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ABSTRACT

This thesis investigates the reliability of a flexible manufacturing system with AGV based

material handling. An analytical model was built using the stale space approach (Markov

process). Although the method is shown to be tedious when the number of system compon

ents becomes large , however , it does provide a powerful approach for reliability analysis

of complex systems such as flexible manufacturing facilities. To simplify the analysis,

state merging and state truncating techniques were used in carrying out the calculations.

To compare with the analytical results, a simulation model was built using SLAM II

discrete event modelling and simulation software. The results were very close to the

analytical ones when same failure and repair rates were assumed 11r the basic components of

the system. Overall, it was found that the simulation method was much simpler to develop

and experiment with. A SLAM II simulation model of the system performance was also

built to examine the operation of the FMS as a whole with failure and repair events.
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NOMENCLATURE

A + = the availability of the system

D (i, J) = transportation time from node i to node j

f ( x ) = probability density function of random variable x

F ( x ) = cumulative distribution function of random variable x

F ( i , j) = required flow matrix from node ito node j

IDX = index number of a machine to be visited

JT =job type

MTV (iT, IDX) = machine # to be visited for a given job type and index number

MTTF = mean time to failure

MTTR = mean time to repair

P (t) = state probability matrix

P (1) = a row vector of state probability

Pc ( i) = probability that the ith pickup node calls an idle AGV

PuN = probability of the system being down

P 1(t) = probability of being in state i at time t

P , (x) = transition probability from state i to state j during the time interval x

P T = probability of the subsets that is truncated

PST( IT, IDX = processing time for a given job type and index number

P up = probability of the system being up

P w(j) = probability that the AGV waiting au node

R = transition rate matrix

= transition rate from state ito state j

r = eigenvalue of matrix R

S = matrix formed by the right eigenvectors of matrix R



TIMST = SLAM II statement used to request the automatic collection of time-persistent

statistics on SLAIVI II global variable XX (I)

T i = pick-up and delivery time for total part flow

Tp = average transportation time for loaded vehicle

TRT( i, j) = travel time from node ito node j

T v = average transportation time for the empty vehicle

T w = specified working time for moving parts

X + = set contains states of success

X - = set contains states of failure

XX (1) = SLAM II global variable

x i = duration of state i under the condition of transiting to state j

Z ( t) = random variable of system stale at time t

= failure rate of a component

A. 1 m = equivalent transition rate from subset ito subset m

= repair rate of a component
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1.0 INTRODUCTION

1.1 Background and Motivation

Material handling systems are vital components of an automated manufacturing system.

They are used to integrate various components of a modern manufacturing system to facilitate

the flow of workpieces from one location to another. Material handling systems may

consist of different components such as conveyors, an automated guided vehicles (AGV)

fork lifts, and robots, etc. Material handling systems play an important role in the

overall performance of the integrated manufacturing systems. We define an integrated

manufacturing system as a manufacturing facility consisting of a set of work stations, loading

and unloading stations, and an inventory system linked by a material handling system.

The performance of the integrated manufacturing system is affected by various operational

and technological factors. The operational factors include the loading, the material handling,

the storage, the processing operations, and also the layout of the integrated manufacturing

system. The technological factors include the characteristics of the workstation, the machines,

the material handling system and the inventory systems [1] [21.

We call an integrated manufacturing system under a central computer control a flexible

manufacturing system ( FMS). Flexible manufacturing systems are commonly used to

upgrade the performance of low to medium volume manufacturing systems, and are rapidly

replacing the existing classical manufacturing systems.

Hand in hand with increased automation and the complexity of manufacturing systems of the

flexible sort , or FMS , reliability has become one of the vital ingredients in FMS’s planning,

design and operational phases [3]. Reliability is important as it reflects the ability of an

FMS to keep operating schedules. Reliability (or availability ) modelling of an AGV based



FMS is of significant importance in tile modem context. Statistical reliability techniques

are advanced and have been applied to numerous electrical, transit, and mechanical

systems [4 1.

1.2 Markov Processes the State approach

The State Space Approach (or Markov processes) is a very useful approach for system

reliability analysis. A component may assume various states depending upon its failure

and restorative modes. The system states describe the states of the components and the

environment in which the system is operating. The set of all the possible states of the

system is called the state space or the event space. The state space approach involves the

following steps [5 1:

i. Enumeration of all possible system states

ii. Determination of the interstate transition rates. If a diagram is drawn showing the

various states and the interstate transition rates between the slates, this is called the

state transition diagram.

iii. If the components are independent, the system state probabilities may be found from

the products of the component state probabilities.

iv. The states are then grouped into subsets depending upon the requirements of the

analysis. In most cases, measures are required only for success or failure.

After the grouping has been done, the subset probabilities etc. can be calculated. If we

define a random variable Z( t) (this random variable is associated with each value of time

t) as the state of a system at time 11t”, the family of the random variables (Z( t), t 0)

is called a stochastic process. And the values assumed by the process are called the states

of the system and the set of all possible states is called the state space.
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Once the state occupied at a time point is known, if the previous history of the process

is not involved in determining the subsequent probability distributions, the stochastic

process is said to be Markovian or called the Markov process. The Markov process is

sometime called memoryless, because the probability distribution of Z( t) only depends

on the latest of the time points and none prior to that ( Equation 1-1).

Many of the problems encountered in system reliability analysis can be modelled using

continuous parameter Markov chains [ 6 ]. For t> v> u, the Markov property for a

continuous parameter Markov chain would be

P(Z(t)=k I Z(v)=j,Z(u)=i)=P(Z(t)=k I Z(v)=j) (1-1)

This property is basically of the form

P(Z(t+x)=j I Z(t) =i) (1-2)

and is termed as the probability of transition from state i to state j during the time interval t

to t + x . The transition probability will be denoted by

Pij(x)=P(Z(t+x)=j I Z(t)=i) (1-3)

for any x.

The conditional probability density function (1-2) for the process will be given by the

Chapman-Kolmogorov equation:

P(t +x)=Pik(t)Pkj(x) (1-4)

This equation will be used to further deduce the transition probability of the Markov Process.

The verification of equation ( 1-4) is in reference [ 7 ].
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1.3 ]J SLAM II Discrete Event Modelling4 Simulation Method

The SLAM II ( Simulation Language for Alternative Modelling) discrete event modelling

and simulation method will be used in this research project
[8

] [9
.

To simulate a discrete

event model of a system using SLAM II, the user codes each discrete event as a FORTRAN

subroutine. To assist the user in this task, SLAM II provides a set of FORTRAN subprograms

for performing all commonly encountered functions such as event scheduling, statistics colle

ction, and random sample generation. The advancing of simulated time (TNOW) and the

order in which the event routines are processed are controlled by the SLAM II executive pro

gram. Thus, SLAM II relieves the simulation modeler of the task of sequencing events in

their proper chronological order. Each event subroutine is assigned a positive integer numeric

code called the event code, in the same fashion as the event code defined at an EVENT node.

The event code is mapped onto a call to the appropriate event subroutine by subroutine

EVENT ( I ) where the argument I is the event code. This subroutine is written by the

user :and consists of a computed GO TO statement indexed on 1 causing a transfer to the

appropriate event subroutine call followed by a return. The executive control for a discrete

event simulation is provided by subroutine SLAM which is called from a user-written main

program. The SLAM II next event logic for simulating discrete event models is depicted

in Figure 1-1. The SLAM II method will be employed in modelling and simulating a

representative FMS in two aspects:

(1) Evaluation of the performance of the system.

(2) Collection of the statistics on reliability measures and the state probabilities (or

the state availabilities ) of the system.
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Figure 1-1 SLAM II Next Event Logic for Simulating Discrete Event Mode[s
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14 jjectives

The objective of this study is to investigate the reliability (or availability ) of a representative

FMS by means of the methods outlined in section 1.2 and 1.3 , namely:

(1) Building up a mathematical model using the state space method (the Markov

process);

(2) Using SLAM II discrete event modelling and simulation concepts.

The state space method and SLAM Ii discrete event modelling and simulation approach are

the major tools in this study. The reliability measures thus obtained are contrasted against

each other and the relative merits of each method are discussed. in chapter 2, a representative

FMS with AGV based material handling system is presented. The system description of

machines, AGVs, the plant layout and routings will also be given in this chapter.

The definition of reliability for AGV based FMS, the assumptions and system reliability

models will be given in chapter 3. Chapter 4 describes the reliability analysis, the state

truncation technique and stale merging technique , and the reliability evaluations. Chapter 5

outlines the SLAM II simulation of FMS’s reliability modelling. Chapter 6 deals with the

FMS system performance simulation. Finally, chapter 7 presents the conclusions of this

study.
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2.0 THE FLEXIBLE MANIJFACTURING

SYSTEM (FMS) WITH AGV BASED MATERIAL HANDLiNG

2.1 The Chosen FMS

In a typical flexible manufacturing system, the number of machining centers is usually

between two and six [10]. The chosen FMS as shown in Figure 2 - 1, consists of 2 AGVs

(AGV1 and AGV2), 5 machines (MCi to MC5 ) and I load /unload station (L/U). These

facilities are linked to a network of computers that control their operations. There is no

direct human element involved in the transportation of materials between various locations.

Here , we assume that the environment is highly automated and once the tools are loaded

and the parts assigned, the FMS can operate under complete computer controls. Each

machine has an input buffer to accept the parts that will wait to be machined and an output

buffer which accommodates the finished parts that will wait to be taken away either to next

workstation (machine) or to the L/U station. Each input buffer and output buffer has a

capacity to accept a maximum of 10 parts. The loading and unloading operation of parts for

each machine will be completed by a robot. This means that each machine has a robot arm

to carry Out operations such as unloading the parts from AGVs to input buffer and loading

the finished parts onto AGVs from the output buffer. Whenever an AGV is requested,

always the nearest available one is dispatched. The flexible manufacturing systems are

acclaimed for their flexibility to manufacture a large variety of parts with high efficiency

and for their ability to respond quickly to parts changes. Two major reasons for such a

flexibility are

(a) Identical parts can have alternative routes within the system;

(b) Each machine within the system is equipped with efficient tool changers
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2 1
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Figure 2-1. Layout of the flexible manufacturing system.
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which significantly increase system capability during the manufacturing cycles.

2.2 AGV Based Material Handling ysteni

During the past several years, automated guided vehicle system as a major material handling

means has received much attention by designers and engineers of automated manufacturing

systems [ 11]. The AGV systems have been widely used in flexible manufacturing systems

because the AGV systems provide higher flexibility than the conventional systems. The

AGV control system dispatches idle vehicles to move pallets, parts and tools between work

centers within an FMS. Five types of AGVs are available

(1) Unit load

(2) Towing

(3) Pallet truck

(4) Fork truck, and

(5) Assembly line vehicles

In this study, the unit load vehicles will be employed. This means that the vehicles only

take one part (or one pallet) each time. Generally an AGV system contains four major

components:

(1) transportation network

(2) vehicles

(3) interface between the production system and AGVs

(4) control system

Basically, there are three types of transport networks:

(1) single line
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(2) simple loop and

(3) network type

In the case of multi-vehicle systems, the network-type system requires more complicated

control logic. There are several design sirategies for resolving the traffic problems. This is

because at the junction of AGV tracks, vehicle interference and collision can take place

when more than one vehicle try to use the same track. In such situations a control zone,

which allows only one vehicle to pass through, can prevent the occurrence of collisions at

the junctions. In addition, buffers may be provided for the vehicles waiting to use the control

zones. Several designs of buffers have been suggested [12]. They include provision of

loops, sidings and spurs on either sides of the AGV tracks. Figure 2-2 shows a layout of

machines served by multiple vehicles. Buffers and control zones are provided at the

junction of AGV tracks. Location 6 is the load/unload station and location 7 the central

buffer work-in-process.

An alternate strategy is to divide the entire network of AGV tracks into a few small closed

loops, each of which allows only one vehicle to circulate as shown in Figure 2-3. This is a

modification of the layout shown in Figure 2-2. The layout in Figure 2-3 shows the two

single-vehicle loops. Location 7 facilitates inter-loop transfer of materials. This modified

design removes the problems of vehicle collision and interference and simplifies the traffic

management. A central buffer, suitably placed, facilitates inter-loop transfer of jobs. The

drawback of this arrangement is its inability to tackle vehicle breakdowns which will

paralyze the loops. From the reliability consideration, this is not a good arrangement. The

problems such as creation of bottleneck loops due to unbalanced loop loads and requirement

of additional space, guide path and storage points may also arise.

In this study, a different design strategy will be tested for the layout shown in Figure 2-1.



4 5
11

I MC4I IM(51
4

3 6

1Mc31) I ‘?‘ fuiul
I2M

MCj

Figure 2-2 Layout of Machines Served by Multiple Vehicles
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Figure 2-3 Layout of the Single Vehicle Loop Configuration
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This is basically a simple network-type layout. The advantage of this type of layout is that

for multi-vehicle systems, some of the AGV tracks can be used as the buffer, and more than

one AGV can use the same track such as the track between the turning points 7 and 8. For

example, when one AGV is requested to take a part from L/U station to MC2, MC3 or

MC4, and at the same time another AGV is requested to take a part to MCi, MC5 or L/U

station from other machining center, all the tracks between MC2, MC3 or MC4 and

turning-pomt 8, and between MCi, MC5 or I/U station and turning-point 7 could be used

as the buffer to accept the AGV which is waiting to use the track between turning-points

7 and 8. The central buffer for work-in-progress is dismissed because each machine

has its own output buffer to accept the work-in-progress. According to the dispatching

rule (this will be discussed in later chapters), AGVs are sent to (he machines requesting

either to take a part to the machine or to pick up a part from the machine. Whenever

an AGV takes a part to a machine and after the part is unloaded, the output buffer of

the machine will always be checked to see if there is any finished part waiting to be sent to

its next destination, if so, the AGV will take the part which has the longest waiting time.

The estimation of the minimum number of vehicles required is another important factor.

In order to determine the number of vehicles required, information regarding the jobs

undergoing processing must he obtained. The jobs that are manufactured simultaneously,

the processing times, and the arrival rate influence the traffic intensity in the system. Due to

the versatility of the machines, often the jobs can be processed in more than one sequence.

This permits alternate routing of the jobs due to machine failure or work-load balance

considerations.

The desirable number of AGVs to accomplish the given load movements, assuming that the

target production plan and job routmgs are known, must be determined when the AGV
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dispatching rules are investigated. Too many AGVs may create a higher possibility of

collision and blocking, hence prohibiting the efficient control of the AGVs. The minimum

number of AGVs needed to perform the assigned tasks must be considered in order to

minimized the effect that too many AGVs may have on the dispatching rule performance.

Dong-Soon Yim and R . J. Linn [13] developed an extended procedure to determine

the minimum number of AGVs needed considering the random effects under steady-state

if the idle time of the AGVs is ignored. Once the minimum number of AGVs is determined

analytically, the minimum number of AGVs considering the time-dependent effects can

be determined from the experimental simulation.

Let F( i, j) be the required flow matrix from node ito node j (i.e. pickup or delivery

point) for the movements of parts during a specified working time Tw. The required flow

matrix is obtained from the target production rate and job routings. Let D( i, j) be the

transportation time from node i to node j obtained by the shortest route. As a conservative

measure, it is assumed that there ase always parts waiting for an AGV. The probability

that the AGV is waiting at j node in steady state Pw( j) is

Pw(j)=F(i,j)/ F(i,j) (2-1)
i=J i=lj=i

Also , the probability that the ith pickup node calls an idle AGV ILl steady-state, Pc( i) is

Pc(i)= F(i,j)/ F(i,j) (2-2)
j=1 j1 j1

complete movement of a load includes

(1) an empty vehicle moves to a pick-up point

(2) picks up a part
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(3) moves to a drop off point with the loaded part and

(4) delivers the part

The average transportation time for the empty vehicle, Tv, is then

Tv= Pw(j)Pc(i)D(j,i) F(i,j) (2-3)
i=1 j=1 i=1 j=1

and , the average transportation time for loaded vehicle, Tp, is

Tp= F(i,j)D(i,j) (2-4)
i=1 j=1

Letting I and u be the fixed pick-up and delivery time of a part at each worksatiori, the

pick-up and delivery time for total part flow Ti is

Tl= F(i,j)(1+u) (2-5)
1=1 j=1

So, the minimum number of AGVs required to accomplish the load movements during Tw

can he obtained as

minimum number of AGVs = (Tp + Tv ÷ TI) / Tw (2-6)

the simulation experiments performed by Dong-Soon Yim and R. J. Linn [13 ] showed

that the minimum number of AGVs for the system they considered was two under the

assumption of a target production rate 60 units per 8-h shift. Increasing the number of

AGVs did not improve the system performance. For the study in this thesis, two AGVs

will be used and the AGV dispatching rules and assumptions etc. will be discussed later in

chapter 6 for performance simulation.



