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Abst rac t 

One can imagine a possible loss of parameter estimation efficiency when response cor­

relation is ignored or misspecified in modeling a response-covariate relationship. Under 

what conditions is efficiency lost? How much is lost? 

Whether the responses are correlated or independent, standard theory for the distri­

bution of least squares parameter estimates in linear models (Gaussian responses) can 

be readily determined. We find that the linear regression analysis assuming indepen­

dent responses is (theoretically) never more efficient than that incorporating response 

dependence. The "difference" in efficiencies between these two analyses — measured by 

how much more readily the latter detects a non-zero regression coefficient — generally 

increases as the coefficient-to-noise ratio increases. 

To incorporate response correlation in G L M parameter estimation, Liang &; Zeger 

(1986) extended the quasi-likelihood theory and developed the generalized estimating 

equations (GEE) approach. Despite being a popular method, the effects of misspecify-

ing response correlation (e.g. assuming independence when responses are correlated) on 

parameter estimation efficiency using G E E are not obvious. To investigate such effects, 

we use simulation studies in which we generate count data and use the G E E approach to 

estimate the model parameters, using both the correct and misspecified correlation struc­

tures. The generated counts, the number of correlated responses in each cluster/replicate, 

and the total number of replicates are all small to imitate health impact studies (in which 

hospital admission counts are often the responses). Despite possible loss of parameter 

estimation efficiency due to such "obstacles" intrinsic in the model, simulation results 

indicate that the G E E approach produces' 

ii 



1. regression parameter estimates with relatively small empirical biases using either a 

correct or misspecified response correlation; 

2. a good estimate of the response correlation matrix if its structure is correctly spec­

ified; 

3. naive and robust variance estimates both of which estimate the true variance well 

when the response correlation structure is correctly specified; and 

4. good robust variance estimates even when the response correlation is misspecified. 

Furthermore, in a G L M with exchangeably correlated Poisson data and no covariates, 

specifying independence or exchangeable dependence yields the same intercept estimate 

and estimation efficiency, provided that inference is based on the robust variance esti­

mate. The naive variance estimate can significantly underestimate the true variance if 

the responses are assumed independent when analyzing such a G L M . 

in 
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Chapter 1 

Introduction 

Researchers are often interested in the relationship between a response variable and 

explanatory variables (covariates). In many health care studies, for instance, the response 

may be some measure of health status of a population, and the covariates may be indices 

of different pollution types to which the population is exposed. 

The relationship between response and covariates can be determined through regres­

sion analysis. Which regression method to use depends on the nature of the response 

variable. For example, linear regression via least squares estimation can be applied to 

response data which can be assumed to follow a normal distribution. When we can no 

longer assume Gaussian response data, we may sometimes use a generalized linear model 

(GLM) for the response-covariate relationship. Such a model may be appropriate, for 

instance, when the response data are discrete and consist of small counts, such as hospital 

admission counts as a measure of health status of a population. 

Regardless of the regression method, researchers should be very careful in fitting the 

model when any correlation possibly exists among the response data. For example, peo­

ple living in neighboring geographical regions may tend to be at similar risk of developing 

respiratory ailments due to similar environmental factors shared by these regions. Effi­

cient statistical inference is essential to, say, ensure appropriate allocation of government 

funding for controlling pollutant levels. Thus, introducing response correlation into the 

statistical model when studying the health impacts of pollution may be necessary. (This 

is an example of spatial correlation among the responses.) However, some researchers in 

1 



Chapter 1. Introduction 2 

the past would not incorporate response correlation when modeling a response-covariate 

relationship. This was sometimes due to the belief that the only source of variability 

came from independent and identically distributed (i.i.d.) measurement errors.1 It might 

also be due to the complexity of incorporating response correlation into some non-linear 

statistical models such as a G L M . 

Using data which resemble those in health care studies, in this thesis we investigate 

the effect of misspecified response correlation on the efficiency of parameter estimation 

in both linear and generalized linear regression analyses. For example, ignoring response 

correlation is a form of correlation misspecification. The effect of such misspecification 

in linear regression is closely investigated in Chapter 2. We then turn our attention 

to GLM's in the following chapters. Our GLM's involve small Poisson count responses 

which resemble hospital admission counts observed from neighboring regions in studies of 

rare diseases. We use the generalized estimating equations (GEE) approach for fitting our 

GLM's , which allows the specification of a working response correlation structure.2 The 

effect of ignoring response correlation in a G L M is studied in Chapter 5, while Chapter 

4 examines the effect of specifying some non-independence structure for independent 

responses. 

Simulation experiments are used in our investigation. Each experiment involves gener­

ation of many datasets (responses and covariates), regression analyses using the true and 

incorrect response correlation structures respectively for each dataset, and the (empirical) 

efficiency comparison between the two analyses. We also include analytical arguments to 

support some of our simulation results. 

We measure (empirical) efficiency by how often a regression analysis rejects the null 

hypothesis of a zero regression coefficient in a simulation experiment.3 Rejecting such a 
1See Cressie, 1991, page 25. 
2 See page 80. 
3That is, the sample probability of hypothesis rejection by the analysis in the simulation experiment. 
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hypothesis is equivalent to detecting a non-zero coefficient in the regression model. Natu­

rally, we say that the analysis that detects an existing non-zero coefficient more readily is 

more efficient. However, efficiency in this context is directly influenced by the variability 

of the coefficient estimate produced by the analysis. If the estimate has a very large stan­

dard error, then the test statistic for the above hypothesis test will be very small, the null 

hypothesis will be retained and hence the analysis will be inefficient (not very powerful) 

for detecting this coefficient. For example, we find that in a linear regression, the gen­

eralized least squares estimator (see Section 2.3) of a coefficient often has much smaller 

variability than the ordinary least squares estimator. Thus, the analysis based on the 

former estimator (which incorporates the response correlation) is more efficient/powerful 

than that based on the latter (which assumes response independence). We also find that 

an analysis generally increases in its power to detect a non-null regression coefficient as 

the coefficient-to-noise4 ratio increases. 

The G L M coefficient estimates produced by the G E E approach have a known asymp­

totic Gaussian distribution. To assess efficiency of a G L M analysis, we can compute 

the naive and robust variance estimates5 for the G E E coefficient estimates based on this 

asymptotic distribution. However, each simulation experiment involves a finite number 

of data replicates.6 Thus, the asymptotic variance estimates may not estimate the true 

variances well. The assessment of efficiency is then affected by how good (close to the 

true variances) these variance estimates are. In particular, an analysis that produces a 

smaller but severely biased variance estimate may not be more efficient than another that 

produces a larger but unbiased variance estimate. Yet how do we know if an estimate is 

unbiased? 

Unlike the least squares estimates in a linear model, the exact distribution of a G E E 
4Noise is the standard deviation of the random errors (with zero mean) in the model. 
5See Section 3.3. 
6See Section 3.3. 
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coefficient estimate with finite number of replicates is typically unavailable. However, 

given enough datasets in a simulation experiment, we may use the sample variance of the 

G E E estimates7 as the "gold standard" for the true variance. In a simulation experiment, 

for each analysis (using correct/incorrect response correlation), we first assess how good 

the naive and robust variance estimates are by comparing them to this gold standard. 

Then we compare the efficiencies of the analyses based on their naive and robust esti­

mates respectively. Finally, considering how well the true variance is estimated, we can 

conclude which analysis based on which variance estimate is more efficient. For example, 

we find that for the G L M in Chapter 4, the analyses using the correct and misspeci­

fied response correlations respectively yield good coefficient estimates8 and good robust 

variance estimates. Thus, both analyses based on their robust variance estimates have 

similar efficiencies. (We do not examine analyses based on the naive variance estimates 

in this chapter.) 

For the G L M in Chapter 5, assuming9 either independent responses (incorrect) or 

exchangeably correlated responses (correct) yields the same G E E coefficient estimate 

and robust estimate of its variance. Both are good estimates of the true parameters. 

However, the naive estimate can considerably underestimate the true variance when 

assuming response independence. On the other hand, the naive estimate is good if the 

response correlation structure is correctly specified. In other words, the analysis assuming 

either independent or exchangeable responses based on the robust variance estimate yields 

the same efficiency. The latter analysis based on the naive variance estimate yields similar 

efficiency to that of these two analyses based on the robust estimate. However, assuming 
7Each dataset produces one vector of coefficient estimates. 
8That is, the estimates have small empirical biases. 
9Technically, specifying a working correlation structure is not an assumption in model fitting. How­

ever, we will use the word "assume" to reflect the belief that the response data have the correlation 
structure as specified by the working correlation. See Section 3.4 for more details. 
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independent responses and using the naive variance estimate yields an incorrect 1 0 and 

thus inefficient analysis. 

... because the variance of the coefficient estimate is incorrect/underestimated. 



Chapter 2 

Multiple Linear Regression 

2.1 Introduction 

Suppose we are interested in the relationship between some response variable and g ex­

planatory variables, or covariates. The objective is to estimate the regression parameters 

associated with each covariate. Suppose we believe that the response-covariate relation­

ship is linear. In other words, we believe that the response variable can be expressed as a 

linear combination of the covariates, with the coefficients in the linear combination being 

the regression parameters/coefficients. Then we may estimate these parameters via least 

squares linear regression. If we measure r sets of the response variable and the covariates, 

r > g + l , 1 least squares parameter estimates in such a regression can then be explicitly 

expressed in terms of the (r) responses, their covariances (if they are correlated), and the 

observed covariates. 

In many real life situations, the measurements of the response variable of interest may 

not be independent. For example, in a clinical trial to determine the effects of a drug, we 

measure some response on each patient several times over the period of the trial. Thus, 

repeated measurements on the same subject may be correlated over time. 

In this thesis, we are more interested in spatially correlated response variables. Sup­

pose we take a measurement of a single response from each of several sites within the 

same geographical domain of interest. The measurements (of the same response) across 

the different sites may be correlated when they come from proximate sites. Correlation 
1See Section 2.3. 

6 



Chapter 2. Multiple Linear Regression 7 

among the measurements can be induced by similar environmental factors acting across 

the geographical domain. Such a factor would be air pollution level. Our scenario might 

well be realized in health care studies, where the impact of air pollution on human health 

is measured through some response variable on a human subject from each site, together 

with pollution and meteorological covariates. 

Researchers may overlook the correlation in the responses. In particular, they often 

believe that i.i.d. measurement errors constitute the only source of response variability.2 

Furthermore, it may be tempting to assume that the geographical sites are so far apart 

that correlation among the responses may be ignored without affecting the inferences 

about regression parameters. However, the strength of the correlations may depend 

not only on the distance between the sites, but also on the similarity of their shared 

environmental factors. 

In this chapter, we concentrate on potential dangers which may arise in multiple linear 

regression if one overlooks the correlation among the response measurements. We will 

assume that the covariances of the responses are known. That assumption will not usually 

be realistic, in which case the covariance matrix must be estimated from the observed 

data. (See Johnson & Wichern, 1982 for details on how regression inference changes when 

the covariance matrix is estimated.) However, when accounting for correlated responses 

in regression, we expect that the conclusions based on estimated parameters will not 

change significantly if the correlation is well estimated. We only compare conclusions 

based on (1) assumed response independence to (2) admitted response dependence in 

parameter estimation. We are not interested in the possible efficiency loss in parameter 

estimation due to a poorly estimated response covariance matrix. 

Our investigation uses simulation studies. In each simulation, we generate realizations 

of model (2.1) (see Section 2.3). With each realization/dataset, the regression parameters 

2See Cressie, 1991, page 25. 
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are estimated with and without taking response dependence into account. Note that in 

all our simulation experiments, we fit the correct regression model (i.e. the model with 

the correct mean response structure) with each dataset. Thus, if the realizations of 

model (2.1) are generated, say, with an intercept and two slope coefficients, then the 

fitted model will contain an intercept and two slope coefficients. On the other hand, if 

the realizations are generated with no intercept and only one slope coefficient in model 

(2.1), then the fitted model will contain solely one slope regression parameter. We do not 

fit models that do not coincide with the true models to investigate the impact of factors 

such as incorrectly specified mean response structure. We only consider the impact on 

inference due to response dependence. 

2.2 Literature Review 

Numerous publications address multiple linear regression. Many of them, such as Weis-

berg, 1985, Johnson h Wichern, 1982, and Marascuilo h Levin, 1983, are undergraduate 

text books. Most discuss how to account for correlated responses in regression param­

eter estimation. However, they usually do not investigate the impact of ignoring such 

correlation. 

Advanced books and articles have been written since the 1960's on the loss of efficiency 

in linear regression parameter estimation when response dependence is ignored. For 

example, Plackett, 1960, Rao, 1965, Anderson, 1971, and Martin, 1982 all mention that, 

when the responses are dependent, the matrix A — B is always non-negative definite, 

A being the covariance matrix of the regression parameter estimate vector under the 

independent response model, B that under the model with a correctly specified response 

correlation matrix. (Also mentioned is the unbiasedness of the parameter estimates 

despite ignoring response dependence.) In other words, admitting the known covariance 
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of the responses in regression analysis yields parameter estimates which are at least as 

efficient as those produced by ignoring response dependence. 

A natural question arises: "Under what conditions can response dependence be ig­

nored without loss of efficiency?" Some of these conditions are stated in Plackett, 1960 

(as an end-of-chapter exercise); Rao, 1965; Zyskind, 1967; McElroy, 1967; Anderson, 

1971; Seber, 1977; Martin, 1982; and Cressie, 1991. Some of these articles supply neces­

sary and sufficient conditions for the equivalence of A and B. One of these conditions, 

less technical than the others, is when the responses have an exchangeable correlation 

structure. This is explained in Section 2.5. 

However, none of these articles mentions the fact that, when an investigator overlooks 

the response dependence, s/he naturally does statistical inference based on parameter 

estimates whose standard errors are calculated as if the responses were truly independent. 

We then have three covariance matrices for two parameter estimate vectors: 

1. the (true) covariance matrix of the correct parameter estimates (considering the 

known response dependence); 

2. the true covariance matrix of the incorrect parameter estimates (obtained while 

ignoring response dependence); and 

3. the incorrect covariance matrix of the incorrect parameter estimates (both obtained 

assuming the responses are uncorrelated). 

We can think of the first covariance matrix as that computed by the "enlightened" 

statistician, who knows the true covariance matrix of the responses and obtains his/her 

parameter estimates and their covariances taking account of this knowledge. The third 

covariance matrix is that computed by the "naive" statistician, who does not know the 

responses are correlated, and thus obtains his/her parameter estimates, as well as their 
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covariances, without accounting for response dependence. Finally, the second covariance 

matrix is that computed by Enlightened for Naive: Enlightened knows Naive's covariance 

matrix is incorrect, and does Naive a favor by computing a correct one for him/her. 

For reasons given in Section 2.3, we refer to the least squares parameter vector esti­

mate assuming response dependence as the GLS estimator. We call the one obtained 

ignoring response dependence the OLS estimator. The first covariance in the above list 

is thus the covariance matrix of the GLS estimator. Let us call it the GLS covariance. 

We call the true covariance matrix of the OLS estimator the true OLS covariance. 

This is the one given in the second item of the above list. Finally, we call the third 

covariance matrix in the list the naive OLS covariance for obvious reasons. 

In this chapter, we will investigate the loss of efficiency resulting from using the 

OLS instead of the GLS estimator, by essentially comparing the GLS covariance to the 

true OLS covariance, as well as the GLS covariance to the naive OLS covariance, with 

different covariate (design) matrices and regression parameter values.3 In this way, we 

hope to understand the loss of efficiency in parameter estimation when ignoring response 

dependence. At the same time, we also try to understand what the effects on parameter 

estimation are when Naive bases his/her inference on his/her naive parameter estimates 

and covariances. We will base our investigation on computer simulations implemented 

in the statistical software S-Plus. 

Later in the chapter, we address the question of how to model spatial correlation. A 

few such models are presented in Cressie, 1991, and Basu and Reinsel, 1994. 
3For reasons given in Section 2.7, we calculate p-values (for hypothesis tests) based on these covari­

ances. We then compare the p-values (hence, functions of the covariances) instead of directly comparing 
the covariance matrices. 
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2.3 Notation 

Suppose the spatial domain of interest consists of r regions. In an investigation, we 

observe in region i the response (dependent) variable Y{, i = 1,2,..., r. We then decide 

to include in our regression model, say, g covariates (explanatory variables) xn,..., Xig 

for each region i, together with an intercept /?o and a slope f3j for the jth. covariate, 

j = 1,2,... ,g. In matrix notation, we may then write our model as 

Y = X(3 + e (2.1) 

where 

1 xn x12 

1 x21 x22 

xlg 

x2g 

( a \ 

01 01 

I 

, and e = 

(The intercept /?o and the column of l's in the design matrix, X , are of course omitted 

if we decide not to fit an intercept in the above model.) It is often convenient to assume 

that X is of full rank, and that rank(X) = g + 1 < r. We also assume that the expected 

value and the correlation matrix of the error vector e are respectively E(e) = 0 and 

Cor(e) = 2?£, where St is symmetric and positive definite. Assuming that the variance 

of each e; is cr2, the covariance matrix of e is then Cov(e) = a2U€. 

A simple case of (2.1) obtains when Dt = I, the identity matrix. In this case, the 

best linear unbiased estimator (BLUE) of the parameter /3 is simply the ordinary least 

squares (OLS) estimator 

pOLS = ( x T X ) " 1 X T y (2.2) 

with covariance matrix 

Cov(3 O L S) = cr2 (XTX)~\ (2.3) 
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With a known St ^ I, however, the B L U E for f3 is the generalized least squares (GLS) 

estimator 

(3GLS = (XTE-1X)-1XTE;1Y (2.4) 

with covariance matrix 

Cov(3 G L S) = a2 (XTS-1X)~1. (2.5) 

(See Seber, 1977, page 49 for derivation of the BLUE's . ) The covariance formulas for 

these B L U E ' s are derived in standard textbooks on regression theory. 

Recall the notion of the naive and enlightened statisticians. In the case Se ^ J , 

Enlightened uses the estimator in (2.4) to estimate the regression parameters. S/he uses 

the formula in (2.5) to calculate Cov( /3 G L 5 ) . On the other hand, since Naive assumes 

St = I in all situations, s/he uses the estimator in (2.2) and the covariance formula in 

(2.3) in his/her analyses. 

However, if the responses are truly not independent, i.e. St ^ J , then the true OLS 

covariance is actually 

Cov(3 O L S) = Cov[(XTX)-*XTY] 

= (XTX)-*XT Cov(Y) [(XTX)-'XT]T (2.6) 

= a2(XTX)-1(XTSeX){XTX)-\ 

Thus, we see that, in general, the covariance matrices in (2.3), (2.5), and (2.6) will differ. 

2.4 Which estimator is appropriate? 

In principle, when the responses are known to be correlated, we should always account 

for their correlation in fitting the model. However, sometimes Uc may be difficult to 

determine (or estimate). Other times, it is believed that the correlation among the 

responses is too weak to make much difference in the inference. Also, we can easily see 
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from (2.2) and (2.4) that both J3OLS and /3GLS are unbiased for (3 regardless of whether 

27e = Cor(e) = COT(Y) is the identity matrix. In fact, the expected value of / 3 O L S does 

not depend on the value of ST. For reasons such as these, some investigators may ignore 

the presence of response correlation. 

However, the following theorem indicates a potential danger in using f3OLS to estimate 

p when 27£ ^ I. 

Theorem 1 Cov(f3OLS) — Cov((3GLS) is always non-negative definite. 

Rao, 1965 presents a proof of this theorem. 

Here, we are referring to the true OLS covariance as Cov((3OLS). In other words, 

although both f3OLS and (5GLS are unbiased for (3, Theorem 1 states that the former is 

never "better" than the latter in that there is at least as much variability in flOLS as in 

(3GLS. When the matrix (in Theorem 1) is positive definite, the parameter estimation 

based on / 3 O L S is lower in efficiency (with the true OLS covariance) than that based on 

pGLS_ yye W J V J s r i o w some simulation results later in the chapter to further illustrate and 

quantify this point. 

When is the matrix in Theorem 1 a zero matrix, then? That is, when are these two 

covariances4 equal? 

Two obvious conditions for the two covariances to be equal are: 

1. 3 O L 5 = 3 G L 5 , and in particular, 

2. E€ = I. 

The second condition is not of much interest to us. We are interested in situations where 

pOLS j g a g e m c i e n t a s pGLS w h j i e t n e responses are not independent. 
4 G L S covariance and true OLS covariance. 
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Necessary and sufficient conditions for f3OLS = (3GLS are presented in Rao, 1967; 

Zyskind, 1967; and McElroy, 1967. However, most of these conditions are very technical 

and difficult to verify. Thus, we believe investigators should always use flGLS to estimate 

/3 whenever the responses are known to be correlated. 

However, one realistic exception to the need to use f$GLSh stems from the exchangeable 

structure, also known as the intraclass correlation structure, often met in analyses of 

repeated measurements, and sometimes in spatially correlated data. With such structure, 

fitting an intercept in model (2.1) will entail the actual equality of flOLS and flGLS\ 

2.5 The Exchangeable Model 

A n exchangeable model for correlation structure assumes that the correlation matrix of 

the errors is 

Cor(e) = E€ 

1 P P P 

P 1 P P 

P P 1 P ••• P 

\ 

= (1 - p)I + PJ (2.7) 

P P 1 P 

\P P P 1 / 

where J is a matrix with all elements equal to 1, and 0 < p < 1. This last inequality 

guarantees that Se is positive definite for any r. For a given r, we can replace this 

inequality by [ - l / ( r - 1)] < p < l . 6 

Theorem 2 Assume that we fit an intercept in the regression model (2.1). Then 

OLS $GLS for all Y St has the form 
5However, this does not mean that we can use the naive OLS covariance in place of the GLS covariance. 
6See Graybill, 1983, page 215. 
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Se = (l-p)I + pJ. 

To prove Theorem 2, we need the following lemma. 

Lemma 1 Let the matrix W have the form 

W = al + bP 

where P is an r x r matrix such that P2 = tP, with t > 0. Then 

W1 = - I - -i-^f-r P . 
a a(a+bt) 

Proof 

W-W = ' P ) ( f l J + bP) a(a+bt) 

b D 6 D b 2 t 1+ b-P- zhr.P~ a+bt a (a+6t ) J 

6 
= / + ^T6FjK« + bt) - a - bt]P 

= I 

Similarly, WW'1 = I, and hence the result. 

Proof of Theorem 2 7 

Note that 

J3OLS _ pGLS 

{XTX)-1XTY = (XTE^X)-*XTZ 

(XTE^X)(XTX)-1XTY = XTE^Y. 

7This proof is an elaboration of the one by McElroy (1967). 
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Therefore, proving Theorem 2 is equivalent to proving (*) holds for all Y if and only if 

Et = (1 - p)I + PJ. 

Now, (*) automatically holds for all X 1 " 1 if Y is in the range space of X, i.e. if 

Y — XZ for some Z. This is so because then, in (*), 

LHS = (XTZ-1X)(XTX)-1(XTX)Z 

= XTS~1(XZ) 

= XT2-*Y 

= RHS. 

Therefore, we now need only to consider those Y in the null space of X , i.e. those Y 

such that XTY = 0. 

