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ABSTRACT

The production of forage in British Columbia plays and integral role in

sustaining livestock herds within the province. Forage is an important component

in the daily feed requirements of horses, sheep, and cattle. Fluctuations in the

availability of forage due to drought or bad weather conditions can impose

considerable costs on farmers who raise livestock. Wide—spread drought

conditions can significantly limit the availability of forage crops within

certain regions, causing prices within those regions to become inflated.

Under standard insurance in British Columbia, farmers are only insured

against shortfalls in production; there is no compensation provided against

increases in the price of forage. For those purchasing forage, a Wide—Spread

Drought (WSD) insurance scheme would provide insurance against the price—risk

associated with drastic weather conditions. However, since forage prices are

required to operate such a policy and are non—observable, a mechanism is needed

in order to estimate them. A regional spatial price—equilibrium model which

relates regional prices to regional production is developed in this thesis. The

model will eventually be used to predict prices and hence determine whether a

particular region is eligible for a payout under the WSD insurance scheme. A key

assumption behind the model is that according to the ‘Law of One Price’; prices

are perfectly arbitraged. In a competitive setting, in which agents maximize

individual welfare, total welfare is maximized and prices between regions will

not differ by more than the transportation costs.

This spatial price—equilibrium model is applied to British Columbia forage

production. The regions incorporated in the study include the Peace River,

Central Interior, Cariboo—Chilcotin, Thompson—Okanagan, and Kootenay Regions.

The Lower Mainland/Fraser Valley and Vancouver Island are excluded as they do not

typically fall under the forage crop insurance plan in British Columbia.
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Chapter 1 : Introduction

1.1 Background

Forage is an important crop in British Columbia as it contributes to the

British Columbia livestock industry. Livestock producers use forage as one of

the main ingredients in the composition of livestock feed. Forage in some cases

comprises a significantly large portion of livestock dry matter intake (up to 70%

for sheep and 100% for horses) . Percentage of forage use per dry matter intake

for cattle differs depending on type and sex of animal; however, a rough estimate

of forage consumption by cattle would be approximately 30 lbs per day, 6 lbs for

sheep, and 16—20 lbs for horses.’

Relative to the land devoted to its production, forage is a highly

significant crop in British Columbia.2 More than 800,000 acres was devoted to

its growth in 1991, compared to slightly over 100,000 acres for each of wheat,

barley, and canola. The largest allocation of land devoted to forage occurs in

the Thompson—Okanagan Region under which approximately 50 percent of the land is

irrigated. Irrigated land can also be found in the Kootenay (approximately 50%

of the land), Cariboo—Chilcotin (less than 50%), and Central Interior regions

(under 20%), with no irrigation occurring in the Peace River Region (Statistics

Canada #95—3935, 1991)

On average, the province tends to produce enough forage to meet its own

needs. In a typical year in which average yields occur, both the Peace River and

Kootenay Region are relatively self—sufficient (producing enough to meet their

requirements) . The Cariboo—Chilcotin Region produces less than it requires and,

as a result, crops will flow in from the Central Interior and Thompson—Okanagan

regions .

1 For further information refer to Keay (1991), National Research Council (1989), Agriculture
Canada (1986), and Beames et al. (1994).

2 Forage refers to alfalfa and other types of hay used as a component in livestock feed.

On average, these two regions produce more forage than they require.
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In British Columbia, the majority of forage crops are produced by those who

utilize it (for livestock feed) . These farmers commonly store some of their

crops for use in following seasons. However, in times of drought (periods of

unusually low levels of precipitation), this is often not enough to meet their

herd’s forage requirements. As a result, farmers will purchase forage locally

or from other regions (other parts of the province, Alberta, or Washington) at

a price which is based on regional supplies and demand. Given that forage has

no close substitutes in feed use and is relatively expensive to transport between

regions, forage demand tends to be quite inelastic. This inelastic demand,

combined with highly variable yields and quality (due to variability in moisture

and natural inputs in production), results in a price of forage that is rather

volatile.

Since the majority of livestock producers in British Columbia are both

producers and consumers of the crop, they are not only concerned when forage

prices fall, but when they rise as well. Higher prices often relate to

shortfalls in yield, and as a result, farmers must face both a reduced

availability of forage and an inflated price in making up the shortfall. A fall

in the price of forage is often associated with an excess supply, and given that

farmers typically consume the crops they produce, the situation is not as severe.

Forage prices vary inversely with yield levels 6 and because wide—spread droughts

can occur as frequent as one in five years7, price—risk is an important

consideration.

is commonly transported via truck, as it is the most available and convenient method
of transport.

It is not uncommon for forage prices to rise 50 percent above the average during a wide
spread drought.

6 For example, a 20 percent decrease in yields below the average would result in a 20 percent
increase in forage prices.

Obtained from yield series data from Agriculture Canada (1970-74), Tingle (1975-87),
Forage Cultivar Trial Summary (1980-93).



1.2 Problem Statement

Under standard crop insurance in British Columbia, farmers are only

insured/compensated for shortfalls in production that fall below a guarantee

level (some percentage of average production), with the losses valued at an

average price level. This means that compensation or indemnity payments equal

the shortfall in production below a guarantee level multiplied by the average

price level. Farmers who must purchase forage are not well covered in a

shortfall year because forage prices tend to rise in shortfall years. It has

been proposed by the British Columbia Ministry of Agriculture, Fisheries, and

Foods that a WSD insurance scheme be designed to address this price—risk facing

farmers.

Under a WSD insurance scheme, farmers would be insured against the rise in

price of forage due to wide—spread drought, with indemnity payments equalling the

shortfall in production below a guarantee level multiplied by the difference

between the market price of forage and a price trigger if the former exceeds the

latter.8 A wide—spread drought would be necessary but not sufficient to trigger

a payment from this scheme. This is because when adequate stocks are available

in nearby regions, stocks would flow in to alleviate the shortage and the price

in the shortfall region would not rise above the trigger.

To qualify for a WSD payment, farmers would have to be eligible for

standard insurance (i.e., if their actual production falls below the guarantee

level) and have regional forage prices exceeding a threshold price level (i.e.,

exceeding some percentage of the insured value/average price) . There is,

however, a problem with implementing a policy such as this one, as some

measurement of the actual forage price is required. Since no formal market

exists for forage crops, prices are non—observable. This means that without

some mechanism for determining the actual price levels, the values of indemnities

8 The price trigger level would be some percentage above the average price.

Transactions regarding the sale of forage occur privately between farmers, and prices vary
depending on factors such as quality of hay, transportation costs, and types of transactions
(personal discounts between friends, bartering, etc).



under this program would be unknown.

The purpose of this thesis is to present a pricing model for forage. Once

constructed, this model can then be used for the purposes of crop insurance, as

a mechanism will be available for estimating forage prices. Specifically,

current levels of forage supplies would be incorporated with the regression

results from the study to generate regional forage price estimates. Given these

price estimates and the observed production levels, the insurers can determine

the level of indemnity payments under the Wide—Spread Drought insurance scheme.

Figure 1.1 represents a region for which an indemnity payment will occur. The

actual (estimated) price exceeds the price trigger level and production falls

below the guarantee level. The level of indemnity is shown by the shaded

rectangle.

Price
Level

Quantity Level

Price exceeds
Et; mate4

-

Price Trigger

Guarantee
Level

Act&l
P(a.Lt

Shortfall in
Production

Figure 1.1 Wide-Spread Drought compensation payment.
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1.3 Study Objectives

The main purpose of this study is to devise a theoretically acceptable and

potentially useful method of estimating the price of forage. Given the problem

of trying to establish prices in different areas for a good that flows within and

between these areas, incorporating spatial dimensions into the model is required.

A regional rather than individual agent model is used because the WSD insurance

scheme will be based on regional production and not farm—level production.

Since the market for forage is assumed to be competitive and as a result

prices in the regions will not exceed the transportation costs between them, the

model utilizes the ‘Law of One Price’ assumption. The fact that farmers are

rational, profit maximizers and crops are able to flow freely between regions

ensures that the ‘Law of One Price’ will hold. The characteristics of each

region will be based on representative agents within that region. Furthermore,

the ability of each region to place production in storage for use in future

periods will also be incorporated.

There are two main components to the model, the first one being that given

a set of observations on regional supplies of forage, it will show the

equilibrium allocation for those quantities and the set of equilibrium prices.

The second component allows for simulations to be run; that is, randomly drawn

production levels can be made. The random draws explicitly account for the

different production variances and covariances across regions. Combining both

components, production levels are drawn and equilibrium allocation levels and

prices solved for. This can be done many timesin order to get a series of

equilibrium prices associated with the simulated quantities. Regression analysis

is used to draw relationships between regional prices and quantities. These

results can then be used in an insurance scheme, where, given regional quantities

of forage, prices can be forecasted. 10

10 Although econometrics are used in this study, the model presented is a simulation model
and not an econometric one. The econometrics are done on simulated and not real data.
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1.4 Organization of the Study

Chapter 2 provides a review of the literature and is followed in Chapter

3 by the methodology used in this study. Chapter 3 continues with a description

of the model and the assumptions held. Chapter 4 presents an application of the

model to British Columbia forage production and includes some description of the

data used and its sources. Chapter 5 and 6 follow up with a description of the

results, conclusions, and recommendations regarding the model’s application. The

Appendix contains a description of the data used and generated, sensitivity

analysis results, and copies of the computer algorithms used.



Chapter 2 : Review of Literature

2.0 Summary

Assuming that the model would be of a regional, spatial allocation nature,

a search of the literature was undertaken. The main focus of the search was to

identify past literature that had approached the problem of estimating forage

prices (or of similar crops), and which had simulated a spatial allocation type

setting.

Prior to 1984, no published studies relating to the estimation of forage

prices could be found. A study by Blake and Clevenger (1984) noted the same, and

found only one unpublished study by Myer and Yanagida (1981) relating to this

topic.11 Blake and Clevenger stated that the Myer and Yanagida’s paper combined

an estimated demand function for alfalfa in 11 western states with a quarterly

ARIMA model to forecast quarterly alfalfa hay prices. The Blake and Clevenger

paper, however, developed a slightly different model that forecasted monthly

alfalfa hay prices before the first harvest, for the state of New Mexico. They

used a two step procedure that linked an annual model, forecasting the point at

which seasonal price patterns start, to a monthly model that identified the

seasonal price patterns. They incorporated the estimation of a series of monthly

autoregressive price forecasting equations, an annual alfalfa demand equation,

and an annual autoregressive acreage forecasting equation. These results were

then used to predict monthly alfalfa prices for the state.

In 1987, Blank and Ayer created an econometric model of the alfalfa market

for the state of Arizona. A similar study by Konyar and Knapp (1988) provides

an analysis for the aggregate California market. A later study by Konyar and

Knapp (1990) incorporating much of their previous research, presents a dynamic

spatial price—equilibrium model of the California alfalfa market. Their model

was used to forecast alfalfa acreage, prices paid and received, and

transportation flows for the short and long run under base year conditions. The

“This Myer and Yanagida study was later published in 1984.
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base year results were then used for comparison in determining the effects of

reductions in federal water subsidies and the implementation of a cotton acreage—

reduction program.

There are many other studies, aside from those focusing on price estimation

of agricultural crops, which have focused on spatial allocation and pricing under

the spatial allocation setting. One common assumption made in many of these

studies is that in a competitive, spatial environment in which goods can move

freely from one agent to the next, the ‘Law of One Price’ holds. There are some

studies that may lead one to question the appropriateness of the ‘Law of One

Price’ hypothesis, such as Ardeni (1989) which showed that some of the evidence

to support the existence of perfectly arbitraged commodity process in the long

run, is flawed due to inferior use of econometric techniques. Other studies

counter these attacks, like Baffes (1991) who states that the ‘Law of One Price’

still holds and any contrary evidence relates accounting for the transaction

costs as the failure. Regardless, the ‘Law of One Price’ hypothesis will be

maintained within the current study.

A competitive spatial equilibrium setting is simulated in the study by Liew

and Shim (1978) . They take the theoretical problem of maximizing an arbitrary

net welfare function. It is reduced to the Dantzig—Cottle fundamental problem,

which is less complicated than the simplex tableau method as additional variables

outside of the original problem are not necessary for obtaining feasible

solutions. They discuss the economic implications of dual, slack and surplus

vectors and the welfare maximizing marginal transformation of demand and supply

among regions. A similar concept to ‘The Law of One Price’ is assumed, in which

the price of the kth commodity in region j should not exceed the sum of the

transportation costs required to deliver that commodity from region i to j and

the supply price of the kth commodity in region i. A numerical example of the

model is also provided.

