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Abst rac t 

A Bayesian procedure for model selection, parameter estimation and classification, using 

models of non-orthogonal basis functions, is applied to the problem of T2 decay rate 

distributions in brain tissues. The feasibility of generating reliable synthetic images of 

tissue-classified pixels is examined. The work determines, for the first time, the Bayesian 

probability of existence of short (5-15ms) T2 component in the brain tissues, and found it 

to be higher than 99% for all white matter tissues and higher than 80% for all gray matter 

tissues except Cortical Gray . The probability of having no more than three components 

of decaying exponents in the Ti distributions of the brain tissues, is found to be higher 

than 90% for all the tissues. We arrive to these findings through the use of models which 

are parameterized by highly coupled parameters, and the use of multi-dimensional search 

in the space of these models. 
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Chapter 1 

Introduction 

The field of Bayesian inference as a scientific tool is young; even in the last years, the 

Bayesian inference has not been put to wide use outside the Astrophysics community. 

The Bayesian inference scheme enables, in principle, direct and consistent application of 

basic ideas of the scientific method regarding the way we infer about natural phenomena 

and put our hypotheses to test. Nevertheless, the utilization of this theory to the analysis 

of scientific data and background knowledge remains mostly, unexplored. 

In this work, we will try to share the exploration of the theory in three main directions: 

first, in a demonstration of multi-dimensional search in a space of models. We try to 

search and test automatically and efficiently many models, different in more than one 

attribute. The general problem of the multi-dimensional search for the 'right' model 

is important but will not be treated in this work. A degenerate demonstration will be 

presented here. Second, we will solve a model selection and parameter estimation problem 

using models of decaying exponents as basis functions. This case, in which the basis 

function are non-orthogonal, is known to be one of the more pathological cases, both from 

the traditional, 'frequentist', and from the Bayesian point of view. The general approach 

we adopt here is similar to that developed by Bretthorstfl] for time series analysis. 

The ability to solve such problems using models of non-orthogonal basis functions in 

a computable manner, is crucial for many applications. Third, we discuss the general 

solution for a classification problem: we are given a new data set and a number of old data 

sets, and assume that each of the old data sets was produced by different mechanism. 

1 



Chapter 1. Introduction 2 

We then infer which of these mechanisms produced the new data set. We approximate 

the general solution for this problem and apply it in the limit case where much more 

information is carried by the old data sets than by the new data set. 

The above will be applied to the problem of inferring about the T2. distributions 

of in vivo human brain tissues, where the data is taken from. Carr-Purcell-Meiboom-Gill 

(CPMG) Magnetic Resonance Imaging (MRI) sequences. The analyzed data is considered 

to be produced by decaying exponents with some distribution of the decay rates (the T2 

distribution). We model this distribution by a finite number of models, each of which 

has a finite number of parameters. The T2 distribution problem is also dealt with in an 

elaborate frequentist literature,using inverse theory, and non-linear approaches similar to 

ours. The results of the application of probability theory may help to understand better 

the results of the traditional solutions. 

The determination of the distribution of the T2 coefficients in brain tissues and lesions 

is important for. a number of reasons. First, it may serve as classification criterion to 

be used for imaging, based on sub-voxel structure differences,that can not be seen in 

M R I [2]. Second, once the underlying physical mechanisms of the various components 

in the distribution have.been identified, determination of the distribution may serve to 

trace variations of the mechanisms among patients, tissues, or as a function of time. 

For example, t h e T 2 distributions are sensitive.to processes in lesions (as demyelination. 

in aging multiple sclerosis lesions [2]) and thus enable measurements of these processes 

which cannot be measured by other means. ,. 

Recently,'a new multi-echo M R I sequence for quantification of the T2 coefficients was 

developed in U.B.C. [2]. This sequence enabled, for the first time, determination of short 

T2 components (less than 20ms.) in in vivo brain tissues measurements. We use the data 

acquired by this new sequence. Partial analysis.of this data is given in [3]. 
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The assignment of components in the T2 distribution to the underlying physical mech

anisms will not be treated in this work, beside commenting about the ability to make 

such assignments. 

In this chapter we wi l l discuss the basic tools used by probability theory in answering 

well-posed problems. The reader who is unfamiliar with the Bayesian inference should 

be able to follow the rest of the work based on this introduction. We then discuss our 

state of knowledge about the T2 distribution problem. There is no intention of giving 

background on M R I or the physics behind the T2 distribution, as it is of no importance 

for the quantitative solution, once our background knowledge has been defined. After 

introducing our initial state of knowledge, the work is confined to the pure inference 

problem. 

In chapter 2, we discuss the Bayesian classification procedure. It is a generalization 

of the Bayesian model selection procedure for cases where the models are replaced by 

known probability distributions for parameters of the model. 

In chapter 3, we define a set of candidate models for the T2 distributions and apply 

the Bayesian model selection procedure for choosing one of them for each tissue. The 

ability to consistently compare models of different degrees of complexity is a feature of 

the Bayesian inference not existing in the traditional, frequentist, methods. Also in that 

chapter, we will discuss the problems arising in the analysis of exponential decay curves; 

the non-orthogonality makes mistakes in choosing a model very costly. Lacking any solid 

grounds for choosing a model, this has led traditional workers to regard the non-linear 

methods (specifying a small number of decaying components) as disadvantageous [4],[5]; 

the price paid by the Bayesian procedure for being non-linear is merely the speed of 

computation. 

In chapter 4 we estimate the parameters of the model we chose in chapter 3 for each 
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tissue. This is not a part of the classification procedure. Nevertheless, it has a stand

alone importance for the interpretation of the underlying physical mechanisms. Our 

parameters are highly coupled and poorly resolved and thus the estimations, both of 

the parameters values and the accuracies of these estimations should be done with care. 

We discuss the estimation of the noise in case of multiple measurements and systematic 

effects not accounted for by the model. 

In chapter 5 we apply the classification procedure introduced in chapter 2 to pix

els of an M R image. We discuss the meeting of necessary conditions for classification: 

having different T2 distributions for different tissues, and the variance of samples within 

one tissue. The classification procedure will demonstrate the merging of two sources of 

information: the results of classification based on the M R I image amplitudes, and the 

results of the classification based on the normalized T2 distribution. 

1.1 Bayesian Inference 

In this section, we will give the background needed for understanding the inference 

method used throughout this work. For the sake of completeness, we will first outline 

the basic ideas behind the method. . 

Fundamentals 

The goal of Bayesian inference (or better, "Probability Theory as Logic") is the rigorous 

development of a procedure [6] for assignment of probability (a real number) to encode 

the information regarding the truth of a proposition which is a member of a well defined 

set of propositions. 

The starting point for this process is a set of desiderata[6], [7]: 

1. Representation of plausibilities (abstracts) by probabilities (real numbers). 
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2. Qualitative correspondence of these assignments with common sense; i.e. mono-

tonicity (the bigger our confidence in the proposition the larger the probability 

attached to it) and continuity (infinitesimal change in the state of knowledge can 

result only in infinitesimal change in the probability). 

3. Consistency: if a conclusion can be reasoned out in more than one way, then every 

possible way must lead to the same result. 

4. No use of information that is not available. 

5. Equivalent states of knowledge will lead to equivalent assignments of probability. 

This set of desiderata leads to a unique procedure for assignments of the probabilities 

in any well posed inference problem. By ''well "posed? we mean both the description of our 

state of knowledge by real numbers, on the one hand, and well posedness of the question 

asked in the Hadamard sense on the other hand. That is: uniqueness, existence, and 

continuous dependence of the answer on our state of knowledge. 

The notion of probability here is freed from the need to correspond to any frequency. 

In the natural sciences, we use probability theory to encode (by the probability) our state 

of knowledge regarding the truth of a mechanism. 

The rigorous development of the theory can be found in [6]. A concise discussion 

of Bayesian inference and the difference from traditional, frequentist, statistics can be 

found in [8]. 

1.1.1 Manipulation Rules 

The beginning of the treatment of any problem is the unambiguous statement of our 

state of knowledge and the question for which we are seeking an answer; the propositions' 

probabilities (or ratio of probabilities) we want to find. We then use probability theory to 
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manipulate the desired probabilities to a form consisting of probabilities we can directly 

assign (direct probabilities). We give the manipulation rules in this section, and discuss 

the assignment of the direct probabilities in section 1.1.2. This section is based on [9]. 

We use the notation introduced by Jeffreys [10]: p(A/B) is the probability that A is 

true given that B is true where the arguments are propositions (statements), which are 

either true or false. The probability p(A/B) describes our state of knowledge about the 

truth of A assuming B is true. The proposition AB (or A • B) is true if both A and B 

are true and the proposition A.+ B is true if either A, B or AB is true. The proposition 

A signifies the negation of A; it is true if A is false. 

A form that appears many times in Bayesian works as the probability to be found 

(and will be used extensively in this work) is p(Hi/Dl). Hi is a member of a set of 

propositions (hypotheses) {Hi}, whose probability we want to assess in light of some 

data, D, and some background information / . The background information must include 

the statistical model (the relationship between the data and a true hypothesis), the 

specification of the hypotheses set and the probability of each of the members of 

{Hi} before having knowledge of the data (prior probabilities - see below). 

The basic rules emerging from the theory are the sum rule, 

p(Hi) + p(Hi) = 1 

and the product rule 

p(HiD/I)=p(Ht/I)-p(D/HJ)=p(D/I)-p(Ht/DI) 

We use exclusive propositions, and thus, from the sum and product rules we have: 

p(Hi + Hi/I) =.p{HiII)+p(HJII) (1.1) 
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As demonstrated in [1], once we state a set of propositions, we can treat them as 

exhaustive without influencing any of our quantitative solutions. That is: 

5 > W ) . = 1 , (1-2) 
i 

a normalization rule. 

A n important result of the product rule is Bayes theorem: 

p(Ht/DI)=p(HjI).P^j^ 

We usually use Bayes theorem to describe the process of learning about the probability 

of the proposition Hi in light of the truth of a new proposition (usually data) D and other 

known information (background knowledge) I. In such a case: 

• p{HijI) is the prior probability. It is the description of our knowledge about the 

truth of Hi before we saw the current data, D. 

• p(D/HiI) is the probability of collecting the set of data £), given a proposition Hi. 

It is the likelihood of Hi in light of the data D: 

• p{D/I) is the global likelihood. By eq.(1.2) the global likelihood is 

p(D/I)= £ p{HdI) • V{DIHd) 
HiC{H} 

ensuring a normalized posterior probability, given a normalized prior. 

• p(Hi/DI) is the posterior probability. It is the description of our knowledge about 

the probability of Hi after we saw the data, D. 
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A l l the rules introduced so far hold when our set of models are continuous and the 

probabilities are replaced by probability density functions. Assuming our• proposition 

Rk is parameterized by the parameter 0 , then, H^Q = uHk is true and the value of its 

parameter is 0 " . Then, by repetitive application of eq. (1.1) and taking the limit of the 

sum to an integral we have: 

p(Hk/I)=p( J HkQdQ / / ) = J.p'HkQ/I)-dQ . (1.3) 

Where the integrals are over all the values available to 0 ; jp(Q/I)dQ = 1. 

The rigorous justification and discussion of the passage of the discrete propositions 

to continuous ones can be found in [6]. 

M o d e l Selection 

Usually, the propositions {Hi} are models describing the phenomenon under investiga

tion. Often we want to compare a number of parameterized models, which may differ 

in form or number of parameters. We do so by comparing the posterior probability 

p(Hk/DI) for each of them. Bayesian model selection has a built-in penalty for com

plicated models: their posterior probability is larger than the posterior probability of 

simpler models only if their additional complexity is justified by the data. 

In model selection, we often speak about the ratio of the probabilities instead of the 

probabilities directly. The ratio Oij — p{HijDI)/p(Hj/Dl) is the odds in favour of 

model Hi over model Hj. By Bayes theorem we have: 

Pin/pi) _ mm • = 

13 M/Dl) piH3/i).^l 

= p(Ht/I) pjD/Hil) 
piHj/I) p{DlH3I) • 
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That is, the odds is the ratio of the prior probabilities multiplied by the ratio of the 

likelihoods. 

Note that the Bayesian. model selection relies on the global likelihoods of the models 

and not on the maximum likelihood as is usually done in the frequentist statistics. The 

maximum likelihood (i.e., the maximum of p(D/H{{Q}I) where {0} is the set of pa

rameters characterizing the model), is achieved by assigning the parameters values that 

maximize the likelihood. By relying on the global likelihoods of the model, p(D/HiI), 

the Bayesian procedure calculates the odds regardless of the parameters that enter each 

model. The transition from p(D/Hi{Q}I), being the assigned direct probabilities to 

p(D/HiI) is done by marginalizatiou] the application of eq. (1.3) : 

p(D/HJ) = JP(D{e}/HJ)d{e} = Ip({0}/^,-7) .p(/J/{0}/J t-/)ci{0} (1.4) 

It is here where the more complex model (the model that has more parameters) is 

penalized for its' extra complexity. We will demonstrate it by considering the following 

simple case [9]: Consider two models, M\ with a single parameter 6 and M0 with 0 fixed 

- at some default value #05Thus M0 has no free parameters. By application of eq. (1.4), 

the odds is, 

= p(Mo/I) p(D/M0I) 
01 piMJI)' p(D/M1I) • -

= P(M0/I) p(D/90M0I) -
p{M1II)' Sv{6II)-p(DI0MiI)d0 

Where the integration is over all possible values of 6. Now, in most cases, the likeli

hood 1(6) = p(DjOI) is much more peaked than the prior p(9jl). Let & be the value of 

9 at the maximum likelihood, and approximate the prior by the constant p(9/I). Thus, 



Chapter 1. Introduction 10 

Coi ct — 
p(O/I)-fl(0)dO 

Next, we replace the likelihood integral by its maximum amplitude 1(0), multiplied 

by the characteristic width 80. 80 — f l(0)d0 / 1(0). Finally, approximating p(0/I) by 

the reciprocal of a characteristic width of the prior, AO, we have: 

The likelihood ratio in the first term can never be greater than one, since 1(0) is the 

maximum of 1(0); it can never favour the simpler model. The data will always be fit 

better by the model with additional parameters. Alas, the second ratio penalizes the 

' complex model if the width of the likelihood, 80, is smaller than the width of the prior, 

AO, and this term in general will be larger than one. The odds , assuming no prior 

preference to one of the models ( p(M\/I) = p(Mo/I) ), will favour the complex model 

only if the data have sufficient evidence in favour of the more complicated explanation. 

Probability theory both quantifies such evidence and determines how much additional 

evidence is "sufficient" through the calculation of global likelihoods. 

As demonstrated by Bretthorst [1], the additional goodness-of-fit (measured by the 

difference of the data from the model predictions) needed in order to overcome the penalty 

for the additional complexity of one additional parameter can be calculated, and depends 

very weakly on the width of the prior. The quantitative results of Bretthorst are not 

directly applicable to our case, since any additional parameter will change substantially 

the probability distribution of other parameters. Nevertheless, the qualitative results 

regarding this weak dependence on the width of the prior remains true. 
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Parameter Estimation 

Many times we are interested in the values of the parameters that enter our model. 

By application of Bayes' theorem we usually arrive at the determination of the joint 

probability: 

P({Q}/DI) 

That is, the probability as a function of all the parameters. When coming to estimate 

the value of one of the parameters, the rest of them are nuisance parameters. 

We can get rid of the nuisance parameters by marginalization. Assuming we have a 

model with two parameters, 0 and $, and we want to concentrate on the estimation of 

0 . By eq.(1.3), we have:' 

p{e/DI) = jp{m/DI) • al® 

where p(Q/DI) is the one-dimensional probability distribution as the function of the 

parameter under investigation. It is called the marginal posterior distribution. 

Strictly speaking, the Bayesian procedure brought us so far, but not further. It does 

not determine the value of the parameter at any single point in the parameter space, but 

rather the full marginal posterior distribution. Nonetheless, we are often interested in 

the representation of our results in the form of single number to be taken as our final 

estimate for the value of the parameter. 

Possible estimators for the real value of the parameter are the posterior mode (most 

probable value of 0) and the posterior mean 

< 0 >= J Q-p{e/DI)-dQ 

If the mode and the mean differ substantially, the distribution is too asymmetric to 

be adequately represented by a single number. The allowed range for a parameter with 
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a probability content C is given by a credible region, i?, defined by: 

/ p(Q/DI)-dQ = C 
JR 

with probability density everywhere inside R greater than everywhere outside it. 

Due to computational difficulties, not all the nuisance parameters in our work will be 

eliminated by marginalization. we will then remain with a joined probability distribution 

of some of the parameters, and the task of estimating the accuracies of their estimates 

will have to be done.with care. 

1.1.2 Direct Probabilities 

The Bayesian procedure gives us tools for manipulating known probabilities into other 

probabilities. We are left with the task of describing our initial knowledge in form of 

probabilities to be assigned. We call these probabilities, which have not been a result 

of manipulation of other probabilities, direct probabilities. The assignment of direct 

probabilities involves in general the reduction of knowledge from other forms into real 

numbers. It is thus an open problem. 

We will treat direct probabilities of two groups: prior probabilities and likelihoods. 

Prior Probabilities 

The prior probabilities are the description of our knowledge prior to seeing the data of 

our present experiment. It may be the posterior probability of some previous experiment, 

knowledge arising from the same experiment but not used in any other place (see chapter 

5 for example), or any other knowledge regarding the propositions/parameters we have 

that may be relevant to our problem. An important subclass is the representation of 

ignorance; the probability we should assign to each proposition (or probability density 
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for the value of a parameter, when our models are continuous), when we have no prior 

information that will prefer one over the others. We use this kind of prior in numerous 

occasions through this work. 

The assignment of prior probabilities that represent ignorance usually can be helped 

by the invariances that the propositions/parameters should obey; i.e., the transformations 

that can not change our state of knowledge about the problem. 

Two important cases used in our work are: 

• Location parameters: these parameters obey the symmetry of translation. The 

state : of knowledge cannot be different if the origin is changed. In the discrete 

case'it amounts to the invariance of state of knowledge under permutations of the 

propositions' labels. We assign location parameters uniform prior distributions in 

the case of continuous parameters and equal probability for all propositions in case 

of discrete parameters. That is, the normalized prior of a location parameter is 

for the case of continuous parameter, and 

= NumL of H <L6' 

for discrete models. 

