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Abstract 

The idea of one-step estimators has long been used: Le Cam (1956), Neyman (1949) 

and Fisher (1922) have proposed it in the context of maximum likelihood estimation. 

More recently, Bickel (1975) adapted this idea to robustness theory when he introduced 

one-step Huber M-estimators for simple linear models. Huber (1981) and Hampel et al 

(1986) further investigated the advantages of such one-step M-estimators; while retaining 

the robustness properties of their initial estimates, one-step M-estimators show increased 

efficiency, and thus represent a good compromise between robust and parametric estima­

tion. 

Different versions of one-step M-estimators, some more numerically stable than oth­

ers, have been proposed throughout the years. To our knowledge, no thorough com­

parison of available one-step M-estimators have been done using modern techniques, as 

in Rousseeuw and Croux (1993a). In this thesis, two versions of one-step M-estimators 

of location, obtained with the Newton-Raphson method, are studied in the context of 

unknown dispersion. Their asymptotic efficiencies at Gaussian and non-Gaussian mod­

els, as well as their maximum asymptotic bias are compared. We also introduce two 

new one-step M-estimators of dispersion with unknown location, and challenge the tra­

ditional fixed-point method one-step M-estimator of dispersion, originating from Huber 

(1981) and used by Rousseeuw and Croux (1993a). We identify the optimal situations in 

which to use any of those three one-step M-estimators of dispersion, using their relative 

asymptotic efficiency at different models, and their explosion and implosion maximum 

asymptotic bias curves. 
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Chapter 1 

Introduction 

The importance of point estimation in statistics has long been established. Its usefulness 

in all the disciplines requiring statistical analysis is increasing more than ever. However, 

the classical techniques, mostly based on maximum likelihood, still encounter difficulties 

with less than perfect data, which can sometimes lead to disastrous conclusions. In an 

attempt to solve the major problem of contamination of the data by outliers, and to 

adjust to a variety of possible underlying processes generating the data (the true one 

being impossible to determine), the statistical community developed what is now known 

as robustness theory. 

Modest attempts at robustness go back at least as far as two centuries ago. Simple and 

intuitive robust methods, such as rejection of outliers, have been discussed by Bernoulli 

(1777) and Bessel and Baeyer (1838). In the 19th and the beginning of the 20th century, 

other authors considered ways to partly downweight excessive observations, much in the 

spirit of modern robustness. Tukey (1960) summarized the statistical work of the 1940s 

and 1950s, demonstrated the nonrobustness of the mean and investigated some robust 

alternatives. His paper shaped the robustness estimation as a general area of research, 

and broke the isolation of the early pioneers. See the historical notes by Hampel (1986) 

(pp. 34-36) for a more complete review of early work in robustness. 

But with the first attempt at a reasonably manageable, realistic and comprehensive 

theory, the robustness theory was officially launched in 1964 by Peter J . Huber through 

1 
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his famous paper Robust Estimation of a Location Parameter (see [18]). In this paper, 

Huber introduced M-estimators of location, as a generalization of Maximum-likelihood 

type of estimators, which include the mean and the median, among many others. More 

specifically, an M-estimator of location is the value 9 which satisfies 

where X\,...,Xn is a sample from the population with distribution F(9), and ^ is a 

score function defining the estimator. Huber (1964) found the M-estimator of location 

which minimizes the maximum asymptotic variance among all location estimators in the 

symmetric family of e-contaminated distributions 

where 0 < e < 1/2 is fixed and H is symmetric. This minimax estimator has been called, 

since then, the Huber M-estimator of location. Considering more generally the asym­

metric family Vc(FQ), where H is allowed to be asymmetric, Huber(1964) also showed 

that among all translation equivariant estimators of location, the median minimizes the 

maximum asymptotic bias. After the publication of this paper, the mean, as an estimator 

of location, lost without any doubt its momentum. 

These two results illustrate two important concerns of robustness theory: the asymp­

totic efficiency of an estimator versus its asymptotic bias, or more generally, its robustness 

properties. 

i=l 
(1.1) 

Ve(F°) = {F : F(x) = (1 - e)F0(x -9) + eH(x)} 
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Following Huber (1964)'s paper, a variety of robust estimators for dispersion1, re­

gression, general linear models, and more recently for their multivariate extensions, hy­

pothesis testing, and other more complex statistical models such as time series, were 

proposed. Through standard techniques, as well as others developed specifically for ro­

bustness purposes, it was shown that these estimators offer competitive alternatives to 

maximum likelihood estimation, especially in the presence of (possibly) corrupted data. 

Nevertheless, robustness never appeared to acquire the popularity that would make it 

become a standard technique of estimation. The following two criticisms about robustness 

theory may explain why: 

• There is generally a trade-off between robustness and efficiency - the more robust 

an estimator is, the less efficient it is, which affects necessarily the precision of the 

estimation; and 

• Robust estimators represent often a computational challenge, which may require 

too much computing work and time to overcome. 

For example, the popular robust estimators such as the median, the MAD (Median 

Absolute Deviation) and the LMS (Least Median of Squares) are highly resistant to 

outliers. However, the Gaussian efficiencies of these estimators is very low: the median 

and the MAD have respectively 63.7% and 36.7% efficiency (see Hampel et al (1986)), 

and the LMS regression estimator converges only at the n 1 / 3 rate (see Rousseeuw (1984)). 

Moreover, computing these robust estimators requires more time and memory than the 

computation of their maximum-likelihood counterparts. 
1 Note that the use of the word dispersion in this thesis means what is usually referred to as scale. 

The dispersion corresponds to the spread of a distribution, whereas the scale is a measure of distance 
between the center of a distribution and 0, and therefore varies with location. The distinction between 
the two concepts is just now starting to be made. 
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In answer to those two criticisms towards robustness, Bickel (1975) adapted an old 

idea of the statistical literature to robust M-estimation. Le Cam (1956), Neyman (1949) 

(see [22]) and Fisher (1922), in the early years of modern statistics, had observed that 

in the univariate estimation of location setup, "if F is known, and = (—/'//)> the 

estimate obtained by starting with a y/n consistent estimate of 6 and performing one 

Gauss-Newton iteration of (1.1) is asymptotically efficient even when the M L E is not 

and is equivalent to it when it is" (see [5], p. 428). In times when computers were still 

a dream, less effort to compute an estimator, associated with no apparent loss in its 

asymptotical properties, represented a major advantage. 

Inspired by the observation of Fisher, Neyman and Le Cam, Bickel (1975) proposed 

a one-step Huber M-estimator to be used in the estimation of simple linear models, such 

as location and regression through the origin. The author showed that the estimator is 

asymptotically normal under mild conditions. In his book, Huber (1981) gave explicit 

expressions for one-step M-estimators of location with unknown dispersion (p. 140 and p. 

146), as the first step of Newton's method, starting with preliminary robust estimates of 

location and dispersion. The author further showed that if the initial estimate of location 

was consistent for 9, F was symmetric and the score function defining the estimator was 

odd, then this one-step M-estimator of location was asymptotically equivalent to the 

fully-iterated M-estimator of location with preliminary dispersion. In the special case 

of dispersion estimation with unknown location, Huber (1981) (p. 147) also suggested 

a fixed-point iterative method for computing the estimate, the first step of which may 

serve as a one-step M-estimator of dispersion. Hampel et al (1986) (p. 106) further 

stressed the importance of selecting robust preliminary estimates when computing one-

step M-estimators, as otherwise the resulting estimators may not be robust (which was 

also observed by Andrews et al in [1]). 
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In all cases, the enthusiasm created by one-step estimators was contagious: those 

estimators were easy to compute, but most importantly, they represented a good balance 

between robustness and efficiency. Being one step away from robust initial estimators, 

they retained the robustness properties of their initial estimators. Simultaneously, one 

step closer to their fully-iterated version, the one-step estimators were almost as efficient 

as their fully-iterated version. In the univariate location set up, Andrews et al (1972) 

(Bickel (1975) has submitted his paper in 1971 and was one of the authors of [1]) showed 

with some length that for certain score functions, one-step M-estimators were very well 

behaved. Jureckova and Portnoy (1987) further investigated the use of one-step regression 

M-estimators based on the LMS to obtain high efficiency. 

While one-step M-estimators solve the possible lack of uniqueness of the solution of 

(1.1) and reduce the computational effort, they can sometimes be numerically unstable. 

For instance, the standard one-step M-estimator of location with unknown dispersion 

contains a ratio which denominator can become very small for certain samples and score 

functions. To address this problem, Hampel et al (1986) suggested different versions of 

one-step M-estimators of location (pp. 152-153), one of which replaces the denominator by 

a constant. Similarly, the following example (reproduced from [7], p. 10) illustrates that 

the fixed-point iterative method can sometimes lead to disastrous results, which raises 

the question whether the one-step M-estimator of dispersion with unknown location, as 

introduced by Huber (1981), is stable enough to be trusted. 

Example. The value x = 1/n is a fixed point of the function given by 

f(x) = (n 4- l ) * - ! 
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since 

It follows then that iterating this function for any particular value ofn using the following 

loop should, if floating-point arithmetic of the computer were exact, simply result in x = 

1/n: 

x := 1/n 

for i = 1 to 30 

x := (n + 1) * x — 1 

We use here the symbol := for computer assignment, so 'x := 1/n', means 'Assign the 

value 1/n to the stored variable x\ 

Table 1.1 shows the results of implementing such a loop in Turbo Pascal for different 

values of n. We see that for the various powers of 2 the arithmetic is indeed exact. By 

contrast, for other values ofn the error grows steadily from approximately —3.5xl05 for 

n = 3 through about —2.3xl0 1 8 for n = 10. 

These errors are the direct result of the propagation of the rounding error made in 

the binary representation of | and j^, respectively. • 

Bickel (1975) had most likely foreseen the numerical instability problem. He actually 

proposed two types of one-step Huber M-estimators of regression. His Type II estimator 

was the smooth version of his Type I, of which a term was replaced by its asymptotic 

expectation. As much as robustness is concerned with outliers, it must never ignore 

important issues such as numerical stability. 

With the development of modern techniques, such as influence functions and max­

imum bias curves, which allow a more complete study of one-step M-estimators, these 
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n Final x 
I 1.000 000 000 000 00 E + 0000 

2 5.000 000 000 000 00 E - 0001 
3 1.747 630 000 000 00 E + 0005 
4 2.500 000 000 000 00 E - 0001 
5 -4.021 311 173 693 75 E + 0010 
6 -1.952 324 816 734 00 E + 0012 
7 -4.021 071 095 865 60 E + 0013 
8 1.250 000 000 000 00 E - 0001 
9 -1.616 879 469 807 53 E + 0017 

10 -2.308 383 841 816 94 E + 0018 
II -1.962 659 088 425 60 E + 0019 
12 -2.443 971 442 609 19 E + 0020 
13 -1.935 039 516 698 14 E + 0021 
14 -1.328 735 789 941 45 E + 0022 
15 7.052 067 281 085 79 E + 0022 
16 6.250 000 000 000 00 E - 0002 

Table 1.1: Results of the Implementation of the Loop in Turbo Pascal 
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estimators can be better understood and appreciated. Maximum bias curves occured 

briefly in Hampel et al (1986) (pp. 176-177), but were used to their full advantage by 

Martin and Zamar (1989), Martin et al (1989) and He and Simpson (1993). The influ­

ence function as a tool was itself developed by Hampel starting in 1974 and carefully 

discussed in [15]. Using those techniques, Rousseeuw and Croux (1993a) have studied 

the bias properties of k-step Huber M-estimators (the kth step of the iterative algo­

rithm) in the univariate location and dispersion setup. They have shown that while the 

efficiency increases with the number of steps, the bias also increases. This led the au­

thors to recommend the use of one or two-step M-estimators, but not more, especially in 

multiparameter problems where the dispersion is typically unknown. 

Rousseeuw and Croux (1993a) preferred the one-step M-estimator of location sug­

gested by Hampel et al (1986) (p. 153), which is derived from the standard one-step 

M-estimator, but has a constant denominator in its ratio. To estimate univariate disper­

sion, the authors used the fixed-point method one-step M-estimator suggested by Huber 

(1981) (p. 147). However, to our knowledge, no formal comparison have been done of all 

the one-step M-estimators available, using modern techniques, which would allow one to 

choose one estimator over another depending on the statistical situation at hand. 

The goal of this thesis is to offer such a comparison, in two contexts: estimation of 

location with unknown dispersion, and estimation of dispersion with unknown location. 

The standard one-step M-estimator of location, as suggested by Huber (1981) (p. 146), 

will be compared to the one-step M-estimator used by Rousseeuw and Croux (1993a) in 

the general setup of unknown dispersion. To estimate dispersion with unknown location, 

two estimators are derived using Newton-Raphson's method, and compared to the stan­

dard, unchallenged, fixed-point one-step M-estimator of dispersion, used for example by 

Rousseeuw and Croux (1993a). 
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Chapter 2 presents the general theory of M-estimators as initiated by Huber (1964). 

Chapter 3 presents formally the one-step M-estimators that will be compared in the 

following two chapters. In Chapter 4, we study the asymptotic properties of the two 

one-step M-estimators of location that are of interest; that is, we study their efficiency 

under Gaussian and non-Gaussian models (following the approach.of Rousseeuw and 

Croux (1993b)), as well as their maximum asymptotic bias. Using the same robustness 

techniques, the three one-step M-estimators of dispersion with unknown location that 

are of interest are compared in Chapter 5 in terms of their asymptotic behaviour. 



Chapter 2 

M-Estimators: Maximum Likelihood Type of Estimators 

2.1 Univariate Problem 

Let Xi, ...,Xn be a sample from the population with distribution function F(x; 9). 

Any estimate Tn which minimizes an equation of the form 

n 

i=l 

or which is defined by the implicit equation 

n 
5Xz,-;Tn) = 0, (2.2) 
i=l 

where p is an appropriate loss function and ip(x;9) = (d/d9)p(x;9) is a score function, 

is called an M-estimator of 9. This estimator is an extension of the usual maximum 

likelihood estimator (MLE) of 9: the choice p(x;9) = — log/(#;#) exactly corresponds 

to the M L E minimization problem. 

For example, when the parameter 9 to be estimated is a location parameter, one sets 

ip(x; Tn) — ip(x — Tn). When the parameter a to be estimated is a dispersion parameter, 

the function i\> used is i/>(x; a) = ij>(f)-

Note that the M-estimator is not modified when tp is multiplied by any constant 

r > 0. 

10 
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2.1.1 Qualitative Robustness 

It is easy to study the asymptotic properties of M-estimators when ijj(x; 9) is monotone 

in 9. Furthermore, assume 

• tp(x;9) in non-increasing in 9; 

• ip(x;9) is measurable in x; 

• tj>(x; — oo) > 0 and ip(x; oo) < 0; 

and define 

• XF(t) = EF{^(x;t)}; 

• Tn* = s u p { * : £ ? = 1 ^ ( x . - ; t ) > 0 } ; 

• rn** = inf{*:£? = i^(* , - ;<)<u}. 

Consistency 

M-estimators are consistent under some conditions. Huber (1981) has shown that if there 

is a to(F) such that 

f XF{t) >0 V t < t0(F) 

\ XF(t) <0 V f > i0(F) 

then T* —> t0(F) and T** —>• t0(F) almost surely [F] and in probability [F]. Any value 

Tn satisfying T* < Tn < T** can serve an M-estimator, which will be consistent since 

asymptotically, T* = T**. 
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Asymptotic Distribution 

Assume furthermore that 

• there exists at least one t0(F) such that Ai?(£0) = 0; 

• XF(t) is continously differentiable in a neighboorhood of t0(F) and A^(i 0 ) < 0; and 

• crF(t) = EF4>2(X; t) — \F(t) is finite, non zero and continuous near to(F). 

Under those assumptions, M-estimators Tn are asymptotically normally distributed, 

that is, y/E(Tn -10) N(0, V(V>, F)), where V(if>, F) = {°}^]2. See Huber (1981) (pp. 

49-50) for the complete details of this proof. 

The fact that M-estimators are asymptotically consistent and normally distributed 

have certainly contributed to their success, since it becomes so easy to make inference 

under these conditions. 

In most cases, Tn is a function of the empirical distribution Fn and derives from a 

functional T, that is, Tn = T(Fn). If Tn is consistent, then Tn —> T(F) in probability 

[F]. The discussion that follows will adopt the functional notation. An M-estimator Tn 

will therefore be referred to as T(F). 

2.1.2 Infinitesimal Aspects 

The Influence Function 

Beyond qualitative properties, it is informative to study the behaviour of M-estimators 

under infinitesimal changes. In 1968, Hampel introduced the influence function, which 

"describes the effect of an infinitesimal contamination at the point x on the estimate, 

standardized by the mass of the contamination. One could say it gives a picture of 

the infinitesimal behavior of the asymptotic value, so it measures the asymptotic bias 
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caused by contamination in the observations." (see [15], p. 84) When Hampel first 

introduced this concept (1968, 1974), he referred to it as the influence curve; however, 

the term influence function is now widely preferred in view of the generalizations to 

higher dimensions. More precisely, the influence function of the functional T(F) is 

IF(x;T,F) = l i m T { F t ' * ) - T { F \ v y t-o t 

where FTIX = (1 — t)F + t6x. In other words, it is defined as the derivative with respect 

to t of the functional T(FT,X), evaluated at t = 0. 

Under the regularity assumptions listed in the previous section, it is easy to show 

that the influence function of any univariate M-estimator, defined by the score function 

ip, has the following form: 

T ' F ) = - E H ( a / ^ f i ;
) r ( F ) ) } - ( 2- 3 ) 

See Huber (1981) (p. 45) for more details on this derivation. Notice that the influence 

function of an M-estimator is proportional to ip. 

In the special case of a univariate location problem, the score function defining the 

M - estimator is ip{x\ 9) = if)(x — 9), and we obtain 

"V'1'*) EFip'(x-T(F)Y 

Similarly, the influence function of a univariate dispersion M-estimator S(F), for which 

the score function has the form x(x', cr) = x ( f ) , will be 

IF(x-SF)- XWWWW 
EFX/{X/S{F))(X/S(F)Y 

Hampel et al (1986) have shown that under regularity conditions, the knowledge of 

the influence function of an M-estimator is equivalent to the knowledge of its asymptotic 
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distribution. Indeed, using a Taylor expansion of Tn(Fn) around T(F), the authors 

showed that the asymptotic variance of an estimator is completely defined by its influence 

function, since 

V(T, F) = EF{IF(x; T, F)}2. (2.4) 

The influence function is a priori a heuristic tool. It is easy to calculate, and therefore 

to obtain an expression for the asymptotic variance of an estimator. However, the regu­

larity assumptions for (2.4) are cumbersome to prove; one usually tries to prove normality 

using another method. However, in all practical cases, the relation (2.4) holds. The in­

fluence function approach will be used in the next chapters when deriving an expression 

for the asymptotic variance of the estimators of interest. 