A paper by Willett (1983) incorporates a typical competitive spatial price—

equilibrium model, with both a one commodity and multi—commodity setting

represented. This is all done within a linear programming framework. The study
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further examines and tests the theoretical conditions on prices and quantities,

within ‘Duality Theory’, for a competitive spatial equilibrium solution to be

obtained.

A study by Beckmann (1985) offers an interesting look at competitive

spatial pricing under two separate pricing techniques. The effects of changing

transportation costs, size of fixed costs, and consumer density on the radius of

markets, under both techniques is examined. Further, the effects on agents’

profits and welfare were examined. Unfortunately, the majority of information

provided within this study does not relate directly to the problem of

establishing a competitive spatial price—equilibrium type model. Only specific

effects that changes in parameters have on the overall solutions are identified.

In Takayama and Labys’ (1986) study, a general overview of analysis within

a spatial allocation environment is presented. An example of a typical

international spatial equilibrium analysis between two countries with one

commodity is shown, followed by the general description of a typical

interregional spatial equilibrium model. A comparison between the use of the

quadratic programming method and linear complementarity programming method in a

static spatial equilibrium framework is then made. 12 Furthermore, reference is

made to some of the recent models constructed for agriculture, energy, and

minerals use. These basically describe the new techniques used by some of the

main agents within these sectors.

Another general overview of spatial economic theory is presented in the

book by Harris and Nadji (1987) . It begins with a general description of

‘Spatial Theory’, then refers to spatial equilibrium models in relation to

‘Location Theory’ . It explains that many of the spatial equilibrium models are

partial equilibrium special cases of the general theory. The general system as

a non—equilibrium dynamic theory is described. Finally, a discussion of the

transition of the theoretical framework to an applied model is presented,

including a description of the construction of and equations associated with an

12 A dynamic type framework was not presented in this study.
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applied location theory model.

Although there have been few studies done on the pricing of forage (or

similar products), much literature exists on the creation of competitive spatial

price—equilibrium models. The techniques used in the majority of these studies

are directly applicable to the current paper. It was established from the

beginning that a regional, competitive, spatial price—equilibrium model was to

be used, and the studies shown, provided a general basis for the model

represented in this study.

The current study’s model typically assumes regions to be both producers

and consumers of forage, and allows for forage crops to flow freely within and

between regions depending on transport costs, availability, and regional forage

requirements. It is a result of this competitive setting that the ‘Law of One

Price’ assumption can be made. The current model is similar to the other spatial

price—equilibrium models, especially the one used in Konyar and Knapp (1990)

They assume a competitive market exists for the good and that it can flow freely

between agents depending on supply and demand. Like the Konyar and Knapp model,

the current one assumes regions to be both producers and consumers of the crop.

There are, however, a few notable differences that will be outlined.

A dynamic model is used in the Konyar and Knapp study, in which there is

a direct link between individual periods. The Konyar and Knapp model contains

an acreage response characteristic, where major producing regions have

fluctuating acreage depending on acreage from previous periods, expected prices

received, and yields. The current study does not make any reference to acreage

response, as individual agents are assumed to be price takers and produce forage,

independent of expected prices. Making no direct link between periods and having

no acreage response characteristic, the current model is not truly dynamic.

Carry—over stocks are included in the study but each period is treated as

independent of the others.

The Konyar and Knapp study, like the majority of spatial price—equilibrium

studies assumes linear inverse demand curves for the good in question, for

simplicity. This may be a model mispecification when modelling forage
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production. Since farmers have specific base feed requirements to meet, and

there are costs to adjusting herd sizes, the individual farmers’ demand for

forage will not fluctuate given small price variability around an average price

level. Therefore, an inelastic portion to the demand curve is needed around the

average price level when modelling individual farmers. A regional demand curve,

however, will not necessarily have the immediate upper and lower kink in the

demand and may be slightly smoothed. 13 Nonetheless, kinked regional demand

curves were incorporated into the current study, capturing the reluctance of

farmers to alter their base herd size.

The current study, unlike the others, uses a simulation and not an

econometric model. Production data is randomly generated, with the optimal

spatial allocation of supplies and their associated prices calculated.

Econometrics is then used on these results in order to formulate a pricing

mechanism. In the Konyar and Knapp study, actual production data are used. They

also use econometrics in creating the pricing model, however, their results are

not simulation—generated as in the current study. Further, the Konyar and Knapp

model does not exploit the covariability between regional production (due to

common weather patterns)

The aforementioned characteristics of the current study provide some

potentially useful techniques which can be added to the past body of research

devoted to pricing forage. Studies relating to this topic are few and

information regarding the prices of forage can benefit those involved in the

production of it and those involved in providing crop insurance and other types

of government assistance.

13 When the representation of forage production is more diverse within a region, the regional
demand curve may contain a smoother upper and lower kink.
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Chapter 3 : Methodology and Model

3.0 Overview

This chapter introduces a pricing model for forage. The model can be

broken down into two main parts: one part generates random regional production

and finds the optimal allocation of that production, and the second part performs

this over numerous simulations so that a series of quantities and their

associated prices can be created. Regression analysis is then used to draw

relationships between the quantities and the prices. A more detailed description

of these parts is described below.

The first portion of the model allows for regional production levels to be

simulated. This is done by randomly drawing regional production levels from

normal distributions around their means. 14 Carry—over stocks are added to the

randomly drawn production levels to create regional supplies. Given these supply

levels, the model optimally allocates quantities for an equilibrium solution.

This solution is reached by assuming that each region maximizes its welfare given

its own demand and supply for forage, prices in other regions, and transportation

costs. As a result, crops will flow within and between regions in order that

total welfare be maximized. 15

The second part of the model randomly draws production levels and solves

for equilibrium solutions over a number of simulations. The random quantity

levels and their associated prices (as determined by points on the regional

demand curves) are collected from each simulation such that a series of

quantities and prices are generated.16 Econometrics is then used to

parameterize the relationship between regional quantities of forage and the

14 Normal distributions are used in the random draws, since the associated data requirements
are small and multivariate random normal draws are more easily obtained than those with other
distributions.

15 Total welfare equals the sum of each region’s welfare.

16 Prices are also considered to be normally distributed.
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associated regional prices

3.1 Methodology

The model analyzes transportation flows and price fluctuations at a

regional level. Each region is described as being both a producer and consumer

of forage, and is characterized by a representative agent in that region. It is

assumed that the representative farmer produces forage in order to feed his/her

own base livestock herd. The regional livestock feed requirements depend on the

number of livestock present and the feed requirements per animal.

From figure 3.1 shown below, a typical region has both a production and

consumption sector and, depending on current supplies and demand has a number of

options in order to meet feed requirements and maximize welfare. If surplus

crops are present, the region can allocate stocks to storage for future use or

ship to other regions. In times of excess demand, stocks can be drawn from

storage (if they are present) or shipped in from other regions. The arrows show

the direction in which forage crops will flow.

[ Typic& Region 1
nui

rather Region Storage Regi

Figure 3.1 Description of region
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Farmers are assumed to be rational profit maximizers. They have a specific

base herd size, and will produce forage in order to meet the feed requirements.

When a shortfall in production occurs such that the base requirement cannot be

met, the farmer will consider purchasing forage to make up the shortfall. The

reverse happens when there are surplus stocks. If the base requirement is met,

the excess stocks will either be placed into storage for future use or be sold.

Only if the price rises to a sufficiently high level or falls to a sufficiently

low level will the farmer move away from his/her base herd requirements.

Farm level behaviour must be assumed, since this is a regional model and

does not explicitly observe farm level actions. Farmers are considered to be

profit maximizers, facing parametric prices. They buy and sell forage in order

to maximize their individual profits and as a result, a competitive market is

established where total welfare is maximized. Since all farmers are maximizing

individual profits (welfare), and total welfare is defined as the sum of all

individual welfares, total welfare is maximized. This assumption of welfare

maximization allows for the creation of an equilibrium setting in which the

model’s key assumption, the ‘Law of One Price’, may hold.

The ‘Law of One Price’ states that the price in any one region will never

exceed the price in another region by more than the transportation costs. It is

the assumption of a competitive market that validates the ‘Law of One Price’ in

this model. In a competitive world, individual agents seek to maximize their own

welfare, and the collective action of all agents can and will affect prices.

Given an arbitrarily high price in one region (i.e., price exceeding that of

another region by more than the costs of transportation), individual agents (and

as a result the collective of agents) will arbitrage on this high price. As a

result, the price will fall until arbitrage is no longer feasible and the ‘Law

of One Price’ holds. Therefore, it can be stated that when individuals maximize

welfare the ‘Law of One Price’ holds, and when the ‘Law of One Price’ holds,

total welfare is being maximized. If the ‘Law of One Price’ is not holding, then

individuals are not profit maximizing and total welfare is not being maximized.

The following diagram, Figure 3.2, presents examples which help to validate
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that the ‘Law of One Price’ will hold when welfare is maximized. The first

example occurs at point A for both of the regions. In this case, no trade takes

place, with Region 1 producing and consuming at the point CAl and Region 2

producing and consuming at point CA2. Assume that the ‘Law of One Price’ is

violated, where the price in Region 1, PAl, exceeds the price in Region 2, PA2,

by more than the costs of transportation. Since an autarky example is being

represented, total welfare can be determined by strictly looking at consumption

levels under the value of marginal product curves (demand curves) . Region 1

consumes at CAl, therefore its welfare can be measured by the area under its

curve, areas 1, 2, and 3. Region 2 consumes at CA2, therefore its welfare is

shown by areas 7, 8, 9, 10, and 11. The total welfare is measured as the sum of

these two welfares.

When the regions are able to trade, crops will flow from Region 2 to Region

1, since the agents can be made better off by this. Trade will take place until

the point at which the ‘Law of One Price’ is no longer violated (the point where

the price in region 1, PB1, exactly exceeds the price in 2, PB2, by the

transportation costs) . It is at this point that trade can no longer make both

regions better off, since the price for which the crop is sold is equivalent to

its marginal value in consumption. ‘ It is at this point that total welfare is

maximized, since any other allocation of crops other than this equilibrium

allocation will cause total welfare to decrease.

The total welfare associated with the second case has to include both the

value from sale and from consumption, since trade has occurred. Region 1

purchases forage from Region 2 and increases its consumption to the point CB1.

The cost of that purchase is equal to the price paid, PB1, multiplied by the

quantity difference between CAl and CB1. This is a cost shown by area 5.

However, Region 1 now benefits from areas 4 and 5, and therefore, gains area 4.

The sale of forage from Region 2 to Region 1 means that 2 now consumes at the

lower level of CB2, and therefore, loses the consumption welfare shown by areas

17 Note that when crops flow from Region 2 to 1, the price in 1 will fall (as supply increases)
and the price in 2 will rise (as supply decreases).
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10 and 11. However, the sale of forage benefits Region 2 by the value of PB2

(the price sold at) multiplied by the difference between CA2 and CB2. As a

result, Region 2 gains a welfare amount equal to the shaded area above the demand

curve. For a linear curve this welfare amount is equivalent to area 10.

When the two regions are able to trade, the allocation of crops between the

regions will be such that total welfare will be maximized, and the ‘Law of One

Price’ will hold. In this example, both regions are made better of by trading

to the point that prices mc longer differ by the costs of transportation.

Compared with the first example, Region 1 shows an increase in welfare equivalent

to area 4, and Region 2 gains an amount equivalent to area 10.

Region 2

Figure 3.2 Welfare maximization and the Law of One Price’.

The previous example relates directly to the situation in which a drought

in one region creates a shortage of crop and causes the price in that region to

Region 1

Price

PAl

PB1

Demand
Curve

Price

P82

PA2

Demand
Curve

OA1 CB1 Consumption
CB2 c12 Consumption
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increase. Due to arbitrage from welfare maximizing agents, surplus regions will

ship crops into the drought region and reduce the level by which that region’s

price will increase. Since crops are flowing out of the surplus regions into the

drought region, the surplus regions’ prices will rise and the drought region’s

price will fall. As explained earlier, flows of crops will occur to point at

which prices in all regions will not differ by more than the transportation

costs.

3.2 Demand Curve

Each region has its own demand curve for forage which represents the value

placed on forage in that region given regional prices. This value is represented

by the areas under the curves (the cumulative value of each unit of forage) . For

given quantities of forage, regional prices can be established by the respective

points on the curve.