(<=) Assume Ut = (1 — p)I + pJ. Denote the column vector of l's as 1. Then 

J = 11 T 

==> J2 = 1(1T1)1T 

= rllT 

= rJ. 

Since r > 0, by Lemma 1, we have 

27- 1 = T^I -l - P ( l - p ) ( l - p + p r ) ' 

I-P* ( l -p) [ l + (7-l)p]' 

e. -
l + (r-\)p-

Now, let y be in the null space of X , i.e. 

l-p i l + f r - D p 1 1 J 

0 = XTy = 

\ X9 J 

y 
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where xj = (xu, x2i, ..., xri). Then, lTy = 0. 

With y in place of Y in (*), we now have 

LHS = (XTS-lX){XTX)-1XTy 

= 0 (since XTy = 0) 

and 

RHS = XTS-'y 

= 0 - 0 (since XTy = 0 and lTy = 0) 

= LHS. 

Thus, (*) holds for all y such that XTy = 0. 

Hence, P°LS = pGLS. 

(=>) Suppose (3OLS = 3 G i S - Therefore, (*) holds for all Y. 

Let y be such that XTy = 0. Hence, by (*), 

XTE;1y = (XTE;1X){XTX)-1XTy = 0. (2.8) 

Now, fix i,j, and such that 1 < i,j, k < r, and i =̂  j , A:. 

Let e,- denote the elementary vector all of whose co-ordinates are O's except the z'th being 

1. In turn, let U be an r x (g + 1) matrix of the form 

U = (1, e,-, « a , . . . , v s ) 

where the set of distinct elementary vectors r 3 , . . . ,?>s is chosen such that t73,.. .,t;a ^ e,-

or ej or e^. (That is, the vectors v 3 , . . together with any of e,-, ej, or e^, form a 

basis.) Then, U has the specified form of the design matrix X in model (2.1), and we 
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can substitute U for X in (2.8). 

Now, 

/ XT \ 

UT{e3 - ek) 

e1 - e1 

0. 

This implies that the vector (ej — ek) is in the null space of U. Thus, by (2.8), we have 

UTS;1(ej-ek) = 0. (2.9) 

Write the ( i , j ) th element of U~x as (E~1)ij = cr*j. Now, we can write 

CT 1/ 

' 2 / 

Then, the matrix 

( n r \ 

X 

« a* ... <) = 
V 1 2 7* / 

1 T < . 

eT<r* . . e^V 
t i t r 

VT(T* . . VT(T* 
2 1 2 r 

VTCT* . . vTtr* 
9 i 9 T 
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has its second row equal to 

. . . , e f < ) = (a*,, C T * 2 , o*r) 

ith row of X 1 1 . 

Hence, equation (2.9) implies 

<3~<k = o. 
(2.10) 

This is true for all 1 < i,j, k < r such that i ^ j or fc. 

Thus , X 1 " 1 has al l off-diagonal elements equal. 

Equation (2.9) also implies 

0 = (1 T <, . . . , l V ) ( e i - e t ) 

= ( E L l ^ l , E / = l ^ r ) ( C i - C f c ) 

E

r * v^r * 

Now, (2.10) and (2.11) together imply 

= K - ^ ) + K - ^ ) 

(since 27£, and hence 2? e

- 1 , is symmetric). 

Finally, we have 

a*j = a*kk for all 1 < j , k < r. 
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Hence, St

 1 has all diagonal elements equal. 

Note that Lemma 1 implies that St must also have its off-diagonal elements equal, 

and its diagonal elements equal. But Ht is positive definite, and thus it has positive 

diagonal elements. In addition, a correlation matrix has the property 

trace = r. 

Therefore, the diagonal elements of St must all equal 1. 

Hence, St is of the form 27e = (1 — p)I + pj for some p £ [0,1), as was to be proved. 

Q.E.D. 

Although (3OLS = (3GLS when the responses have an exchangeable correlation struc­

ture and when an intercept exists in model (2.1), we need to be very cautious in computing 

its covariance in such situations. 

Recall that we have the GLS covariance, the true OLS covariance, and the naive OLS 

covariance of the corresponding (3 estimates. Theorem 2 says that, since /3OLS = / 3 G L 5 , 

their covariance matrices are the same. This is to say that the true OLS covariance 

equals the GLS covariance. This is not to say that the naive OLS covariance and the 

GLS covariance are the same, unless St = I. When St ^ I, the naive OLS covariance 

can be considerably different from the true OLS covariance (which is the same as the 

GLS covariance). The loss of efficiency due to the use of the incorrect covariance formula 

will be illustrated in Section 2.7.3. 

Thus, although the (3 estimates obtained by both Naive and Enlightened may be 

the same, the covariances that they compute for the estimates may be very different, 

regardless of what the response correlation structure may be. In other words, Theorem 

2 only allows Enlightened to use f3OLS to estimate /3 for simplicity, but does not allow 

either to ignore Se in the covariance formula for their estimates. 
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2.6 Common Spatial Correlation Structures 

We have now seen that with an exchangeable response correlation structure, we may use 

either the OLS or the GLS estimator to estimate the regression coefficients in model (2.1) 

without affecting estimation efficiency, provided that (1) the model includes an intercept 

and (2) Cov ( /3 O L S ) is taken to be the true OLS covariance in (2.6). However, when we 

have a different response correlation structure, using the OLS estimator may result in 

significant loss of efficiency in parameter estimation, as will be shown later in the chapter. 

So what response correlation structures are seen in spatial statistics? 

Let us first assume that the regions of interest have a "linear spatial arrangement," as 

do the major cities in the Pacific Northwest. Then the spatial correlation in the responses 

may resemble the common autocorrelation structures in repeated measurement or time 

series analyses.8 Some such structures are the exchangeable and the AR(1) (autoregressive 

process with lag 1) structures. The former is useful when we believe that observations 

from regions either nearby or far apart are correlated to the same extent. The latter 

is used in cases where the strength of correlation declines with increasing geographical 

separation. 

However, regions of interest are usually spread out in a two-dimensional geographical 

domain. The natural measure of how far apart two regions are is then the physical 

distance between them. This distance is often measured from the centroid of one region 

to that of the other.9 For each centroid, we record its bearing, i.e. its latitude and 

longitude. The distance between two centroids can then be calculated from their bearings 

(see equation (2.12)). 

It is often believed that correlation between the observations from two distinct regions 
8See Cressie, 1991, page 340. 
9See Rosychuk, 1994. 
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declines with increasing separation.1 0 This belief suggests that the variogram,11 Uc, be 

modeled to have a form like: 1 2 

(Se)ij = the (i, j ) th element of Ee = e x p { - | | z ; - Z j | | a } (2.12) 

where 
' latitude of region i ^ 

Zi = 

^ longitude of region i j 

Note that — Zj\\2 is a measure of the distance between regions i and j. In other 

words, the correlation between two regions decreases exponentially as their separation 

increases. This structure is widely used in spatial statistical models. 

Another way to model spatial correlation in a two-dimensional layout is presented in 

Basu & Reinsel, 1994. This type of model requires that the regions be arranged in a two-

dimensional grid. The observation from each region is thus assigned a co-ordinate, (i,j). 

The correlation is introduced by a unilateral first order ARM A error process that depends 

on the co-ordinates. The drawback of using such a model is the difficulty in estimating 

the extra parameters (in the A R M A process) intrinsic in the regression model. 

In our computer simulations of linear regressions, we used both standard and non­

standard correlation structures. The standard ones include the exchangeable, AR(1), and 

common variogram structures. We did not use the model presented by Basu & Reinsel 

(1994) for the reasons mentioned above. The non-standard correlation structures include 

some which resemble the AR(1) structure. A l l of these will be introduced in the next 

section. 
10See Cressie, 1991, page 24. 
1 1That is, the covariance function of spatially correlated observations. See Cressie, 1991, page 40 for 

a detailed definition. 
12See Cressie, 1991. 
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2.7 The Simulation Experiments 

Our objective is mainly to investigate how Naive's inferences compare with those of 

Enlightened. 

First, we specified the model parameters: /3 (the vector of regression parame­

ters), Ue (the correlation matrix of the errors, and hence, of the response data), and 

cr2 (the noise level, or the "scale" of the covariances of the errors/responses). Next, we 

fixed an arbitrary covariate (design) matrix, X. We then generate error data, e;'s, from 

a multivariate normal (MVN) distribution with zero mean vector and covariance matrix 

equal to a2Se (a2 and St specified separately). Finally, X, (3, and e were "put together" 

to give correlated response data, Y, according to model (2.1). 

With this dataset Y, Naive and Enlightened fitted the linear regression model. Know­

ing the true regression parameters /3, we can judge how well these two statisticians have 

estimated (3. We are concerned in particular with how much efficiency in parameter 

estimation is lost in Naive's analysis. 

Recall that Naive believes the response data to be independent, and hence computes 

a naive covariance matrix of according to formula (2.3). Let us denote it by 

Cov ( / 3 O L S ) n a i v e . Enlightened knows the true St, and hence computes the correct co-

variance matrix of (3GLS, according to (2.5). We denote this by Cov(/3G L S). Finally, 

Enlightened realizes Naive's mistake and computes the true covariance matrix of (3OLS 

for Naive, according to (2.6). We denote it by Cov(/3OLS)tlue. 

In each simulation experiment, we fixed one set of model parameters with a covariate 

matrix, and carried out n repetitions of the process of: 

1. generating e and calculating Y; 

2. fitting Naive's regression model to obtain /3 O L S , then estimating a2 from this 
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naively fitted model, obtaining Cov ( /3 0 i 5 )naive and Cov(/3 o z , 5 )true using the esti­

mated (OLS) cr2, but using the true £ e ; 1 3 

3. fitting Enlightened's regression model to obtain /3GLS, then estimating <72 from this 

fitted model, obtaining Cov(/3GLS) using the estimated (GLS) a 2 , but using the 

true ST; 

4. obtaining t-test statistics based on each of these three covariance matrices for testing 

the hypotheses 

H0 : fa = 0 vs. Hi : fa ^ 0 

at significance level 0.05, for all j = 1,2,..., g; and 

5. calculating the corresponding p-values of the above t-test statistics. 

The number of covariates g was usually set to anywhere from 1 to 30. After n such 

sets of p-values were obtained, we compared two pairs of analyses. We first compared 

Enlightened's analysis to that of Naive. We then compared Enlightened's analysis to that 

s/he did for Naive. The comparisons were done via some p-value comparisons. For each 

regression coefficient, we put the corresponding p-values of the two pairs of analyses into a 

contingency table such as Table 2.1, to compare the consistency of hypothesis rejection 

(number of times both methods rejected H0) and the empirical power (number of times 

H0 was rejected) of the two methods. 11 Ue = J" in the second column of Table 2.1 means 

that the p-values were computed based on Cov(/3OL5)naive5 "-̂ e known" that the p-values 

were computed based on Cov(/3O L S)true-

1 3That is, when fitting a regression model, we assume the response correlation matrix, £ £ , is given, 
but the "scale" a is not. We adopted our assumption from Weisberg, 1985, page 40. 
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GLS 
fix 

p < 0.05 p > 0.05 
OLS Ee = I p < 0.05 OLS Ee = I 

p > 0.05 
OLS 

Ue known p < 0.05 

OLS 

Ue known 
p > 0.05 

Table 2.1: An example of a p-value contingency table for 8\. 

2.7.1 Generating Correlated Responses 

The (model) parameters in model (2.1) include cr2, 27£, and /3. In a simulation experi­

ment, we need to specify all of these parameters, together with the covariate matrix X, 

in order to obtain the response vector Y. 

In one simulation study of n realizations of model (2.1), we would first specify X, the 

design/covariate matrix, and the regression coefficient vector, (3. Instead of arbitrarily 

"inventing" these quantities everytime we ran a simulation experiment, we decided to 

have a computer implemented procedure which could be used to generate both X and 

(3. In this way, we would only need to specify a limited number of program arguments 

instead of each of the r x g covariate values and g + 1 coefficient values. 

The procedure for obtaining the design matrix and the regression coefficients is pre­

sented in Section 2.10, the C H A P T E R A P P E N D I X . This procedure requires the specifi­

cation of fix and ZJx, the common expectation and covariance matrix of the g covariate 

vectors. These were truly arbitrarily chosen. For example, we sometimes took fix — 

0, and other times fix = (1,2,3) T for a model with an intercept and two slope coeffi­

cients. Ijx was taken to be the identity in some cases. We also tried JC^'s which have 

exchangeable structures. 

Once X and {3 were generated, they were used to generate all the n Y"'s from model 
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(2.1). In fact, we did not generate a new X and f3 in every simulation. Once generated, 

the same X and /3 were sometimes re-used in other simulations, varying only St and <r2 

of the distribution of the random errors in the model. 

In other simulations, we fixed the same 30 x 2 covariate matrix for those cases in 

which an intercept along with one slope coefficient was present in model (2.1). The first 

column of this X is simply the 1 vector. The second column was generated from a normal 

distribution with mean 10 and standard deviation 1/2.1 4 The first five elements of this 

second column are 9.73, 9.61, 9.33, 10.62, and 10.57. 

Next, we needed to generate the random errors in the model by specifying cr2 and St. 

The matrix ZJe was chosen from the following: 

1. an AR(1) correlation matrix with a lag one correlation of 0.6 or 0.9; 

2. a correlation matrix (which resembles the AR(1) structure) that has its ( i , j ) th 

element equal to 

(a) 1 if i = 

(b) 0.5 ii\i-j\ = 1, 

(c) 0.2 if \i-j\=2, 

(d) 0.1 if \i- j\ =3 , and 

(e) 0 if \i-j\ > 3, 

for i,j = l , 2 , . . . , r ; 

3. a correlation matrix, similar to the above, with its (i,j)th element equal to 

(a) 1 if i = j, 
1 4Again, the choice of the moments was arbitrary. 



Chapter 2. Multiple Linear Regression 27 

(b) 0.8 if \i-j \ = 1, 

(c) 0.45 if \i-j\ = 2, 

(d) 0.15 if \i- j\ = 3, and 

(e) Oif \i-j\ >3 , 

for i,j = 1,2,... ,r; 

4. an exchangeable correlation matrix with an intraclass correlation coefficient of 0.6 

or 0.9; and 

5. the variogram computed according to equation (2.12) with 

/ ZT \ 

whose columns were generated independently from a Uniform(25, 50) and a Uni-

form(100, 110) distribution respectively.15 

Define e's) to be the sth sample of errors, s = 1,2,..., n, generated from 

e<s) ~ MVN (0 ,<r 2 i : e ) . (2.13) 

After generating these n (independent) samples of e^'s, we would use the X matrix 

and the (3 vector (same for all s) obtained using our algorithm mentioned earlier, and 

compute 

= X/3 + e<s'. (2.14) 
1 5Once generated, the Z matrix (and hence the variogram) was fixed throughout those simulations in 

which the variogram was used. 
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Thus, these Y( s)'s are i.i.d. M V N , with mean X/3 and covariance Et. 

Finally, we provided Naive and Enlightened with the n observed response vectors and 

the set of covariates. (Again, Naive believes that the responses are independent, whereas 

Enlightened knows the value of £ t . ) They returned their n sets of j3 estimates with 

their corresponding p-values. We then obtained the sample mean and variance of each 

regression coefficient estimate as summaries of the simulation experiment. Their p-values 

were then tabulated into a contingency table such as Table 2.1 for comparison of their 

estimation efficiencies. 

2.7.2 Where are Naive and Enlightened? 

We brought these two statisticians to life (figuratively speaking) by a module in a com­

puter program which we implemented in the statistical software S-Plus. Other modules 

in the program include one for generating the n e^'s, and another for tabulating the p-

values that the statisticians have computed. A n independent module was implemented to 

generate covariates and regression coefficients. The program user has to specify \ix and 

Ex in this module if s/he wishes to generate the covariates and regression coefficients. 

These values can be stored and re-used in other simulations to save computational time. 

The user then has to specify a covariate matrix and a vector of regression coefficients, 

one or both of which may be generated by the above module, or fixed by the user. 

In addition, s/he has to specify a and Se in the main program. This program will first 

compute the responses, Y, and then "call on" the two statisticians to obtain p-values from 

them. Next, the main program will hand these p-values over to the "output department" 

to produce the p-value contingency tables. 
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Terminology 

In the rest of this chapter, we will refer to Enlightened's analysis as the GLS analysis, 

and to Naive's as the naive OLS analysis. Finally, the analysis done by Enlightened 

by using the OLS estimator and its true OLS covariance will be referred to as the true 

OLS analysis. 

When examining the p-value contingency table for a particular regression coefficient, 

we will compare the off-diagonal values. For example, we will refer to the ratio of the 

(2,1) element to the (1,2) element in the contingency table for the GLS analysis to the 

naive OLS analysis as the consistency ratio with respect to (wrt) the naive OLS 

analysis. That is, a 10-to-l consistency ratio wrt the OLS analysis means that there 

are 10 datasets of a simulation in which the GLS analysis detected a non-zero regression 

coefficient (at significance level 0.05) when the naive OLS analysis did not; whereas there 

is only one dataset in which the naive OLS analysis detected the coefficient, but the GLS 

analysis did not. In other words, the larger this consistency ratio, the more efficient the 

GLS analysis relative to the naive OLS analysis (provided that the detected coefficient is 

truly non-zero). Similarly, the corresponding consistency ratio with respect to the true 

OLS analysis will be the consistency ratio wrt the true OLS analysis. 

By "detecting a non-zero regression coefficient," we mean that such a coefficient 

exists in the regression model and is detected (by the particular analysis). 

2.7.3 Simulation Results 

(i) Simulations 1 and 2 

Simulations 1 and 2 were somewhat small scale studies with few correlated responses 

(r = 4) and only n = 200 realizations of model (2.1). The small r and n allowed us to 
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Program input variables: 
r 9 n Sx 

<72 2. fit intercept? 
4 2 200 ( l , 2 , 3 f I 1 AR(1) 

lag 1 correlation =0.6 
yes 

Program output: 

/ 1 1.36 3.33 \ 
1 1.66 4.82 
1 1.67 4.86 

V 1 0.81 4.94 / 

P = (1,0,0) T (fixed; see page 32) 

OLS estimates GLS estimates 
00 0i 02 00 0i 02 

sample mean of 
n estimates 

0.67 0.05 0.06 0.69 0.06 0.05 

sample variance of 
n estimates 

8.54 1.10 0.41 7.85 1.06 0.35 

true variance of 
each estimate 

8.02 1.06 0.38 7.59 0.98 0.33 

GLS 
00 0i 02 

p < 0.05 p > 0.05 p < 0.05 p > 0.05 p < 0.05 p > 0.05 
OLS 

£t = I 
p < 0.05 11 0 12 0 11 0 OLS 

£t = I p > 0.05 2 187 3 185 1 188 
OLS Et 

known 
p < 0.05 13 1 15 0 12 0 OLS Et 

known p > 0.05 0 186 0 185 0 188 

Table 2.2: Results of Simulation 1, with AR(1) response dependence 
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Program input variables: 
r 9 n Vx Ex cr2 Ee fit intercept? 
4 2 200 (1,2,3)'J' exchangeable, 

intraclass p = 0.6 
1 AR(1), 

lag 1 correlation = 0.6 
yes 

Program output: 

/ 1 1.44 
1 1.52 
1 3.86 

\ 1 2.14 

2.80 \ 
3.09 
4.59 
2.82 J 

(3 = (-0.875,0.375,0.375)2 

OLS estimates GLS estimates 
A. & fa Pi 

sample mean of 
n estimates 

-0.544 0.563 0.137 -0.602 0.494 0.197 

sample variance of 
n estimates 

6.02 1.70 2.49 5.73 1.47 2.27 

true variance of 
each estimate 

6.36 1.57 2.33 6.24 1.40 2.20 

GLS 
A) Pi Pi 

p < 0.05 p > 0.05 p < 0.05 p > 0.05 p < 0.05 p > 0.05 
OLS 

Et = I 
p < 0.05 12 0 14 0 12 0 OLS 

Et = I p > 0.05 2 186 0 186 3 185 
OLS Ee 

known 
p < 0.05 14 3 14 2 15 2 OLS Ee 

known p > 0.05 0 183 0 184 0 183 

Table 2.3: Results of Simulation 2, with AR(1) response dependence 
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determine the approximate computational time needed for larger scale computer simu­

lations. However, technicalities such as the computational efficiency of our simulation 

program and the capacity of the computer system on which the simulation experiments 

were run are beyond the scope of this thesis. 

Simulations 1 and 2 were run mostly with the same program input variables. One 

difference lay in Ex, the covariance matrix for generating the covariates and the regres­

sion coefficients. However, only in Simulation 1 did we discard the regression coefficients 

generated by the corresponding module and replace it with the vector (1,0,0) T . We did 

this to examine how often the GLS or OLS methods falsely detected non-zero coefficients. 

Results of Simulation 1 are shown in Table 2.2. Those of Simulation 2 are shown in 

Table 2.3. 

First, let us examine the results of Simulation 1. 

We notice that the true variance of each OLS regression coefficient estimate is larger 

than that of the corresponding GLS estimate. This illustrates the result presented in 

Theorem 1. However, the covariate matrix generated from the program yielded very 

similar OLS and GLS estimates, and hence, similar (true and sample) variances. 

Notice that both the OLS and the GLS estimates for the intercept are substantially 

smaller than the true intercept (=1). The empirical biases may be due to chance, as sug­

gested by the large variances of the intercept estimates. Nevertheless, in most regression 

analyses, the analyst's prime interest lies not in the intercept of the model, but the slope 

coefficients. S/he would be concerned about how much each unit change in a covariate 

would affect the response. This change is measured by the corresponding slope estimate 

and its variability. 

The estimates for the slope coefficients seem quite accurate. 

Now, to assess the consistency (see page 24) of the methods of Enlightened and Naive, 

we examine the off-diagonal values of each 2 x 2 p-value contingency table. First, we see 
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that the consistency ratio wrt the naive OLS analysis for the intercept is 2:0. That 

is, Naive (in the naive OLS analysis) twice (out of 200) failed to detect the non-zero 

intercept at the 0.05 significance level when Enlightened succeeded (in the GLS analysis). 

On the other hand, this ratio wrt the true OLS analysis is 0:1. That is, Enlightened (in 

his/her GLS analysis) failed to detect it once when Naive succeeded (in his/her naive 

OLS analysis). However, the small number of inconsistent conclusions made by the two 

statisticians could well be due to chance. Similar reasoning obtains for the estimates of 

the two slopes. 

To compare the empirical power of the three analyses, we compare the sample proba­

bilities of detecting a non-zero regression coefficient at significance level 0.05. For exam­

ple, Enlightened's power for detecting a non-zero intercept was (11 + 2)/200 = 0.065 = 

6.5%. This power was slightly lower at 11/200 = 5.5% for Naive. In the true OLS anal­

ysis, Enlightened's power for the OLS estimator was (13 + l)/200 = 7.0%. The power 

is slightly lower (6.5% as above) for his/her GLS analysis. These powers are all very 

low, possibly due to the large variances in the intercept estimates. Also, the powers are 

similar because of the particular choice of covariate matrix which gave similar OLS and 

GLS estimators. 