The Gross-Error Sensitivity 

The influence function of an estimator can be summarized in many ways other than its 

expected square. The most important is probably the supremum of its absolute value. 

Hampel (1968,1974) introduced this notion as the gross-error sensitivity of an estimator. 

More precisely, one defines the gross-error sensitivity of T at F by 

7 * ( r , F ) = s u p | / F ( x ; r , F ) | , 
X 

for values of x where the influence function exists. The gross-error sensitivity measures 

the worst influence which a small amount of contamination of fixed size can have on 

the value of the estimator. It could therefore be regarded as an upper bound on the 

standardized asymptotic bias of the estimator. 

If 7*(T, F) is finite, we say that T is B-robust at F, where the B comes from bias. In 

view of (2.3), an M-estimator is B-robust at F if and only if ?/>(•, T(F)) is bounded. 



Chapter 2. M-Estimators: Maximum Likelihood Type of Estimators 15 

Putting a bound on j*(T,F) is often the first step in robustifying an estimator. 

However, in many cases, this will conflict with the goal of asymptotic efficiency. The 

introduction of one-step M-estimators brings a partial solution to this problem, as will 

be seen in the next chapter. 

2.1.3 Quantitative Robustness 

The influence function represents an excellent tool for assessing local asymptotic be­

haviour of an estimator. However, it must be complemented by a measure of global 

reliability, which describes up to what.distance from the model distribution the estima­

tor still gives some relevant information. Consider the e-contaminated neighboorhood of 

F0: 

VE(F0) = {F : F = (1 — e)F0 + eH}, 

where H is an arbitrary distribution and 0 < e < 1/2 so it is possible to distinguish 

between the central model FQ and the contamining distribution H. In what follows, we 

will present two measures of distance from the central model FQ that should stay as small 

as possible, and for e as big as possible, for an estimator to be considered robust. 

The Breakdown Point 

Hampel (1971) introduced the notion of breakdown point of an estimator, generalizing 

a definition by Hodges (1967). Roughly speaking, the breakdown point of an estimator 

is the maximum e-contamination that an estimator can endure before its value goes to 

infinity. It gives the limiting fraction of bad outliers the estimator can cope with. 

For any estimator, the maximum breakdown point is 50%. Robust M-estimators such 

as the median or the median absolute deviation (MAD) have 50% breakdown point. On 
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the other hand, the mean, as an estimator of location, has 0% breakdown point - it is 

completely intolerant to outliers. In fact, Hampel (1971) and Huber (1981) (section 3.2) 

have shown that when F is symmetric, one usually chooses odd score functions ip to esti­

mate location. If ip is moreover strictly monotone and bounded, the M-estimator defined 

by ip is B-robust and has 50% breakdown point. On the other hand, M-estimators are 

not B-robust and have 0% breakdown point when ip is strictly monotone but unbounded. 

There exists an asymptotic version of the breakdown point, as well as a finite-sample 

version. In what follows, to accompany the functional (limiting) notation, we will use 

the asymptotic version, as in Hampel (1971) and Huber (1981). See [9], [10], [17] and 

[20] for a detailed presentation of the finite-sample version of the breakdown point. 

The Maximum Bias Function 

A high breakdown point is a necessary condition for a good estimating method, but not 

a sufficient condition (see [29], p. 877). Many argue that the breakdown point is not as 

general at it claims it is. To deal with the matter, Hampel et al (1986) (pp. 176-177) 

briefly introduced maximum bias functions, but this measure of robustness was fully 

exploited by Martin and Zamar (1989), Martin et al (1989) and He and Simpson (1993). 

The maximum bias of an estimator (as a function of e) describes how an estimator T(F) 

can change in VC{FQ) due to a given fraction e of contamination. 

In the univariate location setup, the maximum bias function of an estimator T(F) is 

formally defined as 

BT(e)= sup \(T(F)-T(F0)\. 
FeVe(F0) 

However, in the univariate dispersion setup, one needs to generalize the concept of 

maximum bias function. Martin and Zamar (1989) have observed that the presence of 
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outliers can cause the estimate of dispersion to be very large, but as well, too many 

inliers may cause the estimate to be dangerously close to 0. They defined the generalized 

maximum bias as the maximum between the bias due to outliers and the bias due to 

inliers. Moreover, they allowed (monotone) penalization for inliers and outliers to be 

independently chosen, because in some setups, one of the two may cause more trouble 

than the other. 

Formally, the generalized maximum bias can be defined by 

Bs(e)= max B[S(F)], 
r £V€(l<o) 

where 

B[S(F)} = I ^ W M W ' i f 0 < W ^ S ^ 
\ L2[S(F)/S(F0)}, if S(Fo) < S(F) < oo, 

where L\ and L2 are the continuous, nonnegative and monotone (penalization) loss func­

tions, with I/i(l) = £2 (1 ) = 0 and 

l imXi(t) = lim L2(t) = 00. 

A popular choice for a loss function is the logarithmic function. From monotonicity of 

L\ and L2, it follows that 

Bs(e)=max{L1[S-/S(F0)],L2[S+/S(Fo)}}, 

where S~ and S+ denote the supremum and the infimum of the functional S(F) as F 

ranges over Ve(F0). Therefore, it is enough to concentrate on S~ and S+ when studying 

the generalized maximum bias of an estimator. We shall call S+ /S(Fo) the explosion 

maximum bias of an estimator, and S~/S(Fo) the implosion maximum bias of an esti­

mator, both being functions of e. 
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Finally, note that the dependence of the explosion and implosion maximum bias 

functions of an estimator on the ratio S(F)/S(FQ) is justified in terms of dispersion-

invariance (see [24], p. 134). 

The maximum bias function of an estimator includes its gross-error sensistivity (the 

slope of the curve at e = 0), and also the breakdown point, where the curve goes to 

infinity. The maximal bias curve is therefore an additional, and more complete, tool 

that can help to choose between competing estimators. For a small range of e, some use 

the gross-error sensitivity of an estimator as a linear approximation to the curve (check 

Hampel et al (1986) for a rule of thumb on values of e for which the approximation hold). 

2.2 Nuisance Parameter in the Location-Dispersion Problem 

In many cases, the underlying distribution of the population from which a sample is 

taken has more than one parameter. For example, the location-dispersion families have 

typically distributions of the form F(S^-), where —oo < 8 < oo,<7 > 0. If the interest is 

still to estimate only one parameter, then the other becomes a nuisance parameter. 

It must also be observed that typical M-estimators of location are in practice location 

invariant, but not dispersion invariant. Therefore, when estimating location, one needs 

to provide an M-estimator of dispersion as well. The unknown dispersion is, per say, a 

nuisance parameter. The same can be said about dispersion M-estimators: they are not 

location invariant, and thus need an ancillary location estimator. 

If %j> and x a r e the respective score functions of the M-estimators of location and 

dispersion, then the simultaneous equations defining them implicitly are 

and (2.5) 
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1 n ( X 

n 
Ex = 0 . (2-6) 
i=l 

From a finite-sample point of view, when estimating location with unknown dispersion, 

one would compute some M-estimate of dispersion, Sn, and then find the location es­

timate Tn using (2.5). If, on the other hand, one is interested in estimating dispersion 

when the location is unknown, then one would solve (2.6) for Sn, with some preliminary 

estimate of location Tn. In functional terms, the M-estimator of location T(F) with un­

known dispersion, and the M-estimator of dispersion S(F) with unknown location can 

be expressed implicitly by 

where So(F) and T0(F) are the asymptotic values of the initial estimator used for the 

nuisance parameter. 

Fortunately, if the underlying distribution F is symmetric, ip is odd and x 1S even, 

the location functional T(F) and the dispersion functional S(F) are independent: the 

asymptotic variance of T depends on 5" only through its asymptotic value S(F), and 

that of S(F) does not depend on T(F). More precisely, the influence functions of T and 

S, respectively IF(x; T, F) and IF(x; S, F) are: 

and 

IF(x; F, T) and 
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(Remember that T(F) = 0 when F is symmetric.) 

Under similar regularity assumptions as listed in the preceding section, the M-esti­

mators of location and dispersion defined by (2.5) and (2.6) have asymptotic normal 

distributions with variances equal to the expected squares of their influence functions. 

Therefore, when estimating location with unknown dispersion, one can choose the es­

timator of dispersion on criteria other than low variability, which enlarge considerably 

the set of possible candidates. Similarly, the asymptotic variability of an M-estimator of 

dispersion will not be affected by the estimate of the unknown location parameter, no 

matter which estimator is chosen. 

The maximum bias of an M-estimator of location with unknown dispersion is defined 

exactly as in the univariate setup. However, one must remember that T is defined 

implicitly as a function of S, which necessarily causes the bias of T to be affected by the 

bias of S in an e-contaminated neighboorhood such as V((Fo). Clearly, the maximum bias 

of T will be higher in presence of a nuisance parameter than with no nuisance parameter. 

Similarly, the maximum explosion bias of an M-estimator of dispersion with unknown 

location, defined as in the univariate setup, will be implicitly affected by the estimator 

of location, and increased accordingly. On the other hand, the maximum implosion bias 

is not affected by the estimate of the unknown location, compared to the implosion bias 

of the univariate estimator of dispersion. This is due to the fact that when S —> 0, the 

location estimate tends to the fixed value T(F0). 

Solving the non-linear equations (2.5) and (2.6) requires a numerical method, which 

may not be numerically feasible in some situations. One-step M-estimators have been 

proposed to solve this problem. The next chapter presents these estimators in the context 

of location and dispersion estimation with a nuisance parameter. 



Chapter 3 

One-Step M-Estimators 

3.1 General Idea of One-Step M-Estimators 

The computation of an M-estimator requires an iterative algorithm, since the estimator 

is defined implicitly by a non-linear equation. Moreover, the presence of a nuisance 

parameter adds an extra dimension to the problem, being itself the implicit solution of 

another non-linear equation. Indeed, in multiparameter problems, you can never be sure 

that a root exists until you find it: there is no bracketing-the-root-by-fancy-algorithms 

possible. The computation involved often proves to be difficult, as any iterative method 

can be subject to many problems. For example, the Newton-Raphson algorithm, often 

used in practice, will diverge if it encounters a local.extremum in its search of a root (see 

[28] p. 362 for a graphical explanation of this problem). 

Bickel (1975) suggested, as an alternative to the fully-iterated M-estimator, what he 

referred to as the one-step M-estimator. This estimator corresponds to the first iteration 

solution of the algorithm used to solve the non-linear equation defining the estimator, as 

Huber (1981) (section 6.7) further investigated. 

In the case where the objective is to estimate the parameter 6 of a distribution in the 

presence of a nuisance parameter, one would first choose preliminary estimates for both 

parameters. The nuisance parameter would then be considered fixed and equal to its 

preliminary estimate. To get the one-step M-estimator of 0, one would simply perform 

one iteration in the algorithm used to solve for the fully iterated M-estimator, starting 

21 
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from the preliminary estimate of 9 and considering the nuisance parameter as fixed. 

3.2 Estimation of Location With Unknown Dispersion 

Huber (1981) suggested to use the well-known Newton-Raphson method to solve the non­

linear equation defining an M-estimator. The one-step M-estimator is therefore obtained 

by performing one step in the Newton-Raphson method. 

Thus, in order to estimate the location parameter of the location-dispersion distri­

bution F, with unknown dispersion, one would choose initial estimates of location and 

dispersion, with respective asymptotic values To(F) and So(F). Since the Taylor expan­

sion of 

with respect to T(F), around TQ(F), begins with 

+ ... , 

the one-step M-estimator of location is defined, in functional terms, by 

T(F) = T0(F) + So(F) \*$* (3.8) 
-tjp"f) V S0(F) > 

This estimator will be hereafter called the Standard One-Step M-Estimator of Location. 

The functional notation is used here for simplicity. But in practice, we always deal 

with finite sample sizes. The finite-sample standard one-step M-estimator of location is 

given by 

Tn = T0" + -pL;J-, (3.9) 
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where TQ and SQ are the initial finite-sample estimates of location and dispersion, and 

Huber (1981) (p. 146) indicates that (3.9) converges to the exact value of the fully 

iterated M-estimator in a finite number of steps, provided the underlying distribution F 

is symmetric and tp is skew symmetric and piecewise linear. Of course, in practice, we 

deal with empirical cumulative density functions FN which are never symmetric. But we 

assume here that those cumulative density functions converge to symmetric distribution 

functions. The value of the denominator in the ratio defining the estimator (3.8) is not 

critical, and can be replaced by any constant greater than 1/2 as long as 0 < if)' < 1. 

However, as Hampel et al (1986) (p. 153) pointed out, for certain score functions ip 

(especially the redescending types) and certain samples, it may happen that the denomi­

nator ^ ICILi ^'C's"0 ) becomes extremely small (approximately equal to 0), which would 

destabilize the value of the estimator. To avoid this problem, Hampel et al (1986) have 

suggested replacing the denominator in the ratio by the constant E$ip'(z), where $ is 

the standard normal distribution. This constant is easy to calculate and never becomes 

0. It can also be seen as the smooth version of ^ £"=i ^'C's^ ) w n e n the underlying 

distribution F is normal. The normality assumption is often used in practice, but noth­

ing prevents one from assuming F is otherwise, and calculating the expectation with 

respect to that different underlying distribution. The modified version of the one-step 

M-estimator (3.8) is therefore given by: 

This estimator will hereafter be called the MOSME of Location, for Modified One-Step 

M-Estimator of Location. Its finite-sample version can be expressed as 

n is the sample size. 

T*(F) = T0(F) + S0(F) 

<*\n rpn i on 
0 ' 0 
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where Tg and SQ are the initial finite-sample estimates of location and dispersion, and 

n is the sample size. 

Hampel et al (1986) (p. 153) suggest the use of another estimator, the one-step W-

estimator, to avoid the problem of a small denominator. This thesis will however focus 

on the M O S M E and the standard one-step M-estimator of location, as they are more 

commonly used in practice. 

3.3 Estimation of Dispersion With Unknown Location 

The non-linear equation defining the fully iterated M-estimator of dispersion S(F) with 

unknown location, 

slightly differs from that of the M-estimator of location with unknown dispersion, in that 

the right-hand side constant, (3 = E$x{x), is greater than 0. It would be undesirable to 

have /3 = 0 since this would force S(F) to be equal to oo (assuming x(0) = 0). 

Taking advantage of the form of the expression (3.10), Huber (1981) (p. 147) suggested 

the use of the fixed-point iterative method to solve it for S(F). Actually, Huber used 

a particular case of (3.10), the one for which x = ^'i where ip was the score function 

defining the fully iterated M-estimator of the unknown location. That is, Huber wanted 

to make the location estimator defined by ip dispersion invariant. The fixed-point method 

can however be straightforwardly generalized for any x-

The one-step M-estimator of dispersion, Si(F), derived from the fixed-point compu­

tational algorithm can be expressed as 

(3.10) 
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[SQ(F)}2 

(3.11) 

where TQ(F) and So(F) are the limiting value of the preliminary estimators of location 

and dispersion. Note that the standard fixed-point method solves an equation of the form 

g(S(F)) = S(F), for a certain function g. The reason for solving instead S(F)g(S(F)) — 

S(F)2 is due to the fact that when x —> T0(F), the x function behaves generally like a 

second-order polynomial, and therefore S(F)g(S(F)) = S(F)2 EFX{X~^P) ^ EF(x -

To(F))2. The latter expression refers directly to the expression for the standard deviation 

as an estimator of dispersion. 

The finite-sample version of (3.11) can be expressed as 

where and SQ ave the initial finite-sample estimates of location and dispersion, and 

Yohai and Zamar in [34] (p. 407) have obtained T-estimators of dispersion by letting 

So(F) in (3.11) be an M-estimator of dispersion determined by a smooth function p±. 

The estimator S\{F), defined by (3.11), will therefore be hereafter called One-Step r -

Estimator of Dispersion. 

The fixed-point method for solving (3.10) is not the only one possible, of course. The 

Newton-Raphson method, as used in the setup of location estimation with unknown dis­

persion, can also be used. In fact, the fixed-point method is known to converge linearly, 

whereas the Newton-Raphson method, as a special case with an additonal constraint, 

converges quadratically (see [7], p. 62). To my knowledge, the Newton-Raphson method 

in the estimation of dispersion has never been fully studied, but it represents clear advan­

tages over the fixed-point method in terms of asymptotic behaviour of the estimator (refer 

n is the sample size. 
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to chapter 5 for more details). We therefore believe it is worth of some consideration. 

Thus, in order to estimate the dispersion parameter of the location-dispersion dis­

tribution F, with unknown location, one would choose initial estimates of location and 

dispersion, respectively referred to as TQ(F) and So(F). Since the Taylor expansion of 

the right-hand side of (3.10), with respect to S(F), around So(F), begins with 

S(F)-S0(F)E , (x-T0(F)\ (x-T0(F)\ , 
So{F) \ S0(F) ) \ S0{F) ) T ••• 

the Standard One-Step M-Estimator of Dispersion can be defined in functional terms by 

S1(F) = S0(F) + So(F) ' » f f ) ' - . P-12) 
FX \ So(F) )\ S0(F) ) 

The finite-sample version of the standard one-step M-estimator of dispersion is 

on qn , qn " '-'o (n 1 Q\ 

where Tg and Sfi are the initial finite-sample estimates of location and dispersion, and 

n is the sample size. 

For the same reasons explained in the location setup, it may happen, for certain x 

functions and certain samples, that the denominator in the ratio of (3.13) gets danger­

ously close to 0 and strongly affects the estimate. In this case, the MOSME of Dispersion 

may represent a better choice of estimator, where the M O S M E of dispersion is asymp­

totically defined as 

TP J X-T0(F)\ _ Q 

S\F) = S0(F) + S0(F) " E ^ Z ) Z • (3-14) 

Its finite-sample definition is 
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where and are the initial finite-sample estimates of location and dispersion, and 

n is the sample size. 