Scale parameters: these parameters obey the symmetry of scaling. The state of 

knowledge cannot be different if the unit of measurement is changed. The prior 

distribution that obeys this symmetry is the Jeffreys' prior[10] which has the nor

malized form : 
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Where 0# and 0^ are the upper and lower limits of 0 . Note that the logarithm of 

a scale parameter is a location parameter. We will make use of this fact in chapter 3. 

A broad treatment of assignments of prior information and limiting processes can be 

found in [11], [12] and [6]. A -concise treatment that is more adequate for this work is in 

the opening chapter of [1]. , - . 

L ike l ihoods 

The likelihood p(D/HI) is the probability of collecting the data given the model is true. 

In case we have all the information about the mechanisms producing the data, we can 

incorporate it into the model. Then, the likelihood is either 1 or 0/ probability theory 

reduces to deductive reasoning. 

•/• In most of our real life problems (i.e., the problems where inference tools are required) 

we allow the possibility of data different from the model given the model is true, due to 

noise. The noise, in the Bayesian interpretation, is not a 'random' process, but merely 

a process where our ignorance regarding the producing mechanism is sucli that its effect 

on the data is not reproducible. Any known behavior of the noise can, in principle, 

be extracted from the noise and incorporated in the model. The noise will include any 

effects, systematic or not, that are present in the data but not in the model. 

Thus, the form of the likelihood is the statistical model - the probability of material

ization of the noise. , ... . 

1.2 M R I - T2 D i s t r i bu t i on 

1.2.1 T h e D a t a 

The data used through this work was supplied by Dr.Kenneth Whittalland Dr. Alexander 

MacKay from the department of radiology at U . B . C . The apparatus and the acquisition 



Chapter 1. Introduction 15 

Tissue Tota l number of pixels 
Genu Corpus Callosum ,1908 

Splenium Corpus Callosum . 2204 
Minor Forceps 2886 
Major Forceps 5041 

Internal Capsules 1936 
Head Caudate Nucleus 1656 

Put amen 3234 
Globus Palidus 831 

Thalamus . 2157 
Insular Cortex 5755 

Cingulate Gyrus 3414 
•Cortical Gray 4313 

Table 1.1: The Database. 

method is described by them in [3]. The data consist of decay curves acquired from brains 

of 11 normal volunteers. The data from ten of these volunteers serve as 'learning data' for 

choosing a model and producing the probability distribution of the parameters for each 

tissue, and the data from the eleventh volunteer serve as test data for the classification 

process. For each volunteer, volumes were outlined on M R I image for 5 white and 7 gray 

matter structures. The data numbers are the spin-echo amplitudes of each pixel inside 

the outlined tissue for 32 spin-echoes with echo-spacing of 10ms. Typical decay curves 

for twenty pixels taken from different locations and volunteers but from the same tissue 

are displayed in Figure 1.1. The learning database is given in Table 1.1. 

We want to investigate the shape of the T 2 distribution, regardlessdts total amplitude. 

Thus, the total amplitude is a nuisance parameter and we wish to remove it in this step. 

We multiply each data set by a factor that will bring the linear extrapolation of the 

origin to 1000 amplitude units. The resulting data set is equivalent to the original as no 

relevant information has been changed. This 'normalization' replaces the more rigorous 

and proper marginalization due to computational consideration. 
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Time [ms] 

Figure 1.1: Raw Data: Decay Curves of Pixels taken from Major Forceps. The variance 
of the amlitudes is evident. 

1.2.2 Background Knowledge 

Our state of knowledge prior to seeing the data will determine our set of models, assign

ment of noise distribution (the statistical model) and assignment of prior distributions 

(both the prior distribution of parameters within models and the prior probability of 

the models). We wish to incorporate any known systematic effect into our set of tested 

models and thus reduce the resulting noise. We discuss the background knowledge at 

hand. 

Each T 2 distribution is expected to be composed of decaying exponents. The decaying 

exponents may have different decay rates and may have a distribution of decay rates. We 

assume that all samples of a particular tissue will exhibit decays of the spin-echo signal 

according to the same T 2 distribution; That is, we do not take into account the variance 

of the T2 distribution between different volunteers and between different locations in the 

same volunteer. 
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Here we enumerate effects expected to show in the data in superposition to the T% 

distribution. 

The numbers given in the data are the M R I amplitudes of pixels in the image for 

32 sequential images generated from the maximum of the 32 spin-echoes in a C P M G 

sequence. This process includes the following known contributions: 

• Fourier transform artifacts. The D F T is a sufficient statistic for optimal frequency 

estimation when looking for one Sine/Cosine in the data [13]. The evenly sampled 

Sine/Cosine functions are almost orthogonal and thus the D F T is still an adequate 

estimator in case of well-separated frequenciesfl]. In the case of M R I images, the 

frequencies are close to each other and the amplitudes suffer from artifacts, both 

from the neighboring frequencies and the finite dimension of the sampling window 

(256 pixels). No publication of a practical Bayesian solution for Fourier-transformed 

image reconstruction is known to the author. The contribution of this effect is 

assumed to be small compared to other noise sources and spatially dependent. We 

will not try to incorporate any knowledge about this effect beside its finite variance. 

• Imperfect 180° pulses and imperfect corrections artifacts. The presence of imperfect 

180° pulses in the sequence give rise to both ghost image artifacts and Ti artifacts 

[14]. A descending gradient crusher sequence had been applied in order to eliminate 

these contributions [3] and is expected to eliminate most of the stimulated echoes. 

Nevertheless, no weighting had been applied in compensation to the main spin-echo 

degradation by the stimulated echoes. 

The sum of these effects is finite variance. A systematic component, if any, will 

be alternating due to the nature of the ghost image artifacts and 7\ artifacts. Its 

magnitude is assumed to be roughly proportional to the total signal along the decay. 

We do not attempt to incorporate any knowledge about initial magnitude or sign 
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of this effect. • 

• Flow artifacts. A laminar fluids flow will give rise to even-echo-rephasing and thus 

we expect an alternating effect with negative amplitude for the odd echoes, and 

finite (yet unknown) magnitude. Again, we assume that the magnitude of this 

effect is proportional to the total signal along the decay. 

• Magnetic field inhomogeneities. The effect is unknown but assumed to have finite 

variance. 

• Variance among volunteers. In trying to estimate the parameters of each of the 

tissues we assume that same tissues in different patients will exhibit exactly the 

same T 2 distribution. The extent of the error of this statement is unknown, but 

finite. 

• Variance inside tissues. Not all the tissue elements are identical, even within one 

volunteer. Again, the extent of the error in this assumption is unknown, but finite. 

• Region OfTnterest (ROI) contaminations. The data pixels were collected by assign

ing ROI volumes over the M R I image. The extent of the error in wrongly labeling 

pixels is unknown. Due to the finite difference between the tissues this error is 

finite. ' . 

• The data are expressed by integers. The contribution of this rounding to the noise 

has a symmetric uniform distribution with unit width. Of this knowledge, we 

incorporate into our knowledge only that this contribution is finite and unknown in 

sign. We expect the effect of this loss of information to be negligible, as the other 

contributions to the noise are expected to be much larger. 
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• There may be other effects we do not know about. These effects assumed to have 

finite magnitudes, but are otherwise unknown. 

• Unknown effects in the measurement process may give rise to a DC level. This 

contribution is unknown in sign and magnitude. The magnitude assumed finite. 

The background knowledge can be summarized as follow: 

• Possible systematic effects: 

1. Decaying exponents of unknown amplitude and decay rate. The expected 

decay rates are in the range of 1-3000 ms. The amplitude of each such exponent 

is in the range 0-1000 amplitude units. 

2. Decaying exponents of unknown amplitude and with distribution of decay 

rates of unknown center, shape and width. The decay rates and amplitude 

of these components have the same ranges as in 1. The T2 values of these 

components can range from half to twice the main T2 value. 

3. Alternating signal of unknown initial amplitude or sign, but proportional to 

the total signal. 

4. DC signal of unknown amplitude and sign. 

• The non-systematic effects are expected to be of finite variance but are otherwise 

not known. 

Different states of knowledge may be introduced. For example, one may understand 

the measurement process better and thus come up with different models for the systematic 

effects. 



Chapter 2 

Bayesian Classification 

In this chapter we discuss the Bayesian procedure for classification of data. Section 

2.1 describes the classification of a new data set into classes defined by old data sets. 

This is a generalization of the model selection procedure to cases where the models are 

given in form of probability distributions. We use this procedure in Chapter 5 when 

classifying data of image pixels into one of several tissues, using the data acquired from 

other collections of samples from these tissues. In fact, our implementation in Chapter 

5 approximates the probability distributions of the parameters (of the models that have 

been selected to describe the old data sets) by their values that maximize the likelihood; 

it thus reduces the problem solved to the model selection problem. 

In Section 2.2 we describe the test for deciding whether two data sets came from the 

same mechanism. In many problems we are not sure that our assumption about the 

completeness of the mechanisms (that produced the old data sets) is true; the new data 

may have come from some other mechanism that produced none of the old data sets. For 

example, when classifying pixels to one of the gray and white matter brain tissues, some 

of the pixels come from the skull; not having the skull bone as one of the classes results 

in an erroneous classification of these pixels to some other tissue. 

This test, being based on the bayesian ability to consistently compare models with 

different complexity, has no traditional, frequentist, analogue. It can serve as a test of 

the completeness of our classes and thus enables the automated definition of new classes 

[15]. In the special case, when one of the models is 'zero signal', the procedure is reduced 

20 
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to the Bayesian signal detection. The solutions to both procedures, signal detection and 

whether two data sets are produced by the same mechanism, are given in Appendix B 

for the case of On/Off measurements of Poisson distributed data. For that case, the 

solutions are given in a closed form. The solutions to the problem of T2 distribution of 

the brain tissues will not be given in this work, due to computational difficulties. 

2.1 Classification Onto 'Old' Data Sets 

We assume that each of the 'old' data sets was produced by a different mechanism 

and that the mechanism that produced the new data is one (and only one) of these 

mechanisms. This assumption is part of our background knowledge, I. 

The question we are asking is: 

For which M ; the posterior probability p(Mi/dnewd0idI) is the highest, 

where: 

d n e w = "The new data set in question", and 

Mi = . "the I 1 6 W . d c l t c L dnew was produced by the same mechanism that produced the 

ith old data set liow,": This Mechanism is described by a choice of model (a functional 

form) M., and model parameters values 0 . 

By Eqn. (1.1) and (1.3), the posterior probability of M,- is given by 

p{Mi/dnewdoldI) = 
oc | MaC{M] 

(2-1) 

where: 

• Ma is the ath model. 
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• The summation is over the set of possible models, 

. • 0Q. is the set of model parameters values, parameterizing A4a. 

• tta is the parameter space of model a. 

In most cases, in the classification phase where the functional form.is well determined 

by the old data set, we will constrain the model to its most probable form: 

p(MaMax/dnewd0idI) = 1 and p(Ma/dnewd0idI) = 0 V M a ^ M a M a x 

Where A4aMax is the most probable model, describing the old data set i: . 

p(MaMax/doldlI) = Max [{p(M-a/doldi I)} I M a C {M}] . 

Thus, we can omit from now on the symbols a and A4ai denoting the model. We 

constrain a to aMax, and assume M.aMax is the true model, describing both dnew and 

doidi • 

So, in terms of the parameters of MaMax' 

Mi = = 0", where \I> is the set of parameters that describes dnew, and Eqn. (2.1) 

becomes 

p(Mi/dnewd0idI) - / p(Mi<2)/dnewd0iI)dO 

By Bayes theorem we have: 

= p(MiQIdoidi) • —— ——-—dQ 
•hi • p{dn,„,/dMl) 

And using the product rule, 

p(Mi/doldI) 
p{dnewId0idl) JQ 

f p{®lMidoldI) p(dnew/MiQdoldI) dQ (2.2) 
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Now, 

• p(Mi/d0idI) is independent of dold ; p(Mi/doldI) = p(Mi/I). 

• p(dnew/d0idI) is constant as a function of the index i, and will be cancelled in the 

comparison among the posterior probabilities of the Mi. 

• The first term in the integral is the posterior probability of the parameters given the 

• ^ = Mi • 0 and thus the second term in the integral is equal to p(dnew/^I) with 

\f/ numerically equal to 0; the likelihood the parameter set 0 in light of the new 

data set. This quantity is independent of the old data set. 

p(Mi/I) = # Qf old1 data sets = cons^-)i the posterior probability of M , is just the summa

tion (over all the possible sets of parameters) of the probability of the new data set to be 

produced by a mechanism having a particular parameter set, weighted by the probability 

of this parameter set to be the one that produced the old data set i. 

The distinction between the roles of the new and old data sets vanish if dnew is not 

constrained to be produced by one of the mechanisms of d0id. By Bayes theorem and 

using the known independencies, Eqn.(2.2) then becomes 

Therefore: 

(2.3) 

Thus, beside normalization constants and assuming no preference to particular i (i.e. 

p(Mi/dnewd0idI) 
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(A
 P / ( r w P m I ^ l 1 } P f e / M , G / ) P ( C / M , 0 / ) dQ-. (2.4) p{d0id/I)p{dnew/I) Jn 

In such a case, as common sense may already suggested, the proposition M,- is sym

metric in regard to the old and new data sets. It does not matter which data set had 

been sampled later in time. 

2.2 Model Comparison 

In Section 2.1 we chose one 'old' data set, for which the probability of the new data set 

to come from the same mechanism as this set, was the highest among all the old data 

sets. 

We want to test the model of choice (from Section 2.1): Did the same mechanism 

produce both our old data set of choice, and the new data set? In this Section we give 

the general solution for this problem. We describe the test for deciding whether two data 

sets are produced by the same mechanism. 

As demonstrated by Bretthorst [1], This question in its general form is meaningless. 

We cannot compare our model to an ill-defined model of "all the other mechanisms that 

are not the one which produced the old data set". Nevertheless, the proposition becomes 

well-defined when we restrict ourselves to the functional form of one. (say, the old) of the 

data sets. The proposition "the models describing the mechanisms that produced the 

old and new data sets are of the same functional form but with different values of the 

parameters" is a well defined and computable proposition. 

From now on, we will omit the subscript i. We will do everything inside our model 

and functional form of choice. 

We want to find the odds ratio of: 

• Mo = "The parameters of the mechanism responsible for the new data set are the 

r1 
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same as those of the mechanism responsible for the old data set; *P = 0 " 

O V E R 

• Mi = "The parameters of the mechanism responsible for the new data set are 

different from those of the mechanism responsible for the old data set; \t ̂  0 " 

Where VP and 0 , as in Section 2.1, are all the parameters of the model but excluding 

the functional form. Now, the posterior for M0 had been already calculated in Section 

2.1 for every member of the old data sets (Eqn. (2.4)). 

So, similarly to Eqn. (2.4): 

p(M0/dnewdoldI) = 

. P(M0/I) f p(e/I) P(dold/M0QI) p(dnew/M0QI) dB (2.5) 
J $"2 p(d0id/I) p(dnew/I) Jn 

and 

Q _ p{M0/dnewdMI) 
1 - p(M0/dnewdotdI) 1 • 

is the odds ratio in favour of both data sets (new and old) being produced by the 

same parameters. Note that the global likelihoods p(d0id/I) and p(dnew/I) now stands 

for the summation over the two possibilities, Mo and M j , instead of over the set of old 

data sets. This point would not matter since the global likelihoods are independent of 

Mo and Mi, and will cancel in any comparison of these propositions. 

Again, p(dnew/MoQI) is the likelihood of the parameters in light of the new data set 

since Mo© = In order to arrive at a form consisting of assignable direct probabilities, 

we will manipulate explicitly the probability of M i and introduce the odds ratio as 
(~) p(M0/dnewdoldI) 
W o 1 - p(M1/dnewdoldI)-
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In a similar manner to M 0 , the posterior of M i is given by 

p(M1/dnewd0idI) = 

= (A P / r w P ,T\ I P^l1) P(doid/Mi®I) Pid^/M.BI) d© . (2.6) P[doid/I) p{dnew/I) Ju 

Now, the third term in the'integral is no longer the likelihood of the parameters 

that produced the new data set, since M i 9 , unlike M o 0 , is not equal to We still have 

to span this term: 

p ( < W M i 0 / ) = / p K e ^ / M a O / ) d^ = 

J^/M^pid^/^M^d^ 

and Eqn.(2.6) becomes 

p ( M i / d n e w d o l d I ) = 

and the resulting odds ratio is: 

= p{M0/dnewdoidI) = p(M0/I) 
01 p{Mxldn&wdoldI) piMJI) 

Igpje/i) P{dold/M0ei) P(dnew/M0ei) dQ 
fnp(e/I)p{dold/M1QI)dQ.SnP{*/I)p(dr^/*M1I)d*. ' [ • ) 

Eqn.(2.7) is the expression of the odds ratio as function of direct probabilities. 
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From inspecting Eqn.(2.7), we see that having the same likelihood of the parameters 

in light of both data sets, p(dnew/QMoI) = p{d0id/QI), wil l not lead to the same odds for 

all shapes of the likelihood. Situations where Ooi ^ 1 ( i-e. approaching certainty that 

the data sets came.from the same mechanism) will be achieved only when the likelihoods 

are equal and are both very peaked. That is, the parameters are well estimated by each 

data set and these estimations are equal. 

Another interesting limit is the neighborhood of no new data. In this, case p(dnew/QM0I) 

p(dnew 1^M\I) = Const, and Eqn.(2.7) becomes: 

= p(M0/dnewdoldI) = p(M0/I) 
0 1 ~ p(MildnewdoldI) ~ piMjI)' 

p(cWM)©/) • J n p ( 0 / / ) p(dold/M0QI) dQ 
p(dnewimMJ) • fnP(Q/I) pid^/MrQ^dQ • fnpWI) dV 1 ' } 

P(Mo/I) 
p(Mi/I) 

As may already be clear from common sense, in a case where we know very little 

about a mechanism, the chances of having this mechanism equal to any other are hardly 

influenced by any information we have about that other mechanism. No matter what 

are the other mechanism parameters, or how accurately they can be determined, the 

probability of our 'foggy' mechanism to have these parameters, or any others, in the 

parameter space fl will be solely determined by our prior knowledge. 

We will not implement this procedure to the problem of tissue classification. Dealing 

with the computation problems involved in this implementation is beyond the scope of 

this work. In Appendix B we bring implementation of the procedure for the case of Pois-

son distributed data ( a set of On/Off measurements in the astrophysics nomenclature). 

