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Abstract

Does ambient air pollution in Canada pose a threat to respiratory health? For a
study initiated by Health Canada, we combined analyses of micro-level data from both
the 1990 Ontario Health Survey with an environmental air monitoring system to obtain a
quantitative answer to the question.

In contrast to studies designed to collect special purpose data, the Ontario Health
Survey was not designed to address respiratory health issues. In spite of this, this cross
sectional database was rich enough for modelling. We used asthma and emphysema as the
response variables in assessing the impact of four pollutants estimated for summer and
winter.

Two analyses were conducted for each response variable, one incorporating survey de
sign information the other ignoring it. Age, income, smoker type and sex were significantly
related to asthma at a a = 5% level of confidence in both analyses. None of the pollutant
covariates figured in the model.

Using the classical x2 test for nested models as the criterion, the emphysema model
achieved a better fit than the asthma model. Smoker type and age, in particular, were
strongly related to emphysema; income and number of cigarettes smoked were significantly
but less strongly related; summer NO2 was marginally significant, depending on which of
the two analyses was considered.

II



Contents

Abstract ij

Table of Contents

List of Tables vi.

List of Figures Vi

Acknowledgements

Dedication

Poem Shard xi

1 Introduction 1

2 Literature Review 5

2.1 Experimental Studies 5

2.2 Estimating Cumulative Ambient Air Pollution Exposure 6

2.3 Cross Sectional Studies 9

3 Issues in Cross Sectional Analyses 11

3.1 Definition of Epidemiology 11

3.2 The Disease Process 12

3.3 Trends in Disease Patterns Since 1900 13

3.4 Types of Epidemiological Studies 15

3.5 Pros and Cons of the Cross Sectional Analysis 17

4 Description of the Ontario Health Survey 21

4.1 Objectives 22



4.2 Data Collection Method 22

4.3 Target Population 25

4.4 Pretesting 25

4.5 Questionnaire Content 27

4.6 Survey Methodology 29

4.7 Nonresponse Rates 31

4.8 Comment 35

5 Initial Data Analysis 36

5.1 OHS Covariates 37

5.2 Pollution Covariates 47

5.3 Asthma versus Covariates 53

5.4 Emphysema versus Covariates 56

6 Methodology 60

6.1 Finite vs. Infinite Population Inference 61

6.2 Generalized Linear Models Theory 64

6.3 Modeffing Binary Data 68

7 Asthma Analysis 72

7.1 Arcsine Analysis 72

7.2 Logistic Modeling 74

8 Emphysema Analysis 77

8.1 Covariate Selection Excluding Pollution 78

8.2 Evaluating the Effect of Pollution 81

8.3 Comparing Weighted and Unweighted Analyses 83

9 Discussion 86

Iv



9.1 Model Assumptions 86

9.2 Exposure Measurement Problems 88

9.3 Future Directions 90

References 90

Appendix: Figures 97

V



List of Tables

1 OHS questionnaire content 28

2 Flowchart of the derivation of the study data 37

3 List of study covariables 39

4 How the OHS work exposure questions form a covariate for this study 40

5 Types of pollution assessment studies 47

6 Spatially interpolated ambient air pollution six-year averages (pg/rn3) 51

7 Definition of symbols used for the modeffing of binary data 69

8 The best arcsine models fitted for asthma 73

9 Most significant terms in the unweighted logit asthma model 74

10 Most significant terms in the weighted logit asthma model 75

11 One term emphysema models using a fifth of the data 79

12 Terms in a stepwise fitting strategy for emphysema using a fifth of the data. 80

13 Goodness of fit for each of the terms in the full emphysema model 81

14 Loadings for the first three principal components 82

15 Goodness of fit test for the pollution terms 82

16 Stepwise terms for emphysema using a fifth of the data and ignoring weights 84

17 Terms in the full unweighted emphysema model 85

18 Goodness of fit test for the pollution terms in the unweighted analysis 85

vi



List of Figures

1 Canadian life expectancy at birth 13

2 Geographic coverage of the Ontario Health Survey 23

3 Flowchart summary of the OHS data collection procedure 24

4 OHS pretest questionnaire response rates 26

5 Nonresponse rates for the work exposure questions 33

6 Nonresponse rates for the smoking questions 33

7 Nonresponse rates for the well being score by age 34

8 Prevalence of the two response variables 38

9 The demographic covariates 41

10 The socioeconomic covariates 43

11 The lifestyle covariates 44

12 The health covariates 45

13 Typical graph of a station’s measurement of one pollutant 49

14 Asthma prevalence by covariates (I) 54

15 Asthma prevalence by covariates (II) 55

16 Emphysema prevalence by covariates (I) 58

17 Emphysema prevalence by covariates (II) 59

18 Empirical density of survey weights 62

19 Marginal distribution of age using and ignoring survey weights 64

20 Immigration background of the 1990 residents of Ontario 88

21 North American air quality trends 89

22 Ordered summary of study covariate nonresponse 98

23 NO2 readings for twelve stations ordered by increasing station mean(1ug/m3). 99

24 03 readings for twenty out of twenty one stations (tg/m3) 100

25 SO2 readings for all twenty stations (g/m3) 101

vi’



26 SO4 readings for all ten stations(1ug/m3)

27 Strongest scatterplot relationships between pollution estimates. .

28 Distribution of the 37 estimated PHU means for the four pollutants.

29 Comparison of pollution measurements to estimates

30 Estimated NO2 six year average

31 Estimated 03 six year average

32 Estimated SO2 six year average

33 Estimated SO4 six year average

34 Asthma arcsine model diagnositcs for the demographic grouping.

35 Asthma arcsine model diagnositcs for the socioeconomic grouping.

36 Asthma arcsine model diagnositcs for the lifestyle grouping

102

103

104

105

106

107

108

109

110

111

112

VIji



Acknowledgement

This thesis was made possible by Jim Zidek and Rick Burnett: both were instrumental in

bringing the Health Canada project to the University of British Columbia. I appreciate their

unending labour in sorting through the red tape associated with such a project.

To get me thinking about my thesis, the biostatistics subgroup met regularly in the summer

of 1993. I would like to acknowledge the regulars for their help: Victor Espinosa-Balderas,

Nhu Le, John Petkau, Rick White, Hubert Wong, Weimin Sun and Jim Zidek.

At Health Canada, I was lucky to have a good ally in Robert Tkalec. When I asked

questions or complained about incomplete documents he was quick to the whip.

Weimin Sun deserves special recognition for his modification and implementation of the

spatial interpolation methodology developed by Jim and Nhu. When I needed data he would

work until the next morning’s sunrise. His dedication to the task was remarkable.

On the social side, I would like to recognize those who made my UBC days exciting.

Xiaochun Li was always up for movies and dinner when I was stuck or tired; Nita Deerpalsing

was stellar as my perpetual audience, both for the thesis and in general; and Tim Fijal was

continually breaking me up with his Hippocrates’ saying that ‘wholemeal bread clears out the

gut’.

Finally, I would like to thank Jim Zidek for his neverending encouragement. Without it I

may never have succeeded in finishing the thesis.

Ix



To my mom and dad

for producing me.



The yellow fog that rubs its back upon the window-panes,

The yellow smoke that rubs its muzzle on the window-panes

Licked its tongue into the corners of the evening,

Lingered upon the pools that stand in drains,

Let fall upon its back the soot that falls from chimneys,

Slipped by the terrace, made a sudden leap,

And seeing that it was a soft October night,

Curled once about the house, and fell asleep.

And should I then presume?

And how should I begin?

From The Love Song of J Alfred Proofrock by T.S. Effiot
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1 Introduction

Resource exploitation was a dominant ideal of European imperialism. Dreams about the ‘New

World’ were predicated on animal fur, vast stands of East Coast forest and unlimited stocks

of Grand Banks cod (Seiler, 1993, 303).

Industrialization, urbanization, technology and the rise of bureaucracy, however, radically

altered the landscape. Our ability to deleteriously effect our environment gradually led to

the emergence of agencies now associated with the welfare state. Health Canada, Agriculture

Canada, the Environmental Protection Agency and the Food and Drug Administration are a

few of the North American institutions which attest to our faith in resource management.

The air we breathe has come to be seen as one of those resources. Two approaches have

been taken to ensure and improve air quality: emission controls and development of ambient

air quality standards. The automobile gives a good example of the first. Detroit manufacturers

continuously update their line of cars, thereby achieving opportunities to incorporate emission

reducing engineering improvements. Since preventative measures are viewed as the least costly

of pollution controls, regulatory agencies in the United States have goaded the car industry

into meeting higher auto emission standards. By the mid 1990s Canada will have realigned

standards so that they fall in line with America’s. Because of this vigilance, North American

standards are higher than those of many European countries (Hoberg, 1993, 108-109).

Ambient air quality standards provide another benchmark. The need for them became

apparent after the London fog episode of 1952. The maximal 24-hour concentration of sulfur

dioxide, ten times the current allowable concentration, resulted in an estimated 4000 excess

deaths (Griffith, 1989, 112). The ambient air quality standard serves as a benchmark and is

supposed to be determined in spirit in accordance with the current state of scientific evidence.

With general acceptance of these principles, ambient air quality standards have become a

cornerstone of public health policy.

The concept of the Threshold Limit Value or TLV is a key to understanding the history of
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air quality guidelines in the States. Since the 1940s TLVs have been set by the TLV Committee

of the American Conference of Governmental Industrial Hygienists. The TLV Committee

officially defines the TLV to be levels at which “nearly all workers may repeatedly be exposed

day after day without adverse health effects.” The evidence, however, suggests that the TLV

Committee has always been sensitive to the impact their decisions would have on industry.

They thus chose levels thought to be achievable by major players in industry (Rappaport,

1993).

The role of the TLV should become clear after sketching air pollution regulation in the U.S.

from 1970 to present. The inadequate regulation of hazardous air pollutants was implicitly

recognized by the Clean Air Act of 1970. It gave the Environmental Protection Agency (EPA)

the authority to impose emission standards that guaranteed “an ample margin of safety.”

The EPA immediately became sensitized to the potential for economic dislocation if stringent

emission limits were set and bypassed enforcing the law by avoiding to list and regulate airborne

toxicants. When political pressure over specific substances arose that was too great to ignore,

the EPA established emission limits based on economic rather than health considerations

(Robinson and Paxman, 1992).

In the early 80s, commencing with the inauguration of Ronald Reagan, the EPA sought to

delegate responsibility of airborne pollutant regulation to the states. The states then developed

Ambient Air Level guidelines which were based on TLVs multiplied by an appropriate safety

factor. But is the TLV a good starting point for air quality guidelines? There are reasons to

be wary of the TLV.

First and foremost, the TLV is tainted by the TLV Committee’s decision process:

TLVs for particular substances were heavily influenced by corporations with direct

financial interests in the substances being evaluated. . . . TLVs often represent the

exposure levels actually prevalent in major firms rather than levels at which no

adverse health effects are reported (Robinson and Paxman, 1992, p. 392).
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Whose voices are not heard by the Committee? Where economic interests have had a stake,

collective health has partially been compromised to minimize the negative fiscal impact of

higher emission standards on the offending industries. As long as the hazard is not deadly in

the short term and effects only sensitive populations, profits have in past held the upper edge

in public health policy.

A second problem with the TLV derives from its use. States use the TLV by multiplying

its value by a constant. But how is the constant determined? Since the TLV is based on the

40 hour workweek, multiplying by 4.2 would account for the 168 hour week experienced by

residents living in the affected area. Stifi, the guideline is supposed to be designed for working

populations and not necessarily for a population encompassing the more sensitive segments

like the very young and very old. The resulting state defined Acceptable Ambient Air Level

guideline for acrylonitrile, for example, varies by a ratio of over a thousand for regulating

states. The variability alone casts suspicion on the process.

The Clean Air Act Amendment of 1990 repositions the EPA as the national standard bearer

in air pollution policy. The Act requires the EPA to develop national emission standards for

189 toxic substances in the next decade. In contrast to the “ample margin of safety” quoted

in the Clean Air Act of 1970, the Amendment requires that standards be set on “maximum

achievable control technology.” This reorientation is proposed to accelerate the pace of standard

setting by basing it on technological advancement. The TLV, as a result, will play a lesser role

in health policy (Robinson and Paxman, 1992).

Gibson (1989) documents a similar tale of corporate influence over public air pollution

policy in Ontario. The Inco smelter in Sudbury has long been an infamous source of SO2

emissions. Little headway in reductions have been made, however, because Ontario Environ

ment Ministry officials knew “that the environmental benefits would be less immediate and

perceptible than the costs of abatement and that the beneficiaries would be more dispersed

and less well connected politically than the recipients of abatement orders” (Gibson, 250).
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Ignoring the decision making realities of the political realm, the question remains: how

seriously is human health affected by air pollution? A call for quantification, in the form of

environmental health impact studies, is a common response (Britton, 1992), with many forms

having been attempted. I give a flavour of recent work in the literature review. A taxonomy

of epidemiological studies is provided in the chapter covering cross sectional designs.

In a bizarre twist, regulatory procedures often provide data for the studies. Once an air

quality standard is determined, pollutant monitoring stations are erected and data collected.

Thus, ironically, the available data on pollutant exposure is driven by regulation rather than

for its utility for inquiries into public health (Matanoski et al., 1992).

In this study we evaluate the risks of air pollution to chronic lung function. The 1990

Ontario Health Survey provides us with a cross sectional view of the health status and socioe

conomic level of Ontario’s population. The air pollution data arises from an air monitoring

network of 37 stations, tracking four pollutants, from 1983 to 1989. The study’s methodology

and analysis are given in greater detail in the appropriate chapters.

The objective of this study is ambitious. As opposed to chronic effects the study of acute

effects, as measured by longitudinal hospital admissions, is more common. The difficulty with

a study of chronic effects is the measurement of exposure. Long lag times, differences in

pollutant mixtures over time, movement of individuals in the study population and error in

self reported medical conditions are but a few of the obstacles to valid inference.

On the bright side, the Ontario Health Survey data is comprehensive and contains informa

tion on a large sample. The six years pollution data employs recently developed methodology:

where necessary the multivariate air monitoring station readings are spatially interpolated

(Brown, Le and Zidek, 1993).

To make informed policy decisions on the effect of pollution on respiratory health we

need to employ pre-existing data sources wherever possible. This study provides that kind of

opportunity.
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2 Literature Review

The literature on environmental health impact assessments is voluminous. In this chapter I

cover some of the more recent papers in this area. I have ordered the material to follow a

natural flow. Since experimental studies can more or less stand on their own I discuss them

first. Observational studies tend to be more complex. I have apportioned a section to the

difficult area of exposure measurement and one to cross sectional studies of a similar intent.

2.1 Experimental Studies

Although questions about a pollutant’s effect on human populations can be ethically difficult

to address in an experimental study, some have been carried out. Whenever an effusion of

possible predictors with many levels appears, experimental design, R.A. Fisher’s territory,

tempts good researchers. In this section I describe recent experimental studies.

Hackney et al. (1992) evaluate the acute effects of nitrogen dioxide (NO2) on older adults

with chronic obstructive pulmonary disease. They note that although animal toxicological

studies prove high doses of NO2 pose a respiratory health risk, the epidemiological literature is

inconclusive. They increase the power of their study by focusing on a sensitive segment of the

population. This strategy has two benefits. First, the sensitive subpopulation is of interest in

its own right since, by definition almost, they are most affected by pollutant levels. Second,

information garnered from sensitive subpopulations may have implications for the larger pop

ulation. We could use the metaphor of individuals as instruments: sensitive individuals might

be like us except that they react more strongly to the same stimulus.