15
3M RELIABILiTY DEFINITIONS AND

MODEL CONSTRUCTION

3.1 Definitions

There are several definitions of reliability in the literature of system reliability analysis

and the most often quoted one is “the probability that the system will perform its intended

function for a given period of time under stated environmental conditions. “ This

definition is, however, inadequate for many occasions and is restrictive in its scope of

application. It is more appropriate to talk of quantitative measures which when compared

with reference indices , would indicate the expected consistency without deviation from the

required performance.

It is usual in the literature to define reliability indices in terms of system success or failure.

However , many complex systems usually have several levels of failure. For example , for

a large piece of complex equipment we may not be able to simply say it is working or

not working, as it may have many possible output states. So, it is therefore appropriate to

define the calculated reliability measures in terms of a subset X which may contain any

number of system states. If the success and failure states are denoted by X+ and X-,

then reliability is the probability of being in X+ at time t without entered X-. The term

reliability is used in many ways and most often in a qualitative sense to indicate the

ability of the system to perform its intended function. As an intrinsic system parameter,

the reliability can be measured by various indices. The definition given above is more

specific and reliability is considered as a mathematical quantity which is itself a measure.

This measurement may be time specific, i.e. , function of time, or steady state when we

refer to the equilibrium conditions. The former is required when concerning with the
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transient behavior of the system and the latter while considering the average behavior

over long time.

The following indices are commonly used for repairable systems

( a ) In the transient domain, the time specific availability of subset X+.

This is also called poiniwise availability or instant availability and is the

probability of the system being in any state contained in X+ at a particular

instant of time t.

(b) Steady state availability of X+.

Commonly called availability , this is the limiting value of both pointwlse

availability and fractional duration . This can therefore, he interpreted in two

ways. The first is the probability of being in a state contained in X+ at some

point in time remote from the origin. The second is the time spent in X+ as

fraction of the total time ( (I , T) tends to be very large

3.2 Reliability Model Build-up i?fti FMS

The FN4S under study consists of five machines with two AGVs as material handling

system as shown in Figure 2-1. The system operating sequence is as shown in Figure 3-1.

According to the dispatching rules and prescribed job types, the nearest idle AGV ( either

AGV1 or AGV2) will be sent to the pick-tip point to take the jot) and transport it to its

destination ( either of machines I to 5 or the load / unload station ). Whenever a job

arrives to the system, it is first taken by an AGV, the first machine is visited, then taken

by an AGV again and the second machine is visited and so on. It always follows the

sequence of AGV—MC----AGV--*MC, until the job is completed, sent to the load/unload

station where it is considered to have left the system
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MCi

_____
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Figure 3-1 Functional diagram of the AGV based FMS.
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In order to build up the reliability model of the FMS, the following assumptions are made

( 1) The failure and repair rates of AGVs and machines are constant. This means that

the failure and repair rates(the transition rates) are not functions of state residence

time.

(2) The failures of AGVs and machines are statistically independent.

(3) The repair operation will start immediately after the failures of the machines

or AGVs. The repaired AGV or machine is as good as new.

(4) Both AGV1 and AGV2 are identical with same failure and repair rates. But for

the five machines, the transition rates are different.

These assumptions are typical and common in the reliability analysis of systems. One further

assumption that is made here is that there is always at least one of each job type in the system.

According to the functional diagram of the FMS ( Figure 3-1), the system can be divided

into two major subsystems, subsystem I the material handling subsystem and subsystem 2

the processing subsystem. Each subsystem could be further broken down into small units such

as subsystem 1 where its two components are AGV1 and AGV2, arid subsystem 2 where

its components are the five machines. Each machine or AGV consists of different machine

parts and these machine parts are either repairable or nonrepairahie. The replacement of a

nonrepairable part is interpreted as a ‘repairtt process. The reliability of an AGV or a machine

is a function of the reliability of these elementary machine components.

The techniques for mathematically deriving the reliability measures, that are relevant to this

study can be broadly classified as:

( i ) state space approach

( ii) network method

(iii) decomposition using conditional probability approach
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The state space approach is conceptually general and flexible and can be used for various

systems with independent failures and makes it possible to take into account the dependent:

failures. But in very large systems which contains too many states, it may he difficult to

apply this technique. For the FMS system under study that consists of seven components ( 2

AGVs and 5 machines ), if we consider all the states of the system, there will he

7
2 = 128 possible states and the transition rate matrix will contain 12 x128 = l384

elements. It becomes very cumbersome to conduct calculations.

The network approach, when applicable, usually provides a shorter route to the solution.

But this approach is usually not suitable when dependent failures or repairs are involved. To

apply this approach, it is necessary to recognize the difference between two types of function

diagrams, the physical (or Block Schematic) Diagram and Logical (or Reliability Block)

Diagram. The first diagram describes the actual connections between the components.

Each block is a component and the diagram shows the manner in which they are actually

connected. For the FMS under study, Figure 3-1 shows the physical connection between

the components (AGVs and machines). But this is not the Logic or Reliability Diagram.

For many systems, it is sometime very difficult or even impossible to prepare the Logic

or Reliability Block Diagram.

The Decomposition Using the Conditional Probability Approach consist of breaking down

a complex system into simple subsystems by the successive application of the conditional

probability theorem. The idea is to first calculate the reliability measures of the simpler

subsystems and then combine these results to obtain the values for the system. The selection

of the component or subsystem which is the key component or subsystem is therefore

important. This method can be used to simplify both the state space as well as the network

approach.
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For the system shown in Figure 3-1 , the stale space approach becomes the only method

available. Some techniques will he used to simplify the calculation. These will be depicted

in the next chapter. To apply the state space approach, we must enumerate all possible

system states as shown in Table 3 -1. The total system states are 128. The transition rate

matrix will have 128x 128 = 16384 elements as shown in Figure 3-2.

The criteria of success and failure of the FMS shown in Figure 3-1 are as follows:

( 1 ) The system is in up state

(a) at least three of the five machines are in up” states;

(b ) at least one of the two AGVs is in “up “ state

(2) The system will fall into the down “ states if

(a) both AGV1 and AGV2 are down “
at same time;

(b) more than two machines are “ down “state coincidentally

The reliability definition of the FMS under study can now he stated “ The probability

of the successful functioning of both material handling subsystem with at least one AGV

in up state and the processing subsystem with at least three machines in up state.” Although,

these criteria are to some extent arbitrary, however, the logic has been to strike a balance

between the definitions of system “up” and system “down “ states.
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Cmpn

State AGV1 AGV2 MCi MC2 MC3 MC4 MC5

1
U U U U U U U

2
D U U U U U U

U D U U U U U

4
• U U D U U U U

..

..

.

128 D D D D D D D

Table 3-1. System States.

Ru R12 R13 Ri 128

R2 I R2 2 R2 3 • • • R2 128

R31 R32 R33 R3i28

R=

.

.

R1281 R1282 R1283 Ru28 128

Figure 3-2. State transition matrix (128 x 128 = 16384 elements ).
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4.0 RELIABiLITY ANALYSiS OF THE FMS

4.1 Reliability Evaluation of The system

The FMS system shown in Figure 3-1 will be divided into two subsystems (subsystem

1 and subsystem 2 ) based on the system functions as shown in Figure 4-1. This functional

subdivision leads to a more convenient reliability evaluations of subsystems 1 and 2

individually. The advantage in doing so is that the probabilities of the system can then be

found by simple multiplication of the probabilities of the subsystem states. Another advan

tage is that the combination of the independent subsystems is simpler and the equivalent

transition rate concept can be more conveniently employed.

The state space of each subsystem may be reduced either by merging states or by truncating

very low probability states. The subsystems will then be combined into a complete system

and the required reliability measure evaluated.

Two important concepts for reliability evaluation in large systems, namely, the merging

of the states and truncating of the states will be employed in this study. The state merging

technique will be used for subsystem 1 and the state truncation technique will be used for

subsystem 2. These will be discussed in the following sections respectively.

4.2. The State gjg Technique

The basic idea is to find a state space which is equivalent to the original state space but is

more convenient to use [2 F The method starts from the concept of equivalent transition

rate. The state space X of the stochastic process Z( t) is assumed to be partitioned into

two disjoint subsets X+ and X-. If any state of the subset is entered, that subset is said to

have been encountered. We define
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The Flexible Manufacturing System

Consists of Two Identical AGVs and

Five different Machines

Subsystem I

The Material Handling

System with Two Identical

AGVs
with

Figure 4-1. Subdivision of the flexible manufacturing system.
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?x- x÷( t) = The equivalent transition rate from subset X- to X+ , then

)x-x+(t)=E P(t)R/ P(t) (4-1)
iEX- jeXi- iX

where

R1 = The transition rate from state i to state j

Pi ( t) = The probability of being in state i at time t, for the given initial condition.

The important application of this concept is in reducing the system state space. The states

(either in subset X- or in subset X+) can be merged and the equivalent transition rate from

the merged states found by the application of Equation (4-I).

For subsystem 1, the material handling system of the FMS contains two identical AGVs.

2
The total states of this subsystem is 2 = 4 as shown in Figure 4-2. If this tour state

5
subsystem combines with subsystem 2 which contains five machines with 2 = 32 states,

the calculations are still complicated. From the reliability definition of the FMS, if at least

one of the two AGVs in up state, the material handling system is in up state. The set of

all the up states is { 1 , 2, 3 }, denoted by 1, which represent the up state of the material

handling system. The only down state is state { 4 } and is represented by m. The state space

of the material handling system could be merged into two states as shown in Figure 4-3.

Assume that the entire state space is partitioned into in subsets, X i, i = 1, 2, 3 , m. The

equivalent transition rate from subset Xt to subset Xm is obtained by using Equation (4-1)

as

P’(t)Rij/Pi(t) (4-2)
ieXi jXia iEXI

From the reduced state transition diagram of material handling system, from state I to state

rn, the equivalent transition rate is
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Figure 4-2. State transition diagram of material hatidling subystem.

)Im

1mI

State I

UP

State m

DN

Figure 4-3. Reduced staEe transition diagram of material handling subystern.
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?tm( P2+P3)/(PI+P2+P3) (43)

and from state m to state I

(4-4)

The four state subsystem as shown in Figure 4-2 is reduced to a two state system and the

equivalent transition rates obtained as ).Jrn and )‘m i could be calculated readily by using

Equation (4-3) and (4-4). If this equivalent subsystem now combines with subsystem 2 (the

5
processing system which contains 2 = 32 states), the calculations could be much simplified.

4.3 The State Truncation Techniq

The state space can be reduced by merging certain groups of states. Another technique is by

truncating the state space , i.e. by neglecting the states whose contribution to the measures

of system reliability is insignificant. In a system consisting of independent components,

the probability of each state can be calculated individually by the product of individual

component probabilities. The states required for detemiining the reliability measure are

selected, their probabilities calculated and the reliability measure obtained. The system

states which make a negligible contribution to the final results can be neglected and thus the

system state space is reduced.

The philosophy behind truncation may be understood by examining the following equation

for calculating the probability of the ith state

pi= PkRII/YRik (4-5)
kEX- knX

The contribution to P by a state k i is
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PkRki/Rk. (4-6)
k E X

i. e. the frequency o encountering state i from state k divided by the total transition rate

Out of i . Therefore if the states having low probability are deleted, the probability of slate i

will not be significantly affected. Of course the states have to be deleted prior to solving

the set of linear equations. The procedure amounts to assuming that the deleted states have

a probability equal to zew. Denoting the set of deleted states by Xi’, the probability of

this subset if there were no truncation is PT = P1 , because the probability of the rest of
i EXT

the state space is now one, i. e.

P=1 (4-7)
iE(X-Xr)

The probability PT will he distributed over the states i 6 ( X - XT) where X is the system

state space. If PT is small , then the probability distribution of the rest of the states will

not be significantly affected. The success of the truncation method depends upon selecting

the low probability states for truncation. The following consideration should be kept in mind

while employing the truncation technique:

(1) The probability Pi (iEXT) is less than P ( j6(X— XT)). i.e. the biggest

probability in the truncated subset should be less than the smallest probability

of the remaining state space. If systems contains two state components, this is

very easy to achieve. The state space may be divided into subsets , each subset

having states of a certain level of coincident failures. For a system of n identical

components, there will be (n + 1) subsets. These subsets will have the following

states:
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subset number state description

1 all components are tip

2 one component is down

3 two components are down

.

n + 1 n components are clown

An arbitrary level of truncation should be first selected; for example, the states

having three or more than three coincident failures can be truncated. The comput

ation can then be repeated by including the next subset, i. e. the states having

three coincident failures. If the new values are not significantly different from

the previous ones, the computation can be stopped, otherwise one more subset

should be included and the computation repeated. In the state space truncation

technique, the probabilities of the states adjacent to the truncation boundary are

affected the most and the effect decreases when moving away from the boundary.

(2) After the states have been truncated, the state truncation diagram should be

examined to see if the process of truncation has generated any absorbing states.

The absorbing states can be located by examining the transition rate matrix. An

absorbing state will have transitions into it but not out of it. The i jth element of

the transition rate matrix gives the transition rate from state i to state j. Therefore

if the ith row is empty ( all elements are zero), this means that the jib stale is

absorbing. Either the absorbing state should be deleted or the state where truncat

ion has generated this absorbing state should be retained.

One important method of state truncation technique is the sequential truncation. This can be
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described as the process of building the reliability model by adding components or adding

subsystems one by one and deleting the low probability states at each step. In sequential

truncation , the state probabilities are calculated at each step and the states with probabilities

less than a reference value are deleted. The assumption, which is generally valid, is that the

probability of a given state will be decreased after another compunent has been added to

the system. Another method is the direct state space truncation. In direct truncation, the

decision to delete states has to be made prior to the solution of the state probabilities.

For the FMS system, the subsystem of processing facilities cohtains five machines. The

5
total states of this subsystem is 2 = 32 as shown in Table 4-i. The transition matrix

will contain 32 x 32 = 1024 elements. It is still tedious to be handled by mathematical

means. The reliability definition of the FMS stated that if there are at least three machines

in up state, the subsystem 2 is in up state, and if three machines coincidently catch the down

state , the processing subsystem is considered being in down state . Using the direct state

space truncation method, from Table 4-1, the subsets 4 ,5 and 6 will be truncated, i.e. we

consider that the probability of three and more than three machines coincident failure is

zero. So these 16 states with very low probability will be deleted. The state space diagram

after truncation is shown in Figure 4-4. If we define X i as the failure rate and i as

the repair rate of machine MC i ( I = 1,2,3,4,5 ), the transition rate matrix can be determined

as described in the following sections.

4.4 The Reliability Analysis !f[ FMS y Mathematical approach

Based on the assumptions given in chapter 3, the reliability of the FMS’s could be modelled

as the continuous parameter Markov process mathematically as given in Equations (1-1) to

(1-4). Equation (1-4) is the conditional probability density function for the continuous
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Subset # # of machines fai’ed # of identical state in the subset

5
1 o ( )=i

0

2 1 ( )=

3 2 ( )=io

4 3 (3)=10

5
5 4 ( 4)5

6 5 (5)=1

Total # of states 32

Table 4-1 Subdividing the State Space According to Identical States
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State 1

1U 2U3U

4U 5U

State 2

1D 2U3U

4U 5U

State 3

1U 2D3U

4U 5U

State 4

1U 2U3D

4U 5U

State 5

1U 2U3U

4D 5U

State 6

1U 2U3U

4U 5D

State 7

1D 2D3U

4U 5U

State 8

1D 2U3D

4U5U

State 9

1D 2U3U

4D 5U

State 10

1D 2U3U

4U 5D

State 11

1U 2D3D

4U 5U

State 12

1U 2D3U

4D 5U

State 13

1U 2D3U

4U5D

State 14

1U 2U3D

4D 5U

State 15

1U 2U3D

4U 5D

State 16

1U 2U3U

4D5D

Figure 4-4. State space diagram of subsystem 2 after truncation, where

LU: the ith machine is up; iD: the ith machine is down

= 1,2,3,4,5.
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parameter Markov process given by the Chapman-Kolmogorov equation , that is

P1i (t+x)= Pik(t)Pkj(x)

The transition probabilities must satisfy the following conditions

OPij(x)1 (4-8)

and

Pij(x)1 (4-9)
I

If E Pij ( x) = 1 for all i and x , then the process is called the honest process.
I

In a continuous parameter case, the equivalent elements are the limiting values, i.e. as

x —0, we define the transition intensity or the rate as

dPij(x) Pj(Ax)—O
= Ix=o= lim

ij dx Ax

that is

Pij(Ax)=RijAx+O(Ax) (4-10)

for i = j
dPzi(x) Pii(Ax)—1

R x=0 urn
dx Ax

thus

Pii(Ax)=Ri1Ax÷1+0(Ax) (4-11)

Differentiating both sides of Equation (4-9) for equality and setting x = 0,

Ri
ji
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i.e.