In that case, the solutions are reduced to expressions with closed form. 
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M o d e l Selection 

We now turn to applying the principles discussed so far to the brain tissue samples. In 

the following two chapters we will find the probability distribution of the parameters 

that enter the models describing the data set for each of the tissues. This is a two step 

process: 

First, we have to define the set of models and choose a model (a functional form) for 

each tissue. This will be done in the current chapter, applying the principles of model 

selection described in Section 1.1.1 . 

Second, in the next chapter, we will use the probability distribution of the parameters 

of this model to estimate their values and the accuracy of these estimates. 

3.1 The Set of Mode l s 

In order to choose the functional form of the T2 distribution of a given tissue, we should 

address the following question: 

• Given a finite set of models, which one best describes the data and our prior 

information? 

The set of models to be examined will be defined according to our background knowl

edge about the systematic effects expected to appear in the data, as defined in Section 

1.2.2. 

28 
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We use the notation and derivation introduced by Bretthorst [1]. Each of our models 

is a linear combination of base functions, that is, the model Jvia for tissue a as a function 

of the time t, is of the form: 

Ma(t) = ,£iBjaGia(t,T£) (3.1) 
j=i 

Where: 

• TJ^ is the set of the nonlinear parameters of the base function Gja. 

• ma is the number of base functions appearing in model a. 

• Bja is the amplitude of base function Gja. 

Our question will be answered by comparing the posterior probability p(j\4a/Dl) 

among the models. 

3.1.1 The Base Functions, Gja 

The set of models is specified as follow: 

• 1 < ma < 7 . Our model is a superposition of no more than 7 base functions. 

The model functions Gja represent the various systematic effects expected to appear 

in the data, according to our background knowledge. Gja can take one of the following 

forms: 

Delta Function in the Laplace Space 

Described by the exponential decay: 

Gja(t) = e-*'**-



Chapter 3. Model Selection 30 

This base function has one nonlinear parameter: the location of the delta function in the 

Laplace space =the decay rate T2. 

Gaussian in the Laplace Space 

Described by a series of exponents in the form: 

Cjn(!) = 

0 . 4 - e x p ( - ^ - ) + 

0 - 2 • ( e X P ( - T 2 , - , - ( l + 1 . 0 7 . ^ o ) ) + e X P ( - T 2 j a / ( l + 1 . 0 7 . W j a ) ) ) + 

0.1 • ( ^ ( - ^ . a . ( 1 + l . 6 7 ^ 
This base function has two nonlinear parameters: the location (T2ja) a n d the width-

fraction Wja of the gaussian in the Laplace space. It approximates a gaussian having width 

of T2ja • Wja and unit integral . The gaussian is symmetric when plotted as function of 

Log[T2]. This form was chosen to represent a peak with added structure (width) over the 

delta function, but no other information regarding the distribution of decay times. 

Al ternate-Echo-Refocusing ( A E R ) 

Described by: 

Gja(t) = (-l)k.exp(-^-) 

Where k is the index of the measurement point; k=l,2,...-32. The alternating signal 

is multiplied by a decaying exponent having decay rate of 70ms as a first order approx

imation to the decaying of the total signal. This base function does not have nonlinear 

parameters. 
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A Background ( D C ) Level in the T i m e D o m a i n . 

Described by: 

Gja(t) = l 

This base function does not have nonlinear parameters. 

A Linear Component in the T i m e D o m a i n . 

Described by: 

Gja(t) = 0.19146(—1.65 + 0.01 • t) 

This base function is added in order to improve the algorithm stability and to reduce 

computation time. Exponential decays with long decay rates (T2 ~ 1000ms) will appear 

in our data as almost straight lines. Allowing such a component in the data to be repre

sented by a combination of DC level and linear component will reduce substantially the 

computation time: We are trading a linear (amplitude) and non-linear parameter (the 

decay rate) for two amplitudes (the DC and the linear component). This is important 

since our computation time is polynomial in the number of linear parameters but expo

nential in the number of the nonlinear parameter (see 3.1.2). The contribution to the 

algorithm stability is achieved by the elimination of an insensitive parameter: the decay 

rate T2 when having values over T2 ~ 1000ms. 

The coefficients in the form of this base function were chosen so the base function will 

be normalized over the sampling points (j>2T Gja(10i) • Gja(10i) — l ) and orthogonal to-

the DC level component(^f 2 Gja(10i) • 1 = OJin order to reduce computation time. 

This base function does not have nonlinear parameters. . 
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3.1.2 Search Path 

The previous Section defined the set of models to be tested: it is the set of possible 

combinations of the base functions Gja not exceeding 7 in their total number1. 

Alas, we do not wish to calculate the needed posterior probability p(A4a/Dl) for 

all of these models. Though their number is finite, the computation time needed for 

computing all of them will render our task impractical. Our algorithm computation time 

is of the order of 

^ computation — *± ' rn *. Cl 

Where: 

• K is.a computation time coefficient of the order of seconds. - -

• m is the number of linear parameters. 

• 7' is the number of nonlinear parameters. 

• a is a search-sampling coefficient: a ~ 25. 

That is, our computation time is polynomial in the number of linear parameters 

and exponential in the number of the nonlinear parameters. We need to find the most 

probable model without calculating all the models, and in particular we want to avoid 

unnecessary computations of models with many nonlinear parameters. 

We describe our model space as 3D discrete space, using the following coordinates: 

1. The number of decaying exponents (with or without width). We will refer to this 

coordinate as 'Components' (C). C=l,2,...7 
2Two constraints reduce the number of combinations: the AER component must always be present 

and the linear component cannot be present without the DC component. 
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Evaluate^ 
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Figure 3.1: Search Path Flow Chart. The algorithm is looking for the maximum proba
bility in the space of models. 

2. The number of decaying exponents with width as additional parameter. We will 

refer to this coordinate as 'Widths' (W).' W=0,1,2,...C . 

3. The number of 'Polynomial Components' (P). P=0,l,2. P=0 When no polynomial 

component is present. P = l when a DC level is added. P=2 when both the DC and 

the linear component are added. 

A flow chart of the search path is given in figure 3.1. 

The algorithm is looking for the maximum probability in the space of models. In 

each step, the resulting likelihood is compared to the best model so far and replaces it 

if its likelihood is higher. For computation time efficiency, the algorithm first tries to 
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simplify the model. In the case where all possibilities to simplify the model exhausted, 

the algorithm will try more complex models. The algorithm stops once all possible steps 

from the model having the highest probability so far have been exhausted. 

We assume that the starting model of the algorithm has no particular importance. 

Nonetheless, for the sake of computation efficiency, our search path will always start from 

the solutions given by A.L.MacKay and K.P.Whittal l in their analysis of the data of one 

volunteer[3] . We assume that the maximum found is the global maximum in the defined 

space of models. 

In Section. 3.3.1 we will demonstrate the search path for two simulated data sets. In 

one of. them the starting model will be a simple model, one decaying exponent, and the 

search path will add parameters and components in order to reach an adequate description 

of the data, and thus higher probability of the. model. In the second simulation we will 

start from the 'right' model. The search will stop after finding that the initial model was 

in the maximum of the models space. 

3.2 The probability of the Model p(Ma/DI) 

We compare the posterior probability of the model A4a to other competing models. By 

Bayes theorem .we have: 

*M.,Di)=«Mji).«y$p. 

Where: ' . 

• p(.Ma/I) is the prior for the model Ma. Lacking any prior information about the 

plausibility of the model comparing to other models, we will assign the same prior 

to all of them: • 
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for all a. 

• p(D/I) is a normalization constant. It is the same for all the models and thus will 

cancel out when we compare models within our set. 

Thus, the odds of each of the models compared to any other model is given by: 

_ p(Mk/DI) _ p'D/Mkl) 
h l p{Mi/DI) p(D/MiI) [ ' 

The odds is the ratio of the models likelihoods. 

We now have to express the likelihood in term of assignable direct probabilities. By 

Eqn. (1.3) and the product rule, we have: 

p{D/MaI) = J p(DQl/MaI)dec 

= Jp(E&/MaI)- Jp(^/XMaI)-p(D/X^MaI)d^dX 

Where: 

• Ba is the linear parameters set for the model a (amplitudes). 

• To* is the nonlinear parameters set for the model a (decay rates and width-fractions). 

• Qa is the parameter set for the model a (linear and nonlinear). 

• p(Ba/A4aI) is the prior for the linear parameters of model A4a. 

• p ( ^ a / B a A 4 a I ) is the prior for the nonlinear parameters. It depends, in general, on 

the values of the linear parameters Ba of model M.a. 
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• p(D/BaTaj\4aI) is the likelihood of the model with a specific set of parameters 

(both linear and nonlinear). It is a direct probability we have to compute. 

3.2.1 The P r i o r P robab i l i t y Dis t r ibu t ions 

We will not include any information regarding the values of the parameters. One may 

think of incorporating information from previous experiments about the anticipated val

ues of the parameters or dependencies between them. Now, previous inVivo determina

tions of T2 decay rates and amplitudes [16, 17, 18, 19] do not agree2. Moreover, it is hard 

to ascertain any reliable credible regions from their reported results. Thus, any responsi

ble and conservative use of the information contained in these reports for assignment of 

prior distribution will take the form of very broad distributions for all the parameters. 

If the data will determine the parameters much better than the prior, the prior proba

bility distribution of the parameters will be essentially constant in the region of substan

tial contribution of the posterior probability distribution. Thus, the details of our hardly 

informative priors would not change much and do not merit the additional computational 

effort. The main feature of the prior that may survive in the final results are the scale of 

the prior distribution; the range in which the prior has a substantial magnitude. 

Therefore, we will use priors that represent this state of ignorance and according to 

their known ranges, as discussed in Section 1.1.2. 

Nonl inear Parameters 

Our nonlinear parameters, decay rates and widths, are scale parameters. We will express 

our ignorance regarding their values by assigning them a normalized Jeffreys' prior. We do 

not incorporate any information about possible coupling among them or their dependence 
2 0 f course, we cannot.use the results of [3] as part of our prior information. They use the same data 

discussed in this work. 
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on the values of the amplitudes; that is, 

—> / a 

p{T^IBaMaI) = 1>(W MaI) 
k=l 

, ^ W ^ . / ) = L O G ( ^ ) . T R I (3.3) 

Where: 

• la is the number of nonlinear parameters in model a. 

• TakH = 3000ms and = 1ms whenever rafc is a decay rate. 

• rakH = 1 and rafcZ/ = 0.01 whenever jay. is a width-fraction. 

L inear Parameters 

Again, we do not incorporate any information about coupling of the amplitudes. That 

p(BJMaI)=~[[p{Bja/MaI) 

where ma is the number of base function in model a. Our linear parameters, the 

amplitudes are location parameters. We will express our ignorance regarding their values 

by assigning them a uniform prior: 

P(Bja/MaI) = — (3.4) 
BjaMAX 

Where: 

• BjaMAX = 1000 whenever BJ0MAX is the amplitude of a main component. 
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• BjaMAX = 60 whenever BjaMAX is the amplitude of a D C level. 

• BjaMAX = 100 whenever BjaMAX is the amplitude of a linear component. 

3.2.2 The Likelihood 

We now turn to calculate the likelihood p(D/BaTaA4aI). 

The data produced in the experiment is described by: 

di = Ma(ti) + ei 

where e/ is the noise realized in measurement I. Given the model and a parameter 

set, the difference between a datum value and the value (of this datum) predicted by the 

model is assigned to the noise. 

Of course, we assign different values to the noise associated with each of the data 

points when we choose different model. In case the noise variance is known in advance, 

this gives us a tool for testing whether our model gives a proper description of the data 

[20]. 

We will follow the derivation and notation used by Bretthorst [1] with the extra care 

to our special case in which: 

• The signal to noise ratio is poor and thus not all of the approximations used in [1] 

can be directly applied. 

• Our data consist of multiple measurements. 

According to our background information, as discussed in Section 1.2.2, we assume 

the noise has a finite variance which is not known. Due to the lack of any other infor

mation about the noise (like correlations), we assign the noise a Gaussian probability 

distribution. This probability distribution arises from maximum entropy consideration 
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[13]; the Gaussian is the distribution that maximizes the entropy under the constraint of 

finite variance. The assignment of a Gaussian distribution to the noise guarantees us that 

we made a conservative assignment by declaring total ignorance about the behaviour of 

the noise, beside its finite variance. If, indeed, the noise is correlated, or non-stationary, 

it will not lead us to erroneous results as we already took these possibilities into account. 

The probability of getting the value of a datum point, given the Gaussian probability 

distribution of the noise, its variance crs, and all the other parameters, is: 

—» 1 1 m 

p(di/B al^aMaasI) = e x p ( - — ( c i i - ^ BjaGjafa, r j a ) ) 2 ) 
V27TO-2 j = l 

For clarity, from now on we omit the index a that signified the model A4a and the 

explicit symbol of the model M.a. We do everything inside the model under consideration. 

The noise is assumed uncorrelated, and thus the probability of getting this data is 

the product of the probability of getting each of the data points: 

n ni 

p(D/^ BasI)=J[Hp(du/^ BaJ) 
i i . 

i . n ni m = ^ r ^ e x p t - — - E ^ G ^ i ^ ) ) 2 = 

Z ( J « 1=1 1=1 j=l 

= ( 2 7 r ( 7 s

2 ) - ^ e x p ( - ^ ) 

Where 

m n ni m m - . 

Q = nnid2 - 2 ^ ^ 2 ?jGj{ti, Tj) • ^ du +-nt J2 9jhBjBk 

j = l i = l 1=1 j=l k=l 

n 

9jk — X^^i(^' ri) ' Gk(U,Tj) 
i=l • 
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• m = the number.of model functions. 

• n = the number of sampling points •= 32. 

• rti= the number of measurements of each sampling point = number of pixels for 

each tissue. 

In order to understand the implications of having multiple measurements and the 

relationship between the part of noise arising from the misfits of the model and the part 

of noise arising from the unsystematic effects, we let: 

a2 = — 
• » • / 

and use this quantity from now on. So, 

p(D/^~BaI) = (27Tnla2y^ exp( - -^ - ) (3.5) 
2o~ 

Q = nd> - 2 £ E BjGjiU, Tj)d{ + ^ E 9ikBjBk 

j=l i = l j=l k=l 
Where: 

2 « i 
di = — 52 du 

We see that d,, the average of the data points for every sampling time i , is a sufficient 

statistic for finding the maximum of the likelihood. It is not sufficient to establish the 

absolute value of the likelihood at any point of the parameter space. 



Chapter 3. Model Selection 41 

Nevertheless, in case <r is known,.d{ is a sufficient statistic for any calculation of the 

parameters' values, since the likelihood dependence on the more detailed distribution of 

the data is through a constant factor. ' 

As common sense suggests, if a is unknown, the extent to which the data points are 

distributed will determine the probability distribution of a. The probability distribution 

of <T, in turn, will not influence the values of the parameters at maximum likelihood, 

but will determine the width of the likelihood and of the probability distribution for the 

parameters. 

In order to compute the global likelihood P(M. /Dl) for the model comparison and 

estimation of the parameters, one must integrate the likelihood given in eq.(3.5) over all 

the parameters. 

Having the base functions orthogonal, in the sense that: 

N 

9jk — E Gjiti) • Gk{U) = 6jk 
i=l 

will enable us to analytically integrate the likelihood over the linear parameters. More

over, in case the base functions are orthonormal, the expectation values of their ampli

tudes are given directly by the projection of the data on the base functions [1]. 

In spite of the general dependency of the base functions on nonlinear parameters, the 

base functions will be, in many important problems, almost orthogonal. For example, 

in the problem of evenly sampled multiple stationary frequencies, with cosines and sines 

as the base functions, the off diagonal terms of gjk will be negligible as long as the 

frequencies are well separated. 

As indicated in [20], the problem of exponential decays as base functions is about the 

most pathological case one can encounter. Under no conditions will the g^ matrix be 

orthogonal. Presence of an additional exponent will always interfere with the estimation 
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of the existing ones. One of the consequences is that any estimation of the decay rate 

constants using a model with a wrong number of exponents will give rise to incorrect 

results even in the limit of zero noise. 

At this point, one may want to resort to numerical integration. This is a very difficult 

thing to do. Beside the obvious problem of long computation time of integration in a 

space of high dimensionality, the likelihood in this space is highly peaked in many ridges 

and maxima. The task of finding the maxima that have the substantial contribution to 

the integral is beyond the scope of this work. 

Any set of non-orthogonal base functions can be transformed to an orthonormal set; 

gjk is a real symmetric matrix and thus can be always diagonalized. 

This diagonalization itself (i.e., the eigenvalues and eigenvectors of,gjk) depends on 

the nonlinear parameters and cannot be done analytically. We will need to compute 

gjk, diagonalize it, and perform the transformation of the base functions with every 

computation of the likelihood. 

So, we transform the base functions to bring the gjk matrix into diagonal form. Let A/t 

be the kth eigenvalue of gjk and let Ckj be the jth component of the associated eigenvector/ 

The transformation of the base functions is: 

2 m 

Hjit, ^ ) = —7= E eJkGk(t, Tjfc) . 

y Aj k=i 
and the amplitudes transform according to: 

Ak = \f*~k Bj.ekj 
i = i 

The Jacobian of this transformation is 

i = i V A i 
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The transformation depends on the nonlinear parameters and so does its Jacobian. 

The new base functions are orthonormal in the sense that: 

i=l 

and thus, our likelihood become: 

1 m m 
p(D/~? A al) = ^ T r r w 2 ) - ^ e x p ( - — • {nd? - 2 £ Ajhj + £ A))) (3.7) 

J = I i = 1 

where 

n 

4 = 1 

is the projection of the averaged data onto the orthonormal base functions Hj. The 

amplitudes have been separated and now the integration over them can be easily done. 

We multiply our likelihood by the prior for the amplitudes (given in Section 3.2.1) 

and integrate over them: 

p(D/^aI) = Jp{A/o-I) • p(D/^r*~£aI) • dr = 

= P ( A / / ) . n A - i . n r ^ ( 2 ^ ) ^ . a x P ( - ^ 5 ) (3,8) 
i=l ^ 

Where: 
m 

p(A/I) = Hp(B3/I) 
i=i 

is a different constant for each model, and 
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is the mean of the squares of the projections of data onto the orthonormal base 

functions H. mh2 is the scalar product of the data vector and the vector of values 

predicted by the orthonormal model functions. The nonlinear parameters that will have 

the highest probability are those that will maximize this scalar product. 