Hackney’s Los Angeles study combines laboratory and field work. In the laboratory re

searchers examined the lung dysfunction of subjects exposed to 0.3 ppm NO2 for four hours

interlaced with four bouts of exercise. In the field they evaluated the exposure measurements

from personal exposure monitoring devices worn by the 26 volunteers for two week periods.

NO2 readings are traditionally highest in LA during fall and winter. The study interval was
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no exception with an average of 125 tg/m3 as compared to the annual average of 90 ,ug/m3.

Two conclusions are drawn. First, from a comparison of station to personal exposure

measurements, NO2 exposure is strongly influenced by outdoor pollution, even though up to

90% of the subject’s time is spent indoors. Second, the sensitive population’s short term NO2

exposure results in little short term clinical exacerbation of respiratory disease.

McDonnell et al. (1991) study the effect of a 6.6 hour ozone (03) exposure on 38 healthy

humans. The response measure, forced expiratory volume in one second (FEy1), shows sig

nificant decline upon comparing clean air exposure to 0.08 ppm 03.

McDonnell, Muller, Bromburg and Shy (1993) improve on the previous study by examining

more design points, increasing the range to 0.0—0.4 ppm 03 and increasing the sample size.

This time they divide the sample into an exploratory sample of 96 subjects and a confirmatory

sample of 194 subjects. The first sample specifies a model after fitting many models and

predictors showing statistical significance. The second sample validates the model and protects

against declaring predictors significant when they spuriously appear in the model by chance

alone. The study concludes that 03 explains 31% of the response variance while age explains

4%.

Experimental studies necessarily examine acute effects. From the three I reviewed, ozone

seems to be more potent than nitrogen dioxide. Though experimental studies are useful for

corroborating evidence produced by observational studies, the artificial context of a laboratory

chamber may not correspond to pollution effects occurring in daily life. Moreover we cannot

assess chronic health effects. Observational studies address these issues head on. The first

step in an observational study is to estimate the extent of exposure.

2.2 Estimating Cumulative Ambient Air Pollution Exposure

In observational studies we must deal with the problem of quantifying internal dose of the

agent over time. Difficulties like the impossibility of obtaining internal dose data, working

with imperfect proxies and refining pollution exposure modeling strategies characterize the
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quest for an adequate solution.

How can we use ambient air pollution measurements as a surrogate for internal dose?

Typically the data come from fixed site air monitoring stations, stations for which data has

already been collected over long periods of time. The objective is to link station data to

human populations. Commonly the data are first interpolated spatially to other sites where

no measuring equipment exists. Then the exposure based on living patterns reported by

individuals in a survey are modelled.

Abbey, Moore, Petersen and Beeson (1991) address the interpolation question. They vali

dated a simple method of interpolation by fixed site monitoring station deletion: after a station

was deleted, interpolated values were calculated and compared against the measured values.

Ozone (03) and total suspended particulate (TSP) were measured for at least three years

by 126 and 142 stations, respectively. Ozone was measured for one minute every hour and

TSP for 24 hours every sixth day.

The statistics of interest were exceedance frequency and mean concentration. The ex

ceedance frequency was compared to US regulatory policy levels which are often stated in

terms of maximum allowable values.

Their interpolation method obtained estimates for all ZIP codes in California. A maze of

rules were put together to get interpolated values. First, a measuring station was valid if at

least three years of pollution data existed. Second, for a given ZIP centroid, a station was

valid if it resided within a radius of 50 km. Third, a series of three zones, based on concentric

rings, were defined, zone A being the closest, zone B in between and zone C the furthest. The

only stations used in the interpolation were those faffing within the closest ring. Up to three

stations were used in a given zone.

The zone definitions differed for each pollutant. TSP was assumed less homogeneous over

space and the radius boundaries for the zones were tighter than for ozone. In the study area

about 60% of the population lived within 10 km of a TSP monitoring site (zone B or better).
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About 90% lived within 16 km of an ozone monitoring site (zone A or better).

The study concludes that the interpolation methods worked well in their particular case.

The correlation of 0.78 for TSP and 0.87 for ozone suggest the importance of treating different

pollutants differently since, even with tighter controls of TSP zones and a greater number of

stations, the TSP estimates were more inaccurate than those for ozone. Second, if persons can

be situated to ZIP code centroids for significant time periods, the interpolation method may

produce estimates which are good surrogates for internal dose.

Seixas, Robins and Becker (1993) propose to model human exposure using the occupa

tional history of individuals and hundreds of thousands of occupational ambient air pollution

measurements. They motivate their research by contending that simple exposure estimates

do not adequately capture the complexity of the disease process. The implicit assumptions

that dose is a linear function of concentration and independent of time go against evidence of

nonlinear toxicological behaviour of many substances causing adverse chronic health effects.

In addition, the use of a simple statistic for exposure contributes to error in variable bias.

Their modeling solution estimates the exponents of pollutant concentration and time be

tween measurement and reported outcome. In their application 300,000 dust exposure obser

vations from the shafts of underground coal miners were used to estimate model parameters.

Each of the 1200 respondents provided work histories sufficient to obtain estimates of individ

ual exposure. Despite the efforts made, the predictive power of alternative, simpler models

achieved competitive performance levels.

In conclusion, for fixed site air station monitoring data, the best epidemiological studies can

do to approximate individual internal dose over time is to use some combination of interpolation

and human exposure modeling. When stations are close enough, e.g. within 10 km for TSP or

16 km for ozone, a crude interpolation method will do well. For greater distances the quality

of the interpolation will decrease, though the decrease is pollution specific and the degree of

quality deterioration remains to be further quantified.
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The subtlety of human exposure modeling promises to challenge researchers striving for the

ideal. Models, however, will continue to be data dependent: the availability of work histories,

migration patterns and activity diaries will determine the quality of inference.

More research is needed to answer the difficult question of how internal dose relates to

exposure measures. If progress is made, we will also be able to evaluate the soundness of the

modeling approach. Until then, modeling will offer hope of improving the power of epidemio

logical studies.

2.3 Cross Sectional Studies

I will characterize five recent cross sectional studies. Their variety of approaches is striking.

While some of the studies simply analyse differences between study and control groups, others

use standard regression techniques. The sample sizes range from 600 to 3900 respondents. The

findings also show a range. Causes of respiratory symptoms go from grain-farming to blowing

alkali salts.

Abbey, Moore, Petersen and Beeson (1993) used Seventh-day Adventist nonsmokers to

check on TSP, ozone and sulfur dioxide. Their logistic regression analysis found significant

relationships between ambient concentrations of TSP and ozone with several respiratory disease

outcomes.

Senthilselvan, Chen and Dosman (1993) examine the relationship between grain farming

and respiratory illness in Humboldt, Saskatchewan. They split their study population into four

cohorts, use a survey to obtain binary responses and compare prevalences between cohorts.

Asthma was found to be significantly related to grain farming and sex; wheezing was related

to grain farming and smoking.

Gomez, Parker, Dosman and McDuffie (1992) considered the effect of alkali dust on a South

ern Saskatchewan population living near Old Wives Lake. When prevalences were compared

their control and study groups’ chronic wheeze, eye irritation and nasal irritation increased.

Unlike the previous two studies, the researchers used forced vital capacity (FVC) and forced
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expiratory volume in one second (FEy1.0)in their analysis.

Xiping, Dockery and Wang (1991) measured the FVC and FEV1.0from a sample of Beijing

residents. Besides underlining the importance of coal heating as a source of respiratory prob

lems they discovered a relationship between outdoor SO2 and FVC and FEy1.0 in subjects

who had not used stove coal heating.

Ozkaynak and Thurston (1987) use U.S. mortality statistics to evaluate the effect of ambient

air pollutants. Their regression model suggests that SO4 concentration is a significant factor

in mortality prediction.

The published cross sectional studies provide some evidence that respiratory health is

adversely effected by irritants in the air. This study will add to the continually growing

collection.
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3 Issues in Cross Sectional Analyses

Before analysing the data I will describe, in broad terms, epidemiology, and then focus in on

the virtues and problems of cross sectional analyses.

As a science, epidemiology has had a number of high impact successes. I document the

case of AIDS as a way of illustrating the role and importance of epidemiologists. Historically,

the etiology of infectious disease has been easier to discover than that of noninfectious disease.

Noninfectious disease is more of a problem in the industrialized world, however. With an aging

population it would not be far-fetched to suggest that the quality and length of life will in

part be determined by our ability to understand and control noninfectious disease.

Noninfectious disease etiology is a slippery concept. With multiple causes and long devel

opmental intervals, epidemiologists are forced to consider sophisticated analytic techniques.

As a result, the literature is imbued with a variety of study methodologies. I provide a short

taxonomy of epidemiological studies as an introduction to this area. A more detailed look at

the cross sectional study ends the chapter.

3.1 Definition of Epidemiology

Epidëmos is Greek for prevalence. Hippocrates wrote several books concerning disease preva

lence in the fourth century BC. In one, he distinguishes between endemic diseases, which

prevail continuously at relatively low levels, and epidemic diseases, which occur at higher

than expected frequencies. When his writings focus on the health of populations rather than

individuals Hippocrates is donning the epidemiologist’s hat.

Epidemiology, as practiced today, “is the study of the distribution of states of human

health and of determinants of deviations from health in human populations” (Valanis, 1992).

This report is an epidemiological study by virtue of its concern with distribution of chronic

respiratory illness over a geographic area and its relationship to airborne pollutants.
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3.2 The Disease Process

Disease is a complex process that can be separated into stages of prepathogenesis and patho

genesis. Prepathogenesis refers to the initial bodily changes that may or may not lead to

pathogenesis. The individual’s exposure to one or more agents comprises the first stage of

prepathogenesis. If the individual is susceptible he or she is unable to adapt to introduction

of the agent; with successful adaptation the disease does not develop any further.

Pathogenesis occurs when the disease has successfully established itself within the host.

During early prepathogenesis, events take place that are clinically difficult to detect. This

period is often referred to as the presymptomatic or predinical stage. At latter stages, however,

clinical symptoms show up. This is the point where the person is commonly said to ‘have’

the disease. Identification and classification of disease is complicated by partial symptoms,

misdiagnosis and long lag times between early prepathogenesis and development of clinical

symptoms.

Three components are distinguishable in the disease process (Valanis, 1992, Chapter 2).

The first, denoted as the host, is the site of the disease. Factors relating to the host’s suscep

tibility, like lack of sleep, malnutrition, aging and immunity, may be useful in understanding

the transition from healthiness to pathogenesis and the rate of that transmission. Explicit

descriptions of the host, e.g. the human subject, is a good first step in describing disease.

The agent, initiator of the disease process, is the second component of the trinity. The

tubercle bacillus, without which tuberculosis would be unknown, is an example of a parasitic

agent. Risk factor assessments try to describe and quantify the hazards agents pose. Most

infectious diseases arise from a single agent; noninfectious disease are usually the result of

multiple agents.

The environment is the third component and relates host to agent. The environment is the

sum of external conditions and influences affecting the life of living things. By this definition,

physical, biological and socioeconomic descriptors are encompassed. The environment can
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effect host susceptibility and viability of the agent. Cholera, for example, spreads best when

people live in crowded conditions with poor sanitation. In this study wind patterns and

temperature may have a significant effect on an individual’s exposure to pollutants.

Thus, disease is a rather complicated process. The focus of epidemiology, as opposed to

practitioners of clinical medicine, say, is on the triangular relationship between host, agent

and environment. To uncover the etiology or causes of disease is the goal of risk assessment

studies.

Life expectancy in Canada, as shown in Figure 1 (Sources: Statistics Canada, 1983, and

Institute for Health Care, 1990), has increased steadily since the early part of the twentieth

century. The primary reasons for the increase lie in improved sanitation, better diet and

our increased ability to control infectious disease. They are interrelated, of course, since

a better diet reduces susceptibility and improved sanitation diminishes the opportunity for

the spread of virulent bacteria. The strides made in medicine’s attack on infectious disease,

however, has been nothing less than staggering. In terms of mortality about 45% of deaths in
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1900 were attributable to infectious disease. The corresponding figure in 1987 was about 5%

(Valanis, 1992, p. 28).

Epidemiology has had some of its greatest successes with infectious diseases. Take, for

example, the recent role played by the Centers for Disease Control (CDC) in Atlanta in

identifying aquired immunodeficiency syndrome. CDC happened to be the sole supplier of

pentamidine, an experimental drug used in chemotherapy and radiotherapy to treat cancer

patients. When physicians in Los Angeles and New York City greatly increased demand for

pentamidine, epidemiologists at CDC took note. In 1981 CDC’s Morbidity and Mortality

Weekly Report contained two articles about a new disorder termed aquired immunodeficiency

syndrome (AIDS).

The new disease had the marking of an infectious disease: AIDS spread among people who

had been in contact with one another. Assuming that AIDS was caused by an unidentified

virus, a series of risk assessment studies uncovered the connection that the vast majority of

AIDS patients were either drug users or homosexuals. The finding had major policy implica

tions. Public education programs commenced, health care resources were reallocated and AIDS

research emerged. In short the new disease along with associated risk factors was identified

early enough to allow public institutions to reformulate policy and adjust to new realities.

The assumption of AIDS’ infectious nature turned out to be right. The human immunode

ficiency virus (HIV) was discovered by a French team in 1983. They completed the cycle from

initial recognition to a reasonably complete etiology of the disease (Purtilo and Purtilo, 1989).

Significantly, these investigations focused on a disease that had a single cause, developed rel

atively quickly and resulted in a sharp increase in the number of observable cases.

Unfortunately for epidemiology’s rising star, noninfectious diseases remain the leading

causes of death. They tend to be harder to identify, take longer to develop, have multiple

causes and come with long lag times between introduction of the agents and development of

definitive clinical symptoms. In the wake of these developments, epidemiology must turn to
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more sophisticated methods and measurements to get at the complex etiology of noninfectious

disease.

3.4 Types of Epidemiological Studies

In this section I contextualize the cross sectional study by describing its placement within

a multitude of evaluative methods. Much of my insight derives from Valanis’ book (1992,

chapter 3).

The study of disease etiology generally proceeds in an orderly manner from generating

hypotheses to determining the causal mechanisms underlying the observed phenomenon. Three

types of studies, sequentially related and characterized by increased effort, higher costs and

greater investigative controls, are used in epidemiology: descriptive, analytic and experimental.

The descriptive study relies on easily accessible data, often mortality rates, which is anal

ysed in a simple manner. Analyses may consist of breaking the population down by certain

characteristics and then comparing mortality rate differentials. Descriptive studies are use

ful for uncovering unusual events or problems with data quality and can be thought of as

equivalent to initial data analysis.

The analytic study relates disease to agents while attempting to control for potentially

confounding covariates. At least three types of investigation fall within this category: cross

sectional, case control and cohort studies. The analytic study generates hypotheses, leads to

experimental studies, and tests hypotheses in an attempt to explain phenomena arising in

descriptive epidemiology.

The experimental or designed study distinguishes itself from observational studies, i.e.

descriptive or analytic, in terms of control. In an experimental study the researcher selects

factors of potential importance, their levels of application and randomly assigns experimental

units to the prespecified treatments. After controffing to whatever extent possible for external

conditions, the researcher observes the outcomes to determine the importance of the selected

factors. With an observational study, the researcher has no control over factor levels or the
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assignment of experimental units.

The experimental study seeks to confirm or disavow certain cause and effect relationships.

The investigator incorporates experimental randomization to avoid the pitfalls of systematic

bias introduced by human intentionality. Under realistic conditions, only people who have

the disease of interest are included in experimental studies. For one group, the experimentor

removes the suspected agent from the environment; the other group acts as a control. The two

groups are then followed over time to see if significantly different changes occur as a result of

the treatment.

Since this study is analytic rather than experimental, each of the three analytic subtypes,

namely cross sectional, case control and cohort, will be described in greater detail. The cross

sectional study is like a snapshot: population characteristics are conceptually sited at a single

time point. The resulting measurement of disease prevalence explains why some authors use

the term ‘prevalence study.’

