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Abstract 

This thesis documents the conceptual development of the author's contribution, the hy

brid constraint space position/force controller for robotic manipulator control in con

strained environments. This method is built upon a constraint space dynamic model, 

where the model parameters are displacement along the constraint trajectory and nor

mal force between the manipulator end-effector and environment. This dynamic model 

is constructed by transforming conventional joint space manipulator dynamics into their 

constraint space equivalents through the application of mapping functions, which relate 

differential displacements and velocities in the constraint space coordinate system to the 

joint space coordinate system. Conventional PD controllers may then be applied to the 

simplified dynamic structure of the constraint space equations of motion, in order to 

produce a vector of manipulator joint torques which will satisfy both position and force 

requirements along the environmental constraint. Actuator constraints and momentum 

compensating techniques are also used to ensure that the position and force control 

problems are completely decoupled from one another. This modelling technique is then 

applied to the control problem for a two degree of freedom prismatic robot as an illus

trative example. Simulation of this specific controller is carried out with respect to three 

different constraint surfaces, a planar, a concave circular and a convex circular environ

ment. The results of these simulations show that the hybrid constraint space controller 

provides excellent position and force trajectory tracking for the planar case study. This 

thesis is intended to be the forerunner to future work which will develop in detail, the 

application of hybrid constraint space control to highly nonlinear manipulator/constraint 

models. 
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Chapter 1 

Introduction 

1.1 Opening Remarks 

Research in the area of robotics is typically driven by two concerns; the desire to ex

pand robotics applications and the desire to improve robot performance. The former 

usually involves interdisciplinary collaboration, and consists of automating industrial or 

commercial processes through the application of existing robot technology. The latter 

however, is primarily concerned with advances in manipulator technology itself. To

gether, the two fuel a technological revolution which has produced marvels ranging from 

automated assembly lines in the automotive industry to state-of-the-art robot surgeons 

in the operating room. 

It is difficult to say which of these two research groups has wagered more heavily in 

the flourishing growth of the technology, for both have played an integral role. With 

the visionary research done in the area of applications, robotics continues to justify and 

magnify the funding which it receives from the various segments of industry, commerce 

and government. On the other hand, with the innovative research performed in the area 

of fundamentals, robotics is constantly increasing its adaptability and suitability as a 

transferable technology. The only certainty is continued success for the field in the years 

to come. 

1 
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Figure 1.1: Research Tree in the Field of Robotics 

1.2 Motivation 

The author's work has the singular objective of advancing robot performance through the 

introduction of a new manipulator controller designed especially for use in constrained 

environments, thereby falling within the category of robotics research dedicated to fun

damentals. A constrained environment is where the manipulator end-effector is restricted 

to movement along some arbitrary work space surface, a situation typically characterized 

by simultaneous position and force requirements. An industrial milling operation is a 

good example of a constrained environment. 

Do constrained environments warrant such attention? Absolutely. The majority of 

industrial or commercial processes which may benefit through the application of robotic 

automation usually consist of constrained environments. Common but essential tasks 

such as assembly, cutting or grinding all require the tool to follow a specific path on 

the workpiece surface while simultaneously maintaining a prescribed normal interaction 
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force with that same surface. Hence, improvements in the area of constrained manipu

lator modelling and control will most certainly lead to advanced applications for robotic 

manipulators in even the most demanding industrial or commercial setting. 

1.3 Contributions of the Thesis 

Conventional approaches to the problem of constrained manipulator modelling and con

trol are often devised in the joint space coordinate system of the robot in question. This 

joint space formulation is typically used because in actuality, the manipulator joints are 

the recipients of the control signals, and it is convenient to have the system dynamic 

model and the physical reality share a common coordinate system. However, when a 

manipulator is operating within a constrained environment, the joint space formulation 

is no longer appropriate, for two reasons. First, the joint space formulation is usually 

redundant. Second, the joint space formulation is inconsistent with the system control 

parameters, which usually consist of constraint surface variables such as displacement 

along the constraint surface or the normal force of interaction between the manipulator 

end-effector and the constraint surface. The major theoretical contribution of hybrid 

constraint space control (HCS control), is a conceptual approach which addresses these 

two issues by solving the manipulator modelling and control problem for constrained 

environments with a constraint space dynamic model. 
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1.4 Outline of the Thesis 

The purpose of this thesis; is to illustrate in detail the concept of hybrid constraint space 

control. Towards that end, the thesis will be structured as follows. The first chap

ter hereafter, entitled Literature Review will document the conceptual origins of hybrid 

constraint space control by surveying past research relevant to the work. The chapter 

entitled Hybrid Constraint Space Control will then discuss the method in a generalized 

fashion, with respect to arbitrary manipulators constrained to arbitrary surfaces. Next, 

the chapter entitled Derivation of an HCS Controller for a 2DOF Prismatic Robot will 

illustrate the general concepts discussed previously with a specific example, a two degree 

of freedom prismatic robot. The controller devised in this chapter will then be simulated 

for varying constraint environments within the following chapter, entitled Simulation Re

sults for a 2DOF Prismatic Robot with HCS Control. Finally, conclusions regarding the 

work, and suggestions for future study will be presented through the chapter entitled 

Conclusions, to be followed by a bibliography of reference work and a list of supporting 

appendices. 



Chapter 2 

Literature Review 

Hybrid constraint space control is unique because it employs a constraint space dynamic 

model. In other words, the model parameters deal exclusively with constraint conditions, 

such as end-effector displacement along the constraint surface or normal force levels 

between the manipulator end-effector and the environment. In hindsight, the employment 

of a constraint based model seems completely reasonable, since a process involving a 

constrained environment is almost always governed by constraint conditions. If so, why 

did researchers first begin with joint space formulations for their manipulator models? 

When the first industrial manipulators were designed, robotic automation was only 

being applied to positioning processes such as spray-painting and welding. Because joint 

space solutions to these positioning problems were readily available through inverse kine

matics, researchers came to perceive the joint space formulation as an undisputedly prac

tical procedure. Consequently, when robotic automation began its integration with force 

control applications, researchers persisted in applying joint space formulations. 

Gradually however, the preference for joint space approaches weakened as researchers 

began to recognize the important role played by the constraint surface in position/force 

control problems for constrained environments. The purpose of this literature review is 

to highlight the key conceptual developments of this progression, which ultimately lead 

to the development of hybrid constraint space control. Towards that end, this chapter 

5 
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Figure 2.2: Stiffness Control:SDOF Manipulator 

will include brief discussions on stiffness control, hybrid position/force control, hybrid 

impedance control and reduced state position/force control, as well as closing remarks 

regarding the influence of these methods in the author's formulation of hybrid constraint 

space control. 

2.1 Stiffness Control 

The concept of stiffness control was introduced to the literature by Salisbury and Craig 

in 1980, Salisbury and Craig (1980), and is important because it represented a turn

ing point in the direction of robotics research at the time. Previously, researchers had 

been primarily concerned with the robot position control problem. Stiffness control was 

the first method to formally address the force control problem, and consequently, the 

predescessor to modern constrained environment control strategies. 

The concept of stiffness control may be clearly illustrated by considering the force 

control problem for a single degree of freedom manipulator as shown within Figure 2.2. 
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In this example, the manipulator is required to establish a contact force of /<* with a rigid 

environment. Assuming the presence of a simple PD control algorithm and steady-state 

conditions, the control force r, which is equal to the contact force, will depend only upon 

the position error. However, the high environmental stiffness will prevent the control 

force from producing any significant surface deformation. As a result, the position error 

will persist, and the steady-state contact force will obey the following expression. 

fss = kp(xd-xe) (2.1) 

Note that the term kp represents the controller position gain. 

By considering Equation 2.1 and its similarity to Hooke's Law, the concept of stiffness 

control may be clearly summarized. By varying the proportional control gain kp, which 

represents the effective stiffness of the closed-loop system, fss may be tuned to match 

any reasonable value of fd. This statement may be generalized to include higher order 

manipulators, as the principles of operation remain unchanged. 

Although the stiffness controller is important in that it represents the first successful 

attempt at robot manipulator force control, it is quite limited with respect to applicable 

environments. For instance, the controller is only capable of set-point force control, 

unless proportional control gains are altered in mid-operation, which is bad practice and 

cumbersome as a tool. In addition, the issue of simultaneous position/force control is 

not addressed by this method. In short, the stiffness controller is a pure force controller 

employing a joint space dynamic model. As such, its limitations rendered it inadequate 

for dealing with constrained environments. 
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2.2 Hybrid Position/Force Control 

The ability to enforce simultaneous position/force control is an important requirement 

for any successful manipulator controller in a constrained environment. Consequently, 

research efforts following the development of the stiffness controller sought exclusively 

to attain this goal. The concept of hybrid position/force control, introduced by Raibert 

and Craig in 1981, Raibert and Craig (1981), accomplished this end through task space 

decoupling. Raibert and Craig postulated that if the position and force control prob

lems were decoupled, then independent, dedicated controllers could be designed for each 

subtask. These controllers would then act in parallel, with the net effect being a system 

under simultaneous position/force control. 

In order to illustrate the operating principles of hybrid position/force control, consider 

the following dynamics formulation for an arbitrary n-link manipulator. 

T=M(q)q + C(q,q)q + G(q)+T^on(l) (2.2) 

Note that the vectors r , q and / represent respectively, the joint torques, the joint 

displacements and the end-effector contact forces. Furthermore, "the vector Zam represents 

contact forces at the end-effector transformed into equivalent disturbances for the joint 

degrees of freedom. Now, suppose it is known that a vector of desired joint trajectories 

and q^ will produce the desired end-effector position and contact force histories. Then, 

a computed torque controller for the vector of joint torques r would take the following 

form. 

. r = M ( g ) ( ^ + ^ ( ^ - £ ) + y ^ - £ ) ) + C( £ , £ )g + G ( i ) + r c o n (2.3) 

Note again, that the control formulation of Equation 2.3 is with respect to the joint 

coordinate system q. 
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Figure 2.3: Hybrid Position/Force Control: 2DOF Manipulator 

A hybrid position/force controller for the dynamics system of Equation 2.2 would 

differ from the controller of Equation 2.3 in that the hybrid controller would be based 

upon a decoupled task space coordinate system x as opposed to the joint coordinate 

system q. A decoupled task space coordinate system is one where the basis vectors of the 

coordinate system are aligned in directions of pure position or force control. A n example 

of a decoupled task space coordinate system for a two degree of freedom manipulator is 

shown within Figure 2.3. 

In order to formulate a controller in terms of the decoupled task space, it is necessary 

to incorporate task space components into Equation 2.2 through a transforming function 

from task space to joint space. 

x = h(q) (2.4) 

In addition, the first and second time derivatives of the task space basis vectors are also 

required. 

x = J(q)q x = J(q)q+J(q)q (2.5) 

Note that the term J(q) is the manipulator Jacobian. Substitution of Equation 2.5 into 
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Equation 2.2 will yield the following expression. 

T = M(q)J-\q)(x-J(q)q) + C(q4)q+G(q)+zcon (2.6) 

Note that Equation 2.6 may be used as the basis for another computed torque controller 

where the desired trajectories are now a^, x^ and x^ as opposed to q^, q^ and q^. 

T = M(2)J _ 1(£)(id + ^ ( i a - i ) + i P ( ^ - ^ ) - ^ ( £ ) i ) + 

C(q1q)i+G{q) + Tcon (2.7). 

Clearly, Equation 2.7 represents PD control with respect to decoupled position and force 

subtasks, since the vector x is a decoupled task space coordinate system. The remaining 

terms with respect to the joint space may be fed-forward from sensory data. 

However, Equation 2.7 should not be confused with a constraint space dynamic model. 

The dynamic model of Equation 2.6 upon which the computed torque controller of Equa

tion 2.7 is built, is actually a joint space dynamic model. Task space kinematic quan

tities are merely introduced into the joint space model so that a controller may receive 

task space references as input. This method operates by aligning the task space with 

constraint space conditions. The constraint space is not actually incorporated into the 

system dynamic model. As a result, complicated constraint trajectories will introduce 

difficulties for the method, as these constraints may no longer be aligned with a single, 

stationary task space coordinate system. The controller would require a position and 

time varying Jacobian function to relate the constantly changing task space system. 

Nevertheless, hybrid position/force control successfully implements simultaneous po

sition/force control for simple, constrained environments. Furthermore, by decoupling 

the control problem into purely position or force subtasks, the control of either is clearly 

isolated. Because of these qualities, hybrid position/force control, even today, remains a 

cornerstone for robot force control theory. 
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2.3 Hybrid Impedance Control 

With the introduction of hybrid position/force control as a viable solution to control 

problems for constrained environments, the applicability of robot manipulators to indus

try increased significantly. As a result, subsequent work in the area sought to extend 

the method to its Emits, focussing pn the various applications of hybrid position/force 

control, as opposed to other, more effective alternatives. As a result, the next major 

advance in robot force control theory did not appear in the literature until 1987, Hogan 

(1987), in the form of hybrid impedance control by Hogan. 

Where hybrid position/force control was built upon distinct separations between the 

position and force subtasks, hybrid impedance control postulated that for any given task 

space direction, position and force were inseparable quantities. Instead of defining a task 

space direction as position or force exclusive, Hogan proposed that control for each task 

space direction should be derived on the basis of the desired dynamic behaviour for the 

components of position and force in that direction. Because the control parameters were 

relationships between position and force, Hogan's approach earned the name impedance 

control. 

In practice, the hybrid impedance controller may often be implemented with a com

puted torque controller framework similar to that of the hybrid position/force controller 

as shown within Equation 2.7. Instead of using a PD controller represented by the terms 

X j , Xj and xj, the desired task space response is derived from inverse Laplace transforms 

of the desired transfer function response for position and force in that particular direction. 

Hence, the control laws for position and force predominant directions are respectively, as 

follows. 

r = M(gJJ-\q)(L-1{s(x4s)-Z-\s)f(s))}-J(^ 
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C ( i , i ) i + % ) + rc, •on (2.8) 

r = M ( £ ) J - 1 ( 2 ) ( L - 1 { ^ - 1 W ( / ^ ) - / W ) } - % ) ? ) + 

(2.9) 

The transfer functions in Equation 2.8 and Equation 2.9 are chosen by applying the 

duality principle, which assigns complementary transfer functions to the manipulator 

closed loop model depending upon the environmental impedance in that particular task 

space direction. 