R=—Ra (4-12)
ji

Substitute (4-12) into (4-11) therefore

Pii(Ax)=1—RijAx+0(Ax) (4-13)
ji

In Equation (4-10), P i ( A x) represents the probability of transition from slate i to state j

during the interval of length Ax and this is equal to Ri Ax plus a term which divided by A x

tends to zero as A x — 0. Equation (4-13 ) can be interpreted in a similar manner. Equation

(1-4 ) can now be written for a small increment of time A t as

Pj( t+ At) = 2 P ik( t) Pk1 (At)

=P1(t)P1j(A t)+ Pik(t)Pkj(A t) (4-14)
k j

where

Pij(t)=P(Z(t)=jI Z(0)=i)

Substituting from ( 4-10 ) and (4-11)

P(t÷At) = P11 (t)( 1 + R1At) + Pik(t) Ri1 At+ 0( At)
kj

i.e.

P1(t+At)—Pj(t) 0(At)

= Pj( t) R1 + 2 Pik( t) Ri1 + (4-15)
At kj At

and as A I — 0, Equation (4-15 ) becomes
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P’j(t)= P (t)Rij (4-16)

If Pi( t) denotes the row vector whose jth element is P1 ( r) , i. e. the probability of being

in the jth state at time t given that the process was initially in state i, then Equation ( 4-16)

can be written as

P’(t)=P(t)R (4-17)

where R is the transition rate matrix whose i jth element is Ri1. In a more general form

Equation (4-17 ) becomes

P’(t)=P(t)R (4-18)

where P ( t) has P( t) as its (if )th element. The initial condition for (4-17 ) is

P(O)=I

where I is the identity matrix.

If, however, the initial state of the system is defined by a probability distribution in the

form of a row vector P (0) , then the state probability distribution at time t is given by

P (0 ) P( t). The system of Equations (4-18) is termed as the system of forward equations.

The time specific state probabilities can be found by solving the differential equation (4-18)

in the matrix form P’( t) = P (t) R with the initial condition P ( 0) = I. Where,

P (t) = the matrix whose (if )th term Pu (t) denotes the probability of being in

state j given that the process was in state i at time t = 0

R = the transition rate matrix

Equation (4-18) is a system of linear differential equations with constant coefficients. If

the eigenvalues of the transition rate matrix R are distinct, the solution of Equation (4-18)

can be obtained in the form
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P(t)=SD(t)S’ (4-19)

where

D (t) = the diagonal matrix whose (ii )th element is exp{ r t } , r i being the ith

eigenvalue of matrix R

S = the matrix formed by the right eigenvectors of matrix R

—1
S = the matrix formed either by inverting S or from the left elgenvalue of matrix R,

If the distribution at t = 0 is given by the row vector P ( 0), the distribution at 1 is given by

P(t)=P(O)P(t) (4-20)

The ith element of the row vector P ( t) is denoted by Pi ( t), represents the probability of

being in state ifor the given condition at time t = 0.

After finding P i (t), the availability of the system, A + ( t), can be calculated using the

following equation

A+(t)=.2 P(t) (4-21)
i 6 Xi-

4.4.1 Material Handling Subsystem

In order to calculate the availabilities of the four state material handling subsystem as shown

in Figure 4-2 , the failure rate and the repair rate of the identical AGVs as an example case

are selected as follows
1

(1/hr.)
100

(1/hr.)



36
Mathcad [ 14] is used to calculate the state probabilities. Note that to use Mathcad subscripts

must be given in parentheses. First we input the transition rates R ( i, j) ( J = 1,2,3,4) of

the subsystem ,here R (i, j) is the transition rate from state ito state j. Where

R(1 ,2)=?.

R(2,1)=t

R(3,1)=

R(4, 1)=0.0

R(1,3)=?.

R (2 , 3) = 0.0

R(3 ,2)=0.0

R(4 , 2)= t

R (1 , 4 ) = 0.0

R(2,4)=0.0

R(3,4)=?.

R(4,3)=p.

The diagnal elements can be calculated from Equation (4-12) , that is,

R(1, 1)=—2 R(2,2)=R(3,3)=—(A.÷1i) R (4 , 4) = —2ii

The transition rate matrix can be shown as

R= [R(i,j)]

Next step is to calculate the eigenvalues of matrix R through Mathcad

(4-22)

r=eigenvals(R) (4-23)

The diagonal matrix D (t) whose (i i)th element is exp {ri t } can be formed as,

D (i, i) = exp { ri t }

D(t)= [D(i, i)]

and

(4-24)

The final step is to construct the matrices S and S The matrix S will be constructed first

—1
then inverting S to get matrix S . The elgenvectors corresponding to each eigenval tie of

matrix R can be found through Mathcad by defining,

Si=eigenvec(R, ri)
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and each vector corresponds to a column vector of the matrix S, i.e.

S (i,j)=(S)j andthematrix

S=[S(i,j)] (4-25)

Now the state transition probability matrix could be found from Equation ( 4-19 ) as

P(t)=SD(t)S I or

—1
P(t)=SDS

The output of the matrix is:

0.98 0.01 0.01 0.00009803
0.98 0.01 0.01 0.00009803

0.98 0.01 0.01 0.00009803
0.98 0.01 0.01 0.00009803

If the original state at time t = 0.0 is given by a row vector as P ( 0) = { 1, 0, 0, 0 }, then

the distribution of the state probability at time t can be calculated using Equation (4-20),

P(t)=P(0)P={0.98 0.01 0.01 0.00009803}

This corresponds to state probabilities of the two AGVs at time t, where

Pi(t)= 0.98

P2 (t)=P3(t)=0.01 and

P4(t) = 0.00009803

According to the reliability definition of the FMS, the subset of the up states of the material

handling subsystem should include Pi (t) , P2 (1) and P3 ( t) i.e.

X+= {P1(t),P2(t), P3(t)}
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and the subset of down state is given by

X— = { P4(t) }
The equivalent transition rate between these two subsets can be calculated by using Equation

(4-2) , that is

P2 + P3

P1 + P2 + P3

0.01÷0.01 1

0.98 + 0.01 ÷ 0.01 100

= 0.0002 and

ui =2p,

= 2.0

So the four state reliability diagram of Figure (4-2), was merged into two state system as

shown in Figure (4-3).

4.4.2 The Processing Subsystem

After truncation, this subsystem contains 16 states as shown in Figure 4-4, and all these 16

states are up states according to the reliability definition of the FMS system. The failure

and repair rates of the machines, as a numerical example are given bellow:
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machine

1

2

3

4

5

failure rate ( 1 / hr. )

1=1/80

A.2 = 1 / 90

3=1/100

= 1 / 110

2.5 = 1 / 120

repair rate ( I / hr. )

= 1/0.8

t2= 1/0.9

= 1 / 1.0

= I / 1.1

= 1 / 1.2

Following the same sequence as for material handling subsystem, we input the transition

rates and calculate the transition rate matrix through Mathcad , that is

R=[R(i,j)] (wherei,j=1,2 16)

then calculate the eigenvalues and the eigenvectors of matrix R to construct the diagonal

matrix D ( t ) and the matrices S and S.’

through Mathcad as

The state probability matrix can he calculated

—1
P=SDS

Given the initial state of the subsystem in form of a row vector,

P(0)={1 00000000000000 0}

The distribution of the state probability at time t can be calculated using Equation ( 4-20)

P( t)=P(0)P

= { 0.914 0.009 0.009 0.009 0.009 0.009 0.00009145 0.00009132

0.00009142 0.00009147 0.00009135 0.00009144 0.00009703

0.00009134 0.00009138 0.00009146 }
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4.4.3 Combining Subsystems !a

Because each component in both subsystem 1 and subsystem 2 can be repaired independently,

the two subsystems are also independent. After finding the state probabilities of subsystem

1 and subsystem 2, the state probability of the FMS can be found by combining the proba

bilities of both subsystems

As demonstrated in 4.4.1, the subsystem I. is merged into a two slates subsystem (Figure 4-3)

with the equivalent transition rates im = 0.0002 and ?nt = 2.0 . In 4.4.2 , after truncation

the 32 state subsystem was simplified into a 16 state subsystem by dismissing the slates where

the coincident failures of more than two machines are considered as zero. According to the

reliability definition of the FMS , these 16 states are all up states. So the whole FMS system

can be described by three subsets as shown in Figure 4-5 (a),

1. at least one of the two AGVs is in up slate

2. both AGVs are down

3. at least three of the five machines are in up states

After combining the three subsets, the reduced state transition diagram is obtained as shown

in Figure 4 -5 (b). It can also be observed ( Figure 4-5) that when the two subsystems are

independent (fail and repair independently), the interstate transition modes remain unchanged

after interaction. By applying the state merging and state truncating techniques, the FMS

system is simplified as a two state system with the equivalent transition rate of ?.im and A i

as shown in Figure 4 - 5 (b). The state probability of the FMS system can be found by the

products of the state probabilities of subsystem 1 and subsystem 2 as

Pu = P1u P2u and

PuN = PIDN P2u
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Processing
System

(a)

FIgure 4-5. FMS state transition diagram after

combining the three subsets.

(b)
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The reliability of the system can be obtained through solving the following differential

equation by setting i = 0.0 and defining RL the reliabilily of the FMS system,

d Pu
+m Pu PDNjnt

dt

after integration, we obtain

RL(t)=Pup(t)=exp(—.imt) (4-26)
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5.0 SLAM H SIMULATION OF FMS RELIABILITY

5.1 The Processing Subsystem

To simulate the state probabilities of this subsystem using SLAM II, the simulation model

should first be constructed. The purpose of this discrete event simulation is to collect statistics

on each state of the processing subsystem. In the preceding chapters the FMS system was

subdivided into the material handling subsystem and the processing subsystem. Because

the processing subsystem contains more components , i. e. five machines, this subsystem is

more complicated to handle and will be discussed first. As already has been outlined, the

processing subsystem consists of 32 possible states. As the time advances , the time based

random variable Z( t) should randomly encounter each of these 32 states. In simulation, the

associated logic for processing the changes in state is an event. So a discrete event model of

the subsystem is constructed by defining the event types that can occur and then modelling

the logic associated with each event type. The state of the subsystem in a discrete event

model is represented by variables which have attributes. The state of the model is initialized

by specifying the initial values for the variables employed in the simulation and by the

initial scheduling of the events. Here two types of events are defined for the simulation

a) failure event and;

b) repair event.

As discussed in the previous chapters , the transition rate is the hazard rate of the random

variable defining the duration of state i under the condition of transiting to state j. The

negative exponential is the only distribution having a constant hazard rate and therefore the

random variables underlying the time homogenous Markov process must be exponentially

distributed. i.e.
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1
(5-1)

mean value of x ii

where

R ij = the transition rate or hazard rate and

x i = the duration of state i under the condition of transiting to state j

In the case where up state i transits to down state j, the mean value of x ii is called the mean

time to failure ( MTTF) , and if the state is transiting from down state to up state then x ii is

called the mean time to repair ( MTTR). Here Xij is a continuous random variable. i.e. if i

is the up state under the condition of transiting to the down state j:

1
(5-2)

MTfF

if i is down state under the condition of transiting to the up state j then

1
(5-3)

MHR

The distribution of the random variable x, is negative exponential and has a probability

density function, for transiting to the failure state, defined as

-.x
f(x)=).e (5-4)

The corresponding cumulative distribution function is given by

F(x)=ff(u )du

=1—e (5-5)
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Because each machine fails and is repaired independently, the failure and repair event will

also be scheduled independently for each machine. That is, each machine is modelled as

the two state Markov process. The SLAM II global variable XX ( 1) is used to represent

the Up and Down stales:

XX (I) = 1 , machine I is in Up state

XX (I) = 0, machine I is in Down state

The combinations of states of all the machines give all the possible states of t he system.

The time persistent statistics are collected when XX( I) is specified on the TIMST input

statement. The output gives the state probabilities of the system concerned. As discussed

in chapter 4, the 32 state processing subsystem is reduced to a 16 state subsystem by applying

the state truncation technique. Statistics on all these 16 state probabilities is collected.

The global variables for representing every status in the simulation are shown in Table 5-i.

To initialize the simulation, all the initial values of the global variables are defined in

SUBROUTINE INTLC of SLAM II. The initial condition of the system is all the machines

in UP state. This is represented by defining the global variable XX (1) = i( here I = 1, 2,

the number of machines) meaning that at the current instant of time , this state of the system

is encountered. At any instant of time , the system can only stay in one stale ( we represent

this state by setting the global variable XX (I) = 1 ) and all the rest of the states which are

not encountered are represented by setting the global variable XX ( I) = 0. To initially

schedule the failure event in the SUBROUTINE INTLC, the SLAM Ii’s SCHDL (

KEVENT, DTIME, A ) subroutine is called. Where KEVENT denotes the event

code of the event being scheduled and DTIME denotes the number of time units from the

current time , TNOW, that the event is to occur. Attributes associated with an event are

specified by passing the buffer array A as the third argument of subroutine SCHDL. For this
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Table 5-1. Global variables used for representing

states in SLAM 11 simulation program

global variable variable description

f 1.0 , the UP state or a state encountered
)Q( ( j ) XX ( I

= l 0.0 the DN state or a stale not encountered

XX(1)

XX (2)

XX (3)

XX (4)

XX (5)

XX (21)

XX ( 22)

XX ( 23)

XX ( 24)

XX(25)

XX ( 26)

XX ( 27)

XX ( 28)

XX(29)

XX(30)

XX(31)

XX ( 32)

XX(33)

XX(34)

XX(35)

XX ( 36)

state of machine 1 (MCi

state of machine 2 ( MC2)

state of machine 3 ( MC3

state of machine 4 ( MC4)

state of machine 5 ( MC5)

system state 1

system state 2

system state 3

system state 4

system state 5

system state 6

system state 7

system state 8

system state 9

system state 10

system state 11

system state 12

system state 13

system state 14

system state 15

system state 16
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C Subroutine INTLC )

Assign attribute 1
the machine #

Schedule the

FAILURE EVENT

for all the machines

( Return D

Define the initial
state of all the machines to UP state

bysettingXX(I)= 1.0

Define the initial states of the
system based on the initial
states of all the machines

“7

Figure 5-1 Flowchart of SUBROUTINE INTLC
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simulation study, code 1 is used for failure event and code 2 for repair event. For the failure

event, the number of time units is defined by an exponential distribution with the mean

value of MTTF , i. e.

DTIME = EXPON ( MTTF)

There is only one attribute (ATRIB (1)) being defined to identify the five machines, for

example , ATRIB (1) =1.0 means that the failure event of machine I is scheduled. The flow

chart of Subroutine INTLC is shown in Figure 5-1

Once the SUBROUTINE FAILURE is called, the failure event will happen. The serial

number of a machine that has failed is identified by attribute 1 and the global variable

XX ( I) corresponding to the failed machine is set equal to zero indicating that the machine

is catching the down state. The system state transits from the original one to current one

by changing the value of global variable XX ( I) in which the previous state is indicated

by 0.0 and the current state by 1.0 meaning that the current state is encountered. The repair

event will be scheduled in this subroutine for the failed machines. This is done by calling

SLAM II subroutine of SCHDL ( KEVENT, DTIME , A). Where code KEVENT = 2,

indicates a repair event and DTIME = EXPON ( MTFR) is the repair time. The flow chart

of SUBROUTINE FAILURE is shown in Figure 5-2.