The case control and cohort studies differ from the cross sectional in that they follow

individuals over time. Case control studies begin with two distinct populations: people with

the disease and people without. Disease relationships are determined by examining both

groups’ exposure to a variety of agents and uncovering the greatest differences between the

two. In other words, case control studies work from disease to uncover exposure status.

As opposed to case control studies, cohort studies start from exposure status. The best

example is the Framingham study begun in 1949 and continued to the present. A random sam

ple of individuals was drawn from the population of Framingham, Massachusetts. Physicians

determined that approximately 5000 of the sampled individuals were free of coronary heart

disease thus making them suitable for the study. Every year since, the subjects have gone

through a physical examination to (a) assess the health status of their hearts and (b) measure

exposure risks. The hope is that the risk factors of those who develop heart disease can be

identified. The cohort study can either be historical or prospective in nature.
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The case of smoking and lung cancer, as documented from a historical perspective by

Clemmesen (1993), is a good example of the potential and pitfalls of descriptive and analytic

studies. At the turn of the century, incorrect diagnoses prevented the scientific community

from identifying smoking as a problem. Much of the evidence against tobacco was anecdotal.

With improvements in identification, some studies uncovered a relationship between smoking

and lung cancer. Criticism aimed at the studies, however, mostly concerned with potential

confounding factors and poor data quality, undermined their impact.

The development of cancer registries in Mecklenburg and New York in the early 1940s

acknowledged concerns over data deficiencies. Five studies, published in 1950, produced com

mon findings on the smoking habits of patients with lung cancer. This confirmation of earlier

suspicions eventually led to the first International Symposium on Lung Cancer Endemiology

at Louvain in 1952. In 1959, about 100 years after cigarettes had first been manufactured

in the U.S., the U.S. Public Health Service officially pronounced their “deep concern” over

the increase in age adjusted incidence of lung cancer deaths from 4 per 100,000 in 1930 to

31 in 1956. The long time interval needed to identify the association of lung cancer with

cigarette smoking points to the importance of illness classification methods, quality data and

confirmatory studies.

3.5 Pros and Cons of the Cross Sectional Analysis

Cross sectional analyses provide information about some aspects of the underlying disease

process; other aspects of the process remain hidden. The information primarily comes from a

statistical model fitted to the cross sectional data. In this section I will describe what kinds

of insight can be gained from the model. I first look at the advantages of the cross sectional

study.

The model is intimately related to the data. If the data is a sample from some human

population then the inferences about the model are applicable to the sampled population. In

other words the study and target population are similar if not the same. Observational studies
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are better than experimental studies in this respect. In experimental studies the question of

how the study population relates to the target population usually looms unanswered.

In a related way, the subject’s exposure level in an observational study is realistic, though

hard to measure. With controlled experiments the levels at which pollution concentrations are

set often bear no relation to levels experienced by the population of real interest. The design

for LD5O experiments, where the objective is to get an estimate of the dose required to kill

50% of the population, is an example.

On a practical level, observational studies give information which cannot be duplicated by

experimental studies. Whenever irreparable damage to the observational subject is possible,

mice, not men, will be sacrificed. Even the use of data from the NAZI hypothermia trials,

which were ethically indefensible, is controversial. Observational studies, on the other hand,

are nonintrusive.

Another practical consideration is cost. Cross sectional studies often attempt to get in

formation about previous events through a questionnaire. This is one way of evaluating long

term exposures of human populations to a variety of potentially toxic chemical compounds.

By contrast, designed experiments attempt to manipulate factors so that the effects can be

observed. Designed experiments are very expensive when extended over many years and come

with the danger that the question under study will lose relevance over time. In this sense,

cross sectional studies are efficient.

For cross sectional studies in particular, a model allows the investigator to examine the

relationship between response variables and predictors. The model under consideration can

vary considerably; explanatory variables that are nominal, ordinal and continuous with non

conforming scales can be handled at the same time. If the standard errors of model coefficients

are also estimated, we can assess the importance of the predictors relative to one another. In

fact the estimation of coefficients and their standard errors is the foundation upon which the

house of cross sectional analyses are built. Cross sectional studies, then, can provide useful
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information using standard statistical methodology.

Now I proceed to indicate a few areas in which cross sectional analyses are weak. Having

information at one point in time rather than at several is one of them. First and foremost,

cause cannot be ascertained since event sequence is unknown. For instance, if fitness level is

found to be negatively related to a persistent cough, is the individual’s inactivity partially the

cause of the cough or is the cough a precursor to lessened activity? Without knowledge of

specific events ordered in time, it is difficult to make conclusive statements.

Related to this aspect of cross sectional studies is the type of disease statistic adopted.

Epidemiologists make a distinction between incidence, the number of cases of a disease in

a prescribed time interval, and prevalence, the proportion of people with the disease. Cross

sectional studies measure prevalence, a concern since bias is associated with prevalence: people

die or move in response to the occurrence of a disease.

Exposure is one of the key measures in air pollution risk assessment studies. Exposure

occurs when the host comes in contact with an agent in the environment. Depending on

the exposure data, cross sectional studies can either be ecological or relational. Ecological

studies use station pollution data which is assumed to apply to the individuals who live nearby.

Relational studies use exposure information collected for every individual selected in the study.

The ecological fallacy arises if one assumes an estimate based on an average applied to

individuals is equivalent to an estimate based on individual measurements. If, for example,

the distribution of a pollutant is heterogeneous then the absorbed dose among individuals

will probably not be the same. Another possibility is that individuals attain different ex

posure levels due to daily commutes from one area to the next. Thus, a false relationship

between pollutants and disease can be observed because the averaged exposure data does not

adequately reflect the relation between subjects’ absorbed doses in different geographic areas.

The ecological fallacy can be seen as arising from measurement error. The sensitivity of regres

sion coefficients to various levels of spatial aggregation has not been studied comprehensively
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(Evans et aL, 1984).

Another drawback of the cross sectional design arises from the lack of control. Alas, people

are not randomly distributed experimental units. They are intentional agents often making

decisions related to the area of scientific interest. An example is provided by asthmatics who,

aware of their own hypersensitivities, exercise self selection in terms of where they live and

where they work (Lebowitz, 1991). Individuals who make informed decisions of that sort

should no longer be considered, strictly speaking, observations from a stochastic process that

assumes independence.

The context of these studies is important; they ought to be thought about as one part

of an extensive, ongoing research effort. By itself, certainly, a cross sectional study cannot

prove a causal biological relationship. Bates (1992) suggests we look for coherence in complex

phenomena in building a scientific case. Epidemiological evidence should be corroborated, for

example, by toxicological studies and results from molecular genetics.
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4 Description of the Ontario Health Survey

In Canada, 10% of the 1991 gross domestic product was spent on health care (Evans, 1993,

32). Concurrently, little is known about the health status of the general population. This

creates difficulties for provincial governments which must provide health care to individuals at

local levels. What data sources are available for these agencies? Are they adequate to meet

the need of the increasingly difficult task of optimizing the distribution of federally allocated

funds?

The information we do have comes from administrative sources like hospital admission

data. Although this data sheds light on who has received medical attention it remains silent

about those who do not feed into the system. Further, profile information such as smoking

history and socioeconomic status is limited or nonexistent from these sources. The need for

better health data is clear.

In 1978-79, Statistics Canada conducted the Canada Health Survey, the first comprehensive

health survey taken in Ontario. Successive health related surveys include the Canada Fitness

Survey (1981), the Canada Health and Disability Survey (1983/84) and the Health and Activity

Limitation Survey (1986/87). For provincial planning purposes, however, the available data

had been inadequate. The sample sizes were not large enough to permit inferences below the

provincial level. The Ontario Ministry of Health recognized the value of funding a survey which

would allow for estimates at the level of District Health Council or Public Health Unit and in

1987 proposed a health survey for the population of Ontario. Four years later the proposal

became reality: the survey was carried out and a rich source of new information about the

health status of the population of Ontario was created. The database obtained from the 1991

Ontario Health Survey (OHS) provides the information for our study. The large sample size,

wide geographic coverage and detailed respondent information will enhance the quality of the

study. This chapter gives an overview of the survey.
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4.1 Objectives

The survey set out to provide baseline statistical data on the health of the Ontario population

at the Public Health Unit level. The objectives are to:

F> measure the health status of the population;

L collect risk factor data for the major causes of morbidity and mortality;

L collect data related to socioeconomic and demographic variations in health;

F> measure awareness of high risk behavior;

F> measure utilization of health services;

F> collect descriptive data for health units; and

F> collect data comparable to that in the Canada and Québec Health Surveys.

The long length of the resulting questionnaire reflects a vigorous attempt to achieve all the

objectives. The high response burden was recognized from the start and evaluated during

pretesting.

The high level of geographical coverage is worth highlighting. As Figure 2 indicates,

the Province of Ontario can be divided into thirty seven Public Health Units (PHUs) or

districts. The PHU is similar to Census Division, the difference being marginal disagreements

in boundaries. Some PHUs, for example, are aggregates of two Census Divisions. During

analysis, the PHU will play a vital role in linking geographical pollution data to individuals in

the sample. The large size of the PHU ensures that people living within one can reasonably

be expected to be bounded to the area in terms of daily movement. We hope there are enough

PHUs to enable a good description of pollution differentiation between areas of the province.

4.2 Data Collection Method

We wifi often refer to the data collection method and so describe it now in some detail. Figure 3

depicts a flowchart summary. I will comment on some of the pros and cons associated with
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Identify Household in Sample
.1J.

Conduct Personal Interview with all Household Members

Leave Self Completed Questionnaire

Handle Nonrespondents with Follow up Telephone Call

Figure 3: Flowchart summary of the OHS data collection procedure.

each part of the process.

Once a household is identified in sample, a household record form is created. Newly

constructed buildings or subdivisions, outdated maps and dangerous neighborhoods can make

identification difficult.

As soon as the household record form is available, the personal interview of one household

member is possible. That member must be knowledgeable since he reports on all of the other

members of the household. Obstacles to successful completion of this phase include inability

to contact anyone and errors associated with inaccurate determination of household members.

There are at least three benefits from using a personal interview. First, the survey taker gets

a chance to introduce the survey without being ignored. Second, empirical observation proves

that a higher response rate is generally achieved by a personal interview over self enumeration

alone. Third, telephone follow up will be easier since the caller will be making a ‘warm’ call.

A self completed questionnaire is left for each household member aged 12 and up. If that

member does not return the questionnaire before a specified time, two telephone calls are

made.

The combination of personal interview, self enumeration and telephone follow up represents

a compromise between total survey cost and response rate.
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4.3 Target Population

The target population for the interviewer completed portion of the survey is all residents of

private dweffings in Ontario during the survey period (January to December of 1990). The 1991

estimate for the population of Ontario is 8.1 miffion people. As in many surveys conducted by

governmental agencies, residents of Indian reservations, inmates of institutions, foreign service

personnel and residents of remote areas were excluded.

The target population for the self completed portion of the survey is similar except that

the population includes only people aged twelve and up.

4.4 Pretesting

The Ontario Ministry of Health hired Statistics Canada to conduct a pilot survey for the OHS.

The four objectives were to:

L identify weaknesses of the content, wording and structure of the questionnaire;

t evaluate the efficacy of the training procedures and field operations;

L quantify the effect of questionnaire length to response rates; and

L assess the use of an incentive to boost response rates.

In May 1989, a total of 800 dweffings in Peterborough County and the Municipality of

Hamilton-Wentworth were surveyed. All households went through the same interviewer por

tion; four versions of the self completed questionnaire were equally divided among dweffings.

Two follow up telephone calls were made to jog the memories of individuals who had not yet

returned their questionnaires.

Let {Basic} be the core of the questionnaire (the questions take about 15 minutes to fill

out); {Food Frequency Schedule}, the set of questions pertaining to the amount and frequency

of different kinds of food the respondent has consumed; {Linkage Information} the set of ques

tions asking for additional identifying information (middle names, maiden names, perviously
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Figure 4: OHS pretest questionnaire response rates.

used surnames and birthplace). The four versions of the self completed questionnaire can then

be summarized as follows:

Version A: {Basic}
Version B: {Basic} + {Food Frequency Schedule)
Version C: {Basic} + {Food Frequency Schedule) + {Linkage Information}
Version D: {Basic} + {Food Frequency Schedule) + {Linkage Information)

with an incentive.

The incentive in Version D was three $500 prizes drawn at random from those respondents

who replied promptly. Two of the objectives were met by including these four versions of the

questionnaire.

The response rate for the personal interviewer completed portion was 87%. The overall

response rate for the self completed portion was 69%, somewhat under the 75% response rate

the Ontario Ministry of Health was shooting for. The main conclusions of the pretest follow

from the response rates for each version of the questionnaire, shown in Figure 4. First, adding

the food frequency schedule reduced the response rate marginally. Second, requesting the

extra identifying information seemed to have a significant adverse effect on the rate. Third,

the incentive worked dramatically. The male response rate was 10% lower than that for

females. The incentive remarkably increased response rates for males between the ages of 16

to 60. Finally, the use of telephone follow up proved worthwhile since, before cailing started,

the response rate was below 50%. Although Statistics Canada recommended version A or

A B D
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version D on the basis of the rate set out by the Ontario Ministry of Health, version B was

eventually chosen as the best of all candidates.

4.5 Questionnaire Content

The questions and format of the OHS came from various sources. Previous survey ques

tionnaires like the Canada Health Survey, Québec Health Survey, General Social Survey and

Health Promotion Survey were used as models. Potential users of the data, ie. units within the

Ontario Ministry of Health such as the Public Health Branch, Public Health Units and District

Health Councils, were given an opportunity to develop survey content. Finally, organizations

like Statistics Canada and Sante Québec were consulted along the way.

The final form of the questionnaire breaks down into three separate parts: the household

record form, the interviewer questionnaire and the self administered questionnaire. The house

hold record form keeps track of the dweffing and the identities of the household members. The

content of the interviewer and self administered questionnaires is summarized in Table 1.

The important sections for our study are highlighted with an asterisk in Table 1. For the

interviewer completed portion the chronic health problems section contains the two response

variables considered in our study, chronic cough and asthma. The personal interview achieves

the highest response rate among survey delivery techniques and favorably affects the quality

of the response variable data. The other variables, on the other hand, come from the self

completed part of the survey.

Sociodemographic data often varies with health outcome. We will therefore want to include

a selection of sociodemographic variables from the list. The information derived from questions

on the OHS ranges from country of birth to education, income and housing. Comparability of

sociodemographic data to other sources, e.g. Canada Census, provides a possible data integrity

check.

Information on the multifaceted phenomenon of smoking is extremely important for any

study of respiratory health. The section devoted to smoking is comprehensive, identifying
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• Household Record Form
• Interviewer Completed Questionnaire

Contacts with Health Professionals
Disability within the last Two Weeks
Use of Medication
Medical Insurance
Accidents and Injuries
Health Status
Restriction of Activities
Chronic Health Problems*
Health Problem Probes
Socio-economic Information*

• Self Completed questionnaire
Your Health
Medicine and Drugs
Smoking*
Alcohol*
Your Family*
Dental Health
Your Life in General*
Driving and Safety
Women’s Health
Sexual Health
Occupational Health*
Physical Activities*
Nutrition

Table 1: OHS questionnaire content.

smoker type, the number of cigarettes smoked daily and the ages at which smoking began and

ended, where appropriate. As a bonus, questions aimed at the extent of second hand smoke

were also asked.

The Short Michigan Alcohol Screening Test (SMAST) score is included in this study even

though, on the surface, it may be of peripheral interest. The score identifies drinkers and alco

holics with a view towards reliability. With the stigma attached to alcoholism, the respondent

may be sensitive about questions related to drinking. Research has shown that the SMAST is

minimally affected by denial tendencies (Seizer, 1975).

