD0*PS(1,Jr4.126D0*PS(2,J) 
PS<Nvt,J)=1.12SD0*PS(N,JM>.125OO*PS<N-1>J) 

36 CONTINUE 
D0 3 8 M . N 1 
PS<I,0)=1.126D0*PS<I,1)-0.12S00*PS<I.2) 
PS(l,Kt1H1-D04CPSup)*(1.12S00*PS(l,KHI.125D0*PS(l,K-1)) 

> teCPSup*PSup 
30 CONTINUE 

DOS7l=N1*1,N2-1 
PS(I,0)=1.125DO*PS(I,1H>.12SOO*PS(I,2) 
PS<I,K+1)=1-12600-PS<I,KH>.12SD0*PS<I.K-1) 

37 CONTINUE 
DOSSI=N2,N 
PS(l,O)=1.12SO(n>S(l,1H).12SD0*PS(l,2) 
PS(l,K41H1.D0-BCPSdn)*(1.12S00*l,S(l,KM>.126D0M>S(l,K-1)) 

> 4BCPSdn*PSdn 
38 CONTINUE 

PS(0,O)=1.28ee26O0*PS(1,1)-0.140S2SD0*(PS(1>2hH>S(2,1)) 
> 40.01SD2SD0*PS(2,2) 

PS(0,Kt1H1.D0«CPSup)*(1.2o5S2SD0*PS(1,K)-0.14062SD0* 
> (P8(1,K-1)+PS<2,K)r«l.01662S00*PS<2,K-1)) 
> +BCPSup*PSup 

PS(N+1,OH.26662SDO*PS(N>1)-0.140e2SDO*(PS(N,2)4P8(N-1>1)) 
> 40.01S825D0*PS(N-1,2) 

P8(N+1,K+1)=<1 D0-BCP8dn)'(1.26S826D0*P8<N.K)-0.14O626O0* 
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> (PS(N,K-1)«PS(N-1,K))40.01662600*PS<N-1,K-1)) 
» *BCPS<ki*P8dn 

IF (ALTERR.EQ.1) THEN 
IF (SWR.Eai.D0)THEN 
8WR-O.D0 
8WR1*).D0 
8WL-1.D0 
SWL11.D0 

ELSE 
SWR»1.D0 
8WR1-1.D0 
8WL-0.D0 
8WL1*).D0 

END IF 
END IF 
IF <IND8R.EQ.IRft) IMD8C-0 
CALLCLCMAX(O.N+1,0,K*1.P8,PS1,PSMAX) 
P8MAX»P8MAX/ALFAS 
WRITE(S,ar P8MAX*,PSMAX 
IF (PSMAX.LE.EPSPS) THEN 
IF (I8WOFF.EQ.1) THEN 
I N 0 8 - 1 

ELSE 
IF (PLMAX.LE.EP8PL.OR.IN0L.Eai) INDS=1 

END IF 
ELSE 
IF <rr.eQ.MAxm>) THEN 
ERR-1 
IND8*1 

END IF 
DOS0J-O.K*1 
D O 4 0 M . N * 1 
PS1(I^H>S(W) 

40 CONTINUE 
SO CONTINUE 

ENOIF 
END IF 

C 
C S W M P ovar oolwnns 
C 

IF(IN08.EQ.0.AND.IRC.NE.0.AND.(IND8R.EQ.IRR.OR.INDSC.LT.IRC)) 
> THEN 

INDSC-INDSC+1 
CALL CLCD8(N,K,PL1,CPO«ni,D) 
IF (SWD.Eai .D0.OR.SWD1.Eai .00) THEN 
NN1«1 
NN2-N 
NNS-1 

ELSE 
NN1-N 
NN2»1 
NNS--1 

END IF 
DO70l*NN1.NN2,NNS 
CALL SWEPSC(ABCSC,D,P81,P8,I,ALFAS,ALFAS1) 
P8(I.0)*1.12SD0*PS(I,1)-0.125D0*PS(I,2) 
PS(l,K*1)«1.12SOO-PS<I.KH>.126D0*PS<l,K-1) 

70 CONTINUE 
D 0 7 1 I 1 . N 1 
P8(I.K*1M1.DaOCP8up)'<1.12600T>S<l,K)-0.12S00*P8<l,K-1)) 

> 46CPSup*P8u|) 
71 CONTINUE 

0O72l>M1*1,N2-1 
PS(I,K*1)»I.12SD0*PS<I,KM>.125D0*PS<I,K-1) 

72 CONTINUE 
0O73l»N2,N 
P8<l,K*1H1-D^8CP8dn)*(1.12SO(n>8(l,K)-0.12600*PS(l,K.1)) 

> 4SCPSdn*PSdn 
7S CONTINUE 

D 0 7SJX),Kt1 
PS(0*l)«1.125O0*PS(1,JH>.12SD0*PS(2,J) 
P8(N*1.JM-126O0*P8<N,JH).126O0-|>8<N-1,J) 

75 CONTINUE 
PS(0.0)s1.286S2SOOY8(1,1M>.14002SDO*(PS(1,2HPS<2,1)) 

> «O.01M2SO0-pS<2,2) 
PS(O.K«1H1.D04CPSup)*(1.2aSS2SDO*PS(1,KH>.14082SDO* 

> (PS(1.K-1)<PS(2,K)HO.O1SS26D0*PS(Z,K-1)) 
> 4SCPSup*PSup 

PS(N'M,0)-1.2S5S2SDO>PS(N.1H>.140e2SOO*(PS<N.2)4P8(N-1,1)) 
> 4O.01SB2SD0*PS(N-1,2) 

P8(N*1.Kt1)-(1.DO-BCP3dn)*<1.28662SD0T>S<N,K)-0.14062SO0-
> (PS(N.K-1)+PS(N-1,K))4O.O1SS2SO0*PS(N-1,K-1)) 
> <tBCPSiki*PSdn 

IF (ALTERC.EQ.1) THEN 
IF (SWD.Eai.DO) THEN 
8 W D 4 . D 0 
SWD1-0.D0 
SWU=1.00 
8 W U 1 1 . D 0 

ELSE 
S W D 1 . D 0 
8WD1-1.D0 
8 W U 4 . D 0 
8WU14>.D0 

ENOIF 
END IF 
IF (INDSC.EO.IRC) INOSR=0 
CALL CLCMAX(0,N»1,0,Kt1,P8,PS1,P3MAX) 
PSMAX»P8MAX/ALFAS 
WRrTE(»,T P8MAX«',P8MAX 
IF (PSMAX.LE.EPSPS) THEN 
IF( ISWOFF.Eai )THEN 
IN0S*1 

ELSE 
IF (PLMAX.LE.EPSPL.OR.INDL.Eai) INDS=1 

END IF 
ELSE 

IF (rr.EQ.MAxrrp) THEN 
ERR-1 
INDS=1 

END IF 
DO M M , K « t 
0O80l=0,N»1 
PS1(I,J>=PS<I,J) 

SO CONTINUE 
• 0 CONTINUE 

END IF 
END IF 

C 
IF(INDLEQ.O)THEN 
CALLCLCDLR(N,K,P81,PL1.CPOm,D) 
PU0,0)=PL1(0,0) 
PL(N*1,0)=PL1(N*1.0) 
PU0,Kf1H*L1(0,K*1) 
PL(N*1,K+1)»PL1<Nt1,Kt1) 
DO100J-1.K 
PL(OJHn.1(0vl) 
PL(Nt1,J>*PL1(Nt1,J) 
CALLSWEPLR(ABCLR,D.PL1,PUJ,ALFAL,ALFAL1,N.K) 

100 CONTINUE 
D 0 1 0 1 M . N 
PUI,0H>.125D0*(1S.D0*PL(l,1)-10.D0>PL(l.2)+3.DO*PL(l.3)) 
PL(l,K+1)=O.126D0*(1S.DO*PL(l,K>-10.D0"PL(l,K-1) 

> 4&D0*PL(I.K-2)) 
101 CONTINUE 

IF (BCPLO.EaO.00) THEN 
D0102 J«1,K 
PU0*l)>1.12S0O>PL(1IJ)-O.126OO*PL(2J) 