We do not see striking power differences either between those associated with the OLS 

and GLS slope estimates. In fact, if we compare the GLS power and that of either OLS 

analysis, the Pearson's x 2 test of independence of analysis (GLS/OLS) and power (p < or 

> 0.05)1 6 of detecting each of do, and B2 retains the null hypothesis (of independence). 

For example, the p-value1 7 for the \ 2 test is 0.83 for the GLS and naive OLS analyses in 

detecting B0.18 Thus, the power differences in this simulation experiment are very likely 

1 6 In such a x2 test, the two categories of analysis are "GLS" and "OLS," each with two power levels, 
namely, "p < 0.05" and "p > 0.05." We test the independence of analysis and power (category and 
level). 

1 1 . . . obtained using the S-Plus function chisq.test . 
1 8 In this x2 test, the data are (naive OLS p < 0.05, GLS p < 0.05) = (11, 13), and similarly (189, 
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to be results of chance1 9 according to the x2 test. 

Finally, the fact that the two powers were low in detecting non-zero slopes in this 

simulation is desirable, because the true slopes were zero! 

In Simulation 2, much the same sort of results were obtained. 

A l l the (true) OLS estimate variances are noticeably larger than their GLS counter­

parts. We again see large variability in the slope coefficient estimate for both the OLS 

and the GLS methods. In fact, this is true for every co-ordinate of the (3 vector. The 

sample mean values of the parameter estimates indicate that overall, the coefficients were 

not well estimated, possibly due to chance as a result of their large variabilities. The 

large variances were mainly due to the choice of X and St. However, the GLS estimates 

appear to be slightly more accurate with smaller empirical biases than the OLS estimates. 

Large variability in the coefficient estimates also entails low power in detecting non­

zero true coefficients. This power for all three regression coefficients is under 10% based 

on any of the naive OLS, true OLS, and GLS covariances. 

Finally, minimal inconsistency is found between the methods in the detection of non­

zero coefficients. However, notice that in a few cases (3 for j30 and 2 for both f3i and 

B2), the true OLS analysis actually out-performed the GLS analysis in detecting non-zero 

coefficients. Of course, the small number of such cases does not strongly suggest much 

about the overall power of this true OLS analysis. In fact, this out-performance of the 

true OLS analysis is likely due to chance: the \ 2 tests2 0 for this simulation experiment all 

yielded large p-values. Also, theoretically, the true OLS analysis is never more efficient 

than the GLS analysis, as indicated by Theorem 1. 

187) for the "p > 0.05" level. v 

1 9 . . . in the terminology of Freedman, Pisani, Purves & Adhikari, 1991, Chapter 26. 
20See footnotes on page 33. 
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Program input variables: 
r 9 n X P a2 Et fit intercept? 
30 1 500 see below (3,1.5)'* 1 item 2 on page 26 yes 

Program output: 

sample mean of 
n estimates 

sample variance of 
n estimates 

true variance of 
each estimate 

OLS estimates 

3.11 

11.54 

13.19 

Pi 
1.49 

0.11 

0.13 

GLS estimates 
Po 

3.05 

8.60 

9.93 

Pi 
1.49 

0.08 

0.10 

GLS 
Po Pi 

p < 0.05 p > 0.05 p < 0.05 p > 0.05 
OLS 

St = I 
p < 0.05 35 8 482 0 OLS 

St = I p > 0.05 46 411 15 3 
OLS Et 

known 
p < 0.05 46 . 24 491 1 OLS Et 

known p > 0.05 35 395 6 2 

Table 2.4: Results of Simulation 3 

(ii) Simulations 3 and 4 

The next two simulations were of larger scale than the previous two. Instead of 

n — 200, we had 500 realizations of model (2.1) in Simulations 3 and 4. Such larger 

simulations were naturally more time consuming. To save computational time, we fixed 

the covariate matrix and the regression coefficient vector. X was set to be the 30 X 2 

covariate matrix described on page 26, and /3 = (3,1.5) T. The results are presented in 

Tables 2.4 and 2.5. 

The two simulations were done with the same program input variables, except the 

response dependence correlation. The responses have a covariance matrix as described 

in item 2 on page 26 for Simulation 3, and item 3 on page 26 for Simulation 4. 
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Program input variables: 
r 9 n X P CT2 £ £ 

fit intercept? 
30 1 500 see page 35 (3,1.5)'' 1 item 3 on page 26 yes 

Program output: 
OLS estimates GLS estimates 
Po Pi Po Pi 

sample mean of 
n estimates 

3.14 1.49 3.07 1.50 

sample variance of 
n estimates 

8.96 0.089 1.25 0.011 

true variance of 
each estimate 

9.41 0.093 1.24 0.011 

GLS 
Po 0i 

p < 0.05 p > 0.05 p < 0.05 p > 0.05 
OLS 

EC = I 
p < 0.05 43 1 487 0 OLS 

EC = I p > 0.05 348 108 13 0 
OLS Se 

known 
p < 0.05 91 2 498 0 OLS Se 

known p > 0.05 300 107 2 0 

Table 2.5: Results of Simulation 4 
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In Simulation 3, because of the choice of X and 27£, the variance is very large for 

the intercept estimate, but it is very small for the slope estimate. Using a slightly 

different St in Simulation 4, the variances for the GLS estimates decrease considerably 

(by about eight times). In both simulations, both regression coefficients in the model are 

well estimated by even the OLS estimators, although the GLS estimators seem to have 

slightly smaller empirical biases. 

However, due to the large difference in the variances of the GLS intercept estimate, 

the p-value tables of the two simulations for /?o are very different. In particular, the 

GLS analysis obviously out-performed the OLS analysis (naive or true) in Simulation 

4 (in which the variance of the GLS intercept estimate is much smaller). In terms of 

consistency, the consistency ratio wrt the naive OLS analysis is 348:1. The true OLS 

analysis is slightly better than the naive in terms of consistency. Instead of a 348:1 ratio, 

it is a 300:2 ratio wrt the true OLS analysis. As for power, the empirical powers of the 

GLS, true OLS, and naive OLS analyses are respectively 78%, 19%, and 9%. The x2 test 

of independence (of analysis and power) yielded a virtually zero p-value for comparing 

the GLS analysis to either OLS analysis. (In other words, the power of detecting the 

intercept is significantly associated with the analysis (GLS/OLS).) Here, the difference in 

power is striking. Although the intercept is typically not the main interest of a regression 

analysis, we can nonetheless see "the power of the enlightened" in detecting f30 in this 

simulation experiment. 

This contrast in power, with respect to the intercept estimates, is not as striking in 

Simulation 3 as in 4. Nonetheless, the GLS analysis seems more efficient than the two OLS 

analyses. The consistency ratios wrt the naive and the true OLS analyses are respectively 

46:8 and 35:24. Thus, the GLS analysis was the most efficient in this simulation, followed 

by the true OLS analysis, then the naive OLS analysis. This efficiency ranking is heralded 

by their empirical powers, which are 16%, 14%, and 9% respectively. In fact, the x 2 test 
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of independence for the GLS and naive OLS analyses for B0 yielded a near-zero p-value. 

Thus, the difference in power between the the analyses was extremely unlikely to be a 

result of chance. We may say that Enlightened is significantly more powerful than Naive 

in detecting the intercept, according to the x2 test. However, the \ 2 test for the GLS 

and true OLS analyses indicated insignificant association between the analyses and their 

powers. 

Although the difference in efficiency is not as extreme as in the intercept analysis, the 

GLS analysis seems more efficient in both simulations than either of the OLS analyses in 

detecting the slope coefficient. The difference is slightly more noticeable in Simulation 3 

than Simulation 4. We did not apply the x2 test of independence for the slope estimate 

of either simulation due to the presence of zero counts. 

When we compare the results of these two simulations, we notice that with stronger 

response dependence (in Simulation 4), more efficiency is lost in the OLS analyses (wrt 

the GLS analysis). 

(iii) Simulations 5 and 6 

Simulations 5 and 6 were run with an exchangeable Se. Recall that with such a 

response dependence structure and a non-zero intercept in model (2.1), the OLS and the 

GLS estimators are identical. Thus, the true OLS covariance is no different from the 

GLS covariance, as stated in Theorem 2. However, the naive OLS covariance is not the 

same as the GLS covariance, unless St — I. With St ^ I, we expect to see loss of 

efficiency in parameter estimation. 

In these two simulations, we used the same program input variables as in Simulations 

3 and 4, except that St has the exchangeable structure. The intraclass correlation 

coefficient in St is 0.6 in Simulation 5 and 0.9 in Simulation 6. The results of these two 

simulations are shown in Tables 2.6 and 2.7. Their bottom panels tabulate the p-value 
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Program input variables: 
exchangeable Se, intraclass p = 0.6 

(see Table 2.4 for other program input variables) 
Program output: 

GLS = OLS estimates 
Po Pi 

sample mean of 
n estimates 

3.14 1.49 

sample variance of 
n estimates 

9.76 0.077 

true variance of 
each estimate 

7.19 0.066 

GLS 
Po Pi 

p < 0.05 p > 0.05 p < 0.05 p > 0.05 
OLS 

Et = I 
p < 0.05 109 0 500 0 OLS 

Et = I p > 0.05 122 269 0 0 
GLS power 

(= true OLS power) 
46% 100% 

naive OLS power 22% 100% 

Table 2.6: Results of Simulation 5 
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Program input variables: 
exchangeable £ t , intraclass p = 0.9 

(see Table 2.4 for other program input variables) 
Program output: 

GLS = OLS estimates 
Po Pi 

sample mean of 2.96 1.50 
n estimates 

sample variance of 2.53 0.018 
n estimates 

true variance of 2.55 0.017 
each estimate 

GLS 
Po Pi 

p < 0.05 p > 0.05 p < 0.05 p > 0.05 
OLS 

EC = I 
p < 0.05 297 0 500 0 OLS 

EC = I p > 0.05 155 48 0 0 
GLS power 

(= true OLS power) 
90 % 10( ]% 

naive OLS power 59% 100% 

Table 2.7: Results of Simulation 6 
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of the GLS analysis versus the naive analysis. We will not show the actual contingency 

table corresponding to the true OLS analysis because this analysis is equivalent to the 

GLS analysis. Thus, the off-diagonal values of this contingency table will be the same. 

(Hence, the consistency ratio wrt the true OLS analysis must be k : k for some non-

negative k.) Also for this reason, we will only quote the empirical power of the GLS 

analysis and the naive OLS analysis. 

Tables 2.6 and 2.7 show the extent of efficiency loss in estimating B0 in the naive OLS 

analysis. (The \ 2 test of independence of analysis and power of detecting B0 yielded a 

virtually zero p-value in either simulation experiment.) Comparing the two tables, we see 

that stronger response dependence heralds greater efficiency loss in the naive analysis. 

This relationship between the response dependence and efficiency loss was also seen in 

the previous two simulations. As we will see in some other simulations (see the next 

subsection), this relationship is generally true. 

(iv) Other Simulation Experiments 

We ran about fifteen more simulations in addition to the six described above. They were 

mainly intended to investigate under what conditions the GLS analysis would significantly 

out-perform either of the OLS analyses when the responses are positively correlated.2 1 

Tables 2.2 to 2.7 were shown in full to illustrate how we interpret the program output. 

For brevity, we will merely highlight the more notable results, summarized as follows: 

1. In general, the stronger the response correlation, the larger is the consistency ratio 

wrt either OLS analysis.2 2 

2 1 Positively correlated responses are often encountered in studies of repeated measurements or in 
spatial statistics. 

2 2 In the case of a k : 0 ratio for some non-negative k, a "large" ratio means a large k. 
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2. While the last observation is generally true, in some specific cases, the two OLS 

analyses were empirically more powerful than the GLS analysis. This happened 

mainly in the analysis for the intercept, which usually had a very large variance. 

A large variance could have led to a slightly higher empirical power of an OLS 

analysis, by chance. (Note that the covariance of a /3 estimate depends on the 

choice of X, St, and cr2.) In the trials without an intercept, an empirically more 

powerful OLS analysis for a slope could also be due to a large variance of the slope 

estimate. 

3. In some cases, with relatively weak response correlation, the GLS analysis proved 

to be more powerful than the OLS analyses. For example, a simulation experiment 

was done with the response dependence variogram described on page 27. Our 

choice of the region bearings (longitudes and latitudes) gave us a variogram which 

was extremely close to the identity matrix. However, for one of the two slope 

coefficients, the GLS analysis turned out to have 89% power, compared to 77% 

for the true OLS analysis, and 75% for the naive OLS analysis. The \ 2 test of 

independence of analysis and power of detecting this slope yielded a virtually zero 

p-value for each of the "GLS/true OLS" and "GLS/naive OLS" combinations. Such 

a small p-value indicates that the difference in power was extremely unlikely to be 

a result of chance. 

4. In general, the loss in efficiency (wrt to the GLS analysis) of the true OLS analysis 

is less than that of the naive OLS analysis. The difference in efficiency lost between 

the two OLS analyses can sometimes be extreme. For example, in one simulation, 

the consistency ratio wrt the true OLS analysis was 4:2, but it was 147:0 wrt the 

naive OLS analysis. 
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5. As expected, in cases for which the OLS (naive or true) variances are much larger 

than the GLS variances, the GLS analysis is much more powerful than the OLS 

analysis. 

6. In most cases, both the OLS and the GLS estimators accurately estimate the true 

regression parameters, in that they both have small empirical biases. However, the 

empirical bias for both estimators can be quite large if their variances are large. 

7. In general, the OLS and the GLS estimates are very close to each other. (They 

are the same if the response dependence is exchangeable, with an intercept in the 

regression model.) Sometimes, the GLS estimate has less empirical bias, as shown 

in Simulations 1 to 4. 

2.8 H o w bad is Naive ' s analysis? 

In the previous section, we have seen that in general, ignoring response dependence in 

linear regression can be dangerous. A considerable loss in efficiency can result. There 

has been some established theory on the relative efficiency in parameter estimation of the 

true OLS analysis to the GLS analysis. As Theorem 1 indicates, the true OLS analysis 

can never be more efficient than the GLS analysis. 2 3 Our simulations also support this 

difference in efficiency, in terms of consistency and power, in detecting non-zero regression 

coefficients. 

However, we are not aware of theory which extensively compares the naive OLS 

analysis with the GLS analysis. From our simulation studies, we do know that in general, 

the naive OLS analysis is the most inefficient in parameter estimation, followed by the true 
2 3 In practice, the empirical relative efficiency of the true OLS analysis to the GLS analysis may be 

greater than unity. This is the case in, for example, Simulation 2 in Section 2.7.3. This is mainly due to 
chance. If we had more data sets (i.e. more than 500) in this simulation, the GLS analysis could have 
been empirically more efficient than the true OLS analysis. 
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OLS analysis, 2 4 then by the GLS analysis. Now, we direct our focus onto understanding 

the extent of efficiency loss using the naive OLS analysis relative to the GLS analysis. 

2.8.1 Empirical Power Curves 

First, let us examine how the power in detecting a non-zero regression coefficient of the 

naive OLS analysis compares to that of the GLS analysis. We compare them under vary­

ing conditions. For example, we may fix a regression coefficient and 27e, letting a2 vary. 

Similarly, we may fix the covariances of the responses, and let the regression coefficient 

vary. We will once again use simulation experiments as the basis of our investigation. 

We ran several such experiments for each set of varying conditions. For each of 

these simulations, we recorded the empirical powers of both the GLS and the naive OLS 

analyses. Each simulation consisted of 500 realizations of model (2.1), with no intercept 

and one slope coefficient. Having only one slope in the model provides us with enough 

insight into the question at hand while reducing the computational burden. We used 

a model with no intercept term because, as explained before, the slope is the primary 

determinant of the relationship between the response and the covariate. We chose a 

30 x 1 covariate matrix X in this case, assuming there were 30 regions in the geographical 

domain of interest. The covariates in this X matrix (vector) were arbitrarily generated, 

independently, from a normal distribution with mean 0 and standard deviation 0.2. Once 

generated, the X matrix was fixed throughout the 500 simulation trials. Uc was taken 

to be the one described in item 3 on page 26 in all simulations. Such a S£ was chosen 

because from the previous simulations with this St, the GLS analysis was often noticeably 

more powerful than the naive OLS analysis. We wish to exploit to a greater extent this 

2 4The naive OLS analysis may appear to be more efficient than the true OLS analysis when the matrix 
(XTS-lX)-1 - (XTX)-1 is positive definite (i.e. when the true OLS covariance is "larger than" the 
naive). However, technically the naive analysis is not more efficient in this case because <r2(XTX)-1 is 
not the true covariance of f3OLS. 
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Empirical Power from 500 samples and only slope varies w/ SD(error)=1 
• 

• + 

+ 
0 + 

+ 
+ 

+ 
+ 

+ 
+ ; Stl 

+ 
+ + 

* + * 

slope 

Empirical Power from 500 samples and only SD(error) varies w/ slope=1.5 

1.5 
slope - SD(error) 

Figure 2.1: Empirical Power Curves for the GLS and naive OLS analyses. 

difference between the two analyses to gain increased clarity in the result. A graph of all 

the recorded empirical powers from the several simulations were then produced. 

The above process was repeated under each set of varying conditions. We have pro­

vided the graphs of the empirical powers in these sets of simulations in Figures 2.1 and 

2.2. 

In the two figures, the graph titles designate the parameters chosen to vary. For 

example, the first panel of Figure 2.1 has X and 27e described as above, with ( 7 = 1 
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fixed, but a varying 8\. The third panel of the same figure has the ratio 81/o~ fixed, 

although both 8-y and a vary together. 

Let us examine Figure 2.1 closely. 

In the first panel, we let the slope &\ increase from 0 to 5 in the simulations. With 

a = 1 and every other parameter fixed, both the GLS and the naive OLS analyses 

increase in power as fl\ increases. Of course, this is not surprising, since the larger the 

true coefficient, the easier it is to detect, and hence, the higher the power of either test. 

However, the power of the GLS analysis increases at a much higher rate than the naive 

OLS analysis, as 8\ increases. The GLS power reaches almost 1 when 8\ « 1, whereas 

the naive OLS power increases very gradually, and becomes close to 1 only when 8\ is 

beyond 4. The loss of efficiency in using the OLS analysis is especially big in the interval 

(0.8, 1.2). 

In the second panel of Figure 2.1, we let a increase from near-zero to beyond 12. 

fli = 1.5 is fixed, as are other parameters in the model. As a increases, the power of 

either analysis should decrease, because detecting a non-zero coefficient becomes more 

difficult as the variation of the data increases. However, the GLS power remains very 

close to 1 until a > 1.5, then decreases very gradually and stabilizes as a grows beyond 

8. Meanwhile, the naive OLS power starts decreasing as soon as a grows beyond 0. It 

decreases much faster than the GLS power, stabilizing when a « 4. 

Finally, in the third panel of Figure 2.1, we let the ratio 8^ja = 1, i.e. B\ = cr, 

although letting both parameters vary together. The other program input arguments are 

fixed. The graph indicates that both the GLS and the naive OLS power functions remain 

roughly constant, but the latter is much lower. The naive OLS power seems to remain 

at around 0.2, whereas the GLS power remains close to 1 at all values of 8\ (= cr). 

Indeed, the fact that the GLS power remains relatively constant agrees with theoret­

ical results. The following argument shows that the theoretical GLS power function is 
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constant if the ratio fa/cr is constant. 

Let v = fa/cr. Let TT(V) be the power function of the GLS analysis evaluated at £/, 

i.e. the probability of failing to detect a non-zero fa, given v. The t-test statistic is 
-~~GLS 
fa 

SE(faGLS) 
where 

estimates 

SE(faGLS) = a^{XTS^X)-\ 

The estimate a is the square-root of the M S E obtained from the regression analysis of 

variance. That is, 

«72 = 
e1 e 

where 
r-g 

Y - X{3. 

Recall that the covariate matrix X has dimension r xg, where r = 30 and g = 1. Now, 
—GLS — —GLS 

from classical theory, we know that fa /SE(/?i ) follows a non-central t distribution 

with r — g degrees of freedom, and non-centrality parameter equal to 2 5 

fa fa _ v 

S E ( A G L 5 ) <ry/(XTZ:*X)-> y/(XTErX)-> 

which only varies in v, because the values in the denominator of the last expression are 

all fixed. 

Now, let tc be the critical value of this non-central t distribution at significance level 

0.05. It is not difficult to see that 
fa 

SE(faGLS) 
> tc 

25 See Encyclopedia of Statistical Sciences, Wiley & Sons, 1985, vol. 6, pp. 286 - 288. 
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is constant if v is constant. 

From the same empirical power graph, we also see that the naive OLS analysis has 

constant power. In fact, we can deduce that theoretically, the naive OLS analysis should 

also have constant power. This is true despite the fact that the true standard error of 
^Oj_j§ * OLS OLS ^~~^OLS 

fi\ is not equal to the naive S.E. (= SE(/9i ) n a i ve ) so that 3\ /SE(/?i ) n a i v e 

does not have a non-central t distribution. 
-—OLS 

Recall that 3\ , in the case of 27e ^ / , has true S.E. and naive S.E. equal to 

ayJ(XTX)-i{XTZ;tX){XTX)-i and a^J{XTX)- respectively. That is, 

S E ( S ° L 5 ) t r u e = y/{XTE.X)(XTX)-* S E ( ^ ° L 5 ) n a i v e . 

, ^OLS OLS 

Now, notice that B\ /SE(/?i ) t r ue, the i-statistic for the true OLS analysis, has non-
R ^~~OLS 

central t distribution with non-centrality parameter equal to /?i/SE(/?i ) t r a e . Hence, 

the power function of the true OLS analysis should be constant if 3\/a is constant (like 

that of the GLS analysis). 

Now, the naive t-statistic is 
-t~OLS <~-OLS 

Pi Pi 
SE(/?i )naive true 

J(xTEcx)(xTxy 

which is simply a multiple of the i-statistic of the true OLS analysis. Therefore, the 

power function of the naive OLS analysis should also be constant if P\/o~ is constant. 

Finally, the fact that the empirical power curve of the naive OLS analysis is below that 

of the GLS analysis in all three panels of Figure 2.1 illustrates that ignoring response 

dependence in regression analysis can lead to significant loss in parameter estimation 

efficiency. 

Next, let us examine Figure 2.2. 

The two panels of this figure show empirical power curves of the two statisticians' 

analyses with all program input arguments fixed as before, except that B\ and a both 
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Figure 2.2: More Empirical Power Curves for the GLS and naive OLS analyses. 
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vary with the ratio v = f3\/o~ constant. This ratio was fixed as 1/2 and 2 respectively in 

the two graphs. Again, we see that the naive OLS analysis is clearly less powerful than 

the GLS analysis. 

Comparing the two panels in Figure 2.2 with the last one in Figure 2.1, the gap 

between the two power curves seems to decrease as the ratio of Q\ to a moves away 

from unity in either direction. Although the GLS power curve is everywhere above the 

naive OLS power curve, the gap between them is the largest when the ratio is 1, a little 

smaller when the ratio is 1/2, and even smaller when the ratio is 2. Therefore, the power 

difference between the two statisticians is most apparent when the slope and the noise 

level (i.e. a) are the same. 