A series of twelve questions under the heading ‘Your Family’ were weighted and summed to
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obtain a general family functioning score. It is supposed to reliably measure family functioning.

The success or failure of interpersonal relationships within the immediate family might be

thought of as another demographic characteristic of the individual. If there is some truth

to the relationship between mental and physical health, covariates such as family functioning

ought to be included in the study. In a similar vein, questions from the section ‘Your Life

in General’ seek to measure social support outside of immediate family. An analogue to the

family functioning score, the general well being score, was constructed.

Health outcomes may in part be determined by conditions in the workplace. I take a

number of questions delving into workplace exposure to hazardous materials from this OHS

section.

Lastly, physical activity has a direct impact on human health. Effects generally include

the reduction of premature morbidity and an enhancement of emotional well being. The OHS

asked about the type and frequency of physical activity that took place in the last month.

In conclusion, the OHS questionnaire obviously strives to be comprehensive. The sheer

number of questions, totaling over one thousand, attests to the fact. With the availability of

such data, this project has a good chance in uncovering a relationship as could reasonably be

expected from an ecological study.

4.6 Survey Methodology

Survey methodologists implement sampling designs that meet given specifications under known

constraints. In terms of a 95% confidence interval, the OHS design objective is to enable

PHU proportions as low as 3% to be estimated within 50% of the estimate. For an esti

mated PHU proportion of 3%, the 95% confidence interval would be, in terms of percentages,

(3 — [1/2]3, 3 + [1/2]3) = (1.5, 4.5). Design constraints include budget and available sampling

frames.

The chosen sampling frame, a frame of enumeration areas, comes from the 1986 Census.

The enumeration area (EA) is the smallest area for which population counts can automatically
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be retrieved. Each EA is situated in a PHI] and classified as either urban or rural. Specifi

cally, urban EAs represent the urban core and fringe of census metropolitan areas or census

agglomerations.

A multistage stratified cluster sample is a good description of the OHS survey type. PHU

and the urban/rural bifurcation stratify the population. The purpose of stratification is to

group dwellings into homogeneous units with respect to measurable characteristics of interest.

The estimates of population characteristics are for the most part more precise when using

a stratified sample over a simple random sample. The primary sampling unit is the EA. In

the first stage the survey takers sampled an average of 46 EAs within a PHU. They then

constructed a list of dweffings for each of the selected EAs. The list became the sampling

frame for the second stage of the sample. Clusters of dweffings, about fifteen from urban

strata and twenty from rural strata were sampled at the second stage, resulting in the desired

sample size of approximately 760 dwellings per PHU.

Reliable estimates of proportions greater than 3% had to be achieved at the PHU level. How

was this criterion used to arrive at the sample size? Let j3 be an estimate of a proportion using

weights determined by the survey design. Most designs for surveys conducted at a provincial

or national level produce estimates with less precision than those that could be obtained by

taking a simple random sample. The design effect (deff) of a proportion,, in this case estimated

to be two (Ministry of Health, 1992a, p. 29), represents the factor by which the variance of

an estimated proportion is inflated. Thus, letting Var (j3) be the variance of j3 under simple

random sampling and ignoring the finite population correction factor,

Var(s) deff()Var() 2Var() 21 .

The coefficient of variation is a scale free ratio of an estimate’s precision to the expected

value of the estimate. The OHS criterion for proportions greater than 3% was a coefficient of
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variation less than 25%:

C.V.() /2P(1_P) <0.25. (1)

Since, by (1),

________

2(1_p)
or n > 32

(l_)

and
/l—p’ 1—0.3

max 1 1= 32,
pE[O.03,1] \. p 1 0.3

the approximate sample size needed to fulfill the reliability criterion is n = 32 32 = 1024.

For 46 PHUs the sample size translates to about 48,000 individuals.

Note that the sample size was further increased to account for expected nonresponse. The

actual sample size resulted in 49,200 individuals responding out of 61,300 surveyed. The 49,200

individuals represent 35,500 households. To recapitulate, the large sample size exists to meet

design specifications.

This section was included to give the reader a flavour of the methodological intricacies

lurking behind the Ontario Health Survey data. The complex survey design induces nonequal

probabilities of selection for the survey population; the weights associated with each survey

respondent reflect selection probabilities adjusted for nonresponse and age-sex population to

tals at the PHU level. This should caution any analyst to consider carefully what types of

inference are supportable by an analysis of the data.

4.7 Nonresponse Rates

Characterizing response rates for the OHS is not trivial. From the outset, the personal inter

view and self enumeration introduce at least two response rates: the OHS had a response rate

of 88% for the former and 77% for the latter. Item response rates further fog the issue. I will

document some of the difficulties in coming to terms with item nonresponse.

The topic of response rates is conventionally rephrased in terms of nonresponse rates. I

wifi adhere to that scheme. Nonresponse can be divided into unit and item nonresponse.
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Unit nonresponse occurs when the survey taker does not receive any information from the

respondent. For the OHS, unit nonresponse happens if nobody in the household goes through

with the personal interview. Unit nonresponse is handled operationally by modifying the

probabilities of selection for the units selected in sample that do respond and, essentially,

ignoring the nonrespondents.

Item nonresponse occurs when the survey taker procures only partial information about

the respondent. Reasons for this type of nonresponse include respondent reluctance to answer

sensitive questions and mistakes made during the transcription of data from the actual survey

form to an electromagnetic file. For the OHS, item nonresponse is complicated by the fact

that the survey is conducted using both personal interview and self enumeration. Thus, item

nonresponse arises in the following scenarios:

Household Personal Interview Family Member Self Enumeration
item nonresponse unit nonresponse
item nonresponse item nonresponse
item nonresponse complete
complete unit nonresponse
complete item nonresponse

There are two common means of handling item nonresponse. The first is imputation. The

technique makes up missing values. The two imputed OHS variables are age and sex. Missing

values were imputed for the OHS by generating random values proportionally consistent with

known PHU age-sex proportions. With imputed data the user cannot determine the rates of

item Jionresponse.

The second way of dealing with item nonresponse is to tell the user directly by allowing

for a “not stated” category. This strategy allows for calculation of item nonresponse rates and

the uncovering of nonresponse patterns. For example, the nonresponse for the eight questions

on work exposure is given in Figure 5. Though the nonresponse rate hovers around 8% for

each of the questions, for the most part the respondents either answer all of the questions or

none.

Smoking nonresponse, shown in Figure 6, is an example of a more subtle pattern. The first
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Figure 7: Nonresponse rates for the well being score by age.

question determines if the respondent currently smokes. Current smokers are asked the next

four questions while everybody else answers the six after that. The graph shows a higher item

response rate for smokers but this merely reflects that a smaller proportion of the population

can be classified as current smokers. Since the two groups are mutually exclusive the union

for the response rate is approximately the sum of the current smoker and not current smoker

nonresponse rate.

As a last example, consider the nonresponse pattern, shown in Figure 7, for a collection

of questions concerning personal well being. Older respondents seem to be more sensitive to

questions concerning their well being. The implication is that nonresponse is generally not

random even though it is convenient to assume so for purposes of an analysis.

Ill conclusion, the Ontario Health Survey nonresponse is significant enough to warrant

attention during analysis. What rates of nonresponse are there for the study variables? How

will item nonresponse be dealt with for discrete and continuous variables? These types of

questions will be dealt with as they arise.

39 66

Age
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4.8 Comment

The OHS comes with all the strengths and weaknesses of large scale survey data. The draw

backs include missing data and the survey weighting structure induced by complex survey

methodology. Also, despite the wide subject coverage of the survey, the OHS provides no

estimates of an individual’s exposure to potentially harmful pollutants. We are left with the

difficulty of estimating and linking pollution data from another source because of this absence.

Admittedly, this criticism is somewhat unfair given the survey’s objectives.

These drawbacks notwithstanding, I am delighted to have access to data backed by impres

sive resources, human and otherwise. One may think of the panels of experts who determined

questionnaire content; those involved with the pretest; the survey methodologists; and the

many who played a part in the field operations, from the training staff, interviewers and field

supervisors to those completing the cycle with data capture and imputation. Untold hours

went into the production of what is for me a starting point: the microdata file!
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5 Initial Data Analysis

This section will give the reader an overview of the data used in the succeeding analysis. I draw

data from two sources: the 1991 Ontario Health Survey (OHS) and six years of atmospheric

environmental monitoring.

The OHS target population (minus immigrants who have lived in Ontario for less than ten

years) comprise the study population. We exclude recent immigrants because our outdoor air

pollution estimates would not adequately represent their true exposure history.

I am forced to consider individuals as the unit of analysis because the OHS public datafile,

restricted for reasons of confidentiality, does not identify their household. A conflict imme

diately arises since the analysis should be in synchronicity with the survey design, meaning

that households rather than individuals should be the unit of analysis. One implication of

employing standard estimation techniques is that standard errors will be underestimated if no

adjustments are made.

Iii its complete form the OHS data is unmanageable. There are over 1000 variables of

which many are of no use to this study. The first task is to cull the data. I give a qualitative

and graphical description of the reduced set of variables along with associated nonrespoiise

rates.

The pollution data I start with derive from an involved inferential process. The original

data comes from thirty seven atmosphere monitoring stations. Each station potentially mea

sures up to four pollutants, namely nitrogen dioxide (NO2), ozone (03), sulfur dioxide (SO2)

and sulfates (SO4). The station data is interpolated for each public health unit (PHIl) by

Weimin Sun to whom I am indebted.

I convert the monthly averages, given over the six year period 1983-89, into single summer

and winter averages. Thus, each PHU has a six year average which I assume adequately

represents personal lifetime pollution exposure. For a flow diagram of the way the study data

is derived see Table 5.
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1991 OHS Data 1983-89 Daily Atmospheric
(Public Health Unit is the Monitoring Station Data from
finest geographic partition) Scattered Ontario Stations

__________

I
OHS Study Monthly Pollution Estimates
Variables by Public Health Unit

/
By Public

Health Unit

Study Data

Table 2: Flowchart of the derivation of the study data.

To close, I graph each of the covariates against the two response variables. This will provide

intuition about at least the one term models we fit later.

5.1 OHS Covariates

The OHS data contains information on innumerable aspects of the population of Ontario. Since

these data derive from measuring over 1000 variables, a subset that will best relate pollution

to respiratory illness must be selected. In this section I will describe what covariates were

selected, report their associated nonresponse rates and illustrate their marginal distributions

graphically.

This study focuses on asthma and emphysema as the response variables. The two questions

from the interviewer portion of the questionnaire were:

“Do you have asthma?”; and
“Do you have emphysema or chronic bronchitis or persistent cough?”.

The questions assume an ongoing chronic condition by the way in which they are asked. A small

fraction of questionnaire respondents (0.9%) did not respond to the two questions specifically.

This fraction will be ignored from here on. Figure 8 illustrates the prevalence of asthma and
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Asthma Emphesema
100 100

75 75.

0 0
Yes Yes

Figure 8: Prevalence of the two response variables.

emphysema. The low rates observed point to the need for a large sample: such studies could

be straight-jacketed by the lack of statistical power resulting from small samples.

To select the predictive covariates, I tried to obtain a satisfactory coverage of the follow

ing set of individual descriptors: demographic, lifestyle, health, socioeconomic, and pollution

exposure measures. The categories are rather arbitrary, though I chose them to make the

presentation of results more comprehensible. Table 3 exhibits the set of variables I selected in

each group. The grouping adhered to in the table will generally not make any difference to

the outcome of reported results; the arcsine analysis is the only exception.

Most of the study variables have been massaged in a variety of ways. The producers of

the OHS datafile made the preliminary alterations. To make the file easier to use, they com

bined subsets of the original questions to get derived variables. Household type, for example,

classifying the respondent according to a description of the relationship between the family

members of the household, was derived from the Household Record Form for each family in

each household.

Household income is another example. The variable classifies the respondent into one

of three household income groups: low income; not low income but less than $50,000; and

income $50,000 or more. A question that arises is how exactly low income is defined. The

cost of living, household size and household income are determinants that should be taken

No No
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Grouping Covariate Type
Demographic Rural or Urban Stratum Nominal

Sex Nominal
Age Continuous
First Generation Immigrant Nominal

Socioeconomic Family Type Nominal
Family Functioning Score Continuous
Blue Collar Work Nominal
Work Exposure Ordinal
Post-Secondary Education Ordinal
Income Ordinal

Lifestyle Smoker Type Ordinal
Current Smoker Type Nominal
Duration Smoked Continuous
Number of Cigarettes Smoked Integer
Number of Current Household Smokers Integer
Alcohol Problem Ordinal

Health Body Mass Index Continuous
Energy Expenditure Continuous
Well Being Score Ordinal
Allergy Ordinal

Table 3: List of study covariables.

into account. The rule adopted by the OHS is based on poverty lines and low income cut

offs developed by the National Council on Welfare and Statistics Canada. Place of residence

(urban or rural), income and household size determine low income classification (Ministry of

Health, 1990, p. 11).

I introduced the second set of modifications which are typified by the example in Table 4.

In effect I used existing OHS variables to derive a new variable. I chose this route to reduce

the number of explanatory covariates under consideration. Clearly the choice was arbitrary to

some degree.

The last modification of the original OHS data is related to item nonresponse. I will delay

my exposition of nonresponse until after I have described the explanatory covariates in more

detail.
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Questions: In your job or business have you, in
the past twelve months, worked with Responses:

1. dust from wood, grain, haw or straw?
2. dust from silica, granite or rock dust? Never
3. glass fiber dust or asbestos? Occasionally
4. dust or fumes from lead, cadmium, Often

nickel, chromium or mercury? Always
5. fumes from solvents, paints or gasoline? Don’t Know
6. resins or isocynates? Not Applicable
7. pesticides? Not Stated
8. coal tar or pitch?

J.L

Yes if ‘Often’ or ‘Always’ at least once,Work Exposure =

I No otherwise.

Table 4: How the OHS work exposure questions form a covariate for this study.

The demographic covariates describe certain unalterable features of the respondent. I chose

stratum, sex, age and an immigrant indicator as the demographic covariates. Their marginal

distributions are shown in Figure 9. As with the other estimates in this chapter I used survey

weights, as prescribed by OHS documentation (Ministry of Health, 1990(c), p. 3.), to produce

the estimates.

The four demographic covariates look reasonable. The Canada Year Book (Statistics

Canada, 1991, p. 73) tells us that 83% of the Ontario population resides in an urban set

ting. The OHS weighted estimate is 86%, as expected. The division between the sexes is

about fifty-fifty and the age distribution shows a bulge for the baby boomers. The immigrant

indicator shows what portion of the study population are immigrants who arrived before 1980.

Age may be an important explanatory variable. The probability of death increases with

age, ranging from 3% for Canadians between the ages of one to 24 to 71% from 65 years and

up (Future Health, p. 102). Any disease related to chronic exposure over a long period of time

might be expected to be related to age. For ailments of the respiratory tract, older people
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Figure 9: The demographic covariates.

appear to be more vulnerable to inhaled particles and gases (Brain, 1989).

Some studies consider ethnicity as a demographic characteristic. When ethnicity proves to

be a good predictor, however, it likely reflects class membership, as in the case of aboriginals.

As a group, chronic cough or emphysema affects them at almost double the Ontario average

(4.5 versus 2.4%). This phenomenon is explained by the well documented condition of poverty

in which many natives live. The OHS data reinforce this view with an observed moderately

high negative correlation between chronic cough and standard socioeconomic variables such

as education and income. The higher prevalence of illness therefore reflects structural inequal

ities within society rather than race (Steinberg, 1984). Since ethnicity in Canadian society,

exempting aboriginals, does not generally imply class membership, this study relies on the
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socioeconomic indicators to capture those inequalities.

