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A b s t r a c t 

In this thesis, a local smoothing method, termed the not-so-smoother, designed to es­

timate discontinuous regression functions is proposed. Local smoothing techniques es­

timate the regression function at a given point by finding the "best fit" through the 

observations within a fixed neighbourhood of the point. The "best fit" can be the best 

constant fit (which gives the moving average smoother), the best linear fit, the best k-

degree polynomial fit, et cetera. The not-so-smoother finds the best local broken constant 

fit, a piecewise constant function with exactly one simple discontinuity. Unlike any of 

the traditional local smoothing methods, the not-so-smoother uses discontinuous local 

fits and, therefore, has the ability to preserve discontinuities in the function. 

Consistency of the not-so-smoother under general conditions is proven. Performance 

of the smoother on simulated data, both continuous and discontinuous, is demonstrated, 

and an application to a real data set of electric current recordings through an ion channel 

in a cell membrane is also shown. Variations of the not-so-smoother which can lead to 

improved performance in certain situations are investigated. 
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Chapter 1 

Introduction 

A common problem in statistics is, given a set of noisy data, to estimate the underlying 

function, also called the signal or regression function. Oftentimes, a parametric form for 

the signal is assumed. For example, in the case of linear regression, the signal is assumed 

to belong to the class of linear functions. 

A more general problem arises when the regression function is not restricted to any 

specific form. If limited or no information is known about the underlying function then 

it is preferable not to place restrictions on the function's form. Nonparametric regression 

techniques such as kernel smoothers and smoothing splines are typically used to estimate 

the signal in such situations (Green and Silverman, 1994; Eubank, 1988). These smooth­

ing methods are based on the assumption that the regression function is continuous. 

Applying the traditional smoothing methods when the function is not continuous tends 

to smooth away the discontinuities, or "jumps". 

In applications where discontinuities are present in the signal, it is important that the 

jumps be preserved. In fact, identification and preservation of the discontinuities can be 

the main objective in estimating the signal. For example, in Chapter 4 we consider a data 

set of electric current recordings through an ion channel in a cell membrane. The current 

is believed to have two, or perhaps more, conductance levels between which it switches 

randomly. The data are quite noisy and the goal is to restore the true signal. For data sets 

such as this, we seek a smoother with the ability to preserve discontinuities. In particular, 

we are interested in the case where no a priori information regarding the parametric form 
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Chapter 1. Introduction 2 

of the regression function, including the number and location of discontinuities, is known. 

In 1986, McDonald and Owen investigated the estimation of a discontinuous regression 

function and introduced a smoothing algorithm called the split linear smoother which can 

produce a discontinuous estimate. The main idea of their approach is, for any given point, 

to obtain linear fits based on points to the left, to the right, and to both sides of the point 

in question. A smoothed estimate for the point is found by taking a weighted average 

of the left, right, and central fits, where the weights are chosen based on goodness-of-fit 

measures for the linear fits. The split linear smoother is quite complicated in concept 

and in practice, and its statistical properties were only briefly discussed. 

Following the work of McDonald and Owen, Hall and Titterington (1992) developed 

an edge-preserving smoothing algorithm summarized as follows. (Note that an edge is 

simply a discontinuity in the function.) For each design point, a left, right and central 

smooth is calculated by taking a weighted average of data to the left, right, and both sides, 

respectively, of the point. Weights are determined through a procedure which equates 

leading terms in the Taylor series expansions of the expected smooths. Discontinuities 

are then identified using various diagnostics to compare the three smooths. Having 

identified the jumps, a final estimate of the function at each design point is produced. 

The left (right) smooth is used for points to the left (right) of and sufficiently close 

to a discontinuity; otherwise, the central smooth is used. As acknowledged by Hall 

and Titterington, some arbitrariness is involved in the procedure, including the choice of 

weights, the number of neighbouring data points used in the smooths, and the diagnostics 

used to identify jumps. Furthermore, properties of their estimator are not known. 

Several related problems have also been studied. The case where exactly one discon­

tinuity exists was considered by Miiller in 1992. Miiller identifies the discontinuity by 

comparing right and left one-sided kernel smooths, and he also gives results on the rate 

of convergence of the estimated point of discontinuity to the true point. 
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In a 1991 paper, Lee presents a method for detecting and measuring the size of change-

points, which are discontinuities occurring in the kth order derivative of the regression 

function. The use of smoothing splines to estimate the function once the change-points 

have been detected is briefly discussed. 

Shiau (1987) proposes a partial spline model to estimate the underlying function of 

a noisy data set, assuming that the locations of the discontinuities are known. In a case 

where this information is unavailable, Shiau's approach could be used in conjunction with 

a procedure for identifying the discontinuities, such as Lee's. 

Less recently, Feder (1975) investigated regression functions which have different para­

metric forms over different regions of the domain. Specifically, he studied the asymptotic 

distribution of least-squares estimators in this segmented regression problem. Because 

each segment's parametric form must be specified, this problem is not as general as the 

one we are interested in. 

In this thesis, we propose a smoother which, like those of McDonald and Owen and 

Hall and Titterington, is capable of preserving discontinuities, but is simpler conceptually 

as well as in application. Moreover, consistency of the estimator can be shown. No 

assumptions about the parametric form of the underlying function or the existence of 

discontinuities are made. 

This new smoothing technique is a local smoother. Local smoothers estimate the 

regression function at a given point by finding the "best fit" through a fixed number 

of neighbouring observations. The "best fit" depends on the form of the fits considered 

as well as the criterion used to determine best. In the case of the moving average 

smoother, only constant fits are considered and best is determined by minimizing the 

squared error between the observations and the constant. Local linear, quadratic, and k-

degree polynomial fits are also commonly used. The smoothing method we propose finds 

the best "broken constant" fit, a piecewise constant function with exactly one simple 
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A fictitious neighbourhood of observations 

best constant fit 
best broken constant fit 
estimate using constant fits 
estimate using broken constant fits 

-1— 
10 

-1— 
15 

—r -

20 
-1— 

25 40 

Figure 1.1: The best constant and broken constant fits and their corresponding estimates 
at the central point 

discontinuity, where best is determined by a minimization of squared error criterion. 

Regardless of the form of local fits used, after determining the best local fit, the estimate 

of the regression function at the point of interest is taken to be the fitted value at that 

point. 

An illustration should clarify. Suppose we have a data set of 100 observations and 

we are estimating the regression function at the 25th point. We must first choose the 

number of neighbouring observations to use in our estimate. For this example, we will-

use 15 observations to the left and 15 observations to the right of the 25th point, meaning 

observations 10 through 40. Figure 1.1 shows fictitious data for this situation. The best 

constant fit, which is just the mean of the observations, and the best broken constant 
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fit are shown in the figure. To find the best broken constant fit, we consider, for each 

design point in the neighbourhood, the broken constant fit that breaks at that point. 

Searching over all these fits, we find that the total squared error between the observed 

and fitted values is minimized when the breakpoint occurs at the 19th point, as pictured. 

The estimates at the 25th point corresponding to the best constant fit and best broken 

constant fit are also marked. 

This illustration helps us to see that when there is a discontinuity in the neighbour­

hood of a point, it is reasonable to expect the best broken constant fit to break at, or 

near, the point of discontinuity. If so, the function estimate at points close to the discon­

tinuity will only be influenced significantly by observations on the same side of it, thus 

preserving the edge. Because the result of our smoothing method is an estimate of the 

function that need not always be smooth, we will refer to it as the not-so-smoother. 

A detailed description of the not-so-smoother follows in Chapter 2. Consistency 

of the estimator under general conditions is proven in Chapter 3. In Chapter 4 we 

demonstrate the performance of the not-so-smoother on simulated as well as real data 

sets. Chapter 5 contains extensions of the smoother to include the use of local linear, 

rather than constant, fits and the use of a test to allow the estimator to "break" only if 

the data provide sufficient evidence of a discontinuity. Finally, concluding remarks and 

suggestions for further work are found in Chapter 6. 



Chapter 2 

The Not-So-Smoother 

Before introducing the not-so-smoother, we must first define the framework under which 

we are working. Let / denote the regression function, or signal, being estimated. We 

assume that / is a bounded, real-valued function on the interval (a, b) with a finite number 

of unknown discontinuities. Let (tnk,Xnk), k = 0,1, . . . , n , denote the data, where each 

tnk is a design point in the interval (a, b) and each Xnk is the observed regression function 

at the point tnk-

The model can be expressed as 

Xnk = f(tnk) + £nk, k = 0,l,...,U 

where a < tno < tn\ < • • • < tnn < b and the error terms, {enk}, are independent and 

identically distributed with mean 0 and finite variance a2. 

A smoothed estimate of the regression function, / , at each of the design points is 

calculated according to the following algorithm. 

First choose a non-zero bandwidth, Rn, such that in estimating / at the point tnk the 

nearest 2Rn +1 observations, namely {Xntk-Rn,. • •,Xnk,...,XUik+Rn}, are used. We will 

refer to the interval {tnik-Rn , tn:k+Rn] as the neighbourhood of tnk-

For each design point tnk, k £ {0,1,...,n), define the local breakpoint, Ink, to be 

the argument that minimizes the function Hnk(J) over all J G {—R n , • • •, 0, . . . , Rn — 1}, 

where 

Hnk{J) = — I {Xn,k+3 - X-Rn-j) + {Xn,k+j ~ XJ+l:Rn) J ( 2-l) 
nn \j=-Rn j=J+l J 

6 



Chapter 2. The Not-So-Smoother 7 

and Xi:. is defined as 
m 

Then define the estimate of f(tnk) to be 

f(tnk) = f(tnk, Ink ) 

where 

) 
1 

jes 
(2-2) 

\S\ 

and 

{ — Rn, • • • , Ink} if Ink > 0 

{ink + l,...,Rn} H Ink < 0. 
S = < (2.3) 

Note that |5"| denotes the number of elements in the set S. 

Although the notation may seem daunting, the idea is really quite simple. Suppose we 

are trying to get a smoothed estimate of / at the point tnk, then consider only the 2Rn +1 

neighbouring observations, which we have denoted {Xntk-Rn,..., Xnk,...,Xn>k+Rn}- We 

want to find the broken constant function that fits the data "best", where best is based 

on the minimization of squared errors. 