3.4 The First Step Is a Big Step 

The obvious advantage of one-step M-estimators is their ease of computation, compared 

to their fully iterated versions. Moreover, the asymptotic properties of one-step M -

estimators make them very attractive. For. example, it is known that the standard 

one-step M-estimator of location is asymptotically equivalent to the fully iterated M -

estimator, provided the underlying distribution F is symmetric, if> is odd and most of 

all, To is consistent, translation invariant and odd. To is said to be translation invariant 

and odd if 

T0(FX+C) = T0(FX) + c, 

and 

. T0(F-x) = -To(Fx). 

In this thesis, we will focus on the following robustness properties of one-step M -

estimators: their breakdown point (the fraction of contamination causing complete dis­

aster), their influence function (which describes the effect of an infinitesimal contami­

nation) and their worst-case bias (which describes how much the estimators can change 

with a fraction e of contamination). 

It can be shown (see Rousseeuw and Croux in [31]) that the breakdown point of one-

step M-estimators is equal to that of the initial M-estimators used in their computation. 
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Selecting very robust initial M-estimators is thus strongly recommended. For example, 

the median and the median absolute deviation (MAD), as estimates of location and dis­

persion respectively, have 50% breakdown point, the highest possible. This makes them 

excellent candidates for preliminary estimates of location and dispersion of a distribution. 

On the other hand, many estimators with a high breakdown point have very low 

asymptotic efficiency (63.7% for the median in the univariate location problem, and 

36.7% for the M A D in the univariate scale model). However, one-step M-estimators, 

while inheriting the breakdown point of their initial estimators, will generally show an 

improvement over the asymptotic efficiencies of their initial estimators, because they 

approach the fully iterated M-estimators, which are usually by definition more efficient. 

Unfortunately, as Rousseeuw and Croux (1993a) have shown, increasing efficiency 

does not come without compromise. The authors treat the problems of univariate loca­

tion estimation and univariate dispersion estimation, that is, estimation of location and 

dispersion when the nuisance parameter is known. In the former, they use the univariate 

equivalent of our M O S M E of location, while they use the univariate equivalent of our 

T-estimator of dispersion in the latter. Rousseeuw and Croux (1993a) show that the 

maximum bias of these one-step M-estimators is higher than that of their initial estima­

tors. The increase in bias is especially strong in the dispersion setup. However, because 

only one iteration in the computational algorithm is performed when deriving one-step 

M-estimators, the increase in worst-case bias is perceived as a good compromise for the 

increase in efficiency. 

Rousseeuw and Croux (1993a) treat in general &-step M-estimators, for k > 1. They 

show that it is possible to obtain an arbitrarily high efficiency, while maintaining a 50% 

breakdown point, through a fc-step M-estimator, for a fixed finite k (which corresponds 

to performing k steps in the algorithm used to solve for the fully-iterated M-estimator, 
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starting from a preliminary estimator with 50% breakdown point). Notice that under the 

Gaussian model, the univariate one-step M-estimator of location has already the same 

asymptotic efficiency as the fully-iterated M-estimator. Therefore, taking further steps 

will not increase the efficiency of the &-step M-estimator: Rousseeuw and Croux (1993a) 

show that it is equal to the efficiency of the fully-iterated M-estimator of location, for any 

k. The authors nevertheless consider A:-step M-estimators of location for k > 1 in view of 

possible improvements on their quantitative robustness properties. However, Rousseeuw 

and Croux (1993a) show that as the efficiency of the estimator goes up (as k increases), 

its maximum bias will also go up. In the univariate location case, the bias increases only 

slightly with k. Unfortunately, in the univariate dispersion problem, the maximum bias 

explodes rapidly with k, which does not justify, in the authors' opinions, the increase in 

efficiency. Based on these findings, they believe small values of k (k = 1 or k = 2) are 

preferable, especially for multiparameter problems (which typically contain a dispersion 

component). This has driven the choice to focus this thesis on one-step M-estimators. 

The purpose of this thesis is to extend the work by Rousseeuw and Croux (1993a). It 

will consider the more realistic situations with nuisance parameters: estimation of loca­

tion with unknown dispersion and estimation of dispersion with unknown location. The 

emphasis will be put on the MOSME's presented earlier in this chapter for the above 

models, because they have never been studied to the extent they deserve. To follow 

Rousseeuw and Croux's steps, we will derive the maximum bias of the M O S M E for the 

two models of interest, and compare them to that of the standard one-step M-estimators 

and the r-estimators when applicable. To further complete the study, we believe the 

asymptotic efficiency of an estimator also provides important information about its be­

haviour, even though Rousseeuw and Croux quickly mentioned it, and only for the normal 

distribution as the underlying distribution. The asymptotic efficiency of the M O S M E will 
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be derived from its influence function, under some regularity conditions, and for different 

types (heavy-tailed, normal, light-tailed) of distributions. The asymptotic efficiency of 

the M O S M E will then be compared to that of the oether one-step M-estimators. To 

draw a more complete parallel with Rousseeuw and Croux (1993a), the same preliminary 

estimators of location and dispersion, the median and the (normalized) M A D , will be 

used. We believe, in any case, that they represent an excellent choice of preliminary 

estimators. 

The next two chapters treat independently the two problems of interest: estimating 

location with unknown dispersion, and estimating dispersion with unkown location. Each 

chapter will first look at the asymptotic efficiency of one-step M-estimators, then at their 

worst-case bias. 



Chapter 4 

Location Estimation with Unknown Dispersion 

4.1 Introduction 

Let Xi, ...,Xn be a sample from a population with distribution F in the location-dispersion 

dispersion parameter a is unknown. 

Given a score function an M-estimator of location is the solution Tn of the equation 

where Sn is a robust estimate of the dispersion parameter a. It can be shown that, 

under mild regularity conditions, Tn converges a.s. [F] to T(F), the functional implicitly 

defined as the solution of 

where S(F) is the asymptotic value of Sn. We will therefore adopt the functional notation 

in the discussion below. 

Computing an M-estimate of location requires the use of an iterative method, such as 

the Newton-Raphson algorithm, as we must solve the nonlinear equation (4.15). Huber 

(1981) suggested, as an alternative, to use the estimate found by performing only one 

iteration in the algorithm, starting with initial estimates of location and dispersion. With 

family {F(x) : F(x) = F(^-)}. The objective is to estimate the location 6, when the 

(4.15) 

(4.16) 

31 
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the underlying distribution F, the Standard One-Step M-Estimator of Location, derived 

from the score functions I/J, can be formally defined by the functional 

where To(F) and So(F) are asymptotic values of the initial estimators of location and 

dispersion. By replacing the distribution F by the empirical distribution Fn, it is therefore 

possible to get a finite-sample estimator for the location parameter 6. 

However, for certain score functions tp and certain samples, it may happen that the 

finite-sample version of the denominator Epij)'(x~^) becomes 0 or dangerously close to 

0. To avoid this problem, Hampel et al (1986) suggested the following modified version 

of the standard one-step M-estimator of location: 

which will be denoted hereafter the MOSME of Location (Modified One-Step M-Estimator 

of Location). 

The standard one-step M-estimator of location has essentially the same asymptotic 

behaviour as its fully-iterated version, at least when F is symmetric, %j) is odd and To is 

consistent, translation invariant and odd. Our main interest is to study the asymptotic 

behaviour of the MOSME as a means of comparison with the standard one-step M-

estimator of location. More specifically, the asymptotic efficiency at different models and 

the maximum asymptotic bias of both estimators will be compared. 

T*{F) = T0{F) + S0(F) 
EF^( 

E^'(z) 
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4.2 Asymptotic Efficiency of the M O S M E of Location 

4.2.1 Our Choice of Underlying Distributions and of Score Functions 

The study developed in section 4.2 will include a set of eleven underlying distributions 

F and three different score functions ip. 

The discussion in section 4.2 assumes that the underlying distribution F is symmet­

ric. Interesting cases for F include heavy-tailed distributions, which attempt to model 

samples with outliers. To further make a parallel between the theory related to the 

asymptotic efficiency of the M O S M E and its maximum bias, one case of the contami­

nated normal distribution will be considered. Finally, two light-tailed distributions will 

also be used, to illustrate the adaptative property of the M O S M E to various situations. 

More specifically, the distributions of interest are: the normal distribution, the Stu­

dent's t distribution with 1, 2, 5, 8, 10, 20 degrees of freedom, the double exponential 

distribution, a contaminated standard normal distribution, with 5% of outliers with dis­

tribution N(6,0.01) and another 5% with distribution N(—6, 0.01), and two distribu­

tions with lighter tails, that is, a symmetrized Beta distribution (a = j3 = 10) and the 

distribution with density f(x) — 0.5516313254exp(—a;4). 

In order to compare the asymptotic variances of our estimators at these distributions, 

it was decided to normalize the distibutions so that their interquartile range would all 

be equal to the standard normal interquartile range, 1.349. This normalization implied 

scaling each distribution with a factor do, so that the density associated with the central 

distribution F is actually ^ • / e = 0 ( T _ 1 ( ^ - ) , and not fe=o,a=i{x). See Appendix A for the 

scale factors do necessary to make each of the above distributions have an interquartile 

range equal to 1.349. 
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We are however aware that the normalization is not needed if we compare the effi­

ciencies of the estimators instead of their variances, which we actually do. Indeed, an 

efficiency is by definition the ratio of asymptotic variances, and the asymptotic variance 

under F(-^) is equal to cfy times the asymptotic variance under F(x). Therefore, the 

efficiency calculations are independent of the normalization factors. However, the nor­

malization greatly simplifies the calculations when the initial estimator of dispersion in 

the one-step calculation is chosen to be the M A D , as will later be shown. This is the 

reason why we have adopted this procedure. If one nevertheless prefers to compare the 

asymptotic variances of the estimators, instead of their efficiency, the material provided 

in this thesis will enable that person to do so. 

To further illustrate the behaviour of the M O S M E , the following three score functions 

ip will be used: 

1.345 |x| < 1.345 
(4.17) 

( sign(x) |x| > 1.345 

tpNcDF(x) = 2${x)-l, (4.18) 

and 

x(4.72-x2)2 \x\<4.7 

0 1x1 > 4.7 
(4.19) 

They will respectively hereafter be called #1.345, NCDF and T4.7. The first two score func­

tions are monotone non-decreasing, whereas the third is redescending. The score function 

#1.345 was initially proposed by Huber (1964) who showed that it is asymptotically min-

imax for F = $, within the class of location estimators with general dispersion. The 
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Score Function tj) E^'(z) 

#1.345 0.6106876 
NCDF .5641896 

T4.7 370.4275608 

Table 4.2: The Value of the Constant Denominator, E^tp'(z), in the Ratio Defining the 
Three MOSME's of Location Under Study 

choice of the constant 1.345 makes the estimator #1.345 95% efficient under the normal 

model. As will be seen later, NCDF is also 95% efficent when the underlying distribution 

is normal. The score function T4.7 is an example of Tukey's biweight function. The choice 

of the constant 4.7 makes the estimator T4.7 95% efficient under the normal model. 

Note that the constant denominator, E^ijj'(z), in the ratio defining the M O S M E can 

be easily calculated when the score functions 0 are determined. Table 4.2 provides those 

constants. Notice that the score functions (4.17) and (4.18) are normalized to have a 

maximum of 1. The score function in (4.19) is not. This explains the big difference in 

the values of the constants in Table 4.2. 

4.2.2 The Asymptotic Variance of the Standard One-Step and the Fully-

Iterated M-Estimators of Location 

In order to study the behaviour of the M O S M E of location, it is of interest to compare 

its asymptotic variance to the asymptotic variance of the standard one-step M-estimator. 

But the latter is equivalent to the asymptotic variance of the fully iterated M-estimator 

of location, provided that the initial estimator of location, To, is consistent, translation 

invariant and odd, and that the underlying distribution F is symmetric and the score 

function if) is odd. These last assumptions shall be used throughout this chapter, in view 

of the simplification they bring to the problem. 
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Huber (1981) (pp. 140-141) shows that the influence function of the standard one-step 

M-estimator and of the fully iterated M-estimator of location is, under our assumptions, 

IF(x-T,F)= ' b/(

KSf\\ (4.20) 

where So(F) is the asymptotic value of the initial estimator of dispersion. Remember 

that T0(F) — 0 when F is symmetric. Note that the above influence function (4.20) is 

directly proportional to the score function tp defining the estimators. 

If we take the initial estimator of dispersion to be the normalized M A D , with asymp­

totic value 

Med(|X|) 
S o [ F ) ~ $-H3/4) ' 

then So(F) — 1 for all the distributions of interest presented in section 4.2.1. This is due 

to the normalization factor do (see Appendix A) which makes the interquartile range of 

each distribution equal to 1.349. 

With this choice of initial estimator of dispersion, the asymptotic variance of the 

standard one-step M-estimator of location, and so of the fully iterated M-estimator of 

location, simplifies to 

W W 

under mild regularity conditions. 

4.2.3 Asymptotic Variance of the MOSME of Location 

Appendix B provides the complete derivation of the influence function of the M O S M E 

of location. In the general non-symmetric case, it is equal to 
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IF{x-T\F)= I F ( X ] T 0 , F ) { l - ^ } + 

mx;So,F){§f^-^0^} + 

m * - , T , F ) { § ^ } - S 0 § $ $ , 

where To = TQ(F) and So = So(F) are the asymptotic values of the initial estimators 

of location and dispersion, y = v g0°, IF(x\To, F) and IF(x; SQ,F) are the influence 

functions of the initial estimators of location and dispersion, and IF(x; T, F) is the 

influence function of the standard (or the fully iterated) one-step M-estimator of location. 

However, it is possible to simplify the above expression with appropriate conditions. 

P ropos i t ion 1 Assume To is consistent, translation invariant and odd. Assume that ip 

is odd, bounded, differentiable except in at most a finite number of points, and equal to 0 

at 0. If F is symmetric, then 

IF{x; T*, F) = (1 - a) IF(x; T 0 , F) + a IF(x; T, F), 

where a = § J $ M 

The conditions of Proposition 1 are needed for the standard one-step M-estimator of 

location to have the same influence function as the fully iterated M-estimator. The most 

important condition is the symmetry of F, which greatly simplifies our problem since 

it makes the influence function of the M O S M E of location independent of the initial 

estimator of dispersion. The conditions on the score function ij) are minimal regularity 

conditions that most score functions used in practice will satisfy. 

Note that the influence function of the M O S M E illustrates its adaptative behaviour. 

When the underlying distribution F is approximately normal, the constant a becomes 

close to 1, and the M O S M E behaves like the more efficient standard one-step (fully 
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iterated) M-estimator. On the other hand, the further away F is from normal, the 

further away a is from 1, and the more impact the initial (robust) estimator of location 

has on the behaviour of the M O S M E . 

On can use a Taylor series expansion, under mild regularity conditions, or the heuris­

tic formula V(T*,F) = Ep{IF(x;T*, F)}2 to obtain the asymptotic variance of the 

M O S M E , V(T*,F). In either case, we find that 

V(T\ F) = EF{(1 - a)IF(x;T0, F) + aIF{x-T, F)}2. 

Note that the asymptotic value of the initial estimator of location, To(F), is 0, since 

all the distributions are symmetric. It is however important to choose a robust initial 

estimator of location when using the M O S M E or the standard one-step M-estimator. 

The median is strongly recommended in the literature. Its influence function is 

when it is assumed that its asymptotic value is 0. Hampel et al (1986) have moreover 

shown that the influence function of the median has the sharpest bound for any loca­

tion estimator, thus the smallest gross-error sensitivity. The asymptotic variance of the 

median is 1/4/(0) 2. 

As in the preceding section on the standard one-step M-estimator of location, we 

recommend the use of the normalized M A D as the initial estimator of dispersion. It 

is asymptotically equal to 1 for all distributions F under study, by the choice of the 

normalization factors do. 

4.2.4 The Asymptotic Variance of the M L E 

In order to calculate the efficiency of the M O S M E and the one-step M-estimator of loca­

tion, it is necessary to find the asymptotic variance of the maximum likelihood estimator 
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Distribution F V(MLE, F) 
double exponential 0.9455161 

contaminated normal 0.0713725 
t(l) 0.909873 
t(2) 1.1356899 
t(5) 1.1470014 
t(8) 1.1127178 
t(10) 1.0962449 
t(20) 1.0543198 

normal 1.0000000 
symmetrized beta 0.9233088 

0.55exp(-a;4) 0.5367305 

Table 4.3: Asymptotic Variance V(MLE,F) of the MLE for Different Underlying Distri­
butions F 

of location, for each underlying distribution F. 

The MLE of location is defined through the score function ^ M L E W ~ ~f'(x)/f(x)-

The MLE, consistent for the location 9, possesses the smallest asymptotic variance pos­

sible, namely the inverse of the Fisher information. That is, the asymptotic variance of 

the M L E is V(MLE, F) = E r { ^ w 

Table 4.3 gives the asymptotic variance of the MLE, y (MLE , i ? ) , for the different 

distributions under study. Note the strikingly small asymptotic variance of the M L E for 

the contaminated normal distribution, which is equivalent to a very large value of the 

Fisher information. When integrating {f'(x)/f(x)}2 to obtain this Fisher information, 

the two contaminations centered on x — ±6 cause the integral to increase significantly 

over values of x greater than 5 or smaller than -5. The contaminated normal is the only 

distribution in Table 4.3 which is not unimodal. 
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Distribution 
F Med 

MOSME Standard One-Step Distribution 
F Med #1.345 NCDF T4.7 #1.345 NCDF T4.7 

dble exp 1.000 0.735 0.742 0.747 0.698 0.718 0.695 
cont normal 0.047 0.060 0.058 0.080 0.060 0.058 0.080 

t(l) 0.811 0.620 0.609 0.781 0.569 0.571 0.716 
t(2) 0.833 0.876 0.870 0.930 0.857 0.856 0.904 

. t(5) 0.769 0.992 0.993 0.987 0.990 0.992 0.984 
t(8) 0.731 0.996 0.999 0.987 0.996 0.999 0.987 
t(10) 0.716 0.993 0.996 0.984 0.993 0.997 0.985 
t(20) 0.680 0.978 0.983 0.942 0.979 0.983 0.946 

normal 0.637 0.950 0.950 0.950 0.950 0.950 0.950 
sym beta 0.581 0.902 0.906 0.910 0.901 0.905 0.908 
exp(—x4) 0.300 0.669 0.631 0.666 0.644 0.616 0.643 

Table 4.4: Asymptotic Efficiency of the MOSME and the Standard One-Step 
M-Estimator of Location (Equivalent to That of the Fully-Iterated M-Estimator), De­
rived from Different Score Functions if; and for Different Underlying Distributions F. 
The Asymptotic Efficiency of the Median, the Initial Estimator of Location, is Provided 
for Comparison Purposes. The Normalized MAD is Used As an Initial Estimator of 
Dispersion. 

