The Meter of Guthlac B: A Generative Model

by

Rachel Mines

B.A., The University of British Columbia, 1992

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ARTS

in

THE FACULTY OF GRADUATE STUDIES
Department of English

We accept this thesis as conforming
to the required standard

The University of British Columbia
June 1994
© Rachel Mines, 1994
In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, I agree that the Library shall make it
freely available for reference and study. I further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

Department of **ENGLISH**
The University of British Columbia
Vancouver, Canada

Date **JULY 14 1994**
Abstract

The approach to Old English (OE) poetic meter traditionally taken is to describe the meter in terms of a list of foot or verse (half-line) types. It has been suggested that this approach, however, is open to criticism on several points. First, a list of metrical types is unconstrained in that there is no principled reason why other members may not be added to the list. Second, such a theory includes no constraints on substitutions; any metrical type may always be substituted for any other. A description in the form of a list therefore cannot rule out unmetrical lines (Halle and Keyser "Iambic Pentameter").

This thesis proposes a model of OE poetic meter based on Hanson and Kiparsky's parametric theory of universal meter. Hanson and Kiparsky argue that the constituents relevant to meter are not arbitrary or conventional, such as a list of foot or verse types, but are just those that are also relevant to language. They propose that all poetic meters are comprised of binary feet, which, like the phonological constituents defining prominence in language, consist of a strong (S) member which is the head, or prominent position, and a weak (W) member which is an unprominent position. Structure parameters establish headedness (either SW or WS) and the number of feet in a line. A position parameter defines the maximal amount of prosodic material that may occupy a given metrical position in terms of phonological constituency: mora (μ), syllable (σ), foot (Θ), or word (λ). Prominence rules define first, whether S positions must contain prominent constituents and/or whether W positions must contain unprominent constituents; and second, whether prominence is defined by weight, strength, or stress ("Best of all Possible Verse").

The model I have proposed for OE defines the meter in terms of a fixed number of binary left-headed (SW) feet together with constraints on both S and W positions: S positions must contain stressed syllables, further defined as the
heads of prosodic words; and W may contain the heads of prosodic words only if they are prosodically weak. No metrical position may contain more than a minimal word (λ_{min}).
TABLE OF CONTENTS

Abstract .. ii
Table of Contents ... iv
Acknowledgements .. v
Introduction .. 1
Chapter 1 What is a generative metrical theory? 4
Chapter 2 Background to studies in OE meter 13
Chapter 3 OE metrical phonology 41
Chapter 4 A generative model 55
Chapter 5 Special licenses and functional constraints 84
 Relaxation of prominence constraints on initial positions
 Empty metrical positions 86
 Extrametricality 88
Chapter 6 Overgeneration and rare verse types 95
 Overgeneration 96
 Metrical complexity 98
 Overlap 103
 Nonexisting and rare verse types 103
Chapter 7 Alliteration 106
Chapter 8 Hypermetrical verses 123
Conclusion .. 127
Works cited .. 135
Appendix 1 Rules summary 141
Appendix 2 Sample scansion 143
Acknowledgements

I would like first of all to acknowledge the members of my committee: Gernot Wieland for his academic and moral support; Kristin Hanson, for encouraging me to get the details exactly right, whether I wanted to or not; and Stephen Partridge, for his willingness to put his time and energy into a subject rather far afield of his usual areas of research.

I owe a debt of gratitude to the University of British Columbia for the financial support which made it possible to give my full-time attention to this project.

I owe a further debt of gratitude to Paloma Housing Co-op and the federal co-op housing program (now sadly defunct), which have made it possible for me to pursue an academic career while housing myself and my daughter safely and affordably. I would also like to thank my friends at Paloma, especially Leah, Margaret, Elaine, and Carmen, for sticking with me during the production of this thesis with humour and patience, no matter how boring and one-tracked I got; special thanks to Diane Faris for her consultative role in the "Greenhouse Effect" (discussed on 77-78). Thanks also to my daughter Sarah, for getting her own dinners (and sometimes mine) and keeping the stereo turned down while I was in the throes of creation; and to my cat Max, for being warm, furry, and exceedingly stupid whenever I needed a break from it all.

This thesis was to a large extent produced on a caffeine high generated by the excellent cappuchinos produced by the proprietors of the Calabria coffee bar on Commercial Drive, Vancouver.
Introduction

In 1987, Geoffrey Russom published *Old English Meter and Linguistic Theory*, a study which situates Eduard Sievers's earlier descriptive model of Old English (OE) poetic meter within a framework based on linguistic principles. More specifically, Russom replaces Sievers's list of five metrical types, which represent the various patterns of stressed and unstressed syllables occurring in OE half-lines (or verses), with a list of verse-types which have certain features in common: each verse is composed of two feet, and each foot is derived from the stress pattern of an OE word. Russom's model is thus a theoretical improvement over Sievers's in that he replaces a list of metrical types which has no apparent motivation (in that there is no principled reason given as to why only these types and no others appear in the poetry) with a list of metrical types based upon certain phonological properties - the stress patterns of words - of the OE language.

What I propose to do in this paper is to suggest a number of ways that Russom's reanalysis of Sievers may be improved upon in terms of both description and theory.

First, the model which Russom presents is not a single or uniform meter, but a list of metrical subtypes, each verse of which, as mentioned above, conforms to the stress pattern of two OE words. But this analysis forces Russom into a number of inconsistencies. Unstressed prefixes (such as *ge-*), for example, must be defined as words in order to allow a foot boundary to fall between a prefix and its stem; while in other cases a phrase composed of two major-category words (such as an adjective + noun) must be treated as though it were a single word in order to allow it to occupy a foot. In the latter case, syntactic rules must be invoked in order to determine the placement of the foot boundary; the two words which

1Subsequently referred to as OEM
form a syntactic unit are treated as if they were a single word and may therefore occupy a metrical foot. However, syntactic criteria never play a role in the case of a prefix + stem unit, which may not appear as a foot. Thus Russom's definition of what constitutes an OE word, which is crucial to his theory, forces him to adopt ad-hoc rules in order to describe the placement of foot boundaries. I propose to avoid these problems of definition by bypassing Russom's "word-stress" level to show that OE metrical foot patterns are not derived directly from the stress patterns of words. Instead, I shall argue, both the stress patterns of OE words and constraints on OE meter are governed by the phonological rules which assign prominence (or stress) in language. Furthermore, with the elimination of Russom's "word stress" level, which necessarily generates a list of metrical subtypes, it becomes possible to reduce the various metrical patterns proposed by both Sievers and Russom to a single, consistent, pattern.

Secondly, rules of Russom's metrical model are language-specific and not generalizable to other metrical systems. Hanson and Kiparsky have recently suggested, however, that rules of poetic meter, like rules governing generative grammar, are anchored in universal principles. They propose a parametric theory of poetic meter, based on phonological principles, from which, they argue, meters optimal in terms of a given language's phonology are derived. All poetic meters, that is to say, appear to have certain structural features in common, being based on universal principles of phonology, just as all human languages are composed of syllables that are themselves arranged into higher-order structures such as prosodic feet and words. If Hanson and Kiparsky are correct in their claim, OE meter is exactly like other meters in that its rules make reference to the same structures that determine phonological prominence in language. A key difference, therefore, between my model and Russom's is that in Russom's theory, OE words define the meter, whereas the theory about to be
presented here is consistent with Hanson and Kiparsky's proposed universal metrics in that a single underlying metrical pattern, together with rules constraining the placement of prosodic constituents on metrical positions, regulates the appearance and placement of words.

In sum, then, I would like to propose two kinds of improvement to Russom's theory: first, descriptive, in that Russom's theory can be made more internally consistent; and second, theoretical, in that his theory can be made to conform more closely with other metrical theories, thus situating OE meter within the framework of universal metrics.
Chapter 1
What is a generative metrical theory?

The intent of this thesis is to place Old English (OE) poetic meter into the framework of generative metrical theory first proposed in the works of Otto Jespersen, Halle and Keyser ("Iambic"), and Paul Kiparsky ("Stress", "Rhythmic"). These theorists worked primarily with iambic pentameter, seeking to replace the traditional description of this meter - five feet of alternating unstressed and stressed syllables varied by the occasional substitute foot - with a description based on generative principles: a description, that is, built on the notion that an underlying abstract metrical pattern, together with rules for matching this abstract pattern with the poetic language, will generate a metrical line.

Geoffrey Russom (Old English Meter) takes a generative approach to OE poetic meter in his attempt to replace the descriptions of Sievers, Pope, and other traditional OE metrists\(^2\) with a model based on linguistic principles. Russom's model, however, has some descriptive and theoretical shortcomings. First, there are problems with his definition of the OE word, which leads to inconsistencies in his rules for the placement of foot boundaries. Second, Russom proposes not one meter for OE, but a list of metrical subtypes, which is in contradiction to the assumptions of generative metrical theory (Halle and Keyser "Iambic" 222, Hanson and Kiparsky 2-3). Third, Russom's metrical rules for OE are not generalizable to other languages, whereas it has recently been proposed that rules of poetic meter are based on universal principles (Hanson and Kiparsky).

Therefore my intent is to reanalyze his model in order to develop a model of OE meter which more accurately reflects the findings of recent work in generative metrics.

\(^2\)Sievers, Pope, Bliss, Cable, and Creed are the best known of these.
But first I would like to spend some time on the question of just what a generative metrical theory is. After all, Sievers’s descriptive theory has been the predominant model of OE meter for the past hundred years, and a number of alternative accounts have also won their followings. In what way are these already established traditions less than satisfactory? Why should they be improved upon, how can they be improved upon, and what, if any, poetic or linguistic principles should lie behind such an attempt? If the sheer multiplicity of efforts to improve on Sievers’s principles is any indication, the answers to these questions have not yet reached consensus. Perhaps there never will be a consensus, but I believe that recent advances in our knowledge of linguistics, particularly metrical phonology, will allow us to at least come closer than we have in the past to some more satisfying answers.

Why do we perceive poetry as poetry? What differentiates poetry from the everyday use of language? I shall consider two possible answers to this question.

The first possibility is that people are taught by their culture what the conventions of poetry are; formal features of poetry are not objective facts of the text but are entirely a product of their interpretation (Fish). The second possibility is that poetic devices such as rhyme and meter exist independently of interpretation. If this is the case, the question follows: what are the structural underpinnings of the formal features of poetry? Why do certain features of poetry (such as rhyme and alliteration) exist, while others (such as a rule requiring every third word of a line to contain the same number of sounds) do not? Paul Kiparsky argues, first, that formal features of poetry do exist independently of interpretation; and, secondly, that these formal features derive from the innate capacity of human beings to understand and produce language ("On Theory", "Role").
There are problems with the idea that all formal features of poetry are to be identified with cultural convention, although, like language in general, there are certain aspects of poetry which may be explained in this way. For example, just as the choice of formal or informal diction and syntax may depend on a speaker's social context or a writer's intended audience, a poet may similarly choose to write in either rhyming couplets or blank verse. And certainly the language in which poetry is composed is determined by the audience for whom it is produced and the poet who produces it. Urdu poetry, untranslated, is not likely to be much appreciated by English speakers with no knowledge of this particular language. But these are fairly trivial examples (though perhaps not without interest in their own right). More to the point, there is a strong case for the claim that certain formal features of poetry, such as rhyme, alliteration, meter, and so forth, are constrained by the same linguistic rules that govern all language. Were it otherwise, as Kiparsky suggests, we might expect a great variety of poetic rules which do not in fact exist ("Role" 12).

There are, for example, no schools of poetry which require identity in the third sound of every word. Why should this be so? The rule is simple enough, and, as Kiparsky (13) puts it, a visiting Martian, whose brain may process language quite differently from ours, would perhaps find such a rule quite as logical as our rules for rhyme and alliteration. The difference between such a non-occurring rule and an actually existing rule is that human language processes do not count sounds; the relevant phonological processes for all human languages are processes that take account of sounds only when they are arranged into particular structures, such as syllables, feet, and words. OE alliteration, for example, is not a process that involves the first sound in a word (even though this might be a convenient shorthand way of describing it). Rather it is a more complex phenomenon which depends on syllable structure, and the repetition
not of word-initial sounds, but of initial constituents of word-initial (or, more accurately, stem-initial) syllable onsets.³

Roman Jakobson, one of the founders of the Prague School of linguistics, was among the earlier scholars to recognize the possibility that poetic forms are constrained by the same rules of phonology and syntax that constrain ordinary language. Says Jakobson: “Poetics deals with problems of verbal structure. . . . Since linguistics is the global science of verbal structure, poetics may be regarded as an integral part of linguistics” (350). He notes further that the poetic function is not confined to poetry itself, but is a fundamental component of all language. We may say Joan and Margery, for instance, rather than Margery and Joan; not because we prefer Joan to her sister, but because it “sounds smoother” (357). In other words, according to Jakobson, we are aware at some level of the rhythm of language, even if we cannot enunciate the reasons for our linguistic preferences - in this case, the preference for roughly similar intervals between stresses.

But if the poetic function is present in all language, what differentiates poetry from prose? Jakobson suggests that the essential difference between the two lies in the poet’s arrangement of constituents (such as syllables, word stresses, or syntactic constructions) into units of measure which are in some way equivalent to each other. The speaker or writer of prose, on the other hand, follows no such constraints in the ordering of constituents.

According to Jakobson, there are two basic modes of arranging components of language: selection and combination. Selection refers to the choice of element: for example, the choice of one word out of a number of synonyms. Arrangement has to do with the order in which these elements are placed. Says Jakobson: “The poetic function projects the principle of equivalence from the axis of selection into the
When a speaker or writer of prose composes a sentence designed to communicate a particular point, she or he selects words from a number of equivalents or synonyms and combines these constituents into various orders. For example, the sentences: "I am writing this paper" and "This thesis is being composed by Rachel Mines" communicate roughly the same information, despite differences in word selection and word order. A poet, on the other hand, arranges the words she or he has selected into equivalent measures. Words, that is, are combined into equivalent units, such as parallel syntactic structures (as found in modes of poetry that are based on syntactic parallelism) or poetic feet (as in meter). It is this repetition of equivalent abstract structures that differentiates poetry from prose.

Kiparsky, building on Jakobson's ideas, speaks of poetry as involving not only recurrence or repetition of abstract structures, but of abstract structures which are matched with equivalent linguistic units, that is, "certain patterns . . . which are filled by linguistic (syntactic and phonological) elements" ("Role" 12). These abstract patterns, together with the "sames," or equivalent grammatical units - sounds, syntactic patterns, word stresses - with which they are matched, are the basic building blocks of poetry. Therefore a theory of poetry, according to Kiparsky, must address the following two questions: What patterns are relevant? and What linguistic sames are relevant? (13).

Although such abstract patterns as the five recurring feet of iambic pentameter or the alliterative patterns of OE verse are not obligatory elements of ordinary language, Kiparsky claims that the linguistic "sames" which fill these abstract patterns are just those which are relevant in grammar (13). Formal

4 In Saussurian terminology, the paradigmatic axis and the syntagmatic axis, respectively.
features of poetry are not arbitrary or conventional, that is, but are a result of how language itself is structured. It follows from this claim that there must be universal principles of poetry, just as there are linguistic universals which hold true across all languages. This makes possible the attempt to uncover meaningful, grammar-based rules for meters in general, and for OE meter in particular.

But assuming that meter consists of a repeating, underlying abstract pattern, as Jakobson and Kiparsky claim, the situation remains that there is not always a one-to-one correspondence between poetic language and meter. First, as Jakobson points out, a given line of poetry is subject to variation in how it is delivered. Jakobson maintains, however, that meter is independent of any particular form of delivery. For example, the meter of the first line of Shakespeare's sonnet 29:

When in disgrace with fortune and men's eyes remains unchanged whether or not one chooses to stress the initial word. A given line of poetry may lend itself to various scansion, yet its meter remains constant. "[M]eter - or in more explicit terms, verse design - underlies the structure of any single line. . . . The verse shape of a poem remains completely independent of its variable delivery" (364, 367). If this is so, it presents several problems for the traditional theories of OE meter, particularly those of John C. Pope and his successor, Robert Creed. I shall discuss Pope's theory in Chapter 2.

Secondly, not every line written in iambic pentameter consists of exactly ten syllables, arranged into five feet of unvarying unstressed and stressed syllables. Language-level mismatches with the underlying metrical pattern, or verse shape, as Jakobson puts it, are not random, however, or due to poetic license, but constrained by very precise sorts of rules. Otto Jespersen was the first scholar to formalize such constraints on poetic practice as found in iambic pentameter.
Allowable deviations from the basic metrical form of five feet of alternating unstressed and stressed syllables are traditionally accounted for by the idea of substitute feet: a poet may substitute, say, an occasional trochee, spondee, or dactyl for an iambic foot. "Once a metrical pattern has been implied in a poem, we can say that variations in the rhythm occur through the introduction of substitute feet which here and there replace certain of the base feet" (Fussell 33). Jespersen notes, however, that this traditional account is deficient on several grounds. First of all, it cannot explain why, while the substitution of trochees into iambic verse is acceptable, the insertion of an iamb into trochaic verse produces an unmetrical line (73). Secondly, it cannot account for the distribution of trochaic substitutions in iambic verse. Trochaic inversion, or the substitution of a trochee for an iamb, cannot be solely due to poetic license, says Jespersen, since different poets writing in iambic meter at different times, and even in different languages - he cites German and Danish examples, as well as English - follow very nearly the same rules: such substitutions occur far more frequently in the first foot than in the third and fourth, and only very rarely in the second (73). Were these substitutions merely at the whim of the poet, who may insert a trochee "here and there," to quote Fussell, one might expect a more even distribution. Jespersen concludes that there must be some rule to account for the placement of trochees in iambic verse, and proposes that trochaic inversion can take place only after a natural pause or syntactic break, often signalled by punctuation (81). Syntactic breaks most frequently occur line-finally, may occur toward the end of the line, but only very rarely occur after the first foot. Trochaic inversion, then, is not an arbitrary departure from some metrical norm, but is licensed by linguistic features of the text.

Halle and Keyser ("Iambic") concur that the traditional account of iambic pentameter has a major shortcoming in that the theory of substitutions cannot
account for the pattern of placement of trochaic inversions. But more importantly, they claim, the traditional account cannot even adequately differentiate between metrical and unmetrical lines, or, to put it in stronger terms, between poetry and prose. Halle and Keyser point out that an unmetrical line such as

Ode to the West Wind by Percy Bysshe Shelley

is perfectly acceptable according to the standard theory of substitutions, which is unconstrained as to which or how many substitutions may appear in a given line; but to judge such a line as metrical is an undesirable consequence of the standard account (221). The problem with the standard theory, they point out (222), is that allowable substitutions for feet of the base meter are dealt with in terms of a list: trochees, spondees, and so on; and such a list is in principle unconstrained not only as to which or how many substitutions may appear, but in that there is no reason why other items - words beginning with “w,” words with exactly three phonemes, empty feet, and so forth - may not be added to it. Since such lists cannot be constrained except by convention, and since poetic meter, as I hope I have made clear, cannot be explained by convention, such a list can serve a descriptive function only; it may provide some indication of what is found in the poetry under consideration, but it has no principled basis on which to make predictions about what is or is not metrical. This problem of the insufficiency of lists - their inability to encompass generalized principles of language and poetic form - will feature in my discussion of Sievers’s theory, which is presented as a list of five acceptable metrical “types,” in Chapter 2.

If a list of foot or verse types, such as spondees, trochees, etc. in iambic pentameter, and Sievers’s five types, in the case of OE poetry, is insufficient for an adequate theory of meter, what is sufficient? Halle and Keyser propose that a metrical theory, like that of generative grammar, which models the rules
defining linguistic competence, should consist of two parts: first, the abstract metrical pattern which underlies any given line of verse; and second, rules which govern ways that the abstract pattern may be realized in the linguistic material that makes up that line ("Iambic" 223). In accordance with Kiparsky's suggestion that meter involves the matching of an abstract pattern with linguistic "sames," or equivalent grammatical units, I shall propose such a model for OE poetry in Chapter 4. But first, in Chapter 2, I shall examine a few of the more important traditional approaches to OE meter. Chapter 3 will consist of a brief discussion of OE metrical phonology.
Chapter 2

Background to studies in OE meter

Is OE verse metrical?

The fact that this question has been asked, and by more than one scholar of OE, is testament to the fact that OE verse seems to work on principles very different from those of more familiar Modern English meters. The absence of an easily (to our ears) recoverable underlying meter, such as that of iambic pentameter, together with the fact that familiar line-ending devices such as rhyme and punctuation are likewise absent, help to contribute to this idea. At the same time, some of the parallels between structural features of OE poetry and those of OE prose, such as the fact that both poetry and prose tend to divide naturally into two-stress verses or phrases, have led several theorists to consider the possibility that there is actually very little difference between the two.

This idea that OE poetry is a type of rhythmic prose was proposed by James Routh in 1923, who suggested that Sievers's five metrical types "represent a simple, rudimentary, instinctive, and even primitive form of musical, or at least rhythmical, expression" (429). Anglo-Saxon poetry, he claims, is nothing other than prose which has been rhythmically adapted, by the placement of stresses at regular intervals, to the requirements of song or chant. This idea was later expounded in more detail by Marjorie Daunt, who in 1946 again raised the question of a close connection between the structures and the rhythms of prose and poetry. Pointing out that the labels of Sievers's five types\(^5\) are related to their frequency of occurrence in the poetry (A being the most frequent, E the least),

\(^5\)For a description of the five types, see (2.1e).
Daunt claims that A appears the most frequently not because it happens to represent a trochaic rhythm or meter, but because "it is the shape of nouns and adjectives grouped together, and nouns and adjectives occur most frequently in the spoken language" (291). It is not surprising, she claims, that in a language with word stress on the initial syllable and many disyllabic nouns and adjectives, the trochaic pattern \(/x/x \) will appear often. Daunt's analysis of 200 half-lines, taken at random from Beowulf, provides some support for a kind of relationship between verse-type and grammatical category: A-type verses, she claims, tend to be composed of nouns and adjectives, B-type verses tend to end with monosyllabic verbs, C-type verses tend to be composed of prepositional groups or clauses, and so forth. Daunt concludes: "These groups or patterns are the shape they are because the language itself is that shape and not because the poet arranged them" (293). An analysis of two brief passages of OE prose, which she finds metrical according to Sievers's five types when divided into phrases, lends at least some support to this argument; some of the prose phrases she examines scan well as poetry, although others do not.

Thomas Cable, like Daunt, examines the structure of OE prose as compared to that of poetry, but comes to quite the opposite conclusion. Citing Angus McIntosh's 1949 study of Wulfstan's prose, he notes two striking features about the analysis; first, "the way in which the prose divides naturally into two-stress phrases"; and secondly, the fact that almost 50% of these phrases may be scanned

6 Sievers type A is represented by /x/x, with / indicating a stressed and x an unstressed syllable.

7 For example, while Ohthere sæde is an acceptable A-verse, buton on stōwum stōwum is not an acceptable C-verse, as Daunt claims (295). It is more like an A-type with polysyllabic anacrusis. (Anacrusis is an extra syllable or group of syllables that sometimes appear before the initial stress in a verse; it will be discussed further in Chapter 5.) Verses with polysyllabic anacrusis, while probably not unmetrical, are extremely rare in the poetry.
as \(x / x / x \), or, in Sieversian terminology, as A with anacrusis (Meter 39).

Anacrusis, however, is a very limited feature in Beowulf, occurring, by Cable's estimate, in at most only 125 half-lines, that is, about two percent of all verses (37). According to Cable, the avoidance in poetry of this pattern, which is so common in prose, is a constraint imposed not by morphology or by syntax, but by meter (43).

Another argument for the metricality of OE poetry is one from alliteration. Almost all OE metrists point out the close relationship between alliteration and meter, even though the nature of that relationship has sometimes been a matter of dispute. Russom argues that alliteration is an integral part of the metrical pattern itself, and cannot be explained without reference to the underlying meter (OEM, "New Kind"), as we shall see below. In fact, one metrist, David Hoover, argues that alliteration is the meter, and that the rhythmic patterns of OE poetry are insignificant in themselves.

I shall take as my starting point the premise that OE poetry is metrical (though I do not necessarily agree that either the avoidance of anacrusis or the alliterative patterns of the verse are in themselves sufficient to establish metricality); and if this is the case, it ought to be possible to formalize the rules for that meter. But while I disagree with the conclusions of Routh and Daunt, their observations are nonetheless of great value, for they indicate that the metrist must pay close attention not only to the stresses within OE words, but to the stress patterns that also result when words are grouped together into larger units such as phrases and verses.

Some preliminary observations on OE word stress and alliteration

In order to clarify the following discussion, I shall describe, in very general terms, a few of the generally held assumptions about word stress and alliteration
in OE. A more detailed account of OE phonology follows in Chapter 3; alliteration will be dealt with at greater length in Chapter 7.

OE almost invariably places primary stress on the initial (or only) syllable of the word stem, the only exceptions being some prefixed nouns and adjectives which have primary stress on the prefix. Otherwise, prefixes are unstressed. Syllables traditionally scanned as bearing secondary stress fall into two categories: first, a heavy stressed syllable which is immediately preceded by a heavy syllable bearing primary stress, such as the medial syllables of *leofestan*, *bearfende*, *dœorgine*; second, the initial (or only) syllable of the stem of the second lexical element of a compound, such as those in *woruld-lif*, *mon-dryhten*, *feorh-gedal*. Syllables generally considered to be unstressed include, as mentioned above, most prefixes; suffixes, including inflectional and derivational endings such as -fic and -weard; and function words, both mono- and disyllabic.

Alliteration, or the repetition of stem-initial sounds (very roughly speaking, and excepting words with stressed prefixes, which alliterate on the prefix), acts to bind together the two verses, or half-lines, that make up an OE poetic line. Alliteration is dependent on word stress in that only stressed syllables may alliterate; these are generally syllables bearing primary stress, or, more rarely, syllables which head the second lexical elements of compounds, which have subordinated stress. Unstressed syllables, whether prefixes or function words, may not alliterate; or rather, although they may begin with the sound that happens to form the alliterative pattern of the line, the identity of sounds is disregarded. Alliteration on a preposition such as *tē*, for example, does not “count” in a line in which the alliterating element is [t]. The next section, as well as Chapter 7, will discuss alliteration in more detail.
Traditional theories of OE meter

Most traditional approaches to OE meter fall into one of two camps: the Sieversian school and that of John C. Pope. In very different ways, these two metrists have provided insights into OE metrical theory which have been crucial to not only the traditional theories which have built on their work (such as Bliss’s and Creed’s), but to generative theories as well, including Russom’s and my own.