Nevertheless, hybrid impedance control is also based upon a joint space dynamic 

model. Like hybrid position/force control, it employs a task space transformation to 

incorporate constraint conditions into the system dynamics. Consequently, the method 

also suffers from the limitations of a stationary task space when applied to complicated 

constraint trajectories. However, the value of hybrid impedance control, and the reason 

for its inclusion in this discussion, is the landmark it represents for conceptual develop

ments in the area of robot force control. Previously, little concern was given to the role 

of the environment in the determination of control laws for a given manipulator task. 

Hybrid impedance control represents the first environment sensitive control algorithm. 

2.4 Reduced State Position/Force Control 

Following the development of hybrid impedance control, researchers began to seriously 

consider the role of the environment in the formulation of constrained environment control 

strategies. Introduced to the literature in 1988, reduced state position/force control by 

McClamroch and Wang, McClamroch and Wang (1988), was a novel approach to the 

position/force control problem, differing substantially from the joint space methodologies 
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of earlier work such as stiffness control. 

McClamroch and Wang postulated that when a manipulator is brought into contact 

with a constraint surface, its degrees of positional freedom are reduced while degrees of 

force freedom are introduced into the system. Consequently, the design of a controller 

for a given manipulator and environment configuration should be based upon a reduced 

control coordinate set, representing the true degrees of freedom of the manipulator and 

constraint pairing. However, McClamroch and Wang did not identify a procedure for 

isolating this reduced control coordinate set. Their work proved the existence of reduced 

coordinates," and made reference to them in the formulation of the following computed 

torque controller. 

; Consider the previous n-link manipulator, and assume that a functional relationship 

exists between the manipulator joint space q and the reduced control coordinates z. 

q = k{z) (2.10) 

Furthermore, taking the first and second time derivatives of Equation 2.10 will yield the 

following expressions. 

-;/;- i='K(z)z q = K(z)z + K(z)z K(z),= ^ - , •• , (2,11)-

yln* addition, the vector may be related to a ivector of force degrees of freedom - A, • 

representing the contact forces between the manipulator and the environment'. 

rcm = J-\z)\ (2.12) 

Noteithatrthe degrees of freedom.for z combined with A equal-the.original joint degrees; 

of. freedom. Substituting theresults of Equation 2.11 and.Equation 2.12.into-the n-link, 

manipulator dynamics will yield a reduced state dynamics formulation. 

~ ;,. ,:. t:=M*(K{z)z + K(z)z) + C*{z,z)K(z)z +G^z) + J-^W (2-13) 
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Applying PD control terms, the equivalent computed torque controller may then be 

devised. 

r = M * U ) i ^ ( i ) ( i i + ^ ( i d - i ) + i p ( ^ - z ) ) + M*(z)ir(z)i + 

C*(z,z)K(z)z + G*{z) + J-'iAa + kfikd-*)) (2-14) 

UnUke the previous three controllers discussed, the reduced state position/force controller 

operates with respect to an optimal coordinate system z , which fully recognizes the fact 

that the manipulator and the constraint are an integrated system with degrees of freedom 

which are different from the manipulator's alone. However, McClamroch and Wang have 

not identified a procedure for identifying Equation 2.10, which is the crux of the method, 

if it is to have any practical application. Despite this setback, reduced state position/force 

control is still a major achievement> for it represents the first fully documented attempt 

at building a constraint space dynamic model for manipulator control in a constrained 

environment. 

.2.5 Summary 

This literature review has considered four different controllers in an attempt to chart the 

progression of concepts which ultimately lead to the author's contribution, hybrid con

straint space control. The first method considered, stiffness control, was a joint space, 

set-point force controller, therefore, not actually a true constrained environment con

troller. Nevertheless, stiffness control was included in the discussion, as it represented 

the first attempt at force control. The second, hybrid position/force control, was yet 

another joint space formulation, although this method was capable of simultaneous posi

tion/force control. In addition, this hybrid method made use of a decoupling task space 

coordinate system in order to separate the position and force problems into independent 
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subtasks. However, the method employed stationary task space systems, making it inap

propriate for complicated constraint trajectories. The third, hybrid impedance control, 

was also a joint space formulation, but was also the first method to recognize the influence 

of the environment in controller design. Finally, there was reduced state position/force 

control, which sought formulation of the system dynamics in an optimal reduced control 

coordinate system, markedly different from the previous joint space methods. 

Hybrid constraint space control goes one step further than reduced state position/force 

control by actively defining the optimal control coordinates. In addition, this optimal 

control coordinate system is constraint based, as well as being decoupling in nature. 

Hence, hybrid constraint space control is actually the culmination of concepts from hy

brid position/force control and reduced state position/force control, with the end result 

being a distinctively, constraint based approach to system modelling and control for 

constrained environments. 



Chapter 3 

Hybrid Constraint Space (HCS) Control 

Hybrid constraint space modelling is a new approach in formulating control strategies for 

constrained robot manipulators. The technique essentially combines the concept of task 

space decoupling from hybrid position/force control with the concept of optimal state 

representation from reduced state position/force control, in order to introduce a unique 

iconstraint space coordinate system in which to model the system dynamics. There are 

two distinct advantages in employing hybrid constraint space control. First, the method 

completely decouples the position and force constraints into independent subtasks. Sec

ond, the control equations are explicitly expressed in terms of constraint parameters of 

practical concern, such as displacement along the constraint surface and normal inter

action force between the manipulator end-effector and environmental constraint surface. 

As a result, the constrained system is decoupled and represented with an optimal, non-

redundant model. Because of these qualities, hybrid constraint space control has the 

potential to become a truly viable alternative to existing methods for constrained ma

nipulator control. 

The formulation of a hybrid constraint space controller consists of eight distinct steps. 

This procedure is illustrated pictorally in Figure 3.4. In short, hybrid constraint space 

control is a modelling technique where the system dynamic model is constructed with re

spect to a constraint based coordinate system. Therefore, the first step is the definition of 

16 
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Figure 3.4: Procedural Flow Chart for a Hybrid Constraint Space Controller 
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such a coordinate system with respect to the constraint surface of the particular problem. 

Having denned a constraint space, the next immediate goal becomes the formulation of 

a system dynamic model based upon these coordinates. 

In order to construct a constraint space dynamic model, it is first necessary to con

struct a manipulator joint space dynamic model as a starting point. Next, kinematic 

relationships are formulated between the constraint space degrees of freedom and the 

joint space degrees of freedom. These relationships or mapping functions are then used 

to transform the manipulator joint space dynamic model into an equivalent, but con

straint space based dynamic model. The end-result is a manipulator dynamic model 

based upon the previously defined constraint space coordinate system. It is important 

to note that this constraint space dynamic model is a model where the manipulator 

end-effector implicitly travels along the constraint trajectory, provided that certain kine

matic constraints and momentum compensating terms are applied to the manipulator 

joint torques, which is the fifth step. 

Through the application of these first five steps, the manipulator end-effector has 

been constrained to a trajectory consistent with the environmental constraint surface. 

As a result, the position and force problems have become decoupled. Furthermore, the 

position and force control actuator requirements may be linearly superposed to achieve 

simultaneous position and force control. Therefore, the sixth and seventh steps involve 

the application of respectively, appropriate position and force control laws. Finally, the 

eighth step consists of the summation of the required manipulator actuator forces from 

the separate position and force subtasks into a unifying actuator force vector responsible 

for hybrid position and force control. 

In order to clarify this procedure, each of these eight steps will now be discussed 
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x-axis 

Figure 3.5: General Constraint Space Coordinate System 

in detail with respect to a general n-degree of freedom manipulator constrained to an 

arbitrary surface in 3-space. 

3.1 Definition of a Constraint Space Coordinate System 

The first step in devising a hybrid constraint space controller is the definition of a con

straint space coordinate system. This constraint space coordinate system is unique and 

consists of a single positional degree of freedom, s, along the constraint trajectory to

gether with a single force degree of freedom, n, normal to the constraint trajectory. For 

the purposes of illustration, consider the constraint trajectory on the arbitrary curved 

constraint surface shown within Figure 3.5. 

Consider now, the case where an arbitrary n-degree of freedom manipulator is con

strained to the previously shown constraint surface, a situation illustrated in Figure 3.6. 

For all intents and purposes, the desired kinematics and dynamics of the constrained sys

tem may be completely described by s and n alone. This premise holds true, because for 
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x-axis 

z-axis 

Figure 3.6: nDOF Manipulator Constrained to Arbitrary Surface 

practical applications such as cutting or grinding, the control variables relate primarily to 

conditions on the workpiece. Since the workpiece surface is represented by the constraint 

surface, a process where the system consists of a manipulator constrained to a work sur

face may be completely controlled through the specification of the variables s and n. In 

other words, the coordinates of the constraint space coordinate system contain all the in

formation required to specify interactive behaviour between the manipulator end-effector 

and the constraint surface. It is this property of the constraint space coordinate system 

which makes it an optimal reference frame for modelling the system dynamics. 

3.2 Derivation of the Conventional Joint Space Dynamics 

Having identified a constraint space coordinate system, it now becomes necessary to 

construct a model of the constrained manipulator dynamics with respect to these coor

dinates. The starting point in the construction of this model is the conventional joint 

space dynamics formulation of the manipulator. More specifically, the Lagrangian po

tential function and the equations of motion for the manipulator with respect to its joint 
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vector coordinates are required. Referring to the n-degree of freedom manipulator of 

Figure 3.6, the potential function and equations of motion take the following form. 

L = L(q,q) (3.1) 

Q = M(q)q + C(q,q)q+G(q) (3.2) 

Once this potential function has been derived, it may be transformed into an equivalent 

constraint space representation through mapping functions, and subsequently used to 

produce the constraint space equations of motion through the application of Lagrange's 

equation. The joint space equations of motion on the other hand, will be used as the 

basis for kinematic constraints, to be discussed later. 

3.3 Derivation of Mapping Functions 

In order to transform the Lagrangian potential function into its constraint space equiv

alent, mapping functions between the joint space and the constraint space coordinate 

system are required. These mapping functions may be derived using differential kine

matics, and take the following form. 

qi = fi{s,s) = 

92 = / 2(s,i) = (3.3) 

qn = fn(s,s) = 

These results require an exact knowledge of the differential relation between a differential 

displacement along the constraint trajectory and subsequent differential displacements of 

the manipulator joints. For reasonable constraint trajectories which may be represented 

with analytic functions, these differential relations are easily derived. 
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However, in the case of highly nonlinear robots, differential kinematics alone are 

insufficient to produce the constraint space equations of motion. Geometric functions 

must also be derived. 

9i = 9i(s) 

* = * W ,3.4) 

9n = 9n(s) 

Nevertheless, it is not the intent of this work to deal with the cases of highly nonlinear 

robots. It is the intent of the work to illustrate the concept of hybrid constraint space 

control. Hence, it is sufficient to say at this point, that differential kinematics alone are 

adequate for deriving the mapping functions of example manipulators treated onwards. 

Nonlinear robots will complicate the derivation of the mapping functions, but will not 

limit the applicability of the method. 

One further point of notice, is the case of redundancy. For a constraint trajectory 

in 2-space, only two degrees of manipulator freedom are required. Likewise, for a con

straint trajectory in 3-space, only three degrees of manipulator freedom are required. 

As a result, the method assumes that only the bare minimum of the required joints are 

active. The remaining joints are locked, and removed from consideration. Therefore, 

the mathematical developments shown previously, should be restructured so that only 

active joint degrees of freedom are present. Note that these statements have been made 

ignoring orientation requirements. 

3.4 Formulat ion of the Constraint Space Dynamics 

Once the mapping functions have been identified, the constraint space dynamics formula

tion may be attained. The mapping functions are first used to transform the Lagrangian 
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potential function from joint space to constraint space coordinates. 

L = L(q,q) = L(s,s) (3.5) 

The constraint space potential function may then be used through Lagrange's method 

to provide the constraint space dynamics. 

Q - — (—] - — (3 6) 
* dt \5s J 8s 

Qs = ms(s)s + cs(s,s)s + gs{s) (3.7) 

Note that the constraint space dynamics consist of a single equation of motion in s. This 

phenomena holds true, because for a constrained manipulator end-effector, the only two 

relevant parameters are the location of the end-effector along the constraint trajectory 

and the magnitude of the normal force of interaction between the end-effector and the 

constraint surface. 

Since s represents motion along the constraint trajectory, the normal force involves 

no dynamics in the ideal case of a rigid environmental constraint. The normal force is 

simply a static force balance. 

Qn = Nr (3.8) 

Having formulated these two equations, which represent the constraint space dynamics, 

it is now necessary to define expressions which relate the generalized forces Qs and Qn 

to the joint actuator torque vector Q. Again, Q in this context, refers to the active 

manipulator joints. 

The relationship between Qs and Q may be derived through the principle of virtual 

work, stated as follows. 

Q, = Sl (3.9) 
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Given a differential displacement along s, SW is the dot product between the active joint 

torque vector and the differential displacements of the active joints. 

SW = QMi + Q2h2 + ••• + QJqn (3-10) 

Since the differential relations between s and the active joint vectors are known, the 

following expression may be formed. 

Q. = F{QUQ2---Qn) (3.11) 

However, this single equation is insufficient to provide a constraining solution to the active 

joint torque vector Q. The results of the virtual work formulation only guarantee the 

magnitude of the equivalent force at the end-effector acting tangential to the constraint 

trajectory. Additional expressions which ensure kinematic consistency with the constraint 

trajectory are also required. 

The relationship between Qn and Q may be dealt with later, as hybrid constraint 

space control completely decouples the effects of Qs and Qn. Once kinematic constraints 

have been introduced to provide a set of actuator joint torques which ensure desired 

positional action, the required torques to satisfy normal force considerations may be 

included through linear superposition. 

3 . 5 Actuator Constraints Required for Maintaining End-Effector Trajectory 

Having constructed a formulation of the constraint space dynamics, it is useful to in

terpret the physical meaning of the generalized forces Qs and Qn. Consider Figure 3.7 

where these two generalized forces are shown. 

For a minimally active joint manipulator constrained to this surface, the joint motion 

will be unique, given that the joint servo motors are unpowered, and that a tangential 
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Constraint 

Figure 3.7: Generalized Constraint Forces Qs and Qn 

force Qs together with a normal force Qn are applied to the manipulator end-effector. 

From a cursory inspection, it would appear that Qs is responsible for controlling motion 

in the constraint trajectory direction, while Qn is responsible for providing the desired 

normal force of interaction. This statement is mostly true. 