Socioeconomic variables, shown in figure 10, are important indicators of longevity (see

references in Evans, Tosteson and Kinney, 1984). Presumably they are also good predictors

of respiratory health. The socioeconomic covariates represent information on the family unit,

work, education and income. All of these variables are categorical, including the seemingly

continuous family functioning score. The score, however, is a weighted score of responses

from a series of twelve questions from the self completed questionnaire. The actual cutoff

is supposed to represent the best division distinguishing families seeking clinical help from

those in the general population. The income categories definition depends on poverty lines

and low income cutoffs developed by the National Council of Welfare and Statistics Canada.

The formula adjusts for household size, area of residence (urban/rural) and household income

(Ontario Ministry of Health, 1992a, p. 10, 21-22).

Lifestyle covariates, shown in Figure 11, may turn out to be the most important set of

explanatory variables due to the impact of smoking on lung function. The best of them

is probably duration smoked as it is continuous and more reliable that the other continuous

covariate, the number of cigarettes smoked daily. The measurement of the number of cigarettes

smoked daily illustrates the tendency of people to ‘think in fives’ when asked for a simple answer

to a complex habit. Second hand smoke exposure was captured in the personal interview when

the respondent was asked if anybody in the household smoked. Finally, a drinking problem

index, developed from a shortened form of the Standard Michigan Alcohol Screening Test

(SMAST) is included as one of the lifestyle indicators.

The general health of a person may have an effect on specific pathologies such as asthma

or emphysema. Figure 12 illustrates the distributions for the health covariates. Body mass

index (kg/rn2)and exercise expenditure (kcal/kg/day) are continuous and reflect individuals’

participation in physical exercise. Well being, for reasons similar to the family functioning

score, is ordinal. The family functioning variable divides families into functional and dysfunc
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Figure 10: The socioeconomic covariates.
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Smoker Type Current Smoker Type

Figure 11: The lifestyle covariates.
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Composite Score

Figure 12: The health covariates.

tional.

Most of the OHS covariates display some degree of nonresponse though for the graphs

given so far, the nonresponding portion of the sample was ignored. I will currently take some

space to characterize the nonresponse for the study data.

Nonresponse can be divided into unit and item nonrespoilse. In the context of the OHS,

unit nonresponse was either at the household level, where no personal interview took place,

or at the household member level, where an individual’s self completed questionnaire was not

obtained. Item nonresponse occurred when a respondent provides partial information. Here,

item nonresponse manifests itself as a respondent who partially omitted information on the

self completed part of the survey.
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The OHS had a unit response rate of 88% for the personal interview and 77% for the self

completed questionnaire. For the rest of the study I will consider only the 77% of respondents

responding to the self completed questionnaire.

Figure 22 in the Appendix summarizes item nonresponse. The range is rather striking.

Hovering around 15% are well being, energy expenditure and household income. For the

next set of variables, from the number of cigarettes smoked to smoker type, item nonresponse

stands at about 10%. Blue collar work, allergy, education and immigration show negligible

nonresponse.

There are at least three plausible explanations for high nonresponse. First, the respondents’

sensitivity to the question has an effect on rates. The question on household income is a sterling

example. Many Canadians may well feel uneasy about providing the information. For some

the anxiety is culturally related; for others revealing income may be embarrassing; yet others

may feel the government could use the survey as a device to nab tax evaders. Well being is

another example: observed nonresponse increases as age increases.

Second, the length of the questionnaire will have an effect on both unit and item nonre

sponse. In the OHS pilot study, a short version of the survey resulted in higher overall response

levels. There is reason to believe that item nonresponse is also affected by questionnaire length.

The fact that some household members skipped whole parts of the survey is suggestive.

Third, some variables are composite indicators and nonresponse can then result from a

missing answer for only one question. The well being score is a weighted total of one positive

and one negative statement covering seven categories: energy, control of emotions, state of

morale, interest in life, perceived stress, perceived health status and satisfaction about rela

tionships. If any one of fourteen questions went unanswered the well being score was coded as

“not stated”. This phenomenon may explain the two other composite variables, family score

and energy expenditure.

Some of the variables seem to have achieved 100% response rates. In the case of the
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Exposure Assessment Effects Assessment
Level Hazard Identification
Distribution Type of Effect
Number of People Dose Response
Target Dose Risk Characterization

Table 5: Types of pollution assessment studies.

geographic indicators Public Health Unit (PHU) and stratum, data exists for all respondents

because the variables were used in survey stratification. In other cases the response rate is

artificial. An imputation method can, for example, fill in data where data is missing. Age and

sex were imputed using a random assignment mechanism based on census information on a

stratum’s population breakdown into age and sex categories.

From this look at item nonresponse we can agree that some of the variables are more reliable

than others. Looking at the set of study variables together, only 55% of the respondents have

given complete information. At the modeffing stage provisions must be made to deal with the

item nonresponse.

In summary the 1991 Ontario Health Survey is the source of the two response variables

and twenty explanatory covariates. The majority of covariates are categorical rather than

continuous, reflecting the difficulties of obtaining good continuous measurements from a large

scale survey. The set of explanatory variables cover a range large enough to build decent

models. The one ominous omission is the pollution data to which I now turn.

5.2 Pollution Covariates

The measurement of internal dose of a pollutant is very important in pollution effects studies.

In most cases, however, the internal dose is unknown. The theme of this section is how the

available exposure data is related to an individual’s internal dose.

Consider the two broad classes of pollutant assessments shown in Table 5. The most

commonly available data measures environmental releases or concentrations in specific media;
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exposure measurements such as the number of people exposed and their absorbed dose are

relatively rare. Exposure data is therefore generally estimated by making assumptions that will

allow pollution concentration data to be linked with individuals faffing in a certain geographical

area. For most pollution assessment studies the data is clearly imperfect. This study falls under

the effects assessment heading as a risk characterization study. How good the assumptions

needed are is uncertain but at least one study, where NO2 exposure measured by personal

monitoring devices was compared to station measurement, suggests station measurements are

adequate for airborne pollutants (Hackney et al., 1992).

The contact between a person and a pollutant in an environmental medium is termed

exposure. Exposure is completely described by the route by which the pollutant enters the

body; the concentration of the incoming pollutant; the duration of the exposure; and the

frequency of exposure. Most pollutant data measure pollutant concentration for one medium

covering some geographic area (Sexton et al, 1992).

I make the following assumptions about the pollution data:

L’ The weather station sites have well calibrated measuring instruments. That is,

at a given concentration of SO4, say, all stations would give a reading closely

corresponding with other stations.

F A six year average of site pollution is a good indicator of longer term averages.

t Average pollution levels do not fluctuate radically from decade to decade.

i Spatially, ambient aerosol pollution is homogeneously distributed within Public

Health Units (PHU).

t Ambient aerosol pollution levels are proportional to an individual’s absorbed in

ternal dose.

t Alternative sources and environments for the pollutant under study are negligible.
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Figure 13: Typical graph of a station’s measurement of one pollutant.

L Individuals within a PHU, the approximate equivalent of a Census Division, are

spatially stable; migration from one PHU to the next is minimal.

These assumptions make the available data appropriate for our analysis. The data come from

37 atmosphere monitoring stations unevenly scattered across Ontario. Not all stations measure

all pollutants of interest.

The station data is used to predict pollution levels for the PHU centroids for which there

are no stations. Brown, Nhu and Zidek (1993) have developed a methodology for spatially

interpolated predictive distributions. The modification and implementation of their method,

described in Duddek et al. (1994), produced the predicted monthly averages used in my anal

ysis. In this section I will heuristically explain the steps taken to get the pollution estimates.

The first step begins with the original measurements from which the predicted means are

eventually estimated.

Nitrogen dioxide (NO2), ozone (03), sulfur dioxide (SO2) and sulfate (SO4) are the four

pollutants considered in this study. The daily measurements, taken over the six year period,

1983-89, have been converted into monthly averages. Figure 13 is an example of a measurement

of one pollutant at one station and indicates how the graphs are to be understood. The more

complete sets of graphs are given in the appendix by Figures 23 to 26.
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Station measurements of NO2 are given in Figure 23. The plots of twelve of the thirteen

stations are ordered by ascending station averages. By looking at the first and last stations

one gets a sense of the mean range, in this case from 25 to 45 ,ug/m3NO2. Low outliers appear

in graphs eight and ten. Their existence is partly explained by many missing daily measure

ments. If at least one daily measurement is available for the month then the monthly mean is

calculated. Nothing is done about measurement or transcription error since no information on

data quality is available. If no measurements exist for the month a monthly mean is imputed.

On the whole, the effect of outliers on the six year mean is minimal; the observed difference

between the simple average and winsorized mean eliminating one observation on each extreme

is less than five percent.

Ozone measurements age given in Figure 24. The ozone data is better than the NO2 data

in two respects. First, there are almost twice as many stations measuring ozone as NO2. Other

conditions being equal we have more information available for ozone. Second, in contrast with

NO2, a temporal pattern with peaks in summer and lows in winter is evident. This allows me

to more easily identify poor stations by observing which deviate from the trend. The data

from the station in the fourth row and the third column, for example, looks somewhat suspect.

Sulfur dioxide and sulfate measurements are next. Twice as many stations measure 502 as

SO4. No seasonal pattern appears in either. SO2 has the highest between station variability

among pollutants.

Within each PHU we choose a centroid for which a monthly estimate will be produced.

The estimate is supposed to be a good proxy for the internal dose experienced by people living

in that PHU. Our interest lies in estimates of six year averages, broken down by summer

and winter. By dividing the estimates into two types we had hoped to capture subtle spatial

differences that may exist between seasons. The final pollutant estimates are shown in Table 6.

We make two checks on the validity of the estimated data. First, for each pollutant we
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Summer Winter
Public Health Unit 03 NO2 SO2 SO4 03 NO2 SO2 SO4
Eastern Ontario 45.9 26.6 22.5 4.04 30.3 31.3 22.8 4.30
Ottawa-Carleton 46.0 25.5 22.8 4.33 30.0 31.5 22.1 4.42
Leeds, Grenville and Lanark 46.1 25.5 19.7 4.75 29.5 30.8 22.1 4.55
Kingston, Frontenac, Lennox 46.3 25.6 18.0 5.24 28.5 30.5 21.2 4.51
Hastings and Prince Edward 45.9 25.6 17.6 5.26 28.4 30.9 20.7 4.54
Haliburton, Kawartha, Pine Ridge 46.3 28.2 16.9 4.88 29.1 33.1 18.8 4.78
Peterborough 45.8 26.0 17.0 5.23 28.3 31.5 19.7 4.68
Durham 48.1 30.7 16.6 5.89 27.9 32.8 19.2 4.92
York 48.0 33.3 15.4 4.97 29.0 34.7 18.3 4.85
Toronto 49.8 37.4 18.6 5.99 27.6 34.6 20.2 4.91
Peel 48.7 36.1 16.0 4.89 28.7 35.7 18.7 4.73
Weffington, Dulferin and Guelph 49.0 37.8 16.2 4.37 29.6 37.4 19.0 4.66
Halton 50.4 38.4 17.8 5.48 28.0 35.5 20.0 4.76
Hamilton-Wentworth 52.5 36.1 18.4 6.17 28.8 33.9 20.3 5.10
Niagara 56.4 24.1 18.0 8.73 30.9 27.7 20.3 6.10
Haldimand-Norfolk 57.5 25.5 18.3 8.75 31.1 28.7 20.1 6.25
Brant 52.6 35.7 18.0 6.01 29.0 34.2 20.2 5.05
Waterloo 49.4 39.7 16.5 4.67 28.4 37.7 19.8 4.47
Perth 49.5 40.1 18.7 4.33 29.0 39.0 21.5 4.40
Oxford 52.7 36.1 18.3 5.76 29.1 35.3 20.5 4.91
Elgin-St.Thomas 56.5 30.1 20.4 7.60 30.3 32.7 20.9 5.57
Kent-Chatham 57.8 29.5 22.1 8.46 30.2 35.2 22.5 5.48
Windsor-Essex 58.9 28.4 22.9 9.23 30.1 36.8 24.1 5.51
Sarnia-Lambton 55.3 37.0 29.1 5.89 30.0 39.0 25.3 5.11
Middlesex-London 53.8 36.6 21.9 5.73 29.4 37.1 22.3 4.86
Huron 49.4 40.5 20.3 4.10 29.8 39.6 22.8 4.52
Bruce-Grey-Owen Sound 47.5 37.1 16.1 3.63 31.7 37.7 19.0 4.66
Simcoe 47.2 33.1 15.0 3.93 31.0 36.1 17.8 4.54
Muskoka-Parry Sound 44.7 31.8 17.7 3.27 28.5 36.0 23.2 2.90
Renfrew 44.9 28.3 19.5 3.79 29.8 34.4 20.3 3.57
North Bay 42.8 31.4 20.0 2.80 27.9 34.2 21.9 2.56
Sudbury 38.6 33.3 33.3 1.96 26.4 35.7 30.1 2.15
Timiskaming 43.5 32.3 25.1 2.63 28.0 34.0 23.6 2.47
Porcupine 47.5 32.2 21.9 3.19 28.9 33.5 22.5 2.61
Algoma 39.0 34.2 30.3 2.00 26.6 36.3 28.6 2.16
Thunder Bay 43.7 33.9 24.7 2.49 27.0 35.3 25.3 2.11
Northwestern 49.0 32.2 20.8 3.39 29.7 33.0 21.5 2.78

Table 6: Spatially interpolated ambient air pollution six-year averages (g/m3).
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produce boxplots for estimated and actual values (Figure 29 in the Appendix). The range of

observed values may be larger than the estimated values, in particular for nitrogen dioxide

and sulfur dioxide, because some stations had high measurement variability. The spatial

interpolation method corrects for that variability by emphasizing stable stations over highly

variable ones.

The second check comes in the form of a display of estimates by PHU in Ontario. Figures 30

to 33 exhibit the distribution of pollution estimates for both summer and winter. Dark areas

indicate higher pollution levels than lighter ones. The gradual nature of regional differences

and higher estimates for the more heavily industrialized Great Lake PHUs give us confidence

in the method.

Now that we have estimates for both summer and winter we must address whether it is

worthwhile to keep two variables for one pollutant. If summer and winter pollution estimates

are highly correlated then a combined pollution estimate should suffice. The strongest rela

tionships between all summer and winter combinations for all four pollution variables is shown

in Figure 27.

The linearity of the top three graphs stands out at once. Since the three pollutants,

nitrogen dioxide, sulfur dioxide and sulfates, have similar ranges, data averaged over the year

will probably do just as well as either of the two measures. Ozone is rather quirky with summer

values impressively larger in the four month summer than in the eight month winter. Since

people are generally outside more in the summer, the summer ozone value will be the ozone

representative value in the analysis.

The last five graphs show the strongest relationships between pollutants of differing types.

Significantly, ozone shows up in each of the plots. Summer ozone is positively correlated with

summer sulfur dioxide and, strangely enough, winter sulfates. On the bottom row, winter

ozone shows a hint of a relationship with summer sulfur dioxide, winter sulfur dioxide and

winter sulfates. From the limited data, nothing interesting shows up for nitrogen dioxide.
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That concludes our description of the process from original station measurements to six

year PHU estimates. We must now link the pollution data to the Ontario Health Survey data

and proceed to the analysis.

5.3 Asthma versus Covariates

Once the pollution data is merged with the OHS data we are poised to start with the pre

liminary stages of the analysis. We can make a first assessment of the relationship between

asthma and each of the explanatory covariates by looking at their plots. (Figures 14 and 15).