It is impossible to discuss OE metrical theory without acknowledging the pioneering work of Eduard Sievers. Although his theory, first published in 1893 as *Altgermanische Metrik*, has not been received without criticism, it seems likely that his “Five Types,” as simple, descriptive labels for the rhythmic patterns into which OE half-lines fall, are here to stay, even among those who find fault with his analysis.

Based on his extensive statistical survey of Old Germanic alliterative poetry, which of course includes OE verse, Sievers offers the following generalizations: 8

(2.1) a. Each long line consists of two verses or half-lines which are connected together by alliteration. Each verse “must be a grammatical unit, i.e. it must contain a free separable clause” (279).

b. The standard verse consists of four, occasionally five, segments. Two of these segments, known as rises (symbolized by /), are usually syllables which bear primary stress; more rarely they may bear strong secondary stress. As a rule, rises are heavy syllables; 9 however a rise may consist of a light stressed

8 All references to and quotations of Sievers’s work are taken from Gawaina D. Luster’s translation of H. Paull’s *Grundriss der germanischen Philologie, II.2* (Strassburg, 1905), pp. 1-38.

9 Sievers actually calls these long syllables, as do many other metrists. To better reflect modern linguistic terminology, and to avoid confusion between
syllable together with a following light or heavy unstressed syllable. This metrical equivalence between a light syllable followed by an unstressed syllable on one hand, and a single heavy stressed syllable, on the other, is called resolution (271).

c. Segments carrying weaker stress (dips or falls) are usually unstressed syllables; however they may bear a secondary stress (symbolized \) (271). Syllables with secondary stress are generally heavy, but may be light if they are immediately preceded by a rise (272). One or several consecutive unstressed syllables (symbolized x) may function as a single dip.

d. Rises and dips combine together into metrical feet of one, two, or three members. A foot with one member consists of a rise (/); one with two members consists of a rise and dip in either order (/ x or x /); one with three members consists of a rise, secondary rise, and dip; or rise, dip, and secondary rise (/ \ x or / x \) (272).

e. Metrical feet combine in the following five patterns (For purposes of illustration, I have included verses from Beowulf\(^{10}\) corresponding to each type):

\[
\begin{array}{ccc}
&A&/ x / x \\
&B&x / l x / \\
&C&x / l x /
\end{array}
\]

gomban gyldan 'to give tribute' (11a)
on flēam gewand 'turned in flight' (1001b)
gēfēan habban 'to have joy' (2740b)

long syllables and long vowels, I shall refer to syllables which contain a long vowel or are closed with a consonant as heavy. Syllables containing a short vowel and which are not closed with a consonant are light.

\(^{10}\)All quotations from Beowulf in this paper are from Klaeber's edition. I have hyphenated compound words as aids to scansion.
Sievers does not acknowledge a \(/ \ x \ \ x /\) pattern, since two congruent unstressed syllables always count as a single dip (273).

In addition to these above basic patterns there are a number of sub-varieties: Type A with a secondary stress in place of one or both dips, for example, or type A3, which has no alliterating rise in the first foot. D patterns may be extended by the addition of an unstressed syllable immediately following the first rise. In Type C it is not uncommon for the second rise to fall on a light rather than a heavy syllable (274-5).

Two half-lines are bound together with alliteration, or the repetition of stem-initial sounds, to form a line. Only stressed words alliterate; unstressed words such as prepositions, conjunctions, and the like, are not involved in the alliterative pattern of the line. Consonants alliterate whether they precede a vowel or another consonant (e.g. helm, ‘helmet’ alliterates with hlāford, ‘lord’), with the exception of \(st, sp,\) and \(sc,\) which alliterate only as clusters. All vowels alliterate with each other (e.g. andsaca, ‘enemy’, alliterates with ellen, ‘courage’). The first rise of the second half-line (or off-verse) alliterates obligatorily; the second rise of the off-verse may not alliterate. The first half-line (or on-verse) may have one or two alliterating stressed syllables, or supports. If there is only one support, alliteration falls on the stronger rise, which is almost always the first; an exception being type A3, which has no alliterating stress in the first foot (276-7).

Difficulties with Sievers’s theory fall into two general areas, which I shall discuss in turn. The first problem has to do with the relationship between
metrical positions (rises, secondary rises, and dips) and the linguistic material which makes up the line; correspondence rules, or rules constraining matching between linguistic units (stressed or unstressed syllables, for example) and metrical positions are either applied inconsistently or are lacking altogether. The second problem, which arises from the first, has to do with the insufficiency of lists as descriptions of what is allowable in a meter.

Dips, first of all, may contain one or more unstressed syllables, as Sievers points out (272):

(2.2) a. Oft Scyl|d Scē|fing ‘often Scyld Scē|fing’ (Beo. 4a)
 \(x / / x \) (C)
 b. hæt hē|n on bā healfa ‘that he on both sides’ (Beo. 1305a)
 \(x / / x \) (C)

Verse-final dips, however, must contain a monosyllable. The constructed verse below is therefore unmetrical in Sievers’s system:

(2.3) *grēt gæst-hāl|igne ‘[he] greeted the holy one’
 \(/ / x \) (D1?)

Some dips may be “intensified;” that is, they may contain a syllable with secondary stress rather than an unstressed syllable or syllables (Sievers 273). However, these intensified dips are almost entirely confined to A-types. Sievers does not admit intensified B- and C-types like those in (2.4b-c):

(2.4) a. fé|ondes fōt-lā|st ‘enemy’s track’ (Beo. 2289a)
 \(/ x / x \)
 b. *hē wæs glæd-mō|d secg ‘he was a cheerful man’
 \(x / x / \) (B?)
 c. *hē wæs secg glæd-mō|d
 \(x / / x \) (C?)

\(^{11}\)Asterisks will be used throughout this paper to indicate unmetrical verses. An asterisk preceding a given scansion indicates that the scansion is wrong, though the verse may be metrical.
Some dips may contain a syllable of primary stress, such as those in (2.5a-b) below; others, however, may not, such as the constructed unmetrical example in (2.5c), which shows a syllable of primary stress in the final dip of a C-type:

(2.5)

a. seofon **niht** swuncon ‘worked for seven nights’ *(Beo. 517a)*

 / x / x (A)

b. æsc-holt ufæn **græg** ‘grey-tipped spear’ *(Beo. 330a)*

 / x / x (A)

c. *se lœof mon bæd* ‘the beloved man asked’

 x / / x (C?)

The problem is not in itself that a dip may contain one or more unstressed syllables, or even syllables of primary or secondary stress. This is a situation also found in Shakespeare’s iambic pentameter, in which a W position may contain one or more unstressed syllables, a stressed monosyllable, or a strong syllable just in case it is line- or phrase-initial:

(2.6)

The expense of spirit in a waste of shame ...

W S W S W S W S S

Savage, extreme, rude, cruel, not to trust *(Son. 129)*

W S W S W S W S S

The problem in Sievers’s system is that some dips in some verse types may contain something other than a single unstressed syllable, with no general principle or principles given that might account for or constrain this. What is needed is some sort of rule analogous to the principle that a W position in iambic pentameter may not contain a strong syllable *(Kiparsky “Rhythmic” 195, Hanson and Kiparsky 6)*; some sort of generalized statement as to what sorts of linguistic material a dip may or may not contain, and under what conditions. Lacking

12Note that the resolvable sequence of a light stressed syllable plus unstressed syllable in *seofon* counts as a single rise as noted in (2.1b). I shall discuss the phonology of OE resolution in Chapter 3; in general, following Sievers and Russom, I shall treat resolvable sequences and heavy stressed syllables alike as a single phonological unit.
such a rule, there is no reason why any dip in any verse type may not contain a syllable of any stress, with the result that unmetrical verses such as those in (2.3), (2.4b-c), and (2.5c) are predicted by the theory.

Unlike dips, which behave differently depending on their environment, secondary rises behave quite consistently in that any secondary rise in any verse type may contain the following: an unstressed syllable (though not a sequence of these); a syllable of secondary stress; or a syllable of primary stress. I shall illustrate these respectively with a D1-type pattern:

(2.7)
\[
\begin{align*}
\text{a. } & \text{wel } \text{leodon 'they well pleased' (Beo. 639b)} \\
& / / \ \backslash \ x \\
\text{b. } & \text{fæond man-cynnes 'mankind's enemy' (Beo. 164b)} \\
& / / \ \backslash \ x \\
\text{c. } & \text{heard } hēr \ cumen \ 'the brave one [has] come here' (Beo. 376a) \\
& / / \ \backslash \ x \\
\end{align*}
\]

The situation is not, then, that secondary rises behave inconsistently; it is that they do not appear to be constrained by any principles whatsoever; or, if they are, these principles are not stated as part of Sievers's theory. In fact, the necessity for the existence of secondary rises in Sievers's system, at least in some verse types, has come under question by some metrists, including Moulton, Bliss (Metre), and Russom (OEM).

Rises generally contain syllables of primary stress, though they quite frequently contain syllables with secondary stress, whether they are the heads of the subordinated words in compounds, as in (2.8a-b) below, or not (as in (2.8c)):

(2.8)
\[
\begin{align*}
\text{a. } & \text{middel-nihtum 'at midnight' (Beo. 2833a)} \\
& / x / x \ (A) \\
\text{b. } & \text{geond ṣysne middan-geard 'throughout this world' (Beo. 1771b)} \\
& x / x / \ (B) \\
\text{c. } & \text{swylce gigantas 'such giants' (Beo. 113a)} \\
& x / / x \ (C) \\
\end{align*}
\]
Rises may also contain unstressed syllables, which may be either affixes or function words (both of which are considered to be unstressed in Sievers's theory and which generally occupy dips). Rises in C-types, for example, are not uncommonly occupied by unstressed syllables, as in (2.9a) below; and the initial rise in Sievers's A3 type has an unstressed syllable, which does not share in the alliteration, as in (2.9b):

(2.9)
a. ic ðow wæsisge ‘I will lead you’ (Beo. 292b)
\[\text{*} / \text{x} \]

b. ðæ wæ ealle ‘that we entirely’ (Beo. 941a)
\[/ \text{x} / \text{x} \]

Rises, then, like dips, may contain either stressed or unstressed syllables. Again, this is not necessarily a problem in itself; the same type of situation occurs in Shakespeare's iambic pentameter, where a S position may contain a stressed or an unstressed syllable:

(2.10)
When in disgrace with fortune and men's eyes (Son. 29)
\[W \text{ S W S W S W S W S} \]

However, with the lack of any sort of generalized constraints on either dips, secondary rises, or rises in Sievers's system - if any position, that is, may contain a constituent bearing any degree of stress - the system collapses as a theory. Like the theory of substitutions in iambic pentameter, such a system cannot rule out unmetrical verses; it cannot distinguish between poetry and prose.

Even in regard to the metrical verses which appear in poetry, Sievers's system runs into problems, since, as we have seen above, many verses do not exactly match one of the five types. Given a verse that is not a very good match, how are we to decide what type to match it to? Consider, for example, the following:

(2.11)
geolo-rand tō gūđe ‘yellow shield to battle’ (Beo. 438a)
Is this an E-type with an extra dip in the final position? An A-type with two syllables (one which happens to be stressed) in the medial dip? Or is it
unmetrical? The result is the proliferation of metrical types and subtypes in an effort to accommodate such anomalous (and some not so anomalous) verses. An A-type with two syllables in its medial dip simply gets added to the list as / x x / / x; an A-type with stressed syllables in its dips likewise gets added as / \ \ / \ \; a B-type with two syllables rather than one in its first dip likewise gets added to the list as x x / / x / x. There is no reason why such a list cannot be extended indefinitely to include, let us say, as an extreme example, a sub-type of A with a resolved first rise, an internal dip of four syllables (one disyllabic and two monosyllabic function words), two syllables of anacrusis, and a final dip of a closed syllable, with the alliteration being on "w." The logical (and ridiculous) result of indefinitely extending a list of sub-types in this way would be that every half-line would form its own category. This of course would defeat the purpose of trying to abstract a metrical pattern in the first place. Although (I hope) no metrist would go quite so far, I think I have only slightly exaggerated the possibilities; Bliss's listing of metrical types and subtypes, which is based on Sievers, runs to 213 members, while Pope admits 107 sub-types of A, 58 of B, 39 of C, 58 of D, and 17 of E: one for every 23 verses of Beowulf.

Finally, the question arises as to why Sievers's five types (which, let me add, despite the theoretical flaws discussed above, still capture important descriptive generalizations) should exist at all. As Cable puts it, "[t]he obvious question to ask is why Old English meter should consist of exactly the patterns that Sievers presents and no others" (Meter 84). The theoretical issue at stake here is the fact that lists such as Sievers's have no adequate principles of exclusion, no rules by which additions to the set of members may be screened out. Since Sievers allows a variety of feet and a variety of ways in which these feet may be combined into half-lines (not to mention the variety of ways in which syllables may be matched to metrical positions), there is no reason in principle why metrical feet such as
those in (2.12 a-b) or a combination of feet into verses such as those in (2.12 c-d) may not be added to the set:

(2.12) a. \(/ \) b. \(x \)

c. \(x / / / x \) d. \(/ x \backslash \backslash x \)

There is probably some perfectly good reason why these patterns do not occur; one hypothesis might be that the stress rules applying to words or phrases of the language do not allow them. But in the absence of an explicitly stated constraint as part of the theory, the exclusion of these patterns from Sievers's list seems simply arbitrary.

In sum, Sievers's system has the following problems: first, correspondence rules licensing the matching of prosodic constituents with metrical positions are inconsistent or nonexistent; and second, the abstract metrical patterns themselves are unmotivated, or appear unmotivated, in the absence of explicitly stated constraints. This is not to say that Sievers's system is useless; far from it. He has in fact abstracted and formalized to a great extent the astonishing variety of rhythmic patterns existing in OE poetry and thereby provided an invaluable starting point for other metrists, even if perhaps on the basis of his intuitive feel for the language rather than through the consistent application of rules. What Russom contributes, almost 100 years after Sievers, is a linguistic rationale for the existence of the five types, together with rules which constrain the relationship between metrical patterns and prosodic constituents. My intent is to carry the process somewhat further by bringing Russom's theory into line with universal generative metrical theory.

A very different approach to OE meter is that taken by John C. Pope. Pope's theory depends on "the adoption of two isochronous, quadruple measures as the foundation for the rhythm of each normal verse and on the free substitution of quantitative equivalents, including [musical] rests" (x). Each verse consists of
two measures; each measure contains four quarter-notes or their equivalent, such as two half-notes. The first note of each measure receives a major stress. However, in many B- and C-type verses, which begin with an unstressed syllable, this major stress falls on a pause or musical rest in order to allow the first measure to occupy the same length of time as the second, which will then contain the two main stresses of the half-line. He gives the following example (39):

(2.13)
\[
\text{egsode eorlas, syðan ðrest weard (Beo, 6)}
\]

Note that a rest replaces the initial stress of the first measure of the second verse (or off-verse). These rests occur in about 30% of all half-lines (89).

Pope argues that these initial rests were not necessarily silent rests, but during recitation, at least at the beginning of a poem or after any significant pause, must have been filled in by the sound of some rhythmic accompaniment such as the stroke of a harp, since without such accompaniment an initial rest would not be perceived as such by an audience (90). Therefore the harp becomes an essential part of Pope's theory as an external method of regulating the beat.

But the concept of the missing beat or rest is rather problematic, since Pope's solution to the problem of light or inadequately filled measures is intimately related to performance. While it is generally accepted, based on evidence from the poetry itself, that the harp was a common accompaniment to poetry, there are problems with claiming that it was essential to it. First of all, we have no assurance that poetry was always recited to the harp, which, if we accept Pope's case, would be a necessary assumption; in fact, at least in the case of Cædmon in the cow-stall, it seems highly unlikely. Secondly, if the harp were essential to an appreciation of the poetry, rather than being a pleasing adjunct to it, it seems odd that OE poems were written as they were, across the manuscript page, with no indication of where these silent rests or harp-strokes should go. But finally, if
we accept that a non-linguistic element is necessary for a poem's interpretation, one may as well abandon the idea that poetry, or at least OE poetry, necessarily has any kind of structure, linguistic or non-linguistic, at all; because then any kind of non-linguistic element, not only a pause or harp, could conceivably be the organizing structure of the meter.

The most telling objection to Pope is, however, one to the very foundation of his theory, isochrony itself. Pope's system demands that the two measures, or divisions of a half-line be temporally equal; but, as Cable ("Meter" 15), Taglicht (342-3), Hoover (3-4), Bliss (107), and others have pointed out, the assumption of isochrony as a musical principle during the time in which OE poetry was composed is unwarranted. Silver-Beck argues further that isochrony is a feature of modern Western musical practice, and that to impose it on OE poetry is anachronistic. Since, she claims, there is no evidence that isochrony is anything like a universal principle, and much evidence that it is not, we cannot assume that it was an organizing principle in OE verse.

However, Pope has made some valuable contributions to metrical theory, despite these flaws in his arguments. In some cases it is quite possible to reconcile his claims with those of generative metrical theory, and here his perceptions may be incorporated very nicely. Most important is his claim that measures must start with a strong beat. In metrical theory, this amounts to a claim that feet are left-headed, that is, that the strongest stress falls at the left edge of the foot; this is the mirror image of the right-headed or WS foot found in iambic meters. One may paraphrase Pope as claiming that OE feet are SW, an intuition that seems very plausible, given the trochaic stress pattern of many OE words. Pope therefore rearranges the foot boundaries in Sievers B- and C-types so that the first rise in these half-lines heads the second foot:
This placement of foot boundaries is more consistent than Sievers's in that it eliminates a situation whereby both right-headed and left-headed feet may occur in the same meter (and sometimes, in the case of C-types, in the same verse). On the other hand, however, it results in unbalanced verses in which the first foot now has only one constituent while the second has three. Pope explains this imbalance by postulating a verse-initial rest. However, the short foot too has its counterpart in metrical theory, which allows for unfilled metrical positions. The concepts of left-headed feet and empty metrical positions are both central to my own theory, and will be discussed in Chapters 4 and 5.

Generative theories of OE meter

Generative theories, or theories in which a metrical line is generated by rules applied to an underlying metrical pattern, are not new to OE metrical studies. The two earliest date back about 70 years, to those of James Routh in 1923 and W. Greg in 1925. Both argue that the fundamental OE verse pattern is:

(2.15) \[x / x / x \]

A dip (x) may be suppressed (Greg 12) or replaced with a pause (Routh 431) to yield each of the five Sievers types.

Somewhat similar is Bliss's theory of displacement, in which the five Sievers types, he claims (108), are generated by displacing either forward or backward one or both stresses of the underlying pattern:

(2.16) \[/ x (x) / x \] (in which (x) is an optional unstressed syllable)

None of these theories, however, suggest any linguistic rationale - syntactic factors, or principles of word or phrasal stress, for example - which may account for either suppression or displacement of stresses; so while these generative
theories are not without interest, especially in view of their early dates, I will not discuss them further.\(^\text{13}\)

Geoffrey Russom argues that OE half-line patterns are not due to any sort of poetic convention, but are derived from the stress patterns of OE words. These word-derived metrical patterns also determine the alliterative patterns of the line as a whole. The strength of his generative theory is that he thus provides a solid link between poetic meter, including alliteration as an integral component, and certain linguistic features of OE. Four theoretical principles outline the bare bones of his theory (OEM 2)\(^\text{14}\):

\[(2.17)\quad \begin{align*}
\text{a. Foot patterns correspond to native OE word patterns.} \\
\text{b. The verse consists of two feet.} \\
\text{c. Alliterative patterns correspond to OE stress patterns. A metrical rule that mimics the OE compound stress rule determines the location of alliterating syllables.} \\
\text{d. The line consists of two adjacent verses with an acceptable alliterative pattern.}
\end{align*}\]

Rather than approaching the meter as traditional metrists do, with reference to half-lines containing one or two primary stresses and some variable number of weaker stresses, Russom’s theory makes use of the word boundary as the crucial feature of the meter. Therefore, he points out, it is important to carefully define what is meant by an OE word. Russom defines the OE word as the following (11):

\[(2.18)\quad \begin{align*}
\text{a. All stressed simplexes count as words.}
\end{align*}\]

\(^{13}\text{More recent generative theories of OE meter, which I unfortunately do not have room to discuss here, include the work of Keyser, Halle and Keyser (English Stress), Hoover, Huettner, and Cable (English).}\)

\(^{14}\text{All quotations of and references to Russom in this chapter are from OEM unless otherwise noted. For the sake of clarity and consistency, any of Russom’s rules reproduced in this chapter are in the form of direct quotes, with the exception of any explanatory footnotes I have appended.}\)
b. Unstressed prefixes count as "function words."

c. A compound may count as one word or as two.

Abstract metrical foot patterns are derived from the stress patterns of OE words (12). OE words generate three possible metrical positions: S, s, and x. The S metrical position is generated by a syllable which is heavy: that is, one which has a long vowel, a short vowel closed by a consonant, or a resolvable sequence (as defined by Sievers in (2.1b)). The s position is generated by the subordinated root syllable of the second constituent of a compound word. The x position is generated from unstressed inflectional syllables and function words, which are also considered to be unstressed. Note that Russom defines unstressed prefixes as function words by (2.18b), justifying this on the grounds that if a prefix were an integral part of the word it adjoined to, it would acquire stress, since OE always stresses the initial syllable of a word (8).

The abstract metrical positions S, s, and x may be combined into nine foot patterns: x, S, xx, Sx, Ss, Sxx, Ssx, Sxs, and Sxxx. All OE words, according to Russom, correspond to one of these nine patterns. He lists the following possible correspondences (13):

<table>
<thead>
<tr>
<th>(2.19) Feet</th>
<th>Corresponding words</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>ond, 'and'; ge-, prefix</td>
</tr>
<tr>
<td>S</td>
<td>gōd, 'good'; tilu, 'loyal'</td>
</tr>
<tr>
<td>xx</td>
<td>oþe, 'or'; ofer-, prefix</td>
</tr>
<tr>
<td>Sx</td>
<td>dryhten, 'lord'; þolode, 'he suffered'</td>
</tr>
<tr>
<td>Ss</td>
<td>sǣ-mann, 'sailor'; mægen-wudu 'power-wood', spear</td>
</tr>
<tr>
<td>Sxx</td>
<td>bealdode, 'he encouraged'; gryrelicu, 'terrible'</td>
</tr>
<tr>
<td>Ssx</td>
<td>sǣ-mannes, 'sailor's'; sigor-eadig, 'blessed with victory'</td>
</tr>
</tbody>
</table>
Sxs middan-geard, ‘middle earth’; inwit-searo, ‘malicious cunning’
Sxxx sibbe-ge-driht, ‘band of kinsmen’

This word-foot correspondence allows for a variety of foot patterns, but constrains them within certain limits. For instance, as Russom points out, there are no foot patterns like xxx, Sxxx, etc. because there are no words in OE with these stress patterns; there are no foot patterns such as xS, xxS, etc., because unstressed prefixes are defined as function words by (2.18b), not as prefixes per se (14). Since feet with rising stress are thereby not allowed, Sievers types B and C must be analyzed as having an initial x foot followed by a three-foot part, as Pope also claims.

The foot patterns given above represent idealized, abstract metrical patterns. To the extent that actual feet and verses deviate from the underlying patterns, what Russom (following Kiparsky ‘Rhythmic’ 194) calls ‘mismatches’ are created. Russom proposes the following labelling mismatch rules that constrain and account for differences between surface language and the abstract meter (15):

\[(2.20)\] \textit{Labelling mismatch rules:}

a. A syllable with primary stress may occupy an S position or (under certain conditions) an s position.
b. A syllable with zero stress must occupy an x position.
c. A syllable with secondary stress may occupy an s position or (under certain conditions) an S position.

In accordance with (2.20a), syllables with primary stress normally occupy S positions:

\[(2.21)\] \textbf{furl}ur \textit{feran} ‘to proceed further’ (\textit{Beo}, 254a)
\[
\begin{array}{c}
S \quad x \quad \vert \quad S \quad x
\end{array}
\]
But sometimes a situation arises in which two words with primary stress may occupy a single foot; this happens when the two words form a close syntactic unit. In these cases, according to Russom, the phrase “mimics the structure of a compound” (17), and the syllable of primary stress in the second word may occupy a S position. For example, Russom (45) scans Beo. 35b as:

\[(2.22) \quad \text{on bearm scipes } \text{‘in the ship’s hold’} \]
\[
\begin{array}{c|c|c}
\hline
& S & S \\
\hline
\end{array}
\]

In accordance with (2.20c), syllables with secondary stress normally occupy S positions:

\[(2.23) \quad \text{gūð-rinc gold-wlanc } \text{‘a warrior decked with gold’ (Beo.1881a)} \]
\[
\begin{array}{c|c|c}
\hline
& S & S \\
\hline
\end{array}
\]

However, in cases in which a compound word takes up an entire verse, the first syllable of the second element of the compound may occupy a S rather than a s position. For example, Russom (26) scans Beo. 504b as:

\[(2.24) \quad \text{middan-geardes } \text{‘middle-earth’s’} \]
\[
\begin{array}{c|c|c}
\hline
& S & S \\
\hline
\end{array}
\]

Bracketing mismatches arise when the word boundaries in a given verse do not correspond with the foot boundaries of the underlying meter. Like labelling mismatches of the type shown in (2.22) above, bracketing mismatches may result when a word group rather than an individual word occupies a foot. Russom proposes the following bracketing mismatch rules to account for these verses (16):

\[(2.25) \quad \text{Bracketing mismatch rules:} \]
\[
a. \quad \text{Every foot boundary must coincide with a word boundary.} \\
b. \quad \text{In verses with three or more stressed words, the stressed words are assigned to feet in accordance with their syntactic constituency.} \\
\]

According to rule (2.25a), a foot boundary may not fall in the middle of a word (though note that a foot boundary may fall between an unstressed prefix and its
stem, since unstressed prefixes are defined as function words by (2.18b)). A B-type verse, for example, cannot be scanned as in (2.26a) below in Russom's system; the foot boundary must fall after the first word and the verse must be scanned as in (2.26b):

\[(2.26)\]

a. on ancre-fær 'securely anchored' (Beo, 303a)
\[\ast x \ S \ x \ S\]

b. on ancre-fær
\[x \ S \ x \ s\]

Rule (2.25b) allows a foot in verses with more than two stressed words to comprise two words just in case they form a syntactic unit. Consider, for example, the second foot of a verse such as:

\[(2.27)\]

brim bløde fān 'sea stained with blood' (Beo 1594a)
\[S \ \mid S \ x \ s\]

The second foot of the verse in (2.27) may comprise two words rather than one because bløde fān forms a phrase. The foot boundary may not fall after brim bløde, because these two words do not form a syntactic constituent (16).

