
SHEAR STRENGTH OF CANADIAN SOFTWOOD STRUCTURAL 

LUMBER 

by 

Hon Wing Yee 

B.A.Sc. (Civil Engineering) University of British Columbia, 1991 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

T H E REQUIREMENTS FOR T H E DEGREE OF 

MASTER OF APPLIED SCIENCE 

in 

THE F A C U L T Y OF GRADUATE STUDIES 

Department of Wood Science 

We accept this thesis as conforming 

to the required standard 

The University of British Columbia 

December 1995 

© H o n Wing Yee, 1995 



In presenting this thesis in partial fulfilment of the requirements for an advanced 

degree at the University of British Columbia, I agree that the Library shall make it 

freely available for reference and study. I further agree that permission for extensive 

copying of this thesis for scholarly purposes may be granted by the head of my 

department or by his or her representatives. It is understood that copying or 

publication of this thesis for financial gain shall not be allowed without my written 

permission. 

Department of V/0 oo 3 S>6\ f> C 

The University of British Columbia 
Vancouver, Canada 

Date Q&C£^(>&-« ZZ 

DE-6 (2/88) 



A B S T R A C T 

An experimental study has been conducted to evaluate the longitudinal shear strength of 

Canadian softwood structural lumber using a two span five point bending test procedure. 

Nominal 38mm x 185mm Douglas-Fir, nominal 38mm x 185mm and nominal 38mm x 285mm 

Hem-Fir and Spruce-Pine-Fir boards have been considered. Flat-wise and edge-wise modulus of 

elasticity tests have been conducted for each specimens prior to the destructive shear tests. 

A two span five point bending test procedure has been chosen because of its ability to 

produce a relatively high percentage of longitudinal shear failures. Approximately 40% of the 

failures can be attributed to shear failures in the nominal 38 mm x 185 mm and 30% in the 

nominal 38 mm x 285 mm specimens. Two test configurations have been considered: test span to 

specimen depth ratios of 6:1 and 5:1. 

American Society for Testing and Materials (ASTM) shear block tests have also been 

conducted to evaluate the shear strength of small clear specimens. Based on the A S T M shear 

block test and the edge-wise modulus of elasticity results, a linear elastic finite element analysis 

coupled with Weibull weakest link theory has been used to predict the shear failure loads at 

different levels of failure probability. Good agreement between predicted and measured failure 

loads at different probability of failure levels for the different sizes and spans of each species have 

been observed. 
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Predictions from the finite element and size effect analysis procedures have been compared 

to an empirical approach for predicting longitudinal shear resistance in sawn lumber and glued 

laminated beams proposed by the US Forest Products Laboratory. The US proposed design 

equation tends to overestimate the longitudinal shear resistance of the full size beam results 

obtained from this study. 

In lower grades of dimension lumber, shear failures do not govern because the 

bending to shear strength ratio is usually significantly lower as compared to the Select Structural 

grade material. Therefore in the lower quality dimension lumber, bending failure mode would 

most likely dominate. 
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1. INTRODUCTION 

1.1 L O N G I T U D I N A L SHEAR S T R E N G T H O F DIMENSION L U M B E R 

The longitudinal shear strength of sawn lumber is important because it governs the design 

of beams with small span-to-depth ratios. Shear design provisions for sawn lumber members in 

working stress design codes are believed to be unnecessarily conservative for many common 

applications. Under realistic loading and support conditions, tests results have shown that it is 

very difficult to obtain pure shear failures in members, especially when the members do not have 

end splits. The conservative design provisions lead to shear controlled design in cases where 

experience suggests that shear failure is not a probable failure mode. 

The Canadian Code for Engineering Design in Wood has adopted new design provisions 

for shear design of lumber members which recognize a significant size effect in member shear 

capacity. The design procedure provides for much larger characteristic strength properties for 

smaller sections, reflecting the size effects in wood material strength and the size effect in the 

strength of notched members. 

Two distinct failure modes can be observed during shear strength tests of lumber. These 

failure modes are controlled by: 1) the shear strength of the material when end split or other 

similar defects are not present and 2) the crack length and mode II fracture toughness (Knc) in 

members where parallel to grain end split defects exist (Foschi and Barrett 1976). To account for 

these two modes of failure, development of allowable shear stresses for lumber in North America 
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traditionally followed provisions of the American Society for Testing and Materials (ASTM) 

standard D245 (ASTM, 1994b). Small clear straight-grain shear block specimens are first tested 

in shear. The shear block test results are modified by a reduction factor of 4.1 to account for 

safety and load duration (1.82), and stress concentrations (2.25) due to strength reducing 

characteristics in commercial full size material. The effect of end cracks, checks or splits is then 

considered by the introduction of another factor, S: 

where S is the strength ratio which is multiplied to the clear beam shear strength value to account 

for the effect of end cracks, checks or splits, and a is the crack length and H is the member depth. 

The use of A S T M shear block test results, to first determine the shear capacity of small clear 

specimens and then adjust for natural defects in lumber, is somewhat inconsistent with the in-

grade philosophy of testing full size members, which has been adopted worldwide for the 

development of characteristic strength properties of structural lumber. The major difficulty 

associated with testing for longitudinal shear strength of full size lumber using a typical test setup 

is that the members usually fail in other modes such as bending or compression perpendicular to 

grain, especially in members which do not contain end-splits. 

Shear design provisions in the Canadian Code for Engineering Design in Wood (Foschi, 

Folz, and Yao 1989) are based on the two-parameter weakest link theory for predicting member 

resistance for the clear-beam mode. Weakest link shear capacity models have been developed for 

Douglas-Fir using data from A S T M shear block tests, small beam tests, torsion tests and glued 
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laminated beam results (Foschi and Barrett, 1975). A S T M shear block results were used to 

generate weakest link size effect models for untested species (Foschi, Folz, and Yao, 1989). The 

predicted shear resistance models have not been verified with tests of dimension lumber size 

members. 

A two span five point bending test procedure, originally developed for the evaluation of 

the shear strength of composite materials, has been proposed for testing of the shear strength 

properties of full size lumber. Experimental programs in the US Forest Products Laboratory and 

the Commonwealth Scientific and Industrial Research Organization (CSLRO) in Australia have 

successfully used this two span five point bending test setup to evaluate the shear strength of 

glued-laminated beams and full-size commercial lumber (Leicester and Breitinger 1992, Breitinger 

et al. 1994, Soltis and Rammer 1994). In the US Forest Product Laboratory and CSIRO test 

programs, span to depth ratios of 5:1 and 6:1 were used respectively. The span was defined as 

the distance between the center of the end reaction to the center to the middle support. 

Past studies, based on the Weibull Weakest Link concept (Weibull, 1939), demonstrated 

that member shear strength capacities depend strongly on the test configuration, member size, and 

stressed volume (Foschi and Barrett 1976, 1977a, 1977b, Liu 1980 and 1981). Clear 

understanding of the measured test results in relation to the different test configurations is 

necessary before new test procedures can be adapted for standards and conversion of test data 

into design properties. 
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In this project, an experimental study was conducted to evaluate the longitudinal shear 

strength of three species groups and two sizes of Canadian softwood dimension lumber using a 

two span five point bending test set up. Two test configurations were considered: test span to 

specimen depth ratios of 6:1 (6D case) and 5:1 (5D case). The test span is the distance between 

the center of the end reaction to the center to the middle support. 

A procedure based on finite element (FE) analysis coupled with Weibull weakest link 

theory was used to predict shear failure loads at different shear failure probability levels of the 

lumber from A S T M shear block test results and to establish the relationships between the full size 

specimens test results from the two test configurations. 

1.2 O B J E C T I V E O F THIS STUDY 

The purpose of this study was to develop an experimental database on material properties 

required for reliability studies of bending members in shear to support a proposal for international 

standardization of improved shear design provisions for structural lumber. 
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2. B A C K G R O U N D INFORMATION 

2.1 HISTORY O F S H E A R STUDIES 

The subject of establishing parallel-to-grain allowable shear stresses for lumber has long 

been studied. The earliest documented reports of tests for large members date back to 1906 by 

Hatt ( Ethington et al. 1979). Although he had conducted tests with small specimens taken from 

failed pieces, a standard shear test did not exist at that time. The US Forest Products Laboratory 

began a research program in 1910 to evaluate the mechanical properties of small, clear, straight-

grained specimens by species. Bulletin No. 108 (1912) contains a summary of data up to that 

time. This publication provided data for calculating both shear stresses in structural beams which 

failed in shear and those which failed in shear followed by other types of failures. 

Keenan (1974) suggested that the shear strength of Douglas-Fir glued-laminated beams 

depends on the shear area. The shear area defined by Keenan is the shear span multiplied by the 

beam's width. The shear span is the distance between supports. This shear area can be easily 

defined for concentrated loading conditions, but is undefined for uniformly distributed loads. 