We are now left with the integration of the nonlinear parameters. This can not be done 

analytically. Moreover, we cannot apply gaussian integration or similar methods directly, 

since our signal to noise ratio is not good enough to give rise to narrow and elliptic peaks 

of the likelihood. On the other hand; the dependence of h2 on the nonlinear parameters 

makes any attempt to integrate the likelihood numerically very costly: any evaluation of 

h2 deserve new diagonalization and transformation of the base functions. 

We first transform the nonlinear parameters to a set in which the likelihood is almost 

elliptic in a sufficiently wide range that includes the substantial contributions to the 

integrals, and then use gaussian approximation to integrate them. We later use a 'safety 

valve routine' to ensure that our integral is approximated up to accuracy level of 20%. 

The transformation that will bring the likelihood bubble close to elliptic shape, is: 

Ui — Log(ri) . diii = — • d(ri) 

As discussed in Section 1.1.2, the priors of the time-scaled nonlinear parameters (the 

decay rates and width-fractions) are normalized Jeffreys' priors: 

' P(n/I) = 
J \ T, nun / ' 

When coming to integrate over the nonlinear parameters the Jacobian of the last 

transformation will cancel with the priors. That is, 

r 

.p(~T*/MaI) d~r* = "[[ (p(ui/I) dui) 
t=l 
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where: 

p{ui/I) = 
—. Ui Range(Ui) 

We are left with: 

p(D/aI) = Jp(D/llT) pCu/l) d u 

-n-nt nl " "' • (2-KO" ) 2 1HL 

exp / 
mh2\ ,_, 

exp I „ „ I a u 
2a2 J J ~~r \2a2

 / 

and no additional Jacobian to take care of. What the last transformation did was 

merely transform the nonlinear parameters from scale parameters,to location parameters. 

Now that the likelihood is approximately elliptic in its variables over the region of 

substantial contribution, we can expand mh2m Taylor series to get: ' 

mh2 

2^ 
m h2 

2a2 2a2^ j,k=i 

where U are the values of the u's at maximum likelihood, 

Afc = uk - uk 

and 

(3.9) 

m d2h2 

2 dujduk 

is the 2nd derivatives matrix obtained numerically.. The integral becomes 
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J
 e x p ( 2 ^ dTt 

mh2 f 
exp 2o2 

• / exp 
u J 3,k=l L G 

dA 

In order to perform the integral we change variables again. This change of variables 

is not essential for the analytical integration. Nonetheless, it will separate the variables, 

give a more intuitive look to the likelihood, and will help us in the next Section to 

estimate the values of the parameters. 

So, let Vj be the jth eigenvalue of the bjk matrix, and let Wjk be the kth component 

of the jth associated eigenvector. The transformation that will rotate our ellipsoid in the 

nonlinear parameter space to principle axes, and thus eliminate off-diagonal terms in the 

2nd derivatives matrix bjk, is given by: 

Sj = £ A , H / - , 
k=l 

SkWjk 

JVk 

with volume element: 

i=i 
and the integrand becomes: 

r S? 
e x p ( E ̂ A ^ A = e x p ( E ^ 

\i,k=i — / \j=i 

Performing the r integrals, the likelihood becomes: 

(3.10) 

p(D/*I) = p{AjI) -HP^II) • n r n i • (2^a2):±:^ (3.11) 



Chapter 3. Model Selection 47 

where ur=i A: is the Jacobian of the transformation of the base functions G to 
u 

the orthonormal base functions H using the values of the nonlinear parameters that will 

maximize the likelihood. The eigenvalues of the last transformation are treated in this 

stage by a 'safety valve routine' described in Appendix A. 

Our measure of the noise a, as discussed in the introduction, is not known. We can 

now treat o as a nuisance parameter: we will assign a a Jeffreys' prior and integrate over 

it. The normalized Jeffreys' prior for a is: 

p(a/I) = 

where an and a^ are the upper and lower prior bounds for a respectively. 

So, 

p'D/I) = / p'a/I) p(D/aI) do 

r+m — nnr 

i = i U 

n 
i = i 

V 
u 

ar+m-n.ni-l e x p 
nd2—mh2 

2a2 
da 

u. 
In this integration over the probability distribution of a, we assume we chose o.r, and 

an to be well outside the substantial contribution to the integral, so we can let a^ —» 0 

and an —> oo without substantially change the value of the integral. 

Changing variables, 
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V 

the integral become: 

dV=~dc VL = — 
a2 O~JJ 

VH= — 
O-L 

L 
'H-HX> 

V n-ni —1—771 — r 

V,-*0 
• exp n d2 - mh2 

•V2 

n-rtj—r — m nd2 — mh2 

u 
As indicated by the notation, p(cr/I) is independent of the model. We do not have 

any information that will differ the prior noise assignment for different models. Thus, 

the term Log (^) 

will appear in all the compared likelihoods and will cancel. Omitting 

the term Log {^) a n < ^ s o m e O I" the constants that will appear in all the models, 

p(D/M*I) a 

p( A//) •!!*(«///)• ( 2 * ) ^ IIK 
U L-

II * 
i = i 

(3.13) 
(7 

71-71; — r — m ^ nc?2 — mh2 
( 2 ) 

is the likelihood we evaluate for each model and compare among the models. 

3.3 Results 

3.3.1 Simulated Data 

We produced two sets of simulated data, one of 6 functions in the Laplace domain and 

one of Gaussians in the Laplace domain. Both produced with noise level of 0.3 units, 
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Discrete 
Component A m p l i t u d e T2 [ms] W i d t h [ms] 

Low T2 100.0 9.0 -

Medium T2 600.0 85.0 • 

High T2 300.0 180.0 -

Alter. Echo R. 0.0 - -

Continuous 
Component A m p l i t u d e T2 [ms] W i d t h ms] 

Low T2 100.0 9.0 2.0 
Medium T2 900.0 85.0 20.0 

High T2 70.0 380.0 30.0 
Alter. Echo R. 0.0 - -

Table 3.1: Generating Parameters of Simulations, cr = 0.3[Amp. units]. The given 
amplitudes of the continuous components are the integrals over these components. . 

which, as we shall see in the next chapter, is typical to our experimental results. The 

simulated noise is Gaussian and uncorrelated. The generating parameters are tabulated 

in Table 3.1 and the resulting generated distributions are displayed in Figure 3.2. 

In order to demonstrate the search path (described in Section 3.1.2) in the 'complexity' 

space of models, we give the algorithm a very simple model, one decaying exponent, as 

a first guess. This is done in the continuous distribution case, and the tested models 

and the results are tabulated in Table 3.2. For the discrete distribution we start from a 

model having three decaying exponents. The tested models and the results are tabulated 

in Table 3.3 . For each of the tested models, we show the odds ratio of that model and 

the model having the highest probability. For each model, we also show the Bayesian 

estimation of the noise level. This estimation will be discussed in the next chapter; for 

now it is enough to regard the noise estimation as a measure of the misfit of the data 

and the model. 

As we see from Table 3.3, the algorithm detected the 'right' model for the discrete 

distribution. 



Chapter 3. Model Selection 50" 

600 

500 
T J 

"5. 
E 400 
< 

300 

200 

100 

0 - | | I 
10 26 ' '5o'"i 'oo 260 ' fedo'M600 2060 

T2[ms] 

T2 [ms] 

Figure 3.2: Generating Parameters for the Discrete (upper figure) and Continuous (lower 
figure) Simulated Distributions. The plotted amplitudes of the gaussian components are 
equal to the Gaussian integral and not to their actual amplitudes. 
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Model Results 
Components Widths Poly. Comp. ^ 3i3max a 

1 0 0 1.7 • i r r 4 2 14.4 ± 2 . 0 
1 o 1 1.6 • I O - 3 1 5.0 ±0.7 . 
1 1 1 2.9 • Hr 2 2 2.9 ± 0 . 3 

• ! • ' . 1 0 3.3 • IO" 2 3 2.1 ± 0 . 3 ' 
1 ; 0 2 4.2 • l f r 2 4 3.0 ± 0 . 4 
1 1 2 1.7 • l f r 1 4 1.25 ± 0 . 2 
2 0 0 1.3 • l f r 2 1 2.3 ± 0 . 3 
2 1 0 3.9 • l f r 2 9 2.3 ± 0 . 3 
2 . 0 1 3.9 • i r r 1 3 .91 ± . 1 3 

•2 • .0 2 3.2 • i<r2 ; 37±0 .05 
2 1 2 4.1 • 10\ 3 .36 ± 0.05 
3 . 0 0 1 .31 ± 0.04 
3 0 1 7.3 • l f r 3 .31 ± 0.05 
3 1 0 7.3 • 1(T2 .31 ± 0 . 0 5 
4 0 0 1.3 • l fr 1 .31 ± 0 . 0 4 

Table 3.2: Search Path and Odds Ratio for the Continuous T2 Simulated Distribution, 
cr is a measure of the misfit between the data and the model. 

Model Results 
Components widths Poly. Comp. a 

3 0 0 1 0.28 ± 0 . 0 4 
4 0 0 0.0054 0.29 ± 0 . 0 4 
2 0 0 6.210" 2 2 2.09 ± 0 . 3 
2 1 0 5.210" 2 2 2.0 ± 0 . 3 
3 0 1 0.0056 0.28 ± 0 . 0 4 
3 1 0 0.07 0.28 ±0 .04 

Table 3.3: Search Path and Odds Ratio for the Discrete T2 Simulated Distribution, a is 
a measure of the misfit between the data and the model. 
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For the continuous distribution, Table 3.2 , the algorithm found a discrete model 

with 3 components and not a continuous model of 3 components, as is the generating 

mechanism. To see what has happened, we plot the residuals produced by fitting the 

noisy data by the 'winning' discrete model. We also plot the difference between the 

predictions of that model with the fitted parameters, and predictions of a continuous 

model having the generating parameters (Figure 3.3). We see that the residuals are a 

full order of magnitude larger than the difference between predictions of continuous and 

discrete models. Thus, fitting the data with the continuous model will hardly decrease 

the residuals and will not be able to justify its additional parameters. In other words, 

the difference between the continuous and the discrete models is not relevant to our data; 

under the given noise level, they merely produce the same data. The Bayesian procedure 

finds no reason to prefer a more complex model if a simpler model can describe the data 

and the prior information just as well. 

Compar i son to E x i s t i n g Methods 

The closest frequentist method for comparing several models is the multiple-model method 

The models are compared based on some measure of "Goodness-Of-Fit" (GOF) of their 

solutions, where each model uses the set of parameters that give rise to the best G O F 

within the model. 

The most common measure of G O F for these model comparisons is the x2 • From 

the Bayesian point of view, the set of parameters that will minimize x2 is, in the case of 

Gaussian noise, the set of parameters that will maximize the likelihood. We can now see 

what question is answered by the multiple-model method: 

• "Given a set of models, which model, contains the set of parameters that has the 

highest likelihood in light of the data?" 
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Figure 3.3: Model Selection Failure. The solid line represents the residuals produced by 
fitting the noisy data by the discrete model. The dashed line is the difference between 
the predictions of the fitted discrete model and the predictions of a continuous model 
having the generating parameters. The continuous model failed to reduce the noise level 
enough to overcome the 'penalty' it carries due to its complexity. 
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That is not what we are looking for. Our question is rather: 

• "Given a set of models, which model lias the highest probability in light of the data 

and any prior information that we have." . 

These are different questions and in general they will result in different answers. 

The difference between the Bayesian and the frequentist multiple-model method can be 

summarized in the following points: 

1. No prior information about preferred models can be consistently incorporated into 

the multiple-model method. The result of the frequentist method is the likelihood 

of the parameter set and not the posterior probability. 

2. In the model selection process we want to compare the models regardless of the 

values of their parameters. While the frequentist method is constrained to compare 

the models while choosing a particular set of parameters for every model (namely, 

the parameters that maximize the likelihood) the Bayesian procedure marginal

izes over all the parameters that enter the model, including the noise variance. 

The marginalization is equivalent to considering all the possible parameter sets, 

weighted by their probability to materialize. 

3. There is no consistent way to penalize complex models in the frequentist approach 

(quantitatively implementation of the so-called Ockhams Razor). The quantita

tive implementation of Ockhams Razor arises naturally in the Bayesian procedure 

during the marginalization over the parameters. 

In this work we used flat prior distributions for both the models and the parameters 

inside each model to express ignorance about their values prior to seeing the data. As 

a result, in our case the first statement (Point 1) has no substantial contribution to the 
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difference between the frequentist and the bayesian methods. On the other hand, the 

issues mentioned in Points 2 and 3 are of great importance in a problem like ours. Several 

models exhibit sets of parameters for which the noise is reduced to its 'true' value. The 

model that will be picked by the multiple-model methods thus depends on the particular 

materialization of the noise in the data set and not on the systematic effects in the data; 

as all these models describe the systematic effects equally well, x2 will be determined by 

the non-systematic effects. The traditional frequentist answer to the problem of point 3 

is to draw the x2 a s a function of the number of parameters, looking for the 'knee' in the 

results. In the case of few measurements (like in a 32 points sets ) this knee may be very 

vague. 

In view of the above, the difficulties in the frequentist approach to model comparison 

in our class of problems are such that they are hardly used. No implementation of 

multiple-model method for the problem of decaying exponents is known to the author. 

These difficulties, combined with the strong coupling between the parameters, that result 

in erroneous estimation of the parameters in case of wrong model, lead to strong resistance 

in the frequentist camp to the usage of non-linear methods altogether, considering the 

need to state an initial model as the major disadvantage of these method. In fact, the 

frequentist linear methods are not free from introducing a model either. A common linear 

model [4, 5, 21] is a set of exponents (100-200 is a typical number) with fixed decay rates. 

These models result in underdetermined solutions, which are then constrained by adding 

conditions like Non-Negativity and Continuity. These constraints, and in particular their 

quantitative implementation, are in general not justified by our state of knowledge; they 

represent information we in general, do not have.' 



Chapter 3. Model Selection 56 

3.3.2 Experimental data 

We applied the procedure described in this chapter to the learning data, described in 

Section 1.2.1. For each set of measurements, the collection of data from all the pixels 

from the ten volunteers assigned to each tissue, we calculated the probability given by 

Eqn. (3.13). We calculated the probability for different models, using the search path 

described in section 3.1.2. In order to ensure that the starting model did not influence 

the results, we ran the program with two different starting models for each tissue: the 

first is the model given by MacKay and Whittall [3] (two to three decaying exponents) 

and the second is a model of one decaying exponents. For a l l tissues, the two runs ended 

with the same 'winning' model, supporting our belief that this model is the model of 

global maximum probability in the model space. 

As can be seen from Eqn. (3.5), the mean of the measurements and the mean of 

the measurements squares for each sampling time are sufficient for the calculation of the 

probability for any model. 

For each tissue, we indicate the models having the highest and second highest prob

ability, along with the Bayesian estimation of their noise (Table 3.4). The noise is a 

measure of the misfit of the model and the data; its estimation and the accuracy of the 

estimation will be discussed in the next chapter. 

Most of the models found for the tissues are discrete. We are reminded that continuous 

distributions, as the distribution used in the continuous simulation, will produce similar 

data to discrete distribution of the same number of components and thus may not be 

detected. 
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Tissue 
Model 1 Model 2 

Oh2 
Tissue C W p C W P a Oh2 

Genu 
Corpus 

Callosum 

3 o 0 0.3632± 
0.001 

3 1 0 0.3632± 
, 0.001 

12.6 : 1 

Splenium 
Corpus 

Callosum 

3 0 0, 0.4004± 
0.001 

3 1 0 0.4004± 
0.001 

11.1 : 1 

Minor 
Forceps 

.3 0 0 0.2916± 
0.0007 

2 0 2 0.2916± 
0.0007 

2.04 : 1 

Major 
Forceps 

3 0 1 0.2149± 
0.0004 

4 0 0 0.2149± 
0.0004 

9.33 : 1 

Internal 
Capsules 

3 0 0 0.5506± 
0.002 

3 1 0 0.5506± 
0.002 

8.09 : 1 

Head 
Caudate 
Nucleus 

3 0 .0 . 0.4722± 
0.001 

2 0 2 0.4728± 
0.001 

2.23 : 1 

Putamen 3 0 0 0.2209± 
0.0004 

3 0 1 0.2209± 
0.0004 

2.1 : 1' 

Globus 
Palidus 

3 0 0 0.4611± 
0.002 

3 0 1 0.4611± 
0.002 

1.42 : 1 

Thalamus 3 0 0 0.2787±, 
0.0008 

2 0 2 0:2788± 
0.0008 

2.96 : 1 

Insular 
Cortex 

1 1- 2 0.4049± 
0.0007 

1 1 1 0.4049± 
0.0007 

28.1 : 1 

Cingulate 
Gyrus 

2 0 1 0.6493± 
0.001 

3 0 0 0.6493± 
0.001 

4.13 : 1 

Cortical 
Gray 

3 0 0 0.6471± 
0.001 

2 1 2 0.6471± 
0.001 

2.73 : 1 

Table 3.4: Experimental Data - model selection results. 
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Estimation of the Parameters 

In this chapter we will estimate the parameters of our models for the tissues, and find 

the accuracies of these estimates. " 

The main purpose of our work is assessing the feasibility of classification of new data 

sets to various tissues. The estimation of the parameters is not optimal: we use the joint 

posterior distribution of all the parameters from all the measurements and then use the 

marginal posterior of each of the parameters for the estimations. This is the analogue 

of the traditional practice of averaging the data before the analysis, and can damage the. 

estimation of a parameter in case there is a systematic variation, not accounted for by the 

model, of other parameters between measurements. The optimal estimation is achieved 

by first calculating the marginal distribution for each of the parameters from every single 

measurement set, and then multiplying the marginal distributions. That is, every set is 

considered as new data, and then, by Bayes theorem, the marginal probability distribu

tion it produces is multiplied by the distribution produced by previous measurements1. 

Elaborate discussion and examples of this point can be found in [1, pp. 161-175]. 