102 CONTINUE 
PM0,OH>.12SO0^1S.D0*PL(0,1)-1O.DO*PL(0,2>fS.D0*PL(0,3)) 
PM0,Kt1)=0.12SO0M6.DO*PL(0,K)-10.D0TL<0.K-1) 

> +3.D0-PM0.K-2)) 
ENOIF 
IF (BCPLN.EaaD0)THEN 
DO103J=1,K 
PL<Nt1,J>i1.126D0*PL<N,J>-0.12SD0*PL<N-1.J> 

109 CONTINUE 
PL<N*1,0t«O,12SO0"<16.DO*r'L<N*1,1>-10.D0*PL<N+1.2) 

> •3.D0TL(N*1.3)) 
PL(N+1,K*1)=O.126O0*(15.DO*PL(N+1,KH0.D0T>L<N*1,K-1) 

> •3.D0TM4NH.K-2)) 
END IF 
CAU-CLCMAX<0.N*1.O,Kt1,PL,PL1.PLMAX) 
PLMAX*4>LMAWALFAL 
WRITE(«,T PLMAX^.PLMAX 
IF (PLMAX.LE.EPSPL) THEN 
IF (ISWOFF.Eal) THEN 
INDLsl 

ELSE 
IF(PSMAX.LE.EPSPS.OR.INDS.Eai) INDL*1 

END IF 
ELSE 
IF (IT.EQ.MAXITP) INDL=1 
0O120J=0,K+1 
DO110l=O.N+1 
PL1(U)=PUW) 

110 CONTINUE 
120 CONTINUE 

ENOIF 
ENOIF 

C 
C Ch«akoonmrganoeofthepr«aaurM 
C 

IF (IND31N0L.EQ.0) OO TO 30 
WRITE(e,*) IT.' PRESSURE ITERATIONS' 

C 
RETURN 
END 

C 
c.................................................................... 
C 

SUBROUTINE CLCMAX(N1,N2,K1,K2.A.A1,AMAX) 
IMPUCIT REAL*8(A-H,L,02) 
DIMENSION A|N1:N2.K1:K2),A1(N1:N2,K1:K2) 

C 
AMAX=0.00 
0O20l=«1,N2 
DO10J=K1,K2 
AMAX=0MAX1(AMAX,DABS(A(I.JH>.1(I,J))) 

10 CONTINUE 
20 CONTINUE 

C 
RETURN 
ENO 

SUBROUTINE CLC0S(N.K.Pl,CPOm.D) 
IMPUCIT REAL*S(A4<,L,0-Z) 
DIMENSION PL(0:Nf1,0:K+1),CPO«ii(1:N,1:K),D(1:N,1:K) 
COMMON « C f BCPLO.BCPLN,BCPSup,BCPSdn 

C 
DO30J=1,K 
D<1,J)=^BCPL0"<2.D0*PL<0,J>+PL<1,J)+PL<2,J)) 

> -(1.D0-BCPL0)«(3.25O0T>U1.JHO.75O0-PL<2,J)) 
> *CPOwn(1,J> 

DO20N2.N-1 
D(I.J)MPI-<l-1J)*2.D0T>L(I.J)*PL(l*1,J))«;PO«ii(l,J) 

20 CONTINUE 
D(N,J)=*CPLN*(2.D0T>UN*V)+PL(N,J)+PL(N-1,J)) 

> -(1.D0-BCPLN)13.2SDCn>MN,J>4O.76O0*PL<N-1.J)) 
> •CPOwTI<N,J> 

30 CONTINUE 

RETURN 
END 

SUBROUTINE CLC0LR(N,K,PS,PL,CPOm,D) 
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IMPLICIT REAL*8(A-H,L.O-Z) 
DIMENSION PS(0:N*1.0:K+1),PL(0:N+1,0:K*1) 
OIMENSION CPO*m<1:N,1'.K).D<1:N,1:K) 
COMMON IXPU CXPL.CN8TPL 
COMMON IBa BCPL0.BCPLN.BCP8up.BCPS* 

C 
C PL, row awaap 
C 

D O S O J I . K 
D(1.J)-eCPL(rCN8TPL*PL(0,JH».26O0*P8(1,J)«).76O0*P8<2.J)| 

> -CPOani(1,J) 
DO20I-2.N-1 
D(IJ)--<P8(l+1^H2-D0-P8<U>*P8<l-1^)>-CPOw»(l,J) 

20 CONTINUE 
D(N,J)-BCPLN'CNSTPL*PL(N+1,J) 

> -<S.2600*PS<N,J>40.76D0*PS<N-1,l)>-CPO«ii<N,J) 
SO CONTINUE 

C 
RETURN 
END 

C 
c................................................. 
C 

SUBROUTINE 8WEPSR(ACSR.BSR,D0,PS1,P8,J,ALFAS,ALFAS1) 
IMPUCiT REAL*8<A-H,L,0-Z) 
PARAMETER (K-1S.N100) 
DIMENSION ACSR<1:2,1:S|.BSR(1:S,1:K) 
DIMENSION PS1(0:N+1,0:K+1).PS<0:N+1,0:K+1) 
DIMENSION D0(1:N,1:K),CNSTR2(2:K).CNSTR1(1:K) 
DIMENSION A(1:N),B(1:N),C(1:N),0SR(1:N),P<1:N) 
COMMON fCSTRV CN8TR1.CN8TR2 
COMMON /8WPJ SWR.SWR1.SWL.SWL1 
COMMON /N12N1.N2 
COMMON IBa BCPLO,BCPLN,BCPSup,BCPSdn 
COMMON /PSupOW PSup.PSdn 

C 
C 8WR*8WR1-1,8WL-SWL1-<r. a m p I D « I « right, row-by-row update 
C 8WL-8WL1-1,8WR=8WR1*): awaap to t ialafL row-by-row update 
C 8WR1=SWL1«1.8WR»SWL=0: Itaradon-by-ttaration update 
C 

IF(J.EO,1)THEN 
CNST1>CNSTR1(1) 
A<1)»ACSR<1,1) 
B<1>-SSR(1,1) 
C<1)«ACSR(2,1) 
D8R(1)-O0(1.1)-SWL*CN8T1*PS(1.2)-SWR1*CNSTn>31(1,2) 
CONSTA>ACSR(1,2) 
CONSTB=8SR<2,1) 
CONSTC=AC8R<2,2) 
DO10l«2,N-1 
A(l)-CONSTA 
BflK>ONSTB 
C(l)-CONSTC 
DSR(IH>0(I>1)-SWL*CNST1*PS<I,2)-SWR1*CNST1*PS1(I,2) 

10 CONTINUE 
A(N)«ACSR(1,3) 
B<N)*8SR(3,1) 
C<N)-ACSR(2,3) 
DSR(N)-O0(N,1raWL«CNST1*PS(N.2>SWR1*CNST1*PS1(N,2) 

ELSE IF (J.OT.1.AN0 J.LT.K)THEN 
CNSTKNSTR1CJ) 
CN8T2=CN8TR2<J) 
A(1)*ACSR(1.1) 
B(1)-OSR(1J) 
C<1)*ACSR<2,1) 
DSR(1HJ0(1^)JWR*CNST2TS(1J-1)-SWR1*CNST1*PS1(1,J+1) 

> -8WL*CN8T1*PS<1,Jt1)-SWL1*CNST2*PS1(1,J-1) 
CONAI*ACSR(1.2) 
CONCI«AC8R(2.2) 
CONBI4SR(2*l) 
DO30l«2,N-1 
A(l)=CONAI 
B < I H ; O N B I 
C ( I K S O N C I 
D 8 R ( I ) » 0 0 ( I , J > - 8 W R - C N S T 2 * P 8 < I , J - 1 ) - S W R 1 " C N S T 1 * P S 1 ( I , J * 1 ) 

> - 8 W L * C N 8 T 1 - P S ( I , J + 1 ) - 8 W L 1 * C N 3 T 2 * P 8 1 ( 1 , J - 1 ) 
3 0 C O N T I N U E 

A(N)-AC8R<1,3) 
B(N)-BSR(^J) 
C(N)«ACSR<2,3) 
DSR(N)-O0<N,J>-SWR'CNST2*PS<N,J-1>-SWR1*CN3T1*P31<N,J*1) 