Barrett and Foschi (1976, 1977) applied WeibulPs theory of brittle fracture to determine 

the strength of Douglas-Fir wood in longitudinal shear. Given a certain survival probability, they 

have derived the ultimate stresses for beams under different loading conditions. The theory 

explains the discrepancy between the shear resistance of the A S T M shear blocks and a full size 
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beam. They related the shear strength of a unit volume under uniform shear stresses (based on the 

A S T M shear blocks results) to the shear stress volume defined by Weibull's weakest link theory 

of the full size beam. 

Longworth (1977) used a four point bending test with small length-to-depth ratios on 150 

glued-laminated Douglas-Fir beams. He concluded that the A S T M shear block strength badly 

represents the shear resistance of full size beams. Using the definition of shear area by Keenan et. 

al. (1974), Longworth showed that shear strength decreases for larger shear area. 

Recently, Rammer and Soltis (1994) suggested that the shear strength of full size beams is 

a function of shear area which relates to the A S T M shear block by the following equation; 

_ 1 A S T M 

A5 

[2] 
where, 

full size beam shear strength (psi) 
Shear Area1 = area of beam subjected to shear forces. 

stress concentration factor to adjust the A S T M shear block to the true shear stress 
distribution. It is assumed to be 2 (Soltis and Rammer 1994) 
A S T M D143 published shear block values 

The shear area defined by Soltis and Rammer (1994) is different from that defined by Keenan et. 

al. which states the shear area as the span between the load and the support under only positive 

shear, multiplied by the width. No reason was indicated as to the different consequences for 

selecting either positive or negative shear. Soltis and Rammer define the shear area as the span 

1 Shear Area defined by Soltis and Rammer as the length of the beam subject to positive and negative shear 
multiple by the width of the beam, (inch2.) 
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between the loads and supports under both positive and negative shear, multiplied by the width of 

the member. 

Soltis and Rammer (1994) conducted a five point full size beam shear test. Figure 1 shows 

the full size shear test setup for nominal 38mm x 204mm boards. A span of five times the depth of 

the beam was used between the supports. The loading position was at mid-span between the 

center and edge supports. The corresponding sizes of the loading plates and supports are given in 

Figure 1. The load was monotonic with a rate of loading that conforms to the A S T M D 198 

(1994b) standard which specifies that the beam should fail between 6 to 20 minutes. Problems 

were reported related to the beams rotating out of the plane of loading. A S T M shear blocks were 

obtained from the members that failed in shear near the region of failure but away from any visible 

damage. These blocks were later used in the computation of equation 2 . 

Their five point shear test was able to produce a 62% success rate (99 out of 160 

Douglas-Fir solid sawn lumber of different sizes) in shear failures. Most shear failures were 

reported to be between the middle support and the loading point which rarely propagated past the 

loading point. Their coefficient of variation for the beam shear strength was under 20% with an 

average of 14.2%. The coefficient of variation for the A S T M shear blocks was between 12.7 % 

to 18.8 % for the dry specimens. 
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Figure 1. 5 point test setup used by Soltis and Rammer 

2.2 T H E BASIS F O R T H E C U R R E N T SHEAR DESIGN PROVISION 

Shear design provisions for working stress design codes are considered to be overly 

conservative for many common applications. The establishment of allowable shear stresses for 

lumber used in working stress design codes in the US followed the provisions of A S T M D 245. 
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The fifth percentile shear strength from small clear shear block test data for softwood are 

modified by a factor of 4.1 to provide a basic allowable shear stress for beams free from shakes, 

checks or splits. Design for shear resistance is receiving considerable attention as the occurrence 

of shear controlled design seems to govern in situations where experience suggests that shear 

controlled failures are uncommon. 

The Canadian Code for Engineering Design in Wood (CAN3/CSA-086.1-M89) contains 

provisions for shear design of solid sawn lumber based on reliability principles. The member 

shear resistances are established with recognition of two potential failure modes analogous to the 

A S T M procedures. The shear capacity of beams free from shakes, checks, or splits is determined 

by the inherent shear strength of the clear material. The presence of shakes, checks, or splits 

reduces the " the clear-member" mode to a "beam-defect" mode. Several beam-defect failure 

modes are possible, associated with shear failure due to end-splits, surface checks or shakes. 

The evaluation of member reliability requires knowledge of the shear resistance for the clear-

member and each of the beam-defect modes and data on probability of occurrence of each failure 

mode. 

The clear-wood failure mode has been studied using the two-parameter Weibull weakest 

link concept to provide a basis for explaining the different shear strengths observed between small 

clear A S T M shear blocks and full size beam members, which relates the shear strength to 

member size, shape and loading conditions (Foschi and Barrett, 1976). This study has confirmed 

that the shear strength varies with the type, size and shape of shear test specimens. 
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Linear elastic fracture mechanics concepts were also used to study the shear capacity of 

beams containing parallel-to-grain cracks analogous to the end-splits, checks and shakes observed 

in structural wood members. A linear elastic fracture mechanics analysis allows the capacity of 

bending members with parallel-to-grain defects to be predicted when the material fracture 

toughness is known. Shear resistance of beams must be known for each shear failure mode (end-

split mode, check and shakes mode). Reliability in shear can be calculated when the type and 

extend of each defect and the probability of occurrence of each failure mode is known. 

A reliability based approach has been adopted in Canada to relate A S T M shear block 

strengths with full size members by Foschi et al. (1989). To evaluate the probability of 

longitudinal shear failure, Pf, in a population of full size lumber, two distinct failure modes must 

be considered as follows: 

p

f = P f A [P robab ility(0 < a < a G ) ] + P f B [ P ro b a b ility ( a > a c ) ] 

[3] 
where, 

PfA - probability of failure in lumber free from end splits and cracks, failure 
mode (case A) 

PfB - probability of failure in crack propagation mode (case B) 
ao = is the critical crack length which governs the type of shear failure mode 

if the crack length, a, is < ao, failure mode is case A 
if the crack length, a, is > a,,, failure mode is case B 

a = is a random variable representing the crack length found within a 
population of lumber 

Considering first only lumber free from end splits and cracks (case A), the reliability based limit 

state design equation in the Canadian Design Code, CAN3-086.1-M89, states the following: 
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\.25E{Dn) + \.50E{Qn) = ®RC 

[4] 

where, E(D„) and E(Qn) are, respectively, the nominal dead and live load effects and (b is a 

performance factor applied to the characteristic or specified shear strength Rc. 

During the code development process, in order to evaluate <j> and Rc for equation 4, a 

performance function, Gi, associated with lumber free from end splits and cracks (case A) was 

evaluated. An example of a performance function for a beam under uniformly distributed load is 

as follows: 

2 O R 

V 
(1 .2 5 y + 1 .5 ) 

•(yd + q ) 

[5] 

where 
y = the ratio of nominal dead to nominal live load 
V = total volume of the beam 
q = is the geometric factor depending on the loading condition 
d = is a random variable representing total applied dead load divided by 

nominal dead load 
q = is a random variable representing total applied live load divided by 

nominal live load 
x* = shear strength of a unit volume under uniform shear 

Since shear test data were not available for dimension lumber, x* was calculated using the 

following expression: 

1 
T*=m[-Ml-Pfajlure)]k 

[6] 

where 

"failure 

= was taken as 5.53 for softwood based on glued-laminated lumber test 
results (Foschi and Barrett 1975), which was assumed to be species 
independent. 

= is the probability level of failure. 
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The scale parameter, m, is given by: 

m - A* A STM 

[7] 

where 
X = was taken as 1.95 for softwood based on A S T M shear blocks for air-dry 

Douglas fir (Kennedy 1965), which was assumed to be also species 
independent 

TASTM = A S T M shear block shear strength at the probability level of failure, 
Pfailure-

The characteristic or specified shear strength, Rc was determined from the mean A S T M shear 

block strength for dimension lumber, T c i e a r , of clear and green material adjusted to 5-th percentile 

level and dry conditions as: 

R c = x c l e a r ( l - 1.645cv)xL08x2.25-1 

[8] 

where 
cv = coefficient of variation of the green strength 
1.08 = is the adjustment for seasoning 
2.25"1 = is the traditional A S T M conversion factor from shear block to beam 

strength 

The second mode of failure (case B) of equation 3, which involves a fracture toughness 

parameter (Knc), (Foschi, Folz, Yao 1989) was not considered in this study. 

Achieving shear failure in small and short split-free lumber specimens has proven to be a 

major obstacle limiting improvement in shear design of split-free members. These small and short 

split-free lumber specimens tends to fail in compression perpendicular to grain rather then shear 

under the traditional bending test. Recently (Soltis, 1994 and Leicester, 1994) reported success in 
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achieving a high proportion of shear failures in sawn lumber beams using a two-span continuous 

beam test specimen. The two-span beam specimens exhibited several failure modes such as shear 

parallel-to-grain, bending (tension parallel to grain), and compression perpendicular to grain. 