4.2.5 Asymptotic Efficiency of the M O S M E Compared to That of the Stan­

dard One-Step (or Fully-Iterated) M-Estimator of Location 

Table 4.4 presents the asymptotic efficiency of the MOSME and the one-step M-estimator 

of location (equivalent to that of the fully iterated M-estimator), derived from the three 

score functions (4.17), (4.18) and (4.19), for the different distributions F under study. 

The asymptotic efficiency of the initial estimator, the median Med, is also given in Table 

4.4, as a mean of comparison. 

In view of Table 4.4, it can be concluded that the MOSME of location does not 

have the same asymptotic properties as the fully- iterated M-estimator, contrary to the 

one-step M-estimator of location under our assumptions. 
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In fact, for the three score functions # 1 . 3 4 5 , NCDF and T 4 . 7 , it appears that the 

efficiency of the M O S M E is always greater than, or comparable, to that of the standard 

one-step M-estimator, and hence to that of the fully-iterated M-estimator, at least for 

the underlying distributions F selected. This improvement is especially present in the 

case of very heavy-tailed distributions, which puts the M O S M E at an advantage over 

the other estimators when the sample contains outliers. The M O S M E , the standard 

one-step and the fully-iterated M-estimators of location seem approximately equivalent, 

in terms of asymptotic efficiency, for underlying distributions F approaching the normal 

distribution. 

Table 4.4 also suggests that a M-estimator derived from the T 4 . 7 score function shows 

a greater efficiency than the one derived from the # 1 . 3 4 5 and the NCDF score functions, 

in presence of very heavy-tailed distributions (t(l), t(2) and contaminated normal). The 

NCDF score function behaves slightly better than the # 1 . 3 4 5 score function, which itself 

behaves slightly better than T 4 . 7 , for distributions approaching the normal distribution 

(t(5), t(8), t(10) and t(20)). For the very light-tailed symmetrized beta distribution, the 

T 4 .7 score function gives the highest efficiency, followed by NCDF and then # 1 . 3 4 5 . In the 

case of the light-tailed 0.55exp(—x4), # 1 . 3 4 5 and T 4 . 7 have comparable efficiencies, slightly 

higher than NCDF'S- For the double exponential underlying distribution, things are not 

so clear. The NCDF score function is superior to # 1 . 3 4 5 and T 4 . 7 when using the fully 

iterated M-estimator. However, the three score functions are roughly equivalent when 

the M O S M E is used. 

Therefore, because the presence of outliers is the main problem when estimating 

location, I would recommend using the M O S M E derived from the T 4 . 7 score function to 

estimate the location of a distribution with unknown dispersion. 
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4.3 Maximum Bias of the MOSME of Location 

Let Xi,..., Xn be a sample from a population with distribution F in the contamination 

neighboorhood 

VT(F0

6'A) = {F : F = (1 - e)F0

E'(R + e#, H arbitrary distribution}, 0 < e < 1/2, 

where the central distribution F Q

E , A belongs to a location-dispersion family, that is, 

u 

The arbitrary distribution H generates the outliers that can be present in the sample, 

and it will invariably affect the estimation of the location parameter. Moreover, we set e 

less than 1 /2 because it would otherwise be impossible to distinguish between the central, 

FQ9'", and the arbitrary, H, distribution. 

The maximum bias function 

BT*(e) = sup \ T * ( F ) - 9 \ , 
Fev€ 

as briefly introduced by Hampel et al (1986) (pp. 176-177), can be used to measure 

the asymptotic robustness of the M O S M E of location as a function of the fraction e 

of contamination. Note that we can take 9 = 0 without loss of generality because the 

estimate T*(F) is translation invariant. 

The following compares the maximum bias of the M O S M E , the standard one-step and 

the fully-iterated M-estimators of location in two distinct situations: when the score func­

tion if) is monotone non-decreasing (as #1 .345 and NCDF are), and when if) is redescending 

(as is T 4 . 7 ) . 
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4.3.1 Monotone Non-Decreasing Score Functions 

Let the distribution Foo be a point mass contamination at infinity, obtained when H = 

6oo. We shall hereafter concentrate on the normal central distribution Fo'a = $ in the 

neighboorhood Vt. 

Propos i t ion 2 Assume ip is monotone non-decreasing, bounded and odd. Let S~(e) = 

mfFev£ So(F), S+(e) = supFeVe So(F), and B(e) = supFey€ \TQ(F)\. Assume we can 

interchange integration and derivation, that is d/dt{E^(Ej^)} = —^E^'(^-) and 

E*ip'(x) — l-e> 

Vi in [-B(e), B(t)], for fixed s in [5~(e), 5+(e)] 

and 

E^{»-f)-E^X^){*-f)>-^, 

\/s in [S~(e),S+(e)], for fixed t in [-B(e), B(e)], 

then 

sup T*(F) = r(Foo), 
Feve 

where = (1 — e)$ + e60 

Proof: We clearly always have that s u p F e V e T*(F) > T*(F 0 0 ) . 

Moreover, Ve < 1/2, 

sup f *-?o(fV 
™PFevJ*(F) = T0(F) + S0(F) ^ ) 

(4.21) 

(4.22) 
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Fe {{l-e)$ + eH} 

F G {(1 - e)$ + eH} I * < M ; 

sup 

- - £ ( e ) < t < 5(e) Y + s ^ 7 7 ^ 

5"(e) < s < S+{e) 

= T*(Foo) . 

The first equality is simply the definition of T*(F). By definition of VE, it is possible 

to write Epipi^-^pp-) as the sum of two terms, as states the second equality. Since tp 

is bounded, we can assume without loss of generality that supxtp(x) = 1. Thus E}jip is 

always less or equal to 1, which gives the third line. 

The function which is to be maximized on the third line does not depend on the 

distribution H anymore. In fact, it can be regarded as a function of two arguments, T0(F) 

(or t) and So(F) (or s). Following the work of Martin and Zamar in [26], if e < 1/2, then 

T0{F) and S0(F) are bounded as in the fourth line. That is, S~{e) < S0{F) = s< S+(e), 

and -B(e) < T0(F) = t < B(e). 

Assuming the conditions (4.21) and (4.22) hold, the function to be maximized in 

the fourth line is increasing in TQ(F) = t, for all fixed S~(e) < SQ(F) = s < S+(e), 
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when —B(e) < TQ(F) = t < B(e), and it is increasing in So(F) = s, for all fixed 

-B(e) < T0(F) = t < B(e), when S~(e) < S0(F) = s < S+(e). Therefore, we directly 

get the fifth line, which is by definition T*( JF 0 0). 

Hence, we have shown that supFey€T*(F) = T*(F00), when the central distribution 

F0

e'cr is normal. • 

Analytical derivations, combined with numerical calculations, have shown that the 

#1.345 and the NCDF score functions satisfy the above conditions (4.21) and (4.22), when 

the median and the (normalized) M A D are used as preliminary estimates of location and 

dispersion. 

The conditions were rewritten for the two specific cases of #1.345 and NCDF score 

functions, and evaluated over a finite and equally-spaced 21x21 grid, covering the range 

of possible t and s values. For a fixed e, the maximum value of the (normalized) M A D , 

S+(e), is produced by a point mass contamination at infinity, and such contamination 

also produces the maximum value B(e) of the location estimator. The minimum value 

of the (normalized) M A D , S~(e), is produced by a point mass contamination at 0, and 

such contamination also produces the minimum absolute value of the location estimator, 

0 (see Martin and Zamar.(1989)). More specifically, the value for B(e) can be explicitly 

written as $~1(2(i-e))- It is the value T(F) which satisfies (4.16) for the median score 

function XMed(x) = sgn(x) and F = F^. The bounds S+(e) and S~(e) are the implicit 

solutions of 

(1 - e)MB(e) - 5' +(e)$- 1(3/4)} + 1 - ${#(e) + 5 , + (e)$- 1(3/4)}] + t = 1/2, 

and 

(1 - e)[${-5-(e)$- 1(3/4)} + 1 - ${5"(e)$- 1(3/4)}] = 1/2. 
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That is, S+(e) satisfies EFOOXMAD(X

S+$) = 1/2 and S (e) satisfies EFOXMAD{^J^) = 

1/2, where the M A D score function is XMAD{X) = l/2{sgn(|a;| - $ _ 1 (3/4)) + 1} (see 

chapter 5 for more details about score functions of dispersion estimators) and Fo = 

(1 - e)$ + e60. 

For all e < 1/2 used, the conditions (4.21) and (4.22) were always met. So, even if 

those conditions seem somewhat restrictive, it is believed that many often used monotone 

non-decreasing, bounded and odd score functions tfi satisfy them. 

A lower bound for the maximum bias of the fully iterated location M-estimator is 

T(F00), ie the positive solution t of the non-linear equation 

- E ^ ( X - ^ E 

S+(e)J 1 - e ' 

for a fixed e. 

Moreover, if we assume that the score function ip is monotone non-decreasing, bounded 

and odd, then we have a lower bound for the bias of the standard one-step location M -

estimator, Ti(F), given by T^F^), where 

(1 - e)E^(^^) + e 
T x ^ c o ) = B{e) + S+(e)- ' S { t ) J ( , • 

( i - W ( ^ ) 

It is therefore possible to compare, in terms of maximum asymptotic bias, the M O S M E 

with the standard one-step M-estimator, as well as with the fully iterated M-estimator 

of location. 

Figures 4.1 and 4.2 show the maxbias curve of the M O S M E and a lower bound for 

the maxbias curves of the one-step M-estimator and the fully iterated M-estimator of 

location, derived from the #1.345 and the NCDF score functions. In both cases, the 

M O S M E shows a smaller maximum asymptotic bias than the one-step M-estimator and 

the fully iterated M-estimator, Ve < 1/2. Note that the improvement by the M O S M E 
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over the one-step and the fully iterated M-estimators of location is especially striking 

with the #1.345 score function. 

The maximum bias for the three types of M-estimator was also calculated, using 

Huber's score function with different values of index, ranging from 0.5 to 1.75. Similar 

results as those with the #1.345 score function were obtained; the bigger the value of 

the index, the better the improvement by the M O S M E , compared to the one-step and 

the fully iterated M-estimators of location. Hence, the M O S M E clearly shows improved 

asymptotic robustness over the standard one-step M-estimator, as well as the fully iter­

ated M-estimator of location. 

4.3.2 Redescending Score Functions 

As in the previous section, let's concentrate on the normal central distribution F0

e,(r = $ 

in the neighboorhood Ve. 

It is possible to obtain a lower bound on the maximum bias of the M O S M E , the 

standard one-step and the fully iterated M-estimators of location when the score func­

tion used in their definition is redescending, as for example the T4 .7 score function is. 

Indeed, let x* = 2.1 be the value at which T4 .7 is maximized. Let be the point mass 

contamination at x*, obtained in the neighboorhood Vt when # = 8*. Then, T*(Ftf), 

Ti(F*) and T(F*) ave lower bounds on the maximum bias of respectively the M O S M E , 

the standard one-step and the fully iterated M-estimator of location. 

To obtain T*(F*), Ti(F*) and T(F*), we must first determine what the initial esti­

mators of location and dispersion, the median and the normalized M A D , become as a 

function of e at F*. For any e < 1/2, the median at F+ is the value #(e) which satisfies 
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where S+(e) is the normalized M A D at F* and ipMed is the score function defining the 

estimator Med. It turns out that we can explicitly write B(t) — (2(1-0) w n e n e is 

approximately equal or less than 0.49. 

The normalized M A D at F* is the value S+(e) which satisfies 

**•*»«> ^ w ) =1/2' 

where B(e) is the median at F* and ipMAD is the score function defining the normalized 

M A D . It turns out that for e approximately equal or less than 0.30, S+(e) satisfies more 

precisely 

(1 - e ) [ $ { £ ( e ) - 5 +(e)$~ 1(3/4)} + 1 - ${5(e) + 5 +(e)$" 1(3/4)}] + e = 1/2. 

Therefore, for e approximately equal or less than 0.30, a lower bound for the maximum 

bias of the M O S M E defined with the score function T4.7 is 

T*(Fm) = B(e) + S+(e) 
(1 - e ) F ^ r 4 , 7 ( ^ ) + £ 0 r 4 , ( ^ l ) 

Similarly, we have a lower bound on the maximum bias of the standard one-step M -

estimator of location: 

T1(F*) = B(e) + S+(e) 
( l - e W T , 7 ( ^ ) + ^ T 4 7 ( ^ l ) 

(1 - W U ^ ) + ^ U 2 ^ ) " 

Finally, a lower bound on the maximum bias of the fully iterated M-estimator of location 

is the positive solution t of 

which can be more precisely written as 

(1 - e)E*ipTl.T ( ^ r r r ) + e ^ T 4 . r ^ ^ S+(e)J ' \S+(e) 
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Figure 4.3 shows the lower bounds on the maximum bias of the M O S M E , the stan­

dard one-step and the fully iterated M-estimators of location, defined through the non-

redescending score function T4 . 7 . It appears that for small fraction of contamination e 

(e < 0.12), the three estimators are equivalent in terms of maximum bias. For medium 

e (0.12 < e < 0.30), the standard one-step and the fully iterated estimators are non-

distinguishable and appear to have a slightly lower maximum bias than the M O S M E . 

However, this cannot be ascertained for a fact, as the figure shows only a lower bound on 

the maximum bias. However, the redescending nature of the Tukey score function, which 

discards the contribution of very large values of x, may makes it superflous to change 

the denominator in Si(F) to get the M O S M E of location. This would explain possible 

higher bias of the M O S M E compared to the standard one-step M-estimator of location. 

4.3.3 A n y Type of Score Funct ion 

It was shown in section 4.3.1 that the maximum bias of the M O S M E is uniformly lower 

than that of the standard one-step or the fully iterated M-estimator of location defined 

through a monotone non-decreasing score function. When a redescending score function 

is used, the M O S M E is equivalent to the other two estimators for small fraction of 

contamination e, as section 4.3.2 presented. Therefore, it is possible to now focus our 

attention to MOSME's only, especially when e is small. 

When using the M O S M E of location, one needs to decide which score function to select 

in its definition, so as to minimize its maximum bias. Figure 4.4 shows the maximum bias 

of the M O S M E of location defined through the #1.345 and the NCDF score functions, and 

a lower bound for the maximum bias of the T4.7 M O S M E of location. It is impossible 

to conclude anything when e > 0.12, but for small fraction of contamination, Figure 

4.4 shows that the Huber score function has the lowest maximum bias, followed by the 
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Tukey score function, and then NCDF- For larger e, the Huber score function should be 

preferred to the NCDF score function. 

4.3.4 Further Work to Be Done 

The work about asymptotic robustness was developed for one specific case of central 

distribution FQ9,(7 in the neighborhood of VC: the normal distribution More calculations 

need to be done for different central distributions FQ9'", as for example, the ones used in 

the asymptotic efficiency section (4.2) of this text. 

Finally, it remains to be seen whether the asymptotic properties of the M O S M E and 

the standard one-step M-estimators studied in this section reflect on their finite-sample 

performance for small and medium sample sizes. This could be assessed with Monte-Carlo 

simulations, for example. 

4.4 An Example: Hummingbirds 

In asymptotic terms, the M O S M E of location performs better than the standard one-step 

M-estimator and the fully iterated M-estimator of location. However, how well do they 

handle finite data sets? 

Figure 4.5 present the bar plots of flying times (in seconds) of four types of hum­

mingbirds: adult females (AF), adult males (AM), junior females (JF) and junior males 

(JM). During 15 minutes, each bird was put in a cage containing two perches 0.5 meter 

apart. A red light above the perches alternatively flashed so as to indicate to the bird 

to fly towards it (the birds were previously trained to react to flashing red lights in that 

manner). The time for the bird to fly from one perch to the other (in seconds) was 

recorded. It is believed to be a measure of the agility of the birds. Hummingbirds can 
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fly for long periods of time without rest. In 15 minutes, a bird typically flew 200 times 

from one perch to the other. 

A close look at Figure 4.5 shows that some bird wandered around before hitting the 

flashing perch, during some of their flights, introducing extreme outliers in their flying 

times. On the other hand, for other birds, it is difficult to determine whether a high flying 

time was due to wandering or if it effectively represents the bird's performance. For that 

reason, the researcher who provided the data set was interested in using a measure of 

location to describe the distribution of flying times for each bird that would be resistant 

enough to possible outliers, while allowing for flexibility if long flying times of a bird are 

normal. She hesitated between using the median and the mode. Our M O S M E of location 

provides an interesting alternative. 

Table 4.5 shows the estimated value of different location measures for the distribu­

tion of flying times of all 16 hummingbirds, that is, their means, medians, MOSME's 

and standard one-step M-estimates of location. The standard one-step M-estimates are 

shown; note however that the estimates obtained with the fully iterated M-estimator of 

location are roughly equal, up to the third decimal place, except for the adult female 2, 

which has an extreme outlier. 

Many observations can be drawn from Table 4.5. In general, the MOSME's and the 

standard one-step M-estimates of location are roughly equal, except in the cases of A F 

2, A F 4, JF 1, JF 2 and J M 3 hummingbirds, depending on the score function used. 

These particular birds have extreme outliers or a very heavy tail. Their MOSME's are 

closer to the median than the standard one-step M-estimates, which illustrates the special 

adaptative nature of the M O S M E of location. 

