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ABSTRACT

In this thesis, we consider the restoration of multiple grey levels image. The problem
is to clean up or restore the dirty picture, that is, to construct an estimate of the true
image from a noisy picture of that true image. Following a method proposed by Meloche
and Zamar (1994), we estimate the colour at each site by a function of the data available
in a neighbourhood of that site. In this approach, the local characteristics of that image,
that is, the frequency with which each pattern appears in the true unobserved image are
particularly important. We will propose a family of unbiased estimates of the pattern
distribution and the noise level which are used in the restoration process. We will use
our estimates of the pattern distribution in an attempt to select the best neighbourhood

shape for the restoration process.
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1 Introduction.

In this thesis, we consider multiple grey levels image restoration. One kind of grey
levels is grey levels from white to black. Some other kinds are grey levels are from white
to red, white to green, white to blue, etc. If we combine the three latter kinds, we will
get a coloured image. The problem is to clean up or restore the dirty picture, that is to
construct an estimate of the true image from a noisy picture of that tfue image. The
true image is not observed, while the noisy picture is. Figure 2.1 is the true image while
Figure 2.2 is a degraded version of true image, the noisy picture. We want to recover the

true image (Figure 2.1) from the noisy picture (Figure 2.2) which is the observed data.

The estimate of the colour at each site proposed by Meloche and Zamar (1994) is a
function of the data available in a neighbourhood of that site. The local characteristics
of the underlying image is central to their approach. The notion of local characteristics

is formalized in what follows.

We assume that there are n sites or pixels on a plane (or a line), numbered 1 to n. The
vector {z1,22,..., 2} represents the true image, and z; € C where C = {¢1,¢c,...,cx}
is a set of k grey levels. The observations Y1, Yz,...,Y, (called the records) form the

| degradéd image and are modelled as

Yi=z+oe (1)
where ey, ..., e, i.i.d. N(0,1), Y3,...,Y, are the records, and oe;’s are the noise. The ob-
jective of image restoration is to work out estimates 21,..., 2, of the true image z1,..., 2,

from the records Yj,...,Y,.

Following Meloche and Zamar (1994), we define a system of neighbourhoods, Ny, ..., N,.




The neighbourhood N;, centred at i, consists of r sites called the neighbours of site ¢ and
includes the site 7 itself. In general, the neighbourhood N; is the set of all sites j at
a small distance from site z. The neighbourhoods Ni,..., N, have the same shape but
different centres. For examples, if N; = {1,...,n} for all 7, then r equals n and we
have just one neighbourhood, the whole image. On the other hand, if N; = {i} for all
7, then r equals 1 and then we have n single-site neighbourhoods. Neighbourhoods can
be 1-dimensional (linear), 2-dimensional (planar), 3-dimensional, or even higher than
3-dimensional. A pattern is a particular colouring of the sites (or pixels) in a neigh-
bourhood. Some examples of neighbourhoods are graphically shown in the following

examples.

Example 1.1 : If the true image consists of 0 — 1 bits sent over a line, then the following

is a typical linear 3-site neighbourhood:
The true image is one-dimensional, and the cclour set C is {0,1}, where 0 = black,

and 1 = white. In this example of 3-site neighbourhood, there will be 2* = 8 possible

patterns:

munl mEkm af8 =)

Mathematically, a pattern here is a vector of 3 coordinates of black or white that represent

the colour of neighbourhood sites in some fixed order.e

As we will notice from the next example, the size of the pattern space increases rapidly

with the size of the neighbourhood.

Example 1.2 : Suppose we have a colour set C = {0,1,2} (0 = black, 1 = middle grey,




2 = white), and a cross-shaped neighbourhood

-
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There will'then be 3° = 243 possible patterns:
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Again, mathematically, a pattern here is a vector of 5 coordinates of black, middle grey

or white that represents the colour of neighbourhood sites in some fixed order.e

There is a need for a systematic convention for the ordering of the components of a
neighbourhood. Firstly, we denote a pattern by §. We use the bold face § as a vector of §’s
in a neighbourhood. In Example 1..1, 6 is a vector of 3 coordinates, that is, § = (61, 62, 63),
and in Example 1.2, § is a vector of 5 coordinates, that is, § = (61, 82, 63, 64, 65). In the

case of 3-site neighbourhoods, we use § = (61, 82, 63) in the following order:

6, | 62 | 63

And then in the case of cross-shaped neighbourhoods, we use § = (61, 62, 63, 64, 65) in the

following order:

5.

82 | 63 | b4

b5

Bold face notation is used to represent a vector of variables in a neighbourhood. The

coordinates are ordered in the same way as the coordinates of the patterns are. For




example, for 3-site neighbourhoods, Y; = (Y, Yi 2, Y;3) is the vector of records, Y}, for
J in the neighbourhood N; of site 3. Y;; is the record at the 7** neighbour of site ;. By

equation (1),

Yiin|Yie | Yia| = | 21| z2]|23| + |oei|oe|oes

so that the distribution of Y, is multivariate normal with mean z; and covariance matrix

0213.

Throughout this thesis, we look at the distribution of all the possible patterns in
the true image. The true distribution of the patterns is usually unknown, but it can
be estimated from the records (the noisy picture) in many different ways. As stated
before, the pattern distribution plays a useful role in the process of image restoration.
The estimates 2,,..., 3, of the true image proposed by Meloche and Zamar (1994) are

based on the knowledge of the pattern distribution and o.

Example 1.3 : In this example, we use the Figure 2.1 with 3 grey levels as the true

image. Let r denote the neighbourhood size, and C = {0,1,2}. When r = 1, there
are only three possible patterns, namely, black, middle grey, and white. Table 1.1 below

shows how frequently each pattern appears in the true image.