Furthermore, from the relative positions of the power curves as the ratio of the slope 

to the noise level changes, we again see the following: the noisier the data with respect to 

the size of the slope coefficient, the less sensitive either analysis, in terms of the detection 

of the slope. The GLS analysis has almost 100% power when the slope is at least as large 

as the noise (cr). On the other hand, the OLS analysis has very low power when the noise 

is at least at large as the slope. 

These observations seem reasonable, by the following argument. When 3\ja = 1, the 

two empirical curves are almost as far apart as they can be. That is, the GLS power 

is almost 1, and the OLS power is close to 0.05, the size of the hypothesis test. As the 

ratio increases from 1, the size of the slope relative to the noise level increases. Then 

both analyses improve in their power in detecting the slope, but the OLS analysis has 

more room to improve in its power (from nearly 0.05 to anywhere below 1). Afterall, 

how much more can the GLS power improve when it has almost reached 1 at Q\ju — 1? 

Similarly, as the ratio decreases from 1, the size of the slope relative to the noise level 

decreases. Then the powers of both analyses decrease, but that of the GLS analysis has 

more room to decline. 
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2.8.2 Histograms of p-value Ratios and p-value Scatter Plots 

We have compared the efficiency of parameter estimation using GLS analysis and that 

using naive OLS analysis by examining their empirical power curves. Another way of 

comparing their efficiencies is to compare their actual p-values in each simulation. In 

regression parameter estimation, a method is more efficient than another if its p-value is 

smaller. This is because a smaller p-value gives stronger evidence against a zero regression 

coefficient. 

In a simulation experiment with, say, 500 data sets, there are 500 pairs of (GLS p, naive 

OLS p) recorded for each coefficient estimate. Suppose we have only one slope coefficient 

and no intercept in the regression model. How then should we compare all the 500 pairs 

of p-values of this slope estimate? 

We decided to compute, for each pair of p-values, the ratio of naive OLS p to the GLS 

p. Since we expected the naive OLS analysis to be less efficient, the ratio should be larger 

than unity most of the time. 2 6 We then log-transformed the square of each of these 500 

p-value ratios. Log transformations are often used to map ratios in the interval (0, oo) to 

( — 0 0 , 0 0 ) . Moreover, our choice of squaring the p-value ratio before log-transformation 

was inspired by Wilks' Theorem: twice the log-likelihood ratio statistic has an asymptotic 

Chi-square distribution. We expected that such a transformation of the p-value ratios 

would allow nicer graphical displays of the simulation results. 

Histograms of these log-transformed p-value ratios were then plotted to examine their 

distribution. For example, a histogram with most of its mass at, say, 10, would indicate 

that in most of the 500 cases in the simulation, the naive OLS p-values were exp{10/2}(« 

148) times larger than its GLS counterpart. This in turn would indicate that the GLS 

analysis was much more powerful than the naive OLS analysis. On the other hand, a 

2 6 The ratios which are smaller than 1 are expected to be due to chance. 
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histogram centered at 0 would indicate that the naive OLS p-value was just as likely to 

be larger than its corresponding GLS p-value as it was smaller. In other words, such a 

histogram would indicate that the two analyses were equally powerful, empirically. 

Before presenting some detailed observations, let us introduce an analogy of the power 

comparisons between Enlightened and Naive. A rabbit, under normal conditions, usually 

runs much faster than a tortoise. If both the rabbit and the tortoise wear good running 

shoes (large B\ relative to cr), it may be more apparent that the rabbit is a faster runner 

than the tortoise. Afterall, how much improvement can running shoes do to an animal 

which simply cannot run? On the other hand, if both animals have a broken leg (large cr 

relative to the hindrance to the rabbit's running may be a lot more severe than that 

to the tortoise's, because the rabbit's speed has much more room to decline. Hence, if we 

measure the difference between the two animals' running speeds, this difference should 

be more apparent when both wear good running shoes, but less so when they both have 

a broken leg. We will leave for the reader the task of linking this analogy between these 

two animals in a race and the two statisticians in an efficiency competition of regression 

parameter estimation. 

Now, using this analogy, we wish to understand how much faster the rabbit out-runs 

the tortoise under different conditions. Thus, we need the two animals to compete in 

several races (simulation experiments). In each race, they wear the same kind of running 

shoes assigned to that particular race. Running shoes of a different quality are assigned 

to a different race. Over several races, we hope to recognize which quality of running 

shoes makes the rabbit's superiority the most or the least apparent. To do this, we can 

display histograms of logged p-value ratios from several simulation experiments in the 

same graph. This way, the change in spread and location of the histogram due to the 

change in the "quality of the running shoes" can be spotted easily. 
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Some technical difficulties might arise in plotting some of the histograms. For ex­

ample, the log of zero is undefined. To get around the problem of taking the log of a 

virtually zero p-value, we used started logs27 and added 1 0 - 1 0 to each of the p-values, 

regardless of its size, 2 8 before taking logs. Another difficulty emerges in displaying the 

histogram itself. A regular histogram resembling a bar chart may not provide an effective 

display. Since our main interest in these histograms concerns location and spread, we 

will present their smoothed sketches instead of the actual histograms. 

Plotting the histogram of the logged p-value ratios is only one way to compare the p-

values, and hence, the power of the two analyses. In addition, we also produced a scatter 

plot of all the logged OLS p-values versus their GLS counterparts for each simulation. 

For example, if the scatter cloud is concentrated around a point, this corresponds to a 

histogram which has a tall spike. 

In the previous section, empirical power curves were given for different sets of varying 

conditions. For example, in one graph, we fixed all program input arguments but let 8\ 

vary. A set of varying conditions is analogous to "different models/qualities of running 

shoes of the same brand." That is, the brand could be 81, and the different models could 

be By = 0.1, 8\ = 0.2, etc. The noise level a could be considered a different brand of 

running shoes, when it varies but all other parameters (and program input arguments) 

are fixed. For a certain brand, several races are run between the two animals, and each 

race is run with a different shoe model. Let us now relate this back to our p-value 

comparisons. For each brand for which, say, five different races (simulations) were run, 

five sets of race results in terms of the histogram sketches and the corresponding scatter 

plots were displayed. Hence, we could compare the five histograms and/or the five scatter 

plots to examine how the varying values (shoe models) of this parameter (brand) affected 

2 1 . . . in the terminology of Mosteller k Tukey, 1977, page 91. 
2 8 For the sake of consistency, we added the infinitesimal amount to all p-values. 
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the power comparison of the naive OLS and the GLS analyses (speed comparison of the 

two animals). 

The Graphs 

Several sets of varying conditions were investigated. Here, we used the same X and ST 

matrices as those used in the previous section where simulations were run to produce 

empirical power curves. Thus, we have assumed 30 regions, and no intercept but only 

one slope coefficient, fa, in regression model (2.1). Again, each simulation had 500 

realizations (datasets) of the model. The varying parameter is indicated in the title 

of each histogram graph. Notice also that the title of each scatter plot indicates its 

corresponding histogram sketch. The x-axis of a scatter plot is always "log (GLS p + 

I O - 1 0 ) " and the y-axis is always "log (naive OLS p + IO - 1 0 ) . " A 45-degree line is drawn 

on each scatter plot to indicate clearly the relative position of the scatter cloud. 

Figure 2.3 shows the histogram sketches and scatter plots for nine simulations under 

one set of varying conditions. X and Ut were fixed as described above, <r was fixed as 

1, but fa varied from 0 to 10. Each histogram sketch is labeled with a letter from the 

alphabet for two reasons: (1) by comparing the labeling letter to those in the legend, 

we can match the histogram to the fa value with which the simulation was run; (2) 

as fa increases, the shape and the location of the histogram changes, and we can trace 

the changes of the histogram by following the alphabetically ordered sketches. That is, 

increasing fa to the next value corresponds to changing the labeling letter to the following 

letter in the alphabet. With this in mind, we may trace how the histogram "moves" as 

fa increases. 

From the histogram sketches in this figure, we notice a "tidal effect" in the location 

of the histograms as fa increases. That is, with an increasing slope coefficient, the center 

of the histogram of the logged p-value ratios "moves" from small values (< 0) up to 
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Figure 2.3: Histogram Sketches of logged p-value Ratios and their Scatter Plots: /3i 
varies. 
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larger values, then returns down to smaller values as the tide does. Note that a slope of 

moderate size, such as 0.8 (histogram "c"), gives a histogram mode of about 9. That is, 

for such a slope (and a = 1), the OLS p-value is typically exp{4.5} ~ 90 times as large 

as the GLS p-value! 

Another interesting observation is the tidal effect in the spread of the histogram which 

accompanies that of the location. Apparently, extreme (very small and very large) values 

of the slope are associated with smaller spread in the distribution of the log-transformed 

p-value ratios. Moderate values of the slope are associated with wider spread in this 

distribution. 

The tidal effect in the location and spread of the histogram can also be seen from the 

logged p-value scatter plots. 

First, we see the changing location of the scatter cloud. As 3\ increases, the scatter 

cloud moves from being around the top portion of the 45-degree line to being away from 

the line to finally being solely on the left of the line. Thus, when the slope is small 

(difficult to detect with either the OLS or the GLS method), both analyses have big p-

values (so that the logged p-value is around 0). A small slope also means that empirically, 

the naive OLS analysis has more probability of out-performing the GLS analysis than 

with a larger slope. (Recall the rabbit and the tortoise racing against each other when 

both have a broken leg.) This explains the portion of the scatter cloud below the 45-

degree line in the first few scatter plots. With a slope that is easier to detect using either 

method, the GLS analysis' superiority in power becomes more apparent. Having a large 

slope is analogous to having good quality running shoes in the rabbit-tortoise race. Recall 

how we explained that the rabbit's superiority in speed is most apparent when the two 

animals are wearing the best running shoes. Thus, as the slope increases, more and more 

GLS p-values are smaller than their naive OLS counterparts, and hence, the cloud moves 

further and further to the left of the 45-degree line. Finally, when Q\ = 10, an extremely 



Chapter 2. Multiple Linear Regression 57 

large slope, the scatter cloud converges along a vertical line, almost solely above the 

45-degree line, at a highly negative value on the rc-axis. Such a vertical line indicates 

that almost all GLS p-values were at least as small as their naive OLS counterparts in 

the simulation. In other words, the GLS analysis was at least as empirically powerful in 

almost all 500 cases in the simulation. 

Notice that this last scatter plot corresponds to histogram sketch " i , " which shows 

that there are almost no log-transformed p-value ratios that are negative, out of the 500 

cases in the simulation. (A negative value corresponds to a naive OLS p-value smaller 

than the GLS p-value.) This is simply the exact translation of the observation of the last 

scatter plot. 

In addition to the moving location, the spread of the scatter cloud also changes as 3\ 

increases. From being very concentrated around one point, it becomes somewhat sparsely 

scattered, then becomes concentrated again. Although the cloud appears concentrated 

along a vertical line at large values of the slope coefficient, the last plot actually shows 

some tendency of the cloud converging to a point near (-25, -25). This change in the 

spread of the cloud simply translates back to the changing spread of the histograms. 

Now, putting back together the observations of both the histogram sketches and the 

scatter plots in Figure 2.3, it is not difficult to understand the tidal effect in both the 

location and the spread of either the histogram or the scatter cloud. Basically, it depends 

on the relationship between the varying quality of the animals' running shoes and the 

varying extent of superiority of the rabbit over the tortoise in a race. Here, the larger 

0i is, the better the quality of the shoes, and hence the larger the rabbit's "margin of 

victory" over the tortoise. 

Figure 2.4 shows some similar tidal effects in the histogram and scatter cloud, but in 

the opposite direction of that in Figure 2.3. The simulation experiments were run with 

X and 2/e fixed as described above, Q\ fixed as 1.5, but a increased from exp{ —1.2} to 
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Figure 2.4: Histogram Sketches of logged p-value Ratios and their Scatter Plots: a varies. 
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exp{2.6}. In fact, the opposite direction of the tide is not surprising if we understand 

why the histogram and the scatter cloud "travel" the way they do in Figure 2.3. In 

Figure 2.3, a large fa corresponds to high quality running shoes in the rabbit-tortoise 

race. On the other hand, a large a (noise level in data) in Figure 2.4 corresponds to a 

broken leg, whereas having a small a is analogous to having good running shoes. 

This brings us back to the relative size of the slope coefficient with respect to the 

noise level in the data. In other words, if both parameters vary together, it is not so clear 

what shoe is considered to have good quality. In the simulation experiments for Figure 

2.5, the ratio v = fa/cr was fixed as unity, and fa and a increased together from 0.2 to 

3. Similarly, v was fixed as 1/2 and 2 respectively in the sets of simulation experiments 

for Figures 2.6 and 2.7. The slope fa ranged from 0.01 to 2 in both of these figures. 

From these three figures, we find that their histograms (and scatter clouds) remain at 

a relatively constant location and have almost the same shapes as fa and a vary together 

at a fixed rate. This observation agrees with the constant power (of detecting fa) of the 

GLS and OLS analyses seen in Figures 2.1 and 2.2. The logged p-value ratio is similar 

to the ratio of the powers of the two analyses. If the powers are constant for all values 

of fa and a (while fa/a is fixed), then their ratio must also be constant for all values of 

the two parameters. Hence, the locations and shapes of the histogram sketches almost 

coincide in each of Figures 2.5 to 2.7. 

However, if we compare these three figures, the tide moves from left to right as the 

ratio of fa/cr increases. When v = fa/cr = 1/2, the OLS p-value is typically larger than 

the GLS p-value by a factor of exp{1.5} ~ 4.5. When v — 1, this factor is exp{6} ~ 400. 

When v = 2, it is exp{16} ~ 8.9 million! The increasing factor indicates that, when 

the ratio of the slope to the noise level is fixed, the size of this ratio is essentially what 

determines the relative location of the tide. 

In other words, both fa and cr increasing together is like having two opposing forces 
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Figure 2.5: 
Pi/v = 1. 

Histogram Sketches of logged p-value Ratios and their Scatter Plots 

Sketches of Histograms - slopes vary from .2 to 3, with fixed ratio 
of slope/SD(error)=1, fixed X matrix, & Cor(error) matrix 

a 

E 

E 

a slope=SD(error)=.2 
b slope=SD(error)=2.2 
c slope=SD(error)=2.4 
d slope=SD(error)=3 

-10 
-J— 

10 
-J— 

20 
—I— 

30 
I 

40 

2*ln((naive ols p value + epsilon)/(gls p value + epsilon)) 

Corresponding Scatter Plot tor Histogram d 

-SO -IS -10 -6 0 

ln(tfs p value + sptf on) 



Chapter 2. Multiple Linear Regression 61 

"pulling the tide." A large Br makes more apparent the GLS analysis' victory over the 

naive OLS analysis. On the other hand, a large a makes this less noticeable. Again, 

with a fixed, a large Q\ corresponds to good running shoes. With Q\ fixed, a large a 

corresponds to a broken leg. When only the ratio of the two parameters is fixed, but the 

parameters themselves vary together, the efficiency competition between the two analyses 

is analogous to the two animals running a race in which they both have a broken leg but 

wear good running shoes. From the locations of the histogram sketches in Figures 2.5 to 

2.7, we deduce that the rabbit's superiority in speed over the tortoise is constant as the 

parameters increase together with their ratio fixed, but increases if the ratio increases. 

(This can also be seen from the location of the scatter clouds — the clouds move farther 

towards the left of the 45-degree line as the ratio increases.) That is, the superiority of 

the GLS analysis over the naive OLS analysis is more apparent as the relative size of Q\ 

to the noise level increases. 

One may argue that this trend seems to disagree with what we observed from the 

empirical power curves. They indicate that the superiority of the GLS analysis was most 

apparent when Q\ = <7, but less so if Q\ ^ a. From the histogram sketches, we see that 

this superiority increases as the ratio Q\jo increases. 

However, the empirical power graphs were obtained based on a fixed significance level 

of the t-tests for the slope estimates. On the other hand, the histogram sketches were 

obtained using the actual p-values computed from these t-tests. Then, a larger OLS 

p-value would indicate a lower OLS power than the GLS power, regardless of how small 

both p-values are. Thus, if we measure the superiority of the GLS analysis based on 

how much smaller its p-values are, then we see the trend of increasing superiority as the 

ratio 0\/o- increases. If we measure superiority based on how often the null of B\ = 0 is 

rejected, then this superiority decreases as 3i/o~ moves farther away from unity. This is 

because both p-values might be smaller than the significance level so that both analyses 
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Figure 2.6: Histogram Sketches of logged p-value Ratios and their Scatter Plots: 
Pi/v = 1/2. 

Sketches of Histograms - slopes vary from .01 to 2, with fixed ratio 
of slope/SD(error)=.5, fixed X matrix, & Cor(error) matrix 

slope=.5*SD(error)=.01 
slope=.5*SD(error)=.5 
slope=.5*SD(error)=1.5 
slope=.5*SD(error)=2 

E 
CO 

b b b b b b b b 

30 -10 10 20 

2*ln((naive ols p value + epsilon)/(gls p value + epsilon)) 

Corresponding Scatter Plot for Histogram d 



Chapter 2. Multiple Linear Regression 63 

Figure 2.7: Histogram Sketches of logged p-value Ratios and their Scatter Plots: 
Pi/tr = 2. 
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appear powerful, despite the larger OLS p-value . 

2.8.3 The case of a chosen Et « I 

So far in this section, the results are based on simulation experiments with Ht that might 

produce a potentially noticeable difference between the two statisticians' analyses. What 

happens if Uc is chosen to be very close to the identity? 

Naturally, we do not expect the GLS analysis to out-perform the naive OLS analysis. 

Afterall, the two analyses differ only in what the two statisticians believe Uc to be. 

Out of curiosity, we ran a few sets of simulations using S€ as the variogram structure 

described in item 5 of page 27. Recall that our choice of the region bearings produced 

a which was very close to J. X was again the 30 X 1 covariate vector that we 

used in the previous few sets of simulations. As expected, the histograms for these sets 

of simulations all locate at around 0, even under different sets of varying conditions. 

This indicates that in general, with such a 27£, the GLS analysis is not noticeably more 

powerful than the naive OLS analysis. 

Nonetheless, we have included the histograms and scatter plots for one of these sets 

of simulations in Figure 2.8. In these simulations, all program input arguments were 

fixed (3i = 1.5), except that cr varied from exp{ —1.5} to exp{2.5}. The other sets of 

simulations produced very similar graphs as Figure 2.8. Perhaps the only interesting 

observation of these simulations lies in the movement of the scatter cloud as a parameter 

varies. 

In Figure 2.8, the scatter cloud moves along the 45-degree line as a increases. It 

starts out at around (-20, -20), then spreads upwards along the line, until it concentrates 

at around (0, 0). The fact that the cloud is scattered around the 45-degree is because 

with St rH J , both the GLS and the naive OLS analyses are about as powerful as each 

other. At small values of cr, the running shoes are of very good quality, and hence, both 
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Figure 2.8: Histogram and Scatter Plots with Variogram Ue: a varies. 
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analyses are powerful. Thus, the cloud is concentrated at highly negative co-ordinates 

(extremely small p-values). As a increases, the quality of the running shoes worsens, and 

hence, the cloud moves up to near-zero co-ordinates (p-values close to 1). 

2.9 Discussion 

Recall that our main goal in the chapter was to investigate the loss of parameter esti­

mation efficiency in a linear regression model if one ignores the response dependence. 

We have used the "storyline" of the two analysts to clarify the distinctions among three 

different approaches to a regression problem: 

1. the naive OLS analysis: Naive simply assumes that the data are uncorrelated, 

estimates the regression parameters with / 3 O L 5 (OLS estimator), and ignores the 

response dependence in computing the covariance of this (3OLS; 

2. the GLS analysis: Enlightened knows the true response dependence structure, St, 

and hence obtains f3GLS (GLS estimator) as the regression parameter vector esti­

mate and bases his/her regression analysis on the knowledge of U€; and 

3. the true OLS analysis: Enlightened realizes Naive's mistake in computing the co-

variance of f3OLS, and carries out Naive's regression analysis, using the true OLS 

covariance, a function of Se. 

Before our investigation, theory has been established on the loss of efficiency using 

the true OLS analysis compared to the GLS analysis. When St ^ J , that is, when 

the responses are correlated, the GLS estimator is the B L U E for /3 in model (2.1). 

When St = I, the GLS estimator reduces to the OLS estimator, and thus both are the 

B L U E ' s for j3. Theorem 1 indicates that for all U€, the GLS estimator is always at least 

as efficient as the OLS estimator, based on the true covariance of the OLS estimator. In 
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other words, the true OLS analysis (regression analysis based on the OLS estimator and 

its true covariance) can never be more efficient than the GLS analysis. Of course, the 

two analyses are equivalent (as efficient as each other) when the two estimators are the 

same. However, we would like to know the conditions under which the two estimators 

are equivalent. 

First, Et = I is one such condition. It is not an interesting condition because we 

are trying to investigate cases where St ^ I. Some research has been done in this area 

since the 1960's. (See Section 2.2.) Among the complicated algebraic conditions which 

guarantee that j3OLS = f3GLS, one condition is readily verifiable. We have stated this 

condition in Theorem 2. It says that 3 ° L S = PGLS if and only if the model in (2.1) 

contains an intercept and that 27£ is exchangeable. 

However, Theorem 2 does not imply that under these conditions, the naive OLS 

analysis is equivalent to the GLS analysis. This brought us to our simulation studies. 

In each simulation experiment, we generated data according to model (2.1) with 

some St ^ J . The three analyses (naive OLS, true OLS, and GLS) were compared. The 

analyses consisted of independent hypothesis tests of zero regression coefficients, each at 

5% significance level. We compared the analyses by comparing their p-values of these 

hypothesis tests. Empirical power (sample probability of rejection of the null hypothesis) 

was calculated for each regression coefficient estimate for each analysis. 

We found that in general, the stronger the dependence of the responses, the more 

apparent the GLS analysis' superiority in power. The naive OLS analysis is the least 

powerful, followed by the true OLS analysis, then by the GLS analysis. Even when 

the true OLS and the GLS analyses are equivalent, the naive OLS analysis can have a 

considerably lower power than the other two. We then decided to only compare the naive 

OLS analysis and the GLS analysis in the remaining part of our investigation. 
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We ran more sets of simulations. Empirical power curves of the GLS and naive OLS 

analyses were produced to display their powers graphically. They show that the GLS 

empirical power curve is almost 2 9 everywhere above that of the naive OLS analysis. As 

the size of the slope relative to the noise level (cr) either increases or decreases, the gap 

between the power curves always increases and then decreases. 

In addition, instead of explicitly calculating the empirical power of each analysis, we 

graphically displayed their p-values using "logged p-value ratio histograms" and "logged 

p-value scatter plots." We could deduce which analysis was more powerful from these 

graphs. (An analysis is more powerful if its p-value is smaller.) We found that with all 

other program input arguments (X, St, and cr) fixed, the larger the regression coeffi­

cient in the model, the larger the "margin of Enlightened's victory" over Naive in their 

efficiency competition. On the other hand, with the regression coefficient and the other 

program input arguments fixed, a large cr (high noise level in the data) corresponds to a 

smaller margin of victory. 