The bars in the plots exhibit two characteristics. The first is the whitespace in the middle of

the bar, the weighted estimate of the proportion. The second is the length of the bar, primarily

indicating the number of observations used to calculate the proportion. The bar length,

however, is not an explicit 95% confidence interval. A nominal 95% confidence interval would

generally be the weighted proportion plus or minus two times the binomial variance. With

survey data we have the design effect (deff) mentioned in the description of OHS methodology.

Since the OHS documentation suggests that the design effect for an estimate of the mean is

around two I have constructed the following intervals:

j3 ± deff() j3 ±

Of course, by displaying so many plots we are implicitly making multiple comparisons. I have

not attempted to construct intervals that maintain an overall 95% confidence level but rather

have plotted them in the spirit of an exploratory analysis.

Of the demographic variables, age is the most interesting. Asthma has a higher prevalence

for the youngest members of the population. This suggests that some proportion of asthmatics

are relabeled later on in life.

In the socioeconomic sphere household type, education and income show mild correlation

with asthma. The household type ‘D’ represents single parent households, a category known

to have a disproportionate number of poor, single women. The fact that household type,

53



Demographic Covanates
10

(U
E
C’,

0
Urban Rural

Stratum
Male Female

Sex Age (Years)
Yes No
Immigrant

Socioeconomic Covariates
10

(U
E
ci)

0
A B CD
Household Type

Good Bad
Family Functioning

NA Blue White
Blue Collar

Yes No
Work Exposure

Low Mid High
Income

Figure ]4: Asthma prevalence by covariates (I).

NA 0cc Daily
Current Smoker

:
13 7e

:::I :

Socioeconomic and Lifestyle Covariates

(U
E
U)

Prim Sec Univ
Education

NA Old 0cc Daily
Smoker Type

54



Socioeconomic and Lifestyle Covariates

50 0 35
Cigarettes Smoked

0 1 2 3+
Household Smokers

Health Covariates

Yes Maybe No
Alcohol Problem

Figure 15: Asthma prevalence by covariates (II).

:11
Duration Smoked (Years)

10

E

0

10

E

0

10

E
C’,

0

:
=

17 33 0 30 Poor Good Yes No
Body Mass Index Energy Expenditure Well Being Score Allergy

Pollution Covariates

• L ii i I I[i.I I
illII

27 40 39
Nitrogen Dioxide

I 1 II 1111111111

60 17
Ozone Sulfur Dioxide

31 2.1 7.1
Sulfates

55



education and income concur strengthens the argument that socioeconomic factors are related

to health outcomes.

Work exposure merits some attention: observe the lower prevalence of asthma for the

population exposed to dust and fumes in an occupational setting. The most likely cause is

that asthmatics probably try harder to avoid work that would exacerbate their condition. This

is a perfect example of the caution that must be heeded in making inferences with observational

data.

The smoking variables display no interesting relationships but two of the health variables

do, ie. the well being score somewhat and the allergy indicator strongly. The presence of well

being and allergy poses a problem to the analyst wishing to use them to explain asthma or

emphysema. Are they reasonable covariates if they in fact are another measure of respiratory

ailments? On the other hand they could be thought about as a way of significantly reducing

the variation in the model and thereby increasing the power of hypothesis tests. The position

I wifi take is to avoid bringing them into the model due to the problem of interpretation. It

would hardly be right to say that a feeling of being ill brings on asthma.

Finally, the lack of pollution trends is revealing. Each estimated proportion is based on

an average of over one thousand sampled individuals living within a PHU. The graphs raise

questions about how any meaningful relationship between asthma and pollution could be

discovered.

In summary allergy shows the strongest relationship though its use as an explanatory

covariate is questionable. Age, education and income show slight downward trends. In all

there are no compelling signs to indicate that we can fit a good model for asthma as the

response variable.

5.4 Emphysema versus Covariates

In the same spirit Figures 16 and 17 show the prevalence of one or more of bronchitis, chronic

cough or emphysema against each of the covariates. It is immediately obvious that the esti
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mated prevalence rates exhibit greater differences here than for asthma.

As age increases so does the prevalence of emphysema. Perhaps this finding is not too

surprising since the lungs lose some of their elasticity as time passes. None of the other

demographic variables are helpful.

Of the socioeconomic variables education and income reiterate the oft observed relation

between socioeconomic status and health. The poorer one is the more likely one will be afflicted

with medical conditions less prevalent in the upper socioeconomic order.

The smoking variables are strong explanatory covariates. Smoker type and current smoker

status show us what we would expect given current knowledge: smoking is detrimental to the

functioning of the respiratory system. Duration smoked and, to a lesser extent, the number

of cigarettes smoked show distinct upward trends. The effect seems most pronounced for the

long time smokers, ie. the upper third of smokers. Functionally, a quadratic equation looks like

it would fit best. Second hand smoke, partially measured through the number of household

smokers, shows a slight upward trend as does high alcohol consumption. Undoubtably any

modeling of emphysema must incorporate at least one smoking covariate.

The measures of health status display some of the correlation we expect to see. Energy

expenditure, well being score and allergy have gentle downward slopes. Correlation between

the health covariates and smoking status could wipe out any of the effect we might attribute

to the variables (also see the reservations stated in the previous section).

The pollution covariates are again negative. The bars look as if they are randomly strewn

over the range of estimated pollution values. The only hope in relating any of the pollution

covariates to emphysema wifi be to model out as much of the variation inherent in the estimates

and condition on other covariates. That is the focus of the next two chapters.

Unlike asthma, we anticipate that the modeling of emphysema will at least result in models

with descriptive power; age, duration smoked and income are related marginally to emphysema.

Whether pollution will show significance, however, remains to be seen.
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6 Methodology

The broad objective of epidemiology is to get at the etiology of disease. Cross sectional data

will at best allow for a determination of association between the disease and related factors,

casual or otherwise. The specific goal of this study is to identify and assess a number of

possibly important explanatory factors contributing to chronic respiratory illness.

Unfortunately the relationship between chronic disease and etiologic agents is muddied by

unsure diagnoses, changing environments, multiple causality, changing behavioral habits, the

existence of other maladies, measurement error and lack of quality data, to give but a partial

list. Each component adds haze to the picture; in statistical jargon, the random component

may overshadow the systematic component of the model; in other words, uncertainty threat

ens to obviate the underlying relationship and hence our understanding of that relationship.

Statistical methods address issues of uncertainty and are therefore appropriate in this context.

Besides incorporation of error, the method used ought to be able to examine a number

of factors at once. In the epidemiological literature, synergy refers to the phenomenon of

two factors which produce a much greater effect in conjunction than if considered separately.

Regression methods take care of these concerns. As a bonus, regression provides the possibility

of incorporating spatial dependence and other such subtleties.

The Ontario Health Survey sampling design induces a probability structure that is impor

tant to address. Should I incorporate inclusion probabilities into the regression model? How

can that be done? I begin the chapter by going over the salient differences between finite and

infinite population inference.

Classic regression methods assume a continuous response vector. I use responses to the

Ontario Health Survey that indicate the presence or absence of chronic respiratory illness.

Therefore, before analysing the data, I ought to describe generalized linear models, the exten

sion of classical methods that accommodates binary and binomial response vectors. In this

chapter I also describe the model selection strategy and model checking procedures.
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6.1 Finite vs. Infinite Population Inference

The Ontario Health Survey data arise from a sample survey of a human population. The

sample survey has a complex design which induces inclusion probabilities associated with each

element in the sample. Should I incorporate the inclusion probabilities in the analysis? Before

the question can be answered I must go over the basics of survey sampling theory.

Finite survey sampling theory gives a way to make inferences from a finite sample, rep

resentable as s = {1, ..., n8}, to a finite universe U = {1, ..., N}. Generally inferential

statements require knowledge of the probability structure resulting from the survey design.

The setup differs from classical statistical theory in that classical theory assumes an infinite

population.

With a finite population the set of all possible samples associated with the design, S = {s1,

sM}, is also finite. The probability that a particular sample is chosen, p(s), defines the

sample design. Two important probabilities at the element level are

7rj = P(kth element sampled) and

lrkj = P(kth andjt elements sampled).

If both irk and ir can be calculated then the design is said to be measurable. A measurable

design allows for estimation of finite population totals and the variance of those estimates.

Some papers in the literature deal with estimating finite population regression parameters and

their variances. Binder (1983) describes finite parameter estimation in the generalized linear

models context. What happens, however, when one wants to consider parameters, such as

regression parameters, where the finite population parameters are of little interest?

Classic regression theory posits a linear model relating the continuous response variable

to explanatory covariates:

Ilk = :;/3 + k k=1,2,...,m.

Further, El, E2,..., E are independently and identically distributed as N(O, v.2). To mesh
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Figure 18: Empirical density of survey weights.

classic regression theory with survey sampling theory, finite survey sampling theorists make

use of a construct calied the ‘superpopulation.’

The finite population is essentially a partial realization of the superpopulation. I can

estimate superpopulation parameters in one of two ways: with or without taking the survey

design p(s) into account. Here, the parameter /3p(s) wili specify an estimator of /3 which

incorporates the inclusion probabilities and /3 will refer to an estimator which does not.

If survey weights are more or less the same, a regression analysis incorporating survey

weights may differ from an analysis which assume a self weighted design. The survey weight

attached to every survey respondent reflects selection probabilities adjusted for nonresponse

and age-sex population totals at the PHU level (Ontario Ministry of Health, 1992a). By

examining the OHS data, the PHUs with the most extremely weighted respondents are urban.

Figure 18 shows the skewness of the weight distribution where the weights have been modified

so their expected value is one. Because of the skewness, the question of what to do about survey

weights remains.

An ongoing debate is over which of the two estimators is better to use. Särndal (1992)

handles the question in the following way. First, he notes /3 is the best linear unbiased estimator

0 10 20

Survey Weight
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(BLUE). That is, for any conformable constant vector c,

E[c’(/3 3)2 s,X] < E.JC’(I3other _j3)2 I s,X].

Under any sampling design p(.)

EE[c’(/3 — j3)2 I s,X] EEp{C’(/3other — 3)2 s,X].

By the BLUE criterion, /3 is better than13p(s)• He argues, however, that /3p(s) may be prefer

able on the basis that /3 is design consistent whereas 13p(s) is not. Pfeffermann (1993) adds

that weights protect against nonignorable sampling designs and misspecification of the model.

Either way, a methodology which allows for possible prior weights is desirable.

The OHS documentation suggests the following:

The sample weights placed on the individual microdata tape records must be used

when producing estimates from the survey data, including ordinary statistical tables.

Otherwise, the estimates derived cannot be considered to be representative of the

survey population, and will not correspond to those produced by the Ministry of

Health or other users of the data. Users are particularly cautioned about releasing

unweighted tables or performing any analysis on unweighted data (Ontario Ministry

of Health, 1992b, p. 3).

One way around the controversy is to try the analysis both ways (Fay, 1984). For the marginal

distribution of age shown in Figure 19, for example, there are estimates for which there is

little practical difference in including or excluding weights.

A nagging difficulty with the superpopulation approach is the assumption of independence

between elements. In a realistic application such as the Ontario Health Survey, the units are

spatially correlated. Part of the correlation is induced by the clustering and stratification

used in the sampling design. Adjustments of the classical x2 and likelihood ratio tests are

necessary to protect against invalid test statistics (Kumar and Rao, 1984). The assumption

of independence normally results in the underestimation of parameter variance.
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Figure 19: Marginal distribution of age using and ignoring survey weights.

In conclusion, the modelling of survey data introduces a twist into the analysis. A super-

population model must be invoked which results in two estimation possibilities: incorporate

or ignore inclusion probabilities induced by the survey sampling design.

6.2 Generalized Linear Models Theory

Generalized linear models owe their popularity to the revolution in computer technology. With

out a mechanism for solving nonlinear equations using an iterative numerical algorithm, the

researcher faces the task of working everything out by hand. Today with the relatively low

computational costs, the availability of software like GUM, SAS and S, the high speed of

computers, the use of the generalized model has become quite feasible. Appropriate to such

auspicious beginnings, theoreticians have intensely been focusing on generalized linear model

problems since the late 1970s; today much of the theory is standardized in “classics” like

Generalized Linear Models (McCullagh and Nelder, Second Edition, 1989).

Generalized linear models are an extension of classical linear models. The most important

change is that the response variable Y no longer needs to be continuous and normally dis

tributed. As long as Y can adequately be described by a member of the exponential family,

10 40 70

Age
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generalized linear models theory will apply. The Poisson, binomial, gamma and exponential

distributions are examples suggesting the range of possibifity for applications.

There are three components to a generalized linear model (GLM):

1. The random component, denoted by the response vector Y, is defined by an assumed

distributional form. Each element of the response vector belongs to the same exponential

family with E(Y) =

2. The systematic component is a linear function of the explanatory variables x where

j = 1, 2, . •, p. The coefficient vector 3 is of great scientific interest since it is used as

the criterion for interpreting the importance of covariates as predictors. The systematic

component is summarized by ij = > = = X/3.

3. The link function g(.) relates the random and systematic components. Simply put,

Independence between elements of the response vector is assumed.

The assumed distribution of Y is supposed to adequately model the observed vector y.

As mentioned, the exponential family includes most well known probability distributions.

Properly defined, the exponential family covers all probability density functions and probability

mass functions of the form

fy(y; 0, ) exp { + c(y, (2)

for given a(.), b(.) and c(.). By convention, 0 denotes the canonical parameter. When a(4) =

is called the dispersion parameter where w is a prior known weight associated with the

observation y. Until the dispersion parameter comes up explicitly again, I will assume, for the

purposes of my argument, that is known. Questions of estimation then pertain only to the

parameter 0.

How can 0 be estimated once a distributional assumption about Y is made? If fy(y; 0, 4’)
is regarded as a function of 0 alone then one can maximize the likelihood function L(6) =
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y, ) to find an estimator by the maximum likelihood approach. As long as the maxima

do not occur at the endpoints of the parameter space, the log likelihood

1 = logL(O) = 1ogf(8;y,) = +c(y,q) (3)

will have the same local maxima as L(9). The solution for 0 is then

01

The log likelihood for Y, 1 = logL(O), takes the form of a summation over the sample.

There are two important properties of the log likelihood:

E6() o (4)

and

/0lE6 + vary = 0. (5)

The statistic 01/86 is known as the score. Fishers’ information

(0l\ (021
(6) = varo \06)

= —E9

is derived from (5). Note that the largest value achieved by taking the reciprocal of Fishers’

information in the exponential family occurs when the variance is smallest. An analogous

inversion takes place when computing standard errors for the estimated coefficient vector 3.

Thus, the mathematical expression for ‘information’ meshes nicely with intuition: decreasing

uncertainty, i.e. increasing certainty, implies the notion of increasing confidence about the

information latent in the data. From (3),

Ey () = Ey (Yj9)) zzz, E(Y) = b’(6),

E
(0l2

E
— var(Y)

Y — aQ?S) } — a2()

E
(02

— E (—b”(e)’1 — —b”(6)
Y — ‘ a(S) )

— a(6)
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and

Ey () + Ey
(Y ) = 0 = var(Y) = b”(8)a().

A couple of remarks are in order. Assume a(4) is of the form a(4) = /w where w is a known

prior weight. First, E(Y) does not depend on a(ç). Second, the variance of Y depends both

on the dispersion parameter and the prior weight. One possibility for weights are the survey

inclusion probabilities associated with each component of y.