When SUBROUTINE REPAIR is called, the failed machine has been repaired. The state of

this machine is then changed from DN (down) to UP and the state of the system transits

from the previous one, i.e. XX( I) =1.0, to current one, i.e. XX( 1) =0.0. This is also done by

resetting the value of the global variable XX (I ) equal to 1.0 for the machine repaired

and the system state encountered. The subsequent failure events are scheduled in SUB

ROUTiNE REPAIR. The flow chart of subroutine REPAIR is shown in Figure 5-3. The

SLAM II SUMMRY REPORT of all the statistics for time-persistent variables that represent

every state of all the machines and the system is given in Figure 5-4 , where,
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(Subroutine FAlLU)

Define machine # IMC = ATRIB(1 )

Set the failed machines to down state by
defining XX ( IMC) = 0.0

1
Determine the system state according to
the combination of the states of all the
machines in system. Set current system
state to 1 .0 and original state to 0.0

[ Define DTi = MTTR (i = 1 ,23,4,5)

___1___

Schedule the REPAIR event
for the failed machines

CATRIB (1) = 1MG *

RETURN
1.oD

Figure 5-2 Flowchart of SUBROUTINE FAILURE
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(Subroutine REPAIR

Define machine # IMC = ATRIB (1)_]

“V
Set the machine that has been
repaired to the UP state through

XX(IMC) 1.0

Determine the current system state
through combining the current states
of all the machines in the system

__F_

Schedule subsequent

FAILURE EVENT

ATRlB(1 )=lMC1.0

RETURN J

Figure 5-3 Flowchart of SUBROUTINE REPAIR
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MCISTPRB , machine 1 state probability

MC2STPRB , machine 2 state probability

MC3STPRB , machine 3 state probability

MC4STPRB , machine 4 state probability

MC5STPRB , machine 5 state probability

MCSTPRB1 , system state probability of state 1

MCSTPRB2 , system state probability of state 2

MCSTPRBi , system state probability of state i

MCSTPRB15 , system state probability of state 15

MCSTPRB16, system state probabiiity of state 16

5.2 The Material handling Subsystem

The SLAM II simulation for the material handling system (subsystem 1) is similar to the

one for machining system (subsystem 2). The simulation for subsystem 1 is simpler because

the AGV system has only two components AGVI and AGV2 and the total system slates

are four. The SLAM II SUMMRY REPORT that shows the state probabilities of AGVs

and subsystem 1 is given in Figure 5-5. Where,

AGV1STPRB , AGVI state probability

AGV2STPRB , AGV2 state probability

AGVSTPRB1 , AGV system state probability of state 1

AGVSTPRB2 , AGV system slate probability of state 2
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SLAM II SUMMARY REPORT

SIMULATION PROJECT: PROCESSING SUBSYSTEM STATE PROBABILITY

DATE 5/25/1994 BY FUHONG DAI RUN NUMBER 1OF 1

CURRENT TIME .5000E+05
STATISTICAL ARRAYS CLEARED AT TIME • 0000E+00

**5TATI5TIC5 FOR TIME—PERSISTENT VARIABLES**

MEAN STANDARD MINIMUM MAXIMUM
VALUE DEVIATION VALUE VALUE

TIME CURRENT
INTERVAL VALUE

MC1STPRB .990 .101 .00 1.00 50000.000 1.00
MC2STPRB .991 .096 .00 1.00 50000.000 1.00
MC3STPRB .991 .095 .00 1.00 50000.000 1.00
MC4STPRB .991 .096 .00 1.00 50000.000 1.00
MC5STPRB .990 .099 .00 1.00 50000.000 1.00
MCSTPRB1 .953 .211 .00 1.00 50000.000 1.00
MCSTPRB2 .010 .100 .00 1.00 50000.000 .00
MCSTPRB3 .009 .095 .00 1.00 50000.000 .00
MCSTPRB4 .009 .094 .00 1.00 50000.000 .00
MCSTPRB5 .009 .095 .00 1.00 50000.000 .00
MCSTPRB6 .010 .098 .00 1.00 50000.000 .00
MCSTPRB7 .000 .009 .00 1.00 50000.000 .00
MCSTPRB8 .000 .008 .00 1.00 50000.000 .00
MCSTPRB9 .000 .009 .00 1.00 50000.000 .00
MCSTPRB1O .000 .010 .00 1.00 50000.000 .00
MCSTPRB11 .000 .012 .00 1.00 50000.000 .00
MCSTPRB12 .000 .012 .00 1.00 50000.000 .00
MCSTPRB13 .000 .010 .00 1.00 50000.000 .00
MCSTPRB14 .000 .010 .00 1.00 50000.000 .00
MCSTPRB15 .000 .006 .00 1.00 50000.000 .00
MCSTPRB16 .000 .014 .00 1.00 50000.000 .00

Figure 5-4 SLAM II sumary report of processing subsystem
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SLAM II SUMMARY REPORT

SIMULATION PROJECT: MATERIAL HANDLING SUBSYSTEM STATE PROBABILITY

DATE 5/25/1994 BY FUHONG DAI RUN NUMBER 1 OF 1

CURRENT TIME .5000E+05
STATISTICAL ARRAYS CLEARED AT TIME • 0000E+00

**STATISTICS FOR TIME-PERSISTENT VARIABLES**

MEAN STANDARD MINIMUM MAXIMUM TIME CURRENT
VALUE DEVIATION VALUE VALUE INTERVAL VALUE

AGV1STPRB .990 .100 .00 1.00 50000.000 1.00
AGV2STPRB .990 .097 .00 1.00 50000.000 1.00
AGVSTPRB1 .981 .138 .00 1.00 50000.000 1.00
AGVSTPRB2 .010 .099 .00 1.00 50000.000 .00
AGVSTPRB3 .009 .097 .00 1.00 50000.000 .00
AGVSTPRB4 .000 .008 .00 1.00 50000.000 .00

Figure 5-5. SLAM II summary report of material handling subsystem.



AGVSTPRB3 , AGV system state probability of state 3

AGVSTPRB4 , AGV system state probability of state 4

The comparisons and conclusions are presented in chapter 7.0.

54
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6.0 PERFORMANCE SIMUlATION OF THE FMS

In this chapter, we present the performance simulation of the FMS to see the operations of the

the system. Based on the system as shown in Figure 21, we can construct a computer model

of the system. The jobs first arrive at the load/unload ( L /U) station. A job type (JT) will

be defined for each job. The job type determines:

(1) The number of machines to be visited

(2) The index number ( 1DX) of the machine to be visited, i.e. which machine will be

visited first, second and third etc.

(3) The processing time of the job on each machine

In this study, for the purpose of demonstration, we arbitrarily define five job types. Table

6-1 shows the routings of the job types defined and Table 6-2 gives the processing time

of each job type on the corresponding machines defined. In the simulation program, we use

two dimensional arrays to represent:

(1) The machines to be visited, MTV ( JT, IDX)

(2) The processing time, PST (JT, DX)

The travel time (TRT) of AGV is given in Table 6-3 in the matrix form. A two dimensional

array TRT ( i, j) is used to represent the travel time of AGV, where i
, j = 1,2,3,4,5,6,7,8.

Constant processing times( minutes) are assumed for each job.

In this study, two AGVs are employed in the material handling system. Whenever an AGV

is requested, always the nearest available one is called. The simulation starts from the

SUBROUTINE INTLC and the simulation model is built up in this subroutine by defining

two AGVs, five machines and one load / unload station. Each machine has an input buffer

to store the parts waiting for processing and an output buffer to store the parts waiting to be
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Index

Job
No. o 1 2 3 4 5 6

type

1 L MCi MC5 MC3 MC2 U 0

2 L MC2 MC3 MC5 MC4 U 0

3 L MC3MC4MC1 U 0 0

4 L MC4MC5MC1 U 0 0

5 L MC5 MCi MC4 MC2 MC3 u

Table 6-1. Routings of the job types defined.

Index

Job No. 0 1 2 3 4 5 6

type

i 0. 20. 20. 30. 25. 0. 0.

2 0. 30. 20. 25. 20. 0. 0.

3 0. 25. 30. 25 0. 0. 0.

4 0. 25. 20. 30. 0. 0. 0.

5 0. 20. 20. 25. 20. 25. 0.

Table 6-2. Processing time of each job type

at the coresponding machines defined.



57

To (I)
Location

No. 1 2 3 4 6 7 8

1 0.0 4.0 4.0 4.0 2.0 2.0 1.0 3.0

2 4.0 0.0 2.0 2.0 4.0 4.0 3.0 1.0

3 4.0 2.0 0.0 2.0 4.0 4.0 3.0 1.0

From
4 4.0 2.0 2.0 0.0 4.0 4.0 3.0 1.0

5 2.0 4.0 4.0 4.0 0.0 2.0 1.0 3.0

6 2.0 4.0 4.0 4.0 2.0 0.0 1.0 3.0

7 1.0 3.0 3.0 3.0 1.0 1.0 0.0 2.0

8 3.0 1.0 1.0 1.0 3.0 3.0 2.0 0.0

Table 6-3. AGV travel time between any two locations.
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taken away. All the initial conditions of the AGVs and machines are also defined in this

subroutine. After defining the travel time (TRT), machine to be visited (MTV) and the

the processing time (PST) , the initial creation of the job will be scheduled by calling the

SLAM II SUBROUTINE SCHDL (1, 0.0, ATRIB). Attribute 3 will be used to define

the index number of the first machine that will be visited at the beginning. The flowchart of

SUBROUTINE INTLC is shown in Figure 6-1. The subsequent events of the simulation are

(1) Generating job type (GNRJT)

(2) Despatching AGV ( DSPAGV)

(3) Processing event (PROCS)

(4) Breaking down event ( BRKDN ) of the machines or AGVs and

(5) Repairing event ( REPAIR) of the machines and AGVs

The GNRJT subroutine generates the subsequent jobs with five different job types defined

uniformly by calling SLAM Ii’s SUBROUTINE SCHDL ( EVENT, DTIME , ATRIB),

where

EVENT = 1 , the event code and

DTIME = UNFRM (20.0, 30.0), the time increment

Whenever SUBROUTINE GNRJT is called, the input buffer of the machine to be visited

by the job generated will be checked first. If the number of the parts waiting at the buffer is

less than ten, the job generated will be sent to this buffer by calling the nearest available

AGV. Otherwise the job generated will wait at the L/U station by storing the job in a storage

area identified in SLAM II as file 12. To send the job to the machine assigned, event 2,

dispatching AGV will be scheduled by calling SUBROUTINE SCHDL ( 2, DTIME,

ATRIB). The logic of SUBROUTINE GNRJT is shown in Figure 6-2.
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cSUBROUT1NE INTLcD

Establish 5 machines and 2 AGVs and initially set
all the machines and AGVs idle. At the beginning,
both of the AGVs stop at the buffer point 7

Define the travel time (TRT) of AGV, machine to be
visited ( MTV) for each job type and the processing
time ( PST ) of each job type at machines to be visited

Define Attribute 3 the index
No. of machine to be visited

Schedule create the
job type at time 0.0

Initially schedule the
breaking down events
of maclimes and AGVs

( RETURN D
Figure 6-1 Flowchart of SUBROUTINE INTLC



60

SUBROUTINE GNRJT

Schedule subsequent generation
of job and job types uniformly

Define attribute 2 the job type and
attribute 1 the mark time of the job
generated ( TNOW)

Store the job
enerated at the load/unload

N
station( file 12 ) and check the first
machine to be visited of the job type: RETURN

is the No. of parts at the input

buffer of the machine
less than 3?

Yes

No
Is there any AGV available? RETURN

Yes

GO TO 80
Schedule despatching AGV

If both AGV1 and AGV2 are available,
GO TO 100

If only one AGV is available then
GO TO 200

Figure 6-2 Flowchart of SUBROUTINE GNRJB (continued on next page)
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200

Yes

‘Jr
()

Always the nearest AGV is called. Define
JTO (job to ) = MTV ( machine to be
visited) , set the called AGV busy and
determine the travel time of called AGV

GOTO7O

Call the idle AGV and define JTO = MTV.
In the case of both AGVs must use a
same route, has the idle AGV wait.
Determine the travel time of called AGV
and set the idle AGV busy.

Define attribute 4 the rank No. of AGV
caled. Schedule the called AGV move one
section by calling the subroutine

SCHDL ( 2 , DT1ME , ATRIB)

Figure 6-2 Continued



62
The event 2 is employed to schedule dispatching the busy AGVs, I. e. the AGV is either on

the way to the calling point (the AGV is empty) or to the destination of the job of which

the AGV is requested (the AGV is loaded with the job). The busy AGV will be scheduled

to move section by section and the impending route of the scheduled AGV will always be

checked whether the route is occupied by another busy AGV. If the route is occupied, a

waiting time (which is equal to the travelling time of the AGV through the route) will be

added to the travel time of the scheduled AGV. When the scheduled AGV arrives to its

destination and the destination is a machine , the job will be unloaded from the AGV and

the processing event will be scheduled if the machine is idle. In case the machine is busy

the job will be stored at the input buffer of the machine. If the destination is L / U station, it

means that the job has completed all its pwcessings . After unloading the job at the L / U

station, the job leaves the system. The flow chart of SUBROUTINE DSPAGV is shown in

Figure 6-3.

Whenever SUBROUTINE PROCS is called, a job processing has been completed at a

machine. The input buffer of that machine will be checked whether there is any job waiting.

If a job is waiting for processing, the subsequent processing event will be scheduled. In case

there is no job waiting at the input buffer of that machine, the machine will be set to idle

status. Figure 6-4 shows the flow chart of SUBROUTINE PROCS.

Event 4 is the break down event (BRK[)N). Once SUBROUTINE BRKDN is called, a

machine or an AGV is down. The operation of a broken down machine or an AGV is

halted by removing the processing event or the AGV dispatching event from the file of

event calendar. The remaining operation time is stored in an array RMT( I) , where I = 1,

2, 3, 4, 5, 6, 7 corresponding to each busy AGV or machine whenever the breaking down

event happens. The corresponding repair event will then be scheduled in this subroutine. The
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flowchart of SUBROUTINE BRKDN is shown in Figure 6-5.

The final event is the repair event ( REPAIR). The broken down machine or an AGV is

repaired whenever SUBROUTINE REPAIR is called. After finishing the repair work , the

broken down machine or AGV will resume work and complete the remaining operation.

The subsequent break down event will be scheduled for a repaired machine or AGV. Figure

6-6 shows the flowchart of SUBROUTINE REPAIR.

About a ten week (or 99000.0 minute ) simulation was run and the following data were

collected,

(1) Statistics for Lime-persistent variables and

(2) File statistics

The time-persistent variables include the utilization and the proportion of time in up state

of each machine (machine to machine 5 ) and each AGV (AGVI and AGV2). The file

statistics shows the queue size of each input buffer and output buffer, where file No. 1,2,3,4

and 5 are input buffers and 7,8,9,10, and lithe output buffers corresponding to machine 1,2,

3, 4 and 5. The SLAM II periodic summary reports are shown in Figures 6 - 7 and the

reports were produced every 33000.0 minutes.
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€OUTlNE
DSP3

1
Schedule despatching the busy AGVs

Yes
_=zzEE both AGV5 busyZ

No

chedule
both AGV1(GOTO 39) and AGV2

GOTO 40). Does the called AGV visit
requested point?

No

loaded.Is the AGV

No
Yes

GO TO 41
(for AGV1

G0T044
(for AGV2

oes the No
loaded AGV reaches its

destination?

Yes

RETURN

Load a part on the AGv by
setting LD = 1 and remove
the job from the output buffer
of a machine (file (lOB ) ) or
the L?U station ( file (12))
Schedule despatching this
AGV to its destination.

GO TO 300

Schedule a called
AGV move one
section towards its
requested point.
If the route is
is occupied, has
one of the two
AGVs wait.

GO TO 300

Schedule loaded AGV moving one
section towards its destination. If
coincidently the route is occupied
then plus the waiting time to the
travel time of the AGV.

GO TO 300

Figure 6-3 Flowchart of SUBROUTINE DSPAGV (continued on next page)
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the called AGV
the requested point?

Schedule the
called AGV
moving one
section towards
its destination

GO TO 300

Load a part on the AGV called
and schedule the AGv moving
one section towards its
destination

GO TO 300

No

Schedule the loaded AGV
moving one section towards
its destination

ATRIB (2 ) = JT*1.0
ATRIB ( 3 ) = IDX*I.0
ATRIB (4) = IAGV*1.O
CALL SCHDL( 2, DTIME,ATR1B)
RETURN

Figure 6-3 Continued
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43

The requested AGV
has reached its destination

unloading the part from the AGV by settin
LD = 0.0, having it return to the buffer point 7 ( or 8 N

and setting it idle. If the destination is the L/U station,
RETURN

If the destination is a machine then

is the machine busy?

Yes

Unload the part at the input buffer of the
machine visited ( call subroutine FILEM)

8

Is there any part No
waiting at the output buffer of the machine RETURN

just visited?

Yes

Taking the par
that has the longest waiting t’

and determine the destination of the part No
RETUlN

Is there any AGV avalabi

Yes

No
Are both AGVs are available? GO TO 600

Yes

( GO TO 500D

No

Figure 6-3 Continued
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Call the nearest AGV, remove the part from the
output buffer of the maclithe and load it on (he
called AGV. Schedule despatching the up AGV.