> -SWL^!NST1'PS(N.J*1>-SWL1*CNST2"PS1<N,J-1> 
ELSE IF (J.EO.K) THEN 
CNST1°CNSTR1(K) 
CNST2=CNSTR2(K) 
A(1)«ACSR(1,1) 
8<1)-eSR(1.K)-BCPSup*CNST1 
C(1)*ACSR<2,1) 
DSR(1)»O0(1,K)-SWR^NST2TS(1,K-1hSWL1,CNST2T>S1(1.K-1) 

> -BCPSup'CNST1<PSup 
CONSTA*ACSR{1.2) 
CONSTB4SR(2,K) 
CON8TC«ACSR<2.2) 
DO00l=2.N1 
A(l)-CONSTA 
B<IH:ONSTB-BCPSUP*CNSTI 
C<IH;ONSTC 
DSR(IH>0(l,K)-SWR*CNST2*PS(l,K-1raWL1,CN3T2T>S1(I.K-1) 

> -BCPSup*CNST1*PSup 
00 CONTINUE 

DOS2I-N1+1.N2-1 
A(l)»CONSTA 
B<l)>CONSTB 
C(l)*CONSTC 
DSR(I)=00(I.K)-SWR*CNST2T>S(I,K-1)-SWL1*CNST2*PS1<I.K.1) 

62 CONTINUE 
DO S4 M-N2.N-1 
A(l)=CONSTA 
B(IH«ONSTB-BCPSdn*CNST1 
COHSONSTC 

D8R(I)=00(I,K)-SWR*CNST2*PS<I,K-1)-SWL1*CNST2T>S1(I,K-1) 
> -BCPSdn*CNST1*PSdn 

M CONTINUE 
A(N)*ACSR(1.3) 
B<N>=B3R<3,K>-SCPSdn-CNST1 
C(N)=ACSR(2,3) 
D8R<N)-O0(N,K)-SWR"CN8T2*PS(N,K-1)-8WL1*CNST2*P81(N,K-1) 

> -BCPSdn*CN8T1*PSdn 
END IF 
CALLTDMA(A,B,C,DSR,P,N) 
DO70|s1.N 
PS(U)=P(I)"ALFAS+P81(I.J)*ALFAS1 

70 CONTINUE 
C 

RETURN 
END 

C 
c.................................................................... 
C 

SUBROUTINE SWEPLR(ABCLR,D0,PL1.PUJ,ALFAL,ALFAL1,N,K) 
IMPUCIT REAL*8(A-H.L,0-Z) 
PARAMETER (NN10000) 
DIMENSION ABCLR(1:3,1:3),D0(1:N,1:K) 
DIMENSION PL1(&N*1,0:K+UPL(0:N*1.0:K+1) 
DIMENSION A(1:NN),B(1:NN),C(1:NN),DLR(1:NN),P(1:NN) 

C 
A(1)*ABCLR(1.1} 
B(1)=ABCLR(2.1) 
C(1)-ABCLR(3,1) 
DLR(1)-O0(1,J) 
CON8TA=ABCLR(1.2) 
CONSTB=ABCLR(2,2) 
CONSTC<ABCLR<a,2) 
DO10l*2,N-1 
A(l)=CONSTA 
B(l)=CON8TB 
C(l)=CONSTC 
DLR(l>=O0(l,J) 

10 CONTINUE 
A(N>=ABCLR(1,S) 
B<N)=ABCLR(2,3) 
C(N>=ABCLR<3,S) 
DLR(NH>0(N,J) 

C 
CALLTDMA(A,B,C,DLR,P,N) 
D O 7 0 M . N 
PMW)»P(I)*ALFAL4PL1(W)'ALFAL1 

70 CONTINUE 
C 

RETURN 
EN0 

C 
c..............>..................................................... 
C 

SUBROUTINE SWEPSC(ABCSC,D,PS1,PS.I,ALFAS.ALFAS1) 
IMPUCIT REAL*8(A-H,L,aZ) 
PARAMETER (K=18,N=100) 
DIMENSION ABCSC(1:3,1:K,1:3),D(1:N.1:K) 
DIMENSION P81(0:N+1,0;K+1).P8(0:N*1.0:K*1) 
DIMENSION A(1:K),B(1:K),C(1:K),D8C(1:K),P(1:K) 
DIMENSION CNSTR1(1:K),CNSTR2(2:K) 
COMMON/CSTRIf CNSTR1 ,CNSTR2 
COMMON IXW CXPS.CXPS1.CXPS3 
COMMON /8WC/ SWD,SWD1,SWU,SWU1 
COMMON IBa BCPL0,BCPLN,BCP8up,BCP8dn 
COMMON /PSupoW PSup.PSdn 
COMMON /N127N1,N2 

C 
IF ( I .Ea i )THEN 
D O 1 0 J 1 . K 
A(J)=ABCSC(1,J.1) 
B(J>=ABCSC(1,J.2) 
C(J)=ABC8C(1,J.3) 
DSC(JK)(1^)4SWU*CXPS3*PS(2,J)+SWD1*CXPS3*PS1(2,J) 

10 CONTINUE 
DSC(K)=0SC(K>-BCP8up*CNSTR1(K)*PSup 

ELSE IF (I.0T.1.AN0.I.LE.N1) THEN 
DOS0J=1,K 
A<J>=ABCSC<2A1> 
B«J)=ABCSC(2^,2) 
C(J)=ABC8C(2,J,3) 
DSC<J)<Mt,Jr>«WD,CXPS1*PS<M,Jr*8WD1"CXPS1*PS1(l*1,J) 

> «WU-CXPS1*PS<H1J>46WU1*CXPS1«PS1(I-1^) 
30 CONTINUE 

B(K)=8<K>-BCPSup*CNSTR1<K) 
DSC(K)=OSC(K)-BCPSup*CNSTR1(K)*PSup 

ELSE IF (I.GT.N1.AND.I.LT.N2) THEN 
DO40J*1,K 
A<J>=ABCSC(2,J.1) 
B(J>=ABCSC(W,2) 
C(JH=ABC8C(2.J,3) 
0SC<JH>(I,J>4SWD*CXPS1*PS<I-1,J)+SWD1'CXPS1*PS1(I+1,J) 

» <6WU'CXPS1*PS(lt1,Jr»SWU1*CXPS1«PS1<l-1,J) 
40 CONTINUE 

ELSE IF (I.QE.N2.AND.I.LT.N) THEN 
DO60J=1,K 
A(J)=ABCSC(ZJ,1) 
B(J)=ABCSC(2.J,2) 
C(J)=ABCSC(2,J,3) 
DSC(J)=0(l,J)+3W0"CXP31*PS(l-1,J)+SWD1,CXP31'PS1(lt1,J) 

> 4SWU*CXPS1*PS(l<f1,J>«eWU1*CXPS1*PS1(l-1,J) 
60 CONTINUE 

B(K)=S(K)-BCPSdll*CNSTR1(K) 
DSC(KH>SC(K)-BCPSdn*CNSTR1(K)«PSdn 

ELSE IF (I.EQ.N) THEN 
DOS0J=1,K 
A(J)sABCSC(3*l,1) 
B(J)=ABCSC(3,J,2) 
C(J)=ABCSC(3,J,3) 
DSC(J)=0(N,J)*8WD'CXP83*PS(N-1.J>+SWU1*CXPS3*PS1(N-1,J) 
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SO CONTINUE 
DSC(Kp«SC(K)-BCP8<ki*CNSTR1(K)>PSdn 

END IF 
CAU_TDMA(A,B.C,DSC,P.K) 
D O 7 0 J 1 . K 
PS(I,J>»P<J)'ALFAS+P81(I,J)'ALFAS1 

70 CONTINUE 
C 

RETURN 
END 

C 
c..^.....— 
C 

SUBROUTINE VEL8(PS,PL.U.V,UL,RDI8P,DX) 
C 
C CalauMMECSandkOTMnavarllcialiMlodliaa 
C 0nttt«oait irsofl i«o«M«) 
C 