The force Qs is used to control position and the force Qn is used to control normal 

force, but Qn is also used to introduce kinematic constraints as well as momentum com

pensation. Consequently, it is now necessary to illustrate the derivation of the kinematic 

constraints which help define the position controlling component of Qn. In order to define 

the kinematic constraints on the active joint vector, the existing differential kinematics 

must be differentiated once further with respect to time. 

q\ = £fi{s) = hi(3,s) 

q\ = f/aCi) = h2{s,s) 

qn = £fn{s) = hn(s,s) 

Note that these second time derivatives will have two components. The first component 

will be with respect to i while the second component will be with respect to I . The 
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first term is a coriolis and centripetal term, and is nonlinear. The second term deals 

with tangential acceleration, and is linear. Since the kinematic constraint is concerned 

with maintaining a desired tangential acceleration on the constraint surface, only the 

tangential components are used at this point. 

q\ = hl(s) 

q2 = hUs) 
H 2 K } (3.13) 

Returning to the joint space equations of motion derived previously, these second time 

derivatives may be substituted. Given that the manipulator is linear and that only 

minimally active joints are present, the joint space equations of motion will consist of 

either two equations for a planar trajectory or three equations for a 3-space trajectory. 

Assuming a constraint trajectory in 3-space, the equations of motion will be linear and 

take the following form. 

Qi = F1(m1,m2)s 

Q2 = F2(m1,m2)s (3.14) 

Q3 = F3(m1,m2)s 

The terms m\ and m2 represent the local slopes to define the orientation of the tangent 

plane to the constraint surface at any given point. Note that these slopes are themselves, 

analytic functions dependent solely upon s. Regardless, these three equations of motion 

may be used to form a pair of force ratios, and together with the previous virtual work 

expression, used to solve a 3 X 3 system of equations to provide unique values for the 

active joint actuator forces. 

Qs = F(QltQ2lQ3) 

T ^ 1 = F12(m1,m2) 
H2 



Chapter 3. Hybrid Constraint Space (HCS) Control 27 

Constraint 
Trajectory 

V iewpoin t is 
normal to the plane 

defined by s and n! ! ! 

Figure 3.8: Momentum Compensation for Curved Surfaces 

9 i 
Qs 

F2z(mi,m2) (3.15) 

With a unique solution for the active joint actuator forces already derived, it would 

seem that all the physical aspects of the constraint space method have been addressed. 

However, consider the case of a n-degree of freedom manipulator traversing a curved 

constraint surface, shown in detail within Figure 3.8. 

It is clear that equations which focus on the desired end-effector tangential force 

along with a kinematic component of the normal force will always produce acceleration 

parallel to the constraint trajectory at any point. However, when rounding a curved 

path, the manipulator will have momentum which is normal to the constraint surface. 

If this momentum is not compensated, the end-effector will drift into the constraint 

surface. When drifting occurs, the kinematic and static force components of Qn will have 

overlapping effects, with the consequence being a coupled position and force problem. In 

order to avoid this situation, momentum compensation must be included in the required 

values of the active joint torque actuators. 

The computation of the required amounts of compensation are simple, and involve 
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employing the nonlinear terms of the second time derivatives computed for the kinematic 

constraints. These nonlinear terms may be substituted into the joint space equations of 

motion to directly give the required values of momentum compensation. 

Qimc = G1(m1,m2)s 

<?2mc = G 2 ( m i , m 2 ) i (3.16) 

Qzmc - G 3 ( m 1 , m 2 ) i 

These terms may then be added to the previous solutions of Equation 3.15 to provide a 

set of active joint torque actuator forces which give exact end-effector position control. 

Qlkin = Ql + Q lmc 

<?2fc,n = <?2 + <?2mc ( 3 1 7 ) 

Qzkin = Qz + Q,Zmc 

Note that for non-curved surfaces, the momentum compensation terms are zero, and do 

not factor into the model. 

3.6 Derivation of a Position Control Law 

The discussion up until this point has assumed that a value for the generalized constraint 

space force Q s has been available for the virtual work expression, which is then used to 

aid in the solution of the active joint torque forces. In order to actually generate an 

appropriate value of Q s depending upon the status of the end-effector compared to its 

desired status upon the constraint trajectory, it is necessary to implement a position 

control law. Fortunately, the dynamics for the coordinate s consist of a single equation 

of motion. Because of this simplicity, which is a natural consequence of employing the 

decoupling action of the hybrid constraint space controller, any number of conventional 

control laws may be employed. The author has chosen to apply computed torque control, 
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Lewis, Abdallah, and Dawson (1993). Consequently, the controller for Qs may be formed 

as follows. 

Qs = ms(s)(sd + kpy^d - k p p ( s d - s)) + cs(s,s)s•+gs{s) (3.18) 

This controller is essentially a PD law with respect to the Unear portion of the dynamics 

and a feed-forward mechanism with respect to the nonlinear portion. Note that sensory 

equipment can readily provide the required states s and s which are exactly measured 

along the constraint trajectory. Other control laws may be used, as long as they provide 

satisfactory convergence. The aim of this section is simply to provide a functioning and 

consistent method for generating Qs. 

3.7 Derivation of a Force Control Law 

As mentioned previously, the generalized force Qn in actuality, consists of two compo

nents. The first component deals with kinematic constraints and momentum compensa

tion, and has had its effects implicitly incorporated into the active joint torque forces. 

Because of this incorporation, the position and force control problems may be completely 

decoupled. As a result, there is no control required for the second component of the gen

eralized force Qn in the ideal case of a rigid environment. The second component may 

simply be set equal to the desired contact force. 

Qn = h (3-19) 

However, in the case of a non-rigid environment, albeit a very stiff environment, a com

pliant force control law of the following form may be applied. 

Qn = fd~ kfvkj + kfp{fd -fn) (3.20) 
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Note that ke represents the environmental stiffness, 8 represents the rate of change of 

deformation and fm represents the desired normal force. 

Regardless of the choice for either Equation 3.19 or Equation 3.20 it is necessary to 

compute the required active joint torque forces which when superposed with the kinematic 

requirements, produces the desired normal force of interaction. These requirements may 

be found again, through the principles of virtual work. 

Qlnor = tfl(Qn) 

Qlnor = H2(Qn) • ' . (3-21) 
Qz-nor = H3(Qn) 

Another method is to simply treat the active joint actuators as a coordinate space, and 

to find the representation of the normal force vector with respect to this joint space. 

3.8 Superposition 

With the position and normal components completely isolated, the final step for imple

mentation consists of the linear superposition of terms. 

Qlact = Qlkin + Q lnor 

Qlact = . <?2fcm + <?2nor (3.22) 

Qzact — Qzkin 4" Qznor 

'Note that this development has not considered the effects of end-effector orientation. 

With various applications, the angle of approach is very important, and to address this 

concern, it is sufficient to say that angle of approach will only introduce additional kine

matic constraints. Otherwise, the method of hybrid constraint space control is universally 

, applicable. 



Chapter 4 

Derivation of an HCS Controller for a 2DOF Prismatic Robot 

In order to illustrate the conceptual discussion from the previous chapter, consider the 

planar robot shown within Figure 4.9. This planar robot is shown with an arbitrary 

constraint surface, as the purpose of this section is the development of a hybrid constraint 

space controller for a general constraint. 

4.1 Definition of a Constraint Space Coordinate System 

The definition of a constraint space coordinate system for the arbitrary constraint shown 

within Figure 4.9 is very simple. The coordinate s is essentially the line integral along the 

constraint curve. The normal force coordinate n is essentially the local normal direction 

to s for any given value of the position coordinate. It is interesting to note that this 

definition differs from hybrid position/force control in that the the decoupling coordinate 

system is a moving coordinate system. The position coordinate s is a displacement along 

the constraint surface, not a displacement in some prespecified, fixed axis direction. In 

the same vein, the force coordinate n is the local normal to s, and as such, is also not in 

a prespecified, fixed axis direction. Furthermore, the method is different from reduced 

state position/force control in that an explicit and unique formulation for selecting the 

optimal system coordinates has been employed. 

31 
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Figure 4.9: 2DOF Planar Robot with Arbitrary Constraint 

4.2 Derivation of the Conventional Joint Space Dynamics 

Having identified the constraint space coordinates s and n, it is now necessary to formu

late the constraint space dynamics in terms of these two variables. The first step however, 

is the derivation of the joint space dynamics. With respect to the planar manipulator 

in question, the Lagrangian potential function may be written in terms of the kinetic 

energies of the two linkages. 

L = KEi + KE2 (4.1) 

KE2 = -m2(il + i2

2) 

L = - ( m i + m 2 ) / i + -m2i\ 

(4.2) 

(4.3) 

In addition, the joint space equations of motion should also be derived at this point, as 

they are required for the kinematic constraints. 

i_ (8L\ S ± _ Q 

dt \8q J 8q — 

1 = 
' h Fx ' 

Q = 

(4.4) 

(4.5) 
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Fx = (mi + m2)h 

F2 = m2i2 (4.6) 

Note that these results have been derived ignoring the effects of gravity. Furthermore, 

Equation 4.3 and Equation 4.6 correspond to respectively Equation 3.1 and Equation 3.2 

from the previous chapter. 

4 . 3 D e r i v a t i o n o f M a p p i n g F u n c t i o n s 

Having derived the joint space dynamics formulation, it is necessary to find mapping 

functions from joint space to constraint space. Differential kinematics may be employed 

to derive these relations. Consider the general differential displacements shown within 

Figure 4.9. With respect to this illustration, several expressions may be found. 

9 = tan'1™ (4.7) 

Note that the term m represents the local slope of the constraint surface. With respect to 

a planar trajectory, a single value of slope is all that is required to define the orientation 

of the constraint. Using this slope, differential relations between s and the joint vector 

may be found. 

^ = sin(tan~lrm) ^ = cos^tan^m) (4-8) 
as as 

Before the actual computation of the first time derivatives, recall the definition of the 

time derivative, being the sum of all partials, the partials consisting of derivatives taken 

with respect to all parameters which the function consists. 

/ = / (*! , x 2 - - - x n ) (4.9) 

df _ df^dx^ ^ df^dx^ ^ ^ df dxn (4 10) 
dt dx\ dt dx2 dt dxn dt 
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Because the constraint space coordinate system uniquely defines the constrained system 

in an optimal fashion, for constrained motion, the joint vector must be a function of the 

constraint space coordinates. Note that there has been a state reduction as a consequence 

of constraining the end-effector to the constraint surface. 

h=h(s) l2 = k(s) (4.11) 

As a result, it may be said that joint space representation for a constrained system is 

redundant. 

Using these results, the differential kinematic relations may be defined as follows, 

' i = £ ' = £8 = s i n t t a n - 1 ™ ^ 

k = t = = cos(tan- 1 m)i 
(4.12) 

— p n c ( f o n ^ m \ f l 

dt ds dt 

The mapping functions for this manipulator and constraint system are then easily sum

marized. 
U = sinftan - 1 m)s 

(4-13) 
l2 = cos(tan _ 1 m)s 

Note that Equation 4.13 corresponds to Equation 3.3. Furthermore, there is no equivalent 

to Equation 3.4 because this prismatic robot is linear. 

4.4 Formulation of the Constraint Space Dynamics 

Having derived the mapping functions, it is now possible to construct the constraint space 

dynamics through substitution. Recall the joint space Lagrangian potential function. 

= -(wii + m2) s in 2 ( tan _ 1 m ) i 2 H—m 2 cos 2 ( tan - 1 m ) i 2 (4-14) 
2 2 

L = -(mi s in 2 ( tan - 1 m) + m 2 ) i 2 (4-15) 
2 
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The constraint space Lagrangian has now been formed, and the constraint space equation 

of motion may be found by applying Lagrange's equation with respect to the constraint 

degree of freedom s. 
d (8L\ 8L 

= " 7 7 <4-16> 
For clarity, some intermediate computations are now shown. 

SL 
— = (mi s in 2 ( tan _ 1 TO) + m2)s (4-17) 
5s 

— ( — ] = (mi s in 2 ( tan _ 1 TO) -\-m2)s + 2mi sin(tan _ 1 m) cos(tan _ 1 TO) - m i (4.18) 
dt yds J 1 + m2 

dm . ,. 
m = —s (4.19) 

ds 

— = mi sin(tan _ 1 m) cos(tan _ 1 m) - m i (4.20) 
os 1 + m z 

Summarizing these results produces the constraint space equation of motion. 

Qs = (mi s in 2 ( tan _ 1 m) + m 2 ) i + mi sin(tan _ 1 m) cos(tan - 1 m) - m i (4.21) 
1 + TO 

Note that Equation 4.21 corresponds to Equation 3.7. This constraint space equation of 

motion may now be used as the basis for a control algorithm governing the kinematic 

behaviour of the manipulator end-effector as it traverses the constraint surface. 

However, it must be possible to define Qs as a function of the joint actuator forces, 

or in other words, a relation must be found between F\ and F2 which ensures that a 

generalized force of Qs is present in the direction of s. This relation may be derived 

through the principles of virtual work. 

SW . 

_ FxSh + F 2 £l 2 

^ s ~ Ss 
Fi s in(tan - 1 m)Ss + F2 cos(tan _ 1 m)Ss 

Is 

Qs = F i sin(tan _ 1 TO) + F2 cos(tan _ 1 TO) (4.23) 
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Equation 4.23 is the analog to Equation 3.11 from the previous chapter. Note that this 

relationship does not uniquely define Fi and F2, since the relation only specifies what Fi 

and F2 must be as a pair to ensure an end-effector equivalent force of Qs in the direction 

of s. 

4.5 Actuator Constraints Required for Maintaining End-EfFector Trajectory 

Since the relationship derived from virtual work for the constraint force Qs does not 

uniquely define i* \ and F2, it becomes necessary to provide another relationship. Recall 

the previous unconstrained joint space dynamics. 

Fi — (roi + m2)li 

F2 = m 2 l 2 (4.24) 

If the second time derivatives were computed with respect to the constraint space coordi

nate time derivatives, and substituted into the equations of motion, a second kinematic 

constraining equation may be formed. 

Zi = h(s, s) = cos(tan - 1 m)~rj—j^ni + sin(tan _ 1 m)5 (4-25) 

l2 = Z 2(i, s) = — sin(tan _ 1 m) ~ms + cos(tan - 1 m)s (4.26) 
1 + m 

Note that Equation 4.25 and Equation 4.26 are equivalent to Equation 3.12. Using 

knowledge from particle differential kinematics, it is known that the first terms are nor

mal accelerations while the latter are tangential accelerations. Considering solely the 

tangential accelerations the second time derivative relations are as follows. 