The demand curve is a value of marginal product curve, and points on this

curve refer to points where the price of the marginal unit of forage equals its

value of marginal product in production of livestock. Therefore, when agents

maximize welfare, they will purchase forage up until the point where the price

of the last unit of forage equals the value of its marginal product. If agents

do not purchase forage up until this point, welfare will be measured at some

point below the demand curve, where the price of a marginal unit is lower than

its value of marginal product. In this case the agents would not be maximizing

their own welfare. If all agents maximize welfare then total welfare is

maximized and regional prices can be determined by the respective points on the

regional demand curves.

The shapes of regular demand curves are typically assumed to be continuous

and downward sloping. However, when modelling forage this is not an appropriate

shape of curve to use. Since forage crops have a lack of close substitutes, and

farmers do not readily alter base herd sizes given small fluctuations in forage

prices, the shape of demand curve is not necessarily continuous and downward

sloping.
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Referring to figure 3.3, the shape of a regional demand curve will be

perfectly inelastic (vertical) for a given range of reasonable forage prices.

Since farmers have specific stock requirements which they must meet, and there

are costs to adjusting herd size (i.e., actual physical costs of buying and

selling cattle and the uncertainty associated with it), the demand for forage

will not fluctuate given low variability in prices around an average price level.

The height of this vertical portion of the demand curve will depend on the

distribution and scale of the different farms in the region. If the majority of

farmers are operating at the margin, then the vertical portion may kink sooner

at the top. These types of farmers will be more responsive to increases in hay

prices since their scale of operation is not as profitable (flexible) at the

margin as other farms. If the scale of farms in the region is widely

distributed, then the upper kink may become smooth as the farms at the margin

respond to small price fluctuations and the other farms gradually respond to

larger price fluctuations.

Price of
Forage

Upper Kink
Point

Inelastic Portion
of Curve

Lower Kink

Base Herd Feed Forage Consumption
Requirement

Figure 3.3 Regional Demand Curve for Forage
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The regional quantity demanded for forage will likely respond if forage

prices become excessively high. Under a wide—spread drought scenario, with below

average precipitation across a large area causing decreased forage yields, there

may not be adequate stocks in nearby regions to meet the excess demand for forage

in that region. As a result, forage prices may become so high that farmers begin

to decrease their consumption of forage. This would occur when it is no longer

feasible for farmers to maintain and feed their present base herd size given the

higher forage prices. The result is a decrease in the demand for forage as

farmers seek alternatives (i.e., reduce their base herd size; use more of other

grains like barley, if possible; sell off feeder calves earlier than expected;

and feed less hay per animal) . If the drought is more severe and prices rise to

a higher level, the demand for forage will be even less and the demand curve will

continue to slope backward to the left.

The demand curve may be kinked at the bottom of the vertical portion since

exceedingly low forage prices may entice farmers to increase their base herd size

and forage usage. Given farmers present base herd size and feed requirement (as

represented by the vertical portion of the demand curve) when forage prices fall

low enough (eg., favourable weather patterns across large areas causing surplus

forage yields and large drops in forage prices), farmers may choose to invest in

livestock. Given the drop in prices, farmers can meet the feed requirements of

a base herd larger than the present herd. Although this bottom kink can be

debated, it is the upper kink and slope that are of interest for the model (the

price responses to drought situations on the upper portion of the demand curve)

A graphical description of a regional demand curve would assume a linear

curve intercepting the vertical axis and sloping downward to the right. At the

base herd feed requirement level (as described on the horizontal axis), this

demand curve becomes downwardly vertical. This represents to the inelastic

portion. At the bottom of the inelastic segment, the demand curve slopes down

toward the right again.
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3.3 Kinked Demand Curve

When using a continuous downward sloping demand curve, it is not necessary

to know the section of curve being utilized because one function represents all

points on the curve. However, non—continuous (kinked) demand curves require that

the section of curve be identified. This is due to a separate linear function

used for both the upper and lower slopes of the curve. If optimization occurs

to the left of the inelastic portion, then the upper part of the curve is used,

and if it occurs to the right of the inelastic portion, then the lower part of

the curve is used. The upper portion of the regional demand curves contain

separate parameters than the lower curves. The upper portion is linear and

downward sloping. In mathematical form it can be described as a vertical

intercept (au, the subscript ‘u’ referring to the upper curve), plus a negative

slope value () multiplied by the level of consumption (C, represented on the

horizontal axis) . The lower portion of the curve is described as the vertical

intercept (c’, the subscript ‘1’ referring to the lower curve), minus a slope

(1) multiplied by the level of consumption (C) . Note, that the method used in

identifying which section of the curve is being referred to is later described

in a mathematical description of the model.

3.4 Spatial Aspects

As discussed previously, the model allows regions to allocate forage

supplies within and between themselves, and to and from storage, in order to

maximize welfare. When dealing with continuous downward sloping demand curves

in this type of spatial setting, the results will appear to be uniform

(price/quantity relationships are based on continuous curves) . However, when

incorporating non—continuous (kinked) demand curves like those in this study, the

results will differ (price/quantity relationships are based on non—continuous

curves)

When regions optimize welfare under a kinked demand curve, the results

contain jumps when moving from one section to the other in the demand curve. The

vertical intercept (and possibly the slope) are different when referring to the
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two separate portions of the curve to the left and to the right of the inelastic

section. This inconsistency in the demand curve will create different types of

solutions in which the ‘Law of One Price’ holds. In the optimization process,

regions will not have the gradually decreasing marginal benefit as consumption

increases. Marginal benefit does gradually decrease to a point, as consumption

increases; however, an increase in consumption beyond the base herd feed

requirement results in a discontinuous fall in the marginal benefit (moving from

the upper slope to the lower one)

Regional prices may also exhibit some non—uniform results. When regional

consumption levels are to the left of the inelastic portion, pricing is based on

the upper slope. And, when consumption is to the right of the inelastic portion,

prices are based on the lower slope. But, when regional consumption exactly

equals the regional base herd feed requirement, pricing cannot be based on the

region’s demand curve, as the actual price level is somewhere within the

inelastic portion. It is known from the ‘Law of One Price’ that when regions

trade, flows will occur to the point that regional prices will no longer differ

by transportation costs. Therefore, the region whose consumption equals its base

herd feed requirement can calculate its price from another trading partner’s

price, plus or minus transportation costs depending on the direction of flow.

If the region is importing forage, then its price is equal to the other region’s

price plus transportation costs, and when exporting forage, its price equals the

other’s price minus transportation costs.

3.5 Storage

Some dynamic characteristics are incorporated into the model. These

characteristics show that farmers at most will look one period ahead into the

future, by allocating stocks to storage for use in that period. Given farmers’

profit maximizing behaviour, they will arbitrage on forage prices through their

use of storage. Assuming that farmers are rational, they will determine whether

or not to store production for use in the following period given current forage

prices, costs of storing across one period, and the expectation that next period
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will witness an average price given average production.

Not only are farmers able to send forage stocks into storage, but they also

receive stocks from storage. Therefore, when farmers determine how to optimally

allocate current production, they include the amount of stocks they are receiving

from storage during that period. The model forms no continuous link across time

between the amount of forage shipped to storage in one period and the amount of

stocks in storage added to production in the following period, since each period

is treated as an independent simulation. Given the model has no formal

dependency across time, it cannot be considered a truly dynamic model, however,

the aforementioned aspects relating to storage do provide some mildly dynamic

characteristics to the model.

A steady—state characteristic is necessary when including storage in this

model. On the average, the carry—over stocks included in a current period’s

supply must equal the stocks allocated for use in the following period. Without

this characteristic, the results will be biased as current supplies will not

equal their true average values. Steady—state for storage is incorporated into

the model by running the set of simulations a number of times, until on average

stocks in equal stocks out.’9

Figure 3.4, presents a graphical representation of the demand curve for

storage. The expected price next period is represented on the vertical axis with

stocks allocated to storage for use next period on the horizontal axis. The

curve intercepts the vertical axis and is linearly downward sloping. An

interpretation of this curve would be that if no stocks are stored for the period

following, an average price can be expected for next period (referring to the

point touching the vertical axis) . As more and more stocks are allocated for the

following period, the expected price next period will fall further and further

below the average price. This relates to the curve’s negative slope.

18 Note that current forage supplies include carry-over stocks from the previous period.

19 Carry-over stocks are not included in the first set of runs since they must be generated a
priori. After the first set of runs are completed, stocks in are included in current supplies for
allocation purposes.
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Price in
fotlowing

period

3.6 Mathematical Model

The model in this study determines the optimal inter/intra—regional

allocations of forage crops (for the purposes of consumption) in order to

maximize total welfare across regions. This allocation process is based on

regional forage supplies and demand and on the assumption that an objective

function is being maximized subject to various constraints. 20 This objective

function represents total welfare across all regions, where total benefits (i.e.,

the cumulative area under all regional demand curves) are subtracted from total

costs (i.e., the sum of all transportation costs associated with crop flows)

The following section presents a description of the model, including the

objective function and constraints.

One of the main purposes of the model is to determine optimal allocations

20 parameters for the regional demand curves are fixed throughout the optimization, while
regional production for each scenario is randomly drawn ex ante.

Next period’s
price driven to

zero

Figure 3.4 Demand Cutve for Storage

Quantity stored for use next
period
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of crops within and across regions. This is done by maximizing an objective

function (representing total welfare) subject to various necessary constraints.

The first portion of the objective function (representing total benefits)

includes mathematical formulas describing the regional demand curves. As

described in the previous section, in order to incorporate the regional demand

curves into the optimization process, it is necessary to identify to which

portions of the demand curves are being referred. Unfortunately, this is not a

simple task, as will be shown.

When referring to a point left of the inelastic slope, the area under the

curve (welfare benefit) is measured up to the actual level of consumption (C),

as represented on the horizontal axis. This area can be calculated in two

portions: the triangular area above the actual price (a,_r3*C) and the square

area below that price. For a graphical description, see Figure 3.5 below.

Consumption

Price

xu

- f3 *

U U

Actual
Price

Slope = f3

Actual
Consumption

Base Herd Feed
Requirement

C

Figure 3.5 Benefit measure under upper slope of demand curve
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(3.7.1)

The following formula represents that area (benefit) under the curve:

Q5* [ (a_(a_*C) ) ] *c+ (a_*C) *C.

This is equal to one—half the difference between the intercept price and actual

price, multiplied by the consumption level, plus the actual price multiplied by

the consumption level.

When referring to a point right of the inelastic slope, the area (benefit)

is also measured up to the actual level of consumption. It includes all of the

area to the left of the inelastic portion plus the area between the actual

consumption and base herd feed requirement level. See Figure 3.6 for a graphical

representation.

Price

CL

cx1
- 13 *CB

a1
-

-c

Actual
Price

13’

Base Herd Feed
Requirement

Actual

CB C Consumption

Figure 3.6 Benefit measure for points under lower slope of demand curve
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The area left of the inelastic portion is represented by the previous

formula, with the actual consumption level (C) replaced by the base herd feed

requirement level (CB) . The area under the lower slope of the curve, between the

inelastic portion and the actual consumption level, is represented by the

formula:

(3.7.2) Q5*[(1i*CB)_(1_13i*C)]*(C_CB)+(a11*C)*(C_CB)

This is equal to one—half the difference between the lower kink price and the

actual price, multiplied by the level at which consumption exceeds the base

requirement, plus the actual price multiplied by that quantity difference.

Therefore, the total area left of the inelastic portion plus the area included

to the right is represented by the formula:

(3.7.3) *CBQ5**CB2+(CCB)*[aj_1*((C+CB)/2)J

Given the demand curve has two distinct sections ((i.e., the portion left

and the portion right of the inelastic slope), it is necessary to identify in

which section actual consumption falls when welfare is being optimized. Using

the two previously described formulas for measuring benefit under the upper and

the lower slopes of the curve, identifier parameters can be used for identifying

where actual consumption falls. Attached to the previously defined formulas in

the objective function are two identifier parameters ‘TA’ and ‘TB’ . ‘IA’ is

multiplied by the formula relating to area measurement for points left of the

inelastic section, and ‘TB’ is multiplied by the formula relating to area

measurement for points to the right of the inelastic section.

The two identifier parameters are unique in that they only represent a

value of one or zero, with neither having the same value. In other words, if

‘TA’ equals one, then ‘TB’ equals zero, and only the formula relating to a

consumption level less than the base herd feed requirement level is represented

in the objective function. If ‘TB’ equals one, then ‘TA’ equals zero, and only
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the formula for a point to the right is represented. These identifiers are

successfully able to identify whether consumption falls below or above the base

herd level by a series of constraints. Included in these constraints are that

the identifiers must be non—negative, not exceed a value of one, and sum to one.

Two further constraints are that ‘IA’ must be less than or equal to zero and ‘IB’

must be greater than or equal to zero when consumption exceeds the base level.

The reverse is true for consumption falling below the base level.

