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ABSTRACT 

This research was undertaken because of the need to develop an objective method 

for quality control of milk. A major problem in the dairy industry is off-flavour often 

found in milk. Quality control of milk is heavily dependent upon sensory evaluations 

supported by microbiological and chemical analyses. The chief purpose of this research 

was to demonstrate a simple and economical system for quality control of milk using a gas 

chromatogf aph and computer-aided data processing. 

Two experiments were conducted: one using microbial off-flavours and another 

using chemically induced off-flavours. First, Ultra High Temperature (UHT)-sterilized 

milk was inoculated with Pseudomonas fragi, Psuedomonas fluorescens, Lactococcus 

lactis, Enterobacter aerogenes, Bacillus subtilis and a mixed culture (L. lactis: 

E. aerogenes: P. fragi = 1:1:1) with approximately 104 CFU mL"1. The samples were 

stored at 4°C up to 10 days for P. fragi and P. fluorescens and at 30°C up to 24 hours for 

L. lactis, E. aerogenes, B. subtilis and the mixed culture. Several multivariate analyses 

were applied to the standaridized peak areas of GC data. A new multivariate analysis 

technique, principal component similarity analysis (PCS), was capable of classifying milk 

samples with regard to bacterial species and storage time. Artificial neural networks 

(ANN), partial least squares regression analysis and principal component regression 
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analysis were also applied. ANN provided the most accurate means of classification. 

Secondly, pasteurized milk was treated to develop different off-flavours (light-

induced, oxidized, cooked and heated) according to the procedures of the American Dairy 

Science Association. The same pasteurized milk samples as those used for gas 

chromatographic analysis were used for sensory evaluation. Gas chromatography (GC) 

combined with PCS was more effective than sensory evaluation as a means of 

distinguishing milk samples. 

It was concluded that a combination of GC and chemometric methods may have 

great potential in evaluating the chemical and microbial quality of milk. 
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C H A P T E R I 

INTRODUCTION 

A. Background of the Study 

Milk off-flavours present serious quality control problems in the dairy industry. Off-

flavours may develop in milk for many reasons, including bacterial growth, the action of 

native rriilk or bacterial enzymes, as well as chemical changes catalyzed by light or metals 

(Badings and Neeter, 1980). Once these off-flavours develop in raw rriilk, it is very 

difficult to remove them and they remain after pasteurization. Heat stable enzymes 

liberated by gram negative psychrotropbic bacteria also bring about various defects: 

curdling in UHT or pasteurized milk (Cox, 1993), shortened shelf life (Smithwell and 

Kailasapathy, 1995), induction of various off-flavours (McKellar, 1981), abnormal cheese 

texture and reduced cheese yields (Auclair et al., 1981). 

Gas chromatography (GC) is a very valuable technique for analyzing aroma 

compounds in foods. GC has not been applied in industrial quality control because of high 

purchase and operating costs. Recently a low-cost gas chromatograph has appeared on 

the market. A portable gas chromatograph (SRI Model 8610, SRI Instruments, Inc., Las 

Vegas, NV) contains a built-in purge and trap system and uses a computer as its 

integrator. Its flexibility and low cost make it attractive for quality control purposes. 
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This model GC has been applied to analyze mango (Vodovotz et al., 1993) and cheese 

flavour (Arteaga et al., 1994c). This suggested the suitability of the GC for volatile 

detction of milk samples. 

Due to the enormous amount of data produced by automated instrumental analysis, 

efficient data-processing techniques are an absolute necessity in modern food analysis. 

The most useful solution for this increasingly critical analytical problem of data processing 

lies in multivariate analysis techniques. Various multivariate analyses have been applied in 

Food Science (Aishima and Nakai, 1991; Forina et al., 1987). They are principal 

component analysis (Aishima, 1979; Cadet et al., 1991; Headley and Hardy, 1989; 

Heymann and Noble, 1987; Lamberto and Saitta, 1995), cluster analysis (Aishima, 1991; 

Godwin et al., 1978; Mawatari et al., 1991; Resurreccion et al, 1987; Ulberth and Kneifel, 

1992), factor analysis (Li-Chan et al., 1987; Resurreccion and Shewfelt, 1985; Rubico et 

al, 1988; Wu et al., 1977), multiple linear regression analysis (Biggs and McKenna, 1989; 

Hall and Andersson, 1985; Pierce and Wehling, 1994), discriminant analyses (Aishimâ  

1991; Bewig et al., 1994; Leland et al., 1987; Pham and Nakai, 1984; Powers and Keith, 

1968; Vallejo-Cordoba and Nakai, 1994b), principal component regression analysis 

(Vallejo-Cordoba and Nakai, 1994a) and partial least squares regression analysis (Arteaga 

et al., 1994a; Baardseth et al., 1995; Banks et a l , 1992; Defernez and Wilson, 1995; 

Martens et al., 1983; Servili et al, 1995). Recently artificial neural networks (ANN) have 

become the focus of interest in many disciplines (Arteaga and Nakai, 1993; Eerikainen et 
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al., 1993; Horimoto et al, 1995; Norback, 1994; Sutherland, 1994; Zadow, 1994; Zhou et 

al., 1994). ANN is a new computer technique which simulates the function of the human 

brain. ANN is best suited to complicated classification, such as nonlinear classification. A 

new technique, genetic algorithm, also deserves attention (FJibbert, 1993; Lucasius and 

Kateman, 1993). 

A new multivariate analytical technique, principal component similarity analysis 

(PCS), has been developed. It combines principal component analysis and pattern 

similarity computation. It was found useful for preliminary classification using mango 

(Vodovotz et al., 1993) and cheese (Furtula et al., 1994a; 1994b). 

Combining increasingly more powerful computer hardware and software now makes 

it practical to construct an objective flavour evaluation system for routine quality control 

of milk. 

B. The Problem 

There are two major problems in the quality control of flavour in milk 

(1) Characterization of the perceived flavour of milk is a complex task. Traditionally, an 

experienced person smells the milk and decides whether or not it has off-flavours. 

Although the nose is very sensitive, it has limitations. This method is subject to errors 

from differences among individual sensory assessments. (2) Microbial aspects of milk are 

very important in quality control. There are many tests for bacteriological quality 
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(Heeschen, 1991). The most common in the dairy industry are the Standard Plate Count 

and Psychrotrophic Bacteria Count. However, a rninimum of 2 and 10 days respectively, 

are required to obtain results (Heeschen, 1991). 

C. Need for the Study 

The dairy industries have recognized the above problems and have developed more 

objective scoring systems for sensory evaluation (American Dairy Science Association, 

1987). More objective methods have been sought through research on relationships 

between analytical data and flavour. In particular, gas chromatograms have been used as 

'"fingerprints" of specific flavours or off-flavours. Computers have permitted the 

application of multivariate analyses for objective evaluation of flavour and classification of 

off-flavour. However, no systematic objective methods have been established for milk 

quality. 

For microbial aspects of milk, there is a need for more rapid procedures for 

identifying the cause and extent of milk spoilage, which would facilitate routine quality 

control. 

D. Objectives of the Study 

The overall objective of this research was to demonstrate a simple and economical 

system of gas chromatography and computer-aided data processing for quality control of 
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milk. The specific objectives were to: 

1. Evaluate the capability of a low-cost gas chromatograph for quality control of 

milk flavours. 

2. Classify quality of milk based on a volatile profile measured by gas 

chromatography and determine possible causes of contarnination. 

3. Classify milk samples with respect to the presence of particular bacterial 

species. 

4. Apply several multivariate analyses to find the most accurate classification 

method. 

E. Plan of the Study 

Two experiments were conducted: one using milk inoculated with various bacterial 

species and another using milk subjected to such factors as fight, oxidation, cooking and 

heating. 

A model system was established using Ultra High Temperature (UHT)-sterilized 

milk. Bacteria chosen were those which play an important role in the deterioration of 

milk. UHT milk was inoculated with P. fragi, P. fluorescens, L. lactis, E. aerogenes, 

B. subtilis and a mixed culture (L. lactis: E. aerogenes: P. fragi = 1:1:1) to approximately 

104 CFU mL"1 and stored at 4°C for 10 days for P. fragi and P. fluorescens and 30°C for 

24 hours for the remaining bacteria. 
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Pasteurized milk was treated to develop light-induced, oxidized, cooked and heated 

flavours according to the procedures recommended by the American Dairy Science 

Association (Shipe et al., 1978). The same pasteurized milk samples as those used for gas 

chromatographic analysis were also utilized for the sensory evaluation. 

Several multivariate analyses were applied to classify milk samples. In particular, a 

new technique, principal component similarity analysis (PCS), was evaluated as a means to 

classify milk samples and predict possible causes of contamination. 

F. Basic Assumption 

The SRI gas chromatograph (SRI Model 8610, SRI Instruments, Inc., Las Vegas, 

NV) has been applied to analyze mango (Vodovotz et al., 1993) and cheese flavours 

(Arteaga et al., 1994c). It was found to give adequate chromatograms for classification. 

PCS was applied to gas chromatographic data to classify mango samples (Vodovotz et al., 

1993) and high pressure liquid chromatographic data of cheddar cheese to identify quality 

defects (Furtula et al., 1994a; 1994b). This study began with the assumption that a 

combination of GC and multivariate analyses might be applied to solve problems 1 and 2, 

as mentioned earlier (p. 3 & 4). 



CHAPTER H 

REVIEW OF RELATED LITERATURE 

A. Off-flavours in Milk 

1. Introduction 

Extensive research has been published on the causes and prevention of off-

flavours in milk, but quality control problems persist in the dairy industry. 

The flavour of fresh milk (raw or low-temperature pasteurized) cannot be easily 

defined in specific terms. It is characterized by the pleasant mouth-feel and a slight 

salty/sweet taste (Badings, 1984). A great number of odorous compounds in milk have 

been identified (Badings, 1984; Urbach, 1987; 1990). These belong to many different 

classes such as carbonyl compounds, alkanols, fatty acids, lactones, esters, sulfur 

compounds, nitrogen compounds and aliphatic and aromatic hydrocarbons. Most of 

them are present in sub-threshold concentrations and keep a delicate balance. If the 

concentration of one constituent varies considerably from its usual average content, 

off-flavours may occur (Badings and Neeter, 1980). 

The source of off-flavours in milk are well described in several review papers 

(Badings and Neeter, 1980; Bassette et al., 1986; Bradley, 1980; Burton, 1983; Forss, 

1971; 1979; Shipe et al, 1978; Thomas, 1981). In 1978, the American Dairy Science 

7 
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Association's Nomenclature, Standards and Bibliography Committee categorized off-

flavours according to the nature of the mechanisms in their production, along with 

terms generally employed to describe off-flavours in each category. On this basis, off-

flavours were divided into seven categories: heat-induced, light-induced, oxidized, 

lipolyzed, microbial, transmitted and miscellaneous (Shipe et al., 1978). Using this 

nomenclature, Bassette et al. (1986) reviewed the flavour of both raw and pasteurized 

milk, including the effects of feeds, processing and storage conditions, the handling of 

milk and prevention and control of off-flavour development. Burton (1983) classified 

off-flavours into two major categories: off-flavours not related to storage and those 

developed during storage. Forss (1979), also reviewed the mechanisms of formation of 

major off-flavour compounds. In this review, off-flavours of milk will be discussed in 

relation to several causes: (1) chemical reactions, (2) microorganisms and enzymes and 

(3) extraneous compounds. 

2. Flavour Defects Due to Chemical Reactions 

Oxidized, light-induced and heat-induced off-flavours developed from chemical 

reactions. 

Oxidized off-flavour. Oxidized flavour is often described as "cardboard" or 

"metallic" (Shipe et al., 1978). It develops from increased concentrations of carbonyl 

compounds resulting from the oxidative breakdown of unsaturated fatty acids in the 
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absence of light. There is abundant literature on the compounds isolated and identified 

from oxidized dairy products (Bassette et al., 1986; Nicholson, 1993). Oxidation of 

polyunsaturated fatty acids of phospholipids from milk fat globular membranes induces 

the formation of hydroperoxides which leads to the formation of hydrocarbons, 

alcohols, acids, aldehydes and ketones (Shipe et al., 1978). 

Factors affecting development of oxidized flavour are feed, stage of lactation, 

milk handling and chemical processing (Bassette et al., 1986). Metallic ions, 

particularly copper, catalyze tie reaction. A lower level of ascorbic acid in milk 

promotes copper-induced oxidation, but higher concentrations prevent the 

development of oxidized flavours (Shipe et al., 1978). 

Light-induced off-flavours. Light-induced off-flavour in milk has been studied 

by many researchers and several good review articles have been written (Bekbolet, 

1990; Hansen et al., 1975; Shipe et al., 1978). Light-induced flavour is divided into 

two categories. The first category is referred to as a "burnt", "activated" or a 

"sunlight" flavour. It develops rapidly by degradation of proteins. The second 

category is similar to an oxidized flavour and is related to lipid oxidation. 

Burnt flavour develops initially and then the oxidized flavour becomes 

discernable after a few days. The major compound is 3-methyl thiopropanol. The 

intensity of Ught-induced flavour is dependent on wavelength, intensity, exposure time, 

container materials and levels of ascorbic acid and riboflavin (Shipe et al., 1978). 
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Homogenization makes milk more susceptible to degradation of serum proteins. A key 

component in light-induced flavour is methional resulting from the breakdown of the 

metMonine in the presence of riboflavin (Forss, 1979) 

Much research has been conducted on oxidized flavour due to photooxidation of 

lipids (Bekbolet, 1990; Nicholson, 1993). Factors affecting development of the burnt 

flavour also influence the oxidized flavour, except for homogenization and ascorbic 

acid. The compounds responsible for photoxidation of lipids are different from those 

responsible for oxidized off-flavour development by metal catalysis. It has been 

postulated that photoxidation involves the monoene fatty acids of triglycerides, while 

oxidized flavour involves polyenes of the phospholipids (Shipe et al., 1978). 

Heat-induced off-flavours. Heat-induced flavours are mostly the result of 

thermal treatments. Heat treatment completely inactivates enzymes and destroys the 

most heat-resistant microorganisms. However, it causes heat-induced off-flavours. 

The heat-induced flavours have been classified into four types: (i) cooked or sulfurous, 

(ii) heated, (iii) caramelized and (iv) scorched (Bassette et al., 1986; Shipe et al., 1978). 

The nature and intensity of the off-flavour depend on duration and temperature of heat 

treatment as well as heating methods used. 

Chemical compounds associated with heat-induced flavours are complex. 
I 

Proteins and lipids are sources of heat-induced off-flavour. Sulfur compounds have 

been considered major contributors to heat-induced flavours in milks. A number of 
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sulfur compounds can be readily formed in milk from sulfur-containing amino acids if 

sufficient heat above the pasteurization temperature is applied. Hydrogen sulfide is 

responsible for cooked flavour. However, this flavour dissipates after a few days of 

refrigerated storage. Diacetyl, lactones, methyl-ketones, maltoL vanillin, benzaldehyde 

and acetophenone are present in milk which has been heated and contribute to the 

development of the heated flavour (Forss, 1979; Shipe et al., 1978). 

3. Flavour Defects due to Microorganisms and Enzymes 

Microbial off-flavours. Flavour defects from microbiological metabolism can 

develop at any stage of production or processing. The descriptive terms include "acid", 

"malty", ''fruity" "unclean", "bitter" and "putrid" (Shipe et al., 1978). Acid, malty and 

fruity can be recognized by sensory perception alone. The nature and intensity of the 

microbial defects depend on the types and numbers of contaminating microorganisms 

and on the by-products associated with the organisms. There are a number of 

contamination sources: (i) environmental conditions of the dairy farm, (ii) health of the 

animal, (iii) equipment and (iv) personnel related to the collection, storage and 

transportation of milk to processing plants (Jeon, 1993). The type and number of 

organisms associated with processed dairy products are influenced by the time and 

temperature of processing, and by post-pasteurization contamination from equipment, 
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containers, environment and personnel, as well as storage temperature and handling of 

the product by truckers, sales personnel and consumers. 

If the milk is not cooled below 4°C, it will develop an acid taste because of 

Lactoccocus lactis. Malty flavour results from the metabolism of Lactoccocus lactis 

subsp. maltigenes (Shipe et al., 1978). The major component of this flavour defect is 

3-methyl butanol. Fruity flavour develops as a result of metabolism of Pseudomonas 

fragi (Shipe et al, 1978). The major components are ethyl butyrate and 

ethylhexanoate (Hosono et al., 1973; Pierami and Stevenson, 1976; Reddy et al., 1968; 

Toan et al., 1965; Wellnitz-Ruen et al., 1982). 

Enzyme-induced off-flavour. Lipolyzed flavour results from hydrolytic 

cleavage of fatty acids from milk fat triglycerides by lipase enzymes. Lipase may be 

inherent in milk or produced by psychrotrophic microorganisms. Several terms, used 

to describe lipolyzed flavour, are "rancid", "goaty", "soapy", "butyric" and "bitter" 

(Shipe et al., 1978). Since lipolysis is a term to describe lipase catalyzed hydrolysis of 

triglycerides, it is recommended that "lipolyzed flavour" be used to describe the lipase 

induced off-flavour (Bassette et al., 1986). 

There is a sufficient amount of lipase in milk to cause flavour defects. However, 

the enzyme known as lipoprotein lipase is not normally active as the milk leaves the 

cow, because the substrate and enzymes are well partitioned and a multiplicity of 

factors affect the enzyme activity. The factors that affect the activity of lipase include 
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(i) the stage of lactation, (ii) temperature manipulation and (iii) handling, storing and 

processing milk (Jeon, 1993). 

Raw milk is usually stored at 4°C or lower in insulated silos for 2 days or longer 

before processing. The flora of stored milk becomes dominated by psychrotrophic 

bacteria. Many psychrotrophs produce heat-resistant extracellular enzymes, which can 

attack both milk fat and proteins and subsequently reduce the quality and shelf life of 

heat treated milk and dairy products made from such highly contaminated milk (Auclair 

et al., 1981; Cox, 1993; Deeth, 1993; McKellar, 1981; Smithwell and Kailasapathy, 

1995). The effects of bacterial proteinase and lipases on milk and milk products have 

been documented in several reviews (Bishop and White, 1986; Cousin, 1982; Downey, 

1980; Fairbairn and Law, 1986; Law, 1979; Shah, 1994; Stead, 1986). 

4. Flavour Defects Due to Extraneous Components 

Transmitted off-flavours result from the transfer of substances from the cow's 

feed or environment into the milk. They can be transmitted either indirectly in the 

udder via the respiratory and digestive system by way of the blood stream, or directly 

by contact with the product after milking. These off-flavours are grouped into four 

flavours: 'Teed", "weed", "cowy" and "barny" (Shipe et al., 1978). 