What if the ratio of the regression coefficient to the noise level in the data is fixed? 

We ran sets of simulation experiments with this ratio fixed, and let the two parameters 

vary together, keeping their ratio constant. In these simulations, we found that the powers 

of the two analysts remain roughly constant as both parameters increase together at a 

fixed ratio. (We have seen this from both the empirical power graphs and the histogram 

sketches.) However, Enlightened's margin of victory varies according to the size of the 

coefficient-to-noise ratio, as can be seen by comparing the locations of the histogram 

sketches in Figures 2.5 to 2.7. 3 0 In general, when the coefficient is smaller than the noise 

level (cr), Enlightened barely wins over Naive. When the coefficient and the noise level 

are equal, Enlightened wins by a larger margin. Finally, if the coefficient is bigger than 

2 9 A higher naive OLS empirical power is due to chance. 
3 0Figures 2.3 and 2.4 also show the effect of a varying slope-to-noise ratio. 
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the noise level, s/he wins "by a landslide." 

2.10 C H A P T E R A P P E N D I X 

The following is the algorithm for the computer implemented procedure for generating the 

design matrix and regression coefficients in a simulation experiment of linear regression. 

1. Generate the (g + 1) x 1 vectors X 1 5 X 2 , .. ., Xr (Xj = ( X ; 0 , X t l , . . . ,X{g)T for 

all i) independently from an M V N distribution with mean fix and covariance Ex 

as specified by the program user, (r = number of regions.) Thus, all r of these 

{g x l)-vectors are i.i.d. 

2. Write fj,x = (/*o,A*i, ••• ,Pg)T, and 

where 

o~oo = oo 

Var(Xio) 

(i.e. variance of the first element of any of the (g + l)-vectors) 

C o v ( X i 0 , X,-_ 0) 

[Cov(X,-o,X,- 1),Cov(X t-o,X« ) , . . . , C o v ( X , - 0 , X i s ) ] r 

where X{-0 = ' , • 2 , . . . , Xig)T for all i — 1,2,..., r, and 

< T _ 0 , - o = Cov(X,- )_0) = the covariance matrix of X 8 > _ 

3. According to the above, we thus have 

[Xio|X t i_ 0 aj] ~ N(i/, ^ 2 ) (2.15) 
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where 

X = (Xl,X2, • • • ,Xg)T 

v = p0 + ( * r 0 , _ 0 )
r ( o - - i _ o ) ( a j - fJL-o) (2.16) 

^ 2 = POO - ( o - 0 _ 0 ) T ( < T ^ _ o ) ( « T 0 _ 0 ) . 

(See Johnson & Wichern, 1982, Result 4.6 for the derivation of v and ifi2.) 

4. If we let 0_o = (#!, . . . ,0 5 ) r be (tr0 , - 0 ) T ( < T ^ _ 0 ) , then we see that (2.15) itself 

specifies a linear regression model with as the response, X j ' s as the covariates, 

and #j's as the slopes. From equation (2.16), we derive the intercept 0O in this 

regression model as 

90 = Po - (0-o)TV-o-

5. Now, we extract from the regression model specified by (2.15) its covariates and 

regression coefficients, and specify these as the corresponding program input ar­

guments in (2.1). That is, in the case that model (2.1) has no intercepts, we 

let the p x g covariate matrix and the ^-vector of slope coefficients to be X — 

( X l r 0 , - X " 2 ] _ 0 , . . . , Xg-0)T and j3 = (9_0. If we fit an intercept in model (2.1), we 

simply add a column of l's to this X. The (g + l)-vector of regression coefficients 

(including the intercept) in model (2.1) then becomes (3 = 9 = (90, 6-0)T. 



Chapter 3 

Introduction to Multiple Regression of Count Data 

In the previous chapter, we have seen that ignoring response dependence may result in 

serious reduction of efficiency in parameter estimation in a linear regression model with 

normally distributed random errors. In real life, however, the data we need to analyze 

may not be normally distributed. For example, in health care studies, hospital admission 

counts are often used to indicate the health of a population. These counts are usually 

small (less than 20) for rare diseases, and thus should not be assumed to follow a normal 

distribution. In such cases, linear models may no longer be efficient in modeling the 

relationship between counts and possible covariates. In fact, small admission counts are 

usually assumed to follow a Poisson distribution in health care studies. As a result, 

these counts are often analyzed using Poisson regression. However, theoretical results 

are generally not widely available for models with non-Gaussian responses, especially 

when the responses are correlated. Perhaps this is why health care studies in the past 

generally ignored correlation among responses. 

In 1986, Liang & Zeger proposed the generalized estimating equations (GEE) approach 

to incorporate response correlation for estimating parameters in generalized linear models 

(GLM's) . A Poisson regression model, for example, is a G L M . The generalized estimating 

equations are an extension of the estimating equations in quasi-likelihood theory, imple­

mented in the widely used G L I M software. Response independence is assumed in the 

original quasi-likelihood approach, whereas the extension (GEE) allows the incorpora­

tion of any response correlation structure in the G L M . G E E has become a popular model 

71 
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fitting method in the past decade for dealing with correlated responses in GLM's , ever 

since its computer implementation became readily available. The approach is widely used 

in longitudinal data analyses in which the repeated responses over time are correlated 

within each independent subject (given the covariates). 

When the response correlation matrix or structure is known, it is natural to incorpo-

rate this known matrix/structure into the regression model when using G E E to fit the 

model. However, misspecification of response correlation results when an investigator in­

corporates an incorrect matrix/structure into the model while believing it to be true. For 

example, ignoring response correlation (i.e. believing that the responses are independent) 

is a misspecification of the true correlation structure. 

In the next two chapters, we examine the impact of misspecification of the response 

correlation structure on parameter estimation in multiple regression models for count 

data using G E E . Our investigation is based mainly on computer simulations. 

The first part of our simulations is presented in Chapter 4. In these simulations, 

we generate count data through Poisson-lognormal distributions. Conditioned on the 

covariates, the data are independent Poisson counts. Marginally, the counts have a 

Poisson-lognormal distribution, and are correlated through the correlation among the 

covariates. The G E E approach is used to fit the data using correct and incorrect corre­

lation structures. We then examine the performance of the approach with the different 

structures, through its empirical power (of detecting non-zero regression coefficients). We 

can use this empirical power as a measure of parameter estimation efficiency. 

Recall from the previous chapter the notion of the model assuming independent re­

sponses (while the responses are correlated) and that assuming correlated responses with 

a known (correlation) structure. In the next two chapters, the independence model refers 

to the G L M in which the responses are assumed independent. The dependence model, 
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on the other hand, is the G L M in which the responses are assumed to have certain cor­

relation structure. (See Section 3.4 for detailed explanations of terminology.) These two 

models are then fitted to the data using G E E , and their efficiencies (empirical powers) 

are compared to determine their relative efficiency. 

We present the second part of our simulations in Chapter 5. In this chapter, we con­

centrate on studying the impact of ignoring response correlation on parameter estimation 

in a G L M . We generate exchangeably correlated Poisson data. Generating correlated 

Poisson data with non-linear relationship to the covariates is generally a difficult task. 

Instead, the Poisson data that we generate are linearly related to the intercept — the 

only regression coefficient — without true covariates in the model. 

The following section is a summary of literature references for Chapters 4 and 5. In 

the remainder of this chapter, we describe the software we use for our simulations in 

Section 3.2, the theory of the G E E approach in Section 3.3, and the terminology we use 

throughout the next two chapters in Section 3.4. 

3.1 Literature Review 

Since the development of the G E E theory by Liang & Zeger (1986), many longitudinal 

data studies involving non-Gaussian data have been carried out through the G E E ap­

proach for model fitting. For example, Zeger h Liang (1986) applied their theory on a 

dichotomous dataset (response and covariates) intended to describe the association of 

a mother's stress and her child's morbidity. Apparently, the G E E approach for model 

fitting with such data types is simple and easy to use. 

However, the application of the G E E approach requires data replication. For example, 

the time series measurements on each individual subject in a longitudinal data analysis 

constitute one set of data replication, or a cluster. When there is only one correlated 
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series in the study, such as the case in the previous chapter, the G E E approach is not 

appropriate for model fitting. 

In the case of count data for a single time series, Zeger (1988) developed a "parameter-

driven regression model for time series of counts." In his paper, he mentions both a 

parameter-driven model, in which autocorrelation of the counts (Poisson) is introduced 

through a latent process {e*}, and an observation-driven model, in which the distribu­

tion of the current count observation is a function of all the past counts. He concentrates 

on the parameter-driven model in this paper, and develops an estimating equation ap­

proach for parameter estimation. Simulations are done to compare the efficiency of the 

parameter-driven model with two common log-linear models. Results show that the 

parameter-driven model leads to "more valid inferences." 

The effect of ignoring correlation among response variables on the efficiency of regres­

sion parameter estimation in non-linear models has been studied in different contexts, 

mostly involving longitudinal data analyses using the G E E approach. In some of these 

" G E E studies," the dependence model is shown to be more efficient than the indepen­

dence model in parameter estimation. It is hence believed that the model that takes into 

account the correlation among the responses should be more efficient than the model 

which does not. However, the effect of ignoring response correlation on the efficiency of 

parameter estimation is still not clearly understood because such effect varies across dif­

ferent contexts. Fitzmaurice (1995) mentioned that different research papers concluded 

different findings about the relative efficiency of the independence model to the depen­

dence model. Some conclude that the latter is clearly more efficient than the former, 

while others conclude that the former is nearly as efficient as the latter. Fitzmaurice 

illustrates in his paper that, with binary data, this relative efficiency depends on how 

strongly the responses are correlated, and on the covariate design. In particular, with 

a fixed strength of response correlation, the G E E independence model (the model fitted 
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using G E E assuming independent responses) is noticeably less efficient than the G E E 

dependence model (the model fitted using G E E with a correctly specified response corre­

lation structure) when a covariate varies within the cluster. On the other hand, ignoring 

response dependence does not lead to loss of efficiency in parameter estimation using 

G E E if "group is a cluster-level covariate." 

Inspired by health care studies using hospital admission counts as responses, here we 

study the impact of misspecifying the spatial correlation on parameter estimation. In this 

context, the correlated "series" is relatively short compared to those in a longitudinal 

study. This is because the spatially correlated responses are collected from the regions 

of interest, which are often of a limited number. Since the implementation of the G E E 

algorithm is readily available, we will not try to implement the algorithm for fitting 

a parameter-driven model as developed by Zeger (1988). Instead, we use the S-Plus 

function gee in our regression simulations with count data. 

Data replication is present in our simulation studies so that the G E E approach can 

be applied. Each spatially correlated series is analogous to the correlated repeated mea­

surements (on each subject) over time in a longitudinal data analysis. The analog of 

the independent subjects in a longitudinal study is the independent replicates, i.e. the 

repeated observations (of the response and explanatory variables), within each region. 

Thus, instead of treating the subjects as the means of data replication in a longitudinal 

study, we can independently observe replicates of the response and covariates in each 

region in the context of spatially correlated data. For example, datasets collected by two 

independent investigators can be viewed as two sets of data replicates. Datasets observed 

at different time points far apart (such as a year) from each other may also be thought 

of as independent data replicates. 
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3.2 G E E in S-Plus 

In using the G E E method to fit a model to correlated responses with fixed covariates, we 

need to specify the response correlation structure. The S-Plus function gee asks for either 

a correlation structure (e.g. exchangeable, AR(1)) or a fixed correlation matrix for these 

responses as one of the input arguments. If we specify the correlation structure, then 

gee will estimate the parameters in the response correlation matrix with the specified 

structure. (For example, the intraclass correlation coefficient is the parameter for the 

exchangeable structure.) If we specify a fixed correlation matrix, then gee will treat it 

as known and fixed throughout the parameter estimation iterations. 

In addition to the response correlation structure, using gee also requires the specifi­

cation of the link function and the response distribution family (given the covariates) as 

a means to specify the relationship between the mean and variance of each response, gee 

then outputs the parameter estimates and their standard error estimates, with the final 

estimate of the response correlation matrix if it was not fixed as an input argument. 

This S-Plus function gee version 3.5 that we use in our simulations was obtained 

from the share-ware organization, StatLib, and then installed into S-Plus version 3.1. 

This function allows the user to specify the following response correlation structures: 

1. independence (in which case the gee estimates of the regression coefficients are 

equivalent to those produced by the G L I M software), 

2. f i x e d (user-specified/known correlation matrix), 

3. exchangeable, 

4. AR-M (with a user-specified M ) , 

5. stat_M_dep (stationary M-dependence, with a user-specified M ) , 
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6. non_stat_M_dep (non-stationary M-dependence), and 

7. unstructured (gee estimates the structure and the values in the working correla­

tion matrix). 

(For convenience, we do not apply items 5 and 6 in the above list to our simulation 

studies.) Notice that if we specify the "independence structure" in gee, the G E E co­

efficient estimates are equivalent to those produced by the usual G L I M software. Also, 

the independence structure is a special case of both the exchangeable and the AR(1) 

structures. For the exchangeable structure, a 0 intraclass correlation coefficient gives the 

independence structure. Similarly, a 0 lag one correlation reduces the AR(1) structure 

to the independence structure. If the responses are independent (given the covariates), 

one would expect the independence model to provide very similar results as those of the 

dependence model with an exchangeable or AR(1) structure. On the other hand, fixing a 

correlation matrix that is very different from the identity matrix in the dependence model 

may yield very different results from those of the independence model. In particular, one 

would expect the estimation efficiency (in terms of bias and power) of the dependence 

model to be lower than that of the independence model in this case, simply because the 

structure is incorrectly specified in the former model. This will be closely investigated 

in the next chapter. Similarly, we will closely investigate in Chapter 5 the efficiencies of 

the two models when the responses are exchangeably correlated. 

3.3 Some Notation and Theory in G E E 

In this section, we present the applicable results in Liang & Zeger, 1986 in the context 

of spatially correlated responses. 

First, assume that the geographical domain of interest consists of r regions. Denote 

the response vector by Y = (Yi,..., Yr)T. For each of the r regions, we observe the same 
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g covariates. In the ith region, denote the <JHdimensional covariate vector for Y{ by X ; . 

(Xn,Xi2,... ,Xig)T. Now, we can write the r x g covariate/design matrix X as 

/ 

X 

X\\ X\2 

X21 X22 

X 13 

X-2s 

1. 

= 
XT 

2. 

/ 1 X r . j 

{X.!) X . 2 , . . . , X,g). 

y Xr\ Xr2 • • • Xr 

The relationship between the responses and the covariates is expressed in terms of 

the generalized linear model 

g [E(Yi\Xi.)] = XT/3 for a l i i = 1,... , r 

for some link function Q and fixed parameters /3. 

To apply the G E E approach in estimating (3, we need data replication. 

Let {Y^ : s = 1,2,..., K} be a random sample of r x 1 response vectors from the 

spatial domain of interest. Associated with this sample is the set of covariate matrices, 

{ X W : s = 1,2,..., A"}. That is, we have K independent sets of replicates of the 

response vector and the covariate matrix. In this set up, it is natural to assume that 

the K replicates of the responses given the covariates, |X"(s)]'s, all have a common 

correlation matrix. Denote this matrix by Cov(Y\X). In other words, C o r ( Y ^ | X ( s ) ) is 

the same C o r ( Y | X ) matrix for all s. 

Now, define the r x 1 vector rj^ to be 

/ X[*)T(3 ^ 1 v[s) ^ 

XW/3 
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If, for all s, the conditional density of the ith response given the covariates, X^], 

can be written as 

/ (yh^) = exp {yVoV - a ( ^ ) + b(y^)cf>} (3.17) 

where 9^ = h(r]^), for some functions a,b, and h, then 

E ( y / W ) = a>(0W) 

W a x ( Y W \ x V ) = 

where a' and a" are the first and second derivatives of a respectively. (f> is called the scale 

or the dispersion parameter. Note that the link function Q is related to h in the following 

manner: 

«[E(yW)]=«?fe' 

The r x r matrices A ^ , A ^ s \ and V(s) are defined as 

( a"(0[s)) 0 

0 a"(^ s )) 

0 

0 

d^p 

o dew 
djT 

0 a"(0W) 

... o N 
0 

0 

0 ^ / 



Chapter 3. Introduction to Multiple Regression of Count Data 
\ 

80 

y(») = 1 J L j _ 

where R is any r xr matrix that satisfies the requirements of being a correlation matrix. 

This R is the working correlation matrix. Similarly, is the working covariance 

matrix for the sth replicate. Note that is the true covariance matrix of [F( S ) |XW] 

(i.e. = Cov ( y W | X ( s ) ) ) if R is the true correlation matrix of each [Y^\X^]. 

Also note that since all [y(*)|A"(')]'s have the common correlation matrix Cor(Y\X), 

the working correlation matrix R (which may be used to estimate C o r ( Y | X ) ) does not 

depend on s. 

Next, define the r x g matrix 

£>(*) = A^ A^X(SK 

Then the generalized estimating equations are defined as 
K 

J2 D W ^ V W j - ' i y W - a'(0<*))] = 0 (3.20) 

where a'{6^) = (a'(9[s)), • • -,a'(9^))T. The estimate of p is then obtained by solving 

(3.20) for p. 

Since the quantities D^s\ V^s\ and a'(6^) in (3.20) are all functions of some un­

known parameters, we need an iterative numerical method for updating (at each iteration) 

each unknown parameter estimate so that these quantities in (3.20) are consequently up­

dated. Upon convergence, we obtain the final estimates of these unknown parameters 

such as P, and those in the working correlation matrix R. If the working correlation 

structure (i.e. the structure of R) is specified according to the true response correlation 

structure, then this final "estimate" of R is the estimate of the conditional correlation 

matrix of the response Y, i.e. C o r C K l X ) . 1 

1In our investigation, we assume that the initial specification of R as the working correlation matrix 
is based on the believed structure of Cor(Y"|X). The final estimate of R may not be a good estimate of 
Cox(Y\X) if its specified structure does not coincide with that of Cot(Y\X). 
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More advanced statistical packages such as S-Plus provide standard procedures for 

fitting GLM's using the G E E approach. Notice that if R = J , i.e. assuming2 the responses 

to be independent (given the covariates), the estimating equations (3.20) reduce to those 

derived from quasi-likelihood theory. In other words, the G E E parameter estimates 

reduce to those of the ordinary G L I M software approach when R = I. 

The following theorem is a re-statement of that presented in Liang & Zeger (1986): 

Theorem 3 Suppose regularity conditions hold, and that there exist K-consistent esti­

mators for (j) and the parameters in R. Define (3G to be the solution of (3 in (3.20), 

with (j) and the parameters in R being replaced by their estimators, if they were not fully 

specified. Then \/~K ((3G — (3) has an asymptotic MVN distribution with mean 0 and 

covariance 

l i m ^ o o COY[VK (3 g - (3)} = 

limK^K (J2f=1 D^lV^-'D^y1 {z*=1 D ^ T [ V ( s ) ] - 1 C o v ( y W { X ^ V ^ ] - 1 D^} 

( Z ^ £>0)TryO ) ] - iD(*)y\ 

In a G E E analysis, the above theorem is used for estimating the covariance of f3G', in 

the following manner: 

Cov(3G) = | c o v ( 3 G - / 3 ) 

= ^ C o v [ v ^ ( 3 G - /3) ] 

~ (E^ ( S ) T[V ( S )]_ 1^ ( S )) J E r > ( s ) T [ v ( s ) ] - i C o v ( y W | x ( s ) ) [ y ( s ) ] - i i > ^ | 

K \ - 1 

^ / j W ^ y W j - D W (3.21) 
S=l / 

Recall that R and are respectively the working correlation matrix and the work­

ing covariance matrix for the responses given the covariates X ^ . If we assume V( s ) 
2See Section 3.4. 
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to be the true covariance matrix C o v ( Y ( S ) | X ^ ) , then equation (3.21) reduces to 

Cov(/3G) « (j2 £ ) ( s ) r [ V ( s ) ] _ 1 £ ) ( s ) j . (3.22) 

The G E E estimate of the covariance of (3G using equation (3.22) is called the naive 

covariance estimate. The one using equation (3.21) is known as the robust covariance 

estimate of f3G. In practice, we usually do not know the true correlation structure of the 

responses. The working correlation, R, which we specify in running the G E E analysis, 

is only based on the belief of what the true structure is. The naive covariance estimate 

might then be an inappropriate estimate of the true covariance of (3G if R is specified 

as very different from the true C o r ( Y | X ) . 3 On the other hand, the robust covariance 

estimate accounts for the true covariance of the responses, C o v ( Y ( s ' | X ^ ) , and thus is 

a "corrected version" of the naive covariance estimate. 

Of course, Cov(Y^\X^) is usually unknown. In particular, misspecification of the 

response correlation structure is usually a result of not knowing the true Cov(Y\X). In 

fact, Cov(y( s) |X< s)) in the robust variance estimate formula is estimated from the data 

using [Y^-a'{d^)][Y^-a'(d^)}T. Here, a ' (0 w ) is computed using X W and J3G, for 

each s. Since the observed data should be representative of the population, the estimate 

of Cov(y( s ) |X( s ) ) based on the data should usually resemble the true covariance more 

than does (when Cor(Y( 5 ) |X( s ) ) is misspecified). Hence, the robust estimate is often 

a better estimate of the covariance of (3G. 

3That is, the asymptotic Cov(/3G) does not equal the naive covariance estimate if the structure of R 
is different from that of Cor(T'"|.X'). 
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3.4 Terminology 

In the next two chapters, we will assume the scenario of an investigator specifying the 

working correlation matrix/structure in G E E according to what s/he believes the re­

sponse correlation matrix/structure to be. Misspecification of the response correlation 

refers to the case when the investigator's belief/assumption (and thus specification) of 

the response correlation is incorrect when using G E E for model fitting. 

We will refer to the G L M in which the responses are assumed to be independent as 

the independence model. Similarly, we will refer to the G L M in which a correlation 

structure of the response dependence is taken into account as the dependence model. 

In the simulations, we fit both models to a given dataset using the G E E approach. Notice 

that either model may be incorrect. For example, suppose the true response correlation is 

exchangeable. Then the independence model is incorrect, but the dependence model that 

assumes exchangeably correlated responses is correct. On the other hand, the dependence 

model is incorrect if it assumes the response correlation structure to be anything other 

than exchangeable. In other words, the model is only correct if the specified correlation 

structure is the true response correlation structure. 

We say that one model is more efficient than another if its parameter estimates 

produced by the G E E approach are closer to the true parameters, and if these estimates 

have smaller variability. One way to measure unbiasedness and variability of a parameter 

estimate is to observe many realizations of the estimate. For each simulation, we repeat 

the G E E model fitting process to n datasets. Summary statistics of these n parameter 

estimates are then obtained. Unbiasedness can be measured by how close the sample 

mean of these n estimates is to the true parameter. Similarly, variability can be measured 

by the sample variance of the n estimates. 
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However, small variability in a parameter estimate also means higher power in de­

tecting a non-zero value of the parameter. This leads us to the notion of empirical 

power of the independence and dependence models. The power of detecting a particular 

non-zero regression parameter can be measured by the proportion of the n datasets in 

which the parameter is statistically significant at a given level. A model is then also more 

efficient than the other if it is empirically more powerful than the other in detecting a 

given parameter from the same dataset. 