Specifically, fix J € {—Rn, • • •, 0, . . . , Rn — 1} so that J divides the data in the neigh­

bourhood into two subsets, Si = {Xn,k-Rn,... ,XnMj} and S2 = {Xn<k+J+1,..., XnMRn} 

The constant line through the observations in Si which minimizes the sum of squared 

errors is the mean of the observations; similarly for S2- Let us denote the sum of squared 

errors from the observations in 5"i to their mean and S? to their mean as SSE-Rn:j 

and SSEj+i:Rn respectively. The value of J which minimizes the total squared error, 

SSE-Rn:J + SSEj+i:Rn, or equivalently Hnk{J) = (SSE-Rn.,j + SSEJ+i:Rn)/Rn, is what 

we have called the (local) breakpoint. After having identified the best broken constant 

fit, the estimate of / at tnk is simply taken to be the fitted value at that point. 
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10 15 20 25 30 35 40 

J = -10 

H(-6) = 6.50 

10 15 20 25 30 35 40 

J = -6 

H(0) = 21.93 

10 15 20 25 30 35 40 

J = 0 

10 15 20 25 30 35 40 

J = 10 

Figure 2.1: Examples of local broken constant fits for the fictitious neighbourhood 
Figure 1.1 
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— i 1 1 1 1 1 f 

-15 -10 -5 0 5 10 15 
J 

Figure 2.2: The function H corresponding to the fictitious neighbourhood in Figure 1.1 

To illustrate this procedure, again consider the fictitious neighbourhood shown in 

Figure 1.1. For this example, the bandwidth is 15. Thus, there are 30 possible broken 

constant fits to consider, one corresponding to each value of J € { —15,..., 0, . . . , 14}, 

where J divides the data in the neighbourhood into two subsets as described above. 

Broken constant fits for various values of J are shown in Figure 2.1. The function #100,25 

(recall n = 100 and we are estimating the 25th point), for which we will simply write H 

in this example, is calculated for each value of J. A plot of H is given in Figure 2.2. It 

is clear from this figure that H is minimized at J = —6, meaning the breakpoint is —6 

(corresponding to the 19th point). Therefore, the estimate of the regression function at 

the 25th point is the mean of observation 20 through 40, which is 2.07. 
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C o m m e n t s 

1. Some modifications must be made for estimating points near the ends of the 

interval (a, b). If we are estimating / at the point tnk where k £ {0,1,..., Rn — 1}, 

then there are not Rn design points to the left of tnk- Similarly, for estimating / at 

tnk where k £ {n — Rn + 1, • • •, n — l,n}, there are not Rn design points to the right 

of tnk- In such cases, we simply replicate the data set to the right and left of itself, 

connecting the endpoints of the interval (a,b). In doing so, for tnk near a, observation 

Xn-j becomes observation XniTl-j+i, j = 1, . . . , Rn, and for tnk near b, observation Xn,n+j 

becomes observation Xn,j-i, j = 1, . . . , i?„. More concisely, every Xnk can be written as 

Xntk%(n+i)i where % denotes modulo arithmetic. Furthermore, tn,-j can be defined as 

a - (b - tnin+1_j), j = 1 , . . . , Rn, and tn,n+j as b + (tn,j-i - a), j = 1 , . . . , Rn. Although 

the location of the design points does not affect the estimated value of the function, it 

is important that all design points be well defined in order that the proofs in Chapter 3 

hold near the ends of the interval (a, b). Note that with a usual moving average smoother, 

replicating the data set could result in biased estimates since the observations near the 

beginning of the interval need not be consistent with those near the end of the interval. 

However, using the not-so-smoother there is no such problem since we are just introducing 

another potential discontinuity which this method is designed to preserve. 

2. We chose to use local piecewise constant fits as opposed to local piecewise linear 

fits, or any more complex piecewise function. This choice stems from the idea that if the 

width of the neighbourhood is small, then the regression function should not fluctuate too 

much within a neighbourhood and thus should be adequately approximated by constants. 

This will not always be true, as a later example will show, leading us to investigate the use 

of local piecewise linear fits in Chapter 5. The literature on local regression is unanimous 

to say that local linear and higher order fits perform better than local constant fits for 

numerous reasons. The example in Chapter 5 suggests that this is also the case for the 
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estimation of a discontinuous signal. 

3. As mentioned previously, the not-so-smoother should detect discontinuities when 

they exist. If there is a jump within the neighbourhood of the point being estimated, 

then it is reasonable that the best broken constant fit will break at, or very near, the 

point of discontinuity. (In Chapter 4 we show this is true in practice and in the next 

chapter we prove that, under certain conditions, it is true asymptotically.) Therefore, 

if the point being estimated is to the left (right) of the discontinuity, then the estimate 

should only be influenced significantly by points to the left (right) of the discontinuity. 

As a result, the jump will not be smoothed away. 

It will be convenient to rewrite the estimator given in equation (2.2) as follows. Since 

Xnk = f(tnk) + £nk, we can write 

f{tnk, Ink) = 9nk{tnk, Ink) + Ink(Ink) (2.4) 

where 

gnk(tnk, Ink) = T7T7 X) f(tn,k+j)> (2-5) 
11 51 jes 

Ink(ink) = T T m £n,k+j (2.6) 
I*51 jes 

and S is defined in (2.3). 

Thus gnk can be thought of as the part of the estimate attributable to the signal 

whereas ^nk is the part of the estimate attributable to noise in the observations. 



Chapter 3 

Consistency 

This chapter is devoted to proving that the estimator, / , as defined by (2.4) is consistent 

under general conditions. The conditions required are: 

(Rl) max (tni - £ n , ;_i) = 0(l/n), 
te{l,-,n} 

tno — a = 0(l/n) and b — tnn = 0(l/n) 

(R2) Rn ™ oo and — n-=^ 0 
n 

(i?3) For every discontinuity point t0, there exists 6i,S2 > 0 and Mi,M2 > 0 such that 

(0 l / (*)- /"(*o)l < M i ( t 0 - < ) V 0 < ^ o - t < < 5 i 

and 

(ii) - /+(*o)| < M2 (t - t0) V 0 < t - t0 < 62 

where f~(t0) = lim t| i o f(t) and f+(to) = l im t j t o f(t) are assumed to exist. Further­

more, either f(t0) = f~(t0) or f(t0) = f+(t0)-

(RA) Ee* <oo V i = l , . . . , n 

Condition (Rl) states that the distance between any two consecutive design points 

tends to zero at speed 1/n as the number of design points tends to infinity. For example, 

12 
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if the design points are equally spaced over the interval [0,1], as is commonly the case, 

then tni = i/n, i = 0,1, . . . , n. Thus, the distance between any two consecutive points is 

1/n which is clearly 0(1/n) as required. 

The additional requirements in (Rl) that the left and right endpoints of the interval 

(a, b) be close to the first and last design points respectively are needed when proving 

consistency near the ends of the interval. Collectively, the conditions in (Rl) state that 

distance between any two consecutive design points, including those defined by replicating 

the data set (see Comment 1 on page 10), is 0(1/n). 

Condition (R2) states that the number of points used in estimating / at any given 

point must be large in absolute terms, but small relative to the total number of observa­

tions. For example, take Rn = y/n. 

An immediate consequence of conditions (Rl) and (R2) is that the distance between 

a given design point and any other point within its neighbourhood tends to zero as n 

tends to infinity. Formally this can be stated as: 

(R21) Let Sn = {-Rn, • • •, 0, . . . , Rn}. Then 

max\tn,kn+j ~tnkn\ 0. 
je«->n 

The proof is simple. 

max \tn,kn+j — tnkn I < tn,kn+Rn — tn,kn-Rn 

jeo n 

Rn 
= XI (tn,kn+i ~ ^n,fc„+(i-l)) 

i=-Rn 
R 

= £ 0(l/n) by (Rl) 
i=-Rn 

= (2Rn + 1) 0(l/n) n-^? 0 by (R2). 

Condition (i?3) is a Lipschitz-type condition for the discontinuity points which re­

quires that the underlying function be smooth on either side of a discontinuity. It also 
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states that / is either right or left continuous to exclude the case where / has a remov­

able discontinuity, that is, f~(to) = f+{to) ^ f(to)- Although the results presented in 

this chapter are still true when there is a removable discontinuity, the proofs would need 

modified to include this case. 

Finally, condition (-R4) states that the distribution of the error terms must have finite 

fourth moments. This is true for many distributions, including the commonly assumed 

normal distribution. The last two requirements, (i?3) and (-R4), will be needed to prove 

consistency of / at the discontinuity points. 

C o m m e n t 

Note that in the proof of (-R2'), tnkn was written instead of tnk\ tnk represents a fixed 

point whereas tnkn represents a sequence of points. We want to show consistency of / at 

every point t0 in the interval (a, b). Because / is only defined at the design points and 

t0 may not correspond to a design point, we must consider a sequence of design points, 

tnkn, which converges to t0. Thus, throughout this chapter, kn will be written wherever 

k was formerly used. 

The proof that the not-so-smoother is consistent will be presented through a series of 

lemmas. First it is shown that the part of the estimate attributable to noise, 7n^n (refer 

to (2.6)), converges in probability to zero. Next, the term attributable to the signal, 

9nk„ (refer to (2.5)), is considered and it is shown that the difference between gnkn and 

the true function / tends to zero at all points as n tends to infinity. Continuity points 

and discontinuity points will be considered separately. Finally, since / = gnkn + ^nkn, it 

follows that / — / converges in probability to zero, or equivalently that / is a consistent 

estimator of / . 
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Notation 

Before proceeding, some simplifying notation which will be used throughout this 

chapter is introduced. When considering design point tnkni £j will be written in place of 

£n,kn+j and Xj in place of Xn,kn+ji for j = — Rn,..., Rn. Thus it is important to keep in 

mind the dependence of these terms on kn, the position of the current point of interest, 

and n, the total number of observations. 

Lemma 1 Assume condition (Rl) holds. Then 

max 
Inkn £{ — Rn,--;Rn} 

link n 

where V denotes convergence in probability. 

Proof 

Knkn (Inkn) < max 
e-Rn + ... + e0\ \e~Rn + • • • + £i| \e-Rn + ... + eRn 

Rn + 1 

\£-Rn+l + •••+£«„! 