Zi = s in( tan _ 1 m)5 (4-27) 

Z2 = cos(tan _ 1 m)s (4.28) 
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These equations may then be substituted into the joint space dynamics, and divided to 

form a new relation. 

Fi (mi + m 2 ) sin(tan _ 1 m)s (mi + m 2 )m ^ ^ 
F2 m 2 cos(tan _ 1 m)s m 2 

Now, assuming the presence of some form of controller providing values for Qs, the 

following system of equations may be solved for Fi and F2, the required joint actuator 

forces for desired motion along the constraint surface. 

Q3 = Fi sin(tan _ 1 m) + F2 cos(tan - 1 m) (4.30) 

= (mi + m 2 )m 
F2 m 2 

Note that the system of equations in the variables Fi and F2 shown by Equation 4.30 

and Equation 4.31 are equivalent to the general expression from Equation 3.15. 

Although a pair of equations have been derived for the solution of F\ and F2, these 

equations do not take into account the need for momentum compensation if the end-

effector is swinging around a curved surface. Consider this description of the mechanics 

involved. The constraint space relationship derived from virtual work will ensure a certain 

tangential force Q3 in the direction of s. If the end-effector is lagging behind, Qs may be 

increased, if is leading ahead, Qs may be reduced. But, with the two actuators F\ and 

F2, there exist any infinite pair of compensation which can produce Qs. Hence, a second 

constraint is required, that is the acceleration of the joints l\ and l2 must be such that the 

acceleration of the end-effector is in the direction of s. However, when the end-effector 

is tracing a curved surface, normal acceleration is also required. 

In attempting to decouple the position and force problems completely, it is desirable 

to compute the required normal acceleration to maintain end-effector tracking, and com

pensate, so that the end-effector will follow the constraint surface exactly, without the 
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need for contact force to maintain tracking. The normal acceleration has already been 

computed previously when considering the kinematic constraints. 

11 = cos(tan _ 1 m) -ms (4-32) 
1 + m 

12 = — sin(tan _ 1 m) -ms (4.33) 
1 + m? 

Substituting these acceleration components into the joint space equations of motion will 

yield the following. 

Fimc = {mi + m2) cos(tan _ 1 rn)—-—-ms (4-34) 

F2mc = — m 2 sin(tan _ 1 m) -ms (4.35) 
1 + m2 

Note that Equation 4.34 and Equation 4.35 are equivalent to Equation 3.16. Likewise, 

Equation 4.36 and Equation 4.37 are equivalent to Equation 3.17. These compensating 

forces may be added to the results of the systems solution to generate the required 

actuator forces for position control. 

Flkin = Fx + Flmc (4.36) 

F2kin = F2 + F2mc (4.37) 

Note that for non-curved surfaces, m = 0 and no compensation is required. 

4.6 Derivation of a Position Control Law 

The previous discussion has shown how the actuator forces may be computed, given the 

factors Qs, s, s, m and m. The slope and slope time derivatives depend on the constraint 

geometry and are simple to compute as a function of end-effector location. The position 

and velocity along the constraint surface, may be measured. However, a control law is 
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required to compute the desired values of Qs. For this task, it is necessary to return to 

the constraint space dynamics formulation derived earlier. 

Qs = (mi sin 2(tan _ 1 m) + ra2).s + mi sin(tan _ 1 m) cos(tan _ 1 m)- -ms (4.38) 

The computed torque controller can then be applied to this expression. 

Qs = (misir^^an^m) + m2)(sd +^(sd — s) + kpp(sd — s)) + 

vn 
(misin(tan~1m)cos(tan~lm) - ) i (4.39) 

1 + m 
Qs = Qs(s,s,m,rh) (4.40) 

Note that Equation 4.39 is equivalent to Equation 3.18. Furthermore, the required system 

data shown in summary form by Equation 4.40 are easily attainable through sensors at the 

end-effector and an a priori knowledge of the constraint surface. Hence, this controller, 

which uses PD control on the linear dynamics and feed-forward control on the non-linear 

dynamics, is readily transferable to most practical, constrained environments. 

4.7 Derivation of a Force Control Law 

As mentioned previously, the position control law in conjunction with the kinematic con

straints and momentum compensation, has been formulated such that the end-effector 

exactly traces the constraint surface. The end-effector may not initially be at the correct 

point on the surface, but it will always remain on the constraint surface while it attempts 

to track the desired trajectory. Furthermore, this tracking has been achieved with kine

matic constraints and momentum compensation, such that the end-effector contacts the 

constraint surface without any actual interaction force. Therefore, for force control, the 

desired force may simply be treated as a linear superposition to the position controlling 
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actuator forces. In the case of an ideal, rigid environment, no force control law is re

quired. The joints may simply apply a desired contact force, which when superimposed 

with the position control components of the joint torques, produce an equal and opposite 

reaction from the environment, hence, the static force balance shown in Equation 3.19. 

However, when a non-rigid environment is encountered, a force control law is required, 

and will take exactly the form of Equation 3.20. 

Qn = fd- kfvKS + kfp(fd - fm) (4.41) 

Equation 4.41 does not differ from Equation 3.20 because these equations do not contain 

dynamic terms which are manipulator dependent, such as Equation 4.21. 

The relationship between the actuator forces Fx and F2, and the desired contact force 

may be derived through virtual work. 

(4.42) 

Q„ = (4.43, 

Sli = — <£racos(tan - 1 m) 5l2 = ^rasin(tan _ 1 m) (4.44) 

Qn = —Fi cos(tan _ 1 TO) + F2 sin(tan _ 1 m) (4.45) 

Combining this result with the virtual work expression for Qs will yield the following 

system of equations. 

Qs — Fx sin(tan _ 1 m) + F2 cos(tan _ 1 TO) (4.46) 

Qn = -Fx cos(tan _ 1 m) + F2 sin(tan _ 1 TO) (4.47) 

This system may be rewritten with the constraint space forces as the independent quan

tities. 

Fx — Qs sin(tan _ 1 TO) — <5ncos(tan_ 1 TO) (4.48) 

F2 — Qs cos(tan _ 1 TO) + Qn sin(tan _ 1 TO) (4.49) 
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The components of Fx and F2 responsible for the normal force of interaction may then 

be simply found. 

Fxnor = - Q „ c o s ( t a n _ 1 m) (4.50) 

F2nor = Qnsin(tan _ 1 m) (4-51) 

Note that Equation 4.50 and Equation 4.51 are equivalent to the general expression of 

Equation 3.21. 

4.8 Superposition 

Having computed both the kinematic and normal force controlling components of the 

actuator forces Fx and F2, these components may be linearly superposed, since the hybrid 

constraint space controller is a linearly decoupling mechanism. 

Flsup = F\kin + Fxnor (4-52) 

F2sup = F2kin + F2nor (4.53) 

Finally, note that Equation 4.52 and Equation 4.53 are equivalent to Equation 3.22. 



Chapter 5 

Simulation Results for a 2 D O F Prismatic Robot with HCS Control 

In the previous chapter, a hybrid constraint space controller was developed for a two 

degree of freedom prismatic robot. This controller will now be used to govern the same 

robot as it is constrained to three different environmental surfaces: a planar surface, a 

concave circular surface and a convex circular surface. The computer simulations used to 

generate results for this section are written with respect to Matlab m-file and s-function 

format. 

5.1 Planar Constraint Surface 

The first simulation environment to be considered is the simple planar constraint surface, 

where the constraint trajectory is a straight line, as shown within Figure 5.10. The 

physical parameters used for this simulation are summarized within Table 5.1. The term 

ke represents the environmental stiffness, and is required since the manipulator end-

effector is assumed to be making contact with the constraint surface. Furthermore, these 

simulations assume zero vector initial conditions. 

The first simulation with respect to the planar constraint, is the case of pure posi

tion control. The results for this simulation are shown in Figure 5.11, Figure 5.12 and 

Figure 5.13. Figure 5.11 shows a superposition of the constraint surface in task space 

42 
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Task Space x-axis (m) 

Figure 5.10: Planar Constraint Surface 

rrti m 2 
k 
"'pv 

kpp kfp /(*) 
2 kg 1 kg 1000 N / m 5 10 0.075 0.001 y = x 

Table 5.1: Simulation Parameters for the 2DOF Prismatic Robot with HCS Control 
Constrained to a Planar Surface 
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Figure 5.11: Task Space Simulation Results for the 2DOF Prismatic Robot Constrained 
to a Planar Constraint Surface with Position Control 

with the controlled end-effector position trajectory in task space. Clearly, the hybrid 

constraint space controller is capable of enforcing a trajectory that is consistent with the 

environmental constraint surface in question. However, maintaining a trajectory on the 

constraint surface alone is insufficient. The end-effector must also maintain the desired 

kinematic response on the constraint surface. The constraint space simulation results are 

shown within Figure 5.12 and demonstrate convergence between desired and actual con

straint space position within two seconds. Finally, the hybrid constraint space controller 

must be capable of enforcing this position control without violating the boundaries of the 

environmental constraint surface. This condition is necessary because hybrid constraint 

space control is a position/force decoupling controller, such that the end-effector trajec

tory is maintained without the need for contact forces from the environment. Figure 5.13 

confirms this condition by demonstrating that the contact force is zero for the duration 

of this first simulation. 

—*— Constraint 
— End-Effector 
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Figure 5.12: Constraint Space Simulation Results for the 2D0F Prismatic Robot Con
strained to a Planar Constraint Surface with Position Control 
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Figure 5.13: Contact Force Simulation Results for the 2DOF Prismatic Robot Con
strained to a Planar Constraint Surface with Position Control 
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Having confirmed the effectiveness of the hybrid constraint space controller for the 

case of pure position control, consider now the case of position/force control for the planar 

constraint surface. The results for this simulation are shown in Figure 5.14, Figure 5.15 

and Figure 5.16. Figure 5.14 shows a superposition of the constraint surface with the 

controlled end-effector trajectory in task space, and again, the two are consistent. The 

environment has been modelled as a hard surface with high stiffness, so that no significant 

deformation occurs as the result of commanding a contact force between the end-effector 

and the constraint surface. Figure 5.15 confirms the decoupling nature of the hybrid 

constraint space controller as the constraint space kinematic response is unchanged from 

the case of pure position control. Finally, the contact force is shown within Figure 5.16, 

illustrating convergent behaviour towards the desired value, well within the simulation 

time of two seconds. 

The simulation results for the planar constraint show that the hybrid constraint space 

controller performs very well, providing decoupled and convergent control for both posi

tion and force trajectories on the constraint surface. However, the flexibility and useful

ness of the hybrid constraint space controller are much more evident when the technique 

is applied to curved constraint surfaces. 

5.2 Concave Circular Constraint Surface 

The second simulation environment to be considered in this chapter is the concave circular 

constraint surface. Again, the constraint trajectory is a fine, but a circular one, as shown 

within Figure 5.17. The physical parameters used for this simulation are summarized 

within Table 5.2. Once more, zero initial conditions are assumed. In addition, the hybrid 

constraint space controller for the simulations in this and the following section have made 
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Figure 5.14: Task Space Simulation Results for the 2DOF Prismatic Robot Constrained 
to a Planar Constraint Surface with Position/Force Control 

Figure 5.15: Constraint Space Simulation Results for the 2DOF Prismatic Robot Con
strained to a Planar Constraint Surface with Position/Force Control 
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Figure 5.16: Contact Force Simulation Results for the 2DOF Prismatic Robot Con
strained to a Planar Constraint Surface with Position/Force Control 

use of momentum compensation, since the constraint surfaces exhibit curvature. 

The case of pure position control for the circular concave constraint is considered 

first, with the simulation results shown within Figure 5.18, Figure 5.19 and Figure 5.20. 

Figure 5.18 shows the superposition of the constraint surface with the task space end-

effector trajectory. Similar to the previous planar constraint case, the hybrid constraint 

space controller is capable of maintaining the end-effector on the constraint surface. 

Note though, that this simulation is conducted away from the singular region of infinite 

slope where the task space x-axis goes to one. In practice, a hybrid constraint space 

controller may be used to trace an entire circle, but the controlling equations must be 

restructured to avoid singularities associated with infinite slope. In the case of this two 

degree of freedom prismatic robot, the restructuring may be performed by switching the 

joint degrees of freedom with one another, such that a near infinite slope becomes a near 

zero slope. Figure 5.19 shows the kinematic response in constraint space coordinates, 
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Task Space x-axis (m) 
Figure 5.17: Concave Circular Constraint Surface 

and again, the hybrid constraint space controller enforces convergence with the desired 

trajectory. With respect to the decoupling issue, Figure 5.20 shows a zero contact force 

for the duration of this pure position control simulation. 

Consider now a second simulation with the concave circular constraint surface, where 

position/force control is required. The results for this trial are shown within Figure 5.21, 

Figure 5.22 and Figure 5.23. Figure 5.21 is a superposition of the constraint and the 

controlled end-effector trajectory, and shows a complete correlation between the two. Any 

deformation into the environment surface due to an applied normal force is once more 

negligible, as the constraint surface is modelled with a high stiffness. Figure 5.22 shows a 

constraint space coordinate kinematic response which is convergent, and identical to the 

corresponding pure position control plot, demonstrating again, the decoupling nature of 

the hybrid constraint space controller. Finally, Figure 5.23 illustrates the contact force 

history for this simulation, which is very similar to the one for the planar constraint dealt 
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mi ra2 
le kpp kfP m 

2 kg 1 kg 1000 N / m 5 10 0.1 0.001 y = 1 — y/l — x2 

Table 5.2: Simulation Parameters for the 2DOF Prismatic Robot with HCS Control 
Constrained to a Concave Circular Surface 
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Figure 5.18: Task Space Simulation Results for the 2DOF Prismatic Robot Constrained 
to a Concave Circular Constraint Surface with Position Control 
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Figure 5.19: Constraint Space Simulation Results for the 2DOF Prismatic Robot Con
strained to a Concave Circular Constraint Surface with Position Control 
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Figure 5.20: Contact Force Simulation Results for the 2DOF Prismatic Robot Con
strained to a Concave Circular Constraint Surface with Position Control 
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Figure 5.21: Task Space Simulation Results for the 2DOF Prismatic Robot Constrained 
to a Concave Circular Constraint Surface with Position/Force Control 

with previously. Therefore, for linear and curved surfaces, the hybrid constraint space 

controller is capable of decoupling the position and force problems, as well as providing 

convergent control for both. 