Feed flavour develops from cows consvnning feeds with strong odours of feeds 

such as silage or green forages in the few hours before nnlking. Weed flavour results 
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from the consumption of such things as wild garlic and wild onions. These flavour 

defects are the result of increased quantities of benzyl mercaptan, methyl mercaptan, 

dimethyl sulfide, dimethyl disulfide, indole, skatole and trimethylamine (Badings and 

Neeter, 1980). Urbach (1990) reported the effects of the different feeds on milk 

flavour. Cows suffering from ketosis or acetonemia produce the cowy flavour 

(Bassette et al., 1986). Barny flavour develops from cows housed in unventilated areas 

(Bassette et al., 1986). 

Some flavours cannot be attributed to a specific cause or defined in sensory 

terms. These are termed "miscellaneous off-flavours". Absorbed, astringent, bitter, 

chalky, chemical, flat, foreign flavours, unfresh and salty flavours belong to this 

category. These off-flavours are well reviewed elsewhere (Bassette et al., 1986; Shipe 

et al., 1978). 
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B. Detection of Off-flavours 

1. Introduction 

Remarkable progress in analytical instrumentation has benefited flavour research. 

In the mid-1950's, gas chromatography (GC) was implemented for separating flavour 

mixtures into individual components. Then in the 1970's, spectrometric instruments 

were coupled with GC. Mass spectrometry, infrared spectrophotometry and nuclear 

magnetic resonance spectroscopy were interfaced with GC to identify individual 

compounds. Among them, gas chromatography-mass spectrometry has become very 

popular due to its efficiency in the separation and identification of volatile compounds 

(Aishima and Nakai, 1991). 

Since the development of the advanced instrumentation and computer techniques, 

many researchers have dealt with subjective-objective relationships of flavour. They 

have used both GC and sensory evaluation to determine relationships and have pointed 

out that a combination of GC, mass spectrometry and computer data analysis is 

becoming an efficient system for their areas of research (Kwan and Kowalski, 1980; 

Lee-Yan et al., 1991; Lin et al., 1993; Rubico et al., 1988). 

2. Gas Chromatographic Method 

Gas chromatography has been the most suitable method for the separation of 

flavour concentrates to individual compounds (Aishima and Nakai, 1991). Several 
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workers have investigated the headspace volatiles from milk. Jennings et al. (1962) 

were among the first to successfully analyze milk vapour by GC. Off-flavours were 

characterized by the presence of certain chromatographic peaks. These peaks were 

detected as off-flavours from oxidation, light induction and transmitted off-flavours. 

Bassette et al. (1963) also investigated the possibility of headspace gas chromatography 

for studying off-flavours in milk. Samples of fresh and stored raw milk, with and 

without off-flavours, were analyzed successfully. Chromatograms were recorded for 

analyses of rancid, oxidized, sunlight-oxidized and high acid milk. Urbach (1990) 

investigated headspace volatiles from cold-stored raw milk. Analysis of headspace 

volatiles was suggested for assessing the quality of cold-stored raw milk. Recently gas 

chromatography was used for an assessment of UHT-sterilized milk (Lopez-Fandino et 

al., 1993). 

Headspace gas chromatographic analysis is currently the most efficient method 

for analysis of aroma volatiles (Badings et al., 1985; Lee et al., 1995; Lopez-Fandino et 

al., 1993; Rizzolo et al., 1992; Urbach, 1987; 1990; Vallejo-Cordoba and Nakai, 

1994a). This technique could be useful for investigating off-flavours and the cause of 

milk spoilage. 

The presence or absence of abnormal quantities of microbial metabolites in 

spoiled food may show whether or not the spoilage was caused by microorganisms. 

Direct gas chromatographic analysis of biologically produced volatiles in the headspace 
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vapour of several foods has been used for the characterization and the identification of 

several bacterial species (Bassette et al., 1967; Eyles and Adams, 1986; Guarino and 

Kramer, 1969; Lee et al., 1979; Schafer et al., 1982; Zechman et al., 1986). 

The feasibility of using GC as a means of studying bacteria in milk has been 

shown by several researchers. Characterization of bacteria in milk by measuring their 

volatile metabolites with GC was first employed by Bassette and Claydon (1965). 

Bawdon and Bassette (1966) studied the effect of growth of Escherichia coli and 

Aerobacter aerogenes on milk quality by direct analysis of headspace vapour 

containing volatile compounds produced during growth. Bassette et al. (1967) also 

measured volatile compounds produced at different periods of bacterial growth in milk 

to characterize various microorganisms. They discussed the advantages of gas 

chromatographic methods in studying bacterial metabolism. 

Possible origins of contamination of raw milk are numerous but the main source 

of psychrotrophic microflora could be attributed to the inadequate disinfection of 

rnilking equipment (Cousin, 1982). Growth of psychrotrophic organisms can lead to 

development the fruity off-flavour in milk. Several researchers have analyzed the fruity 

off-flavour in milk using headspace gas chromatography (Hosono et al., 1973; Pierami 

and Stevenson, 1976; Reddy et al., 1968; Toan et al., 1965; Wellnitz-Ruen et al., 

1982). 
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3. Relationship Between Subjective and Objective Methods 

Food quality may be directly measured by subjective sensory methods or 

indirectly through analytical measurements. Traditionally, quality control was 

dependent on sensory evaluations (Badings and Neeter, 1980). Much research has 

attempted to develop objective tests for quality evaluation, because sensory evaluation 

is subject to errors in individual assessments. Objective methods for diagnosing milk 

flavour will not replace subjective sensory analysis completely, but will be a valuable 

supplement. 

In objective methods for flavour analysis, some characteristics other than flavour 

have to be measured. Therefore considerable research has focused on correlations 

between flavour and flavour compounds. This has shown significant correlation 

between gas-liquid chromatographic patterns and sensory evaluations for flavour. 

Keller and Kley (1971) showed a 0.93 correlation coefficient between haylike flavour 

scores and total peak areas of gas chromatograms for milk samples. Jaddou et al. 

(1978) also reported a high correlation between the total volatile sulfur compounds per 

mL milk and intensity of "cabbage" off-flavours in heat treated milk Rubico et al. 

(1988) evaluated relationships among sensory quality attributes and gas 

chromatographic peaks obtained from a peanut beverage. The sensory attributes were 

related to changes in various chromatographic peaks. Aishima (1979) reported that 

evaluation and discrimination in sensory tests of soy sauce could be performed by 
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comparing the profiles of aroma substances. Gas chromatographic and sensory 

analyses were also investigated in the study of black tea (Gianturco et al., 1974), carrot 

flavours (Simon et al., 1980) and peach (Spencer et al., 1978), 

In addition to gas chromatograms, attempts have been made to correlate 

chemical indices and flavour quality. Woo and Lindsay (1983) developed a method for 

predicting hydrolytic rancidity off-flavours in butter by correlating quantitative sensory 

data with individual free fatty acid concentrations using stepwise regression and 

discriminant analyses. They concluded that their methods should be applicable to 

indexing hydrolytic rancidity of off-flavours in other dairy products. Collins et al. 

(1993) investigated the influence of psychrotrophic bacteria counts in raw milk on the 

sensory acceptance of UHT skim milk. The psychrotrophic counts in the raw milk 

were strongly correlated with the extent of proteolysis (r = 0.95) but not with the 

extent of lipolysis (r = 0.18) in the stored UHT milk. They showed good correlation 

between extent of proteolysis and bitterness scores in the stored UHT milk Hankin 

and Anderson (1968) studied correlations between flavour score, standard plate count 

and oxidase-positive organisms count in pasteurized milk. They found a significant 

correlation between flavour scores and oxidase positive organisms count. 

Several other papers correlate sensory and chemical data in foods: wines (Kwan 

and Kowalski, 1980), herb oil (Pino et al., 1995), blueberry-whey beverage (Powers 
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and Quinlan, 1974), grape jelly (Coiinlan et al., 1974), tomato (Resurreccion and 

Shewfelt, 1985), fish (Sawyer et al., 1984) and oil (Waltking and Goetz, 1983). 

Techniques applied in the above papers ranged from relatively simple correlations 

to multivariate analyses. Simple correlation methods are suitable for some foods, 

because one or two compounds are related closely with flavour. With multiple 

objective variables, factor analysis and cluster analysis have been applied to decrease 

the number of sensory terms and determine the relationships among physicochemical 

measurements and sensory qualities of several foods (Godwin et al, 1978; 

Resurreccion et al., 1987). An overview of multivariate analyses for relating sensory 

to instrumental data can be found in Dijksterhuis (1995). 
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C. Computer-aided Data Processing 

1. Introduction 

In most modern chemical analyses, data are collected and stored under computer 

control. The enormous amounts of information with dozens of parameters require 

effective techniques for data-processing. 

Chemometrics is a mathematical technique for data processing in chemistry. It 

was developed in 1974 by Kowalski and Wold (Jeon, 1991). Chemometrics is 

classified into 11 subdivisions according to the American Chemical Society: statistics, 

optimization, signal processing, factor analysis, resolution, calibration, modelling and 

parameter estimation, structure-property relationships, pattern recognition, library 

searching and artificial intelligence (Aishima and Nakai, 1991). 

Pattern recognition is defined as the study of data sets to find regularities and 

similarities inherent to the data. It also refers to the mathematical analysis and 

modelling of multivariate data to infer or predict properties of a system from indirect 

measurements (Jeon, 1991; Page, 1986). 

Various multivariate analysis techniques have been used for pattern recognition. 

There are two major classifications, supervised and unsupervised learning methods. 

The purpose of the unsupervised learning method is to cluster variables or samples into 

groups that may be mutually related. In supervised learning methods, variables or 

samples are classified into known groups. Several review papers have been published. 
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Forina et al. (1987) reviewed the theory and application of chemometrics in food 

chemistry. Chemometrics for flavour analysis was discussed by Aishima and Nakai 

(1991). Applications of pattern recognition for quality control can be found in papers 

by Bailey and Rohrback (1994), Jeon (1991), Page (1986) and Resurreccion (1988). 

Principles and theories for each method are well covered in books and review 

papers (Aisliima and Nakai, 1991; Dillon and Goldstein, 1984; Forina et al., 1987; 

Manly, 1986; Martens and Naes, 1989). In this review, applications for each method 

will be mainly discussed. 

2. Pattern Recognition 

a) Supervised Learning Methods 

Supervised learning methods assume that the user has information about the 

groups prior to application of the algorithms. Multiple regression analysis (MRA) 

(Biggs and McKenna, 1989; Hall and Andersson, 1985; Pierce and Wehling, 1994), 

canonical correlation analysis (CCA) (Aishima, 1979; Capilla et al., 1988), linear 

discriminant analysis (LDA) (Aishima, 1991; Bewig et al, 1994; Leland et al., 1987; 

Pham and Nakai, 1984; Powers and Keith, 1968; Vallejo-Cordoba and Nakai, 

1994b), principal component regression analysis (PCR) (Vallejo-Cordoba and 

Nakai, 1994a), partial least squares regression analysis (PLS) (Arteaga et al., 1994a; 

Baardseth et al., 1995; Banks et al., 1992; Defernez and Wilson, 1995; Martens et 
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al., 1983; Servili et al., 1995) and artificial neural networks (ANN) (Arteaga and 

Nakai, 1993; Eerikainen et al., 1993; Horimoto et al., 1995; Norback, 1994; 

Sutherland, 1994; Zadow, 1994; Zhou et al., 1994) have been used for supervised 

pattern recognition. 

In learning the process, a training set is used to develop classification rules 

which are used to predict properties of unknown samples. The disadvantage of this 

method is that classification or prediction is dependent on a training data set. If the 

training set is not representative, an unknown sample may not be classified correctly. 

Linear discriminant analysis (LDA). The purpose of this method is to 

select the variable of greatest discriminatory value and use it for a classification 

(Aishima and Nakai, 1991). In many instances, stepwise linear discriminant analysis 

(SLD) is used as a procedure to combine variables which have significant 

chscriminating power for classification purposes. Disciininant analysis techniques 

have been applied to liquor (Aishima, 1991), vegetable oils (Bewig et al., 1994), 

oxidized flavour in milk (Leland et al., 1987), cheese (Pham and Nakai, 1984), 

coffee and potatoes (Powers and Keith, 1968), milk (Smeyers-Verbeke et al., 1977) 

and shelf life of rriilk (Vallejo-Cordoba and Nakai, 1994b). 

Principal component regression analysis (PCR). PCR is a combination of 

principal component analysis and linear regression analysis. It provides the 

possibility of relating blocks of variables and allows an unknown pattern to be 
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classified and predicted (Aishima and Nakai, 1991). PCR was applied for the 

prediction of shelf-life for pasteurized milk with a standard error of estimate of 1.3 

days within the anticipated shelf-life of 21 days (Vallejo-Cordoba and Nakai, 

1994a). 

Partial least squares regression analysis (PLS). PLS is one of several 

multivariate calibration techniques. It is based on double principal component 

analysis: Y is used to extract latent variables from X, which are in turn used for 

modelling both X and Y (Aishima and Nakai, 1991). A detailed description of the 

technique can be found in Martens and Naes (1989). 

Martens et al. (1983) applied PLS for deternrining relationships between 

different dependent variables and sensory descriptive independent variables of 

cauliflower. PLS showed that texture preference was predicted by texture 

descriptors and flavour. Banks et al. (1992) applied PLS to gas chromatographic 

data from cheddar cheese. An excellent correlation was found between gas 

chromatographic data and sensory scores of cheese samples with various ages. 

Ninety-eight percent of the total variation in the maturity scores was accounted for 

by the model including both volatile and measurements of proteolysis using PLS. 

On the other hand PCR did not yield reliable predictions for the same data set. 

Arteaga et al. (1994a) applied PLS to fourth derivative ultraviolet spectrums to 

determine the composition of protein mixtures. They found a good correlation 
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between measured and predicted protein composition. The standard error of 

prediction for 16 test samples were 13.4, 5.5 and 11.9% for a s r , |3- and K-casein 

respectively, and the correlation coefficients between measured and predicted 

composition was 0.91, 0.99 and 0.94 for the three proteins. 

PLS has recently been used to study prediction of the quality of carrot chips 

by chemical composition (Baardseth et al., 1995), prediction of type of fruit used in 

jam by the fourier transform IR spectra (Defernez and Wilson, 1995) and prediction 

of sensory and headspace composition of virgin oil (Servili et al., 1995). 

Artificial neural networks (ANN). Recently, artificial neural networks have 

become the focus of interest in many disciplines including Food Science. The ANN 

are computer techniques which simulate the massive parallel structure of the brain 

(Lawrence, 1991). There are two principal types of network architecture: feed 

forward and feed back (Lawrence, 1991). The most popular method is by example 

and repetition, also called back-propagation network (BPN). BPN has been 

extensively studied, both theoretically and experimentally and has been by far the 

most successful system (Jansson, 1991; Lawrence, 1991; Wythoff, 1993). 

The BPN technique is one example of supervised learning in feed forward 

networks, in which the learning rule is a mathematical equation known as the delta 

rule, or the related least mean squares rule, which minimizes errors between the 

known values and the network responses (Lawrence, 1991). The BPN is usually 
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built from three type layers: input, hidden and output. The first layer, called the 

input layer, takes the input values of a pattern. The last layer, called the output 

layer, produces the pattern outputs. The layers between are called the hidden layers. 

Each layer has neurons, which are also called processing elements, units or cells. 

The strength of a connection between two neurons is called the weight, which 

determines the magnitude of effect which one neuron can have on the other 

(Lawrence, 1991). The weighted signals are summed to form a net value. Usually 

they are simply added together. Total input is run through the activation function, 

which specifies what the neuron is to do with the signals after the weights have had 

their effect (Lawrence, 1991). The transfer function is then applied to the activation 

values to produce output. In a training sequence, the output of the network is 

compared to known values and errors are back-propagated to the hidden and input 

layers to adjust the weights and minimize the error. This is repeated many times 

until the errors between the output and known values are minimized. General 

reviews and references can be found in Jansson (1991), Lawrence (1991) and 

Wythoff(1993). 

Eerikainen et al. (1993) reviewed applications for the control of various food 

processes, ranging from fermentation and extrusion cooking to the drying of cereal 

grains. Applications of neural networks for the dairy industry can be found in 

several papers (Norback, 1994; Sutherland, 1994; Zadow, 1994; Zhou et al., 1994). 
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Several researchers reported comparison of neural networks with other 

multivariate analyses. A neural network produced better simulation of experimental 

foam capacity of food proteins than did PCR (Arteaga and Nakai, 1993). Horimoto 

et al. (1995) also reported better prediction ability of a neural network than PCR for 

wheat quality for breadmaking. 

b) Unsupervised Learning Methods 

The unsupervised learning methods do not require information for 

classification. These methods cluster individual samples based on similarity or 

distance among their data (Aishima and Nakai, 1991). They are the best approach if 

the data have been collected over time without any definite experimental designs or 

any models in mind. 

The three major unsupervised learning methods used in food science research 

are principal component analysis (PCA), factor analysis (FA) and cluster analysis 

(CA). Recently, a new multivariate analysis technique, principal component 

similarity analysis (PCS), was developed (Vodovotz et al., 1993). 

Principal component analysis (PCA). PCA is a technique to reduce 

dimensionahty of the data. It computes a few linear combinations of the original 

variables which can be used to summarize the data with minimal loss of information 

(Manly, 1986). PCA has been applied for soy sauce (Aishima, 1979), sugar cane 
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(Cadet et al., 1991), whisky (Headley and Hardy, 1989), wines (Heymann and 

Noble, 1987) and oil (Lamverto and Saitta, 1995). 

Factor analysis (FA). This is a technique which is most commonly used for 

data reduction and simplification in food quality studies. It reduces a large number 

of variables to a smaller set of new variables called factors. Each factor in their 

reduced set is highly correlated with a particular subset of interrelated variables. FA 

has been used in the study of muscle protein (Li-Chan et al., 1987), tomatoes 

(Resurreccion and Shewfelt, 1985), peanut beverage (Rubico et al., 1988) and wine 

(Wu et al., 1977). 

Cluster analysis (CA). This is a general term for procedures which classify 

variables or cases according to some measure of similarity (Ennis et al., 1982). The 

variables within a cluster are highly associated with one another, while those in 

different clusters are relatively distinct from one another. Several clustering 

methods are used. Manly (1986) and Dillon and Goldstein (1984) described 

different algorithms for cluster analysis which differ greatly in theory and practice. 

CA has been applied to liquor (Aishima, 1991), green beans (Godwin et al., 1978), 

beer (Mawatari et al., 1991), snap beans (Resurreccion et al., 1987) and yogurt 

(Ulberth and KneifeL 1992). 

Principal component similarity analysis (PCS). This technique is relatively 

new. It combines principal component analysis (PCA) and pattern similarity 
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computation (Aishima et al., 1987). PCS was applied to gas chromatographic data 

to classify mango samples (Vodovotz et al., 1993). Data from HPLC analysis of 

cheddar cheese was analyzed by PCS to identify quality defects (Furtula et al., 

1994a; 1994b). More detailed descriptions of PCS are in the MATERIALS AND 

METHODS section (p. 40 & 41). 

3. Optimization 

Optimization is defined as a method to find the best combination of independent 

variables to maximize (or minimize) a numerical function (objective formula) of a set of 

variables (Nakai, 1990). 