Table 1.1: Frequency distribution (r = 1)

pattern | frequency
black 0.48340
grey 0.42505
white | 0.09155

Total 1.00000

This frequency distribution reflects the fact that 48% of all pixels are black, 43% of
them are middle grey, and 9% are white. When r = 2, a horizontal 2-site neighbourhood,
there is a total of 32 = 9 possible patterns, namely, 00, 01, 02, 10, 11, 12, 20, 21, and 22.

Table 1.2 below shows the frequency with which each pattern appears in the true image.

Table 1.2: Frequency distribution (r = 2)

pattern | frequency
00 0.47192
01 .| 0.00842
02 | 0.00305
10 0.00842
11 0.41541
12 0.00122
20 0.00305
21 0.00122
22 0.08728
Total | 1.00000




The high frequency of the patterns 00, 11, and 22 in this frequency distribution reflects

the fact that neighbouring pixels typically have the same colour.

When r = 5, we consider the cross-shaped neighbourhood, there are 3° = 243 possible

patterns. We use § = (61, b2, 63, b4, 65) in the following order:

61

b2 | 63 | b4

3

Table 1.3 below is the corresponding frequency table.



Table 1.3: Frequency distribution (r = 3)

pattern | frequency | pattern | frequency | pattern | frequency
00000 | 0.43811 1‘ 0000 | 0.00824 {20000 | 0.00293
00001} 0.00824 (10010 | 0.00006 (20010} 0.00012
00002 0.00293 {10020 | 0.00012 [20220 | 0.00018
00010 | 0.00824 |10110} 0.00024 {20222 0.00281
00020 0.00293 [10111| 0.00806 [21111]| 0.00110
00111 0.00012 {11100 0.00012 21222 0.00110
00222{ 0.00006 {11101 0.00793 (22111 0.00012
01000 0.00824 |11102} 0.00012 22200 | 0.00006
01001 0.00006 {11110 000793 (22201 0.00012
01002 0.00012 }11111}| 0.38757 |22202]| 0.00269
01101)] 000024 11112 0.00110 |22210 ] 0.00012
01111} 0.00806 [11120( 0.00012 |22212| 0.00110
02000 0.00293 {11121| 0.00110 {22220 | 0.00269
02001 0.00012 {11222} 0.00012 22221} 0.00110
02002} 0.00018 {12111 000110 [22222] 0.07532
02222 0.00281 12222} 0.00110 Total 1.00000




Note that Table 1.3 has fewer than 243_ lines. It is because some patterns do not
appear in the image. The high frequency of the patterns 00000, 11111, and 22222 reflects
the fact that cross-shaped neighbourhoods of 5 pixels typica.lly have the same colour.

In general, the pattern distribution is unknown, and Meloche and Zamar (1994) pro-
pose to estimate it directly from the records Yji, ..., Y;, for binary (black/white) images.
In this thesis, we extend this to the case of images with an arbitrary, but finite, number

of grey levels, and we develop a family of estimates of the pattern distribution.

In the case of single-site neighbourhoods, the above frequency distribution can be

written as

Q@1(6) =

S|

él{z.- -8, ()

where 1{z; = §} = 1 when the true colour at site ¢ is ‘equa.l to &, otherwise, it is equal

to zero. The subscript 1 is used to indicate that we are dealing with single-site neigh-
bourhoods. More generally, for an arbitrary neighbourhood size r, the above frequency

distribution can be written as

Q.(6) = %}: {22 = b1y 2ip = 6.}, (3)
’ =1

and the § in equation (3) is r-dimensional. The subscript r in the above equation is used -

to indicate that we are dealing with r-site neighbourhoods.

For binary images, Meloche and Zamar (1994) propose to use

5 = 26 5c¢a(Yi - 6)Qr(6) (4)
' 26 ¢6(Yt' - 6)Qr(6)

where @), defined by equation (3) depends on the 2y, 2,,...,2,. Note that 2; depends

8



on the typically unknown parameters Q,. and o. For this reason, Meloche and Zamar
(1994) pro;;ose methods to estimate Q- and o in the case of C = {0,1}, that is, binary
images. While equation (4) defines an estimate no matter what the colour set C is, the
estimates of ), and o proposed by Meloche and Zamar (1994) are only valid in the case
of C = {0, 1}. In this thesis, we propose a family of simple estimates for Q, and o in
the case of C = {c1,¢3,...,ck}, that is, images with an arbitrary, but finite, number of
grey levels. Chapter 2 will focus on the estimation of Q),, assuming o is known, while

Chapter 3 will deal with the joint estimation of Q, and o.



2 Estimations of Q.

2.1 Introduction

Firstly, let Q,, which will be used frequently, be the |C|" vector of all possible @, (6)’s,
where |C|" is the total number of patterns. Meloche and Zamar (1994) propose a biased
estimate of Q, based on indicator functions for binary images, and a general formula for
obtaining an unbiased estimate from the biased one. In this chapter, we extend their
idea to images with an arbitrary, but finite, number of grey levels. And we also discover
a simple representation which makes the computations of the estimates easier. In this
chapter we assume that o is known. The joint estimation of Q, and o will be discussed

in Chapter 3.

2.2 Unbiased Estimations of Q,

We start by reviewing the biased and unbiased estimates of Q, based on indicator
functions for binary images proposed by Meloche and Zamar (1994). Later on, we will

extend to image with more than two grey levels.