IMPLICIT REAL*S(A-H.L,0-Z) 
PARAMETER <K-18,N=100> 
DIMENSION P8(0:N*1,0:K+1),U(0;N,0:K+1),V(0:N+1.0:K) 
DIMENSION PU0:NH.O:K+1).UM0;N,0:Kt1),CN3TR6<1:K) 
DIMENSION RDISP(0:K) 
COMMON IW&J CNSTU,CNSTUL,CN8TV,CNSTVR 
COMMON /LOO/ LOOIND 
COMMON /CNSTRST CNSTR5 
COMMON IBCI BCPL0,BCPLN.BCP8up,BCPSdn 
COMMON /PSupcW P8ufi.PSdn 
COMMON/N12/N1.N2 
COMMON/PIBL/PI 
COMMON /OUTFLW/ QoutL,QoutS 

C 
V(0,0H>D0 
V(Nt1,0H>.D0 
DOSJ*1,K-1 
Vt0^IHLOOIN0*CN8TRS(JH<1.004.OOIND)*CNSTVR)* 

> (PS(0,J+1>-PS(0,J» 
V<N*1,J)«<LOOIND>CNSTR6(JW1.DCM.OGIND)*CN8TVR)* 

> (P8<N+1.Jt1)-PS<N+1,J» 
S CONTINUE 

V(0,K)»eCP8up*(LOOIND*CNSTR6(KH<1.D0-LOGIND)*2.00-CNSTVR)* 
> (PSup-PS(0,K» 
V(N<f1,K)=SCPSdri*(LOGIND*CNSTRS(KH<1.D04jOGIND)<2.D0*CNSTVR)< 

> (PSdn-PS(N+1,K)) 
C 

DO 20 M . N 
V<l,0H>.D0 
DO10J-1.K-1 
V(UHLOOIND*CN8TR6(J)4<1.DIW.OOIND)"CN8TVR)* 

> (PS(W*1(-P8<W)) 
10 CONTINUE 

V(l,KH).D0 
20 CONTINUE 

IF (BCPSup.Eai.D0) THEN 
D 0 2 1 I 1 . N 1 
V(l,KHLOGIND*CNSTR5(KW1-D04.OGIND)*2.D0*CNSTVR)* 

> (PS(I,K+1)-PS(I.K)) 
21 CONTINUE 

END IF 
IF (BCPSdn.EQ.1.D0) THEN 
D O » l * N 2 , N 
V(l,K)a<LOGIND*CN8TR6<KH<1.004.OQIN0)*2.D0*CNSTVR)* 

> (PS(I,K*1)-PS(I,K)) 
21 CONTINUE 

END IF 
C 
C 

D 0 4 0 J 1 . K 
U(0,JHJ.D0 
UL<0.J)=eCPLO*2.DO"CNSTUL*(PL<1,J>-PL(0,J)) 
0 O S 0 M . N - 1 
U(l,J)-CN8TU'(P8<lt1,J)-P8<l,J» 
UL(I.J)=CNSTUL,(PL(I*1.J)-PI-<I,J)) 

SO CONTINUE 
U<N,JM).D0 
UL(N,J)=8CPLN*2.D0*CNSTUL*(PL(N+1,J)-PL<N,J)) 

40 CONTINUE 
C 

U<O.0H>.DO 
U(0.K+1)>O.D0 
UL(0,0)>BCPLO*2.DO*CNSTUL*(PL(1,0)-PL(0,0)) 
UU0,K*1)-SCPUr2.D0*CNS'rUL*(PL(1,K+1)-PL(0,K*1)) 
D 0 2SI=1,N-1 
U(I,0)>CN8TU*(PS(I+1,0)-PS(l.0)) 
U(I.K+1>-CNSTU'(PS<l+1,KH)-PS<l,Kt1)) 
UL(I.O)-CNSTUL*(PL(K1,0H>L(l,O)) 
UU.I,K+1)-CNSTUL*(PL(I*1,K*1)-PL(I,K*1)) 

25 CONTINUE 
U(N,0)>0.D0 
U(N,K+1H).D0 
IF (BCPSup.Eai.D0) THEN 
IF(0ABS(U(N1.K+1)).aT.1.D2'DABS(U<N1+1,K»1)))THEN 
U(N1,K+1)a0.5D0*(U(N1-1,K+1)«j(N1<f1,K+1)) 

END IF 
END IF 
IF (BCP8dn.Eai.D0) THEN 
IF(DABS(U(N2-1,K*1)).GT.1.D2*0ABS(U(N2-2,K+1)))THEN 
U(N2-1,K*1)-O.500*<U<N2-2,K*1)4U<N2,Kt1)) 

END IF 
END IF 
UL(N,0)*BCPLN*2.00*CN8TUL*(PL(N+1,0H>L<N,0)) 
UL(N,K»1)-8CPLN*2.D0*CNSTUL*(PL<N<l<1,K*1)-PL<N,K<>1)) 

C 
QoutM.DO 
IF(BCPSdn.EQ.1.D0)THEN 
CONST2=RDISP<K)*2.DO*PI*DX 
DO80l*N2-1,N 
Qout8=Oout34CON8T2*V<I.K) 

80 CONTINUE 
END IF 

RETURN 
END 

SUBROUTINE TDMA(A,B.C,D,X,N) 
IMPUCIT REAL'S) A-H, l_Oi ) 
PARAMETER (NN10000) 
DIMENSION A(1:N),B(1:N),C(1:N),D(1:N),X(1:N),P(1:NN),Q(1:NN) 

C 
p (D^ ; ( i yB( i ) 
Q<iH>(iyB<i) 
DO10l*2,N 
DEN=A(I)*P(I-1)+B(I) 
P0F>-C(iyDEN 
Q(l)=<D<l)-A(l)*Q(l-1))fDEN 

10 CONTINUE 
X(N)=Q(N) 
DO20NN-1.1.-1 
X(IH-(I)*X(I+1HQ(I) 

20 CONTINUE 
C 

RETURN 
EN0 

C 

SUBROUTINE CONCN(U,V,DT.C1,C) 
IMPUCIT REAL*8(A-H,L,0-Z) 
PARAMETER (K=18,N=100) 
DIMENSION C1(0:N+1,0:K+1),C(0:N+1,0:K+1),C2(0:Nt1,0:K+1) 
DIMENSION AAN(1:N),BBN(1:N),CCN(1:N),DDN(1:N),CN(1:N) 
DIMENSION AAK(1:K),BBK(1:K),CCK(1:K),DDK(1:K),CK(1:K) 
DIMENSION U(0:N,0:K+1),V(0:N+1.0:K>,CNSTR3<1:K),CNSTR4<1:K) 
DIMENSION A«<1:N,1.K),B«<1:N,1:K),Aw<1:N.1:K),Bw<1:N,1:K) 
DIMENSION An(1:N,1:K).Bn(1:N,1:K),A»(1:N.1:K),Ba(1:N,1:K) 
DIMENSION RDISP(0:K),R(0:K+1),RDISP(0:K) 
COMMON /CSTRS/ CNSTR3,CNSTR4,CXCN 
COMMON /PECU CPaw.CPlM 
COMMON/FI/FI.E.EL 
COMMON /N12fN1,N2 
COMMON IBa BCPL0,BCPLN,BCP8up.BCPSdn 
COMMON /BCONC/ COup 
COMMON /CNSTCN/ CNSTCN 
COMMON /CFLUXf QCIn.QCoutCTOTAL,CTOT0,CTOT1,VECS,TOTFLW 
COMMON /ROSPf RDISP.R 
COMMON /INDB2/ INDR2 

C 
C2DT"€^.DBfDT 
DO20J=1,K 
JMFJ-1 
DO10l*1,N 
IMM-1 
IF(I.NE.N)THEN 
P*cE?CP<w*U(l,l) 
CNST=1.DO-0.1DO*DABS(PaoE) 
AP«=OMAX1<0.D0,CN8T*CN3T*CN8T-CNST>CN8T) 
Aa(l,J)=>AP««OMAX1(-P«cE,0.D0) 
B4M)*AP«*DMAX1(P«cE,0.D0) 

ELSE 
A«N,JH>.D0 
Ba(N,J)-0.D0 

END IF 
IF(I.NE.1)THEN 
PortV=CP«WU<IM,J) 
CNST=1.OO4.1D0*OABS(PacW) 
APw*OMAX1(0.D0,CNST*CNST*CNST>CNST*CNST) 
Aw<l,J)=APw«>MAX1<-P«=W,0.D0) 
Bw(l,J)=APwH>MAX1<PeoW,0.D0) 

ELSE 
Aw<1,J>=O.D0 
Bw(1.J)=0.D0 

END IF 
IF(J.NE.K.OR.(J.EQ.K.AND.BCPSup.EQ.1.D0.AND.I.LE.N1). 