5.3 Convex Circular Constraint Surface 

The final simulation environment to be considered is the convex circular constraint sur

face. Like the previous two constraint trajectories already considered, this trajectory 

is also a planar Une, as shown within Figure 5.24. The physical parameters used for 

this simulation are summarized within Table 5.3. As before, zero initial conditions are 

assumed. 

The case of pure position control for the convex circular constraint is treated first, 

the simulation results being shown within Figure 5.25, Figure 5.26 and Figure 5.27. The 
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Figure 5.22: Constraint Space Simulation Results for the 2DOF Prismatic Robot Con
strained to a Concave Circular Constraint Surface with Position/Force Control 

Figure 5.23: Contact Force Simulation Results for the 2DOF Prismatic Robot Con
strained to a Concave Circular Constraint Surface with Position/Force Control 
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Task Space x-axis (m) 
Figure 5.24: Convex Circular Constraint Surface 

mi m 2 
k kpp kfv kfP m 

2 kg 1 kg 1000 N / m 5 10 0.075 0.001 y = y/l-(x- l ) 2 

Table 5.3: Simulation Parameters for the 2DOF Prismatic Robot with HCS Control 
Constrained to a Convex Circular Constraint Surface 
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Figure 5.25: Task Space Simulation Results for the 2DOF Prismatic Robot Constrained 
to a Convex Circular Constraint Surface with Position Control 

superposition of the constraint surface with the end-effector path is shown by Figure 5.25, 

which demonstrates an almost exact correlation between the two. Similar to the previous 

case, the region of singular slope near the origin is avoided within this simulation. If the 

entire circular path is required, the singular regions may be dealt with as mentioned 

previously for the case of the concave circular constraint. Figure 5.26 shows the kine

matic response in constraint space coordinates, and again, there is convergence between 

the desired history and the actual history. Figure 5.27 demonstrates once more, that 

the hybrid constraint space controller is decoupling, since for this pure position control 

problem, the contact force history is again zero. 

Consider now the final simulation in this chapter, where the prismatic robot is simu

lated for position/force control while restricted to the convex circular constraint surface. 

The results of this run are shown within Figure 5.28, Figure 5.29 and Figure 5.30, and 

like the previous, demonstrate the effectiveness of the hybrid constraint space controller. 
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Figure 5.26: Constraint Space Simulation Results for the 2 D O F Prismatic Robot Con
strained to a Convex Circular Constraint Surface with Position Control 
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Figure 5.27: Contact Force Simulation Results for the 2 D O F Prismatic Robot Con
strained to a Convex Circular Constraint Surface with Position Control 
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Figure 5.28: Task Space Simulation Results for the 2DOF Prismatic Robot Constrained 
to a Convex Circular Constraint Surface with Position/Force Control 

Figure 5.28 shows that the controlled end-effector perfectly traces the outline of the 

convex circular constraint surface. Furthermore, Figure 5.29 shows that the end-effector 

maintains a convergent kinematic response while tracing the surface. Finally, Figure 5.30 

shows that the contact force is also convergent to the desired level. 

Hence, for the planar, concave circular and convex circular constraint surfaces, the 

prismatic robot under hybrid constraint space control is completely decoupling with re

spect to the position and force control problems, as well as capable of providing convergent 

control to the desired position and force trajectories. 
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Figure 5.29: Constraint Space Simulation Results for the 2DOF Prismatic Robot Con
strained to a Convex Circular Constraint Surface with Position/Force Control 
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Figure 5.30: Contact Force Simulation Results for the 2DOF Prismatic Robot Con
strained to a Convex Circular Constraint Surface with Position/Force Control 
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:5.4 Comparative Discussion 

Having performed various simulations for a two degree of freedom prismatic robot under 

hybrid constraint space control, it is evident that the method provides very good simul

taneous position and force regulation in a constrained environment. Now, how does this 

performance compare to previous methods, for example, the earlier work discussed in 

Chapter 2? A qualitative assessment may be made as follows. 

First, with respect to the stiffness controller, the hybrid constraint space controller 

is clearly better. The constraint space method gives simultaneous position and force 

control for arbitrary trajectories, while the stiffness controller is only useful for setpoint 

force control. On the other hand, the stiffness controller was included in the literature 

review more as a historical benchmark, than a performance benchmark. 

A more fair comparison, would be the relative performance of a hybrid position/force 

controller to that of the constraint space controller. Like the constraint space method, 

hybrid position/force control is also capable of enforcing simultaneous position and force 

trajectories. However, the hybrid position/force controller was developed with respect to 

stationary task space coordinates. In other words, for a hybrid position/force controller 
i 

to operate with a curved constraint surface, a time-varying Jacobian function relating 

the changing task space coordinates with the curvature of the environment would be 

required. Hybrid constraint space control avoids this problem by employing a constraint 

space dynamic model. By using differential kinematics, the constraint space dynamic 

model is capable of tracking along curving constraint trajectories without the need for 

establishing time-varying Jacobian transformations from task to joint space. 

A comparison with hybrid impedance control yields similar results, as the impedance 
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controller is basically a more realistic version of the hybrid position/force controller which 

recognizes that position and force are not independent quantities for any specific direction 

i n task space given the compliance of practical constraint environments. Nevertheless, 

position and force relations in the same task space degree of freedom is not the issue 

here. Like hybrid position/force control, the impedance controller employs stationary 

task space coordinates when transforming from task to joint space. As a result, it too 

requires time-varying Jacobian transformations. 

Finally, it is noteworthy to compare the operating principles of the reduced state 

position/force controller with that of the hybrid constraint space controller. In princi

ple, both methods are very similar, with the intent of formulating constrained system 

dynamics with respect to a set of optimal coordinates. However, the reduced state posi

tion/force controller does not actually detail a specific method for deriving these optimal 

coordinates. Hybrid constraint space control though, has an established method for de

riving an optimal dynamics formulation, which may be used to successfully implement 

simultaneous position and force control, as shown by the simulation results from this 

chapter. Consequently, the author feels that hybrid constraint space control may offer 

a viable alternative to conventional means of position and force control for constrained 

environment control problems. 



Chapter 6 

Conclusions & Summary 

6.1 Conclusions 

The hybrid constraint space controller, as simulated for the two degree of freedom pris

matic robot, performed very well. In every instance, the controller was capable of provid

ing decoupled control of both position and force. Furthermore, the actual position and 

force trajectories consistently converged to the desired position and force trajectories. 

6.2 Summary 

This thesis has considered in full, the origins, conceptual detail and initial simulation of 

the hybrid constraint space control technique developed by the author. The literature 

review has charted the development of the method with respect to previously published 

work, citing strong conceptual ties with the task space decoupling approach of hybrid 

constraint space position/force control and the optimal state representation approach of 

reduced state position/force control. The method for constructing a hybrid constraint 

space controller with respect to a general manipulator and constraint pair were then 

discussed, with the emphasis placed on the physical concepts justifying each step in 

the technique. Subsequently, a two degree of freedom prismatic robot was used as an 

illustrative example for the construction of a hybrid constraint space controller. Finally, 

61 
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simulation trials were performed for this specific hybrid constraint space controller under 

the restriction of three constraint surfaces, a planar, a concave circular and a convex 

circular environment. The simulation results for these trials were very promising. 

6.3 Future Work 

It is the author's intent to extend these results for nonlinear manipulator configurations 

in a future publication. Specific attention will be given to the case of the two degree 

of freedom rotary manipulator. Furthermore, the prismatic case will be completely gen

eralized to include a three degree of freedom prismatic manipulator constrained to a 

constraint surface in 3-space. 



Bibliography 

[1] Arnold, V . I., (1978) Mathematical Methods of Classical Mechanics. New York: 
Springer-Verlag. 

[2] Astrom, Kar l Johan, and Bjorn Wittenmark, (1989) Adaptive Control. Reading, 
Massachusetts: Addison-Wesley Publishing Company. 

[3] Chiaverini, Stefano, and Lorenzo Sciavicco, (1993) "The Parallel Approach 
to Force/Position Control of Robotic Manipulators." IEEE Transactions on 
Robotics and Automation, Vol.9, No.4. 

[4] Fu, Gonzalez, and Lee, (1987) Robotics: Control, Sensing, Vision, and Intelli
gence. New York: McGraw-Hill Book Company. 

[5] Goldstein, Herbert, (1980) Classical Mechanics: 2nd Edition. Reading, Mas
sachusetts: Addison-Wesley Publishing Company. 

[6] Grabbe, Carroll, Dawson, and Qu, (1992) "Robust Control of Robot Manipu
lators During Constrained and Unconstrained Motion." Proceedings of the 1992 
IEEE International Conference on Robotics and Automation. 

[7] Greenwood, Donald T., (1965) Principles of Dynamics. Englewood Cliffs, New 
Jersey: Prentice-Hall, Inc. 

[8] Hogan, N . , (1987) "Stable Execution of Contact Tasks using Impedance Con
trol." Proceedings of the 1987 IEEE International Conference on Robotics and 
Automation. 

[9] Houshangi, N . , (1992) "Position/Force Control of a Robot Manipulator Over an 
Unknown Surface." Proceedings of the 1992 IEEE International Conference on 
Systems, Man and Cybernetics. 

[10] Kankaanranta, R., and H . N . Koivo, (1986) "A Model for Constrained Motion 
of a Serial Link Manipulator." Proceedings of the 1986 IEEE International Con
ference on Robotics and Automation. 

[11] Lewis, Abdallah, and Dawson, (1993) Control of Robot Manipulators. New York: 
Macmillan Publishing Company. 

63 



Bibliography 64 

[12] Lipschutz, Seymour, (1964) Theory & Problems of Set Theory & Related Topics. 
New York: McGraw-Hill Book Company. 

[13] Liu, Jing-Sin, (1991) "Hybrid Control for a Class of Constrained Mechanical 
Systems." Proceedings of the 30th Conference on Decision and Control. 

[14] McClamroch, N . Harris, and Danwei Wang, (1988) "Feedback Stabilization and 
Tracking of Constrained Robots." IEEE Transactions on Automatic Control, 
Vol.33, No.5. 

[15] Raibert, M . , and J . Craig, (1981) "Hybrid Position/Force Control of Manipula
tors." Journal of Dynamic Systems, Measurement, and Control, Vol.102. 

[16] Salisbury, J . , and J . Craig, (1980) "Active Stiffness Control of Manipulator in 
Cartesian Coordinates." Proceedings of the 19th IEEE Conference on Decision 
and Control. 

[17] Su, Chun-Yi, and Yury Stepanenko, (1994) "Robust Motion/Force Control of 
Mechanical Systems with Classical Nonholonomic Constraints." IEEE Transac
tions on Automatic Control, Vol.39, No.3. 

[18] Takahashi, Rabins, and Auslander, (1970) Control and Dynamic Systems. Read
ing, Massachusetts: Addison-Wesley Publishing Company. 

[19] Van de Vegte, John, (1990) Feedback Control Systems: 2nd Edition. Englewood 
Cliffs, New Jersey: Prentice Hall. 

[20] Wang, Danwei, and N . Harris McClamroch, (1993) "Position and Force Con
trol for Constrained Manipulator Motion: Lyapunov's Direct Method." IEEE 
Transactions on Robotics and Automation, Vol.9, No.3. 

[21] Yun, Xiaoping, (1988) "Dynamic State Feedback Control of Constrained Robot 
Manipulators." Proceedings of the 27th IEEE Conference on Decision and Con
trol. 



Appendix A 

Software Coding for Simulations Performed in Matlab 

65 



C O N S T R A I N T S U R F A C E #1 

function[sys,xO]=surfl (t,x,u,flag,l l_dot,l 1,12_dot,12) 

ifabs(flag)== 1 

ml=2; m2=l; kpv=5, kpp=10; kfv=0.075; kfp=0.001; 

sd_dd=u(l); sd_d=u(2); sd=u(3); Fd=u(4); 
% Assuming a slope of m=l; 
st=sin(atan( 1)), ct=cos(atan( 1)); 

% Determine equivalent point on surface. 
% x ( l ) = ll_dot = y_dot 
%x(2) = l l =y 
% x(3) = 12_dot = x_dot 
% x(4) = 12 = x 
xs=(x(4)+x(2))/2, xs_d=(x(3)+x(l))/2; 
ys=xs; 

% Use equivalent surface point to determine constraint position. 
s=xs/ct; s_d=xs_d/ct; 

% Determine position controller. 
Qs=(m 1 * st A2+m2) * (sd_dd+kpv* (sd_d-s_d)+kpp * (sd-s)); 
F2=Qs/(((ml+m2)/m2)* 1 *st+ct), 
Fl=F2*((ml+m2)/m2)*l; 

% Determine force controller. 
ke=1000; 
delta=sqrt((xs-x(4))A2+(ys-x(2))A2); 
delta_d=-x(l)*ct+x(3)*st; 
if((x(4)>xs)&(x(2)<ys)) 

global Fm; 
Fm=ke* delta, 

else 
global Fm; 
Fm=0; 

end 
Qn=Fd+kfp*(Fd-Fm)-kfv*ke*delta_d; 

% Superpose the position and force controllers. 
F1=F1-Qn*ct; 
F2=F2+Qn*st; 



% Compute the manipulator dynamics. 
A=[ 0 0 0 0 

1000 
0 0 0 0 
00 10]; 

B=[ (Fl+Fm*ct)/(ml+m2) 
0 
(F2-Fm*st)/m2 
0]; 

sys=A*x+B; 

elseif abs(flag) == 3 

global Fm; 
if t=0 

Fm=0; 

end 

sys=[x(l) x(2) x(3) x(4) Fm]; 

elseif abs(flag) = 0 

sys=[4 0 5 4 0 1]; 
x0=zeros(4,l), 
x0(l)=ll_dot; 
x0(2)=ll; 
x0(3)=12_dot; 
x0(4)=12; 
else 

sys=[]; 

end 
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S I M U L A T I O N #1 

function [ret,xO,str,ts,xts]=finalsiml(t,x,u,flag); 
%FINALSIM1 is the M-file description of the SIMULINK system named 
FINALS IM1. 
% The block-diagram can be displayed by typing: FINALSIM1. 
% 
% SYS=FINALSIM1(T,X,U,FLAG) returns depending on F L A G certain 
% system values given time point, T, current state vector, X, 
% and input vector, U. 
% F L A G is used to indicate the type of output to be returned in SYS. 
% 
% Setting FLAG=1 causes FINALSIM1 to return state derivatives, FLAG=2 
% discrete states, FLAG=3 system outputs and FLAG=4 next sample 
% time. For more information and other options see SFUNC. 
% 
% Calling FINALSHvIl with a F L A G of zero: 
% [SIZES]=FINALSIM1([],[],[],0), returns a vector, SIZES, which 
% contains the sizes of the state vector and other parameters. 
% SIZES( 1) number of states 
% SIZES(2) number of discrete states 
% SIZES(3) number of outputs 
% SLZES(4) number of inputs 
% SIZES(5) number of roots (currently unsupported) 
% SIZES(6) direct feedthrough flag 
% SIZES(7) number of sample times 
% 
% For the definition of other parameters in SIZES, see SFUNC. 
% See also, TRIM, LINMOD, LINSIM, EULER, RK23, RK45, ADAMS, GEAR. 

