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ABSTRACT

The placenta is an important endocrine organ producing large amounts of steroid
and protein hormones which are released into the maternal and fetal circulations.
Moreover, it has a vefy high metabolic rate and consumes a significant proportion of the
oxygen and glucose delivered to the uterus and its contents. However, while there have '
been many studies on the effects of hypoxemia on fetal cardiovascular, metabolic and
endocrine functions, there are limited data on the effects of reduced oxygenation on

placental endocrine activities.

In the present study, we examined the effects of acute (2-h) moderate (maternal
Pao, lowered by 27-35%, n=5) and severe (maternal Pao, lowered by 41-58%, n=4)
hypoxemia on placental progesterone output into the maternal circulation in 7 chronically
instrumented pregnant sheep (125 to 136 d). Hypoxemia was achieved by lowering
maternal inspired Oy concentration and the hypoxemia period was preceded and followed
by 2 h pre-hypoxia and recovery periods, respectiVely. Control experiments (n=4),
involving 6 h periods of normoxia were also carried out. Samples were taken
simultaneously at predetermined time periods from maternal femoral arterial and uterine
venous catheters for measurement of progesterone concentration. Blood flow to the uterine
horn containing the operated fetus was measured continuously, and utero-placental
progesterone output was calculated as the uterine venous - arterial difference in
progesterone concentration times uterine blood flow. Blood samples were also collected
from the fetal femoral artery and umbilical vein, and in these samples, as well as in the

maternal samples, the following variables were measured: Poy, Pco, and pH, hemoglobin

concentration, blood O, saturation and content, glucose and lactate concentrations and fetal
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plasma cortisol level. The following variables were calculated from these data: utero-
placental oxygen delivery and consumption and gluco‘se uptake and lactate flux. Maternal

and fetal arterial pressure and heart rate were continuously monitored.

In sheep carrying twin fetuses compared to those witha single fetus, the average
progesterone concentrations of maternal arterial (6.53+0.19 versus 4.2740.13 ng/ml) and
uterine venous plasma (21.05+0.56 versus 17.82+1.17 ng/ml) were significantly higher
and associated with significantly higher values of uterine blood flow (549.5+£17.9 versus

339.616.2 ml/min) and progesterone output (8,156+426 versus 4,720+243 ng/min).

In the moderate hypoxia experiments, maternal arterial Pop was lowered by 27-
35% (mean = 30.7+1.8%) or 38.9+4.7 mmHg. This resulted in a fall in fetal arterial
oxygen tension by 19.732.4% or 4.1+0.5 mm Hg. This was associated with similar
decreases in fetal blood O, saturation and content, and with a rise in lactate concentration
and cortisol level. There were no consistent changes in fetal Pcop or pH. Similar changes
in the fetal variables were observed with severe hypoxia, when maternal Po, fell by 41-
58% (mean = 48.5+3.5%) or 59.4+6.6 mmHg, except that in this case the decrease in fetal
Po, was greater (28.6+2.0% or 4.8+1.0 mmHg) and there was a significant decline in
fetal arterial pH and larger increases in fetal lactate and cortisol levels. Likely as a
consequence of the acidemia, the fall in O, saturation (44.7+5.5%) and content (41.819.0
mM) was greater than with moderate hypoxemia. With both degrees of hypoxemia, there
was a tendency for the umbilical veno-arterial lactate difference to increase during
hypoxemia, suggesting increased utero-placental lactate production. Severe hypoxia was
associated with an increase in maternal heart rate, but no change in arterial pressure,

whereas neither variable was altered with moderate hypoxia. Severe hypoxia was

associated with fetal hypertension and bradycardia, but these changes did not occur with
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moderate hypoxia. There were no changes in the maternal and fetal variables during the
control, normoxia experiments except for a slight but significant decrease in fetal plasma

cortisol concentration.

Uterine blood flow, O, delivery and O, consumption were not consistently
changed during the moderate and severe hypoxia experiments, nor during the control,
normoxia protocol. There were also no significant changes in maternal arterial and uterine
venous progesterone concentrations. However, with moderate hypoxemia, the
progesterone concentration in uterine venous blood increased in 4 of the 5 experiments,
and the mean percentage increase was 16.2+7.3%. There was a similar trend for a rise in
utero-placental progesterone output, which increased by 18.6+10.5%. However, neither

change was statistically significant.

Overall, the results indicate that acute hypoxemia results in significant alterations in
fetal cardiovascular, metabolic and endocrine functions, with limited effects on the utero-
placental variables measured. Thus the placenta may be more resistant to reduced
oxygenation than the fetus. The trend for an increase in utero-placental progesterone
production with moderate hypoxia is similar to data in published reports. If such an
increase does in fact occur, it may be due to the clévation in placental PGE, production that
occurs with hypoxia, since PGE, has been shown to increase ovine placental progesterone
synthesis in vitro. The lack of any evidence for a rise in progesterone produ‘ction with
severe hypoxia may reflect an inhibitory effect of severe decreases in maternal and/or fetal
oxygenation on placental progesterone production. However further studies are necessary

to confirm the results of the current and previous studies and in this regard the effects on

placental progesterone outpﬁt of other methods of inducing fetal hypokemia, which have a




greater impact on uterine O, delivery (e.g. maternal anemia, reduced uterine blood flow),

would seem worthy of investigation.
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1. INTRODUCTION

1.1  MORPHOLOGY OF THE SHEEP PLACENTA

In Grosser's classic 1909 publication on placental structure, the mnﬁﬁant placenta
was defined as syndesmochorial, because he considered that the uterine epithelium
disappeared and fetal trophectoderm was apposed directly to the maternal uterine tissue (see
Steven, 1975). However, subéequent workers demonstrated that the uterine epithelium
persists, .albeit in all altered form, and therefore reclassified the ruminant placenta as
epitheliochorial, i.e. the chorionic trophoblast is apposed to the uterine epithelium
(Ludwig, 1962; Steven, 1975; Ramsey, 1982). In the last decade considerable evidence
has accumulated to show that a unique feature of the ruminant placenta is a population of
fetal chorionic binucleate cells (BNC), which are formed throughout pregnancy from
mononuclear trophoblast cells. They then migrate through the tight junctions on the apical
surface of the trophoblast layer to fuse with uterine epithelial cells. This is associated with
the conversion of the epithelium from a cellular to a syncytial layer. BNC appear to be
directly involved in this modification of the uterine epithelium, which begins at
implantation and continues until term (Wooding, 1982, 1983; Wooding et al, 1986).
Another important function of BNC is to produce and deliver protein and steroid hormones
to the ewe and fetus. A placental lactogen is measurable in maternal and fetal circulations
through the latter two-thirds of pregnancy in sheep (Chan et al, 1978; Martal and Lacroix,
1978). BNC are the sole source of this protein hormone (Forsyth, 1986). Moreover,
BNC isolated from sheep placenta are capable of considerable progesterone production

from endogenous sources and added labeled pregnenolone (Reimers et al, 1985; Ullmann

and Reimers, 1989).




1.2  METABOLIC AND ENDOCRINE FUNCTIONS OF PLACENTA

The uteroplacenta of the pregnant sheep is a heterogeneous group of structures
including myometrium, endometrium, placental cotyledons and chorion-allantoic
membranes. However, the studies on the distribution of uterine blood flow, and the
transplacental diffusion of glucose and oxygen indicate that placental metabolism is the
major metabolic component of the uteroplacenta (Meschia et al, 1980). The uteroplacenta
has a very high metabolic rate and, in late gestation consumes 45~50% of oxygen and
~67% of the glucose used by the uterus and its contents (Meschia et al, 1980; Wilkening
and Meschia, 1983).

The placenta also plays an active endocrine role during pregnancy, producing
various steroid and protein hormones, as well as other molecules that yet do not have a
derhonstratcd endocrine function. There are species differences in the precise nature of the
endocrine products produced by the placenta. Thus, for example is some species (e.g.
human) a placental gonadotropin (e.g. HCG) is produced in large quantities, whereas in
others (e.g. sheep), no such placental hormone has been demonstrated (Conley and
Mason, 1994). The primary hormones produced by the sheep placenta include
prostaglandins E, and Foq (Liggins, 1974; Magness et al, 1990; Yoshimura et al, 1990;
Kellenian et al, 1992; Thorburn, 1992; Boéking et al, 1993), various peptide and protein
hormones, such as ovine placental lactogen (Hurley et al, 1977), and progestins and
estrogens. As noted above, BNC appear to be of primary importance in the synthesis of

placental hormones in the sheep. In this thesis, the primary discussion will be on

progesterone.




1.3  PLACENTAL PROGESTERONE PRODUCTION
1.3.1 Progesterone Levels and Production Rates in Pregnancy

The unique steroid of pregnancy is progesterone and its adequate formation by the
corpus luteum and/or the placenta is essential to the establishment and maintenance of
pregnancy in sheep and other mammalian species (Conley and Mason, 1994). In some
species, such as the goat, the secretion of progesterone by the corpus luteum is the
dominant feature in the hormonal maintenance of pregnancy. In contrast, in the sheep, as
well as in some other species, the corpus luteum is the principal source of progesterone in
early gestation, but later the placenta assumes an increasingly important role. However,
although bilateral ovariectomy can be pérformed in sheep without causing abortion from
about day 50 after mating (Casida and Warwick, 1945), the corpus luteum continues to
secrete progesterone for most of gestation (Edgar and Ronaldson, 1958; Harrison and

Heap, 1968).

Plasma progesterone levels have been measured in pregnant sheep by several
investigators (Bassett et al, 1969; Stabenfeldt et al, 1969; Fylling, 1970). The
concentration rises éteadily after about 70 days' gestation with the highest values being
found during the last third of pregnancy (Neher and Zarrow, 1954; Bassett et al, 1969).
Within two days prior to parturition the levels fall rapidly so that at the time of delivery,
they freqﬁently resemble those found in non-pregnant sheep during the luteal phase of the
normal cycle (Thorburn et al, 1969). Linzell and Heap (1968) found a net production of
progesterone by the gravid uterus of sheep by measuring a uterine veno-arterio difference

of 43.3 ng/ml allowing for an estimate of progesterone output of 10 pg/min or 14 mg/day.

Mattner and Thorburn (1971) reported that in single- and twin-bearing ewes lacking a




corpus luteum, the mean concentration of progesterone in utero-ovarian venous plasma
increased from 18 ng/ml and 32 ng/ml, respectively, at day 100 of pregnancy to a plateau
of 45~60 ng/ml and 68~80 ng/ml respectively, between days ~120 and 140 (term is ~145
days in sheep). In single-bearing ewes with a corpus luteum, the concentration fell from
115-145. ng/ml at days 100-110 to 53 ng/ml at days 135-140. A corresponding fall
occurred in twin-bearing ewes with a corpus luteum: from 160-175 ng/ml at days 100-110
to 72 ng/ml at about day 130. The daily output of progesterone by the placenta in
single-bearing and twin-bearing ewes was about 4 mg and 8 mg, respectively, at day 100
of pregnancy and rose to about 33 mg and 55 mg, respectively, at 5 days before
parturition. In pregnant sheep, there is also a high plasma concentration of the reduced
metabolite of progesterone, 20a-dihydroprogesterone (20a-diHP), similar to the
concentration of progesterone (Short and Mobre, 1959). In vitro studies have indicated
that progesterone is reduced to 20a.-diHP by several maternal and fetal tissues (Nancarrow

and Seamark, 1968).

The marked prepartum fall in maternal circulating progesterone levels noted above
is the result of a fetal cortisol-induced increase in placental 17a-hydroxylase activity,
which is the primary trigger for the onset of parturition in sheep (Anderson et al, 1975,
Silver, 1994). As a consequence, pregnenolone is converted to 17a-hydroxypregnenolone
and then, via C-17,20 lyase, to dehydroepiandrosterone. In this manner, pregnenolone is
diverted from progesterone synthesis to dehydroepiandrosterone, which in turn is
converted to androstenedione (by the action of steroid 3B8-hydroxysteroid dehydrogenase)
and then to estrone via aromatase (Steele et al, 1976). Progesterone formed from
pregnenolone is also acted upon by 17a-hydroxylase to give 17a-hydroxyprogesterone,

which also contributes to progesterone decrease (Flint et al, 1975a&b). Compared with

17a-hydroxypregnenolone, however, 17a-hydroxyprogesterone is a poor substrate for




steroid-17,20 desmolase reaction; thus, androstenedione, the immediate precursor of
estrogen in the sheep placenta, arises primarily from 17c-hydroxypregnenolone via
dehydroepiandrosterone and not from 17oa-hydroxyprogesterone (France et al, 1988).
Fetal cortisol also acts to cause a modest increase in aromatase activity, but aromatase is not
the rate-limiting step in estrogen formation; rather, the supply of C-19 steroid precursors,
i.e., dehydroepiandrosterone, is rate-limiting. In this coordinated manner, progesterone
seéretion is severely reduced at the onset of parturition, with a concomitant increase in
estrogen secretion, which via its effects on myometrial gap junctions and oxytocin
receptors, uterine prostaglandin production and cervical tissue constituents, caused the
coordinated labour contractions and cervical dilatation (Verhoeff et al, 1985; Silver, 1990,

Neuland and Breckwoldt, 1994).