As in the previous chapter, we may wish to determine if the difference in power be­

tween the independence and dependence models is statistically significant. We will again 

use the Pearson's x 2 test °f independence to assess the association between model (in­

dependence/dependence) and power {8j significant or not) for each regression coefficient 

in the model. (See page 33 for examples of the x 2 test.) If the association is significant, 

we conclude that the difference in (empirical) power is significant. Otherwise, the 

difference in power is likely due to chance.4 

4 . . . in the terminology of Freedman, Pisani, Purves k, Adhikari, 1991, Chapter 26. 



Chapter 4 

Simulations of Multiple Regression of Count Data — Part One 

In this part of our simulations, we generate count data which are independently Pois­

son distributed when given the covariates. (Marginally, the responses are correlated 

with a Poisson-lognormal distribution.) We are interested in the effect of misspecifying 

a response correlation structure on parameter estimation using G E E . Thus, any non-

independence structure is a misspecification. 

4.1 Generating Count Data and their (Random) Covariates 

Recall from Section 3.4 the notation for the response vector and the covariate 

matrix for the 5 t h replicate. Fixing s, the equations in this section hold for all 

s = 1,... ,K. In other words, each set of replicates {Y^s\ X^} are independent and 

identically distributed (i.i.d.). Thus, (4.1) to (4.7) hold for all s. 

We can generate F / ^ ' S through generating covariate vectors X-S^s. In a given re­

gion i, the g-dimensional covariate vector is X;*\ and we assume that the j t h covari­

ate is distributed as a normal random variable with mean fi^ and variance <T,-J. Also, 

within the iih region, the jth and the /th covariates are assumed to be uncorrelated, 

i.e. Cav(XJj\X^) = 0, for all j ^ /. Fixing j , we assume that the j t h covariate in the 

ith region and that in the kth region have covariance a^. In matrix notation, we have 

85 
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the r x 1 covariate vector 

/ x(s) ^ 
l i 

A2j M V N ( / * . i , 17) for all j (4.1) 

where 

»". 
V2j 

and 27 

C l l CT 1 2 (7i3 • • • <r l r 

<7i2 CT22 <T23 - - • °~2r 

\ prj J \ 0~lr 0 - r r J 

and that X^ and X^f* are independent vectors for all j ^ /. 

In health impact studies of air pollution, for instance, this distribution for the covari­

ate vectors -X" j^'s (for a given s) is reasonable where the log-scale pollutant concentration 

often follows a normal distribution. Moreover, given an explanatory variable, observed 

across all regions, we expect the readings in the different regions to be spatially cor­

related. To reduce the complexity of our simulation study to computationally realistic 

levels, we assume that the readings across all regions are spatially correlated in the same 

way for each explanatory variable. Hence, we have the same covariance matrix S for 

all j in (4.1). For the same reason, we assume the readings of the different explanatory 

variables within a region to be independent to avoid singularity problems in model fitting 

due to multi-collinearity in the explanatory variables. 

Now, we can define the expectation of X^ in the matrix form 

li = E (X^) 

I T \ 

T 

V ^ J 

— ( A * . I i A * . 2 5 • • • » 
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Again, let the r x 1 response vector be = (Y^ , . . . , Y^*)) T, where for the ith 

region, the response (e.g. hospital admission count) has the conditional Poisson distri­

bution 
K ( , ) | X ( S ) ] ind p o . g s o n ^ x ^ T ^ { I 2 ) 

for some g x 1 coefficient vector [3 = (81: 32,.. ., 8g)T •> for i = 1,2, . . . , r . That is, 

conditional on the g covariates, the response in the ith region has a Poisson distribution 

with mean exp(X,- s ^ T ^). 

Note that we generate the Y^'s so that [Y^ \XJ']] is independent of [Yk

(s)\X{

k

s)] for 

i / k. 

Also note that x \ s ) T p = Y?j=1 0jX\-] is a normal random variable with mean fijft 

and variance ]Cf=i 0j°~n = °~n PTPi a n d that 

Cov(xls)T(3,X{

k

s)Tf3) = cov(ExWpi,£lxtfpl) 
3 = 1 1=1 

= tp]Cov(xi;\xif) 
j=i 

3=1 

= crik/3T/3 

for alii ^ k. Thus, letting v = fx(3 and W = (3T f3E, we have 

X^(3 ~ MVN ( i / ,W) . (4.3) 

Now, let 

z | s ) = E ( y / s ) | x i s ) ) = exp(x[ s ) r/3). 

Therefore, Z^ = exp{X^/3) is an r-dimensional lognormal random vector with pa­

rameters v and W. Hence, marginally (unconditional on X^), Y^ has a multivariate 
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Poisson-lognormal distribution (Aitchison & Ho, 1989) with 

E(Y;. ( s )) = expfc + \Wu) 

= exp(/xf/3 + lo-u(3T(3) 

var(y;.(s)) = E(y; ( s ) ) + [ E ( y ; ( s ) ) ] 2 [ e x p ( ^ ) - i ] 

= E ( F / S ) ) + [E(y;. ( s ))] 2[ex P(cT u/3 r/3) - 1 ] 

Cov(y,w,yW) = E(y 1 W)E(n w )[ex P (Wi f c ) - 1 ] 

= E(y/ s ) )E(n ( s ) )[exp( (T i f c /3^) - 1] 

Cor(y,w, y f c

w ) = e x p ( l ^ f c ) - 1 

exp(Wii) - 1 + 

\ 

eMWkk) - 1 + 

exp(aikpTf3)- 1 

(4.4) 

(4.5) 

(4.6) 

e x p ( ^ / 3 ) - 1 + — ^ 
E ( y / " ) 

exp(crfcfc/3T/3) - 1 + 
E(yW)J 

(4.7) 

for all i and k where i ^ k. 

Finally, we can generate the covariate matrix and the response vector according to 

(4.1) and (4.2) by specifying the ii and £ matrices, and the coefficient vector /3. We 

thus know the exact marginal distribution of the response variables according to equations 

(4.3) to (4.7). 

Notice that so far, we have assumed that we do not have an intercept in the G L M . 

Some of the equations presented above should be slightly modified if an intercept is to 

be fitted. Please refer to Section 4.4 in the C H A P T E R A P P E N D I X for details. 

Technically, in our simulations, applying a Poisson regression to these y( s ) 's to obtain 

an estimate of ft and the subsequent data analysis does not require the knowledge of 

the above marginal distribution. However, as mentioned in the previous chapter, some 
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response correlation structure needs to be specified in the dependence model when using 

G E E for parameter estimation. When deliberately misspecifying the response correlation, 

we may make use of the marginal response correlation structure, which is generally very 

different from the independence structure. In fact, the responses are often strongly 

correlated, marginally, due to the correlation among the covariates. 

4.2 Multiple Regression via Generalized Estimating Equations 

In the dependence model, we assume that the responses are correlated, given the co­

variates, with certain correlation structure. In this part of our simulations, since the 

responses are uncorrelated given the covariates, we may examine if specifying a non-

independence structure for the responses in the dependence model would decrease the 

efficiency of the regression parameter estimation. We do so by comparing the efficiency 

of such a model to that of the independence model (both models are fitted using the 

G E E approach). 

4.2.1 G E E in the Conditional Poisson Model 

where 77,- = X^' /3 for i = 1 ,2 , . . . , r and s = 1 ,2 , . . . , K. 

Comparing (3.17) and (4.8), we have 0\s) = j]\s\ a(6\s)) = e^'\ b{y\s)) = - logj / J s ) ! , 

The conditional density of [5̂- | X\ ] in (4.2) i is 

e x p j - e ^ H e ^ ) ^ 
_ 001 

= exp{—eVi + y\s^ log eVi —\ogy\s^\} 

= exp{?/Js)7/js) - - logy\s )\} (4.8) 
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and 4> — 1- Hence, (3.18) in the conditional Poisson model becomes 

(4.9) 
E ( ^ | X | S ) ) = a'(0\s)) = e* 

Var(lf>|x! s ) ) = = e*\ 

Note that the link function in a generalized linear model is defined to be the function 

that maps the mean (the conditional mean in our case) of the response to rjjs\ Thus, we 

have the log-link in the conditional Poisson model, i.e. log E ( F / S ^ | X ^ ) = n\sK 

Now, the matrices A<s), A^ S\ V^s\ and £>W simply become 

\ 

e 2 

0 

0 

0 

= I 

= [AM]$R[AM]> 

By specifying an initial working correlation matrix R with a certain structure (e.g. 

exchangeable), we may now substitute the above matrices into equations (3.20) and solve 

for the coefficient vector {3. Hence, we obtain a G E E estimate f3G for /3. If the specified 

structure of R coincides with that of C o r ( y | X ) , then the final R 1 is the estimate of 

C o r ( Y | X ) , the (spatial) correlation matrix of the conditional Poisson responses. 

To estimate the covariance of /3 G , we need to know Cov(Y( S)|X"( S)). Recall that in 

this part of our simulations, we generate count data which are independent given the 

covariates. Thus, we can replace Cov(Y( s ) |X( s ) ) in equation (3.21) by 
1See page 80. 
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1. I, or 

2. [y(s) - a'(6^)][Y^ - a'(6^)]T (see page 82). 

In practice, the true correlation structure of the responses is not known, in which 

case item 1 above may not be used. Moreover, although we may sometimes believe that 

the data are so weakly correlated that they are close to independent, we should base our 

inference on the robust S.E. produced by gee. This is because the computation of the 

robust S.E. is a "corrected version" of the naive S.E., accounting for the true covariance 

structure of the responses which is estimated by item 2 above. 

4.3 Computer Simulations of Multiple Regression of Count Data 

Our goal is to examine the effect of incorrectly specifying the response correlation on 

the efficiency of parameter estimation in a generalized linear model. (The response 

correlation is specified through the structure of the working correlation matrix, R, or 

fixing the matrix itself, when running gee.) In particular, count data are of special 

interest because many health impact studies use hospital admission counts to indicate 

health conditions of a population. 

Throughout our simulations presented in this chapter, our specification of the incor­

rect response correlation was based on the marginal correlation of Y, not conditional on 

X. See Section 4.4.2 in the C H A P T E R A P P E N D I X for details of how we specified R. 

We used the statistical software S-Plus for all our simulations. Each simulation included 

three main parts, namely, 

1. generation of the count responses and the covariates2 according to equations (4.1) 

and (4.2), with r = 5 and K = 20; 
2We would need to specify some £ in (4.1) to generate the covariates. 
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2. regression ( G L M fitting) of the generated count responses on the covariates using 

gee (function in S-Plus) assuming 

(a) independent responses (R = J) , and 

(b) dependent responses (R ^ I), where 

i . only the structure of R was specified as either exchangeable or AR(1); or 

i i . R was fully specified as a fixed matrix based on the marginal distribu­

tion (Poisson-lognormal) of Y (as a misspecification of the correlation 

structure); 

and 

3. comparison of empirical relative efficiency of the independence and the dependence 

models, and other analyses. 

Note that estimating C o r ( Y | X ) (by the final R) is not the primary concern of a 

G E E analysis. However, a measure of the variability of j3G is crucial. In S-Plus, the 

function gee estimates the standard error (S.E.) of each regression coefficient estimate. 

It gives both the naive and the robust S.E. estimates. As mentioned before, in computing 

the robust S.E., the fact that the final estimate of R is only an estimate of C o r ( Y | X ) 

is taken into consideration. In this part of our simulations, since the responses are in 

fact conditionally independent, R = I (fixed) as specified in the independence model 

is actually the true C o r ( Y | X ) (so that the working covariance matrix V is the true 

C o v ( Y | X ) in the case of R = I). Hence, the naive S.E. in the fit for the independence 

model should be a better estimate of the true S.E. of a regression parameter estimate 

than the robust S.E. 

However, in our simulations, we only compared the robust S.E.'s of the parameter 

estimates produced by the independence and dependence models. This is because with 
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real data, one is never certain that they are truly independent or not. Analyses with 

real data should naturally be based on the robust S.E. estimates. In addition, we also 

computed the sample covariance of the /3G 's in each simulation study 3 for comparison 

to the robust S.E.'s produced by the two models. With enough observations of / 3 G , the 

sample covariance should resemble most the true covariance of flG, which can only be 

roughly estimated using equation (3.21) in a regression of real data. 

This brings us back to our objective of the simulations — to determine how misspec-

ification of the response correlation structure affects the performance of G E E parameter 

estimation in a G L M . A model performs well if the parameter estimates have small em­

pirical biases and variability. Hence, a good model should be more effective in detecting 

departures from the null model of j3 = 0 . Intuitively, as supported by the previous 

chapter, the model that accounts for the true response correlation should perform no 

worse than that with a misspecified correlation structure. However, the effect of such 

misspecification on the efficiency of parameter estimation is not so clear in the current 

non-Gaussian setting. Our simulations are intended to help us understand at least em­

pirically what this effect is on our non-Gaussian G L M . 

4.3.1 Simulations with Exchangeable and AR(1) Correlation Structures of 

the Covariates 

The most convenient correlation structures to use in the simulations are the exchangeable 

and the AR(1) correlation structures. These structures only consist of one unknown pa­

rameter. Hence, if the responses approximately have either of these correlation structures, 

then a small sample size, K, and a small number of regions, r, should provide sufficient 

information for G E E to estimate in a few iterations all the unknown parameters in the 

3 Each sample of K response vectors produced one estimate f3G. In each simulation study, we gener­
ated n such samples, and then obtained the sample covariance of the n /3G's. 
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G L M . Indeed, conditioned on the covariates, the responses generated according to equa­

tions (4.1) and (4.2) have the independence correlation structure, which is a special case 

of both the exchangeable and the AR(1) structures. 

At the same time, the exchangeable and AR(1) correlation structures are also con­

venient to specify in generating the covariates. We ran numerous simulations in which 

the covariates had either of these two correlation structures. Let px denote the intraclass 

correlation coefficient in £ for the exchangeable covariates, and the lag one correlation 

in E for the AR(1) covariates. We specified different values of px, together with different 

/x's and /3's to generate different sets of count data, each set being marginally correlated, 

but independent conditional on the covariates. With each generated dataset, we used the 

S-Plus function gee to separately fit the independence and dependence models. We will 

denote by /31 the / 3 G produced by the independence model, and by f3D that produced by 

the dependence model. We would like to compare the empirical relative efficiency of the 

two models as reflected by how frequently the models reject the null hypotheses (for each 

j) of 8j = 0, each at significance level a = 0.05. The z-test-statistics were computed 

based on normal approximations for the distributions of the estimates /31 and / 3 D . The 

S.E.'s of the d^s in these ^-statistics were taken to be the robust S.E.'s produced by the 

S-Plus function gee. 

We used two ways to specify a response correlation structure in the dependence model: 

(1) by specifying the structure for the working correlation, R (i.e. exchangeable or AR(1)) 

as a functional argument of gee; and (2) by specifying a fixed R. In our experiments, the 

fixed R matrices were often very different from the identity matrix. We determined if 

the dependence model — either having an extra unknown parameter in R (i.e. case (1)), 

or a misspecified response correlation structure (i.e. case (2)) — would be less efficient 

than the independence model. 

However, in all the simulations, both the independence and the dependence models 
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generally produced estimates of f3 with small empirical biases. This result may not be 

surprising at first glance, because the consistency part of Theorem 3 applies to a model 

with any working correlation H . However, it is merely an asymptotic result.4 In fact, our 

study indicates that the G E E parameter estimates for our G L M is reasonably robust to 

misspecification of response correlation for small sample sizes; afterall, K = 20 is a small 

sample size. Slight bias was apparent only in isolated cases, particularly in estimating 

the intercept. This bias could merely be due to chance. As revealed in Table 4.9, the 

intercept estimate was typically the most variable (had the largest relative S.E. 5) among 

all the regression coefficient estimates. 

As for the empirical relative efficiency of /31 to (3D, we examine the p-value compar­

isons in the simulations. We tabulate the p-values as in Table 2.1 from Chapter 2. For 

each regression coefficient in one such comparison table, we are interested in comparing 

the following: 

1. the margins of the 2x2 p-value table, and 

2. the off-diagonals of the 2x2 p-value table. 

In item 1, we are essentially comparing the the empirical powers of the independence and 

the dependence GLM's . Hence, we can compute the empirical relative efficiency of the 

two models from the p-value tables as we have done in Chapter 2. 

We will not present the results of all of our simulations. However, the results we will 

present in Tables 4.8 to 4.14 are representative of all of the simulations. 

In these selected simulations, there were g = 2 covariates, and the \i matrix that we 
4The misspecification of the correlation structure of the responses does not affect the (inconsistency 

of the GEE estimate for the regression coefficients. However, this is only true provided that, among 
other criteria, the link function is correctly specified. See Liang & Zeger, 1986 for other criteria for the 
consistency of /3 G . 

5We define the relative S.E. of an estimator as the ratio of the S.E. of the estimator to the estimator 
itself. This is actually the inverse of the standardized estimator. 
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used in the "no-intercept" GLM's was 

/ 0 

3 1 

li 2 

1 1 

We used the same fj, for those GLM's with an intercept, where we simply added a column 

of l's to the covariate matrix generated with the above expectation. 

Before examining more closely the simulation results, let us first explain the meaning 

of the items in Table 4.8. 

In running the S-Plus function gee, we specify corstr="ex" as an argument to spec­

ify an exchangeable response correlation structure. Similarly, corstr="f ixed" specifies 

a fixed response correlation matrix, in which case such a matrix needs to be completely 

supplied to gee. In simulations with corstr="f ixed", we would supply that fixed matrix 

computed in the way described in Section 4.4.2 (i.e. the response correlation uncondi­

tioned on the covariates), with (31 (obtained from the independence model) in place of 

Again, px represents the intraclass correlation coefficient or alternately the lag 1 

correlation in £ , the correlation matrix of the covariates. In our simulations, we no­

ticed that the marginal correlation structure of the responses were often approximately 

exchangeable if the covariates were either exchangeable or AR(1). (See Example 1 in 

Section 4.4.2.) We use py to denote the approximate value of the marginal correlation 

of each pair (Y^s\ Y^), i ^ k, for each s. (That is, unconditioned on the covariates, 

the responses are approximately exchangeable, with an intraclass correlation coefficient 

approximately equal to py.) Since this marginal correlation matrix was what we would 

fix as R for the dependence model in simulations with corstr="f ixed", py indicates how 

0-
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Sim cor 
s t r 

Px Py P Fit 
inter­
cept? 

n sample 
mean of 
n 3 / 's 

sample 
mean of 
n 3 D 's 

3 a " f i x e d " 0.9 0.8 
( ° - 1 ^ 

0.01 

11 ) 

yes 500 
( 0,100 \ 

0.010 
^ 1 . 0 0 1 ) 

( 0.101 \ 
0.010 
1.000 / 

4a " f i x e d " 0.9 0.8 r no 500 ( 0.011 \ 
\ 1 .000 ) 

/ 0.010 \ 
I 1.000 J 

7 "ex" 0.9 0.03 
to 0.04 

I 0.15 \ 
0.1 
0.12 ) 

yes 100 
( 0.138 \ 

0.098 
^ 0.123 ) 

f 0.139 \ 
0.097 

^ 0.123 j 

8 "ex" 0.9 0.03 
( 0 .12 ) 

no 100 
( 0.100 \ 
\ 0.117 J 

( 0 . 1 0 0 \ 

[ 0.116 ) 
a: In these simulations, when fitting the dependence G L M , we assumed px to be known, and then 
substituted it and the final fl1 into equations (4.4) and (4.7). We then specified in gee a correlation 
structure fixed as that in equation (4.7). 

Table 4.8: Results of selected simulations. 

badly the response correlation structure was misspecified in the model. In fact, most of 

these marginal response correlation matrices turned out to be quite different from the 

identity. However, this led to only slight loss of efficiency of the dependence model in 

some isolated cases. In the next section, we will see the simulation results which illustrate 

this point. 

As for the regression parameter vector /3, we wanted its components to be small 

enough such that badly misspecifying the response correlation might deter the depen­

dence model from detecting them, 6 making any possible loss of estimation efficiency 

noticeable. However, the size of a coefficient of course depends on the variability of 

its (GEE) estimate. Without any a priori information about the standard error of the 

estimates before the actual simulation experiment was done, we specified "near-zero" 

regression coefficients in the model. We tried values in the order of between 1 0 - 2 and 

101 in all the simulations. 
6The larger the regression coefficients, the easier they are detected in any regression model. 
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Next, denote in each simulation by n the number of datasets generated, i.e. the number 

of GLM's fitted. For each dataset, the sample size K (= the number of replicates) was 

fixed as 20 per region, and r (= the number of regions) as 5. 

The items "sample mean of n /3 J's" and "sample mean of n /3D 's" are self-explanatory. 

4.3.2 Detailed Results for Simulations with Exchangeable and AR(1) Co­

variates 

Among the simulations with exchangeable or AR(1) covariates, Simulations 3 and 4 

are representative of those which were run with corstr="f ixed", and are the more 

interesting to examine. Similarly, Simulations 7 and 8 are representative of those which 

were run with corstr="ex". Notice that the two pairs of simulations are paired by their 

regression coefficient values. For example, the latter pair have Q\ = 0.1 and 82 = 0.12. 

The only difference between the two simulations is the intercept, B0 = 0.15, in the G L M 

of Simulation 7, whereas in Simulation 8 the G L M had no intercept. 

As mentioned before, both (31 and (3D seem to have small empirical biases in most 

of our simulations. Table 4.8 shows the typical amount of empirical biases of these two 

estimates. The Bj's in most cases are extremely well estimated by the dps and fif's. The 

intercept estimates are usually those Bfs that have slightly larger empirical biases. In 

fact, the intercepts usually have larger relative S.E.'s compared to the other B^s. Table 

4.9 shows the sample S.D. of the n Bps produced by the G E E analysis for our selected 

simulations, together with the approximate relative S.E. of 8j, computed by 

sample S.D. of n Bps 

sample mean of n Bps 

for each j. 

For example, 8Q in Simulation 7 is not particulary well estimated. Not coincidentally, 

its relative S.E. is more than twice the relative S.E. of each of the two slope coefficient 
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Simu­ sample S.D. for approximate relative S.E. for 
lation % Pi Pi PI Pi Pi 

3 0.093 0,019 0.026 0.930 1.90 0.026 
4 — 0.017 0.0096 — 1.55 0.0096 
7 0.16 0.041 0.064 1.16 0.418 0.520 
8 — 0.043 0.048 — 0.430 0.410 

Table 4.9: Sample S.D.'s and approximate Relative S.E.'s of coefficient estimates in the 
independence model in selected simulations. 

estimates. 

We will not include a similar table for the /3D,s (by the dependence model), because 

their sample S.D.'s and sample means are very similar to those of the /37's (by the 

independence model). 

This brings us to the efficiency/power comparisons of the independence and the de­

pendence models. The sample S.D.'s should be the closest (compared to the G E E naive 

and robust S.E. estimates) to the true S.E.'s of the coefficient estimates, because n was 

large. However, in a real life investigation, we only have one set of data, on which we fit 

a G L M using G E E . In that case, we can only estimate the true S.E.'s of the regression 

coefficient estimates, usually by the robust S.E. estimates from the G E E analysis. 