Consider a case of 2 grey levels (eg. black/white), that is, C = {0,1}, with single-site
neighbourhoods:(r =1). Let
- 1
¢(0,y) = {y < 5}

1
e(1,y) ,=41{y >}

Now, define
~ 12 1> 1
Q(0) = =3 ¢(0,Y)) = =3 1{¥i < 5}
=1 i=1
~ 12 1.0 1
A1) = =X e(LY) = =3 1{¥; 2 5}
n =1 n =




and Q, to be the vector (QI(O), Ql(l))T. This Q is a biased estimate of Q; because, for

example,

. 1 1

1 1

= -::ZP(z,- +oe; < %)
= %Z{P(e; < %)l{z; =0} + P(e; < -2_-:71-)1{25 = 1}}
= %El{z; = O}Q(%) + ;1;21{2; = 1}‘1’(;_;)

1 -1
= 2(57)@1(0) + 2(5)@(1)
Similarly, EQ,(1) = (5)Q1(0) + Q(%)Ql(l), where ®(-) is the cumulative distribution

function of a N(0,1) random variable. Now we let a = ®(5-),b = ®(3}), then we can

write the above in matrix notation.

EQ = A1Q;

a b
A= .

So, an unbiased estimate can be obtained by inverting A; and defining Q, = A7 IQI, so

that EQ, = AT'EQ; = A7'A;Q; = Q;. That is,

where

Q:(0) = p _1_ 7 [aQ1(0) — 5Q1(1)]

Q) = o p[-53:(0) +aQ:(1)]

and Q; is unbiased for Q.

11




Using the same colour set C, we now consider linear 3-site neighbourhoods, that is,
3 pixels in a row, elther vertically or honzontally, with C = {0,1}. As we have just
mentioned in Example 1. 1 there are 23 = 8 possible patterns, namely 000, 001, ..., 111.
Recall from equations (1) and (2) in Chapter 1 that

Q3(51, 52,‘53-)" Z 1{ziy = 61,22 = 62,23 = 83},

=1

where 5,- =0,1,z =1,2,3. Following the same idea as above, define

Gs(000) = LY 1{¥in < ¥ < H{Ka < 3)

Q3(001) = %Zl{ym < ';‘}1{}/;,2 < %}I{Yi,s > 5}

N —

[ R
At

G(111) = =X 1Y > 21 (Y 2 $}{¥is 2

Again, we write Q3 for the vector (Q3(000), 33(001), Q3(010),...,Q3(111))T. In the
case of 2 grey levels, we use two indicator functions, 1{Y; < 2} for black pixel, and
1{Y; 2%} for white pixel (for single-site neighbourhoods). That is, if ¥; < 1, then we
say that the colour at site ¢ is black. And if ¥; > % then we say that -the colour at site ¢
is white. Observe that there is a relationship between Q: and Qs. In the case of linear
3-site neighbourhoods, we use products of 3 indicators chosen from 1{¥; < 1},1{Y; > 1}.
So Ql and Qs have similar structure. Since Ql is biased for Q,, we would expect that

Qs is also biased for Qs.

Now, we can compute the expectations of Q3(61, 62, 83)'s. For example,

. 1 1
EQ4(000) = E%ZI{Y;J < -;-}1{)4,2 < 3H{¥is < 3}

12




1
<)

1 1 -1 :
= CE{{P(ein < )Mz =0} + Plein < 5-)1{zin = 1}]

10 1
= —ZP(Yi1 < 5)P(Yip < 5)P(Vis <

[P(eia < 5-)1{zia = 0} + Pleia < 5)1{zia = 1)] x
[Pleis < 5)1{zis = 0} + Pleis < 5o)1{zis = 11}

Performing similar calculations for the other seven expectations, and letting a be

®(5c) and b be ®(32), we get

f@,(oooﬂ (@ a% % ab? a% ab? ab? B ) (Q3(000)\
Q3(001) a®b a® ab® ab ab® @%b b ab? || Qs(001)
(3(010) a?b ab?® a3 a®b ab® B @%b ab? Q3(010)
B Q3(011) _ ab?® a’b a’b a® b ab® ab® a?b Q@s(011)
Q3(100) a?b ab?® ab® b a® a’b a®b ab? Q5(100)
Q3(101) ab® a®h b ab® a%b a® ab® a?b Q3(101)
Q3(110) ab®> B a%b ab® a®b ab® o® a?b Q1(110)
\Qs(m)) | ° ab® ab® a’b ab® o®b a’h o |\ Qs(111) )

In matrix notation, we can write the above as -
EQs = A3Qs
As before, we obtain an unbiased estimate of Q3 by defining Qs = A3 1Qa.

As shown in Meloche and Zamar (1994), the above matrices A1, A3 (as well as the
corresponding ones for all ) can be analytically inverted. Meloche and Zamar (1994)

show that, in general, EQ, = A,Q, with

A.(8,7) = (a)#(é.‘)’)(b)r-#(&ﬂ)’ ‘ ~(5)

13




where A,(8,7) is the (8,v) entry of A,, and #(8,~) = #(k 3 6k = 7x) is the number of
k such that 6, = v, for k = 1,2,...,r, and that

(a)# 61 (b)r-#B1

(b2 — a2y (6)

A7 (8,7) = (-0

where a = ®(), b = O(32). Equation (6) is valid for all r-site neighbourhoods, where

r is arbitrary and finite, with C = {0,1}.

As an application of equations (5) and (6) in the case of 2-site neighbourhoods, an

unbiased estimate of Qg is

-1

( 02000\ [ aa ab ba 86\ [ O(00) )
Q(01) B ab aa bb ba Q2(01)
Q,(10) ba bb aa ab Q2(10)

\ @(11) /] \ b6 ba ab aa ] \ @(11) )

where
Q.(00) = l21{Y- < l}1{1/- < l}
2 - n 1,1 2 1,2 2
- 1 1 ' 1
p—t — s —— . > byl
Q2(01) nzl{x,l < 2}1{Y,,2 > 2}

We now extend this idea for estimating Q based on indicator functions to a colour
set with more than 2 grey levels. We will notice from the following examples that the

bias matrix A, that needs to be inverted may not have a simple structure.