So far the discussion has shied away from the coefficient vector 3. Observe, however, that

= E(Y) = b’(6) g’() = g_l(XT/3). (6)

if the maximum likelihood estimate (MLE) of 0 can be computed then in principle a similar

approach should work for finding a 3estimate. Indeed, an application of the principle leads

to the Newton Raphson method (Collett, 1992, Appendix B). Let u(/3)qxi be the vector of

scores where the jth element is Ol(f3)/O/3. The objective is to satisfy the maximum likelihood

criterion

u() = = 0. (7)

Unfortunately no closed form solution is possible when g(p.) is nonlinear since g’(p.) will not

reduce to a constant. In other words, the MLE for ji, a function of ,8, has no analytic

solution. A numerical solution can be obtained, however, by linearization. The first order

Taylor linearization of 1 about the vector /3 is

u(f) u(/30)+H(/30)(/—/30) (8)

where H(13o)qxq is the Hessian matrix with the (i, j)t1 element given byO2l(3)/O3ôj3.

From (7) and (8), u(f30)+ H(f30)(/3
— /3) 0 implies

/ =
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In more standard notation,

Iri = 13r+H’(13r)tt(/r) (9)

where /,,. is now used to estimate /r+1. The last equation is more obviously in the form of the

iterative Newton Raphson procedure for obtaining maximum likelihood estimates of /3.

An alternative to Newton Raphson is Fisher’s method of scoring. Here the Hessian H(/3)

in (9) is replaced with the information matrix I(f3). For the (i, j)t11 element

021(j3) I Ol(/3)is replaced with — E

An advantage of calculating I(/3) is that the inverse is the asymptotic covariance matrix of

the MLE for /3. Although both methods converge to the same /3, 1’(/3) will not necessarily

be identical to H1(/3) for all distributions of the exponential family nor for all link functions.

In conclusion, standardized methodology exists for non-normal data. The likelihood func

tion plays a central role, making coefficient estimation pretty straightforward. The method

can handle subtleties like unequal weighting. As important, the methodology has been imple

mented into major software packages.

6.3 Modelling Binary Data

Now that I have sketched the important components of generalized linear model theory I

will focus on the models specifically related to the OHS data. The micro level data gives

the presence or absence of chronic respiratory disease for every sampled individual. Two

approaches to analysis suggest themselves. One is to go through with a binary variable analysis

while the other is to analyse by first aggregating the data and then work with the resulting

binomial observations. In this section I will delve into the details of the likelihood equation,

link function and parameter estimation for the binary case. The notation I will use is given in

Table 7.
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Symbol Description
n Sample size

Probability of disease occurrence
Probability vector

* Maximum likelihood estimate of ir
Y Random variable distributed as B(1, 7r)
Y Random vector of binary observations
y A realization of the random variable Y
w A prior weight attached to the random variable Y
y A realization of the random vector Y
/3 Coefficient vector (/3i, /2, •••,

Maximum likelihood estimate of /3

Table 7: Definition of symbols used for the modelling of binary data.

A binary variable can take on one of two values:

— f 1 when chronic respiratory illness exists,
1 0 otherwise.

The probability ir = P(Y = 1) is known as the Bernoulli probability of success and results in

the probability mass function

fy(y;) = Y(i —

= ( (1— 7r).

When a weight w is attached to each y2 the joint probability mass function appears as

fy(y; ir) = JJ fy(w, y; 7r) (10)

= exp{wi[yilog(1Ki ) +log(1_lri)]} (11)

where > = 1. The distribution in (11) is a member of the exponential family given in (2)

upon setting 9 = log[p(1
—
p)’]. More precisely,

f(y;9) = exp{w [yjoj_log(1+e9t)]} (12)

because log(1+e°) = log[1+ir(1—ir)1]= —log(1—ir).
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The algorithm for estimating j3 reduces to an iterative weighted least squares algorithm.

I am going to give a detailed exposition for this case. Similar arguments can be found in

McCullagh and Nelder (1989) and Collett (1991). The outline is simple: only the score function

u(fr) and Fishers’ information matrix I(/r) are needed to derive /r+1•

With binary data, the log likelihood is

1 = wj[yjej_log(1+e9:)].

Using the chain rule to derive the score function for j3,

01(13) — 9l 08 Oir 0— 06 thr 0i O/3

= (— g!()3

—

wi(y—ir)
— Ld1 $ ,xt3.\lr:(1 — lrj)g (ir)j

For Fishers’ information first note that E(y — lrj)(yji — iri) = 0 Vi i’ by the assumed

independence between observations. When i = i’, E(y — ir)2 = ir(1 — ire). Thus,

1 021(13) f oi 01
03jO/3k j = Ey

I w(y — ir) wi(yi —= Ey
r(l — 7r)g’(?r) .‘ ir,(1 —

= $ 2 XijXik.— ir)[g (r)]

Grouping terms helps reduce the estimation procedure to iterative weighted least squares. Let

the multiplier of XjjXjk,

vi?W(ir) — ir(1 —
determine the elements of the diagonal ii x n matrix W. Clearly I(3) = X’WX. The score

function is simplified by setting yj(lrj) = [g’(7rj)(yj — r)] / w. Then u(13) = X’Wy(ir).

Finally, everything can be combined. Since the MLE * depends on the estimated value of

3 and vice versa, all terms dependent on it and j3 get a subscript r:

= 1r+’(fr)tt(/r)
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= Ir + (X’WrX)’X’Wryr(*r)

= (XIWrX)_1(XWrX)/r + (X’WrX)X’Wryr(*r)

= (X’WrX)’X’Wr[XJr + gr(*r)].

This is exactly the form of iterative least squares regression on [XJr+yr(*r)J.

To this point I have made no mention of the specific form of the link function. The logit,

probit and complementary log link functions are the three most commonly used for binary and

binomial data. Recall that

E(Y) = b’(O)
1 =

The advantage of employing one of the three links lies in their range, (0, 1) e R. An un

restricted range could mean, for a given o, that g(?jo) < 0 or g(o) > 1 even though

0 r 1. Since i = g(ir) = logit(ir) = 6, the logit link is also known as the canonical

link. The probit link is defined as g(ir) = ‘(j) where _1(.) is the inverse cumulative

density function for the standard normal distribution and the complementary log function is

given as g(ii-) = log{— log(1
—

ir)}. I will generally use the logit link for analysis due to its

interpretability as the log odds ratio of success.

71



7 Asthma Analysis

In this chapter we approach model building by dividing the covariates into groups and perform

separate arcsine analyses. Besides allowing for standard diagnostic checking, each analysis

provides us ultimately with a subset of covariates useful in constructing a ‘final’ model. This

is an alternative to the more commonly used stepwise regression technique.

The arcsine analysis does not allow for the incorporation of survey weights. We therefore

opt to use generalized linear models when we add the pollution terms.

7.1 Arcsine Analysis

From Figures 14 and 15 we note the lack of differences for all of the covariates except allergy.

Allergy, however, is a questionable covariate since we would hesitate to say allergy causes

asthma. Without at least one significant term in a model, asthma will remain unexplained by

all covariates including the pollution terms.

With the study variables split into five coherent groupings, an arcsine analysis is possi

ble. This approach transforms the response variable so that it is approximately normally

distributed. Then a “classical” regression allalysis is possible. The advantage of this approach

comes from being able to apply standard diagnostic procedures for model checking. Survey

weights will be ignored in this part of the analysis.

If Y 13(n, ir) is a binomial random variable then the normal distribution .Af(nir, nir[1 — 7rj)

approximates Y well if the sample size is large enough. Normal regression theory requires,

however, that the response variable has a constant variance, i.e. Y .JV(E(Y), o.2), rather

than one dependent on ir. The arcsine transformation is a transformation which obviates the

importance of the proportion in the variance term.

The arcsine transformation derives from the so-called “delta- method” of classical statistics.

Let ‘t&(.) be a transformation and p = Y/n. The first order Taylor series expansion about K is

‘b(p) = (ir) + b’(7r)(p—ir).
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Group Model df r2
Demographic sex + age + age2 116 0.15
Socioeconomic dust exposure + income 46 0.18
Lifestyle smoker type + drinker 142 0.18
Health well being + family functioning 508 0.04

Table 8: The best arcsine models fitted for asthma.

Then approximately,

E[(p)J = b(7r) and

Var[b(p)] = E[’(ir) (p —

= [,/,l(.)]2 Var(ir).

Let ir) = sin1fi. Since ‘(ir) = (2J/FR),

1 7r(1—Jr) 1Var[&(p)]
= 4 ( ) =

Thus, Y’ .iV(sin\/, 1/4n) where y* = sin’(p). The linear regression analysis becomes

a weighted regression analysis.

Our criterion for the arcsine analysis is the standard t-test for each of the covariates. An

unusually low p-value suggests the covariate could be important in the final model. The best

models for each of the groupings is given in Table 8. Note that although many of the covariates

passed this test for admission to the final model, none of the models does a very good job at

fitting the data. At best, the models explain about 20% of the observed variation. This leaves

another 80% unexplained!

The tables do not tell the whole story, however. For each of the models, we produced

standard diagnostic plots (see Figures 34 to 36 in the Appendix). The first noticeable feature

is how the sample spreads unevenly in the n-way table. The leverage for most models looks

reasonable when compared to the ‘2p/n’ line. In general, if a leverage point lies greatly above

the line the model becomes suspect.
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Term X* df P (X* > x)
Age + Age2 52.4 2 0.000
Income 42.7 2 0.000
Smoker Type 21.2 4 0.000
Sex 12.9 1 0.000
NO2 7.3 1 0.007
03 1.9 1 0.169

Table 9: Most significant terms in the unweighted logit asthma model.

The real test of a model, however, is provided by the residuals. The quantile-quantile

plot of normality shows how well the assumption of normality is met. All of the models fare

somewhat poorly in this regard. Caution must be exercised in assessing the model.

The socioeconomic covariates of well being and family functioning score do not, upon

second reflection, seem to offer much in terms of interpretability of the model. Thus the final

model was built from all covariates but those two. The full model consists therefore of ‘age’,

‘sex’, ‘dust exposure’, ‘income’, ‘drinker’ and ‘smoker type’.

7.2 Logistic Modeling

For fitting the final models, generalized linear model theory is used. The criterion for covariate

inclusion in the model is a goodness of fit test. From theory, models can be compared on the

basis of differences in model deviance. Mathematically, if l is the estimated likelihood of the

current model and Lf the estimated likelihood for the full model, the deviance is conventionally

given as

D = —2 log(L/Lj).

Nested models can be compared by focusing on the difference in deviances. The difference is

asymptotically distributed as x2 with the degrees of freedom being the difference of degrees of

freedom between the nested models.

The overall fit for the full model is X = 120 on 12 degrees of freedom. Once the full model
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Term X* df P (X* > x3)
Age + Age2 71.8 2 0.000
Income 25.1 2 0.000
Smoker Type 21.6 4 0.000
Sex 10.4 1 0.001
Drinker 12.7 2 0.002
Work Exposure 4.6 1 0.032
NO2 1.7 1 0.196

Table 10: Most significant terms in the weighted logit asthma model.

is fitted, forward and backward updating of the model allows us to test for each term. The

unweighted analysis produces Table 9.

Age is the most significant term in the model. The fitted values over the domain of ages

covered in the sample show a decreasing trend for asthma with a range of about 3%. The next

terms are income, smoker type and sex. The model suggests that having lower income, having

been a former smoker and being female is associated with higher asthma prevalence.

The model also suggests that NO2 is associated with with asthma prevalence. The problem

is that its estimated coefficient suggests that NO2 is negatively related to asthma. That is to

say, the more NO2 in the air, the less asthmatics you would expect to observe; the range of

the downward trend in fitted values is about 1% over the interval of NO2 readings observed in

Ontario. Two comments are necessary. First, the models have 50,000 observations from which

to fit a maximum likelihood estimate and a spurious result is possible. Second, we can check

the model estimates be comparing to models which have incorporated the survey weights.

Logistic regression modeling allows for the inclusion of a weighting structure, i.e. survey

weights representing inclusion probabilities. The same analysis was run with the weights, pro

ducing Table 10. It is comforting to see that the first four significant terms in the unweighted

model show up in the weighted model in the same order. In the weighted case, however,

drinking and work exposure eclipse NO2 as important model variables. In fact NO2 no longer
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appears to be significant. The changes reiterate our suspicions of NO2 as a truly significant

covariate.

In summary, none of the pollution covariates appear to be significantly related to asthma

prevaJence. NO2 gave the strongest signal of the pollution measures but had a questionable

negative estimated coefficient and was not robust enough to show consistency between weighted

and unweighted logistic analyses.
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8 Emphysema Analysis

In this chapter we model the cross sectional association of respiratory morbidity and air pollu

tion, using the 1990 Ontario Health Survey data. For convenience, we call the binary response

variable “emphysema.” However, that term will refer collectively to any of emphysema, chronic

cough and/or chronic bronchitis. The etiology of chronic respiratory disease, especially as re

gards the effect of ambient air pollutants, is currently unknown and hence hotly debated. We

hope our analysis will contribute usefully to that debate.

In the first step of our analysis, we select appropriate covariates, to increase the model’s

sensitivity to the effect of pollution while avoiding coffinearity and extreme data spread. We

use monthly pollutant data derived from the multivariate spatial interpolation methodology

described in the last section. In our first approach, we calculate the average summer and winter

six year pollution levels for all four pollutants by Public Health Unit (PHU). The resulting

values, unlike those from our second approach described next, resemble the measurements

taken at the air monitoring stations; the analysis will lend itself to easy interpretation. In

our second conceptually more complex approach, we use principal components to construct a

pollution index which favours summer pollution levels and represents a variety of pollutants.

We obtain the weighting scheme implicitly by using averages of the eight month winter and the

four month summer. This leads to eight estimates per Public Health Unit (PHIJ). A principal

components analysis creates the index which extracts the maximal amount of information in

the eight estimates.

In our last step we evaluate the significance of the pollution variables. We base our eval

uation on the stepwise addition of pollution variables to the covariate model built in the first

step. Using the same steps, we go through with an analysis ignoring weights and then offer a

comparison to the analysis incorporating weights.
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8.1 Covariate Selection Excluding Pollution

We first construct the ‘best’ model excluding the pollution terms. From previous studies we

know that several factors relate to chronic bronchitis. The disease is more prevalent among

older people than younger people, among males than females and among urbanites more than

rural dwellers. Social class seems important. In Britain unskilled labourers are five times as

likely to have chronic bronchitis as professionals. Smoking and family history also rate as

possible determinants (Fry, 1985, Chapter 6).

Beginning with the seemingly most relevant twenty, we must select covariates from the

many offered by the Ontario Health Study (OHS) to represent broad population traits. But

which covariates are best and how many should be included?

Achieving an aesthetic result and avoiding the problems associated with sparse data and

coffinearity demand parsimony. In particular, a model with too many terms will spread the

data over a table of unduly high dimension, since a relatively small proportion of the population

is afflicted with emphysema.

Coffiriearity arises from the association of prospective covariates. Perfect association be

tween them means the second adds no information not in the first. In ordinary least squares

regression, collinearity leaves the coefficient estimators unbiased but of reduced precision.

Robinson and Jewell (1991) prove that in logistic regression as well, when two predictive co

variates exhibit coffinearity, one being correlated with the response, a loss of precision occurs.

Unfortunately we cannot avoid the difficulties presented by collinearity since covariates in an

observational study cannot be controlled. Instead we have tried to side-step these problems

by excluding highly correlated pairs of covariates.

To reduce our computational burden, we began building our model one factor at a time

using one fifth of the survey data respondents or about 9,500 records. We incorporated the

microdata survey weights into the binary logistic models. This insured unbiasedness for the

finite population of the estimating equations used to construct estimates of model coefficients.
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Term X df P (X* > x)
Age 77 1 0.000
Household Type 47 3 0.000
Education Level 41 2 0.000
Income 50 2 0.000
Smoker Type 103 4 0.000
Current Smoker Type 74 3 0.000
Duration Smoked 150 2 0.000
Number of Cigarettes Smoked 103 2 0.000
Energy Expenditure 63 3 0.000
Well Being Status 56 4 0.000
Number of Current Household Smokers 23 1 0.000
Allergy 20 1 0.000
Alcohol Screening Test Category 24 4 0.000
Blue Collar Work 12 2 0.002
Family Functioning Status 8 2 0.017
Body Mass Index 8 2 0.020
Sex 3 1 0.100
Immigrant Status 2 1 0.214
Work Exposure 1 1 0.333
Stratum 0 1 0.906

Table 11: One term emphysema models using a fifth of the data.