Notice as well that the Tukey score function appears to be conservative, compared 

to #1.345 or NCDF-, in the robustness sense of the term. The MOSME's or the standard 
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MOSME of Location Standard One -Step 
Bird Mean Median #1.345 NCDF T 4. 7 #1.345 NCDF T4.7 

AF 1 0.707 0.669 0.675 0.676 0.666 0.675 0.676 0.666 
AF 2 0.930 0.580 0.607 0.607 0.591 0.610 0.609 0.594 
AF 3 0.642 0.609 0.615 0.615 0.608 0.615 0.616 0.608 
AF 4 0.751 0.630 0.653 0.655 0.630 0.657 0.659 0.630 
AF 5 0.796 0.761 0.770 0.772 0.760 0.771 0.773 0.760 
AM 1 0.844 0.812 0.821 0.822 0.814 0.822 0.823 0.815 
AM 2 0.886 0.840 0.850 0.851 0.841 0.851 0.852 0.841 
AM 3 0.663 0.640 0.644 0.645 0.640 0.644 0.645 0.641 
AM 4 0.658 0.620 0.627 0.627 0.621 0.627 0.628 0.621 
AM 5 0.673 0.652 0.659 0.660 0.656 0.660 0.660 0.656 
JF 1 0.740 0.620 0.653 0.654 0.630 0.657 0.659 0.632 
JF 2 0.686 0.561 0.582 0.583 0.564 0.586 0.586 0.565 
JF 3 0.657 0.618 0.619 0.620 0.614 0.619 0.620 0.614 
JM 1 0.666 0.560 0.571 0.572 0.556 0.573 0.573 0.555 
JM 2 0.647 0.570 0.576 0.576 0.568 0.576 0.577 0.568 
JM 3 0.733 0.661 0.693 0.693 0.678 0.694 0.694 0.681 

Table 4.5: Measures of Location of Flying Times of Four Types of Hummingbirds: Adult 
Females (AF), Adult Males (AM), Junior Females (JF) and Junior Males (JM) 
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one-step estimates defined with the T4 .7 score function are always closer to the median 

than the estimates defined through the other two score functions. The Tukey score 

function sometimes even gives smaller estimates than the median. This completes our 

results of section 4.2 which makes the Tukey score function a better choice in presence 

of heavy-tailed distributions, or outliers. 

Among all bar plots of flying times in Figure 4.5, the one for A M 5 appears to be best 

approximated by a normal curve. The one-step M-estimates of the location of the flying 

times of this bird are midway between the median and the mean, which is the closest the 

estimates get from the mean over among all the birds. The one-step estimates confirms 

that for A M 5, the M L E may not be a bad estimator of location after all, though some 

caution in its use is necessary. 

It appears that adult males have the worst agility, and that junior males are the most 

agile birds. Adult and junior females hummingbirds a priori do not show a difference 

in agility. In order to estimate the mean flying times of one of the four types of birds, 

and conclude statistically that one type was more agile than the others, one could use a 

robust analysis which is beyond the scope of this thesis. 

4.5 Conclusions 

The M O S M E of location presented in this chapter is uniformly better than the stan­

dard one-step location M-estimator, in the sense that it is easier to compute, it has a 

comparable and sometimes better asymptotic efficiency under many important symmet­

ric distributions, and has a lower or comparable asymptotic maximum bias when the 

central distribution is normal. When using a monotone non-decreasing score function, 

the M O S M E has a lower asymptotic bias than the standard one-step for any fraction of 
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contamination. With a resdescending score function, the maximum bias of the M O S M E 

is comparable to that of the standard one-step for small, but realistic, fractions of con­

tamination. 

Under our assumptions, the standard one-step M-estimator of location is asymptoti­

cally equivalent to the fully iterated M-estimator. This makes again the M O S M E better 

than the fully iterated M-estimator, in terms of asymptotic behaviour. And since finding 

the solution of a non-linear equation, as is required when computing the fully iterated 

location M-estimator, can sometimes be problematic, the M O S M E still is preferable to 

the fully iterated M-estimator. 

The superiority of the M O S M E in terms of asymptotic efficiency is especially strong 

for very heavy-tailed distributions, which describe the situations of samples with outliers. 

Martin and Zamar (1989) have shown through finite sample-size simulations that 

in practice, the squared bias is at least as large as the variance of M-estimators for 

rather modest sample sizes. Therefore, the comparison between the M O S M E and the 

standard one-step (fully iterated) M-estimator should give more weight to the maximum 

bias. And indeed, the M O S M E beats uniformly and clearly the other two estimators in 

terms of maximum asymptotic bias when it is derived from a monotone non-decreasing 

score function; and it is comparable to the other two estimators for small fractions of 

contamination, when it is derived from a redescending score function. 

It is impossible to single out the best score function to define the M O S M E , as all 

score functions perform optimally in specific, and different, situations. However, when 

striving for an estimator as accurate (as in low bias) and as precise (as in high efficiency) 

as possible, and if it is known that the contamination by outliers is small, the Huber score 

function should be used. If one wants to use a monotone non-decreasing score function, 

one should prefer the Huber score function to the normal one. When the contamination 
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by outliers is large, the Tukey score function may represent a better choice than the 

Huber score function, mainy due to the fact that the efficiency of the Tukey is higher for 

heavy-tailed distributions than that of the Huber estimator. However, at this point, a 

formal comparison in terms of maximum bias between the Tukey and the Huber score 

functions is not possible for large fraction of contamination. 

With finite data sets, the example in section 4.4 shows that the M O S M E is more 

robust than the one-step (or the fully iterated) M-estimators of location when it needs 

to be. Indeed, in the presence of extreme outliers or very heavy tails, the values of the 

M O S M E are closer to the median than that of the other two estimators. The M O S M E , 

by its adaptative nature, becomes more robust and conservative when the data indicates 

that caution is necessary. On the other hand, the one-step (or the fully iterated) M -

estimators do not handle so well data that is far from normally distributed. 

We therefore believe that the use of the M O S M E should be prefered to that of the 

standard one-step location M-estimator, or the fully iterated location M-estimator, when 

estimating the location parameter 6 of a distribution. 

Furthermore, most of the results presented in this chapter are of an asymptotic nature. 

It remains to be seen whether the asymptotic superiority of the M O S M E reflects on its 

finite-sample performance for small and medium sample sizes. It would therefore be 

necessary to make simulations in order to establish for what minimum sample size the 

results presented in this paper become approximately valid. One could also assess the 

finite-sample behaviour of one-step M-estimators of location with sensitivity curves and 

empirical bias curves. If these finite sample-size results agree with the asymptotic results 

presented in this chapter, and that for small sample sizes, the acceptance of the M O S M E 

as a tool would be greatly facilitated. 
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Maximum Bias Function of M-estimators Using H_1.345 Score Function 

Epsilon 

Figure 4.1: Maximum Bias Function of the M O S M E , and a Lower Bound for the Max­
imum Bias Function of the One-Step M-Estimator and the Fully Iterated M-Estimator 
of Location, Derived from the #1.345 Score Function 
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Maximum Bias Function of M-estimators Usjng N_CDF Score Function 

Epsilon 

Figure 4.2: Maximum Bias Function of the M O S M E , and a Lower Bound for the Max­
imum Bias Function of the One-Step M-Estimator and the Fully Iterated M-Estimator 
of Location, Derived From the NCDF Score Function 
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Maximum Bias Function of M-Estimators Using T_4.7 Score Function 

Epsilon 

Figure 4.3: Lower Bound on the Maximum Bias Function of the M O S M E , the Standard 
One-Step and the Fully-Iterated M-Estimators of Location, Derived from the T4 .7 Score 
Function 
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Maximum Bias Function of MOSME's of Location 

Epsilon 

Figure 4.4: Maximum Bias Function of the MOSME's of Location Derived from the #1.345 

and the NCDF Score Functions, and a Lower Bound on the Maximum Bias Function of 
the M O S M E of Location Derived from the T4.7 Score Function 
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Figure 4.5: Bar Plots of Flying Times of Four Types of Hummingbirds: Adult Females, 
Adult Males, Junior Females and Junior Males 



Chapter 5 

Dispersion Estimation with Unknown Location 

5.1 Introduction 

Let X\, ...,Xn be a sample from a population with distribution F in the location-dispersion 

family {F(x) : F(x) = F(s^)}. The objective is to estimate the dispersion <r, when the 

location parameter 8 is unknown. 

Given a score function Xi a n M-estimator of dispersion is the solution Sn of the 

equation 

where Tn is a robust estimate of the location parameter 8. It can be shown that, under 

mild regularity assumptions, Sn converges a.s. [F] to S(F), the functional implicitly 

defined as the solution of 

where T(F) is the asymptotic value of Tn. We will therefore adopt the functional notation 

in the discussion below. 

Computing an M-estimator of dispersion requires the use of an iterative method, as 

we must solve the nonlinear equation (5.23). Because the score function \ 1 S of the form 

x { x ) — g{x) ~ Pi where g is an even function with g(0) = 0, Huber (1981) suggested, as 

an alternative, to use the estimate found by performing one iteration in the fixed-point 

(5.23) 

61 
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algorithm (starting with some initial estimates of location and dispersion). With the 

underlying distribution F, the r-Estimator of Dispersion, Sl(F), derived from the score 

functions x, can be formally defined by the functional 

where To(F) and So(F) are the asymptotic values of the initial estimators of location 

and dispersion. By replacing the distribution F by the empirical distribution Fn, it is 

therefore possible to get a finite-sample estimator for the dispersion parameter <r. Note 

that the subscript "p" in S\ stands for "p"oint, as in fixed-point. 

Another iterative algorithm widely used to estimate location with an M-estimator, 

but not so much dispersion, is the Newton-Raphson method. The Standard One-Step 

M-Estimator of Dispersion, S\(F), can be defined as the first iteration of this algorithm, 

starting from initial estimates of location and dispersion. More precisely, 

where T0(F) and So(F) are the asymptotic values of the initial estimators of location 

and dispersion. 

However, for certain score functions x a n d certain samples, it may happen that the 

dangerously close to 0. To avoid this problem, we suggest replacing the denominator 

by E$x'(z)z, following Hampel et al (1986)'s idea on p. 153 in the context of location 

estimation with unkown dispersion. This defines the MOSME (Modified One-Step M -

"Eistimator) of Dispersion: 

So(F)2 

0 

S1(F) = So(F) + 
5o(F)EFx(£jgf) 

S*(F) = S0(F) + S0(F) 
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Our main interest is to evaluate the asymptotic behaviour of the M O S M E of disper­

sion. It is therefore necessary to compare it with the estimators it is aimed at improving: 

the standard one-step M-estimator and the r-estimator of dispersion. We believe it has 

adaptative properties which the r-estimator or the standard one-step M-estimator lack. 

The M-estimators of dispersion, other than the M L E ' s , are not consistent for distri­

butions other than the standard normal, $, which makes their asymptotic values differ, 

as well as their asymptotic properties. For this reason, the usual notion of asymptotic 

efficiency of an estimator will not apply directly. Instead, the relative asymptotic effi­

ciency will be used to assess the asymptotic performance of the M O S M E of dispersion as 

compared with the standard one-step M-estimator and the r-estimator. The worst-case 

asymptotic bias of the three estimators will also be evaluated and commented on in the 

following sections. 

5.2 Relative Asymptotic Efficiency of the M O S M E of Dispersion 

5.2.1 Our Choice of Underlying Distributions and of Score Functions 

To assess the asymptotic efficiency of the one-step estimators of dispersion, the eleven 

underlying distributions F used in chapter 4 (see section 4.2.1) will again be considered. 

To further illustrate the behaviour of the M O S M E , the following three score functions 

X will be used: 

x 2 - 0 . 5 \x\< 0.975 
XH0.„6(X) = { (5.24) 

0.451 x\ > 0.975 

x2 - 0.9686 Ircl < 2.376 
.376 

(x) 
(5.25) 

4.6768 x\ > 2.376 
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and 

, x I 3.866 3.864 + 3.862 0 - 1 6 5 \ X \ < 3 " 8 6

 L K N A \ 
XT3.M = <( • (5.26) 

0.835 |z| > 3.86 

The first two score functions, (5.24) and (5.25), are two cases of the general score 

function 

Xc(x) = I 
x2 \x\ < c 

(5.27) 
c 2 la;I > c 

suggested by Huber (1981) (p. 109), which satisfies E$Xc(x) = P(c). Notice that it 

is the square of Huber's score function tpfjc which defines a fully iterated M-estimator 

that is variance minimax in the location setup. For c not too small, the fully iterated 

M-estimator of dispersion defined through (5.27) is also optimally B-robust (see [15], p. 

122). 

The M O S M E and the standard one-step M-estimator derived from (5.24) will be 

hereafter denoted by #0.975- The score function X / /0975
 w a s c r i o s e n by tradition for the 

value /3(c) = 0(0.975) = 1/2. The M O S M E and the standard one-step M-estimator 

derived from (5.25) will be hereafter denoted by #2.376- The value of the constant 2.376 

was chosen because it makes the M O S M E and the standard one-step M-estimator of 

dispersion 95% efficient under the normal model. Finally, the score function (5.26) is 

derived from Tukey's redescending score function in the location setup. It will define a 

M O S M E and a standard one-step M-estimator denoted by T 3. 86- Both the M O S M E and 

the standard one-step M-estimator of dispersion T3,8e are approximately 95% efficient 

under the normal model. 

The r-estimators derived from the score functions (5.25) and (5.26) are less than 95% 

efficient at the normal model. To make a fair comparison between the r-estimator and 
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the M O S M E or the standard one-step M-estimator of dispersion, we must ensure that 

all estimators are 95% efficient at the normal model. The two following score functions: 

with /?(2.516) = E*XH2M6(X) = 0.9785, and 

x2 \x\ < 2.516 
(5.28) 

6.33 Ixl > 2.516 

5.36 5.34 + 5.32 l X l ^ ° ' ° ^ 

1 Ixl > 5.3 

with /9(5.3) = E$XTb3{x) — 0.096, define two r-estimators that are 95% efficient at the 

normal model. They will respectively be denoted by #2.516 and T5 .3. Note that the 

value of the non-differentiable point 5.3 in the Tukey score function, which makes the 

T-estimator 95% efficient at the normal model, is 40% higher than that for the M O S M E . 

This will invariably affect the worst-case bias of the T-estimator of dispersion. The 

increase in the non-differentiable point c in the Huber score function is not as pronounced. 

The constant denominator, E$x'(z)zi m the ratio defining the M O S M E can be easily 

calculated when the score functions x are determined. Table 5.6 provides those constants. 

The slightly higher constant for #2.516 is due to the fact that none of the three score 

functions are normalized to have a maximum of 1. The score function #2.516 in fact has 

a much larger maximum than the other two. 

5.2.2 Asymptotic Value of the MOSME, the One-Step M-Estimator and the 

r-Estimator of Dispersion 

To draw a parallel between the estimation of location discussed in the previous chapter 

and the estimation of dispersion, a first attempt consists in providing the efficiency for the 

estimators of dispersion. However, it is in a sense meaningless to compare the maximum 
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Score Function x 

#0.975 0.3736064 
#2.376 1.7396048 
7/3.86 0.2677105 

Table 5.6: The Value of the Constant Denominator, E^x'{z)zi m the Ratio Defining the 
Three MOSME's of Dispersion Under Study 

likelihood estimator of dispersion to one-step M-estimators, because they do not estimate 

the same quantity. 

The maximum likelihood estimator of dispersion is consistent for a. Without loss 

of generality, we can assume that a = 1. Therefore, the M L E takes asymptotically the 

value 1. Indeed, for a given distribution F, the score function defining the M L E is 

X M L E W = ~xJ(^j ~ l-

Assuming JP is symmetric, we must solve the equation - S F X M L E ^ ) ~ ^ w n e n calculating 

the asymptotic value of the M L E of dispersion, a. But Ep j — x y ^ j = 1, assuming we 

can interchange derivation and integration. Therefore, Ep < —jj^xj | — 1 = 0, and the 

M L E takes asymptotically the value 1. 

On the other hand, one-step M-estimators will estimate a function of a, function 

that depends on the type of M-estimator (standard one-step M-estimator, M O S M E or r-

estimator), the score function x used in its definition and the initial estimates of location 

and dispersion. Table 5.7 provides the asymptotic value of the M L E , the M O S M E , 

the standard one-step M-estimator and the T-estimator of dispersion, as well as the 

normalized M A D (median absolute deviation from the median, multiplied by the inverse 

of $ _ 1 (3/4)) and the standard deviation, for the different underlying distributions F of 

interest. The initial estimators of dispersion and location used to calculate the one-step 
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F M L E 

M O S M E Standard One-Step r-Estimator 
M A D SD F M L E #0.975 #2.376 ?3.86 #0.975 #2.376 33.86 #2.516 T5.3 M A D SD 

dble exp 1.00 1.00 1.21 1.21 1.01 1.21 1.21 1.19 1.23 1.00 1.38 
cont norm 1.00 1.00 1.17 1.21 1.01 1.22 1.27 1.16 1.33 1.00 2.07 

t(l) 1.00 1.01 1.39 1.43 1.02 1.52 1.53 1.34 1.50 1.00 00 

t(2) 1.00 1.01 1.22 1.23 1.01 1.25 1.25 1.20 1.28 1.00 CO 

t(5) 1.00 1.00 1.09 1.09 1.00 1.09 1.09 1.09 1.11 1.00 1.20 
t(8) 1.00 1.00 1.06 1.06 1.00 1.06 1.06 1.06 1.06 1.00 1.10 
t(10) 1.00 1.00 1.04 1.05 1.00 1.05 1.05 1.04 1.05 1.00 1.08 
t(20) 1.00 1.00 1.02 1.02 1.00 1.02 1.02 1.02 1.02 1.00 1.03 

normal 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
sym beta 1.00 1.00 0.98 0.98 1.00 0.98 0.98 0.98 0.98 1.00 0.97 
exp(—a;4) 1.00 0.99 0.87 0.88 0.99 0.84 0.86 0.87 0.88 1.00 0.86 

Table 5.7: Asymptotic Value of the M L E , the M O S M E , the Standard One-Step 
M-Estimator and the T-Estimator of Dispersion, As Well As the Normalized M A D and 
the Standard Deviation (SD), for Different Underlying Distributions F. The Initial Es­
timators of Dispersion and Location Used to Calculate the One-Step M-estimators Are 
Respectively the Normalized M A D and the Median. 

M-estimators are respectively the normalized M A D and the median. 

Table 5.7 demontrates that the term dispersion of a distribution F in itself is not 

cleary defined or even meaningful. Indeed, the standard deviation is commonly used 

as a measure of dispersion. When the underlying distribution is normal, the standard 

deviation can easily be interpreted. For example, if the standard deviation of a normal 

sample is 5, then the dispersion of the sampled normal population is estimated to be 5 

times that of the standard normal distribution $. Approximately 68% of the sampled 

values fall within ± 5 of the sample mean. Notice also that the M L E of dispersion in 

the normal case is exactly the standard deviation. On the other hand, what can be 

said about the dispersion of a Cauchy or a t(2) family, for which the sample standard 

deviation is, for example, 5? No matter how spread or dispersed the Cauchy or the t(2) 
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distribution are, their standard deviations always equal infinity. The sample standard 

deviation cannot therefore be a meaningful measure of dispersion for these families. 