Rn + 2 2Rn + 1 

|e_i + ... + eRn\ \e0 + ... + eRn\' 
2Rn Rn + 2 Rn + 1 

< 
1 

•max{\e-Rn + ... + e0|, • • •, \e-Rn + .. . + eRn\, 

< 

< 

Rn + 1 

+ • • • + £R„| , • • •, |e0 + • • • + £Rn\} 

D \ -1 max{\e-R n |, \s-Rn + £ - « n + i |,. •., \e-Rn + ... + eRn |, 
tin + 1 

Y-Rn+\ + •••+ £fl„| , • • • , | £ f l „ - l + £Rn \ > \6Rn\} 

D 1 , i max{ |£_ f l n |, |e_fln + £-fi n +i |, • • •, \e-Rn + • • • + £Rn I} 
tin + 1 

+ n IT max{ \eRn I, \eRn-X + eRn |,..., \e-Rn + ... + eRn \} 
tin + 1 

By Kolmogorov's Inequality (Chung, 1974), we know for all 8 > 0, 

P * + 1 m a x { | £ _ H J , \e-Rn + e-Rn+1\,...,\e-Rn + ... + eRn\} > #j 

= P{max{|e_flf>|,|e_HN +e-fl B+i|,. . . ,|e-fl B + ... + eRn\} > (Rn + 1) 8} 

(3-1) 

file:///e~Rn
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< Vav(e-Rn + ... + eRn) 

(Rn + l ) 2 S2 

(2Rn + 1) a2 

71—* OO 

(Rn + l ) 2 S2 ~^ 

By definition, this means that 

0 since by (R2) Rn — • oo. 

Rn + l 

Also, by symmetry 

1 v 

ma,x{\e-Rn\,\e-Rn+e-Rn+1\,...,\e-Rn +... + eRn\} — • 0. (3.2) 

1 v 
m&x{\eRn\,\eRn-1+eRn\,...,\e-Rn +... + eRn\} —> 0. (3.3) Rn + l 

Now apply the results of (3.2) and (3.3) along with Slutzky's Theorem (Bickel and 

Doksum, 1977) to statement (3.1) to obtain 

7nkn(Lkn) < 1 max{|g_fin|, \e-Rn + e-Rn+1\,. • •, \e-Rn + ... + eRn\} 
tin + J-

max {\eRn|, \eRn--i + eRn\,..., \e-Rn + ... + eRn|} 
Rn + l 

0 + 0 = 0 

• 

Consider now convergence of gnkn- By condition (Rl), we know that for any point 

to G (a, b) there exists a sequence tnkn which converges to to. Thus, for each to, we 

must show that gnkn(tnkn,inkn) — f(to) ^—^0. When / is continuous at to, the proof 

requires only conditions (Rl) and (R2), whereas (i?3) and (i?4) are also needed when / 

is discontinuous at to. 

The continuity points are considered first. Suppose we are estimating / at point tnkn, 

where tnkn

n-^> to. The width of the neighbourhood around tnk„ shrinks to zero asymp­

totically so that it will not contain a discontinuity when / is continuous at to- Thus 
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f(tn,kn-Rn), • • •, /(*nfc„), • • • > /(<n,*„+fl„) are essentially equal, all converging to /(t 0). Be­

cause gnkn(tnk„i Inkn) is an average of a subset of these terms, it must also converge to 

f(to). 

A rigorous proof is given in the following lemma. 

L e m m a 2 Assume (Rl) and (R2) hold. If tnkj——* t0 and if f is continuous at to, then 

9nkn(tnkni Inkn) ~ f(to) 0. 

Proof 

Let S be a subset of <Sn = {—Rn,..., 0, . . . , Rn} and let IS"! denote the number of 

elements in S. 

For any kn G {0,... ,n}, 

1 
Tel X ) /(Wn+j) - f(to) 
1151 jes 

< | ^ E l / ( W , ) - / ( * o ) | 
I151 jes 

< m a x | / ( t „ , f c n + J ) - / ( t 0 ) | 

- ^ l / ( ' » . * » + i ) - / ( * o ) | -

(3.4) 

Regardless of the estimate 7 n f c„, gnkn(tnkn,Inkn) is of the form £ j G s f ( t n , k „ + j ) / \ S \ 

where S = {—Rn, • • •, Inkn} OT S = {Inkn + 1, • • •, Rn}- Therefore the result of (3.4) can 

be applied to get 

9nkn(tnkn,Inkn) ~ f{t0) < max |/(t„,JfeB+j ) - f(t0) I (3.5) 

Now, because t0 is a continuity point of / , we know that for all t such that \t — t0 \ — ^ 0, 

| / ( t ) - / ( t o ) | ™ 0 . 

By (R2'), we know that max j ( _£ n \tn,kn+j - tnkn\nj^> 0. 

Combine this with the fact that \tnk„ — to\ ——̂  0 to get 

max |tn,fc„+j — to\ = max \tn<kn+j — tnkn + tnkn — tQ\ 
jeo n jeon 

< max \tn,k„+j — tnkn \ + \tnkn — *o| 
jeon 

0. 
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Therefore, 

max\f(tntkn+j) - f(t0) 

So we can conclude from inequality (3.5) that 

9nk„ (tnk„, Inkn) ~ /(^o) 

0. 

(3.6) 

• 

Note that / ( t 0 ) can be replaced by f(tnkn) in the above lemma for a slightly different 

statement. The reason this works is as follows: 

9nk„ (tnkn i Inkn ) f(^nkn ) 

< 

9nkn(tnkn, Inkn) ~ /(*o) + /(*o) ~ f(tnkn) 

gnkn(tnknJnkn) ~ f(t0)\ + \f(t0) - /(*„*„ ) I 

Because / is continuous at to and tnkn
n—to, we know that \f(to) — f(tnkn] 

this fact and expression (3.6), we can conclude that 

' 0. Using 

9nkn (tnkn J Inkn ) f(tnkn ) 0. 

To prove convergence at points where / is discontinuous is somewhat more involved. 

Suppose / is discontinuous at to. Ideally, we would like to show that gnkn(tnkn: Inkn)~ 

/( to) I — • 0. This is unrealistic as we do not usually know if / is right or left continuous 

at to, and even if we did, the most we can expect is that g n k n will converge to either 

f~(to) or f+(to). In Lemma 4, this last statement is shown to be true. 

In proving Lemma 4, we will need to use a result to be presented in Lemma 3. We 

saw in the proof of Lemma 2 that the location of the estimated breakpoint is irrelevant 

asymptotically when / is continuous at the point being estimated. This is not the case 

for discontinuity points; rather we will need to show that the estimated breakpoint is 
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sufficiently close to the true location of the jump. To do so requires conditions (R3) and 

(i?4). This is the content of Lemma 3. 

For simplicity, we assume in both Lemmas 3 and 4 that to is a discontinuity point and 

that it corresponds to some design point; that is, t0 = tnk„ for some kn £ {0,1,..., n}. Of 

course, this need not be true; we may only have tnkn
n—^ to- Lemma 4 will still be valid; 

however, the proof becomes much more involved since to can be anywhere inside, or even 

outside, of the neighbourhood around tnkn. Numerous cases must then be considered and 

Lemma 3 needs to be slightly revised. 

The essence of the proofs for Lemmas 3 and 4 in the more general setting is similar 

to when we assume to = tnkn. However, the proofs become lengthy and repetitive, and 

thus only the more restricted statements are proven here. 

L e m m a 3 Assume (Rl) - (R4) hold. Consider estimating f at design point tnknwhere 

tnk„ = for some kn £ {0,1,..., n} and f is discontinuous at to- Then 

Inkn 
Rn 

0. 

Proof 

We must show that 

Inkn 

Rn 

> e 0 V 0 < e < l . 

To do so, we will bound the probability by an expression which is easier to work with. 

'•nkn 
Rn 

>e\ = P { | / „ f c n | >eRn) 

= ? U {Hnkn(J) < Hnkn(K) y j ^ K } 
[ \J\>€Rn 

< P | U {Hnkn(J) < Hnkn(0) } 
[ \J\>SRn 
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< E P {Hnkn(J) < Hnkn(0)} (3-7) 
\J\>6R„ 

Case 1: eRn < J < Rn. 

We need to show that 

E 1 P {Hnkn(j) < H^O)} ™ o. 
J>ERn 

The following notation will be convenient: let VJ, i = 1, . . . , n, be any random vari­

ables. Then, 

for any 1 < k < I < n. 

It can be shown that 

P {Hnkn(J) < Hnkn(0)} = p{Rn(Rn + l)(X-Rn:0-X1:jy < 
(J + Rn + l)(i? n - J) (X1:J - XJ+1:Rny} (3.8) 

through the series of steps that follow. 

Hnkn{J) = E (x3-x-Rn:jy+ E (x3-xJ+v.Rn)2 

j=-Rn j=J+l 

= E {Xj -x.Rn:Jy+E(X, -x_Rn:Jy + E (Xj-xj+^y 
j=-Rn j = l j = J + l 

0 

E {pi - X-Rn.O + X_Rn:0 - X-Rn:ij 
, 2 

j=-Rn 

J ,2 Rn 

+ j2(xj-x1:j + x1:J-x.Rn..j) + E {Xj-xj+^y 
i = i j=J+i 

= E ( ^ • - A ? _ f l n ; 0 ) 2 + (/i„ + i)(x_ f i n : J-z_^ :o) 2 

+ E ( ^ - ^ ) " + ^ ( A F - f i n : 7 - X 1 : J ) ' + £ ( ^ - X J + 1 : H n ) 2 ( 3 . 9 ) 
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Now, 

J , . 2 

= X {X3 ~ X^-Ru) - J (Xl:J ~ X 1 : R n ^ ~ (Rn - J) (Xj+i-.Rn - X1:Rr^j 

where the last equality follows by expanding the squares and gathering terms. 

Substituting this expression into equation (3.9) and using the fact that 

0 R 

Hnkn(o)= E {xj-x^y+ Y,(xj-x1:Rny 
j=-Rn j = l 

gives 

HNKN(J) = Hnkn(0) + (Rn + l)(x_Rn:J-X_Rn:O)2 + j ( X - R n : j - X 1 : j ) 2 

- J ( X 1 : J - X 1 : R n ) 2 - (Rn - J) ( X j + 1 : R n - X ^ f . (3.10) 

Therefore 

P {HNKN(J) < Hnkn(0)} 

= p +1) (x_Rn:J - x - R n . . 0 y + J (x-Rn:j - x1:Jy 
< J (X1:j - X 1 : R n ) 2 + (Rn - J) (Xj+l:Rn ~ Xl:Rny] • (3.11 

More manipulations are needed to get this in the form of equation (3.8). Consider 

each term in the probability statement on the right-hand side of (3.11) separately. 