With a satisfactory test method, the material property database necessary for reliability studies 

could be extended to a wider range of structurally important species. 

Reliability studies conducted to date have assumed that the clear-beam and defect-beam 

failure modes are independent. This is a conservative assumption and additional experimental 

effort should be directed at establishing the relationship between shear strength of clear-beams 

and the fracture parameters associated with the crack propagation failure modes. 

2.3 W O R K I N G STRESS DESIGN (WSD) AND LIMIT STATES DESIGN (LSD) 

In the Working Stress Design approach, the allowable shear stress is a fraction of the 

shear stress corresponding to failure. The design equation has the following form: 

Applied Shear Stresses < Allowable Shear Stresses 

[9] 

where allowable shear stress is the material strength -H safety factors and the applied shear stress is 

derived from a nominal load condition based on the probability of exceeding a certain limit within 

a certain time. 
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In accordance with current A S T M D245, the clear wood shear strength values obtained 

by A S T M D2555 (1994) are reduced by a factor of 4.1 for softwoods and 4.5 for hardwoods. 

This factor of 4.1 accounts for stress concentrations (2.25), and duration of load (1.82). The 

working stress design method is still being used in the US. 

The more modern Limit State Design approach applies load factors to the nominal applied 

shear load and a resistance factor to the tested shear resistance of the member. This method has 

been adopted by the Canadian Design Code and more recently the European codes. The design 

equations and related factors are determined using a probabilistic approach to meet an overall 

level of safety, represented by the so-called safety index (Foschi, Folz, Yao 1989). Load and 

resistance factors are calibrated to meet this target. The design equation has the following form: 

In accordance with CAN/CSA-086.1-M89, the factored shear resistance, V r of sawn lumber is 

Factored shear resistance of structure > Factored shear load effect 
[10] 

2 
V r = (j>F — A K 

v 3 zv 
K 

N 

[11] 

Where, 

Fv 

A 
K Z v 
K N 

Performance or Resistance factor = 0.9 

fv ( Kp K H KJV K T ) 

Area of cross section (b x d), mm2 

size factor in shear ( CSA-086.1 Table 5.4.5) 
notch factor 
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fv = specified strength in shear 2 

( CSA-0.86.1 Table 5.3.1 A to 5.3. ID ) MPa 
K D = load duration factor 
K H — system factor 
Ksv = service condition factor for shear 
K T = treatment factor 

Figure 2 compares the two design methods. The Limit State Design approach applies 

factors to the design load to account for various loading conditions. This approach yields a 

consistent safety margin for all structures regardless of on the loading conditions. In the Working 

Stress Design method, however, no differentiation is made between the different loading 

conditions or the structure type, which results in an inconsistent safety margin. 

2 f„ depends on the species, grade, and usage. It ranges from 0.7 to 1.9 
for species studied in this paper. (Douglas-Fir, Hem-Fir, Spruce-Pine-Fir) 
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Figure 2. Comparison of Working State Design and Limit State Design methods. 
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3. T H E O R Y AND ANALYSIS M O D E L 

3.1 WEIBULL WEAKEST LINK THEORY 

The Weibull weakest link theory can be used to explain the effects of size and stress 

distribution in some materials. This approach is based on two major assumptions: Firstly, the 

member is expected to behave like a perfectly brittle material such as glass or steel at very low 

temperatures. For such perfectly brittle material, total failure occurs when fracture occurs at the 

weakest point. Secondly, the member is assumed to be made up of individual elements with 

random but statistically independent strengths. The weakest link theory states that the strength of 

the member is determined by the minimum strength value among all the elements. 

Consider the shear strength of a unit volume of material with dimension 1mm x 1mm x 

1mm, Vunit, under an applied uniform shear stresses. Assuming that there are N of these unit 

volumes within a member, and the shear strengths of these, VunitS, are randomly distributed but 

statistically independent. If it is also assumed that the material is perfectly brittle, then the 

minimum shear strength of the unit volumes represent the strength of the member. A three-

parameters Weibull function can approximate the cumulative probability distribution of minimum 

failure shear strength with reasonably good accuracy, and has the following form: 

- ( a 
m w ( a ; k , m ) = l - e a > 0 
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0 a < 0 

[12] 

The three parameters in the above equation, a 0 , m, and k, are material dependent, and are 

typically determined experimentally. In the case of longitudinal shear strength of lumber, a is the 

shear strength, a 0 is the minimum shear strength or the lower bound, m is the scale parameter 

which has the dimensions of a, and k is the shape parameter which depends on the material. 

Equation 12 can be reduced into a two-parameter Weibull function by setting a0 to 0. This 

implies that lumber is capable of having zero shear strength. Although this is physically incorrect, 

the allowance of aQ = 0 reduces the complexity of the analysis and provides a very good 

estimation for survival probability, typically 95% or greater. 

In the cases considered herein, the two-parameter Weibull approximation will be used. 

Considering a system consisting of q unit volumes that satisfies the above assumptions of the 

Weibull weakest link theory, then the probability of survival (shear failure does not happen) under 

uniform shear stress for each unit volume is 1 minus the probability of failure, Pf. The probability 

of survival, P s, can be expressed by the following: 

P = l - P - = l - ( l - e )=e 

[13] 
Where T * denotes the uniform shear stress over the unit volume. 
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Let event A be the first unit volume that survives without a shear failure. Let event B be 

the second unit volume that survives without a shear failure and so on for all q unit volumes. 

The probability that all q unit volumes in the system survive without shear failure is the 

probability of event A intersecting event B and so on for all q unit volumes. The probability of 

survival, P s, for each unit volume is described by equation 13. One assumes that all the events are 

independent of each other, then the probability of survival for the system, PS(system) is simply the 

product of each individual P s . Therefore, PS(system) is 

P _ „ m * „ m * „ m m m m 
, . / „ . „ . „ „ , \ — c c e — c 

* 

s(system) 

When all the T * ' S are the same, 

p e m 
s( system) 

[14] 

The probability of failure of the system is then 

* 
P =1 — P = l - e f(system) s(system) 

[15] 

Further, let's assume that this system of unit volumes has a total volume AV, which equals to 

qV^t, then q equals AV/ V u r u t . Substituting this into equation 15 yields, 
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— ^ ( A k A V 
V m 

P = 1 - P = 1 - e u m t 

f (system) s(system) 

[16] 

Now, consider a general system under non-uniform shear stresses. Assuming the q unit volumes 

are under different shear stresses ( Oi, i= 1,2, q). The probability of survival of such a system 

can be expressed by: 

- i - A ) k A V - ^ - ( ^ ) k A V - - i - ^ A V V •„ mJ V m ' V v m u _ P unit * p umt *~ umt 
^s(system,non-uniform) _ e e e 

1 - q ^ k , 
vunit m K 1 l •» q _ ^ v

Unit m »-t 
_ e = e 

-77^—*~\- I (a(x,y,z))kdv 
_ Vumt m

k system * s t e m 

s(system,non-uniform) e 

[17] 

Where a(x,y,z) is a shear stress function. The probability of failure, P̂ system,non-unifomi), for the 

system under non-uniform shear stress is then 

~\f^ * ~~ J (a(x,y,z))kdv 
Vunu 

^f(system,non-uniform) _ 1 e 

[18] 
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Now, if one equates the same probability of shear failure level, F*, of the unit volume under 

uniform shear stresses and the general system under non-uniform shear stresses, one gets the 

following expression: 

J (a(x,y,z))kdv. system 
F = 1-e = l - e unit m K system 

from which the integral parameter I can be defined as, 

I = ( x * ) k = — J (a(x ,y ,z ) ) k dv 
u n i t system 

system 

1= J (a(x,y,z)) kdv 
system 

system 
[19] 

In wood, brittle behaviour is common in longitudinal shear and tension perpendicular to 

grain, while ductile behaviour is typically observed in compression parallel and perpendicular to 

grain. Thus the Weibull weakest link theory is not suitable for the analysis of compression failures 

in wood, but was found to provide an excellent estimation for longitudinal shear strength in 

wood. 
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3.2 FINITE E L E M E N T ANALYSIS COUPLED WITH WEIBULL WEAKEST LINK 

THEORY M O D E L 

In solving equation 19, a finite element analysis is needed to evaluate the complex shear 

stresses over the volume, raised to the power k. As a first attempt estimation of equation 19, a 

two dimensional linear elastic finite element analysis was performed, using the program FEMPC, 

written by R.O. Foschi (1990). An eight-noded quadratic isoparametric element was used in the 

analysis, which tends to converge quickly. Given an arbitrary load, boundary conditions, and the 

parameter k, the program returns the integration, I of equation 19, of the shear stresses over the 

volume for given k. 