As an alternative, one could use the M L E to estimate the parameter u and refer to it 

as the dispersion of a distribution. However, calculating the M L E assumes that the distri­

bution F generating the data is known, which is rarely the case in practice. Besides, even 

though the M L E possesses the analytical interpretation of cr, its geometric interpretation 

remains obscure. Indeed, remember that the distributions presented in Table 5.7 have 

been normalized so that their interquartile range equals 1.349. The normalization factor 

do is now part of the definition of their density (f(x; 8, cr) = fd0(x', 0, cr)) and dispersion 

estimation is concerned with the problem of identifying the distribution F in the family 

{F : F = Fd0(^y-)}, from which the sample is drawn. Therefore, assume for example 

that the M L E of dispersion from a sample is found to be equal to 5. Does this mean that 

d0 = 5 and u = 1, or rather that d0 = 0.5 and a = 10, or some other combination? The 

first possibility would imply that the distribution of interest has a light-tailed, whereas 

the second possibility indicates that F is heavy-tailed. Somehow, it is hard to grasp what 

kind of geometric dispersion the M L E actually estimates. 

For a clear geometric interpretation of dispersion, the M A D offers a good deal. It is 

easy to picture the interquartile range of a sample: it is the range, centered around the 

middle of the sample, which contains half of the data points. If for example a sample has 

a normalized M A D of 5, then the dispersion of the sampled population can be estimated 

as 5 times larger than the dispersion of the same distribution with interquartile range 

equal to 1.349. 

However, maybe because of its ease of interpretation, the M A D does not define the 

complete picture. Indeed, all the distributions presented in Table 5.7 have the same 

M A D , even though some F are heavy-tailed, others are light-tailed and one is normal. 
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Clearly, the centre half of mass of these distributions is contained in the exact same range. 

But, we are given no indication regarding the shape of their tails. Are they elongated, 

dispersed, or rather compact, short? 

With these questions in mind, one can easily conclude from Table 5.7 that the one-step 

M - estimators of dispersion do indeed estimate dispersion in its most meaningful way. For 

any distribution in the table, the estimates of dispersion are finite, and roughly close to 

1. The closer the estimates are from 1, the closer the distributions are from normal. A l l 

estimates of dispersion over 1 come from heavy-tailed distributions, whereas all estimates 

under 1 refer to light-tailed distributions. In fact, by their intrinsic definitions, the one-

step M-estimators of dispersion are a linear function of the M A D ; this function differs 

more or less from the identity as the underlying distribution differs from the standard 

normal distribution. 

The one-step M-estimators therefore provide information about dispersion which is 

more complete than the M A D , while staying geometrically interpretable and meaningful. 

A look at the one-step estimates in Table 5.7 tells us that all distributions have roughly 

the same interquartile range, but that their nature differ greatly, since the estimates are 

all close to 1, but still different from each other. Finally, note that computing a one-step 

M-estimator of dispersion doesn't require the knowledge of the distribution generating 

the data, since the empirical distribution is used: this is a clear advantage over the M L E , 

which is defined through the joint density of the data points. 

But, which of the M O S M E , the standard one-step or the T-estimator should be used 

to estimate dispersion? It appears that the M O S M E or the T-estimator represent the best 

choice, depending on the situation. Both estimators are relatively close to 1, and always 

more than the standard one-step M-estimator of dispersion, especially in the presence 

a heavy-tailed distribution. When using the Huber score function, the T-estimator is 
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slightly closer to 1 than the M O S M E for heavy-tailed distributions. In situations where 

a smoother score function is used, such as the Tukey score function, the M O S M E is closer 

to 1 than the r- estimator with heavy-tailed distributions. Any choice of estimator and 

score function is good for light-tailed distributions. Finally the choice of the Huber score 

function which is 95% efficient at the normal model seems more appropriate than #0.975 

score function. #2.376 better reflects the nature of the tails of the underlying distribution, 

by diverging more from 1. 

5.2.3 A s y m p t o t i c Variance of the M O S M E of Dispers ion 

Appendix C provides the complete derivation of the influence function of the M O S M E 

of dispersion. In the general non-symmetric case, it is equal to 

where T0 = T0(F), S0 = S0(F), y = and IF(x;S0,F) and IF(x;T0,F) are the 

respective influence functions of the initial estimates of location and dispersion. However, 

it is possible to simplify the above expression with appropriate conditions. 

Propos i t ion 3 Assume the score function x is even, bounded and twice differ entiable 

everywhere except in at most a finite number of points. If F is symmetric, then 

Note that T0(F) = 0 when F is symmetric. The most important condition in Proposition 

3 is the symmetry of F, because it makes the M O S M E of dispersion independent of the 

where y = So(F)' 
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initial estimator of location. The conditions on the score function x a r e minimal regularity 

conditions that most score functions used in practice will satisfy. 

Under mild regularity assumptions, a Taylor series expansion gives an expression for 

the asymptotic variance of the M O S M E of dispersion: 

V(S*, F) = EF{IF(x- S*, F)}2. 

In view of Proposition 3, it is clear that the choice of the initial estimator of dispersion, 

So{F), will greatly affect the efficiency of the M O S M E of dispersion. The literature 

strongly recommends the use of the robust normalized M A D 

_ Med|x - Med(x)| 
n = $" 1(3/4) 

as an initial estimate of dispersion, which has the following influence function 

I F ( X . S O F ) - ^ ( w - ^ m ) 

{ ' ° ' } ~ 4/($" 1(3/4))$-i(3/4) 

when F is symmetric and properly scaled so that So(F) = 1. 

The M A D was first promoted by Hampel (1974). Other possibilities for starting 

estimators of dispersion are presented by Rousseeuw and Croux (1991), which do not 

assume a symmetric underlying distribution. Indeed, one must note that the M A D 

is aimed at symmetric distributions and has low gaussian efficiency, but its influence 

function has the sharpest bound among all possible dispersion estimators for symmetric 

F, and therefore, the M A D has the lowest possible gross-error sensitivity for symmetric 

F (see [15], p. 142). Huber (1981) concluded that "the M A D has emerged as the single 

most useful ancillary estimate of scale" (p. 107). The SHORTH (the shorthest half of 

the data), equivalent to the M A D for symmetric distributions, is also becoming more an 

more popular because it was found to be approximately minimax bias robust within the 

class of M-estimators of dispersion with general location (see Martin and Zamar (1993)). 
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On the other hand, because only symmetric distributions are studied, the initial 

estimator of location will asymptotically have the value 0 (TQ(F) — 0), and therefore, 

does not affect directly the asymptotic variance of the M O S M E of dispersion. However, in 

practice, because any sample size is finite, one should carefully choose the initial estimate 

of location. The median is recommended in the literature, because of its robustness 

properties. 

5.2.4 Asymptotic Variance of the Standard One-Step M-Estimator of Dis­

persion 

Appendix D provides the complete derivation of the influence function of the standard 

one-step M-estimator of dispersion. In the general non-symmetric case, it is equal to 

IF(X-SUF) = IF{x; S0, F) { 2 | g ^ + } + 

TF(r- T F\ f eFX(V) EFx"(y)y , Epx(y) EFx'(y) EFx'(y) \ , 
ir{x,±0,r)\ [Erx'MvP + [EFX'(y)y]2 EFX'(y)y('t 

EFX'{y)y S0 > EFX'{y)y J ' 

where T0 = T0{F), S0 = S0{F), y = y-^ffi and IF(x;S0,F) and IF(x;T0,F) are 

the respective influence functions of the initial estimators of dispersion and location. 

However, it is possible to simplify the above expression with appropriate conditions. 

Proposition 4 Assume the score function x is even, bounded and twice differentiable 

everywhere except in at most a finite number of points. If F is symmetric, then 

IFfrSuF) = 7 f ( x ; 5 „ , f ) { 2 ^ + a ^ g g A i } + 
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Notice that To(F) = 0 when F is symmetric. 

The influence function of the standard one-step M-estimator is the sum of two terms, 

similarly to the influence function of the M O S M E : one is a multiple of IF(x; So, F) and 

the other is a multiple of So(F). It is obvious that the initial estimator of dispersion 

holds great importance in both the definition of the M O S M E and the standard one-step 

M-estimator. The influence function for the one-step M-estimator contains a'x"(y) and 

many ratios with denominator EFx'{y)Vi which may cause computational problems. On 

the other hand, the influence function of the M O S M E contains no x"(y) a n d only includes 

ratios with denominator E<^x'{z)zi which are known to be more stable. 

Under mild regularity assumptions, it is possible to express the asymptotic variance 

of the standard one-step M-estimator as 

V(S1,F) = EF{IF(x;S1,F)}2. 

5.2.5 Asymptotic Variance of the T-Estimator of Dispersion 

Appendix E provides the complete derivation of the influence function of the T-estimator 

of dispersion, S%(F). In the general non-symmetric case, it is equal to 

IFix-SIF) = £,{IF(x]S0,F)[j;(S?)2-fEFx'{y)y] 

-IF(x; T0, F)fEFX'(y) - (S?)2 + f x i ^ ) } , 

where T0 = T0(F), S0 = S0(F), S* = 5?(F), y = and IF{x;T0,F) and 

IF(x; So, F) are the influence functions of the initial estimators of location and dispersion. 

However, it is possible to simplify the above expression with appropriate conditions. 
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Proposition 5 Assume the score function \ z s even, bounded and twice differentiable 

everywhere except in at most a finite number of points. If F is symmetric, then 

2 ' IF{x-S{, F) = IF{x- S0, F){f |f} - ^EFX'(y)y} + § ^ x ( ^ ) 

where y = 

Notice that To(F) = 0 when F is symmetric. The value of the T-estimator appears in 

its influence function, contrary to the M O S M E or the standard one-step M-estimator 

of dispersion. The assumption of symmetry for F makes the influence function of the 

T-estimator of dispersion with unknown location equal to the influence function of the T -

estimator of dispersion with no location parameter (see [30]). The problem of calculating 

the influence functions for symmtric F is therefore greatly simplified. 

Under mild regularity assumptions, it is thus possible to express the asymptotic vari­

ance of the T-estimator of dispersion as 

V{Sl,F) = EF{IF(x-Sl,F)}\ 

5.2.6 Relative Asymptotic Efficiency of the M O S M E Compared to That of 

the One-Step M-Estimator and the T-Estimator of Dispersion 

The asymptotic efficiency of an M-estimator of dispersion is not a good measure of its 

asymptotic variability, because as shown in section (5.2.2), the asymptotic value of an 

M-estimator depends strongly on its score function as well as on its type. Huber (1981) 

(p. 108) suggests rather the use of the relative asymptotic variance, RV(S,F), that is, 

the asymptotic variance of yf(n)\og(S(Fn)/S(F)), which is defined as 

RV(S,F) = V(\ogS,F) = ^ p - , 
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where S = S(F). This suggestion is in accordance with Bickel and Lehmann (1976) who 

observed that the relative variance instead of the variance for dispersion estimators is 

needed to obtain a natural measure of accuracy. 

Let the relative asymptotic efficiency of an M-estimator of dispersion be defined as 

the ratio of the relative asymptotic variance of the M L E over its relative asymptotic 

variance. The relative asymptotic efficiency of the M O S M E will be compared to that 

of the one-step M-estimator and the T-estimator of dispersion to assess the asymptotic 

performance of the M O S M E in comparison with that of the other two estimators. 

The Fisher information, 1(c), for the location-dispersion family of distributions {Fgi<T : 

Because the M L E of dispersion is consistent for a, its asymptotic variance is V(MLE, F) = 

JT^T. Its asymptotic value being 1 for any distribution F, as shown in section (5.2.2), the 

5.8 gives the relative asymptotic variance of the M L E , RV(MLE, F), for the different 

distributions under study. 

Finally, Table 5.9 shows the relative asymptotic efficiency of the M O S M E , the one-

step M-estimator and the T-estimator of dispersion, for the score functions # 0 . 9 7 5 , # 2 . 3 7 6 5 

#2.516, 2 3 . 8 6 , and T 5 . 3 , and different underlying distributions F. The relative asymptotic 

efficiency of the normalized M A D is also provided, as a mean of comparison, since it is 

used as the initial dispersion estimator. The asymptotic variance of the normalized M A D 

is equal to 

Fett7 = F(^-)}, is equal to 

1(a) = ~^EF {x + 1} 2 

relative asymptotic variance of the M L E of dispersion is thus i ? V ( M L E , F) = y^y. Table 

V(MAD,F) = 
1 

16/ 2 ($- 1 (3 /4) ){$- 1 (3 /4)} 2 ' 
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Distribution F # V ( M L E , F ) 
double exponential 1 

contaminated normal 0.5 
t(l) 2 
t(2) 1.25 
t(5) 0.8 
t(8) 0.6875 
t(10) 0.65 
t(20) 0.5750084 

normal 0.5 
symmetrized beta 0.4210503 

0.55exp(—x4) 0.25 

Table 5.8: Relative Asymptotic Variance RV(MLE,F) of the M L E for Different Under­
lying Distributions F 

Distribution 
F M A D 

M O S M E Standard One-Step r-Estimator Distribution 
F M A D #0.975 #2.376 T3.86 #0.975 #2.376 23.86 #2.516 2k3 

dble exp 0.481 0.575 0.873 0.910 0.573 0.534 0.918 0.844 0.935 
cont normal 0.336 0.409 0.352 0.311 0.405 0.219 0.211 0.346 0.246 

t(l) 0.811 0.947 0.916 0.913 0.884 0.371 0.788 0.902 0.880 
t(2) 0.703 0.837 0.959 0.963 0.812 0.585 0.922 0.955 0.929 
t(5) 0.534 0.660 0.977 0.993 0.653 0.813 0.987 0.970 0.974 
t(8) 0.476 0.597 0.976 0.992 0.593 0.879 0.989 0.970 0.985 
t(10) 0.456 0.574 0.977 0.989 0.571 0.899 0.986 0.970 0.987 
t(20) 0.413 0.524 0.966 0.975 0.524 0.932 0.973 0.964 0.980 

normal 0.368 0.470 0.950 0.947 0.470 0.950 0.946 0.950 0.953 
sym beta 0.317 0.410 0.919 0.891 0.410 0.942 0.898 0.920 0.892 
exp(—x4) 0.233 0.328 0.825 0.780 0.335 0.735 0.833 0.841 0.769 

Table 5.9: Relative Asymptotic Efficiency of the M O S M E , the One-Step M-Estimator 
and the r-Estimator of Dispersion Derived from Different Score Functions x , for Different 
Underlying Distributions F. The Relative Asymptotic Efficiency of the Initial Estimator 
of Dispersion, the Normalized M A D , Is Provided for Comparison Purposes. The Median 
is Used as the Initial Estimator of Location 
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Many observations can be made from Table 5.9. The relative asymptotic efficiency 

of the M O S M E , the one-step M-estimator and the r-estimator of dispersion is improved 

over that of the M A D , their initial estimator of dispersion, for almost all distributions. 

The very heavy-tailed distributions like t(l) and t(2) seem to cause some problems to 

the one-step M-estimator with the #2.376 score function, and the contaminated normal 

distribution is in general not so well handled by estimators derived from #2.376) #2.516) 

73.86 and T5.3 score functions. When compared to the score function #2.376, the relative 

efficiency of the MOSMEs derived from #0.975 does not in general show a significant 

improvement over the relative efficiency of the M A D . The #0.975 MOSME's are probably 

not worth considering, at least in a relative asymptotic efficiency context. However, for 

very heavy-tailed (t(l), t(2), contaminated normal and double exponential) distributions, 

the one-step M-estimator derived from the #2.376 score function actually performs worse 

than the one derived from #0.975: a sign that sacrificing robustness for efficiency with 

the standard one-step M-estimator can sometimes be a bad strategy. 

The T3.86 score function, used either with the M O S M E or the one-step M-estimator, 

appears to be a better or a comparable choice for estimating dispersion, with heavy-tailed 

distributions. The conclusion is however reversed for the r-estimator: #2.516 generally 

performs better than T5.3 for heavy-tailed distributions (with the exception of the double 

exponential distribution). However, the M L E beats any of the estimators presented 

in Table 5.9, and that, for all distributions F, since all relative efficiencies presented are 

below 1.000. But using the M L E for estimating dispersion requires that the entire sample 

be drawn from F, with no outlier allowed: this is too restricted a situation in many cases. 

Besides, the distribution F must be specified for the M L E to be defined. 

The relative asymptotic efficiency of the M O S M E is higher than that of the one-step 

M-estimator or the r-estimator of dispersion for heavy-tailed distributions (t, double 
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exponential and contaminated normal), and that, for all score functions considered, ex­

cept for the Tukey score function used with the double exponential distribution. The 

improvement appears more significant in very heavy-tailed distributions (Cauchy, t(2), 

double exponential and contaminated normal) used with efficient score functions (#2.376, 

#2.516, 23.86 and T 5 . 3 ) . The improvement by the M O S M E over the standard one-step 

M-estimator is also generally greater than over the T-estimator. 

For the light-tailed distributions symmetrized beta and exp(—x4), however, the one-

step M-estimator of dispersion performs generally better than the M O S M E or the T -

estimator, but not significantly better. 

5.3 M a x i m u m Bias of the M O S M E of Dispersion 

Let X\,..., Xn be a sample from a population with distribution F in the contamination 

neighboorhood 

Ve(F0

6'°) = {F : F = (1 - e)F0

6'" + e#, # arbitrary distribution}, 

where 0 < e < 1/2. Refer back to section 4.3 for a more detailed description of the nature 

of this contamination neighboorhood. 

The worst-case bias of an estimator gives a measure of its asymptotic robustness as 

a function of the fraction e of the contamination. Since outliers, as well as inliers, can 

possibly affect the estimator, we need to consider both cases separately. The explosion 

bias curve of the M O S M E of dispersion is defined by 

#+ (e) = sup ^1 
FeVe cr 

and describes the behaviour of the estimator in presence of outliers. On the other hand, 

the implosion bias curve of the M O S M E of dispersion is 
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S*(F) 

a 

and describes the MOSME in presence of inliers. 

Let the distribution i 7 ^ be obtained when H = 6^, the distribution which puts its 

total mass at infinity. Let the distribution F0 be obtained when H = 60, the point mass 

contamination at 0. We shall hereafter concentrate on the normal central distribution 

F 0

E , A = $ in the neighboorhood VE, as in section 4.3. 

Proposition 6 Assume the score function x is odd and bounded. 