To compare the efficiency of the two models, we examine their p-value comparison 

tables. Tables 4.10 to 4.13 are the p-value comparison tables for Simulations 3, 4, 7, and 

8 respectively. The following is an example of how one can examine a p-value comparison 

table. 
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Example 

Table 4.12 shows the p-value comparisons for each of 30, B\, and 02 in Simultion 7. 

The 2x2 p-value comparison for B\ (middle row) shows that the empirical power7 of the 

independence model (R = I) is 58/100 = 0.58. The empirical power of the dependence 

model (R ^ I) is slightly higher at 60/100 = 0.60. We say that the dependence model 

is empirically 2% more powerful. This is obtained from (60 — 58)/100 = 0.02 = 2%. The 

off-diagonal values in this 2x2 table show the discordance of the two models in detecting 

a non-zero 3\. For example, among the 100 cases, there are 4 + 2 = 6 cases where the two 

models did not agree in the rejection of the null hypothesis. In considering the overall 

p-value comparison for the three regression coefficients in this simulation, the dependence 

model seems to be slightly more powerful than the independence model. However, the 

X2 test of independence of model and power yields p-values8 of 0.66, 0.89, and 0.67 for 

do, 3\, and 82 respectively. Thus, the difference in power of the two models (in detecting 

any of the regression coefficients) is likely due to chance. Both models are powerful in 

detecting 3\ and 32, but not powerful in detecting Bo- This is because ft® has the largest 

relative S.E. (i.e. SE0G)/^), as is shown in Table 4.9. 

• 

From our simulation results, we see that generally, both the dependence and the in­

dependence models would decrease in power of detecting a non-zero regression coefficient 

as the coefficient became smaller. Also, both models had very similar empirical power 

in a given simulation. For example, in Table 4.10, both models only had approximately 
7 By power, we mean the probability of rejecting the null hypothesis in testing Ho :/?.•= 0 vs. 

Hi : f3j ^ 0 for that j, at significance level a = 0.05, when H\ is true. We consider hypothesis tests 
of fa's individually for convenience. One can easily modify this into a test of Ho : /3 = 0, at a certain 
significance level. 

8 . . . obtained by the S-Plus function chisq.test . 
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R ^ I 
p < 0.05 p > 0.05 total 

ft R = I p < 0.05 
p > 0.05 

58 
47 

76 
319 

134 
366 

ft R = I 

total 105 395 500 

fa R = I p < 0.05 
p > 0.05 

38 
31 

35 
396 

73 
427 

fa R = I 

total 69 431 500 

02 R — I p < 0.05 
p > 0.05 

500 
0 

0 
0 

500 
0 

02 R — I 

total 500 0 500 

Table 4.10: p-value comparisons of Simulation 3 in Table 4.8. 

R ^ I 
p < 0.05 p > 0.05 total 

0i R = I p < 0.05 
p > 0.05 

34 
33 

43 
390 

77 
423 

0i R = I 

total 67 433 500 

02 R = I p < 0.05 
p > 0.05 

500 
0 

0 
0 

500 
0 

02 R = I 

total 500 0 500 

Table 4.11: p-value comparisons of Simulation 4 in Table 4.8. 
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70/500 = 14% empirical power in detecting Q\ = 0.01, but had 100% empirical power in 

detecting 32 = 1. 

We also noticed that both models tended to decrease in power if the number of 

parameters increased. That is, in those simulations where the G L M did not include an 

intercept, the two models were sometimes somewhat more powerful (empirically) than 

if the G L M included an intercept. This is illustrated by Simulations 7 and 8. We 

may compare Tables 4.12 and 4.13. In Simulation 7, the independence and dependence 

models both had only about 60% and 50% empirical power in detecting the two slope 

coefficients (3\ = 0.1, 32 = 0.12) respectively, but had about 70% and 75% empirical 

power for the respective slopes in Simulation 8. This trend was not always apparent, 

mainly because of other factors which would also affect power, such as the actual size 

of the regression coefficients. For example, in both Simulations 3 and 4, the two models 

had similar empirical power in detecting the two slopes. 3\ = 0.01 (whose estimate has 

an approximate S.E. of 0.02) is considered small, whether the G L M had many or few 

coefficients. Thus, the two models had low but similar empirical power (about 14%) 

in detecting it in both simulations. On the other hand, 32 = 1 (whose estimate has an 

approximate S.E. of 0.03) is considered very large, with or without many extra coefficients 

in the G L M . Therefore, the two models both had 100% empirical power in detecting it 

in both simulations. 

In some simulations, such as Simulations 3 and 4, we specified a fixed correlation 

matrix — the marginal Cor(Y) — which was often very different from the identity, as 

can be seen from the py column in Table 4.8. In these simulations, the dependence model 

often had slightly less empirical power than the independence model. For example, in 

Simulation 3, the independence model is 

134 - 105 
500 

x 100% = 5.8% 
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R ^ I 
p < 0.05 p > 0.05 total 

Po R = I p < 0.05 10 0 10 
p > 0.05 3 87 90 

total 13 87 100 

01 R = I p < 0.05 56 2 58 
p > 0.05 4 38 42 

total 60 40 100 
R = I p < 0.05 46 1 47 

p > 0.05 5 48 53 
total 51 49 100 

Table 4.12: p-value comparisons of Simulation 7 in Table 4.8. 

R ^ I 
p < 0.05 p > 0.05 total 

01 R = I p < 0.05 66 2 68 
p > 0.05 3 29 32 

total 69 31 100 

02 R = I p < 0.05 74 0 74 
p > 0.05 1 25 26 

total 75 25 100 

Table 4.13: p-value comparisons of Simulation 8 in Table 4.8. 
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more powerful than the dependence model in detecting B0. In fact, the x2 test °f inde­

pendence of model and power yields a p-value of 0.038, implying that this difference in 

power between the models is significant (at level 0.05, say). This difference in empirical 

power in detecting Q\ is 0.8% in Simulation 3, and is 2.0% in Simulation 4, although the 

differences in both cases seem to be results of chance according the x2 tests. The p-value 

discordance also seems to be more severe in those simulations where corstr="f ixed". 

We re-ran Simulation 3 in which we saw a noticeable difference in empirical power of 

the two models. In the re-run, we let the G E E analysis update the values in the work­

ing correlation matrix R. In running gee here, we specified the exchangeable response 

correlation structure. To save computational time, we set n — 100, but K remained 20. 

Table 4.14 shows the p-value comparison for this simulation. 

From Table 4.14, we can see that the dependence model indeed had a better empirical 

power in this re-run than the original simulation. In fact, in the re-run, the empirical 

powers of the independence and dependence models did not differ in testing B0 = 0, as 

opposed to the dependence model being 5.8% weaker in power in the original Simulation 

3. In addition, the dependence model in the re-run was actually 3.0% more powerful than 

the independence model in the re-run in testing Bx = 0, as opposed to 0.8% less powerful 

in the original simulation. (However, x2 tests indicate that these differences were likely 

due to chance in both the original simulation and its re-run.) The p-value discordance 

was also much less severe in the re-run than in the original simulation. 

The smaller power of the dependence model in those cases such as Simulations 3 and 

4 might be due to the inappropriately specified marginal response correlation matrix for 

the dependence model, when data were in fact independent. However, the dependence 

model did not have substantially lower power than the independence model in these cases. 

The power difference was the most "extreme" in Simulation 3, but the dependence model 

turned out to be only 5.8% weaker than the independence model in detecting B0 = 0.1. 
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R ^ I 

p < 0.05 p > 0.05 total 

00 R = I p < 0.05 22 1 23 
p > 0.05 1 76 77 

total 23 77 100 

01 R = I p < 0.05 21 1 22 
p > 0.05 4 74 78 

total 25 75 100 
02 R = I p < 0.05 100 0 100 

P > 0.05 0 0 0 
total 100 0 100 

Table 4.14: p-value comparisons of a re-run of Simulation 3 in Table 4.8, this time without 
fixing R. 

The small difference in power of the two models is particularly surprising if we consider 

how different the marginal response correlation matrix was from the the identity in most 

of these cases. For example, in Simulations 3 and 4, we specified cors t r="f ixed", and 

this fixed correlation matrix had most non-diagonal values of about 0.8. This in fact 

illustrates the robustness of the G E E approach to the misspecification of the response 

correlation structure. 

There is another worth-noting observation from our simulation results. Recall that we 

specified corstr="ex" in the dependence model when we ran gee in some of the simula­

tions. Since the responses were truly independent given the covariates, the independence 

model should be the correct model. However, since independence is a special case of ex­

changeability, the final R matrix produced by gee should be close to the identity matrix, 

because the G E E approach is supposed to estimate the true response correlation reason­

ably well when the structure is correctly specified. Therefore, one would expect both the 

dependence and independence models to have the same efficiencies here. In fact, if we 

consider the extra parameter (response intraclass correlation coefficient) that G E E needs 
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to estimate in the dependence model, one might even expect the independence model to 

be more efficient than the dependence model. 

Indeed, in some of our simulations with corstr="ex" in the dependence model, this 

model was slightly less powerful than the independence model, possibly due to the extra 

unknown parameter in Cor(Y\X). However, some other simulations with corstr="ex" 

in the dependence model indicate that this model could also be slightly more powerful 

than the independence model. For example, in Simulation 7, as presented in Table 

4.12, the dependence model is empirically 3%, 2%, and 4% more powerful than the 

independence model in detecting the three regression coefficients respectively. However, 

such small differences in power seem to have resulted from chance according to x 2 tests. 

4.3.3 Addit ional observations 

We have so far discussed how the power of independence and dependence models compare 

in terms of their p-values. We may also compare their power by comparing their actual 

robust S.E.'s for the regression coefficient estimates. 

Among the simulations for which we have a retained record of these S.E.'s, 9 the 

S.E.'s for both the independence and the dependence models were very similar. This 

explains why both models had virtually the same power in detecting a non-zero regression 

coefficient. 

The G E E robust S.E.'s seemed to be relatively close to the sample S.D.'s of the 

coefficient estimates. A few robust S.E.'s were smaller than the corresponding sample 

S.D. by a factor of about 2, making the regression analyses appear more powerful than 

they really were. Only a few other robust S.E.'s differed from the sample S.D.'s by a 

slightly larger factor. However, many of them were extremely close to the sample S.D.'s. 

Although the difference would well have been due to chance, the reason behind a smaller 

9These include simulations yet to be discussed. 
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robust S.E. than the sample S.D. in some cases is not obvious. Further investigation may 

be needed. 

4.3.4 Other Simulations 

In addition to those simulations with exchangeable and AR(1) covariates, we also ran 

several other simulations with very different covariate correlation structures. Some were 

"unstructured," while others had the variogram structure as in Chapter 2. Some of these 

extra simulations were also run with different ft = E ( X ) matrices. Their results were 

very similar to those of the previous simulations. That is, we found in these simulations 

that 

1. both the independence and dependence models produced regression coefficient es­

timates that have relatively small empirical biases; 

2. the independence model tended to be slightly more powerful than the dependence 

model in those simulations with fixed response correlation matrix; 

3. the dependence model was slightly more powerful than the independence model in 

some of the simulations where only the response correlation structure was specified; 

4. the difference in power between the two models mentioned in the previous two 

items was not always significant according to the x 2 test; 

5. both models had very similar overall power in detecting the non-zero regression 

coefficients in all simulations, suggesting the robustness of G E E to misspecification 

of response correlation structure; 

6. this power tended to decrease as the coefficient size decreased, and/or as the number 

of parameters in the G L M increased; and 



Chapter 4. Simulations of Multiple Regression of Count Data — Part One 108 

summary statistics of n 
K n intraclass correlation coefficient estimates 

mean median sample S.D. 
10 30 -0.028 -0.029 0.080 
20 20 -0.012 -0.020 0.056 
50 15 0.0039 0.0042 0.048 

100 15 -0.0011 -0.0029 0.024 
200 15 -0.011 -0.013 0.022 
500 10 -0.000084 -0.00059 0.012 
800 10 -0.00093 -0.0023 0.010 

Table 4.15: Final G E E R as K increases. 

7. the robust S.E.'s from the G E E analysis were often very close to the sample S.D.'s 

of the coefficient estimates, even with such small r (= 5) and K (= 20). 

In addition, we also investigated how well the G E E approach estimates Cox{Y\X). 

We ran small scale simulations (n < 30) with increasing K but r was held at 5 (as in 

the previous simulations). Each was run with \x = (3,1,2,1,2) r , a common £ matrix, 

corstr="ex", and a G L M that consisted of only one slope coefficient, Q\ = —1, but no 

intercept. Since the final R matrix estimates C o r ( y | X ) in our assumed scenario (see 

Section 3.4), its intraclass correlation coefficient should estimate that of Cor(Y \X) which 

is zero. Intuitively, the larger the sample size K (= number of replicates per dataset), the 

better the response correlation matrix is estimated. We found that with K ranging from 

10 to 800, the estimated intraclass correlation coefficient (in the final R) produced by 

gee was always close to zero. The simulation results are shown in Table 4.15. Boxplots 

of the estimates are shown in Figure 4.9. 

The second column of Table 4.15 shows the number of regressions in the simula­

tion experiment. As K increases, the computational time for the simulation experiment 
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Intraclass Correlation Coefficient Estimate 

50 100 200 

K = number of replicates 

500 800 

Figure 4.9: Boxplots of estimates of intraclass correlation coefficient (in R) with various 
sample sizes, K. 
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increases.10 This explains our choice of small n's for the larger K's. The sample median 

of the estimates may be more appropriate than the sample mean for assessing how well 

the intraclass correlation coefficient is estimated in the cases with small n's. In fact, 

the boxplots in Figure 4.9 show asymmetric empirical distributions of the estimates with 
[ 

most K values, suggesting the comparisons of the sample medians instead of means. 

From Table 4.15, we see that the median of the estimates appears to approach closer 

to zero (the true intraclass correlation) as K increases, except for K = 200 and K = 800. 

The exceptions could be due to chance, but the real reason is not obvious since n was 

small for both cases. However, the variability (as reflected by the sample S.D.) of the 

estimate seems to decrease steadily with an increasing K. Figure 4.9 also shows that as 

K increases, the sample median of the estimates seems to stabilize around 0, and the 

estimates become less variable. 

Although the intraclass correlation coefficient estimate seems to become better (smaller 

bias and variability) as K increases, we are quite satisfied with the G E E approach in that 

with such a short correlated series (r = 5), even a small sample size of 10 seems to yield 

a reasonable estimate of C o r ( Y | X ) . 

4.3.5 Concluding Remarks 

We have thus far examined the effect of misspecifying response correlation, when the 

data are independent, on parameter estimation using the G E E approach. Another type 

of misspecification of response correlation is using the independence model to estimate 

regression parameters, when the data are in fact correlated. In the next chapter, we will 

investigate the relative efficiency of the independence and dependence models in such a 

setting. This time, we will specify the correct correlation structure in the dependence 

model when running gee. 

1 0 . . . with our implementation of the simulation experiments in S-Plus. 
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4.4 C H A P T E R A P P E N D I X 

4.4.1 Fitting an intercept (30 in the G L M 

As in Chapter 2, when fitting an intercept in the model, we have to add a column of l's 

to the covariate matrix X. Let us refer to this column as X_0. Then fi = E (X ) also has 

a column of l 's, denoted by /*.0. The distribution in (4.1) remains unchanged, except 

that j only runs from 1 to r (i.e. j ^ 0). The coefficient vector (3 now becomes f3 = 

{0o, 0\i • • •, 0g)T• Now, the row vectors X{, and i = 1,2,..., r, all include an extra 

first element of 1. Nevertheless, the conditional distribution in (4.2) is unchanged with 

the new definitions of X, fi, and f3. 

However, now Xj(3 = 0O + J29j=i 0jX{j, and hence, Cov{Xff3, Xff3) =aik (/3_ 0) T/3- 0 

for all i and k from 1 to r, where /3_ 0 = {0i, 02, • • •, 0g)T'• Note that Xiodo = 0o is non-

random, and it does not have a variance. Thus, the distribution in (4.3) should now be 

written as X(3 ~ MVN(*v, W) where v = fx/3 (fi with column of l's and (3 with 0O) 

and W = {{3-0)T(3.0E. 

Equations (4.4) to (4.7) basically remain the same, except that is = (j,(3 is to be 

computed using the new fi (with the column of l 's), the new (3 (with 0O), and W = 

(J3-0)Tj3-0E. 

The rest of the equations in the chapter remain unchanged. 

4.4.2 Examples of calculating (marginal) Cor(Y) with a specified £ 

First, assume that we do not fit an intercept in the G L M . Let the r x g covariate matrix 

X have expected value fi, and let each of its column have covariance £ . 
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Example 1 

Suppose r = 5 and g = 1, and 

A* = M i 

35 

43 

26 

and 27 

V 

1 0.9 0.9 0.9 0.9 

0.9 1 0.9 0.9 0.9 

0.9 0.9 1 0.9 0.9 

0.9 0.9 0.9 1 0.9 

0.9 0.9 0.9 0.9 1 
J 

That is, the covariate vector X = X L has an exchangeable correlation structure, with 

an intraclass correlation coefficient of 0.9. Also, let (3 = (0i) = (0.1). 

Substituting these values into equations (4.4) and (4.7), we have 

/ - i n o r n AO C\ O A C\ OI \ 

E(Y) 

( 149.16 ^ 

33.28 

74.07 

13.53 

24.66 V 

and Cor(Y) 

V 

1 0.35 0.46 0.24 0.31 

0.35 1 0.29 0.16 0.20 

0.46 0.29 1 0.20 0.26 

0.24 0.16 0.20 1 0.14 

0.31 0.20 0.26 0.14 1 

Here, Cor(Y) does not have a standard structure, but the structure is roughly exchange­

able with an approximate intraclass correlation coefficient of 0.2 to 0.3. As an entry in 

Table 4.8, this approximate coefficient is denoted by py to indicate how badly the re­

sponse correlation is misspecified through the dependence model with corstr="f ixed" 

as this marginal Cor(Y) . 

In the next example, we will fit an intercept S0 in the G L M . With an extra column 

of l 's, the matrices X and fi now have dimension r x (g + 1). (3 is now a (g + l)-vector. 
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Example 2 

Suppose r = 3 and g = 1, and 

A* 

V 

1 10 

1 8 

1 25 

and £ 

1 0.9 0.81 

0.9 1 0.9 

0.81 0.9 1 

That is, the covariate vector X.x has an AR(1) correlation structure, with a lag 1 corre­

lation of 0.9. Now, let (3 = (0O, Pi)T = (5, -0 .15) T . 

Substituting these values into the modified 1 1 equations (4.4) and (4.7), we have 

/ i n Am n i /i c \ ( 33.49 ^ 

E ( Y ) 45.21 

3.53 

and Cor(F) 

1 0.421 0.145 

0.421 1 0.175 

\ 0.145 0.175 1 ) 

We see that the response vector Y has a correlation structure that is approximately AR(1) 

with an approximate lag 1 correlation of 0.4. As an entry in Table 4.8, this approximate 

lag 1 correlation is denoted by py to indicate how badly the response correlation is mis­

specified through the dependence model with corstr="f ixed" as this marginal Cor(Y). 

n See Section 4.4.1. 



Chapter 5 

Simulations of Multiple Regression of Count Data — Part Two 

In this part of our simulations, we generate Poisson responses that are correlated (con­

ditional on the covariates). We apply the G E E approach to the same correlated Poisson 

data for estimating the regression parameters in each of the independence and dependence 

models. When the correct response correlation structure is specified for the dependence 

model in running G E E , we expect it to be more efficient in parameter estimation than 

the independence model (which assumes the data to be uncorrelated). 

However, generating correlated Poisson responses with covariates is a difficult task. 

Instead, we use a G L M which only has an intercept, with no covariates. In other words, 

the covariate matrix is simply a column of l 's, and the regression coefficient vector consists 

of only one element — the intercept value (30. As explained in the following section, the 

resulting Poisson counts have an exchangeable correlation structure. 

5.1 Generating Correlated Poisson Responses 

As before, we assume that there are r regions. From each region, we sample/generate K 

independent replicates. Each time we sample, i.e. for each fixed s for s = 1,2,..., K, we 

would like the r observations Y / s \ Y ^ , • • •, Yr^ to be spatially correlated. 

Now, let us fix an s. 

We generate {Wia\ ..., W^} and Z^s\ independently, according to 

Wla)~ Poisson (Aj) 

114 
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and 

Z{s) ~ Poisson(A2) 

for a l H = 1,2,... ,r, for some positive Ai and A 2 . 

We then let the response in region i to be y / s ) = w}a) + Z(S\ and hence 

F / s ) - Poisson(A1 + A 2 ) (5.1) 

E ( F / S ) ) = Var(y/ S ) ) = Ax + A 2 (5.2) 

C O V ( Y / 4 ) , n ( s )) = C o v ( w i ( a ) + z < s \ iy f c

( s ) + z ^ ) 

= Var(Z ( s>) 

= A 2 for all i + k (5.3) 

C o r ( ^ , ^ ) . 
V /Var(y/ s ))Var(n ( s )) 

A 2 

= T — — for all i / (5.4) 
Ai + A 2 ^ • v ' 

Let A = Ai + A 2 . Hence, these responses Y\,... ,Yr are exchangeably correlated, with 

intraclass correlation coefficient p = A 2 / A . 

Let us now put the above into the G L M format. 

The only observations here are the r-dimensional response vector, Y^ — (Y}s\ . . . , Yr^)T. 

In other words, we do not include any covariates in the G L M (a regression model). How­

ever, an intercept, BQ, does exist in the regression model. In other words, the G L M 

is 

G [E \X\S))\ = X\s)30 where X^ = 1 for all i = 1,..., r 

for some link function Q. In vector notation, the covariate (design) matrix X^ is thus 

simply a vector of l 's. The G L M in vector notation then becomes 

Q [E ( Y ( s ) | X ^ ) ] = X^30 where = 1. (5.5) 
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The goal is to estimate the unknown regression parameter, 0o, in the above G L M . The 

use of the G E E approach in estimating do allows the incorporation of the correlation 

among Y/ S^'s (for each s). 

5.1.1 The Link Function 

To be consistent with the G E E notation as before, we define rj^ = X^0o- In other 

words, 77^' is simply the vector of 0o's. 

As explained before, the link function Q in a G L M maps E ( Y ^ | A , ^ ) to r^f1 for all 

i = 1,... , r. A n easy parametrization obtains by letting 

\ = \ 1 + \ 2 = 0O 

so that Q is the identity link, since 

Q [E ( Y / W ) ] = 0(A) = W ) = A ) = ^ 

for all i. 

In other words, this G L M is a true linear regression model because of the linear 

response-intercept relationship. However, there is a difference between this G L M and the 

linear model in Chapter 2. Here, the individual responses have a Poisson distribution, 

whereas before, they were normally distributed. 

After recognizing the link function, we may proceed to the actual model fitting for 

the simulated data. 