The above does not imply.that our estimations are wrong. We may lose information 

that was in the data by using averages, but the estimations are valid and the accuracy 

estimates are conservative; we do not incorporate knowledge we do not have. A quantita

tive rule of thumb is to look at the Bayesian estimation of the noise variance: successful 

reduction of the noise level (by the. averaging) by a factor of y/n. will indicate that not 

fact, our normalization of the data sets in the beginning of the analysis is an approximation to 
the marginalization needed in the rigorous process. 

58 
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much had been lost in the averaging. In our case the reduction does achieve a reduction 

of noise level that is not far from-y/n. The author believes that the loss of accuracy of the 

estimates due to the use of averaging in this work is not substantial. 

A l l calculations of the parameters value estimates and the accuracies of these estimates 

are for the chosen model. They cannot be taken as estimates of any parameters of a 

different model. For example, in Chapter 3 we generated a set of data by a continuous 

T2 distribution. By the model selection process in Chapter 3, a discrete model was 

chosen. We cannot expect the estimation of parameters (e.g., a decay rate of a discrete 

component). to be valid for other parameters in different model (e.g., the center of a 

gaussian distributed decay rates in a continuous model). These parameters are in general 

dissimilar. 

As discussed in the introduction, the marginal posterior probability of a parameter is 

given by 

P(Qk/Di) = JP(e/Di)-de[k] (4.1) 

Where: 
m 

i = l 

We will use the expectation value of the distribution p(Qk/DI) as an estimator for 

the value of the parameter: 

;.et • p(ek/Di) • aek 

< 0 T > = I^/DD-M, • (4'2) 

Combining eq. (4.1) and (4.2) we have: 

fQk-P(e/Di)-de 
< Wfc > = — — — = 

fp(Q/DI)-d& 
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Noise Probability Distribution 
Genu Corpus Callosum 

Figure 4.1: Probability Distribution of the Noise Level for a typical tissue. 

JQk-p{Q/I)-p(D/QI) -dS 
(4.3). 

jp(e/i)-p(D/Qi)-de 

The Bayesian credible region will usually be estimated by the variance of the one 

dimensional probability distribution of our parameter of interest. This estimate is valid 

as long as the distribution is well approximated by a Gaussian in the region of high 

probability. In such a case, the probability of the parameter to be inside the credible 

region will be about 0.68 . • 

4.1 Noise Variance 

As any other parameter, the noise variance can be estimated using Eqn. (3.12), which 

gives the likelihood as a function of the noise variance cr2, regardless the other parameters. 

We plot the likelihood as a function of a (figure 4.1) for a typical tissue. 

The prior distribution for the noise is the Jeffreys prior, p(cr./1) a K Following [1], we 
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integrate Eqn. (3.12): 

< a' > = 
fcrs-±-p(D/aI)-da 

f±-p(D/aI)-do-

_ • ni - m - s^ • nt - m^_ 1 
nd2 — mh2 

(4.4) 
2 ' v 2 

Where we approximate "r* (hidden in /i2) by their values that maximize the likelihood. 

Our estimation for the noise variance is: 

{<r2)est =< cr2 > ±V< a*> - <a2>2 

and substituting (4.4) with 5 = 2 and s = 4, we have, after some algebra, 

(V) est 
n • ni — m 

nd2 — mh2 

1 ± 
n • rii — m — 4 

(4.5) 

The estimation of the noise depends on the number of base functions m and total 

number of measurements n • n/. Larger models, having more base functions, will reduce 

the value of id2 —mh? , since they fit the data better. This will result in reduction of 

the noise level if this increase is larger then the expected by fitting the noise, which is 

taken care of by the first term ra-nj— m—2 Now, in all our models the number of total 

measurements n • n\ > 20,000 , m < 7 and thus the term is almost constant n-n{— m — 2 * 

for all possible m; we have much more measurements than base functions and we are 

not in a position to fit the noise. As a result, we could expect a reduction in the noise 

estimation as we add base functions. Alas, as can be seen for Major Forceps in Table 

3.4, this does not happen. Any addition of base functions above the model given under 

"Model 1" in Table 3.4, did not reduce the estimated noise level. Our additional base 
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functions are almost orthogonal to the data; they hardly improve the fit of the model to 

the data. • • < > . • • • ' . • " ' 

The high accuracy of the noise estimation (see Figure 4.1 and Table 3.4) is due to the 

large number of measurements compared to the number of base functions. . 

4.2 Nonlinear Parameters 

As demonstrated in [1], having different values of <r cannot affect our estimation of the 

parameters but will affect the accuracy of these estimates, the assignment of the Bayesian 

credible region for the values of the parameters. 

It is •possible to give the credible region of the parameters when cr is unknown, but 

it will render-the resulting equations info a non-intuitive forms. We will rather take cr 

to be constrained to the value found by Eqn. (4.5). The large number of measurements 

make the estimation of cr accurate enough to justify this approximation (see Figure 4.1). 

The likelihood of the model as a function of the nonlinear parameters (regardless 

of the linear parameters) was approximated in Chapter 3 by a Taylor expansion of the 

argument of the exponent (Eqn.(3:9) to Eqn.(3.10)). We can.now use this approximation 

and notation to estimate the nonlinear parameters and the accuracy of these estimates. 

The values of all < Sj > will be zero by symmetry. 

The covariance matrix of the 5j is given by: 

< SjSk > - < Sj >< Sk>= 

< SjSk >= • 
I-oo d~S • I T 

1' 
V 2 

=1 vn 
• SjSk-exp [ E L i 2 ^ 5 > ) 

•exp( . E f = i j ^ > ) 

= < cr2 > 8kj 
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The covariance matrix elements of the logarithm of the nonlinear parameters is ob

tained by: 

.< UjUk > — < Uj >< uk >=< a2 > 

/=i 

UijUik 
Vi 

So, our estimation for the logarithm of the nonlinear parameters is: 

r U2 

{u3)est = u]± . <cr2 > E TT 

where u] are the logarithm of the nonlinear parameters that maximize the likelihood. 

Under the approximation of the likelihood by the first order Taylor expansion, these 

values (modes for the nonlinear parameters) are the expectation values for the logarithms. 

The estimations for the nonlinear parameters are given by: 

(dj)est = exp (UJ) ± (exp (u-j) 
\ 

r TT2 
(4.6) 

4.3 Linear parameters 

The likelihood as a function of all the parameters is given in Eqn. (3.7). The results of 

calculating < Aj > and the posterior coyariances < AjAk > — < Aj >< Ak > according 

to (4.3) are given in [1]: ' • 

and 

< AjAk > -.< Aj >< Ak >= cr26jk 

These results are to be expected. The base functions H are orthonormal and thus 

the expectation values of the expansion coefficients of the data over them (the A) will be 

the projection of the data onto these orthonormal base functions. 
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The covariance matrix diagonality is obvious since the H functions are orthogonal. 

The expectation values of the original amplitudes < Bj > are given (using eq.(3.6)) 

by: 

m he-i. 
<BK>=Y^ , 

i=i V *>j 

and the elements of the covariance matrix are given by: 

<BkBl>-<BkxBl>=<*2>-jr^ (4.7) 
3 = 1 A J 

where we again approximated cr2 by its expectation value. Thus, our estimates of the 

amplitudes are • 

(Bk)est =< Bk > ±\J< B2
k > - < Bk >2 = 

= Y ^ ± <<r2>-f:-^. . (4.8) 

These estimates are still functions of the nonlinear parameters, through the depen

dence of hj, ejk and Xj on them. In many problems the estimates of the parameters are 

good enough and thus the nonlinear parameters can be approximated by their value at 

maximum likelihood. Our case is different; the uncertainty of the nonlinear parameters 

is large and some of the amplitudes are strongly coupled to them. 

In order to make the covariance matrix free of the nonlinear parameters we need 

the likelihood as a function of the amplitudes alone; i.e., marginalize over the nonlin

ear parameters in Eqn.(3.7). This cannot .be done analytically and cannot be easily 

done numerically. Due to the strong coupling between the amplitudes themselves this 

marginalization is still short of giving definite values for the accuracies. 

In view of the above, we will summarize our estimates for the amplitude as follows: 
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1. Results of Eqn.(4.8). These tabulated results should be consulted whenever there 

is no strong coupling with other amplitudes. The nonlinear parameters are approx

imated by their values at maximum likelihood. 

2. In case there is strong coupling between the amplitudes we give the coupled esti

mates. These are variances (which we signify by S) of linear combinations of the, 

coupled amplitudes. The variance estimate is the largest eigenvalue of the covari-

ance matrix (Eqn. (4.7)) and the relative weights are taken from the associated 

eigenvector. 

3. For most of the tissues, our model contains a component with a decaying exponent 

with T 2 of less than 15ms. In that component the decay rate and the amplitude are 

strongly coupled to each other, but relatively independent of the other parameters. 

Typical contour plots of the likelihood as a function of the decay rate and the 

amplitude of the lower components are given. One should consult these sample 

plots when using the tabulated values. Unlike the nonlinear parameters, where the 

accuracy estimates are free of the amplitudes, and thus conservative, the tabulated 

results for the amplitudes are under the approximation of the nonlinear parameters 

by their maximum likelihood values. In case where the amplitudes are strongly 

coupled to the decay rates (as is the case of the lower component), the tables will 

give an oyer optimistic accuracy estimates. 

4.4 Results 

4.4.1 Simulated Data 

We use here the same simulated data as used for the model selection. After the model 

have been selected, we turn to estimate its parameters. 
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Discrete T2 Distribution 
Generating Parameters Estimated Paramet ers 

Component A m p . T2 [ms] W id th A m p . T2 [ms] W id th 
Low 100 9.0 - . 99.9 ± 1 . 2 9.31 ±0 .45 -

Med. 600 85.0 - 579.5 ± 1 . 4 84.3 ± 1 . 9 -

High 300 180.0 - 318.8 ± 0 . 8 . 175.2 ± 5 . 7 -

A E R 0.0 - -0.04 ±0 .10 - -

0.3 - - 0.28 ±0 .04 -

Continuous T2 Distribution 
Generating Parameters Estimated Paramet ers 

Component A m p . T2 [ms] W id th A m p . . T2 [ms] W id th 
Low 100 9.0 2.0 100.1 ± 1.3 9.7 ± 0 . 5 - . 

Med. 900 85.0 .20.0 819 ± 3 . 2 • • 80.0 ± 1.0 -

High 70. . ' 380.0 30.0 148 ± 1.6 246. ± 12. -

A E R 0.0 - - 0.00 ±0 .20 -

<j 0.3 - - 0.31 ± 0.04 • - - • 

Table 4.1: Generating T2 Distributions and Simulation Results. 

The generating parameters and the results are described in Table 4.1 and 4.2. They 

are displayed in Figure 4.2. As discussed in the beginning of the chapter, the estimations 

of the parameters are for the chosen model. We cannot expect these estimations to serve 

as estimations of parameters of other mechanisms. 

4.4.2 Experimental Data 

The estimations of the parameters of the T2 distribution for each tissue were done using 

the collection of pixels taken from ten volunteers. For each of the tissues we compute 

the estimated parameters along with their accuracies. Our results are given in Tables 4.3 

and 4.4 and Figures 4.3, 4.4 and 4.5. 

As mentioned in Section 4.3, the summary of the probability distribution of the 

parameters in the form of expectation values and variances will not give, by itself, an 

adequate description of the results for our case. Estimating the linear parameters having 
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Figure 4.2: Simulation Parameters and Estimated Parameters for the Discrete (upper 
figure) and Continuous (lower figure) Distributions. The height of each components of 
the continuous distribution signifies the integral over that component. 
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Discrete Dis t . 
Component weight 

High 0.51 
Med. 0.37 

8 1.9 
Continuous Dis t . 
Component weight 

High 0.47 
Med. 0.28 

8 1.9 

Table 4.2: Uncertainty of Linear Combinations of Amplitudes. The uncertainties, 8, are 
the eigenvalues of the covariance matrices and the weights are taken from the associated 
eigenvectors. The lower eigenvalues (not shown) are meaningless due to the dependence 
of the amplitudes estimation on the nonlinear parameters. 

the nonlinear parameters constrained to their values at maximum likelihood, a common 

and proper method when we have good estimates for the nonlinear parameters, give 

overoptimistic estimates for the accuracies. These values for the amplitudes are tabulated 

in Tables 4.3 and 4.4. 

Therefore, in addition to the above estimates, we give two samples of 2D contour-plots 

of the probability distribution as a function of amplitude and decay rate of the lower T2 

component. These parameters are strongly coupled and are interesting to the study of 

the physical system. The first contour-plot, for a typical tissue, is shown in Figure 4.6. 

For the tissue Head Caudate Nucleus, the lower component is justified only by the 

measurements of the first spin-echo in the sequence, at 10ms (Figure 4.7); the signature of 

the lower component on the rest of the points is below the noise level. This is an example 

of a case where the parameters are underdetermined, and give us another opportunity 

to understand the estimations made in this Chapter and tabulated in Table 4.4: the 

estimated value for the amplitude of this component is 82 ± 20.; This estimate assumes 

the decay rate is constrained to its value at maximum likelihood. On the other hand, the 



Chapter 4. Estimation of the Parameters 69 

model C o m p . 
Tissue C W p a C o m p . A m p . T 2 [ms] W g h t . 
Genu 3 ' 0 0 0,363± Low 87.9 ± 2 . 8.9 ± 0 . 8 -

Corpus 0.001 Med. 906. ± 0 . 6 66.6 ± 0.6 -0.39 
Callosum High 52.7 ± 0 . 3 207. ± 20. 0.38 

A E R -4.6 ± 0 . 2 - 5=2.4 
Splenium 3 0 0 0.401± Low 99.9 ± 2. 9.9 ± 0 . 9 -

Corpus 0.001 Med. 661. ± 0 . 9 65.5 ± 2 . 0.492 
Callosum ' High 281. ± 0 . 5 150. ± 5 . -0.401 

A E R -5.0 ± 0 . 3 - 5=2.9 
Minor 3 0 0 0.2916± Low 82.1 ± 2 . 8.12 ± 0 . 7 -

Forceps 0.0007 Med. 935. ± 0 . 5 66.8 ± 0 . 5 0.37 
High 32.8 ± 0 . 2 214. ± 3 0 . -0.36 
A E R -3.6 ± 0 . 2 - 5=2.1 

Major 3 0 1 0.2149±' Low 79.8 ± 2 . 8.29 ± 1 . -

Forceps 0.0004 Med. 175. ± 1 . 43.7 ± 6 . 0.65 
High 784. ± 0 . 7 87.3 ± 2 . -0.30 
A E R -3.24 ± 0 . 1 - 5=3.2 
DC 8.7.2 ± 0.08 -

Internal 3 .0 0 0.551± Low 113. ± 2 . 13.8 ± 1 . -

Capsules 0.002 Med. 633. ± 1 . 67.8 ± 3, -0.44 
High 284. ± 0 . 6 172. ± 10. -0.50 
A E R -5.12 ± 0 . 4 - 5=3.6 

Table 4.3: Estimated Parameters for White Matter Tissues. 5 is the uncertainty for the 
linear combination of the amplitudes weighted by the given Component Weights. 



Chapter 4. Estimation of the Parameters 70 

model Comp. 
Tissue C W p a Comp. A m p . T2[ms] Wght. 
Head 3 0 0 0.472± Low 81.9 ± 2 0 . . 3.8/* 3 
Caudate 0.001 Med. 943 .± 1. 77. ± 1. 0.13 
Nucleus High 43.4 ± 0.5 572. ± 300. ,0.18 

A E R -6.37 ± 0 . 9 - 6=25. 
Putamen 3. 0 0 0.2209± Low 54.2 ± 2. 5.65 ± 1. 

0.0005 Med. 948. ± 0.3 70.7 ± 0.3 0.28 
High 37.4 ± 0.1 ' 257. ± 20. -0.27 
A E R -5.7 ± 0.2 - 6=2.2 

Globus 3 0 0 0.461± Low 69.2 ± 2 . 11.3 ± 2 . 
Palidus 0.002 Med. 897. ± 0.8 67.2 ± 1 . 0.36 

High 60.6 ± 0 . 3 234. ± 30. 0.46 
A E R -5.67 ± 0 . 3 - 8=2.7 

Thalamus 3 0 0 0.2787± Low 49.4 ± 0.9 14.2 ± 2 . 
0.0008 Med. 923. ± 0.5 74. ± 0 . 9 -0.32 

High 41.9 ± 0 . 2 266. ± 50. -0.52 
A E R -5.35 ± 0 . 2 8=1.5 

Insular 1 1 1 0.4049± Med. 970. ± 0.3 86.3 ±0 .09 
Cortex 0.0007 A E R -6.61 ± 0 . 2 wdth.fr ac= 

DC 22.7 ± 0 . 1 0.30 ± 0.02 
Cingulate 2 0 1 0.649± Low 27.2 ± 3 . 7.44 ± 3 . -0.91 
Gyrus 0.001 Med. 968. ± 0 . 6 85.2 ± 0 . 2 - -0.14 

A E R - 4 . ± 0.4 - 6=4.0 
DC 22. ± 0 . 2 -

Cortical 3 0 0 0.647± Low 27. ± 3 . 7.5 ± 3.0 
Gray 0.001 Med. 949. ± 0 . 7 76.4 ± 0.6 -0.20 

High 47.8 ± 0 . 2 760. ± 200. -0.36 
A E R -2.23 ± 0 . 4 - '6=4.2 

Table 4.4: Estimated Parameters for Gray Matter Tissues. 8 is the uncertainty for the 
linear combination of the amplitudes, weighted by the given Component Weights. 

http://wdth.fr
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estimation of the decay rate is after marginalization over, the amplitude and thus takes 

into account all possible values of the amplitude, as reflected by the estimated value, 

3.8^3,(That is, 3.8 multiplied or divided by factor 3; the estimation of the logarithm is 

1.34 ±.1.2). 
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Figure 4.3: The Estimated T2 Distributions (left) and Residuals for the Estimated P; 
rameters (right) of White Matter Tissues. 
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Figure 4.4: The Estimated T2 Distributions (left) and Residuals for the Estimated Pa
rameters (right) of Gray Matter Tissues. 
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Figure 4.5: The Estimated T 2 Distributions (left) and Residuals for the Estimated Pa
rameters (right) of Gray Matter Tissues (cont.). 
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Figure 4.6: Joint Probability Distribution for the Low Component of a Typical Tissue. 
The second line from the middle enclose 99% of the probability. 
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Figure 4.7: Joint Probability Distribution for the tissue Head Caudate Nucleus. The 
second line from the middle enclose 99% of the probability. 