According to Russom, a phrase such as bløde fān corresponds to the pattern of a compound word (17) and may therefore occupy a foot, which may otherwise contain only one word by (2.17a).

Finally, since OE words do not have patterns such as xxxxS or Sxxxxx, some provision must be made for strings of function words which may appear either verse-initially or medially. Russom proposes that unstressed extrametrical words, which are regarded as lying outside the meter, may appear before either foot (20):

\[(2.28)\]

Extrametrical words may appear before either foot.

A list of 25 possible patterns result from pairing foot patterns into half-line patterns. With nine possible foot patterns, there should in theory be 9 x 9, or 81 patterns; but not all imaginable half-line patterns actually occur. 18 possible
pairings with x or xx in the second foot are eliminated because, according to Russom, OE half-lines do not end in proclitics (26)15. The pairing SxxIS is eliminated because it overlaps the foot pattern Sxxs. If, says Russom, SxxIS were an allowable verse pattern, a word like sibbegedriht could occupy either a SxxIS verse or an Sxxs foot. “The result would be extreme confusion about the number of feet” (27) in a verse. He therefore proposes a general constraint on foot patterns (26):

\[(2.29) \text{Foot patterns may not overlap verse patterns.}\]

Most other possible foot pairings are eliminated by the following rules (29):

\[(2.30) \begin{align*}
\text{a.} & \quad \text{A short foot must be paired with a long foot.} \\
\text{b.} & \quad \text{Only one foot may be long.}
\end{align*}\]

Here a short foot is defined as one which is shorter than the “standard” or normative trochaic foot pattern Sx; a long foot is one which has three or four metrical positions. The outcome of these rules is that half-lines will have no less than four and no more than five metrical positions.

Russom’s rule for alliteration is a metrical rule which corresponds to the stress subordination rule which operates in OE compounds. The OE Compound Stress Rule (OECSR), just like the Modern English Compound Stress Rule (CSR), is a binary operation which assigns prominence to the first lexical constituent, subordinating the second constituent, which therefore receives a lesser degree of stress. Russom, following Liberman and Prince, represents this by the following tree structure (68):

\[(2.31) \quad \text{sē - mannes}\]

15A proclitic is a function word which cannot stand on its own, but which “leans on” a following lexical word. Examples in English are articles, possessive pronouns, prepositions, etc.
in which the first lexical element is labelled S, or strong, and the second W, or weak. Russom’s rule for metrical compounding works on the same principle (71):

\[(2.32) \quad \text{When two constituents containing S positions appear within the same metrical domain, label the first constituent strong and the second constituent weak.}\]

To illustrate his rules for alliteration, Russom gives the following example of a line made up of two simple Sx I Sx verses (71):

\[
\begin{array}{cccc}
\text{strong} & & \text{weak} \\
\text{strong} & \text{weak} & \text{strong} & \text{weak} \\
Sx & Sx & Sx & Sx
\end{array}
\]

Once constituents are labelled, the following rules for alliteration apply (73):

\[(2.34) \quad \begin{align*}
\text{a.} & \quad \text{The strongest two metrical positions within the line must contain alliterating syllables.} \\
\text{b.} & \quad \text{A weak constituent of a weak constituent may not contain an alliterating syllable.} \\
\text{c.} & \quad \text{No alliterating syllable may occupy an x position.} \\
\text{d.} & \quad \text{Otherwise, alliteration is optional.}
\end{align*}\]

In example (2.33) above, the strongest two positions in the line, according to Russom (72), are the first and the third; each must contain an alliterating syllable by (2.34a). The fourth position, being a weak constituent of a weak constituent, may not alliterate by (2.34b); this neatly captures Sievers’s generalization that the second stress of the second or off-verse never shares in the alliteration. The second position alliterates optionally.

Russom’s theory fulfills many of the requirements of a generative model: he provides an abstract metrical pattern, which he derives from the stress patterns of OE words, together with correspondence rules which constrain how these
abstract patterns may themselves be instantiated in the poetic language.
Although his foot patterns are presented in the form of a list, it is a list with
inbuilt constraints, since only items with stress patterns compatible with OE
words are admissible. Other imaginable foot patterns are thereby ruled out.
Nevertheless, some problems arise with regard to Russom's model. I shall first
discuss a few descriptive problems relating to his list of 25 allowable verse
patterns and some inconsistencies caused by his definition of the OE word; then
the more serious theoretical problem concerning radical differences between
Russom's theory and generative metrical theory.

Russom eliminates, correctly, I think, verse types ending with x or xx, such as
Sxx | x, Sx | xx, etc., from his list of 25 allowable foot-pairings. But his reason for
doing so is insufficient. OE half-lines, he argues, do not end in proclitics; and
function words appearing verse-finally "almost always acquire a stress that
prevents their root syllable from occupying x positions" (26). This explanation as
it stands is not entirely accurate. For one thing, OE half-lines quite often do end
in function words, including proclitics: pronouns, the copula, the
demonstrative, the adverb þā, possessive pronouns, and prepositions. A few
examples from Beowulf:

\[
\begin{align*}
(2.35) & \begin{align*}
\text{a. } & \text{Scedelandum in 'in Scedeland' (Beo, 19b)} \\
\text{b. } & \text{hlāford þīnne 'your lord' (Beo, 267b)} \\
\text{c. } & \text{Dām eafera wæs 'to them a son was' (Beo, 12a)}
\end{align*}
\end{align*}
\]

I am not disagreeing with Russom that these verse-final function words are
stressed. But what causes them to acquire this stress? Russom (53) suggests that
a determiner removed from its normal proclitic position becomes stressed and
may therefore occupy a S position by (2.20a):

\[
\begin{align*}
(2.36) & \begin{align*}
\text{a. } & \text{grund-wong þone 'the bottom' (Beo, 2588a)} \\
& \text{Ss | Sx}
\end{align*}
\end{align*}
\]
b. māgas þāra ‘of the kinsmen’ (Beo. 1015b)
 Sx \ Sx

But displacement of a function word from its normal position does not explain every instance of such a word acquiring stress. While displacement may explain the examples in (2.35a-b) and (2.36), for example, it does not account for (2.35c) or for the examples in (2.37) below, which have normal word order:

(2.37) a. ic þis gid be þē ‘I [told] this tale to you’ (Beo. 1723b)
 b. þā hēo onfunden wæs ‘after she was discovered’ (Beo. 1293b)16
 c. wealdan mōston ‘they could control’ (Beo. 2038b)

In the absence of a phonological rule which specifies the circumstances under which function words may acquire stress and therefore occupy S positions, the absence of foot-pairs ending in x or xx from Russom’s list of allowable metrical verse patterns remains unexplained. I shall suggest such a rule in Chapter 3.

But the basic problem with Russom’s theory is that his principle (2.17a), that foot patterns correspond with OE word patterns, forces him into a number of inconsistencies.

First, he is forced (in (2.18b)) to define unstressed prefixes as words17 in order to allow such a prefix to occupy a foot apart from its stem; in other words, to rule out foot patterns with rising stress: xS or xxS, for example. If feet like these were to be included in Russom’s inventory of foot types as reproduced in (2.19), unmetrical verses, as Russom points out, would result (23):

(2.38) *gegaf guð-rinc
 x S | S | s

16Mitchell notes that the normal OE word order for periphrastic verb constructions in subordinate clauses is main verb followed by auxiliary (967).

17This definition is unorthodox to say the least. There is little doubt that an unstressed prefix in OE forms a syntactic unit with the stem to which it is adjoined, even though, as Russom points out, this was not true of Gothic, an earlier form of Germanic, which had detachable prefixes (8).
Russom rules out verses like (2.38) above (an unmetrical C-type with an intensified final dip; see (2.4c)) on the basis that the unstressed prefix is a word. \textit{Gegaf}, as two words, cannot occupy a single foot by (2.17a); and therefore the prefix must occupy a foot separate from its stem, which produces an unmetrical x l Sss scanion of this verse (23).

But this definition of unstressed prefixes as words, into which Russom is forced in order to explain the absence of certain unmetrical verses like (2.38), leads him into further inconsistencies. If a word like \textit{gegaf} counts as two words and so cannot occupy a foot by principle (2.17a), why may a compound like \textit{gūn-rinc} occupy a foot? On what basis is a compound more "wordlike" than a prefix + stem?

More problematic yet, Russom does allow two lexical words to occupy a foot, in apparent violation of (2.17a), just in case they form a syntactic unit. See, for example, (2.22) and (2.27); and consider the following additional examples (85; scanions are Russom's):

\begin{itemize}
 \item \textit{secg weorce gefeh} 'the man rejoiced in his work' (\textit{Beo}, 1569b)
 \begin{itemize}
 \item a. \textit{secg weorce gefeh} \textit{S l S x x s}
 \end{itemize}
 \item \textit{hond rond gefëng} 'his hand grasped his shield' (\textit{Beo}, 2609b)
 \begin{itemize}
 \item b. \textit{hond rond gefëng} \textit{S l S x x s}
 \end{itemize}
 \item \textit{holm heolfre wëoll} 'water was turbulent with blood' (\textit{Beo}, 2138a)
 \begin{itemize}
 \item c. \textit{holm heolfre wëoll} \textit{S l S x x s}
 \end{itemize}
\end{itemize}

In cases like these, in which a foot is occupied by two lexical words which form a phrase, the phrase, according to Russom, "mimics the structure of a compound" (17) and may therefore occupy a single foot as though it were a compound. The claim that not only compounds, but phrases, are more "wordlike" than prefixed words are seems highly suspicious.

That Russom's metrical patterns are derived from the stress patterns of OE words not only leads to inconsistencies within his theory, but also results in
incompatibilities between his theory and generative metrical theory. First, Russom's abstract metrical patterns incorporate three levels of relative prominence: S, s, and x. Generative metrical theory, on the other hand, recognizes only a binary distinction, generally symbolized, as we shall see in Chapter 4, S (for strong) and W (for weak). The reason for this is not arbitrary, but is because, as I have argued (following Kiparsky "Role," "On Theory") in Chapter 1, the structures relevant to poetic meter are the same as those relevant to linguistic phenomena such as word stress. Meter, according to Hanson and Kiparsky, is "a stylization of prosodic properties inherent in language" ("Best" 2). As we shall see in Chapter 3, rules that assign stress in words are predicated on a binary rather than a ternary distinction between levels of relative stress; and meter, as a stylization of this binary distinction, is therefore also binary.

Secondly, instead of one metrical pattern, as there is in the generative analysis of iambic pentameter, Russom has many. "We seem to be dealing not with a single meter but with a range of allowable submeters or 'verse types.'... The Beowulf poet provides variety by switching from one metrical pattern to another" ("Word" 387). This statement is in flat contradiction to generative metrical theory, which, as we have seen in Chapter 1, disallows variation in the underlying meter, and accounts for rhythmic variation on the language level through correspondence rules.

Variation in the underlying metrical pattern and a ternary distinction in levels of prominence are both the result of Russom's metrical patterns being derived from words. Because the rhythmic patterns of words are varied, the meter must therefore likewise vary. Because OE words have at least three levels of

18See, for example, Halle and Keyser ("Iambic"), Kiparsky ("Rhythm", "Sprung"), Hanson and Kiparsky ("Best"), Prince ("Metrical").
stress - primary, secondary, and unstress - this must be reflected in any metrical pattern which they generate.

But what principles underlie the stress patterns of words? How are the stress patterns of words themselves generated? I would like to suggest that the word-patterns (S, Sx and the like) which are the basis of Russom's theory are not themselves the meter, but a redundant level between the underlying meter and the surface prosodic (i.e. phonological) level. If generative theory is indeed universal, it ought to be possible to assign prosodic constituents to metrical positions with direct reference to the rules which assign prominence in language, without an intervening "word stress" level.

If Russom is right in his arguments for variation in the underlying meter and a ternary distinction in levels of prominence, OE meter is an exception to the rules of generative metrical theory. But if principles of generative meter, like linguistic principles, have universal application, they ought to apply equally well to OE meter.

Despite the problems and inconsistencies I have outlined above, Russom's theory has a great deal to recommend it. Unlike traditional theories, Russom posits a metrical unit - the word - which provides a sort of abstract template which actual words and word groups in a verse must conform to. Although, as I have argued, I do not think his metrical level is abstract enough, in this his model is a step beyond traditional theories, which in general define the meter only in terms of a list of stress patterns which have little or no principled basis in linguistic phenomena. Furthermore, he integrates the fact of alliteration into his metrical theory in a logical and consistent way. It would be most satisfying indeed to adapt Russom's theory, since despite its flaws, it captures some important insights into OE meter, even more closely to the framework of universal generative metrics.
Chapter 3

OE Metrical Phonology

I have argued in Chapter 1, following Kiparsky ("On Theory;" "Role") and Hanson and Kiparsky, that meter derives from the matching of grammatical constituents with an abstract metrical pattern. Sievers's theory of OE meter, as discussed in Chapter 2, fails on this account for two reasons: first, because rules constraining matching are either inconsistent or absent; and second, because his metrical patterns are presented in the form of a list with no generalized constraints stated as to the reasons why other members may or may not be added to that list. Problems arise also with Russom's theory, as we have seen, in that the phonological constituent, "word," which is matched to a metrical foot, is inconsistently defined. At one extreme, an unstressed prefix, such as ge-, is defined as a word and so may occupy a foot; at the other extreme a phrase, such as bearm scipes, 'ship's hold,' is likewise defined as a word and may occupy a foot; however a prefixed word such as gegaf, 'gave,' is defined as two words and must therefore occupy two feet. In Chapter 4, I shall establish the underlying metrical structure for OE and the rules constraining the matching of phonological constituents with abstract metrical positions. In the present chapter, I shall define the phonological level.

I shall assume, following Liberman and Prince, that language has a metrical\(^\text{19}\) structure which involves comparative prominence; stress, that is, is a relative

\(^{19}\) The word "metrical" may be used in several different senses in regard to phonology and poetic meter. The term "metrical phonology" is used to refer to phonological theory in which phonological constituents are represented in a hierarchical manner (Crystal 218), and so I shall occasionally use it in this chapter in references to the phonological structure of language. Whenever it is necessary to make clear distinctions between poetic language and underlying meter, I shall, following Hanson and Kiparsky ("Best") use the word "prosodic" to refer to the former and "metrical" to refer to the latter.
phenomenon in which grammatical constituents (such as syllables, words, etc.) have prominence only in relation to sister constituents. Liberman and Prince argue that relative prominence is best represented graphically by trees whose terminal nodes are labelled S (for strong) and W (for weak):

\[\text{S} \quad \text{W} \]

(3.1) blackbird

The tree diagram in (3.1) indicates that the constituent *black* has a greater degree of prominence than the constituent *bird*; in other words, *black* is strong relative to *bird*. This difference in prominence is the basis of our perception that the first lexical element of this compound has a greater degree of stress than the second.

There are two important points about tree diagrams that must be noted. First, as Liberman and Prince point out, prominence is relative; therefore, in representing prominence by means of tree diagrams, the labels S and W can have meaning only in relation to each other (256). S must always be paired with W, and vice versa; and neither may appear in isolation. The following strings are therefore meaningless:

\[*\text{S} \quad *\text{W} \quad *\text{S} \quad *\text{W} \]

(3.2) a. black b. the c. blackboard d. and the

The second point to take note of is that, since prominence is defined as a relationship between sister constituents, branching is always binary. The triple compound *law degree requirement*, for example, may not be represented as in (3.3a), but must instead be diagrammed as in (3.3b):²⁰

²⁰Note that bracketing reflects syntactic constituency. The words *law* and *degree*, that is to say, rather than *degree* and *requirement* are grouped together because the former grouping, and not the latter, comprises a lower-order compound.
Liberman and Prince note that relative prominence is preserved under embedding. This means that the relationship between, for instance, the constituents *law* and *degree* in (3.3b) above remains unaffected by the labelling, or indeed the presence, of the constituent *requirement*.

Kiparsky ("Rhythmic") and Hanson ("Resolution"), assuming that the properties of poetry are derived from the properties of language, adopt Liberman and Prince's tree diagrams in their representations of the metrical properties of verse. In the following discussion, I shall likewise adopt Liberman and Prince's notation.\(^{21}\)

Principles of syllable structure

The following is a summary of the discussion of syllable structure in Hanson (Resolution 6-7), which itself is built on the theoretical work of Liberman and Prince, Hayes (Metrical), Zec, and others; and several analyses of OE, most importantly Dresher and Lahiri.

The determinant of stress in OE is syllable weight; that is, whether a syllable is light or heavy. Weight is determined by syllabic constituents called *moras* (depicted as \(\mu\)). Every syllable (depicted as \(\sigma\)) contains either one or two moras; one mora makes a syllable light and two moras make a syllable heavy. The

\(^{21}\)For an alternative account of the metrical properties of language and verse, see Hayes ("Prosodic"). Hayes argues that a better way of depicting prosodic relations is by means of a metrical grid. Hanson (Resolution 10), however, notes that trees are able to encode strength relations above the level of the foot, while grids represent only the relationships between syllables. For a detailed comparison of the relative merits of tree and grid representations, see Hogg and McCully.
leftmost or only mora is the head of the syllable, that is, the syllable’s strongest constituent. The moraic head of the syllable in turn contains as its head the vocalic nucleus, or sonority peak, of the syllable, together with any consonantal onset the syllable may have. If the syllable is heavy, as in (3.4 b-c) below, any vocalic or consonantal segments following the peak belong to the second mora (Hanson Resolution 6-7).

As shown below in (3.4a), a syllable containing V (a single short vowel) is monomoraic, i.e. light, while a syllable as in (3.4 b-c) containing either VV (a long vowel or diphthong)\(^{22}\) or VC is bimoraic, i.e. heavy.\(^ {23}\) This equivalence in weight between VV and VC captures the generalization that a syllable containing a long vowel has the same phonological weight as one containing a short vowel which is closed by a consonant:

\[
\begin{align*}
\text{a. } (C)V & \quad \text{b. } (C)VV & \quad \text{c. } (C)VC \\
[b] & \quad [bi] & \quad [bit]
\end{align*}
\]

In accordance with the Maximal Onset Principle, medial consonants in OE polysyllabic words are assumed to belong to the following rather than to the preceding syllable to the extent that this does not violate syllable structure rules (Suphi 196). For example, syllable boundaries fall as in (3.5), rather than as in (3.6), since rft, nd, nr and ng are not acceptable syllable-initial sequences in OE

\(^{22}\)OE also has short (monomoraic) diphthongs, which result from “breaking” of short vowels in certain phonological environments. See Hutcheson (46) and Lass (172-4).

\(^{23}\)VVC and VCC are “superheavy,” but the metrical phonology of both OE and Present Day English (PDE) make no distinction between heavy and superheavy syllables. Additional segments are assumed to be adjoined to the second mora and do not make an already heavy syllable heavier (Kristin Hanson, personal communication). See below for a brief discussion of adjunction.
(note that these sequences never appear word-initially, which I assume is evidence for this):

(3.5) a. þorf te b. ston dan c. hēan ra d. gon gan
(3.6) a. *þor fighter b. *ston dan c. *hēa nra d. *gon gan

OE foot typology

Syllables are parsed into higher-order constituents called prosodic feet (depicted as Ø), of which one syllable is the head: that is, its strong or only constituent. The syllable that heads a prosodic foot is stressed. Hayes, borrowing the terminology of classical prosody, proposes three universal foot types into which syllables of various languages may be classified: the syllabic trochee, the moraic trochee, and the iamb ("Revised" 279). The foot type which OE constructs is the moraic trochee (Hanson "Resolution" 2).

The ordinary moraic trochee has two moras. These moras may come from one heavy syllable, as in (3.7a) below; or two consecutive light syllables, in which case the first is strong, as in (3.7b):

\[
\begin{array}{c}
\text{Ø} \\
\sigma \\
\mu \\
\end{array}
\]

(3.7) a. \(\mu\mu\) b. \(\mu\mu\)

As discussed briefly in Chapter 2, all words in OE (disregarding words with stressed prefixes, which will be discussed below) have primary stress on the initial syllable of their stem. If the stem-initial syllable is light and is immediately followed by a heavy syllable, a "resolved" moraic trochee, in which the W node branches, is constructed over the pair of syllables24:

24For a more detailed discussion of the phonology of resolution in OE, see Hanson ("Resolution").
Recall that Sievers, as summarized in (2.1b), points out that a rise usually consists of either a heavy stressed syllable or a light stressed syllable together with a following light or heavy unstressed syllable. This long-noted equivalence thus is seen to have a phonological basis, as the moraic trochee, which defines OE stress, comprises just these three structures.

OE word stress rule

Because all words in OE, except those with stressed prefixes, have primary stress on the initial (or only) syllable of their stem, it follows that moraic trochees are constructed starting at the left edge of the word (the prosodic word, which in all cases consists of one or more prosodic feet, is depicted as λ):

\[
\begin{array}{ccc}
\lambda & \lambda & \lambda \\
\sigma & \sigma & \sigma \\
\mu & \mu & \mu \\
\end{array}
\]

Some words, like those in the examples in (3.10) below, consist of more than one moraic trochee. In this case, the two leftmost feet form a SW pair (the minimal word, or λmin). The head of the strong foot has primary stress; the head of the weak foot receives secondary stress:

\[
\begin{array}{ccc}
\lambda & \lambda & \lambda \\
\sigma & \sigma & \sigma \\
\mu & \mu & \mu \\
\end{array}
\]

(3.9) a. man b. lu fu c. cy ning

(3.10) a. hā lig ran b. wal den des c. wē den de
As we shall see in Chapter 4, \(\lambda \)min is the largest phonological constituent that may occupy a metrical position in OE.

Marginal Destressing

Sometimes a foot is created over a word-final inflectional syllable, as in (3.10a-b) above. Since OE affixes are unstressed, McCully and Hogg propose a rule of Marginal Destressing which operates at the right edges of OE words, deleting a final W non-lexical\(^{25}\) foot (327):

\[
\begin{array}{c}
\lambda \\
\varnothing \\
\sigma \\
\mu \\
\text{cy}
\end{array}
\begin{array}{c}
\lambda \\
\varnothing \\
\sigma \\
\mu \\
\text{cy}
\end{array}
\rightarrow
\begin{array}{c}
\sigma \\
\mu \\
\text{nin gas}
\end{array}
\begin{array}{c}
\sigma \\
\mu \\
\text{nin gas}
\end{array}
\]

(3.11)

As we shall see below, Marginal Destressing does not apply if the W foot, in words with stressed prefixes, happens to be the stem of a word.

Note that secondary stress is thus predicted on derivational endings such as -líc, -weard, -ing, -end, etc., only if they are immediately followed by another syllable, as in (3.12a). When these endings are word-final, they are destressed by the Marginal Destressing Rule as in (3.12b)\(^{26}\):

\(^{25}\)I assume that by "nonlexical" in this context, McCully and Hogg mean that Marginal Destressing applies only to constituents which are not the stems of words, such as derivational and inflectional endings. Russom points out, however, that the second elements of "semantically lexicalized compounds" such as hláford, as well as personal names such as Beowulf, Guthlac, and the like, are generally assumed to be destressed (156-7, notes 5-6).

\(^{26}\)For a more complete discussion of stress in OE derivational endings, see McCully and Hogg (330-31).
Syllable adjunction

Note that in example (3.10c) above, a final syllable is left stranded, or unattached to a foot, after initial parsing is complete. Stranded syllables are assumed to be attached by a rule of stray-syllable adjunction (SSA). This involves creating a new foot node under which the existing foot node and the syllable node of the stray syllable are both subordinated:

Syllables that are stray as a result of Marginal Destressing, as in (3.10), (3.11), and (3.12), are also adjoined as above.27

27Stray-adjunction in fact applies to constituents other than syllables. Presumably long words such as *menniscliness*, 'humanity,' which contains three feet after Marginal Destressing, would have a final stray foot adjoined to λmin; however words like this seem to be uncommon in poetry (at least there are none in Guthlac B).
Resyllabification

As discussed in (3.5), syllables are constructed according to the Maximal Onset Principle; that is, their onsets are maximized to the extent that this does not violate syllable structure rules. In accordance with this principle, the onsets of some non-initial syllables in OE will contain a consonant cluster such as st, sn, tr, dr, and so forth. Note that these sequences are quite acceptable word-initially in OE; I therefore assume that they are always acceptable syllable-initially. When a word-medial syllable containing such a consonant cluster in its onset is immediately preceded by a word-initial light syllable, the two syllables should therefore be parsed together as a resolved moraic trochee:

\[
\begin{align*}
\text{(3.14) } & \text{ a. bro } & \text{ b. bi } & \text{ c. fae } \\
& \text{ snung } & \text{ tran } & \text{ sten }
\end{align*}
\]

But evidence from meter suggest that these sequences do not behave like ordinary resolved sequences, which have only one consonant in the onset of the second syllable. The final rise (in Sieversian terms) of a B- or E-type verse, for example, may contain a word like wera or sefan, but never a word like brosnung, bitran, or faesten. I shall therefore assume that when a consonant cluster occupies the onset of a syllable preceded by a light word-initial syllable, the first consonant is resyllabified as the coda of the preceding syllable, thus rendering it heavy;\(^{28}\) and that the resyllabified constituent is the one relevant to poetic meter:

\(^{28}\)Angelika Lutz, in her study of Anglo-Saxon scribes’ word-divisions at the ends of manuscript lines, found that clusters such as st, sn, tr, etc. were usually syllabified C-C if the preceding vowel was short and stressed, whereas they were usually syllabified -CC if the preceding vowel was either a) long, or b) short and unstressed (202). This appears to reflect a native speaker’s intuition that if a
Compound Stress

Like Present Day English (PDE), OE places primary stress on the head of the first lexical element of a compound word while subordinating stress on the second. This accounts for the falling or trochaic stress pattern of compounds in both PDE and OE. The OE Compound Stress Rule (OECSR) is a rule that assigns prominence to the first lexical element of a compound word. The rule is the same as that operating in PDE; according to Halle and Keyser (English 95), there is no reason to think the CSR has changed since the OE period:

The head of the weak word of a compound is traditionally scanned in the poetry as having secondary stress.

syllable is stressed, it is also heavy. Hanson (Resolution 23-27) discusses a similar phenomenon in PDE, in which the onset of a stressless syllable is resyllabified into the coda of a preceding light stressed syllable. Therefore all (or almost all) stressed syllables in PDE are heavy in their surface structure. Resyllabification in OE is a point deserving of more study, since, as pointed about above, determining the syllable boundaries of words like brosnung and bitran will have consequences for resolution in the poetry.
Prefixes

The rules we have been discussing so far apply only to the stems of words plus any derivational or inflectional endings they may have. But many OE words also contain prefixes, which may be either stressed or unstressed.