> OR.(J.EQ.K.AND.BCPSdn.EQ.1.D0.AND.I.OE.N2)) THEN 
P.oN=CPn.*V(l,J) 
IF (J.EQ.K) P«oN=0.5O0«PecN 
CNST=1.D04.1DO*DABS(P«cN) 
APn4MAX1(0.D0,CNST*CNST*CNST*CNST*CNST) 
An(l,J)=APn+OMAX1<-P«cN,0.D0) 
Bn(l,J)**Piv»OMAX1(P«cN,0.D0) 
An(l,K)=2,D0*An(l,K) 
Bn(I.K)°2.DO*Bn(l,K) 

ELSE 
An(l,K)=0.D0 
Bn(l,K)=O.D0 

END IF 
IF(J.NE.1)THEN 
P»cS=CPn.*V(l,JM) 
CN8T=1.004.1D0*DABS<PeoS) 
APa=OMAX1(O.D0,CNST*CNST*CN8T*CN8T*CNST) 
Aa<l,J)«AP»«OMAX1(-PaoS,0.D0) 
B^Up=APWDMAX1(P«sS,0.DO) 

ELSE 
Aa(l,1)4>.D0 
B4l,1)=O.D0 

END IF 
10 CONTINUE 
20 CONTINUE 

C 
D 0 1 1 l=0,N*1 
D013J=0,K*1 
C2XI,J)=C1(U) 

13 CONTINUE 
11 CONTINUE 

C 
C r 
C 

DO100J=K,1,-1 
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CON4»CNSTR4(J) 
CON3-CNSTRS(J) 
D O 6 0 I 1 . N 
AAN(l)»-CXCN"Bw<l,J) 
BBN(l|-C20T4CXCN*(Aw(l^>«S«(U)KA^U)*CON*M!n(U)*CON3 
CCN(I)--CXCN*A«<I,J) 
D0N(l)>ea(U)*CON4*C2(I.J-1HC 20T"C2<I,J) 

> •An(l,J),CON3*C2<l,Jt1> 
60 CONTINUE 

CALLTDMA(AAN,BBN,CCN,DON,CN,N) 
DO 70 M . N 
C2(U)-CN(I) 

70 CONTINUE 
CJ(0^IH).12SD0^».DO*C2(1,J)-C2(2,J)) 
C2<N<-1,J)-0.12600"<».D0-C2<N,J)-C2<N-1,J)) 

100 CONTINUE 
DO110P-NTM.N 
C2(l,OH>.12SDO^a.DO*C2(l,1M:2(l,2)) 
C2(l,K*1)-0.126OO*(*.DO*C2(l,K>C2{l,K-1)) 

110 CONTINUE 
D O H 1 M . N 1 
C2(l,0)-0.125D0*<e.D0*C2<l,1>-C2<l,2» 
C2(l,K«1)-(1.DO«CPSiip)*al2SD0^9.DO*C2(l,KH:2(l,K-1)) 

> «ecpsup*coup 
111 CONTINUE 

C2(0,0)4>.016a26DO*(S1.DO*C2(1,1)4.DO*(C2(1,2>4C 2(2,1))* 
> C2da» 
C2(0,K«1H1-D04CPSup)*0.016S2SD0*(S1.DVC2(1,K) 

> •*.D0*(C2(1,K-1)+C2(Z.K))4C2(2>K-1)) 
> 4SCPSup*C0up 
C2(N+1,K*1H>.015B2SOO*<81.DO*C2<N,K> 

> -«.D0"<C2(N,K-1>4C2<N-1,K))*C2<N-1,K-1)) 
C2(N+1.0)^016S26DO*(S1.DO*C2(N,1)4.DO*(C2(N,2)4C2(N-1,1))<» 
> C2(N-1,2» 

C 
0O132MO.N+1 
D0133.M>,K+1 
C<I,J)-C2<I,J) 

1SS CONTINUE 
132 CONTINUE 

C 
C 2row«WMp 
C 

IF ( IN0R2.Ea i )THEN 
C 

DO400J-K.1.-1 
CON4-CNSTR4<J) 
CON3*CNSTRJ(J) 
DO 4601-1,N 
AAN(l )^0(CN*Bw(U) 
BBN<l)^2DT*CX0N-<Av«<l,JHB^I,J))+A^I.J)-CON4*fin(I.J)"CON3 
CCN(I>>-CXCN*A<(I,J) 
DDN(l)*«<I.J)*CON4"C<l,J-1>4C20T*C<l,J) 

> •An<llJ)"CON3"C<I.J*1) 
460 CONTINUE 

CALLTOMA(AAN,BBN,CCN,DDN,CN,N) 
D O 4 7 0 M . N 
C ( U H ! N ( I ) 

470 CONTINUE 
C(0,J)=O.126D0*<».D0"C<1,J)-C<2,J)) 
C(N+1,JH).126O0-(».DOM(N,J)-C(N-1,J)| 

400 CONTINUE 
DO410l«N1*1,N 
C(I,0H).126D0*(>.D0*C(I,1H:(I.2)) 
C(I.K+1)-O.12SOO*(».D0-C(l,K)-C(l,K-1)) 

410 CONTINUE 
0 O 4 1 1 M . N 1 
C(I,0)^I.126D0^(.D0*C(I,1)-C(I,2)) 
C(l,K*1)-<1.DO-BCPSup)"0.12SOO*<».D0-C<l,K>-C(I,K-1» 

> +BCPSup*C0up 
411 CONTINUE 

C 
ELSE 

C 
C oohimn«wMp 
C 

D O 2 0 0 I 1 . N 
D O 1 6 0 J 1 , K 
CON4=CN8TR4<J) 
CON3>CNSTR3(J) 
AAK(J)»-e^U)*CON4 
BBK(J)-C2DT*CXCN"(A~(l,J>+e^l,J)(+A«<I.J)*CON4*Bn(I.J)'CON3 
CCK(J)«-An(l,J)*CON3 
DDK(JH«XCN*(Bw<l,J)-C(l-1,J)*A^I,J)*C(l*1,J» 

> +C2DT*C(I,J) 
160 CONTINUE 

CCK(KH>.D0 
DDK(K>ODK(K)+An(l,K)*CON3*C(l,K*1) 
CALLTDMA(AAK,BBK,CCK,DDK,CK,K) 
D O 1 7 0 J 1 . K 
C(WH3K«J) 

170 CONTINUE 
C(I,0)M>.126DO*(«.DO*C(I,1)-C(I>2M 
C(I.K*1H>.126DO*(S.D0*C(l,K)-C(I.K-1» 
IF (LLE.N1.AND.BCP8up.Eai.D0) C(l,K+1H;0up 

200 CONTINUE 
DO 210 J=1.K 
C<0,J)»O.12SD0"<».D0*C<1,J>-C<2.J» 
C(N*1^)>4.126D0*(9.D0*C(N,JH:(N-1J» 

210 CONTINUE 
C 

END IF 
C 

C(0,OH>.01S826DO*(81.00*C(1,1)4.DO*(C(1,2)4C(2,1)>» 
> C(2,2» 
C(0,K*1H1.004CP8up)*0.015S2500*(81.00*C<1.K) 
> 4.00*(C(1.K-1)+C(2.K))+C(2,K-1)) 
> «BCPSup*COup 
C(N+1,0H>.016826D0*(81.D0>C(N,1)4.D0*(C(N,2)4C(N-1,1)>* 
> C(N-1.2)) 

C(NH,K+1H>.016S26DO*<81.D0*C<N,K) 
> 4.D0*(C(N,K-1>«C(N-1,K)HC(N-1,K-1)) 

C 
IF (BCPSup.Eai.D0)THEN 
QCIn-O.D0 
DO300l*1,N1 
QCIn=QCin-Bn<l,K)*C(l,K)+An(l,K)aC(l,K+1) 