These two formulas (measuring area under the demand curves) and the

associated identifier parameters ‘IA’ and ‘IB’ are included under the benefits

portion of the objective function and are summed over all regions. This

represents the total benefits across all regions. The following formula

represents this portion of the objective function, in summation notation:

(3.7.4)

(C+CB) /2))].

Note, that the subscript ‘u’ refers to the demand curve left of the inelastic

portion, ‘1’ refers to the curve right of that portion, and ‘n’ refers to the

region.

The second part of the objective function relates to the costs incurred

through the allocation (transportation) of forage crops, within and between

regions. These costs are equal to the per unit transportation costs among

regions (represented as a matrix) multiplied by the quantity levels transported

(also in matrix notation) . When these two matrices are multiplied, they

represent the transportation costs matrix shown in the objective function, where

the costs are represented by all of the trace elements.

The transportation costs matrix is calculated by multiplying the square

matrix of per unit transportation costs (A) by the transpose of a square matrix

of transportation quantity levels (T’) . The per unit transportation cost matrix

is represented by each region for both the rows and the columns. This allows for

all possible transportation combinations to occur, inciuding allocations within
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regions. The transpose of the quantity transported matrix is used since its

combination with the per unit cost matrix yields a transportation cost matrix in

which the elements correctly match up. In other words, the correct per unit

costs are attached to the their respective quantity levels, thereby allowing for

the costs to be represented as the trace elements in the transportation costs

matrix. In matrix notation, this transportation costs matrix can be represented

by the following formula:

(3.7.5) trace (A*T’),

where both the per unit cost matrix and quantity level matrix are of dimensions

‘n’ by ‘n’.

Given the previously shown equations, the complete form of the objective

function can be stated in the following formula:

(3.7. 6) W = Er[IA* (*C_O . 5* *C2)+IB* (a *CBO 5* *CB2+(C—CB) *

in (C+CBr) /2) ) I — trace (A*T’

This function represents total welfare across all regions, where the parameter

W refers to welfare. It is separated into the sum of all benefits minus the sum

of all costs. In the optimization process, this function (total welfare) is

maximized subject to a number of constraints, which will be described below.

There are ten constraints in the optimization process. These include a

constraint that all of the choice parameters (regional consumption,

transportation levels, and the two identifier parameters) be non—negative. This

is represented as follows:

(1) C, T, IAN, IB

where consumption (C), transportation levels (T), and the identifier parameters

are included for all regions.
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The second and third constraints are necessary for the allocation process.

These include the constraint that a region cannot consume more forage than it

possesses and gets shipped in from elsewhere. The following represents this

constraint:

(2) C, T1+T2+. . .+T,

where the first subscript refers to the destination region for the crop being

transported and the second refers to the source of that crop.

The third constraint relates to regions not being able to allocate more

forage than they possess (including crops shipped in from elsewhere) . This is

shown by following formula:

(3) QP T1+T2+..

where QP refers to a specific regions supply level (production and carry—over

stocks)

The fourth and fifth constraints relate to shipments to and from storage.

These are shown by the formulas:

(4) 0 and

(5) T, = 0.

The former states that only non—negative quantities can be allocated to storage,

while the latter states that quantities cannot be allocated from storage. This

allocation process is included separately in the program, as described

previously.

The remaining constraints allow for the identifier parameters to function.

As explained earlier, two of the constraints ensure that the identifier ‘IA’

takes on a value of one or zero when consumption falls below the base level, and

‘IB’ takes on a value of one or zero when consumption exceeds the base level.
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These constraints are represented as following:

(6) IA* (C—CB) 0, and

(7) IB*(C_CB) 0.

Another constraint ensures that the identifiers sum to one. This is shown by:

(8) IA+IB = 1.

The last two constraints force the identifiers to assume values not greater than

one. They are represented by:

(9) IA, 1 and

(10) IB 1.

For further reference, a summary list of the parameters used in the program

is shown below:

W = total welfare

= vertical intercept for upper slope of demand curve

= vertical intercept for lower slope of demand curve

13 slope of upper portion of demand curve

13 = slope of lower portion of demand curve

CB = regional base herd feed requirement (horizontal value of inelastic

portion of demand curve)

C = actual regional consumption of forage

QP = regional supply of forage (includes production and carry—over

stocks)

A = vector of transportation costs within and between regions

T = transportation quantity levels of forage

IA = identifier parameter for a point to the left of the inelastic slope

(assumes a value of 1 if upper slope of demand curve is used and 0

if not)
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lB = identifier parameter for a point to the right of the inelastic slope

(assumes a value of 1 if lower slope of demand curve is used and 0

if not)

3.7 Simulation Pzocess

As described previously, the model used in this study is a simulation model

and not an econometric one. It randomly generates data by which the model

performs its numerous simulations. A description of this simulation procedure

will be presented below.

The model begins by generating random correlated production levels for the

regions. To get these values, the model generates production levels for the

regions, assuming no correlation between regional production. To do this, a

vector of average production levels of all the regions is added to a vector of

independent, multivariate normal draws (with means of zero and variances of 1)

This allows random independent quantities to be generated, with the mean values

for each region’s production taken into account.

The correlations between the random production draws is accounted for by

multiplying this generated vector of regional production levels by a Cholesky

decomposed matrix.21 The Cholesky decomposed matrix is a nonsingular triangular

matrix that has the property that when multiplied by a vector of independent

random normal draws will create a vector of correlated random draws. The

Cholesky matrix is created by decomposing the variance/covariance matrix of

regional production. In simplicity, the variance/ covariance matrix is created

from a data series of annual regional production levels. From this matrix, a

matrix of characteristic vectors and diagnol matrix of characteristic roots can

be found. The two later matrices are multiplied, and together, have identical

properties to the nonsingular triangular matrix described above.

Given these random draws for regional production, the model finds the

optimal allocations for forage. This is done by maximizing the previous

21 See Judge (1988),p.494-496.
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objective function subject to the constraints. Note that the ‘Law of One Price’

is assumed throughout this optimization procedure, since welfare maximization

ensures that this law holds. The determined regional consumption levels are then

related to the regional demand curves to obtain the regional prices.

This procedure is performed over numerous simulations in order to obtain

a series of regional prices and their associated quantities. Regression analysis

(OLS) is then used to draw relationships between the prices and quantities.

These results can further be used for the purposes of estimating regional prices

given actual quantities.

This pricing model has application for use in a Wide—Spread Drought

insurance scheme for British Columbia forage producers. As noted in the

introduction, British Columbia forage producers face price risk associated with

wide—spread drought. It is for this reason that a Wide—Spread Drought insurance

scheme has been proposed, and subsequently a pricing mechanism needed. The

following chapter will present an application of this model to the pricing of

forage in British Columbia for the purposes of a Wide—Spread Drought insurance

scheme.
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Chapter 4 Model specification for British Columbia

4.0 Introduction

The following chapter presents an application of the pricing model to

British Columbia forage. Included are a breakdown of the regions, a description

of the data used, and an explanation of the computer algorithms to perform the

simulations. The following two chapters present some of the results obtained and

the conclusions regarding the model’s application.

4.1 Application

The province of British Columbia was broken down into five separate

regions: Peace River Region; Central Interior Region; Cariboo—Chilcotin Region;

Thompson—Okanagan Region; and Kootenay Region, with each region considered both

a producer and consumer of forage. This regional breakdown was determined by

British Columbia Ministry of Agriculture, Fisheries and Foods (the study’s

primary funding agents) and based on the regional boundaries defined in

Statistics Canada #95—393D (1991) . Figure 4.1 shows a rough approximation of the

boundaries for British Columbia.
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Figure 4.1 Regional breakdown for British Columbia

The Peace River Region includes the Peace River Regional District. The

Central Interior Region includes both the Bulkley—Nechako Regional District and

Fraser—Fort George Regional District. The Cariboo—Chilcotin Region includes the

Cariboo Regional District. The Thompson—Okanagan Region includes the Squamish—

Lillooet Regional District, Thompson—Nicola Regional District, Okanagan—

Similkameen Regional District, Central and North Okanagan Regional District,

Colurnbia—Shuswap Regional District, and Kootenay Boundary (Subd. B) . The

Kootenay Region includes the Central and East Kootenay Regional District, and

Kootenay Boundary (Subd. A) 22

22 The model did not include any regions outside of British Columbia. Some forage is
transported between Alberta and the Peace River and Kootenay Region; however, that link was
excluded since British Columbia is a net exporter of forage (droughts in Alberta not having as
much impact on forage prices in B.C. than if B.C. was a net importer) and the inclusion of
Alberta would considerably complicate the problem (more regions to include, data to collect, and
variables for which to solve).



35

Although the model in this study does generate its own data for simulation

purposes, there are some actual data requirements that must be met in order for

the model to become operational. These requirements refer to data on demand for

forage, production of forage, transportation costs within and between regions,

and the costs of storage. The data and its sources are listed below.

Information relating to demand for forage was needed for the study. It was

assumed that regional consumption (demand) of forage is determined by the

regional base herd feed requirements. These feed requirements are based in turn

on both the regional livestock numbers and feed requirements per animal (for

which data were collected)

The livestock numbers included the provinces main forage consuming animals:

cattle, horses, and sheep (lambs) . The regional numbers are found in Table 1 of

the Appendix and were obtained from Statistics Canada #95—393D (1991) . Feed

requirements for each category of animal are found in Table 2 and were obtained

from: Keay (1991); Agriculture Canada (1986); Ross (1989); and National Research

Council (1989) . This table also includes the regional base herd feed requirement

values used in the study.

Further information on demand for forage was needed in order to

parameterize the regional demand curves. Average regional long—term price

estimates for forage were obtained from various forage experts around the

province, see Aumack et al. (1994) . These same individuals provided insight into

the responses of average farmers to fluctuations in forage prices. It was from

these rough estimates and information that the model’s parameters were

calibrated. 23

Production data was also needed. This related to information describing

average regional production and the variance/covariance of production. Average

regional production was calculated from data characterising regional yields per

23 No series data on forage consumption was available to obtain graphical estimates of the
demand curves.
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acre and seeded acreage. The yield data is shown in Table 3 and was obtained

from: Statistics Canada #22—201 Annual Statistics and Grain Trade of Canada

(1990), Statistics Canada #22—002 (1991), British Columbia Ministry of

Agriculture, Fisheries and Foods (1994) . Seeded acreage data is found in Table

4 and was acquired from Statistics Canada #95—393D (1991) . Also, included is the

average regional production values used in the study.

There was no series data available on regional yields, and therefore no

direct means for calculating production variability. As a result, some other

means was needed for calculating the variance/covariance in regional yields. An

assumption that the variance/covariance in regional precipitation affected

regional yields was made. This assumption was relatively realistic since

fluctuations in precipitation are the main impetus behind variability in yields.

Therefore, given series of monthly regional precipitation levels, coefficients

of variation and correlation coefficients for regional precipitation were

calculated. Assuming a relationship of 0.3 between the variation in

precipitation and variation in yield24, a variance/covariance matrix was

established for the regions. The variance/covariance matrix was then transformed

via the Cholesky matrix decomposition method into a nonsingular triangular matrix

p, which was then used for randomly drawing regional production. 25 The

coefficient of variation/ correlation coefficient matrix for the rainfall data

is found in Table 5 and the triangular decomposed matrix is in Table 6.

Transportation costs were also a necessary data requirement. A matrix of

transportation costs per ton of forage within and between regions are found in

Table 7. These figures were calculated using transport cost quotes from various

trucking companies throughout British Columbia, see McConughy at al. (1994) . The

average distances between regional centres is found in Ministry of Tourism

(1987) . The regional centres were chosen by the Crop Insurance Branch at British

No studies or data were available to make this exact relationship. The value of 0.3 was
used since it appeared reasonable in comparison to other values, and yielded acceptable results.

The Cholesky matrix decomposition method is found in Judge (1988) and White (1993).
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Columbia Ministry of Agriculture, Fisheries and Foods, and represent the most

intense areas in each region for production and consumption of forage. The

regional centres are as follows: Fort St. John (Peace River Region); Vanderhoof

(Central Interior Region); Williams Lake (Cariboo—Chilcotin Region); Kamloops

(Thompson—Okanagan Region); and Cranbrook (Kootenay Region)

Storage and carry—over stocks are also included in the model, therefore,

information on actual physical costs associated with storage are a necessary data

requirement. Storage costs relate to the value of stored forage lost due to

spoilage. The costs included in the study are shown in Table 8 and represent a

percentage of the stored forage that is lost from spoilage, multiplied by the

value of that forage. Information on the costs of storage were obtained from

British Columbia Ministry (1994) and Soder (1976)

4.2 Computer Algorithm

In this section, the computer algorithms in the study are explained. The

main portion of the computer calculations were made using the GAIVIS computer

package, see Appendix 3. The program starts by defining three separate files in

which the output is sent. Three sets are then defined, labelling the five

regions, the number of iterations or simulations to complete, and a set used in

a loop to solve for price. The parameters of the model describing the regional

demand curves, base herd feed requirement, and mean regional production are

entered using a series of ‘parameter’ commands.