From equation 19, one can equate the integral I for a unit volume under uniform shear 

stresses to that of a full size beam under non-uniform shear stresses at a given probability of 

shear failure level. ( No integration of the shear stresses is necessary for the unit volume under 

uniform shear stresses). At the median level, one can rewrite equation 19 in the following way: 

0.5 
* L-

r = J ( o ( x , y , z ) 
beam 0.5 beam 

beam 

[20] 

where, 

= the median uniform shear stresses over the unit volume. %5 

S(x>y>z)beam 0.5 = the shear stress field associated with the median shear failure load over 
the beam volume. 

Since FEMPC is a linear elastic model, the following expression holds, 
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° ( x - y > z > b e a m _ ° ( X ' Y ' Z } i ° P » t 

b e a m P . 
i n p u t 

[21] 

where. 

a(x,y,z)i n p u t = the shear stress field associated with the input load Pinput for the program 
FEMPC. 

a(x,y,z)beam = the shear stress field associated with the load Pbeam of the beam in question. 

Let 

^eam = 1 ( ° ( X ' Y ' Z)beam } d V 

beam 
[22] 

then substituting equation 21 into equation 22, yields the following: 

b e a m beam 
P (-beam v 

o(x,y,z) input 

input 
dv 

beam 
P. 

input 
b e L < 0 < X - y ' Z > ' » P u . > d " 

and letting, 

I i n P » t = b e L ( C T ( X ' y ' Z ) i " P u t ) ^ 

therefore equation 23 becomes 

[23] 

[24] 

beam 
beam 

input 
I • nput 

[25] 
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One can substitute equation 25 and 22 into 20 and hence 

p _ V > ' i n p u t -

b e a m 0 . 5 [I. ] k 

i n p u t 

[26] 

where PDeam 0.5 is the median beam failure shear load. 

Given the median uniform failure shear stresses over a unit volume, x*0.5, the Weibull 

shape parameter k for that material, and obtaining 1 ^ from an arbitrary input load Pinput {from 

the program FEMPC), a prediction of the median failure load for the beam is possible using 

equation 26. 

It is physically very difficult to obtain the value of the uniform stresses, x*, over a unit 

volume. Thus an estimation is necessary. Based on finite element and regression analyses on 

existing A S T M shear block data, Barrett and Foschi (1975) related A S T M shear block results to 

the uniform stresses over the unit volume for several cases of different k values. They suggested 

that the uniform stress, x*, over the unit volume is 

X = T * c T 1 1 P j A S T M 

[27] 

where, 

X A S T M = Shear stresses for the A S T M shear block. 
p t = 1.33 + 0.336 ( k - 4 ) if 4 < k < 8 
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p t =2.678 + 0.251 ( k - 8 ) if 8 < k < 10 

If PASTM is the load applied to the A S T M shear block, then T A S T M is defined as the average shear 

stress over the shear area As; 

P A S T M 
x A S T M A 

[28] 

Based on the A S T M shear block test results, the shear strength of the unit volume can be 

estimated using equation 27. The Weibull shape parameter k can be fitted to the A S T M shear 

block results or can also be conveniently estimated as (Leicester, 1991) 

k = c v - 1 0 8 5 

[29] 

where 

CV = coefficient of variation of shear strength. 

Equation 19 can be solved for any desired probability of survival by entering an arbitrary input 

load into FEMPC. The program will give the corresponding I, which can then be entered into 

equation 26. 

Based on classical engineering mechanics theory and assuming point loads and simple 

supports, the magnitude of the shear forces in the middle spans are 2.2 times the shear forces in 

the end spans (see Figure 15). The maximum shear stresses, a^x classical can be estimated as: 
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33 P 
a max classical ^ ^ 

[30] 

where 

P = total maximum load, 
b = beam width, and 
d = beam depth. 

Note that the shear stress calculated from the classical theory is independent of test span to 

specimen depth ratio. The predicted failure shear stresses of a beam can be estimated using 

equation 30 with the predicted failure shear load evaluated using the general form of equation 26 

at any given level of probability of failure. 
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4. EXPERIMENTAL STUDY 

4.1 MATERIAL 

Three species groups of Canadian softwood dimension lumber were sampled from mills in 

British Columbia: Douglas-Fir, Hem-Fir, and Spruce-Pine-Fir. Approximately 100 pieces of 

nominal 38 mm x 185 mm x 3 m lumber were obtained for each species group. Due to availability 

at the time of this study, only nominal 38 mm x 285 mm x 4.87 m of Hem-Fir and Spruce-Pine-

Fir were used. Again, the sample size was approximately 100 pieces for each species groups. The 

material was kiln dried and conformed to be Select Structural grade. After delivery to the 

laboratory, the specimens were further air dried to an equilibrium moisture content of 

approximately 12%. 

4.2 FLAT-WISE MODULUS OF ELASTICITY 

A Cook Bolinders AG-SF grading machine was used to measure the flat-wise modulus of 

elasticity (MOE) profile along each specimen's length. It was checked for accuracy at the 

beginning of each test day. An aluminum bar with a known flat-wise M O E was fed into the Cook 

Bolinders AG-SF grading machine. Five readings were read from each side of the bar and the 

average was compared against the known M O E value. No adjustments were necessary if the 
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readings fell within 10 % of the known value. Once the machine was calibrated, full length 

specimens were fed through the machine lengthwise with the grade stamp end first. 

The specimens were hand pushed into the mouth of the machine on level infeed roller tables with 

a speed approximately equal to the infeed speed of the moving rollers inside the machine. The 

specimens were guided gently by hand as they moved through the rollers to avoid vibrations that 

could effect the accuracy of the load readings. Infeed roller tables were necessary on both ends of 

the machine to ensure the specimens were level during the entire pass through the machine. The 

Cook Bolinders AG-SF grading machine has photo cell sensors at the mouth of the machine and 

after the second set of rollers, CI and C2. Figure 3 shows a schematic diagram of the Cook 

Bolinders' working mechanisms. As a specimen passes through the photo cell sensor, rollers A l 

and A2 clamp onto the specimen and start to feed it into the machine. The feeding system moves 

the specimen into the rollers at a rate of 0.508m/sec. The machine's load sensor (located behind 

roller B in Figure 3) waits for a prescribed amount of time which corresponds to the time 

necessary for the specimen to reach the rollers CI and C2 before it starts recording the load. 

Once the end of the specimen reaches the photo cell sensor for the second time, the machine 

stops recording. Thus the load profile begins and ends with a margin of 500 mm of no data on 

both ends of each specimen. The Cook Bolinders AG-SF grading machine then waits to record 

the same specimen again. Each run requires two passes of the same piece. The specimen was then 

rotated 180° about its longitudinal axis and fed through the machine again. The load profiles 

from both passes were averaged to eliminate the effects of bow and surface roughness of the 

specimen. Figure 4 shows the machine in the process of testing a specimen. The rollers inside the 

machine simulated a simple three point loading condition. The specimens were deflected on flat 
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under center point loading on a span of 900 mm with a prescribed center point deflection of 4.5 

mm. 

Figure 3. Sequence description of the Cook Bolinders AG-SF grading machine 
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This 4.5 mm displacement was large enough to produce a reasonable M O E profile and yet small 

enough to prevent any destructive bending failures. The force required to deform the specimens 

was continuously monitored and later converted into flat-wise M O E estimates. 

The deflection of the simulated simple three point loading from the three rollers can be 

expressed as: 

p i / 

4 8 E f i . t I

y 

[31] 

where, 

A = deflection at center 
P = load 
L = span between the center of the outer rollers 
Eflat = flat-wise modulus of elasticity (MOE) 
Iy = moment of inertia. For a rectangular beam section on flat, it has the following form: 

I = 
y 12 

[32] 

where, 

b = depth of the beam, 
h = thickness of the beam. 

Equation 31 can easily be rearranged to 

P I / 
E flat = 

48 AI y 

[33] 

for the evaluation of the flat-wise M O E (Eflat). 
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4.3 EDGE-WISE MODULUS OF ELASTICITY 

A 224 kN capacity bending machine was used to measured the edge-wise M O E of full 

size specimens under a standard four point bending configuration. Figure 5 shows the span and 

locations of the loading heads of the machine. Two different spans were used in this test. A total 

span of 2.96 m was used for all the 38mm x 185mm specimens and a span of 4.845 m was used 

for the 38mm x 285m specimens. The end reactions and loading heads were 15 cm long by 10 

cm wide. A hydraulic actuator was used to move the loading heads with a maximum stroke of 

254 mm. The reaction and loading heads were pivoted to simulate roller type reactions. Lateral 

supports prevented out-of-plane buckling of the specimens. 