Optimization methods can be classified into two categories: the group of 

methods based on curve fitting and the group of evolutionary operations based on 

sequential process (Nakai, 1990). The curve fitting methods use a search for the points 

with zero slope on the fitted curves by derivatizing the working equations. Mixture 

design, linear programming and response surface methodology belong to this category. 

Evolutionary operation is a method with many applications, especially in research 

and development. There is no need for a working theory of the phenomena under 

study or for descriptive equations to be known in advance. Simplex and random 

centroid optimization (RCO) belong to this category. RCO was developed by 

modification of simplex optimization. Simplex optimization incorporating a mapping 
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process (Nakai et al, 1984) was further extended by applying a constraint (Vazquez-

Arteaga and Nakai, 1990) and finally a centroid concept (Aishima and Nakai, 1986). 

Recently RCO was modified for multifactors and food formulation purposes (Dou et 

al., 1993). It can deal with up to 20 variables and a constraint. 

A variety of optimization techniques have been used for different purposes. In 

research, optimization techniques have been applied to determine the best conditions 

for experiments and processing. In processing, the best combinations of processing 

conditions and ingredients for a product have been optimized (Arteaga et al., 1994b; 

Dou et al., 1993). 

In flavour analysis, simplex optimization was used to optimize blending of 

ingredients in strawberry juice (Aishima et al., 1987) and wines (Datta and Nakai, 

1992). The random centroid optimization technique has been applied to determine the 

operating conditions for headspace gas chromatography (Girard and Nakai, 1991; 

Vallejo-Cordoba and Nakai, 1994a; Vodovotz et al., 1993). 



CHAPTER III 

MATERIALS AND METHODS 

The following general steps were taken in the experiments: 

Flavour defects due to microorganisms 

1. Selection of microorganisms as inocula. 

a. P. fragi and P. fluorescens as inocula. 

b. L. lactis, E. aerogenes, B. subtilis and a mixed culture of the three bacteria 

as inocula. 

2. Determination of incubation time and temperature. 

3. Determination of enumeration: medium, temperature and period. 

4. Estabh'shment of analytical conditions for the SRI gas chromatograph. 

5. Use of various multivariate analyses to classify samples. 

Flavour defects due to chemical reactions 

1. Selection of off-flavours to be produced in milk. 

2. Determination of methods for producing each off-flavour. 

3. Use of a gas chromatograph and statistical analyses to classify milk samples. 

4. Use of sensory evaluation and multivariate analyses to classify milk samples. 

31 
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Flavour Defects Due to Microorganisms 

1. Sample Collection and Preparation 

a) Ultra High Temperature (UHT)-sterilized Milk 

One case of UHT milk (2% mf.) in 12 one-liter tetrapak cartons of the same 

lot number were obtained from a local dairy (Dairyworld Foods, Burnaby, BC) and 

stored at 4°C. The cartons were opened aseptically with flamed scissors after the 

carton mouth was wiped with 70% ethanol. The procedures for preparation and 

sterilization of low density polyethylene carboys fitted with sampling spigots (4 L 

capacity, Sybron/Nalgene, Rochester, NY) were conducted as described by Skura et 

al. (1986). Three carboys with magnetic stirring bars were sterilized by filling them 

with a 200 ppm sodium hypochlorite solution and letting them standing for 2 hours 

at room temperature. Then they were rinsed throughly with sterile distilled water. 

Two liters of milk were aseptically transferred to each carboy. In order to mimic the 

highly oxygenated state of raw milk, air (Pacific Medigas Ltd, Vancouver, BC) 

continuously overlaid the milk which was stirred at 300 rpm on a VMR mini-stir 

magnetic table (VMR Scientific, Inc., San Francisco, CA) and equilibrated for 36 

hours before the inoculation. The stirring bar remained in the carboy throughout the 

experiment. Air was sterilized with 0.3 pm bacterial air vent filters (Gelman 

Sciences, Ann Arbor, MI) and controlled with a flowmeter (400 mL/min) (Series 

150, Linde Union Carbide, Somerset, NJ). The dissolved O 2 content was measured 
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in parts per million (ppm) using a calibrated portable Clark electrode 0 2 probe (YSI, 

Yellow Springs, OH). 

b) Microorganisms 

The most common spoilage microorganisms of raw milk and pasteurized milk 

are (1) gram-negative rod shaped bacteria; Psuedomonas spp, (2) gram positive 

spore forming bacteria; Bacillus and Clostridium spp, (3) lactic acid producing 

bacteria; Streptococcus, Lactobacillus, Lactococccus and Leuconostoc spp and (4) 

yeasts and moulds (Burgess et al., 1994). Therefore, the following cultures were 

used for this experiment: Pseudomonas fragi ATCC 4973, Pseudomonas 

fluorescens biotype A ATCC 17397, Lactococcus lactis ATCC 29146, 

Enterobactor aerogenes ATCC 13048 and Bacillus subtilis ATCC 6460 (American 

Type Culture Collection, Rockville, MD). The mixed culture consisted of three 

bacteria (L. lactis, E. aerogenes and P. fragi) in a ratio of 1:1:1. 

Each freeze-dried culture was rehydrated as described in the manufacturer's 

instructions (American Type Culture Collection, Rockville, MD). Each culture was 

transferred to a test tube of the recommended broth (5 mL) and incubated at its 

optimum temperature for 24 hours in a water-bath shaker at 160 rpm (Lab-Line 

Melrose Park, IL). An aliquot of 800 uL of each culture was removed and added to 

sterilized screwcapped polypropylene microcentrifuge tubes (1.5 mL capacity, 

Ingram & Bell Scientific, Don Mills, ON) including 200 uL presterihzed 
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dimethyl sulfoxide (Fisher Scientific Co., Fairlawn, NJ). Cultures were immediately 

vortexed and frozen at -86°C (Bio freezer, Forma Scientific, Marietta, OH) for the 

long-term stock. 

For short term storage, a few ice crystals were removed from the 

microcentrifuge tubes (long term stock) using sterilized wood sticks and streaked 

out onto the appropriate agar plates and incubated at optimum temperature for 24 

hours. Then each culture was streaked on the appropriate medium for isolated 

colonies. P. fragi and P. fluorescens were maintained by monthly transfer on 

trypticase soy agar (TSA) slants (Becton Dickinson Microbiology Systems, 

Lockeysville, MD) kept at 4°C. L. lactis was maintained by weekly transfer on brain 

heart infusion (BHI) agar slant (Difco, Detroit, MI) kept at room temperature. 

E. aerogenes and B. subtilis were also maintained by weekly transfer on nutrient 

agar slants (Difco, Detroit, MI) kept at room temperature. Short term storage for 

L. lactis, E. aerogenes and B. subtilis was conducted for two weeks before 

discarding the culture. 

c) P. fragi and P. fluorescens as Inocula 

Erlenmeyer flasks (250 mL) containing 25 mL trypticase soy broth (TSB) 

(Becton Dickinson Microbiology Systems, Lockeysville, MD) were inoculated with 

a loopful of each bacterium from a slant. Cultures were incubated at 21°C for 18 

hours in a water-bath shaker at 160 rpm (Lab-Line, Melrose Park, BL). Ten mL of 
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the culture was centrifuged at 10000 x g for 15 minutes at 4°C in a RC2-B Sorvall 

Superspeed centrifuge (Dupont Sorvall, Newtown, CT). The centrifugation was 

repeated after the supernatant was removed, and the pellet resuspended in 10 mL 

0.1 % peptone (Difco, Detroit, MI). The population of the pellet was estimated by 

measuring optical density at 660 nm with a Shimadzu TJV-160 double beam 

spectrophotometer (Tekscience, Oakville, ON). Two liters of UHT milk were 

inoculated with P. fragi and P. fluorescens to a population of approximately 104 cfu 

mL"1. The conditions for UHT-sterilized milk are described in section A. La. (p. 32). 

Samples were collected for plating to provide day 0 cell numbers after 30 minutes. 

The samples were stored at 4°C up to 10 days and taken at two-day intervals for the 

determination of bacterial cell numbers. Samples of 30 mL were also collected into 

amber threaded vials (Fisher Scientific, Ottawa, ON), frozen at -20°C and analyzed 

by GC within 24 hours. UHT milk without bacteria was included as a control. One 

trial was conducted. 

d) L. lactis, E. aerogenes, B. subtilis and a Mixed Culture of L. lactis, 

E. aerogenes and P. fragi as Inocula 

Twenty-five mL of brain heart infusion (BHI) broth was inoculated with a 

loopful of L. lactis and incubated at 30°C for 20 hours in a shaking water bath at 

160 rpm (Lab-Line, Melrose Park, IL). Twenty-five mL of each nutrient broth 

(Difco, Detroit, MI) were inoculated with a loopful ofE. aerogenes and B. subtilis, 
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respectively and incubated in the same way as for L. lactis. The centrifugation and 

washing procedures were carried out as described in section A. I.e. (P. fragi and 

P. fluorescens as inocula, p. 34). 

The populations for these bacteria were estimated in the same way as for 

P. fragi and P. fluorescens. Since these mesophiles have very long generation times 

at 4°C, 1.5 L UHT-sterilized milk in a 2 L flask was inoculated with an initial 

population of approximately 104 cfu mL"1 and incubated at 30°C. There was no air 

flow over the rnilk during this experiment. Instead, milk samples were incubated in 

a shaking water bath at 140 rpm (SW-20C, Julabo Labortechnik GmbH, Lab 

Equipment, Seelbach, Germany). Samples, except B. subtilis (trial 2), were 

collected and analyzed every four hours up to 12 hours, once at 24 hours, and then 

terrninated. Milk samples inoculated with B. subtilis (trial 2) were terminated at 48 

hours. The methodology for GC used with P. fragi and P. fluorescens was also 

used for the individual and mixed bacteria. Two trials for each strain and one trial 

for a mixed culture were conducted. 

e) Enumeration 

Growth of P. fragi and P. fluorescens was monitored by dropping 20 uL on 

TSA plates in quadruplicate. Serial dilution was made with sterile 0.1% peptone. 

The psychrotrophic count was obtained after incubation of plates at 21°C for 25 

hours. Growth of L. lactis was monitored by dropping 20 uL on BHI agar plates 
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and incubated at 30°C for 24 hours. Growth of E. aerogenes and B. subtilis was 

monitored by dropping 20 uL on nutrient agar plates and incubated at 30°C for 24 

hours. Colony morphology and growth for a mixed culture were observed on 

selective media under different incubation conditions. These conditions were 

determined by performing plate counts after various incubation periods and 

temperatures. The final conditions were: Crystal Violet Tetrazolium Agar (Speck, 

1976) for P. fragi at 7°C for 5 days, MacConkey Agar (Difco, Detroit, MI) for 

E. aerogenes at 35°C for 24 hours and Lactobacillus MRS Agar (Speck, 1976) for 

L. lactis at 30°C for 24 hour. 

2. Dynamic Headspace Gas Chromatographic Analysis 

A portable gas chromatograph (SRI Model 8610, SRI Instruments, Inc., Las 

Vegas, NV) equipped with a purge and trap system and a flame ionization detector was 

used for analysis of volatile components. To obtain the best results after conducting 

the minimum number of experiments, random centroid optimization (Dou et al., 1993; 

Nakai, 1990) was used to establish purge conditions. Simplicity of operation, high 

search efficiency and reduced chance of arriving at local optima make this method an 

ideal choice for many applications (Girard and Nakai, 1991; Lee et al., 1990; Vallejo-

Cordoba and Nakai, 1994a; Vodovotz et al., 1993). The purge conditions which 

included purge time, purge temperature and sample size were optimized by assessing 

the number of peaks and their areas. The range for each parameter was determined by 
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literature search and preliminary experiments (Vallejo-Cordoba and Nakai, 1994a; 

Vodovotz et al., 1993). The search space for optimum was confined to: sample size 

ranging from 5 mL to 15 mL; sample temperature varying from 30°C to 55°C and 

purge time ranging from 5 min to 30 min. The selection for a column, a trap, an 

internal standard and analytical conditions for GC were determined based on previous 

analyses of rriilk (Vallejo-Cordoba and Nakai, 1994a) and the analysis of mango using 

the SRI gas chromatograph (Vodovotz et al., 1993). A DB-624 megabore column, 75 

m long, 0.56 mm diameter and 3.0 pm film thickness (J & W Scientific, Folsom, CA) 

was installed along with a Tenax Trap (SRI Instruments, Inc., Las Vegas, NV). Ten 

microliters of a 2.5 ppm solution of 4-methyl-2-pentanone (99.5 % HPLC grade, 

Sigma, St Louis, MO) was used for the internal standard. Ten milUgrarns of 1-

tetradecanol (Sigma, St. Louis, MO) was used to avoid foaming during the purging. 

The helium carrier'gas (UHP grade, Pacific Medigas Ltd., Vancouver, BC) flow rate 

was set to 4.62 mL/min. The hydrogen (UHP grade, Pacific Medigas Ltd., Vancouver, 

BC) and air flow rates for the detector were 20 mL/min and 250 mL/min, respectively. 

Frozen samples were warmed to 30°C in a water bath (SW-20C, Julabo Labortechnik 

GmbH, Lab Equipment, Seelbach, Germany) for 15 min and analyzed. Purging 

conditions were optimized by the random centroid optimization technique. Purging 

conditions will be discussed in the RESULTS AND DISCUSSION section (p.50). The 

trap was dry purged for 10 min after purging the milk to eliminate water. Volatiles on 

the Tenax trap were thermally desorbed at 185°C for 5 min and transferred into the 
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column. The temperature program was decided by trial and error for the best 

chromatogram. It began at 30°C for 5 min, and was then ramped at 3°C/min until 

180°C and subsequently at 5°C/min up to 220°C. The FID temperature was maintained 

at 240°C. 

3. Data Analysis 

a) Data Manipulation 

Data for each gas chromatogram were stored in an IBM-PC compatible 

386/25MHz personal computer interfaced with the GC system (Peak 2, Version 2.0, 

SRI Instruments, Inc., Las Vegas, NV). ASCII files were created for peak areas 

and retention time for each sample. Each gas chromatogram was divided into 

several windows based on retention time (Arteaga et al., 1994c; Vallejo-Cordoba 

and Nakai, 1994a). The selection of the numbers were based on the chromatogram 

which had the maximum peak numbers. Standardization of data was performed by 

dividing peak areas by the area of an internal standard. Each window was used as 

an independent variable. An automated peak recognition procedure was applied by 

using a program written in Basic for a personal computer (Vallejo-Cordoba and 

Nakai, 1994a) (Appendix A). These data were transferred to a SYSTAT file. All 

statistical computations were made with an IBM-PC compatible 486/66MHz 

personal computer. 



40 

The data set for P. fragi and P. fluorescens consisted of 30 milk samples. 

Each gas chromatogram was divided into 24 windows. In the case of L. lactis, 

E. aerogenes, B. subtilis and a mixed culture, the data set consisted of 104 milk 

samples. Each gas chromatogram was divided into 38 windows. 

b) Statistical Analysis 

(1) Unsupervised Learning Methods 

(a) Principal Component Analysis (PCA) 

PCA was performed by a SYSTAT statistical software (FACTOR) 

program (Wilkinson, 1990) on the correlation matrix of the sample with no 

rotation. 

(b) Principal Component Similarity Analysis (PCS) 

Figure 1 shows the PCS procedure. At first, PCA was calculated in a 

SYSTAT (FACTOR) program on the correlation matrix of the sample with no 

rotation. Then principal component scores (eigen value > 1) were transferred 

to ASCII files. Linear regression analysis was then carried out to compute the 

coefficient of determination and slope of principal component scores of 

samples against a reference in the PCS program written in Quick Basic 

(Vodovotz et al., 1993) (Appendix B). 
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Step 1. Apply PCA to the original data for k variables and n samples to 
derive k PC scores and k eigenvalues E and then steps 2-5 are 
followed for each sample. 

Pi = Eil E M 

Step 2. Compute independent variables V as follows: 

Vi= 100(1 - EPz) 

Where / is the principal component numbers. (According to the rule 
of thumb, Ei lower than 1.0 can be discarded.) 

Step 3. Compute dependent variables Y as follows: 

Yi= Vi+M(PCi-PCq) 

where q is the reference and M is percentage of variance of each 
principal component factor. 

Carry out linear regression analysis for Y versus V to compute 
correlation coefficient (r2) and slope (S). 

Plot S versus r2. 

Figure 1. Procedure for principal component similarity analysis (PCS) (Vodovotz et al., 
1993). 

Step 4. 

Step 5. 
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(2) Supervised Learning Methods 

Three supervised multivariate analyses were applied: artificial neural 

networks (ANN), partial least squares regression analysis (PLS) and principal 

component regression analysis (PCR). To estimate the true predictive ability of 

each method, cross-validation was used (Borggard and Thodberg, 1992). The 

data set is divided into two groups: training and testing data. The model is fitted 

to the training data set. Predictions are calculated by fitting the model to the 

testing data set. 

For the experiments with P. fragi and P. fluorescens, 30 samples were 

divided into training data (24 samples) and testing data (6 samples). For the 

experiments with L. lactis, E. aerogenes, B. subtilis and a mixed culture, 104 

samples were divided into training data (89 samples) and testing data (15 

samples). First, random numbers were generated for the samples with Lotus 123 

software (version 3.0, Que Corporation, CarmeL IN). Then samples were 

arranged in ascending order according to the generated random numbers. The 

testing data were picked up from the top. The rernaining data were used as the 

framing data. After a model was calculated using training data, each class of samples 

in the testing data was predicted. The statistical parameters of coefficient of 

determination (r2) and standard error of prediction (SEP) for the known and 

predicted values were employed to estimate predictive ability of each method. This 

procedure was repeated five times. 
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(a) Artificial Neural Networks (ANN) 

The neural network software program 'Brainmaker" (California 

Scientific Software, Nevada, CA) was used. A three-layer neural network 

was used to predict classes using the back-propagation algorithm. A sigmoid 

function was used as a transfer function, because the sigmoid function is 

particularly useful for a non-linear relationship (Lawrence and Peterson, 

1992). As input neurons for networks, 24 variables for P. fragi and 

P. fluorescens and 38 variables for L. lactis, E. aerogenes, B. subtilis and the 

mixed culture were used. The number of output neurons was one, which 

represents each group. Since output values were groups, each sample was 

expressed with a two-digit number, the first digit indicating bacterial species and 

the second storage time. Arbitrary ranges for each class were used. As the first 

digits, 1, 2 and 3 were assigned to negative control, milk inoculated with P. fragi 

and milk inoculated -with P. fluorescens, respectively. The second digits, 1, 2, 3, 4 

and 5 were assigned to storage days 0,2,4, 6, 8 and 10, respectively. In the case 

of L. lactis, E. aerogenes, B. subtilis and a mixed culture, 1, 2, 3, 4 and 5 as 

the first digit were assigned to negative control, milk inoculated with L. lactis, 

E. aerogenes, B. subtilis and a mixed culture, respectively. Storage time 0, 4, 8, 

12 and 24 hours were assigned 1, 2, 3,4 and 5 as the second digit, respectively. 