$00 CONTINUE 
QCIn=CNSTCN*QCin 
CTOTAL=CTOTAL*DT*QCIn 

END IF 
C 

IF (BCPSdn.Eai.OO) THEN 
QC«n>O.D0 
0O310l=H2,N 
QCoul=OCouHBn(l,K)*C(l,K)Jtfi(I.K)*C(l,K+1) 

« I 0 CONTINUE 
QCotrt=CN8TCN*QCout 
CTOTAL=CTOTAL-OT"aCo<lt 

END IF 
C 

CTOT1-0.D0 
D O 3 0 4 . M . K 
CONST=(RDISP(J)*RDISP{JMH>ISP(J-1)>RDISP(J-1)) 

> «RDISP(KyRDISP(KyDBLE(N) 
DO 306 M . N 
CTOT1=CTOT1+C(l,J)*CONST 

306 CONTINUE 
304 CONTINUE 

WRITE(«,*C CTOT1 =f.CTOT1 
C 

IF (BCPSdn.Eai.D0.OR.BCPSup.Eai.D0) THEN 
WRITER*)* AVERAGE CONCN =*,CTOTAL/VECS 

END IF 
C 

RETURN 
END 

C 
c....................................... 
C 

SUBROUTINE FLUX (UL.U,V,RDISP,DX,DT,HARV) 
IMPLICIT REAL*8(A^.L,0-Z) 
INTEGER HARV 
PARAMETER (K=18,N=100) 
DIMENSION U(0:N,0:K*1),V<0:N+1,0:K),UL(U:N,0:K*1) 
DIMENSION RDISP(0:K) 
COMMON fN12IN1.N2 
COMMON (PIBU PI 
COMMON IBCI BCPLO,BCPLN,BCPSup,BCPSdn 
COMMON /CFLUX/QCta,QCoutCTOTAL.CTOT0,CTOT1,VECS,TOTFLW 
COMMON (OUTFLVW QootUQootS 

C 
WRITER*)" 
WRITE(«,")" 

C 
QlnL-O.DO 
OinS=0.D0 

C 
IF (BCPL0.Eai.D0) THEN 
DO10J=1,K 
OjnLOiaL4PI*UL(0,J)* 

> (R0ISP(J)*RDISP(JH<DISP(J-1)*RDISP(J-1)) 
10 CONTINUE 

WR(TE(6,101) OJnUQinL"6.D7 
WRITE«,101) OJnL,OJnL*S.D7 

101 FORMATf INLET LUMEN FLOW. m3/«^,D24.18, 
> ' r.F10.6,'mUr«in)-) 
END IF 

C 
IF (BCPSup.Eai.D0) THEN 
CONST2=RDISP(K)*2.D0*PI*DX 
D O 2 0 M . N 1 
OJnS^3inS4:ONST2*V(l,K) 

20 CONTINUE 
WRITE<6,102) OJnS,QlnS*e.D7 
WR[TE(S,102) OinS,OjnS"8.D7 

102 FORMATf INLET ECS FLOW, m3/i--,D24.18. 
> ' f,F10.6,'mL/mlnn 
END IF 

C 
IF (BCPSdn.Eai.D0) THEN 
WRITE(6,103) QoulS,QoutS-8.D7 
WRITE(e,103) Qout3,QoutS-0.D7 

103 FORMATf OUTLET ECS FLOW. ra3/«=',D24.18, 
> ' r,F10.6.-|«L/niinn 
END IF 

C 
IF (BCPLN.Eai.D0) THEN 
Qoutt_=«.D0 
DOMJ=1.K 
QotltL=OoutL*PI*UL(N.J)* 

> (RDISP(J)>RDISP(J)-RDISP(J-1)*RDISP(J-1)) 
• 0 CONTINUE 

WRITE(S,104) Qou1L,QoutL*8.D7 
WRITE(<,1M) QoutL,QoutL*8.D7 

104 FORMATf OUTLET LUMEN FLOW, m3l«=',D24.1S, 
> ' r,F10.6.-mL/min» 
END IF 

C 
WRfTE(5,a)'TOTAL FLUID PASSED THROUGH ECS, mL:\TOTFLW1.D8 
WRITE(6,*)TOTAL FLUID PASSED THROUGH ECS, mU'.TOTFLWI.DS 

C 
Nh«lf=*/2 
QLh«lf=0.D0 
DO60J=1,K 
QUl«lf=QLh«H*P|-UL(Nh«H.J)* 

> (RDISP(J)*RDISP(J)-RDISP(J-1CRDISP(J-1)) 
50 CONTINUE 

IF(BCPSup.Eai.D0)THEN 
WRITE(6.106) QLhairS.D7.QLhrfffOjnS1.D2 
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WRtTE(a,106) QLhdre.D7,QLhaHtOJnS*1.D2 
106 FORMATf HALF-LENGTH LUMEN FLOW, mL/™ln^,F12.7,T,F6.2,'%n 

WRrTE(S,T INLET PROTEIN FLUX, W . Q C I n 
WRITE(S.T INLET PROTEIN FLUX, kgto * .QCin 

END IF 
IF (BCPSdn.Eai.DO) THEN 
WRITER-OUTLET PROTEIN FLUX, koto •'.QCout 
WRITE(B,TOUTLET PROTEIN FLUX, W . Q C o u t 
WRITER-OUTLET PROTEIN CONCENTRATION. kgftnS^.QCouVOoutS 
WRITE(S,*VOUTLET PROTEIN CONCENTRATION. kaftnS'.QCouVaoutS 
IF(HARV.E0.1)THEN 
WR(TE(S,TPROTEIN CONCN IN THE HARVESTING) RESERVOIR, k<ym3\ 

> (CTOTOCTOTI'VECSKrOTFLW 
WRITE(6,*)'PROTEIN CONCN IN THE HARVESTING RESERVOIR, kg/mS1, 

> (CTOT0-CTOT1*VEC8yTOTFLW 
END IF 

END IF 
WRITES/)" CTOT1,k0ft»S« ,.CTOT1 
WRITE(S,T CTOT1, kotoiS - \CTOT1 
IF (BCPSdn.Eai.D0.OR.BCPSup.Eai.D0) THEN 
WRITER,-)-AVERAGE CONCENTRATION, kg/mS *,CTOTAUVECS 
WRITE(S,*)'AVERAOE CONCENTRATION, kgVmS -'.CTOTAL/VECS 

END IF 
WRITE(8,7 AniTOT1,kg*.CTOT1 ,VEeS 
WRITE(6,T AmTOT1.kg*,CTOT1*VECS 
IF (BCP8dn.Eai .DaOR.BCPSup.Eai .D0) THEN 
WRITE(5,*)'TOTAL AMOUNT OF PROTEIN IN HFBR, kg *,CTOTAL 
WRITE(8,*)TOTAL AMOUNT OF PROTEIN IN HFBR, kg <CTOTAL 
IF(HARV.Eai )THEN 
WRIT^S.O'S PROTEIN REMOVED:',1.D2*(1.DO«TOT1*VECS/CTOT0) 
WRITES, Y H PROTEIN REMOVED:\1.D211.00-CTOTfVECS/CTOT0> 

END IF 
END IF 

C 
RETURN 
END 

C 
c.................~................................................. 
C 

SUBROUTINE SUBST(N,K,PS1,PS,C1,C) 
IMPLICIT REAL*a(A-H,L,aZ) 
DIMENSION PS1((fcN*1,0;K+1).P8«):NH,0:K*1) 
DIMENSION C1(0:N*1,0:K>1),C(0:N*1,0:K*1) 

C 
DO20M>,N+1 
DO10J=O.K-H 
C1<I.J)-C(I,J) 
PS1(U)^S( I .J ) 