A yoke device with a linear variable differential transformer (LVDT) was used to measure 

the beam's mid-depth displacement relative to a line joining points A and B on top of the loading 

heads (Figure 5). The stroke displacements of the actuator, the yoke displacement, and the 

applied load were recorded at regular intervals by data acquisition software on a personal 

computer. A real time display of the loads versus actuator's and yoke's L V D T measured 

displacements were used as guide to discontinue loading when enough points were collected. 

The maximum load for each specimen was set at 3 kN with a rate of loading of 0.5mm/s. The 

average time of loading for each specimen was under one minute. 

Using elementary principles of mechanics of materials, the yoke's displacement at C in 

Figure 5 can be estimated by: 
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P L 3 

^ ^ e d g e ' x 
[34] 

where. 

Eedge = edge-wise Modulus of Elasticity (MOE) 
P = applied load 
A c = displacement measured by the yoke's L V D T at point C relative to line AB. 
L = span between the two supports 

I x = moment of inertia for the rectangular beam about the strong axis. 

= — b 3 h 
12 

Equation 34 can be rearranged in the following form: 

PL 3 

Eedge " 4 3 2 A j 
c x 

[35] 
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Figure 5. 224 kN Bending Machine 
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4.4 LONGITUDINAL SHEAR TESTS. 

A modified Tinius Olsen Universal testing machine with 889kN capacity was used for the 

full size longitudinal shear test. The loading head was controlled vertically with mechanical gears 

selected at low speed. Figure 6 shows the Tinius Olsen machine in the Civil Engineering 

Structures laboratory. The two span five point bending shear test configuration, with specimen 

depth to span ratios of 5:1 (5D) and 6:1 (6D) is shown in Figure 7. Because bending failures 

typically dictate the load carrying capacity of beams, a special loading arrangement was required 

that produced a high shear-to-bending failure ratio. Experience has shown that 5 point bending 

tests can produce a greater percentage of shear failures compared to other full size 

bending shear tests. The shear to bending stress ratio, ashear/c»bending, is higher in the 5 point 

bending test than the conventional four point bending test. To produce the shear stresses 

necessary to fail the members, the high load levels could cause compression perpendicular to 

grain failures to become a serious concern. Special care was needed in designing the reactions 

and loading heads to minimize crushing of the wood. 

The design of the loading heads and the reaction plates had to be large enough to avoid 

extensive compression perpendicular to grain failures. A compression perpendicular to grain test 

was conducted in establishing the compressive strength of the softest species at hand which was 

Spruce-Pine-Fir. Twenty-five blocks, 100mm x 100mm x 38mm, were randomly cut from the 

group of nominal 38mm x 285mm Spruce-Pine-Fir for the test. The mean moisture content of 

these blocks was 15 % with a mean green specific gravity of 0.42. The mean compression 

strength perpendicular to grain for all 25 specimens was 1.8 MPa. 
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Figure 6. Tinlus Olsen two span five point bending machine 
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Figure 7. Two span 5 point bending test configurations 5D and 6D 
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For the nominal 38mm x 185mm beams in both the 5D and 6D configurations, the loading 

head plates were designed to be 336 mm in length parallel to the longitudinal direction of the 

beams. The center and end reactions were 420mm and 120 mm respectively. For the nominal 

38mm x 285mm beams, the initial loading head plate size was 400 mm for both species and both 

configurations. Figures 8.1 to 8.6 show the finite element meshes for half of the beam (symmetric 

over mid-length) and the reaction plate sizes for all sample groups. 
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Figure 8.1 Finite element mesh about the mid span for span to depth ratio of 5:1 (38mmxl85mm) 
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Figure 8.2 Finite element mesh about the mid span for span to depth ratio of 6:1 (38mmxl85mm) 
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Figure 8.3 Finite element mesh about the mid span for span to depth ratio of 5:1 (38mmx285mm) 
S-P-F 
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Figure 8.4 Finite element mesh about the mid span for span to depth ratio of 5:1 (38mmx285mm) 
H-F 
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Figure 8.5 Finite element mesh about the mid span for span to depth ratio of 6:1 
(38mmx285mm) S-P-F 
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Figure 8.6 Finite element mesh about the mid span for span to depth ratio of 6:1 
(38mmx285mm)H-F 
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The center and end reactions were 684 mm and 163 mm respectively. The width for all plates was 

100 mm. Using this plate size initially on the Spruce-Pine-Fir resulted in frequent compression 

perpendicular to grain failures and a new loading plate size of 500 mm was later used on the 

Hem-Fir (compromising with a shorter span).To be consistent, the 400 mm plate was continued 

to be used throughout for the Spruce-Pine-Fir group. 

The thickness of the loading heads and reaction plates in all cases were approximately 60 

mm and 30 mm thick respectively to ensure that they remain rigid to distribute the loads evenly 

onto the beams. The loading heads were attached to an I-beam 350 mm deep to ensure loading 

was evenly distributed to each loading head. 

The two end reactions and the loading heads were allowed to rotate about the z-axis (see 

figure 7). This simulated a pinned type support. The center support remained fixed. Lateral 

supports were in place between the loading heads and end reactions. In this region lateral 

buckling would most likely occur. Special care was taken to ensure the lateral supports did not 

produce an unacceptable amount of friction which might affect the stresses in the beam. Teflon 

pads were placed between the beam's surface and the lateral supports. Lateral supports were also 

in place at the center reaction. All lateral supports extend beyond the depth of the beam. 

One L V D T was attached to the I-beam to measure the displacement of the loading heads, 

while another L V D T was attached to the beam on a yoke. This L V D T , located under one of the 

loading heads, was used to measure the displacement at mid-depth of the beam relative to the 

center support and the end reaction. This measured displacement was used as a check against the 
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finite element analysis results. Randomly selected values showed good agreement with the finite 

element predictions. 

The accuracy of the mechanical Tinius Olsen load display was checked against a calibrated 

electronic load cell. The load readings from the Tinius Olsen was within 2% from that of the load 

cell. 

An overhang, equal to the member depth, measured from the center of the end reaction 

plate, was provided at each end of the member. The specimens for the full size shear test were 

trimmed to eliminate excessive overhang in such a way to avoid end cracks in the members. Any 

members with cracks or end splits that could not be trimmed to provide the proper length were 

rejected from the test. Once the members were trimmed, they were transported from the storage 

site into the laboratory for testing in groups of thirty. Each piece was further inspected before the 

actual shear test to ensure the member was free from end splits or cracks. Vertical lines, at an 

approximate spacing of 30 mm were drawn on both wide faces of each specimen which served to 

detect longitudinal shear failures. The average loading rate was 5 mm/min. This conforms to the 

A S T M D 198 (1994b) which specifies maximum load to be attained between 6 and 20 minutes. 

The load and both displacements were recorded by a computer controlled data acquistion system. 

The load was also monitored from the dial type display and was manually recorded as a back-up. 

A real time display of the load versus the loading head displacement was available. From this 

display, it was easy to determine any failure by the sudden drop in load. A typical load-deflection 

curve is shown in figure 30 of appendix B. The location and types of failures were also recorded. 

Once the member had failed, the loading heads were kept in position. This allowed a careful 
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examination of the failure mode at the time of failure for classification. Figure 9 shows the 

different failure modes and their classifications encountered during the testing program. 

Photographs were taken for each specimen after failure. In some cases, failures in the shearing 

mode were not readily apparent. A rule was adopted that if failures resulted in cracks or splits 

which extended within 25 mm of the top and bottom surfaces of the beam, these beams were not 

considered as failures in shear, and were attributed to tension type failures because shear stresses 

in these regions were expected to be reasonably low. 
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4.5 SHEAR B L O C K TESTS 

An A S T M shear block (ASTM D143) with dimensions as shown in Figure 10 was 

obtained from each of the failed specimen. They were defects free and of straight grain. All the 

surfaces were cut as plane and at right angle to each other as possible, to minimize any possible 

eccentric loading during the shear block test. A standard shear test apparatus was used for the 

A S T M shear block test. A MTS 810 Material Test System was used to control the ramp 

movement and rate of loading (15.24 mm/min). The maximum allowable displacement of the 

shearing plane was ± 7.62 mm. The capacity was set at 50,000 N. A real time display of load 

versus displacement was available. A sudden drop in load was an indication that the block had 

failed. The average time to failure was between 5 and 10 minutes. A personal computer was used 

to record the loads at a sampling frequency of 2 Hz. Dimensions of the shear planes were 

measured and recorded manually just before the shear test. These data were used later to 

determine the average shear stresses within the shearing plane of each block. 
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Figure 10. A S T M shear block 

4.6 SPECIFIC GRAVITY TEST 

Blocks with nominal dimensions 38mm x 63mm x 51mm were extracted from failed 

specimens for specific gravity tests. The exact green dimensions and weights were manually 

measured using a digital caliper, accurate to 1/100 of a mm. Once the blocks were measured and 

weighed, they were oven-dried under a constant temperature of 103 °C for 24 hours. The blocks 

were then taken out, one batch at time. The dry dimensions and weights of the blocks were 

measured once more when the blocks were cool to the touch. 
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5. RESULTS AND DISCUSSION 

5.1 MODULUS OF ELASTICITY ESTIMATION 

The load profiles from both sides of the beam, obtained from the Cook Bolinders AG-SF 

grading machine, were further superimposed to obtaine a single average load profile. This was 

later converted to a flat-wise modulus of elasticity (MOE) profile using equation 33. A single 

average value was then obtained from this flat-wise M O E profile. The results for both nominal 

38mm x 185mm and 38mm x 285mm of the different species are listed in Tables 1 and 2. 