The number of hidden neurons is an important factor for the effectiveness of 

a network. Network performance may vary with the number of the hidden 
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neurons (Lawrence and Peterson, 1992). With too many neurons, a network may 

not learn but instead memorize patterns, or it may train and run more slowly. On 

the other hand, without enough hidden neurons, a network may not be trainable 

(Lawrence and Peterson, 1992). Therefore the number of hidden neurons was 

diminished starting from a default number, which is the average of the number of 

input neurons and the output neurons (Lawrence and Peterson, 1992). The 

default parameters were used for the learning rate (1.00) and momentum 

factor (0.9). 

(b) Partial Least Squares Regression Analysis (PLS) and Principal 

Component Regression Analysis (PCR) 

PLS and PCR were performed using the commercial software 'PLSplus 

Version 2.1", and add-on software to the spectroscopic/chromatographic 

software system 'LabCalc™" (Galactic Industries Co., Salem, NH). The 

optimum number of factors for PCR and PLS was determined using cross-

validation procedures as described in Martens and Naes (1989). The input 

and output variables were the same as those used for ANN. 
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B. Flavour Defects Due to Chemical Reactions 

1. Sample Collection and Preparation 

Milk was obtained in one-liter gable top paper cartons from a local dairy 

(Avalon, Vancouver, BC) on the day of pasteurization. The milk was then treated to 

develop several off-flavours (hght-induced, oxidized, cooked and heated) according to 

the procedures recommended by the American Dairy Science Association's 

Nomenclature, Standards and Bibliography Committee (Shipe et al., 1978). 

Light-induced flavour was produced by exposing 200 mL of milk in a 250 mL 

glass Erlenmeyer flask to 40-Watt cool white fluorescent lamps for 12 hours at 7°C. 

The mumination was on average 1080 lux perpendicular to the light source at the 

midpoint of the exposed vertical surface. Illumination was measured with a foot candle 

meter (Gossen, GmbH Postsach, Erlangen, Germany) (Schlegel et al., 1969). 

Oxidized flavour was produced by adding 1 ppm of cupric chloride (Fisher 

Certified Grade, Fisher Scientific Co., Fairlawn, NJ) and 20 ppm L-ascorbic acid 

(Fisher Reagent ACS Grade, Fisher Scientific Co., Fairlawn, NJ) to milk. The oxidized 

flavour developed when the milk was held for 12 hours at 4°C in the dark. 

Cooked flavour was produced by heating 200 mL of milk in a 250 mL flask at 

75°C for 1 minute on an electric stove top element (Standard Appliance, model 510, 

MFG Co., Ltd., Toronto, ON). The milk temperature was measured with a 

thermometer inside of the flask of milk which was in a pan of water. Temperature was 

regulated with a thermostat. In the same manner, heated flavour was produced by 
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heating 200 mL of milk in a 250 mL flask for 15 min at 95°C on the electric stove top 

element. The cooked and heated samples were immediately cooled in water and held at 

4°C for 12 hours in the dark. Samples for chromatographic analysis were placed into 

an amber threaded vial and frozen at -20°C and analyzed vvithin 24 hours. Pasteurized 

milk samples of each flavour were used for both gas chromatographic analysis and 

sensory analysis. 

2. Dynamic Headspace Gas Chromatographic Analysis 

Dynamic headspace gas chromatographic analysis was carried out as described in 

section A (Flavour Defects Due to Microorganisms, p. 37). The frozen milk samples 

were warmed to 30°C in a water bath (SW-20C, Julabo Labortecbruk GmbH, Lab 

Equipment, Seelbach, Germany) for 15 min and analyzed by using a SRI gas 

chromatograph. 

3. Sensory Evaluation 

a) Sensory Panel 

Sensory analysis was carried out in the sensory evaluation room of the 

Department of Food Science at the University of British Columbia. The ten 

panellists (five women and five men, aged between 22 and 55 years) were selected 

from among students and staff members of the Department of Food Science at the 

University of British Columbia. All had experience in sensory evaluation panels. 
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None disliked tasting milk. 

b) Judging Procedure 

The procedure for training and testing was adapted from the American Dairy 

Science Association (ADSA) scoring guide (American Dairy Science Association, 

1987). In the training period the experienced panellists were reminded of how to 

prepare for the evaluation according to the standard procedure described by Poste et 

al. (1991). In that session the panellists agreed upon descriptive terms to 

characterize the off-flavours to be detected in the sensory evaluation. After the 

panel was instructed, three testing sessions were conducted. Because of the success 

of panellists in distmguishing samples, preparations for the evaluation were 

apparently appropriate. 

At each session, the panellists evaluated the samples in mdividuaily partitioned 

booths at room temperature (about 22°C) under red lights. The panellists were 

divided into two groups. The first group evaluated samples from 10:00 to 11:00 

a.m. and the second group from 11:00 a.m. to 12:00 noon. 

A table of random numbers was used to assign a three digit code number to 

each sample. Milk samples were warmed to 30°C in a water bath (SW-20C) for 30 

min. Four 30 mL samples were presented in coded, clear 59.1 mL polystyrene 

plastic cups (Solo Cup Company, Urbana, TL) on a white plate. Thirty mL 
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untreated milk was also provided as a reference. Distilled water and unsalted 

crackers were provided to rinse residual particulate matter from the mouth. 

Each panellist was given four samples and one reference for the second time 

with new code numbers. Panellists were asked to detect each off-flavour by 

smelling and tasting for flavour attributes and overall acceptability. The panellists 

were asked to smell the reference and then score the intensity of each sample. They 

were instructed to swirl the contents and immediately place the nose directly over 

the container. After evaluation of flavour by smelL the panellists were asked to 

taste each sample. They took a spoonful of milk and rolled it about the mouth. 

Then all samples were spat out. The intensity of each attribute was scored on a 

structured 10 point scale (American Dairy Science Association, 1987) (Appendix 

C). Each panellist also rated overall acceptability on a structured 10 point scale 

(American Dairy Science Association, 1987) (Appendix C). Four samples, in 

replicate, were tested by each panellist during a session. 

4. Data Analysis 

a) Data Manipulation 

Data collected from the SRI gas chromatograph were manipulated as 

described in section A.3.a in the MATERIALS AND METHODS section (p. 39). 

The data set consisted of 45 milk samples. Each gas chromatogram was divided 

into 12 windows. 
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b) Statistical Analysis 

(1) Dynamic Headspace Gas Chromatographic Analysis 

Principal component analysis (PCA) and principal component similarity 

analysis (PCS) were conducted as described in section A.3.b.l.a and b in the 

MATERIALS AND METHODS section to classify the samples (p. 40). 

(2) Sensory Evaluation 

Scores of each attribute were standardized within each panellist 

(Wilkinson, 1990). Analyses of variance (ANOVA) were used to test for 

significant differences among the groups in terms of panellist and treatment. 

PCA and PCS were carried out as described in section A.3.b.l.a and b in the 

MATERIALS AND METHODS section to classify the samples (p. 40). 

(3) Principal Component Similarity Analysis with Sensory Scores 

Acceptability scores by smelling and tasting were incorporated into the 

principal component similarity analysis plot. This contoured scatter plot was 

produced by a SYSTAT statistical software (CONTOUR) program (Wilkinson, 

1990). Contours show a third dimension with contours on a two dimensional 

scatterplot. The contour variable (Z axis) was the acceptability scores from 

smelling and tasting. For smoothing, a quadratic option was used. The detailed 

procedure was described by Willkinson (1990). 



CHAPTER IV 

RESULTS AND DISCUSSION 

This chapter, discussing the data collected in the study, is divided into three 

sections: (A) optimization of the analytical conditions for a dynamic headspace gas 

chromatograph, (B) analysis of data concerning flavour defects due to microorganisms 

and (C) analysis of data regarding flavour defects due to chemical reactions. 

A. Dynamic Headspace Gas Chromatographic Analysis 

Parameters for purge were optimized by using random centroid optimization (RCO) 

and the results are summarized in Table 1. The RCO consists of three steps in a cycle. 

They are random search, centroid search and mapping process. If the optimum point is 

not obtained, the cycle is repeated until the optimum point is obtained. Total area of 

peaks of gas chromatograms was calculated as a response value. The response value was 

maximized. The results of the first 13 experiments were used to generate the two centroid 

experiments. The centroid is the average of the parameters for n (number of experiments) 

experiments excluding the worst response in n+1 experiments (Nakai, 1990; Dou et al., 

1993). Then all these data are mapped to aid narrowing the search space for the optimum 

(Figure 2). The mapping process aids in visualization of the experimental response surface 

indicating the trend of the data (Nakai et al., 1984). The optimum is located by 

50 
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Table 1. Summary data for random centroid optimization for SRI gas chromatograph. 

Experiments 
No. 

Sample 
volume (mL) 

Purge 
temp (°C) 

Purge 
time (mins) 

Response 

1 8.3 35 28.29 2226.66 
2 8.3 44 8.06 125.67 
3 11.4 31 11.77 77.92 
4 10.9 36 18.11 221.52 
5 11.4 47 15.87 387.16 
6 6.1 56 5.44 85.77 
7 11.4 56 25.90 354.37 
8 7.9 57 18.86 681.06 
9 14.4 39 10.83 244.69 

10 11.9 51 7.37 349.97 
11 14.4 48 26.49 753.96 
12 7.2 44 23.55 298.07 
13 7.4 30 22.56 185.44 

14a 11.4 52 18.90 3132.00 
15a 11.0 52 21.21 2711.94 

Centroid points 
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Figure 2. Mapping result of the first cycle of experiments generated by random centroid 
optimization technique. 
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applying a curve fitting program to link data points. From Figure 2, the optimum was 

reached for each parameter after 15 experiments. The parameters were sample size 11.4 

mL, purging time 18 min and 54 sec and purging temperature 52°C. 

Coefficients of variation (CV) were calculated to investigate the conditions for 

repeatability (Table 2). Four chromatograms were run with the optimum conditions 

obtained from the RCO. Six major peaks were picked up and compared for their 

repeatability. Peaks 1 to 4 showed good repeatability (CV < 10%). When the retention 

time was longer (peak 5 and 6), the CV increased. 
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Table 2. Repeatability of analytical conditions for SRI gas chromatograph. 

Peak No. Retention time (mins) Mean (n=4) S D b CV (%)c 

1 53.5 1.161a 0.034 2.92 
2 57.3 0.143 0.003 1.84 
3 57.8 0.109 0.002 1.71 
4 60.2 0.054 0.001 2.72 
5 67.4 0.057 0.007 12.32 
6 75.4 0.061 0.016 26.34 

aPeak area/peak area of internal standard. 
b Standard deviation. 
0 Coefficient of variation. 
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B. Flavour Defects Due to Microorganisms 

1. Growth of Microorganisms 

The dissolved oxygen tension of rriilk was 6.59 ppm before the inoculation. 

P. fragi and P. fluorescens showed the fastest growth rate within the first four days 

(Figure 3). By day 6, the population of P. fragi reached the stationary phase but the 

P. fluorescens continued to grow until day 10. P. fragi had a shorter generation time 

than P. fluorescens. Populations of both bacteria reached 8 Log 1 0CFU mL"1 after 4 

days, which is the generally accepted numbers for spoilage (Griffiths and Phillips, 

1986). 

Growth curves for L. lactis, E. aerogenes, B. subtilis and a mixed culture are 

shown in Figure 4. In each trial, the initial population of each strain was approximately 

4 Log 1 0CFU mL"1. L. lactis grew to a high density, exceeding 8 Log 1 0CFU mL"1 after 

12 hours. E. aerogenes reached the stationary phase after 12 hours. The generation 

time of B. subtilis in trial 1 was slower than L. lactis and E. aerogenes and reached 8 

Log 1 0CFU mL"1 at 48 hours. The population of B. subtilis in trial 2 began to decline 

after 12 hours. In the rnixed culture, population densities of E. aerogenes and L. lactis 

were similar for the first 12 hours. After 12 hours the populations of both bacteria 

began to decrease. P. fragi did not increase as much at 30°C as at 4°C. Consequently, 

the dilution scheme used for the 30°C at 24 hours sampling was too high to enumerate 

the population density of P. fragi. The total populations, by the end of the experiment, 

were lower when the organisms were grown in the mixed culture. 
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Storage time (days) 

Figure 3. Growth of P. fragi and P. fluorescens in UHT-sterilized milk • = P. fragi. 
Q=P. fluorescens. Incubation temperature was 4°C. One trial was conducted. 
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Figure 4. Growth of £. /arc/is (A), E. aerogenes (B), 5. subtilis (C) and a mixed culture 
(L. lactis: E. aerogenes: P. fragi = 1:1:1) (D) in UHT-sterihzed milk. Incubation 
temperature was 30°C. 
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2. Principal Component Analysis (PCA) 

Effects of inoculating milk with P. fragi and P. fluorescens. Principal 

component (PC) scores were extracted among 24 peaks. Figure 5 shows eigen values 

and their cumulative proportion. The eigen value for a principal component indicates 

the variance that it accounts for out of the total variances (Manly, 1986). The 

cumulative proportion up to the fourth PC (eigen value > 1.0) accounted for 

approximately 87%. Therefore, the information was extracted into four principal 

components with about 13% loss of the information. Figure 6 shows a plot of the 

values for the first two PC, which account for 74% of the variation in the data. All 

samples until day 4 were not clearly classified. P. fragi had a larger PCI with more 

storage days. On the other hand, P. fluorescens had a smaller PC2. Figure 7 shows a 

three dimensional PCA plot. The first three PC account for approximately 82%. When 

PC scores were plotted in three dimensions, there was no clear difference between the 

negative control (UFfT-sterilized rnilk without inoculation) and P. fluorescens. The 

milk samples inoculated with P. fragi (after 8 days) were plotted far from the rest of 

the samples. Two and three dimension scattergrams are frequently examined for 

unsupervised classification. However, ignoring other PC scores by using only two or 

three PC scores may result in ignoring portions of the variation present in the original 

data; this may be a reason why PCA is not usually categorized as a classification 

method (Vodovodz et al., 1993). 
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Figure 5. Eigen values and cumulative proportion in total variance on the basis of 
chromatographic peak areas for UHT milk inoculated with P. fragi and P. fluorescens. 
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Figure 6. Principal component analysis plot (two dimensional) from f 
chromatographic data for P. fragi and P. fluorescens. A = Negative control. B 
P. fragi. C = P. fluorescens. Numbers after each letter represent storage time (days). 
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Figure 7. Principal component analysis plot (three dimensional) from gas 
chromatographic data for P. fragi and P. fluorescens. A = Negative controL B = 
P. fragi. C=P. fluorescens. Numbers after each letter represent storage time (days). 
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Effects of inoculating milk with L. lactis, E. aerogenes, B. subtilis and a 

mixed culture. Eigen values and their cumulative proportion are shown in Figure 8. 

The first nine PC had eigen values greater than one and accounted for about 83% of 

the total variance. The first two PC, which account for about 40% of the total 

variance, are plotted in Figure 9. Before 12 hours all bacteria were not clearly 

differentiated from the negative control. PCI for L. lactis increased after 12 hours. 

PC2 for E. aerogenes, B. subtilis and the mixed culture increased after 12 hours. The 

first three PC scores are plotted in Figure 10. Compared to Figure 9, differences 

among E. aerogenes, B. subtilis and the mixed culture are clear. PC3 scores for 

E. aerogenes decreased in value after 12 hours. PC3 scores for the mixed culture were 

larger after 12 hours. PC3 scores for B. subtilis were close to that of the negative 

control. PC3 scores for the mixed culture were large. 

3. Principal Component Similarity Analysis (PCS) 

Effects of inoculating milk with P. fragi and P. fluorescens. In PCS analysis, 

PCA is conducted first and then PC scores are used to compute the coefficient of 

determination and slopes between adjusted PC scores of samples and those of a 

reference. According to the rule of thumb, an eigen value which is lower than 1.0 can 

be discarded (Vodovotz et al., 1993). PCA yielded four PC with eigen values greater 

than 1.0, which accounted for approximately 87% of the total variation (Table 3). 

Thus the first four PC scores were used to conduct PCS. Figure 11 shows the PCS 
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Principal component 
•©— Eigen value —•— Cumulation 

Figure 8. Eigen values and cumulative proportion in total variance on the basis of gas 
chromatographic peak areas from UHT milk inoculated with L. lactis, E. aerogenes, 
B. subtilis and a mixed culture and incubated at 30°C. 
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Figure 9. Principal component analysis plot (two dimensional) from gas 
chromatographic data for L. lactis, E. aerogenes, B. subtilis and a mixed culture. S = 
Negative control L = L. lactis. E = E. aerogenes. B = B. subtilis. M = a mixed culture. 
Numbers after each letter represent storage time (hours). 
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Figure 10. Principal component analysis plot (three dimensional) from gas 
chromatographic data for L. lactis, E. aerogenes, B. subtilis and a mixed culture. S = 
Negative control. L = L. lactis. E = E. aerogenes. B = B. subtilis. M = a mixed culture. 
Numbers after each letter represent storage time (hours). 
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Table 3. Results of cumulative eigen values for P. fragi and P. fluorescens. 

Factor Eigen value Variance Cumulation (%) 
1 15.422 64.257 64.257 
2 2.364 9.848 74.105 
3 1.847 7.697 81.802 
4 1.326 5.527 87.329 

Table 4. The curve fitting equations for each bacterial species and a mixed culture. 

Bacterial species Curve fitting equationa R 2 b 

P. fragi y=0.001-0.2327x+5558.42x2 0.81 
P. fluorescens y=436.49-1414.44x+1529.76x2-550.70x3 0.86 
L. lactis y=-41.64+189.18x-256.72x2+110.27x3 0.94 
E. aerogenes y= 18.65-62.79x+75.57x2-30.51x3 0.60 
Mixed culture y=9.43-18.18x+9.75x2 0.99 

a y = slope x = coefficient of determination 
b Coefficient of determination. 
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Figure 11. Principal component similarity analysis plot of gas chromatographic data for 
P. fragi and P. fluorescens using negative control (day 0) as a reference. • = Negative 
control. B = P. fragi (A). C = P. fluorescens (O). Number after B and C represents 
storage time (days). S = Reference. The coordinates for the reference are (1, 1). 
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plot of gas chromatographic peak areas. UHT-sterilized milk without inoculation 

(day 0) was used as a reference. For both P. fragi and P. fluorescens, there was little 

difference in the chromatograms between the reference and the inoculated samples until 

day 4. The chromatograms for P. fragi and P. fluorescens showed a substantial 

difference after day 6. The slope of P. fragi became greater with longer storage time 

while the coefficient of determination stayed between 0.95 and 1.0. On the other hand, 

the slope oi P. fluorescens was approximately 1.0, but the coefficient of determination 

became smaller with longer storage time. 