Let S~(e) = i m V e y £ SQ(F), S+(e) = supFeV So(F), and B(e) = s u p F e V | r 0 ( F ) | . Assume 

E$x'(z)z > 0 and assume that we can interchange derivation and integration, that is 

d/dt{E*X(x-?)} = -iErfi*?) ^d d/ds{E*X(x-?)} = - ^ x ' ( ^ ) ( ^ ) - / / 

V* in [0,B(e)], for fixed s in [S~(e),S+{e)] 
(5.30) 

and 

(5.31) 
\/s in [S (e),S+(e)], for fixed t in [0,B(e)] 

then 

sup S*{F) = 5*(Foo), where F^ = (1 - e)$ + eS( 

Fevc 

and 

inf S*{F) = S*{F0), where F0 = (1 - e)$ + e60. 
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P r o o f : We will prove the explosion bias result only. The proof for the implosion bias 

of the M O S M E follows the exact same idea. 

We clearly always have that sup F e y £ S*(F) > S*(FCX>). 

Moreover, Ve < 1/2, 

sup F € l , S*(F) = S U P \so(F) + S0(F)EFiiJ^)) 

sup 

Fe {{l-e)$ + eH} 

{5oW+̂ (f)"-)ji»^,;:r,£atf1' 
<
 S UP . „ ^Ai-^xC-^M1 

F G { 1-e $ + e#} 1 

sup 

-B( 

5"(c) < a < 5+(e) 

5 + ( e ) + ^ ( e ) ' - ^ H ' 

= 5*(Foo). 

The first equality is simply the definition of S*(F). By definition of Vc, it is possible 

to write ^ F X ( ^ ^ F p ) a s *he sum of two terms, as states the second equality. Since x 

is bounded, we can assume without loss of generality that supxx{x) = 1. Thus EHX i s 

always less or equal to 1, which gives the third line. 
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The function which is to be maximized on the third line does not depend on the 

distribution # anymore. In fact, it can be regarded as a function of two arguments, T0(F) 

(or t) and SQ(F) (or s). Following the work of Martin and Zamar in [26], if e < 1/2, then 

T0(F) and So(F) are bounded as in the fourth line. That is, S~(e) < So(F) = s < S+(e), 

and -B(e) < T0(F) = t < B(e). 

Notice that since x is odd, E$(sj^) = -B$( £ ^) . We can therefore assume without loss 

of generality that t > 0. Assuming the conditions (5.30) and (5.31) hold, the function to 

be maximized in the fourth line is increasing in To(F) = t, for all fixed S~(e) < So(F) = 

s < S+(e), when 0 < T0(F) = t < B(e), and is increasing in SQ(F) = s, for all fixed 

0 < T0(F) = t < #(e), when S~(e) < S0{F) = s< S+(e). Therefore, we directly get the 

fifth line, which is by definition S*(FOQ). 

Hence, we have shown that supFeVe S*(F) = S*(Fco), when the central distribution 

Fo6'" is normal. • 

Analytical derivations, combined with numerical calculations, have shown that the 

MOSME's with #o.975 5 #2.376 and the T3.86 score functions satisfy the above conditions 

(5.30) and (5.31), when the median and the normalized M A D are used as preliminary 

estimates of location and dispersion. 

The conditions were rewritten for the three specific cases of #0.975, #2.376 and T3.se 

score functions, and evaluated over a finite and equally-spaced 21x21 grid, covering the 

range of possible t and s values. For a fixed e, the maximum value of the (normalized) 

M A D , S+(e), is produced by a point mass contamination at infinity, and such contami­

nation also produces the maximum value B(e) of the location estimator. The minimum 

value of the (normalized) M A D , ^"(e), is produced by a point mass contamination at 

0, and such contamination also produces the minimum absolute value of the location 

http://T3.se
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estimator, 0 (see Martin and Zamar (1993)). More specifically, the value for B(e) can 

be explicitly written as ^>~1(2(i-£) )• ^ is the value T(F) which satisfies (4.16) for the 

median score function XMed(x) = sgn(x) and F = F^. The bounds S+(e) and S~(e) are 

the implicit solutions of 

(1 - e)MB(e) - 5 + (e)$- 1 (3/4)} + 1 - *{J3(e) + 5 + ( e )$" 1 (3/4)}] + e = 1/2, 

and 

(1 - e ) [${-5 - (6 )$- 1 (3 /4)} + 1 - ^{S-(e)^(3/A)}} = 1/2. 

That is, S+(t) satisfies EFOOXMAD(XS+^))
 = V 2 and ^"(e) satisfies EFOXMAD{S^) = 

1/2, where the M A D score function is XMAD(X) = l/2{sgn(|x| - $ _ 1 (3/4)) + 1} and 

F 0 = (1 - e)$ + t60. 

For all e < 1/2 used, the conditions (5.30) and (5.31) were always met. So, even if 

those conditions seem somewhat restrictive, it is believed that many often used bounded 

and even score functions x satisfy them. 

Assuming that the score function x 1S bounded, we have a lower bound for the ex­

plosion bias curve of the standard one-step M-estimator of dispersion, given by Si(F0O), 

where: 

(1 - e )F$x ( £ ^4 i ) + ex(oo) 
S ^ ) = S+(e) + S+(e)- ) {'l \ W M • 

Similarly, it is possible to get an upper bound on the implosion curve of the standard 

one-step M-estimator of dispersion. It is given by 

S1{F0) = S (e) + 5 ( e ) - — . K J x . 

(1 - t)E^X {s=(e)Ks=tf) 

It is also possible to get exact expressions for the explosion and implosion bias curves 

of the T-estimator. Rousseeuw and Croux (1993a) gives them in the context of estimation 

of dispersion with known location. The following proposition improves their results. 
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Proposition 7 If s —> s2E$x(x~^) is increasing in the range [S (e),S'+(e)] for fixed t 

in [—B(e), B(e)], and if t — > E^xi1^) is increasing in the range [0,#(e)] for fixed s in 

[S-{e),S+(e)}} then 

sup 5 f ( F ) = 5f(Foo) 
FGF £ 

mf S f t F ) = ST(F0). 

Proof: The proof follows the exact same steps as in Proposition 6. • 

Analytical derivations, combined with numerical calculations similar to those per­

formed for the M O S M E of dispersion, have shown that the T-estimators with #2.516 and 

the T5 .3 score functions satisfy the above conditions in Proposition 7, when the median 

and the normalized M A D are used as preliminary estimates of location and dispersion. 

Note that the condition necessitating s2E$x(x^) to be increasing in 5 can be explicitly 

written as — cs) > $(£ + cs) — 1 for the Hc score function, which.is clearly always 

true for any s, t and c. 

It is therefore possible to compare, in terms of maximum asymptotic explosion and 

implosion bias, the M O S M E with the standard one-step M-estimator and the r-estimator 

of dispersion. 

Figures 5.6, 5.7 and 5.8 show the explosion bias curve of the M O S M E and a lower 

bound for the explosion bias curve of the one-step M-estimator of dispersion, derived 

from the #0.975, #2.376 and T3.86 score functions. In all three cases, the M O S M E shows 

a smaller maximum asymptotic bias than the one-step M-estimator, Ve < 1/2. The 
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improvement is however better in the case of the more efficient estimators #2.376 and the 

23.86-

Figure 5.9 shows the explosion curves of the M O S M E and the r-estimator of dispersion 

for the Huber and Tukey score functions, for small, but realistic, contamination by outliers 

(e < 0.30). We notice that for small values of e, the M O S M E has a lower maximum bias 

than the r-estimator. However, the situation is reversed when e gets bigger. As the figure 

shows, this happens with the Huber score function when e > 0.075. (It also happens for 

the Tukey score function with e > 0.47.) Nevertheless, notice that situations with small 

fraction of contaminations are representative of many real data set with outliers. 

When defining the M O S M E or the r-estimator of dispersion, one needs to choose 

between different score functions X- As Figure 5.9 shows, the Huber score function is 

preferable to the Tukey score function with the M O S M E , as well as with the r-estimator. 

Finally, Figure 5.10 shows the implosion curves of the M O S M E , the standard one-

step M-estimator and the r-estimator derived from the Huber score function. Figure 5.11 

shows the implosion curves of the M O S M E , the standard one-step M-estimator and the 

r-estimator derived from the Tukey score function. In both Figures, the implosion curve 

of the normalized M A D is also given for comparison purposes. We notice that for smaller 

e (e < 0.27 with the Huber score function and e < 0.33 for the Tukey score function), the 

M O S M E outperforms the other estimators. For larger e, the M O S M E uniformly beats 

the r-estimator, but is outperformed by the standard one-step M-estimator. The latter 

does not implode at e = 0.5. Depending on the situation, this may or not be desirable: 

when half the data coincides with a single point, the standard one-step M-estimator does 

not become 0 (whereas the M O S M E , the r-estimator and the M A D do). Rousseeuw 

and Croux (1993a) mention that the fully iterated M-estimator derived from the #2.376 

score function explodes at e = 0.9686/5.645 = 0.17 and implodes at e = 1 — 0.17 = 0.83. 
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Similarly, the fully iterated M-estimator derived from the T 3 . 8 6 score function explodes 

at e = 0.165 and implodes at e = 1 — 0.165 = 0.835. At the normal model, the standard 

one-step M-estimator is consistent for a and so has the same asymptotic properties as 

the fully iterated M-estimator of dispersion. 

When using a one-step M-estimator of dispersion in a situation of inliers, one needs 

to decide which score function to select in its definition, so as to minimize its implosion 

bias. Figure 5.12 shows that the MOSME's , the standard one-step M-estimators and the 

T-estimators derived from the Huber and Tukey score function are roughly equivalent 

in terms of implosion bias for small, but realistic, contamination (e < 0.3). The #2.376 

M O S M E appears however to slightly beat the other estimators. If one expects a large 

fraction of contamination of inlers (e > 0.3), then the standard one-step M-estimator of 

dispersion with the #2.376 score function would probably be the best choice. As discussed, 

though, this choice may lead to catastrophic results in the presence of special samples. 

In that case, the M O S M E with the T3.86 score function may be a wiser choice. 

5.3.1 Further Work to Be Done 

The work about asymptotic robustness was developed for one specific case of central dis­

tribution FQ9'17 in the neighborhood of Ve: the normal distribution, More calculations 

need to be done for different central distributions Fo6'", as for example, the ones used in 

the asymptotic efficiency section (5.2) of this text. 

One could also define the M O S M E , the standard one-step M-estimator and the r-

estimator of dispersion using other types of score functions, and compare the different 

estimators in the hope that one proves better than all the others in most situations. 

Finally, it remains to be seen whether the asymptotic properties of the three one-step 

M-estimators studied in this section reflect on their finite-sample performance for small 
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and medium sample sizes. This could be assessed with Monte-Carlo simulations, for 

example. 

5.4 Continuation of The Hummingbird Example 

To illustrate the use of the M O S M E as an alternative to the standard one-step M -

estimator or the T-estimator of dispersion, we shall estimate the dispersion for the distri­

butions of the flying times of the sixteen hummingbirds presented in the previous chapter, 

section 4.4. Remember that there are four types of hummingbirds: adult females (AF), 

adult males (AM), junior females (JF) and junior males (JM). Refer to Figure 4.5 for 

the bar plots of the flying times of all 16 birds. 

The researcher who provided the data was interested not only in finding a measure 

of location within each type of birds, but also in describing more generally the features 

of the distribution of their flying times, such as for example their dispersion. The use of 

one-step M-estimators of dispersion represent good alternatives to the popular measure 

of dispersion: the standard deviation. 

Table 5.10 presents the values of the M O S M E , the standard one-step M-estimator 

and the T-estimator of dispersion, as well as the standard deviation and the normalized 

M A D , for the sixteen birds, assuming an underlying normal distribution. We notice that 

contrary to the location setup, the Tukey score function is less conservative in terms of 

robustness than the Huber score function, since the Tukey estimates are further from the 

M A D than the Huber estimates. As expected, the #0.975 estimates stay very close to the 

M A D , and do not bring much more light than the M A D : the score function is almost as 

robust as the M A D . On the other hand, the M O S M E and the T-estimates of dispersion 

are roughly comparable when using a Huber score function which is 95% efficient at the 
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M O S M E of Dispersion Standard One-Step r-Estimator 

Bird SD MAD #0.975 #2.376 33 .86 #0.975 #2.376 33 . 86 #2.516 T 5 . 3 

AF 1 0.151 0.075 0.079 0.091 0.093 0.079 0.095 0.097 0.090 0.099 
AF 2 2.430 . 0.097 0.096 0.131 0.133 0.095 0.147 0.140 0.127 0.140 
AF 3 0.143 0.073 0.073 0.080 0.082 0.073 0.082 0.085 0.080 0.089 
AF 4 0.275 0.074 0.076 0.111 0.117 0.077 0.151 0.145 0.106 0.124 
AF 5 0.176 0.120 0.124 0.139 0.143 0.125 0.141 0.144 0.138 0.149 
AM 1 0.132 0.076 0.083 0.100 0.100 0.083 0.097 0.099 0.097 0.102 
AM 2 0.160 0.074 0.078 0.093 0.096 0.078 0.096 0.098 0.092 0.100 
AM 3 0.103 0.044 0.048 0.052 0.054 0.047 0.054 0.054 0.052 0.056 
AM 4 0.167 0.073 0.072 0.078 0.080 0.072 0.080 0.082 0.079 0.086 
AM 5 0.105 0.064 0.066 0.075 0.077 0.066 0.078 0.078 0.075 0.080 
JF 1 0.314 0.135 0.144 0.186 0.191 0.143 0.200 0.201 0.180 0.199 
JF 2 0.387 0.090 0.094 0.123 0.128 0.095 0.133 0.137 0.119 0.135 
JF 3 0.179 0.042 0.042 0.049 0.050 0.042 0.050 0.052 0.049 0.054 
JM 1 0.237 0.044 0.048 0.063 0.067 0.048 0.077 0.083 0.061 0.073 
JM 2 0.449 0.044 0.043 0.053 0.055 0.043 0.058 0.059 0.053 0.061 
JM 3 0.182 0.104 0.101 1.124 0.129 0.100 0.138 0.137 0.124 0.138 

Table 5.10: Measures of Dispersion of Flying Times of Four Types of Hummingbirds: 
Adult Females (AF), Adult Males (AM), Junior Females (JF) and Junior Males (JM). 
The MAD is the Median Absolute Deviation Multiplied by the Inverse of $_1(3/4). 

normal model. When using a Tukey score function with that 95% Gaussian efficiency, the 

T-estimator compares favourably with the standard one-step M-estimator of dispersion. 

Interpreting those measures of dispersion represents an important issue of dispersion 

estimation. For example, the flying times of the junior female bird 1 has a high standard 

deviation, compared with its other measures of dispersion, which is due to a very heavy 

tail (see Figure 4.5 for a visual assessment of the outlier). The normalized MAD of the 

data is equal to 0.135; in other words, the interquartile range of this sample is 13.5% that 

of the normal distribution (which MAD equals 1). Because the values of the different 

one-step M-estimators for this specific bird are significantly higher than the MAD, we 

know that the sample is very heavy-tailed, without even looking at Figure 4.5. 
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The researcher was interested in determining a general measure of dispersion in flying 

times within the four types of hummingbirds. A robust analysis could be used, but it is 

beyond the scope of this thesis. However, a simple look at the estimates of dispersion 

suggests no type of hummingbird has a dispersion in flying times clearly different from 

the other types. 

5.5 Conclusions 

The M O S M E of dispersion presented in this chapter is in general better than the stan­

dard one-step M-estimator of dispersion: it is easier to compute, it has an asymptotic 

value closer to that of the M L E , it has a higher relative asymptotic efficiency in pres­

ence of many heavy-tailed distributions, it has a lower asymptotic explosion bias and 

a lower implosion bias for small e-contaminations by inliers with central normal distri­

bution. However, if one is concerned mainly about bias, and the data possibly contain 

a large contamination of inliers but not many repetitions, then the standard one-step 

M-estimator may be a better estimator of dispersion. In that situation, the choice of 

the Huber score function would be advisable. For light-tailed underlying distributions, 

the one-step M-estimator of dispersion performs slightly better in terms of asymptotic 

relative efficiency than the M O S M E (and the T-estimator). However, heavy-tailed distri­

butions, an attempt to model samples with outliers, are of more interest and importance 

to robust theory. 

On the other hand, the T-estimator offers some competition to the M O S M E , in the 

sense that it is also easy to calculate, it estimates more accurately dispersion of heavy-

tailed distributions when it is derived from the Huber score function, and it presents 

a lower explosion bias for large contamination with central normal distribution. The 
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M O S M E derived from the Tukey score function has nevertheless a higher relative ef­

ficiency than the T-estimator for heavy-tailed distributions. Moreover, the M O S M E 

outperforms the T-estimator in terms of explosion bias for small (and more realistic) per­

centages of contamination, and beats the T-estimator in the presence of any percentage 

of inliers. 

As the hummingbirds example studied in this chapter indicates, there is similarly no 

obvious winner in terms of dispersion estimator with finite sample sizes. The behaviour 

of the M O S M E , the standard one-step or the T-estimator of dispersion compares to any 

of the other, depending on the score function used. The estimates however provides 

information about the tails of the distribution generating the data, which the M A D or 

the standard deviation cannot do. 