Bedford et al (1971) have shown that the hormonal maintenance of the pregnancy
in sheep is associated predominantly with an increased production rate of progesterone and
not with any progesterone-conserving mechanism such as could be provided by a decrease
in its metabolic clearance rate (MCR). The production rate of progesterone during
gestation increases significantly from early pregnancy to a maximum at days 135-145. At
that time, the rate is about 10 times higher than that found in non—pregné.nt sheep during the
luteal phase. In contrast, the MCR of progesterone changes little during gestation and is
only slightly greater in pregnant sheep than in non-pregnant ewes. Within 2 weeks before
parturition there is a small, though statistically insignificant increase in MCR. However,
MCR corrected for body weight is the same in sheep during the normal estrous cycle and in
pregnancy suggesting that the change in clearance rate in late gestation is the result of

alteration in some weight-related component such as total body water (Paterson and

Seamark, 1968).




1.3.2 Progesterone Biosynthesis

Progesterone is a C-21 steroid hormone synthesized directly from pregnenolone
and is of major importance as an intermediate step in the biosynthetic.pathway of sex
hormones. The rate-limiting step in progesterone biosynthesis is conversion of cholesterol
to pregnenolone by mitochondrial cytochrome P450side-chain cleavage enzyme (P450gcc)
(Kashiwagi et al, 1980). The enzyme functions together with its associated NADP-specific
electron transport proteins, flavoprotein NADP-adrenodoxin reductase and the iron-sulphur
protein, adrenodoxin (Lambeth et al, 1982). The electron transport proteins are isolated as
soluble components from sonicated mitochondria, while the cytochrome P-4504¢ is an
intrinsic mitochondrial inner membrane protein (Yago and Ichii, 1969). The cytochrome
binds cholesterol and catalyzes 3 successive oxidations (Orme-Johnson et al, 1979). The
intermediates, 22R-hydroxycholesterol and 20q, 22R-dihydroxycholesterol remain bound
to the enzyme, while the final product, pregnenolone, is released (Burstein and Gut,
1976). Three moles of oxygen and NADP are required per mole of pregnenolone

synthesized.

In several species, ovarian cholesterol side-chain cleavage appears to regulated by
luteinizing hormone, which stimulates synthesis of the enzyme (Toaff et al, 1983;
Funkenstein et al, 1984; Hedin et al, 1987) and mRNA encoding for the enzyme (Golos et
al, 1987; Urban et al, 1991) in granulosa cells. Once luteinization has occurred,

cytochrome P4504. is thought to be constitutively produced and thus less dependent upon

hormonal regulation (Oonk et al, 1990). Enzyme concentrations are paralleled by levels of

mRNA encoding P4504¢ in bovine and human granuloéa and luteal cells (Rodgers et al,

1987; Doody et al, 1990).




In the adult bovine adrenal, adrenocoticotropin (ACTH) increases cholesterol side-
chain cleavage gene transcription ( John et al, 1986), the stability of P450g¢cc-encoding
mRNA (Boggaram et al, 1989) and the amount as well as activity of the enzyme (Kramer et
al, 1983). In the human fetal adrenal, ACTH has also been shown to increase most of
these parameters (John et al, 1986; Ohashi et al, 1983; Di Blasio et al, 1987). Moréover,
in the sheep fetus, an AC’fH infusion in vivo strikingly increases both the amount of
P450gcc-encoding mRNA (Tangalakis et al, 1990) and the adrenal cells' ability to produce
pregnenolone (Durand et al, 1982). In rat adrenal cortical mitochondrial preparations, the
side-chain cic:avage reaction is stimulated rapidly (in less than 10 min) by treatment of
adrenal cells with ACTH, and the rapid phase (first 2 min) is highly oxygen dependent,
probably because of limitations in cholesterol and/or electron supply (Liddle et al, 1962;
Simpson, 1979). However,j the second phase (2-10 min) is essentially oxygen
independent (Stevens et al, 1984). There appears to be little information on the regulation

of placental cytochrome P4504cc.
1.3.3 Regulation of Placental Progesterone Secretion

Although much evidence has been accumulated showing that the placenta of many
mammalian species synthesize and secret steroids, the mechanisms which regulate these
processes remain ambiguous (Heap and Flint, 1984). Wango et al (1992) demohstrated
that progesterone synthesis in binucleate cell preparations in sheep is increased by
prostaglandin E, (PGE,). Sheep binucleate cells also produce PGE, from arachidonic
acid. Nordihydroguaiaracetic acid (NDGA, a lipoxygenase inhibitor) stimulated
progesterone production, whereas it was inhibited by indomethacin (a cyclooxygenase

inhibitor). These results suggest that in sheep the products of both the cyclooxygenase

(producing PGE5) and lipoxygenase pathways of arachidonic acid metabolism have




regulatory roles in placental steroid synthesis. In an in vivo study in pregnant sheep
(Nathanielsz and Seamark, 1988), induction of premature delivery by cortisol caused an
increase in maternal and fetal 17a-hydroxyprogesterone, dehydroepiandrosterone and
estrone levels and also a rise in maternal 17a-hydroxypregnenolone concentration, with a
concomitant decrease in maternal and fetal pregnenolone and progesterone levels,
indicating that induction on these above enzymes was brought about by cortisol infusion in

vivo, as occurs at normal parturition.
1.3.4 Progesterone Effects

Progesterone has a variety of physiological effects in pregnancy and in the
post-partum period (Conley and Mason, 1994). One of the more important effects is the
induction of the cyclic changes in the glandular morphology of the endometrium allowing
for implantation and successful placentation and growth of the fertilized ovum. It is also
responsible for the continuous maintenance of pregnancy. Progesterone is also believed to
suppress uterine myometrial contractions until just prior to parturition, and as noted above,
progesterone withdrawal with concomitant increased placental estrogen production is
associated with onset of parturition in sheep. In addition, progesterone stimulates and
prepares for lactation in the mammary gland. The biological potency of 20a-diHP is much
less than that of the parent compound, and the physiological role of 20c-diHP in pregnant
sheep is obscure. In the pregnant rabbit, it has been implicated in the regulation of
luteinizing hormone release (Hilliard et al, 1967). However, unlike the rabbit, the ovarian

secretion rate of 200-diHP in the sheep is low, being less than 10% that of progesterone

(Short et al, 1962).




1.4  FETAL EFFECTS AND FETAL RESPONSES TO HYPOXEMIA

Fetal hypoxia, which can be defined as a reduction in fetal tissue oxygen supply, is
a cbmmbn cause of fetal morbidity and mortality (Edelstone, 1984; Carter, 1989;
Richardson et al, 1989; Rurak, 1994; Rurak, .1995). It normally results from a reduction
in the delivery of oxygen from mother to fetus. As fetal oxygen delivery is the product of
umbilical blood flow and umbilical venous O, content, it can be lowered by either a fall in
umbilical blood flow (e.g. via cord compression) or a reduction in the umbilical venous O
concentration. The latter perturbation can result from a number of causes, including
maternal hypoxia (e.g. from high altitude, anemia or cigarette smoking), reduced uterine or
maternal placental blood flow, placental abruption or fetal anemia. The biophysical,
cardiovascular, metabolic and endocrine responses to both acute and chronic fetal
hypoxemia have been investigated in numerous animal studies and there are also data from
the hypoxic human fetus (see Edelstone, 1984; Carter, 1989; Richardson et al, 1989,
Rurak, 1994; Rurak, 1995). Acute hypoxemia (~30-60 min), whether induced by the
maternal inhalation of a hypoxic gas mixture or a reduction in maternal uterine blood flow,
causes a number of physiological responses. Fetal breathing movements and body
movements are greatly reduced (Boddy et al, 1974; Bocking et al, 1986), and this likely
serves to minimize fetal O demands. In terms of fetal cardiovascular function, there is
hypertension and initial bradycardia, and a redistribution of cardiac output in favor of the
heart, brain and adrenal gland, at the expense of flow to other organs (Cohn et al, 1974).
Sympathetic and parasympathetic mechanisms, and increased circulating catecholamine and
vasopressin (AVP) concentrations appear to be involved in these cardiovascular responses
(Jones et al, 1977a; Rurak, 1978; Walker et al, 1979; Lewis et al, 1980; Cohen et al, 1982;
Ruess et al, 1982; Parer, 1983; Court et al, 1984). In addition to the increased fetal

concentrations of catecholamines and AVP, there are also elevations in ACTH, cortisol and
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PGE, (Boddy et al, 1974; Jones et al, 1977a; Challis et al, 1986; Bocking et al, 1986;
Hooper et al, 1990; Murotsuki et al, 1995). The metabolic consequences of acute fetal
hypoxemia include hyperglycemia, achieved primarily via catecholamine-induced
glycogenolysis, and a progressive rise in blood lactate concentration (Jones and Ritchie,
1978b). It is this lactic acidemia that limits the fetal tolerance to hypoxia, as the resulting
metabolic acidemia further reduces blood O, concentration via a Bohr shift on the

hemoglobin oxygen dissociation curve (Rurak et al, 1990a&b).

In contrast to the fetal responses to acute hypoxemia, with a chronic reduction (>
~2 h) in fetal O, delivery, there is a gradual return in the frequency of fetal breathing
movements to the normal levels (Bocking et al, 1988; Hooper et al, 1990; Koos et al,
1988). There is also gradual resolution of the metabolic acidemia, and a plateau in lactate
levels, (Bocking et al, 1992; Boyle et al, 1992; Wilkening et al, 1993; Hooper et al, 1995).
Fetal Oy consumption is maintained with a 24 h reduction in O, delivery (Bocking et al,
1992). However, with a ~9 days reduction in fetal O, delivery, achieved by a controlled
long-term decrease in umbilical biood flow, fetal O, uptake is reduced compared to control
animals, probably as a result of a fall in fetal growth rate (Anderson et al, 1986). In terms
of fetal cardiovascular function, there appears to be an initial increase in fetal cardiac output
that lasts from ~1 to 3 h of the hypoxemic period, with increased blood flow to the brain,
heart, placenta and adrenal, but with no decrease in perfusion to other less vital organs
(Court et al, 1984; Milley, 1987; Milley, 1988; Bocking et al, 1988; Rurak et al, 1990b).
In addition, plasma concentrations of ACTH decline to near control levels, but cortisol
concentrations remain elevated (Challis et al, 1989; Gagnon et al, 1994). It is clear,

therefore, that fetal responses to acute hypoxemia do not adequately reflect the responses to

prolonged hypoxemia.
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1.5 EFFECTS OF HYPOXEMIA ON PLACENTAL FUNCTIONS

As discussed above, there have been many studie_s conducted on the fetal responses
to hypoxemia. However there has been much less investigation of the effects of reduced
oxygenation on the placenta. Placental O, supply clearly could be reduced by a fall in O,
delivery from the mother, i.e. by a maternal hypoxia or a decrease in uterine blood flow.
HoweQer, it is also possible that a reduction in oxygen delivery from the fetus to placenta
could also affect the placenta, if the tissues of the fetal components of the placenta (which
are perfused with fetal blood delivered by the umbilical arterieé) derive oxygen from this
source. However, this has not been yet demonstrated for placental O, usage, although
Hay et al (1984) have found that ~40% of the glucose utilized by the sheep uteroplacenta is
derivéd from fetal blood. Mofeover, if fetai glucose concentrations are increased, the
proportion of uteroplacental glucose supply supplied by the fetus rises (Simmons et al,
1979). Furthermore, when uterine blood flow is reduced acutely in pregnant sheep to
decrease uteroplacental glucose supply, there is placental uptake of lactate from the fetal
circulation (i.e the reverse of the normal situation), and this is sufficient to make up for the
fall in placental glucose (:onsumption (Gu et al, 1985; Hooper et al, 1995). In sheep, it is
also possible that placental progesterone production could be indirectly reduced by hypoxia
via the increase in fetal ACTH and cortisol levels that occurs with hypoxemia, with the
latter response leading to activation of placental 17a-hydroxylase. However, this process
would likely take considerably longer than a direct effect of hypoxia on the placenta (Jones

et al, 1977a; Clapp et al, 1982a; Gagnon et al, 1994).