(Rn + 1) ( X _ H „ : J — X _ H n : o ) 

( R u ( ((Rn + l)-(J + Rn + 1)) (X-Rn + . . . + X0) + (Rn + l)(X1 + ...+ Xj) 

[ K N + I ) { (J + Rn + l)(Rn + l) 
(Rn + l)J2

 ( Y Y V 

) 
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Similarly, 

j{x-Rn:J-x1:Jy = {j^^\y(x-^o-x1:Jy 

J (X1:J - X1:Rn^ = ^Tfi — (X1:J - Iy +l : f l„ ) 

(Rn - J) (xJ+1:Rn - X1:Rn) = 
(i?„-J)J 2/- -

Rl 
(X1:j - I j + 1 : B „ ) 

Substituting these equalities into equation (3.11) gives 

P {Hnkn(J) < Hnkn(0)} 

p f J(Rn + l) (Y _ XrY<JiRn~J)^ ^ (Xi-.J - Xj+1:Rr^j J 

P s[Rn(Rn + 1) (X-Rn-.o ~ X1:j)2 <(J + Rn + l)(Rn - J) (X1:J - XJ+1..Rny} 

which we recognize as equation (3.8). 

Thus, 

P {Hnkn(J) < Hnkn(0)} 

= p {(x_Rn:0 - x1:Jy < ( i + ( i - £ ) (x1:J - xJ+1..Rny} 

< p { ( x _ f l n : 0 - x 1 : J ) 2 < ( 1 - ( £ ) 2 ) ( x 1 : J - x J + 1 : R „ ) 2 | 

= P {\X-Rn:o - X1:J\ < m \X1:J - XJ+1:Rn\} 

where m = \Jl — (J/i? n ) 2 

< P | J E X _ f l n : 0 — EX\.j — X-Rn:0 — EX-Rn:Q — Xi:j — EXUJ 

< m ( Xj+i:Rn - EXj+x:Rn + XUJ - EXi:j + EXj+i:Rn - EX1:j^)} 

using the fact that |a| — |6| — |c| < |a + b + c\ < |a| + \b\ + |c| 

= P {(1 + ro) \X1:J - EX1:J\ + ro \xJ+1:Rn - EXJ+1:Rn\ + \X-Rn:0 - EX_Rn:0 

-m\EXJ+1:Rn-EXv.j\} 

> 1/3 (\EX_Rn:0 - EX1:J\ - m \EXJ+1:Rn - EX1:J\)} 

> E J _ f i „ ; 0 — EXi:j 

< ?{(l + m)\x1:j-EX1:J 
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+P {m \Xj+1:Rn - EXJ+1:Rn\ > 1/3 (\EX.Rn:0 - EX1:J\ - m \EXJ+1:Rn - EX1:J\)} 

+P {\X-Rn:0 - EX_ H n :o| > 1/3 (|EX_*n :o - EX1:J\ - m \EXJ+1:Rn - EX1:J\)} . 

To simplify the notation, define 

Pi E(X-Rn:0) = ]T f(tn>kn+j) 
tin + 1 „•_ D j=-Rn 

p2 = E(X1:j) = - £ f ( t n , k n + j ) 

i=i 
I Rn 

fi3 = E(XJ+1:Rn) = _ ^ f(tn,kn+j] 
U n J j=J+l 

Thus, we have 

P {Hnkn(J) < Hnkn(0)} 

< •p{(l + m ) | X i : J . - / i 2 | > 1/3(1/*! -p2\ -m\p3-p2\)} 

+P {m |x J + 1 : i ? n - fi3 > 1/3 (|/ii - jU 2 | - m |//3 - A*a|)} 

+P ||X_H„:O -(*•!> 1/3 - p2\-m \p3 - p2\)} • (3.12) 

Recall that we need to show that 

Rn~ 1 

E P{iWJ)<#*.(o)} o. 
J>SRn 

To do so, we consider each probability statement on the right-hand side of (3.12) sepa­

rately. We apply to each a generalization of Markov's inequality (Bickel and Doksum, 

1977) and also use the the facts that m = yjl — (J/Rn)2 < V l — £ 2 , since J > eRn, and 

E (Xk:l - EXk:l)4 = Eieu)* = ( f " \ + ^ ) 3 + ( / _ ^ + 1 ) 2 -

In deriving this expression, we used the fact that the £j's are independent and identically 

distributed with mean 0 and variance a2. 
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P |(1 + m) X1:J - p2 > 1/3 ( - p2\-m |// 3 - M2I)} 

< 

< 

{3(l + m))4E(x1:J-n2y 
( l A * l - M 2 | - ^ | P 3 - P 2 | ) 4 

(3(l + > / r ^ ) ) 4 E ( X l ! j - / x 2 ) ' 

( l A * i - P2I - V l - e2 | A * 3 - M2I) 

(3(1 + y T ^ 2 " ) ) 4 

- M2I - V l - e 2 IMS - M2I) 

Eg 4 - 2cr4 2<j4 

1 + 
J 3 J 2 

(3.13) 

P {m |A"j+i : f l„ - / i 3 | > 1/3 - P2I - | / i 3 - A*2|)} 

( 3 m ) 4 E ( X J + 1 : f l n - / x 3 ) 4 

(IMI - P 2 | - m | ^ 3 - p 2 | ) 4 

(3m)4 

(iMi - M2I - \ / l - e 2 |/*3 - M2I) 
+ 2CT4 Eg 4 - 2cr4 

(i?n - J ) 3 ' ( i ? n - J ) 2 J 
(3.14) 

P { X _ f l „ : 0 - /ii J > 1/3 (|/xi - p2\-m |M3 - M2I)} 

3 4 E ( X _ « „ : 0 - M i ) 4 

< 

< 

(iMi - P 2 I - m | M 3 - M 2 | ) 4 

3 4 E ( X - f l n ; 0 - M i ) 4 

(iMi - P2I - V l - e 2 | M 3 - M2|) 4 

3* [Eg 4 - 2cr4 

( | M 1 - P 2 | - V T ^ | M 3 - M 2 | ) 4 U ^ + 1 ) 3 ' ( ^ + 1)2J 
+ 

2a 4 

(3.15) 

Assume without loss of generality that / is left continuous.1 Then, by (R3) (i), there 

exists 81 > 0 and Mi > 0 such that 

l / ( * n , f c „ + i ) - /"(*o)| < M i (to - <n ,*„+j) (3.16) 

"•Note that the function need not be left continuous. If / is right continuous then the proof will follow 
in the same manner except back at equation (3.8), we would have split into the terms X-Rn-.-i, XQ:J, 
and Xj+i:RN. 
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whenever 0 < to — tn>kn+j < Si. Recalling that to = tnkn and using (-R2'), we know 

0 < m a x i e { _ f i „ o} t0 - * n , f c n + j ™ 0. By (3.16), 

w " l a x „J/(*».*»+j) - / (*o)| 0. (3.17) 

Analagously, using (R3) (ii) and (R2'), 

w m a x
D , l/(*n.*n+j) - /+(*o)| (3.18) 

Therefore, 

|/*i-/-(*o ) l = 

\»2-f+(to)\ = 

I M 3 " / + ( * O ) | = 

T E / ( < n , * „ + i ) - / - ( * 0 ) i = - - R „ 

J E / ( w , ) - / + C o ) 0 V J 

fin 

R - T l 

J J=J+I 

E / ( W ; ) - / + ( t o ) 0 VJ. 

Thus, for all e > 0, there exists No such that if n > No then \[ii — f (to) j < £. Take 

e — S/A where S is defined as 

*=l/-(*o)-/+(*o)|, 

which is a positive constant. 

Then there exists Ni such that if n > Ni then \fii — /~(t0)| < S/A. Similarly, there 

exists N2 such that iin> N2 then |/x2 — f+(to)\ < S/A for all J , and there exists N3 such 

that if n > N3 then \fi3 - f+(t0)\ < S/A for all J . 

Let N = max{Ni, N2,N3} and we have, for all n > N, 

l/Ui - / - ( ' o ) l < <V4 

|/ i 2 - / + (MI < 8/4 V J 

|/ / 3 - / + ( io)| < 5/4 VJ. 

(3.19) 

(3.20) 

(3.21) 
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So, for all J and for all n > N, 

| M l-H = \(f-(to) + »l-f-(to))-(f+(to) + »2-f+(t0))\ 

= |(/"(<o) " / + ( 'o)) + ( M i " /"(to)) + (/ +('o) - M2)| 

> l/-(V> - / + ( io )| - IMI - /-(*o)l - \i* - f+(t0)\ 

> 6-6/4- 8/4 using (3.19) and (3.20) 

= 8/2 (3.22) 

and 

1/̂ 3 -M2| = |(M3-/ +(M)-(/<2-/ +(V>)l 

< | P 3 - / + ( i o ) | + |M2 - / + ( i 0 ) | 

< 8/4: + 8/4: using (3.20) and (3.21) 

= S/2. (3.23) 

Therefore, using (3.22) and (3.23) along with (3.13) gives, for all n > N, 
Rn-l 

E P { ( l + m) 
J>ERn 

< 

< 

Xi:j - p2 > 1/3 (|MI - M2I - rn \p3 - p2\)} 

4 

(3(1 + V T ^ S 2 ) ) ^ 1 

(6/2(1 ~ V T ^ ) ) 4 J>6Rn 

(3(1+ y T ^ ) ) 4 

( « / 2 ( i - v T ^ F ) ) ' 

(3(1 + V T ^ ) ) 4 

i ? n ( l - e ) 

Ee? - 2cr4 2cr4 

— 1 h 
J 3 J 2 

Es 4 - 2cr4 

( 1 - e ) 
(5/2(1 - VT^2)Y 

since Rn"-^? 0 0 by (i?2) and Ee 4 < 0 0 by (i?4). 

( e ^ n ) 3 

Ee 4 - 2tr4 

+ 2a 4 

szRl + 

{eRn)2 

2<74 

e2Rn 

Using (3.22) and (3.23) along with (3.14) gives, for all n>N, 

Rn-l 

E P yn \Xj+l..Rn - M3 > 1/3(|MI - M2I - m |M3 - M2I)} 
J>SRn 

(3.24) 
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< 

< 

(5/2(1 - V i - . 2 ) ) 1 

34 

(5/2(1 - v W ) ) d 

34 

(5/2(1 - V l - e 2 ) ) 1 

34 

(5/2(1 - V l - e 2 ) ) 1 

34 

(5/2(1 - v W ) ) 1 

Rn-1 ( y J 2 \ 2 Ee? - 2a 4 2<r4 

1 + 
(Rn-J)3 (Rn-J)2 

Rn-1 J Ee 4 - 2<r4 

+ 2a4 

E i + # 
E e 4 - 2 c r 4 2a4' 

+ 
Rn-1 

E 22 

2 2 ( l - e ) 

Ee 4 - 2a 4 2a 4 

/ 2 3 ( i / j R n ) + f £ j 

"Ee 4 - 2a 4 2<r4 

— 1 h (3.25) 

since i? , ,^-^ co by (R2) and Ee 4 < oo by (-R4). 