The estimation of the edge-wise M O E was based on equation 35. A linear regression was 

performed on a selected range of points free from outliers for the estimation of the ratio, P/A. It is 

not uncommon to get outliers at the beginning of the test when the loading heads first make 

contact with the beam. However, once the loading heads have settled down, the relationship 

between P and A becomes fairly linear. 

It was observed that, in general, the nominal 38mm x 185mm Hem-Fir specimens had an 

unusual amount of large knots for a supposedly select structural grade. Both the flat-wise M O E 

and edge-wise M O E were lower than the nominal 38mm x 285mm Hem-Fir specimens which 

were mainly clear materials. 
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Figure 27 in appendix B shows a typical relationships between the edge-wise M O E and 

beam failure shear stresses. Figure 29 shows a typical relationships between the edge-wise M O E 

and the A S T M shear block shear strength. The R 2 values from a simple linear regression analysis 

range between 0.00 and 0.32 for all species and nominal sizes, and suggest very little linear 

correlation exists between the above relationships. 

5.2 A S T M SHEAR BLOCKS RESULTS 

A S T M shear block tests were conducted on each beam regardless of the beam's failure 

mode. The shear strength was estimated by equation 28. Tables 9 and 10 show the median and 

5th percentile A S T M shear strengths of the different species for nominal 38mm x 185mm and 

38mm x 285mm respectively. A S T M shear block shear strengths from the two different nominal 

sizes but of the same species, exhibit similar values. A two-parameter Weibull fit was conducted 

for the determination of the 5th percentile shear strength of the A S T M shear block. Once the two 

parameters m(scale), and k(shape) were determined, the 5th percentile shear strength estimation, 

ao.05, for a fairly large sample size could be evaluated by the following: 

CT0.05 = m t l n 

1 

1 - 0.05 
ik 

[36] 

The median and 5th percentile shear strength of A S T M shear blocks and the fitted k values were 

later used for the prediction of the full size beam failure shear load. 
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5.3 SPECIFIC GRAVITY RESULTS 

Tables 1 and 2 show the median oven dry specific gravity results for the different species 

and nominal sizes. The oven dry specific gravity, SG oven dry was calculated using the following 

equation: 

WT . 
SG , = 5d_ 

oven dry w „ 
VodPw 

[37] 
where, 

W T o d = oven dry weight of the blocks 
Vod = oven dry volume of the blocks 
p w = density of water = 0.001 g/mm3 

The median specific gravity of blocks from the same species but of different nominal sizes 

did not exhibit a significant difference. Figures 26 in appendix B shows the typical relationship 

between the oven dry specific gravity and beam failure shear stresses. Figure 28 shows the typical 

relationship between SG oven dry and the shear strength of the A S T M shear blocks. Again, the R 2 

values which range between 0.05 and 0.52 suggest no strong linear correlation for the above 

relationships. 

\ 
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5.4 F U L L SIZE B E A M RESULTS 

Linear elastic finite element analyses, using eight-noded quadratic isoparametric elements, 

were performed to determine the stress distributions in the two test configurations. Figure 8.1 to 

8.6 show the finite element meshes chosen for the analyses with symmetry about mid-span taken 

into consideration. 

The M O E perpendicular to grain and the shear modulus that were used in the analysis 

were estimated for softwood (Bodig and Goodman, 1973) by the following: 

l 0 S E p e r d = log(5.2140)+ 0.6749 l o g ( E e d g e ) 

[38] 

log G = log(3685.2) + 0.23585 l o g ( E e d g e ) 

[39] 
where 

Eperd = modulus of elasticity perpendicular to grain in psi 
Eedge = edge-wise modulus of elasticity in psi 
G = shear modulus in psi 

The modulus of elasticity values in the x and y directions, modulus of rigidity, and Poisson 

ratios (vxy and v )̂ of the three species and two sizes used in the finite element analyses are given in 

Tables 7 and 8. Here the x and y directions are taken as the direction parallel and perpendicular 

to the long axis of the member, respectively. 
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Since the values of Poisson ratio,vxy (strain perpendicular to grain due to stresses along 

the grain), and Vy* (strain along the grain due to stresses perpendicular to grain) are very small 

for wood and also very difficult to measure, an estimated average value of v^, and for 

softwood of 0.42 and 0.033 (Bodig and Goodman, 1973) respectively were used in this study. 

To obtain the volumetric stress under an applied load, the shear stress field was numerically 

integrated over the volume following a Gauss quadrature integration scheme (Foschi and Barrett 

1976). 

Close examination of the stress field generally reveals high stress concentrations at loading 

points. If these locations were considered during the evaluation of I, unrealistic estimations of 

longitudinal shear strength would result. Since one can assume that a combination of shear and 

compression perpendicular to grain type failure would occur locally. Therefore, the stresses in 

these regioins should be ignored during the integration. In the current analysis, the shear stresses 

in some of the elements located in the top rows during the evaluation of I were ignored (see 

Figure 8.1 to 8.6). This is consistent with the interpretation of the experimental data base where 

beam failures which extended into or within the 25 mm of the top and bottom zones of the beam 

were considered as either bending or compression perpendicular to grain failures, rather than 

shear failures. 

Figures 11 to 14 show the compressive stresses for the nominal 38mm x 185mm and 

38mm x 285mm specimens of the different species assuming the load was uniformly distributed 

over the loading plates. Again, loading and reaction points exhibit high compressive stress 

56 



concentration, which dissipate quickly towards the mid-depth of the beams between the loading 

heads and center reaction. These are the areas where almost all shear failures occurred. 
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Figure 11. Compressive stresses for 38mm x 185mm 5D Spruce-Pine-Fir based on median failure 
load (MPa) 
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Figure 12.2 Compressive stresses for 38mm x 185mm 5D Douglas-Fir based on median failure 
load (MPa) 
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Figure 13. Compressive stresses for 38mm x 285mm 5D Spruce-Pine-Fir based on meplian 
failure load (MPa) 
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Figure 14. Compressive stresses for 38mm x 285mm 5D Hem-Fir based on median failure 
(MPa) 
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The compressive stresses in these areas were approximately 1 to 3 MPa in the 5D cases. This 

would suggest that the compressive stresses in the members contribute very little, if any, to 

influence the shear strength. 

Shown in Figures 16 to 18 are the cumulative distributions of all the failure modes except 

compression perpendicular to grain failures in the nominal 38mm x 185mm specimens for both 

5D and 6D cases of the different species (Figures 22 and 23 for nominal 38mm x 285mm). 

Figures 19 to 21 are the cumulative distributions of the failure shear loads only. (Figures 24 and 

25 for nominal 38mm x 285mm). From these cumulative distributions, specimens with the longer 

span of the same nominal size group in the 6D cases for all species exhibited lower shear strength 

than the shorter span 5D cases. This would suggest that size effect played a role in that the longer 

span cases with the larger specimen volumes had a higher probability of containing defects that 

lowered the shear strengths of the members. 

Tables 3 to 6 compare the predictions of the finite element and Weibull weakest link 

analyses against the experimental median and fifth percentile beam shear strengths for both 

nominal sizes. The predicted median and 5th percentile failure shear loads were estimated by 

substituting the median and 5th percentile T* respectively into equation 26. The median and 5th 

percentile beam failure shear stresses can be estimated by equation 30 where P is the median and 

5th percentile beam failure shear loads. Based on classical engineering mechanics theory and 

assuming point loads and simple supports, the free body, shear force, and maximum shear stress 

diagrams for the two span load configuration are shown in Figure 15. It is in these middle spans 

that almost all longitudinal shear failures occurred. 
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Errors between the predicted and experimental median and 5th percentile shear strength 

for the different nominal sizes are also provided in Tables 3 to 6. These predicted values were 

obtained by using equation 26 . The k values were estimated using equation 29, based on ASTM 

shear blocks test results of the corresponding species, independent of the failure modes and span 

configurations. A two parameter Weibull fit was conducted to evaluate the fifth percentile of the 

failure shear loads for the various species, sizes, and spans groups. The median dimensions of the 

members were used to calculate the failure shear stresses of equation 30. 
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Figure 15. Classical analysis of the 5 point test system 
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Good agreement between the median predicted and experimental values were observed 

with the exception of nominal 38mm x 185mm Hem-Fir in the 6D case, which was an over­

estimated by 14.96 %. This could be explained by the fact that the MOEs in this group were 

lower than expected, suggesting that the actual beam strength was lower than the model 

prediction which was based on the clear A S T M shear blocks results. Large knots were frequently 

encountered in this particular group. A maximum under-estimated error of -4.85% was observed 

for the median failure shear load. 