If one is mainly interested in the accuracy (as in "small bias") of the estimate of 

dispersion of normal data with outliers present, and didn't expect a large e-contamination, 

then we would recommend the use of the M O S M E of dispersion derived from the Huber 

score function. A large portion of outliers would however call for the T-estimator with 

the Huber score function. However, if one was mainly concerned with the precision (as 

in "high relative efficiency") of the estimates of dispersion, then the M O S M E defined by 

the Tukey score function would provide the best estimator of dispersion. 
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Maximum Bias Function of M-Estimators Using H_0.975 Score Function 

0.0 0.1 0.2 0.3 0.4 0.5 

Epsilon 

Figure 5.6: Explosion Bias Curve of the M O S M E , and a Lower Bound for the Explosion 
Bias Curve of the One-Step M-Estimator of Dispersion, Derived from the # 0 . 9 7 5 Score 
Function 
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Maximum Bias Function of M-Estimators Using Huber_2.376 Score Function 

Epsilon 

Figure 5.7: Explosion Bias Curve of the M O S M E , and a Lower Bound for the Explosion 
Bias Curve of the One-Step M-Estimator of Dispersion, Derived from the #2.376 Score 
Function 
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Maximum Bias Function of M-Estimators Using T_3.86 Score Function 

Epsilon 

Figure 5.8: Explosion Bias Curve of the M O S M E , and a Lower Bound for the Explosion 
Bias Curve of the One-Step M-Estimator of Dispersion, Derived from the T3 . 86 Score 
Function 
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Maximum Bias Function of M-Estimators of Dispersion 
That Are 9 5 % Efficient at the Normal Model 

Tau M-Estimator With T_5.3 Score Function 
MOSME With T_3.86 Score Function 
MOSME With H_2.376 Score Function 
Tau M-Estimator With H_2.51 Score Function 

0.0 0.05 0.10 0.15 

Epsilon 

0.20 0.25 0.30 

Figure 5.9: Explosion Bias Curves of M-Estimators of Dispersion That Are 95% Efficient 
at the Normal Model, for Small Contamination by Outliers 
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Implosion Curve of M-Estimators of Dispersion 
That Are 95% Efficient at the Normal Model (Huber Score Function) 

0.0 0.1 0.2 0.3 0.4 0.5 

Epsilon 

Figure 5.10: Implosion Curve of M-Estimators of Dispersion. The M O S M E and 
the One-Step M-Estimator Are Defined Through The #2.376 Score Function, and the 
Tau-Estimator Have the #2.516 Score Function. Those M-Estimators Are 95% Efficient 
at the Normal Model. The Normalized M A D is Provided for Comparison Purposes. 



Chapter 5. Dispersion Estimation with Unknown Location 95 

Implosion Curve for M-Estimators of Dispersion 
That Are 95% Efficient at the Normal Model (Tukey Score Function) 

o 

0.0 0.1 0.2 0.3 0.4 0.5 

Epsilon 

Figure 5.11: Implosion Curve of M-Estimators of Dispersion. The M O S M E and 
the One-Step M-Estimator Are Defined Through the T3.86 Score Function, and the 
Tau-Estimator, Through the T5.3 Score Function. Those M-Estimators Are 95% Effi­
cient at the Normal Model. The Normalized M A D is Provided for Comparison Purposes. 
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Implosion Curve for M-Estimators of Dispersion 
That Are 95% Efficient at the Normal Model 

0.0 0.1 0.2 0.3 0.4 0.5 

Epsilon 

Figure 5.12: Implosion Curve of MOSME's and T-Estimators That Are 95% Efficient At 
the Normal Model 



Bibl iography 

[1] Andrews, D.F. , P.J. Bickel, F.R. Hampel, P.J. Huber, J .W. Tukey and W . H . Rogers 
(1972). Robust Estimates of Location: Survey and Advances, Princeton, NJ : Prince­
ton University Press. 

[2] Bernoulli, D. (1777). Dijudicatio maxime probabilis plurium observationum dis-
crepantium atque verisimillima inde formand, Acta Acad. Sci. Petropolit 1, 3-33. 
(English translation by C. G. Allen (1961). Biometrica, 48, 3-13. 

[3] Berrendero, J.R. (1995). A Note on One Step M-Estimates of Location, Spain: 
Universidad Carlos III de Madrid (Working Paper). 

[4] Bessel, F .W. and J.J. Baeyer (1838). Gradmessung in Ostpreussen und ihre 
Verbindung mit Preussischen und Russischen Dreiecksketten, Druckerei der 
Koniglichen Akademie der Wissenschaften Berlin. (Reprinted in part in Abhand-
lungen von F. W. Bessel, R. Engelmann (ed.). W. Engelmann, Leipzig, 1876, Vol. 
3, pp. 62-138.) 

[5] Bickel, P.J. (1975). One-Step Huber Estimates In the Linear Model, J. Amer. Statis. 
Ass. 70, 428-434. 

[6] Bickel, P.J. and E .L . Lehmann (1976). Descriptive Statistics for Non-Parametric 
Models III: Dispersion, Ann. Statist. 4, 1139-1158. 

[7] Buchanan, J .L. and P.R. Turner (1992). Numerical Methods and Analysis, New York: 
McGraw-Hill, 751 p. 

[8] Casella G. and R.L . Berger (1990). Statistical Inference, Belmont, C A : Wadsworth 
& Brooks/Cole Advanced Books and Softwares, 650 p. 

[9] Donoho, D.L. (1982). Breakdown Properties of Multivariate Location Estimators, 
unpublished manuscript, Harvard University, Dept. of Statistics. 

[10] Donoho, D.L. and P.J. Huber (1983). The Notion of Breakdown Point, in Festschrift 
fur Erich L. Lehmann, eds. P.J. Bickel, K . Doksum and J.L. Hodges, Jr., Belmont, 
C A : Wadsworth, 157-184. 

[11] Fisher R . A . (1922). On the Mathematical Foundations of theoretical Statistics, 
reprinted in Contributions to mathematical Statistics (1950) by F.J.Wiley, New York. 

97 



Bibliography 98 

[12] Hampel, F.R. (1968). Contributions to the Theory of Robust Estimation, Ph. D. 
Thesis, University of California, Berkeley. 

[13] Hampel, F.R. (1971). A General Definition of Robustness, Ann. Math. Statist. 42, 
1887-1896. 

[14] Hampel, F.R. (1974). The Influence Curve and Its Role in Robust Estimation, J. 
Amer. Statist. Ass. 62 1179-1186. 

[15] Hampel, F.R., E . M . Ronchetti, P.J. Rousseeuw and W . A . Stahel (1986). Robust 
Statistics - The Approach Based on Influence Functions, New York: John Wiley & 
Sons. 

[16] He, X . and D.G. Simpson (1993). Lower Bounds for Contamination Bias: Globally 
Minimax Versus Locally Linear Estimation, Ann. Statist. 21, 314-327. 

[17] Hodges, J .L. Jr. (1967). Efficiency in Normal Samples and tolerance to Extreme 
values for Some Estimates of Location, Proceedings of the 5th Berkeley Symposium 
on Mathematical Statistics and Probability (Vol. 1), 163-168. 

[18] Huber, P.J. (1964). Robust Estimation of a Location Parameter, Ann. Math. Statist. 
35, 73-101. 

[19] Huber, P.J. (1981). Robust Statistics, New York: John Wiley k Sons. 

[20] Huber, P.J. (1984). Finite sample Breakdown of M- and P- Estimators, Ann. Statist. 
12, 119-126. 

[21] Jureckova, J . and S. Portnoy (1987). Asymptotics for One-Step M-estimators in 
Regression With Application to Combining Efficiency and High Breakdown Point, 
Comm. Statist. Theory Methods 16, 2187-2200. 

[22] Kiefer, J .C. (1987). introduction to Statistical Inference, New York: Springer-Verlag. 

[23] Le Cam, L. (1956). On the Asymptotic Theory of Estimation and testing Hypothe­
ses, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and 
Probability, Vol. 1, Berkeley: University of California Press, 129-56. 

[24] Lehmann, E .L . (1983). The Theory of Point Estimation, New York: John Wiley. 

[25] Martin, R.D. and R .H . Zamar (1989). Asymptotically Min-Max Bias Robust M-
Estimates of Scale for Positive Random Variables, Ann. Statist. 84, 494-501. 

[26] Martin, R.D. and R . H . Zamar (1993). Bias Robust Estimation of Scale, Ann. Math. 
Statist. 21, 991-1017. 



Bibliography 99 

[27] Martin, R.D. , V . J . Yohai and R . H . Zamar (1989). Min-Max Bias Robust Regression, 
Ann. Statist. 17, 1608-1630. 

[28] Press, W . H . , S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, (1992). Numerical 
Recipes in C, 2nd edition, New York: Cambridge University Press, 994 p. 

[29] Rousseeuw, P.J. (1984). Least Median of Squares Regression, J. Amer. Statis. Assoc. 
79, 871-880. 

[30] Rousseeuw, P.J. and C. Croux (1991). Alternatives to the Median Aboslute Deviation, 
J. Amer. Statis. Assoc. 88, 1273-1283. 

[31] Rousseeuw, P.J. and C.Croux (1993a). The Bias of k-Step M-estimators, Belgium: 
University of Antwerp, UIA, Department of Mathematics & Computer Science (Re­
port no. 93-06). 

[32] Rousseeuw, P.J. and C. Croux (1993b). Alternatives to the Median Absolute Devia­
tion, J. Amer. Statis. Assoc. 88, 1273-1283. 

[33] Tukey (1960). A Survey of Sampling from Contaminated Distributions, Contribu­
tions to Probability and Statistics, I. Olkin (ed.). Stanford, C A : Stanford University 
Press, 448-485. ' 

[34] Yohai, V . J . and R . H . Zamar (1988). High Breakdown-Point Estimates of Regression 
by Means of the Minimization of an Efficient Scale, J. Amer. Statis. Assoc. 83, 

'406-413. 



Appendix A 

Normalization of Densities for Calculations of Asymptot ic Efficiencies 

Many distributions F are used as examples in the study of asymptotic efficiency of 

estimators of location and of relative asymptotic efficiency of estimators of dispersion. 

They are defined as the central distribution in their respective distribution family {F(x) : 

F(x) = F(^-), —oo < x < oo, —co < 6 < oo, a > 0}. The following lists the expression 

for the density associated with any member of their distribution family: 

double exponential 

contaminated normal 

t(l) 

t(2) 

t(5) 

t(8) 

t(10) 

t(20) 

fdo(x;6,a) 
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normal : fdo(x; 9, a) = exp(-| (%f) ) 

symmetrized beta : fdo(x; 9, a) = ( - ( ^ ) 2 + 1/4) 

a(9-1/2) <x <<T(0,+ 1/2) 

Notice that the densities are function of a certain factor d0. Indeed, in order to 

make the different central distributions comparable in terms of spread, it was decided to 

normalize the associated density in their families by a factor do. The specific choice of do 

makes the interquartile range of each central distribution equal to the standard normal 

interquartile range, 1.349. Because these central distributions are symmetric around 0, 

their interquartile range is equal to 2r, where r satisfies 

By fixing the value of r to 0.6744897502 (which can be obtained by solving the above 

equation (A.32) with Fd0(x;8,do) = $(#), where $ is the standard normal distribution 

Table A. 11 shows the factor do necessary to make each of the distributions of interest 

have an interquartile range equal to 1.349. 

In summary, the distributions F used in the calculations of asymptotic efficiency of 

estimators of location, and of relative asymptotic efficiency of estimators of dispersion 

are the central distributions in their family, and so, have densities fd0(x] 9 = 0, a = 1). 

(A.32) 

function), it is therefore possible to find the normalizing factor do that satisfies (A.32). 
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Distribution F Normalization Factor do 
double exponential 0.9723764576 

contaminated normal 0.8820206848 
t(l) 0.6744897502 
t(2) 0.8254780431 

' t(5) 0.9274971822 
. t(8) 0.9541517180 

t(10) 0.9631157239 
t(20) 0.9811421330 

normal 1.0000000000 
symmetrized beta 8.8849776417 

0.55exp(—x4) 1.475435073 

Table A.ll: Normalizing Factor do Needed to Standardize the Interquartile Range of 
Each Distribution F to That of the Standard Normal Distribution 



Appendix B 

Derivation of the Influence Function of the M O S M E of Location 

The influence function of the functional T(F), as defined by Hampel et al in [15] (first 

introduced by Hampel in 1968), is 

IF(X;T,F) = K m T { F ' - ) - T { F \ 

where FtiX = (1 — t)F + t8x. In other words, it is defined as the derivative with respect 

to t of the functional T(FtiX), evaluated at t = 0. 

Therefore, to derive the influence function of the M O S M E of dispersion T*(F), we first 

need to write the expression for T*(FttX), and then evaluate its derivative with respect 

to t at t = 0. 

The expression for T*(Ft<x) is 

{(1 - t)EF^{y-TfF

Ft^) + t^Cf?^)} 
T*(Ft,x) = T0(Ftx) + S0(Ft,x)- v i , f \ 

Derivating this expression with respect to t, and evaluating it at t = 0, gives 

IF(x;T*,F) = IF(x;T0,F) + I F ^ ^ + E ^ { - E ^ ( y ) + 

^ / ( y ) ( " / F ( x ; r ° ' F ) 5 o " ^ " T o ) J F ( 3 : ; 5 o - F ) ) + H^ff1)} 

= IF(x;T0,F){l-E^}+ (B.33) 
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where T0 = T0(F), S0 = S0(F), y = ^gpf1, IF(x;S0,F) and IF(x;T0,F) are the 

respective influence functions of the initial estimates of dispersion and of location. 

But if T 0 is consistent, then T0(F) = 9 — T(F), where T(F) is the fully-iterated 

M-estimator of location 9. Moreover, in that case, ^ ( ^ J ^ ) = 0, since by definition 

EF(VSJ(P^ ) = 0 and To(F) = T(F). If we also assume that ip is odd and F is symmetric, 

then EFip'(^f^){^^) = 0, since T0(F) = T(F) = 0. Therefore, provided that T0 

is consistent, ip is odd and F is symmetric, equation (B.33) reduces to. 

- IF{x;T\F) = IF(x-,To,F){l^EFli^)} + 

Notice that the middle term on the right-hand side of the above expression can be 

rewritten as 

SJF)^^ - EFn^fa} SJF) 

where IF(x.; T, F) is the influence function of the one-step location M-estimator, which is 

equivalent to the influence function of the fully- iterated location M-estimator, provided 

that To is consistent, odd and translation invariant (see [19] for more details). If these last 

conditions for T 0 hold, and if ip is odd and F is symmetric, the expression for IF(x; T*, F) 

finally simplifies to 

IF{x;T*,F) = (l-a)IF(x-T0,F) + aIF(x;T,F), 

WHERE *=EFE!^]-



Appendix C 

Derivation of the Influence Function of the M O S M E of Dispersion 

As explained in Appendix B , to derive the influence function of the M O S M E of dispersion 

S*(F), we first need to write the expression for S*(FtiX), and then evaluate its derivative 

with respect to t at t = 0. 

The expression for S*(FttX) is 

S*(FtiX) = S0(FttX) + 
S0(Ft,x){(l - t)EFX(^f^) + * x ( ^ g y ) } . 

E*X'(z)z 

Derivating this expression with respect to t, and evaluating it at t = 0, gives 

IF(x- S*, F) = IF(x; S0,F) + ^-^{IFix-, S0, F)EFX(y) + S0[-EFX(y)+ 

^ ( x ^ ) { - / F ( - ^ F ) 5 ° - g ^ ) / F ( ^ ' F ) } ) + X(^) ]} " 
= 7 F ( x ; S 0 , F ) { l + ^ - M $ } + 

m*\T0,F){^} + ^MS:t)-EFx{v)h 
where T0 = T0{F), S0 = S0(F), y = ^ ^ p , IF(x;S0,F) and IF(x; T0,F). are the 

respective influence functions of the initial estimates of dispersion and of location. 

But since EFX'(y7j°^) = 0 when x is even and F is symmetric, and since T0(F) = 0 

when F is symmetric, equation (G.34) reduces to 

IF(X;S;F) = / f ( „ S o , f) (i + izMnl. ° " ^ p > } + 

So 
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A p p e n d i x D 

Der iva t ion of the Influence Funct ion of the One-Step M - E s t i m a t o r of 

Dispers ion 

As explained in Appendix B , to derive the influence function of the one-step M-estimator 

of dispersion, S\(F), we first need to write the expression for Si(FtiX), and then evaluate 

its derivative with respect to t at t = 0. 

The expression for Si(Ft,x) is 

Derivating this expression with respect to t (using the derivation formula for a ratio 

a two functions), and evaluating it at t = 0, gives 

IF(x;S1,F) = IF(x-S0,F) + w^w{(IF(x-So,F)EFX(y)+ 

So[-EFX(y) + EFx'(y){ ~IF(x'To>F)s°~W~T°)IF(x<Sn'F} }_|-

x(^)]EFX'(y)y-SoEFX(y)(-EFxf(y)y+ 

^[(x / /(y)y + x ^ ) ) ( - J F ( " T o ' F ) 5 Q 1 f - r o ) / i ? ( 3 ; ; S Q ' F ) ) ] + 

)c(*t)(*t))} ' (D-35) 

= IF{x- So, F){2^L + *^«)JSW } + 

T F(r- F\fEpX^ EF\"(y)y I EPx(y) EFX'(y) EFX'(y) -i , 
1 | l 0 , r ^ [EFX'(y)y]2 + [EFx'(y)y? EFX'(y)yi + 

*FX\y)\ [EFX'(y)y]* J + EFX'(y)y ' 
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where T 0 = T0{F), S0 = S0(F), y = ^ ^ f , IF{x;S0,F) and IF(x;T0,F) are the 

respective influence functions of the initial estimates of dispersion and of location. 

But since Erx'i'-^1) = 0 and EFy\*fffi){*gffi) = 0 when x is even and F 

is symmetric, and since TQ(F) = 0 when F is symmetric, equation (D.35) reduces to 

IF(x-SL,F) = IF{x- S0, F) K ^ ^ l L ) + E F X l ^ ( E ^ ^ ^ ' } + 



Appendix E 

Derivation of the Influence Function of the r-Estimator of Dispersion 

As explained in Appendix B , to derive the influence function of the T-estimator of dis­

persion, Si(F), we first need to write the expression for Sl(FttX), and then evaluate its 

derivative with respect to t at t = 0. 

The expression for Si(FtjX) is 

where /3 = E$x(x)-

Derivating this expression with respect to t, and evaluating it at t = 0 gives 

IF(x;SlF) = i { 2 S 0 i F { , ; S 0 , F ) E F x { y ) + 

2yJT£EFX(y) •• • 

f[-EFX(y) + ^ X ^ ) ( - 5 o f F ( " r o - F ) - | - r o ) / F ( 3 : ; S o ' F ) ) + X ( ^ f ) ] } 

= ^p{IF(x; S0,F)[~^(Sl)2 - ̂ -EFx'(y)y]-

IF(x;T0,F)fEFx'(y)-(Siy + fX(x-^)}, 

(E.36) 

where T 0 = T0(F), S0 = S0{F), SI = S?{F), y = IF(x;T0,F) and IF{x,S0,F) 

are the respective influence functions of the initial estimators of location and dispersion. 

But since EFx'(y) = 0 when x is even and F is symmetric, and since To(F) = 0 when 

F is symmetric, y = and equation (E.36) reduces to 

IF(X;SIF) = iF(x-,So,F){^-^EFX\y)y} + ^ x { ^ f F

F 1 ) 
x-T0(F)} _ Sf(F) 

2 ' 
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