Example 2.1 : éuppose C= {0,1,2} and r = 1. Now let

o0,9) = Hy<3}

14




o(ly) = Hz<y<3)

©(2,y) = 1{y2§}

and define

; , 1 & 1 & 1

Q) = =3 e0,¥)=-3 1Y <3}
=1 ni=1

~ 1 & 131 3

& = Xl ¥) = P 1y S¥i<3

- 1.2 1 & 3

i(2) = ;E¢(2,K)=;ZI{Y42§}
=1 =1

After carrying out some calculations, and letting @ = ®(L),b = ®(F),c = ®(52),d =
(D(%) - Q('zl?),e = q)(%) - q)(lz-}l),f = Q(%) —'q)(é-;s g = 1- @(%), h=1- Q(%;)vz =

1 — ®(52), we obtain

@1(0) a b ¢ Q:1(0)
El (1) |=|d e f (1) |
Q1(2) g b i)\ @2

or, in matrix notation, EQ, = A,Q,. When r = 2 (linear 2-site neighbourhoods), there
are 32 = 9 possible patterns, namely, 00, 01, 02, 10, 11, 12, 20, 21, and 22. And again

by carrying out some calculations, we obtain

15




( Gy000) \ (aa ab

Q.(01) ad ae
Q.(02) ag ah
Q2(10) da db
E| Q,(11) | =| dd de
Q2(12) dg dh
@220) | | ga gb
Q21) | | gd ge
\ @:2(22) ) \ 99 gh

or EQ, = A,;Q; in matrix notation:

structure.e

In the case of binary images, observe that the two bias matrices, A;, A, are closely

ac ba bb
af bd ” be
ai by bh
dc ea eb
df - ed ee
di eg eh
gc ha hb
gf hd he
gt hg hh

be
bf
b
ec

ef

er

hc
hf

i

ca cb
cd ce
cg ch
fa fb
fd fe
fg fh
ia b
id e
ig th

related. In fact A, is a 2-fold Kronecker product of A;.

Definition 2.1 (Kronecker product of matrices) :

Let A = (a;;) be a p x m martix and B = (bag) be a ¢ X n matrix. The pg x mn

matrix with a;;b,s as the element in the i,ath row and the j,fth column is called the

ce \ [ Q-(00)
cf Q2(01)
ct Q2(02)
fe Q2(10)
ff Q2(11)
fi Q2(12)
ic || Qa(20)
of Q2(21)

i )\ Q2(22)

Kronecker or direct product of A and B and is denoted by A ® B; that is,

A®B =

(anB a;2B
azB a;B

\ 41B 4B

16 -

. a,B \

agmB

apmB )

)

/

But now, A; does not seem to have a simple



According to Anderson (1984),

(A®B)! = A~ @B, )

that is, the inverse of a Kronecker product of 2 matrices is the Kronecker product of the

inverses of the 2 matrices. In what follows, A(") denotes the r-fold Kronecker product

of A, that is

AN=AQA® --®A. (8)

Since 8 and - are r-dimensional, we can write the (8, ) entry of A(") as

A8, %) = T] A6, 7)o (9)

=1

In case of binary images, we denote the matrix (bias part) of the 1-site case by Aj,

the matrix of the 2-site case by A, and the matrix of the 3-site case by Aj;. Take a

a b
A1= )

/ aa ab ba bb \
ab aa bb ba
ba bb aa ab

closer look at A,, and A,.

Az

il
il
AN

aA1 bA1
bAl aA1 .

\bb ba ab aa/

By Definition 2.1, A, is a 2-fold Kronecker product of A;. Similarly, Az is a 3-fold

Kronecker product of A;.

Note that in Example 2.4, for the colour set of 3 grey levels, A, is a 2-fold Kronecker

" 17




product of A;. Also note that A7(§,+) in equation (6) is the (§,<) entry of the r-fold

Kronecker product of A7! for the case of binary images.

Given a function ¢ : C x R — R, define

() = 7 3 el6 V) (10)
Gr(8) = = 3 (61, Yia)o 62, Yia) - (8, Vo) ()

In the examples so far, we have been using indicator function as the choice of ¢(6,y).

Proposition 2.1 :

If .
= 1< .
@ (8) = Y ¢(61,Yia)p(83, Vi) - - (6;, Yir)
=1 :

then _
EQ, = APQ, (2

where A,(6,7) = E¢(6,7 + oe), and Al is the r-fold Kronecker product of A;. AP is
a |C|]" x |C|" matrix, where |C]| is the size of the colour set. Furthermore, if [A;| > 0,

then Q, = (A71)")Q, is an unbiased estimate of Q,.e
Proof : We start the proof by ékpréssing'the equation EQ, = A,Q,. We need to show

EQ.(6) = 3 A(6,7)Q-(7) (13)

for all &§. NoEé that |

18




BQ.(6) = Ei—gm, - plE Yiy)
- %§E¢(5l,x,l)§1{;;,l =} Ep(6,, Y, i) S Leie =
= %g; Hzig = 71}E<p(51,71 +oey)-- ; Hzir = %} E@(Sr,7r + 0€r)
= = z;; Hzip = ’71 Z Hzir = w}E@(61,1 + 0€1) - E@(br,7r + o€r)
b

= ;Qr(ﬁ' A1(51,71)"'A1(5~7r)
L Z/: IT7_; A1 (8, 1)@ (%)
= ;Ar(é,v)Qr(‘r)
= ;AY)(G,’Y)Qr(‘Y)
which is just equation (12). Therefore,