5.2 Model Fitting using the G E E approach 

Once again, we fit two different GLM's to these simulated data, namely, the independence 

and the dependence models. 
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In fitting the independence model, we ignore the response correlation. We use the 

S-Plus function gee to fit this model, by specifying (5.5) as the linear model, Poisson as 

the distribution of [F/^IXJ^], 1 the identity link function, and the independence response 

correlation structure, gee then produces an estimate of Bo and the naive and robust 

estimates of its S.E. 

We may also use the same gee function for incorporating the response correlation 

structure in parameter estimation. Recall that the G E E approach allows the estima­

tion of the true response correlation matrix, C o r ( F | X ) , 2 provided that the structure of 

C o r ( F | X ) is correctly specified. To use the S-Plus gee function in such a case, we specify 

the function arguments as in the independence model, except for some non-independence 

correlation structure for [F/^|Xf s ^] instead of the independence structure. Since the re­

sponses we generate are exchangeably correlated, we may specify "exchangeable" for 

the c o r s t r function argument, gee would then use an initial working correlation matrix, 

R, which has the exchangeable correlation structure, in the estimation process. Thus, 

in addition to estimating the regression parameter B0 and the naive and robust S.E.'s of 

its estimate, gee also updates the intraclass correlation coefficient in R throughout the 

estimating process. The final R would then be the estimate of C o r ( F | X ) (= Cor(F) 

here). In other words, the non-diagonal value in the final R would be an estimate of p. 

Before fitting the independence and the dependence models, we notice that with an 

identity link in the G L M (5.5), and no true covariates (except the 1 vector as the design 

matrix), the G E E estimate of 0O is simply the sample mean of the responses. This is 

true for both the independence and dependence models, and will be proved in the proof 

of Theorem 4 in Section 5.4. In fact, we can see that the sample mean is the best 

linear unbiased estimator (BLUE) of the intercept for either model (as in ordinary and 
1The function gee in S-Plus asks for the response distribution as a means of specifying the relationship 

between the mean and the variance of each response. 
2See Section 3.3 page 78. 
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generalized least squares estimation in Chapter 2) due to the linearity of the response-

intercept relationship and the exchangeability of the responses. Denoting BQ and BQ as 

the Bo estimates produced by the independence and dependence models respectively, we 

have, 

M = ffi = Y = ± 1 t £ Y W . (5.6) 
n r s=l i = l 

However, the naive and robust S.E. estimates for BQ and BQ may be different, since 

their variance formulae differ. In particular, for the independence model, R = I 

(throughout the G E E iterations) in equation (3.19); hence, = from equation 

(3.19)3 and thus in (3.21) and (3.22). For the dependence model, R has an exchangeable 

correlation structure. Thus, the R matrix in the final iteration of G E E has some p as 

its non-diagonal value, possibly non-zero. This is because we expect p m p = \2/A ^ 0. 

In the case of p / 0, in equation (3.19) (computed using the final R matrix) is no 

longer equal to A^S\ This will possibly produce a different value in each of equations 

(3.21) and (3.22) from the one for the independence model (when = A^). In other 

words, the naive and robust Var(Bo) estimates are possibly different from the naive and 

robust V a r ( ^ ) estimates. 

Since the G E E approach allows the consideration of response correlation when fitting 

the model, our first thought was that the two variance estimates for 0Q (the dependence 

model (correct) parameter estimate) would be no bigger than their independence model 

(incorrect) counterparts. However, this is not exactly what we saw in our simulations, 

as explained in the next section. 
3The scale parameter <f> in our Poisson model is simply 1 (assumed known when using gee). 
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5.3 The Simulations 

In our first simulation, we tried to fit n = 100 G L M regressions. For each regression, we 

generated K = 20 independent samples from each of r = 5 regions according to Section 

5.1. We let Ai = 0.05 and A 2 = 0.5, so that p = 0.5/0.55 « 0.91 would give very highly 

correlated Poisson responses. The two A's were deliberately chosen to have such minute 

size because we would like the generated responses to resemble hospital admission counts 

(for rare diseases) — in other words, very small. 

However, we overlooked the possibility of non-convergence of the G E E estimation 

process due to high number of zero counts. This was in fact what happened in fitting 

the dependence model in some of the regressions. The G E E analysis converged for the 

independence model despite the zero counts because BQ could be readily computed as 

the sample mean, and no other unknown parameter needed to be estimated. On the 

other hand, for the dependence model, the estimation of p might become difficult with 

too many zero observations. 

Despite the non-convergence of some of the regressions, we did observe some very 

interesting results. 

Firstly, as we expected, BQ and 8® were the exact same value for all the regressions 

that converged. However, contrary to what we believed, the naive Var(/?o) estimate was 

always smaller than the naive V a r ( ^ ) estimate! Another curious observation is that the 

robust variance estimate of B0 was exactly the same for both the independence and the 

dependence regression models. We can summarize the observations of these simulations 

as follows: 

M = Po (5-7) 

V a ^ o 7 ) r o b u s t = V a ^ ) r o b u s t (5.8) 

Va^oOnaive < V a r ^ ) n a i v e . (5.9) 
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To double-check that the result in (5.8) and (5.9) were not by chance, we ran a second 

set of simulations. However, this time, we used a much larger X\ and A 2 to avoid the 

non-convergence of the G E E method. 

In this simulation, we used the same n, r, and K as before, but Ai = 5 and A 2 = 50. 

Thus, A = 5 + 50 = 55, and p = 50/55 « 0.91 is the same large intraclass correlation 

coefficient as in the first simulation. 

In this simulation, the G E E analysis successfully converged for both the indepen­

dence and dependence models for each of the 100 regressions. From the results here, we 

confirmed that (5.8) and (5.9) were indeed not due to chance. 

The result in equation (5.8) actually seems familiar to us. Recall that in the linear 

regression setting from Chapter 2, both the dependence and the independence models 

produce the exact same regression parameter estimate (and thus the same covariance 

matrix for the estimate) if the responses are exchangeably correlated, provided that an 

intercept is fitted in the model. However, the naive covariance for the independence 

model estimate is never smaller than that for the dependence model estimate in linear 

Gaussian regression. Why, then, is (5.9) true? That is, why is the naive variance estimate 

always smaller in the independence model than the one in the dependence model for a 

linear Poisson regression? 

Note that the word naive in both Chapter 2 and this chapter has the same meaning. 

In Chapter 2, the naive covariance is the one calculated believing that the responses 

were truly independent. Here, we are naive in calculating the variance estimate for 30 

if we naively take the working covariance matrix V as the true covariance matrix of the 

responses. In other words, we believe that V is the true response covariance matrix, and 

thus the covariance estimate for 80 obtained according to such a belief is naive. 

In the next section, we present the theoretical reasoning for the results in (5.6) to 

(5.9). We also further compare the notion of naivete in the contexts of Gaussian and 
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Poisson regression. 

5.4 The Naive and Robust Variances for /3Q and 

We now present (5.6) to (5.9), with a slight variation to (5.9), as the next theorem, with 

a proof following it. 

Theorem 4 Suppose we have responses Y}s\ ... ,Yj-s) sampled from a Poisson distribu­

tion with positive parameter A = Ai + A 2 , such that they follow equations (5.1) to (5-4)-

In particular, for each s, Y^ 's are exchangeably correlated with intraclass correlation 

coefficient p = A 2 / A . Note that A 2 > 0, and hence p > 0. 

Now, suppose we fit a Poisson regression model (a GLM) according to (5.5), re­

spectively assuming the responses to be (1) uncorrelated (the independence model) and 

(2) exchangeably correlated (the dependence model). We use the identity link in such a 

GLM. For the dependence model, we specify in GEE an exchangeable response working 

correlation structure without specifying the value of the intraclass correlation coefficient. 

Then, equations (5.6) to (5.8) are true. Furthermore, V a r ( ^ ) n a i v e ^ V a r ( ^ 0

D ) n a i v e in 

general. 

To prove this theorem, we first need to "translate" our notations into the G E E nota­

tions. In particular, we need to express equations (3.17) to (3.22) in terms of A i , A 2 , and 

P-

Let us fix s. Since Y ^ ' s are K i.i.d. vectors, the following is true for all s = 1,..., K. 

Recall that the design matrix is simply the r-vector of l 's. Denote such a vector 

by 1. Also, we let r)^ = A = 0O for all i so that we have the identity link. Hence, the 

conditional density for each Y^ given X^ is 
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= exp{yj s ) log 7yJ s ) - rj^ - log 

= e x p ^ ' l o g A - A - l o g y ^ ! } . (5.10) 

Comparing (5.10) to (3.17), we have 6\s) = logr/J s ) = log A and a(0| s )) = exp{0J s )} - A. 

Also, 

E ( y . M | X j ' > ) = a'(6V) = exp{0\s)} = \ 

Var(y/S )|x| s )) = a"(0Js)) = A. 

Thus, 

A « = diag { « ' ( » " ) } = dia,g(A,..., A) 

= ^ £ > ( s ) = A( S )^( S )X< S ) - J l = 1 (5.11) 

y(*) = [AW]tjR[AW]i = A i l (5.12) 

= j - [ y ( « ) ] - i = l i l " 1 (5.13) 

where J i is the working correlation matrix that G E E uses in its estimation process. Since 

we specify an exchangeable response correlation structure for the dependence model, R 

has all non-diagonal values equal to some a. In each iteration of the estimation process, 

the values of both a and B0 are updated. Upon convergence, the final value of a is the 

estimate of p. That is, p = a. Also, upon convergence of the G E E estimation process, 

equations (3.21) and (3.22) are used to estimate Var(/?g) and Var( (50

D) (using the final 

values of B0 and a). 

Note that in the G E E estimation process, we do not expect the matrix to be 

computed based on the data. This is because when we specify the Poisson distribution 

of the responses, and the identity link function, with a design matrix which is simply 
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the 1 vector, the matrix product A^A^ = I is readily obtained, without the need to 

estimate any unknown parameter in this product. However, the computation of A^ and 

A^ (and hence, of V^) individually should be data based, because they both involve the 

unknown parameter A. By the identity link, we have A = 0O, and hence, A = 0O. Finally, 

as mentioned on page 82, the covariance matrix C o v ( Y ( s ) | X ^ ) in equation (3.21) is 

estimated by S^S^T in the G E E estimation process, where = - a'(6^). 

Now, we may substitute equations (5.11) to (5.13) into equations (3.20) to (3.22) to 

prove Theorem 4. 

P r o o f of Theorem 4 

First, let us prove equation (5.6). 

For either the independence or dependence model, substituting equations (5.11) to 

(5.13) into estimating equation (3.20) gives 

0 = ] £ l T - J R - 1 [Y^ - Al] 
s=i A 
(since a'(0\ s^) = A for all i for all s) 

K 
<=> lTR-'^Y^ = 0QK1TR-'1 (5.14) 

S=l 

(since A = 0O by the identity link). 

For the independence model, R = H _ 1 = J , so that equation (5.14) becomes 
K 
J2lTY(s) = 0oKlTl (5.15) 
s=l 

s=l t = l 

^ 0o = j-r£±Y}s)=Y. 
IX ' s=l i=l 

Hence, /?o = Y. 
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Now, recall from Chapter 2 that for the dependence model, we can write R(ct) = 

(1 — o j ) / + Q ! l l T . (Again, a is the estimate of p, the intraclass correlation coefficient of 

the exchangeably correlated responses.) Also, from Lemma 1 and the proof of Theorem 

2, we know that 

R 1 = T ^ ii ~ r ^ i i r ] - (5-16) 

Thus, we have 

lTR1 = 1J 

1 - a 
I-

1 + (r - l)a 
11J 

1 
1 - a 

1 

a 
1 + (r - l)a 

I-a. 

rl1 

I-a [1 + (r - l)a 
1 1 T. 

1 + (r - l ) a 

Substituting equation (5.17) into estimating equation (5.14), we have 

1 

(5.17) 

1 K 

TlTY( 
1 + (r - \)ai 

£ i r y w = B0K1T1 

1J1 

K 

s=l 

which is the same as estimating equation (5.15) whose solution is B0 = Y. In other words, 

BQ — Y = B-. This proves equation (5.6) (and thus (5.7)). 

Next, we will prove equation (5.8). 

For either the independence or dependence model, substituting equations (5.11) to 

(5.13) into equation (3.21) gives 

Var(ft) robust 
S=l 

K 

- j r 1 

A 

1> 

A 

E i 5 
i 

A 

1 
-R-1 

A 
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^ E f = 1 i T f l - 1 s W s w r f l - i i 

l T R i (Efl, S^SW) R - l 

K2(iTR-*iy ' 

For the independence model, R = I, and equation (5.18) becomes 

1 T (EL S^SW) 1 

i<2(iTiy 

(5.18) 

V a r ( ^ ) r o b u s t 

K2r2 

For the dependence model, first notice that R'1 = (R~1)T because R (and thus 

R'1) is symmetric. Thus, by equation (5.17), we have 

R-l = ( 1 T

J R - 1 ) T 

1 
-1. (5.19) 

1 + (r - l)ct 

Now, we substitute equations (5.17) and (5.19) into equation (5.18) and have 

Vxv(RD\ _ Z " 5 = 1 [l + ( r - l ) a ] a 

V a r l P o Jrobust -

x2? 
= V a r ( ^ ) r o b u s t . 

This proves equation (5.8). 

Now, to prove that Var(/?o) n a i v e / ^ a r ( ^ 6 D ) n a i v e ' w e substitute equations (5.11) to 

(5.13) into equation (3.22). Then, for either the dependence or independence model, 

1 
Var( /? 0 ) n a h 

KlTRr*l 
(since A = (30 by the identity link). 

(5.20) 
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First, for the dependence model, the working correlation matrix R has inverse as in 

equation (5.16). Thus, we can substitute equation (5.17) into equation (5.20) and obtain 

By equation (5.7), we may denote both B® and BQ by a common B0. The above equation 

then becomes 

V « 7 j t " ) ^ = ! ( i ± ! ^ ) . (5.21) 

Again, for the independence model, R = R'1 = I. Thus, equation (5.20) simply 

becomes 

V a ^ 0

7 ) r K1T1 

A 
Kr 

1 + (r - l ) a ' 

Therefore, in general, unless a = 0, we will have Var ($J ) n a i v e ^ Var( / 5 0

9 ) n a i v e . 

Q.E.D. 

Notice that, in our simulations, we generated the Poisson responses with an extremely 

high intraclass correlation p (> 0.9). Since a estimates p, we naturally observed all 

positive a values in our simulations. In fact, in both sets of simulations, a turned out 

to be an extremely good estimate of p (a between 0.8 and 1) in all of the n observations 

which converged. This large positive a explains the result in (5.9). 

In principal, a can take on negative values. In particular, if we generated the responses 

with a near-zero (or zero) p, then it is possible to have negative a values. We can easily 

see that V a ^ ) n a i v e > V a ^ ) n a i v e if a < - l / ( r - 1). 
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Also, notice that 80 = Y is the M L E of 0Q when assuming response independence. 

Recall from Chapter 2 the notion of the naive statistician who blindly believes that the 

responses are truly independent. Thus, the theoretical variance of 0Q that he computes 

is 

Var(&) = Var(F) = A = A . 

The estimate of this variance is naturally computed by replacing 0Q with 0^. It, then, is 

indeed the naive variance estimate, Var(/?o) n a i v e . From this set up of a G L M , it is clear 

that the two notions of naivete — that of the naive statistician and that of the naive 

variance estimate — coincide. 

5.4.1 More on the simulation results 

Let us now return to the question of why the naive variance estimate is always smaller 

than the robust variance estimate in our simulations. Such a phenomenon creates an 

illusion that Naive, using his/her naive variance estimate, has better efficiency in his/her 

inference than that of Enlightened who bases it on his/her naive variance estimate. 

However, a closer look reveals that the former estimate is simply the M L E variance 

estimate in the case of (assumed) independent responses coming from a single population, 

forming one big i.i.d. sample (of size Kr). Naturally, such a variance estimate must be 

smaller than the one computed assuming the r responses per replicate to be (positively) 

correlated, and hence more between-group response variability among the K replicates. 

As for the robust variance estimates, we have the results from Theorem 4 for both 

the independence and dependence models. Such variance estimates are derived from 

the asymptotic distribution of 0O presented in Theorem 3. For convenience, instead of 

determining the true variance of 0Q, we use the sample S.D. of the n / V s to estimate the 

true SE(/?o). With enough datasets, n, we may assume this sample S.D. to be reasonably 
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sample mean of 50 

fa S E (A))sample S E ( A D r o b u s t 

( = ftD's) = S E ( ^ ) g a m p l e S E ( A ? ) n a i v e = SE(^ 0

D) r obust 
55 59.90 1.69 1.66 1.53 0.77 

Table 5.16: S.E. estimate comparison based on the first 50 simulated datasets. 

close to the true S.E. On the other hand, our goal is only to obtain some idea of the 

relative variabilities of the intercept estimates. Thus, in this investigation, we decide not 

to use large scale simulation experiments although they would allow better understanding 

of the relative variabilities of the estimates. 

Let us revisit our latter simulation where the G E E method converged for all its 

n = 100 datasets. Our results, based on the first 50 datasets in this simulation,4 are 

summarized in Table 5.16. For the independence model, S E ( / 5 0

r ) s a m p l e denotes the square 

root of the sample variance of the 50 0QS. SE(/3o) n a i v e and SE(/?o) r o b u g t respectively 

denote the sample means of the 50 naive and the 50 robust estimates of SE ( / ?Q ) . We 

denote those S.E. estimates for 0Q (using the dependence model) in a similar way. Of 

course, S E ^ ^ i e = S E ^ L m p , e by equation (5.7), and S E l ^ L b u s t = S E ^ U u s t 

by equation (5.8). 

The results in Table 5.16 show that Y, the sample mean of the responses, is a reasonbly 

good estimate of the true 0O. Using SE(/%) g a m p l e (= S E ( ( L ? ^ , ) s a m p l e ) as the "gold standard" 

(g.d.) of the true SE(ft) for both models, S E ( ^ 0

D ) n a i v e is thus closest to the g.d. among the 

naive and robust estimates. It is followed by S E ( / ^ ) r o b u s t = S E ( ^ 0

D ) r o b u s t , and S E ( / ^ ) n a i v e 

is the farthest away from the g.d. In fact, SE(/3o) n a i v e is the only S.E. estimate which gives 

a 95% confidence interval that does not contain the true 0Q. This is an indication that, in 
4The way we recorded the simulation output made it difficult to base our results here on all 100 

datasets. 
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general,5 the naive variance estimate of the independence model is a poor estimate which 

substantially underestimates the true Var(/?0). The underestimation can be explained by 

the between-group variability among the K replicates being ignored in the computation 

of this variance estimate. In other words, if response correlation is ignored when fitting 

the G L M , then inference based on the naive variance estimate may be far off from the 

truth. Fortunately, inference done by ignoring response correlation but using the robust 

variance estimate does not affect estimation efficiency, in the sense that this variance 

estimate is the same as the robust variance estimate considering response correlation. 

Of course, the advantage of the dependence model over the independence model is the 

possibility of estimation of the parameters in the response correlation structure. 

5.5 Concluding Remarks 

The above results of Theorem 4 and the size comparison of the different S.E. estimates 

of 0O are all based on the particular G L M we are dealing with here. Therefore, we may 

not generalize our observations to cover such conditions as GLM's with covariates and/or 

non-linear link functions. 

Simulations of non-linear Poisson regressions may be difficult, mainly due to the 

complexity of generating correlated (conditional on the covariates) Poisson count data 

with non-linear link to the covariates.6 However, based on our results, we recommend 

the use of the robust variance estimates, regardless of the assumption of correlated or 

independent responses, for such non-linear regressions of real data. This is because 

we have seen from simulation results here and in Chapter 4 that the data analyses 

based on the robust variance estimates for both the independence and dependence models 

are generally very similar. We have also seen that in our set up of a G L M in this 

5 . . . for the conditions as in Theorem 4. 
6 A method for this task is developed in the Ph.D. thesis by Jianmeng Xu (1996). 
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chapter, the naive variance estimate of the dependence model estimates the true variance 

overwhelmingly better than that of the independence model. 

However, assuming the dependence model allows the estimation of the true response 

correlation matrix if its structure is known or can be approximated. In this case, one 

should base inference on the dependence model instead of the independence model. 

An extra remark is that the G E E method seems to estimate reasonably well all the 

model parameters, i.e. the regression parameters, and those in the response correlation 

structure, even with relatively small r and K (5 and 20 in our simulations). 



Chapter 6 

Discussion 

In this thesis, we have presented some results on the effect of misspecified response corre­

lation in regression analysis. We focussed on regression analyses applied to health impact 

studies, in which the responses are often obtained from neighboring geographical sites 

and thus are spatially correlated. (See Chapter 1.) In Chapter 2, we made use of the sto­

ryline of the naive and enlightened statisticians to illustrate the severe loss of parameter 

estimation efficiency that might result from ignoring response correlation when fitting a 

linear response-covariate relationship with Gaussian responses. In particular, both the­

ory and our simulation results indicate that Naive's regression analysis is almost always1 

less powerful/efficient than Enlightened's. Such and other forms of response correlation 

misspecification in GLM's were examined in Chapters 4 and 5. The GLM's were fitted 

via the G E E approach, which allows the incorporation of response correlation in the 

parameter estimation process. Our results suggest reasonable robustness2 of the G E E 

approach to misspecification of response correlation with a small number (about 20) of 

independent replicates/clusters in the sample if the analysis is based on the robust vari­

ance estimates. In other words, the G L M analyses based on such variance estimates using 

the correct and incorrect response correlations respectively both have similar efficiencies. 

The analyses based on the naive variance estimates are similarly efficient if the response 

correlation structure is correctly specified. Otherwise, the true variance estimates may 

1 Theoretically, Naive's analysis is never more powerful. However, it can be more powerful empirically 
due to chance. 

2 . . . with those GLM's that we investigated. 
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be considerably underestimated, thus falsely revealing high efficiencies of the analyses. 

Moreover, when the response correlation structure is correctly specified, the parameters 

in the correlation matrix are relatively well estimated3 even with very few replicates (10 

to 20) and correlated measurements per series4 (about 5). 

However, we have not examined the G L M setting in which the clusters are not inde­

pendent. For example, if the replicates are repeated measurements obtained over a short 

period of time, they may be temporally correlated. Thus, both spatial and temporal 

correlations may exist in the responses: the measurements within a replicate may be 

spatially correlated, and the replicates may be temporally correlated. 

Studying the effect of ignoring correlation among replicates in a G L M analysis may be 

very complex although important to health impact investigations. The complexity lies in 

the incorporation of such correlation into the G L M and hence the parameter estimation 

process. In fact, the G E E approach only allows incorporation of correlation along a series, 

but strictly assumes the replicates to be independent. This assumption is often met in 

longitudinal data analyses in which the measurements are correlated temporally, but the 

measurement replicates are obtained from separate individuals and thus independent. On 

the other hand, the assumption of independent replicates may fail in some health impact 

studies for reasons mentioned earlier. Unfortunately, an alternative method to the G E E 

approach which accounts for response correlation along both spatial and temporal "axes" 

in parameter estimation is apparently not available. 

3 . . . provided that the GEE estimation process converges. Non-convergence of the process may result 
due to insufficient information in the data (e.g. too many unknown parameters or too many zero counts 
in a Poisson regression). 

4See page 110. 
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