The best curve fitting equation was examined to predict the relationship between 

a quantitative response and explanatory variables (slope and coefficient of 

determination) for samples with P. fragi and P. fluorescens. SlideWrite software 

(Curve Fitter) (SlideWrite Plus, 1995) was used for this purpose. Among several 

functions, linear and polynomial groups were used. The equations which gave the best 

coefficient of determination for each bacterium and a mixed culture are shown in 

Table 4 (p. 66). The coefficient of determination for each equation was 0.81 for 

P. fragi and 0.86 for P. fluorescens. These equations can be used to predict the 

direction of each species. When the plot of an unknown sample is close to one of these 

lines, the bacterial species can be classified. 

To display the difference between the sample inoculated with bacteria and the 

reference, adjusted PC scores of the sample (day 8) were plotted against the adjusted 

PC scores of reference (day 0) in Figure 12. As the sample approaches the reference, 



Figure 12. Adjusted principal component scores of UllT-sterilized milk inoculated with 
P. fragi after 8 days (A) and P. fluorescens after 8 days (B). Adjusted principal 
component scores were computed according to steps 1-3 in Figure 1 (p. 41). The 45° line 
represents the match with PC scores of the reference. 
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the deviation decreases thus approaching the diagonal line. PCI of P . fragi deviated 

greatly from PCI of the reference. The component loadings of the first four PC are 

shown in Table 5. Peaks 3, 11, 17, 19 and 23 were found to have high loadings (> 

0.98) in PCI. They may be used for classifying milk samples possibly contaminated 

with P. fragi. While the PCI oi P. fluorescens was similar to PCI of the reference, 

PC2 showed a clear difference (Figure 12). Since PC2 explained only 9.8% of total 

variance, little difference was observed between the chromatogram of the 

P. fluorescens inoculated sample and the reference (Figure 13). 

Effects of inoculating milk with L. lactis, E. aerogenes, B. subtilis and a 

mixed culture. PCS was carried out using the first nine PC, which accounted for 83% 

of the total variance (Table 6). PCS plot is shown in Figure 14. PCS plots for each 

bacterium and the mixed culture are shown individually in Figure 15. A clearer 

direction for each bacterium can be found in Figures 14 and 15. The chromatograms of 

milk inoculated with bacteria deviated from those of the negative control during 

prolonged storage time. In the cases of E. aerogenes and L. lactis, the samples with 

longer storage times (after 12 hours) appeared farther away from the position of the 

reference (coefficient of determination=l, slope=l). All plots for B. subtilis were close 

to the reference. This suggests that a milk sample inoculated with B. subtilis would not 

produce detectable flavour defects. The rnixed culture showed differences from milk 
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Table 5. Factor loadings (pattern) from principal component analysis of data for 
P. fragi and P. fluorescens. 

Peak No. 
Principal Component (PC) 

Peak No. 1 2 3 4 
1 -0.242 0.477 0.400 0.628 
2 0.950 0.004 -0.197 0.030 
3 0.991 0.010 0.074 -0.012 
4 -0.522 0.594 0.217 -0.447 
5 0.976 0.034 -0.128 0.103 
6 0.881 0.002 0.207 -0.056 
7 0.977 0.031 0.178 -0.005 
8 0.932 -0.014 -0.022 -0.089 
9 0.820 0.173 -0.205 0.336 
10 0.963 -0.143 0.144 0.052 
11 0.988 0.046 -0.059 0.061 
12 0.819 0.046 0.364 0.081 
13 0.927 0.027 0.335 -0.009 
14 0.375 0.074 -0.826 -0.027 
15 0.158 0.731 -0.140 0.035 
16 0.803 0.045 0.153 -0.296 
17 0.983 0.033 -0.106 0.088 
18 0.921 -0.010 0.018 -0.081 
19 0.986 0.018 0.124 0.002 
20 0.689 -0.038 -0.575 0.026 
21 -0.327 0.644 -0.057 0.450 
22 0.637 0.298 0.242 -0.375 
23 0.981 0.078 0.019 0.094 
24 0.003 -0.819 0.236 0.358 
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Figure 13. Gas chromatograms of UOT-sterilized milk (negative control, day 0) (A), 
UOT-sterilized milk inoculated with P. fragi after 8 days (B) and UITT-sterinzed milk 
inoculated with P. fluorescens after 8 days (C). 
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Table 6. Results of cumulative eigen values for L. lactis, E. aerogenes, B. subtilis and 
a mixed culture. 

Factor Eigen value Variance Cumulation (%) 
1 9.138 24.047 24.047 
2 5.961 15.687 39.734 
3 5.089 13.392 53.126 
4 3.877 10.202 63.328 
5 2.023 5.324 68.562 
6 1.839 4.840 73.402 
7 1.434 3.773 77.175 
8 1.230 3.237 80.412 
9 1.031 2.713 83.125 



74 

Figure 14. Principal component similarity analysis plot of gas chromatographic data for 
L. lactis, E. aerogenes, B. subtilis and a mixed culture using a negative control (0 hour) as 
a reference. • = Negative control. L = L. lactis (O). E = E. aerogenes ( A ) . B = 
B. subtilis (A). M = a mixed culture (L. lactis:E. aerogenes:P. fragi = 1:1:1) (•). 
Numbers after L, E and M represent storage time (hours). S = Reference. The 
coordinates for the reference are (1, 1). 
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Figure 15. mdrvidual principal component similarity analysis plots of gas 
chromatographic data for L. lactis (A), E. aerogenes (B), B. subtilis (C) and a mixed 
culture (D) using a negative control (0 hour) as a reference. Numbers in plots represent 
storage time (hours). The coordinates for the reference are (1,1). 
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samples inoculated with a single strain. Most plots of the mixed culture before 12 

hours were scattered around the reference. Between 12 hours and 24 hours milk 

inoculated with the mixed culture produced different chromatograms indicating off-

flavours. 

The best curve fitting equation was examined for L. lactis, E. aerogenes and the 

mixed culture. The method was conduced as described for P. fragi and P. fluorescens. 

It was difficult to find the best curve fitting equation. For example, there was little 

difference between coefficients of deteirnination in linear and polynomial equations in 

the case of the mixed culture. The equations which gave the best coefficient of 

deterrnination are shown in Table 4 (p. 66). The coefficients of determination from 

equations for L. lactis and the mixed culture were 0.94 and 0.99, respectively. The 

coefficient of deterrnination for E. aerogenes was 0.60. This indicates that it would be 

difficult to determine the direction of E. aerogenes with respect to off-flavour 

development. 

The adjusted PC scores of each bacterium and the mixed culture are plotted in 

Figure 16. The behavior of PCI of £. lactis was quite different from PCI of the 

reference. PC3 of E. aerogenes behaved differently from those PC scores of the 

reference. The adjusted PC scores of B. subtilis and the mixed culture were similar to 

the reference. The component loadings of the first nine PC are shown in Table 7. 

Peaks 1, 15, 34 and 37 had high loadings (> 0.8) in PCI. These peaks are important in 

classifying rnilk samples. Figure 17 shows gas chromatograms of UHT- sterilized milk 
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Figure 16. Adjusted principal component scores of IJHT-sterilized milk inoculated with 
L. lactis (A), E. aerogenes (B), B. subtilis (C) and a mixed culture (D) after 12 hours. 
Adjusted principal component scores were computed according to steps 1-3 in Figure 1 
(p. 41). The 45° line represents the match with principal component scores of the 
reference. 
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Table 7. Factor loadings (pattern) from principal component analysis of data for 
L. lactis, E. aerogenes, B. subtilis and a mixed culture. 

Principal Component (PC) 
Peak 1 2 3 4 

1 0.831 -0.149 0.155 0.042 
2 0.113 0.330 -0.593 -0.205 
3 0.094 0.423 -0.657 -0.248 
4 0.122 0.461 -0.732 -0.259 
5 0.116 0.478 -0.790 -0.260 
6 -0.029 -0.058 0.214 -0.058 
7 0.379 0.750 0.383 0.135 
8 0.114 0.574 -0.553 -0.209 
9 0.079 0.835 0.405 0.230 

10 0.645 -0.093 0.263 -0.674 
11 0.724 -0.113 -0.162 0.379 
12 0.112 0.037 0.122 0.021 
13 0.087 0.932 -0.055 0.040 
14 0.529 0.537 0.579 -0.269 
15 0.800 -0.135 0.251 -0.376 
16 0.765 -0.127 -0.191 0.556 
17 0.524 0.071 -0.081 -0.028 
18 0.421 -0.109 -0.081 -0.160 
19 -0.363 -0.253 0.041 0.008 
20 0.091 0.635 0.451 0.293 
21 0.115 0.895 0.337 0.196 
22 0.563 -0.069 0.346 -0.723 
23 0.740 -0.189 -0.172 0.568 
24 0.552 -0.088 0.322 -0.698 
25 0.699 0.056 0.031 -0.491 
26 0.394 -0.155 -0.076 0.391 
27 0.094 0.818 0.453 0.243 
28 0.016 0.048 -0.137 -0.031 
29 0.428 0.132 -0.584 0.142 
30 0.742 -0.124 -0.322 0.499 
31 0.208 0.232 0.124 0.246 
32 0.184 0.299 -0.722 -0.194 
33 0.331 0.018 -0.292 -0.102 
34 0.917 -0.204 -0.023 0.126 
35 0.715 -0.204 0.043 0.074 
36 0.488 -0.219 0.048 0.159 
37 0.911 -0.227 0.042 0.131 
38 0.039 -0.109 0.156 -0.133 

_8_ 
-0.180 0.167 -0.360 0.027 -0.004 
-0.083 0.089 0.203 0.014 0.203 
0.049 0.253 -0.133 -0.112 -0.121 
0.059 0.147 -0.139 -0.011 -0.093 
0.083 0.108 -0.113 0.010 -0.020 

-0.469 0.081 -0.312 0.136 0.362 
-0.126 0.112 -0.138 0.037 0.010 
0.104 0.197 -0.231 -0.072 -0.246 
0.140 -0.110 0.083 0.054 0.105 
0.124 -0.027 0.006 -0.083 0.003 

-0.374 0.243 0.005 -0.001 -0.072 
-0.580 0.163 -0.571 0.165 -0.042 
0.138 0.183 0.054 -0.034 0.001 

-0.001 0.043 -0.045 0.000 0.067 
0.111 0.101 -0.065 -0.053 0.008 
0.135 -0.005 -0.064 -0.023 0.095 

-0.651 -0.070 0.301 0.114 -0.234 
-0.287 -0.184 0.039 -0.251 0.035 
0.011 0.522 0.164 0.176 0.381 

-0.237 0.088 0.116 -0.026 0.026 
0.112 -0.012 0.087 0.006 0.067 
0.103 0.038 0.007 -0.068 0.006 
0.123 0.081 -0.045 -0.061 0.070 
0.130 -0.008 0.066 -0.099 0.009 

-0.254 -0.231 0.191 0.125 0.040 
0.116 -0.026 0.042 -0.248 -0.179 
0.111 -0.041 0.113 0.015 0.105 

-0.487 0.098 0.546 -0.335 -0.036 
-0.174 -0.117 0.269 0.077 0.179 
0.147 -0.005 -0.030 0.014 0.088 

-0.074 -0.593 -0.103 0.117 -0.451 
-0.050 -0.217 0.035 0.235 0.188 
0.106 -0.670 -0.070 0.414 0.257 
0.200 0.062 0.016 -0.087 0.084 
0.210 0.013 0.095 0.110 -0.079 
0.055 0.285 0.207 0.362 -0.121 
0.189 0.068 -0.001 -0.116 0.071 
0.155 0.401 0.245 0.650 -0.329 
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Figure 17. Gas chromatograms of UHT-sterilized milk inoculated with L. lactis after 12 
hours (A), E. aerogenes after 12 hours (B) and a mixed culture after 12 hours (C). 
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inoculated with differnt bacteria. 

These results suggest that the GC-PCS system has potential for partially 

replacing slow and expensive microbiological assays for identification of causative 

microbes. Since PCS is an unsupervised multivariate method, it may be useful in 

identifying causes or even preventing the incidence of accidental quality problems 

possibly critical to food safety. If this system were established, it could provide 

valuable assistance in determining the quality not only of milk and dairy products but 

also of other food products. 

4. Comparison Among Supervised Methods 

Artificial neural networks (ANN), partial least squares regression analysis (PLS) and 

principal component regression analysis (PCR) were applied to the gas chromatographic 

data. Before being compared, each method was optimized regarding the number of hidden 

neurons of ANN and the number of factors of PLS and PCR 

Effects of inoculating milk with P. fragi and P. fluorescens. The number of 

hidden neurons was optimized for the effectiveness of the ANN. With too many hidden 

neurons, a network may not learn but instead memorize patterns, or it may train and run too 

slowly. On the other hand, without enough hidden neurons, a network may not be trained 

(Lawrence and Peterson, 1992). Thus the number of hidden neurons was decreased 

starting from the default number. The default number was the sum of the numbers of input 
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and output divided by two (Lawrence and Peterson, 1992). ANN with too few hidden 

neurons cannot be completely trained. Therefore, the training time was set for half an hour 

at maximum 

Figure 18 shows results using all data for training ANN. The standard error of 

prediction (SEP) varied depending on the content of testing data. The pattern of trial 5 was 

different from the other trials. The difference of SEP within each trial was small (2 ~ 3%). 

There was no trend with different numbers of hidden neurons. Generally, only a small 

difference in SEP was found with various numbers of hidden neurons. This indicates the 

number of hidden neurons did not influence the system The difference was presumed to 

come from another parameter, random weight for each connection. The strength of a 

connection between two neurons is called the weight. It determines the amount of effect 

that one neuron can have on the other (Lawrence and Peterson, 1992). This weight is 

randomly assigned. The first assigned weight might influence a network system 

Figure 19 shows prediction ability of cross validated ANN. Compared with 

Figure 18, the SEP was much greater. The SEP in trial 5 was consistently greater than that 

of other trials, while the SEP in trial 2 was smaller. This indicates that the SEP varied 

depending on the framing and testing data. SEP was not greatly different within each trial. 

These results suggest that the prediction ability is dependent on the content of training and 

testing data. There was no trend with different numbers of hidden neurons except trial 2 

where the SEP became smaller with increasing hidden neurons. Finally, the number of 



Figure 18. Standard error of prediction (%) by artificial neural networks (ANN) using 
different hidden neurons for P. fragi and P. fluorescens: trairiing data include testing data. 
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Figure 19. Standard error of prediction (%) by artificial neural networks (ANN) using 
different hidden neurons for P. fragi and P. fluorescens: training data do not include 
testing data. 
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hidden neurons which had the smallest SEP in the ANN in each trial was used for the 

comparison with PCR and PLS. 

Table 8 presents a comparison of the prediction ability of ANN, PLS and PCR. A 

model for each method was trained with all data. The number of factors for PLS and PCR 

were optimized automatically while running the software (PLSphxs, 1992). PLS used three 

factors and PCR used two factors for the optimum model. 

The mean standard errors of prediction (SEP) were 7.4%, 17.0% and 23.4% for 

ANN, PLS and PCR, respectively. The SEP among methods was significantly different (P 

< 0.01) in the one-way ANOVA test. In order to determine which of the methods is 

significantly different from each other, a Turkey HSD test was applied. The result is also 

shown in Table 8 using a letter (A and B). "A" or 'TJ" indicate significant differences at P < 

0.01 or P < 0.05, respectively. The SEP of the ANN was significantly different from those 

of PLS (P < 0.05) and PCR (P < 0.01). The difference between PLS and PCR was not 

significant. Coefficients of variation for the SEP were 15.3%, 28.7% and 26.9% for the 

ANN, PLS and PCR, respectively. The ANN consistently gave better prediction ability. 

The mean coefficients of determination (r2) were 0.98, 0.84 and 0.74 for the ANN, 

PLS and PCR, respectively. There were significant differences among the methods (P < 

0.05). From a Turkey HSD test, the r2 of the ANN was significantly different from that of 

PCR (P < 0.01). Coefficient of variation for r2 of the ANN was much smaller than those of 

both PLS and PCR. 
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Table 8. Comparison of prediction ability of artificial neural networks (ANN), partial 
least squares regression analysis (PLS) and principal component regression analysis 
(PCR) for P. fragi and P. fluorescens: training data include testing data. 

Trial 

SEP (%)3 

Trial ANN PLS PCR ANN PLS PCR 

1 7.1 21.9 23.9 0.98 0.73 0.67 

2 7.3 17.7 19.8 0.99 0.88 0.96 

3 6.8 9.0 26.1 0.98 0.98 0.75 

4 6.4 16.8 15.4 0.98 0.83 0.89 

5 9.3 19.5 32.0 0.96 0.78 0.43 

Mean 7 4** A 1 B 

17 o * * A 1 23 4**B Q Qg*A2 0.84* 0 7 4 * A 2 

SD C 1.1 4.9 6.3 0.01 0.10 0.21 

CV (%)d 15.3 28.7 26.9 1.1 11.4 28.0 

* Significant (P < 0.05), ** significant (P < 0.01) in one-way ANOVA test. 
A 1 A 2 Significant (P < 0.01), B significant (P < 0.05) in a Turkey HSD test. 
3 Standard error of prediction was divided by range of experimental values in testing. 
b Coefficient of deterrnination. 
c Standard deviation. 
d Coefficient of variation. 
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Table 9 shows the prediction ability of each method using cross validation. The mean 

SEP were 21.7%, 29.5% and 33.3% for the ANN, PLS and PCR, respectively. The mean 

r2 between actual and predicted values were 0.80, 0.69 and 0.59 for the ANN, PLS and 

PCR, respectively. The SEP and r2 among each method were not significantly different 

from the one-way ANOVA test (P > 0.05). The coefficient of variation of the ANN was 

much larger than that of PLS and PCR. In ANN, trial 2 gave the smallest SEP. The 

difference between the smallest and largest SEP for the ANN was about 28%. Even though 

the ANN generally had smaller SEP than PLS and PCR, the content of training and testing 

data have great influence on prediction ability in the ANN. 

Generally, the ANN was able to make better predictions than PCR and PLS. This 

indicates that the relationship between dependent and independent values may be non-linear. 

The ANN was also faster and easier to use than PCR and PLS. The result using all data 

was better than cross-validated results. This suggests that a larger data set increases 

prediction ability for the ANN. 

Effects of inoculating milk with L. lactis, E. aerogenes, B. subtilis and a 

mixed culture. Figure 20 presents the performance of the ANN with differing numbers of 

hidden neurons using all data for training. The SEP tended to be smaller with more hidden 

neurons. Small variations of the SEP were observed within each trial (2-3%). 
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Table 9. Comparison of prediction ability of artificial neural networks (ANN), partial 
least squares regression analysis (PLS) and principal component regression analysis (PCR) 
for P. fragi and P. fluorescens: training data do not include testing data. 