There have been several in vitro studies which indicate that steroidogenesis is

oxygen dependent. As discussed previously, the cholesterol side-chain cleavage reaction

in rat adrenal mitochondrial preparations is oxygen dependent when the supply of either
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substrate (cholesterol) or reducing equivalents is low (Stevens et al, 1984). And a recent
study of cytochrome P450g activity in human placental trophoblast cells indicates that the
cholesterol supply is limiting (Tuckey et al, 1994), so that an oxygen-dependence of the
side-chain cleavage reaction may also be present in the placenta. The O, dependence of
cytochrome P450g is similar to that seen with the cytochrome P-450s involved in many
phase 1 drug detoxification reactions (Jones et al, 1989). Aw. et al (1985) examined the
oxygen dependence of estrogen production (from androgens via aromatase) in human
placental microsomal preparations and in cultured choriocarcinonia cells (BeWo line).
Oxygen dependence was demonstrated in both preparations, with the effect being more
pronounced in the intact BeWo cells. Thus, the irn vitro data suggest that reactions

involved in placental steroidogenesis could be impaired by reduced O, supply.

There are limited in vivo data on the oxygen dependence of placental
steroidogenesis. Several of the studies which have examined the effects of reduced O,
delivery on chronically instrumented fetal lambs have also measured the circulating levels
of some of the endocrine products of the placenta. A consistent finding has been a rise in
fetal plasma PGE, concentrations (Hooper et al, 1990; Sue-Tang et al, 1992; Murotsuki et
al, 1995). It is likely that the placenta is the source of this PGE, (Kelleman et al, 1992;
Murotsuki et al, 1995), and there is also evidence that the rise in fetal circulating levels of
the compound is important in minimizing the fetal hyperglycemia and lactic acidemia that
occur in response to hypoxemia (Hooper et al, 1992; Thorburn, 1992). Challis et al
(1989) measured maternal and fetal arterial progesterone concentrations in experiments
involving a 48 h reduction in uterine blood flow. Although arterial plasma progesterone
levels increased transiently in the first 1-2 h in the fetus, there were no significant
differences in comparison to a control group of animals. However, measurement of

arterial progesterone concentration alone provides little information of uteroplacental
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production. Keller-Wood and Wood (1991) measured progesterone levels in both maternal
arterial and uterine venous blood before and during a 30 min hypoxic period (achieved By
lowering maternal inspiredl O, concentration). A rise in uterine venous progesterone
concentrations occurred in 7/10 experiments at 20 and 30 min of hypoxia. However, as
uterine blood flow was not measured, actual uteroplacental progesterone output could not
be estimated. In addition, the duration of hypoxia (30 min) may not have been sufficient to
elicit an effect. This study also found no evidence for placental production of ACTH or
corticotropin-releasing factor (CRF) under either normoxic or hypoxic conditions and
similar results have been obtained by Sue-Tang et al (1992) in a study involving a 24 h
reduction in uterine blood flow. In studies on pregnant sheep carried out by Clapp et al.
(1981, 1982a), which involved microembolization of the uterine circulation over 13 days to
limit the rise in uterine blood flow in late gestation, there was a progressive rise in fetal in
cortisol level, and this was followed in the post-embolization period by a decrease in
uterine venous progesterone concentration, and perhaps uteroplacental progesterone
secretion rate into the maternal circulation (Clapp et al, 1982a). In some of the animals,
delivery occurred prematurely, and in these, the reciprocal changes in fetal cortisol and
uterine venous progesterone occurred simultaneously, likely reflecting the cortisol effect on
17a-hydroxylase that normally operates at term. In pregnant baboons, as in the human,
there is a‘high level of estrogen production from androgenic steroid precursors. Fritz et al
(1985) conducted acute studies in anesthetized pregnant baboons, and found that with
experimental reductions in uterine blood flow, the rate of conversion of maternal
dehydroepiandrosterone to estradiol was linearly related to uterine perfusion, suggesting an
O, dependence of placental aromatase. In a subsequent study (Fritz et al, 1986), maternal
plasma estradiol levels were decreased in association with the reduced placental clearance
of maternal androgen precursors. However, this only occurred in animals where there was

no evidence of fetal distress during the period of reduced uterine perfusion. When fetal
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distress appeared to be present, maternal estradiol concentration appeared to be increased,
and it was hypothesized that this was due to an increased supply of androgen precursors
from fetus to placenta. This hypothesis has recently been confirmed; a transient reduction
in uterine blood flow that resulted in fetal hypoxemia and acidemia was associated with an
increased fetal production rate of dehydroepiandrosterone and elevated estrogen
concentrations in maternal plasma (Shepherd et al, 1992). These studies in baboons
suggest that, in conditions involving fetal hypoxemia, placental steroidogenesis, at least for

estrogens, can be affected by factors other than O, supply.

1.6 RATIONALE
From the previous discussion, the following factors are apparent:

1. During pregnancy, the placenta has a very high metabolic rate and consumes significant
proportion of the oxygen and glucose delivered to the uterus and its contents. It is also

possible that some of the oxygen used by the placenta is supplied from fetal blood.

2. The placenta is an important endocrine organ which produces large amounts of steroid
and protein hormones which are released into the maternal and fetal circulation. This
synthetic activity requires metabolic energy, the bulk of which is likely provided via

oxidative phosphorylation and hence requires oxygen.

3. Progesterone is one of the most important hormones synthesized by the placenta as it is

essential for pregnancy maintenance.
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4. In vitro studies of steroidogenic pathw'ays have demonstrated that some steps, such as

cholesterol side-chain cleavage and aromatase, are oxygen dependent.

5. The limited number of ir vivo studies on the effects of hypoxemia on placental hormone
production have not provided evidence for oxygen-dependent processes for progesterone
or other hormones. However, the appropriate measurements (i.e. uteroplacental

progesterone output) have not been made.
1.7  OBJECTIVES

The objective of this study is to determine the effects of short-term maternal
hypoxemia on uteroplacental progesterone output into the maternal circulation. In addition,
a number of other physiological and metabolic parameters were measured, including
maternal and fetal blood gas status, acid-base balance; hemoglobin concentration, blood
oxygen saturation; uteroplacental oxygen delivery and consumption, uteroplacental glucose

uptake and lactate flux, and fetal plasma cortisol concentration.
1.8  SPECIFIC AIMS

To examine the effect of maternal short-term acute hypoxemia on uteroplacental

progesterone production in chronically instrumented pregnant sheep.
1.9  HYPOTHESIS

Short term maternal hypoxemia decreases placental progesterone production via a

reduction in placental oxygen supply from the mother and/or fetus.
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2 EXPERIMENTAL METHODS

2.1 ANIMAL PREPARATION
A. Breeding

Sheep have an estrous cycle which lasts ~17 days. The ewes (Dorset and Suffolk
breeds) used in the current study were time-mated using estrous synchronization. This
was accomplished with intravaginally implanted Veramix Sheep Sponges (Tuco Products
Co., Orangeville, Ont.), which release medroxyprogesterone acetate, a progestin, to
suppress spontaneous ovulation. After removal of the sponge 14 days later, ovulation was
induced by intramuscular injection of 250-500 I.U. Pregnant Mares' Serum Gonadotropin
(Ayerst Laboratories, ). Ovulation normally occurs 24-48 h later (Whyman et aL 1979),
and over this time a ram was placed with the ewes. To improve the conception rate, the
ewes were kept with the ram for a further 2 weeks, i.e. until the next ovulation, if
conception did not occur with the first ovulation. Pregnancy was assessed by
measurement of plasma progesterone concentration in the ewe at ~19 days after pessary

removal; and confirmed later in gestation (>50 days) by ultrasound examination.
B. Surgical Procedures
Surgery was performed on the pregnant ewes at 121~127 days gestation (term is

~145 days). Ewes were fasted for ~18 h prior to surgery, but had access to water. On the

day of surgery, atropine sulfate (6 mg) was administrated via the maternal jugular vein to

control salivation. Approximately 10 min later, anesthesia was induced with an injection of
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sodium pentothal (1 g) given via a maternal jugular vein. The ewe was then intubated and
anesthesia maintained by ventilation with 1.0-1.5% halothane and 60% nitrous oxide in
oxygen. A slow infusion of 5% glucose solution in water (500 ml) was given to the ewe
by an i.v. drip. The ewe's abdomen was then shaved, and washed with povidone-iodine

antiseptic solution. The remaining areas of the ewe were covered with sterile sheets.

Sterile procedures were employed throughout the surgery. A lower midline
abdominal incision was made to expose the uterus. Then a small incision was made in an
area of uterus over the fetal head and neck and free from placental cotyledons and major
blood vessels. The fetal head was exteriorized and a sterile silicone rubber catheters (Dow
Corning, Midland, Ml) were implanted in the fetal trachea and a carotid artery. A catheter
was also implanted into the amniotic cavity and sutured to the fetal skin. The head was
then returned and the uterine incision closed and oversewn. A second uterine incision was
made to gain access to the lower body of the fetus and the fetal hindquarters were
exteriorized. Silicone rubber catheters were implanted in both femoral arteries and lateral
tarsal veins, and also in the common umbilical vein (using a non-occlusive technique,
Rurak et al, 1990a). A second amniotic catheter was also implanted. The fetal
hindquarters were then returned to the uterus and ~1,500 ml of sterile irrigation saline was
added to replace amniotic fluid lost during surgery. The uterine incision was then closed
and oversewn. The main uterine vein of the horn containing the fetus was then identified
and a small branch was exposed at the ovarian end. A silicone rubber catheter was
implanted in this branch and advanced ~10 cm so that the tip lay in the main uterine vein.
Finally, a type 6R Transonic transit-time blood flow transducer (Transonics Corp., Itheca,
NY) was placed around the middle uterine artery of the horn containing the operated fetus.
All catheters and cables were tunneled subcutaneously in the maternal abdomen to emerge

from an incision on the ewe's flank. The abdominal incision was then closed in layers,
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and silicone rubber catheters were implantéd in a maternal femoral artery and vein. All
catheters are then capped and stored in a denim pouch on the ewe's flank, along with the
blood flow transducer cable. In the S initial animaIS'studied; a non-occlusive, silicon
rubber catheter (0.080 in outside diameter) was implanted in the matqmal ;rache?l below the
larynx for tracheal ‘infusioh of nitrogén and other gases (Gleed et al, 1986). This catheter
did not interfere normal breathing by the ewe. At the end of the surgery, S00 mg ampicillin
and 40 mg gentamicin were injected intramuscularly to the ewe, and these doses were
repeated for the first 4 post-surgical days. The fetus received 500 mg ampicillin and 10 mg
gentamicin via the tarsal vein post-surgery, while ampicillin (500 mg) and gentamicin (20
mg) were administered to the amniotic cavity on the daily basis for the duration of the

preparation.
C. Post-Surgical Maintenance

Following surgery, the ewe was kept in holding pen with other sheep and allowed
free access to food and water. Catheter patency was maintained by daily flushing with ~2
ml of heparinized (12 L.U./ml) sterile normal saline. In order to monitor fetal condition,
arterial and umbilical venous blood samples (~0.8 ml) were collected daily for
measurement of fetal blood gas and acid-base status, hemoglobin concentration and
glucose and lactate levels. The animals were allowed to recover for a minimum of 3 days
post-surgery before monitoring and experimental procedures commenced. Then the sheep

was transferred to a monitoring pen adjacent to and in full view of the holding pen and

companion sheep.