Soltis and Rammer's (1994) proposed method to relate XASTM to beam shear strength (x) 

of equation 2 did not accurately predict the failure shear loads from this study. The empirically 

based approach under-predicts the median failure stress with a maximum error of -4.23 % and 

mostly over-predicts the median failure stress with a maximum error of 31.14% Evaluating the 

median A S T M shear strength based on only beams that failed in shear, instead of the entire 

sample group regardless of the failure modes, did not improve these error statistics for the 

empirically based approach. 

Figures 46 and 47 compares the two prediction methods with measured median failure 

loads from the various cases. Clearly, good agreement can be observed with the finite element 

and Weibull weakest link approach which tends to under-predict the median failure stress. The 

maximum error fluctuated between -0.86% (under-prediction) to 14.96% (over-prediction). 

Contrary to the assumed k value of 5.53 for all softwood used during the development of 

the shear strength provision of the current Canadian Code, this study has shown that k values are 
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species dependent. Tables 9 and 10 compare the shear strength of a unit volume under uniform 

shear stress, x*, for different species and size groups based on the current study (equation 27) and 

the approach taken to obtain the current Canadian Code shear strength provisions (equation 6). It 

is clear that using the species dependent k values of the select structural sawn lumber together 

with equation 27 yields a higher x*. This would indicate that the characteristic shear strength 

values adopted in the current Canadian Code might be overly conservative for Select Structural 

dimension lumber. For lower grades of dimension lumber, shear failures typically do not govern 

because the bending to shear strength ratio is significantly lower as compared to the Select 

Structural grade material. Therefore, in lower quality dimension lumber, the bending failure mode 

is expected to be the most critical. 
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6. CONCLUSION 

An experimental study has been conducted to evaluate the longitudinal shear strength of 

Canadian softwood of Select Structural grade lumber with sizes, 38mm x 185 mm and 38mm x 

285mm, using a two span five point bending test procedure. Three species groups, Douglas-Fir, 

Hem-Fir and Spruce-Pine-Fir, have been considered. In the nominal 38mm x 185mm size group, 

approximately 40 % of the failures can be attributed to shear fracture compared to 30% in the 

nominal 38mm x 285mm size group. Two test configurations were considered: test span to 

specimen depth ratios of 6 and 5. A S T M shear block tests were conducted to evaluate the shear 

strength of small clear specimens, cut from the test beams. Based on the A S T M shear block test 

results, finite element analyses coupled with the Weibull weakest link theory were used to predict 

the shear failure loads of full size members. Good agreement between predicted and measured 

failure loads were observed. 

During the last revision of the Canadian Code on Engineering Design in Wood, leading to 

CAN/CSA-086.1-M94, a reliability based approach was adopted for calculating the shear 

resistance of sawn lumber. These values were derived from analyses considering two distinct 

modes of horizontal shear failure in sawn lumber: clear wood without end splits (mode I) and 

with end splits (mode II). The combined probability of failure of both modes was evaluated using 

a uniform shear stress, x*, that was based on an assumed species-independent Weibull parameter 

k = 5.53, derived from Douglas-Fir glued laminated beam test results. 
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The test results from this study show that k is species-dependent and T* values from sawn 

lumber test results are higher than those that were adopted assuming equivalency with Douglas-

Fir glued laminated beam test results. This indicates that the characteristic shear strength adopted 

in the code might be conservative. 

Further, results from this study confirmed that the load carrying capacity of sawn lumber 

under shear failure mode is test configuration dependent and the volumetric shear stress should be 

considered as the key parameter to evaluate the shear strength of beams. Two span five point 

bending test procedures have been proposed for the evaluation of shear strength of sawn lumber 

in the United States. The results from this study show that the empirically based U.S. procedures 

seemed to be inappropriate. 
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Table 1. Summary statistical results for the nondestructive testing for 38 mm x 185 mm 
specimens. 

Edgewise modulus Flat-wise modulus Oven Dry 
of elasticity of elasticity 

Specific 
Gravity 

38mmx185mm Sample Median Mean CV Median Mean CV Median CV 
size (MPa) (MPa) (%) (MPa) (MPa) (%) (%) 

Entire Sample 

Douglas-Fir 102 12300 12802 29.42 12451 12346 14.21 0.492 9.78 
Hem-Fir 102 9611 10227 29.30 9668 9747 13.26 0.449 8.79 
Spruce-Pine-Fir 94 10991 11538 23.21 10923 10811 12.51 0.412 11.31 

5D 
Douglas-Fir , 48 11522 12296 29.91 12144 12152 15.44 0.496 10.03 
Hem-Fir 42 10567 10879 25.10 9472 9490 13.52 0.449 6.78 
Spruce-Pine-Fir 51 10707 11281 21.25 10652 10840 12.88 0.399 12.07 

6D 
Douglas-Fir 54 12799 13252 28.80 12671 12519 13.09 0.486 9.65 
Hem-Fir 60 8858 9771 31.80 9854 9927 12.88 0.449 10.01 
Spruce-Pine-Fir 43 11286 11841 25.14 11115 10777 12.20 0.419 10.26 

Table 2. Summary statistical results for the nondestructive testing for 38 mm x 285 mm 
specimens. 

Edgewise modulus Flat-wise modulus Oven Dry 
of elasticity of elasticity 

Specific 
Gravity 

38mmx285mm Sample Median Mean CV Median Mean CV Median CV 
size (MPa) (MPa) (%) (MPa) (MPa) (%) (%) 

Entire Sample 

Hem-Fir 101 10707 10593 17.47 10171 10094 11.32 0.426 8.61 
Spruce-Pine-Fir 103 10199 10259 14.09 9643 9529 10.97 0.372 10.65 

5D 
Hem-Fir 48 10144 10402 20.22 1287 9999 12.87 0.432 6.69 
Spruce-Pine-Fir 52 10033 10348 15.60 9642 9472 12.62 0.369 10.99 

6D 
Hem-Fir 53 10813 10767 14.76 10190 10188 9.80 0.419 10.11 
Spruce-Pine-Fir 51 10296 10169 12.38 9650 9588 9.10 0.376 10.39 
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Table 3. Predicted and experimental median results for 38 mm x 185 mm specimens. 
Experimental Results Model Predictions 

FE and Weibull analysis Soltis and Rammer 

38mm x 
185mm 

Median 
Failure 
Load 

(kN) 

Median 
Failure 
Stress 

(MPa) 

CV 

(%) 

No. of 
shear/ 
sample 

size 

Median 
Failure 
Load 

(kN) 

Median 
Failure 
Stress 

(MPa) 

Error 

(%) 

Median 
Failure 
Stress 

(MPa) 

Error 

(%) 

(5D) 
Douglas-Fir 
Hem-Fir 
Spruce-Pine-Fir 

134.80 
111.70 
109.15 

9.46 
7.86 
7.74 

14.04 
16.12 
15.51 

25/48 
25/42 
14/51 

132.79 
115.22 
104.10 

9.32 
8.11 
7.38 

-1.52 
3.06 
-4.85 

9.06 
8.35 
7.73 

-4.23 
6.16 
-0.14 

(6D) 
Douglas-Fir 
Hem-Fir 
Spruce-Pine-Fir 

122.66 
88.50 
95.30 

8.60 
6.23 
6.76 

12.54 
19.05 
9.61 

28/54 
26/60 
12/43 

118.77 
104.07 
93.35 

8.33 
7.32 
6.62 

-3.27 
14.96 
-2.09 

8.73 
8.05 
7.45 

1.47 
29.19 
10.28 

(5D) 
Douglas-Fir 
Hem-Fir 
Spruce-Pine-Fir 

Based on sheared beam 
specimens only 

134.80 9.46 14.04 
111.70 7.86 16.12 
109.15 7.74 15.51 

25/48 
25/42 
14/51 

9.287 
8.567 
8.166 

-1.78 
8.984 
5.479 

(6D) 
Douglas-Fir 
Hem-Fir 
Spruce-Pine-Fir 

122.66 
88.50 
95.30 

8.60 
6.23 
6.76 

12.54 
19.05 
9.61 

28/54 
26/60 
12/43 

8.955 
8.26 
7.873 

4.073 
32.628 
16.48 
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Table 4. Predicted and experimental results for 38 mm x 285 mm specimens. 
Experimental Results Model Predictions 