Finally, using (3.22) and (3.23) along with (3.15) gives, for all n > N, 

E P { | ^ - R „ : o - Hi > 1/3 - / i 2 | -m |A*3 — H)} 
J>SRn 

< 

(5/2(1 - vT^T2))4 J>en„ 

34 

Ee 4 - 2<74 

+ 2<74 

(5/2(1 - v T ^ ) ) 

(i?n + l )3 (Rn + 1)2 

^Rn{l-e) 
Ee 4 - 2a 4 2a 4 

1 + 
[(Rn + l)3 (Rn + 1)2\ 

34(1 - e) 

(5/2(1 - V T ^ ) ) ' 

Ee 4 - 2a4 

+ 2a4 

R2
n(l + 1/Rny Rn(l + 1/Rn) 

0 (3.26) 

since Rn
n——> oo by (R2) and Ee 4 < oo by (i?4). 

Thus, by (3.12) and (3.24) - (3.26), we can conclude that 

E 1 P {Hnkn(J) < Hnkn(0)} ™ 0. 
J>CRn 

Case 2: -Rn< J < -eRn. 

We need to show that 

-ERn 

E P {Hnkn(J) < Hnkn(0)} 
J>-Rn 
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The proof is analagous to case 1 and thus will be omitted. 

Combining cases 1 and 2, we can conclude that 

E P {Hnk„(J) < Hnkn(0)} 
\J\>SR„ 

and therefore, using (3.7), that 

>e\ ™ 0. 

• 

L e m m a 4 Assume (Rl) - (R4) hold. Let t0 = tnkn for some kn £ {0,1,... ,n} where f 

is discontinuous at to. Then 

mm{\gnk„{tnkn,inkn) - f~(to) , gnkn(tnk„, Inkn) - f+(to) } 0. 

Proof 

Case 1: Suppose Inkn > 0. 

That is, the estimated breakpoint is to the right of to (= tnkn)- Then 

1 
9nkn(tnkn5 Inkn ) 

nkn 
+ Rn + 1 j=-Rn 

Inkn 

£ f(tn,k+j) 

1 -1 

nkn 
+ Rn + 1 j=-fl„ 

f(tn,kn+j ) + 
+ i2n + 1 j=0 

£ f(tn,kn+j) 

Therefore, 

S'nfcn ( * n f c „ , Inkn ) ~ f (*o) | 

1 - 1 

< 

< 

'•nkn + Rn + 1 j=_i?n 

1 - 1 

£ ( / ( W i ) - / " ( * 0 ) ) 
1 

+ i? n + 1 j = _ H „ 
E l/(W;)-/-(*o)| + 

Inkn I + - ^ n + 1 j=0 

1 

Inkn 

E(/(*».*-+i)-/-(*o)) 

+ + 1 j=o 
El / (W; ) - /1*o)| 
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< E l / ( W ; ) - / - W l 4 2 l / ( W ; ) - / - ( * o ) | 
j = - R „ U n j=0 

~ • S ̂  ^l /CWn+j) - / ( * 0 ) | + 

- • r , i - / (<o)| + 

nfcn + 1 

7?. 
max !/(*„,*„+;) - / (*o)| 

'nkn + 1 

Rn je{o,...,Rn} 
max l / ( * n , * „ + i ) - / - ( * o ) | . (3.27) 

Case Suppose Inkn < 0. 

That is, the estimated breakpoint is to the left of to (— tnk„)- Then 

1 
9nkn {tnkn i ^nkn ) — 

Rn + |/n*„| j=Inkn+l 

1 

Rn 

E / ( * " , * n + j ) 

•fnfc. 
) + 

" I J = I n k n +1 

•Rn 

E/(in.fc"+i) 
(nfc„ j=l 

Therefore, 

gnkn(tnkn,Inkn) ~ / + ( ^ o ) 

< 

< 

-Rn + |/n*„| j=Inkn+l 

1 

E (/(Wi)-/+(*o)) + 1 E(/(Wi)-/+(*o)) 

•Rn + nkn 

-Rn "t" |7nfcn 

1 Rn 

j = l n k n + l 
Rn + 

El/(W;)-/ +('o)l 
nkn j = l 

< 4 E l/(Wi)-/ +(*o)| + 4El/(Wi)r/+(*o)| 

< 

< 

nfcn 

.max |/(<n,*»+j) - /+(*o)| + . max• \f(tn,kn+j) - f+(t0)\ 
Rn je { J„ f c „+i , . . . ,o } Rn} 

'nfcn 

max |/(*„ l j f e l , + i ) - /+(i0)| + ..max \ f ( t n > k n + j ) - f+(t0)\. (3.28) 
tin 3£{-Rn, — ,0) je{l,...,Rn} 

Combining the two cases, we have for any Inkn, 

mm{ gnkn{tnknJnkn) ~ f (*u)| , |#nfc„(*nfc„, hkn) - / + (*o)|} 
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- - c / m a X i i \f(tn>k»+i) ~ f Co)I + 

Inkn 

Inkn + 1 

i? n je{o,...,fl„} 
m a X , , l / ( * n , f c „ + i ) - / (*o) 

, max n | / ( t „ , * n + i ) - /+(t0)| + max \ f ( t n M ) ~ f+(to)\• (3.29) 

By Lemma 3, we have Inkn /Rn-^-+0, so clearly ( Inkn + 1)/Rn-^ 0 as well. Also, 

maxi6{0,...,R„} \f(tn,kn+j) ~ /~(*o)l < 0 0 a n d maXJG{-Hn,..,0} |/(*n,Jfc„+j) ~ /+(*o)l < OO 

since / is bounded. Therefore, in (3.29), 

Inkn 
+ 1 

and 

Rn ie{o Rn) 

Inkn 

r m a X „ , Ifi^kn+j) ~ f (*0)| • 0 

max „ l / ( t „ , * B + i ) - / + ( * o ) l 0. i? n je{-Hn 0} 

Now consider the remaining terms on the right-hand side of (3.29). In the proof of 

Lemma 3, statement (3.17), we showed that 

and therefore that 

. ™ax

 nJ/(*n,*n+j) - / (*o)l ™ 0 

m a X Af(tn,kn+j) - f (to) 

je{-Rn -1} 

Also in the proof of Lemma 3, statement (3.18), we showed that 

max Af(tn,kn+j) ~f+(to)\ 
j€{l,...,Rn} 

Thus, using inequality (3.29), we can conclude that 

min{\gnkn(tnkn,Inkn) - f (t0)\ , \gnkn(tnknJnkn) ~ f+(to)\} 0 

and Lemma 4 is proven. 

• 
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Consistency of the not-so-smoother, / , at continuity points now follows directly from 

Lemmas 1 and 2, and at discontinuity points from Lemmas 1, 3 and 4. This is stated 

formally in the two theorems which follow. 

Theorem 1 Assume (Rl) and (R2) hold. Iftnkn
n~*to where f is continuous at to, then 

f(tnkn)~f(to) 

Proof 

f(tnkn)-f(t0) 

< 

9nk„ (tnkn ) Inkn ) *)nkn (Inkn ) f(^nkn ) 

9nkn{tnkni Inkn) / ( ^ n f c n ) | ~t~ i T n f c n ( - ^ n f c n ) 

By Lemma 2 we have that gnkn{^nkn->inkn) ~ f(^nkn) 0? a n d by Lemma 1 we have 

that {Inkn) 0. Thus we can conclude that f{tnkn)~f(to) 

a 

By the remarks following Lemma 2, we can replace f(to) by f(tnkn) in the above 

theorem to obtain the slightly different statement that \f(tnkn) — f(tnkn) 0. 

Theorem 2 Assume (Rl) - (R4) hold. If tnkn = t0 for some kn 6 {0,1,... ,n} where f 

is discontinuous at to, then 

min{|/(t n f c n ) - / - ( t 0 )| , | / ( < n * J - / + ( * o ) | } 0. 

Proof 

m i n { | / ( U j - f~(to)\, \f(tnkn) - f+(t0)\} 

= mm {\gnk (inkn ) ~ f (to)\, \gnkn (tnkn 5 inkn ) + Inkn (inkn ) ~ f+ (to) I} 
< mm{\gnkn(tnknJnkn) - / ~ ( * o ) , 9nkn(tnknJnkn) ~ / + ( * o ) | } + |7nfc„ ( / n * „ ) 

file:///gnkn
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By Lemma 4 we have that min {\gnkn (tnkn, Inkn) - / (t0) , gnkn (tnkn, Inkn) - /+ (t0) |} 

?0, and by Lemma 1 we have that |7nfc„(-^nA:„)| —• 0. Thus we can conclude that 

min{|/(< n f c n)-/-(t 0)|, | / ( * « f c „ ) - / + ( * o ) | } 0. 

• 

It should be noted that Theorem 2 is true if we replace tnkn = to with the more 

general statement tnkn
n—> to- This is because, as stated preceding Lemma 3, Lemma 4 

is still valid in this more general setting.. However, the details of the proof will not be 

given in this thesis. 

C o m m e n t 

Under the condition that the bandwidth goes to infinity as n goes to infinity but 

goes to zero relative to n, the usual moving average smoother is consistent except at the 

discontinuity points. Briefly, this is because the neighbourhoods around all continuity 

points get smaller and smaller until they eventually do not contain a discontinuity. At 

a point of discontinuity, the moving average estimate converges to the midpoint of the 

jump, that is, (f~(to) + f+(to))/2 where to denotes the discontinuity point. The not-so-

smoother, on the other hand, is infinitely close to either f~(to) or f+(to)- The failure 

to converge at only one point (or a few points) may not seem significant asymptotically, 

but in practice where n is finite, the implications are important. In the vicinity of a 

discontinuity and for finite n, the moving average smoother is upset by the presence of a 

discontinuity while the not-so-smoother is not. This is illustrated in the next chapter. 



Chapter 4 

Performance of The Not-So-Smoother 

In this chapter, the performance of the not-so-smoother in application is demonstrated. 

Before considering the global performance, the local behaviour within a fixed neighbour­

hood is investigated. 