-19-

2.2  DESIGN OF CATHETERS

The basic design of the maternal and fetal catheters were composed of 125 cm
lengths of silicone rubber tubing (SilasticR medical grade tubing, Dow Corning
Corporaﬁon, Medland, Michigan) With a 30 cm long, 3-0 silk suture (Davis & Geck
Cyanamid Canada Inc., Montreal, Quebec) tied to one end of the tubing and secured in
placed with silastic medical adhesive (SilasticR medical adhesive silicone type A; Dow
Corning Corporation). Depending on the type of catheter, the tubing's diameter and the
suture position varied. Given in Fig. 1 and Fig. 2 are the specifications for each type of

catheter.
2.3  EXPERIMENTAL PROTOCOL
A. Hypoxemia Protocol

Experiments were performed at 125-136 days gestation. The total duration of
experiments was 6 h, including a 2h normoxic control period, a 2 h period of maternal and
fetal hypoxemia and 2 h recovery period (Fig. 3). In the initial 5 experiments hypoxemia
was achieved by infusion of nitrogen (9-13 /min) via the maternal tracheal catheter to result
in moderate hypoxemia (maternal and fetal Pao, reduced by 26-35% and 16-24%,
respectively). In 4 subsequent experiments, more severe hypoxemia (maternal and fetal
arterial Pao, reduced by 41-58% and 25-33%, respectively) was achieved by delivering a
low oxygen mixture (~9% O,, 1% CO,, balance N at 40 /min) to a plexiglass chamber in
the front of the monitoring pen (Rurak et al., 1990a). In both situations, the ewe was able
to eat and drink as usual. Prior to the experiment, 21 ml of maternal blood was collected

- for subsequent transfusion to the fetus via the tarsal vein to replace the fetal blood lost by
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Maternal venous Catheter

 — | . 1

‘Inside Diameter (I.D.) 0.040inch
. Outside Diameter (I.D.) 0.085inch

Maternal Arterial Catheter

/\
2sem T~

L.D. 0.04inch
0O.D. 0.085inch

Uterine Venous Catheter

/\
25cm \/

LD. 0.04inch
0.D. 0.085inch

Figure 1. Catheters used in the chronic maternal sheep preparation (not drawn to scale).
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Tracheal Catheter /\
10cm \/

Inside Diameter (I.D.) 0.040inch
Outside Diameter (I.D.) 0.085inch

Amniotic Catheter

WL//\ 1
10cm \/
1.D. 0.040inch
0O.D. 0.085inch
Small holes were cut along the
length of one end
Femoral Arterial Catheter /\
~ { ]
10cm \__/
LD. 0.025inch
0.D. 0.047inch
Tarsal Venous Catheter /\
—— { m]
L.D. 0.025inch
0.D. 0.047inch
Umbilical Venous Catheter

-
~

LD. of the front piece 0.020inch
Sem O.D. of the fromt piece 0.037inch
) O.D. of the back piece 0.040inch
O.D. of the back piece 0.085inch
The front piece was inserted into
and attached to the back piece with
silastic medical adhesive

Figure 2. Catheters used in the chronic fetal sheep preparation (not drawn to scale).
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sampling. During the experiment samples (3 ml) were colleéted at 20-min intervals from
maternal femoral arterial (MA) and uterine venous (UtV) _catheters for measurement of
progesterone concentration. At 0 and 120 min of the control period, 20, 80 120 min of the
hypoxemia interval and 20 and 120 min of the recovery period, MA, UtV, fetal arterial
(FA) and umbilical' venous blood (UV) samples (0.8 ml) were collected for measurement
of Po,, Pco,y, pH, O, saturation, hemoglobin concentration and giucose and lactate levels.
FA and UV samples (3 ml) were also collected at the these times for measurement of
cortisol concentrations. After each fetal blood sample, the total volume collected was

replaced with an equal amount of the maternal blood collected prior to the experiment.
B. Control Protocol

Control experiments were performed using the same duration and sampling
regimen as for the hypoxemia experiments. The only difference between the 2 protocols

was that in the control studies, the ewe breathed a normoxic gas mixture for the entire 6 h.
2.4  MONITORING TECHNIQUES

During the experiment, the following variables were recorded continuously on a 12
channel polygraph recorder (Sensormedics R711, Sensormedics, Anaheim, CA) using
appropriate Beckman or Sensormedic input couplers: fetal arterial, tracheal, and amniotic
pressures, maternal arterial and uterine venous pressure, maternal and fetal heart rates, and
uterine blood flow. The hydrostatic pressures were measured with Gould DTX disposable
transducers (Spectramed Inc., Oxnard, CA) connected to type 9872 strain-gage couplers
(Sensormedics). Maternal and fetal heart rates were determined from the maternal and fetal

arterial pulse with type 9875 cardiotachometers (Sensormedics): Uterine blood flow was
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measured with Transonic model T201 transit-time flow meter (Transonic Systems). The
analog signals from amniotic and arterial pressures, heart rates and uterine blood flow were
also digitized and processed on-line (Kwan, 1989). The computerized data écquisition
system comprised an Apple Ile computer system (Apple Computer Inc., Cupertino, CA)
containing an analog to digital conversion board (AI-13 Analog Input System, Daisi
Electronics Inc., Newton Square, PA). The digitized samples for each variable were
averaged and displayed at 10 sec intcrvals, and the 1 min averaged values were stored on
floppy diskettes. Fetal arterial pressure was cor_‘rected for intrauterine pressure by the

computer program.
2.5 MEASUREMENT TECHNIQUES
A. Blood Gas and Acid-Base Parameters

Samples for blood gas analysis were collected iﬁto preheparinized blood gas
syringes (Marquest Medical Products, Englewood, CO), which are then capped and placed
on ice until analysis, usually within 5-30 min Poj, Pco,, pH, base excess/deficit, and
bicarbonate concentration were estimated using an IL 1306 pH/blood gas analyzer (Allied
Instrumentation Laboratory, Milano, Italy) with temperature corrected to 39° C for maternal

samples ‘and 39.5° C for fetal samples. Blood O, saturation and hemoglobin concentration

were measured in triplicate using an OSM-2 hemoximeter (Radiometer, Copenhagen).
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B. Glucose and Lactate

Whole blood glucose and lactate concentrations were determined in triplicate using
membrane-bound glucose oxidase and D-lactate dehydrogenase enzymes, respectively,
with a Stat Glucose Lactate Analyzer (Model 23A, Yellow Springs Instruments, Yellow

Springs, OH).
C. Progesterone and Cortisol

Blood samples for progesterone and cortisol were collected in chilled plastic
syringes and centrifuged at 3000 g for 25 min at 4° C. The plasma was the transferred to

200 pul vials and stored at -70° C until assayed.

Progesterone concentration was measured using a commercial radioimmunoassay
kit (Diagnostic System Lab Inc., Webster, TX). This kit provided 6 progesterone standard
concentrations (0, 0.3, 1, 5, 20 and 60 ng/ml), and assay tubes coated with rabbit
anti-progesterone immunoglobulin. The samples and standards were incubated with
125]-1abeled progesterone at 35~37° C for 60-70 minutes. After incubation, the fluid in the
assay tubes was aspirated from all tubes, except for the total count tubes. Then the tubes
were counted in a gamma scintillation counter (Searle Analytical, Des Plaines, IL) for 1
min. The lowest detectable level of progesterone that could be distinguished from
background was 0.12 ng/ml at the 95% confidence limit. The intra-assay coefficient of

variation ranges from 3.2+0.5% to 8.5+1.4% (Mean = 5.6+0.3%) and the inter-assay

coefficient of variation is 7.3+1.9%.
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Cortisol was also measured using a commercial radioimmunoassay kit (Diagnostic
Products Corp., Los Angeles. CA.). The assay included 5 cortisol standard concentrations
(1, 5, 10, 20, and 50 pg/dl), and assay tubes that were coated with anti-cortisol serum.
The standard and unknown samples were incubated with 1251 labeled cortisol tracer at
35~37° C for 45 min. After incubation, the tube contents were aspirated (except for the
total counts tube) and the tubes counted- by a gamma counter for 1 min. The lowest
detectable level of cortisol that can be distinguished from background was 0.2 pg/dl. The
intra-assay coefficient of variation ranges from 9.1+1.3% to 10.6i1.4% (Mean =

9.8%+1.0%) and the inter-assay coefficient of variation is 3.5+1.8%.
2.6 ANALYSIS

A. Calculations

The following parameters were calculated from the measured variables:

i Oxygen Content
O, content = (0.616 x [Hb] x Oy saturation) x 100

il Uteroplacental Oxygen Delivery

Uteroplacental O, delivery = [Og]pma X Qye

ii Uteroplacental Oxygen Consumption

Uteroplacental O, consumption = ([Oz]ma - [O2luev) X Que
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iv Uteroplacental Oxygen Extraction

Uteroplacental O, extraction = (Uterine O, consumption/uterine Oy delivery) x 100

v Uteroplacental Glucose Uptake

Uteroplacental glucose uptake = ([Glulpa - [Glulygy) x Qg

vi Uteroplacental Lactate Flux

Uteroplacental lactate flux = ([Lac]yy - [Laclma) X Que

vii Uteroplacental Progesterone Secretion

Uteroplacental progesterone secretion = ([P4lyv - [P4lMa) X Qut

Note that total uterine blood flow was not measured in the studies, as the flow
transducer was implanted on only one of the paired middle uterine arteries. Thus the

estimate of progesterone secretion is also not a total estimate, but the rate from the horn of

the uterus containing the operated fetus.

B. Estimation of Fetal Weight in utero

The weight of the operated fetuses and unoperated twins at the time of

experimentation was estimated from the birth weight using an equation for the normal

growth curve in fetal lambs determinated by Koong et al (1975):

Log weight i wero = log weight pinn + 0.000165 (2 x d x GA +d2)-0.0556d
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where d is the number of days between birth and the in'utero day and GA is the gestational
age in utero. This equation predicts an average rate of fetal growth (~2%/day) that is not
different from the value determined in our labatory using fetal blood volume estimates of

weight in utero (Kwan et al, 1995).
C. Statistics

Changes in the measured variables were tested for statistically signiﬁcance using 2
way analysis of variance for repeated measures, with time and animals being the
parameters tested. When a statistically significant F value was obtained for the time results
(p<0.05), then Fisher's least significant difference test for multiple comparisons was used

to compare individual means. Values are expressed as mean  sem.
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3. RESULTS

3.1 ANIMALS STUDIED

A total of 13 animals were surgically prepared for study. Of these, 7 animals were
successful preparations and hypoxia and/or normoxia experiments were performed on them
(Table 1). The remaining 6 were not used because of catheter failure, preterm labour or

fetal death in utero (Table 2).
3.2 EXPERIMENTAL DETAILS

At the time of surgery, the average gestational age was 124.530.5 days (range 121-
127 days). Hypoxemia studies were performed :;t 131.0£1.2 days, 6.940.7 days after
surgery. Fetal weight at the time of experimentation averaged 2.94+0.18 kg, with the
singleton fetuses weighing 3.3440.19 kg and the twin fetuses weighing 2.48+0.18 kg.
The twins unoperated weighed 3.281+0.20 kg at birth and had an estimated weight of
2.8110.17 kg at the time of experimentation. A total of 4 normoxia experiments, 5
moderate hypoxemia experiments and 4 severe hypoxemia studies were carried out (Table

1). At least 48 h was allowed to. elapse between successive experiments in animals

subjected to more than one study.
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3.3 NORMAL PROGESTERONE CONCENTRATIONS, UTERINE BLOOD FLOW
AND UTEROPLACENTAL PROGESTERONE OUTPUT

In Figures 4 and 5, the data obtained in the pre-experimental (control) period are
plotted for the 3 ewes with a single fetus and for the 4 ewes with twins. Maternal arterial
progesterone concentration averaged 4.2710.13 ng/ml in ewes with a single fetus and
6.5310.19 ng/ml in ewes with twins (Fig. 4). In the uterine vein, progesterone
concentration was 17.82+1.17 ng/ml in ewes with a single fetus and 21.0530.56 ng/ml in
ewes carrying twins (Fig 4). Uterine arterial blood flow was 339.6+6.2 mi/min in ewes
with a single fetus and 549.5+17.9 ml/min in ewes with twins (Fig. 5). Uteroplacental
progesterone output averaged 47201243 ng/min in ewes with a single fetus and 81561426
ng/ml in the twin bearing sheep (Fig. 5). Thus the ewes with twins fetuses have slightly
higher values for all the above variables, and the differences were statistically significant

(unpaired t-test, p<0.05).
3.4 NORMOXIA AND HYPOXEMIA EXPERIMENTS
3.4.1 Maternal Blood Gas Status, Glucose and Lactate LevelsA
A. Normoxia Experiments
Four experiments involving normoxia were performed on 4 animals. The

normoxia experiments followed the same experimental protocol as with hypoxemia, with

the exception that a normoxic gas mixture was administrated for entire 6-h period.
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Maternal arterial and uterine venous blood gas, pH, glucose and lactate values are
presented in Table 3 and Table 4, and in Figures 6-8. There were no significant changes

from pre-experimental values for any of the variables.
B. Moderate Hypoxemia Experiments

Five experiments involving maternal modcrate hyboxefnia experiments on 4
animals, maternal arterial Poj was lowered by 26-35% (mean = 30.7+1.8%) or 38.9+4.7
mmHg. The protocol involved infusion of nitrogen gas (9-13 l/min) via the maternal
tracheal catheter. Mean values of maternal arterial and uterine venous blood gas, pH,
glucose and lactate values are presented in Tabie 5 and Table 6 and in Figures 6-8. There
was a significant decrease in maternal arteria.l Po, (Fig. 6), and a slight, but significant fall
in Oy saturation (Fig.7). However, Oy content was not significantly altered (Fig. 8), nor
were there alterations in Pco, and pH (Table 5). U.térine venous Poj and O, saturation
were also significantly reduced during the hypoxia period (Table 6), but there again there
was no significant change in Oy content. -‘ Uterine Pc‘ozl and pH 'were uﬂchangcd and there
were also no consistent changes in arterial and uterine venous glucose and lactate

concentrations (Tables 5 and 6).
C. Severe Hypoxemia Experiments
Four experiments involving maternal severe hypoxemia experiments on 3 animals ,

maternal arterial Po, fell by 41-58% (mean = 48.513.5%) or 59.4+6.6 mmHg. The

protocol involved delivery of a low oxygen gas mixture (9-10%) to a plexiglass chamber

that enclosed the ewe's head and neck.