E(A)Q, = E(ATHQ, = (AD)AQ, = Q,,

and Q, = (A7")"Q, is unbiased for Q,.e

Proposition 2.1 shows how to obtain an unbiased and consistent estimate of Q, for
any function ¢(4,y) provided |A;| # 0. We therefore have a family of unbiased and
consistent estimates. In order to avoid the problem of inverting a large matrix, we can

invert A, first for the case of single-site neighbourhood, then we can use Definition 2.1

to build the A1 = (A~1)("),

Example 2.2 : Suppose C = {0,1,2}, »r = 3, and define

e(0,y) = 1

e(ly) = y

e(2,y) = ¥
19



and as usual

.
= ;Ecp(&, 21)9(62, Yi2)p(63,Yi3)
=1

For instance,

~ 12
 @s(0,0,0) = 521-1-1=1

S , 1

S Qs(1,1,1) = ;ZY.,I 2 Yia
] =1
Q3(2’2"2). = "_Zl
t-l

Obviously, Qs is biased for Q. Just notice, for instance, that Q3(0,0,0) = 1 indepen-

dently from the records. By definition, A1(6,7) = E¢(6,v + oe), we have
44(0,7) = B1=1
M(1,7) = E(y +oe) =7

Ai(2,7) = E(y +oe)’ =9 +0°

By Proposition 2.1, Qg = (A..l)(3)Q3 is unbiased for Q3, where

A1(0,0) A;(0,1) A4(0,2) 11 1
Ay =| A(1,00 A(1,1) A(L,2) |[=] 0 1 2 )
A1(2,0) A,(2,1) Ai(2,2) o? 14+0% 4402
and
a? -
1-5 3 3
A'=] o 2 -1
= -1 1
2 2 2



Now, we express Q3 = (A_l)(3)Q'3 in matrix form.

(00,00) [ 0-2F a-27 - ) (G000
0,00 | _| a-220n a-2r@ || a0on |
05(0,0,2) : : (3(0,0,2)

W A O ‘ RV AU

2.3 A Simple Representation for Q,

Proposition 2.1 provides a class of unbiased estimates Q, of Q,. The proposed esti-

mates have the form Q, = (A~1)()Q,, where

Qr(ﬁ) = ‘"Z‘P(&s Yia)e(62, Yi2) - - (61, Yip)-

t—l

The matrix (A~1)(") is the r-fold Kronecker product of A;, and when we have a large

colour set, C, and a big r, (A~)(") is a large matrix.

In this section, we show that Q, can be expressed as

n

> ¥(5;,Yi1)U(8,Yis) - - - U(S,, Vi) (14)

=1

31'—'

for some ¥(4,y)’s.

Proposition 2.2 : If we define

Q:(6) = -Ew(ﬁl, Yo )e(62,Yiz) - - 0(6:, Yir),

1—1
then EQ, = AMQ,, where A(") is the r-fold Kronecker product of the bias matrix A,,
and by definition, A;(8,7) = Ep(8,7 + oe) (Ag’) is |C|” x |C|"). If |A4] > O, then

21



Q. = (A~1)(NQ, is unbiased and consistent for Q,, and

Z A5D@:(1) (15)
can be expressed as
Q-(6) = g U(61,Yin) - (6, Yir) (16)
- where
U(6,y) =2 Asye(1,y)-e (17)
Proof:

Q.(6) = Z 4598.(v)
= Z E[A‘sl m°o AE;I'%Q,.(')'I, ceey 'Yr)]
= Z Z[ 51 m’ grlm o Z e(n,Y; o, Yir)l

L= _ZI{E Z[Asl-yl‘P M, J)"'A;,l,‘y,‘P(')’r’Y;’,r)]}
= ‘Z;{(Z 4 L1, %)) -+ (2 A7k (0, i)

= —Z[\I! (81, Yin) -+ U6y, Vi)

:—'1
Note that with this representation, Q, is easily seen to be unbiased. Indeed,

EU¥(§,v+ae) = EY A5 o(r,7)
= E A;TIA"TY
1{6 = v}.
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And so

” 1>
EQ.(8) = ;ZE\I’(61,K,1)‘II(52,K,2)""I’(sr,}/i,r)
=1
1 n
= ; 1{zi,1 = 51}1{2i,2 = 52} <o l{z.',.. = 6,}
=1
= lZI{Ziyl —51,...,2,',,:6,-}
n =1
= @.(8).

Note that since Q,(ﬁ ) is an average of an r-dependent sequence, it converges to its mean.

Therefore, Q,(8) is an unbiased and consistent estimate of Qr(6).0

Example 2.2 (Continued) : Recall that ¢(0,y) = 1,¢(l,y) = y,¢(2,y) = y®. By

equation (17),

\I’(Ov y) 1- 221 :2§' % "‘P(O, y)
\P(l,y) = 02 2 -1 ‘P(l’y)
¥(2,y) = 3 1) \e@y

Therefore, we can write

¥(0,y) = (1—%2)1+(—_§3~)y+(%)y2,
¥(0,y) = (e*)1+(2y+ (-1)%

¥(Ly) = (CON+ GG
and so

Q3(0,0,0) =

-

\I’(O’ K,l)w(oy Y;',Z)‘I’(O, Y;',3)7

1

-
Il

~

Q3(0’0a1) = \I’(O,X.l)\p(o’ K,z)\p(L K,3)’

i~ 3=

™

1
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@(22,2) = 13U ¥ia) U2 Yia) U2, Vio)

=1

As stated in Proposition 2.2, such a new representation can be obtain generally.e

In summary, we have the following general procedure for obtaining unbiased and
consistent estimates for Q,: Let C = {¢1,¢2,...,¢k}, and r > 0. Take any ¢ : C X
R — R, and then define A as the |C| x |C|(= k x k) bias matrix with elements
Asy = Ep(8,7 + oe). If |A| > 0, then define '

Q(6) = =3 (B Vi) U(6 ¥in) -+ U(5, Vi)

=1

where
U(6,Y) =) A e(5Y).
y
Then 'Q,(ﬁ) is an unbiased and consistent estimate of Q,(8).