4.1 Local Performance 

Recall that in estimating the function, / , at a given design point, say i n , - , we find the best 

broken constant fit in a neighbourhood around the point. (The neighbourhood includes 

2Rn + 1 points — the Rn points to both the right and left of £m- as well as itself.) 

The point at which the best broken constant "splits" is called the breakpoint, and the 

function estimate is taken to be the average of all observations in the neighbourhood to 

the left or right of the breakpoint, whichever contains the central point, tm-. In order 

to demonstrate the characteristics of the breakpoint, consider the simple case where the 

local model is truly two constants. 

cl -|- €n,i+j for j — Rni • • • i Ini 
-Xn,i (4.1) 

[ c2 + e„ti+j for j = /„,• + 1 , . . . , Rn 

When there is a discontinuity within the neighbourhood, cl ^ c2 and /„ ; indexes the 

point at which the discontinuity occurs. When the function is continuous within the 

neighbourhood, cl = c2 and 7nt- becomes irrelevant. Of course, in practice this local 

model will be violated. However, within a small enough neighbourhood, the function / 

should not fluctuate too much and the local model should be an adequate approximation. 

33 



Chapter 4. Performance of The Not-So-Smoother 34 

0 5 10 

breakpoint 

-50 -30 -10 10 30 50 

breakpoint 

II 

• 
l l l s i l l l l i s l l 

-50 0 50 

breakpoint 

Rn = 10 Rn = 50 Rn = 100 

Figure 4.1: Histograms of breakpoints when no discontinuity exists 

Suppose we are in the case where no discontinuity occurs. Then we would prefer 

that the average used as the estimate of / ( i m ) includes as many observations as possible. 

Regardless of the location of the estimated breakpoint, the estimate will have no bias 

since all observations have the same mean, but the more observations used in the average, 

the smaller the variance of the estimate and thus the greater the efficiency. Consequently, 

we would like the breakpoint to be at either extreme of the neighbourhood. 

We do not know the theoretical distribution of the breakpoint but the empirical dis­

tribution can be studied. We considered the case where the error terms are independent, 

standard normal random variables (mean 0 and standard deviation o = 1) and we take 

cl (= c2) arbitrarily to be zero. We randomly generated 2Rn + 1 standard normal obser­

vations and determined the breakpoint by finding the argument that minimizes equation 

(2.2). After repeating this 1000 times, we looked at the histogram of the breakpoints. 

This was done for varying neighbourhood sizes, namely Rn = 10, 50, and 100. Histograms 

of the results are given in Figure 4.1. 

We can see that the breakpoint does have a tendency to be located near the edges of 



Chapter 4. Performance of The Not-So-Smoother 35 

the neighbourhood and this tendency becomes stronger as the number of points in the 

neighbourhood increases, suggesting that m i n | | i m / i ? „ — 1 

At this point we should note that in order for the locally constant model to be ap­

proximately true, the neighbourhood must be small, yet to get an efficient estimate, a 

large number of points in the neighbourhood is needed. This can be achieved if the num­

ber of observations in the data set is very large and the observations are close together, 

since this would allow us to define a neighbourhood size that is small relative to the 

total amount of data but still contains numerous observations. Note that the asymptotic 

equivalents of these conditions, stated in requirements (Rl) and (R2) at the beginning 

of Chapter 3, were needed to prove consistency. 

Now, when we are in the case where the neighbourhood contains a discontinuity, we 

expect the breakpoint to be at, or at least very near, the location of the discontinuity. 

This is the fundamental idea behind the not-so-smoother. If the breakpoint is correctly 

located near the jump, then the estimate of the central point will be an average of points 

all or most of which lie on the same side of the jump. 

Intuitively, the larger the magnitude of the jump and the smaller the variability in 

the data, the more likely the breakpoint will be located at the jump. Denote the jump 

size by 8, which in the local model is just |cl — c2|, and the standard deviation of the 

data by a as before. Then if we consider the ratio 8/a, we expect to be more successful 

identifying the jumps as the ratio increases. Of course, the number of points in the 

neighbourhood also affects the results. Presumably, with more observations the jump is 

easier to identify. 

We can investigate empirically the behaviour of the breakpoint in the presence of a 

discontinuity. The discontinuity can occur anywhere within the neighbourhood, but we 

chose the center for our simulations, meaning In{ = 0 in the local model. We considered 

the case where the error terms are independent, normal random variables with mean 0 
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Figure 4.2: Histograms of breakpoints for various 8 and cr values keeping the ratio 6/a 
constant 
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and standard deviation a = 1. Data were generated corresponding to a given 8/a value 

and a given neighbourhood size, and the breakpoint was determined. Specifically we 

looked at the cases where Rn equals 10, 50, and 100, and for each value of i?„ we looked 

at 81 a equal to 0.5, 1, and 2. Intuition suggests that the distribution of the breakpoint 

depends only on the ratio 8/a and not the individual values of 8 and a. Our experiences 

seem to confirm this. Refer to Figure 4.2 where histograms of the breakpoint for varying 

8 and a values keeping the ratio constant are presented. Note that the bandwidth is 

taken to be 10 in all results shown. The histograms look almost identical when the ratio 

81 a is the same. Thus, the actual values of 8 and a used in our simulations appear to be 

irrelevant; however, for completeness, note that we consistently took a to be 1. 

In each case, 1000 replications were done and the resulting breakpoints reported in 

histograms. These results are shown in Figure 4.3. As we expect, the breakpoint is 

correctly located at the center of the neighbourhood more frequently as Rn increases and 

as 8/a increases. 

Recall that Lemma 3 in the previous chapter states that when the function is discon­

tinuous at the point being estimated, meaning the discontinuity occurs in the center of 

the neighbourhood, the ratio of the breakpoint to the bandwidth size, Rn, converges to 

the location of the discontinuity. The results of our simulations are consistent with this 

lemma. The rate of convergence, however, is highly dependent on the value of 8/a. We 

see that when 8/a equals 0.5 the rate is considerably slower than when it equals 1 or 2. 

4.2 Global Performance 

Now that the local behaviour has been considered, we will look at the not-so-smobther's 

global performance on some data sets. As with other smoothing methods, a bandwidth 

must be chosen before applying the method, and, as with other smoothing methods, the 
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Figure 4.3: Histograms of breakpoints when a discontinuity exists in the center of the 
neighbourhood 
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best way to make this choice is not clear. In general, a large bandwidth leads to a small 

variance but a large bias in the estimate, whereas a small bandwidth leads to a small 

bias but a large variance. This is often referred to as the "bias-variance trade-off". We 

will not discuss the problem of bandwidth selection in depth in this thesis. Suffice it to 

say that cross-validation and plug-in methods, which are used in the case of continuous 

functions, can presumably be derived and applied here. 

Simulated Data 

To begin with, we will evaluate the not-so-smoother's performance on simulated data 

in which case the true function is known. The bandwidth which minimizes the squared 

error between the estimated function and the true function at the design points can be 

determined; we will refer to this as the optimal bandwidth. The optimal performance 

of the not-so-smoother will be compared with the optimal performance of a simple (un­

weighted) moving average smoother. 

A continuous function is considered first. We expect the optimal performance of the 

not-so-smoother to be worse than the optimal performance of a simple moving average 

smoother when the true function is continuous — how much worse is of interest. The 

function chosen was one cycle of the sine curve. One hundred observations were generated 

at equal increments over the interval [0, 2ir) and the noise generated was normal with 

standard deviation 0.3. The model can be written as 

where e,- ~ Normal(0, a = 0.3). Note that the function was chosen such that no discon­

tinuities are introduced by replicating the data set when estimating near the ends. 

Five hundred data sets were generated according to this model. For each simulated 

data set, the not-so-smooth estimate of the function was calculated using every bandwidth 

from 1 to 50 (half the total number of observations). For each bandwidth, the mean 
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Table 4.1: Summary results of smoothing methods on simulated data (500 replications 
in each case) 

Moving Average Smooth Not-So-Smooth 
mean optimal mean optimal mean optimal mean optimal 

function bandwidth (sd) mse (sd) bandwidth (sd) mse (sd) 
sine 8.458 0.006 4.390 0.027 
N(0,.3) noise (1.561) (0.003) (0.942) (0.005) 
split cube-root 1.650 0.020 7.930 0.008 
N(0,.2) noise (0.604) (0.002) (2.379) (0.002) 

squared error between the estimate and the function at the design points was calculated. 

The optimal bandwidth is the one leading to the smallest mean squared error, which we 

will call the optimal mse. Specifically, for each bandwidth R £ {1,..., 50}, 

MSE(R) = jr(fR(ti)-f(ti))2 

i=0 

was calculated, where n = 99, U = (27rz)/100, and fR denotes the not-so-smooth corre­

sponding to bandwidth R. We call the minimum value of MSE(i?) the optimal mse and 

the value of R minimizing it the optimal bandwidth. In the exact same way, the optimal 

bandwidth and optimal mse using a simple moving average smooth were determined for 

each data set, where the only difference is fR now refers to the moving average estimator. 

The results of the 500 simulations confirm that the moving average smooth consis­

tently achieves a smaller minimum mse than the not-so-smooth. Also, the bandwidth 

corresponding to the minimum mse is consistently larger for the moving average smooth 

than the not-so-smooth. A summary of the average optimal mse and bandwidth for the 

two methods is presented in the first row of Table 4.1. 

The optimal not-so-smooth and the optimal moving average smooth for one simulation 

are shown in Figure 4.4. The not-so-smoother appears to be suitably named. Although 



Chapter 4. Performance of The Not-So-Smoother 41 

Optimal Moving Average Smooth 
Rn = 7 and mse = 0.0078 

• 

' -^ ••* 

• observed 
estimate 
true 

. 
• / ^ 

/' ' 
/ 

• • • 
• ? * • 

'/' 

I I 

0 1 
1 1 1 
2 3 4 

i 

5 6 

Figure 4.4: Optimal smooths of one cycle of the sine function with Normal(0, 0.3) errors 
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both smooths follow the curve of the data well, the not-so-smooth is much jumpier due 

to the fact that it "breaks" within every neighbourhood even when a discontinuity is not 

present. Methods to improve upon this will be presented in Chapter 5. 

Next we consider a function with one discontinuity. We expect the not-so-smoother 

to perform better than a moving average smoother in such a case. The function chosen 

was the cube root function in the range -1 to 1, with the section from -1 to 0 shifted 

upwards by 2. One hundred observations were generated at equal increments over the 

interval [—1,1) and the noise generated was normal with standard deviation 0.2. The 

model can be written as 

where et- ~ Normal(0,a = 0.2). Again note that the function was chosen such that no 

discontinuities are introduced when estimating at design points near the ends of the data 

set. 