The parameter ‘IND’ and the Cholesky decomposed matrix2 used in randomly

drawing production levels, are entered. Two separate set of parameter

definitions help to generate the random production levels. The first definition

assumes that the random production levels for the regions are equal to the

Cholesky matrix multiplied by a vector of non—correlated normal random draws

(with mean 0 and variance 1), added to the mean production levels. The second

assumes that positive production levels are represented.

26 Calculated previously using the SHAZAM computer package, see White (19(1993). Note:
this algorithm is also found in Appendix 3.
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The parameters Si through S5 are used in storing carry—over stocks to be

included in the next 150 simulations.27 These simulations are repeated six

times in order for current supply levels to converge to their true values

(steady—state to be imposed on carry—over stocks) . A matrix of the

transportation costs within and between regions is then entered. The objective

function and constraints described previously are entered, followed by a

definition of the model ‘Versioni’ and the solve command. The allocations to

storage (for use in the following period) are saved in the parameter Si and used

in the second set of 150 simulations. This is repeated a number of times for the

convergence described previously.

The end of the program contains a set of ‘if—then’ statements to solve for

prices. If the optimal consumption level for a region does not equal the base

herd requirement, then price is based on the demand curve. If consumption does

equal the base requirement (i.e., it is on the inelastic portion of the demand

curve), then price is based on another trading region’s price plus or minus

transportation costs, depending on the direction of flow. The final set of ‘put’

statements send the regional supply levels and their associated prices to the

output files.

Given the generated price and quantity series, regression analysis is used

to define the parameters for estimating forage prices from regional supplies of

forage. Prices are estimated for each region under each of the 150 simulations

by substituting the regional quantities back into the regression equations.

These estimated prices can then be used in determining levels of payments under

the proposed Wide—Spread Drought insurance scheme.

Since the slopes of the upper portion of the demand curves are not known

with certainty and play an integral role in the cost of the program 28, three

27 Carry-over stocks are not included in the first set of 150 simulations, but are included
thereafter.

The steepness of the slope of the upper portion relates changes in consumption to changes
in price and thus affects the estimated price levels and the cost of the program (i.e., an increase
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different slopes are used to see the effect on prices. It is assumed that with

a steeper upper slope, the level of estimated prices will increase, thus

increasing the frequency and level of payments.

in the level of estimated prices will increase the frequency and level of payments under the
insurance scheme).
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Chapter 5 Results

The first set of results were obtained with all of the upper slopes of the

demand curves set to the same level. This was called the ‘Base Case Scenario’

Since a means of determining the actual slopes of the regional demand curves was

unavailable, a common slope was used representing an average of all upper slopes

with an elasticity of negative one at the upper kink point. 29 Note that the

Kootenay Region was given a steeper slope than the common one since its upper

kink point (at the base herd feed requirement level) was much closer to the

vertical intercept. In other words, it was necessary to give the Kootenay Region

a greater slope, since the vertical intercepts to the upper slopes of the demand

curves should not necessarily exceed transportation costs between regions.

Before the main results are presented, a typical year (simulation run) will

be described to show the flows that can occur in the allocation process. This

was done using the ‘Base Case Scenario’ parameters. In this typical year, the

randomly drawn production levels for the regions are as follows: 143,857 tons

for the Peace River Region; 262,373 for the Central Interior Region; 104,265 for

the Cariboo—Chilcotin Region; 334,676 for the Thompson—Okanagan Region; and,

146,815 for the Kootenay Region. Note that the Central Interior, Cariboo—

Chilcotin, and Kootenay regions’ production levels include quantities drawn from

storage; these values equal 68,194, 15530, and 61,232 tons respectively. Given

the regional base herd sizes, the regional base herd feed requirements are

216,675 tons for the Peace River, 162,368 for the Central Interior, 208,734 for

the Cariboo—Chilcotin, 249,131 for the Thompson—Okanagan, and 63,461 for the

Kootenay regions. As a result, both the Peace River and Cariboo—Chilcotin

regions did not produce enough forage to meet their requirements.

With regions able to transport production within and between themselves,

29 There was no concrete reason for deciding that an elasticity of negative one at the upper
kink points was valid other than a general acceptance for assuming this by the Crop Insurance
Branch at British Columbia Ministry of Agriculture, Fisheries and Foods, and after consultation
and debates with hay suppliers and consumers in B.C.
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an equilibrium solution will occur when the Central Interior Region ships 72,818

tons of forage to the Peace River Region and 27,187 tons to the Cariboo—Chilcotin

Region; the Thompson—Okanagan Region ships 77,282 tons to the Cariboo—Chilcotin

Region; and, the Kootenay Region ships 83,353 to storage. The result is that all

regions are able to exactly satisfy there base herd feed requirement levels, with

the Thompson—Okanagan Region consuming 8,261 in excess of its base requirement

level. Note that the differences in regional price levels in this equilibrium

solution do not exceed the costs of transportation, where the trading regions

prices exactly exceed transportation costs; the price in the regions equals 111

dollars per ton (Peace River Region), 69 (Central Interior), 94 (Cariboo—

Chilcotin), 72 (Thompson—Okanagan), and 41 (Kootenay) . The price in the Kootenay

Region exactly exceeds the storage price 62 (expected price next year) by the

cost of storage (due to spoilage)

On average, the Peace River and Kootenay regions produce approximately

enough forage to satisfy regional requirements. The Peace River Region produces

195,333 tons of forage and requires tons 216,675, and the Kootenay Region

produces 77,925 but requires only 63,461. The Cariboo—Chilcotin Region is a

significant net importer of forage, producing only 111,893 tons but requiring

208,734. The Central Interior and Thompson—Okanagan regions are both net

exporters, with the Central Interior producing 193,839 tons and consuming

162,368, and the Thompson—Okanagan producing 318,272 and consuming 249,131.

As a result of this mismatch in supply and demand for forage, crops will

flow between and within regions. Note that storage is excluded from this example

as steady—state for storage is assumed. The Peace River Region satisfies its

excess demand by importing 21,342 tons of forage from the Central Interior.

Cariboo—Chilcotin Region imports 10, 129 from the Central Interior and 83, 605 from

the Thompson—Okanagan. Kootenay Region exports 14,464 to the Thompson—Okanagan.

The result is that all regions more or less satisfy their forage requirements.

Using the ‘Base Case Scenario’ parameters, 150 simulation runs were

created. The results can be seen in Figures 5.1 to 5.5. The graphs show a plot
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Figure 5.3 Cariboo-Chilcotin Region (Base Case Scenario)
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From the graphs, predicted prices appear to rise as production levels fall

as shown by the downward sloping trends. Since predicted prices are based on all

regional production levels, and only one region’s production levels are

represented in each graph, the observation do not exhibit a perfect trend (i.e.,

the discrepancy in the trends of the observations can be attributed to the impact

of other regions’ production levels on the price levels of the region in

question)

The predicted prices for the Peace River Region ranged from a low of 35

dollars per ton to a high of 160, given an average of 108. The supply levels for

the Peace River Region from the 150 simulations ranged from 110,000 to 290,000

tons. The Central Interior Region had predicted prices ranging from 4 to 118,

given an average of 75, with supply ranging from 125,000 to 350,000. The

Cariboo—Chilcotin Region had prices ranging from 25 to 135, given an average of

96, with supply ranging from 70,000 to 150,000. The Thompson—Okanagan Region had

prices ranging from 8 to 120, given an average of 76, with supply ranging from

180,000 to 475,000. The Kootenay Region had prices vary from 20 to 75, given an

average of 48, with supply varying from 55,000 to 175,000.

From the 150 simulation runs, regional prices and their associated quantity

levels were obtained. Regression analysis was used to draw a relationship

between these prices and quantities. Note that each regional price series was

regressed on all of the regional quantities using a linear OLS regression

technique. The regression equations are shown below.

The results appear quite reasonable, with R—squared values ranging from

0.59 for predicting price in the Peace River Region to 0.84 for the Cariboo—

Chilcotin Region. The t—stat values (in brackets) also appear reasonable, with

values greater than two for all but two cases. Given the significance of the t—

stats, the Thompson—Okanagan Region appears to be one of the more significant

regions affecting prices. This is not surprising since it is a considerably

large exporter of forage, on the average. Note: ‘P’ refers to the region’s

price, ‘QPe’ to production in the Peace River Region; ‘QCe’ production in the

Central Interior; ‘QCa’ production in the Cariboo—Chilcotin; ‘QTh’ production in
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the Thompson—Okanagan; and ‘QKo’ production in the Kootenay.

Peace River

P=322—0 . 0005*QPe_0 . 0002QCe—0 . 0002QCa0 . 0001kQTh0 .0000 9*QK0
(14.6) (5.6) (3.0) (4.9) (2.4)

R2=0 . 73

Central Interior

P=294—0 . 0002*QPe_0 . 0003QCe0 . 0003QCa0 .0002 *QTh_0 . 000l*QK0
(7.8) (13.0) (5.0) (10.6) (4.4)

R2=0 .81

Cariboo—Chilcotin

P=309—0 . 000 1*QPe0 . 0003*QCe_0 . 0003QCa—0 . QQQ3*Q_ . 0002QKo
(5.2) (11.2) (6.4) (16.0) (5.7)

R2=0 .84

Thompson—Okanagan

P=291—0 . 0001*QPe_0 . 0002QCe—0 . 0003QCa0 . 0003QTh—0 . 0002QKo
(2.5) (8.7) (6.1) (16.4) (5.2)

R2=0 . 83

Kootenay

P=150 .4—0. 00004*QPe_0 . 00009QCe—0 . 0001QCa—0 . 0002QTh0 . 0002QKo
(1.3) (3.5) (1.9) (8.4) (6.5)

R2=0 . 59

Since a linear regression technique was used in creating the results above,

an interpretation of the parameter values is relatively meaningless as actual

value changes are represented. A more useful interpretation could be made if the

parameter values represented percentage changes (or elasticities) . Therefore, the

regressions were re—done using a log—linear form, since the associated parameter

values would represent percentage changes.

The following equations show the results of the log—linear regressions used

in relating regional prices to all of the regional quantities. These are the

equations that the Ministry of Agriculture would use in predicting regional price

levels. The following variables are defined as

%dQPE = the percentage deviation between actual and average production in
the Peace River Region

%dQCE = the percentage deviation between actual and average production in
the Central Interior Region

%dQCA = the percentage deviation between actual and average production in
the Cariboo—Chilcotin Region



47

%dQTH = the percentage deviation between actual and average production in
the Thompson—Okanagan Region

%dQKO = the percentage deviation between actual and average production in
the Kootenay Region

Also, let ‘%dPPE’ denote the percentage deviation between actual and
average regional price in the Peace River Region; similar price deviation
variables are defined for the other regions.

Log—Linear regressions for ‘Base Case Scenario’

%dPPE=—1 . 05%dQPE—0 . 41%dQCE—0 . 25%dQCA—0 . 40%dQTH—0 . 1l%dQKQ

%dPCE=—0 7l%dQPE—l 12%dQCE—0 46%dQCA—0.93%dQTH—0 22%dQKO

%dPCA=—0 . 36%dQPE—0. 68%dQCE—0 . 37%dQCA—O. 96%dQTH—0. 17%dQKO

%dPTH=--0 . 39%dQPE—0 . 72%dQCE—0 . 55%dQCA—1 . 36%dQTH—0 . 24%dQKO

%dPKO=—0 . 22%dQPE—0 . 41%dQCE—0 . 24%dQCA—1 . 00%dQTH—0 . 40%dQKO

The previous equations can be interpreted as the effect that percentage

changes in all regional production has on the percentage change in each regional

price. For example, if production was 10 percent below normal in all regions,

then price would be 22.2 percent above normal in the Peace River Region. This

value is calculated by multiplying —10% by the parameter associated with each

region in the equation. Summing these values gives the cumulative effect of all

regional production levels being 10 percent below normal on the price in the

Peace River Region. Similarly, a 10 percent shortfall in production in all

regions would lead to a price rise of 34.4 percent above normal in the Central

Interior, 25.4 percent above normal in the Cariboo—Chilcotin, 32.6 percent above

normal in the Thompson—Okanagan, and 22.7 percent above normal in the Kootenay

regions.