% Note: This M-file is only used for saving graphical information; 
% after the model is loaded into memory an internal model 
% representation is used. 

% the system will take on the name of this mfile: 
sys = mfilename; 
new_system(sys) 
simver(1.3) 
if (0 == (nargin + nargout)) 

set_param(sys,'Location',[217,259,1158,980]) 
open_system(sys) 

end, 
set_param(sys,'algorithm', 'RK-23') 
set_param(sys,'Start time', '0.0') 
set_param(sys,'Stop time', '2.5') 
set_param(sys,'Min step size', '0.01') 
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set_param(sys,'Max step size', '0.01') 
set_param(sys,'Relative error',' 1 e-3') 
set_param(sys,'Return vars', ") 

add_block('built-in/Mux',[sys,7,,'Mux2']) 
set_param([sys,'/VMux2'],... 

'position',[320,321,375,584]) 

add_block('built-iri/S-Function',[sys,'/VDynamics']) 
set jaram([sys,7','Dynamics'],... 

'function name Vsurfl',... 
'parameters','0,0,0,0',... 
'position',[535,267,695,373]) 

add_block('built-in/Demux',[sys,7','Demux']) 
set_param([sys,7VDemux'],... 

'outputs',^',... 
*position',[725,296,775,344]) 

% Subsystem 'XY Graph'. 

new_system([sys,'/','XY Graph']) 
set_param([sys,7VXYGraph'],'Location'>[8,52,282,245]) 

add_block('built-in/Inport',[sys,'/VXYGraph/y']) 
set_param([sys,'/','XY Graph/y'],... 

' 'PortV2',... 
'position',[10,100,30,120]) 

add_block('built-in/Inport',[sys,7,,,XY Graph/x']) 
set_param([sys,'/','XY Graph/x'],... 

'position*,[10,30,30,50]) 

add_block('built-in/Mux',[sys,'/','XY Graph/Mux*]) 
set_param([sys,7','XY Graph/Mux'],... 

'inputs','2',... 
'positional 00,61,130,94]) 

add_block('built-in/S-Function',[sys,7*,['XY Graph/S-function', 13,'M-file which 
plots',13,'lines',13,"]]) 
set_param([sys,7',['XY Graph/S-function', 13,'M-file which plots', 13,'lines', 13,"]],... 

'function name','sfunxy',... 
'parameters','ax, st',... 
'position',[185,70,235,90]) 
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add_line([sys,7VXY Graph'],[35,110,70,110;70,85,95,85]) 
add_line([sys,7','XY Graph'],[35,40;70,40;70,70,95,70]) 
add_line([sys,7VXY Graph'],[135,80;180,80]) 
set_param([sys,7','XY Graph'],... 

'Mask 
Display','plot(0,0,100,100,[ 12,91,91,12,12],[90,90,45,45,90],[51,57,65,75,80,79,75,67,60 
,54,51,48,42,34,28,27,31,42,51],[71,68,66,66,72,79,83,84,81,77,71,60,54,54,58,65,71,74 
,71])*) 
set_param([sys,7','XY Graph'],... 

'Mask Type','XY scope.',... 
'Mask Dialogue','XY scope using M A T L A B graph window.\nFirst input is 

used as time baseAnEnter plotting ranges. |x-min:|x-max:|y-min:|y-max:') 
set_param([sys,7','XY Graph'],... 

'Mask Translate'/ax = [@1, @2, @3, @4];st=-l 
'Mask Help','This block can be used to explore limit cycles. Look at the m-

file sfunxy.m to see how it works.',... 
'Mask Entries','-1V3V-1V3V) 

% Finished composite block 'XY Graph'. 

set_param([sys,'/yXY Graph'],... 
'position',[660,69,755,156]) 

add_block('built-in/Derivative',[sys,7','Acceleration']) 
setjparam([sys,7','Acceleration'],... 

'position',[225,334,295,376]) 

add_block('built-in/Derivative',[sys,7VVelocity']) 
set_param([sys,7','Velocity'],... 

'position',[ 130,399,200,441 ]) 

add_block('built-in/Sine Wave',[sys,7','Position']) 
set_param([sys,7','Position'],... 

'amplitude',' 10',... 
'frequency','1/16',... 
'position',[20,452,105,518]) 

add_block('built-in/Constant',[sys,7','Fd']) 
set_param([sys,7','Fd'],... 

'position',[250,532,285,568]) 

add_block('built-in/Mux',[sys,7','Mux4']) 
set_param([sys,7','Mux4'],... 

'inputs','2',... 
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'position',[590,479,650,561]) 

addJ)lock('built-in/Mux',[sys,7','Mux5*]) 
set_param([sys,7','Mux5'],... 

'inputs','?,... 
'position',[855,289,895,356]) 

add_block('built-in/Fcn',[sys,'/','Fcn']) 
set_param([sys,7','Fcn'],... 

'orientation',2,... 
'ExprV(u[2]+1 *u[ 1 ])/((1+1 A2)*cos(atan( 1)))',... 
'position',[630,413,690,457]) 

add_block('built-in/To Workspace',[sys,7','To Workspace2']) 
set_param([sys,7','To Workspace2'],... 

'mat-name','hnkl',... 
*position',[850,142,900,158]) 

add_block('built-in/To Workspace',[sys,'/','To Workspacel']) 
set_param([sys,'/','To Workspacel'],... 

'mat-name','link2',... 
'position',[850,62,900,78]) 

% Subsystem 'Position_Compare'. 

new_system([sys,'/','Position_Compare']) 
set_param([sys,VVPosition_Compare'],'Location',[0,59,274,252]) 

add_block('built-in/Inport',[sys,'/','Position_Compare/x']) 
set_param([sys,'/','Position_Compare/x'],... 

'position',[65,55,85,75]) 

add_block('built-in/S-Function',[sys,'/',['Position_Compare/S-function',13,'M-file which 
plots',13,'lines',13,"]]) 
set_param([sys,'/',['Position_Compare/S-function', 13,'M-file which plots', 13,'lines', 13,"]],... 

'function name','sfunyst',... 
'parameters','ax, color, npts, dt',... 
•position',[130,55,180,75]) 

add_line([sys,'/','Position_Compare'],[90,65;125,65]) 
set_param([sys,'/','Position_Compare'],... 

'Mask 
Display7plot(0,0,100,100,[83,76^ 
4,72,80,84,74,65,65,65,90,40,40,90,90])',... 

'Mask Type','Storage scope.') 
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set _param([sys, 7','Position_Compare'],... 

'Mask Dialogue','Storage scope using M A T L A B graph windowAnEnter 
plotting ranges and line type.|Initial Time Range: |Initial y-min: |Initial y-max:|Storage 
pts.:|Line type (rgbw-.:xo):') 
set_param([sys,'/VPosition_Compare'],... 

'Mask Translate','npts = @4, color = @5; ax = [0, @1, @2, @3]; dt=-l,') 
set_param([sys,7','Position_Compare'],... 

'Mask Help','This block uses a M A T L A B figure window to plot the input 
signal. The graph limits are automatically scaled to the min and max values of the signal 
stored in the scope"s signal buffer. Line type must be in quotes. See the M-file 
sfunyst.m.') 
set_param([sys,7','Position_Compare'],... 

•Mask Entries','5 V-10V10V10000V"g-/r-/c- ./w: /m*/ro/b+'V) 

% Finished composite block 'PositionCompare'. 

set_param([sys,7','Position_Compare'],... 
'positiori,[720,489,765,551]) 

add_block('built-in/Mux',[sys,7',*Mux6']) 
set_param([sys,77Mux6'],... 

•inputs','2',... 
'position',[815,494,855,561]) 

% Subsystem 'Force'. 

new_system([sys,7','Force']) 
set_param([sys,7',"Force'],'Location',[0,59,274,252]) 

add^lockCbuilt-in/S-Function^sysZ/'^'Force/S-function',! 3,'M-file which 
plots', 13,'lines', 13,"]]) 
set_param([sys,7',['Force/S-function', 13,'M-file which plots', 13,'lines', 13,"]],... 

'function name','sfunyst',... 
'parameters','ax, color, npts, dt',... 
'position',[130,55,180,75]) 

add_block('built-in/Inport',[sys,7';Force/x']) 
set_param([sys>7','Force/x'],... 

'position',[65,55,85,75]) 
add_line([sys,7',Torce'],[90,65,125,65]) 
set_param([sys,7','Force'],... 
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'Mask 

Display','plot(0,0,100,100,[83,76,63,52,42,38,28,16,11,84,11,11,11,90,90,11 ],[75,58,47,5 
4,72,80,84,74,65,65,65,90,40,40,90,90])',... 

'Mask Type','Storage scope.') 
set_param([sys,V,'Force'],... 

'Mask Dialogue','Storage scope using M A T L A B graph window.\nEnter 
plotting ranges and line type. |Initial Time Range: |Initial y-min:|Initial y-max: |Storage 
pts.:|Line type (rgbw-.:xo):') 
set_param([sys,7','Force'],... 

'Mask Translate*,'npts = @4, color = @5; ax = [0, @1, @2, @3]; dt=-l;') 
set_param([sys,7','Force'],... 

'Mask HelpVThis block uses a M A T L A B figure window to plot the input 
signal. The graph limits are automatically scaled to the min and max values of the signal 
stored in the scope"s signal buffer. Line type must be in quotes. See the M-file 
sfunyst.m.') 
set_param([sys,7,'Force'],... 

'Mask Entries','2V-lVlVl0000V"b-/r-/c-./w:/m*/ro/b+"V) 

% Finished composite block 'Force'. 

set_param([sys,7','Force'],... 
'position',[885,529,930,591]) 

add_line(sys,[l 10,485;315,485]) 
add_line(sys,[205,420,315,420]) 

, add_line(sys,[205,420;210,420,220,355]) 
add_line(sys,[300,355,315,355]) 
add_line(sys,[l 10,485; 115,485; 125,420]) 
add_line(sys,[700,320,720,320]) 
add_line(sys,[655,520;715,520]) 
add_line(sys,[780,310,815,310,815,250;635,250;635,135;655,135]) 
add_line(sys,[290,550;315,550]) 
addjine(sys,[780,330;805,330,805,35;645,35;655,90]) 
add_line(sys,[815,310;840,310;850,305]) 
add_line(sys,[805,330,840,330;850,340]) 
add_line(sys,[900,325,910,325;910,435,695,435]) 
add_line(sys,[625,435;565,435;565,500;585,500]) 
add_line(sys,[805,35;805,70;845,70]) 
add_line(sys,[765,250;765,150;845,150]) 
add_line(sys,[220,485,220,605;505,605;505,540;585,540]) 
add_line(sys,[380,455,450,455;450,320;530,320]) 
add_line(sys,[780,340;785,340;785,510;810,510]) 
add_line(sys,[860,530,865,530;865,560;880,560]) 
add_line(sys,[290,550;300,550;300,595;545,595;545,570;790,570;790,545;810,545]) 

file:///nEnter


drawnow 

% Return any arguments, 
if (nargin | nargout) 

% Must use feval here to access system in memory 
if (nargin > 3) 

if (flag = 0) 
eval(['[ret,xO,str,ts,xts]-,sys,'(t,x,u,flag);']) 

else 
eval(['ret =>, sys,'(t,x,u,flag);']) 

end 
else 

[ret,xO,str,ts,xts] = feval(sys); 
end 

else 
drawnow % Flash up the model and execute load callback 

end 



C O N S T R A I N T S U R F A C E #2 

mnction[sys,x0]=surf2(t,x,u,flag,ll_dot,ll,12_dot,12) 

ifabs(flag) = 1 

ml=2; m2=l; kpv=5, kpp=10; kfv=0.1; kfp=0.001, 

sd_dd=u(l); sd_d=u(2); sd=u(3); Fd=u(4); 

% Determine equivalent point on surface. 
%x(l) = ll_dot = y_dot 
% x(2) = 11 = y 
% x(3) = 12_dot = x_dot 
% x(4) = 12 = x 
m_star=(x(2)-l)/x(4); 
xs= 1 /sqrt( 1 +m_star A2); 
ys=l-sqrt(l-xsA2), 
m=xs/sqrt( 1 -xsA2), 
m_d=x(3)/(l-xsA2)A(3/2); 
st=sin(atan(m)), ct=cos(atan(m)); 
% Use equivalent surface point to determine constraint position. 
s=asin(xs); s_d=x(3)/sqrt(l-xsA2); 

% Determine position controller. 
Qs=(m 1 * stA2+m2) * (sd_dd+kpv* (sd_d-s_d)+kpp * (sd-s)); 
F2=Qs/(((ml+m2)/m2)*m*st+ct); 
Fl=F2*((ml+m2)/m2)*m; 

F2=F2-m2*st*(m_d/(l+mA2))*s_d; 
Fl=Fl+(ml+m2)*ct*(m_d/(l+mA2))*s_d; 

% Determine force controller. 
ke=1000, 
delta=sqrt((xs-x(4))A2+(ys-x(2))A2), 
delta_d=-x( 1) * ct+x(3) * st, 
if((x(4)>xs)&(x(2)<ys)) 

global Fm, 
Fm=ke*delta, 

else 
global Fm, 
Fm=0, 

end 
Qn=Fd+kfp*(Fd-Fm)-kfV*ke*delta_d; 



% Superpose the position and force controllers. 
F1=F1-Qn*ct; 
F2=F2+Qn*st, 

% Compute the manipulator dynamics. 
A=[ 0 0 0 0 

1 0 0 0 
0 0 0 0 
00 10], 

B=[ (Fl+Fm*ct)/(ml+m2) 
0 
(F2-Fm*st)/m2 
0]; 

sys=A*x+B, 

elseif abs(flag) = 3 

global Fm; 
if t=0 

Fm=0; 

end 

sys=[x(l) x(2) x(3) x(4) Fm], 

elseif abs(flag) == 0 

sys=[4 0 5 4 0 1]; 

x0=zeros(4,l), 
x0(l)=ll_dot; 
x0(2)=ll; 
x0(3)=12_dot; 
x0(4)=12; 

else 

sys=[]; 
end 
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S I M U L A T I O N #2 
function [ret,x0,str,ts,xts]=finalsim2(t,x,u,flag), 
%FINALSIM2 is the M-file description of the SIMULINK system named 
FINALSIM2. 
% The block-diagram can be displayed by typing: FINALSIM2. 
% 
% SYS=FINALSIM2(T,X,U,FLAG) returns depending on F L A G certain 
% system values given time point, T, current state vector, X, 
% and input vector, U. 
% F L A G is used to indicate the type of output to be returned in SYS. 
% 
% Setting FLAG=1 causes FINALSIM2 to return state derivatives, FLAG=2 
% discrete states, FLAG=3 system outputs and FLAG=4 next sample 
% time. For more information and other options see SFUNC. 
% 
% Calling FINALSIM2 with a F L A G of zero: 
% [SIZES]=FINALSIM2([],[],[],0), returns a vector, SIZES, which 
% contains the sizes of the state vector and other parameters. 
% S IZES( 1) number of states 
% SIZES(2) number of discrete states 
% SIZES(3) number of outputs 
% SIZES(4) number of inputs 
% SIZES(5) number of roots (currently unsupported) 
% SIZES(6) direct feedthrough flag 
% SIZES(7) number of sample times 
% 
% For the definition of other parameters in SIZES, see SFUNC. 
% See also, TRIM, LINMOD, LIN SIM, EULER, RK23, RK45, ADAMS, GEAR. 