Trial 

SEP (%)a r 2 b 

Trial ANN PLS PCR ANN PLS PCR 

1 21.2 20.3 26.0 0.75 0.78 0.70 

2 8.5 28.9 35.7 0.96 0.89 0.81 

3 23.1 43.7 45.3 0.93 0.61 0.52 

4 9.0 20.2 21.8 0.95 0.85 0.79 

5 36.8 13.5 37.5 0.41 0.30 0.13 

Mean 21.7 29.5 33.3 0.80 0.69 0.59 

SD C 10.0 10.0 9.4 0.23 0.24 0.28 

CV (%) d 46.0 33.8 28.2 29.3 35.1 47.7 

Standard error of prediction was divided by range of experimental values in testing. 
b Coefficient of determination. 
c Standard deviation. 
d Coefficient of variation. 
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Figure 20. Standard error of prediction (%) by artificial neural networks (ANN) using 
different hidden neurons for L. lactis, E. aerogenes, B. subtilis and a mixed culture: 
training data include testing data. 
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Figure 21 shows the performance of the cross validated ANN. Except in trial 2, there was 

a small difference for SEP with different numbers of hidden neurons. Compared with 

Figure 20, the SEP was much greater. These trends were similar to those for milk 

inoculated with P. fragi and P. fluorescens. 

The ANN with the smallest SEP was used for the comparisons with PCR and PLS. 

The number of factors for PLS and PCR were 5 and 6, respectively. Table 10 shows the 

comparisons of the three methods. A model was trained with all data. The mean SEP were 

5.2%, 21.1% and 25.1% for ANN, PLS and PCR, respectively. There were significant 

differences (P < 0.01) among the three methods. In the Turkey HSD test, the SEP of the 

ANN was significantly different from those of PLS and PCR (P < 0.01). The difference 

between PLS and PCR was significant (P < 0.05). Coefficients of variation for the SEP 

were 16.8%, 14.3% and 9.5% for the ANN, PLS and PCR, respectively. These values 

suggest that prediction ability of the ANN varied depending on testing data, even though 

the ANN consistently gave smaller SEP than PLS and PCR. PCR consistently had poorer 

prediction ability than the ANN and PLS. The mean r2 were 0.98, 0.71 and 0.56 for the 

ANN, PLS and PCR, respectively. There were significant differences (P < 0.01) among the 

three methods. The r2 of the ANN was significantly different from those of PLS and PCR 

(P < 0.01). The difference between PLS and PCR was also significant (P < 0.05). 

Table 11 shows the cross validation results of ANN, PLS and PCR. The mean SEP 

were 18.8%, 26.9% and 26.2% for the ANN, PLS and PCR, respectively. They were 

significantly (lifferent (P < 0.01) from the one-way ANOVA. From a Turkey HSD test, the 
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Figure 21. Standard error of prediction (%) by artificial neural networks (ANN) using 
different hidden neurons for L. lactis, E. aerogenes, B. subtilis and a mixed culture: 
training data do not include testing data. 
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Table 10. Comparison of prediction ability of artificial neural networks (ANN), partial 
least squares regression analysis (PLS) and principal component regression analysis (PCR) 
for L. lactis, E. aerogenes, B. subtilis and a mixed culture: training data include testing 
data. 

SEP (%) 

Trial ANN PLS PCR ANN PLS PCR 

1 6.7 22.8 27.6 0.97 0.73 0.45 

2 5.1 24.5 26.9 0.98 0.63 0.60 

3 4.9 22.3 24.0 0.98 0.63 0.60 

4 5.1 17.5 25.4 0.98 0.74 0.45 

5 4.4 18.4 21.6 0.98 0.82 0.70 

Mean 25 j*s|eA2,Bl 0 Qg** A 3A4 

SD C 0.9 3.0 2.4 0.004 0.08 0.11 

CV (%) d 16.8 14.3 9-5 0.46 11.4 19.4 

* Significant (P < 0.05), ** significant (P < 0.01) in one-way ANOVA test. 
AI,A2, AS, A4 s i g n i f i c a n t (p < o.Ol), significant (P < 0.05) in a Turkey HSD test. 
a Standard error of prediction was divided by range of experimental values in testing. 
b Coefficient of determination. 
0 Standard deviation. 
d Coefficient of variation. 
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Table 11. Comparison of prediction ability of artificial neural networks (ANN), partial 
least squares regression analysis (PLS) and principal component regression analysis (PCR) 
for L. lactis, E. aerogenes, B. subtilis and a mixed culture: training data do not include 
testing data. 

Trial 

SEP (%)a r 2 b 

Trial ANN PLS PCR ANN PLS PCR 

1 24.8 29.9 29.1 0.58 0.37 0.50 

2 24.2 26.3 27.9 0.59 0.61 0.51 

3 14.3 26.1 25.6 0.84 0.52 0.48 

4 15.7 26.7 26.2 0.81 0.43 0.46 

5 15.0 25.5 22.1 0.83 0.59 0.70 

Mean 18 §**^'^ 26.9** A 26.2** B 1 Q 7 3 * B 2 , B 3 0.50* 8 2 0.53* B 3 

SD C 5.2 1.7 2.7 0.13 0.10 0.10 

CV (%)d 27.8 6.3 10.2 18.2 20.4 18.3 

* Significant (P < 0.05), ** significant (P < 0.01) in one-way ANOVA test. 
A Significant (P < 0.01), B 1>B 2-B 3 significant (P < 0.05) in a Turkey HSD test. 
a Standard error of prediction was divided by range of experimental values in testing. 
b Coefficient of determination. 
c Standard deviation. 
d Coefficient of variation. 
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ANN had a significantly smaller SEP than PLS (P < 0.01) and PCR (P < 0.05). No 

significant difference was found between PLS and PCR. The mean r2 were 0.73, 0.50 and 

0.53 for the ANN, PLS and PCR, respectively. They were significantly different (P < 0.05). 

The differences between the ANN and PLS and the ANN and PCR were significant (P < 

0.05) in the Turkey HSD test. The difference between PLS and PCR was not significant. 

ANN gave the best predictive ability. The values for the SEP and r2 of PCR for the cross 

validated data were better than those for PLS. However, the differences were not 

significant (P > 0.05). Therefore, there was no difference of predictive ability between PLS 

and PCR (P> 0.05). 

From the above two experiments, it is concluded that the ANN gave the best 

prediction ability among three supervised methods. The prediction ability of PLS was better 

than PCR. However, the performance of each method was dependent on the content of 

training and testing data; the more data, the better the prediction ability. Each method gave 

better predictive ability when trained with all data. 

The ANN and PLS may be the most advanced methods. However, supervised 

classification requires reliable sample grouping in advance. If the sample grouping 

relies on subjective methods, it immediately affects the accuracy of classification. Since 

the ANN are supervised methods, a large data set is required for accurate, more reliable 

classification. Although a great deal of theoretical and experimental work remains to be 

done, it appears that the ANN technique can be employed as a simple, rapid computer 

technique for accurate classification of milk quality in the future. 
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Flavour Defects Due to Chemical Reactions 

1. Multivariate Analysis of Gas Chromatographic Results 

a) Principal Component Analysis (PCA) 

PCA was performed on the eleven normalized gas chromatographic peak areas of 

44 milk samples. The first four principal components (PC) had eigen values greater than 

one and accounted for 72.7% of the total variance (Table 12). This means that 11 peaks 

in the original gas chromatographic data were extracted into four PC with 27.3% loss of 

the information. The first and second PC were plotted in Figure 22. Light-induced, 

oxidized and heated milk samples were separated into their groups. The cooked milk 

samples were not clearly separated. Most of them were close to the negative control and 

heated milk samples. A few of them were misclassified as oxidized milk samples. Plots 

of heated milk were close to the normal milk samples (negative control). This suggests 

that the patterns of GC for cooked and heated milk samples were similar to that of milk 

without a treatment. Heated and light-induced samples were separated into their groups 

in a three dimensional plot (Figure 23). Cooked samples were closer to heated samples, 

while oxidized samples were closer to light induced samples. But no clear separation 

between cooked and oxidized milk samples was observed. The third PC scores of light-

induced samples were generally smaller than those of other samples. 

Factor loadings for the first four PC are shown in Table 13. The higher the 

absolute value of the loading the more the component contributed to the variance among 

the samples. Peaks 4, 8 and 11 had a high loading (> 0.7) in PCI. Peaks 3 and 6 had 
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Table 12. Results of cumulative eigen values for gas chromatographic data for 
pasteurized milk samples. 

Factor Eigen value Variance Cumulation (%) 
1 2.536 23.052 23.052 
2 2.451 22.280 45.332 
3 1.890 17.182 62.514 
4 1.121 10.190 72.704 

Table 13. Factor loadings (pattern) from principal component analysis of gas 
chromatographic data for pasteurized milk samples. 

Principal Component (PC) 
Peak No. 1 2 3 4 

1 0.212 0.450 -0.591 0.051 
2 -0.020 0.219 -0.870 0.218 
3 -0.159 0.818 0.029 0.029 
4 0.760 0.382 0.132 0.242 
5 0.081 0.265 0.718 0.545 
6 0.197 -0.818 -0.134 0.074 
7 0.068 -0.504 -0.192 0.771 
8 0.781 0.131 -0.107 -0.184 
9 -0.569 0.285 0.304 0.027 

10 0.567 -0.445 0.278 -0.282 
11 0.763 0.308 0.122 0.030 
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Figure 22. Principal component analysis plot (two dimensional) from gas 
chromatographic data for pasteurized milk samples with various treatments. N = Negative 
control. C = Cooked. H = Heated. L = Light-induced. 0 = Oxidized. 



97 

Figure 23. Principal component analysis plot (three dimensional) from gas 
chromatographic data for pasteurized milk samples with various treatments. N = Negative 
control. C = Cooked. H = Heated. L = Light-induced. O = Oxidized. 
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high loadings (> 0.8) in PC2. Peaks 2 and 5 had high loadings (> 0.7) for PC3. 

b) Principal Component Similarity Analysis (PCS) 

The first four PC from PCA and the variance they each explain were subjected to 

PCS analysis. PCS was carried out using the pasteurized milk without treatments (day 0 

after pasteurization) as a reference. The coefficients of determination as well as the 

slopes between samples and the reference were calculated. Figure 24 shows a PCS plot 

of gas chromatographic peak areas. Most of the light-induced, oxidized and heated milk 

samples were separated into groups. The light-induced milk had, in general, smaller 

coefficients of determination than other rnilk. The oxidized milk had a larger slope. 

Cooked milk samples were not well differentiated and close to the point of reference 

(Coefficient of determination = 1, Slope = 1). 

To account for the difference between the sample and the reference, the adjusted 

PCA scores of the samples were plotted against the adjusted PCA scores of the 

reference (Figure 25). The largest deviation of light-induced milk was accounted for by 

PC2 which was heavily loaded by peaks 3 and 6 (Table 13). Therefore, these peaks 

contribute to the substantial difference between the standard and the sample. In oxidized 

milk, PCI was greatly differentiated. Little difference was observed between standard 

and cooked or heated milk. Figure 26 shows chromatograms of pasteurized milk 

samples with various treatments. 
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Figure 24. Principal component similarity analysis plot of gas chromatographic data for 
pasteurized milk samples with various treatments. Pasteurized milk without treatments 
was used as a reference. N = Negative controL C = Cooked. H = Heated. L = Light-
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Variability accounted for by principal component (%) Variability accounted for by principal component (%) 

Figure 25. Adjusted principal component scores of pasteurized milk samples with various 
treatments. Adjusted principal component scores were computed according to steps 1-3 
in Figure 1. The 45° line represents the match with principal component scores of the 
reference. A = Light-induced. B = Oxidized. C = Cooked. D = Heated. 
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Figure 26. Gas chromatograms of pasteurized milk samples with various treatments. A 
Light-induced. B = Oxidized. C = Cooked. D = Heated. 
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2. Sensory Analysis 

a) Aroma 

F-vahies of the two-way analysis of variance (ANOVA) test of unstandardized 

sensory scores for smelling are shown in Table 14. F-vahies for all attributes were 

significantly different among panellists. Among the treatments, cooked and heated 

flavour were significant (P < 0.001). Metal and rancid flavour were also significant 

(P<0.05). 

The sensory scores of each attribute from each panellist were standardized 

(Table 15). The procedure for standarization was described in the MATERIALS AND 

METHODS section (p. 49). There were no significant differences among the panellists. 

Cooked, heated, metal rancid and acceptability were significanfJy different among the 

various treatments. There were no significant differences between the panellist and 

treatment interactions. 

b) Taste 

The two-way ANOVA test of unstandardized sensory scores for tasting showed 

significant differences in acid, astringent, bitter, light-induced and rancid flavour among 

the panellists (Table 16). Cooked, light induced, metal and rancid were significantly 

different among various treatments. Analysis of variance of standardized sensory flavour 

scores indicated significant differences between treatments: acid, cooked, heated, light 

induced, metal and rancid (Table 17). Many more F-vahies calculated for the given 
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attributes were sigrjificantly different among treatments when analyzed by tasting than by 

smelling. 

Multivariate Analysis of Sensory Analysis Results 

a) Principal Component Analysis (PCA) 

(1) Aroma 

hi order to determine which variables discriminate among samples, principal 

component analysis (PCA) was applied. PCA of milk samples yielded three PC with 

eigen values greater than one, which accounted for 72.1% of the total variance 

(Table 18). Figures 27 and 28 show two and three dimensional PCA plots of sensory 

scores for smelling. The heated milk samples were differentiated from other samples. 

Some hght-induced and oxidized samples were also differentiated. Some panellists 

could differentiate milk samples such as light-induced, oxidized and heated flavour. 

However, most samples were misclassified by smelling. PCA was not considered 

very successful in differentiating milk samples. Table 19 shows the loadings of the 

first three PC. The first PC was composed of sensory parameters such as bitter and 

rancid. This indicated that bitter and rancid are particularly important when 

evaluating the samples. The second PC was a combination of cooked and heated 

attributes. The third PC was a combination of light-induced and astringent. 
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Table 18. Results of cumulative eigen values for sensory scores from smelling 
pasteurized milk samples with various treatments. 

Factor Eigen value Variance Cumulation (%) 
1 3.072 38.41 38.05 
2 1.538 19.23 57.63 
3 1.159 14.48 72.11 

Table 19. Factor loadings (pattern) from principal component analysis of sensory scores 
from smelling pasteurized milk samples with various treatments. 

Principal Component (PC) 
Attributes 1 2 3 

Acid 0.670 0.075 0.182 
Astringent 0.593 0.112 -0.611 
Bitter 0.720 0.178 -0.344 
Cooked 0.501 -0.781 -0.021 
Heated 0.421 -0.831 0.069 
Light 0.594 0.187 0.584 
Metal 0.660 0.261 0.471 
Rancid 0.732 0.290 -0.257 
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Figure 27. Principal component analysis plot (two dimensional) from sensory scores for 
smelling pasteurized milk samples with various treatments. C = Cooked. H - Heated. L 
= Light-induced. O = Oxidized. 
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Figure 28. Principal component analysis plot (three dimensional) for sensory scores from 
smelling pasteurized milk samples with various treatments. C = Cooked. H = Heated. L 
= Light-induced. O = Oxidized. 
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(2) Taste 

Three PC were extracted, explaining 59.3% of the total variance in the sensory 

scores from tasting. These are presented in Tahle 20. Figures 29 and 30 show two 

and three dimensional PCA plots. Milk samples were differentiated by taste more 

accurately than by smell. While light-induced and heated milk samples were relatively 

well separated, the oxidized and cooked samples were not clearly differentiated. 

However, none of them was separated into a single group. The component loadings 

of each variance for the first three PC are shown in Table 21. By definition, the first 

PC contains the most important information and includes the more important attribute 

(Manly, 1986). The first PC contrasted acid, astringent, bitter and rancid flavours. 

These attributes are important for differentiating milk samples. The second PC was 

differentiated by cooked and heated flavour. They were negatively related to the 

second PC. Bitterness was also negatively correlated to the second PC. The third 

PC is composed of light-induced flavour (positively), astringent (negatively) and 

bitterness (negatively). 

Principal Component Similarity Analysis (PCS) 

(1) Aroma 

The first three PC, which accounted for 72% of the total variance were used 

for the PCS analysis. Figure 31 shows the PCS plot of sensory scores for smelling. 

The untreated milk sample was used as a reference. More points were scattered in 
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Table 20. Results of cumulative eigen values for sensory scores from tasting pasteurized 
milk samples with various treatments. 

Factor Eigen value Variance Cumulation (%) 
1 2.477 30.958 30.958 
2 1.232 15.403 46.361 
3 1.054 13.172 59.533 

Table 21. Factor loadings (pattern) from principal component analysis of sensory scores 
from tasting pasteurized milk samples with various treatments. 

Principal Component (PC) 
Attributes 1 2 3 

Acid 0.613 0.072 0.272 
Astringent 0.623 0.106 -0.440 
Bitter 0.665 -0.236 -0.431 
Cooked 0.410 -0.647 0.079 
Heated 0.188 -0.737 0.290 
Light 0.538 0.304 0.559 
Metal 0.593 0.250 0.333 
Rancid 0.652 0.211 -0.294 
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Figure 29. Principal component analysis plot (two dimensional) for sensory scores from 
tasting pasteurized milk samples with various treatments. C = Cooked. H = Heated. L = 
Light-induced. O = Oxidized. 
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Figure 30. Principal component analysis plot (three dimensional) for sensory scores from 
tasting pasteurized milk samples with various treatments. C = Cooked. H = Heated. L = 
Light-induced. O = Oxidized. 
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comparison to the PCA plots (Figures 27 and 28). In the PCS plot, milk samples 

were differentiated more clearly than in the PCA plots. In particular, kght-induced 

and heated milk samples were differentiated more distinctly than other samples. This 

is because more PC scores are used in the computation for PCS than PCA 

However, no clear separation was observed in the PCS plot. 

(2) Taste 

Principal component analysis of sensory scores for tasting provided three PC, 

which accounted for 59.5% of total variation. These PC scores were used for the 

computation of PCS. Untreated pasteurized milk was used as a reference. Figure 32 

shows the PCS plot. Compared with the PCS plot for smelling, these samples were 

more scattered and no clear separation into groups was observed. In general, most 

oxidized and cooked milk samples were widely scattered around the reference. The 

plots of light-induced and heated milk samples indicated differentiation from the 

reference by tasting. However, the panellists could not distinguish the difference 

between these samples. One reason for this result is that the sensitivity of the panellist 

is an important factor. In this study they were given one training session, because 

they were already experienced in sensory evaluation. This is further described in the 

MATERIALS AND METHODS section (p. 47). If more trained panellists or an 

expert in the dairy industry were used, they might have distinguished between light-

induced and heated milk samples, because trained panellists typically detect smaller 
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Figure 31. Principal component shrnlarity analysis plot of sensory scores from smelling 
pasteurized milk samples with various treatments. Pasteurized milk without treatment was 
used as a reference. C = Cooked. H = Heated. L = Light-induced. O = Oxidized. The 
coordinates for the reference are (1,1). 
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Figure 32. Principal component sirrjilarity analysis plot of sensory scores from tasting 
pasteurized milk samples with various treatments. Pasteurized milk without treatments 
was used as a reference. C = Cooked. H = Heated. L = Light-induced. O = Oxidized. 
The coordinates for the reference are (1,1). 
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differences among samples than do untrained panellist (Robert and Vickers, 1994). 