As described at the end of Chapter 4, the slopes of the regional demand

curves was not known with certainty. The slopes of the demand curves, especially

the upper ones play an integral role in determining the levels of the predicted

prices, and this in turn can have an impact on the size and frequency of payouts

under the WSD insurance scheme. It is for this reason that sensitivity analysis

was performed on the upper slopes of these regional demand curves. This

sensitivity analysis was done by increasing and decreasing the upper slopes of
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the curves in the scenarios labelled ‘Steep Slope Scenario’ and ‘Flat Slope

Scenario’, and re—doing the log—linear regressions to compare the effects on

price with that of the ‘Base Case Scenario’.

The same log—linear regression procedure was used in the second scenario.

In this case, the upper slopes of the regional demand curves were slightly higher

(the vertical intercept on the upper slope was higher by 50 units from the ‘Base

Case Scenario’, for each region) . This scenario was labelled as the ‘Steep Slope

Scenario’ . It was assumed that by increasing the slopes, higher price estimates

would be generated. See Appendix 2 for details.

A comparison between the results from the ‘Base Case Scenario’ and the

‘Steep Slope Scenario’ validates the assumption that increasing the slopes yields

larger price estimates (i.e., steeper sloped demand curves are more price

responsive). For the ‘Steep Slope Scenario’, the result of a 10 percent

shortfall in production below normal yielded an increase in regional prices above

normal by 25.1 for the Peace River, 40.0 for the Central Interior, 24.6 for the

Cariboo—Chilcotin, 33.8 for the Thompson—Okanagan, and 29.5 for the Kootenay

regions. For all of these cases except for .he Cariboo—Chilcctin Region, the

change in price was greater than that under the ‘Base Case Scenario’ . For this

region, the ‘Steep Slope Scenario’ yielded a one percent lower increase in price

than the ‘Base Case Scenario’, which could probably be attributed to an

inaccuracy in parameterizing the regional demand curves, causing a slight bias

in the allocation process (i.e., slightly more forage allocated to Cariboo—

Chilcotin region when slopes are increased resulting in a less responsive price)

This is, however, of no great concern as all other regions respond correctly and

the violation in the Cariboo—Chilcotin price is negligible in size.

In the third scenario, the upper slopes of the regional demand curves was

decreased by 50 units from the ‘Base Case Scenario’, for each region. It was

assumed that this would result in smaller price estimates (i.e., smaller sloped

demand curves are less price responsive) . See Appendix 2 for details.

A comparison in results between the ‘Flat Slope’ and ‘Base Case’ scenarios

confirms the hypothesis of the lower slope being less price responsive. For the
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‘Flat Slope Scenario’, a 10 percent shortfall in production below normal for all

regions yields an increase in price above normal of 20.3 percent for the Peace

River, 29 percent for the Central Interior, 18.3 percent for the Cariboo—

Chilcotin, 25.3 percent for the Thompson—Okanagan, and 14.2 for the Kootenay

regions. For all of these cases, the increase in price was less than for the

‘Base Case Scenario’

The pricing model appears to respond reasonably well to changes in the

slopes of the demand curves. Larger price estimates resulted from an increase

in the slope in four of the five regions, confirming that steeper slopes are more

responsive; and, lower price estimates for all regions resulted when slopes were

lowered, showing that lower slopes are less price responsive. Next, the accuracy

of the price estimates was checked.

Using the linear regression results from the ‘Base Case Scenario’,

predicted price estimates were obtained by substituting the regional quantity

levels from the 150 simulations back into each regression equation. A graphical

display showing the accuracy of the price estimation is found below in Figures

5.6 through 5.10. These graphs represent the predicted price over the actual

price for each of the 150 simulations. A value of one represents a perfectly

approximated regional price.
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The results appear quite reasonable, with all of the estimated regional

prices converging to their actual values (converging around the value one) . On

average for the regions, the model showed a rough accuracy of about 80 percent

(varying between 1.2 and 0.8) . There were only a few extreme outliers found in

the four of the five regions over the 150 simulations, with Peace River being the

excluded region.

The Central Interior Region exhibited two cases in which price was

underestimated, with the more significant estimate being approximately 20 percent

of actual price. Only two or three overestimates were found, with the largest

being greater than two times the actual price. These extreme estimates are most

likely a result of prices being generated from the kinked regional demand curves.

Since prices along the inelastic portion of the demand curve are based on other

trading regions’ prices, and there is a significant jump from the upper to lower

curves, situations can possibly arise in which the price may appear overly high



53

or low. An example of this would be where a region produces excess production

and its surrounding regions have a significant excess demand. As a result the

excess supply will flow to the surrounding regions such that the region will

consume at its base requirement and have price generated from the other regions

prices. A jump in that region’s price level would be observed, as compared to

if the regions had a strictly linear demand curves (no inelastic portion) . Since

the regressions used are based on a linear fit, the results may appear to be an

extreme over or underestimation in price.

From a policy perspective, the implications of an overestimation in price

are more severe than an underestimation. If price is severely overestimated, and

the observation falls into the category in which a Wide—Spread Drought payment

must be made (i.e., the estimated price exceeding the price trigger level and the

actual supply falls below the guarantee level), then it can become quite

expensive for the agency supplying the compensation.

The Cariboo—Chilcotin Region only had one notable outlier in its price

estimates, where the estimated price exceeded the actual by approximately 60

percent. The Thompson—Okanagan Region had one extreme underestimate, where

estimated price was approximately 20 percent of the actual and two overestimates

of approximately 50 percent over the actual. The Kootenay Region exhibited the

most number of outliers. In over approximately five cases, the estimated price

exceeded the actual by more than 50 percent with the largest being more than 100

percent. This can be explained by the fact that the Kootenay Region is

significantly isolated from the rest of the province, given the huge transport

costs especially beyond the Thompson—Okanagan Region. As a result the price in

the Kootenay Region may have relatively larger fluctuations in price than the

other regions.32

31 An observed overestimation may result if the region has excess supply like in the example
above, while underestimation may occur in the reverse if the region is in excess demand.

32 Due to the large transport costs to the rest of the province the Kootenay Region does
almost all of its trade with the Thompson-Okanagan Region; therefore, the Kootenay Region may
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As stated previously, the purpose of this thesis was to develop a pricing

model for forage. With this model, estimates of forage prices can be made and

applied directly to the problem of crop insurance. Forage prices are a necessary

component in a WSD insurance scheme since they are used to determine the level

of payments, and estimates are needed as prices are non—observable in the real

world. The way in which this model would be applied to the WSD insurance scheme

will be described.

Given the results from the regressions of prices on quantities (assuming

that the ‘Base Case Scenario’ parameters were used), the regression equations can

be used to obtain current price estimates. The Ministry of Agriculture (the

insurers) would substitute the current regional production levels for forage back

into each of the regression equations to obtain regional price estimates. Given

these regional price estimates and their associated quantity levels, the insurers

could determine the indemnities (if any) owed to the farmers under the insurance

scheme. As described previously, for a region to qualify for a payment under

this scheme, actual supply must fall below the guarantee level and price must

exceed a price trigger level.

The following graph, Figure 5.11, provides a graphical description of

payments under the WSD insurance scheme. The results from the 150 simulations

under the ‘Base Case Scenario’ for the Peace River Region are shown in the plots

of predicted price on supply levels. Note that the price trigger and

guarantee level34 are represented. Payment levels are equal to the quantity

coverage (amount below the guarantee level) multiplied by the price covered

(amount above the price trigger) . The points in the top left quadrant represent

Wide—Spread Drought payments, where supply falls below the guarantee level and

the estimated price exceeds the trigger level.

have less price stability in extreme times with only one main trading path.

This value was chosen to be 20% above the average price level.

This value was chosen to be 80% of average production.
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The results from this graph are useful in that the insurers can determine

the frequency and cost of the program. In 150 simulations (years), the number

of times in which a payment is made to the Peace River Region can be ascertained

by the number of observations in the top left quadrant. The cost of these

payments can be determined by the amount by which the observation exceeds the

price trigger and falls below the guarantee level. Note that both the frequency

and level of payments are of significant importance to the viability of the

program.

Both the frequency and levels will change as the price trigger and guarantee levels are
changed.
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Figure 5.11 Peace River Region (Base Case Scenario)



56

Chapter 6 : Conclusions

During times of wide—spread drought, forage producers and consumers, in

particular those in British Columbia, may experience drastic increases in forage

prices. It had been proposed that a method be devised in which farmers could

insure themselves against this price—risk associated with these types of natural

disasters. The Wide—Spread Drought insurance scheme was proposed by the Crop

Insurance Branch at British Columbia Ministry of Agriculture, Fisheries, and

Foods in order to deal with this issue. This insurance scheme did however,

require the use of a model to estimate forage prices based on regional supplies

of forage, since prices were non—observable. The first portion of this thesis

developed a model to estimate forage prices. The second portion showed an

application to British Columbia forage production, with a description of its use

in a Wide—Spread Drought insurance scheme.

Aside from the huge limitation on availability of data and vast

complexities of the model, some reasonable results were obtained. Under the

‘Base Case Scenario’ regression analysis was used to form a relationship between

changes in regional production levels and changes in regional price levels. From

the regressions, the R—squared values and t—statistics all appeared quite

reasonable. The accuracy of the model in estimating prices was checked by

graphically representing predicted prices over real prices. With the exception

of a few extreme values, the model worked quite well in price estimation.

Results from two other sloped scenarios were compared with those of the

Base Case in order to determine the models sensitivity to changes in the upper

slopes of the regional demand curves. Log—linear regressions were performed so

that the changes in quantities and the effects on the price levels could be

expressed in percentages. It was assumed that increasing the slopes would make

the model more price sensitive and lowering the slopes, less price sensitive.

The results validated this assumption as the ‘Steep Slope Scenario’ exhibited a

greater change in regional price estimates above normal levels given an

equivalent percentage shortfall in production below normal levels than the ‘Base



57

Case Scenario’. Note that this was true for all but the Cariboo—Chilcotin

Region, in which price was only one percent less responsive than in the ‘Base

Case Scenario’ . As well, the ‘Flat Slope Scenario’ exhibited a smaller change

in regional price estimates above normal levels given an equivalent percentage

shortfall in production below normal levels than the ‘Base Case Scenario’

The model developed in the thesis shows considerable promise in its

applicability to real world problems, in particular to the problem of crop

insurance. When applied to British Columbia forage production, it did reasonably

well in estimating forage prices and responded quite well to changes in the

slopes of the regional demand curves. However, the accuracy of these results is

questionable as some of the necessary data was unavailable. In particular, there

was no forage consumption or price data available to parameterize the demand

curves. As a result, approximations to these curves had to be made. There was

no series data available on forage yields to obtain variance/covariance values

for the regions, therefore, these values were obtained by drawing relationships

between variability in precipitation and variability in yields. There was also

limited availability of data on average regional yield levels, amount of seeded

acreage used, and feed requirements per type of livestock.

In order for the results to ultimately be useful for price estimation

purposes, all of the data requirements must be met. Without this complete

information, any conclusions drawn regarding the results may be strictly

hypothetical.
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Appendix 2



66

Sensitivity Analysis

Log—Linear regressions for ‘Steep Slope Scenario’

%dPPE=—1 22%dQPE—O . 44%dQCE—O . 33%dQCA—O. 44%dQTH—O 08%dQKO

%dPCE=—O 77%dQPE—1 17%dQCE—O 58%dQCA—]. 18%dQTH—O 30%dQKO

%dPCA=—O 39%dQPE—O 58%dQCE—O . 34%dQCA—O . 96%dQTH—D . 19%dQKO

%dPTH=—O 55%dQPE—O 74%dQCE—O 52%dQCA—1 34%dQTH—O 23%dQKO

%dPKO=—O 45%dQPE—O . 35%dQCE—O. 47%dQCA—1 06%dQTH—O. 62%dQKO

Log—Linear regressions for ‘Flat Slope Scenario’

%dPPE—1 05%dQPE—O 41%dQCE—O . 24%dQCA—O 30%dQTH—O 03%dQKO

%dPCE=—O. 61%dQPE—O. 99%dQCE—O . 39%dQCA—O . 76%dQTH—O. 15%dQKO

%dPCA=—O .2 6%dQPE—O . 50%dQCE—O . 27%dQCA—O. 68%dQTH—O. 12%dQKO

%dPTH=—O . 31%dQPE—O 63%dQCE—O . 34%dQCA—1 14%dQTH—O. 11%dQKO

%dPKO=—O . 1O%dQPE—O 32%dQCE—O . 12%dQCA—O . 53%dQTH—O 35%dQKO
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Appendix 3



* GAMS file to run the spatial equilibrium model

* DEFINING THE FILE TO WRITE TO

FILE outt /outt.dat/;

FILE con / con.dat/;

FILE tostor /tostor.dat/;

FILE storm /storin.dat/;

* SET(S)” DECLARES THE SETS (DOMAIN) OVER WHICH THE PARAMETERS
* AND VARIABLES ARE DEFINED (I.E. VALUES FOR EACH REGION). PAGES
* 5 TO 7 OF A GUIDE TO USING GAMS.