Chapter 5 

Classification 

In this chapter we will devise a procedure for the classification of a new data set to one 

of several brain tissues. The principles of the Bayesian classification have been discussed 

in Chapter 2, and we are now left with the task of applying them to our special case in 

a computable manner. 

5.1 Procedure 

As in Chapter 2, we denote the old data sets, the learning data, by daid and the set of 

data to be classified to one of the tissues by dnew: From Eqn. (2.3), assuming we have no 

prior information classifying dnew to one of the tissues, we have: 

p(Mi/d0iddnewI) a jp(6i/dotdI) p(dnew/0il) d6{ . (5.1) 

The T 2 distributions found in Chapter 3 do not contain any information about the 

total magnitude of the signal; the data were normalized prior to their analysis. However, 

we want to use the information carried by the amplitudes and include it in d0\d and dnew. 

To that end, we present the parameters and the data as the following conjunctions: 

@i = 9iA ' QiDist 

d0id = d0idA • d0idr)ist -

dnew — dnewA ' dnew£){sf , 

where: , . • 

77 
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• BiA is the amplitude of tissue i. 

• ®iDist are the T2 distribution parameters of tissue i. 

• dgidA are the total amplitudes of the old data set. So far, they have not been used. 

• d0idDist are the normalized old data sets we used in our work so far. 

• d n e w A is the total amplitude of the new data set. ' 

ist is the normalized new data set. 

Using our new nomenclature, Eqn.(5.1) become: 

p(Mi/d0iddnewI), a 

16iAQiDistMiI\d9iA d9iDist — 

fp{GiA/doldAI) p(dnewA/e,AMJ) d9iA- - (5-2) 

Ip(9iDist/doldDistf) p{dnewDist/9wistMiI) d9iDist 

That is, 

p ( M t / d o l d d n e w I ) a 

p ( M i / d 0 i d A d n e w A l ) • p(Mi/d0idDistdnewDistf) , 

where we used the independencies achieved by the normalization performed upon 

doidDist and dnewDist- The probability of Mi = "The new data set come from the same 

mechanism as old data set i " is a product of two integrals: the first is the probability of 

M{ where only the total amplitudes are known (the total amplitudes integral) and the 

second is the probability of Mi where only the normalized decay curves are known (the 

T 2 distribution integral). 
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We now have to assign the probability distributions in Eqn.(5.2), and to approximate 

the integrals. We will treat the first integral in section 5.1.1 and the second integral in 

section 5.1.2. 

5.1.1 The Total Amplitudes Integral $p(QiAldoidAl) p { d n e w A l ' Q - i A M i l ) dOiA . 

The probability distribution of the total amplitude of a tissue, p(0iA/doidAl), is wide due 

to the difficult estimation of the amplitudes of low T2 components. The signature of such 

components on the data is limited to the first spin-echos measurements. In extreme cases 

where the signature of the lower component on the data is limited to the first spin-echo 

alone, the amplitude of the lower component is not determined. We have a realization 

of such a case in our data, and.the effect of this on the probability distribution of the 

amplitude of the lower component can be seen in Figure 4.7. 

We will not try to estimate the value of the total amplitudes. Rather, we will estimate 

the value of the amplitudes in the time of the first spin-echo, 10ms after the beginning 

of the decay, and we will approximate this amplitude by the amplitude of the first mea

surement. From now on the subscript A denotes the value of the measurement/model.at 

time 10ms. . . . 

We now turn to evaluate the terms in the integral. 

First Term p(6iA/d0idAf) 

By Bayes theorem: ' 

. p(0iA/doldAl) = p(0iA/I) • pid°ldA/6;Ap a . (5.3) 
P(<'UdA/l) 

p(doidA/0iAI) 
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since we set p(9iA/I) = const. V i ( i.e., we do not incorporate any prior information 

regarding the value of the amplitude for the tissue i and we treat this value as a location 

parameter). 

We assume that the data amplitudes are not correlated, and that the amplitude noise' 

is unknown, but finite in variance; the likelihood factors and the noise will be assigned a 

gaussian distribution. 

So, 

p(dMA/eiAcrI) = ( 2 7 T < 7 2 ) - ^ • exp ^ _ ^ i ( ^ ~ M a j ( 5 4 ) 

where: 

• nli is the number of amplitudes measured for tissue i. 

• d0idAij is the j data amplitude measurement (10ms point) of tissue i. 

Now, a is unknown and we mariginalize over it using Jeffreys' prior: 

p(doidA/0iAl) ct f — • p(doidA/0iAcrI) • da 
J a a 

Tfnk\ / E g i K ^ - M y 2
 ( 5 5 ) 

Our estimation of the value of $iA is given by: 

^ A ) e s t =< eiA > ± yj[< Q\A > - < 6lA >'] 

where 

^ ^ > — / 9JA • PJdpidA/QJAI) d9jA _ Y!j=\ doldAij _ -j-
/p{d0idA/6iAl) d6iA nk M A l 

and 
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< ^ = J ^ A P(d>oldA/6iAl) d9iA ^ T,f=l{doldAij - dpldAj)2 ^ -j 
, j 4 /p(d0ldA/9iAl) d9iA nli(nli-^l) °'dAl 

=> y/[< 9 2
A > - < 9 l A > 2 } = ^ 

That is, 

YTj=i{d0idAij — d0idAi)2 

nli(nli - 1) 

{9iA)est = d0idM± STDoSM{dMAi} (5.6) 

where ST DoS M {d0idAi} is the standard deviation of the sample mean of d0idAi- We 

have arrived at results familiar from frequentist calculations. 1 

Second T e r m p(dnewA/9iAMiI) 

p{dnewA 19iAMiI) is the likelihood of an amplitude in face of the new data amplitude. We 

assume that the noise level of the measurement of the new data is similar to the noise 

level in the old data which is estimated by the standard deviation of the old data set. 

So, 

p(dnewA/9iAMicriI) = Ji— • exp (_(DNEWA ^A) 

where ai = STD{doldAi). . 

1 Thi s happened because the prior is not informative, the noise distribution is gaussian and the 
problem is one-dimensional (the likelihood is a function of only one parameter - the parameter we want 
to estimate). One may be tempted to conclude that the Bayesian procedure is a generalization of the 
frequentist approach. This in general is not true, and the interpretation of the results is always different. 
The frequentist variance defines a confidence interval, an estimate of the interval in which new data will 
be materialized in known frequency (say 0.68). The Bayesian result is a credible region, in which the 
probability of the parameter to be is known (here 0.68). The credible region boundaries are approximated 
using the variance of the parameter, as in chapter 4. 
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The Integral 

The number of samples composing our d0\d for each of the tissues under consideration is 

in the range of nl =800 to nl =5000 (see Table 1.1). As a result, the width of the first 

term in the integral (~STD of the sample mean) will be 30-70 times smaller than the 

width of the likelihood in the second term (~STD of the sample). We approximate the 

second term by a constant in the region of substantial magnitude of the first term, the 

probability distribution of the amplitude. That is: 

Jp(9iA/doidAI) p{dnewAl9iAMiI) d0iA « 

p { d n e w A j < 6lA > Mil) • Jp(9iA/d0idAI) d9iA = p(dnew/ < 9iA > Mil) = 

1 / {dnewA- < 9iA >)2\ 

• 2 ^ r e x p ( , — M — J ^ 

where Gi = STD{d0idAi}. 

5.1.2 The T2 Distribution Integral f p(9iDist/d0idDistI) p{dnewDist/9iDistMiI) d9iDist 

The first term in the T2 Distribution integral, p(9iDistId0idDistI),
 w a s found in Chapters 

3, and the maximum and width of the probability distributions of the parameters were 

found in Chapter 4. 

We now turn to evaluate the second term p(dnewDist/9i£>istMiI). This term can be 

evaluated in a straight-forward manner in case we assume that the noise is not correlated. 

This is equivalent to the assumption: "If dnewDist came from tissue i, it was produced by 

the mechanism with parameters given by p(0iDist/doidDistI), and thus any deviation of a 

datum point from the value predicted by the parameter set p(0%rjistld0idpistl) ( i - e - 5 the 
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noise) is due to non_systematic effects". We call this assumption the unique mechanism 

and. evaluate p(dnewDist/OiDistMil) under it in the next subsection. 

Alas, observation of the old data reveals correlations in the noise that call for relax

ation of the unique mechanism assumption. We discuss these observations and our crude 

treatment of the problem in the subsection that follows the next. There we will assume 

that the parameters of the T2 distribution in each imaged pixel (dnewmst) are perturbed, 

from the parameters of the T2 distribution of the tissue. 

Second Term p(dnewDist/6ipistMiI)—Unique Mechan i sm Case 

The expression for-the likelihood of a parameter set •in light of a data set, assuming 

uncorrelated noise, is given by Eqn.(3.7): . ' 

' p(d/ A^al) = (2-nia2)-^ exp f - — • (nW - 2 ' £ Ajhj +.£ A))\ . (5.8) 

We want to free our results from the absolute magnitude of the data. To that end, 

we introducer . " 

m A • 

i= i A .. • 

m ' 

.7=1 . . . 

Note that A and the /_,• are not necessarily positive, and the values of fj are not 

necessarily smaller than one. 

So,' ' • . 

p(dnewDist/AfiTtMiO-lewI).a 
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•^--{nW- •• (5-9) 
LGnew j=l 1 / 

where cr n e u) is the unknown variance of the noise of the new data set, and. and 

are approximated by their estimates, as found in Chapter 4. 

Assuming a flat, and equal for all the models, prior for A, we can analytically 

marginalize over it: . 

P{dnewDist/ fi ~Ti Mi<TnewI) Q> J'p(AdnewDist/ fi ~rf MiOnewI) dA = 

p(A/ fiT*MiO-newI)-J p(dnewDist/Afi~TtMi(TnewI)dA a J p(dnewDist/A 7?' M i O n e w J ) dA 

Which is of the form 

J.-oo V a 

and result in 

p{dnewDistl fi^ftMiCT^I) Ct-.aJ^ X) 
e X P ••( ,2 ~ n ( j 2 ) v^m /2 ^ V o 2 v V^m f2 

t-^j=l J ji' \ new . L^ij—\Jji 

and marginalize over anew, using Jeffreys' prior, to get 

(5.10.) 

P i d n e w D i s t I f i ~T{ M{I) = J p(o-newdnewDist/ f i ~Ti Mil) dan 

/ • p ( d n e w D i s t I f i Ti(jnewMiI) da 
new 

a 
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Em y2 
j=l J ji 

nd2) dV = 

Where V = and dV = — V2do~new. This expression is of the form: 

r 
Jo 

V m~~aV2dV = 
r [ ( m + l)/2] 

10 2a( m + 1 ) / 2 

with m = 30, and thus the desired likelihood is 

p(dnewDist/ fi ~TiMi'I) a T(15.5) 

-15.5 

V 
Second Te rm p(dnewDist/'9iDisiMiI)—Non-Unique Mechan ism Case 

. (5.11) 

A typical behaviour of normalized pixels' data (subtracted from their values predicted 

by OiDist, the parameters estimated in Chapter 4) is shown in Figure 5.1. Obviously, 

successive values of these deviations are highly correlated. The systematic deviation of the 

individual pixels from their values predicted by 6iDist seems to be primarily characterized 

by the patient2 (upper figure). Nonetheless, even within the context of one patient 

(lower figure), the deviations of the individual pixels' data from the average data of this 

tissue and patient seem to be correlated, though to less extent. Similar figures had been 

generated for the rest of the tissues and found to exhibit similar behavior. 

We here assume a non-unique mechanism: The new data set dnewr)jst was produced by 

a parameter set 9new that differs from 9iv%st- We can view this difference as a deviation 
2 W e denote our normal volunteers by 'patients'. We do not expect any pathology to exist in these 

volunteers. Thus, when we talk about difference in the results as function of the patient, we do not 
assign this difference to any difference in a pathology. Rather, we refer to it as a consequence of variance 
found among normal humans. 
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Time[ms*10] 

Figure 5.1: Typical Spread of the Measurements of one Tissue. Upper figure: Normalized 
averages for each patient subtracted from the prediction of the model (thick lines), and 
collection of normalized pixels measurements from patient 6 (thin lines). Lower figure: 
The same pixels as in the upper figure but now subtracted from their average. 



Chapter 5. Classification 87 

of the particular mechanism that produced the new data set from the 'base' mecha

nism (described by OiDist) due to additional factors which depends on the volunteer, the 

measurement session, location in the image, etc. 

The unique mechanism is a special case of the non-unique mechanism, where the 

probability distribution of Q n e w is given by p(®new/@iDistI) = 8(Qnew — QiDist)- The 

non-unique mechanism admits that the probability distribution p(Qnew/®iDist!) is, in 

general, wider than a 8 function. We here run the risk of loosing the distinction between 

expected data from different tissues, and thus loosing the ability to perform a meaningful 

classification. This will happen in case the width of the distribution p(Qnew/@iDistI) is of 

similar magnitude to the difference between the parameters values expected from different 

tissues. 

In fact, our problem is an example of such a case. The only knowledge we have about 

the distribution of Q n e w around Qioist is its width, derived indirectly from the Standard 

Deviation of the data points, and this width is indeed in the order of the difference 

between the parameters values of different tissues. We cannot expect much from the 

classification process, starting from our current state of knowledge. 

Nevertheless, we should not resort to the use of unique mechanism, or any other 

practices that seems to produce 'better' results. The answers given by probability theory 

are to the questions asked, given a state of knowledge; the unique mechanism assumption, 

according to our current state of knowledge, is false. 

So, we have: 

PidnewDistIQiDistMil) = J p{6newdnewDistI'QiDistMil) d6new = 

Jp(&new/6iDistMiI) p(dnewr)isi j6new6iDistMiI) d$new (5.12) 
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Now, p(dnewDist/6new6ir)jstMiI) is independent of QiDist and can be assigned assuming 

uncorrelated noise, that is: 

where we apply steps similar to the steps led to Eqn. (5.10) but now the amplitude-

fractions /,• and the nonlinear parameters 1\ (hidden in hji) are determined by 6new. 

pi&new/GiDistMil) is the probability distribution of the parameters that produced 

dnewDist given the 'base' parameters of the tissue OiDist- I failed to characterize this 

distribution in a quantitative manner within the time frame of this work. 

We will approximate this term using the following steps: 

1. Lacking any other knowledge about the distribution (but assuming finite deviation 

of 0new from OiDist), we will assign a gaussian distribution to all the parameters. By 

proper scaling of individual parameters we have: 

We do not assume any knowledge about the value of 6, the scale of the deviation 

of 9new from 0iDist. 

2. We assume that for any set of measurements, there exists a set of parameters 0new, 

that will describe this set well, down to the level of the non_systematic effects. 

3. We turn from the parameter domain to the measurements domain. The model 

P(dnewDist/QnewOiDistMil) = p(dnewDist / 6newMiI) a 

(5.13) 



Chapter 5. Classification 89 

function 
m 

g(9,t)=g(f ,r,t) = J2fiHArj,t) 
3=1 

is a continuous function of the parameters 6. Assuming the deviation of 9 n e w from 

9iDist is small and thus will be well approximated by a first order Taylor expansion, 

we have 
W^new — 9iDist\\L2 

diPnew i t) — g{9iDist,t) 
\dg_ 
[d9 

and therefore, 

ta io u n 1 ( (9{Qnew,t) - g{9iDist,t)f\ te-iA\ 
P{9new 9 l D i s t M i I ) = - — • exp — V t (5.14) 

where jt = 6 • [^f]e t -7< is the scale of the difference between the predictions 

of model having parameters 9i£>ist and one having parameters 9 n e w . From Figure 

5.1 we can see that ^ t is at least of the order of cr n e w , the level of non_systematic 

effects. 

4. As a result, the integral in Eqn. (5.12) will be peaked at the maximum of the 

expression given in Eqn.(5.13). Thus, 9 n e w can be approximated by the values that 

will minimize zZl=i {9{9new, h) - 4 ) 2 • 

5. Therefore, Eqn. (5.13) does not carry information relevant to the classification 

problem; p{dnewDistI'9newMiI) describes the probability of materialization of a par

ticular set of non_systematic effects. We replace it by a constant and approximate 

g(9new,tk) by dk. 

6. Under the above, jt is well approximated by the STD of the measurement points 

for each tissue. From Figure 5.1 we can see that 7 t remains in the same order of 

magnitude for all t. Approximating 7* = 7 = const. V t, Eqn. 5.14 becomes 

P(enew/0^MJ) = * • exp (_^^(^^7(^^^))2) = 
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p(dnewDist/OiDistMil) 
1 

,2 • exp 
Efcii (dk — g(0jDist,tk)) 

32 • 2 7 t

2 
(5.15) 

where 7? is the variance of the measurement points for tissue i. 

We are now in a position to apply similar steps to those performed in the previous 

section (Eqn. (5.8) to (5.10) ) to marginalize over the total amplitudes. The resulting 

likelihood is: 

where again, /,• and are approximated by their estimates, as found in Chapter 

4. We approximate 7 by the STD of the measurement points for tissue i, and do not 

marginalize over it. The reason will be discussed in Chapter 6. 

The Integral 

The expression to be used for p(dnewr)ist/OiDistMil) is given by Eqn.(5.11) in case of the 

unique mechanism assumption and by Eqn. (5.16) in case of relaxation of the unique 

mechanism assumption. Using these results, we now have to approximate the second 

integral in Eqn. (5.2). 

As shown in Chapter 4, the width of the probability distribution of every parameter 

is proportional to the noise cr. Our new data come from individual pixels and we assume 

they have similar noise levels to the individual pixels in the corresponding tissues of the 

old data set. This noise level can be approximated by the average of the S T D { d o i ^ D i s t i } 

for all the measurement points of tissue i. It is in the range of 10-25 amplitude units. 

P(dnewDist I OiDistMil) OL 

(5.16) 
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The Bayesian estimation of the noise level cr that enter the first term in the integral had 

been found in Chapter 4 and is in the range of 0.22 to 0.64 amplitude units. 

As a result, the likelihood p{d0idDistl&i) as function of the parameters 0,-, is 30-60 times 

narrower then p{dnewDist I Thus, we can approximate the likelihood in face of the new 

data set as a constant in the region of substantial weight of the probability distribution 

of the parameters given the old data set. 

where Owist are the values of the parameters that maximize the likelihood in face of 

the old data set. These values had been determined in Chapter 4. 