Prefixes which attach to OE nouns and adjectives bear primary word stress. Following McCully and Hogg (323) and Suphi (182), I shall assume that in these cases a foot is constructed over both the prefix and the stem of such a word. The foot over the prefix bears primary stress and so is labelled S. I shall also follow McCully and Hogg in assuming that Marginal Destressing does not apply to word stems (we shall see some evidence for this in (4.40-41) below); therefore the W foot is retained over the stem:

```
(3.17) a. and giet  b. un rot
```

The head of the weak foot is generally (though not always) scanned as bearing secondary stress; see Russom (OEM 69-70) for discussion. Russom treats words with stressed prefixes like those in (3.17) above as compounds; however, as I shall discuss in more detail in Chapter 4, words with stressed prefixes behave differently in meter than do compounds, on one hand, and simple words, on the other.

29 Although there is general agreement that prefixes in nouns and adjectives are stressed, the mechanism by which they come to be so is not yet fully understood. For a different formulation of rules applying to stressed prefixes, see Halle and Keyser (English 90-93).

30 Unlike compounds, words with stressed prefixes may appear on S positions; see (4.5-6). Unlike simple words, they may not appear on W positions; see (4.40-41).
The prefix ge-, which is always unstressed, is an exception to the rule that
prefixes which attach to nouns are stressed; be- and for- exhibit variable usage,
sometimes appearing stressed and sometimes unstressed (Halle and Keyser
English 95).

Prefixes which attach to verbs, participles, and most adverbs are almost always
unstressed. The rules by which unstressed prefixes are attached to their stems are
not yet fully understood. According to McCully and Hogg (324-27), unstressed
prefixes are simply adjoined to their stems at some stage after the prosodic
structure has been formed (note that even heavy unstressed prefixes, like those in
(3.18b-c) below are not footed):

```
(3.18) a. be beče dan b. f57 sed c. to dæg d. be fo ran
```

But according to Suphi (182-3), unstressed prefixes are not adjoined at the
lexical stage at all, but, like function words, receive their metrical structure at the
post-lexical stage. I shall leave the question open.

Stress in function words

Nonlexical, or function words, are treated differently in meter than content or
lexical words. More precisely, while the stress properties of content words are
obligatorily respected by metrical rules, those of function words may be ignored
(which is captured in the generalization regarding OE meter, as discussed in
Chapter 2, that function words, even disyllables such as æfter, ofer, and the like,
are unstressed). Hanson suggests that the differing behaviour of function words and lexical words in meter is because function words are not assigned stress by the rules discussed above, but are generally agreed to receive stress postlexically, that is, according to rules which operate across word boundaries, taking phrasal structure into account. Since function words do not receive lexical stress, it is assumed that they may be treated very differently from lexical words in meter (Resolution 27); while the rules of lexical stress assignment are obligatorily respected in meter, rules of post-lexical stress assignment are respected only optionally. Various schools of poetry, as well as individual poets, may choose whether to respect the stress patterns of function words or not.31

Zec and Inkelas suggest that function words in PDE are assigned postlexical stress under two conditions. First, disyllables may receive stress by a rule which builds a binary foot over them. This accounts for stress on words such as under, over, beneath, among, and so forth (8). Second, a monosyllabic function word may receive stress just in case it appears phrase-finally (10). In support of their second argument they note that, in spoken English, many function words which appear with a reduced vowel in their normal sentence-position (to the left of their head, that is, the word to which they are subordinate) do not reduce when they appear in phrase-final position (5). For example:

(3.19) a. The cat is (s) outside.
 b. I don't know where the cat is (*s).
 c. I will (l) go if you will (*l).

31Hanson and Kiparsky, for example, discuss Finnish lyrical style, in which stressed nonlexical words are constrained by the same metrical rules that constrain lexical words. This metrical practice is in contrast with that followed in Finnish ballad style, in which any stress assigned to nonlexical words may be ignored at the poet’s option (“Best” 29-30).
Since in PDE only an unstressed vowel may reduce, Zec and Inkelas suggest that the failure of function words to reduce phrase-finally is due to a rule which assigns post-lexical stress to these words when no prosodic host appears to their right; that is, when they are phrase-final (10):

\[(3.20) \text{ Phrase-Final Stress Rule: Build a foot on a final phonological word which has no metrical structure.}\]

There is evidence that the Phrase-Final Stress Rule applies not only to PDE, but has relevance to OE poetry as well. I would like to suggest that a function word, whether mono- or disyllabic, is footed and is treated by the meter as though it were a prosodic word just in case it appears phrase-finally. On the other hand, any stress properties of non-final function words, including disyllables, appear to be metrically irrelevant; that is, OE meter seems to be insensitive to Zec and Inkelas's rule that builds a foot on a non-final disyllable. This metrical insensitivity to the stress patterns of non-final disyllables probably accounts for the fact that most metrical theories of OE consider these words as being unstressed; Russom, for example, treats a disyllable such as \textit{aefter} as a xx foot (13), even though the word was probably pronounced as it is today, with initial stress. Why OE meter is sensitive to one post-lexical rule concerning function words and not another is a question which I shall not attempt to answer here (although it requires answering). The consequences, however, of the meter's different treatments of non-final and final function words will be taken up in Chapter 4.
Chapter 4.

A Generative Model.

Guthlac B is found in the Exeter Book, a manuscript dating from the second half of the tenth century. While there is no proof that, as some have argued, the poem was composed by Cynewulf, an Anglian who wrote sometime during the period 750-850, the poem is roughly contemporary with these dates, or may perhaps have been composed somewhat later (Fulk 402). The poem appears on fol. 44b-52b, immediately preceded by Guthlac A, which is almost certainly by a different author of an earlier period (Roberts “Metrical” 119; Fulk 401).

Guthlac, a member of the royal Mercian family, was born in 673. He lived as a soldier until the age of 24, when reflections upon the deaths of his noble ancestors led him into the monastery at Repton. In 699, inspired by stories of the desert fathers, he withdrew into the Lincolnshire fens at Crowland to live a life of solitary contemplation. There he died in 714, and was confirmed a saint the following year.

Guthlac’s biographer, Felix of Crowland, composed his Vita sancti Guthlac in the middle of the eighth century, probably between 730 and 749. Guthlac B shows more dependence on Felix than Guthlac A (Bradley 249), and its composition may have followed that of Guthlac A. This relative chronology is supported by internal evidence of the poems; for Guthlac A describes the saint’s struggles with the devils as taking place “in ussera tīda tīman” (753-4)\(^{32}\), ‘in the period of our memory’; while Guthlac B refers to the authority of books, one of which was possibly Felix’s Life: “Us secgāð bēc” (878), ‘books tell us’ (Fulk 402).\(^{33}\)

\(^{32}\)All quotes from Guthlac are from The Guthlac Poems of the Exeter Book, edited by Jane Roberts. As aids to scansion, I have added macrons to indicate long vowels and hyphens to separate lexical elements of compound words.

\(^{33}\)For further discussion of metrical, stylistic, and dialectal aspects of dating these poems, see Roberts (“Metrical”) and Fulk (399-402).
Thematically, Guthlac A has much in common with Beowulf in its martial imagery and its depiction of heroic courage, although Guthlac's battles, unlike Beowulf's, are more metaphorical than literal; his fights with evil beings are carried out with words rather than with swords. Stylistically (even if somewhat impressionistically) though, Guthlac B has more affinities with Beowulf, at least in its greater number of compound words (Roberts estimates a ratio of compounds in Guthlac A to Guthlac B of 2:5 ("Metrical" 118, note 139)). Compound words provide a more secure starting place than phrases do for the purposes of metrical analysis because their stress patterns in OE are better understood than those of phrases; and therefore I have chosen to base my study on Guthlac B.

Guthlac B is 561 lines long, thus comprising 1122 verses or half-lines. The edition chosen for this study is The Guthlac Poems of the Exeter Book, edited by Jane Roberts, which is a conservative edition. Division of the manuscript lines, punctuation, and most capitalization have been added by the editor.

The next part of this study consists of a close examination of the metrical structure of this poem. My intent is to incorporate Russom's metrical rules into a generative model of the type which Halle and Keyser ("Iambic") and Kiparsky ("Stress," "Rhythmic," "Sprung") have constructed for iambic pentameter. Such a model will consist of an abstract metrical pattern consisting of S and W metrical positions together with correspondence rules licensing ways in which prosodic material may fill these positions. In this way I hope to reduce Russom's "allowable submeters or 'verse types'" ("Word" 387) to a single meter, thus bringing his theory more closely into line with tenets of generative metrical theory.
Framework for a universal generative metrics

As I have mentioned in Chapter 2, Russom's metrical theory, since it is based on the stress patterns of OE words, is language-specific. Hanson and Kiparsky argue, however, that the forms of rules of generative metrical theory, like those of universal grammar which govern the prosodic constituents of language (syllables, feet, words, etc.), are universal. They propose a theory of universal generative metrics which comprises a set of parameters from which meters are derived in accordance with their optimality in terms of a given language's phonology. The main points of their theory are paraphrased as follows (2-3):

(4.1) a. The basic constituents of lines are metrical feet.
b. Metrical feet are binary; that is, each has two metrical positions.
c. A prominent position, labelled S, is the head of the foot; a non-prominent position is labelled W.
d. Two parameters, structure parameters and realization parameters, are fixed.

Structure parameters are those which determine the abstract metrical pattern. They establish headedness and number of feet.

Structure parameter settings for OE

OE meter differs from most other meters in that its line is invariably divided by a caesura into two cola (generally referred to by OE metrists as verses) of two feet each. This division of the line follows naturally if we postulate the existence of a higher-order relationship between feet which groups them into larger constituents. Universal generative theory as proposed in Hanson and Kiparsky is inadequate to this task, since it makes no reference to higher-order relations between feet. However Kristin Hanson suggests, following Prince (and see also Hayes "Prosodic" 256, Kiparsky "Rhythmic" 229-30, and Youmans 347), that there is a universal generalization that feet are grouped into cola which are
themselves labelled in the same direction as feet and grouped into lines (personal communication). Assuming this higher-order relation between feet, the structure parameter settings for OE are as follows:

(4.2) a. Feet are left-headed (SW).

b. Each line contains four feet.

c. Each colon contains two feet.

The metrical pattern of a line may thus be schematized: \[\begin{array}{cccc} S & W & S & W & S & W \\ V & V & V & V \\ S & W & S & W \\ S & W \end{array} \]

Russom (OEM 25) states that: “the meter [of Beowulf] changes unpredictably from verse to verse.” In my proposed model of OE meter, however, the base structure of the meter remains constant, in accordance with the structure parameters of universal metrics. The great variety of rhythmic effects which are characteristic of OE verse, and which tend to be conflated with the meter itself, are a result of matching not only syllables (σ), or even prosodic feet (Ø), but a range of units of linguistic structure with the metrical positions.

Realization parameters, or correspondence rules, have to do with the way in which prosodic features of the language are manifested in the meter. Hanson and Kiparsky propose three realization parameters: position, prominence site, and prominence type. Position refers to the maximal amount of prosodic material that may be contained in a metrical position. The position parameter may be set at the mora, syllable, foot, or word. The prominence site parameter determines whether it is S or W positions that are constrained in order to set up a binary opposition: that is, whether constituents in S positions are required to be prominent; or whether constituents in W positions are required to be unprominent (or perhaps both). Finally, prominence type specifies what determines prominence. Prominence type may be set at weight (whether a
syllable is heavy or light); strength (whether a prosodic constituent is strong or weak in relation to a sister constituent); or stress (3).

Realization parameter settings for OE

(4.3) The position parameter is set at the minimal word (λ.min).

This position parameter setting captures Russom's generalization that OE meter is word-based, and not syllable-based, which has been the assumption behind most traditional theories of OE. There is a difference, however, in that whereas Russom proposes a correspondence between words and metrical feet, that is, that a metrical foot contains exactly one OE word, I am proposing a correspondence between words and metrical positions: that is, that a metrical position contains maximally a prosodic word.

In terms of prominence, OE constrains both S and W positions. In this regard, contrary to those who claim the meter is lax or unregulated, it is actually stricter than many modern meters, which constrain only one position.34

(4.4) a. For prominence site S, prominence type is set at stress.35

b. For prominence site W, prominence type is set at strength.

In other words, S must contain material which is prominent (prominence defined as stress), while W may contain only material which is unprominent (prominence defined as strength).36 This curious asymmetry in prominence type, in which S must contain stressed material while W must contain weak (but not necessarily unstressed) material, seems to be one of the reasons that the

34Prominence parameters for Shakespeare's iambic pentameter, for example, constrain only W positions (Kiparsky "Rhythmic" 195; Hanson and Kiparsky 6).

35According to the choices as outlined in Hanson and Kiparsky. However, stress alone is not a sufficient condition; this rule will be revised in (4.19).

36That W positions in OE may contain only prosodically weak material follows from a suggestion of Kristin Hanson (personal communication).
rhythmic patterns of OE verses are so variable, and why, as a result, the underlying meter is so difficult for modern ears, trained in a very different tradition, to determine.

Completeness

According to Hanson and Kiparsky, the realization parameters position, prominence site, and prominence type are set according to the guiding principle of Completeness, "which requires parameters to be set in such a way that the language's core vocabulary can be used . . . the realization parameters are set so as to maximize the accommodation of the canonical word types of the language" (5).

This principle has interesting implications for Russom's theory, in which metrical foot patterns correspond to OE word patterns, and actual words and phrases within the poetic line correspond to or mimic these prototypical word patterns. Within the theory I am proposing here, however, the fundamental point is not that words establish or set the meter, but that the meter allows the words - a bottom-up rather than top-down process, so to speak.

In the sections below, I shall discuss the properties of OE meter which have led to the realization parameter settings as proposed in (4.3) and (4.4).

Constituents in S positions

The largest constituent that appears in a S position is the minimal word (λ_{min}). λ_{min} may be broadly defined as the class of structures which is parseable as the SW pair of feet resulting from application of the OE Word Stress Rule (see (3.10) and (3.17) for examples). Any affixes are adjoined to this primitive constituent at a later stage of derivation, as shown in (3.13) and (3.18), and so do not count as part of λ_{min}. Thus the largest member of the class of λ_{min} in OE is a
such a pair of feet may occupy a S position:

(4.5) a. ne hæt onbid long ‘nor that interval long’ (904b)37
 S W S W

b. ār ombheht-tægn ‘messenger servant’ (1146a)38
 S(W) S W

c. eal innanweard ‘completely inward’ (1320a)
 S(W) S W

Note, however, that compound words, even those consisting of only two syllables (for example wræc-stī, ‘exile’), may not count as λmin, even though their stress patterns may be identical to those in the examples above. So while a λmin such as onbid may occupy a single S metrical position as in (4.5a) above, a compound, which consists of not one but two lexical words, may not occupy the same position:

(4.6) *ne hæt wræc-stī long ‘nor that exile long’
 S W S W

That λmin may occupy a single metrical position while a compound may not accounts for the fact that most approaches to OE scansion do not admit foot types containing three stressed syllables. Sievers and Bliss, for example, list no foot types like */\/*; neither does Russom include a foot type like *SsS. Russom accounts for feet like edwīt-līf ‘life of shame’ (Beo. 2891b) by assuming destressing on the medial syllable in a multiple compound, which allows such a compound to occupy a Sxs foot (OEM 70). On the analysis presented here, the assumption of destressing is unnecessary. Edwīt, like onbid, is not a compound, but a stressed prefix (ed) + stem (wīt); that is a SW pair of feet, or λmin. It may therefore occupy a single metrical position, whereas a compound, which consists of two lexical

37 All examples following are from Guthlac B unless otherwise noted.
38 Note that a W position is empty. Empty positions will be discussed in (5.3-6) below.
words, may not. Compound words must always occupy at least two metrical positions:

(4.7) \[\text{wræc-stıldı wēpan 'to bewail exile' (1074a)} \]
\[
\begin{array}{c}
S & W & S & W
\end{array}
\]

The largest member of the class of λmin, then, is the primitive structure, resulting from application of the OE Word Stress Rule, which consists of a pair of prosodic feet, the leftmost of which is strong. This left-headed pair of feet comprise a prosodic word which may or may not have one or more unstressed syllables adjoined to it. But only the pair of feet which comprise λmin, and not any adjoined syllables, may occupy a single metrical position:

(4.8) \[\text{b. *ãres uncües word 'words of the unknown messenger'} \]
\[
\begin{array}{c}
S & W & S & W
\end{array}
\]

The fact that a metrical position may contain a constituent as large as the largest simplex word in OE lends support to Russom's claim that the word, and not the syllable or even the prosodic foot, is the basis for OE meter.

As we have seen, λmin has the following characteristics: 1) it comprises maximally one prosodic word; 2) it comprises maximally two feet; 3) if it branches, it is left-headed. Any constituent which does not violate these parameters, that is, which is parseable as though it were λmin, may occupy a single metrical position. Consider, for example, the following:

(4.9) a. hāl ge b. fēo we re c. meo tu des

Constituents such as those in (4.9) above, which consist of a single foot plus unstressed syllables adjoined rightwardly, and which violate none of the parameters defining λmin, may appear on a S position:
A wrinkle appears, however, when such a constituent is immediately followed by a function word or an unstressed prefix which is not itself the sole occupant of a metrical position:

(4.11) Hûru ic swîne ne hearf ‘however I don’t very much need’ (1356b)

How should *ne* be parsed, according to our definition of λmin? Should *ne* occupy the preceding S position or the following W position? If it occupies W, not only will W contain two words, but the constituent which it contains will not be parseable as λmin, which may not have a S foot as its rightmost element. But if *ne* is allowed to occupy S, then the constituent in S, while left-headed, will still consist of two words.

The generalization seems to be that function words, which receive stress postlexically, behave differently in OE meter than lexical words do, as discussed in Chapter 3. Words like *ne*, or even disyllabic function words like *ofer* are not assigned a word node or even a foot node by the rules of the lexical phonology, in contradistinction to lexical words; this, it has been suggested, allows them to behave differently from lexical words in meter (Hanson Resolution 27).39 Any prosodic structure assigned postlexically to non-final function words is ignored.

39 An exception is made just in case a function word appear phrase-finally, in which case it is footed by postlexical stress assignment rules, as discussed in Chapter 3. These words will be discussed further below.
by the metrical rules; therefore these words are simply parsed together with whatever foot precedes them, and treated by the meter in the same way as an inflectional ending adjoined to its stem. *Swōne ne*, then, is treated like a left-headed structure which comprises one foot plus rightwardly adjoining unstressed syllables. Like *fōwere* in (4.10b), *swōne ne* is parseable as λmin and may therefore occupy a single metrical position:

(4.12)

\[
\begin{array}{cccc}
S & W & S & W \\
\end{array}
\]

A similar situation arises when a lexical word is immediately followed by a word containing an unstressed prefix:

(4.13)

\[
\begin{array}{cccc}
S & W & S & W \\
\end{array}
\]

A prefixed word like *gefēan* is not parseable as λmin because, as we have seen in (3.18), unstressed prefixes are adjoined to their stem at some stage after initial parsing has taken place, that is, a stage following the construction of λmin. A word with an unstressed prefix can therefore only be interpreted as a derived word, whereas sequences such as *swōne ne* and *ēcan ge-* may be interpreted as constituents which are parseable as words. An unstressed prefix must therefore pattern together rhythmically with the word preceding it, and not with its stem; note that this captures Russom’s insight that unstressed prefixes seem metrically separable. Since *ge-* (or any unstressed prefix), like a function word, is not footed, it may be parsed together with a preceding word without violating the constraints on λmin. That is, any word boundary between a lexical word and an unstressed syllable to its right may be disregarded; the two may be parsed

\[40\] If they are adjoined at the lexical level at all; see Suphi 182-3.
together and may appear on a single metrical position, just as if they comprised a single prosodic word.⁴¹

Finally, the class of constituents parseable as λmin includes the minimal foot, or Ømin - the smallest possible prosodic word in OE. The minimal foot comprises a single stressed syllable (4.14a) or a resolvable sequence (4.14b):

(4.14)
a. beorht in brœostum ‘bright in [his] heart’ (843a)
 S W S W

b. weras 7 idesa ‘men and women’ (1232b)⁴²
 S W S W

As discussed above, an unstressed syllable immediately following Ømin, which does not itself constitute a metrical position, is grouped together with Ømin as a single constituent:

(4.15)
a. næs he forht se þeah ‘he was not afraid however’ (961b)
 S W S W

b. þeah his hic 7 gæst ‘ though his body and soul’ (967b)
 S W S W

c. þæt me sær gehræn ‘that pain reached me’ (1027b)
 S W S W

Prominence constraints on S positions

As discussed above, constituents in S positions are required to have more than a certain degree of prominence, which may be set at weight, strength, or stress. In OE, the prominence setting for S positions is set at stress. Were prominence to be set at strength, a S position could contain only a strong syllable, that is, a syllable that is strong in relation to a sister constituent: the head of a polysyllabic

⁴¹For a discussion of a similar (although more unusual) process in Tennyson’s meter, in which resolution appears to operate across a word boundary, see Hanson (Resolution 154).

⁴²The symbol “7” is used by OE scribes to indicate ond, ‘and.’
word, for example. But S positions in OE may contain lexical monosyllables, which are stressed, but not necessarily strong in relation to another constituent:

(4.16)

a. **Deað** nēalæcte ‘death approached’ (1139b)
\[S \ (W) \ S \ W \]

b. **fīfīnu gēar** ‘fifteen years’ (936a)
\[S \ W \ S \ (W) \]

Therefore strength is not the prominence type setting for S in OE. Weight is ruled out by the fact that heavy unstressed syllables never appear in S positions:

(4.17)

a. **hū Gūglāc** wearð ‘how Guthlac became’ (879a)
\[*S \ W \ S \ W \]

b. **ċadig on Engle** ‘blessed among the English’ (880a)
\[*S \ W \ S \ W \]

Scansions such as those in (4.17) above violate prominence constraints on W. W positions, according to (4.4b) (and which we will discuss in more detail below), may contain only prosodically weak material; this constraint is violated in the underlined W positions. Therefore, of the choices as outlined in Hanson and Kiparsky, the prominence type in OE must be set not at strength or at weight, but at stress.

However, the requirement of stress alone in S is not sufficient. Consider the two following scansion, both of the same verse:

\[
\lambda \\
\hat{\sigma} \begin{array}{c} \sigma \\
\hat{\sigma} \begin{array}{c} \sigma \\
\sigma \end{array} \\
\sigma \end{array} \\
\sigma \sigma \sigma
\]

(4.18)

a. nyd-costingum ‘with painful trials’ (1153b)
\[*S \ W \ S \ W \]

b. nyd- costingum
\[S \ (W) \ S \ W \]
The second lexical element of the above compound, *costingum*, has two prosodic feet, the strong foot dominating *cos* and the weak foot *tin* (both of which are heavy syllables, and therefore footed). Since the syllable *tin* has secondary stress, being a W prosodic foot, it could appear on a S position if stress were the only determining factor. However, scanning the verse as in (4.18a) violates prominence constraints on the underlined W position, which now contains a strong foot. In fact, a constituent occupying S must bear primary stress, that is, be word-initial; and the verse must instead be scanned as in (4.18b). Let us restate (4.4a) as:

(4.19) A S position must contain the head of a prosodic word.

A prosodic word (\(\lambda\)), as shown in (3.9), is a word which receives its prosodic structure by the rules of the lexical phonology, and whose prosodic structure is therefore assumed to be obligatorily respected by meter. Of course any such constituent may not violate the position parameter setting by comprising more than \(\lambda\)min.

The heads of simple lexical words may occupy S positions:

(4.20) a. *fīra cynne* ‘race of men’ (864a)
\[
\text{SW S W}
\]
b. *flesce bifongen* ‘surrounded by flesh’ (994a)
\[
\text{SW SW}
\]

The heads of the second lexical elements of compound words, which have subordinated stress, are the heads of prosodic words, and may therefore occupy S positions. For example:

(4.21) a. *helle-begna* ‘servant of Hell’ (1069b)
\[
\text{SW S W}
\]
b. *ræonig-mōdum* ‘sad at heart’ (1096a)
\[
\text{SW S W}
\]
c. *gæst-gerānum* ‘with spiritual mysteries’ (1084b)
\[
\text{S WS W}
\]
Finally, phrase-final function words are footed by the Phrase-Final Stress Rule as given in (3.20). I would like to suggest that these words, although assigned stress post-lexically rather than lexically, behave exactly like prosodic words in that the Phrase-Final Stress Rule assigns to them a structure which, like that of prosodic words, is respected by the metrical rules. Therefore, like prosodic words, their heads may occupy S positions. For example:

(4.22) a. heortan minre 'of my heart' (1205b)
\[
\begin{array}{c}
S \\
W \\
S \\
W
\end{array}
\]

b. onsyne weará 'became visible' (1254b)
\[
\begin{array}{c}
S \\
W \\
S \\
(W)
\end{array}
\]

Russom, as we have seen in Chapter 2, disallows verse types that have x or xx as the last foot, arguing that verse-final function words acquire stress (OEM 26). I would like to suggest that this stress is assigned by the Phrase-Final Stress Rule, and not the displacement of function words from their normal position; since, as we have seen in (2.37), sometimes that normal position in OE is phrase-final.