On the other hand, there is considerable literature which compares trained 

panellists with untrained panellists. In the study by Shinesio et al. (1990), a trained 

panellist, who had extensive training as a descriptive sensory panel for 12 years, was 

unable to describe the intensities of the samples. Roberts and Vickers (1994) 

reported that the trained panels agreed with preference rating by the untrained panels. 

Powers (1984) also mentioned that even though panellists have been well trained, 

their judgements may sometimes be coloured to a certain extent by cultural 

differences. 

It is apparent that consistent results in sensory evaluation requires panellists 

with long experience and well defined frames of reference as well as long exposure to 

the special product. 

4. Principal Component Similarity Analysis with Sensory Scores 

Flavour cannot be measured directly by instrument. It is an interaction between 

consumer and products (Piggot, 1990). A gas chromatogram can only provide information 

about volatiles in a food sample. Therefore, sensory scores were incorporated into principal 

component similarity analysis plot. Figure 33 shows the principal component similarity 

analysis (PCS) plot incorporated with unstandardized acceptability scores for smelling. The 

methods for contoured scatterplot were described in the MATERIALS AND METHODS 

section (p. 49). 
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In the ADSA scoring guide, the following values are assigned: "no criticism = 10", 

"accept moderately = 6", "accept slightly = 2" and "hot accept = 0". Oxidized, cooked and 

light-induced milk samples had higher scores and were judged as acceptable when smelled. 

Heated milk samples had lower scores than the other milk samples. However, they were 

still moderately acceptable. 

Figure 34 shows the PCS plot incorporated with standardized acceptability scores for 

smelling. Standardization was conducted within each panellist. It is difficult to judge the 

acceptance level by these values. Oxidized, cooked and light-induced milk samples had 

similar acceptance levels. Heated milk samples were separated into a group. 

Figure 35 shows the PCS plot incorporated with unstandardized acceptability scores 

for tasting. Oxidized and cooked milk samples had higher acceptance scores. Most of the 

light-induced and heated milk samples had scores between "accept moderately" and "accept 

slightly". 

Figure 36 shows the PCS plot incorporated with standardized acceptability scores for 

tasting. Milk samples were separated into two groups according to their acceptance levels. 

One was oxidized and cooked milk samples, the other was light-induced and heated milk 

samples. 

These results suggest that oxidized, cooked and light-induced milk samples had 

similar acceptance levels for smelling. Tasting of light induced milk samples gave lower 

acceptance scores and had a similar acceptance level as for heated milk samples. Oxidized 
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Figure 33. Principal component similarity analysis plot of gas chromatographic peak 
areas with unstandardized acceptability scores for smelling. Pasteurized milk without 
treatment was used as a reference. N = Negative control C = Cooked. Ff = Heated. L = 
Light-induced. 0 = Oxidized. The coordinates for the reference are (1,1). The values for 
contouring are follows: "no criticism = 10", "accept moderately =? 6", "accept sUghtry = 2" 
and 'not accept = 0". 
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Figure 34. Principal component similarity analysis plot of gas chromatographic peak 
areas with standardized acceptability scores for smelling. Pasteurized milk without 
treatments was used as a reference. N = Negative control. C = Cooked. H = Heated. 
L = Light-induced. O = Oxidized. The coordinates for the reference are (1,1). The values 
-2.0 to 1.0 in the coutour represent the standardized acceptability score. Higher number 
scores are more acceptable. Lower number scores are less acceptable. 
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Figure 35. Principal component similarity analysis plot of gas chromatographic peak 
areas with unstandardized acceptability scores for tasting. Pasteurized milk without 
treatments was used as a reference. N = Negative control. C = Cooked. H = Heated. 
L = Light-induced. O = Oxidized. The coordinates for the reference are (1,1). The values 
for contouring are follows: "ho criticism = 10", "accept moderately = 6", "accept sfightry = 2" 
and "not accept = 0". 
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Figure 36. Principal component sirnilarity analysis plot of gas chromatographic peak 
areas with standardized acceptability scores for tasting. Pasteurized rriilk without 
treatment was used as a reference. N = Negative control C = Cooked. H = Heated. 
L = Light-induced. O = Oxidized. The coordinates for the reference are (1,1). The values 
-1.0 to 1.0 in the contour represent the standardized acceptability score. Higher number 
scores are more acceptable. Lower number scores are less acceptable. 
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and cooked milk samples tended to have a higher acceptance level for both smelling and 

tasting. 

Sensory analysis cannot be replaced totally by instrumental analysis for quality control 

of milk, because acceptability is dependent upon consumer preference. Consumers, like 

semi-expert panellists, can be presumed to be unable to consistently differentiate off-

flavours in milk. Sensory evaluation will continue to be important, particularly in product 

development. However, when considering the factors such as the difficulties of employing 

and training persons to be experts in sensory analysis, and sensory limitations of individuals, 

instrumental analysis appears more capable of objectively identifying presence and intensities 

of particular off-flavours in mcoming raw milk samples. 



CHAPTER V 

CONCLUSIONS 

This research was undertaken because of the need to develop a fast and objective 

method for detection of off-flavours in milk. Milk was treated to develop several off-flavours. 

Data from a low-cost gas chromatograph and from sensory evaluation were subjected to 

computer aided multivariate analyses. 

The following conclusions can be drawn from this study: 

1. A new portable gas chromatograph (SRI model 8610) was used for this research. 

It was found to give chromatograms adequate for classification of milk samples subjected to 

various treatments. 

2. As a new multivariate analysis technique, principal component similarity (PCS) 

analysis was applied to peak areas in chromatograms and was capable of ckssifying UHT-

sterilized milk samples with regards to bacterial species and storage time. The advantage of 

PCS is that classification can be made with incomplete information on sample groups and 

without the need for testing a large number of samples. It is applicable to continuing situations 

with the capacity of detecting abnormal samples. Causes of the abnormality are readily 

explained; therefore, this method can perhaps be used for quality assurance and food safety for 

other food. The GC-PCS system has potential for partially replacing slow and expensive 

microbial assays for classification of bacterial species. 
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For comparison with PCS, other existing multivariate analyses were also applied. There 

are two categories of classification: supervised and unsupervised, depending on whether the 

sample grouping is known. In this research one unsupervised and three supervised multivariate 

analyses were applied to GC data of UHT-sterilized milk for comparisons with PCS. 

The unsupervised method, principal component analysis (PCA), was first examined. 

PCS classified samples more clearly than PCA. Three supervised multivariate analyses were 

then applied: artificial neural networks (ANN), partial least squares regression analysis (PLS) 

and principal component regression analysis (PCR). The statistical parameters of coefficient of 

determination (r2) and standard error of prediction (SEP) were used to estimate predictive 

ability of each method. ANN gave the best mean r2 and SEP among the supervised methods. 

The coefficient of variation of SEP of the ANN was much larger than that of PLS and PCR. 

Even though the ANN generally had a smaller SEP and larger r2 than PLS and PCR, the 

content of training and testing data had a great influence on prediction ability of the ANN. 

Generally, the ANN was able to make better predictions than PLS and PCR. This indicates 

that the relationship between dependent and independent variables may be non-linear. The 

ANN was also faster and easier to use than PLS and PCR. The results from using all data was 

better than cross-validated results. This suggests that a larger data set increases prediction 

ability for the ANN. 

3. Instrumental gas chromatographic analysis was more effective than sensory 

evaluation as a means of distmguishing milk samples with various treatments. Pasteurized milk 

was treated to develop different intensities of off-flavours (light-induced, oxidized, cooked and 
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heated). The samples were analyzed by GC and sensory analysis. PCS and PCA were applied. 

GC analysis could classify samples into groups more clearly than sensory analysis. Tasting was 

more effective than smelling for differentiating among samples which had been given different 

treatments. Sensory analysis cannot be replaced totally by instrumental analysis for quality 

control of milk. However, when considering factors such as the (hTficulties of employing and 

training people to be experts in sensory analysis, as well as sensory limitations of mdividuals, 

instrumental analysis may be considered desirable for quality control of milk. 

4. A combination of GC analysis and multivariate chemometric methods may have 

great potential in quality evaluation of milk. Once this system were established, it might 

provide valuable assistance in deterrnming quality of not only milk and dairy products but also 

of other food products. 
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APPENDIXES 

A. Computer Program for Peak Assignment 

10 DIM RET(IOO), AREA(100), RRET(IOO), LL(200), UL(200), PEAK(200). 
20 LL(1)=50 : UL(1)=52.97 
30 LL(2)=53! :UL(2)=53.16 
40 L L ( 3 H 3 6 : UL(3)=53.9 
50 LL(4)=58! :UL(4)=59.1 
60 LL(5)=59.2 : TJL(5)=59.99 
70 LL(6)=60! : UL(6)=61.8 
80 LL(7)=63! :UL(7)-63.5 
90 LL(8)=63.6: UL(8)=64 
100 LL(9)=64.1 :UL(9)=65.6 
110 LL(10)=66! : UL(10)=66.89 
120 L^1)=66.9:UL(T2>=67.4 
130 LL(13)=67.5 : UL(13)=67.7 
140 LL(14)=68.1 : UL(14)=68.9 
150 LL(15)=71! : UL(15)=72 
160 LL(16)=72.1 : UL(7)=72.5 
170 LL(17)=74! : UL(17)=76.8 
180 LL(18>=76.9 : UL(18)=77! 
190 LL(19)=77.2 : UL(19)=77.7 
200 LL(20)=78.2 : UL(20)=79.9 
210 LL(21)=80! : UL(21)=81.9 
220 LL(22)=82 : UL(22)=82.7 
230 LL(23)=82.75 : UL(23)=83.4 
240 LL(24)-83.5 : UL(24)=86 
250 INPUT "ENTER NAME OF FILE TO ANALYZE"; NAMESS: OPEN NAMES$ 

FOR INPUT AS #1: INPUT "ENTER NUMBER OF PEAKS"; NUMPEAK FOR 
I=lTO NUMPEAK INPUT #1, RET(I), AREA(I) 

260 RRET (I)=(INT(RET()* 100)/100 
270 NEXT I: CLOSE 
280 INPUT "DO YOU WANT TO PRINT FILE?; A$ 
290 IFA$="N"THEN340 

139 



140 

300 LPRJJSfT TAB(20) "FILE NAME » " ; NAMES 
310 FOR 1=1 TO NUMPEAK 
320 LPRJNT I, RRET(I), AREA(I) 
330 NEXT I 
340 FOR 1=1 TO NUMPEAK 
350 F0RJ=1T0 24 
360 IF RRET (I)>=LL(J) AND RRET(I) <=UL(J) THEN PEAK(J)=PEAK(J) + 

AREA(I) 
370 NEXT J 
380 NEXT I 
390 PRINT "RESULTS" 
400 I PRINT TAB(20) "RESULTS FOR FILE»; NAMES 
410 FOR 1=1 TO 24 
420 PRINT L PEAK(I) 
430 NEXT I 
440 INPUT "ENTER NAME OF FILE FOR OUTPUT"; RESULTS 
450 OPEN RESULTSS FOR OUTPUT AS #1: FOR 1=1 TO 24: PRINT #1, L 

PEAKO): NEXT I 
460 CLOSE 
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B. Computer Program for Principal Component Similarity Analysis 

5 REM VERSION NOVEMBER 25 WITH DR NAKAI IDEA WITH PRINTS 
AND INPUT 

7 REM OPTION OF FILE TO SAVE CORRECTED PCA IS NOT 
WORKING!!!!!!!!!!!!! 

10 DTMM(30),L(112) 
20 DIMN(112),CC(112) 
30 DIMA(112,10),R(112) 
40 DIM B( 10,112) 
50 DJJVIREF(10),S(50) 
60 DIM VARB(30),K(30) 
70 DIM Q(l 12,20),Y( 112) 
80 DIM X(112),POX(40),POY(40) 
90 DIMX1(112),Y1(112) 
92 CLS:SCALES$="CDEFGAB":PLAY "04 XSCALESS;" 
95 SCREEN 1:COLOR 12:KEY OFF 
100 LOCATE 10,40:PRINT "PCA-SIMILARITY ANALYSIS":PRTNT:PRINT 
110 INPUT " PRESS ANY KEY TO CONTINUE",ZZ:CLS 
115 SCREEN 2: SCREEN 0 
130 INPUT "FILE NAME TO BE USED";FILE$ 
140 INPUT "HOW MANY CASES IN EACH FACTOR" ;C 
150 INPUT "HOW MANY FACTORS WOULD YOU LUCE TO USE";F 
160 INPUT "WHICH CASE (ROW NUMBER) DO YOU WANT TO BE YOUR 

STANDARD" ;S 
165 INPUT "WOULD YOU LIKE TO USE ARBITRARY MAGNIFICATION 

?";A$ 
166 JJF A$="N" THEN GOTO 180 
170 INPUT "WHAT WOULD YOU LIKE YOUR ARBITRARY 

MAGNIFICATION TO BE";M 
180 FORX=l TOF 
190 PRINT "WHAT IS THE % VARIANCE FOR FACTOR NUMBER" ;X 
200 INPUT VARB(X) 
210 NEXT 
220 REM INPUTING FILES FROM PCA 
230 OPEN FILES FOR INPUT AS #1 
240 FOR 1=1 TOC 
250 FORJ=l TO F 
260 INPUT #1,A(I,J) 
270 NEXT J 
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280 NEXT I 
290 CLOSE #1 
295 R E M REFERENCE USED IN CALCULATION 
300 FORJ=lTOF 
320 REF(J)=A(S,J) 
330 NEXT J 
331 REM conversion to 100 Dr. Nakai's idea 
334 FOR 1=1 TO F 
338 RVARB(I)=VARB(I) 
339 NEXT I 
350 FOR 1=1 TO C 
360 FOR J=l TO F 
370 IF J=l THEN S(J)=100 
380 K(J)=S(J)-RVARB(J) 
390 S(J+1)=K(J) 
400 IF J=l THEN Q(I,J)=((A(I,J)-REF(J))*RVARB(J))+100 
410 IF J=l THEN 430 
420 Q(I,J)=((A(I,J)-REF(J))*RVARB(J))+S(J) 
430 NEXT J 
440 NEXT I 
450 FOR 1=1 TO F 
460 FORJ=l TOC 
470 B(LJ)=Q(J,I) 
480 NEXT J 
490 NEXT I 
500 REM SUBROUTINE: REGRESSION 
510 FORP=l TOC 
520 SX=0: SY=0: SX2=0: SY2=0: SXY=0 
530 FOR 1=1 TO F 
540 Y(I)=B(I,P) 
550 X(I)=B(I,S) 
560 NEXT I 
570 FOR T=l TO F 
580 SX=SX+X(T) 
590 SY=SY+Y(T) 
600 SX2=SX2+X(T)A2 
610 SY2=SY2+Y(T)A2 
620 SXY=SXY+X(T)*Y(T) 
630 NEXT T 
640 REM SLOPE 
650 L(P)=(F*SXY-SX*SY)/(F*SX2-SXA2) 
660 REM COEFFICIENT OF CORRELATION 
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670 CC(P)=(SXY-SX*SY/F)/(SQR((SX2-(SXA2)/F)*(SY2-(SYA2)/F))) 
680 R(P)=CC(P)A2 
690 NEXT P 
700 LPRINT "CASE","SLOPE","COEF. OF DETERM." 
710 REM GRAPHICS 
720 F O R P = l T O C 
730 X(P)=R(P) 
740 Y(P)=L(P) 
750 LPRINT P,L<P),R(P) 
760 PRINT P,L(P),R(P):NEXT P 
770 INPUT "NAME OF FILE FOR RA2 AND SLOPE" ;FTLS$ 
780 OPEN FILS$ FOR OUTPUT AS #1 
790 FOR 1=1 TOC 
800 PRINT #1,X(I),Y(I) 
810 NEXT I 
820 XMTN=0 
830 YMIN=0 
840 XMAX=1 
850 YMAX=3 
860 NPTS=C 
870 XLAB$="COEFFICIENT OF DETERMINATION" 
880 YLAB$=" SLOPE" 
890 SYM=1 
900 SIZE=5 
910 XLEN=0 
920 YLEN=0 
930 XLIN=0 
940 YLIN=0 
950 XINC=0 
960 MORE=0 
970 GOSUB 1430 
980 LOCATE 1,2:INPUT"PRESS ANY KEY TO CONTINUE (PRESS PRINT 

SCREEN TO PLOT GRAPH)";ZZ:CLS 
990 INPUT "WOULD YOU LIKE TO CHANGE THE SCALE OF THE X AND Y 

COORDINATES (Y/N)";A$ 
1000 IF A$="N" THEN 1080 
1010 IF A$="Y" THEN 1020 
1020 PRINT "THESE ARE THE CURRENT X MTN. AND X MAX.";XMIN,XMAX 
1030 INPUT "ENTER THE NEW X MTN, X MAX";XMIN,XMAX 
1040 PRINT "THESE ARE THE CURRENT Y MTN. AND Y MAX. ";YMIN,YMAX 
1050 INPUT "ENTER THE NEW Y MTN, Y MAX";YMJN, Y M A X 
1060 GOSUB 1430 
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1070 LOCATE 1,2:JJNPUT"PRESS ANY KEY TO CONTINUE (PRESS PRINT 
SCREEN TO PLOT GRAPH)" ;ZZ:CLS 

1080 INPUT"WOULD YOU LIKE TO SEE THE GRAPH OF A N Y SPECIFIC 
CASE (Y/N)";Y$ 

1090 IF Y$="Y" THEN 1110 
1100 IF Y$="N" THEN 1410 
1110 INPUT "WHICH CASE # WOULD YOU LUCE TO SEE" ;CN 
1120 XMIN=0:XMAX=0:YMIN=0:YMAX=O 
1125 PRINT:PRINT TAB(15) "STANDARD=";S;:PRTNT TAB(15) "VS. 