-36-

910 F€T'E OT0FvI'g 90'0 ¥ 10°€ P10 FST'E 810 F€€'€ OI'0F LI'E (//1ourur) [asooniD)]
S1'0 ¥8S0 LO0 F0S0 LOOFSY0 LOOF8¥0 80°0 F LV'0 900 F LV'0 (11owrar) - [are10e]
v0F6°S v'0F09 Y0FT9 YOFI9 70F 09 €OF6'S (Nw) wxuo) us8hxQ
9'0 F9'86 60F L'L6 6'0F T86 8°0F €86 0’1 F0'86 ¥'0 F0°86 (%) uonemes 0
90F L6 90F 66 S0F 01 SOF 101 S0F66 v0F 86 (wpor/3) uiqo[Sowsy
L'0F €8T V'1F 69 €1 F€9C 80FSLT 01IF0LT 8°0F08C (ioum) TODL
LOF VLT €TF6'ST CIF¥'ST 80 F S'9C 60 F 1'9Z LOFT1LT (1fowrr)  €ODOH
90F 19 CTIF9Y I'TFLY 80FTS 60F 6V 80FSS (/bgur) ss3oxy oseq
0100 F LIS'L OIO0FI0SL  TEO0OFETSL 9I00F60SL 8100 FvISL 0100 ¥ S0S'L Hd
60F 0tE CTIFEeE 6CTFSIE STFSEE 91 F9'C€ 80 F SvE (8quww) Toog
€6 F00¢cI CEFSTEL 8Vl F €621 8€l F €9¢1 91 F0'8¢T TY F60¢1 (BHuw) Zoq
4 4 14 % 14 14 u
0ZI+d 0T+d 0C1+H 08+H 0Z+H LNIOd-D
XITAQDTY NOLLNTA YH.INI TOYLNOD

"91TTH PU® 1L6H ‘0SCIH ‘61119 WOl viR ‘HS F UBSW Qe SAN[EA

"SJUSWILIIA X3 BIXOULIOU ‘[ONU0D Y} SuLnp S[IAI] d1e1de] pue asoon|3 pue siaourered ses poojq [euoue [PWANRI ‘¢ 9[qeL



-37-

910 F¥6'C LOO F¥8°C 80°0 F¢8'C 110 ¥88°C 61°0 F SO°€ 600 ¥ 88°C (/1oura) “[asoonin]
P10 F 190 900F 150 90'0 F0S°0 LOOF IS0 LO'0OF9S0 90°0 ¥ ¥S°0 (/foun) [e10e7]
0 F 8P vOF 8P vOF8Y YOF8Y YOF6'¥ COF8Y (ANw) uuo) udagixQ
STFO6L YTFILL 6TFEVL 8T FEIL TEFTLL STFESL (%) uonemies <O
S0F86 SOFI0I 0 F S01 90 F T01 S0 F 70l Y0¥ 6'6 (wQr/3) uqoSowsy
90 F I'6C I'T FV'8C I'TF78C LOF V8T 'l F€8C 19°0 ¥ LS'8C (yowrwr) TOOL
90 ¥ 08¢ I'TFELT I'TFI'LT LOFVLT 0LFTLT 90 F9¥'LT (yiowur) £ODH
LOFSS I'TFLY CTFSY 90F 6 0TIF9V LOFTS (/bgu) ss3oxy aseg
TIOOFELY'L SIOOFE9YL  TTOOFO9Y'L 9000 F89¥'L 0100 F LSY'L 600°0 F 9LY'L Hd
9'0 ¥ ¥'8¢ 80 F €8¢ 1 F€8€ 90FS'LE 'l FL8€ YOFLLE (3Hunw) Toog
LT F06S 60 F €09 I'TF08S LTF06S I'TFO06S STFLSS (3Huww) Zog
v 14 v v 14 14 . u
0Z1+yd 0c+d 0CZI+H 08+H 0Z+H INIOd-D
AATAQOTI NOLLNIAJAINI TOIINOD

"9177d PUR .64 ‘0STTH ‘61114 WOy vie( “HS F UBSW Ale SAN[eA
*SjuowIdxa BIXOWLIOU JONUOD AU} SULIMP S[IAQ AvIoR[ pue 35093 pue sidjourered sed poo[q SNOUIA JULIIN [BUIABIA ‘{7 JqBL




A Po2 (mmHg )

APo2 (% change)

50 4
40 -
30 -
20 -
10 4
0 4
-10 4
-20 4
-30 4
-40 4
-50 4
-60 -
-70 4
-80 -
-90 4
-100

-38-

g

. H
3 - el
R AR cmnnn H
oeri el :
s L ARV, H
e &
R TU RSP PY I bl

s

40 -

20 4

C-POINT H+20 H+80 H+120 R+20 R+120

TIME (min)

-80

T § 1 ] 1

C-POINT H+20 H+80 H+120 R+20 R+120
TIME (min)

Figure 6 Maternal arterial oxygen tension during the control, moderate and severe

hypoxia experiments.
The upper panel plots maternal Po2 as the change from the control value.
The lower panel plots maternal Po2 as the % change from control value.
& Maternal nornoxia experiments

# Maternal moderate hypoxemia experiments

@ Maternal severe hypoxemia experiments

* significant difference from control value (p< 0.05)
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Maternal arterial and uterine venous blood gas, pH, glucose and lactate levels are
presented in Table 7 and Table 8 and Figures 6-8. There were significant decreases in
maternal arterial Po, (Fig. 6) and O, saturation (Fig. 7). Arterial O content decreased

slightly but the change was not statistically significant (Fig. 8). As with moderate hypoxia,

there were no changes in arterial Pcoy and pH, and although base excess decreased

progressively during the experiment, the change was not significant (Table 7). In uterine

venous blood, Po, tended to fall, but not significantly, and there were no changes in O,
saturation and content and Pcog, pH and base excess (Table 8). There were no significant

alterations in arterial and uterine venous glucose and lactate levels (Tables 7 and 8).
3.4.2 Fetal Blood Gas Status, Glucose and Lactate Levels
A. Normoxia Experiments

Fetal arterial and umbilical venous blood gas, pH, glucose and lactate values are
presented in Table 9 and Table 10, respectively. There were no significant changes from

pre-experimental values for any of the variables.
B. Moderate Hypoxemia

Fetal arterial Po, significantly was decreased (by 4.140.5 mm Hg or 19.712.4%)
during the hypoxia period (Table 11 and Fig. 9), and, in contrast to the situation in the
ewe, there were similar reductions in O, saturation (Fig. 10) and content (Fig. 11).
Umbilical venous oxygen variables were also lowered (Table 12), although the changes

were not significant for O, saturation. As illustrated in Fig. 12, fetal arterial pH was

maintained during the experiment. However, lactate concentration increased during and
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Figure 9 Fetal arterial oxygen tension during the control, moderate and severe
hypoxia experiments.
The upper panel plots fetal Po2 as the change from the control value.
The lower panel plots fetal Po2 as the % change from control value.
4, Maternal nornoxia experiments
# Maternal moderate hypoxemia experiments
@ Maternal severe hypoxemia experiments

* significant difference from control value (p< 0.05)
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following hypoxia, from 1.4710.09 mM in the control period to a maximum of 2.81+0.54
mM at R+20 (Table 11 and Fig. 13). Umbilical venous lactate concentration also increased
(Table 12), but the rise was slightly greater than in arterial blood, with the result that the
umbilical veno-arterial lactate difference also increased in those animals with paired arterial
and uml;ilical venous samples, from 0.31+0.21 mM to 0.42+0.27 mM. However, the
change was not statistically significant. Fetal arterial and umbilical venous Pco, and base
excess tended to decrease during hypoxia, but the changes were not significant (Tables 11

and 12). Fetal glucose concentrations were unaltered.
C. Severe Hypoxemia

Fetal arterial blood gas, pH, glucose and lactate values for the severe hypokia
experiments are presented in Table 13, while umbilical venous blood gas, pH, glucose and
lactate values are presented in Table 14 (n=1 only). Arterial Po, was significantly
decreased (by 4.8+1.0 mm Hg or 28.612.0%) duﬁng the hypoxia period (Fig. 9), and this
was associated with comparable falls in O, saturation (Fig. 10) and O, content. In the 1
animal with a working umbilical vein cathéter, theré wer;: also marked decreases in the
blood oiygen variables (Table 14). In contrast to the situation witl} moderate hypoxia,
fetal arterial pH fell progressively with severe hypoxia (Fig. 12). However, because of
inter-animal variability, only the value at R+20 whs_ significantly different from the control
value. There was also a fall in umbilical v_enéus pH (Table 14). Arterial and umbilical
venous lactate concentrations were elcvated-duﬂng. and following hypoxia and the
magnitude of the increase tended to be greater than with. moderate hypoxia (Fig. 13,

Tables 12 and 14).
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However, as with moderate hypoxia, the rise in umbilical venous lactate was
greater than that in arterial blood, with the result that the mean veno-arterial lactate
difference rose from 0.025 mM in the control period to 0.077 mM during hypoxia. Fetal

arterial and umbilical venous Pco, tended to decrease and this in conjunction with the fall in
pH resulted in a marked reduction in base excess (Tables 13 and 14). Glucose levels

tended to increase, but the changes were not significant.
3.4.3 Fetal Cortisol Concentration

Fetal arterial cortisol concentrations in 3 experimental groups are presented in Table
15 and Fig. 14. In the normoxia experiments, there was a transient and slight, but
statistically significant, decrease in fetal cortisol level of 3.12+1.11 ng/ml. In contrast with
both moderate and severe hypoxemia, the cortisol level were significantly elevated, and the
rise was greater in the latter experiments (26.19+10.01 versus 17.35+2.44 ng/ml) (Fig.

14).

3.4.4 Uterine Blood Flow, Oy Delivery, Oy Consumption, O, Extraction and

Uteroplacental Lactate Output and Glucose Uptake
A. Normoxia Experiments

Uterine blood flow remained stable during the duration of 6-h normoxia
experiments (Table 16, Fig. 15). Likewise, there were no significant changes in uterine Oy
delivery (Fig. 16), O, extraction, O consumption (Fig. 17), lactate output (Fig. 18) and

glucose uptake.
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B. Moderate Hypoxemia Experiments

In the moderate hypoxemia experiments, there was a tendency for uterine blood
flow to fall during the hypoxia period, and this taken with the slight fall in arterial O,
content (Fig. 8) resulted in a slight reduction in uterine O, delivery (Fig. 16). However,
none of these changes were statistically significant. Likewise there were no consistent
alterations in uteroplacental O, consumption (Fig. 17). O; extraction tended to increase
during the hypoxia period, as a consequence of the fall in O, delivery and maintained O,
consumption, but the change was not statistically significant (Table 17). There were no

consistent changes in lactate output (Fig. 18) or glucose uptake (Table 17).
C. Severe Hypoxemia

Uterine blood flow tended to increase during the hypoxemia period, but this was
not statistically significant (Table 18, Fig. 15). However, this compensated for the slight
fall in arterial O, content (Fig. 8) so that uterine O, delivery was only slightly and non-
significantly reduced during the hypoxia intefval (Fig. 16) and there was no change in Oy
consumption (Fig. 17). As with the moderate hypoxia experiments, uterine O, extraction
increased, but again the change was not étéﬁstically significant (Table 18). In contrast to
the moderate hypoxia experiments, uteroplacental lactate output increased progressively
during hypoxia, from 1913 pmol/min in the control period to 35+8 pumol/min at R+20

(Table 18, Fig. 18). There was also a trend for glucose uptake to increase (Table 18).