The definition of S as given in (4.19) is compatible with Sievers’s rule (given in 2.1b) that a rise bears a primary or strong secondary stress. It is also compatible with Russom’s rules (given in (2.20)) that a syllable with primary stress generally occupies a S position, while a syllable with secondary stress may likewise occupy a S position just in case it is the head of the second lexical element of a whole-verse compound such as middan-geardes (Sx | Sx) (OEM 159). But (4.19) provides a more precise definition of what may occupy S than either Sievers or Russom do, in that it draws a formal distinction between the properties of the heads of second lexical elements of compounds and those of the heads of weak prosodic feet, both of which are traditionally treated as bearing secondary stress; (4.19) allows the former, but not the latter, to occupy a S position.
We have seen so far that a S position must contain the head of a prosodic word; and in Sievers A, D, and E-types this is always the case:

\[(4.23) \quad \begin{align*}
\text{a. } & \text{blís in } břěostum \ 'bliss in heart' \ (954a) \\
& S \ W \ S \ W \ (A) \\
\text{b. } & \text{mĕóne mŏd-sĕocne \ 'sad [and] heartsick} \ (1261a) \\
& S \ W \ S \ W \ (D1) \\
\text{c. } & \text{læō-spel tō sŏō \ 'sad story too true'} \ (1343b) \\
& S \ W \ S \ (W) \ (E)
\end{align*}\]

But consider the examples of A3, B, and C below:

\[(4.24) \quad \begin{align*}
\text{a. } & \text{bām ic georne \ 'whom I eagerly'} \ (1084a) \\
& S \ W \ S \ W \ (A3) \\
\text{b. } & \text{æt word ácwæd \ 'and said those words'} \ (1347b) \\
& S \ W \ S \ W \ (B) \\
\text{c. } & \text{æt bū hyge-sorge \ 'that you sad in heart'} \ (1205a) \\
& S \ W \ S \ W \ (C)
\end{align*}\]

In the examples above, initial S contains a non-final function word, the prosodic properties of which, as discussed in Chapter 3, are not relevant to meter. Therefore these words do not count as prosodic words, in apparent violation of (4.19). What has happened?

The fact that an unstressed constituent may appear in verse-initial S seems to be due to a special metrical license which allows prominence constraints to be relaxed in initial positions, according to the principle that left edges of major metrical or prosodic units may be lax, while right edges must be strict (Hanson and Kiparsky 7, 24; Hayes “Prosodic” 247). Relaxation of verse-initial prominence constraints will be discussed in more detail in Chapter 5.

Prominence constraints on W positions

We have seen so far that there are two generalizations that can be made regarding constituents in S positions. First, a S position may contain at most a
minimal word (λ_min). Second, S must contain the head of a prosodic word, whether its stress is assigned lexically (as in content words) or post-lexically (as in phrase-final function-words).

A W position, like a S position, may be realized in a number of ways. But before embarking on an enumeration of the possibilities, I would like to propose the generalization that the prominence constraint applying to W positions is that the heads of words appearing in W must be prosodically weak. That is, W positions may freely contain material which is unstressed; but they may also contain stressed constituents as long as these constituents are subordinated to another stress. The following discussion will, I hope, make this clear.

W positions in Guthlac B contain unstressed syllables of lexical words, whether those syllables are prefixes or final unstressed syllables:

(4.25)
- a. ældacynnes 'of the race of men' (821b)
 SW SS
- b. láconsægede 'made an offering' (1111b)
 SWSW
- c. lícesleahtor 'body's frailty' (1072a)
 SWSW

W positions also contain verse-medial function words, the prosodic properties of which, whether mono- or disyllabic, as discussed above, are disregarded by the meter (4.26a-b). A function word may occur on W together with a following unstressed prefix (4.26c):

(4.26)
- a. wordz wīsdōm 'words and wisdom' (1131a)
 SWSW
- b. brēmeaefterburgum 'famous in the cities' (883a)
 SWSW
- c. milde7 gemet-fæst 'mild and modest' (1107a)
 SWSW
However, while verse-medial W may contain a string of nonlexical syllables, such strings never appear on verse-final W. I would like to suggest that this is because function words appearing verse-finally are footed by the Phrase-Final Stress Rule as given in (3.20).

Although the exact relationship of phrases to verses has not yet been adequately formalized and needs further work, it is generally agreed that OE verse boundaries are usually congruent with phrase boundaries (Sievers 279). More specifically, function words do not appear verse-finally if they are not also phrase final:

(4.27) sārum geswenced; ne hē l sorge wæg (1137)

*S W S W S W S (W)

'troubled with pain; he no l sorrow felt'

Although I cannot go into the process of textual editing of OE manuscripts here, editorial convention places the caesura before the start of the line-medial phrase:

(4.28) sārum geswenced; l ne hē sorge wæg (1137)

Though function words do not appear verse-finally if they are not also phrase-final, phrase-final function words do appear verse-finally, as seen in (2.35), (2.36), (2.37), and (4.22) above. Therefore the Phrase-Final Stress Rule as applied to OE poetry amounts to the claim that verse-final function words, because they are also phrase-final, are footed by rules of postlexical stress assignment and so are treated as prosodic words. Since phrase-final function words, unlike other function words, have a prosodic structure which is respected by the rules of the

43For discussion, see Mitchell (989-90) and Huettner (20-21). See also my discussion of OE phrasal stress below.

44For a detailed explication of one editor's reconstruction of lines and verses from OE manuscript lines (which do not indicate where such breaks should be placed), see Creed (Reconstructing).
meter, they may not violate the position parameter of λmin; and therefore only one function word may appear on a verse-final metrical position.

A W position is not restricted to containing unstressed material, but may also contain a stressed constituent as long as it is prosodically subordinate to a stronger stress. In words which have two prosodic feet, a W position may contain the syllable with secondary stress which is the head of the W foot:

(4.29) a. onstæl wynlīc ‘happy arrangement’ (824b)
 S W S W

b. Ne bēo þū unrōt ‘do not be unhappy’ (1064a)
 S W S W

A prosodic word may appear in a W position, as long as it does not exceed the position maximum (λmin), of course, and as long as its head is prosodically weak: that is, the word must be subordinate in stress to another word. Typical of a prosodically weak word appearing in a W position is the second element of a compound:

(4.30) a. meaht 7 mund-byrd ‘might and protection’ (881a)
 S W S W

b. Æce æl-mihtig ‘eternal almighty one’ (930a)
 SW S W

c. ðit-sēnes georn ‘eager for the journey’ (1267b)
 S W S (W)

Note that, in (4.30b-c) above, the fact that the head of a prosodic word in W is strong compared to a weak syllable in the same word is irrelevant to its being allowed on a W position. What is important is the fact that the word itself is the weak lexical constituent of its compound. This is in distinct contrast to the situation in Shakespeare’s iambic pentameter, in which a syllable which is strong within its word may not normally appear in a W position. In OE, it seems that only strength relations between constituents at a level higher than the syllable determine whether the head of that constituent may appear on a W or a S
position. It is a strong foot or strong word within a compound - not a strong syllable - which may not appear on a W position.

Finally, OE meter appears to be sensitive to phrasal stress, allowing only the heads of weak words in phrases on W positions. The metrical behaviour of phrases is best explained on the assumption that OE phrases, like compounds, and unlike phrases in PDE, have trochaic stress. Although we can have no direct knowledge of stress patterns in OE phrases, some evidence has been put forward in support of this. Since this evidence has been the focus of debate, I shall spell in out in some detail.

Several metrists have argued for trochaic stress in OE phrases. Joan Maling, assuming that alliteration falls on the most strongly stressed element in a verse, suggests that the fact that the second element of a phrase never alliterates unless the first does, just as the second element of a compound never alliterates unless the first does, is because the same rule of stress subordination operates within both compounds and phrases. “Most of the alliterative patterns of Beowulf are correctly predicted if we allow the COMPOUND RULE to cycle on the nodes NP, VP, and S [noun phrase, verb phrase, and sentence]” (382).

Thomas Cable likewise points out that of the two stressed elements in compounds, the first is always heavier, since it always alliterates. He, like Maling, argues that the same stress pattern - a falling or trochaic one - exists within both compounds and phrases (Meter 66). There is some reason to believe then, that unlike the Nuclear Stress Rule (NSR) of PDE, which places stronger stress on the final element of a phrase, a rule of OE, which I shall call the Trochaic Stress Rule (TSR), places the strongest stress on the initial phrasal element. This seems to be borne out by metrical evidence in the light of the theory presented in this paper.

Let me first point out, however, that there may be certain risks involved in the attempt to abstract linguistic stress patterns (particularly in constituents larger
than the prosodic word) from poetic meter. Shakespeare's iambic pentameter, for example, tells us nothing about the stress patterns of phrases versus those of compounds; both compounds and phrases may have their strongest syllable on either a S or a W position, although SW positioning is favoured in compounds and WS in phrases, in general conformity with the CSR and the NSR respectively (Kiparsky “Rhythmic” 19):

(4.31) a. Let them say more than like of hearsay well (Son. 21)
 \[\underbrace{S}_{\text{W}} \ W \ S \ W \ S \ W \ S \ W \ S \ W \ S \]

b. And do whate’r thou wilt, swift-footed Time (Son. 19)
 \[\underbrace{S}_{\text{W}} \ W \ S \ W \ S \ W \ S \ W \ S \ W \ S \]

c. And nothing ‘gainst Time’s scythe can make defence (Son. 12)
 \[\underbrace{W}_{\text{S}} \ S \ W \ S \ W \ S \ W \ S \ W \ S \]

d. And see the brave day sunk in hideous night (Son. 12)
 \[\underbrace{W}_{\text{S}} \ S \ W \ S \ W \ S \ W \ S \ W \ S \ W \ S \]

Note the labelling mismatch in (4.31b), which has the strongest constituent of a compound in a W position; and that in (4.31d), which has the strong word of a phrase likewise in W.

Unlike OE meter, however, Shakespeare’s meter is sensitive to the strength relations within prosodic words; roughly speaking, as mentioned above, a syllable which is strong within its word may not appear in a W position (unless it is line- or phrase-initial), while syllables which are strong within compounds or phrases may. OE, on the other hand, does not disallow a strong syllable of a polysyllabic word in a W position; such syllables may occupy W if the word in which they appear is itself subordinate to another word, as we have seen in (4.30b-c). It might be expected then, that, in order to maintain a binary
opposition between S and W metrical positions - that is, that S positions must contain material which is prominent and that W must contain material which is unprominent - OE may be sensitive to the strength relations between prosodic words, whether these words occur in compounds or in phrases. An examination of how phrases behave, or, perhaps more importantly, do not behave in meter may shed some light upon their stress patterns, and, in turn, allow us to formulate a rule concerning their behaviour with regard to W metrical positions.

If a W position may contain the head of a prosodic word only if it is prosodically weak, and if the NSR operated in OE, subordinating stress on the first word of a phrase, one might expect that phrases could pattern in the meter like clitic groups45 do, with their first word on W. For example, a hypothetical verse such as (4.32a) below could conceivably pattern like the existing verse in (4.32b) (phrase and clitic group are enclosed in square brackets):

\[
\begin{align*}
(4.32) & \quad \text{a. } *\text{tydra}\ [\text{guman b}an-faet} \ 'the \ man's \ body \ weakens' \\
& \quad S \quad W \quad S \quad W \\
& \quad W \quad S \\
& \quad S \\
& \quad W \\
& \quad S \\
& \quad W
\end{align*}
\]

The verse in (4.32a) corresponds roughly to a Sievers D1 with a syllable of secondary stress in the final dip. There are no labelling mismatches in that each W position contains the head of a weak prosodic word. But verses like this do not exist in the poetry. Their absence may be explained on the assumption that phrases have trochaic stress, and that the head of a word which is strong within its phrase may not appear on W; that is, the first word of a phrase must occupy S:

\[
\begin{align*}
& \quad S \\
& \quad \text{W} \\
& \quad \text{S} \\
& \quad \text{W}
\end{align*}
\]

45A clitic group is defined by Hayes as “a single content word together with all contiguous grammatical words in the same syntactic constituent” (“Prosodic” 207). Clitic groups include sequences such as determiner + noun, preposition + object, auxiliary + verb, and so forth.
When scanned as above, this unmetrical verse is now shown to be unmetrical for two reasons: first, because the second W position contains two prosodic words, violating position rule (4.3), that a metrical position may contain at most \(\lambda \text{min} \); and second, that W contains the head of a word which is strong within its compound.

I would like to suggest that, in fact, the first word of a phrase may never occupy a W position, as it does in (4.32a), but instead must occupy S. The second word of a phrase, on the other hand, may occupy W:

\[
(4.34) \quad \begin{array}{ll}
\text{a. geongum} & [\text{gocor sefa}] \ '\text{to the young man a sad heart}' (1048a) \\
S & W \\
\end{array} \\
\begin{array}{ll}
\text{b. hre\text{	extbar}er} & [\text{innan swearc}] \ '\text{heart darkened inwardly}' (1052b) \\
S & W \\
\end{array}
\]

Conversely, the second words of sequences that are not phrases never occupy W; in other words, sequences of prosodic words which are not phrases do not occupy metrical feet. If they do, unmetrical verses like the following may result:

\[
(4.35) \quad \begin{array}{ll}
[\text{glæd-m\textbar}od secg}] Gode & '\text{the joyful man to God}' \\
S & W \\
\end{array}
\]

The example above corresponds to an unmetrical Sievers E-type with a syllable of primary stress in the dip. If the second word (Gode) of the underlined sequence were scanned as being in S rather than in W, the reason why this verse is unmetrical becomes apparent: like the unmetrical verse in (4.33) above, violation of the position parameter results:

\[
(4.36) \quad \begin{array}{ll}
[\text{glæd-m\textbar}od secg}] Gode & '\text{the joyful man to God}' \\
S & W \\
\end{array}
\]
This suggests that a metrical foot in OE contains maximally a phrase.46

I would like to suggest that this pattern, that the first word of a phrase must occupy S, and that the second word of a phrase may occupy W; and, conversely, that a SW metrical foot contains maximally a phrase, may be explained on the assumption that OE phrases have trochaic stress.

Russom argues, however, that while a rule analogous to the CSR determines the location of alliterating syllables (see (2.19c) and (2.32)), this rule applies at the metrical level, not at the prosodic level, and therefore should not necessarily apply to the actual linguistic material of phrases ("New Kind" 438). I find Russom's argument for the NSR in OE incompatible with his claim that a verse is interpreted as two metrical feet, i.e. two OE words. Russom suggest that alliteration plays a key role in the interpretation of verses consisting of three fully stressed words, pointing out that these verses invariably have double alliteration:

(4.37) sweord | swãte fãh 'sword stained with blood' (Beo, 1286a)

"Alliteration on swãte . . . seems to act as a principle of cohesion, rendering what would otherwise constitute two feet equivalent to one" (443). Alliteration, that is, forces - or at least encourages - an audience to perceive phrases such as swãte fãh as one word rather than two.

I do not find this claim of Russom's very plausible. Consider the examples below:

(4.38) a. Good | greenhouse
 b. Good | green house

46Following Hayes, I shall assume that the structure relevant to OE meter is the phonological rather than the syntactic phrase ("Prosodic" 205). Assuming, like Hayes, that the phonological phrase in PDE consists of an (optional) modifier + head with a maximum of one clitic group adjoined rightwardly (for example ðæah his lif gæst, 'though his life and spirit' (967b)), and assuming further that this definition extends to OE, metrical feet in GuthB do not contain more than one phrase. But more work obviously needs to be done in this area.
Speakers of PDE will place the strongest stress on the second element of the phrase *green house*, in accordance with the NSR, and on the first element of the compound *greenhouse*, in accordance with the CSR. (If the NSR operated in OE, presumably OE speakers would do the same.) Speakers of PDE interpret *good greenhouse* as consisting of two words. But I see no reason to believe that any speaker of PDE would interpret the phrase *good green house* likewise as two words, regardless of the alliterative pattern. *Good green house* can only be interpreted as three words, and I cannot imagine that a hypothetical speaker of OE, if the NSR had also operated in that language, would interpret it otherwise. Since, according to (2.17a), word patterns correspond to foot patterns in Russom's theory, three words correspond to three feet, which violates (2.17b); and since it is unlikely that alliteration has the cohesive force necessary to force interpretation as two feet, it is far more plausible to assume that phrases in OE, like compounds, have a trochaic stress pattern, and that the double alliteration in examples such as (4.37) has some other explanation.

Let us assume, then that the TSR assigns greater prominence to the first element in an OE phrase, labelling it *S*. Since the second phrasal element has subordinated stress, its head is labelled *W* and may therefore appear on a *W* position:

(4.39) a. byrelade bryd geong ‘the young bride poured out’ (870a)
S W S W

b. in ðisse wonnan niht ‘in this dark night’ (1028b)
S W S W

c. nolde fæder engla ‘the father of angels didn’t want’ (945b)
S W S W

A test case for the claim that *W* may contain the heads of words only if they are prosodically weak is the minimal word (λmin). These words, which contain
both a strong and a weak foot, should behave differently in the meter than words in which the only strength relationship is between syllables. In fact, this is the case, at least in Guthlac B. A minimal word, which contains a foot which is strong in relation to another foot, may appear in a S, but not in a W position:

\[\lambda \]
\[S \overset{\text{S}}{\text{Ø}}s \overset{\text{Ø}}{\text{w}} \]

(4.40) a. ne \text{æt} onbid long 'nor the interval long' (904b)
\[S \overset{\text{W}}{\text{W}} \overset{\text{S}}{\text{W}} \]

\[\lambda \]
\[S \overset{\text{Ø}}{\text{w}} \overset{\text{Ø}}{\text{s}} \]

b. ān ombeht-begn 'one servant' (1000a)
\[S \overset{\text{W}}{\text{(W)}} \overset{\text{S}}{\text{w}} \]

but not:

\[\lambda \]
\[S \overset{\text{W}}{\text{W}} \overset{\text{S}}{\text{w}} \]

(4.41) *ne \text{æt} long onbid 47
\[S \overset{\text{W}}{\text{w}} \overset{\text{S}}{\text{w}} \]

To summarize, W positions may contain unstressed syllables, whether these be syllables adjoined to feet in prosodic words, or unstressed function words. W may contain stressed syllables under several conditions. First, W may contain the head of a weak foot which is subordinated to a strong foot within a prosodic word. Second, W may contain a prosodic word, as long as it is subordinate to another word in the same compound or phrase. We may therefore restate the prominence constraint on W, replacing (4.4b) with the following:

(4.42) A W position may contain the head of a prosodic word only if it is prosodically weak.

47Note that the fact that a W position may not contain a word with a stressed prefix provides independent evidence for McCully and Hogg's claim that only nonlexical W feet are deleted by their Marginal Destressing Rule (327), as discussed in Chapter 3.
Foot boundaries

As discussed above in (2.25), Russom’s theory requires bracketing rules in order to account for the placement of foot boundaries in some B and C-type verses and in verses containing three or more stressed words. I would like to suggest, however, that his bracketing rules are unnecessary, since the placement of foot boundaries follows naturally from the rule that W may contain only prosodically weak material.

While OE metrists generally accept that the half-line may be divided into two feet, where the foot boundaries lie has sometimes been a matter of dispute. Sievers, for example, divides his B- and C-verses after the second position. This creates an iambic foot initially in each: $x / I x /$ and $x / I / x$, respectively. Pope, on the other hand, as shown above in (2.14), argues that the second measure of Sievers types B and C begins with the first stress, leaving the first measure to consist of only unstressed syllables, or even a single unstressed syllable, plus an initial rest in some verses so that the two measures will both take an equal amount of time to pronounce (57). Although Pope’s theory of isochrony is probably unwarranted, as discussed in Chapter 2, this division of verse-types beginning with unstressed syllables is not unreasonable. As Russom points out, B-type verses in Beowulf never consist of two iambic words, while C-type verses only rarely consist of an iambic followed by a trochaic word (OEM 18); this is also true of Guthlac B. Therefore Russom, like Pope, argues that the foot boundary in these verses should be placed immediately before the first stress. Pope’s and Russom’s foot divisions in these cases appear to be the correct ones, but not, I believe, for the reasons they give. Rule (4.42) states that the heads of words in W must be prosodically weak. This rule alone is sufficient to rule out rising stress, and accords with Pope’s and Russom’s observations. The placement of the foot
boundary follows naturally. For example, verses such as the following cannot be scanned:

\[\text{æfter niht-glōme} \quad \text{‘after night-darkness’ (943a)} \]

since the word *niht* is strong within its compound and therefore may not appear in *W*. The verse must instead be scanned with the foot boundary preceding the strongest stress:

\[\text{æfter niht-glōme} \quad \text{(4.44)} \]

A related difficulty arises when a verse consists of three fully stressed words. In this case, the problem is determining into which foot two of the three lexical stresses should be placed. Russom (*OEM* 16) and Keyser (338-39) suggest that syntax is the determining factor: those two words which form a syntactic unit group together into one foot. Keyser enumerates four possible groupings:

\[\text{a. Adverb + verb} \]

\[\text{Hēt ðā} \quad \text{in beran} \quad \text{(Beo. 2152a)} \]

(he) commanded then \(\text{in to be brought} \)

\[\text{b. Noun inflected in the instrumental + verb} \]

\[\text{Flōd} \quad \text{blōde wēol} \quad \text{(Beo. 1422a)} \]

Flood \(\text{welled with blood} \)

\[\text{c. Adjective or numeral + noun} \]

\[\text{Bēagas ond} \quad \text{brād gold} \quad \text{(Beo. 3105a)} \]

rings and \(\text{thick gold} \)

\[\text{Twelf wintra} \quad \text{tīd} \quad \text{(Beo. 147a)} \]

twelve winter’s \(\text{time} \)
d. Noun + noun inflected in the genitive

Swutol I sang scopes (Beo. 90a)
sweet I song of the scop

Both Russom, as discussed above re (2.27), and Keyser point out that in these cases, syntactic criteria play a role in determining the location of alliterating syllables, since phrases like those described above are treated by the poet as though they were compound words: alliteration, for example, falls on the first or the first and second elements of the phrase - never on the second element alone. However, the theory presented here, unlike Keyser's and Russom's, does not need a specific rule of foot-assignment according to syntax. Rule (4.42) states that the head of a word in a W position must be prosodically weak. Therefore the following scansion is automatically ruled out:

\[
\text{Phrase} \\
\lambda \hspace{0.5cm} \lambda s \hspace{0.5cm} \lambda w \\
\hline \\
\emptyset \hspace{0.5cm} \emptyset \hspace{0.5cm} \emptyset
\]

(4.46) Dagas forð scridun 'days went forth' (969b)

\[
\begin{array}{c}
\ast \\
S \hspace{0.5cm} W \hspace{0.5cm} S \hspace{0.5cm} W
\end{array}
\]

since forð, as the strong constituent of the phrase, may not occupy a W position. It must instead be scanned:

\[
\text{Phrase} \\
\lambda \hspace{0.5cm} \lambda s \hspace{0.5cm} \lambda w \\
\hline \\
\emptyset \hspace{0.5cm} \emptyset \hspace{0.5cm} \emptyset
\]

(4.47) Dagas forð scridun

\[
\begin{array}{c}
\ast \\
S \hspace{0.5cm} (W) \hspace{0.5cm} S \hspace{0.5cm} W
\end{array}
\]

Foot assignment, then, is not determined directly by syntax, but follows from Rule (4.42). In fact, assignment of foot boundaries according to syntax leads to inconsistencies in Russom's theory, as discussed above in (2.38-39). If two words of a phrase pattern together as a metrical foot, why must a word like gegaf, which
consists of an unstressed prefix + stem (and which must surely be a syntactic unit just as much as a phrase is) occupy two feet? Why should syntax be the determining factor only in the cases in which a verse contains three lexical words? A claim that foot boundaries are determined not by syntax, but by phonology, eliminates the need for ad hoc rules that treat a phrase, but not a prefixed word or clitic group, as a syntactic unit. Phrases cannot pattern like clitic groups, or like words with unstressed prefixes, not because of bracketing rules that are determined by syntax, but due to the phonological rule that W positions may not contain strong constituents.

The determination of foot boundaries by phonological rules rather than by syntax fits in well with generative metrical theory, which defines meter in terms of abstract phonological constituents such as syllables, prosodic feet, etc. For example, because words with stressed prefixes like onbid and compound words like sǣ-man differ in their phonological makeup (the former comprising one prosodic word and the latter two), they are treated differently in meter: onbid may occupy a single metrical position while sǣ-man may not (see (4.5-6)). Note, however, that although these words are treated differently in meter, they behave the same - as single words - syntactically. Says Hayes: "I would like to suggest that metrical rules NEVER refer to syntactic bracketing, only to prosodic bracketing... meter is essentially a phonological phenomenon" ("Prosodic" 224).

Summary of realization parameter settings for OE

As we have seen in the course of the preceding discussion, a metrical position contains at most a minimal word (λmin). This is a class of left-headed structures which comprises maximally a) one word and b) two feet. A S position must contain the head of a prosodic word. A W position may contain the head of a prosodic word only if it is prosodically weak.
Chapter 5. Special licenses and functional constraints

This chapter will discuss several features of OE meter which are licensed not by the metrical rules particular to OE as laid out in Chapter 4, but by general poetic principles that seem to be potentially available to all meters. Included among these general principles are: relaxation of prominence constraints on initial positions, empty positions, and the appearance of extrametrical constituents.

Relaxation of prominence constraints on initial positions

As briefly mentioned above concerning example (4.24), metrical theory allows prominence constraints to be relaxed on an initial position (Hanson and Kiparsky 7, 24; Hayes “Prosodic” 247). For example, Shakespeare’s iambic pentameter disallows a strong syllable (like the stressed syllable of a disyllabic word such as tiger) in a W metrical position. But this constraint is not uncommonly relaxed at the beginning of a syntactic or metrical unit, that is, line-, clause-, or phrase-initially, as discussed in Chapter 1. In OE, relaxation of prominence constraints is allowed verse-initially. Since the verse-initial metrical position is always S, and the prominence rule is that S must contain the head of a prosodic word, relaxation of constraints means that verse-initial S need not do so. Therefore verse-initial S may contain an unstressed prefix, the head of a function word, or, since any prosodic structure that non-final function words may have is not taken account of by the metrical rules of OE, any number of function words.