GOTO 18

®t11eavailableAGVdown
Yes

No

(4)

Call the available AGV, remove the part from
the output buffer of the machine and load it on
the called AGV. Schedule despatching the AGV.
If a route is occupied, plus a waiting time to the
travel time of the called AGV.

ATRIB(2)=JT* 1.0
ATRIB(3)=IDX*1.0

ATRIB ( 4) = IAGV *1.0
CALL SCHDL ( 2, DTIME, ATRIB)
RETURN

Set the idle
to work and schedule the proc

event ( event 3 ) by CALL SCHDL (3,DTIME,ATRIB]
there any part waiting at the out1t

of the machine

Figure 6-3 Continued
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SUBROUTINE PROCS

nce the subroutine
ROCS is called, a part has completed

one of the processings then checking : is there any part
waiting at the input buffer of

the machine?

No

Yes

Yes

Set the machine idle : XX ( IMC ) = 0.0
Change the index No. of the part processed by
ATRIB ( 3 ) = IDX * 1.0 + 1.0 then put the part
on the ouput buffer of the machine by:

CALL FILEM (lOB (IMC ), ATRIB)
RETURN

If there are more than one part waiting at the
input buffer, remove the part that has longest
waiting time and schedule processing the part
by:

CALL SCFIDL ( 3, DTIME , ATRIB)
Change the index No. of the part processed at
this machine ( ATRIB (3 ) = IDX* 1.0+1.0)
and put the part on the output buffer of the
machine by

CALL FILEM (lOB ( IMC ), ATRIB)
RETU RN
END

Figure 6-4 Flowchart of SUBROUTINE PRC)CS
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Halting the busy AGv or machine
by remove the corresponding event
from the evetiL calendar file

Figure 6-5 Flowchart of SUBROUTINE BRKDN
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repaired AGV or
before breaking down?

Yes

Reschedule the event
for the remaining
operation time

Scheduling the subsequent
breaking down event

Figure 6-6 Flowchart of SUBROUTINE REPAiR



71

SIMULATION PROJECT : FMS PERFORMANCE

DATE 5/10/1994 RUN NUMBER 1OF 1

CURRENT TIME .3300E+05
STATISTICAL ARRAYS CLEARED AT TIME 0000 E+ 00

**STATISTICS FOR TIME-PERSISTENT VARIABLES**

**FILE STATISTICS**

FILE
NUMBER LABEL/TYPE

AVERAGE STANDARD
LENGTH DEVIATION

MAXIMUM CURRENT AVERAGE
LENGTH LENGTH WAIT TIME

SLAM II Summary Report of
(continued on next page)

FMS System Performance

SLAM II SUMMARY REPORT

BY FUHONG DAI

MEAN STANDARD MINIMUM MAXIMUM
VALUE DEVIATION VALUE VALUE

TIME CURRENT
INTERVAL VALUE

UTILIZATION MCi .485 .500 .00 1.00 33000.000 .00

UTILIZATION MC2 .576 .494 .00 1.00 33000.000 1.00

UTILIZATION MC3 .848 .359 .00 1.00 33000.000 1.00

UTILIZATION MC4 .629 .483 .00 1.00 33000.000 .00

UTILIZATION MC5 .306 .461 .00 1.00 33000.000 .00

UTILIZATION AGV1 .752 .432 .00 1.00 33000.000 1.00

UTILIZATION AGV2 .375 .484 .00 1.00 33000.000 .00

AGV1UPSTATE .998 .043 .00 1.00 33000.000 1.00

AGV2UPSTATE .995 .074 .00 1.00 33000.000 1.00

MC1UPSTATE .997 .052 .00 1.00 33000.000 1.00

MC2UPSTATE 1.000 .000 1.00 1.00 33000.000 1.00

MC3UPSTATE .994 .078 .00 1.00 33000.000 1.00

MC4UPSTATE .997 .057 .00 1.00 33000.000 1.00

MCSUPSTATE 1.000 .000 1.00 1.00 33000.000 1.00

1 IB1 .187 .511 4 0 13.934

2 IB2 .190 .503 5 0 11.677

3 1B3 1.065 1.251 6 1 29.565

4 IB4 .431 .864 6 0 20.241

5 IB5 .053 .240 2 0 9.465

6 UNLOAD .000 .011 1 0 .433

7 OB1 3.514 1.005 5 5 117.853

8 OB2 3.960 1.428 6 5 109.914

9 OB3 4.554 1.618 7 5 98.095

10 OB4 4.166 1.612 7 5 120.812

ii 0B5 2.518 .694 3 3 127.270

12 LOAD 70.500 44.417 150 149 1766.518

13 CALENDAR 12.997 1.584 17 12 13.217

Figure 6-7
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SLAM II

SIMULATION PROJECT : FMS PERFORMANCE BY FUHONG DAI

DATE 5/10/1994 RUN NUMBER 1OF 1

CURRENT TIME .6600E+05
STATISTICAL ARRAYS CLEARED AT TIME 0000E+00

**STATISTICS FOR TIME-PERSISTENT VARIABLES**

**FILE STATISTICS**

SUMMARY REPORT

MEAN STANDARD MINIMUM MAXIMUM
VALUE DEVIATION VALUE VALUE

TIME CURRENT
INTERVAL VALUE

UTILIZATION MCi .506 .500 .00 1.00 66000.000 1.00
UTILIZATION MC2 .575 .494 .00 1.00 66000.000 .00
UTILIZATION MC3 .856 .351 .00 1.00 66000.000 1.00
UTILIZATION MC4 .635 .481 .00 1.00 66000.000 1.00
UTILIZATION MC5 .304 .460 .00 1.00 66000.000 1.00
UTILIZATION AGV1 .757 .429 .00 1.00 66000.000 1.00
UTILIZATION AGV2 .384 .486 .00 1.00 66000.000 .00
AGV1UPSTATE .995 .067 .00 1.00 66000.000 1.00
AGV2UPSTATE .995 .074 .00 1.00 66000.000 1.00
MC1UPSTATE .996 .064 .00 1.00 66000.000 1.00
MC2UPSTATE .999 .038 .00 1.00 66000.000 1.00
MC3UPSTATE .994 .078 .00 1.00 66000.000 1.00
MC4UPSTATE .998 .040 .00 1.00 66000.000 1.00
MC5UPSTATE .995 .072 .00 1.00 66000.000 1.00

FILE AVERAGE STANDARD MAXIMUM CURRENT AVERAGE
NUMBER LABEL/TYPE LENGTH DEVIATION LENGTH LENGTH WAIT TIME

1 IB1 .243 .627 6 0 16.027
2 IB2 .185 .481 5 0 11.333
3 1B3 1.257 1.570 9 0 33.572
4 1B4 .451 .946 8 4 21.277
5 1B5 .075 .309 4 0 12.636
6 ULOAD .000 .012 1 0 .363
7 OB1 4.218 1.333 7 6 135.459
8 OB2 4.603 1.317 6 6 127.538
9 OB3 6.056 2.377 10 9 128.902

10 OB4 4.477 1.946 9 1 128.806
11 OB5 3.184 1.045 5 4 163.040
12 LOAD 146.426 88.025 304 303 3668.993
13 CALENDAR 13.187 1.596 18 14 13.256

Figure 6-7 Continued
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SLAM II

SIMULATION PROJECT FMS PERFORMANCE BY FUHONG DAI

DATE 5/10/1994 RUN NUMBER 1OF 1

CURRENT TIME .9900E+05
STATISTICAL ARRAYS CLEARED AT TIME 0000E+O0

**STATISTICS FOR TIME-PERSISTENT VARIABLES**

**FILE STATISTICS**

SUMMARY REPORT

MEAN STANDARD MINIMUM MAXIMUM
VALUE DEVIATION VALUE VALUE

TIME CURRENT
INTERVAL VALUE

UTILIZATION MCi .509 .500 .00 1.00 99000.000 1.00
UTILIZATION MC2 .570 .405 .00 1.00 99000.000 1.00
UTILIZATION MC3 .848 .359 .00 1.00 99000.000 1.00
UTILIZATION MC4 .637 .481 .00 1.00 99000.000 .00
UTILIZATION MC5 .303 .460 .00 1.00 99000.000 1.00
UTILIZATION AGV1 .758 .428 .00 1.00 99000.000 .00
UTILIZATION AGV2 .381 .486 .00 1.00 99000.000 .00
AGV1UPSTATE .995 .069 .00 1.00 99000.000 1.00
AGV2UPSTATE .996 .065 .00 1.00 99000.000 1.00
MC1UPSTATE .995 .067 .00 1.00 99000.000 1.00
MC2UPSTATE .999 .031 .00 1.00 99000.000 1.00
MC3UPSTATE .996 .064 .00 1.00 99000.000 1.00
MC4UPSTATE .993 .081 .00 1.00 99000.000 1.00
MC5UPSTATE .997 .059 .00 1.00 99000.000 1.00

FILE
NUMBER LABEL/TYPE

AVERAGE STANDARD MAXIMUM CURRENT AVERAGE
LENGTH DEVIATION LENGTH LENGTH WAIT TIME

1 IB1 .234 .590 6 1 15.030
2 IB2 .185 .482 5 0 11.458
3 1B3 1.181 1.549 9 2 32.597
4 1B4 .466 .935 8 0 21.852
5 IB5 .069 .291 4 0 11.264
6 UNLOAD .000 .011 1 0 .352
7 OB1 4.902 1.535 7 5 157.201
8 0B2 4.820 1.211 6 5 134.732
9 OB3 6.750 2.374 10 7 145.248

10 OB4 4.235 1.823 9 6 121.490
11 OB5 3.670 1.147 5 4 187.764
12 LOAD 223.703 133.291 455 454 5602.474
13 CALENDAR 13.280 1.620 18 13 13.384

Figure 6-7 Gontinued
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CONCLUSIONS

Presented in this study was the examination of two different approaches for investigating

the reliability (or availability ) of a flexible manufacturing system with an AGV based

material handling subsystem. The multiplicity of the AGVs, machines, processing routes

and sequences, and consequently the states, make the problems of reliability analysis

mathematically involved.

To build up an analytical model of the system, the state space approach( Markov processes)

was employed. State truncation and state merging techniques enabled adequate simplifica

(ion of the calculations. A 16 x 16 system of differential equations for the processing

subsystem and a 4 x 4 system of differential equations for the material handling subsystem

were solved for state probabilities i.e. the availabilities and unavailabilities, using Mathcad.

The SLAM II simulation model built was based on the basic repairable components of the

system and that two status transition modes were assumed. Different failure and repair

rates were examined for both simulation and mathematical analysis. The simulation result

of the availabilities and unavailabilities were very close to the analytical ones. Compared

to the analytical model, the simulation procedure was easier to be built up by carefully

defining the variables of every state of the system. For the analytical case, if based on the

status of basic components of the system to carry out the calculations, several matrices

must be composed and solved. This becomes much tedious if more system components

are involved and larger matrices must be handled.

A performance simulation model was also developed using SLAM II discrete event

simulation method. The model was used to examine the system operation. The result is

useful for the engineers designing similar flexible manufacturing systems to that shown

in Figure 2-1.
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Apndk I

MATHCAD Output of State Probability Calculations

of Material Handling Subsystem



I-I

Input the failure rate and repair rate

ORIGIN 1 TOL =0.0000001 ).:=
——

:= 1.0 i : 1..4 j 1..4
1(X)

Input the transition rates inmatrix form

-2•). k ). 0

R-
-+IL) 0

0 -.÷p.) )

0 .t -2•

Calculate the elgenvalues of matrix R and generate the diagnal matrix D at time t=5000.O

r := eigenvals (R) t := 5000.0 and

D(,) :=exp[(r1).t]

Calculate the elgenvectors and generate the matrix S:

Si eigenvec (R,ri) S(I,l) ;= Si1

S2 := eigenvec(R,r2) S(1,2) := S21

S3 := eigenvee(R,r3) S(13) := S31

S4 eigenvec(R,r4) S(1,4) := S4

Calculate the state probability matrix:

P SDS’

Given the initial state by a row vector as

PO;=(i 0 0 0)

The state probabilities can be calculated by:

SP :=POP

The state probabilities of the material handling subsystem at time “t with the initial

condition of PU Is as follow:

SP = ( 0.98 0.01 0.01 9.803. )



Appendix II

MATHCAD Output of State Probability Calculations

of the Processing Subsystem



11-i

Input the failure rate and repair rate

80 90 10() 110 120

1 1 1 1 1
:=— *2 :=—

ORIGIN 1 TOL 0.0000001 i 1.. 16 j 1.. 16

Construct the transition rate matrix R and first define the diagnal elements:

ROl := -(1÷ A2÷ 3÷ A4÷ )5) R99 := -(i1 ÷ i4)

R22 :=-(i1 + k2÷ A3÷ 4÷ )4 RiO :-(i1 ÷ i5)

R33 := -1÷ + A.3÷ 4÷ A5) Ru := -(i2 ÷ ii3)

R44 :=-(M÷ A2-t- ii3 j- ).4÷ ?.5) R12 :=-(ti2 ÷ i4)

R55 := -(1÷ 2÷ )3+ t4 ÷ R13 := -(t3 ÷ i5)

R66 := -(M÷ A2÷ A3÷ A.4÷ i5) R14 := -(p3 ÷ p4)

R77 := -(p4 + p2) R15 := -(i3 + p5)

R88 := -(t1 ÷ R16 := -(p4 ÷ p5)

ROl i ).2 A3 4 5 0. 0. 0. 0. 0.

p4 R22 0. 0. 0. 0. )2 3 2\.4 5 0.

p2 0. R33 0. 0. 0. Al 0. 0. 0. A3

p3 0. 0. R44 0. 0. 0. Al 0. 0. A2

0. 0. 0. R55 0. 0. 0. Al 0. 0.

uS 0. 0. 0. 0. R66 0. 0. 0. Al 0.

0. p2 p1 0. 0. 0. R77 0. 0. 0. 0.

0. p3 0. [11 0. 0. 0. R88 0. 0. 0.
R1:= R2:=

0. i’ 0. 0. p1 0. 0. 0. R99 0. 0.

0. p5 0. 0. 0. p1 0. 0. 0. RIO 0.

0. 0. p3 p4 0. 0. 0. 0. 0. 0. Ru

0. 0. p4 0. p2 0. 0. 0. 0. 0. 0.

0. 0. p5 0. 0. p2 0. 0. 0. 0. 0.

0. 0. 0. p4 p3 0. 0. 0. 0. 0. 0.

0. 0. 0. p5 0. p3 0. 0. 0. 0. 0.

0. 0. 0. 0. p5 p4 0. 0. 0. 0. 0.
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0. 0. 0. 0. 0.

0. 0. 0. 0. 0.

A4 ;s 0. 0. 0.

0. 0. ).4 25 0.

A2 0. )3 0. )5

0. 2 0. 3 )4 Augmenting the three matrices Ri ,R2 and R3

0. 0. 0. 0. 0. R4 augment (Ri ,R2)
0. 0. 0. 0. 0.

R3
0. 0. 0. 0. 0.

0. 0. 0. 0. 0. R augment(R4,R3)

0. 0. 0. 0. 0.

R12 0. 0. 0. 0.

0. R13 0. 0. 0.

0. 0. R14 0. 0.

0. 0. 0. R15 0.