Five hundred data sets were generated according to this model. As before, the optimal 

mse and the corresponding optimal bandwidth for both the not-so-smoother and the 

moving average smoother were found for each data set. In each of the 500 simulations 

the not-so-smoother achieved a smaller optimal mse and also had a substantially larger 

optimal bandwidth than the moving average smoother. A summary of the mean results 

is given in the second row of Table 4.1. Note that, on average, the optimal bandwidth 

for the moving average smoother was just 1.65. If the bandwidth is large, then all points 

near the discontinuity will have highly biased estimates. Because the increase in bias 

which results from using a large bandwidth is greater than the decrease in variability, the 

mse is minimized at a very small bandwidth. This leads to a very rough smooth overall, 

as we illustrate next. 

The optimal not-so-smooth and the optimal moving average smooth for one simulation 
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are shown in Figure 4.5. The optimal moving average smooth uses a bandwidth of 1 and 

therefore does not smooth away the discontinuity too much, but it is indeed very rough. 

The not-so-smoother preserves the discontinuity even better and gives a much smoother 

estimate overall, as reflected by the smaller mse. 

The ideal situation in which to apply the not-so-smoother is when the underlying 

function is two distinct constants. To give a complete evaluation of .our method's per­

formance, we should investigate such a situation. Data were generated according to the 

following model, which sets one of the constants equal to 0 for convenience: 

Si i = 0, . . . , 24 

6 + d i = 25,. . . , 49 

where e,- ~ Normal(0,o~ = 1). 

The magnitude of the jump, 8, relative to the standard deviation in the noise, <r, which 

in this model is 1, was varied. Similar to when we investigated local performance of the 

not-so-smoother, we considered 8/a equal to 0.5, 1 and 2, and in addition we considered 

8 j a equal to 0 since this represents the continuous case. One thousand simulations 

were carried out for each 8/a value. For every data set, the optimal mse and optimal 

bandwidth using the not-so-smoother and the moving average smoother were found. 

Table 4.2 summarizes the results of the simulations. 

As we expect, the moving average smoother performs better than the not-so-smoother 

in the continuous case (when 8/a = 0). It has a smaller average optimal mse, and more 

specifically, its optimal mse is smaller in 932 of the 1000 cases. When 8/a = 0.5, the 

moving average smoother again performed better with respect to having a smaller average 

optimal mse. Also, in 685 of the 1000 replications, the optimal moving average mse was 

smaller than the optimal not-so-smooth mse. This is not too surprising because we saw 

in our investigation of the not-so-smoother's local behaviour that when 8/a = 0.5 and 
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Figure 4.5: Optimal smooths of a split cube-root function with Normal(0, 0.2) errors 
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Table 4.2: Summary results of smoothing methods for data simulated according to the 
two-constant model (1000 replications in each case) 

Moving Average Smooth Not-So-Smooth 
mean optimal mean optimal mean optimal mean optimal 

6/<T bandwidth (sd) mse (sd) bandwidth (sd) mse (sd) 

25.000 0.019 23.381 0.041 
0 (0.000) . (0.025) (2.432) (0.032) 

13.734 0.209 20.846 0.272 
0.5 (4.542) (0.126) (4.677) (0.159) 

8.170 0.106 17.118 0.109 
1.0 (3.004) (0.047) (5.304) (0.061) 

4.288 0.213 14.291 0.120 
2.0 (1.858) (0.054) (3.702) (0.094) 

the bandwidth is small, the discontinuity is not located very accurately. Furthermore, 

the moving average smoother will not be too biased in the vicinity of the discontinuity 

when the jump size is relatively small. When 8/a = 1, the two methods perform equally 

well in terms of mse. We see from the table that the average optimal mse is almost 

identical for both methods (taking the standard deviations into account, the difference is 

insignificant). In addition, the optimal not-so-smooth mse was smaller in approximately 

half of the replications, 524 out of 1000 to be exact. When 8/a — 2, the not-so-smoother 

performs much better, having a smaller optimal mse than the moving average smooth 

in 861 of the 1000 replications and also having a smaller optimal mse on average (refer 

to Table 4.2). It seems clear from these results that as the ratio 8ja increases, the 

not-so-smoother becomes increasingly preferable to the moving average smoother. 

Lastly, we compare the optimal bandwidth sizes. For both smoothing methods, the 

average optimal bandwidth decreased as the ratio 8ja increased. Moreover, when 8ja = 

0, the moving average smooth tended to have a slightly larger optimal bandwidth than 

the not-so-smooth. For each non-zero value of 8/a, the not-so-smooth tended to have 
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a larger optimal bandwidth. This is consistent with the results in Table 4.1 in which 

the moving average smooth had a larger mean optimal bandwidth in the continuous case 

(sine curve data), and the not-so-smooth had a larger mean optimal bandwidth in the 

discontinuous case (split cube-root function). 

Real Data 

Using a real data set for which the true signal is unknown will give a more practical 

demonstration of the not-so-smoother's performance. We considered data for which each 

observation is the measurement of current flowing through an ion channel in a cell mem­

brane (Fredkin and Rice, 1990). Theoretically, the current has two, and perhaps more, 

conductance levels between which it seems to switch randomly. Due to the method used 

to measure the current, the noise can be great compared to the current size. The data set 

has a total of 16000 current recordings from which we chose a subset of 500 observations 

to investigate here. A plot of this subset is shown in Figure 4.6. 

As with the simulated data, we compared the performance of the not-so-smoother and 

the moving average smoother on the current recordings data. To avoid the problem of 

bandwidth selection, we applied both smoothing methods using a range of bandwidths, 

namely Rn = 5, 15 and 30. Quantitative methods to determine the best choice of 

bandwidth could be used, but we simply evaluated the smooths visually. Plots of all the 

smooths are given in Figure 4.7. 

Consistent with the results of our simulations on discontinuous data, a much smaller 

bandwidth appears best for the moving average smoother than for the not-so-smoother 

since there are seemingly several discontinuities. With a bandwidth of 5, the moving 

average smooth identifies the jumps quite clearly but produces jagged output as the cost. 

As the bandwidth increases, the output becomes progressively smoother but the jumps 
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Figure 4.6: Measurements of current flowing through an ion channel in a cell membrane 

become more blurred. On the other hand, the not-so-smoother also produces progres­

sively smoother output as the bandwidth increases yet the jumps are still preserved and, 

in fact, become sharper. 

Although the true signal is unknown, the results strongly suggest that the current 

switched between a high and low conductance level at four times indexed approximately 

by 165, 222, 280 and 348. In addition, the not-so-smooth using a bandwidth of 5 provides 

some evidence that the current switched levels rapidly, perhaps to an intermediate level, 

a couple of times between indices 280 and 348. 

This data set provides a good opportunity to see how the not-so-smoother behaves 

when the bandwidth is so large that a neighbourhood contains two or more discontinu­

ities. In such a case, the local two-constant model is grossly violated and we can expect 

poor results. If the minimum number of observations between any two discontinuities is 
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Figure 4.7: Smooths of the current data using the not-so-smoother and the 
average smoother for various bandwidths 
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Figure 4.8: Not-so-smooth of the current data using a bandwidth of 50 

d, then taking the bandwidth to be greater than d/2 will violate the local model. For 

the ion current data, the minimum number of observations between discontinuities is 

about 60 (assuming that the discontinuity points are in fact indexed approximately by 

165, 222, 280 and 348). Thus, using any bandwidth exceeding 30 will result in neigh­

bourhoods containing more than one discontinuity. We calculated the not-so-smooth for 

Rn = 50 and the result is shown in Figure 4.8. Undesirable peaks in the estimate occur 

between the discontinuities because in neighbourhoods containing two discontinuities, no 

matter where the best broken constant fit breaks, the estimate will still be an average of 

observations on both sides of one of the discontinuities. 
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Extensions 

5.1 The Somewhat-Smoother 

The examples in the previous chapter illustrated that the not-so-smoother performs well 

at preserving discontinuities, but often produces rough output. This is due to the na­

ture of the smoothing method in that the best local fit always breaks, even when no 

discontinuity exists, so only a subset of the neighbourhood data is averaged for each 

estimate. 

One way to improve the roughness of the not-so-smoother is, for each neighbourhood, 

to compare the fit of the best broken constant with the fit of the best constant, which 

is just the mean of all observations in the neighbourhood. Unless the broken constant 

fit is substantially better, the mean should be used as the estimate. In other words, the 

not-so-smooth estimate should be used if the broken constant fit is much better since 

this is evidence of a break, but otherwise the moving average estimate should be used. 

A hypothesis test can be used to determine if the broken constant fit is substantially 

better. Consider a fixed neighbourhood about a point £„,-. Assume that the local model 

given by equation (4.1), which says that the true function within the neighbourhood is 

two constants, holds. For convenience, we repeat the model here: 

Xn,i+j — \ 
cl + enti+j for j = -Rn, • • •, hi 

[ c2 + en,i+j for j = /„,• + 1, . . . , Rn. 

Recall that the e's are assumed to be independent and identically distributed with mean 

50 
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0 and variance a2. We want to test the null hypothesis that the two constants are 

equal versus the alternative that they are not equal. If the null is rejected, then the 

not-so-smooth estimate is used. 

The natural estimators of cl and c2 are the sample means of X^i-Rn,..., Xn,i+ini 

and Xn,i+ini+i,..., Xnj+Rn respectively, which in keeping with the notation of Chapter 3 

are denoted by X-Rn.jni and Xini+i:Rn. Of course, In{ is unknown and must be replaced 

by its estimate, 7m-. The variance, <72, is also unknown in most situations and therefore 

must be estimated. 

A two-sample t-test for the difference in means can be used. 

HQ : cl = c2 vs. HA : cl / c2 

, 2 i 1 , L 

where 

P \ini + Rn + l Rn — In 

4 ~ OR - 1 ( ^ {X3 ~ X - R n : I n ) + E {Xi - X i n i + l : R n ) ) 
71 \j=-Rn jWni+l / 

If we assume that the error terms are normally distributed (or alternatively, if the number 

of points in each average is large), then ts has (approximately) a ^-distribution with 

2R„ — 1 degrees of freedom. Therefore, we reject Ho at level a and conclude that there is 

significant evidence of a break in the neighbourhood if \ts\ > t2Rn~i(l — a), the (1 — oj)th 

quantile of the t2Rn-\ distribution. 