% Note: This M-file is only used for saving graphical information, 
% after the model is loaded into memory an internal model 
% representation is used. 

% the system will take on the name of this mfile: 
sys = mfilename, 
new_system(sys) 
simver(1.3) 
if (0 = (nargin + nargout)) 

set_param(sys,'Location', [268,217,1240,93 8]) 
open_system(sys) 

end, 
set_param(sys,'algorithm', 'RK-23') 
set_param(sys,'Start time', '0.0') 
set_param(sys,'Stop time', '2') 
set_param(sys,'Min step size', '0.01') 
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set_param(sys,'Max step size', '0.01') 
set_param(sys,'Relative error',' le-3') 
set_param(sys,'Return vars', ") 

add_block('built-in/Mux',[sys,'/','Mux2']) 
set_param([sys,'/','Mux2'],... 

'position',[320,321,375,584]) 

add_block('built-in/S-Function',[sys,'/VDynamics']) 
set jaram([sys,'/','Dynarnics'],... 

'function name','surf2',... 
'pararneters','0,0,0,0*,... 
'position',[535,267,695,373]) 

add_block('built-in/Demux',[sys,'/','Demux']) 
set_param([sys,'/','Demux'],... 

'outputs','5',... 
'position',[725,296,775,344]) 

% Subsystem 'XY Graph'. 

new_system([sys,'/','XY Graph']) 
set_param([sys,'/','XYGraph'],'Location',[8,52,282,245]) 

add_block('built-in/Inport',[sys,'/',*XY Graph/y']) 
set_param([sys,7','XY Graph/y'],... 

'Port','2',... 
'position',[10,100,30,120]) 

add_block('built-in/Inport',[sys,'/','XY Graph/x']) 
set_param([sys,7','XY Graph/x'],... 

'position',[10,30,30,50]) 

add_block('built-in/Mux',[sys,'/*,'XY Graph/Mux']) 
set_param([sys,7','XY Graph/Mux'],... 

'inputs','2',... 
'position',[ 100,61,130,94]) 

add_block('built-in/S-Function',[sys,7',['XY Graph/S-function', 13,'M-file which 
plots', 13,'lines', 13,"]]) 
set_param([sys,7',['XY Graph/S-ainction',13,'M-file which plots',13,'lines',13,"]],... 

'function name','sfunxy',... 
'parameters','ax, st',... 
'position',[l 85,70,23 5,90]) 
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add_line([sys,7','XY Graph'],[35,l 10;70,110;70,85;95,85]) 
addJine([sys,7',*XYGraph'],[35,40;70,40;70,70,95,70]) 
addJine([sys,7',*XY Graph'],[ 135,80; 180,80]) 
set_param([sys,7',*XY Graph'],... 

'Mask 
Display','plot(0,0,100,100,[12,91,91,12,12],[90,90,45,45,90],[51,57,65,75,80,79,75,67,60 
,54,51,48,42,34,28,27,31,42,51],[71,68,66,66,72,79,83,84,81,77,71,60,54,54,58,65,71,74 
,71])') 
set_param([sys,7','XY Graph'],... 

'Mask Type','XY scope.',... 
'Mask Dialogue','XY scope using M A T L A B graph window.\nFirst input is 

used as time baseAnEnter plotting ranges. |x-min:|x-max:|y-min:|y-max:') 
set_param([sys,7','XY Graph'],... 

'Mask Translate','ax = [@1, @2, @3, @4];st=-l;',... 
'Mask Help','This block can be used to explore limit cycles. Look at the m-

file sfunxy.m to see how it works.',... 
'Mask Entries','-1V3V-1V3V) 

% Finished composite block 'XY Graph'. 

set_param([sys,7','XY Graph'],... 
•position',[660,69,755,156]) 

add_block('built-in/Derivative',[sys,7','Acceleration']) 
setjparam([sys,7','Acceleration'],... 

'position',[225,334,295,376]) 

add_block('built-in/Derivative',[sys,7','Velocity']) 
set_param([sys,7','Velocity'],... 

'position'^ 130,399,200,441 ]) 

add_block('built-in/Sine Wave',[sys,7','Position']) 
set_param([sys,7','Position'],... 

'amplitude','10',... 
'frequency','1/16',... 
'position', [20,452,105,518]) 

add_block('built-in/Constant*,[sys,7','Fd']) 
set_param([sys,7','Fd'],... 

'position*,[250,532,285,568]) 

add_block('built-in/Mux',[sys,7','Mux4']) 
set_param([sys,7','Mux4'],... 

'inputs','2',... 

file:///nFirst
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'position',[590,479,650,561]) 

add_blockCbuilt-in/Fcn,,[sys,,/,,,Fcn']) 
set_param([sys,7','Fcn'],... 

'orientation'^,... 
'Expr','asin( 1 /sqrt( 1 +((u[ 1 ]-1 )/u[2])A2))',... 
'position', [630,413,690,45 7]) 

add_block('built-in/To Workspace', [sys,V,'To Workspace2']) 
set_param([sys,'/','To Workspace2'],... 

'mat-name','link 1',... 
'position',[850,142,900,158]) 

add_block('built-in/To Workspace',[sys,'/','To Workspace 1']) 
set_param([sys,'/','To Workspace 1'],... 

'mat-name','link2',... 
•position',[850,62,900,78]) 

% Subsystem 'PositionCompare'. 

new_system([sys,'/','Position_Compare']) 
set_param([sys,'/','Position_Compare'],'Location',[0,59,274,252]) 

add_block('built-in/Inport',[sys,'/','Position_Compare/x']) 
set_param([sys,'/','Position_Compare/x'],... 

'position',[65,55,85,75]) 

add_block('built-in/S-Function',[sys,'/',['Position_Compare/S-function', 13,'M-file which 
plots', 13,'lines', 13,"]]) 
set_param([sys,'/',['Position_Compare/S-function',l3,'M-file which plots', 13,'lines', 13,"]],... 

'function name','sfunyst',... 
'parameters','ax, color, npts, dt',... 
'position',[130,55,180,75]) 

add_line([sys,'/','Position_Compare'],[90,65,125,65]) 
set_param([sys,'/','Position_Compare'],... 

'Mask 
Display','plot(0,0,100,100,[83,76,63,52,42,38,28,16,11,84,11,11,11,90,90,11 ],[75,58,47,5 
4,72,80,84,74,65,65,65,90,40,40,90,90])',... 

'Mask Type','Storage scope.') 
set_param([sys,'/','Position_Compare'],... 

'Mask Dialogue'/Storage scope using M A T L A B graph windowAnEnter 
plotting ranges and line type.|Initial Time Range: jlnitial y-min: |Initial y-max:|Storage 
pts.:|Line type (rgbw-.:xo):') 
set_param([sys,'/','Position_Compare'],... 
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'Mask Translate'/npts = @4; color = @5, ax = [0, @1, @2, @3]; dt=-l;') 

set_param([sys,'/','Position_Compare'],... 
'Mask Help',This block uses a M A T L A B figure window to plot the input 

signal. The graph limits are automatically scaled to the min and max values of the signal 
stored in the scope"s signal buffer. Line type must be in quotes. See the M-file 
sfunyst.m.') 
set_param([sys,VVPosition_Compare'],... 

'Mask Entries';5V-10V10V10000V"g-/r-/c-./w:/m*/ro/b+"V') 

% Finished composite block 'PositionCompare'. 

set_param([sys,'/','Position_Compare'],... 
'position',[720,489,765,551]) 

addJMock('built-in/Mux',[sys,7',*Mux5']) 
set_param([sys,'/','Mux5'],... 

'inputs','?,... 
'position',[840,289,900,371]) 

add_block('built-in/Mux',[sys,'/','Mux6']) 
set_param([sys,'/','Mux6'],... 

'inputs','?,... 
'position',[805,519,865,601]) 

% Subsystem 'Force'. 

new_system([sys,'/','Force']) 
set_param([sys,'/',Torce'],'Location*,[0,59,274,252]) 

add_block(*built-iri/S-Function',[sys,'/',['Force/S-function,,13,,M-file which 
plots*,13,'lines',13,"]]) 
set_param([sys,'/*,['Force/S-function', 13,'M-file which plots', 13,'Iines*, 13,"]],... 

'function name','sfunyst',... 
'parameters','ax, color, npts, dt',... 
'position',[130,55,180,75]) 

add_block('built-in/Inport',[sys,'/','Force/x']) 
set_jparam([sys,'/','Force/x'],... 

'position',[65,55,85,75]) 
add_line([sys,*/','Force'],[90,65,125,65]) 
set_param([sys,'/','Force'],... 
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'Mask 

Display','plot(0,0,100,100,[83,76,63,52,42,38,28,16,11,84,11,11,11,90,90,11 ],[75,58,47,5 
4,72,80,84,74,65,65,65,90,40,40,90,90])',... 

'Mask Type','Storage scope.') 
set_param([sys,'/','Force'],... 

'Mask Dialogue','Storage scope using M A T L A B graph windowAnEnter 
plotting ranges and line type. [Initial Time Range: [Initial y-min:|Initial y-max:|Storage 
pts.:|Line type (rgbw-.:xo):') 
set_param([sys,'/','Force'],... 

'Mask Translate','npts = @4; color = @5; ax = [0, @1, @2, @3], dt=-1;') 

set_param([sys,'/','Force'],... 
'Mask Help','This block uses a M A T L A B figure window to plot the input 

signal. The graph limits are automatically scaled to the min and max values of the signal 
stored in the scope"s signal buffer. Line type must be in quotes. See the M-file 
sfunyst.m.') 
set_param([sys,'/','Force'],... 

'Mask Entries','2V-lVlV10000V"b-/r-/c-./w:/m*/ro/b+"V) 

% Finished composite block 'Force'. 

set_param([sys,'/','Force'],... 
'position',[905,554,950,616]) 

:ne(sys,[110,485;315,485]) 
ne(sys,[205,420,315,420]) 
ne(sys,[205,420;210,420;220,3 55]) 
ne(sys,[300,355,315,355]) 
ine(sys,[l 10,485,115,485,125,420]) 
ine(sys, [700,3 20;720,3 20]) 
ne(sys,[655,520;715,520]) 
ne(sys,[780,310;815,310;815,250;635,250;635,135,655,135]) 
ne(sys,[290,550;315,550]) 
ne(sys,[780,330;805,330;805,35,645,35,655,90]) 
ine(sys,[625,435;565,435;565,500;585,500]) 
ne(sys,[805,35;805,70;845,70]) 
ne(sys,[765,250,765,150;845,150]) 
ine(sys,[220,485,220,605;505,605,505,540;585,540]) 
ne(sys,[380,455,450,455;450,320,530,320]) 
ine(sys,[815,310,83 5,310]) 
ne(sys,[805,330;825,330;835,350]) 
ne(sys,[905,330;915,330;915,435,695,435]) 
ne(sys,[780,340;785,340,785,540;800,540]) 
ne(sys,[300,550;300,605;650,605,650,580;800,580]) 
ine(sys,[870,560,880,560;880,585;900,585]) 

add_l 
add_l 
addj 
add_l 
addj 
addj 
addj 
addj 
addj 
addj 
addj 
addj 
addj 
addj 
addj 
addj 
addj 
addj 
addj 
addj 
add 1 



drawnow 

% Return any arguments, 
if (nargin | nargout) 

% Must use feval here to access system in memory 
if (nargin > 3) 

if(flag = 0) 
eval(['[ret,xO,str,ts,xts]-,sys,'(t,x,u,fiag);']) 

else 
evaltf'ret =', sys/(t,x,u,flag);']) 

end 
else 

[ret,xO,str,ts,xts] = feval(sys); 
end 

else 
drawnow % Flash up the model and execute load callback 

end 



C O N S T R A I N T S U R F A C E #3 

mnction[sys,x0]=surf3(t,x,u,flag,ll_dot,ll,12_dot,12) 

ifabs(flag) = 1 

ml =2; m2=l; kpv=5, kpp=10; kfv=0.075, kfp=0.001; 

sd_dd=u(l); sd_d=u(2), sd=u(3); Fd=u(4); 

% Determine equivalent point on surface. 
%x(l) = ll_dot = y_dot 
%x(2) = ll =y 
% x(3) = 12_dot = x_dot 
% x(4) = 12 = x 
m_star=-x(2)/(l-x(4)); 
xs= 1 -(1 /sqrt(m_starA2+1)); 
ys=sqrt(l-(xs-l)A2), 
m=( 1-xs)/sqrt( 1-(xs-1 )A2); 
m_d=-x(3)/( 1 -(xs-1 )A2)A(3/2), 
st=sin(atan(m)); ct=cos(atan(m)); 

% Use equivalent surface point to determine constraint position. 
s=quad('int_convex',0.l,xs); s_d=(l/sqrt(l-(l-xs)A2))*x(3); 