0. 0. 0. 0. R16

—0.051 0.013 0.011 0.01 0.009 0.008 0 0 0 0 0 0 0 0 0 0

1.25 —1.289 0 0 0 0 0.011 0.01 0.009 0.008 0 0 0 0 0 0

1.111 0 —1.151 0 0 0 0.013 0 0 0 0.01 0.009 0.008 0 0 0

1 0 0 —1.041 0 0 0 0.013 0 0 0.011 0 0 0.009 0.008 0

0.909 0 0 0 -0.951 0 0 0 0.013 0 0 0.011 0 0.01 0 0.Ou
R 0.833 0 0 0 0 -0.876 0 0 0 0.013 0 0 0.011 0 0.01 0009

0 1.1111.250 0 0 —2.3610 0 0 0 0 0 0 0 0

0 1 0 1.250 0 0 —2.250 0 0 0 0 0 0 0

0 0.9090 0 1.250 0 0 -2.1590 0 0 0 0 0 0

0 0.833 0 0 0 1.25 0 0 0 —2.083 0 0 0 0 0 0

0 0 1 0.9090 0 0 0 0 0 —2.1110 0 0 0 ()

0 0 0.9090 1.1110 0 0 0 0 0 —2.020 0 0 0

0 0 0.8330 0 1.1110 0 0 0 0 0 —1.833() 0 0

0 0 0 0.909 1 0 0 0 0 0 0 0 0 —1.909 0 0

0 0 0 0.8330 1 0 0 0 0 0 0 0 0 -1.833()

0 0 0 0 0.833 0.909 0 0 0 0 0 0 0 0 0 -I.7-l2
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Calculate the eigenvalues of matrix R and arbitrarily give the time point t=5000.0

then to generate the diagnal matrix D:

r eigenvais (R)

D(1,1) exp[(r1).t]

5000.0

Calculate the elgenvectors and generate the matrix S:

Si eigenvec (R ,r1) S5 eigenvec(R,r5) S9 eigenvec(R,r9)

S2 eigenvec(R,r2) S6 eigenvec(R,r6) SiO eigenvec(R,r10)

S3 eigenvec(R ,r3) S7 eigenvec(R ,r7) Sli eigenvec(R ,rii)

S4 eigenvec(R ,r4) S8 := eigenvec(R ,r8) S12 eigenvec(R ,r12)

S(1,j) Si1 S(,5) := S5 S(f,9) S9

S(I,2) S21 S(1,6) S6 S(i,lo) S101

S(1,3) S31 S(1,7) S71 S(1,li)

S(1,4) S41 S(f,g) S81 S(,l2) S121

Calculate the state probabilly matrix using Equation,

P SDS1

Given the Initial condition by a row vector

P0:=(1000000000000000)

Si3 eigenvec(R,r13)

S14 eigenvec(R ,r14)

S15 eigenvec(R,r15)

S16 eigenvec(R,r16)

S(,13) S131

5(i,14) Si41

S(1,15) S151

S(1,16) S16i

The state probabilities at time ‘t ‘ with the initial condition P0 can be calculated

through the Equation,

SP :=P0P
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The ouput of the state probabilities given by a eolunrn vector as klIow:

0.914

0.009

0.009

0.009

0.009
T

= 0,009

9.i45.i0

9.132. 10’

9.l42 10’

9.147. 10”

9.135. 10

9.144’ 10’

9.703.10

9.134. 10

9.138. 10

9.146. 10

The state probabilities of reduced state space of the processing subsystem

11-4



Appendix III

Computer Listing of SLAM 11 Discrete Event Simulation

of State Probabilities of Material Handling Subsystem



“I—i

SUBROUTINE EVENT( I)
GO TO (1,2),I

C
C DEFINE EVENT CODE 1 AS SUBROUTINE “FAILURE”
C

1 CALL FAILURE
RETURN

C
C DEFINE EVENT CODE 2 AS SUBROUTINE REPAIR
C

2 CALL REPAIR
RETURN
END

C
SUBROUTINE INTLC

$INCLUDE: PARAIVI. INC
$INCLUDE: ‘SCOMi .COM
C
C INITIALIZE AGVS TO UP STATE
C
C AGV1 IS UP

XX(1)1 .0
C AGV2 IS UP

XX(2)1 .0
C BOTH AGVS ARE UP

XX(8)1 .0
C ONLY AGV1 IS DOWN

XX(9)0 .0
C ONLY AGV2 IS DOWN

XX(10)0.0
C BOTH AGV1 AND AGV2 ARE DOWN

XX(11)=0. 0
C
C SCHEDULE EVENT 1 (FAILURE)
C
C ASSIGN ATTRIBUTE 1 THE AGV #
C

ATRIB(1)=1 .0
CALL SCHDL(1,EXPON(100. , 1) ,ATRIB)
ATRIB(1)=2.0
CALL SCHDL(1,EXPON(100.,1),ATRIB)

C
RETURN
END

C
SUBROUTINE FAILURE

$INCLUDE: ‘PARAN.INC’
$INCLUDE: SCOM1.COM
C

IAGVATRIB ( 1)
C
C SCHEDULE REPAIR EVENT
C

GO TO(201,202),IAGV
C

201 XX(1)=0.0
GO TO 300

202 XX(2)0.0
C

300 XX(8)0.0
IF(XX(1) .EQ.0.0.AND.XX(2) .GT.0.0) THEN

XX(9)1 .0
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111—2

ELSE
IF(XX(1).GT.0.0.AND.XX(2).EQ.0.0) THEN

XX(10)=1.0
ELSE

IF(XX(1) .LT.1.0.AND.XX(2).LT.1.0) THEN
XX(11)=1.0

ENDIF
END IF

ENDIF
GO TO(301,302),IAGV

301 CALL SCHDL(2,EXPON(1.,1),ATRIB)
GO TO 350

302 CALL SCHDL(2,EXPON(1. , 1) ,ATRIB)
C

350 ATRIB(1)IAGV*1.O
RETURN
END

C
SUBROUTINE REPAIR

$INCLUDE: PARAM. INC’
$INCLUDE: SCOM1 .COM
C

IAGV=ATRIB ( 1)
C

XX(8)0 .0
XX(9)=0.0
XX(10)=0.0
XX(11)0 .0

C
GO TO(401,402),IAGV

401 XX(1)1.0
GO TO 450

402 XX(2)=1.0
450 IF(XX(1) .GT.0.0.AND.XX(2) .GT.0.0) THEN

XX(8)=1 .0
ELSE

IF(XX(1).EQ.0.0.AND.XX(2).GT.0.0) THEN
XX(9)=1.0

ELSE
IF(XX(1) .GT.0.0..AND.XX(2) .EQ.0.0) THEN

XX( 10)1 .0
ELSE

IF(XX(1) .EQ.0.0.AND.XX(2) .EQ.0.0) THEN
XX(11)=1.0

ENDIF
ENDIF

ENDIF
ENDIF

C
C SCHEDULE SUBSEQUENT FAILURE EVENTS
C

GO TO(101,102),IAGV
C

101 CALL SCHDL(1,EXPON(100. , 1) ,ATRIB)
GO TO 550

102 CALL SCHDL(1,EXPON(100. ,1),ATRIB)
C

550 ATRIB(1)=IAGV*1.0
RETURN
END
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Appendix IV

Computer Listing of SLAM 11 Discrete Event Simulation

of State Probabilities of the Processing Subsystem



SUBROUTINE EVENT(I)
GO TO (1,2),I

C
C DEFINE EVENT CODE 1 AS SUBROUTINE ‘FAILURE”
C

1 CALL FAILURE
RETURN

C
C DEFINE EVENT CODE 2 AS SUBROUTINE “ REPAIR
C

2 CALL REPAIR
RETURN
END

C
SUBROUTINE INTLC

$INCLUDE: ‘PARM.INC
$INCLUDE: ‘SCOMi .COM’
C
C INITIALIZE MACHINES TO UP STATE
C
C MCi IS UP

XX(3)=1 .0
C MC2 IS UP

XX(4)=i. 0
C MC3 IS UP

XX(5)1.0
C MC4 IS UP

XX(6)1 .0
C MC5 IS UP

XX(7)1. 0
C ALL THE MACHINES ARE UP

XX(21)=1.0
C ONLY MCi IS DOWN

XX(22)0 .0
C ONLY MC2 IS DOWN

XX(23)=0 .0
C ONLY MC3 IS DOWN

XX(24)0.0
C ONLY MC4 IS DOWN

XX(25)0.0
C ONLY MC5 IS DOWN

XX(26)=0 .0
C ONLY MCi AND MC2 ARE DOWN

XX(27)=0 .0
.ONLY MCi AND
XX(28)=0.0

.ONLY MCi AND
XX(29)0 .0

.ONLY MCi AND
XX(30)=0 .0

.ONLY MC2 AND
XX(31)=0 .0

.ONLY MC2 AND
XX(32)=0.0

.ONLY MC2 AND
XX(33)=0. 0

.ONLY MC3 AND
XX(34)=0 .0

.ONLY MC3 AND
XX(35)0 .0

.ONLY MC4 AND
XX(36)=0.0

MC3 ARE DOWN

MC4 ARE DOWN

MC5 ARE DOWN

MC3 ARE DOWN

MC4 ARE DOWN

MC5 ARE DOWN

MC4 ARE DOWN

MC5 ARE DOWN

MC5 ARE DOWN

7?

‘v-i

C

C

C

C

C

C

C

C

C

C



IV- 2

C SCHEDULE EVENT 1 (FAILURE)
C
C ASSIGN ATTRIBUTE 1 THE MACHINE #
C

ATRIB(1)1.0
CALL SCHDL(1,EXPON(80.,1),ATRIB)
ATRIB(1)=2.0
CALL SCHDL(1,EXPON(90. , 1),ATRIB)
ATRIB(1)=3.0
CALL SCHDL(1,EXPON(100. , 1) ,ATRIB)
ATRIB(1)4 .0
CALL SCHDL(1,EXPON(110. , 1) ,ATRIB)
ATRIB(1)5.0
CALL SCHDL(1,EXPON( 120., 1) ,ATRIB)

C
RETURN
END

C
SUBROUTINE FAILURE

$INCLUDE: PARAI4.INC
$INCLUDE: SCOM1 .COM’
C

XMC=ATRIB ( 1)
IMC=XMC

C
C SCHEDULE REPAIR EVENT
C

GO TO(201,202,203,204,205) ,IMC
C

201 XX(3)0.0
GO TO 300

202 XX(4)0.0
GO TO 300

203 XX(5)=0.0
GO TO 300

204 XX(6)0.0
GO TO 300

205 XX(7)=0.0
C

300 SUM=XX(3)+XX(4)+XX(5)+XX(6)+XX(7)
XX(21)0.0

C IF ENCOUNTERING STATE 2
IF(XX(3) .EQ.0.0.AND.SUM.EQ.4.0) THEN

XX(22)=1.0
ENDIF

C IF ENCOUNTERING STATE 3
IF(XX(4) .EQ.0.0.AND.SUM.EQ.4.0) THEN

XX(23)1.0
ENDIF

C IF ENCOUNTERING STATE 4
IF(XX(5) .EQ.0.0.AND.SUM.EQ.4.0) THEN

XX(24)1 .0
ENDIF

C IF ENCOUNTERING STATE S
IF(XX(6) .EQ.0.0.AND.SUM.EQ.4.0) THEN

XX ( 25 ) = 1 . 0
ENDIF

C IF ENCOUNTERING STATE 6
IF(XX(7) .EQ..0.0.AND.SUM.EQ.4.0) THEN

XX(26)1.0
ENDIF

C IF ENCOUNTERING STATE 7
IF(SUM.EQ.3.0) THEN



IV- 3

IF(XX(3) .EQ.0.0.AND.XX(4) .EQ.0.0) THEN
XX(27)=1 .0

ENDIF
C IF ENCOUNTERING STATE 8

IF(XX(3) .EQ.0.0.AND.XX(5) .EQ.0.0) THEN
XX(28)=1 .0

ENDIF
C IF ENCOUNTERING STATE 9

IF(XX(3) .EQ.0.0.AND.XX(6) .EQ.0.0) THEN
XX(29)1.0

ENDIF
C IF ENCOUNTERING STATE 10

IF(XX(3) .EQ.0.0.AND.XX(7) .EQ.0.0) THEN
XX(30)1 .0

ENDIF
C IF ENCOUNTERING STATE 11

IF(XX(4) .EQ.0.0.AND.XX(5) .EQ.0.0) THEN
XX(31)1 .0

ENDIF
C IF ENCOUNTERING STATE 12

IF(XX(4) .EQ.0.0.AND.XX(6) .EQ.0.0) THEN
XX(32)1 .0

ENDIF
C IF ENCOUNTERING STATE 13

IF(XX(4) .EQ.0.0.AND.XX(7) .EQ.0.0) THEN
XX(33)=1 .0

ENDIF
C IF ENCOUNTERING STATE 14

IF(XX(5) .EQ.0.0.AND.XX(6) .EQ.0.0) THEN
XX(34)=1 .0

ENDIF
C IF ENCOUNTERING STATE 15

IF(XX(5) .EQ.0.0.AND..XX(7) .EQ.0.0) THEN
XX(35)=1.0

ENDIF
C IF ENCOUNTERING STATE 16

IF(XX(6) .EQ.0.0.AND.XX(7) .EQ.0.0) THEN
XX( 36)=1.0

ENDIF
ENDIF

C
DT1=.8
DT2=.9
DT3=1.
DT4=1.1
DT5=1 .2

C
GO TO(301,302,303,304,305) ,IMC

C
301 CALL SCHDL(2,EXPON(DT1, 1) ,ATRIB)

GO TO 350
302 CALL SCHDL(2,EXPON(DT2,1),ATRIB)

GO TO 350
303 CALL SCHDL(2,EXPON(DT3,1),ATRIB)

GO TO 350
304 CALL SCHDL(2,EXPON(DT4,1),ATRIB)

GO TO 350
305 CALL SCHDL(2,EXPON(DT5,1),ATRIB)

C
350 ATRIB(1)IMC*1.0

RETURN
END

C



f/f

SUBROUTINE REPAIR
$INCLUDE: ‘PARAM. INC
$INCLUDE: ‘SCOMi .COM
C

XMC=ATRIB ( 1)
IMC’XMC
XX(21)0.0
XX(22)0 .0
XX(23)=0.0
XX(24)=0.0
XX(25)=0.0
XX(26)=0.0
XX(27)=0.0
XX(28)=0.0
XX(29)=0.0
XX(30)=0 .0
XX(31)0.0
XX(32)=0 .0
XX(33)=0.0
XX(34)’O.O
XX(35)=0.0
XX(36)=0.0

C
GO TO(401,402,403,404,405) ,IMC

401 XX(3)=1.0
GO TO 450

402 XX(4)=1.0
GO TO 450

403 XX(5)1.0
GO TO 450

404 XX(6)=1.0
GO TO 450

405 XX(7)1.0
GO TO 450

450 SUM=XX(3)+XX(4)+XX(5)+XX(6)+XX(7)
C
C IF ENCOUNTERING STATE 1

IF(SUM.EQ.5.0) THEN
XX ( 2 1 ) = 1 . 0

ELSE
IF(SUM.EQ.4.0) THEN

C IF ENCOUNTERING STATE 2
IF(XX(3) .EQ.0.0) THEN

XX(22)=1 .0
ENDIF

C IF ENCOUNTERING STATE 3
IF(XX(4).EQ.0.0) THEN

XX(23)1 .0
ENDIF

C IF ENCOUNTERING STATE 4
IF(XX(5).EQ.0.0) THEN

XX(24)=1 .0
ENDIF

C IF ENCOUNTERING STATE 5
IF(XX(6) .EQ.0.0) THEN

XX(25)=1 .0
END IF

C IF ENCOUNTERING STATE 6
IF(XX(7).EQ.0.0) THEN

XX(26)=1.0
ENDIF

ELSE
C

IV-4



IV— 5

IF(SUM.EQ.3.0) THEN
C IF ENCOUNTERING STATE 7

IF(XX(3) .EQ.0.0.AND.XX(4) .EQ.0.0) THEN
XX ( 27) 1 . 0

ENDIF
C IF ENCOUNTERING STATE 8

IF(XX(3) .EQ.0.0.AND.XX(5) .EQ.0.0) THEN
XX(28)=1 .0

ENDIF
C IF ENCOUNTERING STATE 9

IF(XX(3) .EQ.0.0.AND.XX(6) .EQ.0.0) THEN
XX(29)=1 .0

ENDIF
C IF ENCOUNTERING STATE 10

IF(XX(3) .EQ.0.0.AND.XX(7) .EQ.0.0) THEN
XX(30)1.0

ENDIF
C IF ENCOUNTERING STATE 11

IF(XX(4) .EQ.0.0.AND.XX(5) .EQ.0.0) THEN
XX(31)=1.0

ENDIF
C IF ENCOUNTERING STATE 12

IF(XX(4) .EQ.0.0.AND.XX(6) .EQ.0.0) THEN
XX(32)=1.0

ENDIF
C IF ENCOUNTERING STATE 13

IF(XX(4) .EQ.0.0.AND.XX(7) .EQ.0.0) THEN
XX(33)=1. 0

END IF
C IF ENCOUNTERING STATE 14

IF(XX(5) .EQ.0.0.AND.XX(6) .EQ.0.0) THEN
XX(34)1 .0

ENDIF
C IF ENCOUNTERING STATE 15

IF(XX(5) .EQ.0.0.AND.XX(7) .EQ.0.0) THEN
XX ( 35 ) = 1 . 0

ENDIF
C IF ENCOUNTERING STATE 16

IF(XX(6) .EQ.0.0.AND.XX(7) .EQ.0.0) THEN
XX ( 36 ) = 1 . 0

ENDIF
ENDIF

ENDIF
ENDIF

C
C SCHEDULE SUBSEQUENT FAILURE EVENTS
C

GO TO(101,102,103,104,105), IKC
C

101 CALL SCHDL(1,EXPON(80.,1),ATRIB)
GO TO 550

102 CALL SCHDL(1,EXPON(90. , 1) ,ATRIB)
GO TO 550

103 CALL SCHDL(1,EXPON( 100.11) ,ATRIB)
GO TO 550

104 CALL SCHDL(1,EXPON(110.,1),ATRIB)
GO TO 550

105 CALL SCHDL(1,EXPON(120. , 1) ,ATRIB)
C

550 ATRIB(1)IMC*1.0
RETURN
END
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SUBROUTINE EVENT ( I)
GOTO (1,2,3,4,5), I

1 CALL GNRJT
RETURN

2 CALL DSPAGV
RETURN

3 CALL PROCS
RETURN

4 CALL BRKDN
RETURN

5 CALL REPAIR
RETURN
END

C
SUBROUTINE INTLC

$INCLUDE: PARAM.INC’
$INCLUDE: SCOM1 .COM’

COMMON/DAI1/MTV(5, 6)
COMMON/DAI2/PST(5, 6)
COMMON/DAI3/TRT(8, 8)
COMMON/DAI4/JAGV( 2)
COMMON/DAIS/lOB(S)
COMMON/DAI6/ISTP(2)
COMMON/DAI7/ITO( 2)
COMMON/DAI8/LD(2)
COMMON/DAI9/IUP(7)
COMMON/DAI1O/1U4T( 7)
COMMON/DAI11/IJT(7)
COMMON/DAI12/JIDX( 7)

C SET THE ORIGINAL STATUS OF THE MACHINES, AGVS AND OUTPUT BUFFERS
NMC=5
NLU1
NAGV=2
NOB5

C ESTABLISH 5 MACHINES
DO 10 1=1, (NMC+NLU)
10 XX(I)0.