SAMPLE=";CN 
1130 FOR 1=1 TO F 
1140 X(I)=B(I,S):PRINT:PRINT "CORRECTED PCA(";I;")";:PRINT TAB(17) 

B(I,S); 
1150 Y(I)=B(LCN):PRINT TAB(30) B(I,CN) 
1160 IF X(I)>AMAX THEN AMAX=X(I) 
1170 IF X(I)<AMTN THEN AMIN=X(I) 
1180 IF Y(I)>BMAX THEN BMAX=Y(I) 
1190 IF Y(I)<BMTN THEN BMTN=Y(I) 
1200 NEXT I 
1205 PRINT:INPUT "DO YOU WANT TO SAVE THE CORRECTED PCA";MM$ 
1207 IF MM$="N" THEN 1210 
1208 CLOSE #1 :INPUT "FILE NAME TO SAVE RESULTS";NOM$:OPEN NOMS 

FOR OUTPUT AS #l:FOR 1=1 TO F:PRINT #1,B(LCN),B(LS):NEXT 
ICLOSE 

1210 XMAX=AMAX 
1220 XMIN=AMIN 
1230 YMAX=BMAX 
1240 Y M I N = B M I N 

1250 NPTS=F 
1260 LAB1$="CASE#=" 
1270 CORNER=l 
1280 XLAB$=" STANDARD" 
1290 YLAB$="CASE" 
1300 LTYPE=0 
1310 MORE=0 
1320 GOSUB 1430 
1330 MORE=l:X(l)=XMAX 
1340 X(2)=XMTN 
1350 Y(1)=X(1) 
1360 Y(2)=X(2) 
1370 LTYPE=1 
1380 NPTS=2 
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1390 GOSUB 1430 
1400 GOTO 1070 
1410 PR1NT:PRINT:PRINT TAB(30)" END OF PROGRAM- ":END 
1420 ' 
1430 ' SUBGRAPH May 10,1984 Bob Shannon 
1440 
1450 'SUBGRAPH is a BASIC subroutine that will plot any set of data. 
1460 Tt defines the coordinates of the screen, draws 
1470 'the grid with tic marks, numbers, and labels on each axis. 
1480 Tt also prints a 3 line label in one corner. The user can specify 
1490 'the size and proportion of the figure in inches. Either linear 
1500 'or logarithmic axes are allowed on both ordinate and abcissa. 
1510 
1520 ' Alt-C controls the color of the plot, the entire figure is 
1530 ' plotted in the chosen color. The color option does not 
1540 ' affect the printer dump print density. 
1550 ' 
1560 'Calling sequence: 
1570 ' 1. MERGE "SUBGRAPH.bas" with your program 
1580 ' 2. Save a new copy of your program which includes subroutine 
1590 ' 3. Set up the parameters as defined below 
1600 ' 4. gosub 60000 at point where you want the plot 
1610 
1620 
1630 'Parameters: Do not use these names elsewhere in your program 
1640 ' 
1650 ' SYM symbol type (0=none,l=open sq,2=fill sq,3=open tri 
1660 ' 4=filltri,5=open cir,6=fill cir 
1670 ' 7=open diamond, 8=filled diamond, 9=X 
1680 ' SIZE Symbol size in % of axes length 
1690 'LTYPE line type (0=none,l=sohd,2=dashed,3=dotted,4=regression 
1700 'NPTS is the number of data points 
1710 ' X(I),Y(I) arrays that contain the x and y data points 
1720 ' XLEN,YLEN x and y axis length in inches 
1730 ' XMIN,YMIN x any y minimum values 
1740 ' X M A X , Y M A X x and y axis maximum values 
1750 ' XLIN,YLIN flag for linear(=0) or Log(=l) axis 
1760 ' XINC,YINC unit increment on each axis (valid only for linear) 
1770 ' if these are <=0 they are calculated from data 
1780 ' XLAB$,YLAB$ strings containing the axis labels 
1790 ' LAB1$,LAB2$,LAB3$ three label lines 
1800 ' CORNER specifies the corner for the label 
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1810 ' (0=none,l=LL,2=LR,3=UL,4=UR) 
1820 ' MORE a flag that indicates whether this call is the 
1830 ' first and so axes should be plotted, or if it 
1840 ' is more data to go on the same axes (axes are 
1850 ' not plotted if MORE=l), MORE=0 new figure. 
1860 'MIRORSAVI IL' 
1870 ' For more than one set of data on the same axes: 
1880 ' 1. Set up the first set of data and all other plot parameters 
1890 ' 2. GOSUB 60000 with MORE=0 
1900 ' 3. Set up second set of data (leave plot parameters unchanged) 
1910 ' (you may change SYM, SIZE, LTYPE and NPTS for each set) 
1920 1 4. GOSUB 60000 with MORE=l 
1930 ' 5. repeat steps 3 and 4 for each additional data set 
1940 
1950 
1960 
1970 
1980 ' Scale axes and plot them 
1990 
2000 IF Y L E N < = 0 T H E N YLEN=5.5 
2010 IF X L E N < = 0 T H E N XLEN=7.5 
2020 IF M O R E o i T H E N S C R E E N 2 : C L S : K E Y O F F 
2030 K E Y 20,CHR$(&H8)+CHR$(46):KEY (20) O N 
2040 ON K E Y (20) G O S U B 3460 
2050 IF K L K P=0 T H E N KLKP=15 
2060 OUT 985,KLR.P 
2070 XINC.P=XINC:YINC.P=YrNC 
2080 X R A N G E . P=XMAX-XMIN :YRANGI : .P -YMAX-YMIN 
2090 IF XINC<=0 T H E N XINC .P=10 /XINT(LOG(XRANGE .P*.66)/LOG(10))) 
2100 IF YTNC<=0 T H E N Y INC.P=10^JNT(LOG(YRANGE.P* .66 ) /LOG(10) ) ) 
2110 XMjN.P=XINC.P*JNT(XMm/XINC.P):XMAX.P=XINC.P*(INT^^ 

N C . P)+1))XMTN .P=XINC .P*=YINC 
2120 YMAX=YTNC .P*mT((YMAX /YMmC .P)+l):UMJN .P=YINC .P 

*(INT(YMIN/YMINC .P)) 
2130 IT^IN=1THENXMAX .P=LOG(XMAX)/LOG (10):XMTN .P= 

LOG(XMIN)/LOG(10) 
2140 I F Y L J N = 1 T H E N Y M A X . P = L O G ( Y M A X ) / L O G ( 1 0 ) : Y M I N . P = 

LOG(YMIN)/LOG( 10) 
2150 XRANGE . P = X M A X . P - X M m . P :YRANGE . P=YMAX . P -YMIN . P 
2160 D X = S I Z E * X R A N G E . P / 1 0 0 ! : D Y = S I Z E * Y R A N G E . P / 1 0 0 ! 
2170 XT . P=XRANGE . P * (9 ! /XLEN) :YT . P=YRANGE . P * (7 !AT . E N ) 
2180 T ICX=. 03 * X R A N G E . P : TIC Y=. 04* Y R A N G E . P 
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2190 XTRA=(XT.P-XRAKGE.P)*9/XT.P:YTRA=(YT.P-YRANGE.P)*7A rT.P 
2200 LBD.X=XMTN.P-(l!*XT.P/9) 
2210 LBD.Y=YMTN.P-(l!*YT.P/7) 
2220 UBD.X=XMAX.P+((XTRA-1! )*XT.P/9):UBD.Y=YMAX.P+((YTRA-

l!)*YT.P/7) 
2230 IF M O R E O I THEN WINDOW (LBD.X,LBD.Y)-(UBD.X,UBD.Y) 
2240 IF M O R E O I THEN LINE (XMIN.P,YMIN.P)-(XMAX.P,YMAX.P), 1,B 
2250 XLOW.P=XMrN.P-LBD.X:YLOW.P=YMIN.P-LBD.Y 
2260 XHI.P=XT.P-XRANGE.P-XLOW.P:YHI.P=YT.P-YRANGE.P-YLOW.P 
2270 XP.P=.00159*(UBD.X-LBD.X) 
2280 imORE<>lTHENLINE(XMIN.P+XP.P,YMIN.P)-

(XMAX.P+XP.P,YMAX.P), 1,B 
2290 STYLE=&HFFFF:IF LTYPE=0 THEN STYLE=&H0 
2300 IF LTYPE=2 THEN STYLE=&HF0F0 
2310 IF LTYPE=3 THEN STYLE=&HC0C0 
2320 IF LTYPE=4 THEN STYLE=&H0 
2330 IF MORE=l THEN 3170 
2340 ' 
2350 label axes 
2360 
2370 XPOS.P=((XLOW.P+(XRANGE.P/2!))*80!/XT.P)-(LEN(XLAB$)/2) 
2380 LOCATE 25,XPOS.P:PRINT XLAB$; 
2390 YPOS.P=25 !-(25! *((YLOW.P+(YRANGE.P/2!))/YT.P))-(LEN(YLAB$)/2!) 
2400 FOR 1=1 TO LEN(YLAB$): YT$=MID$(YLAB$,I, l):LOCATE 

I+YPOS.P,3:PRTNT YT$;:NEXT I 
2410 
2420 1 Print label on figure in specified corner 
2430 ' 
2440 1 

2450 IF CORNER=0 THEN GOTO 2590 
2460 MAXLEN=0:IF LEN(LAB3$)>MAXLEN THEN MAXLEN=LEN(LAB3$) 
2470 IF LEN(LAB2$)>MAXLEN THEN MAXLEN=LEN(LAB2$)+1 
2480 IF LEN(LAB1$)>MAXLEN THEN MAXLEN=LEN(LAB 1 $)+1 
2490 IF CORNER=l OR CORNER=2 THEN XPOS.P=((XLOW.P/XT.P)*80!)+3 
2500 IF CORNER=3 OR CORNER=4 THEN 

XPOS .P=(((XLOW. P+XRANGE. P)/XT. P)* 80! )-MAXLEN 
2510 IF CORNER=2 OR CORNER=4 THEN YPOS.P=((YHLP/YT.P)*26)+2 
2520 IF CORNER=l OR CORNER=3 THEN 

YPOS.P=(((YHI.P+YRANGE.P)A^T.P)*26!)-4! 
2530 LOCATE YPOS.P,XPOS.P:PRTNT LAB 1$;CN 
2540 LOCATE YPOS.P+l,XPOS.P:PRINT LAB2$; 
2550 LOCATE YPOS.P+2,XPOS.P:PRINT LAB3$; 
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2560 
2570 1 tic marks and numbers on linear x axis 
2580 
2590 IF XLESN1 THEN 2710 
2600 FOR XTIC=XMTN.P TO XMAX.P STEP XTNC.P 
2610 LINE (XTIC,YMm.P)-(XTIG,YMTN.P+TICY),l 
2620 LINE (XTIC+XP.P,YMIN.P)-(XTIC+XP.P,YMIN.P+TICY),1 
2630 LINE (XTIC,YMAX.P-TICY)-(XTIC,YMAX.P),1 
2640 LINE (XTIC+XP.P,YMAX.P-TICY)-(XTIC+XP.P,YMAX.P),1 
2650 XPOS.P=(((XLOW.P+(XTIC-XMIN.P))/XT.P)*80!)-(LEN(STR$(XTIC))/2) 
2660 LOCATE 23,XPOS.P:PRINT USING "#.##";XTIC; 
2670 NEXT XTIC 
2680 
2690 1 tic marks and numbers on linear y axis 
2700 
2710 IF YLJJSN1 THEN 2850 
2720 FOR YTIC=YMTN.P TO YMAX.P STEP YTNC.P 
2730 LINE (XMIN.P,YTIC)-(XMIN.P+TICX,YTIC),1 
2740 LINE (XMAX.P-TICX,YTIC)-(XMAX.P,YTIC),1 
2750 YPOS.P=((Yffl.P4<YMAX.P-YTIC))/YT.P)*26! 
2760 XPOS.P=6-(LEN(STR$(YTIC))/2) 
2770 IF YPOS.P>25 OR YPOS.P<l THEN BEEP:GOTO 2800 
2780 JJF XPOS.P>80 OR XPOS.P<l THEN BEEP:GOTO 2800 
2790 LOCATE YPOS.P,XPOS.P:PRINT USING "##.#" ;YTIC 
2800 NEXT YTIC 
2810 
2820 1 tic marks and numbers on log x axis 
2830 
2840 
2850 IF XLIN=0 THEN 3010 
2860 FOR CYC=-5 TO 5 
2870 FORLTIC=l TO 10 
2880 XTIC=LTIC*(10ACYC) 
2890 LXTIC=LOG(XTIC)/LOG(10) 
2900 IF LXTIC<=XMTN.P OR LXTIC>=XMAX.P THEN 2950 
2910 LINE(LXTIC,YMiN.P)-(LXTIC,YMIN.P+TICY),l 
2920 LINE (LXTIC+XP.P,YMIN.P)-(LXTIC+XP.P,YMIN.P+TICY),1 
2930 LINE (LXTIC,YMAX.P-TICY)-(LXTIC,YMAX.P),1 
2940 LINE (LXTIC+XP.P,YMAX.P-TICY)-(LXTIC+XP.P,YMAX.P), 1 
2950 NEXT LTIC 
2960 IF LXTIC>=XMTN.P AND LXTIC<=XMAX.P THEN LOCATE 

23,(((XLOW.P+(LXTIC-XMIN.P))/XT.P)*80!)-1 :PRINT XTIC; 
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2970 NEXT CYC 
2980 
2990 ' tic marks and numbers on log y axis 
3000 
3010 IF YLIN=0 THEN 3140 
3020 FORCYC=-5T0 5 
3030 FOR LTIC=1 TO 10 
3040 YTIC=LTIC*(10ACYC) 
3050 LYTIC=LOG(YTIC)/LOG(10) 
3060 IF LYTIC<=YMTN.P OR LYTIC>=YMAX.P THEN 3090 
3070 LINE (XMENT.P,LYTIC)-(XMIN.P+TICX,LYTIC),1 
3080 LINE (XMAX.P-TICX,LYTIC)-(XMAX.P,LYTIC),1 
3090 NEXT LTIC 
3100 YPOS.P=((Yffl.P+(YMAX.P-LYTIC))A^T.P)*26! 
3110 XPOS.P=6-((LEN(STR$(YTIC))/2!)) 
3120 IF LYTIC>=YMTN.P AND LYTIC<=YMAX.P AND YPOS.P>=l THEN 

LOCATE YPOS.P,XPOS.P:PRINT YTIC; 
3130 NEXT CYC 
3140 ' 
3150 ' now plot data on axes 
3160 ' 
3170 SX=0:SY=0:SSX=0:SXY=0 
3180 FORI=lTONPTS 
3190 X1(I)=X(I):TF XL1N=1 THEN X1(I)=LOG(X(I))/LOG(10) 
3200 Y1(I)=Y(I):IF YLIN=1 THEN Y1(I)=LOG(Y(I))/LOG(10) 
3210 IF I>1 THEN LINE(X1(I-1),Y1(I-1))-(X1(I),Y1(I)),1„STYLE 
3220 IF I>1 THEN LINE (X1(I-1)+XP.P,Y1(I-1))-(X1(I)+XP.P,Y1(I)),1„STYLE 
3230 IF SYM=1 THEN LINE (X1(I)-DX,Y1(I)-DY)-(X1(I)+DX,Y1(I)+DY),1,B 
3240 IF SYM=1 OR SYM=2 THEN LINE(X1(I)-DX+XP.P,Y1(I)-DY)-

(X1(I)+DX+XP.P,Y1(I)+DY), 1,B 
3250 IFSYM=2THENLINE(X1(I)-DX+XP.P,Y1(I)-DY)-

(X1(I)+DX+XP.P,Y1(I)+DY), 1,BF 
3260 IF SYM=3 OR SYM=4 THEN LINE (X1(I)-DX,Y1(I)-DY)-(X1(I)+DX,Y1(I)-

DY),1:LINE(X1(I),Y1(I)+DY)-(X1(I)-DX,Y1(I)-DY),1:LINE 
(X 1(1), Y 1(I)+DY)-(X 1(I)+DX,Y l(I)-DY), 1 

3270 IF SYM=3 OR SYM=4 THEN LINE (X1(I)+XP.P,Y1(I)+DY> 
(X1(I)+XP.P+DX,Y1(I)-DY), LLINE (X1(I)+XP.P,Y1(I)+DY)-(X1(I)+XP.P-
DX,Y1(I)-DY),1 

3280 IF SYM=4 THEN PATNT (X1(I)+2*XP.P,Y1(I)),1 
3290 IF SYM=5 OR SYM=6 THEN CIRCLE (X1(I),Y1(I)),DX:CIRCLE 

(X1(I)+XP.P,Y1(I)),DX 
3300 IF SYM=6 THEN PATNT (X1(I)+2*XP.P,Y1(I)),1 
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3310 IF SYM=9 THEN LINE (X1(I)-DX,Y1(I)-DY)-(X1(I)+DX,Y1(I)+DY),1:LINE 
(X1(I)+DX,Y1(I)-DY)-(X1(I)-DX,Y1(I)+DY),1 

3320 IF SYM=7 OR SYM=8 THEN LINE (X1(I),Y1(I)+DY)-
(X1(I)+DX,Y1(I)),1:LINE -(X1(I),Y1(I)-DY),1:LINE -(X1(I)-
DX,Y1(I)), LLINE -(X 1(I),Y1(I)+DY), 1 

3330 IF SYM=8 THEN PATNT (X1(I)+2*XP.P,Y1(I)),1 
3340 SY=SY+Y1(I):SX=SX+X1(I):SSX=SSX+(X1(I)A2):SXY=SXY+(X1(I)*Y1(I)) 
3350 NEXT I 
3360 IF LTYPE<>4 THEN RETURN 
3370 
3380 ' Regression line plotted 
3390 :A=((NPTS*SXY)-(SX*SY))/((NPTS*SSX)-(SX*SX)) 
3400 B=(SY/NPTS)-(A*SX/NPTS) 
3410 YM1N.P=(A*XMIN.P)+B:Y]VJAX.P=(A*XMAX.P)+B 
3420 LJm(XMm.P,YMIN.P)-(XMAX.P, YMAX.P), 1 
3430 LINE (XMIN.P+XP.P,YMIN.P)-(XMAX.P+XP.P, YMAX.P), 1 
3440 
3450 RETURN 
3460 
3470 ' key trap of Alt-C to change color 
3480 
3490 KLRP=(KLRP+1) MOD 128:IF K L R P MOD 8=0 OR KLR.P MOD 16=0 

THEN KLR.P-KLR.PH 
3500 OUT 985,KLRP 
3510 RETURN 
3520 OPEN "coml:9600,s,7,l,rs,cs65535,ds,CD" AS #1 
3530 PRINT #1, "IN;SP1;IP1750,1100,8500,7550;" 
3540 PRINT #1, " S C X M J N , X M A X , Y M J N , Y M A X ; " 
3550 PRINT #1 "PUXMIN,YMrN, 

PDXMAX ,YMm ,XMAX,YMAX,X]v]IN,YMAX,XMIN,YMIN PU" 
3560 PRINT #1,"SI.2,.3;TL1.5,0" 
3570 1=0 
3580 FOR XTIC=XMTN TO X M A X STEP X I N C 
3590 PRINT #1,"PA";X(I),",0":XT;" 
3600 PRINT #l,"CP-2,-l;LB";X(I),+CHR$(3) 
3610 1=1+LNEXT XTIC 
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C. ADSA Scoring Guide for Sensory Evaluation 

Flavour defects Not detect Slight De finite Pronounced Unsellable 
Acid 10 3 1 0 0 
Astringent 10 8 7 6 0 
Bitter 10 5 3 1 0 
Cooked 10 9 8 6 0 
Heated 10 9 8 6 0 
Oxidized light induced 10 6 4 1 0 
Oxidized metal induced 10 5 3 1 0 
Rancid 10 4 1 0 0 

Accept Accept Accept Not 
moderately shghtly accept 

Overall impression 10 6 2 0 