SET
R REGIONS

/PEACE
CENTRAL
CAR IBOO
THOMPS
KOOTEN
STORAGE!;

SET
U ITERATIONS

/Ul*U150/;

SET
Y REPETITIONS FOR SOLVING PRICE

/Y1*Y7/;

* PARAMETER (FOR ENTERING PARAMETER LISTS, I.E. VECTORS)
* TABLE (FOR TWODIMENSIONAL TABLES, I.E. MATRICES)
* SCALAR (FOR SCALARS, I.E. SINGLE ELEMENTS, CONSTANTS)

PARAMETER ALU(R) UPPER INTERCEPT OF DEMAND CURVES
/PEACE 225

CENTRAL 154
CARIBOO 194
THOMPS 239
KOOTEN 239
STORAGE 78/;

PARAMETER ALD(R) LOWER INTERCEPT OF DEMAND CURVES
!PEACE 251

CENTRAL 180
CARIBOO 220
THOMPS 265
KOOTEN 91
STORAGE 0/;

PARAMETER BU(R) UPPER SLOPE OF DEMAND CURVES
/PEACE 0.00052

CENTRAL 0.00044
CARIBOO 0.00051
THOMPS 0.00055
KOOTEN 0.0027
STORAGE 0.000189/;

PARAMETER BL (R) LOWER SLOPE OF DEMAND CURVES
/PEACE 0.00075

CENTRAL 0.00075
CARIBOO 0.00075
THOMPS 0.00075



KOOTEN 0.00075
STORAGE 0/;

* THE PARAMETER CEAR REPRESENTS THE CONSUMPTION REQUIREMENT, le THE
* VERTICAL PORTION OF THE DEMAND CURVE. IT IS REPRESENTED BY NUMBER OF
* COWS MULTIPLIED BY THE FEED REQUIREMENT PER COW.

PARAMETER CB(R) CONSUMPTION REQUIREMENT
/PEACE 216675

CENTRAL 162368
CARIBOO 208734
THOMPS 249131
KOOTEN 63461
STORAGE 413136/;

*NOTE BELOW THAT THE MEAN VALUES FOR THESE INDEPENDENT RANDOM QUANTITIES IS
*ACCOUMTED FOR BY ADDING A VECTOR OF MEAN VALUES M TO THE VECTOR OR
*CORRELATED QUANTITIES, OBTAINED BY MULTIPLYING BY THE CHOLESKY MATRIX.
*THE VARIANCES FOR THE INDEP’s IS ACCOUNTED FOR IN THE CHOLESKY
*DECOMPOSITION MATRIX (i.e. *FROM THE COVARIANCE MATRIX)

PARAMETER IND(R) INDEPENDENT RANDOM QUANTITY DRAWS;
IND ( ‘PEACE’ ) =NORMAL (0, 1);
IND( ‘CENTRAL’ )=NORMAL(0, 1);
IND ( ‘CAR IBOO’ ) =NORMAL (0, 1);
IND ( ‘THOMPS’ ) =NORMAL (0,1);
IND ( ‘KOOTEN’ ) =NORMAL (0,1);

PARAMETER M(R) MEAN QUANTITIES PRODUCED
/PEACE 195333

CENTRAL 193839
CARIBOO 111893
THOMPS 318272
KOOTEN 77925/;

ALIAS (R,RP);

*R IS ROWS AND RP IS COLUMNS

TABLE CHOL(R,RP) CHOLESKY DECOMPOSITION MATRIX FOR THE RANDOM QUANTITIES

PEACE CENTRAL CARIBOO THOMPS KOOTEN
PEACE 34539 0 0 0 0
CENTRAL 4136 24956 0 0 0
CARIBOO 2383 3980 16706 0 0
THOMPS 5078 6607 6703 45332 0
KOOTEN 938 1033 1059 1715 10283;

PARAMETER QP(R) CORRELATED RANDOM QUANTITIES EXCLUDING CURRENT STORAGE;
QP(’ PEACE’ )=SUM(RP,CHOL( ‘PEACE’ ,RP) *IND(RP) ) +M( ‘PEACE’);

QP(CARIBOO)=SUM(RP,CHOL(CARIBOOi,RP)*IND(RP))+M(ICARIBOO);
QP ( ‘THOMPS’ ) =SUN(RP, CHOL ( ‘THOMPS’ , RP) *IND(Rp) ) +M( ‘THOMPS’);

QP( ‘PEACE’) =MAX(QP( ‘PEACE’) , 0);
QP(’CENTRAL’)=MAX(QP(’CENTRAL’),O);
QP ( ‘CARIBOO’ ) =MAX (QP ( ‘CARIBOO’ ) , 0);
QP(’THOMPS’ )=MAX(QP(’THOMPS’) , 0);
QP ( ‘KOOTEN’ ) =MAX (QP ( ‘KOOTEN’) , 0);

PARAMETER PRICE(R) PRICE VALUES CALCULATED INSIDE THE LOOP;

PARAMETER S1(R,U) CURRENT STOR ADDED TO CURRENT PROD IN RUN2 FROM SERIES 1;

PARAMETER S2(R,U) CURRENT STOR ADDED TO CURRENT PROD IN RUN3 FROM SERIES 2;



7O
PARAMETER S3 (R, U) CURRENT STOR ADDED TO CURRENT PROD IN RTJN4 FROM SERIES 3;

PARAMETER S4(R,U) CURRENT STOR ADDED TO CURRENT PROD IN RUN5 FROM SERIES 4;

PARAMETER S5(R,U) CURRENT STOR ADDED TO CURRENT PROD IN RUN6 FROM SERIES 5;

* NORMALLY TABLES ARE DEFINED OVER TWO DIFFERENT SETS. EXAMPLE,
* IN THE STANDARD LP PROBLEM, THE TWO SETS ARE ACTIVITIES
* (COLUMNS) AND INPUTS (ROWS) OF THE COEFFICIENT MATRIX. IN THE
* PRESENT 3 AGENT PROBLEM, THE R SET IS USED TO DEFINE BOTH THE
* COLUMNS AND THE ROWS OF THE TRANSPORTATION COST MATRIX. NOTE,
* WE HAVE TO USE THE ALIAS COM[vIAND (P.35) TO GIVE THE R SET
* ANOTHER NAME. WE WILL CALL THE NEW NAME RP (I.E. R ‘PRIME’).
* THE FIRST SCRIPT IN THE TABLE REFERS TO THE ROWS AND THE
* SECOND REFERS TO THE COLUMNS (P.26).

TABLE A(R,RP) TRANSPORTATION COSTS BETWEEN REGIONS

PEACE CENTRAL CARIBOO THOMPS KOOTEN STORAGE
PEACE 7 42 48 61 78 18
CENTRAL 42 13 25 43 61 21
CARIBOO 48 25 13 22 56 16
THOMPS 61 43 22 13 42 22
KOOTEN 78 61 56 42 13 21
STORAGE 18 21 16 22 21 0;

* VARIABLES CAN BE EITHER POSITIVE, NEGATIVE, INTEGER, BINARY, OR
* FREE (CAN TAKE ON ANY VALUE). GAMS DEFAULTS TO FREE VARIABLES.

VARIABLES

0(R) CONSUMPTION IN EACH REGION (AGENT)
TR(R,RP) AMOUNT TRANSPORTED BETWEEN REGIONS
W TOTAL WELFARE
IA(R) INDICATOR FOR C LESS THAN CBAR
13(R) INDICATOR FOR C GREATER THAN CBAR
POSITIVE VARIABLES C,TR,IA,IB;

* EQUATIONS NEED TO FIRST BE DESCRIBED (DECLARED) AND THEN
* DEFINED. WHEN DEFINING EQUATIONS, THEIR NAMES ARE FOLLOWED BY
* TWO DOTS. =E= DENOTED EQUAL TO, =G= GREATER THAN EQUAL TO, AND
* =L= LESS THAN EQUAL TO.

EQUATIONS

WELFARE OBJECTIVE FUNCTION
CONSUM(R) CONSUMPTION CONSTRAINTS
QUANT(R) QUANTITY CONSTRAINTS
STOREA(R) STORAGEA CONSTRAINT
STOREB(R) STORAGEB CONSTRAINT
ICONA(R) ICONSTRA CONSTRAINT
ICONB(R) ICONSTRB CONSTRAINT
ICONC(R) ICONSTRC CONSTRAINT
ICOND(R) ICONSTRD CONSTRAINT
ICONE(R) ICONSTRE CONSTRAINT;

WELFARE.. W=E=STJN(R,IA(R)*(ALU(R)*C(R)_0.5*BU(R)*C(R)*C(R))
÷IB(R)*(ALU(R)*CB(R)_0.5*BU(R)*CB(R)*CB(R)

+ (0(R) —CB (R) ) * (ALD(R) —BL (R) * (0(R) +CB (R) ) /2) )
-SUM( (R,RP) ,A(R,RP) *T(,p));

CONSUM(R).. OCR) =L=SUMCRP,TRCR,RP));
QUANTCR).. QP(R)=G=SUM(RP,TRCRP,R));
STOREACR).. TR(’STORAGE’,R)=G=O;
STOREBCR).. TR(R, ‘STORAGE’)=E=O;



IA(R) * (C (R) -CB(R) ) =L=O;
13CR) * CC CR) -CB CR) ) =G=O;
IA CR) ÷13 CR) =E=1;
IA CR) =L=1;
lB CR) =L=1;

* .L DESIGNATES A STARTING VALUE AND .FX DENOTES A FIXED
* VARIABLE, CP. 47 TO 48). WE WILL USE THE AUTARKY SOLUTION AS OUR
* STARTING VALUES (NO TRADE). THE DEFAULT STARTING VALUE IS 0.

C.LCR) = QP(R);

* “MODEL’ IS USED TO NAME THE MODEL AND TO IDENTIFY THE EQUATIONS
* WHICH IT INCUDES, (P.11 TO 12). WE CALL OUR MODEL ‘VERSIONi’ AND
* TELL GAMS TO INCLUDE ALL OF THE EQUATIONS, I.E. WELFARE,
* CONSUMPTION AND QUANTITY PRODUCED.

MODEL VERSION1 /ALL/;

* HERE IS A TITLE FOR THE PRICES AND QUANTITES SENT TO outt.cIat

PUT outt
PUT “ RESULTS FROM GAMS OUTPUT!
PUT “

PUT “ QP1 P1 QP2 P2 QP3 P3 QP4 P4 QP5 P5/;

PUT con
PUT “ CONSUMPTION” /
PUT “ “1/
PUT “ CONPEA CONCEN CONCAR CONTHO CONKOO “I;

PUT tostor
PUT “ ALLOCATION TO STORAGE’!
PUT “ “1/
PUT “ PRICESTO STOPEA STOCEN STOCAR STOTHO STOKOO “1;

storm
“STORAGE ADDED TO CURRENT PRODUCTION”!

II / /
STOPEA STOCEN

OPTION SEED = 2576;

*CREATE THE LOOPS TO GENERATE THE PRICE DISTRIBUTION OVER SET U
*********5TART OF FIRST LOOP

LOOP CU,

IND C ‘PEACE’ ) =NOFMAL C 0, 1);
IND C ‘CENTRAL’ ) =NORMAL (0, 1);
IND C ‘CARIBOO’ ) =NORMAL C 0, 1);
IND C ‘THOMPS’ ) =NORMAL CD, 1);
IND C ‘KOOTEN’ ) =NORMAL (0, 1);

QP( ‘PEACE’ )=SUM(RP,CHOL( ‘PEACE’ ,RP) *INDCRp) )+MC’PEACE’);

QPC ‘CARIBOO’ )=SUN(RP,CHOL( ‘CARIBOO’ ,RP) *INDCRp) ) +MC ‘CARIBOO’);
QPC ‘THOMPS’ ) =SUMCRP,CHOL C ‘THOMPS’ ,RP) *INDCRP) ) ÷MC ‘THOMPS’);
QP C ‘KOOTEN’ ) =SUMCRP, CHOL C’ KOOTEN’ ,RP) *IND CRP) ) ÷MC ‘KOOTEN’);

QP C ‘PEACE’ ) =MAX (QP C ‘PEACE’) , 0);
QP(’CENTRAL’ )=MAX(QPC’CENTRAL’) , 0);
QP(’CARIBOO’)=MAX(QPC’CARIBOO’ ) ,0);
QP C ‘THOMPS’ ) =MAXCQP C ‘THOMPS’) , 0);
QP C ‘KOOTEN’ ) =MAX(QP C’ KOOTEN’) , 0);

ICONA(R)
ICONB CR)..
ICONC(R)..
ICONDCR)..
ICONE(R)..