10 CONTINUE 
20 CONTINUE 

C 
RETURN 
END 

C 
c............................................ ..«.......««.. 
C 

SUBROUTINE OUTPUT <PS,PL.U,V,UL,CiX.RixOISP,RDI9P,CKAX,ITER,IS, 
> T,OT,NDISP,NDISPC,KDSP,KDISPC,INDC,INDPS,INOPo<,INDV) 
IMPLICIT REAL*8<A4l,L,OsZ> 
INTEGER EXF.ERF.ELF 
PARAMETER (KIS .N ' IOO) 
DIMENSION PL(0:N+1,0:K+1),PS(0:N-H,0:K*1).POlDSP(0:N,0:K) 
DIMENSION PLDSP(0:N.0:K),PSDSP(0-.N,0:K),PTOT(0:N,0:K) 
0IMENSIONC(0:N*1,0:K+1),C0SP(0:N,0:K),CNSTRS(1:K) 
DIMENSION U(0:N,0:K+1).V(0:N*1.0:K),UL(0:N.0:K*1) 
DIMENSION UDSP(0:N,0:K),VDSP(0:N,0:K),ULDSP(0:N,0:K) 
DIMENSION XOISP(0:N),ROISP(0:K),X(0:N+1),R(0:K+1) 
COMMON /FI/FI.E.EL 
COMMON/PRESIT/IT 
COMMON /EXFRL/ EXF.ERF.ELF 
EXTERNAL FUNCTION FP 

C 
EX-OBLE(EXFyE 
ER=OBLE(ERFyE 
EXL4BLE(ELFyEL 
WRITE(6,S) 
WRITE(6,")TrERATION: '.ITER 
W R r T E f t T T . ^ . T . ' IS^.IS 
WRITE(6,*)'0T.»*,DT 
WRITE(S,*)'PRESSURE ITERATIONS: '.IT 
WRITE! S.YCMAX- ',CMAX 
WRITE(6.")-CMAX/0T- '.CMAX/DT 

S FORMAT^ 
C 

WRITER*) 
WRITE(6,408) <R0ISP<J)1.03,J=0,K,KDISPC) 

408 FORMATf R,mni:'.F7.2,102F8.2) 
40t FORMATfR.~™: ,,F8.2.102F«2) 
410 FORMAT(-R.mm:',Fa.2,102F10.2) 

WRITES,*)' X,on CONCENTRATION FIELD (aohirf, intarpolMad):-
DO27l=0,N*1 
0O28JKP,K+1 
IF (C(I.J).LT.0.DO) C(l,J)-0.D0 

28 CONTINUE 
27 CONTINUE 

CD8P(0,0)-C(0,0) 
CDSP(0,K>C(0,K+1) 
D O 1 0 I 1 . N - 1 
CDSP(l,0H).6DO*(C(l'f1.0HC(l,0)) 
C0SP(l,K>0.6O0*(C(l+1,K>1)4C(l,K+1)) 

10 CONTINUE 
CD3P(N,0)=C(N*1.0) 
CDSP(N,k>C(N+1,K>1) 
DO 26J*1.K-1 
CD8P(0,J)=0.SOO*<G(0,J*1HC(0,J)) 
DO20l*1,N-1 
CD3P(I.JH).2SO(r(C(I.JKC(l+1,J)*C(l,J*1>*C(l*1.J*1» 

20 CONTINUE 
CD8P(N,JH).6O0-(C<N<-1.Jt1HC<N*1,J)) 

26 CONTINUE 

DOS0NO.N.NDISPC 
WRITE(6,36)XDISP(l)*1.D2,(CDSP(l,J),J°0,K.KOISPC) 

SO CONTINUE 
36 FORMAT(1X,F6.2,102F8.4) 

C 
IF( INDC.Eai)THEN 
WRITE(6,*) 
WR[TE(6.408) R<0).(R<J)1.D3,J=1.K*1,KDISPC) 
WRITE(6,<rX,eni CONCENTRATION FIELD aohul.aaiGulatad:' 
DO40l=O,N*1,NDI8PC 
WRITE<S,SS)X(I)1.D2,C(I,0),(G(I,J),J=1.K+1,KDISPC) 

40 CONTINUE 
END IF 

C 
IF ( INDPOtEai .OR. INDP9.Ea i ) THEN 
D O 8 0 M . N 
DOSOJ-O.K 
PO«DSP(l,J)>*P(CDSP(M)) 

80 CONTINUE 
• 0 CONTINUE 

END IF 
C 

IF(INDPS.Eai)THEN 
P8DSP(0,0)=PS<0,0) 
p808P(0,K)=P8(0,Kt1) 
0O60MH.N-1 
PSDSP(I.O)«0.5DO*<PS<I*1.0>4PS<I,0)> 
PSDSP<I,KH>.SD0"<PS<I*1,K*1>+PS<I,K*1)) 

60 CONTINUE 
P8D8P(N.0)-P8(Nt1,0) 
PSDSP(N.K)H«(Nt1.K*1) 
D O 7 0 J 1 . K - 1 
P3DSP(0,JH>.5DO*(PS<0.Jt1>+PS<0,J» 
D O 6 0 M . N - 1 
PSD8P(U)=0.2600' 

> (PS(WHPS(WJH<>S(W+1HPS(I*1^+1)) 
80 CONTINUE 

PS08P(N^)=0.600*(P8<N+1J+1)tP8(N*1.J)) 
70 CONTINUE 

C 
D O S 1 M . N 
DO«1.M>,K 
PTOT<l,J)=PSDSP<l,JH>O»08P<l,J> 

81 CONTINUE 
>1 CONTINUE 

C 
W R I T E R 
WRTTE(6,410) (RDI8P(J)*1.D V " * , K , K D 3 P ) 
WRITE(6,arX,oni ECS TOTAL PRESSURE FIELD:' 
OO100N0,N,NDISP 
WRITE<6,106)XDISP(I)1.02.(PTOT(UW=O.K,KDSP) 

100 CONTINUE 
106 FORMAT(F6.2,102F10.2) 
C 

W R I T E R 
WRITE(6.410) (R0I8P(JH.DS,J=0,K,KDSP) 
W R I T E R * . " * ECS HYDROSTATIC PRESSURE FIELD:' 
DO110l>O,N,NDISP 
WRITE(6,116)XDI8P(I)*1.D2,(P8D8P(I.J).JM),K.K08P) 

110 CONTINUE 
116 FORMAT(FS.2,102F10.2) 

END IF 
C 

IF(INDPOs.Eal)THEN 
WRITER 
W R I T E ( S , 4 1 0 ) ( R D I S P ( J ) - 1 . D 3 , J = 0 , K , K D 3 P ) 
W R I T E R ' X . E M E C S O S M O T I C P R E S S U R E F I E L D : ' 

DO117hO.N,N0ISP 
WRITE<6,1ie)XOI3P<iri.D2,(PO»D3P<l,J>,J=0,K.KDSP) 

117 CONTINUE 
118 FORMAT(F6.2.102F10.2) 

END IF 
C 

IF(INDPS.Eai)THEN 
PLD3P(0,0)=PL(0,0) 
PLD8P(0.KH>L(0,K*1) 
DO120l=1,N-1 
PLD8P(I,0)=0.60(HPL(I+1.0)*PL(I,0)) 
PLDSP(I.KH>.S00"(PL(I-H,K+1)4PL(I,KH)) 

120 CONTINUE 
PLDSP(N,0H>L(N«1,0) 
PLD8P(N,K)=PL(Nt1,K*1) 
DO-M0J-1.K-1 
PLDSP<0,J)=O.6O0*<PL<0,J+1)*PL(0,J)) 
DO1S0M.N-1 
PLD8P(l,J)=fl.2S0Cr(PL(UHPL(IH^HPL(I.Jt1)+PL(lt1.J*1)) 

130 CONTINUE 
PLDSP(N.JH>.5O0*<PL(N*1.J+1HPL<N+1,J)) 

140 CONTINUE 
C 

W R I T E R 
WRITE(6,410) (RDISP(J)1.DS,J=0,K,KD3P) 
W R I T E R X o m LUMEN PRESSURE FIELD:' 
DOISOMLN.NDISP 
WRrTE(5,15S)XDISP(l)1.D2,(PLD8P(l,J),J=0,K,KDSP) 

160 CONTINUE 
166 FORMAT(F6.2,102F10.2) 

END IF 
C 

UDSP(0.0)=U(0,0) 
ULDSP(0,OHJL(0,0) 
VO3P(0,0)=V(0,0) 
UDSP(N,OHI(N,0) 
ULDSP(N,OHIL(N,0) 
VD3P(N,0)=V(N*1.0) 
UDSP(0,K)=U(0,K+1) 
ULDSP(0,K>UL(0,K*1) 
VOSP(0.K)=V(0.K) 
UD3P(N,K)=U(N,Kt1) 
ULDSP(N,K)=UL(N,K»1) 
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Appendix D: Source code in Fortran 