FE and Weibull analysis Soltis and Rammer 

38mm x 
285mm 

Median 
Failure 
Load 

(kN) 

Median 
Failure 
Stress 

(MPa) 

CV 

(%) 

No. of 
shear/ 
sample 

size 

Median 
Failure 
Load 

(kN) 

Median 
Failure 
Stress 

(MPa) 

Error 

(%) 

Median 
Failure 
Stress 

(MPa) 

Error 

(%) 

(5D) 
Hem-Fir 
Spruce-Pine-Fir 

138 
115.9 

6.6 
5.5 

9.97 
11.1 

19/48 
12/52 

133.7 
117.6 

6.38 
5.58 

-3.2 
1.44 

7.23 
6.47 

9.72 
17.59 

(6D) 
Hem-Fir 
Spruce-Pine-Fir 

115.1 
100.2 

5.5 
4.76 

8.9 
9.8 

17/53 
10/51 

108.64 
99.33 

5.18 
4.72 

-5.94 
-0.86 

6.97 
6.24 

26.83 
31.14 

(5D) 
Hem-Fir 
Spruce-Pine-Fir 

Based on sheared beam 
specimens only 

138 6.6 9.97 
115.9 5.5 11.1 

19/48 
12/52 

7.152 
7.16 

8.54 
30.08 

(6D) 
Hem-Fir 
Spruce-Pine-Fir 

115.1 
100.2 

5.5 
4.76 

8.9 
9.8 

17/53 
10/51 

6.896 
6.907 

25.48 
45.07 
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Table 5. 5th percentile predicted and experimental results for 38 mm x 185 mm specimens 
Experimental Results Model Predictions 

FE and Weibull analysis Soltis and Rammer 
5th 5th 5th 5th 5th 

percentile percentile percentile percentile percentile 
Failure Failure Failure Failure Failure 

38mm x 185mm Load Stress Load Stress Error Stress Error 
(kN) (MPa) (kN) (MPa) (%) (MPa) (%) 

(5D) 
Douglas-Fir 96.73 6.79 93.48 6.56 -3.47 6.38 -6.04 
Hem-Fir 75.39 5.31 83.70 5.89 9.93 6.06 14.25 
Spruce-Pine-Fir 75.70 5.36 72.51 5.14 -4.40 5.39 0.30 

(6D) 
Douglas-Fir 90.66 6.36 83.62 5.87 -8.42 6.15 -3.35 
Hem-Fir 55.60 3.91 75.60 5.32 26.44 5.84 49.37 
Spruce-Pine-Fir 73.48 5.21 65.03 4.61 -13.00 5.19 -0.37 

Table 6. 5th percentile predicted and experimental results for 38 mm x 285 mm specimens. 
Experimental Results Model Predictions 

FE and Weibull analysis Soltis and Rammer 
5th 5th 5th 5th 5th 

percentile percentile percentile percentile percentile 
Failure Failure Failure Failure Failure 

38mm x 285mm Load Stress Load Stress Error Stress Error 
(kN) (MPa) (kN) (MPa) (%) (MPa) (%) 

(5D) 
Hem-Fir 109.75 5.24 98.05 4.68 -11.93 5.3 1.17 
Spruce-Pine-Fir 90.81 4.32 82.81 3.93 -9.66 4.56 5.68 

(6D) 
Hem-Fir 94.41 4.5 79.67 3.8 -18.46 5.11 13.4 
Spruce-Pine-Fir 76.74 3.65 69.95 3.32 -9.71 4.4 20.58 
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Table 7. Elasticity values used in the finite element analyses 
Modulus of Elasticity Modulus of Rigidity Poisson Ratios 

x-direction y-direction 
38mm x 185mm (MPa) (MPa) (MPa) VXY VYX 

Douglas-Fir 12300 595 757 0.42 0.03 

Hem-Fir 9611 504 715 0.42 0.03 

Spruce-Pine-Fir 10991 552 738 0.42 0.03 

'or 38 mm x 185 mm specimens 

Table 8. Elasticity values used in the finite element analyses for 38 mm x 285 mm specimens 
Modulus of Elasticity Modulus of Rigidity Poisson Ratios 

x-direction y-direction 
38mm x 285mm (MPa) (MPa) (MPa) VXY VYX 

Hem-Fir 10707 542 733 0.42 0.03 

Spruce-Pine-Fir 10199 525 725 0.42 0.03 
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Table 9. Clear wood shear strength parameters for 38 mm x 185 mm specimens 

38 mm x 185 mm 

TASTM 

Median CV 5th percentile Sample k 

(MPa) (%) (MPa) size 

w Shear strength of 
a 

unit volume (inchA3) 

p ,Shear strength of a 

unit volume (inchA3) 

38 mm x 185 mm 

TASTM 

Median CV 5th percentile Sample k 

(MPa) (%) (MPa) size 

median 5 t h percentile 

x*0.5 x*0.05 

(MPa) (MPa) 

mean 5th 
percentile 

assumed T*0.5 T*0.05 

K (MPa) (MPa) 

Douglas-Fir 
Hem-Fir 
Spruce-Pine Fir 

Douglas-Fir 
Hem-Fir 
Spruce-Pine Fir 

8.98 15.89 6.32 102 7.36 
8.27 16.00 6.00 102 7.42 
7.65 16.00 5.33 93 6.95 

TASTM results corresponding to those beams 
that failed in shear only. 

9.21 17.28 53 
8.49 11.59 51 
8.08 19.17 26 

22.61 15.91 
20.94 15.21 
18.47 12.87 

5.53 12.04 6.25 
5.53 9.32 4.48 
5.53 8.74 4.10 

Table 10. Clear wood shear strength parameters for 38 mm x 285 mm specimens. 

38 mm x 285 mm 

TASTM 

Median CV 5th percentile Sample k 

(MPa) (%) (MPa) size 

w ,Shear strength of 
a 

unit volume (inchA3) 

( S ,Shear strength of a 

unit volume (inchA3) 

38 mm x 285 mm 

TASTM 

Median CV 5th percentile Sample k 

(MPa) (%) (MPa) size 

median 5th percentile 

T*0.5 T*0.05 

(MPa), (MPa) 

mean 5th 
percentile 

assumed T*0.5 X*0.05 

K (MPa) (MPa) 

Hem-Fir 
Spruce-Pine Fir 

Hem-Fir 
Spruce-Pine Fir 

7.74 14.51 6.00 101 7.42 
6.94 16.08 5.32 103 6.95 

TASTM results corresponding to those beams 
that failed in shear only. 

7.66 12.07 36 
7.68 13.56 22 

19.61 14.38 
16.76 11.80 

5.53 9.32 4.48 
5.53 8.74 4.10 

4 T* evaluated by finite element approach of equation 27 

5 x* evaluated by assumed k and X= 1.95 of equation 6 (Foschi,Folz,Yao 1989) 
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Figure 16. Cumulative probability distributions of failure loads for Douglas-Fir ( 38 mm x 185 mm) 
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Figure 17. Cumulative probability distributions of failure loads for Hem-Fir ( 38 mm x 185 mm) 
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Figure 18. Cumulative probability distributions of failure loads for Spruce-Pine-Fir ( 38 mm x 185 mm) 
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Figure 19. Cumulative probability distributions of failure loads in shear for Douglas-Fir (38 mm x 185 mm) 
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Figure 20. Cumulative probability distributions of failure loads in shear for Hem-Fir ( 38 mm x 185 mm) 
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Figure 21. Cumulative probability distributions of failure loads in shear for Spruce-Pine-Fir 
( 38 mm x 185 mm) 
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Figure 22. Cumulative probability distributions of Failure loads for Hem-Fir. ( 38 mm x 285 mm) 
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Figure 23. Cumulative probability distributions of Failure loads for Spruce-Pine-Fir. ( 38 mm x 285 mm) 
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Figure 24. Cumulative probability distributions of Failure loads in shear for Hem-Fir ( 38 mm x 285 mm). 
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Figure 25. Cumulative probability distributions of Failure loads in shear for Spruce-Pine-Fir ( 38 mm x 285 mm). 
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Figure 27 38mmx285mm Hem-Fir failure shear stress vs. edge-wise MOE 
83 



18 
d 

Figure 28 38mmx285mm Hem-Fir ASTM shear block strength vs. oven dry specific gravity 
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Figure 29 38mmx285mm Hem-Fir ASTM shear block strength vs. edgewise MOE 
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Experimental Failure Shear Stress (MPa) 

Figure 31. Plot of predicted versus experimental failure stresses ( 38 mm x 185 mm) 

Experimental Failure Shear Stress (MPa) 

Figure 32. Plot of predicted versus experimental failure stresses ( 38 mm x 285 mm) 
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