Example 2.3 : We use Figure 2.1 as the true and unobserved image, and Figure 2.2 as

the noisy and observed image. The colour set C is {0, 1,2}, r is the neighbourhood size,

and o = 0.50. The following tables shows how far away the biased Q, is from the true

Q., and how good and close the unbiased Q, is to the true Q,.




Table 2.1: Pattern distribution with r = 1, (6, y) = Indicator functions

& | Qu8) | @i(8) | @i(6)
0 |0.48340 | 0.47498 | 0.48505
1 | 0.42505 | 0.37836 | 0.42074
2 | 0.09155 | 0.14667 | 0.00421

Total | 1.00000 | 1.00000 | 1.00000

Table 2.2: Pattern distribution with r = 1, ¢(6,y) = Power functions

6 Qi(8) | @i(8) | @i(8)
0 0.48340 | 0.37644 | 0.48306
1 0.42505 | 0.22966 | 0.42380
2 0.09155 | 0.39390 | 0.09314
Total | 1.00000 | 1.00000 | 1.00000
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Table 2.3: Pattern distribution with r = 2, (6, y) =Indicator functions

6 Q2(8) | Q2(8) | Qu(8)
00 ]0.47192 | 0.34601 | 0.46966
01 |[0.00842 | 0.11395 | 0.01315
02 |0.00305 | 0.01501 | 0.00224
10 }0.00842 | 0.11377 | 0.01274
11 |0.41541 | 0.20496 | 0.40092
12 ]0.00122 | 0.05963 | 0.00709
20 |0.00305 | 0.01520 | 0.00266
21 |0.00122 | 0.05945 | 0.00667
22 10.08728 | 0.07202 | 0.08488

Total | 1.00000 | 1.00000 | 1.00000
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Table 2.4: Pattern distribution with r = 2, ©(6,y) = Power functions

5 | Qu8) | Q28) | Q2(8)
00 |0.47192 | 0.09996 | 0.46610
01 |0.00842 | 0.06009 | 0.00452
02 |0.00305 | 0.10460 | 0.00508
10 |0.00842 | 0.06099 | 0.00480
11 |o0.41541 | 0.07745 | 0.42015
12 |0.00122 | 0.12890 | 0.00000
20 |0.00305 | 0.10460 | 0.00570
21 |0.00122 | 0.12806 | 0.00000
22 |0.08728 | 0.23355 | 0.09275
Total | 1.00000 | 1.00000 | 1.00000

For r = 3 (linear 3-site neighbourhood), the columns Q3(8), Qs(8), and Q3(8) are dis-
played graphically as barplots in Figures 2.3a, 2.3b, 2.3¢c, 2.3d, 2.3e, 2.3f. Finally, for
r = 5 (cross-shaped neighbourhood), the columns Qs(8), Q5(8), and Q5(8) are also dis-
played graphically as barplots in Figures 2.4a, 2.4b, 2.4c, 2.4d, 2.4e, 2.41.

We have seen that different neighbourhood shapes and sizes give different pattern
distributions. They also give different estimates {2;, 2,,..., 2.}, because as mentioned
before, the estimate of the colour at each site is a function of the data, Y;, available in
a neighbourhood of that site. The estimate 2; proposed by Meloche and Zamar (1994)

requires estimates of pattern distributions, @,(8), and o. Recall from equation (4) that

5 = 26 6c¢a(Yi — G)Qr(a)
" T (Y- 8)Q(6)
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where ¢, denotes the r-dimensional normal density with mean zero and covariance o1,
and 6. denotes the colour/pattern at the center of the neighbourhood. Figures 2.5a to |
2.5h are the restored images based on different neighbourhood shapes and sizes, and

different estimations of the pattern distributions.e
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3 Joint Estimations of Q and o.

3.1 Introduction

Meloche and Zamar.(1994) propose estimating z; by

5. — 26 5c¢a.(Yi - 6)‘Q‘\r(6)
T T 6e(Yi—6)Qn(8)

where 6. denotes the colour/pattern at the center of the neighbourhood, and ¢, is the
normal density with mean zero and variance o?. Furthermore, our proposed estimation
of Q, involves o, and we have been assuming that o is known. Equation (16) states that

N 1 3L

Q-(8) = =3 I ¥.(6;, Yi;)-

N =1 j=1

The subscript o indicates that Q,(8) involves o. But o is likely to be unknown and must
be estimated from the noisy image. Ideally, we want to estimate both Q, and o, but we
will focus on the estimations of Q; and o. Once o is estimated, Q, can also be estimated.

For the rest of this thesis, we write Q instead of Q;. In this chapter, we propose some

estimating equations for o.

3.2 Estimation of o using Estimating Equation derived from E(1 Y%, ¥}?)

Note that

1 & 1 &
BV = 23 B
1=1 =1
= L5 g 2
= - E E(z + oe€)
= %Z E(2} + 2zi0e + o%€?)

i=1
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_1& 2, 2
= nZ(zi"'U)

i=1
1 n
_ 2. 1 2
= o+ - ;::lz,
1 n
= o? + —221{2; = 5}52
n =1 §
= 02+ElZI{z; = §}62
s =1
= o+ Z §2Q(8).
s
Thus, if Q, is any unbiased estimate of Q,
12 A
B(o® = — 3 V2 + 26°Q,(8)) = 0. (18)
=1 ) .

The subscript o is used to indicate that Q, involves o. Now define

A(@) = a? = = 3°¥2 + 3 6°Q(6) (19)
Ni= )
and taking expection of equation (19),
Aa) = Edn(a) = a® — (0% + 3 6Q(6)) + 3 8 EQu(6). (20)
. ] §

Note that according to equation (18), o is one of the root of A(a). Empirical evidence
suggests that when Qis derived from indicator functions, A(a) has 2 roots, the smaller
of which is o (irrespective of the colour set C). Theoretical results to that effect have

not been reached yet.