Relaxation of constraints on S in OE seems to be motivated by linguistic requirements: the need for unstressed prefixes, function words, or strings of function words in line-initial position. “A meter flexible enough for epic

48In iambic pentameter, this is traditionally known as trochaic inversion.
storytelling must of course allow for the long strings of function words that occur in a variety of Old English syntactic constructions" (Russom OEM 33). Relaxation of constraints on S allows these verse-initial unstressed syllables to exist within the meter:

(5.1) Z se hālga song 'and the holy song' (1323b)

Since any stress assigned postlexically to non-final function words is disregarded by the meter, initial S may also contain a string of function words. Any number of unstressed syllables are not parseable as a foot; in theory, therefore, an indefinite number of such function words may appear on a single metrical position.49 In practice, of course, the number is limited by the syntax of the language, and probably by stylistic factors. The poet of Guthlac B rarely has more than two, occasionally three, unstressed syllables on any given metrical position:

(5.2) ac hē on bām lande ‘but he on the land’ (831a)

Note that on occasion the relaxation of constraints on initial S will result in ambiguous scanions. In the above example, S may contain ac and W hē on bām; alternatively, S may contain ac hē and W on bām, and so forth. This is not a problem. The point of generative metrics, unlike that of traditional OE metrics, is not to rule out all but one possible scansion, but rather to describe what distinguishes metrical lines in contradistinction to unmetrical lines (or verses). Ambiguous scanions may be tolerated, as long as the lines to which they apply do not violate any metrical rules.50 Since a metrical position in OE may contain a

49See Hanson’s discussions of such sequences in the metrical practices of Hopkins (Resolution 148) and Tennyson (155-56).

50Just as they are in Shakespeare’s iambic pentameter, in which a resolvable sequence such as delicate may be scanned either delicate or delicate (Hanson, “Prosodic”).
number of unstressed syllables, it makes no difference whether these syllables in
the line above are assigned to S or W. But for the sake of consistency in
diagramming, I shall arbitrarily assume that the first of a verse-initial string of
unstressed syllables is in a S position and the rest are in W.

Empty metrical positions
In Chapter 4 we discussed the various types of constituents that may appear
on a given metrical position: the minimal word, together with the class of
structures parseable as the minimal word, unstressed syllables, etc. A metrical
position, as we have seen in (4.5b-c), (4.16), and elsewhere, may also be occupied
by nothing; that is, it may be empty.

An empty position may be the result of one of two factors. The first is
catalexis, or the absence of a peripheral weak constituent: for example, the empty
initial W position sometimes found in iambic meters, or the empty final W
position which is quite common in trochaic or dactylic meters. The second
reason an empty position may appear stems from the minimum realization of the
position parameter (which, recall, is set at \(\lambda_{\text{min}} \) for OE meter), which defines
only the upper bound of what may occupy a metrical position.

Although verse-final W positions in OE may be empty as a result of syllable
catalexis as in (5.3a) below, catalexis cannot explain empty W verse-medially, as
in (5.3b):

(5.3) a. eard-wīca cyst ‘best of earthly dwellings’ (853b)
 S W S (W)

 a. stōp stal-gongum ‘advanced with stealthy paces’ (1140a)
 S (W) S W

I shall therefore assume that empty positions in OE result from the minimum
realization of the position parameter. Because S positions must contain the head
of a prosodic word by (4.19), only W positions may be empty.
Although the empty W position resulting from minimum realization of the position parameter is not a common feature in the meters studied by generative metrists, it is not unknown. Kiparsky’s study of Hopkins’s sprung rhythm shows that Hopkins freely allows empty W positions (“Sprung” 311). This parallel use of empty W in both OE and sprung rhythm is probably one of the factors leading some critics to claim that there are stylistic affinities between the two.

In OE, empty W together with relaxation of constraints on initial S appears in some B and C-type verses:

(5.4)
\begin{align*}
\text{a. on } & \text{Æfen-tid ‘in evening time’ (1215a)} \\
& S(W) S W \\
\text{b. in } & \text{sin-dreamum ‘in eternal joy’ (839b)} \\
& S(W) S W
\end{align*}

An unusual variant of this pattern appears when it appears that the sole occupant of the first foot is an unstressed prefix:

(5.5)
\begin{align*}
\text{a. } & \text{a sanian ‘to grow weak’ (1175a)} \\
& S(W) S W \\
\text{b. } & \text{a cennedne ‘born’ (1361a)} \\
& S(W) S W
\end{align*}

According to Russom (OEM 36), verses like the above occur about 50 times in Beowulf; there are five unambiguous examples in Guthlac B.

Scansion of these examples as given in (5.5) is somewhat troublesome, since an empty position appears between the stem and prefix of a word. Although this is not a problem for Russom, who regards unstressed prefixes as function words.

51Kiparsky also reports two instances of empty S positions in Hopkins’s sprung rhythm, but this seems to be a highly marked usage.
52For a more detailed comparison of sprung rhythm and OE meter, see Stephenson.
53They are: 1324a, 1361a, 1175a, 1177a, and 1252a. Another three possible examples, 1128a, 1133b, and 1207b may be scanned as normal A-type verses with an initial extrametrical syllable if resolution on S is suspended.
it might be best to regard these unusual verses as occasional one-foot verses with an initial extrametrical syllable, scanning them as:

\[(5.6)\]
\[\text{a. (ā) sānian} \]
\[\text{S W} \]
\[\text{b. (ā) cennedne} \]
\[\text{S W} \]

The question naturally arises as to whether verses such as those in (5.4) should also be considered as one-foot verses with an initial extrametrical syllable. I consider this unlikely, however, for reasons which I shall discuss below.

Extrametricality

Extrametrical syllables are syllables that lie outside the meter; that is, they are not licensed by the rules which assign prosodic material to metrical positions. They have their counterpart in phonological rules which allow peripheral weak constituents to be disregarded in parsing. In meter, extrametrical syllables may appear immediately before or immediately after metrical constituents such as feet, lines, etc.

Iambic meters often allow an optional extrametrical unstressed syllable to fall after a S position; that is, immediately following a WS foot and before a syntactic break (Kiparsky “Rhythmic” 231, Hanson and Kiparsky 25). Conversely, trochaic meters allow an optional extrametrical syllable to fall between a syntactic break and a S position - that is, immediately preceding an initial SW foot (Kiparsky “Rhythmic” 232). Traditional accounts of OE meter call this phenomenon, in which an optional unstressed syllable appears before the first stress in a verse, anacrusis. Unstressed syllables in anacrusis are occasionally found preceding the initial stressed syllable in Sievers A-and D-types.\(^{54}\)

\(^{54}\)Russom postulates that anacrusis does not appear before E-types because in these cases the first foot of such an E-type would tend to be interpreted as a
Russom takes a much broader approach to extrametricality than the traditional accounts of OE meter do. Because his theory is based on a correspondence between words and metrical feet, with foot patterns being derived from word patterns, he is forced to treat unstressed syllables which do not fit within his derived metrical patterns as extrametrical. For example, because no OE word corresponds to the pattern Sxxxx, he must regard the parenthesized elements in:

(5.7) \[\text{begnas (syndon ge-) pwære 'thanes are united'} \ (\text{Beo 1230a}) \]

\[
\begin{array}{cccc}
S & x & (x & x & x) & S & x \\
\end{array}
\]

as lying outside the meter (OEM 19), scanning the verse above as Sx | Sx. Russom's rule for extrametricality, given above in (2.28), states that extrametrical unstressed syllables may appear before either foot in a verse. This is a much looser interpretation than that of Sievers's account of OE meter, which considers one or more unstressed syllables indifferently as a dip, or non-stressbearing segment (272). Since the generative model of OE meter which I am outlining on these pages always allows a sequence of unstressed syllables to occupy a single metrical position, Russom's rule that extrametrical syllables may appear before either foot is unnecessary. In example (5.7) above, for example, syndon ge- may occupy a single W position, and there is no need to consider any of these syllables extrametrical. In this regard, the generative theory proposed here is more in line with that of Sievers and other traditional theorists than it is with Russom.

Anacrusis is a very limited feature of OE poetry. The number of A-types with anacrusis in Beowulf has been calculated differently by various metrists; the normal C-type verse (see the discussion of overlap in Chapter 6 below). "A verse pattern (x) Ssx | S would have a false sense of closure at the verse-medial boundary, creating confusion about the number of feet" (OEM 34). A possible exception to the avoidance of anacrusis in E-type verses is GuthB 1317a.
highest count of A-types given is 125 (Cable *Meter* 33), though Bliss lists only 27 instances of A with anacrusis and 28 of D with anacrusis (Metre 127, Table III). The syllable in anacrusis is almost always an unstressed prefix or the negative particle *ne* (Cable *Meter* 35, Duncan 16). As discussed in Chapter 2, the avoidance of anacrusis, according to Cable (*Meter* 43), seems to be a major part of the poet's craft, since almost 50% of OE prose phrases are introduced by one or more unstressed syllables.

Anacrusis is likewise a very limited feature of Guthlac B, occurring in only 24 verses: 13 A-type verses, 10 D-types, and one E-type. Examples are:

(5.8)

a. *āfysed on forð-sið* 'impelled on the journey' (939a)
\[S \ W \ S \ W \]

b. *wiðstōd* stronglice 'withstood strongly' (903a)
\[S (W) S W \]

With only four exceptions (840a, 922a, 1291a, and 1317a), the syllable preceding the first S position is an unstressed prefix. Anacrusis in Guthlac B is monosyllabic with only two exceptions:

(5.9)

a. *æt hām hālgan hēowon* 'from the holy servant' (922a)
\[S W S W \]

b. *swā se burg-stede wæs* 'so the citadel was' (1317a)
\[S W S (W) \]

Extrametricality in Sievers B- and C-verses

It may be argued that the initial unstressed syllables of Sievers types A3, B or C are, like the unstressed syllables preceding some A- D-, and (rarely) E-type verses, extrametrical. This is a point which deserves consideration, especially in view of the fact that, unless one wishes to postulate an empty W position word-medially, an unstressed prefix may in any case stand extrametrically before a single foot in some B- and C-type verses, as discussed re (5.5-6). I shall, however maintain that, with the possible exception of verses like those discussed in (5.5), the initial
unstressed syllables of A3, B- and C-types are not extrametrical, but result from the relaxation of prominence constraints on initial S positions.

Assuming for the moment that the initial light syllables of A3, B- and C-types were indeed extrametrical, one would have to postulate the existence of two distinct types of extrametricality: that shown in these verses, and that shown in A-, D, and E-type verses, which I shall continue to refer to, for the sake of clarity, as anacrusis.

First, as Cable (Meter 35) and Duncan (16), point out, the syllable in anacrusis in A- and D-types (they do not discuss the very rare instances in E) is almost without exception a monosyllabic unstressed prefix or the negative particle ne. While the initial unstressed material in B and C does sometimes consist of a monosyllabic unstressed prefix (though the first foot of an A3 verse never consists of only one syllable), far more often it consists of function words or strings of function words of a type which only very rarely appears in anacrusis: prepositions, demonstratives, pronouns, complementizers, auxiliary verbs, etc. Sometimes, as we shall see in Chapter 7, the first foot of a B or C verse even contains a finite verb which does not participate in alliteration. Finite verbs never appear in anacrusis in A, D, or E-types; at least there are none in Guthlac B. The generalization seems to be that syllables in anacrusis almost always form a tight syntactic unit with the following word. Note that no material may intervene between an unstressed prefix and its stem, nor between adverbial ne and the following verb (in fact, ne plus a following verb beginning with a vowel, h, or w is generally contracted, producing nis from ne is, naes from ne wæs, and so forth).

Secondly, anacrusis consistently appears in the first half-line, or on-verse in Guthlac B; while B and C verses appear as both on- and off-verses (A3 verses, on the other hand, almost always appear in the on-verse in Guthlac B). Third,
anacrusis is rare, as we have seen above: 24 verses in Guthlac B, or about 2%; while B and C verses are ubiquitous, comprising about 25% of Guthlac B’s verses. (This final point, while it is not in itself crucial to establishing a difference in kind between anacrusis and the first feet of B- and C-types, in combination with the other factors, is highly suggestive.)

Therefore, in form (monosyllabic prefix or ne vs. polysyllabic function words or even finite verbs), distribution (on-verse vs. either on- or off-verse), and frequency (rare vs. common), syllables in anacrusis are almost always quite distinct from the unstressed syllables preceding the first stress in Sievers B- and C-type verses. In only one OE text, the metrical Psalms of the Paris Psalter, does polysyllabic anacrusis before A, D, and E-types occur with any frequency (Bethel 34). Even in this text, which is highly unusual, anacrusis occurs fairly seldom, in only 6.8% of full lines (33), and almost without exception occurs in the on-verse (35).

As well as these differences in form, frequency, and distribution, to consider the initial function words in A3, B, and C as extrametrical would mean that these verses would consist of only two or three metrical positions:

\[(5.10)\]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. nū þū gearwe const ‘now you readily know’ (1045b)</td>
<td>S W</td>
<td>S</td>
<td>(W)</td>
</tr>
<tr>
<td>b. 7 his sefan trymman ‘and prepare his mind’ (1116b)</td>
<td>S</td>
<td>(W)</td>
<td>S</td>
</tr>
<tr>
<td>c. 7 þā Ærendu ‘and the messages’ (1296a)</td>
<td>S</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>d. nis mē earfeðe ‘it is no hardship to me’ (1065b)</td>
<td>S</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>e. þæt þū gesecge ‘that you tell’ (1179a)</td>
<td>S</td>
<td>W</td>
<td></td>
</tr>
</tbody>
</table>
Without the initial unstressed syllables, verses like those in (5.10a, c-d) would have only three syllables; some, like (5.10c-e), would consist of only one foot; and some, like (5.10e) would have only two syllables. In Chapter 6 we shall discuss the absence of two-and three-syllable verses which might result from an empty \textit{W} position in terms of an overlap constraint which serves to minimize confusion between verses and feet by requiring that verses be interpretable as two feet. It may be argued that the overlap constraint is at work in the examples above by requiring extrametrical syllables which serve to mimic a foot, thus allowing a single foot to be interpretable as two. This seems unlikely, however, for if the head of a metrical foot is always required to contain a stressed syllable, that is, if relaxation of prominence constraints on initial \textit{S} were not allowed, extrametrical unstressed syllables are unlikely to be interpretable as a foot.

Finally, if hypermetrical verses are regarded as having three feet (as I shall argue in Chapter 8), it is not unreasonable to suppose that OE has one-foot verses; and I have already allowed that B- and C-type verses preceded by only an unstressed prefix may be better regarded as occasional one-foot verses. But in terms of distribution, hypermetrical verses are normally set aside in clusters and not intermingled with normal (that is, two-foot) verses. This may be for stylistic effect, or, alternatively, to aid the listener's recognition of them as having more than the usual number of feet. But the putative one-foot verses discussed above are mixed in randomly with normal verses. A3 verses, it is true, do typically appear in the on-verse; but even these verses are not clustered near each other, but occur widely spaced throughout the poem. Now just because verses that are longer than the norm tend to cluster together, it does not necessarily follow that verses that are shorter than the norm should behave in the same manner. It does suggest, however, that putative one-foot verses behave more like two-foot verses than otherwise. I suggest that these verses \textit{are} two-foot verses.
To summarize, then, the initial unstressed material in A3, B-, and C-type verses is probably not extrametrical, but arguably results from the relaxation of prominence constraints on initial S. Unstressed syllables preceding A-, D-, and (very rarely) E-types are, on the other hand, extrametrical; extrametrical syllables, as discussed above, may in trochaic meters fall between a syntactic break and a S position. Extrametrical syllables in OE are almost without exception monosyllabic unstressed prefixes or ne; they almost always occur line-initially. Since there exists the occasional exception to both of these tendencies, however, I shall not state them as rules.
Chapter 6. Overgeneration and rare verse types

Overgeneration

Although the metrical rules and special licenses as given in Chapters 4 and 5 adequately describe all of the lines in Guthlac B (excepting hypermetrical verses, which I shall discuss in Chapter 8), they also vastly overgenerate, predicting lines that do not actually occur, not in Guthlac B, nor, that I am aware of, anywhere else in the corpus of OE poetry.

The position parameter is one of the culprits here. Remember that the maximum size of a constituent which may occupy a metrical position is the λ_{min}, or minimal word. This means that words such as onbid (two feet) as well as words containing less prosodic material, for example cynnes (one foot plus an adjoined syllable), may occupy a single position. But there is no metrical constraint, and can be no metrical constraint, that prohibits such words from occupying every metrical position in a verse. As an example, the rules proposed here allow lines such as:

\[(6.1) \quad *\text{ende-dōgor middan-geardes} \quad \text{‘final day of middle-earth’}\]

\[
\begin{array}{cccc}
S & W & S & W
\end{array}
\]

in which a foot plus adjoined material occupies every metrical position.

The second culprit is the empty W position. If W positions are allowed to remain unfilled, the theory predicts that verses such as the following example, which has two empty W positions, will occur:

\[(6.2) \quad \text{wīs word} \quad \text{‘wise words’}\]

\[
\begin{array}{cccc}
S & (W) & S & (W)
\end{array}
\]

What prevents such verses from occurring freely in the poetry? Two interrelated arguments can be made. First is an argument from complexity; second is an argument which Russom proposes, an argument which derives from
the fact that OE poetry was oral, meant to be listened to rather than read. He calls
his argument the overlap constraint. I shall take these arguments in order.

Metrical Complexity

According to Russom, the prototypical OE verse is SxISx, or, in Sieversian
terms, the A-type: /x I x/. “This pattern, which corresponds to Sievers’s type A1,
is an obvious candidate for the [metrical] norm, since it has by far the highest
relative frequency” (OEM 28). This statement fits in well with the generative
theory presented here, which has an abstract underlying SW I SW metrical
pattern. If the trochaic /x I x/ is the most neutral expression of the underlying
meter, this suggests that the normative correspondence between metrical
positions and linguistic units is more on the order of Ømin, the minimal foot (a
stressed syllable or a resolvable sequence), or the syllable rather than, say, a foot
plus adjoined material. That is, while the position parameter (4.3) allows a given
metrical position to contain as much material as two feet provided they are in the
same prosodic word, and while this is indeed sometimes the case, this is not
necessarily the most prototypical or neutral expression of the correspondence
between metrical positions and linguistic units. I would like to suggest that
when a metrical position contains a constituent larger than the prosodic foot, the
result is a more complex, though of course quite legitimate, realization of the
underlying metrical pattern.

Halle and Keyser suggest that the more complex a given line is, the more
difficulty it poses for the reader, whose task it is to interpret lines as being
legitimate realizations of the underlying meter. Even a line which is perfectly
metrical (in that it breaks none of the rules of the meter) may nevertheless be so
complex that any reader would be hard pressed to discern the underlying
pattern. Such highly complex lines, while metrical, will be disfavoured in meter,
just as grammatical but highly complex sentences will be disfavoured in speech or writing. It would be highly unlikely, for example, to find a line of iambic pentameter with a resolved sequence in every S position or a stressed monosyllable in every W position, even though the metrical rules may theoretically allow these possibilities. According to Halle and Keyser: “If it is granted that the complexity of a line is directly related to the difficulty that the line in question poses for the reader, and if one further supposes that poets normally do not wish to turn their poems into difficult crossword puzzles the artistry of which cannot be appreciated without laborious pencil and paper calculation, then it is not unreasonable to assume further that there is an upper bound on the complexity that a given poet would ever wish to impose on his lines” (“Iambic” 233-34).

According to Youmans, the reader (or listener) measures lines of verse against an abstract metrical prototype. Whether or not a given line is judged as metrical is determined by how closely it conforms to this prototype (341). The distinction between metrical and unmetrical lines is not, Youmans suggests, always a clear-cut one. He therefore proposes that there is a “Platonic” component to meter which allows for degrees of metricality, or for a fuzzy rather than a well defined set of metrical lines. This he contrasts with the “Aristotelian” approach of generative metrics, in which metricality is an all-or-nothing affair and a given line either is or is not metrical according to some particular standard. Youmans proposes that metricality is a relative phenomenon, and that metrical rules “must define degrees of metricality rather than clear-cut distinctions between metrical and unmetrical lines” (342).

55For example, consider a grammatical but multiply embedded sentence such as “This is the cheese that the rat that the cat that the dog chased hunted ate.”
There is, I think, some merit to Youmans's point of view, although I would not advocate abandoning the Aristotelian perspective altogether. The purpose of this present paper, and of generative metrics in general, is to describe the Aristotelian aspect of meter. Now that we have established the structure and realization parameters for OE, it seems clear that verses which violate these parameters by having an unstressed syllable in non-initial S, by having a strong constituent in W, or by having more than \(\lambda \min \) in any position, are indeed unmetrical by any standard. But the Platonic aspect obviously plays an enormous part in OE meter, and needs to be further explored. There seems to be a "fuzzy" area in OE meter in which complex verses predicted by the meter do not actually occur: not because they are unmetrical according to the rules proposed in this paper, but because, perhaps, they would result in the listener's being unable to easily discern the underlying metrical pattern. Russom, with his overlap constraint (given above in (2.29), is the first metrist to recognize and discuss in detail this Platonic component in his study of OE meter.

Overlap

Following Russom's suggestion that the metrical pattern \(Sx \ | \ Sx \) (in Sievers's notation \(/x \ | \ /x \) is the prototypical or normative realization of OE meter (OEM 28), I would like to suggest that the rhythmic pattern \(/x \ | \ /x \) is the most neutral or least complex realization of the underlying SW | SW meter. Each position has linguistic material in it; there are no empty positions. Each S contains the head of a prosodic word, and each W contains material consisting of an unstressed affix or function word. The verse is therefore easily discernible as two feet, and is virtually transparent to the underlying meter.

Empty metrical positions and relaxation of constraints on initial S (which may tend to invite interpretation of two feet as one), as well as filling a metrical
position with more than Ømin (which may tend to invite interpretation of one foot as two), are all more complex realizations of the underlying form, and require more analytical effort by the listener. So verses like:

\[(6.3) \quad \text{a. } *sē \text{ man } \text{‘the man’} \]
\[\text{S(W) S (W)}\]

\[\text{b. } *gōd \text{ man } \text{‘good man’} \]
\[\text{S (W) S (W)}\]

\[\text{c. } *\text{ende-dōgor middan-geardes } \text{‘final day of middle-earth’} \]
\[\text{S W S W}\]

do not occur in the poetry, not because they violate any metrical rule, but because, I would like to suggest, they are so complex that the average Anglo-Saxon listener (who does not even have the advantage of pencil, paper, and crossword-solving experience) would be virtually unable to recover the underlying meter. The problem with the verses in (6.3a-b) is that the rhythmic pattern of each more closely approximates that of a foot than that of a normative verse. A verse like (6.3c), on the other hand, is more likely to be interpreted as two verses. Both of these forms of complexity - that arising from empty positions and that arising from “overstuffing” a verse - are subsumed by what Russom calls overlap.

Overlap, according to Russom, results when the stress pattern of a given foot is identical to that of a possible verse, which results in the possibility that a listener might become confused about where the foot and verse boundaries lie (OEM 26). For example, consider this verse from Guthlac B:

\[(6.4) \quad dā \text{ se æl-mihtiga } \text{‘then the Almighty’ (950b)} \]
\[\text{S W S W}\]
This verse does not violate any metrical constraints as outlined in Chapter 4, but it is the only verse of its kind in the poem. The question naturally arises: if verses like this are metrical according to our theory, why are they so rare?

The answer seems to be that the second foot contains material which is itself interpretable as two feet:

(6.5)
\[
\begin{array}{c}
\text{æl - mihtiga} \\
S (W) S W
\end{array}
\]

The rhythmic pattern of the second foot of (6.4), that is, corresponds to a Sievers D1 verse type, and verses with the same rhythmic pattern are not uncommon in Guthlac B or OE poetry in general. A typical D1 verse is:

(6.6)
\[
\begin{array}{c}
gæst - háligne 'man holy in spirit' (1149a) \\
S (W) S W
\end{array}
\]

Presumably, an Anglo-Saxon audience presented with the verse in (4.55) would therefore be quite likely to interpret it as consisting of three rather than two feet:

(6.7)
\[
\begin{array}{c}
ðā se æl - mihtiga \\
* S W S (W) S W
\end{array}
\]

Therefore verses which would tend to be interpreted this way are generally avoided by the poet.

Even when OE poetry was written down, the poetic texts included no visual cues, such as punctuation or line endings, to indicate the boundaries of prosodic units, such as phrases or sentences, or metrical units such as lines or verses (O'Keefe 1-2). Therefore it would have been very important that such prosodic and metrical facts be easily recoverable from the poetic language itself (21). It is

\footnotesize
56 It is unmetrical according to Sievers's classification system, being a C-type with two syllables in the final dip: xx/ l \xx. I am assuming that æel- has primary stress, since it bears the alliteration of the verse.

57 Another interpretation of Guthlac B 950b might be that the verse consists of two feet with two syllables of anacrusis. This interpretation is unlikely, since, as discussed in Chapter 5, the OE poet almost always limits anacrusis to the on-verse. Furthermore, anacrusis typically involves only unstressed prefixes or the negative particle ne.
likely that one element of prime importance in recovering such metrical facts from either text or recitation would be to maintain a clear distinction between feet and verses. Since OE verses consist of only two feet, and since some feet actually contain more syllables than some verses do, there is a real potential for confusion between the two. Constraints must be provided to allow a listener to disambiguate feet from verses; otherwise some feet which are longer and heavier than the norm may be perceived as constituting an entire verse. Russom, therefore, postulates that an overlap constraint is necessary to allow a listener to disambiguate feet from verses (OEM 26):

(6.8) Foot patterns may not overlap verse patterns.

What Russom means by this rule is that, for instance, since Sx ISx is an allowable verse pattern (analogous to Sievers A), the meter does not allow a foot pattern of the form Sx s x (26).

In fact, Russom's overlap constraint may too strict. He invokes it specifically to rule out the "light E" verse Sx IS which overlaps the foot pattern Sx s (26). However, the "light E" does actually exist, although it is rare:

(6.9) Ādame geaf 'gave to Adam' (869b)

Since verses such as those in (6.4) and (6.9) do actually exist, as well as the very occasional three-syllable verse (although there are none in Guthlac B), it might be best to regard the overlap constraint as a general tendency rather than a strict prohibition, and so I shall reword it as:

(6.10) Maximize the distinction between foot patterns and verse patterns.

This rule means that the rhythmic pattern of normal verses, which results from matching prosodic material with metrical positions, should be interpretable as two feet. Since hypothetical verses such as that in (6.3c) and actual verses such as in (6.4) are easily interpreted as four and three feet,
respectively, they violate the overlap constraint; and therefore verses such as these will occur very rarely, if at all.