C ESTABLISH 2 AGVS
DO 11 J=1,NAGV
JAGV(J)=J+NMC+NLU+NOB
XX(JAGV(J) )=0.

C AT THE BEGINNING, BOTH AGVS STOP AT LOCATION 7 AND
C...... ‘ITO’ IS THE DESTINATION OF AN AGV

ISTP(J)=7
ITO ( J ) 0

C ‘LD’GIVES THE LOADING STATUS OF AGV AND 0’ MEANS EMPTY
ii LD(J)=0

C ESTABLISH 5 OUTPUT BUFFERS (lOB)
DO 12 K=1,NOB

12 IOB(K)=K+NMC+NLU
C SET THE ORIGINAL STATUS OF AGVS AND MACHINES UP

DO 15 11=1,7
IUP( II)=II+NMC+NOB+NAGV+NLU

15 XX(IUP(II))=1.0
C DEFINE THE TRAVEL TIME (TRT) OF AGV

TRT(1,2)=8.
TRT(1, 3)=8.
TRT(1,4)8.
TRT( 1, 5)=4.
TRT(i,6)’=4.
TRT(1,7)2.
TRT(1,8)=6.



V- 2

TRT(2, l)=8.
TRT(2, 3)=4.
TRT(2,4)=4.
TRT(2,5)8.
TRT(2,6)8.
TRT(2,7)=6.
TRT(2, 8)=2.
TRT(3, 1)=8.
TRT(3, 2)4.
TRT(3, 4)=4.
TRT(3, 5)=8.
TRT(3,6)=8.
TRT(3,7)=6.
TRT(3,8)=2.
TRT(4, l)=8.
TRT(4, 2)4.
TRT(4,3)4.
TRT(4,5)=8.
TRT(4,6)=8.
TRT(4,7)=6.
TRT(4,8)2.
TRT(5, 1)=4.
TRT(5,2)=8.
TRT(5,3)=8.
TRT(5,4)8.
TRT(5, 6)=4.
TRT(5,7)=2.
TRT(5,8)=6.
TRT(6, 1)=4.
TRT(6,2)=8.
TRT(6, 3)=8.
TRT(6,4)=8.
TRT(6,5)=4.
TRT(6,7)=2.
TRT(6,8)=6.
TRT(7, 1)=2.
TRT(7 , 2)=6.
TRT(7,3)=6.
TRT(7 ,4)=6.
TRT(7,5)2.
TRT(7 , 6)=2.
TRT(7 8)=4.
TRT(8, 1)=6.
TRT(8,2)=2.
TRT(8, 3)=2.
TRT(8,4)=2.
TRT(8,5)=6.
TRT(8,6)=6.
TRT(8,7)4.

C DEFINE THE MACHINES TO BE VISITED(MTV)
MTV(1, 1)=1
MTV(1,2)5
MTV(1,3)=3
MTV(1,4)2
MTV(1, 5)=6
MTV(2, 1)=2
MTV(2, 2)=3
MTV(2, 3)=5
MTV(2, 4)=4
MTV(2, 5)=6
MTV(3, 1)=3
MTV(3, 2)=4
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MTV ( 3, 3) 1
MTV(3 , 4)=6
MTV(4, 1)=4
MTV ( 4 , 2 ) = 5
MTV ( 4, 3 ) = 1
MTV(4 , 4)=6
MTV(5, 1)=5
MTV ( 5, 2 ) = 1
MTV(5, 3)=4
MTV(5 , 4)=2
MTV(5, 5)=3
MTV(5,6)=6

C DEFINE THE PROCESSING TIME PST
PST(1,1)=10.
PST(1, 2)=10.
PST( 1, 3)=15.
PST(1,4)=12 .5
PST(1,5)=0.5
PST(1, 6)=0.
PST(2, 1)=15.
PST(2, 2)=10.
PST(2, 3)=12 .5
PST(2, 4)=10.
PST(2 , 5)=0 .5
PST(2,6)=0.
PST(3, 1)=12.5
PST(3,2)=15.
PSP(3, 3)=12 .5
PST(3,4)=0.5
PST(3,5)=0.
PST(3, 6)=0.
PST(4, 1)=12.5
PST(4,2)=10.
PST(4, 3)=15.
PST(4,4)0.5
PST(4,5)0.
PST(4,6)=0.
PST(5,1)=10.
PST(5,2)=10.
PST(5,3)=12.5
PST(5,4)=10.
PST(5, 5)=12 .5
PST(5, 6)=0.5

C DEFINE ATTRIBUTE 3 THE INDEX # OF A MACHINE TO BE VISITED
ATRIB(3)1.

C SCHEDULE CREATING THE JOB AT TIME 0.
CALL SCHDL(1,0.,ATRIB)

C SCHEDULE THE INITIAL BREAK DOWN EVENT
ATRIB(5)=1.0
CALL SCHDL(4,EXPON(15000.,1),ATRIB)
ATRIB(5)=2 .0
CALL SCHDL(4,EXPON(15000.,1),ATRIB)
ATRIB(5)=3.0
CALL SCHDL(4,EXPON(19200. , 1) ,ATRIB)
ATRIB(5)=4 .0
CALL SCHDL(4,EXPON(19800.,1),ATRIB)
ATRIB(5)=5.0
CALL SCHDL(4,EXPON(20400.,1),ATRIB)
ATRIB(5)=6 .0
CALL SCHDL(4,EXPON(21000.,1),ATRIB)
ATRIB(5)=7.0
CALL SCHDL(4,EXPON(21600.,1),ATRIB)
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RETURN
END

C
SUBROUTINE GNRJT

$INCLUDE: PARAM. INC
$INCLUDE: SCOM1 .COM

COMI4ON/DAI1/MTV(5, 6)
COM1v1ON/DAI2/PST(, 6)
COMNON/DAI3/TRT(8, 8)
COMMON/DAI4/JAGV( 2)
COMMON/DAI5/IOB(5)
COMMON/DAI6/ISTP(2)
COMMON/DAI7/ITO(2)
COMMON/DAI8!LD(2)
COMMON/DAI9/IUP(7)
COMMON/DAI1O/RMT(7)
COMNON/DAI11/IJT(7)
COMMON/DAI12/JIDX( 7)

C SCHEDULE SUBSEQUENT GENERATION OF JOB TYPE
CALL SCHDL(1,UNFRM(20.0,30.0, 1),ATRIB)

C GENERATE JOB TYPE UNIFORMLY
Z=UNFRM(0.0, 1.0,1)
IF(Z .GE.0 .0.AND.Z .LE.0.2) XJT=’1.
IF(Z.GT.0.2 .AND.Z.LE.0.4) XJT2.
IF(Z .GT.O.4.AND.Z.LE.0.6) XJT3.
IF(Z.GT.0.6.AND.Z.LE.0.8) XJT4.
IF(Z.GT.O.8.AND..Z.LE. 1.0) XJT=5.

C DEFINE ATTRIBUTE 2 THE JOB TYPE #
ATRIB(2)=XJT
IDX=ATRIB(3)

C ASSIGN ATTRIBUTE 1 THE MARK TIME
ATRIB ( 1) TNOW

C DEFINE JT’ JOB TYPE, JFM’JOB FROM AND ‘JTO’JOB TO

C . .STORE JOB GENERATD IN FILE 12
CALL FILEM(12,ATRIB)
JFM=6
NN=NFIND(1,12,2,0,XJT,0.0)
JTXJT

C CHECK IF THE SIZE OF THE INPUT BUFFER OF A MACHINE LESS THAN 10

IF(NNQ(JT).LE.10.0) GO TO 80
RETURN

C SCHEDULE DESPATCHING AGV
80 IF(XX(JAGV(1)).EQ.0..AND.XX(JAGV(2)).EQ.0.) GOTO 100

IF(XX(JAGV(1)).EQ.0..AND.XX(JAGV(2)).GT.0.) GO TO 200

IF(XX(JAGV(2)).EQ.0..AND.XX(JAGV(1)).GT.0.) GO TO 200

90 RETURN
100 IF(XX(IUP(1)).EQ.0.0.AND.XX(IUP(2)).EQ.0.0) GO TO 90

CALL RMOVE(NN, 12 ,ATRIB)
JTO=MT’J(JT, IDX)
T1=TRT(ISTP( 1) ,JFM)
T2=TRT(ISTP(2) ,JFM)
IF(T2.LT.T1) THEN
IAGV=2

ELSE
IAGV 1

ENDIF
IF(XX(IUP(1)) .EQ.0.0) THEN

IAGV=2
ELSE

IF(XX(IUP(2)) .EQ.0.0) THEN
IAGV=1

ENDIF
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ENDIF
C SCHEDULE CALLING THE NEAREST AGV

XX(JAGV(IAGV) )1 .0
C IF THE CALLED AGV STOPS AT 8

IF(ISTP(IAGV).EQ.8) THEN
DT=TRT(ISTP(IAGV) , 7)
ITO(IAGV)=7

ELSE
DT=TRT(ISTP(IAGV) ,JFM)
ITO ( IAGV)JFM

ENDIF
GO TO 70

C IF ONLY ONE AGV IDLE
200 IF(XX(JAGV(1)).EQ.0.0.AND.XX(IUP(1)).EQ.0.0) GO TO 90

IF(XX(JAGV(2)) .EQ.0.0.AND.XX(IUP(2)) .EQ.0.0) GO TO 90
CALL R1’4OVE(NN,12,ATRIB)
JTO=MTV(JT, IDX)
IF(XX(JAGV(l)).GT.0.) THEN

XIDLE=2.
ELSE

XIDLE=1.
ENDIF
IDLE=XIDLE
XX(JAGV(IDLE))=1..0
IF(IDLE.EQ.1) THEN

IBUSY=2
ELSE

IBUSY=l
END IF
IF(ISTP(IDLE).EQ.8) THEN

ITO(IDLE)=7
IF(ISTP(IBUSY).EQ.7.AND.ITO(IBLJSY).EQ.8) THEN

DT=TRT(ISTP(IDLE) ,7)*2
ELSE

DT=TRT(ISTP(IDLE) , 7)
ENDIF

ELSE
DT=TRT(ISTP(IDLE) ,JFM)
ITO(IDLE)JFM

ENDIF
IAGVIDLE

70 ATRIB(2)=JT*1.0
ATRIB(3)=IDX*1.
ATRIB(4)=IAGV*1.
IJT(IAGV)=JT
JIDX(IAGV)=IDX
CALL SCHDL(2,0.5*DT,ATRIB)
RETURN
END

C
SUBROUTINE DSPAGV

$INCLtJDE: ‘PARAM. INC
$INCLtJDE: SCOM1 .COM

COMMON/DAI1/MTV(5, 6)
COMMON/DAI2/PST(5, 6)
COMMON/DAI3/TRT(8, 8)
COMMON/DAI4/JAGV(2)
COMMON/DAI5/IOB(5)
COMMON/DAI6/ISTP(2)
COMI40N/DAI7/ITO(2)
COMMON/DAI8/LD(2)
COMMON/DAI9/IUP( 7)
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COMMON/DAI1O/RMT(7)
COMMON/DAI11/IJT(7)
COMMON/DAI12/JIDX(7)

C SCHEDULE DESPATCHING THE BUSY AGVS
IF(XX(JAGV(1)).GT.0..AND.XX(JAGV(2)).GT.0.) GOTO 100
IF(XX(JAGV(1)).GT.0..AND.XX(JAGV(2)).EQ.0.) GO TO 200
IF(XX(JAGV(2)).GT.0..AND.XX(JAGV(1)).EQ.O.) GOTO 200

C IF BOTH AGVS ARE BUSY
100 IF(XX(IUP(1)).EQ.0.0.AND.XX(IUP(2)).EQ.0.0) GOTO 320

lAGV=ATRIB(4)
GO TO(39,40), IAGV

C FOR AGV(1)
39 IF(XX(IUP(1)).EQ.0.0) GOTO 320

ISTP(1)=ITO(1)
JT=ATRIB (2)
IDX=ATRIB(3)
IF(IDX.EQ.1) THEN
JFM=6
ELSE
JFM=MTV(JT, (IDX—1))
ENDIF
JTO=t’ITV ( JT, IDX)
IF(LD(1).EQ.1) GO TO 41

C IF REQUESTED AGV ARRIVES
IF(ISTP(1).EQ.JFM) THEN

LD(1)1
IF(JFM.GT.1.AND.JFM.LT.5) THEN

ITO( 1)=8
DTTRT(JFM, 8)

ELSE
ITO(1)=7
DT=TRT(JFM, 7)

ENDIF
ELSE

ITO(1)=JFM
DT=TRT(ISTP(1) ,JFM)

ENDIF
C SCHEDULE DESPATCHING AGV(1)

GO TO 300
C WHEN PART IS LOADED ON AGV(1)

41 IF(ISTP(1)..EQ.JTO) THEN
IAGV= 1
GO TO 43

ELSE
IF(JTO.GT. 1.AND.JTO.LT.5) THEN

IF(ISTP(1).EQ.8) THEN
ITO(1)JTO
IF(ISTP(2).EQ.JTO.AND.ITO(2).EQ.8) THEN

DT=TRT(ISTP(1),ITO(1))*3
ELSE

DT=TRT(ISTP(1),ITO(1))*2
ENDIF

ELSE
IF(ISTP(1) .EQ.7) THEN

ITO(1)8
DT=TRT(ISTP(1) ,ITO(1))

ENDIF
ENDIF

ELSE
C IF DESTINATION IS MC1,MC5 OR L/U STATION

IF(ISTP(1).EQ.7) THEN
ITO(1)=JTO

V— 6
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IF(ISTP(2) .EQ.JTO.AND.ITO(2) .EQ.7) THEN
DTTRT(ISTP(1),ITO(1))*3

ELSE
DT=TRT(ISTP(1) ,ITO(1))*2

END IF
ELSE

IF(ISTP(1).EQ.8) THEN
ITO(1)=7
IF(ISTP(2).EQ.7.AND.ITO(2).EQ.8) THEN

DT=TRT(ISTP(1),ITO(1))*2
ELSE

DTTRT(ISTP( 1), ITO( 1))
ENDIF

ENDIF
ENDIF

END IF
ENDIF

C SCHEDULE DESPATCTCHING AGV(1)
GO TO 300

C FOR AGV(2)
40 IF(XX(IUP(2)).EQ.0.0) GOTO 320

ISTP(2)=ITO(2)
JT=ATRIB (2)
IDX=ATRIB(3)
IF(IDX.EQ.1) THEN

JFM=6
ELSE

JFM=MTV(JT, (IDX-1))
ENDIF

JTO=MTV ( JT, IDX)
IF(LD(2).EQ.1) GO TO 44

C WHEN NO PART LAODED ON AGV(2)
IF(ISTP(2).EQ.JFM) THEN

LD (2) = 1
IF(JFM.GT.1.AND.JFM.LT.5) THEN

ITO(2)=8
DT=TRT(JFM, 8)