% Determine position controller. 
Qs=(m 1 * stA2+m2) * (sd_dd+kpv* (sd_d-s_d)+kpp * (sd-s)); 
F2=Qs/(((ml+m2)/m2)*m*st+ct); 
Fl=F2*((ml+m2)/m2)*m, 

F2=F2-m2*st*(m_d/(l+mA2))*s_d; 
Fl=Fl+(ml+m2)*ct*(m_d/(l+mA2))*s_d; 

% Determine force controller. 
ke=1000; 
delta=sqrt((xs-x(4))A2+(ys-x(2))A2); 
delta_d=-x( 1) * ct+x(3) * st; 
if((x(4)>xs)&(x(2)<ys)) 

global Fm; 
Fm=ke*delta, 

else 
global Fm; 
Fm=0, 

end 
Qn=Fd+kfp*(Fd-Fm)-kfv*ke*delta_d, 



% Superpose the position and force controllers. 
F1=F1-Qn*ct, 
F2=F2+Qn*st, 

% Compute the manipulator dynamics. 
A=[ 0 0 0 0 

1 0 0 0 
0 0 0 0 
00 10]; 

B=[ (Fl+Fm*ct)/(ml+m2) 
0 
(F2-Fm*st)/m2 
0]; 

sys=A*x+B; 

elseif abs(flag) = 3 

global Fm; 
i f t=0 

Fm=0, 
end 

sys=[x(l)x(2) x(3)x(4) Fm]; 

elseif abs(flag) = 0 

sys=[40 5 4 0 1]; 

x0=zeros(4,l), 
x0(l)=ll_dot; 
x0(2)=ll; 
x0(3)=l2_dot; 

x0(4)=12, 

else 

sys=[]; 
end 
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S I M U L A T I O N #3 
function [ret,x0,str,ts,xts]=finalsim3(t,x,u,flag); 
%FINALSIM3 is the M-file description of the SIMULINK system named 
FINALS IM3 
% The block-diagram can be displayed by typing: FINALSIM3. 
% 
% SYS=FINALSIM3(T,X,U,FLAG) returns depending on F L A G certain 
% system values given time point, T, current state vector, X, 
% and input vector, U. 
% F L A G is used to indicate the type of output to be returned in SYS 
% 
% Setting FLAG=1 causes FINALSIM3 to return state derivatives, FLAG=2 
% discrete states, FLAG=3 system outputs and FLAG=4 next sample 
% time. For more information and other options see SFUNC. 
% 
% Calling FLNALSIM3 with a F L A G of zero: 
% [SIZES]=FrNALSJM3([],[],[],0), returns a vector, SIZES, which 
% contains the sizes of the state vector and other parameters. 
% SIZES( 1) number of states 
% SIZES(2) number of discrete states 
% SIZES(3) number of outputs 
% SIZES(4) number of inputs 
% SIZES(5) number of roots (currently unsupported) 
% SIZES(6) direct feedthrough flag 
% SIZES(7) number of sample times 
% 
% For the definition of other parameters in SIZES, see SFUNC. 
% See also, TRIM, LINMOD, LINSEVI, EULER, RK23, RK45, ADAMS, GEAR. 

% Note: This M-file is only used for saving graphical information; 
% after the model is loaded into memory an internal model 
% representation is used. 

% the system will take on the name of this mfile: 
sys = mfilename; 
new_system(sys) 
simver(1.3) 
if (0 == (nargin + nargout)) 

set_param(sys,'Location', [274,209,1215,929]) 
open_system(sys) 

end; 
set_param(sys,,algorithm', 'RK-23') 
set_param(sys,'Start time', '0.0') 
set_param(sys,'Stop time', '2') 
set_param(sys,'Min step size', '0.01') 
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setjparam(sys,'Max step size', '0.01') 
set_param(sys,'Relative error','le-3') 
set_param(sys,'Return vars', ") 

add_block(*built-in/Mux',[sys,'/','Mux2']) 
set_param([sys,'/','Mux2'],... 

'position',[320,321,375,584]) 

add_block('built-in/S-Function',[sys,'/','Dynamics']) 
set jaram([sys,'/','Dynamics'],... 

'function name','surf3',... 
•parameters','0,0.43 59,0,0.1',... 
'position',[535,267,695,373]) 

add_block('built-in/Demux',[sys,'/','Demux']) 
set_param([sys,'/','Demux'],... 

'outputs',^',... 
'position',[725,296,775,344]) 

% Subsystem 'XY Graph'. 

new_system([sys,'/','XY Graph']) 
set_param([sys,'/*,'XYGraph'],'Location',[8,52,282,245]) 

add_block('built-in/Inport',[sys,'/','XYGraph/y']) 
set_param([sys,'/','XY Graph/y'],... 

'Port','2',... 
'position*, [10,100,3 0,120]) 

add_block('built-in/Inport',[sys,'/','XY Graph/x']) 
set_param([sys,'/','XY Graph/x'],... 

'position',[10,30,30,50]) 

add_block('built-in/Mux',[sys,*/VXY Graph/Mux']) 
set_param([sys,'/','XY Graph/Mux*],... 

'inputs','2*,... 
'position', [100,61,130,94]) 

add_block('built-in/S-Function',[sys,'/',['XY Graph/S-function', 13,'M-file which 
plots',13,'lines',13,"]]) 
set_param([sys,'/',['XY Graph/S-function', 13,'M-file which plots', 13,'lines', 13,"]],... 

'function name','sfunxy',... 
'parameters','ax, st',... 
'position',[ 185,70,23 5,90]) 
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add_line([sys,77XY Graph'],[35,l 10;70,110;70,85;95,85]) 
addJine([sys//','XYGraph'],[35,40,70,40;70,70,95,70]) 
addJine([sys,'/','XY Graph'],[135,80;180,80]) 
set_param([sys,7','XY Graph'],... 

'Mask 
Display','plot(0,0,100,100,[12,91,91,12,12],[90,90,45,45,90],[51,57,65,75,80,79,75,67,60 
,54,51,48,42,34,28,27,31,42,51],[71,68,66,66,72,79,83,84,81,77,71,60,54,54,58,65,71,74 
,71])') 
set_param([sys,V','XY Graph'],... 

'Mask Type','XY scope.',... 
'Mask Dialogue','XY scope using M A T L A B graph window.\nFirst input is 

used as time baseAnEnter plotting ranges. |x-min:|x-max:|y-min:|y-max:') 
set_param([sys,'/','XY Graph'],... 

'Mask Translate'/ax = [@1, @2, @3, @4];st=-l 
'Mask Help','This block can be used to explore limit cycles. Look at the m-

file sfunxy.m to see how it works.',... 
'Mask Entries',*-1V3V-1V3V) 

% Finished composite block 'XY Graph*. 

setjparam([sys,'/','XY Graph'],... 
'position',[660,69,755,156]) 

add_block('built-in/Derivative',[sys,'/','Acceleration']) 
set_param([sys,'/','Acceleration'],... 

'position',[225,334,295,376]) 

add_block('built-in/Derivative',[sys,'/','Velocity']) 
set_param([sys,'/','Velocity'],... 

'position*,[ 13 0,399,200,441 ]) 

add_block('built-in/Sine Wave',[sys,'/','Position']) 
set_param([sys,'/','Position'],... 

'amplitude','10',... 
'frequency','1/16',... 
*position',[20,452,105,518]) 

add_block('built-in/Constant',[sys,'/','Fd"]) 
set_param([sys,'/','Fd'],... 

'position',[250,532,285,568]) 

add_block('built-in/Mux',[sys,'/','Mux4']) 
set_param([sys,'/','Mux4'],... 

'inputs','2',... 

file:///nFirst
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'position',[590,479,650,561]) 

add_block('built-in/To Workspace',[sys,7','To Workspace2']) 
set_param([sys,7','To Workspace2'],... 

'mat-name', 'link 1',... 
'position',[850,142,900,158]) 

add_block(*built-in/To Workspace',[sys,'/','To Workspacel']) 
set_param([sys,'/','To Workspacel'],... 

'mat-name','link2',... 
*position',[850,62,900,78]) 

% Subsystem 'PositionCompare'. 

new_system([sys,'/','Position_Compare']) 
set_param([sys,'/','Position_Compare'],'Location',[0,59,274,252]) 

add_block('built-in/Inport',[sys,'/','Position_Compare/x']) 
set_param([sys,'/','Position_Compare/x'],... 

'position',[65,55,85,75]) 

add_block('built-in/S-Function',[sys,'/',['Position_Compare/S-function',13,'M-file which 
plots', 13,'lines', 13,"]]) 
set_param([sys,'/',['Position_Compare/S-function', 13,'M-file which plots', 13,'lines', 13,"]],... 

'function name','sfunyst',... 
'parameters','ax, color, npts, dt',... 
'position',[130,55,180,75]) 

add_line([sys,'/','Position_Compare'],[90,65;125,65]) 
set_param([sys,'/','Position_Compare'], .. 

'Mask 
DisplayVplot(0,0,100,100,[83,76,63,52,42,38,28,16,l 1,84,11,11,11,90,90,11],[75,58,47,5 
4,72,80,84,74,65,65,65,90,40,40,90,90])',... 

'Mask Type','Storage scope.') 
set_param([sys,'/','Position_Compare'],... 

'Mask Dialogue','Storage scope using M A T L A B graph windowAnEnter 
plotting ranges and line type.|Initial Time Range: jlnitial y-min:|Initial y-max: |Storage 
pts.:|Line type (rgbw-.:xo):') 
set_param([sys,7','Position_Compare'],... 

'Mask Translate','npts = @4; color = @5; ax = [0, @1, @2, @3], dt=-l;') 
set_param([sys,7','Position_Compare'],... 

'Mask Help','This block uses a M A T L A B figure window to plot the input 
signal. The graph limits are automatically scaled to the min and max values of the signal 
stored in the scope"s signal buffer. Line type must be in quotes. See the M-file 
sfunyst.m.') 



set j3aram([sys,7','Position_Compare'],... 
'Mask Entries','5V-10V10VlOOOOV"g-/r-/c-./w:/m*/ro/b+"V) 

90 

% Finished composite block 'PositionCompare'. 

set_param([sys,'/','Position_Compare'],... 
'position',[720,489,765,551]) 

add_block('built-in/MATLAB Fcn',[sys,7','MATLAB Fen']) 
set_param([sys,'/',*MATLAB Fen'],... 

'orientation',2,... 
'MATLAB Fcn','quad("int_convex",0. l,u)',... 
'position',[630,403,705,447]) 

add^lockCbuilt-in/Fcn^sysZ/'/Fcn']) 
set_param([sys,'/','Fcn'],... 

'position',[625,600,665,620]) 

add_blockCbuilt-in/Mux',[sys;/','Mux5']) 
set_param([sys,'/','Mux5'],... 

'inputs','2',... 
'position',[800,554,860,636]) 

% Subsystem 'Force'. 

new_system([sys,'/','Force']) 
set_param([sys,'/VForce'],'Location',[0,59,274,252]) 

add_block('built-in/S-Function',[sys,7',['Force/S-function', 13,'M-file which 
plots', 13,'lines', 13,"]]) 
set_param([sys,7',['Force/S-function', 13,'M-file which plots', 13,*lines',l3,"]],... 

'function name','sfiinyst',... 
'parameters','ax, color, npts, dt',... 
'position',[130,55,180,75]) 

add_block('built-in/Inport',[sys,'/','Force/x']) 
set_param([sys,'/','Force/x'],... 

'position',[65,55,85,75]) 
add_line([sys,7','Force'],[90,65;125,65]) 
set_param([sys,7','Force'],... 

'Mask 
Display','plot(0,0,100,100,[83,76,63,52,42,38,28,16,11,84,11,11,11,90,90,11 ],[75,58,47,5 
4,72,80,84,74,65,65,65,90,40,40,90,90])',... 

J 



91 

'Mask Type','Storage scope.') 
set_param([sys,'/','Force'],... 

'Mask Dialogue','Storage scope using M A T L A B graph window.\nEnter 
plotting ranges and line type, jlnitial Time Range: |Initial y-min:|Initial y-max:|Storage 
pts.:|Line type (rgbw-.:xo):') 
set_param([sys,'/','Force'],... 

'Mask Translate','npts = @4; color - @5, ax = [0, @1, @2, @3]; dt=-1,') 
set_param([sys,'/','Force'],... 

'Mask Help','This block uses a M A T L A B figure window to plot the input 
signal. The graph limits are automatically scaled to the min and max values of the signal 
stored in the scope"s signal buffer. Line type must be in quotes. See the M-file 
sfunyst.m.') 
set_param([sys,'/','Force'],... 

'Mask Entries','2V-lVlV10000V"b-/r-/c-./w:/m*/ro/b+"V) 

% Finished composite block 'Force'. 

set_param([sys,'/yForce'],... 
*position',[890,484,93 5,546]) 

add_line(sys,[205,420;315,420]) 
add_line(sys,[205,420;210,420;220,3 5 5]) 
add_line(sys,[300,355;315,355]) 
add_line(sys,[l 10,485,115,485;125,420]) 
add_line(sys,[700,320;720,320]) 
add_line(sys,[655,520,715,520]) 
add_line(sys,[780,310;815,310,815,250;635,250;635,135;655,135]) 
add_line(sys,[290,550;315,550]) 
add_line(sys,[780,330;805,330;805,35;645,35;655,90]) 
add_line(sys,[625,425;565,425;565,500;585,500]) 
add_line(sys,[805,35;805,70;845,70]) 
add_line(sys,[765,250;765,150,845,150]) 
add_line(sys,[380,455;450,455;450,320;530,320]) 
add_line(sys,[110,485;120,485,120,530;145,530;315,485]) 
add_line(sys,[805,330;805,425;710,425]) 
add_line(sys,[145,530;180,530;180,590;380,590;380,54O,585,540]) 
add_line(sys,[780,340;785,340,795,575]) 
add_line(sys,[300,550;300,640;745,640;745,615,795,615]) 
add_line(sys,[865,595;870,595,870,515;885,515]) 

drawnow 

% Return any arguments, 
if (nargin | nargout) 

% Must use feval here to access system in memory 

file:///nEnter
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if (nargin > 3) 

if (flag == 0) 
eval([,[ret,xO,str,ts,xts]=,,sys,,(t,x,u,flag);']) 

else 
evaltf'ret =', sys,'(t,x,u,flag);']) 

end 
else 

[ret,xO,str,ts,xts] = feval(sys); 
end 

else 
drawnow % Flash up the model and execute load callback 

end 