When Q, is derived from power functions, and when C = {¢;,c;}, equation (19)

yields a closed-form estimate of o2 instead of o.
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' = n e, — Y. 2 LV
Aa(a) = az—%ZYf_*__l_ch(cZ Y) + &(—c1 + Yi)

i=1 . =1

Ma) = a®— (0% +cQ(ar) + 5Q(c2)) + EQ(c1) + Q(cz).

2 — ’

By solving An(a) = 0, o2 can be estimated as

1 z": (c; —Yi) + (-1 + )

C2—

This is just the estimate of o2 proposed by Meloche and Zamar (1994) for the colour set

{0,1}. It is unbiased and consistent.

When |C| = 3, it can be shown that Ma) =0 if Q, is derived from power functions.

If C = {c1,¢3,¢3}, and p(e1,y) = 1,¢0(c2,¥) = ¥, p(c3,y) = y?, then by equation (9),

. 1

Qa) = = E 1,
nis

o 12

Q(CZ) = _ZK,
ni

o 12

Qles) = _Z Yiz’
n =1

then Q = A,Q, where
1 1 1
Aa = C1 C2 C3 )

+a? E+a? &+ad?

and

(62 - 03)(a2 - 6263) (Cg - 63)(62 + C3) —(62 - C3)

—(Cl ot 63)(02 - 6163) —(Cl - C3)(Cll + 63) '(Cl - 63) )

(aa—c)(a®—cic3) (aa—e)(a+e) —(a—c)

31




where |A| = —(c1 — ¢2)(¢1 — ¢3)(c2 — ¢3). We can write equation (20) in matrix form. Let
A= (C%, c%’cg)T’ v
Na) = a®~ (0" +3_8°Q(8) + 3 6"EQa(8)
. - é )
= a’— o+ Y 8EQ.(6) — Y 82Q(6).
5 5

Therefore,
Ma) = a?=c?+ATAIA,Q+ATQ
. a (4
2 2 T -1
= a‘ -0+ A (A7 A, — 13)Q,
where
~(o=t—) (i) -GS e=s)
c2c3—c1c2+ci—c163 caca—c1c2+ci —c1ca c2c3—c162+c5 —C1€3
A—IA _ I — . a2—g2 a2—o2 a2—o2
e v —c1é3+cycateacs—c2 —cic3tercatcaca—c3 —c1c3tercateaca—cE ?
_( a?-g? _( a?-g? _( a?—g?
—cicatcicz+ei—caca —c1catcioa+ci—czca —cic3+c1c2+ci—caca
and
_— (e = %) (e = o?)
A (Aa AU - I3)Q = 2 2
c2c3 —C1C2 +¢f —c1c3 . —ci1c3 + €162 + €263 — ¢
2( 2 2 .
—c3(a® — o?)
—c1c3 + c162 + & — ca¢3
= —(a*-o?).

As a result,

Aa) = a® - o® — (a® — %) = 0.

Thus, when |C| = 3, A(a) defined by equation (20) is identically zero. To get an estimate
of 0% when |C| = 3, one possibility is to derive a different estimating equation starting

from higher moments of Y;. For example, we start from Y;*.
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3.3 Estimation of o usmg Estlmatmg Equation derived from E( >, Y

By simple computation,

E(%EK‘I)':«304.+ 602556%Q(6) + Ts6°Q(6). (21)

Thus, if Q, is any unbias‘ed estimate Q, .

EG30* +60° 3 80,(8) + 3 604 (6) — % YY) = 0. (22)
: ) ) i=1
Define
na) = 30" 4 60° 8°u(8) + T 5'Qu(6) - %E % (23)
=1
and taking expectation of equation (23),
Aa) = 3a* + 622 Y 62EQ.(8) + Y 6*EQ.(65) — E(;ll— 3 Y. (24)
6 & =1

According to equation (22) o is one of the root of A(a). By equation (14),

Qa(cr) = |A|{ Z[ — c3)(a® — exes) + (& — B)Y: — (c2 — e3)Y]},

Qa(cz)

m{ Z[ (e1 — e3)(a® — c1e3) — (&2 — A)Y: + (¢ — ¢3)YH]},

1=1

Quled) = 7y Lller = el = ) + (6 = ¥ = (= )X}

Then note that A,(a) and A(a) defined by equations (23) and (24) are second degree
polynomials in a%. As a result, A(a) has 2 roots. The smaller of which is o2. In general,

o? can be estimated as the smallest root of A,(a). In particular, when C = {0,1, 2},
A 1 & a? -3 1. .
Q.(0) = "E[(l = PN+ (Y + (5

Qs(l) = —;[(02)1+(2)Y+( 1Y)

a

Qa(2)

—E[(—)l + (—)Y +(3 DY)

a—l
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By solving M.(a) = 0, we have

iy T sy Ly 2 _ys
e -e A Dee LS an e -

gn 0’ + Q1) +4Q(2) — —i\/(Q(1)+4Q(2) —-)2
We can conclude that for the colour set {0,1,2}, 02 can be estimated as

n 1 n
ZY.?—%—J(— Y?—% —3—2( —8Y; + 8Y2 — Y1),

nia i=1

Although 62 may not be unbiased, it is consistent. The estimate of o can be obtained
by taking the square root of 62. In general, we can derive an estimating equation for o2

with an arbitrary colour set in a similar fashion when Q, is derived from power functions.
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4 Neighbourhood Shapes.

We have seen in the previous examples that the bigger the neighbourhood size, the
better the restoration performance. But this will no longer hold if the neighbourhood
size is big while the image is sméll. 'Sometimes a good and small neighbourhood may
result in better performance in restpration than a big and bad one. The performa.nce; of

the estimates 2,..., 2, can be measured by the average expected square error:

"AMSE = %Z E( — z)?