5.1.3 Final Expressions 

That is, 

p(Mi I' d0idDistdnewDistI) = 

Ip{QiDist/doidDistl) p{dnewDistl&iDistMiI) d6i£)ist 

P(dnewDistI'OiDistMi) • f p{9iDist/d0idDist) ' dd{ = 

P{dnewDist / QiDistMi) 

(5.17) 

The final expression to be evaluated for each pixel is given, according to Eqn. (5.2), by 

the product of the expressions given in Eqn. (5.7) and Eqn. (5.17). 

That is, assuming a non-unique mechanism, the expression to be evaluated is: 

p{Mi I d0iddnew) a 

(5.18) 
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where crt- = STD{d0idAi}, Ii — ^1
 1 —32~ °ldD'st'3} , and /,• and ~rt are approximated 

by their estimates, as found in Chapter 4. 

5.2 Results 

5.2.1 Feasibility 

At this point, we try to present the data in a way that will help us set out our qualitative 

expectations from the classification process derived in the previous section. The test of 

the ability to classify the tissues can be divided into two parts: 

1. The basic assumption of the classification process is that the various mechanisms are 

different in their amplitudes or T2 distributions, leading to a significant difference in 

the data produced. If this is not true, the classification will fail since our data is not 

relevant to the difference between the tissues. The rigorous procedure for deciding 

whether two sets of data are produced by the same mechanism was discussed in 

Section (2.2) but has not been applied to the tissue classification problem. Looking 

at the models and the average data of the tissues (thick lines in Figure 5.2) can set 

our qualitative impression. Our observation from Figure 5.2 is that the mechanisms 

are indeed different; each tissue seems to exhibit substantially different average 

behavior of the T2 distribution. 

2. Each of the different mechanisms, or in the general case - probability distribution of 

mechanisms, defines measurement values expected from the new data set in order 

to be classified to that mechanism. Reliable classification depends on the deviation 

of the new data set from their predicted values by the producing mechanism, in 

comparison to the scale of the difference between the predictions of the various 

mechanism. A typical spread of the data of individual pixels is given by the thin 
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Figure 5.2: Models/Data Averages for the Tissues and Individual Pixels' Data From One 
Tissue. The models (the data predicted by the parameter estimation from Chapter 4), 
the average of the data and the la of the models predictions are all within the width of 
the thick lines (one line per tissue). The thin lines are samples of individual pixels data 
from one tissue but different patients. 
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lines in Figure 5.2. As can be seen from the figure, a substantial percentage of the 

pixels of this tissue will be erroneously classified. As said in Section 5.1.2, I failed 

to track down any systematic behaviour of this deviation; Figure 5.1 suggests that 

most of the deviation is to be associated with the deivation of the T2 distributions 

among patients. 

5.2.2 Tissue Classification 

We will not try to distinguish between the Cortical Gray, Insular Cortex and Cingulate 

Gyrus. Though appearing under different data sets, the Insular Cortex and the Cingulate 

Gyrus are both parts of the Cortical Gray [23]. The three data sets exhibit very large 

variances among patients. It seems possible that the assignment of Regions Of Interest 

(ROI) was in different parts of the brain for each patient, as the Cortical Gray can be 

found in the circumference of the brain in every image. 

In order to set our 'degree of belief in the classification of each of the tissues, we 

classify the pixels from the known ROI in ten patients: each of these pixels serves now 

as a new data set, dnew. The classification is done by applying Eqn. (5.18) to every pixel 

data and every mechanism M ; (i = 1..10), and choosing the mechanism (tissue) with the 

highest posterior probability p(Mi / d0iddnew). The results of the classification are given 

in Figure 5.3 for the white matter ROI, and in Figure 5.4 for the gray matter ROI. 

In these Figures, each Bar Chart is the result of classifying all the pixels from the 

ten 'learning' volunteers, that where assigned (by the ROI) to the tissue given in the 

Chart Label. Each bar denotes the number of these pixels, classified to the tissue given 

in the bar base. The sub-divisions of the bars denote the number of pixels classified to 

the tissue from each volunteer.3 

3 Naturally, one would test the ability to classify the tissues on the data taken from the eleventh 
volunteer; this data were not a part of the 'learning' data. Alas, this set of data is suspected to contain 
a substantial number of erronously ROI assigned pixels [23]; The resulting classification performance 
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As we can see from both Figures 5.3 and 5.4, the classification of white matter from 

gray matter is relatively successful; very few pixels of white matter were classified as 

Grey matter and vice versa. The success of the classification among white matter tissues 

or among gray matter tissues is much smaller. 

5.2.3 Images 

The results of applying Eqn. (5.18) to an image of the eleventh patient are given in 

Figure 5.5. 

We did not apply any image processing in the generation of our synthetic images. 

Nevertheless, it seems as the images could be easily improved by incorporation of addi

tional information in the spatial level (e.g., continuity). 

based on these ROI assignment is suspected to be misleading. Therefore, we choose to present the 
classification of the data of the eleventh volunteer through a synthetic image (see next section) and to 
use here a much larger database, the data from the ten 'learning' volunteers. 
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Figure 5.3: Classification Results for White Matter Tissues. Each Bar Chart contains 
the results of the classification of pixels known to be associated with one tissue (by the 
assignment of ROI). The bars denote the number of these pixels classified to each of the 
tissues. The subdivisions of the bars denote the different patients. 
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Figure 5.4: Classification Results for Gray Matter Tissues. Each Bar Chart contains 
the results of the classification of pixels known to be associated with one tissue (by the 
assignment of ROI ) . The bars denote the number of these pixels classified to each of the 
tissues. The subdivisions of the bars denote the different patients. 



Figure 5.5: Synthetic Classification Image of Patient Eleven. Each gray level signifies 
one tissue. 



Chapter 6 

Summary, Discussion and Conclus ion 

6.1 S u m m a r y 

One of the main goals of this work, as defined when started, was the classification of 

brain tissues by their T 2 distribution. This goal was not achieved in a satisfactory man

ner. The variance of the T 2 distribution of each tissue was found to be in the order 

of the characteristic variance of all the tissues. As a consequence, the reliability of the 

classification was substantially reduced. As discussed in chapter 5, the variance of the 

distributions within the tissues seems to be mainly due to variance of the T 2 distribu

tion parameters among different patients 1 2. That is, classification may be enabled by 

determining the probability distribution of these parameters as function of patient. I 

failed to characterize this distribution in a quantitative manner within the time frame 

of this work. Nonetheless, based on unpublished work of the author, this task seems to 

be feasible for future work, and could carry important information about the underlying 

physical mechanisms. 

The estimation of the parameters of the tissues is also substantially influenced by 

: E a c h image includes a water phantom, intended to be used as a reference (having mono-exponent ia l 
decay curve w i th known parameters) , enabl ing detection and correction of systematic effects ar is ing f rom 
the par t i cu lar imag ing session. The da ta f rom the water phan t om pixels i n the images used for this work, 
exhib i t large variance and a mul t i - exponent ia l behaviour. A s a result, the water phantoms reading were 
ignored. 

2 B y 'pat ient ' we mean here bo th the h u m a n and the par t i cu lar imag ing session. A new MRI sequence, 
i n wh i ch the water phantoms pixels exh ib i t re l iable mono-exponent ia l decay curves, has been late ly 
developed i n the U . B . C . Us ing the da ta f rom these water phantoms, removal of systematic effects of the 
par t i cu lar imag ing session may be enabled. 

99 
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the variations among the patients. These variations render the T2 distributions based 

on the analysis of the tissues of one patient to be unrepresentative of the distribution of 

other tissues. This may explain part of the difference between the resulting distributions 

of this work and the analysis given in [3]. The parameter estimations in this thesis 

are under the assumption that there is a unique T2 distribution (functional form and 

parameters values for this functional form) for each tissue regardless of the patient from 

which the data were taken. If the T2 distribution is determined by both the tissue and 

the patient, our resulting parameters can be taken as an average of the parameters for 

each tissue over the patients; assuming small deviations of the parameters as function 

of patient, the data is linear with each of them. The work determined for the first time 

the probability of existance of short T2 component in the brain tissues, and found it to 

be higher than 99% for all white matter tissues and higher than 80% for all gray matter 

tissues except Cortical Gray (see section 6.3.1). The probability of having no more than 

three components of decaying exponents in the T2 distributions of the brain tissues, were 

found to be higher than 90% for all the tissues. 

This work analyzed a problem in which the signal-to-noise ratio is poor, the data sets 

consist of multiple-measurements and the systematic effects are only partially accounted 

for by the models. The analysis used a multi-dimensional search in the space of models 

and classification of data into (conceptually, if not practically) probability distributions 

generated by previous sets of data. The multi-dimensional search in the space of models 

has not yet been treated in the Bayesian literature. 

6.2 D i s c u s s i o n 

Probability theory determines the unique procedure for transformation of state of knowl

edge (expressed in real numbers) into answers to well-posed questions. The answers 
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may be changed substantially when we change our questions or state of knowledge. The 

Bayesian inference procedure forces us to explicitly introduce our questions and state of 

knowledge; it will thus prevent us from solving problems other than those we wanted to 

solve. We discuss here an example encountered in our work. 

6.2.1 Multiple Measurements: a Vs. as 

In chapter 3 we defined a quantity a = as/\fn~i, where crs is the Bayesian estimation 

of the noise of the individual data points and n) is the number of measurement sets 

(number of pixels constituting the data base, in our case). At a glance, it seems that cr 

is the bayesian parallel to the Standard Deviation of the sample mean. As the STD of 

the sample mean, assuming the noise level as (the deviation of the individual data points 

from the model) is finite and constant, we expect the estimation of o~s to stay constant 

and the estimation of a to decrease as we accumulate more data. In case of systematic 

effects in the data, not accounted for by the model, this does not happen. As we add 

more data sets, the estimation of <r stops decreasing (as a result of increasing estimate 

of crs). What happened to our estimation of the noise level crs? Obviously, the difference 

between the model and the individual data points remain the same regardless the number 

of data sets acquired; the answer must lie in the meaning of o~s. 

crs is the width we assign to the distribution of the difference between the data points 

and the model predictions. In case of a single measurement set, it does not matter 

whether the difference between the model and the data is due to non systematic effects 

or systematic effects not accounted for by the model. To see what happened in case 

of multiple-measurements, consider the average-data:. as we accumulate more data, the 

systematic effects will manifest themselves in the averaged data more until dominant. At 

that point, adding more data sets will not reduce the deviation of the averaged data from 

the model. Alas, assignment of the Gaussian distribution to the noise, as is our case, is 

file:///fn~i
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equivalent to the assumption that all the difference is non systematic, and thus adding 

data sets should reduce the deviation of the average data from the model predictions. 

Encountering a collection of data sets whose average is of certain deviation from the 

model, the Bayesian procedure estimates a crs that will justify such a deviation by non 

systematic deviation of the individual points. More data sets, failing to reduce the 

average deviation, will thus result in increasing estimate for o~s. In the limit of very many 

measurements, the deviation of the averaged data from the model will remain constant 

(this is the difference between the model and the sytematic effects in the data), and will 

be characterized by constant cr. The estimate of the noise from each point needed to 

achieve such deviation of the averaged data will increase as yjn. 

o~ is a measure of fit of our collective data to the model; all the estimation of the 

accuracies of parameters in the models are proportional to cr. The estimation of as, on 

the other hand, answers the question: "Given the model, and assuming all the deviations 

of the data from the model are non. systematic, what width should be assigned to the 

distribution of the individual deviations of the data points from the model in order to 

account for the collected data?" 

6.2.2 Mar ig ina l i za t ion in the Neighbourhood of N o D a t a 

As illustrated by Bretthorst [1, Appendix C], the marginalization of nuisance parame

ters is very much like estimating the nuisance parameter from the data and using this 

estimate, given we have enough data to determine that nuisance parameter well. The 

marginalization does not assume any particular value to the nuisance parameter, but 

rather considers all the possible values this parameter might have. Each of the possi

ble values is weighted by its prior probability multiplied by its likelihood in light of the 

data. In case the likelihood is peaked, the practical result is equivalent to estimating the 

parameter from the data. 
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Figure 6.1: Marginalization Decisions in Light of Likelihood Widths. Broad likelihood: 
Representing our state of knowledge as ignorance will result in losing information. Peaked 
likelihood: The data is capable of determining the value of the parameter; not marginal
izing will prevent it from doing so. 

In case the data does not determine the nuisance parameter well, the shape of the 

prior become important. Our prior information in hand, in most of the cases, is hard to 

express in terms of real Probability Distribution Function (PDF), or expressed in P D F 

which is difficult to marginalize. The common practice in these cases, is either to assign 

an uninformative prior (expressing ignorance regarding the value of the parameter) or 

not to marginalize at all, and to use some value (best representing our prior information) 

for that nuisance parameter. The latter practice is equivalent to assigning the prior a 8 

function, expressing certainty about the value of the nuisance parameter. In many cases, 

both practices represent states of knowledge different from the one in hand: we know 

more than mere ignorance, but we are not as certain as 8 function. Which one is less 

harmful? 

We illustrate the situation and the various cases in figure 6.1. 
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If the data determine the value of the parameter well (peaked likelihood), we should 

let it do so, by assigning prior ignorance and marginalizing. As discussed in Chapter 3, 

in case the likelihood is much more peaked than the prior, the exact assignment of the 

prior does not matter, as long as the data and the prior are not 'surprising' in face of 

each other. The data will surprise us if the prior rules out the value-range in which the 

likelihood is peaked. 

On the other hand, if the data do not determine the value of the parameter well (broad 

likelihood), we should put our prior information to the best use. If marginalization using 

our true prior, is computationally not possible we should approximate our prior. A crude, 

but in many cases acceptable approximation is the 8 function - approximate the value of 

the parameter from our prior knowledge and use this value instead of marginalization. 

In several cases during the classification process (chapter 5), we chose not to marginal

ize. This was our choice in case of one datum point; the likelihood was broader than the 

prior in hand. 

6.2.3 M u l t i - D i m e n s i o n a l Search for Mode l s 

When performing a multi-dimensional search in the models space, we should remember 

that the space is discrete. In general, standing at one model in the models space, it is not 

clear which are the models we should compare our current model to. It is possible that 

they are not the neighbouring models; neither when deciding what is the next model to 

test, nor when deciding that we arrived at a maximum after finding that all neighbouring 

models are of lower probability. The general topology of such spaces as a function of the 

number of parameters in each model, degree of orthogonality to other models, the priors 

of the models parameters, and perhaps structure of the data deserve further research. 

The search in this work was designed for the special case of the parameters of the 

T2 distributions and was fine-tuned ad-hock; thus, no conclusions regarding the general 
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model search are made. 

6.3 Conclusions 

The results of the analysis of the T 2 distribution of the brain tissues are given in Table 

3.4 for the model selection and in Tables 4.3 to 4.4 for the parameter estimation. We 

here indicate some of the findings that had not been explicitly posted in those tables. 

6.3.1 Evidence of a Short T 2 Component ^ 

A l l the tissues, except Insular cortex, showed significant evidence in favour of having a 

component of short T2 in the range of 5-15ms. The odds ratio in favour of model having 

the lower component over a model lacking the lower component range from 6:1 for Head 

Caudate Nucleus to 1015:1 for Splenium Corpus Callosum. The gray matter tissue exhibit, 

in general, lower evidence for the lower component, along with lower estimated amplitude 

of that component. Recall that the evidence for the lower component in the Head Caudate 

Nucleus comes only from the data of the first measurements (at time 10ms). This result 

in under .determination of the parameters of this component, as shown in Figure 4.7. 

The Insular cortex showed an odds ratio of 40:1 in favor of not having a lower com

ponent. 

According to [2], there seems to be no apparent reason to expect inherent differences 

in the T 2 of the lower component in the white matter tissues. The results of our work 

indicate no evidence for such differences but for the Internal Capsules, that have a slightly 

higher T 2 time. 

The lower component is usually assigned to water confined within myelin bilayers. A 

number of independent supportive indications to this assignment are given in [2]. The 

results of this work do not weaken or contradict any of these indications. 
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6.3.2 Evidence of a Long T 2 Component 

No evidence was found for long T 2 components, with T 2 of more than 1000ms, in the 

brain tissues except for the Cortical Gray tissues: In Insular Cortex and Cingulate Gyrus 

in the form of DC level, and in the data set labelled ' Cortical Gray1 as a component of 

T 2 just below lsec. 

Most of the tissues exhibit a component of T 2 in the range of 150-300ms. It is not 

clear to the author to what source this component should be assigned. 

6.3.3 Components Width 

No evidence for spread of the T 2 times in the components of the T 2 distributions were 

found. As discussed and demonstrated in Chapter 3, this is not to say that there is 

no width, but that there is no justification in the data and our prior knowledge for the 

incorporation of width in our models. The data is not sensitive to the width of the T 2 

distribution components; a model containing widths (of the order of magnitude of those 

demonstrated in Chapter 3) will explain the data as well as a discrete model, whether the 

data were produced by a discrete or a continuous T 2 distribution. Thus, lacking any prior 

information that will strongly support the continuous and more complicated model, the 

Bayesian procedure chooses the discrete models as the simplest models that adequately 

explain the data and our prior information. 

One may introduce strong prior information supporting the continuous distribution. 

This will result, under the current noise level, in an under_determination of the param

eters of the distribution. The joint posterior probability distribution of the parameters 

will have ridges (in case of one redundant parameter), surfaces (in case of two redundant 

parameters) or hyper-surfaces (in case of three redundant parameters) of high probability. 
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6.3.4 Alternating Echo Refocusing 

The Alternating Echo Refocusing (AER) component in our models is almost orthogonal, 

over the measurement points, to the other base function.' As a result, its estimation is 

almost free from coupling to the estimations of other parameters and is accurate to the 

level of 5-8%. The highest A E R component was found in Head Caudate Nucleus, as 

anticipated by MacKay [22] associated with the extent of laminar flow of fluids in this 

tissue. -
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Appendix A 

Safety Valve Routine 

The ability to approximate the integral over the nonlinear parameters is crucial to the 

feasibility of model selection in the general case, where such an integral cannot be done 

analytically or by usual numerical methods. The case of gaussian distributed noise is of 

general interest. 