However, neither of these changes were statistically significant.
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3.4.5 Maternal Arterial and Uterine Venous Progesterone Concentrations and

Uteroplacental Progesterone Output

The mean values for maternal arterial and uterine venous progesterone
concentrations and uteroplacental progesterone output for the 3 types of experiments are
given in Table 19, while the mean changes from the control values are plotted in figures
19-21. Maternal arterial progesterone concentration was not altered in the normoxia and
moderate hypoxia experiments. With severe hypoxia, it tended to decrease progressively
throughout the entire experimental period, but this change was not statistically significant
(Fig. 19). There was no changes in uterine venous progesterone concentration with
normoxia and severe hypoxia, whereas with moderate hypoxia it was increased during
most of the hypoxia interval from the control value of 19.7+2.3 ng/ml to a maximum value
of 25.5%5.5 ng/ml at H+80. The increase occurred in 4 of the 5 experiments, and the
average increase during the entire hypoxic interval, expressed as a percentage of the control
mean was 13.7£4.3%. This change was of borderline statistical significance (p<0.10,
paired t-test). As a consequence of the elevated uterine venous P4 concentration,
uteroplacental progesterone output also tended to increase during moderate hypoxia, and
again this occurred in 4 of 5 experiments. The mean % increase during hypoxia was

18.7+6.4, which was not statistically significant (p<0.10, paired t-test). These changes

were not observed with severe hypoxia or normoxia (Fig. 21).
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3.4.6 Maternal Arterial Pressure, Uterine Vein Pressure and Heart Rate

Mean values over 10 min for maternal arterial pressure and heart rate are presented
in figures 22-24. In the normoxia and moderate hypoxia experiments, there was a trend
' for heart rate to increase during the experiments, but the changes were not significant
(Figs. 22,23). In contrast, with severe hypoxia, there was maternal tachycardia that lasted
for the duration of the hypoxia interval (Fig. 24). Arterial pressure was not altered in any
of the experimental protocols. Likewise, uterine venous pressure, which in the control
period averaged 14.810.5, 14.240.3 and 11.630.3 mm Hg for the normoxia, moderate

hypoxia and severe hypoxia experiments, respectively, was not changed.
3.4.7 Fetal Arterial Pressure, Umbilical Venous Pressure and Fetal Heart Rate

Mean values over 10 min for fetal arterial pressure and heart rate are presented in
figures 25-27. In the moderate hypoxemia experiment, there was a trend for heart rate to
increase‘during hypoxia, but the changes was not significant. In contrast, with severe
hypoxia, there was fetal bradycardia that lasted for the duration of the hypoxia interval
followed by a significant increase in the recovery period. Arterial pressure was not altered

in normoxia and moderate hypoxia. It tended to increase during severe hypoxia, however,

the change was not significant.
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Figure 22 Maternal heart rate and maternal arterial pressure during the normoxia experiments.
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Figure 26 Fetal heart rate and arterial pressure during the moderate hypoxemia experiments.
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4. DISCUSSION

4.1  UTERINE BLOOD FLOW

As is the case in other mammalian species, the blood supply to the uterus of sheep
is primarily provided by paired arteries (main uterine arteries) which arise from the distal -
end of the descending aorta (Fuller et al, 1975). Each main uterine artery divides into
middle and dorsal branches. The middle uterine artery runs along the lesser curvature of
the uterine horn, and sends branches (arcuate arteries) towards the greater curvature. It is
these branches that mainly supply the componerits of the uterus including the maternal
portions (caruncles) of the placenta. The dorsal uterine artery supplies the cervical end of
the uterus and also sends branches to the cervix. Other potential sources of uterine
perfusion include small arteries in the cervix which originate from the external iliac artery,
and a branch of the ovarian artery which supplies the tip of the uterine horn and
anastomoses with an arcurate branch of the middle uterine aitery. However, in late
pregnancy, the bulk of uterine blood flow is supplied by the latter artery. Fuller et al
(1975) found that in anesthetized, near-term pregnant ewes carrying single fetuses, flow
through each middle uterine artery, averaged 323+44 ml/min, while total flow to each horn
averaged 396141 ml/min, so that middle uterine arterial flow comprised 82% of total flow.
They also found no significant difference in uteﬁﬁe blood flow between the horn
containing the fetus and the empty horn (mean difference = -14+88 ml/min), and similar
findings were obtained in conscious sheep by Wilkening (1986). This is a reflection of the
fact that in even in singleton pregnanc;ies the placental cotyledons are distributed throughout

both horns. It is the cotyledons that receive the bulk of uterine blood flow in late

pregnanéy. Makowski et al (1968) utilized radioactive microspheres to estimate the
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distribution of uterine blood flow in pregnant sheep from 83 days gestation to term. The
cotyledons received 82.712.0% of total ﬂpw, while the endometrium and myometrium
received 13.4+16% and 3.9i0.7%, respectively. They also found that cotyledonary flow
was linearly related to fetal weight, and thus gestational age, increasing from ~300 ml/min
at 83 days gestation to ~1100 ml/min at term. This was not the case with either endometrial

or myometrial flow.

In the current study, total uterine blood flow was not measured; rather flow in the
middle uterine artery of the uterine horn containing the operated fetus was estimated. Flow
in the ewes with a single fetus averaged 339.6i6.2 ml/min in the pre-experimental period,
which is very similar to the value .of 32344 ml/min obtained by Fuller et al (1975).
Using their findings that middle uterine arterial flow comprises 82% of total flow to the
horn and flow in the pregnant and nonpregnant horns is not different, a total uterine flow
value of 828 ml/min can be calculated for the singleton ewes in the current study, or 248
mi-min-1-kg"! fetal weight. Middle uterine artery flow in the ewes carrying twins averaged
549.5£17.9 ml/min in the pre-experimental period, a value significantly higher than that for
the singleton ewes. A total uterine flow of 1340 ml/min can be calculated for the twin
bearing éwes or 253 ml-min-1-kg"! total fetal weight. Thus the ewes with twins were able
to provide about the same rate of uterine blood flow/kg fetal weight as those carrying single
fetuses. However this is only because the average birth weight in the twin pregnancies
(3.2840.20 kg) is substantially lower than with the two singleton lambs that were born
alive (4.38 kg), indicating some additional constraints upon fetal growth in the twin
pregnancies. Reduced fetal growth in twin (and triplet) pregnancy in sheep has been,
reported by others (Barcroft, 1946, Bassett et al, 1969; Stegeman, 1974), and this first
becomes apparent at ~120 days gestation. The overall average pre-experimental value for

middle uterine arterial blood flow (singleton and twin ewes) is 43711 ml/min, or ~1066



-83-

ml/min total flow. This value is similar to in other estimates of uterine blood flow in the
late gestation pregnant sheep, which range from ~900-1400 ml/min (Makowski et al, 1968;
Huckabee et al, 1972; Rankin and Phernetton, 1976; Clapp et al, 1982b; Sunderji et al,
1984; Longo et al, 1986; Wilkening; 1986, Kitanaka et al, 1989; van der Weyde et al,
1992).

4.2  MATERNAL PROGESTERONE CONCENTRATIONS AND
UTEROPLACENTAL PROGESTERONE OUTPUT UNDER NORMAL
CONDITIONS

Measurement of the progesterone concentration in ovarian venous blood of
pregnant sheep has demonstrated that ovarian secretion of the hormone continues
throughout pregnancy at a rate comparable to that during the luteal phase of the estrous
cycle in nonpregnant ewes (Edgar and Ronaldson, 1958). However, as pregnant ewes can
be ovariectomized after the 5S0th day of gestation without pregnancy termination (Casid and
Warwick, 1945), and as progesterone haé been identified in plécental tissue from intact and
ovariectomized ewes (Short and Moore, 1959), it is evident that the placenta is able to
secrete sufficient progesterone fof t‘hc maihtenance of pregnancy during the latter two-

thirds of gestation.

In the current study, the pre-experimental maternal arterial and uterine venous
concentrations averaged 4.2710.13 ng/ml and 17.82.1:1.17 ng/ml, respectively in the ewes
with a single fetus, and 6.5310.19 ng/ml and 21.05i0.56 ng/ml in the ewes carrying
twins. Higher maternal progesterone concentrations in twin pregnancies has b¢en reported
in numerous previous studies (e.g. Bassett et al, 1969; Mattner and Thorburn, 1971;

Stabenfeldt et al, 1972; Thompson and Wagner, 1974). This difference is not present in
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early pregnancy however, and first becomes obvious at around 55 days (Robertson and
Sarda, 1971; Stabenfeldt et al 1972). As was found in the current and previous studies
(e.g. Mattner and Thorburn, 1971), the higher progesterone concentrations in twin bearing
ewes is associated with a higher rate of progesterone production. In the present study, pre-
experimental uteroplacental progesterone output averaged 4,720+242 and 8,1561426
ng/min in the singleton and twin ewes, respectively. However, as total uterine blood flow
was not measured, these values are underestimates of total progesterone output. Using the
same correction method as described above for total uterine blood flow, total progesterone
output can be estimated as 11.5 pg/min for the singleton ewes and 19.9 pg/min for the
twin bearing ewes, which is equivalent to daily progesterone production rates of 16.6 and
28.6 mg respectively. These values are lower than the estimates of ~33 and 55 mg
obtained by Mattner and Thorburn (1971). In this latter report, uterine venous
progesterone levels were also higher than those in the present study. This could be due
differences in progesterone assay methods, or breed of sheep studied. The higher
progesterone output in twin pregnancy is very likely due to the greater total placental mass
with twins, and the first appearance at ~55 days gestation of the progesterone difference
between singleton and twin pregnancies is probably a reflection of the switch that occurs at
this time from the ovary to the placenta as the main source of pfogesterone synthesis.
Bedford et al (1972) found that the progesterone production rate was higher in pregnancies
where birth weight was greater than 4 kg, compared to pregnancies with lower birth
weights. They suggested that this difference could be due to the larger placentas in the

former group since fetal and placental weights are highly correlated (Dawes, 1968).
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4.3 HYPOXIA EXPERIMENTS
4.3.1 Method of Achieving Hypoxemia

Two methods were employed to achieve maternal and fetal hypoxemia: infusion of
nitrogen via a non-occlusive maternal tracheal catheter for moderate hypoxia (Gleed et al,
1986) and delivery of a low oxygen gas mixture to a plexiglass chamber in the front of the
monitoring pen for severe hypoxia (Rurak et al, 1990a). With both methods, the ewe has
access to food and water during the entire experimental period, which is in contrast to
another commonly employed method, namely placing the ewe's head into a clear plastic
bag into which the desired gas mixture is delivered (e.g. Boddy et al, 1974). The tracheal
gas infusion uses less nitrogen than does the chamber, and this is particularly advantageous
in studies of long term hypoxia (e.g. Towell et al, 1987). For this reason, and also
because the initial placement of the chamber in thé monitoring pen causes some disturbance
to the ewe, it was the original intention to use the tracheal catheter for both the moderate
and severe hypoxia experiments. However, it was not found possible to achieve severe
hypoxia with this method on a consistent basis. This is probably because, with an
increasing rate of nitrogen infusion via the catheter, a point is reached where additional
nitrogen passes up the airway to the environment, rather than reaching the alveoli. Thus

the plexiglass chamber was used for the severe hypoxia study.
4.3.2 Maternal and fetal blood gas values and pH, and glucose and lactate concentrations

In the moderate hypoxémia expériments, maternal arterial Po, was reduced by
~31%, or by ~39 mm Hg, whereas in the severe hypoxia-protocol, the fall in Poy was

~49% or ~59 mm Hg. However, these substantial reductions in oxygen tension resulted in
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much more modest decreases in blood O, saturation and content (Tables 5 and 7). This is
because the adult operates at the upper, flat portion of its hemoglobin-oxygen dissociation
curve, and maternal oxygen tension has to fall markedly to achieve large decreases in O,
saturation and content (Rurak, 1994). The situation is different in the fetus, which
operates on the steep portion of its hemoglobin-oxygen dissociation curve. Thus a fall in
fetal oxygen tension will result in more or less equivalent reductions in O, saturation and
content. During moderate hypoxia, fetal Po, fell by 4.1 mm Hg or ~20%, whereas with
severe hypoxia, the decrease was 4.8 mm Hg or 29%. Thus although the two protocols
resulted in different degrees of maternal hypoxemia, the effects on fetal oxygen tension
were similar. In comparison to previous studies (e.g. Koos et al, 1987; Towell et al, 1987;
Akagi and Challis, 1990), both protocols involved modest reductions in fetal Po,.
However, in the severe hypoxia experiments, even though the Po, fall was modest, there
was the development of significant metabolic acidemia, and this was not observed with
moderate hypoxia. There were also greater increases in lactate and cortisol concentrations
with severe hypoxia. Fetal metabolic acidemia has been observed in many other studies of
acute hypoxemia (e.g. Koos et al, 1987; Bocking et al, 1988; Milley, 1988; Rurak et al,
1990a; Bocking et al, 1992; Boyle et al, 1992; Wilkening et al, 1993). This usually
requires that fetal arterial Po, decrease below ~15 mm Hg, which did happen in the severe
hypoxia experiments, but not in the moderate hypoxia protocol (Table 13). If fetal Pao,
drops below ~12 mm Hg and O, content below 1 mM, the blood lactate concentration rises
progressively to very high levels. This is associated with marked acidemia, and when
arterial pH falls below ~6.90 cardiovascular collapse occufs (Rurak et al, 1990a).
However, when Pao, during hypoxemia is 212 mm Hg, the metabolic acidemia is
temporary, with a return to near normal values after 12-24 h (Bocking et al, 1988; Bocking
et al, 1992; Boyle et al, 1992; Wilkening et al, 1993; Hooper et al, 1995). This very likely

would have occurred with severe hypoxia in the current study. None the less, the initial
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perturbation in fetal oxygenation and acid-base status in this group was significant.
Arterial O content had fallen by 48% by the end of the hypoxemic period, and oxygen
delivery to fetal tissues and organs would have fal.len to the same degree unless there was a
compensatory increase in tissue and organ blood flow. This undoubtedly occurred for the
heart, brain, and adrenal gland and the rise in bilood flow to these organs would likely be
more than sufficient to compensate for the fall in oxygen concentration (Rurak et al,
1990b). Umbilical blood flow may also have increased (Milley, 1988; Rurak et al, 1990a;
Hooper et al, 1995), but the probable magnitude of the rise (~20%) would have been less
than the % fall in O, content. Thus delivery of oxygen to the placenta from the umbilical

arterial blood would have been reduced.