=1

According to the theorem by Chan and Meloche (1995),

AMSE = %iE(ﬁ,’,— 25)2.= 0’2(1 - 0‘210(770' * Q)) (25)

i=1 :

02(1—0?Iy(n, *Q)) can be obtained by numerical integration or Montecarlo. Iy(7, * Q) is
the middle element on the diagonal of the Fisher information matrix of 7, * @ (recall that
our vectors are indexed from 1 to r, so the middle element on the diagonal element is the
(34£)* element. 7, is the normal density with mean zero and variance 2. Figure 3.1 is a
129 x 129 true image with alternating horizontal strips of 0, 1, and 2, and Figure 3.2 is the
degraded version of the true image with o = 0.50. Table 3.1 provides the approximate
AMSE (obtained by Montecarlo) for various neighbourhood sizes and shapes. In the
table, '

AMSE, = o*(1 - a*Iy(ns * Q)),
0'2(1 - U2I0(770 * Qindicator))7

AMSE3 == 0'2(1 - 0'2]0(770 * onwer)),

AMSE,
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where @) is the true pattern distribution, Q;ﬂdgcato, is the estimated pattern distribution
based on the indicator functions, and onwe, is the estimated pattern distribution based

on the power functions.

Table 4.1: AMSE for-various neighbourhood sizes and shapes

neighbourhood | AMSE; | AMSE; | AMSEs
linear 3-site nbhd | 0.042 | 0.050 | 0.054
(horiéonta.l)
linear 3-site nbhd | 0.021 | 0.032 | 0.031

(vertical)

linear 5-site nbhd | 0.013 | 0042 | 0.080

- (horizontal)
linear 5-site nbhd | 0.0053 0.043 0.056
(vertical)
5-site nbhd 0.0025 0.045 0.043

(cross-shaped)
linear 7-site nbhd | 0.0042 0.092 0.125
(horizontal)

Note that when the Q,(6)’s are known, the cross-shaped neighbburhood results in a
better performance with the lowest AMSE; than the other neighbourhoods used here.
In particular, it performs better than a larger neighbourhood which is the linear and
horizontal 7-site neighbourhood. In pratice, we substitute Q,(8)’s for Q,(8)’s in equation
(25) when we only have a noisy image. We choose the neighbourhood shape which gives

the smallest AMSE.
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When we use the estimates Q,(8)’s in equation (25) for obtaining the AMSE, and
AMSE;, the linear and vertical 3-site néighbourhobd seems to be the best choice be-
cause its corresponding Q3(8)’s are relatively more accurate than the Qs(6)’s and Q7(6 )’s.
When the neighbouxrhood size gets larger, the estimates (,’s become less accurate. There-
fore, larger neighbourhood results in a worse restoration performance for our particular
noisy image in Figure 3.2. If we have a larger image, the larger neighbourhoods may per-

form better than the sma.ll_er'ones because the estimates Q, for the larger neighbourhoods

become more accurate.




5 Conclusions.

By extending the idea of estimating Q, based on indicator functions by Meloche and
Zamar (1994), we have developed a family of estimates of Q, which can be based on any
arbitrary choice of a set of ¢(6,y)’s. We start with any set of ¢(8,y)’s which seems to
have a simple structure. Then we define

~ 12
Qr(8) = =3 _0(81, Yin)p(82, Yia) -+~ (6:, Yir)
=1
which is biased for Q,(G). By applying the propositions stated before, we obtain a new
set of ¥(6,y)’s, where | |
U(6,y) = D Asre (7, 9),
v

such that

,

Qr(8) = = 3 U(8r, Yia)U(Es, Via) - W(6:, ¥ir)

is an unbiased and consistent estimate of @,(8). At the moment, we lack the theoretical

results on judging which set of ¥(4,y)’s give the best and the most accurate estimate of

Q..

We have addressed the pfdblem of estimating o by proposing some estimating equa-
tions for . We have derived an estimating equation from E(2 3%, Y?) for a colour set
with |C| = 2. By solving A.(a) = 0, we have obtained an estimate of ¢ for any colour

set with |C| = 2.

n

But the estimating equation derived from E(: T°%; ¥;?) does not work for a bigger
colour set when Q, is derived fron power functions. So we have derived another estimating

equation from E(2 YL, Y}*) for a colour set with |C| = 3. Again, by solving A,(a) =0,
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we have obtained an estimate of o2 for any colour set with |C| = 3. To estimate o?
when |C| > 3, we can derive a different equation starting from a higher moment of Y.
In general, we estimate o? by deriving an estimating equation for ¢ in this fashion. The
esimate may not be unbiased, but it is consistent. By taking the square root of o2, we

obtain the estimate of o.

When Q, is derived from indicator functions, the empirical evidence suggests that
A(a) has 2 solutions for a, and the smaller of which is . Irrespective of the colour set
C, estimating equation (18) aiways works. Therefore, we do not have to consider higher

moments of Y;. But theoretical results have not been reached yet.
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Figure 2.1: True Image (Unobserved)

Figure 2.2: Noisy Image (Observed)
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Figure 2.3: Pattern distribution with r = 3, and (i) ¢(é,y) = Indicator functions
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Figure 2.3: Pattern distribution with r = 3, and (ii) ¢(6,y) = Power functions

!
oo
]

| (d) Q3(8) vs §

(e) Q;;(é') vs 6

(f) Q3(5) vs §

43




Figure 2.4: Pattern distribution with r = 5, and (i) (6, y) = Indicator functions
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Figure 2.4: Pattern distribution with r = 5, and (i) (6, y) = Power functions
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Restored Image, ¢(8,y) = Indicator

Figure 2.5
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Restored Image, ©(9, y) = Power

Figure 2.5
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Figure 3.1: True Image (0-1-2 strips)
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