We brought the likelihood to an almost symmetric shape (as function of the non

linear parameters) by transformation of the nonlinear parameters. We then try to ap

proximate its peak. In most of the cases, the expansion of the log(likelihood) function 

in Taylor series will be adequate; the distribution assigned to the noise is Gaussian and 

thus log(likelihood) will behave in a quadratic manner near its peak. This is not al

ways the case; if the problem is not well posed down to the noise level, the behaviour 

of log(likelihood) will not be quadratic in all principle directions. The (pseudo) non-

uniqueness of the solution seems to give rise to behaviour of — x2n where n=2,3...(see 

figure A . l ) . This will cause a very flat log(likelihood) at the point of maximum likeli

hood and small coefficients of the Taylor expansion in some directions, which in turn will 

lead to over estimation of the integral that enters the likelihood of the model. 

In order to estimate the integral we will assign 'artificial' eigenvalues to the 2nd deriva

tives matrix b. Let Vj (j = l. .r) be the eigenvalues of matrix b. We correct any eigenvalue 

smaller than a certain threshold. The threshold is set as a function of a reasonable ex

tension of the logarithm of the nonlinear parameters under the given noise level. An 
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eigenvalue that indicates a variance of (a linear combination of) the nonlinear parame

ters of more than a factor of 2, for instance, is suspected to be a-result of non-quadratic 

behaviour of the log[likelihood]. That is, we correct eigenvalues satisfy 

2 < * 2 > > 2 

\! Vi > 

where < <r2 > is approximated by 0.1. Our results depend weakly on this approxi

mation. 

We carry out the following steps: 

1. Each eigenvalue describes the curvature of the likelihood in one of the principle 

axes. We find the position, along this principle axis in which the log(likelihood) • 

drops by 2< o2 >. We solve 

mK*(U) - mh?(U + t • Wj) = 2 < a2 > (A. l ) 

for t, where Wj is the eigenvector associated with the eigenvalue Vj . 

2. Averaging the absolute values of the two solutions of (A. l ) will give the width of 

the likelihood in the direction of this principle axis.: 

tl + |<2| 
w — -

3. Now, what is the influence of the non-quadratic shape of the log(likelihood) on the 

value of the integral? The integral of a gaussian of unit amplitude and unit width 

is Jexp(—x2)dx = yjv « 1.77 , / exp(—x6)dx w 1.85 and / exp(—x2™)cir—> 2.0.. 

That is, assuming log(likelihood) does behave as — x2n near its peak, the resulting 

decrease in the integral from erroneously assuming it is a gaussian of the same width 
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Figure A . l : Normal Behavior (right) and Abnormal Behavior (left) of the Likelihood 
along Principle Axes. In case of abnormal behavior we search for characteristic width w 
and use it for the integration of the likelihood. The figure was generated by subtracting 
the maximum of Log [Likelihood] from the LogfLikelihood]. The data were taken from 
the simulation of the continuous distribution; the model contains 4 discrete exponents. 

will not exceed 12%. We multiply w by a factor of 1.06 to confine the resulting 

error to 6%. 

4. Thus, the substitution to the eigenvalue is given by: 

v. 2 < a 2 > 

' j S u b ' (1.06 w)2 

The approximation described above enable us to estimate the integral to accuracy 

of 20-30%. Models that will have likelihood difference smaller then that will be treated 

'manually'; in the range of 20-30% difference of the likelihoods, the exact assignment 

of the prior ranges become important. As can be seen from Table 3.4 , no such small 

differences had been encountered during the analysis of the brain tissues data. 



A p p e n d i x B 

A r e Two Signals Equal? 

In this appendix We will treat the problem of signal detection, and the problem of 

comparing two sets of measurements to find whether their signal source rate, of Poisson 

distributed events, was the same. 

The problem of signal detection can be regarded as a special case of the problem of 

deciding whether two signals are equal, for a case where we know that one of the signals 

is zero. We treat this problem in Section B . l . We then proceed to treat the more general 

problem (of deciding whether two signals are equal) in Section B.2. 

We are interested in the signal rate s of Poisson distributed events.of some source. 

The problem of estimating this rate is complicated by an, unavoidable background of. 

unknown rate b. In order to estimate the rate s regardless the background rate b, a set 

of. On/Off measurements is performed. We assume that the source s contributes only to 

the On measurements, and that the rate b of the background is the same in the On and 

Off measurements. The solution for the estimation of s was given by Loredo [8]: 

We denote by T the duration of the measurement and by N the number of events in 

that duration. The posterior distribution of the background rate is given by 

P(b/NoffToffIb) = I o f f ^ ' f , . . = (B.2) 

assuming nonJnformative prior for b. In the following, we will denote this probability 

by- p(b/1); we regard the results of the Off measurements as part of our background 

information. 
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The likelihood of s • b in light of The results of the On measurement is given by the 

Poisson distribution for s + b : 

\(s + b)T }Non
 e-(s+b)T™ • 

P(Non/sbI)=^S + b)lonl , 6 — , (B.3) 

The posterior probability of the rate s is given by 

' Non rp I rp U _ -sTon 

p(s/NonI) = 53 d • 1 ^ S l o n l . (B.4) 
=o *• 

where 

U | T o f f y (Nm+Noff-i)l . 
Q _ \ ^ Tm ) (Non-i)l 

v ^ W i , TOJfy {Non+Noff-j)\ • "; . 
2^j=o y t- Tonj • (Non-jy. • 

We are going to work out the detailed algebra; The final solutions can be found in 

Sections B. l .4 (for signal detection) and Section B.2.4 (for comparing two signals). 

B . l Signal Detec t ion * 

Given a set of On/Off measurements, is there evidence for the existence of a signal? 

That is, find the odds ratio of: ' . 

• Mo = The rate of the signal is zero (there is no additional signal on top of the 

background). 

O V E R 

• M i = There is a signal with rate s. 
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B.l.l M0 • 

The posterior probability of Mo is given by: 

p(W„„/M„6) 
P ( % „ / / ) 

where: 

• p(b/I) is the probability of b given the background information / , where / includes 

the results of the Off measurements. p(b/I) is given by Eqn. (B.2). 

• p(M0/bI) = p(M0/I) is the prior of the model. We set• p(M0/bI) = ,p(Mi/W) =.§,.. 

indicating prior ignorance regarding the plausibility of the signal existence. 

• p{NOn/M0b} is the likelihood and is given by Eqn. (B.3) for s o. 

• p(Non/I) is the global likelihood. We will not have to calculate it for this model 

comparison. . > 

B.l.2 Mi 

The posterior probability of M\ is given by: 

p(M1/NonI) = JJdbds p(MlSb/Non
:I) = JJ db ds p(M±sb/I) • ^ N ^ M ^ "= 

JJdbds P(b/I) P(MjbI) pis/M.bl) P ^ M ^ "(B,6) 
p(Non/MlSbI) 

p(Non/I) 

where: 
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• p(b/I) is the prior for b. as for Mo, it is given by Eqn. (B.2). 

• p(Mi/bI) is the prior for Mx. As for M 0 „ p(Mi/bI) -\. 

• p{sIM\bl) is the prior for s (= j^—).' 

• p(Non/MisbI) is the likelihood. It is given by Eqn. (B.3). 

Odds Ra t io 

The odds ratio 0 O i is the ratio of the probability p(M0/NonI) to p(Mi/NonI) (given by 

Eqn. B.5 and B.6, respectively). 

Since p(M0/bI) = p(M0/I) and p{M1jbI) = p{M1/I) we can write: 

a 
_ PJMolKJ) = fdb p(b/I) p{MQlbI) E ^ f f : 

" p{M,INonI) ffdbds pib/I) P(M1/bI) P(s/Mxbl) p{N;(rio%bI) 

= PJMo/I) fdbp(b/I)p(Non/M0b) 

p(Mi/I) ffdbd p'b/I) p{slM1bI) p{NonlMxsbI) { • J 

B.1 .3 Reduc t ion of the Integral 

Integration Over b 

The integral / db p(b/I) p(Non/sbI) appears both in the numerator and the denominator: 

By equations (B.2) and (B.3): 1 

r f Tu- (bT fAN°ist~bT-=i} \(s + b)T ]N°" e _ ( s + 6 ) T o " / db p(b/I) P(Non/sbI) = db i o / / { °"}
 y l[s + o)lon\ e _ = 

1 E q n . (B.2) gives the posterior probability of the background for large 6 m a x - The general form differs 
only by the multiplicative constant: ^N ^^Tb y This constant (appearing in both the numerator 
and the denominator) is independent of s and 6 and thus will not alter the odds ratio. 
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(Toff)N°ff+* e-°T™.(Ton)N°-
Noff\Nonl 

Expanding (5 + b)Non : 

J db e-h{T°ff+T°n)bN°"{s + b) N0; 

( r o / / )^ / /+ 1 e-T°» (Ton)N° 
N0jj\Non\ 

The integral to be solved is of the form 

, Non 

/ db e-b(T°ff+T°^bN°ff y s"™-^-
N 1 

1 nn. • (B.8) 

/ e~axxbdx = 
erax b xb'j bl 

and Eqn. (B.8) becomes 

(B.9) 

(Toff) ° f f + 1 e-'T" (Ton) 

Noff\Non\ 

N°N I ,r N ' 

(Ton + Toff)N°u+'+l 
(B.10) 

where: l(bmax) —• 0. . 

I(Lax) will be given with the final expression for the odds ratio. 

The numerator of the odds ratio (Eqn. (B.7)), becomes (by taking the limit s —> 0 

in Eqn. B.10 ): • . • . 

numer(odas) = - • - -— 
V ; 2 Noff\Non\ 

Integration Over s 

(Noff + Non)\ 
(Ton + Toff)N°ff+N°^ 

( B . l l ) 

In order to compute the denominator of the odds ratio, we have to integrate Eqn. (B.10) 

over 5: . 
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• r r r (T ,AN°ff+1 e'sTon (T )N° 
JJds db p(b/I) P(Non/sM) = J d s [ l o f f )

 N l N m l
 1 °n) 

E 
i=0 

N ' 
1 ' o n • 

%\{Nm-i)\ {Ton + Toff)Noff+^ (̂ ̂ max) (B.12) 

The integral to be solved is of the same form as Eqn. (B.9) and results in: 

off • i v o n -

JV 0 : 

E 
t=0 

[Non-i)\ 
j+l) 9 ( ̂ max ) i\(Non-i)\ (Ton + Toff)Noff+^ 

where g(smax) —>• 0. 

<7(smax) will be given with the final expression for the odds ratio. 

The denominator of the odds ratio (Eqn. (B.7)) becomes: 

^max) 

(B.13) 

deno(odds) = 
1 1 (Toff)N°ff^ (Ton) N0 

2 -Sr 
N N ' 

off- 4 ' o r i 

son 

E 
t=0 

(N0 

( T o n ) ( ^ n - , + l ) 

AT 1 

* o n • 
; ! ( i V o n - z ) ! (Ton + Toff)N°ff+*+i • ^ ( ^ m a x ) 

(B.14) 

B.1.4 The Odds Ratio 

Combining Eqn. B . l l and B.14, the odds ratio is: 

n. 

(Noff+Nony ] ( h v 

(Ton+To//)JV°// + J V°" + 1 H°maxJ 
f"R 1 en 
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where 
e Non-i 

(Tnji (Non-i-j)\ • E 
on 

and 

as a function of T 0 / / , T o n , A ^ / / , -/V o n , 5 m a a ; and bmax). It should be multiplied by the prior 

Note that the odds ratio depends on the range of the priors for b and 5. The depen

dence on bmax is very weak. On the other hand, the odds ratio is linear in smax. 

B . 2 A r e Two Signals Equal? 

Given two data sets A and B of On/Off measurements, find the odds ratio of: • 

• M\ = the source rates sa and Sb are identical 

regardless of differences in the background intensity b). 

B . 2 . 1 M i 

The probability of the model M i is given-by: 2 

2IA{IB) signify all the background information regarding A (B), including the results of the 'Off' 
measurements. 

of the odds ratio p|^°7{| if the latter is different from 1. 

O V E R 

• M 2 = the source rates.sa and si> are different 

(regardless of differences in the background intensity 6). 
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(B.16) 

p(M1/NonANonBlAlB) = J J dsa dsb p(M1SaSh/NonANonBlAh) = 

I I j 7 / A/r IT T \ P I o n A NonBlMiSaSbIAIB) / / dsa dsb piMxSaSbflAlB) , • = 

J J ' ' P(NonAJSonBl1a1B) 

J J dsa dsbp(M1IIAIB) • p(sa/M1IAIB)- p{sblMlSaIAIB)-

p{N0nANonB-lM1SdSbIAIB) 

p(NonANonB ITAIB) 

Now, 

• piMJlAls) is. the prior for M i . We set p(MiJTAIB) = p(M2/TAIB) = |. 

• p(salMiIAIB) — p(sa/IA) is the prior for sa. We assume ignorance priors for sa 

and 5 6 . That"is, p(sa/IA) = p{sb/IB) ='^-

• p(sb/M1saIAIB) = S(sb - sa). 

• p{NonANonBlMisasbIAIB) = p(NonA/M1sasbIAIB) • p(NonB/NonAM1sasbIAIB) = 

p{NonA/saIA) • p(NonB/sbIB}.3 

And thus Eqn. (B.16) becomes: 

- p(M1lNonANonBIAlB) = 

1 • — • / fdsa dsb 6(sb - sa) PW^/*M)-P(N^/S>IB) = 

2 W i i > ' P(NonANonB/IAIB) 

3 I n general, p(NONB/N0„AMIIAIB) ^ p(NONB/M-^IAIB)- The independence in our case is due to the 
knowledge of sj . 
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•1 1 r d s p{NonA/sbIA) • p{NonB/sbaIB) ( B 17) 
^ °max J a p(NonANonB/IAIB) 

where sba is the rate of source B numerically identical to the rate of source A , sba = 

sb -Mi. 

B.2.2 M2 

The probability of model M2 is given by: 

p(M2/NonANonBIAIB) = J J dsa dsb p{M2sasb/NonANonBIAIB) = 

111 7 f a JT ' IT T \ P\1Von A 
NonB/M2sasbIAIB) 

/ / dsa dsb p(M2sasb/IAIB) — . = 
J J P{IyonA-NonB/lAlB) 

J J dsadsbp(M2/IAIB)-p(sa/M2IAIB)-p(sb/M2saIAIB)- . 

p(NonANonB/M2sasbIAIB) 

p[NpnA NonB IIAIB ) 

Substituting the known probabilities, we have: 

_ 1 1 1 f / , , p{NonAlsaIA)-p(NonBlsbIB) 

(B .18 ) 

/ / dSa d S b . M i V ^ : : a ^ : M ; r f 7 B ) ( B . I 9 ) 

/ J p(NonANONB/IAIB\ 

The Odds R a t i o 

Combining Eqn. B . 1 7 and B . 1 9 , the expression for the odds ratio is: 

Q _ . / d s a p(NonA/sJA) • p{NonB/sBAIB) 
1 2 j2—• 11 dsa dsb p(NonA/sAIA) • p(NonB/sBIB) 
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Using Bayes theorem, we have: 

P(NonA/sJA) = p(NonA/IA). ti**!^1*) " 

where: 

• p(sa/NonAIA) is given by eq.(B.4), assuming b m a x , the range of the prior of the 

background rate, is sufficiently large. 

• p(sa/IA) is the prior for s {=j^)- It is independent of s. 

• p(NonA/I) is a constant. 

Then, 

0 1 2 = 
fdsa p(NonA/I) • -p(NonB/I) • ^ J S ) B ) 

^•Ifdsa dsb P(NonA/I) • • P(NonA/I) • «*J?X)A) 

• Idsa • p{sa/NonAIA) • p(sba/NonBIB) _ 
j2— • f jdsa dsb p{sa/NonAIA) • p(sb/NonBIB) 

(B.21; 
°max 

/ dsa • p(sa/NonAIA) • p{sba/NonBIB) 

I dsa p(sa/NonAIA) / dsb p(sb/NonBIB) 
B.2.3 Reduction of the Integrals 

Integration of the Denominator 

The denominator is a multiplication of two independent integral. Substitute Eqn.(B.4) 

in Eqn. (B.21), these integral are of the form: 
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£ C . ' - ^ r - / d sie-aTm 

t=0 il 1-

where: 

and 

Non (rp 
Q. \±on) . 

»'=0 Z ! 

E C -
i=0 

(r o n) 
Z ! 

" s T ° " ^ z'! 

5D(5max) +i 

n 4- Toff\i(M°»+Moff-iy. 
V ^ T o n / (A/on 

\^Non(-\ I T c f f (No„+Nof}-jy. 
l^j=0\L "I" T o n j (Nm-j)l 

(̂ max) - J z! 

So the denominator is: 

(B.22) 

deno(odds) 
onA (rp 

'max \ , = 0 
Z ! 

z! 
+1 — 9DA(sma.x) 

'NonB (rp 

C j S ẑ  
i=o l -

(TonBy+i 
gDB(sma.x) (B.23) 

Integration of the Numera to r 

Substituting Eqn.- (B.4) in Eqn. (B.21), the numerator is: 

/ , " f i * („ TmA(sTcnA)>e-T-->\ ' f a f ( TmB(sTmB)>e-T-*-
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NonA NonB frp frp . 

E E ciAc3B
[lonA) { l o n B ; dsi+i

 e - ^ + r — > 
A—n „'—n I. • 7 . J i=0 j=0 

NonA NonB frp frp 

2^ GiACjB J] J] 
»=o i = o - • J-

Where: 

(TonA + TonBy+^ <?Af(-Smax) 

e-Sma.x(TonA+TonB) t+j ( s m a x ) * + J - n (*+j)' 
3 f f ( s m a x ) = - 7 7 7 ; 1 rp \ ' E {TonA +-TonB) ^Zo {TonA + T o n B ) n {i +j-n)l 

B . 2 . 4 T h e O d d s Ratio 

Combining Eqn. (B.23) and Eqn. (B.24), the odds ratio is 

(B.24) 

9N{smax) —> 0 
Smax ^OO 

(B.25) 

Under the assumptions that bmax is large enough to justify the use of Eqn. (B.4). 

Eq. (B.25) is the odds ratio in favour of equality of signals sa and s0, as function of 

the results of the On/Off measurements of sets A and B. 

Again, the dependence on the range of b is very weak and we gave here the solution 

assuming bmax —•» 0 0 . As in the solution to the signal detection odds ratio, the odds ratio 

is linear in sm„r. 