Both maternal and fetal Pco, fell slightly during moderate and severe hypoxia,
although the changes were not statistically significant. Maternal and fetal hypocapnia has
been observed in many other hypoxia studies (e.g. Gleed et al, 1986, Rurak et al, 1990a),
even when CO, is added to the gas mixture breathed by the ewe. This is very likely due to
maternal hyperventilation in response to the induced hypoxemia. There were no significant
changes in maternal or fetal glucose concentrations during the experiments, although there
was a tendency for fetal glucose levels to increase during severe hypoxia. Fetal
hyperglycemia has been frequently observed in hypoxia studies (e.g. Milley, 1988; Rurak
et al, 1990a), and this results from catecholamine-elicited hepatic glycogenolysis, with
release of hepatic glucose into the fetal circulation (Bristow et al, 1983; Rudolph et al,

1989; Apatu and Barnes, 1991).

In the pre-experimental period, fetal lactate concentration was higher than that in the

ewe (Tables 3-14). This is normally the case in pregnant sheep (e.g. Rurak et al, 1990a),

but the higher fetal lactate level does not indicate that the fetus is hypoxic or has a higher
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rate of anaerobic metabolism. The fetus normally receives lactate from the placenta, and
this is reflected in a positive umbilical veno-arterial lactate concentration difference, as was
observed in the current study. Under normal circumstances, umbilical lactate uptake
accounts for ~30% of fetal lactate turnover (Sparks et al, 1982), and ~72% of fetal lactate
utilization is accounted for by lactate oxidation (Hay et al, 1983). Thus under normoxic
conditions, lactate serves as a catabolic substrate in the fetus. As was discussed above,
fetal blood lactate concentration rose during both moderate and severe hypoxia, with the
increase being greater in the latter experiments. In both protocols, this was associated with
a tendency for the umbilical veno-arterial lactate difference to increase, although the
changes'were not statistically significant. However, the data suggest an increase in
placental lactate production during hypoxia and this is similar to the trend for increased
lactate output into the maternal uteroplacental circulation (Fig. 18). Certainly there was no
evidence for a reversal of the gradient, which would indicate net fetal lactate production
from hypoxic tissues. A similar finding was obtained during 8-24 h ritodrine infusion to
fetal lambs, where there is also rhodest fetal hypoxemia and lactic acidemia (van der Weyde
et al, 1990). However, with severe fetal hypoxemia and acidemia, a reduction or reversal
of the umbilical veno-arterial lactate difference does occur, indicating net fetal lactate
production by the fetus (Gu et al, 1985; Milley, 1988; Boyle et al, 1992; Hooper et al,
1995). In this situation, the placenta may become important in regulating circulating fetal
lactate concentration. It has been suggested that during the severe, but non-lethal fetal
hypoxemia, increased lactate production by some organs is counterbalanced in increased
lactate metabolism by the placenta, thereby' allowing the fetus to attain a stable or
decreasing blood lactate level (Boyle et al, 1992). Thé fetal kidney is also a significant site
of fetal lactate clearance during prolonged hypoxemia, induced by reducing uterine blood

flow (Cock et al, 1994). However, precise estimates of fetal lactate utilization/production

in relation to umbilical lactate flux have not yet been obtained. Moreover, it may not be
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possible to do this, because of the non-steady state conditions that seem to exist for lactate

during fetal hypoxemia (Boyle et al, 1992).
4.3.3 Fetal Cortisol Concentration

Hennessy et al (1982) showed that prior to 120 days gestation, the majority of
cortisol in the fetal circulation is of maternal origin. However, with advancing gestational
age, a progressively smaller proportion of fetal plasma cortisol was derived via
transplacental transfer. Thus the rise in fetal cortisol concentration during moderate and
severe hypoxia was very likely the result of increased secretion of cortisol from the fetal
adrenal cortex, this in turn being the result of a rise in fetal plasma ACTH levels (Challis et
al, 1986; Akagi and Challis, 1990). Although plasma ACTH concentrations were not
measured in the current study, many other studies have demonstrated that acute hypoxemia
results in an initial increase in the fetal plasma concentrations of ACTH (e.g. Challis et al,
1986; Challis et al, 1989; Akagi and Challis, 1990; Keller-Wood and Wood, 1991; Sue-
Tang et al, 1992). The mechanism of the in;:reased ACTH release during hypoxemia is
likely multifactorial. Sue-Tang et al (1992) demonstrated that the temporal pattern of
ACTH concentration change is similar to that of AVP (Hooper et al, 1990), which is a
corticotropin-releasing hormone in fetal sheep (Norman and Challis, 1987). Fetal
catecholamine concentrations are also elevated during hypoxia (Jones and Robinson, 1975;
Cohen et al, 1982; Hooper et al, 1990), and these may contribute to release of ACTH,
since this response is attenuated by the a-adrenergic blockade (Jones and Ritchie, 1976).
With prolonged fetal hypoxemia, fetal cortisol concentrations remain elevated, whereas
ACTH concentrations return to basal levels after ~12 h (Challis et al, 1989; Sue-Tang et al,
1992). The sustained cortisol response is associated with a continued rise in adrenal blood

flow (Challis et al, 1986; Bocking et al, 1988), and may be due to activation of fetal
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adrenal function by the initial, prolonged elevation in plasma ACTH levels, via increases in
adrenal 17a-hydroxylase activity and ACTH receptor adenylate cyclase coupling (Challis et
al, 1989). It is also possible that the increase in fetal plasma PGE; concentrations during
hypoxia may contribute to the prolonged elevation of cortisol concentrations (Hooper et al,
1990; Sue-Tang et al 1992). The sustained elevation in fetal cortisol concentration could
result in activation of placental 17a-hydroxylase activity to increase estrogen synthesis and
decrease progesterone production, ultimately resulting in the initiation of parturition (Jones
et al, 19-77b; Challis et al, 1989). However, this could not have occﬁrred in the present

study, given the acute nature of the hypoxia and resulting fetal cortisol rise.
4.3.4 Maternal and Fetal Arterial Pressure and Heart Rate

The main functional characteristics of the fetal cardiovascular system are a high
cardiac output and organ blood flows, a high heart rate, low arterial pressure and low
vascular resistance. These characteristics are effective in counteracting the low fetal arterial
Po, and O, content, thereby permitting adequate rates of O, delivery to fetal tissues
(Rurak, 1994). Under normal conditions, fetal heart rate is under the influence of both the
sympathetic and parasympathetic systems, as well as circulating catecholamines
(Vapaavouri et al, 1973; Nuwayhid et al, 1975; Walker et al, 1978). Sympathetic control
is effective as early as 60 days gestation, and as gestation continues, the parasympathetic
system exerts an increasing influence on the fetal heart rate, via increased vagal tone. This
results in a progressive fall in heart rate during the latter half of gestation (Vapaavouri et al,

1973; Boddy et al, 1974; Nuwayhid et al, 1975; Walker et al, 1978).

The pre-experimental values of fetal heart rate and fetal arterial pressure during the

moderate and severe hypoxemia experiments averaged 150.5+1.5 and 157.2+1.8 beats per
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minute and 51.840.6 and 49.9+0.7 mm Hg, respectively. These values are within the
normal range found in fetal lambs during late gestation (Boddy et al, 1974). During
moderate hypoxia, there were no significant changes in either variable, although a slight
increase in heart rate (~5 bpm) persisted for most of the hypoxemic period (Fig. 26). This
could be due to a rise in fetal catecholamine levels (Jones and Ritchie, 1978a). In contrast,
during severe hypoxia, there was a tendency for bradycardia and hypertension during the
hypoxemic period, followed by tachycardia in the recovery period. This pattern of
response has been observed in many studies of acute hypoxemia in the fetal lamb (e.g.
Boddy et al, 1974; Rurak, 1978; Cohn et al, 1974; Cohen et al, 1982; Bocking et al,
1988). The bradycardia is likely chemoreflex and baroreflex in origin, as it is abolished by
bilateral denervation carotid sinus (Giussani et al, 1990). The efferent arm of the response
involves increased vagal tone, since it is abolished by bilateral vagotomy (Rurak, 1978).
The post-hypoxia increase in fetal heart rate is due to a B-adrenergic stimulation from the
elevated in plasma catecholamine levels (Jones and Robinson, 1975; Jones and Ritchie,
1978b; Cohen et al, 1982; Jensen et al, 1987; Martin et al, 1987; Jones et al, 1988; Perez et
al, 1989). AVP is secreted in large amounts during fetal hypoxemia and acidemia (Rurak,
1978; Devane et al, 1982; Daniel et al, 1983; Wood, 1989; Wood and Chen, 1989) and has
been reported to reduce fetal heart rate (Rurak, 1978; Iwamoto et al, 1979; Courtice et al,
1984; Tomita et al, 1985; Dunlap and Valego, 1989; Irion et al, 1990). It also is a potent
hypertensive agent and vasocontrictor in the fetus (Rurak, 1978; Tomita et al, 1985; Irion
et al, 1990). Studies involving the use of Vasopréssin antagonists have indicated that AVP
could be involved in the fetal heart rate, arterial pressuré and blood flow responses to
hypoxemia (Perez et al, 1989; Piacquadio et al, 1990).' Thus the cardiovascular responses

to fetal hypoxemia could involve a number of factors.
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Although, there have been very many studies of the fetal cardiovascular responses
to acute hypoxemia in pregnant sheep, information on the maternal cardiovascular
responses is ‘ve-ry limited. In both the moderate and severe hypoxemia experiments,
maternal heart rate tended to increase during the hypoxia interval, and this was most
obvious“ with severe hypoxia. Kitanaka et al (1989) observed an initial maternal
tachycardia (~18% increase) in a sfu&y of lbhg term (21 d) hypqxia in pregnant sheep, and
they also recorded a ~8% increase in aneﬁal pressure. 'No increase in maternal arterial
pressure was noted in the current study, but the degree of hypoxia was somewhat less than
that employed by Kitanaka et al (1989). In non-pregnant ewes subjected to 96 h of severe
hypoxia: (Pao, ~40 mm Hg), there is tachycardia, but no change in arterial pressure
(Krasney et al, 1984; Kitakana et al, 1989). Cardiac output was elevated for the first 24 h,
and this was associated with increases in cerebral and coronary b106d flows, and decreased
perfusion to the abdominal viscera. Surprisingly, adrenal blood flow was not changed,
which is in marked contrast ‘to the findings in fetal sheep subjected to acute or chronic
hypoxemia (see ébovc). Catecholamines concentrations were elevated in the hypoxemic
ewes, and a nonsignificant trend for this was also found in the study of Kitakana et al
(1989) 1n pregnant sheep. A striking finding in the non-pregnant sheep was a sustained
48% fal-i in total body oxygen consumption but this was associated with only a trivial
increase in blood lactate concentration, whereas in the fetus, a hypoxia-induced decrease in
Vo, is accompanied by massive lactic acidemia (e.g. Rurak et al, 1990a). The fall in Vo,
ih the adult sheep appears to be an adaptive response that is also found in certain other

species (Krasney et al, 1984). Whether such a response occurs in pregnant ewes during

hypoxia does not appear to have been determined.
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4.3.5 Uterine blood flow, O3 delivery and consumption