The overlap constraint, as Russom suggests, may also account for the lack of three-syllable verses resulting from empty W positions, which could be easily interpreted as comprising a single foot (OEM 29). For example, consider the following hypothetical verses:

(6.11) a. *dryhten bād 'the lord experienced'
\[S \quad W \quad S\quad (W) \]

b. *Men cunnōn 'men knew'
\[S\quad (W) \quad S\quad W \]

c. *wīs word 'wise word'
\[S\quad (W) \quad S\quad (W) \]

Respectively, these hypothetical verses would have similar rhythmic patterns to the following feet:

(6.12) a. on ðā gēocran tīd 'in the sad time' (976b)

b. þonne sēo ērāg cyneōn 'when the time comes' (1350b)

c. lēof mon lēofum 'beloved man to the beloved' (1164a)

In fact, it is tempting to speculate that the overlap constraint, which maximizes the rhythmic differences between foot patterns and verse patterns, ensuring that a verse is interpreted as two feet, is the basis of Russom's claim that OE foot patterns correspond to OE word patterns. Can it be that one of the Platonic constraints on OE meter is that the listener be able to recover a pair of words, or, more accurately, phonological words, from a given verse? If so, this lends support to Youmans's claim that there are two components to meter, and incorporates Russom's claims within this framework. The Aristotelian or generative component defines the parameters of the meter according to rules.

58 Hypermetrical verses, which, I shall argue, do actually have three feet, will be discussed in Chapter 8.
The Platonic component, in OE, at least, would be a functional constraint that governs the interpretation of the resulting verse as two phonological words.\(^{59}\) If this is so (and I am offering it only as a suggestion), then OE poetry, far from being lax and unregulated, is far more complex and sophisticated than has hitherto been suspected.

Nonexistent and rare verse types

Several verse types predicted by the generative theory presented here are so rare that they are generally considered unmetrical. Consider, for example:

(6.13) a. frēorig 7 ferð-wērig ‘cold and soul-weary’ (1157a)
\[
/\text{xx \| /x}
\]
b. dēor-mōd on dēgle ‘bold man in darkness’ (952a)
\[
/\text{x \| /x}
\]
c. morpor-bed strēd (Beo. 2436b)
\[
/\text{x \| /x}
\]
d. *glēaw-mōd hyge-gēomor (prudent one, sad in spirit)
\[
/\text{\| /x}
\]

The metricality of verses such as (6.13a), in Sieversian terms a D1 verse expanded by two unstressed syllables in the first foot, has been a matter of some debate. Russom disallows such verses on the basis that there are no verses in Beowulf in which each foot is made up of a single word. Actually, there is at least one such verse:

(6.14) eahtodan eorlscipe ‘praised his nobility’ (Beo. 3173a)

\(^{59}\)Which would perhaps make the position parameter setting of λmin rather counterintuitive; if λmin were to occupy every metrical position in a verse, the verse would tend to be interpreted as four words. In fact, as I have pointed out, the more normative constituent on a metrical position is the syllable or the foot (Ømin). Unambiguous examples of λmin occupying a single metrical position are not very common.
Since it does not matter to generative theory, which is not based on a word-foot equivalence, whether or not a foot is comprised of one or more words, and since there are five examples of verses with the same rhythmic pattern in Guthlac B, I see no reason to consider verses like that in (6.13a) unmetrical. Fulk also accepts "the expansion of type D* . . . (though this type is rare)"(224).

Verses like that in (6.13b) are considered unmetrical both by traditional theorists and by Russom. Again, since the generative theory presented in this paper predicts this type, and since Guthlac B has seven examples, I see no problem with considering verses like these metrical, although, like the examples discussed just above, they are quite rare.

On the other hand, Guthlac B has no examples of verses such as that in (6.13c), and even Beowulf has just the one quoted. And I could find no examples in either poem of verses like that in (6.13d). Russom discusses the absence of these two patterns as due to their extreme complexity (OEM 30-31), which may be the case. However, this analysis, I think, begs the question: Why are verses like those in (6.13) so complex that they rarely (and in some cases never) appear, while other verses, which seem to be just as complex - for example, B or C-type verses with an empty W and relaxation of constraints on initial S - appear quite often?

One answer may be that there are several levels of complexity. We have already discussed the overlap constraint, which rules out verses which are interpretable as having fewer or more than two feet. Still, there are verses which do not seem to be interpretable as having the wrong number of feet, such as those

60They are: 1157a, 1172a, 1275b, 1284a, and 1331a.
61For a full discussion, see Fulk (153-68). Russom (OEM 31) notes that "there are no reversed half-line patterns such as Ssx \ Sx."
62The examples are: 952a, 993a, 1102a, 1219a, 1244a, 1331b, and 1357a.
in (6.13), which are either very rare or nonexistent. There must be some other factor or factors constraining these verses. Russom suggests that verses like (6.13c) are avoided because a listener would tend to misinterpret the foot boundary as following the second, rather than the third syllable (OEM 30). This sounds plausible, but it does not explain the non-occurrence of verses such as (6.13d). It would be quite satisfying to come up with some generalizations that would explain the existence of some complex types of verse and the non-existence of others. Having separated out the Aristotelian from the Platonic components of OE meter, that is, it now seems that there are a number of components to the Platonic aspect. But that study is beyond the scope of this paper.
Chapter 7. Alliteration

As briefly mentioned in Chapter 1, alliteration in OE poetry has its counterpart in phonological rules constraining ordinary language. Kurylowicz (112) and Kiparsky ("Role" 19-20) point out that the alliterating constituents of words in North and West Germanic meters (which include OE meter) are identical to the elements which are repeated according to the rules for reduplication of initial constituents in the preterites of some Gothic verbs. These rules include: (1) repetition of the initial consonant sound; (2) treatment of the clusters st- sp- and sk- as units; and (3) identity of vowel sounds.

In terms of syllable structure, the syllable onset of the head of a lexical word is involved in both Gothic reduplication and OE alliteration. The first segment of the onset, or the first two segments in the case of st- sp- and sk-, in which the s appears to be extrametrical, is the constituent which is repeated. In syllables which have no onset, that is, which are vowel-initial, the empty onset is repeated; hence all vowels may alliterate with each other. Due to phonological changes in the history of OE, the cluster sk- appears as sc-. The two allophones spelled g ([g] and [j]) alliterate with each other, as do the two allophones spelled c ([k] and [č]). For the sake of simplicity, in the following discussion I shall refer to a syllable of primary stress in which the onset contains an initial non-extrametrical segment identical to at least one other such segment in the line as an "alliterating syllable."

63The head of a word, as discussed in Chapter 3, is its strongest or only syllable. In OE, the head is always either the initial syllable of the stem or, less commonly, a stressed prefix. Unstressed prefixes are never involved in alliteration.

64Kristin Hanson, Class lecture in Stylistic variation; October 1991. Extrametrical constituents in phonology are peripheral constituents which are disregarded in parsing. For a discussion of extrametricality in PDE, see Hogg and McCully (106-24).
Russom explains alliteration as a function of the metrical hierarchy, arguing that a rule of metrical subordination, analogous to the Compound Stress Rule, determines the location of alliterating syllables (OEM 67). His argument, though based on metrical rather than prosodic structure, ultimately derives from Kurylowicz, who notes that “from the rhythmical point of view the Germanic hemistich [half-line] is a kind of COMPOUND... i.e. a rhythmical unit of a higher order than the ordinary compound word” (119). The OECSR, as we have seen in (3.16), is a rule which labels the first lexical constituent of a compound word S, subordinating the stress on the second lexical constituent. Russom applies an analogous rule to the metrical structure of an OE line (71):

(7.1) When two constituents containing S positions appear within the same metrical domain, label the first constituent strong and the second constituent weak.

Note that this rule applies only to S positions, that is, positions occupied by syllables bearing primary stresses (or secondary stresses in the case of whole-verse compounds such as *middan-geardes* (Sx|xSx)). Like the OECSR, which creates compounds only from lexical words, function words (symbolized x in Russom's notation) are irrelevant to rule (7.1). The metrical compounding rule as given in (7.1) above also has no effect on s positions, since they always have subordinated stress (OEM 73). A s position is always labelled W.

Russom (71) gives the following example of a line made up of two Sx | Sx (or Sievers A) verses:

```
  strong        weak
    /
   strong      weak
     /
    Sx         Sx
```

(7.2)

Note that in each metrical domain - foot, verse, and line - the first constituent containing a S position is labelled strong and the second weak. Russom then
proposes the following rules, which, when applied to the labelled positions, account for the distribution of alliterating syllables (73):

(7.3)
 a. The strongest two metrical positions within the line must contain alliterating syllables.
 b. A weak constituent of a weak constituent may not contain an alliterating syllable.
 c. No alliterating syllable may occupy an x position.
 d. Otherwise, alliteration is optional.

In example (7.2) above, the head of each verse alliterates by (7.3a). The fourth position may not contain an alliterating syllable by (7.3b). The second position may contain an alliterating syllable by (7.3d).

Russom’s rules for alliteration in Sievers B- and C-types, however, are inconsistent with the rules for universal metrics as discussed in (4.1-2). Russom gives, for instance, the following example of a C-type first half-line, or on-verse (73):

\[
\begin{align*}
\text{strong (on-verse)} & \quad \text{weak (off-verse not shown)} \\
\text{weak} & \quad \text{strong} \\
\text{strong} & \quad \text{weak} \\
\text{x} & \quad \text{S} & \quad \text{s} & \quad \text{x}
\end{align*}
\]

Note that the second level from the top - the foot level - is labelled WS while all other levels are labelled SW. As noted above re (4.2), however, Kristin Hanson, following Prince, points out that every level on the metrical hierarchy is assumed to be labelled in the same direction, which, in the case of OE, is SW (personal communication). There is no mechanism in the model I am proposing here that allows metrical labelling to invert to WS just in case an initial position contains unstressed rather than stressed material. Therefore, unlike Russom, and more in
keeping with the assumptions of traditional metrists, I shall argue that rules for alliteration make reference not to the metrical level, but to the prosodic level. Meter and alliteration, I would like to suggest, are independent structures, each making reference to the same linguistic constituents in different ways.

Russom's rules for alliteration as given in (7.3) may be easily adapted to the model I am proposing in this paper, with the proviso that they apply not at the metrical level but at the prosodic or language level. But before discussing these rules and the amendments I shall propose, let us provide a formal definition of an alliterating syllable:

\[(7.5)\] An alliterating syllable is defined as the head of a prosodic word the onset of which contains an initial non-extrametrical segment identical to at least one other such segment in the line.

Note that function words, since they are not prosodic words, may not contain an alliterating syllable unless they are footed by the Phrase-Final Stress Rule and thereby count as prosodic words. That is, even if the onset of a function word happens to contain the same constituent which takes part in the alliteration of the line, it does not count as an alliterating constituent. By the same token, unstressed prefixes are ignored by all rules concerning alliteration, since they too are not the heads of prosodic words. For example:

\[(7.6)\] a. Ærest þære icao [7] hēo ǣdame
\[S \ W \ S \ W \ S \ W \ S \ W\]
'first to the woman and she to Adam' (983)

b. worulde lifes. ðā [wæs] wēp 7 hēaf
\[S \ W \ S \ W \ S \ W \ S \ W\]
'of life in the world. Then was mourning and wailing' (1047)

c. ðādig on elne oundcwis [ā]geaf
\[S \ W \ S \ W \ S \ W \ S \ W (W)\]
'[man] blessed in courage gave an answer' (1026)
In the examples above, constituents involved in the alliterative pattern of the line are underlined. The elements in square brackets, since they are not heads of prosodic words, do not constitute part of the alliterative pattern; the fact that they happen to have onsets identical to those involved in the alliteration of the line is irrelevant.

Having defined what constitutes an alliterating syllable, it remains to implement the labelling rule which will determine the distribution of alliterating syllables. Recall that the OE Compound Stress Rule (OECSR), as shown in (3.16), labels the first element of a compound word S. In order to extend this rule to fit the higher-order compound, as Kurylowicz puts it, of the OE verse - or, I would like to suggest, the OE line - I propose a rule similar to the OECSR, which I shall call the Compound Alliteration Rule (CAR):

\[(7.7) \text{ Within the domain of the line, for any pair of sister nodes}
\]
\[\text{dominating prosodic words, the leftmost is S.}\]

Just as the OECSR applies within the domain of the word, and the Trochaic Stress Rule (TSR) applies within the domain of the phrase, the CAR takes as its domain the higher-order constituent of the line. Note, however, that the CAR is not a prosodic rule of the same order as the CSR and the TSR. The poetic line is not necessarily a prosodic unit as is the utterance or sentence, but is an abstraction, since a clause or even a sentence boundary may occur at the caesura; in fact, enjambment is a favoured stylistic device among OE poets:

\[(7.8) \text{ færger } 7 \text{ gefalric. } 1 \text{ Fæder wæs } \text{æcenned (825)}\]
\[\text{‘fair and joyous. To the Father was born’}\]
If the CAR were a prosodic rule, one would have to assume that the on-verse would always be stronger than the off-verse. Since a sentence boundary may intervene, as in (7.8) above, this is highly unlikely.

I would like to suggest, however, that the CAR is a rule which mimics the operation of a prosodic rule like the CSR in that it treats the line as though it were prosodically a sentence, in much the same way that metrical rules as discussed in (4.14-16) treat sequences like swðe ne as though they were rhythmically words. There is some slight independent evidence that can be adduced in favour of this argument: of the approximately 440 verbs in Guthlac B, fully half are in line-final position, and only about one-third appear in the on-verse. It may be argued that this tendency to distribute verbs toward the end of the line is a reflex of the tendency for OE verbs to appear finally in subordinate clauses.

Rule (7.7), then, is a rule which takes the entire poetic line as its domain, treating it in the same way that the OECSR treats a compound, or the TSR treats a phrase. The term sister nodes refers to nodes on the same level of the prosodic hierarchy, that is, of a tree diagram of the sort discussed at the beginning of Chapter 3. To illustrate using the example already discussed in (3.3), the triple compound law degree requirement is parsed:

\[
\begin{array}{c}
\lambda s \\
\lambda w \\
\lambda w \\
\text{law degree requirement}
\end{array}
\]

(7.9)

Note that each prosodic word is labelled as such by the notation \(\lambda\). (For the purpose of this discussion, I shall omit labelling at the foot, syllable, and mora levels.) The words law and degree are sisters, since they are both elements of the compound law degree. The node of this lower-level compound is in turn a strong sister to the node dominating requirement.
Extending Rule (7.7) to a line of OE poetry, consider the following:

```
(7.10) green-hord gnornad, gæst hine fyseyd 'body mourns, spirit hastens'
```

I have numbered the nodes dominating prosodic words for ease of reference.

Nodes 1 and 2 in the example above dominate prosodic words within a compound; they are sister nodes and so labelled S and W respectively by the OECSR. Nodes over green-hord and gnornad are sisters within the domain of the phrase. Nodes 4 and 5 are likewise sisters; 4, the leftmost, is labelled S. The node over the on-verse is itself labelled S, since it is sister to that over the off-verse within the domain of the line.

The following rules then determine the location of alliterating syllables:

(7.11)

a. The head of each verse must contain an alliterating syllable.

b. A weak constituent of a weak constituent may not contain an alliterating syllable.

The head of the verse is the strongest or only constituent in it. The strongest constituent may be defined as what Liberman and Prince term the designated terminal element (DTE). The DTE is that constituent which is dominated only by S-nodes below the level of the root, or unlabelled topmost node of the tree diagram (259); an example is the word law in the triple compound given in (7.9). The head, or DTE, of the verse is therefore that word which is dominated by no W nodes below the level of the verse.

According to Rule (7.11a), the head of each verse must contain an alliterating syllable. In example (7.10) we see this is the case; the words greot and gæst - the
head of the S verse and that of the W verse respectively - do indeed contain alliterating constituents.

Note that the word *fýseð* is dominated by two W nodes: one within the domain of the verse, one within the domain of the line. According to Rule (7.11b), a weak constituent of a weak constituent may not contain an alliterating syllable. Since the head of only one prosodic word in any given off-verse is never dominated by two W nodes, Russom points out: “We do not need a special rule stating that the second half-line contains only one alliterating syllable” (OEM 75).

The word *gnornað*, since it is dominated by only one W node, and therefore does not violate (7.11b), may contain an optional alliterating syllable. In example (7.10), this is the case. Here we can see that the reason the head of the second prosodic word in a verse never alliterates unless the first one does is not due to arbitrariness or convention, but because (7.11) states that the head of the strongest word in a verse must alliterate, whereas that of its weak sister alliterates only optionally.

The rules for alliteration given in (7.11) apply in precisely the same manner when a given verse is a more complex realization of the meter in that a metrical position contains more than Ømin. For example, consider the following Sievers D2-type, in which the S of the second foot contains a foot plus an adjoined unstressed syllable (the word *yrfé*):

```
(7.12)  ēadges yrfé-stól 'blessed home' (1319a)
       S W S W
```

The head of *ēadges*, the strongest word in the verse, alliterates obligatorily by (7.11a). The word *stól* is dominated by a W node of a W node, and therefore may not alliterate by (7.11b). The word *yrfé*, since it does not contravene the terms of
(7.11b), contains an optional alliterating syllable. When a D-type verse appears in the off-verse, its second word is dominated by two W nodes and therefore may not contain an alliterating syllable:

![Diagram of W nodes and S node]

\[(7.13) \quad \text{Læst ealle well 'perform entirely well' (1171b)}\]

When an on-verse with constraints relaxed on initial S appears, only the node containing the head of a prosodic word is labelled, since the CAR, like the OECSR, does not apply to the heads of function words. Because an on-verse is by definition the leftmost verse when paired with its sister verse, its node is always labelled S:

![Diagram of S nodes and W nodes]

\[(7.14)\]

\[a. \quad \text{ac his wif genðm 'but his wife took' (846a)}\]

\[\text{S W S W}\]

\[b. \quad \text{ealra þrymma þrym 'majesty of all majesties' (1103a)}\]

\[\text{S W S W}\]

\[c. \quad \text{hæt git að mōsten 'that you always may' (1371a)}\]

\[\text{S W S W}\]

\[d. \quad \text{on gewin-woruld 'in a world of turmoil' (857a)}\]

\[\text{S W S W}\]
(7.14a-b) are Sievers B-types, (c-d) are C-types. Note that in (b) and (d) an optional alliterating syllable appears in the W position, giving these verses double alliteration. Optional alliteration on W, while permissible, appears to be less favoured (at least by the poet of Guthlac B) than optional alliteration on S. Of 226 A-type verses appearing in the on-verse, 145, or 64%, have double alliteration—that is, an optional alliterating syllable on the second S position. Of 179 combined B- and C-types appearing in the on-verse, only 31, or 17%, contain an alliterating syllable on W.

B- and C-type verses appearing in the off- (or weak) verse, may not have two alliterating syllables, according to rule (7.11b):

\begin{align*}
&(7.15) \quad \text{a. wæs se lēohta glm 'the beam of light was' (1289b)} \\
&\quad \quad \quad S \quad W \\
&(7.15) \quad \text{b. be sēm twēonum 'between two seas' (1359b)} \\
&\quad \quad \quad S \quad (W) \quad S \quad W
\end{align*}

In the above examples, only the first prosodic word of the verse may contain an alliterating syllable, since the W word is dominated by a W node at the level of the verse.

Sievers E-types occurring in the on-verse have two locations in which an optional alliterating syllable may appear. For example:

\begin{align*}
&(7.16) \quad \text{wæg-hengest wrec 'water-horse [ship] drove forth' (1329a)} \\
&\quad \quad \quad S \quad W \quad S \quad (W)
\end{align*}
The word *wæg*, which is dominated only by S-nodes, is the head of the verse and must contain an alliterating syllable. *Wæc*, which is dominated by only one W node, may (and, in this example, does) contain an optional alliterating syllable. But the word *hengest* is likewise dominated by only one W node. Since this word is not a W constituent of a W constituent, it may contain an optional alliterating syllable. Although *Guthlac B* has no examples of an alliterating syllable in this position, Russom (77) gives several examples from *Beowulf*, including:

\[
\text{syn-snædum swæl} \quad \text{‘gobbled in great gulps’ (743a)}
\]

Like all verse-types appearing in the off-verse, E-types occurring in the off-verse may contain only one alliterating syllable by rule (7.1ib), since only the first prosodic word is never dominated by two W nodes:

\[
\text{feorh-hord onlæac} \quad \text{‘unlocked the life-hoard’ (1144b)}
\]

Russom's rules as adapted in (7.7) and (7.11) adequately capture almost every instance of alliteration in *Guthlac B*. The poem contains only four examples in which these rules fail to correctly predict the location of alliterating syllables.

First, line 1234 contains no alliteration whatsoever. Since alliteration is an obligatory feature of Germanic verse, we may assume that this failure of alliteration is a product of error in transmission, and no more need be said in this case.
1034a is a possible exception to rule (7.11a) if one scans the prefix *un-* as having stress. The result is a Sievers A-type:

\[
\begin{array}{c}
S \\
\lambda s \\
\lambda w \\
\end{array}
\]

(7.19) *unlæt læces 'ready for battle' (1034a)

Since *unlæt* is an adjective, and since, as discussed in Chapter 3, adjectival prefixes are stressed, scanning the verse as in (7.19) violates rule (7.11a), since the head of the verse, *unlæt*, does not contain an alliterating syllable, which is defined as the head of a prosodic word by (7.5). A stressed prefix, recall, is the head of the word; therefore alliteration should be on a vowel if 1034a is scanned as above. However, according to Kendall, stress on *un-* is variable; sometimes the prefix appears to be stressed, and sometimes not (48). If *un-* is not stressed, this verse might then be scanned as a Sievers C-type:

\[
\begin{array}{c}
S \\
\lambda s \\
\lambda w \\
\end{array}
\]

(7.20) *(un)*læt læces

This example is one of the unusual verses discussed in (5.5), an occasional one-foot verse in which an empty position would intervene between a prefix and its stem if the prefix were not extrametrical. It is also one of only 6 C-type on-verses with double alliteration in Guthlac B (out of a total of 89 C-type on-verses). No matter which way it is scanned, then, with a stressed or an unstressed prefix, this particular line is very unusual.

Finally, two verses in Guthlac B show alliteration in a *W* constituent of a *W* constituent, violating Rule (7.11b). Both are D2-type verses:
In *gewōd* and *sīpes georn* form syntactic units and are therefore sister constituents (note that the word *in* in (7.21a) is an adverb, not a preposition, and therefore, I shall assume, counts as a prosodic word; but see Hanson's discussion of function words in Resolution 29-36). The W word in each phrase should not contain an alliterating syllable by (7.11b).

Verse-initial finite verbs

Finite verbs form a class of words which sometimes appear to violate the rules for alliteration when they appear verse-initially. For example:

(7.22) a. *fonde þā his mon-dryhten* ‘then he found his lord’ (1007b)

(7.22) b. *Wāst þū, frēo-dryhten* ‘do you know, lord’ (1021b)

(7.22) c. *wāt his sīnc-giefan* ‘[he] knew his treasure-giver’ (1352b)
In the examples above, the alliterating constituents have been underlined. Note that the strongest word in each example, as shown in (7.22a), appears to be an initial finite verb the head of which does not, however, share in the alliterative pattern of the line, in violation of (7.11a). Leaving aside the copula, auxiliary verbs, and semi-auxiliaries such as *wille*, ‘want’ and *ongon* ‘began,’ which are completed by infinitives, there are 14 examples of non-alliterating fully lexical verse-initial finite verbs in *Guthlac B*. All appear in Sievers B- and C-types.65

It is difficult to say for certain why the head of a prosodic word, and only a member of this one class of prosodic words, sometimes stands as an exception to the rules for alliteration. Many OE metrists assume that finite verbs which appear clause-initially are unemphatic and thus bear a lesser degree of stress than when they appear later in the clause (Russom *OEM* 101). There are a number of problems with this argument, not the least of which is that we do not know enough about normal word order in OE to state this as an incontrovertible fact.66 And even assuming, for the sake of argument, that clause-initial finite verbs are unemphatic, a problem remains in that just because a verb appears early in the verse does not necessarily mean it is likewise early in its clause. For example (alliterating constituents are underlined):

(7.23) Him se *ðadga* wer āgeaf *gndswre* (1163)

‘The blessed man gave him an answer’

The verb āgeaf, though verse-initial, actually appears rather late in its clause, and therefore ought to alliterate, since it is not, by this argument, unemphatic (note the initial syllable is an unstressed prefix). So even if some finite verbs appearing

65They are: 920a, 1007b, 1021b, 1108b, 1147b, 1158b, 1163b, 1224b, 1293b, 1294b, 1302b, 1327b, 1344a, and 1352b.
66For discussion of verb-first clauses in OE prose, see Mitchell 969-78.
early in their clause are unemphatic and hence do not alliterate, this argument
does not account for all cases of non-alliterating verse-initial finite verbs.

Spencer Cosmos, in an argument which looks to pragmatic function rather
than to syntax, suggests that lexical finite verbs behave exactly as do other
stressed words such as nouns and adjectives; that is, they normally share in the
alliterative pattern of the line, whether they appear early or late in the verse (311-
12). However, some finite lexical verbs may sometimes bear a low degree of
stress, depending not on syntax but on their communicative function in the
sentence (313). When a verb has "low communicative dynamism," that is, when
it contributes little in the way of semantic information to the utterance, its stress
may be reduced and it is perhaps for this reason that it may be passed over by the
rules which determine the distribution of alliterating syllables (313-14).

In determining whether a verb has low communicative dynamism, context
must be taken into account, for the same verb may carry meaningful information
on one occurrence and not on another. I cannot at this time carry out a detailed
analysis of the pragmatic factors influencing the alliteration or lack of it on finite
verbs in Guthlac B; nor can I evaluate the relative merits of Cosmos's argument
and the argument from syntax. But a cursory examination of the 14 examples of
nonalliterating verbs in Guthlac B do seem to support Cosmos's point. Consider,
for example, the following:

(7.24) Wëst ðñ frëo-dryhten,
 S W S W
hù ðeos adle scyle ende gesettan? (1021b-1022)
 S W S W S W S W

'Do you know, lord, how this illness must come to an end?'

67In support of Cosmos's argument, about 30 verse-initial finite verbs in
Guthlac B share in the alliterative pattern of the line, as opposed to the 14 that
do not. See, for example, 870a, 906a, 908a, 928b, 1015a, 1140a, 1265b, 1270b.
In the example quoted above, the devoted servant has found his master, Guthlac, stricken with a severe illness. He asks him if he knows how his illness will end - whether he will live or die. The intent of his question is apparently not to determine the state of Guthlac's knowledge (Wāst bū hū, 'Do you know how'), but is rather to ascertain the consequences of his illness (Wāst bū hū, 'Do you know how?'). In this example, the verb wāst seems to be unstressed because it carries little meaningful information; it could even be left out and the essence of the utterance would remain ('How will this illness end?').