Table 11 summarizes the results. Except for age, the demographic covariates are incon

spicuous in that they fall at the bottom of the list. The last four one term models would

be rejected at the c = 0.05 level criterion; sixteen of the prospective covariates reduce the

standard deviance enough to improve the fit of the model significantly. Clearly a judicious

strategy for finding a good model is needed.

The need to distinguish between missing and zero values complicated our stepwise selection

procedure. When a variable like ‘cigarettes smoked’ had missing values we had to include an

extra dummy variable in the model. In addition, three covariates, ‘well being’, ‘allergy’ and

‘family functioning status’, were excluded a priori since we judged them to blur the distinction

between dependent and independent variables.

Table 12 summarizes the results of applying our stepwise procedure. The table shows that

adding the smoking covariate in the second step significantly decreases the importance of the

other smoking covariates in the subsequent steps.

We stopped after step six . The covariates selected for our model, before considering
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Step Stepwise added Terms X* df P (X* > x)
1 Age 77 1 0.000

Smoker Type 105 4 0.000
Current Smoker Type 83 3 0.000

2 Cigarettes Smoked 56 1 0.000
Household Smokers 44 1 0.000
Education 34 2 0.000
Education 26 2 0.000
Income 23 2 0.000

3 Energy Expenditure 25 3 0.000
Cigarettes Smoked 21 2 0.000
Immigrant 5 1 0.026
Cigarettes Smoked 20 2 0.000
Energy Expenditure 21 3 0.000

4 Family Type 20 3 0.000
Income 15 2 0.001
Drinker Category 14 4 0.007
Sex 6 1 0.018
Energy Expenditure 21 3 0.000
Family Type 21 3 0.000

5 Income 17 2 0.000
Sex 10 1 0.001
Drinker Category 14 4 0.009
Family Type 20 3 0.000
Income 14 2 0.001

6 Sex 8 1 0.004
Drinker Category 12 4 0.021
Duration Smoked 7 2 0.025
Duration Smoked 8 2 0.017
Sex 5 1 0.027

7 Income 7 2 0.031
Drinker Category 11 4 0.032
Immigrant 3 1 0.104

Table 12: Terms in a stepwise fitting strategy for emphysema using a fifth of the data.
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Term X* df P (X* > x)
Smoker Type 159.2 4 0.000
Age 97.0 1 0.000
Education 85.2 2 0.000
Family Type 98.0 4 0.000
Cigarettes Smoked 24.0 2 0.000
Energy Expenditure 10.1 3 0.018

Table 13: Goodness of fit for each of the terms in the full emphysema model.

pollution, are: ‘age’; ‘smoker type’; ‘education’; ‘cigarettes smoked’; ‘energy expenditure’; and

‘family type’.

8.2 Evaluating the Effect of Pollution

In this subsection we add the pollution variables to the six term model. To check the signifi

cance of each of the ‘factors’ using all of the data, we drop each term and note the increase in

the deviance. Table 13 shows the improved sensitivity of the model with four times as much

data. Except for ‘energy expenditure’, all factors are more significant than they were with the

reduced dataset. Note that, the categorical covariates show a greater improvement than their

continuous counterparts.

We considered the pollution covariates in two ways. For the first we computed summer

and winter averages; these estimates were easily added to the model. In the second approach

we used principal components to reduce the number of pollution covariates. The first three

principal components based on the eight averages explained 80% of the variation.

The rotations for the three principal components are given in Table 14 and should be

considered indices of long term pollution exposure. A close look at the loadings allows for a

certain degree of interpretation. The first contrasts 03 and SO4 against SO2 and emphasizes

summer averages; the second is a recasting of NO2 with most of the weight given to the

summer; and the third is a weighted combination of SO2 and summer 03.

We evaluated the pollution covariates by comparing nested models containing the pollution
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Component
Pollutant #1 #2 #3
Summer NO2 -0.03 -0.90 0.01
Winter NO2 -0.09 -0.43 0.09
Summer 03 0.70 -0.06 0.60
Winter 03 0.13 0.05 0.03
Summer SO2 -0.51 0.07 0.67
Winter So2 -0.35 0.05 0.38
Summer SO4 0.26 0.06 0.18
Winter SO4 0.17 0.00 0.04

Table 14: Loadings for the first three principal components.

Term X* df P (X* > x)
Summer NO2 4.3 1 0.039
Pollution Component #2 3.2 1 0.073
Winter 03 2.8 1 0.093
Summer 03 1.1 1 0.299
Summer SO4 0.8 1 0.380
Pollution Component #1 0.8 1 0.386
Pollution Component #3 0.5 1 0.493
Winter So4 0.4 1 0.554
Summer SO2 0.0 1 0.920
Winter NO2 0.0 1 1.000
Winter SO2 0.0 1 1.000

Table 15: Goodness of fit test for the pollution terms.

term to the full model. The resulting decrease in scaled deviance is shown in Table 15. Only

‘summer NO2’ significantly improves model fit at the nominal ü = 0.05 level. The coefficient

estimate is 0.013 with a standard error of 0.006. Considering the number of tests we performed

and the strong assumptions used in the modeling (such as independence between respondents),

the result is more suggestive than irrefutable fact.
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8.3 Comparing Weighted and Unweighted Analyses

Since we used weights with the logistic model, we could naturally ask what the results of an

analysis would look like if we ignored weights. TI results are similar then we can feel confident

that model misspecification is minimal.

The same stepwise procedure used previously but without survey weights produces Ta

ble 16. As before, ‘age’ and ‘smoker type’ give the strongest signals to the model. ‘Cigarettes

smoked’ is again the third term to enter the model. ‘Income’, however, rather than ‘energy

expenditure’ is the fourth term and, using a similar criterion to the weighted model, the fifth

term doesn’t even make it into the model. Table 17 shows the goodness of fit test for the terms

in the model before adding pollution covariates. Each of the four terms is highly significant.

Table 18 illustrates the addition of pollution covariates. Upon comparing Table 18 with

Table 15, we notice that summer NO2 appears in both as the first pollutant. Moreover the

estimated coefficient values are similar with an estimate of 0.012 and a standard error of 0.006.

In both weighted and unweighted models ‘age’ and ‘smoking type’ are strongly associated

with emphysema. Although summer NO2 shows up as borderline significant in both cases,

significantly stronger covariates such as ‘education’ and ‘income’ appear in one model but not

the other. We again conclude with a weak belief in the association between summer NO2 and

emphysema.
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Step Stepwise added Terms X* df P (X* > x)
Age 91.3 1 0.000
Family Type 46.1 3 0.000
Income 40.7 2 0.000
Smoker Type 76.1 4 0.000
Current Smoker Type 50.5 3 0.000
Duration Smoked 145 2 0.000
Smoker Type 77.8 4 0.000
Current Smoker Type 60.8 3 0.000

2 Cigarettes Smoked 73.7 2 0.000
Household Smokers 52.8 1 0.000
Duration Smoked 19.8 1 0.000
Cigarettes Smoked 24.3 2 0.000
Allergy 20.4 1 0.000

3 Income 15.8 2 0.000
Duration Smoked 9.4 2 0.009
Drinker Category 13.2 4 0.010
Income 15.7 2 0.000
Family Type 10.9 3 0.012

4 Household Smokers 5.3 1 0.022
Drinker Category 10.8 4 0.029
Education 6.8 2 0.034
Household Smokers 6.3 1 0.012
Drinker Category 9.1 4 0.058

5 Duration Smoked 5.7 2 0.059
Drinker Indicator 4.9 2 0.086
Family Type 5.8 3 0.122

Table 16: Stepwise terms for emphysema using a fifth of the data and ignoring weights.
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Term X* df P (X* > x)
Age 297 1 0.000
Smoker Type 123 4 0.000
Income 118 2 0.000
Cigarettes Smoked 46.3 2 0.000

Table 17: Terms in the full unweighted emphysema model.

Term X* df P (X* > x)
Summer NO2 3.8 1 0.051
Pollution Component #2 3.7 1 0.053
Winter NO2 3.4 1 0.067
Summer SO4 1.9 1 0.173
Pollution Component #1 1.1 1 0.286
Winter 03 1.1 1 0.296
Winter SO4 1.1 1 0.303
Summer 03 1.0 1 0.325
Summer SO2 0.2 1 0.699
Pollution Component #3 0.2 1 0.699
Winter SO2 0.1 1 0.806

Table 18: Goodness of fit test for the pollution terms in the unweighted analysis.
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9 Discussion

In this study we explored the association between between airborne pollutants and chronic

respiratory health. Our findings at most suggest that a weak association exists. In this

chapter we critically consider the model assumptions and exposure measurement problems.

9.1 Model Assumptions

If the pollution coefficients showed strong significance we would inevitably get caught up in

a debate over the reported standard errors. Measurement error and clustering used in survey

sampling are two reasons why the standard errors are, perhaps even grossly, underestimated.

We normaily underestimate standard errors because we implicitly assume the absence of

measurement error. We have reason to believe, however, that measurement error does exist in

our study variables, the extent to which is unknown. Breaking down the layers of error helps

for gaining an understanding of the phenomenon.

The first problem arises from self reporting. When asked whether they have a chronic

cough, respondents introduce subjective assessments of their own condition. We all know of

psychosomatic individuals and their converse, obdurate, self denying stoics. More precisely

worded questions concerning the nature of the symptoms may minimize interpretive leeway. In

Abbey, Petersen, Mills and Beeson (1993) symptom assessment questions incorporated specific

time durations. “Did you have symptoms of cough and/or sputum production on most days,

for at least three months per year, for two years or more?” is one example of the wording.

The Ontario Health Survey, on the other hand, asked if the respondent had “emphysema or

chronic bronchitis or persistent cough?”.

Besides interpretive difficulties associated with a questionnaire, disease diagnosis can be

difficult. Emphysema provides a sterling example: a definitive answer avails itself only af

ter autopsy. The two main diagnostic instruments, providing physiological and radiological

measurements, are not failsafe.
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Physiological measurements include carbon monoxide diffusion capacity, slope of the vol

ume pressure curve and lung recall at specific lung volumes. At best, they have been shown

to be good at detecting severe cases; mild disease is poorly detected. Overall, no physiological

measure or combination of measurements can reliably serve for disease determination.

Radiography provides an opportunity to visually look inside the body without using the

scalpel. Standard films do not do away with the subjective judgement of the medical prac

titioner, however. As with physiological measurements, chest radiographs are good for diag

nosing severe cases but can only diagnose about have the moderately severe cases. Computed

tomography offers an improved image over standard radiography and, as a result, better di

agnosis potential. High resolution computed tomography, in particular, appears to correctly

resolve 90% of all cases (Snider, 1992, p. 1342).

A question arises, of course: if a trained expert is unable to diagnose emphysema reliably

then how much caution should we take in considering a self reported condition? We can

enumerate some of the germane factors: the patient’s wiffingness to go to the doctor, the date

of the last checkup, the severity of the condition, the equipment available to the physician, the

physician’s wiffingness to use the equipment and professional judgement determine to some

degree the binary response recorded by the 1990 Ontario Health Survey.

Besides measurement error, clustering usually inflates the real error. In the models we con

sidered we assume independence between observations. The Ontario Health Survey, however,

uses cluster sampling in which blocks of households, ostensibly more similar to one another

the closer they are, are surveyed at the same time. We ignored this phenomenon because the

micro-data we had did not allow us to identify the clusters.

In short we used liberal assumptions and underestimated standard errors associated with

coefficient estimates. Converting to p-values, the results which we have shown seem more

significant than they are. The reader is therefore encouraged to be cautious about accepting

statements of significance at face value.
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Figure 20: Immigration background of the 1990 residents of Ontario.

9.2 Exposure Measurement Problems

The most difficult task for an epidemiological study of this type is to derive good estimates of

long term exposure. Our pollution data may not have been adequate to detect the hypothesized

relationship between ambient air pollution and pulmonary disease. We know, for instance, that

the study population is anything but fixed. In our study, however, we assumed that people

were more or less situated within a Public Health Unit for a time span long enough to make

the pollution estimates relevant. Figure 20, estimated from the Ontario Health Survey data

itself, shows that at about 25% of the sample immigrated from another country! Other sources

report that in the fifteen year span from 1971 to 1986 almost half of all Canadians changed

their place of residence every five years (Statistics Canada, 1991, p. 72). Information on the

migratory history of the individual’s in the sample would have been helpful.

Another difficulty arises from incomplete exposure estimate coverage. In our case we have

pollution measurements from 1983 to 1989. We then assume that this time period is similar to

earlier intervals. The North American experience, however, leaves that assumption in doubt.

Hoberg (1989) argues that pollution controls have made a difference to observable pollution
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Figure 21: North American air quality trends.

values. Figure 21 shows changes in Canadian and American pollution levels from the mid

1970s to the late 1980s. Though the picture is complex we can generally see a decline in ambient

air pollution readings. Changes in the spatial distribution of pollution will also muddy the

interpretation of the resulting analysis.

Finally, ambient air pollution could be less important than accumulated levels achieved

indoors. Dales et al. (1991a) and Dales, Burnett and Zwanenburg (1991b) identified the

importance of indoor molds on the respiratory function of children and adults, respectively.

The models I considered for this thesis ignored the potential of household pollutants because

of the absence of this kind of data.
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9.3 Future Directions

If exposure estimates are often the weak link in epiderniological studies then future efforts must

concentrate on improving alternatives for the future. The use of personal monitoring devices

offer one such possibility. Silverman et al. (1992) offer a successful application of portable

multipollutant samplers. Due to expense, however, only thirty six subjects participated in the

study.

If personal monitoring is too costly and fixed station data too crude, a greater emphasis

on sophisticated modeffing offers an intermediary solution. The Office of Air Quality Planning

and Standards, a branch of the U.S. Environmental Protection Agency, simulated people’s

movements through zones of varying air quality to approximate exposure patterns. The Na

tional Ambient Air Quality Standards Exposure Model (NEM) uses ambient air pollution

station measurements, activity diaries and population data as its major data sources. Since

the early stages of development in 1979, the model has shown promise (Johnson, Capel, Paul

and Wijnberg, 1992).

We presume the relationship between airborne pollutants and chronic respiratory disease,

if any, is subtle. This study has demonstrated the difficulty of exploring such a relationship

through the use of a general purpose survey.
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Appendix: Figures

I decided to place some of the figures in this appendix in the hope of avoiding unnecessary

distraction in the text. The figures are ordered into the following logical groupings:

OHS Nonresponse
Figure 22: Ordered summary of covariate nonresponse.

Pollution Measurements and Estimates
Figure 23: NO2 station measurements;
Figure 24: 03 station measurements;
Figure 25: SO2 station measurements;
Figure 26: SO4 station measurements;
Figure 27: Strongest relationships between pollutants;
Figure 28: Estimated six year estimates for all pollutants;
Figure 29: Comparison of pollution measurments to estimates;
Figure 30: NO2 PHU estimates;
Figure 31: 03 PHU estimates;
Figure 32: SO2 PHU estimates; and
Figure 33: SO4 PHU estimates.

Asthma Arcsine Analysis Diagnositcs
Figure 34: Demographic model;
Figure 35: Soccioeconomic model;
Figure 36: Lifestyle model;
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Figure 30: Estimated NO2 six year average
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Figure 32: Estimated SO2 six year average
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