ELSE
ITO(2)=7
DT=TRT(JFM, 7)

ENDIF
ELSE

ITO(2)=JFM
DT=TRT(ISTP(2) ,JFM)

ENDIF
C SCHEDULE DESPATCHING AGV(2)

GO TO 300
C WHEN PART IS LOADED ON AGV(2)

44 IF(ISTP(2).EQ.JTO) THEN
IAGV=2
GO TO 43

ELSE
C TO MC2,MC3 OR MC4

IF(JTO.GT. 1.AND.JTO.LT.5) THEN
IF(ISTP(2).EQ.8) THEN

ITO(2)=JTO
IF(ISTP(1).EQ.JTO.AND.ITO(1).EQ.8) THEN

DT=TRT(ISTP(2) ,ITO(2) )*3
ELSE

DT=TRT(ISTP(2),ITO(2))*2
ENDIF

ELSE
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IF(ISTP(2).EQ.7) THEN
ITO(2)=8
DTTRT(ISTP(2) ,ITO(2))

ENDIF
ENDIF

ELSE
C IF AGV(2) GOES TO MC1,MC5 OR L/U STATON

IF(ISTP(2).EQ.7) THEN
ITO(2)=JTO
IF(ISTP(1).EQ.JTO.AND.ITO(1).EQ.7) THEN

DT=TRT(ISTP(2) ,ITO(2))*3
ELSE

DT=TRT(ISTP(2) ,ITO(2))*2
ENDIF

ELSE
IF(ISTP(2).EQ.8) THEN

ITO(2)7
IF(ISTP(1).EQ.7.AND.ITO(1) .EQ.8) THEN

DT=TRT(ISTP(2) ,ITO(2) )*2
ELSE

DT=TRT(ISTP(2) ,ITO(2))
END IF

ENDIF
ENDIF

ENDIF
ENDIF
GO TO 300

C IF ONLY ONE AGV BUSY
200 IF(XX(JAGV(1)).GT.0.0) THEN

IAGV1
ELSE

IAGV=2
ENDIF
IF(XX(IUP(IAGV)).EQ.0.0) GO TO 320
ISTP(IAGV)1T0(IAGV)
JTATRIB (2)
IDX=ATRIB(3)
IF(IDX.EQ.1) THEN

JFM=6
ELSE

JFM=MTV(JT, (IDX-1))
ENDIF

JTO=MTV(, IDX)
C IF THE BUSY AGV WAS LOADED

IF(LD(IAGV).EQ.1) GO TO 50
C IF THE BUSY AGV IS UNLOADED

IF(ISTP(IAGV).EQ.JFM) THEN
LD(IAGV)=1
IF(JFM.GT. 1.AND.JFM.LT.5) THEN

ITO(IAGV)8
DT=TRT(JFM, 8)

ELSE
ITO(IAGV)=7
DTTRT(JFM, 7)

ENDIF
ELSE

C IF MC2,MC3 OR MC4 CALL AGV
IF(JFM.GT.1.AND.JFM.LT.5) THEN

ITO( IAGV)=JFM
DT=TRT(8 ,JFM)

ELSE
ITO ( IAGV) JFM
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DT=TRT(7, JFM)
ENDIF

ENDIF
GO TO 300

C IF THE PART IS LOADED ON AGV(BUSY)
50 IF(ISTP(IAGV).EQ.JTO) GO TO 43

IF(JTO.GT. 1.AND.JTO.LT.5) THEN
IF(ISTP(IAGV).EQ.8) THEN

ITO ( IAGV) =JTO
DT=TRT(8,JTO)*2

ELSE
ITO(IAGV)8
DT=TRT(ISTP(IAGV) ,8)

ENDIF
ELSE

C IF DESTINATION IS MCi, MC5 OR L/U STATION
IF(ISTP(IAGV).EQ.7) THEN

ITO ( IAGV) JTO
DTTRT(7 ,JTO)*2

ELSE
ITO(IAGV)=7
DT=TRT(ISTP(IAGV) ,7)

ENDIF
ENDIF

C SCHEDULE DESPATCHING AGV(i) OR AGV(2)
300 ATRIB(2)=JT*i.

ATRIB(3)=IDX*1.
ATRIB(4)=IAGV*i.
IJT(IAGV)=JT
JIDX(IAGV)=IDX
RMT ( IAGV) =TNOW+DT
CALL SCHDL(2,0.5*DT,ATRIB)

320 RETURN
C IF LOADED AGV ARRIVES AT ITS DESTINATION

43 JTO=MTV(JT,IDX)
ATRIB(2)=JT*1.
ATRIB(3)=IDX*i.
XX(JAGV(IAGV) )=0.
LD(IAGV)=0
IF(JTO.GT.i.AND.JTO.LT.5) THEN

ISTP(IAGV)=8
ELSE

ISTP(IAGV)=7
ENDIF
ATRIB(4)=0 .0
IF(JTO.EQ.O) GO TO 48
IF(XX(IUP(JTO+2)).EQ.0.0) GO TO 46
IF(XX(JTO).EQ.0.0) GO TO 45

46 CALL FILEM(JTO,ATRIB)
IF(JTO..EQ.6) GO TO 54

C CHECK IF THERE ARE ANY PART WAITING
C AT THE OUTPUT BUFFER OF MACHINE ‘JTO

IF(NNQ(IOB(JTO)).EQ.0.0) GO TO 54
8 DO 4 IJ=i,5

X IJ=IJ
N1=NFIND(1,IOB(JTO) ,2,0,XIJ,0.0)
IF(Ni.EQ.1) JJT=XIJ

4 CONTINUE
DO 5 K=1,6
XK=K
N2=NFIND(i,IOB(JTO),3,0,XK,0.0)
IF(N2.EQ.i) IIDX=XK
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5 CONTINUE
IF(XX(JAGV(1)).EQ.0..AND.XX(JAGV(2)).EQ.0.) GOTO 500
IF(XX(JAGV(1)).EQ.0..AND.XX(JAGV(2)).GT.0.) GOTO 600
IF(XX(JAGV(1)).GT.0..AND.XX(JAGV(2)).EQ.0.) GOTO 600

C IF BOTH AGVS ARE BUSY
RETURN

500 IF(XX(IUP(1)).EQ.0.0.AND.XX(IUP(2)).EQ.0.0) GOTO 54
T1=TRT(ISTP(1),JTO)
T2=TRT(ISTP(2) ,JTO)
IF(T2.LT.T1) THEN

IIAGV=2.
ELSE

IIAGV=1.
ENDIF
IF(XX(IUP(1)) .EQ.0.0) IIAGV=2
IF(XX(IUP(2)).EQ.0.0) IIAGV=1

C SCHEDULE CALLING THE NEAREST AGV
XX(JAGV(IIAGV) )=1.0
IF(JTO.GT.0.AND.JTO.LT.6) THEN

CALL RMOVE(1,IOB(JTO),ATRIB)
ENDIF

C IF MC2,MC3 OR MC4 REQUEST AGV
IF(JTO.GT.1.AND.JTO.LT.5) THEN

C IF THE CALLED AGV STOPS AT 8
IF(ISTP(IIAGV) .EQ.8) THEN

DT=TRT(ISTP(IIAGV) ,JTO)
ITO(IIAGV)=JTO

ELSE
DT=TRT(ISTP(IIAGV) ‘8)
ITO(IIAGV)=8

ENDIF
C IF MC1,MC5 OR L/U REQUESTS AGV

ELSE
IF(ISTP(IIAGV) .EQ.7) THEN

DT=TRT(ISTP(IIAGV) ,JTO)
ITO(IIAGV)=JTO

ELSE
DT’TRT(ISTP(IIAGV) ,7)
ITO(IIAGV)=7

ENDIF
ENDIF
GO TO 18

C IF ONE AGV IDLE AND ANOTHER ONE BUSY
600 XIDLE0.

DO 601 1=1,2
IF(XX(JAGV(I)) .EQ.0.) XIDLE=I

601 CONTINUE
IDLE=XIDLE
IF(XX(IUP(IDLE)).EQ.0.0) GOTO 54
XX(JAGV(IDLE) )1.0
IF(JTOGT. 0 .AND .JTO.LT. 6) THEN

CALL RMOVE(1,IOB(JTO),ATRIB)
ENDIF
IF(IDLE.EQ. 1) THEN

IBUSY=2
ELSE

IBUSY=1
ENDIF

C MC1,MCS OR L!U CALLS FOR AGV
IF(JTO.LT.2.AND.JTO.GT.4) THEN

IF(ISTP(IDLE).EQ.8) THEN
ITO(IDLE)=7
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IF(ISTP(IBUSY).EQ.7.AND.ITO(IBTJSY).EQ.8) THEN
DT=TRT(ISTP(IDLE) ,7)*2

ELSE
DT=TRT(ISTP(IDLE) , 7)

ENDIF
ELSE

DT=TRT(ISTP(IDLE) ,JTO)
ITO( IDLE )=JTO

ENDIF
ELSE

C MC2,MC3 OR MC4 CALLS FOR AGV
IF(ISTP(IDLE).EQ.8) THEN

DTTRT(ISTP(IDLE) ,JTO)
ITO(IDLE)=JTO

ELSE
ITO(IDLE)=8
IF(ISTP(IBUSY).EQ.8.AND.ITO(IBUSY).EQ.7) THEN

DT=TRT(ISTP(IDLE),8)*2
ELSE

DT=TRT(ISTP(IDLE) , 8)
ENDIF

ENDIF
ENDIF
I lAGV=X IDLE

C SCHEDULE DESPATCHING AGV
18 ATRIB(2)=JJT*1.

ATRIB(3)=IIDX*1.
ATRIB(4)=IIAGV*1.
IJT( IIAGV)=JJT
JIDX(IIAGV)=IIDX
RMT(IIAGV)=TNOW+DT
CALL SCHDL(2 , 0. 5*DT,ATRIB)

54 RETURN
45 XX(JTO)=1.0

DT11.5*PST(JT, IDX)
IJT(JTO+2)=JT
JIDX(JTO+2)=IDX
RMT (JTO+2 ) =TNOW+DT1

48 CALL SCHDL(3,DT1,ATRIB)
IF(JTO.LT.6.AND.NNQ(IOB(JTO)).GT.0.0) GO TO 8
RETURN
END

C
SUBROUTINE PROCS

$INCLUDE: PARAM.INC
$INCLUDE: SCOM1 .COM’

COMNON/DAI1/MTV(5, 6)
COMMON/DAI2/PST(5, 6)
COMMON!DAI3/TRT(8, 8)
COMMON/DAI4/JAGV( 2)
COMMON/DAI5/IOB( 5)
COMNON/DAI6/ISTP(2)
COMMON/DAI7/ITO(2)
COMMON/0A18/LD(2)
COMMON/DAI9/IUP(7)
COMMON/DAI1O/RMT(7)
COMMON/DAI11/IJT(7)
COMNON/DAI12/JIDX( 7)

C WHEN PART ARRIVES TO THE MACHINE
JTATRIB (2)
IDX=ATRIB(3)
IMC=MTV(JT, IDX)
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IF(NNQ(IMC).GT.0.) GOTO 9
XX(IMC)=0.0
IF(MTV(JT,(IDX+1)).EQ.0) GO TO 20
IF(IMC.EQ.6) GO TO 20
ATRIB(3)=IDX*i .+1.
CALL FILEM(IOB(IMC) ,ATRIB)
RETURN

9 DO 10 IK=5,5
YIK=IK
Mi=NFIND(1,IMC,2,0,YIK,0.0)
IF(Mi.EQ.1) JT=YIK

10 CONTINUE
DO 15 JK1,6
YJK=JK
M2=NFIND( 1, IMC, 3,0 ,YJK, 0.0)
IF(M2.EQ.i) IDXYJK

15 CONTINUE
IF(XX(IUP(IMC±2)).EQ.0.0) GOTO 20
CALL RMOVE(i,IMC,ATRIB)
DT1=1 . 5*PST(JT, IDX)
IJT ( IMC+2 ) JT
JIDX ( IMC+2 ) =IDX
RMT ( IMC+2 )=TNOW+DT1
CALL SCHDL(3,DT1,ATRIB)
IF(MTV(JT,(IDX+i)).EQ.0) GO TO 20
IF(IMC.EQ.6) GO TO 20
ATRIB(2)=JT*i.
ATRIB(3)=IDX*i .+1.
CALL FILEM(IOB(IMC) ,ATRIB)

20 RETURN
END

C
SUBROUTINE BRKDN

$INCLtJDE: ‘PARàN.INC
$INCLUDE: ‘SCOMi .COM

COMMON/DAI1/MTV(5, 6)
COMMON/DAI2 /PST( 5,6)
COMMON/DAI3/TRT(8, 8)
COMMON/DAI4/JAGV(2)
COMNON/DAI5/IOB(5)
COMMON/DAI6/ISTP(2)
COMMON/DAI7/ITO(2)
COMMON/DAI8/LD(2)
COMMON/DAI9/IUP(7)
COMMON/DAI1O/RMT(7)
COMMON/DAI11/IJT(7)
COMMON/DAI12/JIDX(7)

C SCHEDULE THE REPAIR EVENT
DN=ATRIB(5)
IDN=DN
XX(IUP(IDN) )=0.0
GO TO(i0i,102, 103,104,105,106,107),IDN

C CHECK IF AN AGV OR A MACHINE IS BUSY
101 RT=60.0

IF(XX(JAGV(IDN)).EQ.0.0) GOTO 110
ATRIB(4)=IDN*1.0
GO TO 120

102 RT=60.0
IF(XX(JAGV(IDN)).EQ.0.0) GO TO 110
ATRIB(4)=IDN*1.0
GO TO 120

103 RT=1.5*60.0
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IF(XX(1).EQ.0.0) GOTO 110
GO TO 120

104 RT=1.6*60.0
IF(XX(2).EQ.0.0) GO TO 110
GO TO 120

105 RT=1.7*60.0
IF(XX(3).EQ.0.0) GO TO 110
GO TO 120

106 RT=1.8*60.0
IF(XX(4).EQ.0.0) GOTO 110
GO TO 120

107 RT=1.9*60.0
IF(XX(5).EQ.0.0) GOTO 110

120 K=NFIND(1,NCLNR,5,0,DN,0.0)
C REMOVE THE BREAK DOWN EVENT FROM THE CALENDAR FILE

IF(K.GT.0) THEN
CALL RMOVE(K,NCLNR,ATRIB)

ENDIF
110 ATRIB(5)=DN

ATRIB(2)=IJT(IDN)*1 .0
ATRIB(3)=JIDX(IDN)*1 .0
RMT ( IDN) =RMT ( ION) +RT-TNOW
CALL SCHDL(5,RT,ATRIB)
RETURN
END

C
SUBROUTINE REPAIR

$INCLUDE: ‘PARAM.INC
$INCLUDE: SCOM1 .COM

COMMON/DAI1/MTV(5, 6)
COMMON/0A12/PST(5, 6)
COMMON/DAI3/TRT( 8,8)
COMMON/DAI4/JAGV(2)
COMMON/DAI5/IOB(5)
COMMON/DAI6/ISTP(2)
COMMON/DAI7/ITO( 2)
COMMON/DAI8/LD(2)
COMMON/DAI9/IUP( 7)
COMMON/DAI1O/RMT(7)
COMMON/DAI11/IJT(7)
COMMON/DAI12/JIDX(7)

C SCHEDULE THE SUBSEQUENT BREAKDOWN EVENT
UP=ATRIB ( 5)
JUP=UP
XJT=ATRIB(2)
XIDX=ATRIB ( 3)
XX(IUP(JUP) )1.0
GO TO(201,202,203,204,205,206,207),JUP

201 TTF=15000.0
GO TO 210

202 TTF=15000.0
GO TO 210

203 TTF=19200.0
GO TO 210

204 TTF=19800.0
GO TO 210

205 TTF=20400.0
GO TO 210

206 TTF=21000.0
GO TO 210

207 TTF=21600.0
210 ATRIB(5)=UP
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C SCHEDULE THE BREAK DOWN EVENT FOR THE REMAINING OPERATION TIME
IF(JUP.LE.2.AND.XX(JAGV(JUP)).EQ.0.0) GO TO 220
IF(JUP.GT.2.AND.XX(JUP-2).EQ.O.0) GO TO 220
IF(JUP.LE.2) THEN

IVNT=2
ATRIB(4)JUP*l.0

ELSE
IVNT=3

ENDIF
ATRIB(2)=XJT
ATRIB(3)=XIDX
CALL SCHDL(IVNT,RMT(JUP) ,ATRIB)

220 CALL SCHDL(4,EXPON(TTF,1),ATRIB)
RETURN
END