When a = 0, we never reject the null hypothesis and the moving average smooth 

is the result. On the contrary, when a = 1, the null is always rejected and the not-so-

smooth is the result. Thus, by varying the significance level we can control the amount of 

smoothing done. Because the amount of smoothing ranges between that of the moving 

average smoother and the not-so-smoother, we will appropriately name this modified 

smoothing method the somewhat-smoother. 
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Figure 5.1: Somewhat-smooths of the sine data using Rn — 5 and various levels of a 
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In the previous chapter, we considered data generated from a sine curve with normally 

distributed noise. The not-so-smoother produced very rough output. The purpose of the 

somewhat-smoother is to improve upon this. To demonstrate, we use the same data 

shown in Figure 4.4 and apply the somewhat-smoother using a equal to 0, 0.01, and 

1 and using a bandwidth of 5 in all cases. Graphs of the smooths are given in Figure 

5.1 on the previous page. The somewhat-smoother with a — 0.01 provides a less jagged 

estimate than the not-so-smoother (a = 1). Of course, when the underlying function is 

continuous, as is the case with the sine data, the moving average smoother (a — 0) still 

performs best. 

However, when the possibility of a discontinuity exists, the somewhat-smoother allows 

for the preservation of the jump while producing smoother results in the continuous 

stretches. To illustrate, we will again consider a data set used previously, namely the 

split cube-root data as shown in Figure 4.5. This figure shows that the optimal not-so-

smooth preserved the discontinuity perfectly but produced fairly rough output. Thus, 

we applied the somewhat-smoother to the data using the same bandwidth as the optimal 

not-so-smooth (Rn = 9) for the purpose of comparison. The level of significance used was 

a = 0.0001. Although this level may seem very small, it was chosen because it produced 

quite smooth output yet the test still detected the jump. The somewhat-smooth is given 

in Figure 5.2, as is a replicate of the optimal not-so-smooth, and the results look much 

improved. 

The drawback to using the somewhat-smoother is that there are now two parameters, 

Rn and a, to be selected. In our examples, a was chosen visually but, as with the selection 

of an optimal bandwidth, we would like to develop quantitative methods for choosing the 

optimal a value. 
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Somewhat-Smooth with alpha = 0.0001 
Rn= 9 and mse = 0.0040 

o 
CJ • • observed 

1.
0 

1.
5 

estimate 
true 

1.
0 

1.
5 

* 

• ' • 
* hS*'.' -
• • • ^ 

• • • 

• • 
ID 
d 

*• 

o 
d 

i 

-1.0 -0.5 0.0 0.5 1.0 

Figure 5.2: Not-so-smooth and somewhat-smooth with a 
data using Rn — 9 

= 0.0001 of the split cube-root 
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5.2 The Not-So-Smoother using Local Linear Fits 

There are situations when using local constant fits within each neighbourhood will not 

provide a good fit. As an example, we consider the "sawtooth" function used in the 

paper by McDonald and Owen as well as Hall and Titterington. The function consists 

of two line segments rising from 0 to 1 — one between 0 and 0.5 and the other between 

0.5 and 1. There are 256 equally spaced data points with normal noise added. The 

standard deviation of the noise is taken to be half that of the function; that is a = 

function is nowhere approximately constant, applying the not-so-smoother gives a very 

jagged estimate. Figure 5.3 shows the optimal not-so-smooth according to the minimum 

mse criterion. Although it is less jagged than the optimal moving average smooth would 

be, we would still prefer a smoother estimate. Using the somewhat-smoother would only 

marginally improve the results because it still assumes that the local two-constant model 

This example leads us naturally to consider using local linear fits rather than local 

constant fits. Within each neighbourhood, the two lines which minimize the mean squared 

error are found. This involves minimizing the function H*kn(J, cti, a 2 , (32) with respect 

to its five parameters where 

The value of J which minimizes the function is the estimated breakpoint, the values of ct\ 

and /3i which minimize the function are estimates of the intercept and slope of the first 

line respectively, and the values of a2 and f32 which minimize the function are estimates 

of the intercept and slope of the second line respectively. 

1/2 {Jo0-5 (x - 0.5)2 2x dx + J^5 (x - 0.5)2(2x - 1) dx} 
1/2 

1/2 0712- B l ecause the true 

holds. 
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Optimal Not-So-Smooth using Local Broken Linear Fits 
Rn= 66 and mse = 0.00039 

• observed 
estimate 
true 

- i 1 1 1 1 1— 

0.0 0.2 0.4 0.6 0.8 1.0 

Figure 5.3: Optimal not-so-smooths of the sawtooth function with noise using local 
constant fits and local linear fits 
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The not-so-smoother using local linear fits was applied to the sawtooth data and the 

optimal smooth was found (see Figure 5.3). The benefits of using linear rather than 

constant fits is evident in this case. The estimated function is almost indistinguishable 

from the true function oyer most of the range. 

Because the sawtooth function consists of two line segments, it is not surprising that 

using linear fits leads to a good estimate. However, this method involves estimating 

a greater number of parameters. If the optimal neighbourhood size using linear fits is 

sufficiently larger than that using constant fits, then no loss incurs from the additional 

parameter estimation. Whether this will in fact be the case depends on the data. When 

the data are such that the locally constant model is approximately true, the original 

not-so-smoother or somewhat-smoother may be preferable, but otherwise, using the not-

so-smoother with local linear fits is likely to give better results. 



Chapter 6 

Conclusion and Discussion 

In Chapter 2, we proposed a smoothing method which, when applied in situations where 

the regression function being estimated is discontinuous, is designed to preserve the 

discontinuities. This smoother, termed the not-so-smoother, was shown to be consistent 

under very general conditions. 

The performance of the not-so-smoother, both locally (within a neighbourhood) and 

globally (on an entire data set), was thoroughly investigated. Using simulated data for 

which the underlying function was known, we could evaluate the accuracy with which the 

discontinuities were located and the function was estimated. Overall, the not-so-smoother 

was successful at estimating functions with discontinuities, with greater success as the 

number of points within the neighbourhood increased and as the ratio of the size of the 

discontinuity to the variability in the data increased. 

The performance of a smoothing method is highly dependent on the choice of the 

neighbourhood size, or bandwidth. By using simulated data sets, we were able to de­

termine the optimal bandwidth, meaning the one which minimized the mean squared 

error. Thus we could compare the optimal performance of the not-so-smoother with 

the optimal performance of a moving average smoother. When the regression function 

was continuous, the moving average smoother performed better, as the not-so-smoother 

produced a much rougher estimate. When the regression function was discontinuous, 

the relative performance of the two methods depended on the ratio of the discontinuity 
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size to the standard deviation in the data. Our simulations suggest that when the ra­

tio is less than 1, the moving average smoother performs better. As long as the ratio 

is greater than 1, the not-so-smoother is superior, becoming increasingly better as the 

ratio increases. In this case, not only does the optimal not-so-smooth preserve the edges 

more sharply than the optimal moving average smooth, but it also produces smoother 

output since the optimal moving average smooth requires such a small bandwidth that it 

is very jumpy. Note that we are evaluating the smooths based solely on minimum mean 

squared error criterion; if the ability to preserve an edge was the criterion used, then the 

not-so-smoother would be preferable whenever a discontinuity is present. 

The not-so-smoother is designed such that it assumes, essentially, that a discontinu­

ity exists within each neighbourhood. This property can result in jagged output over 

continuous segments of the data, and a desire to reduce this jaggedness led us to consider 

a modified method called the somewhat-smoother. The somewhat-smoother, presented 

in Chapter 5, combines the not-so-smoother with the moving average smoother. A test 

is performed within each neighbourhood to determine if the data provide sufficient evi­

dence that a discontinuity exists. If so, the not-so-smooth estimate of the point is used; 

otherwise, the moving average estimate is used. Examples illustrated that the somewhat-

smoother can achieve the goal of producing smooth output while still preserving the 

discontinuities. 

We considered another modification to the not-so-smoother in which the best piece-

wise linear, rather than constant, function with exactly one simple discontinuity is iden­

tified within each neighbourhood. When the regression function is not approximately 

flat, even within small segments, as with the sawtooth function, using constant fits gives 

a rough estimate. Using linear fits can improve the results greatly, but requires more 

parameter estimation. 

In summary, if it is known that the underlying function is continuous, then there is 
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no advantage to applying the not-so-smoother. The not-so-smoother will not perform 

as well as, say, a moving average smoother, and computationally it takes much longer. 

However, if it is suspected that the function being estimated is discontinuous, or if no 

information about the function is available, then using the not-so-smoother or one of its 

modifications can be highly beneficial. 

As always, there is further work to be done. Consistency of the not-so-smoother was 

proven, but more work is required to determine the asymptotic behaviour. We expect that 

the not-so-smoother will converge much faster than the traditional smoothing techniques 

when there is a discontinuity, and at the same speed when there is not. 

Bandwidth selection was mentioned briefly in Chapter 4. How to choose the best 

bandwidth first requires a criterion on which to base evaluation. Typically mean squared 

error is used, but perhaps this does not tell the whole story in the case of discontinu­

ous regression functions. When the size of the discontinuity is small, a moving average 

smooth may have a smaller mean squared error than a not-so-smooth even though the 

edge is denned more sharply with the latter. Depending on the situation, edge preser­

vation may be more important. Next, an evaluation criterion involves knowing the true 

function, and since the function is unknown, methods of dealing with this problem must 

be developed. Traditionally, cross-validation and plug-in techniques are used in the se­

lection of a bandwidth, and ways to apply these techniques in the discontinuous case can 

be derived. 

Lastly, the not-so-smoother was introduced in a one-dimensional setting where one 

might argue that the discontinuities can be identified visually, at least for some data sets. 

When a higher dimensional function is being estimated, discontinuities would be very 

difficult to identify without some quantitative technique such as a smoother. The not-so-

smoother can be extended quite naturally to include higher dimensional cases. Consider 

a two-dimensional function. At each point in the sample, define its neighbourhood to 
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be all points within a fixed area around the point. For simplicity, the area could be 

taken to be a square. Then find the line dividing the neighbourhood into the two subsets 

which minimize the distance between the mean and the data of the first subset plus the 

distance between the mean and the data of the second subset. To consider all possible 

lines could be lengthy and not even desirable (since very curvy optimal lines would likely 

result), so a subset such as all vertical, horizontal and diagonal lines could be considered. 

After determining the "best" line, the estimate of the point under consideration would 

be the mean of the subset to which it belongs. Modifications analagous to the somewhat-

smoother and the use of linear fits in the one-dimensional case can also be extended to 

higher dimensions. 
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