I shall tentatively assume, then, that Cosmos's explanation for non-alliteration in some finite verbs is correct. I shall also assume that the heads of these verbs are stressed by the rules of lexical phonology, and they are therefore constrained by the metrical rules of OE just as any other prosodic words are; at least in Guthlac B, the heads of these verbs all arguably occupy S positions. But their behaviour in regard to the rules for alliteration, which apply to prosodic and not to metrical structure, is anomalous; in particular, finite verbs are sometimes not treated as prosodic words by rule (7.5). In these cases they may, like function words, escape labelling:

(7.25) Cwōm bā frēorig-ferð 'then the sad-hearted one came' (1344a)

\[
\begin{array}{cccc}
S & \lambda S & \lambda W \\
S & W & S & W
\end{array}
\]

Note that if the finite verb in the example above were to be labelled S by (7.7), the constituent ferð would contain an alliterating syllable in violation of (7.11b):

(7.26) Cwōm bā frēorig-ferð

\[
\begin{array}{cccc}
S & W & \lambda S & \lambda W \\
S & W & S & W
\end{array}
\]
As noted above, I have so far assumed during this discussion that verse-initial finite verbs are stressed by rules of lexical phonology. However, this assumption is based only on the 14 examples in Guthlac B of nonalliterating initial finite verbs; and since this is a very small sample, I shall not argue too strenuously for this assumption. It is, in fact, quite possible that some finite verbs are not stressed by the rules of lexical phonology in OE, just as have and be are not stressed in PDE even when they are functioning as main verbs (Hanson, Resolution 33). Were this the case, one might occasionally expect to see such verbs, like function words, which receive their stress post-lexically, appearing on W positions. This does not seem to be the case in Guthlac B; however, there is at least one possible example in Beowulf (note alliteration is on n):

\[(7.27) \quad Dā \ cōm \ nōn \ dæges \ ‘then \ came \ the \ ninth \ hour’ \ (1600a)\]

\[\begin{array}{lll}
S & W & S & W \\
\end{array}\]

Obviously more work needs to be done in this area, first, to ascertain whether or not some finite verbs receive stress post-lexically rather than lexically, and if so, under what circumstances. A further step would be to determine the consequences for alliteration. For the moment, I shall leave the question open.
Chapter 8. Hypermetrical verses

Hypermetrical verses are long verses which occasionally appear in the poetry singly, but more often are set apart in clusters. By my count, 19 such verses appear in Guthlac B: a pair at line 1110, five between 1160b and 1162b, three between 1294a and 1295a, and six between 1301a and 1303b. An additional 3 isolated hypermetrical lines appear at 1158b, 1225a, and 1060a.\(^68\)

Russom scans hypermetrical verses as having two feet: the first a normal foot, which typically has the pattern Sx or Sxx (in the on-verse) or xx (in the off-verse); the second a long or four-position foot, most often Sxx (OEM 60). Note this long foot overlaps the normal verse pattern Sx \(\|\) Sx. Thus he scans a verse such as Beo 2996a as:

\[
(8.1) \quad \text{mon on middan-gearde} \quad \text{`man on middle-earth'}
\]

\[
\text{Sx} \| \text{Sxx}
\]

This way of scanning hypermetrical verses, with a normal first foot and a long second foot, allows Russom to preserve his generalization that all OE verses consist of two feet. However, he is then forced to modify his overlap constraint (given in (2.29) and (6.8)) in a rather forced and artificial way, since he must take account of the fact that the second foot of a hypermetrical verse (and only the second foot of a hypermetrical verse) must in fact overlap a normal verse pattern (60):

\[
(8.2) \quad \text{The second foot of a hypermetrical verse overlaps a normal verse pattern with an S position in the first foot.}
\]

This rule is rather odd from a theoretical viewpoint. Why should a word like middan-gearde, which must otherwise occupy two Sx feet, be allowed to occupy

\(^{68}\)For the status of 1060a as hypermetrical, see Roberts ("Metrical" 100).
one foot just in case it is preceded by another foot? And why are there no
hypermetrical verses with patterns like:

\[(8.3) \quad a. \ *Sx \mid xSsx \]
\[b. \ *Sx \mid xSsx \]
in which the second foot corresponds to Sievers B and C, respectively? Why
must the first element of the second foot be S rather than x?

It seems to me much more logical to regard hypermetrical verses as having
three feet\(^{69}\), thereby avoiding an apparently ad-hoc modification to the overlap
constraint, even at the expense of being forced to add a special category to the
structure parameters as given in (4.2c):

\[(8.4) \quad \text{Structure parameter settings for hypermetrical lines:} \]
\[a. \ Each \ line \ contains \ six \ feet. \]
\[b. \ Each \ colon \ contains \ three \ feet. \]

The abstract metrical pattern for a hypermetrical verse may be schematized:

\[(8.5) \quad SW \ SW \ SW- - -\]

I shall not at this point, since Guthlac B contains so few hypermetrical verses,
make any general claims about their higher-order metrical structure.

Hypermetrical verses seem to have structure parameter settings (with the
exception of (4.2c)) and realization parameter settings as laid out in Chapter 4.
That is, they behave exactly like normal verses, save that they contain three
rather than two feet. For example (constituents in S positions are underlined):

\[(8.6) \quad a. \ \underline{\text{fadig}} \ \underline{\text{elnes}} \ \underline{\text{gemyn}} \ \underline{\text{d}ig} \ \text{‘blessed [man] mindful of courage’} \ (1294a) \]
\[\underline{SW} \ \underline{SW} \ \underline{SW} \]

\[b. \ \underline{\text{glaed}}-\underline{\text{mod}} \ \underline{\text{t}0} \ \underline{\text{geofona}} \ \underline{\text{leanum}} \ \text{‘[he looked] gladly to the rewards of} \]
\[\underline{SW} \ \underline{SW} \ \underline{SW} \ \underline{SW} \ \underline{SW} \ \text{‘gifts’} \ (1303a) \]

\(^{69}\)See also Hieatt, “Alliterative” and “New Theory.”
Hypermetrical verses appearing in the off-verse generally have prominence constraints relaxed on initial S. Therefore this position may contain an unstressed syllable or syllables:

(8.7)

a. $\text{hū hē his wīsna truwade 'how he trusted his way'}$ (1161b)
\[
\begin{array}{c}
S\\ W\\ S\\ W\\ S\\ W
\end{array}
\]

b. $\text{ēr bon hine dēaō onsāgde 'before death prostrated him'}$ (1162b)
\[
\begin{array}{c}
S\\ W\\ S\\ W\\ S\\ W
\end{array}
\]

Since prominence constraints, as discussed re (5.1), may be relaxed only on verse-initial S, we do not need Russom's rule that S of the second foot must contain a stressed syllable. The fact that it always does so follows naturally from rule (4.19), that a S position must contain the head of a prosodic word.

Russom bases his analysis of hypermetrical verses as having a second four-position foot Sxsx on the fact that in Beowulf this foot is often filled by a single compound word, such as *middan-gearde*. While this is not at all true of Guthlac B, which contains only one example of a four-syllable compound in a hypermetrical verse (1294b), it does seem that the final two feet, rather than the first two feet, tend to pattern together syntactically, for example, often forming an adjective+noun or verb+object phrase. This being the case, rules for alliteration as given in (7.7) and (7.11) apply:

(8.8) $\text{āō-mōd pē ēpelan gyfle swylce hē his ēagan ontynde}$
\[
\begin{array}{c}
\text{S}\\ \text{W}\\ \text{S}\\ \text{W}\\ \text{S}\\ \text{W}\\ \text{S}\\ \text{W}
\end{array}
\]

'humble because of the noble food, likewise he opened his eyes' (1301)

\[\text{footnote: A few examples of the former are 1110a, 1158b, 1162a, and 1225a; examples of the latter include 1110b, 1161b, 1301b, 1303b. Other verses (for example, 1294a, 1302b) contain genitive+adjective phrases, or verb+instrumental (1160b).}\]
Alliterating syllables fall on the strongest words of each verse (Ēað - and ēagan) by (7.11a). Æþelan, which is dominated by only one W node, contains an optional alliterating syllable. Gyfle is dominated by two W nodes and may not contain an alliterating syllable by (7.11b); likewise -tynde in the off-verse.

The above discussion of hypermetrical verses is, I am aware, rather cursory and impressionistic in nature. But I believe it serves to bear out the claims of our metrical system as it relates to normal verses. Were hypermetrical verses to follow significantly different metrical and alliterative rules from normal verses, this would tend to shed doubt on the theory as a whole. The fact that the same rules seem to hold for both types of verse lends, I think, some support to the theory. Of course more research is needed before such a statement can be made with complete confidence.
Conclusion

The traditional approach to OE meter taken by Sievers and Pope, among others, has been to describe the various rhythmic patterns present in OE verses in the form of a list. This approach, like the traditional theory of substitutions in iambic pentameter, is open to criticism on several points. First, as Halle and Keyser have pointed out, a list of metrical types is unconstrained in that there is no reason why other members may not be added to the list ("Iambic"). Second, such a theory includes no constraints on substitutions; any type may always be substituted for any other. For these reasons a description in the form of a list cannot rule out unmetrical lines. Halle and Keyser therefore propose a generative metrical theory, in which meter is defined as consisting of two parts: an underlying, abstract meter consisting of weak and strong metrical positions, and a set of correspondence rules constraining ways in which this underlying pattern may be instantiated in the surface- or language-level of the poetic line. Matching of metrical positions to phonological constituents such as syllables, according to the rules for the meter, generates a metrical line.

Sievers's "Five Types" theory of OE meter, as we have seen, suffers from drawbacks stemming from its failure to encompass general principles relating to the phonological structure of OE. First, the theory is presented in the form of a list, with no criteria stated, whether on phonological or other grounds, as to why other members may or may not be added to his lists of either foot or verse types; nor are there any generalized constraints on the pairing of feet into verses. Secondly, although metrical positions may be matched with various prosodic constituents, such as stressed and unstressed syllables, matching rules fail to generalize across foot and verse types, so that, for instance, a rise in the first foot of an A-type may contain an unstressed syllable, though this is not possible in the second foot, or in the first feet of other types.
Pope’s theory, which is derived from musical theory, is based on the principle that each verse contains two isochronous measures, each in turn containing four quarter-notes or their equivalents, such as two half-notes. As in music, the first note of each measure receives a major stress. Therefore Pope shifts the foot boundaries of Sievers’s B- and C-types in order to allow the second measure of each to begin with a stress, thereby eliminating Sievers’s rising or iambic feet.

Although the establishment of consistently left-headed foot patterns is a theoretical improvement over Sievers’s mix of iambic and trochaic feet, Pope’s assumption of isochrony creates its own difficulties. The most serious of these objections is that verse-initial rests in some B- and C-types, which Pope proposes so that first feet may take the same amount of time to pronounce as second feet, must be filled in during performance by a harp-stroke in order to regulate the beat. Kiparsky, however, has argued that since we can imagine a great variety of poetic rules which never occur, and since occurring poetic rules make reference to grammatical constituents such as syllables, rules of poetry must be constrained by the same rules that constrain language (“Role”); and therefore we must reject the harp as an organizing principle of OE meter.

Several of Pope’s ideas, however, are not incompatible with generative metrical theory. Like Russom, I have followed Pope in assuming that OE feet are headed by a prominent position. Unlike Russom, I have also adopted Pope’s principle that a metrical position may be empty, although I have applied the rule differently: in my theory, only weak positions may be empty, and empty positions may occur in either foot. I explain the initial unstressed syllables in Sievers B- and C- types by a general poetic principle that allows prominence constraints to be relaxed on initial metrical positions.

Russom’s theory is an improvement over both Sievers’s and Pope’s in that he replaces Sievers’s list of verse types with a list based on phonological principles:
each verse is comprised of two feet, and each foot is derived from the stress pattern of exactly one OE word (OEM). Therefore his list, unlike Sievers's, is motivated by linguistic features of the OE language, and is constrained by these features in that metrical types which do not correspond to two OE words will not appear. But Russom's definition of the OE word, which is crucial to his theory, leads him into a number of inconsistencies. First, he is forced to define unstressed prefixes as words in order to explain why they may never appear together with their stem as a foot. But he also must define both compounds and phrases as words in order to explain why two words may sometimes occupy a single foot. In the case of phrases, Russom allows syntactic constituency to determine the placement of foot boundaries, so that two words which form a syntactic unit are defined as a unit that mimics the structure of a word, and may therefore occupy a foot; but syntactic rules are applied inconsistently in that they may not be invoked to allow a prefix and its stem to occupy the same foot.

In addition to these descriptive problems, Russom's word/foot correspondence gives rise to theoretical inconsistencies in that his model incorporates metrical positions corresponding to the three levels of stress in OE words (S, s, and x), whereas generative metrical theory is predicated on a binary distinction between metrical positions (S and W). Finally, Russom proposes not one metrical pattern, but a list of 25 metrical subtypes. Generative metrical theory, as we have seen, however, proposes a uniform underlying meter, with differences between the surface rhythm and the underlying meter being accounted for by rules matching prosodic units to metrical positions.

Since both internal and external inconsistencies in Russom's theory stem from the fact that his metrical patterns are derived from words, I have bypassed his "word stress" level in order to make direct reference to the phonological rules which assign prominence in language. I have suggested, following Kiparsky, and
Hanson and Kiparsky, that both the stress patterns of OE words and constraints on OE meter are governed by the same linguistic principles.

The metrical model which I have proposed in these pages is based on Hanson and Kiparsky's parametric theory of universal meter. Hanson and Kiparsky claim that all poetic meters are comprised of binary feet, which, like the phonological constituents defining prominence in language, contain a strong (S) member which is the head, or prominent position, and a weak (W) member which is an unprominent position. A position parameter defines the maximal amount of prosodic material that may occupy a given position in terms of phonological constituency: mora (μ), syllable (σ), foot (θ), or word (λ). Prominence rules define first, whether S positions must contain prominent constituents and/or whether W positions must contain unprominent constituents; and second, whether prominence is defined by weight, strength, or stress.

The model I have proposed for OE therefore defines the meter in terms of a fixed number of binary left-headed feet together with constraints on both S and W positions: S positions must contain stressed syllables, further defined as the heads of prosodic words; and W may contain the heads of prosodic words only if they are prosodically weak. No metrical position may contain more than a minimal word (αmin).

The position parameter setting of αmin captures Russom's generalization that OE meter is word-based, as opposed to syllable-based, which has been the assumption behind most theories of OE meter, including Sievers's and Pope's. But having metrical rules making direct reference to phonological structure rather than to an intervening "word stress" level avoids the internal inconsistencies of Russom's model. The work that, in his theory, is done by definitions of what may constitute a word (unstressed prefix, simple word, compound, or phrase - but not an unstressed prefix plus its stem) together with
bracketing rules which apply syntactic criteria inconsistently to some structures but not others, is done in my theory by matching phonological constituents with a single, uniform, underlying meter.

As well as eliminating Russom's internal inconsistencies, my model avoids the theoretical inconsistencies of Russom's system. Russom's model, both because it incorporates a three-way, rather than a binary, prominence distinction in the underlying meter, and because it is presented in the form of a list of metrical subtypes rather than as a single meter, is incompatible with generative metrical theory. Again, these inconsistencies arise from the fact that his metrical types are derived from the stress patterns of OE words. Because OE words have at least three levels of stress - primary, secondary, and unstress - any metrical patterns that are derived from them must likewise incorporate three levels of prominence. Because OE words have a number of rhythmic patterns, any metrical patterns which they generate will likewise be varied. Because the basis of OE meter is the OE word, Russom's theory is necessarily language-specific and cannot be generalized to other meters (for example, it is not the case that iambic meters allow only words with iambic stress patterns to appear in the poetry). Elimination of Russom's "word stress" level in order to make direct reference to the phonological constituents of language makes it possible to integrate OE metrical theory with universal metrical theory.

The assumption that OE meter is based on left-headed binary feet which are matched with phonological constituents gives us a new tool with which to explore certain ideas about the language that have so far been rather opaque to analysis. First of all, as discussed in Chapter 3, function words are not stressed by rules of the lexical phonology and are assumed therefore to behave differently in meter than lexical words (Hanson, Resolution). While verse-initial or -medial metrical positions in OE may be occupied by a string of function words, this is
not true of verse-final positions, which may contain only one function word. In both Sievers’s and Russom’s systems, such verse-final function words occupy strong positions (/, S, or s); yet Sievers gives no reasons, and Russom gives inadequate reasons to explain why these words are treated differently in the meter than other function words are. I have assumed that Zec and Inkelas’s Phrase-Final Stress rule builds a foot over phrase-final function words, which allows them to be treated in the meter as though they were prosodic words.

Explaining the behaviour of function words as a product of their phonological structure allows us to make predictions about their behaviour in meter, which Russom’s explanation, that function words acquire stress when they are removed from their normal proclitic position, does not; namely, because not all phrase-final function words are in fact removed from a proclitic position, and Russom proposes no other mechanism by which some function words may acquire stress.

Secondly, the assumption that an underlying binary meter is matched with phonological constituents allows us to test hypotheses regarding OE phrasal stress, which has been a matter of some debate. Phrasal stress in OE is generally assumed to be trochaic by theorists such as Kurylowicz and Maling, who assume that alliteration depends on prosodic stress. On the other hand, those who assume that alliteration is based on the metrical level, such as Russom, argue that phrasal stress in OE, like that in PDE, is governed by the Nuclear Stress Rule, which places greater stress on the final lexical element. I have demonstrated, however, first, that phrases never pattern in the meter like clitic groups do, with their first word on a W position; in fact, the first word of a phrase must occupy a S position. Secondly, while the second word of a phrase may occupy a W position, this is not true of a sequence of prosodic words which is not a phrase. This evidence leads me to conclude, independent of evidence from alliteration, that
stress in OE phrases is trochaic and that W positions may contain only prosodically weak constituents.

If OE has trochaic stress in phrases, it is unnecessary to assume, as Russom does, that rules for alliteration make reference to the metrical level. In fact, as we have seen, this assumption creates further inconsistencies within Russom’s theory, since he is then forced to assume that metrical labelling is not unidirectional at all levels of the metrical hierarchy, but may invert from SW to WS just in case the first foot of a verse contains no lexical stresses. Such a labelling inversion contradicts universal theory, which assumes labelling in the same direction at all levels of the metrical hierarchy. However, with the assumption of trochaic stress in phrases, this theoretical inconsistency is avoided. I have suggested, following Russom (though applying the rule to the prosodic rather than to the metrical level), that a rule similar to the OE Compound Stress Rule, which takes the OE line as its domain, determines the location of alliterating syllables. This rule accounts for alliteration in all of the lines of Guthlac B, with only a few exceptions.

The rule that W positions may contain only prosodically weak constituents also drives the placement of foot boundaries, which in Russom’s system is, as we have seen, a function of his (inconsistent) definition of the OE word, together with a rule that appeals to syntactic structure on an inconsistent basis, that is, just in case a verse comprises three fully stressed words. This rule is additionally a theoretical improvement over Russom’s bracketing rules in that, as Hayes has proposed (“Prosodic”), and as is assumed by universal theory, metrical rules do not make reference to syntactic constituency, but to phonological constituency.

Finally, the rule that W positions may contain only prosodically weak material provides a tool with which to compare the metrical behaviour of lexicalized compounds (such as hlæford) with words with stressed prefixes (such
as onbid). As we have seen, words with stressed prefixes, which contain a SW pair of prosodic feet, may occupy S positions, in contrast to compounds, which must occupy at least two positions. Words with stressed prefixes may not, however, in contrast to simple words, occupy W positions, since they contain a strong foot.

With this three-way distinction in mind, we may examine lexicalized compounds in order to observe their metrical behaviour and perhaps form some conclusions as to their degree of lexicalization; do they act more like compound words? Simple words? Or somewhere in between, like words with stressed prefixes?

As we have seen, although the generative theory which I have proposed in these pages accounts for all of the verses of Guthlac B, it also overgenerates, producing verses which are not found in the canon of OE poetry. I have discussed this in terms of Youmans's Aristotelian and Platonic aspects of meter, arguing that while generative theory accounts for the Aristotelian, or rule-based aspects, a Platonic component, which takes overall complexity into account, also plays a large part in OE poetry, and needs to be further explored. Russom's overlap rule, a functional constraint which allows a listener to disambiguate feet from verses, incorporates itself well into the theory I am proposing, and serves to rule out a number of nonexistent verse types. However, questions still remain in that some complex verse types appear quite often in the poetry, while others appear rarely if at all. Determining why this is so is an area for further research.

It is obvious that much more work needs to be done before OE meter is fully understood (if it can be fully understood). I offer this paper in hopes that it will contribute in some way to that understanding, and in respect and admiration for the Anglo-Saxon poets, the grace and sophistication of their poetry, and the meter in which they chose to express it.
Works Cited

Fish, Stanley. *Is there a Text in this Class?: The Authority of Interpretive Communities*. Cambridge: Harvard UP, 1980.

---. "The Prosodic Hierarchy in Meter." Kiparsky and Youmans 201-60.

---. "Sprung Rhythm." Kiparsky and Youmans 305-40.

Silver-Beck, Barbara L. "The Case Against The Rhythm of Beowulf."
Appendix 1

To summarize the discussion of Chapters 4 and 5, the following rules capture the essential facts about OE meter:

I. Structure parameter settings

 (4.2a) Feet are left-headed (SW).

 a. Normal lines

 (4.2b) Each line contains four feet.
 (4.2c) Each colon contains two feet.

 b. Hypermetrical lines

 (8.4a) Each line contains six feet.
 (8.4b) Each colon contains three feet.

II. Realization parameter settings

 a. Position

 (4.3) The position parameter is set at the minimal word (λ_{\min}).

 b. Prominence rules

 (4.19) A S position must contain the head of a prosodic word.
 (4.42) A W position may contain the head of a prosodic word only if it is prosodically weak.

III. Overlap constraint

 (6.10) Maximize the distinction between foot patterns and verse patterns.

IV. Alliteration

 (7.7) Within the domain of the line, for any pair of sister nodes dominating prosodic words, the leftmost is S.
 (7.11a) The head of each verse must contain an alliterating syllable.
(7.11b) A weak constituent of a weak constituent may not contain an alliterating syllable.

V. Special licenses

(1) Prominence constraints may be relaxed on an initial position.
(2) A W position may be empty.
(3) Extrametrical unstressed syllables may appear following a syntactic break and preceding a S position.
Appendix 2: Sample scansion

The following is a sample scansion, according to the rules laid out in Chapters 3-7, of the first 105 verses of Guthlac B. Constituents occupying S positions are underlined. The Sievers type of each verse appears in the right-hand column. Asterisks indicate a type which is “expanded” by additional unstressed material in the first dip; the plus sign indicates that the verse is prefixed by a syllable in anacrusis.

Note that ambiguous scansion is not uncommon in the generative model proposed here (see note 49). A word like lēofesta, for example may be scanned with either its first syllable (Ømin) or its first two syllables (λmin) in S:

\[
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\quad \text{or}
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\]

den festa or den lëofesta ‘beloved lord’

\[
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\quad \text{or}
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\]

I shall therefore adopt the convention, in keeping with Russom’s claim that OE meter is word-based, of respecting word boundaries (and thereby preferring the second of the two possible scansion above) to the extent that this does not result in unnecessarily creating empty W positions. I would not, for instance, scan þæoden in the example above as occupying S while leaving the following W empty, even though it is a possible scansion, since it is always more normative for a metrical position to contain some amount of linguistic material.

Sievers type

\[
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\quad \text{or}
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\]

\[
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\quad \text{or}
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\]

\[
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\quad \text{or}
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\]

\[
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\quad \text{or}
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\]

\[
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\quad \text{or}
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\]

\[
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\quad \text{or}
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\]

\[
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\quad \text{or}
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\]

\[
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\quad \text{or}
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\]

\[
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\quad \text{or}
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\]

\[
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\quad \text{or}
\begin{array}{c}
\text{þæoden lēofesta} \\
\text{S} \quad \text{W} \\
\end{array}
\]
820 folcũm gefræge, baettæ frymha God A*; B

821 hene Ærestan ælða cynnes C; A

822 of þære clænestan, cyning æl-mihtig, C; D1

823 foldan geworhte. ðā wæs fruma niwe A*; C

824 elda þūdres, onstæl wynlic, A; A

825 fæger 7 gefglíc. Fæder wæs ǣcenned A*; A*
826 Ādam ārest
 S W S W

 λs λw

827 bær him nænges wæs
 S W S W
 λs λw

 S (W)

828 willan onsyn
 S W S W

ne welan brosnung
 S (W) S W

 λs λw

829 ne līces lyre
 S W S W

ne līces hryre
 S (W) S W

 λs λw

830 ne dȳемых dryre
 S W S W

ne dȳемых cyme
 S (W) S W

 λs λw

831 ac hē on þām lande
 S W S W

lifgan mōste
 S W S W

 λs λw
<table>
<thead>
<tr>
<th>Line</th>
<th>Text</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>832</td>
<td>ealra leahtra læas, læa</td>
<td>B; A</td>
</tr>
<tr>
<td>833</td>
<td>nīwra gefæana; læa</td>
<td>A*; C</td>
</tr>
<tr>
<td>834</td>
<td>līfes ne līsæ</td>
<td>A*; B</td>
</tr>
<tr>
<td>835</td>
<td>burh ælæa tīd</td>
<td>B; A*</td>
</tr>
<tr>
<td>836</td>
<td>æc æfter fyres</td>
<td>A3; C</td>
</tr>
<tr>
<td>837</td>
<td>heofor-rices gefæan</td>
<td>E; A</td>
</tr>
</tbody>
</table>
844 æfnan on Æle; hy tō Ēr aprēat
S W S W A*; B

845 bæt hy waldendes willan læsten;
S W S W C; A

846 ac his wif genōm wyrmes lārum
S W S W B; A

847 blēde forbodene Z of bēame ēhneop
S W S W A*; B

848 wæstm biweredne ofer word Godes,
S W S W A; C

849 wuldor-cyninges, Z hyre were sealde
S W S W A; C
869 bone Æue fyrm
 S W S W
 λs λw

870 byrelade brýd geong:
 S W S W
 λs λs λw

871 in þám dêoran hám.
 S W S W
 λs λw