7,

PUT
PUT
PUT
PUT STOCAR STOTHO STOKOO “/;



C.L(R)=QP(R);
72.

* SOLVE INDICATES : (A) THE MODEL TO BE SOLVED; (B) THE
* DIRECTION OF SOLUTION (MAX/MIN); (C) THE NAME OF THE OBJECTIVE
* VARIABLE; (D) THE SOLUTION PROCEDURE TO BE USED.

SOLVE VERSION1 MAXIMIZING W USING NLP;

Si ( ‘PEACE’ , U) = TR. L ( ‘STORAGE’, ‘PEACE’);
Si ( ‘CENTRAL’ ,U) = TR. L (‘STORAGE’, ‘CENTRAL’);
Si ( ‘CARIBOO’ ,U) = TR.L( ‘STORAGE’, ‘CARIBOO’);
Si ( ‘THOMPS’ ,U) = TR. L ( ‘STORAGE’ , ‘THOMPS’);
Si ( ‘KOOTEN’ ,U) = TR. L (‘STORAGE’, ‘KOOTEN’);

********END OF FIRST LOOP

OPTION SEED = 3367;

*********5TART OF LOOP 2

LOOP (U,

IND ( ‘PEACE’ ) =NORMAL (0, 1);
IND ( ‘CENTRAL’ ) =NORMAL (0, 1);
IND ( ‘CARIBOO’ ) =NORMAL (0, 1);
IND (‘THOMPS’ ) =NORMAL (0, 1);
IND(’KOOTEN’)=NORMAL(O,l);

QP ( ‘PEACE’ ) =SUM(RP, CHOL (‘PEACE’ ,RP) *IND(Rp) ) +M( ‘PEACE’ ) +S1 (‘PEACE’ , U);
QP(’CENTRAL’)=StJM(RP,CHOL(’CENTRAL’,RP)*IND(RP))+M(CENTRAL)+S1(CENTRAL,U);
QP( ‘CARIBOO’ ) =SUM(RP,CHOL( ‘CARIBOO’ ,RP) *IND(RP) ) +M( ‘CARIBOO’ ) +S1 ( ‘CARIBOO’ ,U);

QP ( ‘KOOTEN’ )=SUN(RP,CHOL( ‘KOOTEN’ ,RP) *IND(Rp) ) +M( ‘KOOTEN’ ) +S1 ( ‘KOOTEN’ ,U);

QP ( ‘PEACE’ ) =MAX (QP ( ‘PEACE’) , 0);
QP(’CENTRAL’)=MAX(QP(’CENTRAL’) ,0);
QP ( ‘CARIBOO’ ) =MAX (QP ( ‘CARIBOO’) ,0);
QP ( ‘THOMPS’ ) =MAX(QP ( ‘THOMPS’) ,0);
QP( ‘KOOTEN’ )=MAX(QP(’KOOTEN’) , 0);

C. L (R) =QP (R);

SOLVE VERSION1 MAXIMIZING W USING NLP;

S2 ( ‘PEACE’ ,U) =TR. L ( ‘STORAGE’, ‘PEACE’);
S2(’CENTRAL’ ,U)=TR.L(’STORAGE’,’CENTRAL’);
S2(’CARIBOO’ ,U)=TR.L(’STORAGE’, ‘CARIBOO’);
S2 (‘THOMPS’ ,U) =TR.L( ‘STORAGE’, ‘THOMPS’);
S2 ( ‘KOOTEN’ ,U) =TR.L (‘STORAGE’, ‘KOOTEN’);

*********END LOOP 2

OPTION SEED =2107

******5TART LOOP 3
LOOP (U,

IND(’PEACE’ )=NORMAL(0,1);
IND(’CENTRAL’)=NORMAL(O,l);
IND ( ‘CARIBOO’ ) =NORMAL (0, 1);
IND ( ‘THOMPS’ ) =NORMAL (0, 1);
IND(’KOOTEN’)=NORMAL(O,l);

QP(’PEACE’)=SUM(RP,CHOL(’PEACE’ ,RP) *IND(RP) )+M(’PEACE’ )+S2(’PEACE’ ,U);
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QP ( ‘CENTRAL’ ) tSUN (RP, CHOL (‘CENTRAL’ ,RP) *IND (RP) ) +M( ‘CENTRAL’) +S2 (‘CENTRAL’ ,U);

QP(’KOOTEN’)SUM(RP,CHOL(’KOOTEN’,RP)*IND(RP))÷M(KOOTEN)+S2(KOOTEN,U);

QP ( ‘PEACE’ ) =MAX (QP ( ‘PEACE’) , 0);
QP ( ‘CENTRAL’ ) =MAX (QP ( ‘CENTRAL’) ,0);
QP ( ‘CARIBOO’ ) =MAX (QP ( ‘CARIBOO’) ,0);
QP (‘THUMPS’ ) =MAX(QP ( ‘THOMPS’) ,0);
QP( ‘KOOTEN’ ) =MAX(QP ( ‘KOOTEN’) ,0);

C.L(R)=QP(R);

SOLVE VERSION1 MAXIMIZING W USING NLP;

S3 (‘PEACE’ ,U) =TR. L ( ‘STORAGE’, ‘PEACE’);
53 (‘CENTRAL’ ,U)=TR.L(’STORAGE’,’CENTRAL’);
S3(’CARIBOO’,U)=TR.L(’STORAGE’,’CARIBOO’);
S3 (‘THUMPS’ ,U) =TR. L ( ‘STORAGE’, ‘THOMPS’);
S3 (‘KOOTEN’ ,U) TR.L (‘STORAGE’, ‘KOOTEN’);

******END LOOP 3

OPTION SEED = 2688;

*********5TART LOOP 4

LOOP (U,

IND ( ‘PEACE’ ) =NORNAL (0, 1);
IND ( ‘CENTRAL’ ) =NORMAL (0, 1);
IND ( ‘CARIBOO’ ) =NORNAL (0, 1);
IND(’THOMPS’)=NORMAL(O,l);
IND(’KOOTEN’)=NORMAL(O,l);

QP ( ‘PEACE’ ) =SUN(RP, CHOL (‘PEACE’ ,RP) *IND (RP) ) +M( ‘PEACE’ ) ÷S3 (‘PEACE’ ,U);
QP (‘CENTRAL’) =STJN (RP,CHOL (‘CENTRAL’ ,RP) *IND(RP) ) +M( ‘CENTRAL’) ÷S3 (‘CENTRAL’ ,U);

QP( ‘THOMPS’ ) =SUM(RP,CHOL( ‘THOMPS’ ,RP) *IND (RP) ) +M( ‘THOMPS’ ) ÷S3 (‘THOMPS’ ,U);
QP ( ‘KOOTEN’ ) =SUN(RP, CHOL ( ‘KOOTEN’ ,RP) *IND (RP) ) ÷M( ‘KOOTEN’ ) ÷S3 (‘KOOTEN’ ,U);

QP ( ‘PEACE’ ) =MAX (QP ( ‘PEACE’) ,0);
QP( ‘CENTRAL’) =MAX (QP( ‘CENTRAL’) , 0);
QP(’CARIBOO’)=MAX(QP(’CARIBOO’),O);
QP(’THOMPS’)=MAX(QP(’THOMPS’),O);
QP(’KOOTEN’)=MAX(QP(’KOOTEN’),O);

C.L(R)=QP(R);

SOLVE VERSION1 MAXIMIZING W USING NLP;

S4 (‘PEACE’ , U) =TR.L( ‘STORAGE’ , ‘PEACE’);
S4 (‘CENTRAL’ ,U) =TR. L (‘STORAGE’, ‘CENTRAL’);
84 ( ‘CARIBOO’ ,U) =TR. L( ‘STORAGE’, ‘CARIBOO’);
S4 ( ‘THOMPS’ ,U)=TR.L( ‘STORAGE’, ‘THOMPS’);
S4 ( ‘KOOTEN’ ,U) =TR.L (‘STORAGE’, ‘KOOTEN’);

********END LOOP 4

OPTION SEED = 4444;

*******START LOOP 5

LOOP (U,



IND ( ‘PEACE’ ) =NORNAL (0, 1);
IND ( ‘CENTRAL’ ) =NORMAL (0, 1);
IND ( ‘CARIBOO’ ) =NORMAL (0, 1);
IND ( ‘THOMPS’ ) =NORMAL (0, 1);
IND(’KOOTEN’)=NORMAL(0,1);

QP( ‘PEACE’ )=SUM(RP,CHOL(’PEACE’ ,RP) *IND(RP) )+M(’PEACE’ )+S4 (‘PEACE’ ,U);

QP ( ‘THOMPS’ ) =STJN(RP,CHOL( ‘THOMPS’ ,RP) *IND(Rp) ) +M( ‘THOMPS’ ) +S4 (‘THOMPS’ ,U);
QP ( ‘KOOTEN’ ) =SUN(RP, CHOL ( ‘KOOTEN’ ,RP) *IND (RP) ) +M( ‘KOOTEN’ ) +S4 (‘KOOTEN’ ,U);

QP(’PEACE’)=MAX(QP(’PEACE’),O);
QP(’CENTRAL’)=MAX(QP(’CENTRAL’) ,0);
QP(’CARIBOO’)=MAX(QP(’CARIBOO’),O);
QP ( ‘THOMPS’ ) =MAX(QP ( ‘THOMPS’) ,0);
QP ( ‘KOOTEN’ ) =MAX(QP ( ‘KOOTEN’) ,0);

C.L(R)=QP(R);

SOLVE VERSION1 MAXIMIZING W USING NLP;

S5 ( ‘PEACE’ ,U) =TR - L ( ‘STORAGE’, ‘PEACE’);
S5 (‘CENTRAL’ ,U)=TR.L( ‘STORAGE’ ,‘CENTRAL’);
S5 (‘CARIBOO’ ,U)=TR. L( ‘STORAGE’ , ‘CARIBOO’);
S5 ( ‘THOMPS’ ,U) =TR.L (‘STORAGE’, ‘THOMPS’);
S5 (‘KOOTEN’ ,U) =TR.L (‘STORAGE’, ‘KOOTEN’);

********END LOOP 5

OPTION SEED = 4111;

********5TT LOOP 6

LOOP (U,

IND(’PEACE’)=NORNAL(O,l);
IND ( ‘CENTRAL’ ) =NORNAL (0, 1);
IND ( ‘CARIBOO’ ) =NORNAL (0,1);
IND ( ‘THOMPS’ ) =NORMAL (0, 1);
IND(’KOOTEN’)=NORMAL(O,l);

QP( ‘PEACE’ )=SUN(RP,CHOL(’PEACE’ ,RP) *IND(Rp) )÷M(’PEACE’ ) ÷S5 (‘PEACE’ ,U);
QP ( ‘CENTRAL’ ) =SUN (RP, CHOL ( ‘CENTRAL’ ,RP) *IND (RP) ) ÷M( ‘CENTRAL’ ) +S5 ( ‘CENTRAL’ ,U);

QP ( ‘THOMPS’ ) =SUM(RP, CHOL ( ‘THOMPS’ ,RP) *IND (RP) ) +M( ‘THOMPS’ ) ÷S5 ( ‘THOMPS’ ,U);
QP ( ‘KOOTEN’ ) =SUN(RP, CHOL ( ‘KOOTEN’ ,RP) *IND (RP) ) +M( ‘KOOTEN’ ) ÷S5 ( ‘KOOTEN’ ,U);

QP ( ‘PEACE’ ) =MAX (QP ( ‘PEACE’) ,0);
QP( ‘CENTRAL’) =MAX (QP( ‘CENTRAL’) , 0);
QP( ‘CARIBOO’ ) =MAX(QP( ‘CARIBOO’ ) ,0);
QP(’THOMPS’)=MAX(QP(’THOMPS’),O);
QP ( ‘KOOTEN’ ) =MAX(QP ( ‘KOOTEN’) ,0);

C.L(R)=QP(R);

SOLVE VERSION1 MAXIMIZING W USING NLP;

* SOLUTION REPORT

* GENERATING THE PRICES

C.L(R)=ROUND(CL(R),4);
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