In the current study, no consistent changes in uterine blood flow were noted with
either moderate or severe hypoxia. This is similar to the results of Makowski et al, (1973)
in pregnant sheep subjected to acute hypoxia. With 21 day hypoxia, Kitakana et al (1989)

found ne change in uterine blood flow in the first 24 h, but there was a decrease for the -

next ~24 h, followed by a sustained increase. The mechanism(s) underlying these changes
is obscure. In the present study, the lack of change in uterine blood flow during hypoxia
was accompanied by a small decrease in maternal arterial O, content, so that uterine O,
delivery was only minimally decreased, even with severe hypoxia (~2% fall, Table 18). In
their study of 21 days of hypoxia, Kitakana et al (1989) reduced maternal Paoj from ~102
to 57 mm Hg. This resulted in a 12% fall in arterial O, content, and as discussed above,
uterine blood flow fell during the second day of the experiment. However, the resulting
fall in uterine O, delivery was only ~25% and was not associated with any change in
uterine Vo,. This study and the current investigation illustrate the limitations of lowering
uterine 02 delivery by decreasing maternal oxygenation. Because the adult operates on the
upper, flat portion of the hemoglobin-oxygen dissociation curve, very large reductions in
arterial Po) must occur to lower O, saturation and content, and hence uterine O, delivery.
However, even when greater reductions of uterine O, delivery are achieved, as with
experimental reductions in uterine blood flow, there is no evidence for a fall in uterine or
utero-placental O, consumption. Hooper et al (1995) reduced uterine blood flow by ~50%
for 24 h in pregnant sheep at ~120 d gestation. Uterine O, delivery was reduced by ~52%
with no change in uterine or uteroplacental placental O, uptake. Fetal oxygen delivery
(umbilical blood flow x umbilical venous O, content) was reduced by a lesser extent
(~38%), due to an increase in umbilical blood flow, and fetal O, consumption was

maintained. However, as discussed above, fetal lactate concentration increased markedly
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and there was net uptake of lactate by the placenta from the fetal circulation, a reversal of
the normal situation. There was also a reduction in uteroplacental glucose consumption.
Similar findings were obtained by Gu et al (1985) in studies involving varying degrees of
uterine blood flow reduction (10-70%) of 60 min duration. Even when uterine blood flow
(and hence O, delivery) was 30-50% of normal, total uterine and uteroplacental Vo, was
maintained. However, fetal O, consumption was decréased, associated with marked lactic
acidemia and net lactate uptake by the placenta from the fetal circulation. There was also a
marked fall in uteroplacental glucose consumption. Fetal O, delivery values cannot be
determined from the data given in Gu et al (1985), but it is likely that it fell be more than
50% when uterine blood flow was 30-50% of control (Wilkening and Meschia, 1983).
This has been a common finding in studies of the fetal tolerance to reduced oxygen
delivery, which it is primarily achieved via a reduction in fetal Po;. A major fetal
compensatory response is an increase in the extraction of oxygen by the fetus, which
serves to maintain oxygen consumption in the face of a fall in oxygen delivery (Edelstone,
1984; Rurak, 1994). Via this mechanism, the fetal lamb can compensate for acute
reduction in oxygen delivery of up to 50%. If oxygen delivery is reduced by more than
50%, then oxygen consumption falls and lactic acidemia develop (see Rurak at al, 1990a),
indicative of an inability to compensate for the severe perturbation in the oxygen supply.
Thus, in comparison to the placenta, the fetus seems less able to tolerate severe reductions
in O, delivery, suggesting that the placenta may be protected in this situation, at the
expense of the fetus. In the current study, it is unlikely that fetal Oy consumption was

reduced, even with severe hypoxemia, because the reduction in fetal O, delivery was likely

considerably less than 50%.
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4.3.6 Maternal plasma progesterone concentration and uteroplacental progesterone output

The hypothesis to be tested in this project is that short term maternal hypoxemia
decreases placental progesterone production via a reduction in placental oxygen supply
from the mother and/or fetus. The data obtained do not support this hypothesis; no
decrease in uteroplacental progesterone output was observed during the hypoxia period. In
contrast -there was a tendency for progesterone output to increase with moderate hypoxia, a
change that was observed in 4 of the 5 experiments. The increase in progesterone output
was due to a rise in uterine venous progesterone concentration. A similar finding was
obtained by Keller-Wood and Wood (1991). They measured progesterone concentration in
maternal arterial and uterine venous blood before and during a 30 min hypoxic period
(achieved by lowering maternal inspired oxygen concentration). There was no significant
effect of hypoxemia on the arterial or venous concentrations of progesterone, although
uterine venous progesterone concentrations increased in 7 of 10 experiments. This was
associated with a fall in umbilical venous progesterone levels, so that the umbilical veno-
arterial progesterone gradient decreased. Thus there was evidence for increased placental
progesterone secretion into the maternal circulation and decreased secretion into the fetal
compartment. However, veno-arterial differences in progesterone concentration are much
greater on the maternal side of the placenta compared to the fetal side (Keller-Wood and
Wood, 1991), so that it seems unlikely that the apparent decrement in fetal progesterone
uptake could match the apparent rise on the maternal sidé. Moreover, in the absence of
measurements of uterine and umbilical blood flow in the study of Keller-Wood and Wood
(1991), data on actual progesterone secretion rates in the ewe and fetus are lacking.
However, taken together, the data from both studies suggest that moderate hypoxia

increases placental progesterone output into the maternal circulation. However, this must

be verified by further studies.
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If there is in fact an increase in placental progesterone production with moderate
hypoxia, one possible mechanism for this effect would be the rise in fetal PGE,
concentrations that occurs with reduced oxygenation (Hooper et al, 1990; Sue-Tang et al,
1992; Murofsuki et al, 1995). As was discussed in the Introduction it is likely that the
placenta is the source of this PGE;. Wango et al (1992) demonstrated that progesterone
synthesis in ovine binucleate cell preparations is increased by PGE; and reduced by
indomethacin. They also showed that sheep binucleate cells produce PGE, from
arachidonic acid. Thus an increase in PGE; synthesis by binucleate cells during hypoxia
could increase progesterone synthesis in these same cells via an autocrine mechanism. The
PGE, released into the fetal circulation appéars to contribute to the fetal tolerance to
hypoxia by minimizing the fetal hyperglycemia and lactic acidemia that occur (Hooper et al,
1992; Thorburn, 1992). PGE;-induced stimulation of placental progesterone production
could also be of benefit to the fetus. Valenzuela et al (1992) reported that acute fetal
hypoxia (achieved via uterine artery occlusion) increases amniotic fluid prostaglandin F
metabolites in pregnant sheep. They speculated that this was due to increased placental
secretion of prostaglandin F,q, and this could involve an hypoxia-induced increase in
cytokine production, as has been demonstrated in other tissues. They also suggested that
this could be a mechanism for premature delivery in pregnancies associated with
intrauterine growth restriction and associated fetal hypoxemia (Valenzuela et al, 1993). An
increase in placental progesterone secretion could interfere with this mechanism via the
inhibitory effects that the hormone has on myometrial gap junctions, oxytocin receptors
and perhaps other elements involved in the initiation of effective uterine contractions
(Zhang et al, 1992; Lye et al, 1993; Neuland and Breckwoldt, 1994). That such
progesterone effects would be desirable with mo;lest, non-acidemic fetal hypoxemia is
suggested by the fact that in healthy fetal lambs modest (< ~5 mm Hg fall in Paoy),

transient decreases in blood oxygen levels occur frequently as a result of prelabor uterine
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activity (contractures) and fetal skeletal muscle activity in the form of breathing and body
movements (Harding et al, 1983; Rurak and Gruber, 1983; Rurak, 1994). Contractures
differ markedly in character from labor contractions in that they are of much longer
duration (~5 min) and lower amplitude (<5 mm Hg), and occur once every ~20-40 min.
They result in transient fetal hypoxemia via a reduction in uterine blood flow (Sunderji et
al, 1984). Maternal bolus i.v. injection of a small amount of oxytocin can elicit a
contracture. This is associated with transient fetal hypoxemia and a rise in ACTH and
cortisol concentration, and the ACTH rise is abolished by maintaining fetal normoxia (Lye
et al, 1985; Woudstra et al, 1991; Sadowsky et al, 1992). It is not known whether fetal
prostaglandin levels increase as well. Thus with contractures, and possibly with vigorous
fetal activity, there is transient activation of the elements which are involved in the initiation
of parturition in sheep. A concomitant incree;se in. placental progesterone release could
counteract any ACTH and cortisol influences on the uterine contractility, thereby
preventing premature labor. However, in situations where there is more severe fetal
hypoxia associated with acidemia that puts the fetus at risk, initiation of labor and delivery,
even if premature, might increase the ‘survival odds f6r the fetus. This could explain why,
in the current study, severe hypoxia was not associated with any evidence of increased
uteroplacental progesterone secretion. However the mechanism for such an effect is

unclear at present.

As was discussed in the Introduction, there are several in vitro studies which
indicate that steroidogenesis is oxygen dependent in various tissue, including the placenta.
However, as noted above, no evidence for oxygen dependence of in vivo placental
progesterone synthesis was obtained in the present study. This may be because the

. reduction in maternal and/or fetal oxygenation was not severe enough for placental O,

supply to become a limiting factor. For the reasons discussed above, acute maternal
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hypoxia may not be the best experimental paradigm for this purpose. Other methods such
as reduced uterine blood flow or maternal hemorrhage/anemia (Paulone et al, 1987) might
be more appropriate. In this regard, Challis et al (1989) examined the maternal and fetal
endocrine responses to a 48 h reduction in uterine blood flow which reduced fetal Paos
from 22.6 to ~14.5 mm Hg. There was also fetal metabolic acidemia that lasted ~8 h. A
transient increase in fetal arterial progesterone concentration was observed in the first 1-2 h
of reduced uterine blood flow, but the change was not statistically significant. Maternal
arterial progesterone concentration was not altered, and uterine venous levels were not
measured. Further work on the effects of hypoxia on placental progesterone production
seem warranted, as do investigations of other aspects of placental endocrine and metabolic

functions during reduced oxygenation.
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5. Summary and Conclusions

To examine the effects of hypoxia on placental progesterone production, maternal
and fetal hypoxemia was expeﬁmeﬁtally i;lduced by reducing maternal inspired O, for 2 h
in chronically instrumented pregnant sheep at 125-136 days gestation. The hypoxemia
period was preceded and followed by 2 h pre-hypoxia and recovery periods, respectively.
Control experiments, involving 6 h periods of normoxia were also carried out. Samples
were taken simultaneously at predetermined time periods from maternal femoral arterial and
uterine venous catheters.for measurement of progesterone concentration. Blood flow to the
uterine horn containing the operated fetus was measured continuously, and utero-placental
progesterone output was calculated as the uterine venous - arterial difference in
progesterone concentration times uterine blood flow. Blood samples were also collected
from the fetal femoral artery and umbilical vein, and in these samples, as well as in the
maternal samples, the following variables were measured: Po,, Pcoj and pH, hemoglobin
concentration, blood O, saturation and content, glucose and lactate concentrations and fetal
plasma cortisol level. The following variables were calculated from these data: utero-
placental oxygen delivery and consumption and glucose uptake and lactate flux. Maternal
and fetal arterial pressure and heart rate were continuously monitored. The following

results were obtained.

1. Arterial and uterine venous progesterone concentrations were higher and associated with
higher uterine blood flow and progesterone output (from the operated horn) in sheep

carrying twin fetuses compared to those with a single fetus.
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2. Maternal hypoxia resulted in fetal hypoxemia, lactic acidemia and increased cortisol

concentration.

3. Fetal arterial O, content was reduced by ~ 40% during severe hypoxia, which may have

reduced O, delivery from the fetus to the placenta.

4. Although there was no significant changes in maternal progesterone levels or utero-
placental progesterone output, there was a trend for an increase in uterine venous
progesterone concentration and progesterone output with moderate hypoxia. This is

similar to published reports.

5. If an increase in utero-placental progesterone output does in fact occur, it may be due to

the increase in placental PGE, production that occurs with hypoxia. This effect may have
been abolished by severe hypoxia. A rise in placental progesterone production during fetal

hypoxia could act to inhibit the onset of preterm labor.

5. Placental endocrine function appears to be more resistant to hypoxia, compared to

physiologic and metabolic functions in the fetus.

6. The effect on placental progesterone output of other methods of inducing fetal

hypoxemia, which have a greater impact on uterine O, delivery (e.g. maternal anemia,

reduced uterine blood flow), should also be examined.
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