VD8P(N,K)*V(N<f1.K) 
DO160l*1,N-1 
UDSP(l.a)»U(l,0) 
ULDSP(l,O)*UL(l.0) 
UDSP(I,K)*U(I,K*1) 
ULD8P(I,K>-UL<I,K*1> 
VDSF1I.OHI.DO 
V08P(l,KH).6O(nV(l,K)+V(l*1,K)) 
DO 105 J-1.K-1 
UDSP<I,J)>0.600*(U(U)HI(M+1)) 
ULDSP(I,J)*).5D0>(UL(I,J)4UL<M+1)) 
VDSP<t,JH>.SO0-(V(l,J>tV<l*1,J)) 

1SS CONTINUE 
180 CONTINUE 

DO 170J1 .K -1 
UDSP(O,J>*> .SOO* (U<O,JHU<O,J+ I ) ) 

U L D 8 P < 0 , J H > . S O 0 - < U M 0 , J > + U L < 0 , J + 1 ) ) 
VD8P<0.J)»V(0,J) 
UD3P(N,J)»O.SO01U<N,JHU<N,Jt1)> 
UL0SP(N,JH>.600*(UL<N,J>WJL<N.J+1)) 
VD8P(N,J)=V(N+1,J) 

170 CONTINUE 
C 

W R ^ S . * ) 
WRrTE(6,40»MRDISP(J)*1.DWM),K,KD8P) 
WRITEfS,*) 
>'X,ora LUMEN AXIAL VELOCITY MhuJ,Mi rpoMad: UL'.ELF 
DO220M,N,NDISP 
WRITE(S.22S) XDISP(I)*1.D2.(UL0SPP^)«EXUJ>0,K,KDSP) 

220 CONTINUE 
226 FORMAT(FS.2,102F*.») 
C 

W R ^ S , * ) 
WRITE<5,40»XROISP(Jri.Daj*>,K,KDSP) 
WRITE(6,*) 
> ' X , c n ECS AXIAL VELOCITY »duil,lntapol»to<l: U-.EXF 
DO230l*>,N,N0ISP 
WRITE<5,235)X0ISP<l)1.D2.<U0SP<l,J)*ex,J=0,K.KDSP) 

280 CONTINUE 
23S FORMAT(F5.2,102F0.3) 

C 
WRrTE<S.*) 
WRITE(S,40tKR0ISP(J)*1.D3,J-4).K,K0SP) 
WRITE(5.T 
>'X.cra ECS RADIAL VELOCITY aokuMntirpoliUd: V . E R F 
DO240l»0.N,NDISP 
WRITE(5,24S)XDISP(I)*1.D2.(V0SP(U)*ER^'«.K,KDSP) 

240 CONTINUE 
246 FORMAT(F6.2,102F».4> 

C 
IF(INOV.EQ.1)THEN 
WRrTE<5,*) 
WRITE(5,400) R(0MR<J)*1.D3^*1,K*1,KDSP) 
WRITECS,") 

> 'X.on. LUMEN AXIAL VELOCITY aokid.edouMad: UL'.ELF 
0O320l*>.N,NDISP 
WRITE(5,22S) 

> XDISP<I)"1.D2,UL<I,0)*EXL,<UL<I.J>*EXUJ=1,K+1,KDSP> 
S20 CONTINUE 
C 

WRITHS.") 
WRITE(6,4M) R<0).(R<J)*1.D3,J=1.K*1,KD3P) 
WRITE! 5,*) 

> 'X ,cn ECS AXIAL VELOCITY ackul.caleulatKl: U'.EXF 
0O330M),N,NDISP 
WRITES, 235) XDISP(I)'1.D2,U(I,0)«EX,(U(I,J)*EX,J=1,K*1,KD3P) 

330 CONTINUE 
C 

WRITER,") 
WRITE(6,40«) <RDISP<J)1.D3,J=0,K,KD8P) 
WRITHS,*) 

> •X.cni ECSRADIALVELOCrrYMihjd.ateutaUdiV.ERF 
DO 340 M.N+I .NOISP 
WRITE(5,245) X(P)1.D2.(V(I,J)*ER.J=0,K,KDSP) 

340 CONTINUE 
END IF 

C 
RETURN 
END 

C 
c .................................................................... 
C 

SUBROUTINE INPF <IS.T.0T,ACCF,CTOTAL,CTOT0,TOTFLW.PL,PS,C) 
IMPUCIT REAL*8<A-H,L,»Z) 
PARAMETER (K«18, N=100) 
DIMENSION PL<0:N+1.0:K+1),PS(0:N<f1,0:K+1),C<0:N*1,0:K*1) 

C 
READ(UNrr"8)IS,T,DT,ACCF,CTOTAL,CTOT0,TOTFLW 
DO10l»0,N*1 
READ(UNIT«3) (PL(I,J),J=0,K+1) 

10 CONTINUE 
DO20M>,N*1 
READ<UNIT*3) (PS<I,J),J=0,K+1) 

20 CONTINUE 
DO30l=0,N+1 
READ(UNITs3) (C(l J),J=O.K*1) 

30 CONTINUE 
C 

RETURN 
END 

C 
c ...................................................... 
C 

SUBROUTINE OUTF <I8,T,DT,ACCF,CTOTAL,CTOTO,TOTFLW,PL,PS,C) 
IMPUCIT REAL*8tA-H,L,0-Z) 
PARAMETER (K*18,N=100) 
DIMENSION PL(O:N+1,0:K+1),PS<0:N+1,0:K-H>,C(0:NH,0:Kt1) 

C 
WRITER! NIT=4)IS,T.DT,ACCF,CTOTAL,CTOT0.TOTFLW 
D 0 1 0 l=O.N+1 

WR[TE(UN(T=4) (PL(I.J).J=0,K*1) 
10 CONTINUE 

DO20I-O.N+1 
WRITE(UNfT=4) <PS<I,J),J=0,K*1) 

20 CONTINUE 
DO30l=O,N*1 
WRITE(UNIT=4) (C(l J),J=C,K*1) 

30 CONTINUE 
B 

RETURN 
EN0 

SUBROUTINE EXECTIME(HR1,HR2,MIN1,MIN2,8EC1,8EC2,HSEC1,HSEC2, 
> MOWTH1,MONTH2.DAY1,DAY2) 
INTEGER HR1,HR2,MIN1,MIN2,SEC1,SEC2,HSEC1,HSEC2 
INTEGER MONTH1,MONTH2,DAY1,0AY2 
INTEGER DHR,DMIN,DSEC.DHSEC,DMONTH,DDAY 

' 0H8EC=HB6C2-HSEC1 
IF(DHSEC.LT.0)THEN 
DHSEC*0H8EC+100 
8EC2=8EC2-1 

END IF 
D8EC=SEC2-SEC1 
IF(DSEC.LT.0)THEN 
DSEC4SEC4O0 
MIN2=*HN21 

END IF 
DMIN4HN24MN1 
IF(DMIN.LT.0)THEN 
DM1N=OMIN«0 
HR2=HR2-1 

END IF 
DHR°HR2-HR1 
DMONTH4K>NTH24K>NTH1 
DDAY=OAY2-0AY1 
IF (DMONTH.Eai) THEN 
IF(MONTH1.Eai.OR.MONTH1.EaS.OR.MONTH1.Ea6.0R.MONTH1.EQ.7. 

» OR.MONTH1.Ea8.OR.MONTH1.EaiO.OR.MONTH1.EQ.12) THEN 
0DAY=OAY2+31-OAY1 

ELSE IF (WONTH1.EQ.2) THEN 
DDAY4AY2+284AY1 

ELSE 
DDAY=OAY2+3<W>AY1 

END IF 
END IF 
DHR=-OHR40DAY*24 
WRfTE<6,10) DHR,DMIN,DSEC,DHSEC 
WRITE(9,10> DHR,DMIN,DSEC,DHSEC 

10 FORMAT(/1X,'EXECUTION TIME: MS," h',13,' min',13,' •M4,' hs1) 

RETURN 
END 

http://OR.MONTH1.Ea8.OR.MONTH1.EaiO.OR.MONTH1.EQ.12

